

Lecture Notes in Computer Science 5181
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sourav S. Bhowmick Josef Küng
Roland Wagner (Eds.)

Database and Expert
Systems Applications

19th International Conference, DEXA 2008
Turin, Italy, September 1-5, 2008
Proceedings

13

Volume Editors

Sourav S. Bhowmick
Nanyang Technological University
50 Nanyang Avenue, Singapore 639798
E-mail: assourav@ntu.edu.sg

Josef Küng
Roland Wagner
University of Linz, Altenbergerstraße 69, 4040 Linz, Austria
E-mail: {jkueng, rrwagner}@faw.at

Library of Congress Control Number: 2008933702

CR Subject Classification (1998): H.2, H.4, H.3, I.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-85653-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85653-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12513642 06/3180 5 4 3 2 1 0

Preface

The annual international conference on Database and Expert Systems Applications
(DEXA) is now well established as a reference scientific event. The reader will find in
this volume a collection of scientific papers that represent the state of the art of
research in the domain of data, information and knowledge management, intelligent
systems, and their applications.

The 19th DEXA conference was held at the Politecnico di Torino, on September
1–5, 2008.

Several collocated conferences and workshops covered specialized and complemen-
tary topics to the main conference topic. Seven conferences − the 9th International Con-
ference on Data Warehousing and Knowledge Discovery (DaWaK), the 8th International
Conference on Electronic Commerce and Web Technologies (EC-Web), the 6th Interna-
tional Conference on Electronic Government (EGOV), the 4th International Conference
on Trust, Privacy, and Security in Digital Business (TrustBus), the 4th International
Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS),
the 2nd International Conference on Network-Based Information Systems (NBiS), and
the 1st International Conference on Data Management in Grid and P2P Systems
(GLOBE) − and seventeen workshops, were collocated with DEXA 2008.

The whole forms a unique international event with a balanced depth and breadth of
topics. Its much-appreciated conviviality fosters unmatched opportunities to meet,
share the latest scientific results and discuss the latest technological advances in the
area of information technologies with both young scientists and engineers and senior
world-renowned experts.

This volume contains the papers selected for presentation at the DEXA conference.
Each submitted paper was reviewed by 3 or 4 reviewers, members of the program com-
mittee or external reviewers appointed by members of the program committee. This year,
for the first time in the history of DEXA, we added an additional dimension to the
framework of the selection of research papers. Based on the reviews, the program com-
mittee accepted two categories of papers: 39 regular papers and 35 short papers of the
208 originally submitted papers. Regular papers were given a maximum of 14 pages in
the proceedings to report their results as well as 25 minutes presentation time at the con-
ference. Note that, we deviated from the past tradition and increased the page limit to 14
in order to give authors more space to report their research results in detail. Short papers
were given an 8-page limit and a 15-minute presentation slot. We believe that this was
yet another step towards further increasing the quality and competitiveness of DEXA.

The excellence brought to you in these proceedings would not have been possible
without the efforts of numerous individuals and the support of several organizations.

First and foremost, we thank the authors for their hard work and for the quality of
their submissions. We also thank Enrico Ferro, Curtis Dyreson, Sanjay Madria, A Min
Tjoa, Roland Wagner, Gabriela Wagner, the members of the program committee, the
reviewers, and the many others who assisted in the organization of DEXA 2008, for

 Preface VI

their contribution to the success and high standard of the conference and of these
proceedings.

Finally, we thank the DEXA Association, the Research Institute for Applied Knowl-
edge Processing (FAW), the Istituto Superiore Mario Boella (ISMB), the CSI Piemonte,
the Regione Piemonte, and the Politecnico di Torino, for making DEXA 2008 happen.

June 2008 Sourav S. Bhowmick
Josef Küng

Organization

General Chairpersons

Enrico Ferro Istituto Superiore Mario Boella / Polytechnic of Turin,
Italy

Emilio Paolucci Polytechnic of Turin, Italy
Marco Cantamessa Polytechnic of Turin, Italy

Conference Program Chairpersons

Josef Küng University of Linz, Austria
Sourav S. Bhowmick Nanyang Technological University, Singapore

Workshop Chairpersons

A. Min Tjoa Technical University of Vienna, Austria
Roland R. Wagner FAW, University of Linz, Austria

Publication Chairperson

Vladimir Marik Czech Technical University, Czech Republic

Program Committee

Witold Abramowicz The Poznan University of Economics, Poland
Fuat Akal University of Basel, Switzerland
Toshiyuki Amagasa University of Tsukuba, Japan
Ira Assent Aachen University, Germany
Ramazan S. Aygun University of Alabama in Huntsville, USA
Torben Bach Pedersen Aalborg University, Denmark
James Bailey University of Melbourne, Australia
Denilson Barbosa University of Calgary, Canada
Peter Baumann University of Bremen, Germany
Ladjel Bellatreche ENSMA-Poitiers University, France
Bishwaranjan Bhattacharjee IBM Thomas J. Watson Research Center, USA
Sourav S. Bhowmick Nanyang Technological University, Singapore
Stephen Blott Dublin City University, Ireland
Peter Boncz Centrum voor Wiskunde en Informatica, Netherlands
Athman Bouguettaya Virginia Tech University, USA

 Organization VIII

Kjell Bratbergsengen Norwegian University of Science and Technology,
Norway

Stephane Bressan National University of Singapore, Singapore
Martin Breunig University of Osnabrück, Germany
Luis M. Camarinha-Matos Universidade Nova de Lisboa + Uninova, Portugal
Silvana Castano Università degli Studi di Milano, Italy
Barbara Catania Università di Genova, Italy
Wojciech Cellary University of Economics at Poznan, Poland
Chee-Yong Chan National University of Singapore, Singapore
Elizabeth Chang Curtin University, Australia
Sudarshan S. Chawathe University of Maine, USA
Sanjay Chawla University of Sydney, Australia
Yi Chen Arizona State University, USA
Cindy Chen University of Massachusetts Lowel, USA
Reynold Cheng Hong Kong Polytechnic University, China
Byron Choi Nanyang Technological University, Singapore
Henning Christiansen Roskilde University, Denmark
Rosine Cicchetti IUT, University of Marseille, France
Frans Coenen The University of Liverpool, UK
Gao Cong Microsoft Research Asia, China
Bin Cui Peking University, China
Alfredo Cuzzocrea University of Calabria, Italy
Tran Khanh Dang Ho Chi Minh City University of Technology, Vietnam
Gautam Das University of Texas, Arlington, USA
John Debenham University of Technology, Sydney, Australia
Elisabetta Di Nitto Politecnico di Milano, Italy
Gillian Dobbie University of Auckland, New Zealand
Dirk Draheim Software Competence Center Hagenberg, Austria
Curtis Dyreson Utah State University, USA
Johann Eder University of Vienna, Austria
Suzanne M. Embury The University of Manchester, UK
Leonidas Fegaras The University of Texas at Arlington, USA
Ling Feng University of Twente, The Netherlands
Eduardo Fernandez Florida Atlantic University, USA
Ada Fu Chinese University of Hong Kong, China
Mariagrazia Fugini Politecnico di Milano, Italy
Antonio L. Furtado Pontificia Universidade Catolica do R.J., Brazil
Bin Gao Microsoft Research Asia, China
Mário J. Gaspar da Silva University of Lisboa, Portugal
Jan Goossenaerts Eindhoven University of Technology, The Netherlands
Fabio Grandi University of Bologna, Italy
William Grosky University of Michigan, USA
Le Gruenwald University of Oklahoma, USA
Francesco Guerra Università degli Studi Di Modena e Reggio Emilia,

Italy
Abdelkader Hameurlain University of Toulouse, France
Wook-Shin Han Kyungpook National University, Korea

 Organization IX

Takahiro Hara Osaka University, Japan
Igor T. Hawryszkiewycz University of Technology, Sydney, Australia
Vagelis Hristidis Florida International University, USA
Wynne Hsu National University of Singapore, Singapore
Ela Hunt ETH Zürich, Switzerland
San-Yih Hwang National Sun Yat-Sen University, Taiwan
Mohamed Ibrahim University of Greenwich, UK
Mizuho Iwaihara Kyoto University, Japan
Dimitris Karagiannis University of Vienna, Austria
George Karypis University of Minnesota, USA
Anastasios Kementsietsidis IBM T.J. Watson Research Center, USA
Myoung Ho Kim KAIST, Korea
Sang-Wook Kim Hanyang University, Korea
Stephen Kimani University of Rome "La Sapienza", Italy
Gary J. Koehler University of Florida, USA
Christian König Microsoft Research, USA
Hanna Kozankiewicz Polish Academy of Sciences, Poland
Michal Krátký VSB-Technical University of Ostrava, Czech Republic
John Krogstie SINTEF, Norway
Petr Kroha Technische Universität Chemnitz-Zwickau, Germany
Josef Küng University of Linz, Austria
Sergey Kuznetcov Russian Academy of Sciences, Russia
Lotfi Lakhal University of Marseille, France
Young-Koo Lee Kyung Hee University, Korea
Mong Li Lee National University of Singapore, Singapore
Dongwon Lee Pennsylvania State University, USA
Ulf Leser Humboldt University of Berlin, Germany
Xuemin Lin University of New South Wales, Sydney, Australia
Tok Wang Ling National University of Singapore, Singapore
Volker Linnemann University of Lübeck, Germany
Mengchi Liu Carleton University, Canada
Peri Loucopoulos The University of Manchester, UK
Sanjai Kumar Madria University of Missouri-Rolla, USA
Vladimir Marik Czech Technical University, Czech Republic
Simone Marinai University of Florence, Italy
Elio Masciari University of Southern California, Italy
Subhasish Mazumdar New Mexico Tech, USA
Dennis McLeod University of Southern California, USA
Xiaofeng Meng Renmin University, China
Elisabeth Metais CNAM, France
Klaus Meyer-Wegener University of Erlangen and Nuremberg, Germany
Anirban Mondal University of Tokyo, Japan
Yang-Sae Moon Kangwon National University, Korea
Reagan Moore San Diego Supercomputer Center, USA
Tadeusz Morzy Poznan University of Technology, Poland
Wolfgang Nejdl University of Hanover, Germany
Wilfred Ng University of Science & Technology, Hong Kong

 Organization X

Daniela Nicklas University of Stuttgart, Germany
Byung-Won On Pennsylvania State University, USA
Gultekin Ozsoyoglu University Case Western Research, USA
Oscar Pastor Universidad Politecnica de Valencia, Spain
Verónica Peralta Universidad de la Republica, Uruguay
Jaroslav Pokorny Charles University in Prague, Czech Republic
Philippe Pucheral INRIA, Université de Versailles, France
Magdalena Punceva CERN, Switzerland
Gerald Quirchmayr University of Vienna, Austria and Univ. of South

Australia, Australia
Fausto Rabitti ISTI, CNR Pisa, Italy
Wenny Rahayu La Trobe University, Australia
Isidro Ramos Technical University of Valencia, Spain
Ralf Rantzau IBM Silicon Valley Laboratory, USA
P. Krishna Reddy International Institute of Information Technology,

India
Colette Rolland University Paris I, Sorbonne, France
Domenico Sacca University of Calabria, Italy
Simonas Saltenis Aalborg University, Denmark
Marýa Luýsa Sapino Università degli Studi di Torino, Italy
Kai-Uwe Sattler Technical University of Ilmenau, Germany
Ralf Schenkel Max Planck Institute, Germany
Stefanie Scherzinger Saarland University, Germany
Ingo Schmitt University of Magdeburg, Germany
Harald Schöning Software AG, Germany
Holger Schwarz University of Stuttgart, Germany
Erich Schweighofer University of Vienna, Austria
Sergej Sizov University of Koblenz, Germany
Giovanni Soda University of Florence, Italy
Dmitri Soshnikov Moscow Aviation Technical University, Microsoft

Russia, Russia
Srinath Srinivasa IIIT-B, India
Bala Srinivasan Monash University, Australia
Zbigniew Struzik The University of Tokyo, Japan
Aixin Sun Nanyang Technological University, Singapore
Keishi Tajima Kyoto University, Japan
Makoto Takizawa Tokyo Denki University, Japan
Kian-Lee Tan National University of Singapore, Singapore
Katsumi Tanaka Kyoto University, Japan
Yufei Tao City University of Hong Kong, Hong Kong
Wei-Guang Teng National Cheng Kung University, Taiwan
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Bernhard Thalheim University of Kiel, Germany
J.M. Thevenin University of Toulouse, France
Helmut Thoma University of Basel, Switzerland
A Min Tjoa Technical University of Vienna, Austria

 Organization XI

Roland Traunmüller University of Linz, Austria
Anthony Tung National University of Singapore, Singapore
Maurice van Keulen University of Twente, Netherlands
Aparna Varde Virginia State University, USA
Genoveva Vargas-Solar LSR-IMAG, France
Yannis Vassiliou National Technical University of Athens, Greece
Krishnamurthy Vidyasankar Memorial Univ. of Newfoundland, Canada
Peter Vojtas Charles University in Prague, Czech Republic
Wei Wang University of New South Wales, Sydney, Australia
John Wilson University of Strathclyde, UK
Marek Wojciechowski Poznan University of Technology, Poland
Viacheslav Wolfengagen Institute for Contemporary Education, Russia
Raymond Wong University of New South Wales, Sydney, Australia
Ming-Chuan Wu Microsoft Corporation, USA
Dong Xin Microsoft Research, USA
Clement Yu University of Illinios at Chicago, USA
Jeffrey Xu Yu Chinese University of Hong Kong, China
Osmar Zaiane University of Alberta, Canada
Gian Piero Zarri University Paris IV, Sorbonne, France
Arkady Zaslavsky Monash University, Australia
Yifeng Zheng University of Pennsylvania, USA
Aoying Zhou Fudan University, China
Yongluan Zhou National University of Singapore, Singapore
Qiang Zhu The University of Michigan, USA
Ester Zumpano University of Calabria, Italy

External Reviewers

Massimo Ruffolo
Domenico Ursino
Changqing Chen
Adegoke Ojewole
Lubomir Stanchev
Gang Qian
Victoria Torres
Pedro Valderas
Carlo Meghini
Matteo Mordacchini
Claudio Lucchese
Giuseppe Amato
Pasquale Savino
Jarogniew Rykowski
Luciano Caropreese
Irina Trubitsyna
Peng Sun
Yichuan Cai

Fernando Farfán
Ramakrishna Varadarajan
Jaume Baixeries
Karam Gouda
Jinsoo Lee
Meishan Hu
Manoranjan Dash
An Lu
Kenneth Leung
Qiong Fong
Marco Grawunder
André Bolles
Jonas Jacobi
Gyözö Gidófalvi
Man Lung Yiu
Samira Jaeger
Philip Groth
Ziyang Liu

 Organization XII

Yu Huang
Xumin Liu
Qi Yu
Zaki Malik
T.Ragunathan
M.Venugopal Reddy
R. Uday Kiran
M. Kumaraswamy
Alain Casali
Sebastien Nedjar
Viet Phan Luong
Sadok Ben Yahia
Ding Chen
Mehdi Benzine
Shaoyi Yin
Sergio Flesca
Filippo Furfaro
Giuseppe M. Mazzeo
Vincenzo Russo
Karin Koogan Breitman
Horst Pichler
Uwe Roehm
Donghui Zhang

Lev Novik
Pawel Terlecki
Rui Wang
Ninad Joshi
Vani Jain
Mitesh Naik
Derry Wijaya
Wee Hyong Tok
Wei Liu
Fangjiao Jiang
Jinchuan Chen
Xike Xie
Ki Yong Lee
José Hilario Canós
Pepe Carsí
Cristóbal Costa
Abel Gómez
Eva Onaindia
Zhifeng Bao
Jiaheng Lu
Huayu Wu
Liang Xu

Table of Contents

Invited Talk

Towards Engineering Purposeful Systems: A Requirements Engineering
Perspective . 1

Colette Rolland

Session 1

Data Privacy

Hiding Frequent Patterns under Multiple Sensitive Thresholds 5
Ya-Ping Kuo, Pai-Yu Lin, and Bi-Ru Dai

BSGI: An Effective Algorithm towards Stronger l-Diversity 19
Yang Ye, Qiao Deng, Chi Wang, Dapeng Lv, Yu Liu, and
Jianhua Feng

Temporal, Spatial, and High Dimensional Databases I

The Truncated Tornado in TMBB: A Spatiotemporal Uncertainty
Model for Moving Objects . 33

Shayma Alkobaisi, Petr Vojtěchovský, Wan D. Bae,
Seon Ho Kim, and Scott T. Leutenegger

Reordering of Location Identifiers for Indexing an RFID Tag Object
Database . 41

Sungwoo Ahn and Bonghee Hong

A Free Terrain Model for Trajectory K–Anonymity 49
Aris Gkoulalas-Divanis and Vassilios S. Verykios

HRG: A Graph Structure for Fast Similarity Search in Metric Spaces . . . 57
Omar U. Florez and SeungJin Lim

Session 2A: Semantic Web and Ontologies

Word Sense Disambiguation as the Primary Step of Ontology
Integration . 65

Marko Banek, Boris Vrdoljak, and A Min Tjoa

Enriching Ontology for Deep Web Search . 73
Yoo Jung An, Soon Ae Chun, Kuo-chuan Huang, and James Geller

XIV Table of Contents

POEM: An Ontology Manager Based on Existence Constraints 81
Nadira Lammari, Cédric du Mouza, and Elisabeth Métais

Session 2B: Query Processing

Extending Inconsistency-Tolerant Integrity Checking by Semantic
Query Optimization . 89

Hendrik Decker

On the Evaluation of Large and Sparse Graph Reachability Queries 97
Yangjun Chen

SQL TVF Controlling Forms – Express Structured Parallel Data
Intensive Computing . 106

Qiming Chen and Meichun Hsu

A Decidable Fuzzy Description Logic F-ALC(G) . 116
Hailong Wang and Z.M. Ma

Session 3: Web and Information Retrieval

Ranking Entities Using Comparative Relations . 124
Takeshi Kurashima, Katsuji Bessho, Hiroyuki Toda,
Toshio Uchiyama, and Ryoji Kataoka

Query Recommendation Using Large-Scale Web Access Logs and Web
Page Archive . 134

Lin Li, Shingo Otsuka, and Masaru Kitsuregawa

Description Logic to Model a Domain Specific Information Retrieval
System . 142

Säıd Radhouani, Gilles Falquet, and Jean-Pierre Chevalletinst

Extending the Edit Distance Using Frequencies of Common
Characters . 150

Muhammad Marwan Muhammad Fuad and Pierre-François Marteau

Session 4: Mobile Data and Information

Tracking Moving Objects in Anonymized Trajectories 158
Nikolay Vyahhi, Spiridon Bakiras, Panos Kalnis, and
Gabriel Ghinita

REALM: Replication of Data for a Logical Group Based MANET
Database . 172

Anita Vallur, Le Gruenwald, and Nick Hunter

Table of Contents XV

A Cache Management Method for the Mobile Music Delivery System:
JAMS . 186

Hiroaki Shibata, Satoshi Tomisawa, Hiroki Endo, and Yuka Kato

EcoRare: An Economic Incentive Scheme for Efficient Rare Data
Accessibility in Mobile-P2P Networks . 196

Anirban Mondal, Sanjay Kumar Madria, and Masaru Kitsuregawa

Session 5: Data and Information Streams

Identifying Similar Subsequences in Data Streams . 210
Machiko Toyoda, Yasushi Sakurai, and Toshikazu Ichikawa

A Tree-Based Approach for Event Prediction Using Episode Rules over
Event Streams . 225

Chung-Wen Cho, Ying Zheng, Yi-Hung Wu, and Arbee L.P. Chen

Effective Skyline Cardinality Estimation on Data Streams 241
Yang Lu, Jiakui Zhao, Lijun Chen, Bin Cui, and Dongqing Yang

Session 6: Data Mining Algorithms

Detecting Current Outliers: Continuous Outlier Detection over
Time-Series Data Streams . 255

Kozue Ishida and Hiroyuki Kitagawa

Component Selection to Optimize Distance Function Learning in
Complex Scientific Data Sets . 269

Aparna Varde, Stephen Bique, Elke Rundensteiner, David Brown,
Jianyu Liang, Richard Sisson, Ehsan Sheybani, and Brian Sayre

Emerging Pattern Based Classification in Relational Data Mining 283
Michelangelo Ceci, Annalisa Appice, and Donato Malerba

Session 7: Multimedia Databases

Rosso Tiziano: A System for User-Centered Exploration and Discovery
in Large Image Information Bases . 297

Giovanni Maria Sacco

NM-Tree: Flexible Approximate Similarity Search in Metric and
Non-metric Spaces . 312

Tomáš Skopal and Jakub Lokoč

Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia
Databases . 326

Jorge Manjarrez-Sanchez, José Martinez, and Patrick Valduriez

XVI Table of Contents

Session 8: Data Mining Systems, Data Warehousing,
OLAP

OLAP for Trajectories . 340
Oliver Baltzer, Frank Dehne, Susanne Hambrusch, and
Andrew Rau-Chaplin

A Probabilistic Approach for Computing Approximate Iceberg Cubes . . . 348
Alfredo Cuzzocrea, Filippo Furfaro, and Giuseppe M. Mazzeo

Noise Control Boundary Image Matching Using Time-Series Moving
Average Transform . 362

Bum-Soo Kim, Yang-Sae Moon, and Jinho Kim

Approximate Range-Sum Queries over Data Cubes Using Cosine
Transform . 376

Wen-Chi Hou, Cheng Luo, Zhewei Jiang, Feng Yan, and Qiang Zhu

Session 9: Temporal, Spatial, and High Dimensional
Databases II

Querying Multigranular Spatio-temporal Objects . 390
Elena Camossi, Michela Bertolotto, and Elisa Bertino

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in
Non-ordered Discrete Data Spaces . 404

Gang Qian, Hyun-Jeong Seok, Qiang Zhu, and Sakti Pramanik

Efficient Updates for Continuous Skyline Computations 419
Yu-Ling Hsueh, Roger Zimmermann, and Wei-Shinn Ku

Session 10: Data and Information Semantics

Semantic Decision Tables: Self-organizing and Reorganizable Decision
Tables . 434

Yan Tang, Robert Meersman, and Jan Vanthienen

Translating SQL Applications to the Semantic Web 450
Syed Hamid Tirmizi, Juan Sequeda, and Daniel Miranker

An Agent Framework Based on Signal Concepts for Highlighting the
Image Semantic Content . 465

Mohammed Belkhatir

Session 11: XML Databases I

Supporting Proscriptive Metadata in an XML DBMS 479
Hao Jin and Curtis Dyreson

XPath Rewriting Using Multiple Views . 493
Junhu Wang and Jeffrey Xu Yu

Table of Contents XVII

Superimposed Code-Based Indexing Method for Extracting MCTs from
XML Documents . 508

Wenxin Liang, Takeshi Miki, and Haruo Yokota

Fast Matching of Twig Patterns . 523
Jiang Li and Junhu Wang

Session 12: XML Databases II

XML Filtering Using Dynamic Hierarchical Clustering of User
Profiles . 537

Panagiotis Antonellis and Christos Makris

Person Retrieval on XML Documents by Coreference Analysis Utilizing
Structural Features . 552

Yumi Yonei, Mizuho Iwaihara, and Masatoshi Yoshikawa

HFilter: Hybrid Finite Automaton Based Stream Filtering for Deep
and Recursive XML Data . 566

Weiwei Sun, Yongrui Qin, Ping Yu, Zhuoyao Zhang, and
Zhenying He

Session 13: Query Processing and Optimization

Read-Optimized, Cache-Conscious, Page Layouts for Temporal
Relational Data . 581

Khaled Jouini, Geneviève Jomier, and Patrick Kabore

Exploiting Interactions among Query Rewrite Rules in the Teradata
DBMS . 596

Ahmad Ghazal, Dawit Seid, Alain Crolotte, and Bill McKenna

Optimal Preference Elicitation for Skyline Queries over Categorical
Domains . 610

Jongwuk Lee, Gae-won You, Seung-won Hwang, Joachim Selke, and
Wolf-Tilo Balke

Session 14A: Data and Information Streams

Categorized Sliding Window in Streaming Data Management
Systems . 625

Marios Papas, Josep-L. Larriba-Pey, and Pedro Trancoso

Time to the Rescue – Supporting Temporal Reasoning in the Rete
Algorithm for Complex Event Processing . 635

Karen Walzer, Matthias Groch, and Tino Breddin

XVIII Table of Contents

Classifying Evolving Data Streams Using Dynamic Streaming Random
Forests . 643

Hanady Abdulsalam, David B. Skillicorn, and Patrick Martin

Session 14B: Potpourri

On a Parameterized Antidivision Operator for Database Flexible
Querying . 652

Patrick Bosc and Olivier Pivert

Providing Explanations for Database Schema Validation 660
Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urṕı

Temporal Conformance of Federated Choreographies 668
Johann Eder and Amirreza Tahamtan

Relational Database Migration: A Perspective . 676
Abdelsalam Maatuk, Akhtar Ali, and Nick Rossiter

Session 15A: Data Mining

DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining 684
Sharma Chakravarthy and Subhesh Pradhan

Efficient Bounds in Finding Aggregate Nearest Neighbors 693
Sansarkhuu Namnandorj, Hanxiong Chen, Kazutaka Furuse, and
Nobuo Ohbo

A Grid-Based Multi-relational Approach to Process Mining 701
Antonio Turi, Annalisa Appice, Michelangelo Ceci, and
Donato Malerba

Extraction of Opposite Sentiments in Classified Free Format Text
Reviews . 710

Dong (Haoyuan) Li, Anne Laurent, Mathieu Roche, and
Pascal Poncelet

Session 15B: XML Databases

Navigational Path Expressions on XML Schemas . 718
Federico Cavalieri, Giovanna Guerrini, and Marco Mesiti

Transforming Tree Patterns with DTDs for Query Containment Test . . . 727
Junhu Wang, Jeffrey Xu Yu, Chengfei Liu, and Rui Zhou

XSelMark: A Micro-benchmark for Selectivity Estimation Approaches
of XML Queries . 735

Sherif Sakr

Table of Contents XIX

Session 16A: Applications of Database, Information,
and Decision Support Systems

A Method for Semi-automatic Standard Integration in Systems
Biology . 745

Dagmar Köhn and Lena Strömbäck

FDBMS Application for a Survey on Educational Performance 753
Livia Borjas, Alejandro Fernández, Jorge Ortiz, and Leonid Tineo

Hierarchy Encoding with Multiple Genes . 761
Martin van Bommel and Ping Wang

Knowledge Mining for the Business Analyst . 770
Themis Palpanas and Jakka Sairamesh

Session 16B: Optimization and Performance

Controlling the Behaviour of Database Servers with 2PAC and
DiffServ . 779

Lúıs Fernando Orleans, Geraldo Zimbrão, and Pedro Furtado

Compressing Very Large Database Workloads for Continuous Online
Index Selection . 791

Piotr Ko�laczkowski

Escaping a Dominance Region at Minimum Cost . 800
Youngdae Kim, Gae-won You, and Seung-won Hwang

Session 17: Schema, Process and Knowledge
Modelling and Evolution

Evolutionary Clustering in Description Logics: Controlling Concept
Formation and Drift in Ontologies . 808

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

Model–Driven, View–Based Evolution of Relational Databases 822
Eladio Domı́nguez, Jorge Lloret, Ángel L. Rubio, and
Maŕıa A. Zapata

Inventing Less, Reusing More, and Adding Intelligence to Business
Process Modeling . 837

Lucinéia H. Thom, Manfred Reichert, Carolina M. Chiao,
Cirano Iochpe, and Guillermo N. Hess

Author Index . 851

������� �	
�	����	
 ��������� �������� �

���������	�� �	
�	����	
 ����������

������� ������	

���������	
�����
���	�� ��������
���

�� ��� �� �������� �����
����
����������	
����	����

��������� � �� ��� �! ������� "�#"$#"�# ��% ��� �&��� � !��� ��� �� ��
�����'���� �� ����(����� ������������) �! �� ��'���� ���� ��& ���*
�� �������+ ,������ �� � ���� �! �-��� ������ �� ./ ���� �&��� � ��
���� !���� �� �� ���& �) "0#+ �� ������� ��� ���������� �� �� ��������& ��
������� �� ����� �! ��'���� ���� ������������ ����������� ��� �1���.������
�� � ���������& ��� !������ �����+ �� �/1�������� �� ��� �� � ������
�! ���� ��� ����1����� �&��� � %��� �� ������1�� �� �� !�����+ ��
.��� �! ��'���� ���� ��)�������) �� � ��)�� �� ��� ��� �/1��������+
��'���� ���� 2�)�������) �/����� �� 3%�� �� ���� �& �� �&��� 4 �15
1���� %�� �� 3%& �� �� �&��� ��*� ���4 ���%+ ��� 3%&4 '������� ��
���%���� �� ��� � �! ��)���6������� ��7������� ��� ���� � 1��� �� ��!��5
 ����� �&��� � ��11�����) �� ��)���6�����+ �� ���� %����� ��!�� �����
�&��� � ��� ���� �� !��.����) � ������� 1��1��� �� �� ��)���6����� ��� ��5
'���� ���� ��)�������) ��1� �� �� �����1�����6����� �! ���� 1��1���!��
�&��� �+

�� ���* %��� !���� �� �� ����� ����� �! �����1��������) 1��1���!��
�&��� �+

�� %��� ��)�� ��� ��)��� �����1� �� ������� �� ��������) �� ����� �!
�����1��������) 1��1���!�� �&��� � ��� ���� ��������� ��)��� ����5
��) ��� ��������) %��)���� �� ����� �� �� �������� �� ������� �����
�!)���� �� �����1�����6��) 1��1���!�� �&��� �8 9��� ������) 1�����
�� �� �� �-������ %�& �� ������ ��'���� ���� "�#":#"�#"��#"��#"�$#"��#+ ��
���� 1���� �!)���5����� ��'���� ���� ����������� �� ��� �� ���������
!�� ������1��) � �&��� �� !���� ������� �� �&��� �����!� �� �� �����5
1���� "�0# �� %�� �� �&��� ���� !�������+ �� ��� ��� ��� !�� ��
3%���4 �� �� 3%&�4� �� ���� �� �������& �� �������� ����1�� ���%
1����� �! �� ������� ���*�������� �� �/1���� ����������� ����)� ������
��� ������ ����� �� �� �� �� �*� �����1���� ��������� �� �� �����
�! ��������� ��)� ���� �� !����� ��� �)����� �� ��-����� ������������+
�����������)��� ��.�� ��� 1����� ��1!�� �� �� �&��� ���� �/1��������
�! �&��� ������ ":#"�0#"��#"�;#+ ��������) ���� ���� ��1 �� ���� %��
���)��) ��'���� ����+ 9���� 1������ � ���� �� ������ ��'���� ����
1��5�����������& "�#"��#"�:#+ ��& �������� � �����1���� ���* ���%��� ��
�&��� ��� ��� ������� ���� ��� !����������) �� 1��1�)����� �! ��)�5
��6������� ���)�� ���� �� �&��� !�����������&+ ��� ���* 1������� ��
��������� !�� �� �&��� !�����������& ";#":#"��#"$�#"$�# ��� !���������� ��

���� ������	
� �� ���� ��� �� ������ ������� ���� � !� "#$� %&!&� ''� &()� � !�
	© �'������*+��,�� ���,�� -����,.��� � !

$ �+ �������

�/1�������� ��� 7����.������ �! �� �� �� ���*�������+ ���*������� 1��5
���� ���!�� ��� ��������� ���%1����� ����� �� �&��� ��5<� �/1������
��)����+ =�)�������� �����'��� ��� ���� ������1�� �� ��1 ������)
�� 1�������� ��� "$$#"$�#+
�������6����� �����'��� �� �� 1�������)
 ���� �� �� 1��� �� ��-����� ���%1����� �� �� ����� �! ����� ���
����� "$0#"$�#+ >����1�� ���%1����� ��� ��������& ���������� �� ���?����
"$;# ���)���� ��� ���� ����)��6�� �� ��1 �� �� ��������� �! ���?����
��� ���� ���������� "$�#"$:#"$�#"��#+
�� �� ���� �! ��� ���*� %� %��� �������� ��% ������)�� ������ �& � ��)5

��) ���������� �! �&��� ������1 ��� ������) �� ����������& �� !�������5
����& �������) ��� ����� ������� �� �� ��)�������) 1������+ @���������&
�� � 1���� �& �� ����51��1��� ������ �! ��!�� ����� �&��� � �! ��5
��&+ A� %��� ��� � 1���������)��� ���� ������)���B������)& �1 ��
���������� �% �)��� ���� ��� �*� ����������& �/1����� ��� ��11���
)���5����� ��������) �� ��1 �� ��������) �� ��)� ������� !�� �� 1��7���
�� ���+ C�� 1������� �� ��� ����������& � 1���� � ��� !�� �&��� �
%�� � ���5!������� 1��1��� �� ���� %�� � ����5!������� 1��1���+
A����� �� !�� �� ������������ ��)��� ��������&� �� ����5!�������
������ �! � 1��1��� �/����� �� �� �������� �� ��& ��-����� %�&� �!
)��� ������ ���+ ,�� �/� 1��� !�� ��)���
������ >�������� �������
�� %���� �� ����) �� *��% ��� �� ��)���6����� ������� ���)��� �&
!���������) ������� ����+ ����
������ ������� %�� ���5!�������8
�� �� �/����& ��� ������)& !�� ��� ������ ���+ D�%����� �� �� ��%
�����/�� �� �� ��������& �� ��������� ���� ������)��� �� %���� ��& �� ��5
�����
���� ������)& !�� 1�������) �������+
������ >������� ��% ��
 ����5!�������E �� �� ��& ������)��� !��)��� ������ ���+ ���� �%�
������)���� � ��) ������ ��� ��� ���������� !�� �/� 1��� �� �� ��

>�������� >���)� ��� ����� "��#+
�� !���)���) 1����� �� �� ���� �� �������)���5����������� %�� ��

������������ �! ������)��� !��)��� ������ ���+ ��� �� �� ������� �!
)���B������)& �1�+ �)���B������)& �1� �� �1 !�� ����� �� �)��1�
%�� ����� �� ���������� ��� ������)��� �� ��)��+ �� ��)� �������) �
���� ������.�� � ������)& ��� ��� �� ���� !�� �������) �� ���������
�! �� ����+ �� �1 ����!���� ��%� %�� ���������� ��� �� �������
�& %�� ������)��� ���� � 1�������) ��������� �� ���� �������+ 2��5
�����&� �� �1 �� ��1���� �! �/1������))���� ��� ���� ������ ��� ��
� ����������� �����+ �� ���* %��� ��������� �� �����1� �! � �1 "�$#�
���������� �� %�� �� 2�
 �&��� �/� 1�� ��� ������� �% �� ����
 ���� �� �!��� �������� ������)��+

����������

"�# ������� 9���1� ����+ ������� 9���1 �������� ��1��� F����G
"$# 2���1��� ��!�%��� ���������� 2���1��� ���� �����& ����&���� ��1��� ��@H2��
$+�� 2�
���
��7��� F���;G

"�# >2�� 9���1� ������� �� ��'���� ���� �����6����� ��� ���������� ��1���
F$���G

"0# I������ I+8 ����8 �� J����� J���� �! �� 1��7��� ,�������+ �11�������� J�����15
 ��� ������� 11+0�K0� F����G

��%���� 2�)�������)
��1���!�� �&��� � �

"�# 9����� C+� ,��*�������� �+8 >�������) �� ������������ ��������� ������&��) ��5
'���� ����+ ��8 ��� ���+ A��*��1 �� ��'���� ���� 2�)�������)8 ,��������� �!
��!�%��� L�����&� ������ =��������� F���0G

";# ����� J+�+� ��� ��� M+2+8 ���������� ����&��� !�� ��'���� ���� J�.������+
�222 ������������ �� ��!�%��� 2�)�������) �F�G� ;K�� F����G

"�#
����� �+� ��*����� M+� ���N�� �+�+8 ��'���&5����� ��'���� ���� ����&���+ �222
��!�%��� ��F$G� $�K�$ F���0G

":# �������� �+� �����&��� �+� <�� ������ �+8 9�����))��� �������) ����) ���5
������+ �222 ������������ �� ��!�%��� 2�)�������)� �1����� ����� �� ��������
>���)� ��� $0F�$G F���:G

"�# J�������� �+� O� �%������ �+�+� ,��*��� �+8 9���5�������� ��'���� ���� ��'��5
������� ������� �! �� 1����
��)�� ��)� 11+ �K��+ 2�������� � ������ F����G

"��# J������ 2+� P�� 2+�
������ >+8 ,�� ����& �� ���� !�� �� ��'���� ����8 � 1������5
������� ���� ����&+ ��8
���+ �A��J ���: 5 �� ������������� A��*��1 �� ��!�5
%��� �1���.������ ��� ����)�� 11+ �0K0$+ �222 ��
����� O�� ��� ���� F���:G

"��# ���Q�� �+�+�
����� �+� ��*������ M+8 ��'���& <���� ��'���� ���� ����&���+ ��8
�222 ���!������ �� ��'���� ���� 2�)�������) F���0G

"�$# M������ D+8 � ����)� 1������ ����� �� � ���� �� �����) ��������� %��)���� ���
!��������+ �222 �����+ �� �&��� �� >�� ��� �&�������� ��F�G� ���K��� F$���G

"��# O� �%������ �+�+8 9���5�������� ��'���� ���� ��)�������)8 �)����� ����+ ��8 �2
$��� ������������� I���� ���!������ �� ��'���� ���� 2�)�������)� �������� 11+
$0�K$;�+ �222� O�� ��� ���� F$���G

"�0# O����1������
+8 �� !� F!�� !�66& �� !�� ��G ���% �� ��'���� ���� ��)�������)+
��)	������ ��� �&��	 �� �4��!�� ����� $F;G� ;��K;�� F���0G

"��# �������� �+� 9���6� 9+� M��� �+8 2/1������� %��)���5�������� ���1���)+ �� ��'����5
 ���� ��)�������)+ ��8
��������)� �! �� ,���� �222 ������������� �& 1����
�� ��'���� ���� 2�)�������)� O� ���*� ������� F����G

"�;# D��� <+� O���*��� �+� >&��1������ I+8 ��'���� ���� ����&��� !�� ����� �6���� ��!�5
%���8 � 9����5�*����5
��!������� ,�� �%��*+ ��8 �222 ���!������ �� ��'����5
 ���� 2�)�������)� >������& <�&� ���� 11+ ���K�$; F$���G

"��# �� ��� <+�
�%���� �+� ������� �+� 2�%����� >+8 � 1�� �����) ��'���� ����
�����������&8 � ���� ����&+ ��8
��������)� �! �� $�� �& 1���� �� ��'���� ����
2�)�������) F�2 ����G� �M� 11+ :�K�� F����G

"�:#
��� M+8
������ ������� ��'���� ���� ��)�������)+ I+ A���& ��� ���� O��+�
�������� F���;G

"��# <����*�� I+� �������� �+� O����1������
+� �� ���Q� ������ @+8 ,����������) 3!�66&
�� !�� ��4 ��'���� ���� �������)+ ��8 �222 ��� ���!������ �� ��'���� ����
2�)������)� ���2 ���0� 11+ ��0K��: F���0G

"$�# �� �������� �+� ��%&���
+8 ��'���� ���� ��)�������)+ A����%��� ������ �� �� 5
1���� �������+ A���&� �������� F����G

"$�# >����%� I+8 ��%���� ������ ����� �! �� ����)� 1������+ �� >�)�6��� ;� 00K��
F��:�G

"$$# D��
+8 >����5��������
��!������ ����&��� !�� �&��� ���� ��'���� ���� =�)���5
�����+ ��8 $;� ������ ������������� �� 1���� ��!�%��� ��� �11��������� ���5
!������� C/!���� 2�)����� 1+ ::� F$��$G

"$�# <�� � <+� <����
+� D���%��6� 2+� >��)5I���� O+8 ��!�%��� ��'���� ���� �� ��5
)������� %�� ����������+ ��8 ��� ������������� ���!������ �� ��'���� ���� 2�)�5
������)� ���� 11+ �0K:� F���0G

"$0# M�������� I+� C������ �+� �&��� M+8 � 1�����
�������� ��11��� !�� O��)�5�����
��'���� ����
�������6��)+ I������ �! ��'���� ���� 2�)�������)� ��K;� F����G

0 �+ �������

"$�# >��������� ,+8 �� ,���� ������ �!
����������) ��'���� ���� �&��� � 2�)�����5
��)+ ��8 ���� R 2��������� ���!������� �&���&� ��������� F$��$G

"$;# =������� <+� M�� ��� I+� ,��*�������� �+8 � !�� �%��* !�� �/1������) �� ��������5
��1� ���%��� ����1�� ���%� �� ��'���� ���� �1���.������+ �222 ������������ ��
��!�%��� 2�)�������) $�� �;�K��� F���0G

"$�# O� �%������ �+�+� O������ 2+8 D������) ��������� ��)���5�������� ��'���� ����
��)�������)+ �222 ������������ �� ��!�%��� 2�)�������)� �1����� ����� �� 2/��15
���� D������) $;F��G� ��:K���� F$���G

"$:# ��������� A+=+� @������ �+8 ���?��� C������� ��'���� ���� ������������)� A��*5
��)
�1�� ���5�;5�� F���;G

"$�# ��������� A+=+� @��*��� �+8 ��11�����) �� =�)�������� O�!�5�&���+ �� �����5
����� �! �� ��>� ��K��$ F���:G

"��# 2���������*� �+>+8 ��������) ��'���� ���� ���?���� %�� �� 1����5��11�����
=�)��������+ ��8 I����*�� >+� 9�)���� I+ F���+G ��'���� ���� 2�)�������)8 ������
��� �������� ������� 11+ 0�K;�+ ����� ��
����� O����� F���0G

"��# �������� �+�
��*��� =+8 <���)��) ��)�1 ���%��� C�)���6������� ����� ���
2�
 !�����������&+ ��'���� ���� 2�)�������) I������ � F$���G

"�$# �������� �+� ��������� �+� 2����� �+8 2�������) 9�1� �� ��'���� ���� ���)�+ ��5
'���� ���� 2�)�������) I������ �� �K�� F$��0G

Hiding Frequent Patterns under Multiple

Sensitive Thresholds

Ya-Ping Kuo, Pai-Yu Lin, and Bi-Ru Dai

Department of Computer Science and Information Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan. R.O.C.

{m9515063,m9615082}@mail.ntust.edu.tw, brdai@csie.ntust.edu.tw

Abstract. Frequent pattern mining is a popular topic in data mining.
With the advance of this technique, privacy issues attract more and more
attention in recent years. In this field, previous works based hiding sensi-
tive information on a uniform support threshold or a disclosure threshold.
However, in practical applications, we probably need to apply different
support thresholds to different itemsets for reflecting their significance.
In this paper, we propose a new hiding strategy to protect sensitive
frequent patterns with multiple sensitive thresholds. Based on different
sensitive thresholds, the sanitized dataset is able to highly fulfill user re-
quirements in real applications, while preserving more information of the
original dataset. Empirical studies show that our approach can protect
sensitive knowledge well not only under multiple thresholds, but also un-
der a uniform threshold. Moreover, the quality of the sanitized dataset
can be maintained.

Keywords: Privacy, frequent pattern hiding, multiple threshold, sensi-
tive knowledge, security, data sanitization.

1 Introduction

Frequent pattern and association rule mining play the important roles in data
mining [1]. By this technique, we can discover interesting but hidden information
from database. This technique has been applied to many application domains,
such as the analysis of market basket, medical management, stock, environment,
business, etc., and brings great advantages. However, most database owners are
unwilling to supply their datasets to analysis, since some sensitive information
or private commercial strategies are at the risk of being disclosed from the min-
ing result. Therefore, although many benefits can be provided by this technique,
it causes new threats to privacy and security. For above reason, the database
should be processed before releasing so that it can contain the most of original
non-sensitive knowledge and the least of sensitive information for the owner.
Intuitively, the database owner can permit only partial access of dataset for
analysis or directly remove all sensitive information from the mining result of
database. However, it is possible that the adversary still can infer sensitive item-
sets or high-level items from non-sensitive patterns or low-level items. For exam-
ple, suppose that {1} is the sensitive pattern and the set of all frequent patterns

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 5–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

are {{1}, {1, 2}, {2, 3}}. If we directly remove {1} and release {{1, 2}, {2, 3}},
the adversary may still be able to infer that {1} is frequent. That is because of
the monotonic property of frequent patterns, which means that all non-empty
subsets of a frequent pattern must be frequent. Hence the challenge is how to
protect sensitive information from being attacked by inference.

1.1 Motivations

In this paper, we focus on the problem of hiding sensitive frequent itemsets from
a transaction database. The motivation and the importance of hiding sensitive
itemsets have been well explained in [2] as stated below. Suppose that most
people who purchase milk usually also purchase Green paper. If the Dedtrees
paper company mines this rule from the database of a supermarket and issues
a coupon, “if you buy the Dedtrees paper, you will get a 50 cents off discount
of one milk,” then the sales of Green paper will be reduced by the above com-
mercial strategy. For this reason, the Green paper company would not like to
provide a lower price to the supermarket. On the other hand, the Dedtrees paper
company has already achieved its goal, and is unwilling to provide a lower price
to supermarket anymore. Then, the supermarket will suffer serious losses. Hence
the database should be sanitized for such sensitive information before releasing.

Most of previous sanitization algorithms only use one user-predefined support
threshold without considering the following issues. First, using a uniform sup-
port threshold with different patterns is not always reasonable in real life. For
instance, the supports of high price or the latest products, such as computers,
are intrinsically lower than those of general or common products, such as wa-
ter, but it does not imply the latter ones are more significant than the former
ones. If we decrease the supports of all sensitive itemsets to be smaller than
the same threshold, it may cause some itemsets are overprotected and some are
not protected sufficiently. Furthermore if the support threshold used by the ad-
versary in mining is smaller than the one used in hiding, the released database
will disclose all sensitive information. On the contrary, if the support threshold
which is used for hiding is too small, the released database is possible to lose too
much information and becomes useless for subsequent mining. In addition, if the
general items and the particular items have similar frequencies in database, the
adversary will infer that some sensitive knowledge has been hidden. Therefore,
based on the consideration of both privacy protection and information preserva-
tion, it is important to assign each itemset a particular threshold. For the above
reasons, an algorithms using a disclosure threshold has been proposed [17]. It
decreases the supports of sensitive patterns according to their distribution in
database and uses a disclosure threshold directly to control the balance between
privacy and knowledge discovery. However, the method does not consider the
characteristics of different sensitive itemsets in different applications or the per-
sonalized requirements of different users. It totally relies on the distribution of
database to do the same degree of sanitization with infrequent sensitive patterns
and more frequent sensitive patterns.

Hiding Frequent Patterns under Multiple Sensitive Thresholds 7

1.2 Contributions

In this paper, we propose a new strategy, which combines the sanitization algo-
rithm and the concept of multiple support thresholds [14], to solve the problem
which is mentioned above. Before sanitizing, the database owner can specify the
support threshold, called sensitive threshold, for each sensitive pattern based on
his/her domain knowledge. Then our algorithm will decrease the support of each
sensitive pattern to be below its sensitive threshold, respectively. Under multi-
ple thresholds, the database owner can directly decide the sanitization degree
of different patterns hence the protected database can much more satisfy the
demand of the database owner. Consequently, the proposed strategy is able to
reduce the probability of privacy breach and preserve as much information as
possible.

The main contributions of this paper are as follows: (1) a new hiding strategy
with multiple sensitive thresholds, which is more applicable in reality, is sug-
gested; (2) the proposed algorithm can achieve better privacy protection and
information preservation; (3) The new metrics are presented to measure perfor-
mance for hiding frequent patterns under multiple sensitive thresholds because
of the difference between under multiple thresholds and a uniform one, while the
sets of the patterns which need to be hidden by user-predefined are the same.

The rest of this paper is organized as follows. The preliminary knowledge is
stated in Section 2. In Section 3, we introduce our sanitizaion framework, the
whole sanitization process, and some techniques which improve performance and
efficiency. Some related hiding algorithms are reviewed in Section 4. The new
metrics, experimental results and discussion are presented in Section 5. In the
last part, Section 6 presents our conclusions.

2 Preliminaries

Before presenting our hiding strategy and framework, we introduce the prelim-
inaries of frequent patterns, the transaction database, and the related concepts
of privacy and multiple thresholds briefly.

Frequent Pattern and Transaction Database. Let I = {1, . . . , n} be a
non-empty set of items. Each non-empty subset X ⊆ I is called a pattern or an
itemset. A transaction is a pair of itemset t ⊆ I with a unique identifier Ti, called
the transaction identifier or TID. A transaction database D = {T1, . . . , TN} is
a set of transactions, and its size is |D| = N . We assume that the itemsets
and the transactions are ordered in lexicographic order. A transaction t sup-
ports X , if X ⊆ t. Given a database D, the support of an itemset X , denoted
sup(X), is the number of transactions that support X in D. The frequency of X
is sup(X)/|D|. An itemset X is said to be frequent if sup(X)/|D| is larger than
the user-predefined minimum support, denoted as minsup, 0 ≤ minsup ≤ 1.

Sensitive Itemset, Sensitive Threshold, and Sensitive Transaction. Let
D be a transaction database, FP be a set of frequent patterns, and {sp1, . . . , spi}

8 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

Table 1. The summarization of notations used in the paper

I and X I is the set of all items; X is an itemset, X ⊆ I
(Ti, t) The transaction itemset t with its TID Ti

sup(X) The support of X
minsup The user-predefined minimum support threshold

sp1, . . . , spi ∈ SP The set of patterns that need to be hidden
Ps The set of sensitive patterns which can infer any patterns in SP

Ts(X) The set of sensitive transactions of X
st(X) The sensitive threshold of X
TPk The unique identifier of template
SPC The number of sensitive patterns covered of a template
MC The minimal count of the transactions need to be modified

∈ SP be a set of patterns that need to be hidden based on some security require-
ments. A set of frequent patterns which are able to infer any patterns in SP ,
denoted as Ps, is said to be sensitive. ∼ Ps is the set of non-sensitive frequent
patterns such that Ps ∪∼ Ps = FP. As long as a transaction supports any item-
sets, it is said to be sensitive, denoted as Ts, and the set of sensitive transactions
of X is denoted as Ts(X). The support threshold used for hiding is named sen-
sitive threshold. The sensitive threshold of a sensitive pattern X is denoted as
st(X).

3 The Template-Based Sanitization Process

The main goal of this work is to hide sensitive information in database so that the
frequent itemset mining result of new released dataset will not disclose any sen-
sitive patterns. The challenge of this problem is to find out the balanced solution
between the privacy requirement and the information preservation. We suggest
assigning different sensitive threshold to each sensitive itemset to minimize the
side effects with the dataset. Formally, the problem definition is stated as follows:

Frequent Pattern Hiding with Multiple Sensitive Thresholds. Given a
database D and the set of patterns to be hidden, {sp1, . . . , spi} ∈ SP , with their
sensitive thresholds, st(sp1), . . . , st(spi), the problem is how to transform D to
D′ such that Ps will not be mined from D′, and ∼ Ps can still be contained in
D′. Finally, D′ can be released without violating the privacy concern.

In our sanitization process, we remove some items for each sensitive itemset
from its corresponding sensitive transactions. Since a uniform sensitive threshold
is usually not suitable for real cases, we apply the concept of multiple sensitive
thresholds for hiding sensitive itemsets so that the itemsets with higher occur-
rences in reality can preserve more information. Moreover, the itemsets with
lower occurrences in reality can reach better protection. Note that we will not
focus on the determination of sensitive thresholds since they largely depend on
applications and users requirements. Database owners can decide the sensitive
threshold based on existing schemes [8][14][18] or any preferred settings.

Hiding Frequent Patterns under Multiple Sensitive Thresholds 9

Sensitive

Pattern

Transaction

Index

Original

Database

New

Database

Template

Table

Action

Table
Threshold

Sensitive

Calculate

Inverted file

Mining

Build/

Update
Retrieve

Modify & Output

Fig. 1. The sanitization framework

In this section, our framework and the whole sanitization process of hiding
frequent patterns are presented. We propose a template-based framework which
is similar as [5] but different strategy on choosing an optimal hiding action
with minimal side effect. The proposed method hides the sensitive itemset by
decreasing its support. We apply the template to evaluate the impact of choosing
different items to be victims and different hiding order of sensitive itemsets.
In order to reach minimum side effect, we would like to choose the optimal
modification of a template which can hide most sensitive itemsets and sanitize
least sensitive transactions at the same time. In addition to promote efficiency,
we suggest a revised border-based method to reduce the redundant work on
hiding and rely on the inverted file and pattern index to speed up the renovation
of each component in our sanitization process. The summarization of notations
used in this paper is shown as Table 1.

3.1 The Sanitization Framework

The framework of our sanitization process is illustrated as Fig. 1. It mainly
consists of three components: sensitive pattern table, template table, and ac-
tion table. At first, the database is scanned to find all supports and sensitive
transactions of sensitive itemsets, and then the sensitive pattern table is built
that stores the number of supports should be decreased based on the sensitive
threshold for each sensitive itemsets. Secondly, we generate the corresponding
templates for each sensitive itemset that contains all probable choices of victim
items for hiding this itemset. Next, a template is selected from template table
according to the hiding strategy of minimizing side effects for the original data-
base. Then we search out the corresponding sensitive transactions enough to
be modified for hiding all sensitive patterns covered by this template and then
put all pairs,(victimitem, T ID), to action table. Then, the information of all
components is updated. The choosing and updating process will repeat until all
sensitive itemsets are hidden. Finally, we remove each victim item from its pair
transaction in the action table. Note that the whole sanitization framework only
needs to scan the database twice.

10 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

Table 2. The sensitive pattern table and the corresponding template table

Sensitive Pattern Table

SP Count

{3} 3

{2, 3} 5

{1, 3, 4} 6

Template Table

victim UCP SPC MC

TP1 3 3 1 3

TP2 2 2,3 1 5

TP3 3 2,3 2 5

TP4 1 1,3,4 1 6

TP5 3 1,3,4 2 6

TP6 4 1,3,4 1 6

TP7 3 1,2,3,4 3 6

3.2 Sensitive Pattern Table

There are two attributes contained in the sensitive pattern table, each sensitive
itemset and its Count, as shown in Table 2. The Count of a sensitive pattern
indicates that the minimal number of support which is required to be decreased
will make this pattern to be infrequent. Based on multiple sensitive thresholds,
we propose the lemma of Count as follow:

Lemma 1. Given a sensitive pattern spi, the minimal number of transactions
that should be sanitized for hiding this pattern is computed as spi.Count =
�sup(spi) − st(spi) + 1�

Proof. To hide a sensitive pattern spi, its support, sup(spi), should be decreased
to be below its sensitive threshold, st(spi). Hence removing some victim items
contained in spi from the corresponding sensitive transactions will make spi

to be infrequent. Let spi.Count be the minimal number of sanitized transac-
tions as sup(spi) < st(spi). Because sup(spi) − spi.Count < st(spi), and then
spi.Count > sup(spi) − st(spi). Therefore spi.Count = the interger part of
((sup(spi) − st(spi)) + 1) = �sup(spi) − st(spi) + 1� �	

3.3 Template Table

The initial template table should be built according to the sensitive pattern table,
as depicted in Table 2. A template is represented in the form: < TPID, victim,
UCP, SPC, MC >, where TPID is the template unique identifier, and victim
is the chosen item that is considered to be removed from the corresponding
sensitive transactions. For a sensitive itemset with length k, there are k items
that can be victims. Hence we can generate k templates with different victims.
Take {1, 3, 4} as example, three templates with the victims, {1}, {3}, and
{4} are produced, respectively. The UCP of a template represents the itemset
must be contained in the corresponding transactions and it is the union of all
corresponding sensitive patterns which can be sanitized by this template. It
means that if the victim is deleted from the corresponding sensitive transactions
which contain the UCP , the support of each corresponding sensitive pattern is
decreased. For instance in Table 2, TP1 for hiding {3} is to delete {3} from

Hiding Frequent Patterns under Multiple Sensitive Thresholds 11

the transactions containing {3}; TP3 for hiding {2, 3} and {3} is to delete {3}
from the transaction containing {2, 3}, etc. The SPC, stands for the number of
the sensitive patterns which can be sanitized by this template. For example, the
TP3 in Table 2 can hide two sensitive patterns {3} and {2, 3} at the same time,
so its SPC is 2. The MC indicates the minimal number of the support should
be decreased, such that all corresponding sensitive patterns of this template
are hidden. Hence the MC is the maximum Count among all corresponding
sensitive patterns of this template. For instance, the MC of TP3 in Table 2
is max{3, 5} = 5.

Not only are those templates introduced above, but also we generate joint
templates to cover more sensitive patterns. If any two templates have the same
victim, and their UCP do not contain each other, we can join them to be a
new template. The UCP of the new joint template is the union of the UCPs
of all combined templates. Then the SPC and the MC are computed according
all corresponding sensitive patterns. As shown in Table 2, TP3 and TP5 can be
combined to generate TP7. The UCP , the union of {2, 3} and {1, 3, 4}, is {1,
2, 3, 4}. Then the SPC of TP7 will be 3 because removing {3} from transaction
containing {1, 2, 3, 4} can decrease the supports of three sensitive patterns, {3},
{2, 3}, and {1, 3, 4}. The MC of TP7 is max{3, 5, 6} = 6. Consequently, TP7

becomes a better choice than TP3 and TP5 because the SPC in it is larger than
the others, thus TP7 can hide more patterns at the same time. We use the hash
table to avoid generating the same template with existing ones, and transfer the
pattern index from binary to decimal to be the hash key. We can compute the
SPC and the MC of all templates refer to the sensitive pattern table, and the
computation algorithm is similar in [5].

3.4 Choosing Strategy and Updating Process

Based on the essence of our hiding strategies - “minimizing side effect”, we
choose the template having the largest SPC at each round. If there exists more
than one template having the same SPC, the template with the smallest MC
is selected. If there still exists more than one, we choose the template which has
the victim with the lowest support in the database. Finally, if the tie is still
not solved, a random choice will be picked. After choosing the template, the
corresponding sensitive transactions are found out by the transaction index. If
the number of the sensitive transactions is larger than the MC of the chosen
template, we choose the first MC shortest transactions to move to action table
for sanitizing; otherwise all corresponding sensitive transactions will be sanitized.
By the number of sanitized transactions, the Count and the MC are recomputed.
If some patterns are hidden by this template, the SPC and the UCP should
be changed. As the SPC of a template becomes zero, we remove this template
from template table. Lastly, the TID of sanitized transactions are removed from
the transaction index of the corresponding sensitive patterns of this template.
In order to achieve better hiding performance, the number of the victim items
in one transaction is not restricted.

12 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

3.5 Performance and Efficiency Improvement

In order to promote the performance and efficiency of our framework, we propose
the concept of revised border itemsets for reducing redundant work. Because of
the monotonic property of frequent patterns, hiding a sensitive pattern will hide
all supersets of this pattern. Hence in the sanitization process, we merely need to
hide the sensitive patterns which have no sensitive subsets. Such itemset is said
to be a border itemset. For instance, if the {1, 2, 3}, {1, 3} and {1} are three
sensitive patterns, then {1} is a border itemset but {1, 2, 3}, {1, 3} are not. As
long as the border itemsets of the sensitive patterns have been hidden, we can
protect all sensitive information. However this technique cannot be applied to the
situation of hiding frequent patterns with multiple sensitive thresholds. While
the sensitive threshold of the super-itemset is smaller than that of the itemset,
focusing on hiding the border itemset cannot guarantee the protection of all
sensitive frequent patterns. Therefore, we take all the itemsets which have no
sensitive subsets with lower support thresholds than themselves to be the revised
border itemset. In the above example, if the sensitive thresholds of {1,2,3}, {1,3},
and {1} are 2, 4, and 3, respectively, then {1} and {1,2,3} are revised border
itemset. If the revised border itemsets are hidden, all the sensitive knowledge
will be protected. In addition, the techniques of pattern index [5] and inverted
file are also applied in our framework for increasing efficiency.

4 Related Works

The problem of hiding frequent patterns and association rules was proposed
in [9] firstly. The authors proved that finding an optimal sanitization for hid-
ing frequent patterns is an NP-hard problem and proposed a heuristic approach
by deleting items from transactions in the database to hide sensitive frequent
patterns. In recent year, more and more researchers start paying attention to
privacy issues. The consequent approaches can be classified into two categories:
data modification, and data reconstruction.

Data Modification. The main idea of this group is to alter original database
such that the sensitive information is not able to be mined in new database.
So as to decrease the support or confidence of sensitive rules below the user-
predefined threshold, these algorithms choose some items as victims and delete
or insert them in some transactions [6]. In [17], the authors present a novel ap-
proach using a disclosure parameter instead of the support threshold to directly
control the balance between privacy requirement and information preservation.
Based on the disclosure parameter, the support of each sensitive pattern is de-
creased by the same proportion. The proposed IGA algorithm groups sensitive
patterns first, and then chooses the victim items based on the minimal side ef-
fects for database. In [7], the border-based concept was proposed to evaluate
the impact of any modification on the database efficiently. The quality of data-
base and relative frequency of each frequent itemset can be well maintained by
greedily selecting the modifications with minimal side effect. In [4], the authors

Hiding Frequent Patterns under Multiple Sensitive Thresholds 13

propose an algorithm which can be secure against forward inference attack. By
multiplying the original database matrix and a sanitization one together, the
method raises more efficiency. Most of recent works focus on the minimal side
effects on database [5][10]. These methods minimize the number of sanitized
transactions or items to limit the side effects on database respectively.

Data Reconstruction. The motivation of this group is that the previous
database-based modification methods spend more time on scanning the data-
base and we can not directly control the information on the released database.
Hence the data-reconstruction group uses knowledge-based method to directly
reconstruct the released dataset containing the knowledge that the database
owner wants to preserve. In general, the set of frequent patterns in original
dataset is regarded as knowledge. The concept of “inverse frequent set mining
problem” was first proposed in [11], and was proved to be an NP-hard problem.
Consequently, most researches apply this concept on privacy issues and algo-
rithm benchmarks [12]. In [3], the authors proposed a constraint inverse itemset
lattice mining technique to automatically generate a sample dataset which can
be released for sharing. It indicates that if there exists a feasible support set of
all itemsets, they can generate the new database containing the same frequent
itemsets by one-to-one mapping. In [13], the authors proposed the FP-tree-based
method for inverse frequent set mining, and the new database exactly satisfies
the whole given constraints. However, this method does not provide complete
and well hiding. It only controls the support counts of the non-sensitive patterns
to be the same as before, but the frequencies do not satisfy the original con-
straint. For this issue, the major problem at present is how to find the feasible
support set which has compatible dataset.

In addition, the concept of multiple support thresholds is first proposed in [14]
owing to the observed phenomenon that support thresholds of different itemsets
are not always uniform in the reality. We take some of existing specification of
multiple support thresholds to be the benchmark of our sanitization framework,
and they will be introduced in next section.

5 Experiments

In this section, the performance, efficiency and scalability of our proposed saniti-
zation process are shown. We use the support constraint [18] and the maximum
constraint [8] to assign different sensitive threshold to each sensitive pattern. In
addition, in order to compare our sanitization process with the Item Grouping
Algorithm [20], IGA for short, the same disclosure threshold of IGA is used by
our framework to show performance for the situation of uniform sensitive thresh-
old. These constraints are described as follow:

Disclosure Thresholds: It is devised to compare our method with IGA under
uniform support thresholds. Therefore, the sensitive thresholds are set to be the
same with IGA as follows:

14 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

st(X) = sup(X) × α

where α is the same as the disclosure threshold used by IGA.

Support Constraints: It is similar in [18]. We first partition the support range
in database into the bin number of intervals. Each interval has the same number
of items so that each bin, Bi, contains every items in the ith interval. Next,
the support constraints with the schemas which are made up of all possible
combinations of bins were generated. And the support threshold of the support
constraint SCk(B1, . . . , Br) ≤ θk is defined as follows:

θ = min{γk−1 × S(Bi) × . . . × S(Br), 1}

where S(Bi) denotes the smallest item support for the Bi , and γ is an integer
larger than 1. A large value of γ can be used to slow down the rapid decrease of
S(B1) × . . . × S(Br). We can vary the value of γ to generate different support
constraints.

Maximal Constraints: we use the same formula in [14] to assign the support
threshold of each item:

st(X) =
{

sup(X) × σ if sup(X) × σ > minsup,
minsup otherwise.

where 0 ≤ σ ≤ 1 , and sup(i) denotes the support of item i in the dataset. If σ
is set to be zero, the support thresholds of all items are the same, then this case
becomes the same as the uniform one.

We use two real datasets, accidents [19] and kosarak with different charac-
teristics, to compare our method with IGA when applying disclosure threshold.
The accidents dataset is donated by Karolien Geurts and contains traffic acci-
dent data, and the kosarak dataset was provided by Ferenc Bodon and contains
click-stream data from a Hungarian on-line news portal. On the other hand,
considering the time complexity of mining with multiple sensitive thresholds,
without loss of generality, two smaller real datasets chess and mushroom [20] are
used to evaluate the performance of our hiding approach. These four datasets
are commonly used for performance evaluation of various association rule min-
ing algorithms. Their characteristics are shown in Table 3. For each original
dataset, we first execute Apriori algorithm to mine the supports of all items and
use them to establish the settings of item support thresholds and support con-
straints. Next, according to different applications, we apply algorithms Apriori,
Apriori-like [18], and Adaptive-Apriori [8] to mine the frequent patterns under
the uniform threshold, maximal constraint, and support constraints, respectively.
Subsequently, the sensitive patterns to be hidden are selected randomly to sim-
ulate the application-oriented sensitive information.

Our testing environment consists of a 3.4 GHz Intel(R) Pentium(R) D proces-
sor with 1 GB of memory running a Window XP operating system. All recorded
execution times include the CPU time and the I/O time.

Hiding Frequent Patterns under Multiple Sensitive Thresholds 15

(a) accident dataset (b) kosarak dataset

Fig. 2. IL with disclosure thresholds

Fig. 3. IL with support constraints
on chess dataset

Table 3. The characteristics
of each dataset

trans. Items

Accidents 340,184 572

Kosarak 990,002 41,270

Chess 3,196 75

mushroom 8,124 119

5.1 Metrics

Two measures, information loss and hiding failure, are adopted to evaluate the
performance of our hiding strategies. Information loss (IL) is the percentage of
non-sensitive patterns which are hidden in the sanitization process, as shown in
the following equation:

IL =
((|FP | − |Ps|) − (|FP ′| − |P ′

s|))
(|FP | − |Ps|)

where |FP | and |Ps| are the number of frequent patterns in original database,
D, and the number of sensitive patterns in D, respectively, and |FP ′| and |P ′

s|
are the number of frequent patterns in new database, D′, and the number of
sensitive patterns in D′, respectively. Hiding failure (HF) is the percentage of
sensitive patterns remaining in D′ after sanitization, represented as follows:

HF =
|P ′

s|
|Ps|

Under the uniform support threshold, Ps contains all the supersets of any pat-
terns in SP . However under the multiple support thresholds, the subset of a
frequent pattern may not be frequent. Hence Ps should only contain the super-
sets which have larger sensitive thresholds than those of its sensitive subsets of
any pattern in SP .

16 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

(a) chess dataset (b) mushroom dataset

Fig. 4. IL under maximal constraints

(a) the efficiency (b) the scalability

Fig. 5. The comparison with IGA on the kosarak dataset

5.2 Performance

Firstly, our framework is compared with IGA to evaluate its performance under
the uniform support threshold. We use the disclosure thresholds 0.2 and 0.002 to
hide sensitive patterns in accidents and kosarak datasets. The sensitive patterns
are randomly selected from the frequent patterns which have the support be-
ing larger than 20% and 0.2%, respectively. Subsequently we mine the frequent
patterns in new dataset by the support thresholds 10% to 90%, 0.1% to 0.28%,
respectively. The result of IL is shown in Fig. 2. The trend of the IL is highly
related the characteristic of the experiment dataset. We can observe that our
method reaches better information preservation. Most of HF are zero, except
for the case when the support threshold being 10% of accidents, the HF of IGA
is 0.0057% and our method is 0.325%.

For the capability of hiding with multiple thresholds, we evaluate performance
under support constraints and under the maximal constraints. Under the support
constraints, we evaluate performance from hiding 1 pattern to 10 patterns. All the
sensitive patterns are chosen randomly. We compare the results of γ = 15, 20 under
a fixed bins number 8, and bins number = 8, 10 with a fixed γ. The result of IL is
shown in Fig. 3. All HFs are zero. We can observe that the IL is not affected by
the bins number and γ, but probably relies on the distribution of the dataset and
the chosen sensitive patterns. Finally, performances under maximal constraints are
measured. Under the maximum constraints, we evaluate performance from hiding
1 pattern to 10 patterns. All the sensitive patterns are chosen randomly. Different
parameter settings, including σ = 0.7, 0.85 and σ = 0.25, 0.5 on the chess and mush-

Hiding Frequent Patterns under Multiple Sensitive Thresholds 17

room datasets are examined, respectively. The result of IL is shown in Fig. 4(a)
and 4(b). Since supports of chosen sensitive patterns of chess dataset are higher
and more items are deleted to hide such patterns, the IL is higher. All HFs are
zero. We can observe that the IL will increase along with the decrease of γ and the
increase of the number of hidden sensitive patterns.

5.3 Efficiency and Scalability

We estimate the efficiency and scalability of our method compared with IGA on
the size of the database and the number of the sensitive patterns. The disclosure
parameter of IGA is set to be zero, and the same is α of our method. The zero
value means hiding completely.

We vary the size of dataset from 100K to 900K on hiding six mutually exclusive
frequent patterns with length 2-7. The result is illustrated in Fig. 5(a). Next, the
number of the hidden sensitive patterns is varied from 1 pattern to 10 patterns.
All the patterns are chosen randomly. The result is illustrated in Fig. 5(b). We
can observe that the execution time is linear with the size of the database and
the number of sensitive patterns. Note that our method achieves good scalability
as IGA while attaining better information preservation and providing additional
capability of hiding with multiple sensitive thresholds.

6 Conclusions

In this paper, we introduce the concept of frequent pattern hiding under multi-
ple sensitive thresholds. A new hiding strategy of multiple sensitive thresholds
is proposed. The hiding strategy is more applicable in the practical applica-
tions. Considering the properties of the frequent patterns under multiple sen-
sitive thresholds, we suggest the revised border-based method to reduce the
redundant work on hiding, and used the inverted file and the pattern index to
speed up the update in our framework.

We empirically validated the performance, efficiency and scalability of our
method by using a series of experiments. In all of these experiments, we took
into account the uniform support threshold, multiple support thresholds with
support constraints, and multiple support thresholds under maximal support
constraints. The results of our experiments reveal that our method is effective
and achieves significant improvement over the IGA with the uniform support
thresholds. Furthermore, we can hide sensitive knowledge of the dataset with
multiple sensitive thresholds.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining Associations Rule Between Sets of
Items in Massive Database. In: Proc. of the ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 207–216 (1993)

2. Clifton, C., Marks, D.: Security and Privacy Implication of Data Mining. In: ACM
SIGMOD Workshop on Data Mining and Knowledge Discovery, pp. 15–19 (1996)

18 Y.-P. Kuo, P.-Y. Lin, and B.-R. Dai

3. Chen, X., Orlowska, M., Li, X.: A New Framework of Privacy Preserving Data
Sharing. In: Proc. of IEEE 4th Int. Workshop on Privacy and Security Aspects of
Data Mining, pp. 47–56 (2004)

4. Wang, E.T., Lee, G., Lin, Y.T.: A Novel Method for Protecting Sensitive Knowl-
edge in Association Rules Mining. In: Proc. of the 29th Annual Int. COMPSAC,
vol. 1, pp. 511–516 (2005)

5. Wu, Y.H., Chiang, C.M., Chen, A.L.P.: Hiding Sensitive Association Rules with
Limited Side Effects. IEEE Transactions on Knowledge and Data Engineer-
ing 19(1), 29–42 (2007)

6. Verykios, V.S., Elmagarmid, A., Bertino, E., Saygin, Y., Dasseni, E.: Association
Rule Hiding. IEEE Transactions on Knowledge and Data Engineering 16(4), 434–
447 (2004)

7. Xingzhi, S., Yu, P.S.: A Border-Based Approach for Hiding Sensitive Frequent
Itemsets. In: Proc. of 5th IEEE Int. Conf. on Data Mining, pp. 426–433 (2005)

8. Lee, Y.C., Hong, T.P., Lin, W.Y.: Mining Association Rules with Multiple Mini-
mum Supports Using Maximum Constraints. Int. Journal of Approximate Reason-
ing on Data Mining and Granular Computing 40(1–2), 44–54 (2005)

9. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
Limitation of Sensitive Rules. In: Proc. of the IEEE Knowledge and Data Exchange
Workshop, pp. 45–52 (1999)

10. Gkoulalas-Divanis, A., Verykios, V.S.: An Integer Programming Approach for Fre-
quent Itemset Hiding. In: Proc. of Int. Conf. on Information and Knowledge Man-
agement, pp. 748–757 (2006)

11. Mielikainen, T.: On Inverse Frequent Set Mining. In: Proc. of the 2nd IEEE ICDM
Workshop on Privacy Preserving Data Mining (2003)

12. Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-Aware Market Basket Data Set Gener-
ation: A Feasible Approach for Inverse Frequent Set Mining. In: Proc. 5th SIAM
Int. Conf. on Data Mining (2005)

13. Guo, Y.: Reconstruction-Based Association Rule Hiding. In: Proc. of SIGMOD
2007 Ph.D. Workshop on Innovative Database Research (2007)

14. Liu, B., Hsu, W., Ma, Y.: Mining Association Rules with Multiple Minimum Sup-
ports. In: Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pp. 337–341 (1999)

15. Wang, K., Fung, B.C.M., Yu, P.S.: Template-Based Privacy Preservation in Classi-
fication Problems. In: Proc. - IEEE Int. Conf. on Data Mining, pp. 466–473 (2005)

16. Dwork, C.: Ask a Better Question, Get a Better Answer: A New Approach to
Private Data Analysis. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, pp. 18–27. Springer, Heidelberg (2006)

17. Oliveira, S.R.M., Záıane, O.R.: A Unified Framework for Protecting Sensitive As-
sociation Rules in Business Collaboration. Int. J. of Business Intelligence and Data
Mining 1(3), 247–287 (2006)

18. Wang, K., He, Y., Han, J.: Pushing Support Constraints into Association Rules
Mining. IEEE Transactions on Knowledge and Data Engineering 15(3), 642–658
(2003)

19. Geurts, K., Wets, G., Brijs, T., Vanhoof, K.: Profiling High-Frequency Accident
Locations Using Association Rules. In: Proc. of the 82th Annual Transportation
Research Board, p. 18 (2003)

20. Blake, C.L., Merz, C.J.: UCIRepository of machine learning databases. University
of Califarnia, Dept. of Inf. and CS, Irvine (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

BSGI: An Effective Algorithm towards
Stronger l-Diversity

Yang Ye1, Qiao Deng2, Chi Wang3, Dapeng Lv3, Yu Liu3, and Jianhua Feng3

1 Institute for Theoretical Computer Science, Tsinghua University
Beijing, 100084, China

yey05@mails.tsinghua.edu.cn
2 Department of Mathematical Science, Tsinghua University

Beijing, 100084, China
dengxinqiao@163.com

3 Department of Computer Science, Tsinghua University
Beijing, 100084, China

{wangchi05,lvdp05,liuyu-05}@mails.tsinghua.edu.cn
fengjh@tsinghua.edu.cn

Abstract. To reduce the risk of privacy disclosure during personal data publish-
ing, the approach of anonymization is widely employed. On this topic, current
studies mainly focus on two directions: (1)developing privacy preserving models
which satisfy certain constraints, such as k-anonymity, l-diversity, etc.; (2)de-
signing algorithms for certain privacy preserving model to achieve better privacy
protection as well as less information loss. This paper generally belongs to the
second class. We introduce an effective algorithm “BSGI” for the widely ac-
cepted privacy preserving model: l-diversity. In the meantime, we propose a novel
interpretation of l-diversity: Unique Distinct l-diversity, which can be properly
achieved by BSGI . We substantiate it’s a stronger l-diversity model than other
interpretations. Related to the algorithm, we conduct the first research on the
optimal assignment of parameter l according to certain dataset. Extensive exper-
imental evaluation shows that Unique Distinct l-diversity provides much better
protection than conventional l-diversity models, and BSGI greatly outperforms
the state of the art in terms of both efficiency and data quality.

Keywords: Privacy preservation, BSGI, k-anonymity, l-diversity, Unique-
Distinct l-diversity.

1 Introduction

With the development of internet, more and more data on individuals are being collected
and published for scientific and business uses. To reduce the risk of privacy disclosure
during such publishing, the approach of anonymization is widely used. Removing the
attributes that explicitly identify an individual, (e.g., name, social security number) from
the released data table is necessary but insufficient, because a set of Quasi-identifying
(QI) attributes (e.g., date of birth, zip code, gender) can be linked with public available
datasets to reveal personal identity. To counter such “link attack”, P. Samaritan and
L. Sweeney proposed the model of k-anonymity[1,2,3,4]. K-anonymity requires each

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 19–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

20 Y. Ye et al.

tuple in the published table to be indistinguishable from at least k − 1 other tuples
on QI values. Tuples with the same QI values form an equivalence class. Thereby
k-anonymity reduces the identity disclosure risk to no more than 1/k.

However, since k-anonymity does not take into account the sensitive attribute (SA),
namely, the attribute containing privacy information(e.g., disease, salary), it may be
vulnerable to sensitive attribute disclosure[5]. [5] presents two kinds of possible at-
tacks that k-anonymity cannot prevent: homogenous attack and background knowledge
attack, then proposes a new model: l-diversity to counter such attacks. l-diversity en-
sures each equivalence class contains at least l “well-represented” SA values, thereby
reduces the risk of sensitive attribute disclosure to no more than 1/l.

Current algorithms for l-diversity are generally derived from algorithms for k -
anonymity. As proved in [5], any algorithm for k-anonymity, like hierarchy-base algo-
rithm Incognito[13] and partition-based algorithm Mondrian[14], can be transformed
easily to algorithm for l-diversity, just by changing the condition in each checking phase
from k-anonymity to l-diversity. However, since k-anonymity algorithms do not take
into account the distribution of SA values at all, which is the essence of l-diversity, the
derived l-diversity algorithms may generate great and unnecessary information loss. In
fact, our experiments in Section 6 reveal that Incognito for l-diversity is almost imprac-
tical for low efficiency and data quality while Mondrian for l-diversity drops behind our
algorithm largely in both terms.

In [8], a new model, “Anatomy” was proposed for privacy preserving. Although
Anatomy fails to prevent identity disclosure because of no generalization on QI at-
tributes, its ideas inspire us to propose an algorithm specially designed for l-diversity:
BSGI . Since the implementation of l-diversity largely relies on the distribution of SA
values, an intuitive but most effective inspiration is to firstly “bucketize” the tuples ac-
cording to their SA values, then recursively “select” l tuples from l distinct buckets and
“group” them into an equivalence class. As for the residual tuples, “incorporate” each of
them into a proper equivalence class. The resulted table will satisfy l-diversity perfectly.

For instance, for the disease information table: Table 1, to satisfy 2-diversity, firstly,
tuples are bucketized according to the “Disease” attribute and three buckets are formed:
B1 = {t1, t4}, B2 = {t3, t5} and B3 = {t2, t6, t7}. Here ti denotes the ith tu-
ple in the table. Secondly, t1 and t2 are selected from B1 and B3 and grouped. An
group(equivalence class) is formed as shown in Table 2.

Continuously, t3 and t4, t5 and t6 are selected and grouped (Table 3). Finally, the
residual tuple t7 is incorporated into Group 2, the final published table is created
(Table 4).

Detailed discussions about the implementation of the four steps form the mainbody
of this paper, together with two natural by-products: the optimal assignment of the
parameter l and the stronger l-diversity model: Unique Distinct l-diversity.

The idea of Unique Distinct l-diversity comes from the property of the transformed
tables achieved by BSGI: without considering the incorporated tuples, each equiva-
lence class contains exactly l distinct SA values, we call such model “Unique Distinct
l-diversity” and will further discuss it in this paper.

The rest of this paper is organized as follows. Section 2 gives the basic notations and
definitions, including the Unique Distinct l-diversity model. Section 3 and 4 provide the

BSGI : An Effective Algorithm towards Stronger l-Diversity 21

Table 1. The Original Table

NO. Name Gender Postcode Age Disease
1 Alice F 10075 50 Cancer
2 Bob M 10075 50 Obesity
3 Carl M 10076 30 Flu
4 Diana F 10075 40 Cancer
5 Ella F 10077 20 Flu
6 Fiona F 10077 25 Obesity
7 Gavin M 10076 25 Obesity

Table 2. The First Equivalence Class

Group id. Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity

Table 3. The Table after Bucktizing, Sel −
ecting and Grouping

Group id Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity
2 * 1007* 30-40 Flu
2 * 1007* 30-40 Cancer
3 F 10077 20-25 Flu
3 F 10077 20-25 Obesity

Table 4. The Final Published Table

Group id Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity
2 * 1007* 25-40 Flu
2 * 1007* 25-40 Cancer
2 * 1007* 25-40 Obesity
3 F 10077 20-25 Flu
3 F 10077 20-25 Obesity

essential ideas of BSGI algorithm, together with the discussion about l’s assignment.
Section 5 formally presents the BSGI algorithm with further discussions. Section 6
provides the experimental evaluations. Section 7 introduces related work and Section 8
concludes this paper with discussions about future work.

2 Preliminary

2.1 Basic Notations

Let T = {t1, t2, · · · , tn} be the table that need to be anonymized. Here ti,i = 1, 2, · · · ,
n represents the ith tuple of the table. Each tuple contains a set of Quasi-identifying at-
tribute {A1, A2, . . . , AN}. Each tuple contains one sensitive attribute S(we will discuss
the single-tuple-multi-SA case in Section 5).We use t[A] to denote the value of t’s at-
tribute A. Let T ∗ = {t∗1, t∗2, · · · , t∗n} be the anonymized table, where t∗i is the ith tuple
after anonymization. Also T ∗ = e1

⋃
e2

⋃
· · ·
⋃

em, where ei is the ith equivalence
class. Let E be the set of equivalence classes. By overriding, we also use ei[Aj], etc.
And ei[S] denotes the multi-set of ei’s SA values.

2.2 The Information Loss Metric

In fact, our BSGI algorithm does not rely on a certain information loss metric. Any met-
ric that captures the quality of generalization[12,15,18] can be adopt by the algorithm.
In our experiment, we use the metric proposed by [12], denoted as IL metric.

22 Y. Ye et al.

IL metric defines the information loss for categorical and numerical attributes sep-
arately. The information loss of a tuple is defined by summing up the loss of all at-
tributes(multiplied by different weights). The total information loss of the whole table
is defined by summing up the loss of all tuples.

2.3 l-diversity and Unique Distinct l-diversity

Definition 1. (The l-diversity Principle) An anonymized table is said to satisfy
l-diversity principle if for each of its equivalence class e, e[S] contains at least l “well-
represented” values[5].

According to [5,6], the so called “well-represented” has several interpretations:

1. Distinct l-diversity. This interpretation just requires that for each equivalence class
ei, there are at least l distinct values in ei[S].

2. Entropy l-diversity. The entropy of equivalence class e is defined as follows:

Entropy(e) = −
∑

each distinct s∈e[S]

P (e, s) log(P (e, s))

Here P (e, s) denotes the proportion that value s takes in e[S]. Entropy l-diversity
requires for each equivalence class ei, Entropy(ei)≥ log l.

3. Recursive (c,l)-diversity. Let d be the number of distinct SA values in e[S]. ri, 1 ≤
r ≤ d, be the number of the ith most frequent SA value in e[S]. Recursive (c,l)-
diversity requires r1 < c(rl + rl+1 + · · · + rd).

Here we propose our interpretation of l-diversity:

Definition 2. (Unique Distinct l-diversity) An anonymized table is said to satisfy
Unique Distinct l-diversity if for each of its equivalence class e, e[S] contains exactly l
distinct SA values.

Observation 1. If equivalence class e satisfies Unique Distinct l-diversity, then it also
satisfies Distinct l-diversity, Entropy l-diversity and Recursive (c, l)-diversity for all
constant c > 1.

The proof is simple, we need only to check the demand of the three models one by
one. According to this observation, Unique Distinct l-diversity is a stronger model. �

Observation 2. Unique Distinct l-diversity prevents “probability inference attack”1

better than other three models.
This is also apparent, in Unique Distinct l-diversity, the SA attributes are uniformly

distributed. Therefore, when the attacker locates some individual in a certain equiva-
lence class e, without further background knowledge[5], he cannot disclose the indi-
vidual’s SA value with probability higher than 1/l. However, in the other three models,

1 Or “skewness attack”[6], the privacy disclosure because of non-uniform distribution of SA
values within a group.

BSGI : An Effective Algorithm towards Stronger l-Diversity 23

there may be cases when one SA value appears many more times than other SA value
in e[S]. Then the attacker could guess the individual has such SA value with high
probability. �
The foregoing observations substantiate the advantages of Unique Distinct l-diversity.
We shall prove its feasibility in Section 4.

3 The Implementation of the Selecting Step

In BSGI , the tuples are first bucketized according to their SA values. Let Bi denote
the ith greatest bucket and B = {B1, B2, . . . , Bm} denote the set of buckets. We have:
ni = |Bi|, n1 ≥ n2 ≥ · · · ≥ nm, Σm

i=1ni = n. Since different ni’s may vary greatly,
we shall use the following “Max− l” method to ensure the formed “l-tuple groups” are
as many as possible: in each iteration of selecting, one tuple is removed from each of
the l largest buckets to form a new group. Note that after one iteration, the size of some
buckets will be changed. So in the beginning of every iteration, the buckets are sorted
according to their sizes, as shown in Figure 2.

Theorem 1. The Max-l method creates as many groups as possible.

Proof. We prove by induction on m = |B| and n = |T |.
Basis. m = n = l. This is the basis because when m < l or n < l, no group can be
created. In this case, there is exactly one tuple in each bucket, apparently, the Max-l
method creates as many groups as possible.

Induction. When m > l, n > l. Assume the way W creates maximal number of
groups, which equals k. We denote Gi = {i1, i2, . . . , il} (i1 < i2 < · · · < il) to be
the ith group created by W and Gi contains one tuple from each of Bi1 , Bi2 , . . . , Bil

.
From W , a new way W

′
can be constructed that satisfies: (1)W

′
creates k groups;

(2)The first group created by W
′

is G
′

i = {1, 2, . . . , l}. The construction takes two
operations: swap and alter.

1. swap. ((i, a), (j, b)) (1 ≤ i, j ≤ k, 1 ≤ a, b ≤ m, a ∈ Gi, a /∈ Gj , b ∈ Gj , b /∈
Gi) means to exchange a in Gi with b in Gj . For example, G1 = {1, 2}, G2 =
{3, 4}, swap((1, 1), (2, 3)) leads to G1 = {2, 3}, G2 = {1, 4}. Since a /∈ Gj , b /∈
Gi, the grouping way after this operation is always valid.

2. alter. (a, b) (1 ≤ a < b ≤ m) means to replace each a in every Gi with b and re-
place each b with a. For the above example, alter(2, 3) leads to G1 = {1, 3}, G2 =
{2, 4}. The grouping way is valid after this operation if and only if a’s total appear-
ing times is no more than b’s.

The construction is like this: for variable i from 1 to l, assume the ith element in G1

is b. If i = b, we do nothing. Otherwise, b must be greater than i. We check for other
k − 1 groups G2, . . . , Gk. There are two possible cases:

1. There is a group Gj such that i ∈ Gj and b /∈ Gj . In this case, we perform
swap((1, b), (j, i)) to obtain a new grouping way. Since i /∈ G1, b /∈ Gj , it is
still a valid grouping way.

24 Y. Ye et al.

2. Every group that contains i also contains b. Therefore, the total number of i’s is no
more than that of b’s. In this case, we perform alter(i, b), the grouping way is still
valid after this operation.

Note operation on i ensures the ith element in G1 to be i and does not change the first
i − 1 elements. So when the whole process finishes, we obtain a valid grouping way
W

′
with G

′

1 = {1, 2, . . . , l}. Removing tuples responding to the elements in G
′

1, we
obtain a new instance of the problem with m′ ≤ m, n′ = n − l < n. Due to induction
hypopiesis, we know our algorithm generates as many groups as possible for the new
instance. In the meantime, the best solution to the new instance contains at lest k − 1
groups, because G

′

2, G
′

3, . . . , G
′

k is such a grouping way. So for the original instance,
our algorithm generates at least k groups. That is the maximal number as assumed. The
proof is completed. �

During selecting, in order to reduce information loss and avoid exhaustively search-
ing the solution space, the following greedy method is adopted: in each iteration of
selecting, a random tuple t1 is selected from B1 and it forms the original equivalence
class(group) e. For variable i from 2 to l, from Bi, a tuple ti that minimize IL(e

⋃
ti)

is selected and merged into e, as shown in Figure 2.

4 The Property of Residual Tuples after Selecting and Grouping

In this section, well shall investigate the property of residual tuples after selecting and
grouping steps.

Theorem 2. When the selecting and grouping steps terminate, there will be no residual
tuples if and only if the buckets formed after the “bucketizing” step satisfy the following
properties (we call it l-Property):
(1) ni

n ≤ 1
l , i = 1, 2, . . . , m(Use the same notation: ni, m, n, as in Section 3)

(2) n = kl for some integer k

Proof. First notice that ni

n ≤ 1
l is equivalent with n1 ≤ k, because n1 is the largest

among all ni’s.

(If) We prove by induction on m = |B| and n = |T |.
Basis. m = n = l, this is the basis because m cannot be smaller than l. Now there’s
one tuple in each bucket. Obviously the algorithm leaves none.

Induction. m > l or n > l. Resembling the proof of Theorem 1, we assume that
when the first group is created by our algorithm, the remaining buckets and tuples form
a new instance of the problem with parameter (m′, n′). We shall prove this new instance
also has l-Property.

Apparently m′ ≤ m, n′ = n− l = (k−1)l. To prove n′
1

n′ ≤ 1
l . We discuss two cases

for different values of n1.

1. n1 = k. Assume that n1 = n2 = · · · = nj = k, nj+1 < k. We have:

n = kl = Σm
i=1ni = Σj

i=1ni + Σm
i=j+1ni ≥ kj

BSGI : An Effective Algorithm towards Stronger l-Diversity 25

So l ≥ j. This means the number of the buckets with k tuples does not exceed l.
According to our algorithm, after the first group is removed, the bucket with most
tuples has size k − 1 because all the buckets previously has size k contribute one to

that group. That is n′
1 = k − 1 = n′

l , or n′
1

n′ ≤ 1
l .

2. n1 ≤ k − 1. This case is simple because n′
1 ≤ n1 ≤ k − 1, so n′

1
n′ ≤ 1

l .

In both cases, we obtain that the new instance has l-Property. With the very same idea as
used in the proof of Theorem 1, the outcome of the remaining execution of the algorithm
equals to what we obtain by running the algorithm individually for the new instance.
Due to induction hypopiesis, we know our algorithm will leave no non-empty buckets.
So for the original instance, the conclusion also holds. The proof of if-part is completed.

(Only-if) It is easy to verify that n must be multiple of l to guarantee that all the
tuples can be grouped. So there exists some integer k such that n = kl

Since there’s no residual tuples, for the requirement of l-diversity, each group con-
tains at most one tuple from the first bucket. The mapping from the tuples in B1 to the
groups is one − to − one, but not necessarily onto. Therefore, we have n1 ≤ k = n

l ,
or n1

n ≤ 1
l .The proof of only-if part is completed. �

When the buckets satisfy the first condition while do not satisfy the second condition of
l-Property, we have following conclusion:

Corollary 1. If the buckets satisfy following Property: ni

n ≤ 1
l , then after the selecting

and grouping steps, each non-empty bucket has only one tuple.

Proof. Assume n = kl + r, 0 ≤ r < l, hypothetically change our algorithm like
this: first subtract one tuple from each of B1, B2, . . . Br, then operate the “Max − l”
selecting method in Section 3. The new instance satisfies l-Property and k groups will
be formed. Therefore the best solution creates no less than k groups. In the meantime it
creates no more than k groups because n = kl + r.

Now we already know there are k iterations of “selecting and grouping” in total2,
denote them to be I1, I2 . . . Ik. Assume one bucket(denoted Bbad) contains at least 2
tuples after Ik . Note before Ik, there are at most l − 1 buckets with size at least 2,
otherwise there will be at least l non-empty buckets after Ik. So a tuple from Bbad

is selected during Ik and |Bbad| ≥ 3 before Ik . Similarly, before Ik−1, there are at
most l − 1 buckets with size at most 3. So a tuple from Bbad is selected during Ik−1

and |Bbad| ≥ 4 before Ik−1. Recursively, we obtain |Bbad| ≥ k + 2 before I1, this
contradicts the condition. The proof is completed. �

The above result is of great merits. On one side, the number of residual tuples is lim-
ited and bounded by l, our algorithm will not suffer from large number of residual
tuples. Thus the feasibility of Unique Distinct l-diversity can be assured. As proved in
Section 2, Unique Distinct l-diversity is a stronger l-diversity model which provides
better privacy preservation. The experiment in Section 6 will also substantiate this. In
sum, we have:

2 Similar theorem is proved in [8], however, we find that proof ungrounded because it assumes
the number of iteration equals k, without proof.

26 Y. Ye et al.

Corollary 2. Unique Distinct l-diversity can be exactly achieved if the original table
satisfy both l-Property (1) and (2). If the table just satisfy l-Property (1), Unique Dis-
tinct l-diversity can be achieved with less than l residual tuples.

On the other side, we can choose a proper l according to the distribution of SA values.
Consider, assigning a large number to l provides better privacy preservation but greater
information loss, while a small number leads to less data distortion but higher privacy
disclosure risk. Current studies ignore to investigate the optimal assignment of l to
balance such trade-off. However, from previous discussion we can reach the following
conclusion:

Corollary 3. The optimal assignment to parameter l in l-diversity is max{2, � n
n1

�}.

If � n
n1

� = 1, this reflects the most frequent SA value takes a proportion more than 50%.
This is a greatly “skew” distribution and the privacy disclosure risk cannot be reduced
to below 1/2.

As for the residual tuples, the simplest way is to suppress them. Here we perform
incorporating: for each of them, find a proper equivalence class to incorporate it. The
so called “proper” has two requirements: (1)The chosen equivalence class had better
not contain the new SA value, thus it will satisfy Unique Distinct (l + 1)-diversity after
incorporation. (2)The incorporation leads to minimal information loss. The detailed
implementation is in Figure 3.

5 The BSGI Algorithm

5.1 The Algorithm

Summing up the previous discussions, we formally present the BSGI algorithm in this
section.

The “Select” procedure in Figure 2 implements the “Max-l” selecting method in
Section 3 and the “Incorporate” procedure implements the incorporating method in
Section 4. Say, if there exists some equivalence class e that t[S] /∈ e[S], t is incorporated
into one of such classes that minimize the information loss. Otherwise, for each e,
t[S] ∈ e[S], the choosing of e to incorporate t is only based on minimal information
loss.

5.2 Further Discussion about the Algorithm

In this section, we shall discuss some special cases with regard to BSGI .

1. The single-Individual-Multi-Class Case
Note our algorithm can be categorized into “local-recoding”[13] that the created equiv-
alence classes may overlap each other. Thus one individual may be associated with
more than one equivalence classes. For instance, in Table 4, the individual George can
be associated with both Group 2 and Group 3. With regard to its influence on privacy
disclosure risk, we shall prove:

BSGI : An Effective Algorithm towards Stronger l-Diversity 27

Input: Original table T
Output: Anonymized table T ∗ which satisfies l-diversity
Data: E = ∅, E is the set of equivalence classes
begin1

/* The bucketizing step */
Bucketize tuples of T according to their SA values;2

B = {Bi} /* B is the set of buckets */3

/* The selecting and grouping steps */
while |B| ≥ l do4

E = E
�

Select();5

/* The incorporating step */
foreach residual tuple t do6

Incorporate(t);7

return T ∗;8

end9

Fig. 1. The BSGI Algorithm

Data: B =the set of buckets; e = ∅, the equivalence class to be created
begin1

Sort buckets in B according to their size;2

B = {B1, B2, · · · , Bm} where Bi is the ith greatest bucket in B;3

Randomly remove one tuple t1 from B1;4

e = {t1};5

for i ← 2 to l do6

Remove one tuple ti from Bi that minimize IL(e
�

ti);7

e = e
�

ti;8

return e;9

end10

Fig. 2. The Select Procedure

Data: E =the set of equivalence classes; t =the tuple to be incorporated
begin1

E
′

= {e|e ∈ E and t[S] /∈ e[S]};2

if |E′ | �= 0 then3

Find e in E
′

that minimize IL(e
�

t);4

else5

Find e in E that minimize IL(e
�

t);6

e = e
�

t;7

end8

Fig. 3. The Incorporate Procedure

28 Y. Ye et al.

Theorem 3. The case of single-individual-multi-class does not increase sensitive at-
tribute disclosure risk to more than 1/l.

Proof. Assume one individual I , with SA value I[s], can be associated with equiva-
lence classes ei1 , ei2 , . . . , eij . According to probability’s Bayes Model, the risk of sen-
sitive attribute disclosure is

j∑
k=1

Pr(I ∈ eik
) · Pr(privacy disclosure|I ∈ eik

)

Consider
∀k, Pr(privacy disclosure|I ∈ eik

) ≤ 1/l

and
j∑

k=1

Pr(I ∈ eik
) = 1

We have, the total risk of sensitive attribute disclosure:

Pr(privacy disclosure) ≤ 1/l �

2. The Single-Individual-Multi-Tuple Case
Traditionally, we assume one single individual corresponds to a single tuple in the table.
However, there are cases where one single individual corresponds to multiple tuples.
(e.g., one person’s multiple disease records for different diseases). In this case, if multi-
ple tuples of a same individual is grouped together, the proportion of tuples containing
the individual’s SA values within that group will be larger than 1/l, thus leads to higher
privacy disclosure risk.

To counter such case, we need only to add a “check” procedure during the selecting
step. If a candidate tuple belongs to a already-selected individual, that tuple will not be
selected.

3. The Single-Tuple-Multi-SA Case
Traditionally, we deal with the case where a single tuple contains only one sensitive
attribute. For the single-tuple-multi-SA case, an intuitive thinking is to consider the
SA value as one multi-dimensional vector. However, this may lead to privacy disclo-
sure. Consider the case of two sensitive attributes: (Disease, Salary). The values
(flu, $10000), (cancer, $10000), (obesity, $10000) do not equal to each other. But
if tuples with these SA values are grouped, the disclosure risk for attribute Salary is
100%.

To counter such case, in the selecting step, the new tuple should be unequal to
each of the already-selected tuples on all sensitive attributes. However, this is quite a
preliminary approach, it’s performance deserves extensive study.

6 Experiments

In this section, we conducted several experiments using the real world database Adult,
from the UCI Machine Learning Repository[20] to verify the performance of BSGI in

BSGI : An Effective Algorithm towards Stronger l-Diversity 29

both efficiency and data quality by comparing with full-domain generalization algorithm
“Incognito” and multi-dimensional partition algorithm “Mondrian” respectively.

6.1 Experimental Data and Setup

Adults database is comprised of data from the US Census. There are 6 numerical at-
tributes and 8 categorical attributes in Adult. It leaves 30162 records after removing the
records with missing value. In our experiments, we retain only eight attributes. {Age,
Final-Weight, Education, Hours per Week, Martial Status, Race, Gender} are consid-
ered as Quasi-identifying attributes. The former four attributes are treated as numeric
attributes while the latter three are treated as categorical attributes. WorkClass is the
sensitive attribute. According to Corollary 1, the upper bound of l is determined to be
7 because the most frequent SA value “Prof-specialty” takes a proportion greater than
1/8 while less than 1/7.

We modify LeFevre’s Incognito[13] and Mondrian[14] into the l-diversity versions.
These two algorithms and our BSGI are all built in Eclipse 3.1.2, JDK 5.0, and exe-
cuted on a dual-processor Intel Pentium D 2.8 GHz machine with 1 GB physical mem-
ory. The operating system is Microsoft Windows Server 2003.

6.2 Efficiency

The running time of Incognito is not in Figure 4 because such exhaustive algorithm
takes nearly exponential time in the worst case. In our experiment, its execution time
is more than half an hour, exceed the other two by several orders of magnitude. We
execute both BSGI and Mondrian three times, and calculate the average. Figure 4 re-
ports the average time of both algorithms. As is shown, the running time of Mondrian
decreases from about 90s to 75s, because when l increases, the recursive depth of the al-
gorithm reduces. However, as is shown, BSGI performs much better than Mondrian
and almost does not increase with l. In fact, it is easy to conclude the time complexity
of BSGI is O(n2), highly efficient and independent of l.

6.3 Data Quality

Figure 6 depicts the widely adopted metric: Discernibility Metric cost(DM)[16] of the
three algorithms and Table 5 shows the average group size resulted from them. These
two metrics are mutually related, because without suppression, DM is defined as

DM =
∑

each equivalence class e

(|e|)2

In both metrics, the cost of Incognito exceeds the other two by orders of magnitude.
Since Incognito always maps all the QI values within the same level of its general-
ization hierarchy into a same generalized value, as a result, it tends to over-generalize
the original table. In fact, over-generalization is the fatal shortcoming of the class of
full-domain generalization algorithms. Secondly, BSGI does a much better job than
Mondrian. Actually, BSGI always achieves the best result with regard to these two

30 Y. Ye et al.

10
20
30
40
50
60
70
80
90

2 3 4 5 6 7

E
la

ps
ed

 T
im

e(
se

co
nd

s)

Parameter l

BSGI
Mondrian

Fig. 4. Elapsed Time

10
3
5
7
9

11
13
15
17

2 3 4 5 6 7

L
M

(1
03)

Parameter l

BSGI
Mondrian
Incognito

Fig. 5. Information Loss Metric

105

106

107

108

2 3 4 5 6 7

D
is

ce
rn

ib
ili

ty
 M

et
ri

c

Parameter l

BSGI
Mondrian
Incognito

Fig. 6. Discernibility Metric

Table 5. Average Group Size

Average Group Size
l BSGI Mondrian Incognito
2 2.00 2.47 471
3 3.00 4.32 471
4 4.00 6.71 628
5 5.00 9.81 942
6 6.00 13.79 1005
7 7.00 18.73 1005

metrics, because it implements the Unique Distinct l-diversity model and every equiv-
alence class is of the minimal size l. We can learn that there are almost exactly l tuples
in each equivalent class generated by BSGI .

Besides DM and average group size metrics, we adopt the IL metric in
Section 2.2, which gives more information about how much the tuples are generalized.
Figure 5 demonstrates the IL as a function of l. Again, Incognito causes more loss by
orders of magnitude. BSGI is the best but the advantage seems not so significant in
comparison with Mondrian. When l = 7, the IL of BSGI is 70% of Mondrian’s.
This can be explained by the implementation of selecting step: the new selected tuple
that minimize IL is not from the whole table, but from an appointed bucket. As proved
in Section 3, such selecting method ensures the maximum number of created groups,
however may be unable to achieve minimal information loss. This cost is worthwhile,
because Unique Distinct l-diversity largely enhances privacy preservation.

In sum, the excessively long execution time and high information loss render Incog-
nito almost impractical. BSGI achieves the optimal DM and AverageSize metric.
With regard to the IL metric, BSGI still outperforms Mondrian apparently. The
BSGI is an highly efficient algorithm with low information loss. In the meantime,
it achieves the stronger Unique Distinct l-diversity model, which preserves privacy
excellently.

BSGI : An Effective Algorithm towards Stronger l-Diversity 31

7 Related Work

As introduced in the abstract, the work dealing with developing privacy models in-
cludes [5,6,7,8,9,10,11] and etc. [6] proposes the model of t-closeness, which requires
the distribution of SA values in each equivalence class to be close to the entire table. [7]
enable personal specified degree of privacy preserving. Instead of generalizing original
QI values, [8] anatomize the original table into a quasi-identifier table (QIT) and a sen-
sitive table(ST). [9] propose the model of δ-presence to the case of individual presence
should be hidden. Unlike previous work on static datasets, [10,11] deal with privacy
preserving for dynamic, or incremental datasets. The work on designing algorithms for
privacy models includes [13,14,15,16,17] and etc. [13], [14] and [15] represent three
main classes of algorithms: hierarchy-based, partition-based and clustering-based. In
fact, our work can be categorized into clustering-based algorithms. There are still other
related works. The information loss metric proposed by [12] is adopted by this pa-
per. [19] investigates the large information loss that privacy preservation techniques
encounter in high-dimension cases.

8 Conclusion and Future Work

In this paper, we propose a specially designed algorithm: BSGI for l-diversity.
Through such algorithm, a stronger l-diversity model, Unique Distinct l-diversity can
be achieved with less information loss. We also investigate the optimal assignment to
parameter l in the model.

For the future work, although we have dealt with the single-tuple-multi-SA case,
further analysis on the influence of multiple sensitive attributes and designing specific
algorithm are of great merits. In the meantime, it may be worthwhile to extend BSGI
to work on dynamic growing datasets.

Acknowledgments. This work was Supported in part by the National Natural Science
Foundation of China Grant 60553001, 60573094, the National Basic Research Program
of China Grant 2007CB807900, 2007CB807901, the National High Technology Devel-
opment 863 Program of China under Grant No.2007AA01Z152 and 2006AA01A101,
the National Grand Fundamental Research 973 Program of China under Grant No.
2006CB303103, and Basic Research Foundation of Tsinghua National Laboratory for
Information Science and Technology (TNList).

References

1. Samarati, P.: Protecting respondents identities in microdata release. TKDE 13(6), 1010–1027
(2001)

2. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-
sion. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5),
571–588 (2002)

3. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing informa-
tion. In: PODS, p. 188 (1998)

32 Y. Ye et al.

4. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncer-
tainty, Fuzziness, and Knowlege-Based Systems 10(5), 557–570 (2002)

5. Machanavajjhala, A., Gehrke, J., Kifer, D.: l-diversity: Privacy beyond k-anonymity. In:
ICDE, p. 24 (2006)

6. Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–
115 (2007)

7. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD, pp. 229–240 (2006)
8. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB, pp. 139–

150 (2006)
9. Ercan Nergiz, M., Atzori, M., Clifton, C.W.: Hiding the Presence of Individuals from Shared

Databases. In: SIGMOD, pp. 665–676 (2007)
10. Xiao, X., Tao, Y.: m-Invariance: Towards Privacy Preserving Re-publication of Dynamic

Datasets. In: SIGMOD, pp. 689–700 (2007)
11. Byun, J.-W., Li, T., Bertino, E., Li, N., Sohn, Y.: Privacy-Preserving Incremental Data Dis-

semination. CERIAS Tech Report, Purdue University (2007-07)
12. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.: Utility-Based Anonymization Using

Local Recoding. In: SIGKDD, pp. 785–790 (2006)
13. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity.

In: SIGMOD, pp. 49–60 (2005)
14. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In:

ICDE, p. 25 (2006)
15. Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymization Using Cluster-

ing Techniques. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS,
vol. 3882. Springer, Heidelberg (2006)

16. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE, pp.
217–228 (2005)

17. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.:
Approximation algorithms for k-anonymity. In: JOPT (2005)

18. Iyengar, V.: Transforming data to satisfy privacy constraints. In: SIGKDD, pp. 279–288
(2002)

19. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality. In: VLDB, pp. 901–909
(2005)

20. U.C. Irvin Machine Learning Repository,
http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

The Truncated Tornado in TMBB:

A Spatiotemporal Uncertainty Model for
Moving Objects

Shayma Alkobaisi1, Petr Vojtěchovský2, Wan D. Bae3,
Seon Ho Kim4, and Scott T. Leutenegger4

1 College of Information Technology, UAE University, UAE
shayma.alkobaisi@uaeu.ac.ae

2 Department of Mathematics, University of Denver, USA
petr@math.du.edu

3 Department of Mathematics, Statistics and Computer Science,
University of Wisconsin-Stout, USA

baew@uwstout.edu
4 Department of Computer Science, University of Denver, USA

{seonkim,leut}@cs.du.edu

Abstract. The uncertainty management problem is one of the key is-
sues associated with moving objects (MOs). Minimizing the uncertainty
region size can increase both query accuracy and system performance.
In this paper, we propose an uncertainty model called the Truncated
Tornado model as a significant advance in minimizing uncertainty re-
gion sizes. The Truncated Tornado model removes uncertainty region
sub-areas that are unreachable due to the maximum velocity and accel-
eration of the MOs. To make indexing of the uncertainty regions more
tractable we utilize an approximation technique called T ilted Minimum
Bounding Box (TMBB) approximation. Through experimental evalu-
ations we show that Truncated Tornado in TMBB results in orders of
magnitude reduction in volume compared to a recently proposed model
called the Tornado model and to the standard “Cone” model when ap-
proximated by axis-parallel MBB.

1 Introduction

In recent years, there is an increasing number of location-aware spatiotemporal
applications that manage continuously changing data. Tracking systems, mobile
services and sensor-based systems now track millions of GPS and RFIDs that
can report the positions of the moving objects. These applications require new
strategies for modeling, updating and querying spatiotemporal databases.

To be able to answer location-based queries, it is necessary to maintain the
locations of a large number of moving objects over time. It is infeasible to store
the object’s exact continuously changing location since this would require more
updates than can be managed by the MO database. This is a first cause of
MO location inaccuracy. A second cause is that devices are limited in ability to

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 33–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 S. Alkobaisi et al.

report accurate locations. As a result of these inaccuracies, MO spatiotemporal
data often require uncertainty management algorithms.

A common model of spatiotemporal query processing is to divide the query
into a filtering step and a refinement step [3]. The performance of the filtering
step is improved when there is a lower rate of false-hits, i.e., objects that are
returned in the filtering step but subsequently are discarded by the refinement
step. In spatiotemporal queries, minimizing the size of uncertainty regions and
any used region approximations will result in improving the filtering step effi-
ciency. Minimizing these regions and their approximations is the main goal of
this work.

2 Related Work

Many uncertainty models for moving objects have been proposed based on the
underlying applications. Uncertainty regions of moving objects in [10] are pre-
sented in 3D as cylindrical bodies which represent all the possible positions
between two reported past locations. The authors in [7] proposed one of the
most common uncertainty models showing that when the maximum velocity of
an object is known, the uncertainty region between any two reported locations
can be represented as an error ellipse. Another popular model is found in [5].
It represents the uncertainty region as an intersection of two half cones. Each
cone constrains the maximum deviation from two known locations in one move-
ment direction. Recently in [12], a non-linear extension of the funnel model [11],
named Tornado was presented. This higher degree model reduces the size of
the uncertainty region by taking into account higher order derivatives, such as
velocity and acceleration.

There is a lack of research in investigating the effect of different object approx-
imations on the false-hit rate. In [3], the authors investigated six different types
of static spatial objects approximations. Their results indicated that depending
on the complexity of the objects and the type of queries, the approximations five-
corner, ellipse and rotated bounding box outperform the axis-parallel bounding
box. The authors in [1] presented MBR approximations for three uncertainty
region models, namely, the Cylinder Model, the Funnel Model of Degree 1
which is the Cone model proposed in [5] and the Funnel Model of Degree 2
which is the Tornado model presented in [12].

Research in the field of computational geometry has resulted in several object
approximation solutions. In [9], the author was able to use the fact that a min-
imal area rectangle circumscribing a convex polygon has at least one side flush
with an edge of the polygon to use the “rotating calipers” algorithm to find all
minimal rectangles in linear time. In [6], O’Rourke presented the only algorithm
for computing the exact arbitrarily-oriented minimum volume bounding box of
a set of points in R3 which runs in O(n3). The authors in [2], proposed an ef-
ficient solution of calculating a (1 + ε)-approximation of the non axis-parallel
minimum-volume bounding box of n points in R3. The running time of their
algorithm is O(nlogn + n/ε3).

The Truncated Tornado in TMBB 35

3 The Truncated Tornado

Assuming maximum velocity Mv and maximum acceleration Ma of the mov-
ing object, the Tornado model [12] calculated the uncertainty region defining
functions as shown in Fig. 1 (a). The dotted region is the uncertainty region
defined by the Tornado model and the top and bottom intervals represent the
instrument and measurement error associated with each reported position.

Let displ1 and displ2 be, respectively, a first-degree and second-degree dis-
placement functions defined as follows:

displ1(V, t) = V · t and displ2(V, a, t) =
∫ t

0
(V + a ·x)dx ≈ V · t + (a/2) · t2, where

V is the current velocity of the moving object, a is acceleration and t is time.
The future (past) position fpos (ppos) of a moving object after (before) some
time, t, can be calculated as follows:

f pos(P1, V1, Mv, Ma, t) =
{

P1 + D2 + D1 if tMv < t
P1 + D2 otherwise

p pos(P2, V2, Mv, Ma, t) =
{

P2 − D2 − D1 if tMv < t
P2 − D2 otherwise

D1 = displ1(Mv, t − tMv) and D2 = displ2(V, Ma, tMv), where tMv is the time
the moving object needs to reach Mv. Notice that the above functions define the
dotted uncertainty region in Fig. 1 (a). gmin(t) and gmax(t) are produced by the
fpos function, and fmin(t) and fmax(t) are produced by the ppos function.

Objects moving with momentum cannot make extreme changes in their ve-
locity. Hence they need some time to change their velocities from one direction
to the opposite direction, thus, the right and left corners Pmax and Pmin shown
in Fig. 1 (a) are impossible to be reached by the moving object unless we assume

Table 1. Notations used in this paper

Notation Meaning

P1 a reported position of a moving object

P2 a following reported position

t1 time instance when P1 was reported

t2 time instance when P2 was reported

t any time instance between t1 and t2 inclusively

T time interval between t2 and t1, T = t2 − t1
V1 velocity vector at P1

V2 velocity vector at P2

e instrument and measurement error

Mv maximum velocity of an object

Ma maximum acceleration of an object

tMv time to reach maximum velocity

36 S. Alkobaisi et al.

R

C

P s

R'

C'

P' s

Pmin
Pmax

(a) The Tornado and Truncated Tornado models

P1

P2

R

Ps

C

g

f

P1

P2

R

Ps

C

g

f

(b) Point of no safe return

Fig. 1. Calculating uncertainty regions of Truncated Tornado

infinite acceleration. Our proposed Truncated Tornado model removes unreach-
able sub-areas of the uncertainty regions by calculating the furthest point an
object can reach given its maximum acceleration.

Assuming that the two intervals and trajectories are as shown in Fig. 1 (b),
we define the Truncated Tornado model as follows:

We say that Ps is the point of no safe return for g if Ps is the rightmost point
on the trajectory g such that when the object (car) starts changing direction at
Ps then it will touch the trajectory f (at point R), i.e., the object is within the
boundary of the maximum possible deviation.

Since any realizable trajectory between the two intervals must remain within
the boundary defined by f and g, it is clear that the point C (which is the
rightmost point on the decelerating trajectory started at Ps) can be used as
a cut point for the right boundary of the MBR encompassing the uncertainty
region. This boundary is indicated in the figure by the dotted line.

The question is how to calculate the points Ps and C. We show the case when
both f , g are parabolas. Upon turning the situation by 90 degrees counterclock-
wise, f , g are parabolas given by f(x) = ax2 + b1x + c1, g(x) = ax2 + b2x + c2.
(We use the same quadratic coefficient a since the maximal acceleration Ma is
the same for f and g.) Note that b1 = b2 since the parabolas f , g are not nested.

Let x0 be the x-coordinate of the point Ps. The deceleration trajectory started
at Ps is a parabola, and it can be given by h(x) = −ax2 + ux + v. To determine
u, v and x0, we want h to stay below f at all times and hence −ax2 + ux + v ≤
ax2 + b1x + c1 for every x. Equivalently, k(x) = 2ax2 + (b1 − u)x + (c1 − v) ≥ 0
for every x. Since h needs to touch f , we want k to be a parabola that touches
the x-axis. Equivalently, the discriminant (b1 − u)2 − 4(2a)(c1 − v) needs to be
equal to 0. This yields

v = c1 − (b1 − u)2/(8a) (1)

Analogously, we want h to stay below g at all times and hence −ax2 + ux + v ≤
ax2 + b2x + c2 for every x. Equivalently, k(x) = 2ax2 + (b2 − u)x + (c2 − v) ≥ 0
for every x. Since h needs to touch g, we want k to be a parabola that touches

The Truncated Tornado in TMBB 37

the x-axis. Equivalently, the discriminant (b2 − u)2 − 4(2a)(c2 − v) needs to be
equal to 0. This yields

v = c2 − (b2 − u)2/(8a) (2)

The parabola h must satisfy both (1) and (2), therefore, we can set (1) = (2),
eliminate v from the equation, solve for u and then substitute to find v. Solving
for u with the observation that b1 = b2 we get

u = 4a
c2 − c1

b1 − b2
+

1
2

(b1 + b2) (3)

It is now easy to find the cut point C, as this is the vertex of the parabola h.
Notice that we only need to calculate u to find C since C = u

2a .
Finally, the reverse time problem (going from P2 to P1) is precisely the forward

time problem: we are looking for a parabola that stays below and touches both f
and g, hence the reverse time parabola coincides with the forward time parabola.

The same technique needs to be applied to find the cut point C′ on the
left boundary of the calculated MBR, i.e., the minimum extreme point of the
uncertainty region (see Fig. 1 (a)). In this case, upon turning the situation by 90
degrees counterclockwise, we see that f , g are parabolas given by f(x) = −ax2 +
b1x+c1, g(x) = −ax2 +b2x+c2 and h is a parabola given by h(x) = ax2 +ux+v
and we need h to stay above f and g at all times and touches them.

The uncertainty region example shown in Fig. 1 (a) is generated by this model
when both Ps and R for the minimum and maximum calculations lie on curved
part of g and f , respectively. Obviously, there are three other cases that need to
be considered when calculating C and C′, depending on the locations of Ps, R
and P ′

s, R′, respectively. We leave these cases to the reader.

4 The TMBB Approximation

The uncertainty regions of MOs are rather “tilted” in shape in which traditional
(axis-parallel) Minimum Bounding Boxes MBBs are most likely not close to the
optimal approximations of the regions. The advantage of Truncated Tornado
can be strengthened by a more accurate approximation that takes the tilted
shape of the regions into account and not only the extreme points of the un-
certainty region. We investigate T ilted Minimum Bounding Boxes (TMBBs)
as approximations of the uncertainty regions generated by Truncated Tornado.
When compared with axis-parallel MBBs in 3D, TMBBs, which are minimum
volume bounding boxes that relax the axis-aligned property of MBBs, generally
allow geometries to be bounded more tightly with a fewer number of boxes [4].

To calculate TMBB of the uncertainty region of Fig. 1 (a), we identify all
the extreme points that need to be considered as follows:
R, C and Ps of the maximum direction (upper boundary) in the x-dimension
need to be calculated and the corresponding y-values (at specific time instance
when the x-values are calculated) are assigned to these points. Similarly, R, C
and Ps in the y-dimension need to be calculated and the corresponding x-values

38 S. Alkobaisi et al.

(at specific time instance when the y-values are calculated) are assigned to these
points. This results in 6 points calculated in 3D. The same calculation set needs
to be done for the minimum direction (lower boundary) by calculating R′, C′

and P ′
s in both the x and y dimensions which results in 6 other points. The other

extreme points are P1 − e, P1 + e, P2 − e and P2 + e.
Given 6 points in 3D calculated for the upper boundary, 6 points in 3D calcu-

lated for the lower boundary and finally 4 points in 3D (2 top and 2 bottom), we
calculate TMBB enclosing the uncertainty region of Truncated Tornado using
the approximation method of [2].

5 Experiments

All velocities in this section are in meters/second (m/s), all accelerations are
in meters/second2 (m/s2) and all volumes are in meters2 · second (volumes in
3D are generated by moving objects in 2D with time being the 3rd dimension).
Our synthetic datasets were generated using the “Generate Spatio Temporal
Data” (GSTD) algorithm [8].

Our synthetic dataset was generated by 200 objects moving with the velocity
in the x direction greater than the velocity in the y direction with an average
velocity of 17.76 m/s. Each object in the synthetic dataset reported its position
and velocity every second for an hour. The real data set was collected using a
GPS device while driving a car in the city of San Diego in California, U.S.A.
The actual positions and velocities were reported every one second and the
average velocity was 11.44 m/s. Although each moving object in both datasets
reported its position every second, we used different time interval (T.I) values
(e.g., T.I=10) to simulate various update frequencies. The range queries’ sizes
in our experiments are calculated using certain percentages of the universe area
combined with specific time extents. Table 2 shows the datasets and system
parameters used in our experiments.

We first compared the volume of TMBBs approximating the Truncated
Tornado uncertainty regions to the volume of the axis-parallel MBBs of
Tornado and Cone using the real and synthetic datasets. Fig. 2 (a) and (b)
show the average volume of TMBBs generated by Truncated Tornado and the
average volume of MBBs generated by the other two models using the synthetic
and real datasets, respectively. Truncated Tornado combined with TMBB re-
sulted in an average reduction of 93% and 97% over the axis-parallel MBB of

Table 2. Synthetic and real datasets and system parameters

datasets reported records parameters
AVG Vel. MAX Vel. MAX Acc. Mv Ma

synthetic Dataset 17.76 20.61 6.41 55 8

real San Diego 11.44 36.25 6.09 38.89 6.5

The Truncated Tornado in TMBB 39

1

10

100

1000

10000

100000

1000000

10000000

100000000

T.I.=5 T.I.=10 T.I.=15 T.I.=20

Time Interval

A
VG

 V
ol

um
e

Truncated in TMBB

Tornado in MBB

Cone in MBB

(a) Synthetic dataset

1

10

100

1000

10000

100000

1000000

10000000

100000000

T.I.=5 T.I.=10 T.I.=15 T.I.=20

Time Interval

A
VG

 V
ol

um
e

Truncated in TMBB

Tornado in MBB

Cone in MBB

(b) Real dataset

T.I = 10

0
200
400
600
800

1000
1200
1400

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

0.00004Q 0.0001Q 0.0016Q

Query Size

N
um

be
r

of
 In

te
rs

ec
tio

ns

2 min.

4 min.

8 min.

(c) T.I = 10 (Real dataset)

T.I = 20

0
200
400
600
800

1000
1200
1400
1600

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

T
ru

nc
at

ed
in

 T
M

B
B

T
or

na
do

in
 M

B
B

C
on

e
in

M
B

B

0.00004Q 0.0001Q 0.0016Q

Query Size

N
um

be
r

of
 In

te
rs

ec
tio

ns

2 min.

4 min.

8 min.

(d) T.I = 20 (Real dataset)

Fig. 2. Truncated in TMBB Vs. Tornado and Cone in MBB

Tornado and Cone, respectively, using the real dataset. The reduction when
using the synthetic dataset was 99% over both Tornado and Cone.

Next, we generated and evaluated 5000 random queries to TMBBs and
MBBs calculated in the previous result for the real dataset. Fig. 2 (c) and
(d) show the number of intersecting TMBBs of Truncated Tornado and the
number of intersecting MBBs of Tornado and Cone. TMBBs of Truncated
resulted in much less number of intersections compared to MBBs of the other
models since Truncated Tornado results in much smaller uncertainty regions
compared to Tornado and Cone. Also, TMBBs result in significantly smaller
average volumes compared to MBBs as they more accurately approximate the
uncertainty regions. The reduction in the number of intersections of Truncated
Tornado TMBBs was 42% over Tornado MBBs and 62% over Cone MBBs
when T.I=10. When T.I=20, the reduction over Tornado MBBs was 47% and
was 68% over Cone MBBs.

6 Conclusions

In this paper we proposed the Truncated Tornado model that minimizes the
moving object uncertainty regions. The model takes advantage of the fact that
changes in the velocities of moving objects that move with momentum are limited
by maximum acceleration values. This fact is used to identify and eliminate un-
reachable object locations, thus significantly reducing uncertainty region size. We
then showed how to combine this model with the T ilted Minimum Bounding

40 S. Alkobaisi et al.

Box (TMBB), in order to achieve another order of magnitude reduction in un-
certainty region size when compared to approximation bounding via traditional
MBBs. Experiments on both synthetic and real datasets showed an order of
magnitude improvement over previously proposed uncertainty models in terms
of I/O accesses.

References

1. Alkobaisi, S., Bae, W.D., Kim, S.H., Yu, B.: MBR models for uncertainty regions
of moving objects. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008.
LNCS, vol. 4947, pp. 126–140. Springer, Heidelberg (2008)

2. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms 38(1),
91–109 (2001)

3. Brinkoff, T., Kriegel, H.-P., Schneider, R.: Comparison of approximations of com-
plex objects used for approximation-based query processing in spatial database
systems. In: Proceedings of Int. Conf. on Data Engineering, pp. 40–49 (1993)

4. Gottschalk, S., Lin, M.C., Manocha, D.: OBB-tree: A hierarchical structure for
rapid interference detection. In: Proceedings of ACM Siggraph, pp. 171–180 (1996)

5. Hornsby, K., Egenhofer, M.J.: Modeling moving objects over multiple granularities.
Annals of Mathematics and Artificial Intelligence 36(1-2), 177–194 (2002)

6. O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Parallel
Programming 14(3), 183–199 (1985)

7. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-objects representa-
tions. In: Proceedings of Int. Symposium on Advances in Spatial Databases, pp.
111–132 (1999)

8. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotem-
poral datasets. In: Proceedings of Int. Symposium on Advances in Spatial Data-
bases, pp. 147–164 (1999)

9. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Pro-
ceedings of IEEE MELECON, pp. A10.02/1–4(1983)

10. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty
in moving objects databases. ACM Trans. on Databases Systems 29(3), 463–507
(2004)

11. Yu, B.: A spatiotemporal uncertainty model of degree 1.5 for continuously changing
data objects. In: Proceedings of ACM Int. Symposium on Applied Computing,
Mobile Computing and Applications, pp. 1150–1155 (2006)

12. Yu, B., Kim, S.H., Alkobaisi, S., Bae, W.D., Bailey, T.: The Tornado model: Un-
certainty model for continuously changing data. In: Kotagiri, R., Radha Krishna,
P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
624–636. Springer, Heidelberg (2007)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 41 – 48, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reordering of Location Identifiers for Indexing an RFID
Tag Object Database*

Sungwoo Ahn and Bonghee Hong

Department of Computer Engineering, Pusan National University,
San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea

{swan, bhhong}@pusan.ac.kr

Abstract. The query performance for tracing tags depends upon the distribution
of tag trajectories in the data space. We examine a more efficient representation
of tag trajectories by means of ordering the set of domain values. Our analysis
shows that the order of Location IDentifiers (LIDs) can give a great impact on
the efficiency of query processing. To find out the optimal ordering of LIDs, we
propose a new LID proximity function to rearrange an arbitrary order of LIDs.
This function enables logically adjacent tag trajectories, which are frequently
accessed together, to be stored in close proximity on the disk. To determine the
optimal sequence of LIDs in the domain, we also propose a reordering scheme
of LIDs. The experimental results show that the proposed reordering scheme
achieves better query processing than the previous methods of assigning LIDs.

1 Introduction

An efficient query processing of tracing tags can be achieved by providing the reposi-
tory for tag data [2][5][9]. EPCglobal, a leader in standards management and devel-
opment for RFID related technologies, proposes EPC Information Service (EPCIS) as
the repository for tag events [5][9]. Tag data stored and indexed in the EPCIS consists
of the static attribute data and the timestamped historical data.

Historical information is collected and updated whenever each tag is identified by
an RFID reader. Among historical information, an RFID application uses Location
IDentifier (LID), Tag IDentifier (TID), and the identified time (TIME) as predicates
for tracking and tracing tags [1][9]. To index these values efficiently, we can define
the tag interval by means of two tag events generated when the tag enters and leaves a
specific location. The tag interval is represented and indexed as a time-parameterized
line segment in a three-dimensional domain defined by LID, TID, and TIME axes [1].

Logical closeness between tag intervals is very important for simultaneous ac-
cesses during a query. It gives a great influence on the performance of query process-
ing because the cost of disk accesses depends on the sequence of storing tag intervals
on the disk. For example, assume that a query, Qi, searches tag intervals using the

* “This work was supported by the Korea Research Foundation Grant funded by the Korean

Government(MOEHRD)” (The Regional Research Universities Program/Research Center for
Logistics Information Technology).

42 S. Ahn and B. Hong

index structure. If all tag intervals accessed by Qi are stored in P3 as shown in Fig. 1-
(a), a query processor only needs to access one disk page, P3. If these tag intervals are
dispersed across disk pages, P2, P3, and P5 as shown in Fig. 1-(b), a query processor
usually incurs the additional cost of accessing two pages, P2 and P5. To minimize the
cost of disk accesses, the logical closeness between tag intervals in the same disk page
must be higher than the logical closeness to others.

(a) All tag intervals accessed by the query Qi
are stored in P3

(b) Tag intervals accessed by the query Qi
are stored in P2, P3, and P5

P1 P2 P3 P4 P5 •••P3 P1 P2 P3 P4 P5 •••P2 P3 P5

Fig. 1. An example of different access cost of the disk

Most work for clustering spatial objects have used the spatial distance in the spatial
domain as the measure of the logical closeness [6][7]. To diminish the number of disk
accesses at answering spatial queries, they stored adjacent objects sequentially based
on the spatial proximity. In addition to the spatial proximity, moving object databases
[3][8] have applied the temporal proximity to the characteristic for the distance meas-
ure in the time domain. Previous works assumed that all domains on the data space
provide the proper proximity about measuring the distance between domain values.
Similarly, all domains for tag intervals should also provide adequate proximity to
keep to the correlation between the distance and the logical closeness.

The problem is that there is no rule for assigning LIDs to RFID locations in order
to ensure this property. If LIDs are arbitrarily ordered in the domain without consider-
ing proximity, tag intervals are scattered across the data space irrespective of their
logical closeness. Because this situation causes random disk accesses for searching
logically adjacent tag intervals, the cost of query processing is increased.

To solve this problem, we propose a reordering method for arranging LIDs in the
domain. The basic idea is to compute the distance between two LIDs to fix the logical
closeness between tag intervals. To do this, we define a proximity function based on a
new LID proximity between two LIDs. To determine a sequence of LIDs based on
LID proximity, we construct a weighted graph and generate the ordered LID set.

In the next section, we examine the path of tag flows based on characteristics of
RFID locations and tag movements, and define the LID proximity function. In Sec-
tion 3, we propose a reordering scheme of LIDs, using a weighted graph. Section 4
presents experimental results of performance evaluation for the proposed reordering
scheme. A summary is presented in Section 5.

2 Proximity between Location Identifiers

Queries for tracing tags are classified into two types according to a kind of restricted
predicate as shown in Table 1. An observation query (OQ) is used to retrieve tags that
are identified by the specified locations within the specified time period. A trajectory
query (TQ) is used to retrieve the locations that the specific tags enters and leaves

 Reordering of Location Identifiers for Indexing an RFID Tag Object Database 43

Table 1. Query classification for tracing tag locations

Predicate
LID TID TIME

Query
results

Query types

point/set/range * point/range TID(s) Observation Query (OQ)
* point/set/range point/range LID(s) Trajectory Query (TQ)

within the specified time period. Queries in Table 1 can be extended as a combined
query by performing two queries in the order OQ and TQ.

There are two types of location related to tag events based on the business perspec-
tive for an RFID location. Tagged items always move between business locations
(BizLoc) by traversing read points (RP) placed at the entrance of each BizLoc [5]. If
there are no RPs connecting specified BizLocs, however, the tagged item cannot
move directly between two BizLocs. Although RPs exist between two particular
BizLocs, the tag movement can be restricted because of a business process of an ap-
plied system.

Based on these restrictions, there is a predefined path which a tag can cross. We
designate this path as the path of tag flows (FlowPath). Tags attached to items gener-
ate a flow of tags traversing the path. FlowPath is a simple method for representing
the connection property between two BizLocs. It is possible to generate FlowPath
with a connected graph of BizLocs and RPs. If one or more RPs connect two particu-
lar BizLocs, they are represented as a single line connecting two LIDs. The FlowPath
from BizLoci to BizLocj is denoted as FlowPathi to j.

Since most RFID applications are concerned with the historical change of locations
for the specific tag, the repository uses the BizLoc as the LID predicate for tracing
tags [5][9]. This implies that tag intervals generated by BizLocs along the specific
FlowPath have a higher probability of simultaneous access than others. Therefore, it
is necessary to reorder LIDs based on the properties of FlowPath. We first define the
proximity between LIDs for application to the LID reordering as follows.

Definition 1. LID proximity (LIDProx) is the closeness value between two LIDs in
the LID domain of an index. We denote the LID proximity between LIDi and LIDj as
LIDProxij or LIDProxji.

The LID proximity between two LIDs has following properties.
(1) Any LIDi in the LID domain must have an LID proximity value for any LIDj,

where i ≠ j.
(2) LIDProxij is equal to LIDProxji, for all LIDs.
(3) If there is no LIDk, for which LIDProxij < LIDProxik, the closest LID to LIDi is

LIDj.

For applying dynamic properties based on FlowPath to the LID proximity, we define
the LID proximity function as shown in Eq. 1; we denote T as the time to compute the
LID proximity, LIDProxT(i, j) as the LID proximity function at time T, and LID-
Prox_OQ(i, j) and LIDProx_TQ(i, j) as proximity functions by properties of an obser-
vation query and trajectory query, respectively.

44 S. Ahn and B. Hong

),(LIDProx_TQ)1(),(LIDProx_OQ),(LIDProx jijiji TTT ×−+×= αα (1)

LIDProx(i, j) is a time-parameterized function; the closeness value between LIDi
and LIDj changes over time. To consider the closeness value for an observation query
and a trajectory query simultaneously, the function calculates the sum of LID-
Prox_OQ(i, j) and LIDProx_TQ(i, j) with the weight value. The weight α determines
the applied ratio between two proximity functions as shown in Eq. 2; we denote OQij,t
as the number of observation queries for LIDi and LIDj at time t and TQij,t as the num-
ber of trajectory queries for LIDi and LIDj at time t.

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
=

∑∑
==

otherwise)(

 and for

processed are queries no if
1or 0

1
,,

1
,

T

t
tijtij

T

t
tij

ji

TQOQOQ

LIDLIDα

(2)

LIDProx_OQ(i, j) computes the LID proximity for an observation query with the
ratio of tag intervals generated by LIDi and LIDj to all tag intervals as shown in Eq. 3;
we denote TIi,t as the number of tag intervals by LIDi at t, and σOQ and δOQ as weight
values for LIDProx_OQ(i, j).

() ⎟
⎠

⎞
⎜
⎝

⎛ +×= ∑∑∑
= ==

T

t

n

a
a,t

T

t
tjti

OQ

OQ
T TITITIji

1 11
,,),(_OQLIDProx

σ
δ (3)

Because of the influence of the tag’s flow on the LID proximity, we should con-
sider the distribution of tag intervals over time. Equation 4 represents dynamic prop-
erties of the tag interval distribution. The difference in the distribution of tag intervals
in time domain can be represented by the standard deviation of tag intervals. To apply
this difference to the LID proximity, the variable σOQ in Eq. 4 is used as a weight
which is inversely proportional to the number of tag intervals; we denote σOQ as the
standard deviation of tag intervals by LIDi and LIDj and iTI as the average number of
tag intervals by LIDi until T.

() (){ }∑
=

+−+×=
T

t

jij,ti,tOQ TITITITI
T 1

21σ

() () ⎟
⎠

⎞
⎜
⎝

⎛×⎟
⎠

⎞
⎜
⎝

⎛ ++= ∑∑∑
===

T

t
ij,t

T

t
j,ti,t

T

t
j,ti,tOQ OQTITISTISTI

111

1δ

(4)

The hit ratio of tag intervals for an observation query is also a factor determining
LIDProx_OQ(i, j). The variable δOQ in Eq. 4 computes the proportional weight – the
hit ratio of tag intervals for OQij; we denote OQij,t as the number of observation que-
ries for LIDi and LIDj at t and STIi,t as the number of results by LIDi for OQij,t.

The LID proximity for a trajectory query must consider the pattern of tag move-
ments along FlowPath because a trajectory query is concerned with LIDs traversed by
a tag in the specified time period. Equation 5 shows the LID proximity function for a
trajectory query retrieving tag intervals by LIDi and LIDj. This function, denoted by
LIDProx_TQ(i, j), obtains the simultaneous access probability of LIDi and LIDj
through the ratio of tag movements between LIDi and LIDj to the total number of tag

 Reordering of Location Identifiers for Indexing an RFID Tag Object Database 45

movements for all LIDs; we denote TMi to j,t as the number of tag movements from
LIDi to LIDj, and σTQ and δTQ as weight values for LIDProx_TQ(i, j).

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛+×= ∑ ∑∑∑∑
= == ==

T

t

n

c
c to c,t

n

a

n

b
a to b,t

T

t
j to i,ti to j,t

TQ

TQ
T TM- TMTMTM

σ
δ

ji
1 11 11

),(_TQLIDProx (5)

By contrast with an observation query, a trajectory query must not consider the dis-
tribution of tag intervals per individual LID but that of tag intervals between LIDs –
the movements of the specified tag. To do this, we define the standard deviation, σTQ,
for computing the degree of difference in the distribution of tag movements between
LIDi and LIDj. We also define the hit ratio of tag intervals by LIDi and LIDj for a
trajectory query as δTQ.

3 Reordering Scheme of Location Identifiers

To define the reordering problem, let us assume that there is a set of LIDs, LIDSet =
{LID1, LID2, …, LIDn-1, LIDn}. To use the LIDSet for the coordinates in the LID
domain, an ordered list of LIDs, OLIDListi = (OLIDi.1, OLIDi.2, …, OLIDi.n-1, OLIDi.n)
must initially be determined. To discover the optimal OLIDList for which the LID
proximity for all LIDs is a maximum, we first define the linear proximity as follows.

Definition 2. Linear proximity of OLIDLista (LinearProxa) is the sum of LIDProxs
between adjacent OLIDs for all OLIDs in OLIDLista such that

∑
−

=

+=
1

1

)1,(LIDProx
n

i
a iiLinearProx (6)

With Definition 2, we can define the problem for reordering LIDs in order to retrieve
the OLIDList with the maximum access probability as follows.

Definition 3. LID reordering problem (LOP) is to determine an OLIDListo =
(OLIDo.1, OLIDo.2, …, OLIDo.n-1, OLIDo.n) for which LinearProxo is a maximum,
where LIDSet = {LID1, LID2, …, LIDn-1, LIDn} and the LID proximity for all LIDs.

LOP is very similar to the well-known Minimal Weighted Hamiltonian Path Problem
(MWHP) without specifying the start and termination points. MWHP involves the
Hamiltonian cycle with a minimal weight in the graph. To apply LOP to MWHP, it is
necessary to convert LOP into a minimization problem because LOP is a maximiza-
tion problem for finding the order with maximum LID proximity values for all LIDs.
Therefore, the weight value for LIDi and LIDj must be 1 – LIDProx(i, j). LOP can be
treated as a standard Traveling Salesman Problem (TSP) by Lemma 1.

Lemma 1. LOP is equivalent to TSP for a weighted graph G = (V, E, w) such that

- V = LIDSet ∪ {v0} where v0 is an artificial vertex for solving MWHP by TSP
- E = {(LIDi, LIDj) | LIDi, LIDj ∈ LIDSet, i ≠ j} ∪ {(LIDi, v0) | LIDi ∈ LIDSet}
- w : E R, w (i, j) = 1 – LIDProx(i, j) = 1 – LIDProx(j, i) = w(j, i), w(i, v0) =

w(v0, i) = 0

46 S. Ahn and B. Hong

Proof. The graph G contains Hamiltonian cycles because G is a complete and
weighted graph. Assume that a minimal weighted Hamiltonian cycle produced in G is
HC where HC = ((v0, OLIDa.1), (OLIDa.1, OLIDa.2), …, (OLIDa.n-1, OLIDa.n), (OLIDa.n,
v0)) and OLIDa.i ∈ LIDSet. If two edges, (v0, OLIDa.1) and (OLIDa.n, v0), containing
the vertex v0 are eliminated from HC, we can get a minimal weighted Hamiltonian
path L in G from OLIDa.1 to OLIDa.n. The weight of HC is identical to a path L
because all of edges eliminated in order to produce the path L contain the vertex v0,
and weights of these edges are zero. The produced path L is translated as an ordered
LID list, OLIDLista where OLIDLista = (OLIDa.1, OLIDa.2, …, OLIDa.n-1, OLIDa.n).
Because of this, the reordering of LIDs is defined as a solution of the corresponding
TSP for obtaining HC in the weighted graph G. ■

Because TSP is a NP-complete problem, an exhaustive exploration of all cases is
impractical [11]. To solve TSP, we used GA [4] among several heuristic methods to
determine the ordered LIDSet using the weighted graph G. Heuristic approaches can
be used to find solutions to NP-complete problems in much less time. Although it
might not find the best solution, it can find a nearly perfect solution – the local
optima.

4 Experimental Evaluation

We evaluated the performance of our reordering scheme by applying LIDs as domain
values of an index. We also compared it with the numerical ordering of LIDs using a
lexicographic scheme. To evaluate the performance of queries, TPIR-tree [1], R*-tree
[10], and TB-tree [3] are constructed with the axes TID, LID, and TIME. Since each
index uses original insert and/or split algorithms, their essential properties are fixed.

Since well-known and widely accepted RFID data sets for experimental purpose do
not exist, we conducted our experiments with synthetic data sets generated by Tag
Data Generator (TDG). TDG generates tag events which can be represented as a tag
interval based on the data model of [1]. To reflect the real RFID environment, TDG
allows the user to configure its specific variables. All variables of TDG are based on
properties of FlowPath, and tag movements along FlowPaths. According to user-
defined variables, tags are created and move between BizLocs through FlowPaths.
TDG generates a tag interval based on a tag event occurring whenever a tag enters or
leaves a BizLoc.

We assigned an LID to each BizLoc by a lexicographic scheme of TDG based on
the spatial distance. To store trajectories of tags in the index, TDG produces tag inter-
vals from 100,000 to 500,000. Since the LID proximity function uses the quantity per
query, OQ and TQ, as the variable, we must process queries through the index struc-
ture during TDG produces tag intervals. To do this, we processed 10,000 queries for
tracing tags continuously, and estimated query specific variables over all periods.
Finally, the sequence of LIDs based on the LID proximity is determined by comput-
ing the proximity value between LIDs until all tag events are produced.

All experiments presented below are performed using the TDG data set, with 200
BizLocs. To measure the average cost, all experiments are iteratively performed 10
times per data set. In figures for results, we renamed the index by attaching an

 Reordering of Location Identifiers for Indexing an RFID Tag Object Database 47

additional word with a parenthesis in order to distinguish each index according to the
arrangement of LIDs. Original means the index using the initial arrangement of LIDs
in the LID domain. Reorder means the index based on the LID proximity.

Experiment 1. Measuring the performance for only one query type
To measure the performance of each query type, we evaluated the performance of
queries for which only one query type is processed. To obtain an optimized order of
LIDs per query type, we processed 10,000 OQs in Fig. 2-(a) and 10,000 TQs in Fig.
2-(b) before the LID reordering is processed.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

100,000 200,000 300,000 400,000 500,000

N
od

e
A
cc
es
se
s

Tag Intervals

TPIR tree(Original)
TPIR tree(Reorder)
TB tree(Original)
TB tree(Reorder)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100,000 200,000 300,000 400,000 500,000

N
od

e
A
cc
es
se
s

Tag Intervals

TPIR tree(Original)
TPIR tree(Reorder)
R* tree(Original)
R* tree(Reorder)

Fig. 2. Performance evaluation for indexes where only one type of query is used

Figure 2 shows the performance comparison between Original and Reorder.
Figure 2-(a) and 2-(b) are related to the performance of OQ and TQ, respectively.
Each query set includes 1,000 OQs or TQs. We discovered that Reorder can re-
trieve results with a lower cost of node accesses than Original for all cases. In
general, the performance of Reorder is slightly better than the performance of
Original, for the data set of 100,000 tag intervals. Nevertheless, Reorder still out-
performs Original during tag intervals which are continuously generated and in-
serted in the index. The search performance of OQ and TQ is improved by a
maximum of 39% and 33%, respectively. This experiment tells us that the LID
proximity can measure the closeness between BizLocs more precisely when tag
movements and queries for these tags continuously occur.

Experiment 2. Performance comparison in case of processing OQ and TQ altogether
Regardless of whether better performance was achieved than the initial arrangement
of LIDs in Experiment 1, we need to measure the performance in the case where OQ
and TQ are processed simultaneously. To do this, we performed the experimental
evaluation as shown in Fig. 3. Since the LID proximity must reflect properties of all
query types simultaneously unlike the experiments in Fig. 2, we processed both of
5,000 OQs and 5,000 TQs before the proximity is measured. For evaluating the query
performance, 1,000 OQs or TQs are also processed.

Figure 3 shows that the number of node accesses of Reorder is increased, as com-
pared with that in Fig. 2. This is because LIDProx_OQT(i, j) and LIDProx_TQT(i, j) in
Eq. 1 are detrimental to the performance of a query unrelated to each proximity when
OQ and TQ are processed simultaneously. The performance of Reorder is neverthe-
less better than the performance of Original at processing all of OQ and TQ.

48 S. Ahn and B. Hong

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

100,000 200,000 300,000 400,000 500,000

N
od

e
A

cc
es

se
s

Tag Intervals

TPIR-tree(Original)
TPIR-tree(Reorder)
R* -tree(Original)
R* -tree(Reorder)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

100,000 200,000 300,000 400,000 500,000

N
od

e
A

cc
es

se
s

Tag Intervals

TPIR-tree(Original)

TPIR-tree(Reorder)

TB-tree(Original)

TB-tree(Reorder)

Fig. 3. Performance evaluation for indexes when processing both queries simultaneously

5 Conclusions

We addressed the problem of using the Location IDentifier (LID) as the domain value
of the index for tag intervals, and proposed a solution to this problem. The basic idea
for solving this problem is to reorder LIDs by a new LID proximity function. By
using the LID proximity function, we can discover the distance of two LIDs in the
domain, to ensure the logical closeness between tag intervals. Our experiments show
that the newly proposed reordering scheme outperforms the previous scheme of as-
signing LIDs. Future work will explore the issues of the dynamic updating of the tag
interval index according to the changing LID proximity.

References

1. Ban, C.H., Hong, B.H., Kim, D.H.: Time Parameterized Interval R-tree for Tracing Tags
in RFID Systems. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005.
LNCS, vol. 3588, pp. 503–513. Springer, Heidelberg (2005)

2. Lin, D., Elmongui, H.G., Bertino, E., Ooi, B.C.: Data Management in RFID Applications.
In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 434–444.
Springer, Heidelberg (2007)

3. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving
Object Trajectories. In: International Conference on VLDB, pp. 395–406 (2000)

4. Whitley, D.: A Genetic Algorithm Tutorial. Statistics and Computing 4, 65–85 (1994)
5. EPC global: EPC Information Services (EPCIS) Specification, Ver. 1.0, EPC global Inc.,

(2006)
6. Jagadish, H.V.: Linear Clustering of Objects with Multiple Attributes. ACM SIG-

MOD 19(2), 332–342 (1990)
7. Kamel, I., Faloutsos, C.: On Packing R-trees. CIKM, 490–499 (1993)
8. Mokbel, M.F., Ghanem, T.M., Aref, W.G.: Spatio-temporal Access Methods. IEEE Data

Engineering Bulletin 26(2), 40–49 (2003)
9. Harrison, M.: EPC Information Service – Data Model and Queries, Technical Report,

Auto-ID Center (2003)
10. Beckmann, N., Kriegel, H.P.: The R*-tree: An Efficient and Robust Access Method for

Points and Rectangles. ACM SIGMOD 19(2), 322–331 (1990)
11. Skiena, S.S.: The Algorithm Design Manual. Springer, Heidelberg (1998)

A Free Terrain Model for Trajectory K–Anonymity

Aris Gkoulalas-Divanis1,2 and Vassilios S. Verykios1,2

1 Department of Computer & Communication Engineering
University of Thessaly, Volos, Greece

{arisgd, verykios}@inf.uth.gr
2 Research and Academic Computer Technology Institute,

Patras University Campus, GR-26500 Rio, Greece

Abstract. This paper introduces a privacy model for location based services that
utilizes collected movement data to identify parts of the user trajectories, where
user privacy is at an elevated risk. To protect the privacy of the user, the proposed
methodology transforms the original requests into anonymous counterparts by
offering trajectory K–anonymity. As a proof of concept, we build a working pro-
totype that implements our solution approach and is used for experimentation
and evaluation purposes. Our implementation relies on a spatial DBMS that car-
ries out part of the necessary analysis. Through experiments we demonstrate the
effectiveness of our approach to preserve the K–anonymity of the users for as
long as the requested services are in progress.

1 Introduction

Technological advances in sensors, wireless communications and GPS receivers gave
rise to a series of applications – the so called Location Based Services (LBSs) – that
exploit positional data to offer services to their subscribers. The benefit of LBSs both to
the individuals and to the community is undeniable. However, without strict safeguards,
the deployment of these technologies poses a severe threat to user privacy. In this paper,
we consider a population of users who access LBSs to conduct their everyday business.
When a user moves, her mobile device periodically submits location updates to a traffic
monitoring station. The collection of the location updates results to the construction of
user trajectories, upon which the user travelled. The observed regularities in the user
trajectories can be used by untrusted entities to breach user privacy, even when no other
user identification information is in place (e.g., social security number, family name).
For example, think of a scenario where a user goes by certain city areas when she
commutes to work in more or less the same day times. This frequent behavior of the
user can lead to a possible identification simply by matching (i) the starting point of her
travel to some public domain geocoded information for her house and (ii) the ending
point to the location of the business facility that she works. Furthermore, a possible
matching of a series of user requests with a frequently travelled trajectory part of the
user may also easily lead to her personal identification.

Many techniques have been proposed to preserve user privacy in LBSs (c.f.[4,5,6,7]).
In this paper, we follow the widely adopted paradigm of a trusted server (see
Section 5) and propose a model that builds on the anonymity direction to protect the

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 49–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 A. Gkoulalas-Divanis and V.S. Verykios

privacy of the users when requesting LBSs. Our proposed model makes use of a move-
ment database which stores the time-series of locations visited by the users, along with
user specified privacy parameters. The collected information allows the spatial engine
of the trusted server to build representative user movement patterns and to provide users
with customized anonymity guarantees. Through the use of both the present (captured
as the requests that the user sends for LBSs) and the past (captured as the history of user
movement), the enforced K–anonymity algorithm, either successfully anonymizes the
user request or delays/denies the offering of the requested service.

The remainder of this paper is structured as follows. Section 2 presents the termi-
nology. In Section 3, we present the algorithmic techniques that support the proposed
privacy methodology and in Section 4 we experimentally evaluate our work. Section 5
presents the related work and Section 6 concludes this paper.

2 Terminology

Let u denote a user on the move. A location update is a tuple < u, x, y, t > stating that
user u was located at point (x, y) at time t, where t is a detailed recording of time in-
cluding the current date. By using the transmitted location updates of a user, the trusted
server reconstructs her movement history, represented as a 3D polyline (we consider two
dimensions for space and one dimension for time). The user movement history cannot
be directly used to draw any significant inferences regarding the movement patterns of
the user. For this reason, it is decomposed into semantically meaningful parts, the tra-
jectories, each consisting of a sequence of location updates. The decomposition strategy
depends on application specific parameters that signify the ending of the current user
trajectory and the beginning of a new trajectory. Any part of a user trajectory, indepen-
dently of its start point and end point, is called a route. A frequent route is defined as
follows:

Definition 1. A route of a user u is frequent if it appears among the trajectories of u a
number of times that is larger than a minimum frequency threshold freq.

The number of times that a route appears in the trajectories of u is called the frequency
of the route. Any route that is not frequent is called infrequent. Directly related to the
notion of a frequent route is the notion of an “unsafe” (equiv. “safe”) route.

Definition 2. A route of a user u is unsafe (equiv. safe) if it is frequent for u and infre-
quent (equiv. frequent) for a system-defined number of other users in the system.

A request is a tuple of the form R =< u, sid, x, y, t >, stating that user u requests
service sid from location (x, y) at time t. The system makes the best effort to guarantee
that a user remains K–anonymous when requesting LBSs, defined as follows:

Definition 3. A user u, when submitting a request is K–anonymous if each of the K−1
participants of his or her anonymity set (c.f. [6]) could be a potential issuer of the
request, as seen by the trusted server, from within an area that is near to the requester
and within a time period that is close to the time of request.

A Free Terrain Model for Trajectory K–Anonymity 51

Fig. 1. A 3D grid for the spatio-temporal generalization and the derivation of the “unsafe” routes

3 The Free Terrain Model

In this section, we present our proposed privacy model that consists of two phases.
The first phase is responsible for the computation of the unsafe routes for each user
in the system. The second phase, uses the computed unsafe routes to offer customized
trajectory K–anonymity to the requesters of LBSs.

3.1 Phase I: Derivation of the Unsafe Routes

To derive the “unsafe” routes, we overlay a 3D grid over the total area covered by the
trusted server and discretize the user movement into a set of spatio-temporal regions or
cells. In the partitioned 3D space (see Fig. 1), a trajectory of a user u is depicted as a
tuple < u, s >, where s is the sequence of cell identifiers of the cells that contain a part
of the user trajectory. This is shown in Fig. 1 (right), where a trajectory is decomposed
into a set of CIDs. Since each CID is referenced in time, without any loss of information,
we consider s to be an unordered set instead of a sequence of elements [1]. Thus, the
user movement history database collects all users’ trajectories as a series of transactions
T =< u, tid, s > (tid is the unique identifier of the trajectory). Through this process, a
set of spatio-temporal data (3D polylines) is transformed into market-basket data (cells
referenced in space and time), where each trajectory is mapped to a transaction and
each point within the trajectory is mapped to an item of the transaction. To identify
the frequent routes of a user, we apply frequent itemset mining [2] to the transactions
produced from the transformation of all the user’s trajectories in the system, as collected
from the history of user movement. For the purposes of this process, the time recordings
in the user trajectories are transformed into unanchored time intervals in the 3D grid to
depict time spans in a generic day.

Given the user movement history database D, let Du be the portion of D that collects
the trajectories of user u. Accordingly, let Dū contain the transactions T in D − Du.
Algorithm 1 can be applied as a patch to any frequent itemset mining approach to enable
the discovery of the “unsafe” routes from the frequent routes of a user. The algorithm
considers the frequent itemsets in Du by examining if they are also frequent in Dū.

52 A. Gkoulalas-Divanis and V.S. Verykios

Algorithm 1. Derivation of unsafe routes in the free terrain model
1: procedure UNSAFEPATHS(Du ,Dū, freq, MSO)
2: Ds ← Dū sorted based on the id of each user u
3: foreach itemset I ∈ Du, frequency(I) ≥ freq do � route is frequent
4: if RSUP(I, Ds, freq) ≥ MSO then � route is “safe” so discard it
5: treat I as infrequent in Du

6: function RSUP(I, Ds, freq)
7: count ← 0
8: foreach distinct user u ∈ Ds do
9: T = {< u, tid, s > — I ∈ s}
10: if |T | ≥ freq then
11: count ← count + 1
12: return count

Algorithm 2. Match of requests in the free terrain model
1: function MATCHREQTOUPATH(C, O, Rc, frun, Rp)
2: CID Lc ← H(Rc)
3: if frun = true then � seek for an initial match
4: foreach l ∈ C do
5: if l.cell = Lc then
6: return true � match was found
7: else � seek for a subsequent match
8: CID Lp ← H(Rp)

9: if O[Lp][Lc] = 1 then
10: return true � match was found
11: return false � request was made from a “safe” location

3.2 Phase II: Trajectory K–Anonymity

The offering of trajectory K–anonymity involves two steps. The first step (Alg. 2) ex-
amines the potential matching of the location of the requester to one of her “unsafe”
routes. Provided that such a matching exists, the second step (Alg. 3) offers privacy to
the user by means of trajectory K–anonymity.

Matching of a User Request to an Unsafe Route. Algorithm 2 presents a methodol-
ogy for the determination of (i) a matching of the initial user request Rc to one of the
user’s “unsafe” routes, and (ii) the subsequent matches until the completion of the ser-
vice. The algorithm uses a function H :< x, y, t >→ CID (implemented on the spatial
DBMS) that maps the user location to the appropriate CID. Variable frun enables the
algorithm to distinguish between the search for an initial and a subsequent match.

In an initial match, Rc corresponds to the current request. The algorithm scans the
list of locations C, derived as the union of all the CIDs that appear in all the “unsafe”
routes of the user, to identify if the current CID of the user is part of an “unsafe” route.
If the CID matches an element of C, then trajectory K–anonymity should be offered to
the user. Otherwise, the request is anonymized just by removing the obvious identifiers.
In a subsequent match, Rp corresponds to the previous location update, while Rc corre-
sponds to the current location and time of the user. Supposing that the user has moved
to a new cell, a transition table O identifies if the user still moves within an “unsafe”
route. The transition table has O[i][j] = 1 if the CIDs i, j are consecutive elements in
any of the user’s “unsafe” routes. In a successful match of the user’s request to one of
her “unsafe” routes, the request has to become K–anonymous.

A Free Terrain Model for Trajectory K–Anonymity 53

(a) locations of the users (b) searching strategy

Fig. 2. Trajectory K–anonymity in the free terrain model

Offering of Trajectory K–Anonymity. To provide K–anonymity, we consider a time
interval w that extends from the time of request tn to some moments back tn−1 and
identify the routes of all users in the system with respect to w. Two parameters regulate
the spatial extend of the generalization area. The first parameter, Amax, defines the
maximum generalization that guarantees the reliable operation of the requested service.
The second parameter, Amin, defines the minimum area where the K − 1 users of the
anonymity set should be found so that the user is adequately covered up.

Fig. 2(a) shows the trajectories of five users during a time interval w and the cell of
request for a user u. Based on the location accuracy that is necessary for the requested
service, the system decides on the appropriate size for w and creates the corresponding
(x, y)-projection. The numbers in the colored dots depict the sequence of cells that were
visited by each other user in the system. Fig. 2(a) provides the 2D grid that constitutes
the search space for the provision of K–anonymity, while Fig. 2(b) demonstrates the
applied search strategy. In Fig. 2(b), each cell has four neighbors; North, South, West,
and East. First, the cell where u is located is checked against the requirements of K
and Amin. If the requirements are not met, the system identifies its neighboring cells
(denoted as ‘A’ in Fig. 2(b)) and checks for each of them if their region, combined to
the already searched region, satisfies these requirements. This process iterates in a BFS
manner, until either the requirements are met or the explored area exceeds Amax.

Algorithm 3 has the details for the provision of K–anonymity in the free terrain
model. In a service that requires multiple location updates for its completion, the fol-
lowing strategy is applied. At each location update, the trusted server checks if the
previously computed neighbors of the user have changed cell and for those who have,
if their new cell lies within the previous anonymity region. If this holds, it adjusts the
temporal information of the request and maintains the same anonymity area. If some of
the K − 1 subjects have left the region, the same number of subjects are sought among
the other users in the system. If the requested number of missing subjects cannot be
found in this region, Alg. 3 is applied to compute a new region of K–anonymity.

4 Experimental Evaluation

The proposed algorithms were implemented in Java and Oracle 10g. The methodology
was tested on the publicly available INFATI dataset that captures the movement of 20
cars, recorded at a sampling rate of one second. More information can be found at [3].

54 A. Gkoulalas-Divanis and V.S. Verykios

Algorithm 3. K–anonymity in the free terrain model
1: function GENERALIZEREQUEST(Rc , K, Amin, Amax)
2: declare CID Lc ← H(Rc)
3: declare CID list N [4] ← ∅
4: declare Hash CS ← ∅
5: declare Hash Users ← ∅
6: declare Queue Q ← ∅
7: declare Integer Vcells ← 0
8: ENQUEUE(Q, Lc)
9: Users{u}← 1
10: while Q �= ∅∧(Vcells × area of cell ≤ Amax) do
11: CID l ← DEQUEUE(Q)
12: CS{l}← 1
13: foreach user α ∈ cell l do
14: Users{α}← 1

15: Vcells ← Vcells + 1
16: if (Vcells × area of cell ≥ Amin) ∧ (%keys(Users) ≥ K) then
17: return CS � alternatively, return MBR(CS)
18: CID list N ← GETNEIGHBORCELLS(l)
19: for int i = 0; i < 4; i++ do
20: if N [i] /∈ keys(CS) then
21: ENQUEUE(Q, N [i])
22: return null � K–anonymity cannot be provided

To decompose the history of users’ movement into trajectories, we considered a tra-
jectory to be a set of GPS measurements such that no two consecutive readings have
a time difference of more than five minutes. To capture the “unsafe” routes, we con-
sidered 100meters×100meters×5minutes cells in a grid where the actual GPS readings
were replaced by the ID of the cell they fell into. Each trajectory was mapped to a trans-
action in the universe of the cell identifiers and Alg. 1 was used to derive the “unsafe”
routes for each driver. Fig. 3 presents the “unsafe” routes of two cars, when freq = 2
and MSO = 5. To enhance the visibility of these graphs, we removed the most distant
outliers.

To create the terrain for the provision of K–anonymity, we considered the (x, y)-
projection of all the trajectories for all the cars of team 1, excluding any distant outliers.
The MBR of these projections was split into a grid of 100meters×100meters×5minutes
cells. In our experiments, we considered Amin to equal the area of a cell and a maximum
generalization threshold such that all the K − 1 subjects of the anonymity set are at
most 1 Km far from the requester. Since the drivers in the INFATI data are few for
the purposes of our experiments, we randomly assign a set of drivers U in each car,
with each driver being located at a different position in the movement history of the
car. In what follows, we are only interested in time periods (rather than actual times)
in the users’ movement history. Thus, we assume that all users move synchronously
based on the (x, y) locations in the location updates of their assigned trajectories and
disregard the time t of their location updates. Although the actual time t is omitted, the
time difference between the consecutive location updates in a trajectory is maintained.
We use this information to compute the locations of the corresponding user within the
last 10 minutes. In the case of team 1, this process allows us to compute the location of
all 11U drivers. To create a user request for an LBS, we randomly choose U location
updates, each from one of the 10 trajectories and U − 1 location updates from the last
trajectory, and assign each user to one of these points. The last user is positioned in

A Free Terrain Model for Trajectory K–Anonymity 55

Fig. 3. The “unsafe” routes (red) of the trajectories (blue), using msup = 2, MSO = 5

Fig. 4. Success ratios for 2, 10, 20-anonymity and 110, 550, 1100 users

the final trajectory such that she is located within one of her “unsafe” routes. This is
also the point of request. The assignment of the users to the cars is performed in a way
that users assigned to the same car have no overlapping trajectories for the 10 minute
period that is examined. The trajectory K–anonymity process uses the user movement
history to compute the cells where the user was located within the last 10 minutes.
Figure 4 presents the success ratio for K = {2, 10, 20} and for a number of users
U = {10, 50, 100} assigned to each trajectory. The reported ratio is an average over
100 runs coming from different users and “unsafe” routes.

5 Related Work

Gruteser and Grunwald [4] propose the use of spatial along with temporal cloaking
to provide location anonymity in LBSs. The spatial cloaking is achieved by recursive
subdivision of the entire area into equi-size quadrants. The temporal cloaking delays
the servicing of the request until K − 1 other users have visited the selected quadrant.
Gedik and Liu [5] assign an expiration threshold to each request, during which it can be
retained by the system to be anonymized. The cloaking strategy encloses the requests
into spatio-temporal MBRs, generates a graph of the requests whose MBRs overlap, and
identifies those cliques in the graph that satisfy the anonymity constraints. Bettini, et al.

56 A. Gkoulalas-Divanis and V.S. Verykios

[6] touch upon the privacy issues in LBSs from the viewpoint of the users’ history of
requests. Their approach keeps track of the users’ history of location updates, along with
a sequence S of spatio-temporal constraints that act as a pseudo-identifier for the user.
The user is offered trajectory K–anonymity when requesting an LBS from a location
that is included in S. Mokbel, et al. [7] partition the entire area in a grid fashion and
organize it in a pyramid structure. The authors use bottom-up cloaking to iterate over
the different layers of the pyramid and identify the cells that contain the requester along
with K − 1 other users.

6 Conclusions

In this paper, we introduced a privacy model that offers customized trajectory K–
anonymity to the requesters of LBSs. The proposed algorithms make use of the spa-
tial capabilities of a database engine to allow for an efficient implementation. By using
the privacy requirements of each individual and a strategy for the identification of the
“unsafe” routes, our approach protects the privacy of the users when they are at risk.

Acknowledgements

This research has been partially funded by the European Union under the FP6-IST-FET
programme, Project n. FP6-14915, GeoPKDD: Geographic Privacy-Aware Knowledge
Discovery and Delivery, www.geopkdd.eu.

References

1. Gidófalvi, G., Pedersen, T.B.: Mining long, sharable patterns in trajectories of moving objects.
In: Third Workshop on Spatio-Temporal Database Management (2006)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
20th International Conference on Very Large Databases, pp. 487–499 (1994)

3. Jensen, C.S., Lahrmann, H., Pakalnis, S., Runge, J.: The INFATI data. Time Center TR-79
(2004), http://www.cs.aau.dk/TimeCenter

4. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and
temporal cloaking. In: First International Conference on Mobile Systems, Applications, and
Services, pp. 31–42 (2003)

5. Gedik, B., Liu, L.: A customizable K-anonymity model for protecting location privacy. Tech-
nical report, Georgia Institute of Technology (April 2004)

6. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal identi-
fication. In: Second VLDB Workshop on Secure Data Management, pp. 185–199 (2005)

7. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for location services
without compromising privacy. In: 32nd International Conference on Very Large Data Bases,
pp. 763–774 (2006)

www.geopkdd.eu
http://www.cs.aau.dk/TimeCenter

HRG: A Graph Structure for Fast Similarity

Search in Metric Spaces

Omar U. Florez and SeungJin Lim

Computer Science Department
Utah Sate University, Logan, UT 84322-4205, USA

Abstract. Indexing is the most effective technique to speed up queries
in databases. While traditional indexing approaches are used for exact
search, a query object may not be always identical to an existing data
object in similarity search. This paper proposes a new dynamic data
structure called Hypherspherical Region Graph (HRG) to efficiently in-
dex a large volume of data objects as a graph for similarity search in
metric spaces. HRG encodes the given dataset in a smaller number of
vertices than the known graph index, Incremental-RNG, while provid-
ing flexible traversal without incurring backtracking as observed in tree-
based indices. An empirical analysis performed on search time shows
that HRG outperforms Incremental-RNG in both cases. HRG, however,
outperforms tree-based indices in range search only when the data di-
mensionality is not so high.

Keywords: Similarity search, Indexing, Data Structures, Query
Processing.

1 Introduction

Searching is a fundamental problem in a modern information system. Indexing
is the most well-known technique to speed up a search process, and user queries
are evaluated for the given selection predicate over the indexed key by exact
matching. However, exact matching may not be suitable for complex and less-
structured data objects. For example, the probability for two iris patterns to
exactly match is very low, even when they belong to the same individual. For
this type of data, imprecise search or search with error, based on the notion of
similarity (or dissimilarity) between objects, has a more practical value.

In metric spaces, tree- and graph-based techniques [1,2,3,4,5] have been pro-
posed to reduce the search space and subsequently reduce the overall number of
distance computations by virtue of the “triangle inequality.” In [4], for exam-
ple, a tree structure called spatial approximation tree was proposed to approach
the given query closer and closer spatially by taking advantage of the inequality
property, by which distance computations are performed for a small subset of
the entire search space. However, a tree structure has an inherent limitation: the
search starts only from the root of the tree, and once it fails to find a reasonable
solution to the given query in the current subtree, backtracking may be unavoid-
able. Although reduction in distance computation in graph-based solutions to

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 57–64, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 O.U. Florez and S. Lim

the similarity search problem has been achieved to a certain extent recently, the
intrinsic cost overhead in graph construction still makes graphs less competitive
than trees as a practical solution, and hence the graph-based similarity search
in metric spaces has been noted as an open research problem [6,5,7,8].

In response to the need of an efficient graph-based solution which takes advan-
tage of no backtracking while avoiding extraneous graph construction cost, we
propose in this paper a new efficient, graph data structure, called Hyperspher-
ical Region Graph (HRG), for the similarity search problem in a metric space
consisted of a large volume of data objects, inspired by the relative neighborhood
graph (RNG) [9]. The issue of high construction cost of the graph with a large
number of data objects is mitigated by modeling the search space as an RNG
of vertices each of which represents a set of data objects called hyperspherical
region, instead of a graph of individual data objects. In other words, an RNG
reduces the construction cost by having substantially less number of vertices
than existing neighborhood graphs.

Our empirical analysis of the proposed HRG in comparison with the graph-
based data structure (Incremental-RNG) recently proposed in [5] and two state-
of-the-art tree-based structures M-tree [1] and SA-tree [4] shows that HRG al-
ways outperforms Incremental-RNG in any case with regard to i) data structure
construction time and ii) similarity search performance, both of which are tested
by the number of distance computations, response time and memory usage. On
the other hand, HRG’s performance gain over M-tree and SA-tree was noticeable
during search time but not in construction time, which is anticipated for a graph
structure compared to a tree. HRG performed better than the two tree indices
with the 2D, 3D and 16D datasets but not with the 175D dataset used.

The paper is organized as follows: Section 2 describes the proposed technique.
Section 3 shows the experimental results. Finally, we provide a concluding remark
in Section 4.

2 Hyperspherical Region Graph

As introduced in Section 1, our strategy in finding a solution to the similarity
search problem in a large metric space is to design a graph data structure. We
prefer a graph-based approach mainly because additional edges in a graph allow
us to traverse the data structure without backtracking to upper vertices which
is required in a tree [1,2,3,4]. In addition, the constraint on the root node as a
starting point in a tree is relaxed in a graph because any vertex can be a starting
point.

Note that the flexibility in graph traversal is enabled at the expense of addi-
tional edge insertions. Subsequently, an efficient management of edge insertion
must be addressed in order to make a graph practical as an alternative to a tree
data structure in similarity search. We now present the graph structure proposed
in this paper, called hyperspherical region graph (HRG).

HRG: A Graph Structure for Fast Similarity Search in Metric Spaces 59

2.1 The Graph

The proposed hyperspherical region graph is a type of the relative neighborhood
graph (RNG) [9] defined as follows:

Definition 1. Given a graph G = (V, E), let H(vi, vj), for any pair of vertices
(vi, vj) ∈ V 2, be the hypersphere of radius d(vi, vj), for some distance function
d : V × V → R+, with vi as the center of the hypersphere. Then, G is a relative
neighborhood graph if any edge (vi, vj) ∈ E satisfies the neighborhood relation-
ship constraint: (H(vi, vj)�H(vj , vi))∩V = ∅ where H(vi, vj)�H(vj , vi) returns
the inner volume of the lune formed by the intersection of the two hyperspheres
excluding the lune’s surface. �

In other words, two connected vertices are neighbors in RNG. Intuitively, RNG
reduces redundant neighborhood relationships by excluding the edge between
adjacent vertices v1 and v2 if any vertex v3 is found in the lune formed by the
intersection of the hyperspheres centered at v1 and v2, i.e., if the distance from
v3 to either v1 or v2 is smaller than the distance between v1 and v2.

The reason for using RNG instead of other types of graphs such as Delaunay
triangulation is that RNG is defined based only on distances between vertices.
This characteristic makes RNG a suitable option to perform similarity search
not only in Euclidean spaces but also in arbitrary metric spaces. HRG extends
the idea of RNG to represent the structure of a metric space using representative
vertices of hyperspherical regions as follows:

Definition 2. A hyperspherical region H = (v, c, O) in a metric space is a
hypersphere of objects {v, O = {o1, o2, . . . , on}}, where (1) v is the center object
of H, (2) c is the capacity of H, i.e., the maximum number of objects that can
be included in H, and (3) O is the set of member objects that are currently
contained in H (with the exclusion of v). Furthermore, the distance between v
and the farthest object in H is called the radius of H. �

From now on, H(v) will be used as a shorthand notation for H(v, c, O) as long
as c and O are clear in the context. Furthermore, cH(v) denotes c of H(v), and
|H(v)| = |O|+1.

Definition 3. Given a set of hyperspherical regions {H(v1), . . . , H(vn)}, the
hyperspherical region graph GH = (V, E) is a relative neighborhood graph where
V = {v1, . . . , vn}, i.e., the center objects of the regions, and E is the set of edges
between neighboring vertices. Furthermore, cH(v1) = . . . = cH(vn) �

Since a hyperspherical region graph GH is consisted of only the vertices that
are centers of hyperspherical regions, not of all the data objects, the number of
vertices in GH is generally smaller than that of the RNG of the same dataset,
which enables us to construct GH by a less number of edge insertions.

The realization of this goal involves identifying the regions affected by vertex
insertions, and hence we present the search technique used first.

60 O.U. Florez and S. Lim

2.2 Similarity Search in HRG: Range Search

A range search is defined by the set of objects which are at most at the distance
r from the query object x.

Definition 4. Given a universe U of data objects, RangeSearch (x, r) = {s ∈
U|d(x, s) ≤ r}. �
To reduce the search space in range search, the search is performed at two
different levels in our approach: (1) the graph level, and (2) the region level.

Graph-Level Reduction. For the graph-level search space reduction, be-
ing a the starting vertex chosen randomly, the distance between x and each
of the neighboring vertices of a, denoted N(a), including a, is computed first.
Then, a search space reduction technique, inspired by the spatial approximation
method [4], is applied to visit only the vertices which are “close enough” to x
among the vertices in {a} ∪ N(a) based on the distances. “Closeness” is defined
as follows:

Definition 5. Given a set of vertices V and the query object x, v ∈ V is
a “close-enough” vertex to x if d(x, v) ≤ min dist + 2r where min dist =
minw∈V d(x, w) and r denotes the given distance tolerance to x from v. �
This search space reduction technique is applied recursively through all the
neighboring nodes that are close enough to x as long as such neighbors are found
and have not been visited yet. All the visited vertices with no close-enough neigh-
bors other than the originating neighbor are identified as candidate vertices.

Let {v1, . . . , vk} be the set of candidate vertices of x. Then, any region H(vi)
(1 ≤ i ≤ k) which intersects that of x, i.e., H(x) is returned as a candidate
region because they have a higher likelihood of containing the target objects of
the range search than the non-intersecting regions.

Region-Level Reduction. The objective of this step is to find the range search
result by the given query object x and radius r. The result consists of the objects
that are selected from the member objects of the candidate regions by checking
if they belong to the range search region centered at x with radius r. In this
process, a search space reduction is achieved by using the triangular inequality
to avoid computing the distance between each member object o and x, i.e.,
d(x, o). Note that the distance between the center object v and o is already
known. The distance between x and v has been already calculated also. Hence,
we can approximate our decision that o belongs to RangeSearch(x, r) if the
condition |d(v, x) − d(v, o)| ≤ r holds.

Note that it is guaranteed that for any pair of vertices v1, v2 in a Delaunay
triangulation graph, there exists one or more paths from v1 to v2. Since HRG
is an extension of RNG and RNG is a subgraph of Delaunay triangulation, the
path of minimum length between v1 and v2 exists. Using both search space
reduction techniques, we were able to visit 30% less edges in our approach than
in SA-tree. Figure 1 contrasts the area explored by our approach and SA-tree
when performing a Range Search around the object x. The range search process
is summarized in Algorithms 1 and 2.

HRG: A Graph Structure for Fast Similarity Search in Metric Spaces 61

(a) SA-tree (b) HRG

Fig. 1. Edge exploration by SA-tree and HRG. Thicker edges denote visited edges. A
fewer edges are visited in HRG than in SA-tree.

Algorithm 1. RangeSearch(Object x, Range r) // x: query object, r: query
radius
1: result := ∅;
2: a := random vertex in GH ;
3: min dist := ∞;
4: RangeSearch(a, x, r, min dist, result);
5: return result;

3 Experimental Results

We tested the proposed HRG in terms of similarity search operations using two
real and two synthetic datasets.

1. HSV-3: This is a real dataset consisted of 15,000 3-dimensional objects ob-
tained from a color image by sampling the hue (H), saturation (S), and value
(V) of every three other pixel.

2. Faces-175: We generated this real dataset consisted of 600 175-dimensional
objects from 600 face images found in the CMU Face Database1. Each face
figure is divided into 5×5 = 25 regions and the following seven features are
extracted from each region: the average and the standard deviation for each
of H, S and V, and the percentage of the presence of skin color in a region,
which yield 600 feature vectors of 7 × 5 × 5 = 175 dimensions.

3. Synthetic-2: This synthetic dataset contains 1,000 2-dimensional vectors nor-
mally distributed in 10 clusters with overall standard deviation of 0.1 over a
rectangle with a minimum and maximum value of 0 and 1 on each dimension
respectively.

4. Synthetic-16: This synthetic dataset contains 1,500 16-dimensional vectors
normally distributed in 10 clusters with overall standard deviation of 0.1
over a hypercube with a minimum and maximum value of 0 and 1 on each
dimension respectively.

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/ml94faces/faces

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-8/ml94faces/faces

62 O.U. Florez and S. Lim

Algorithm 2. RangeSearch (Vertex a, Object x, Range r, Distance min dist,
Stack S)
1: if a has not been visited yet then
2: if d(a, x) − r ≤ radiusRegion(a) ∨ d(a, x) + r ≤ radiusRegion(a) then
3: for each object o in H(a) do
4: if |d(a, x) − d(o, a)| ≤ r then
5: if calculateDistance(o, x) ≤ r then
6: result := result ∪ {o};
7: end if
8: end if
9: end for

10: end if
11: min dist := min{{min dist} ∪ {d(b, x) : b ∈ N(a)}};
12: for b ∈ N(a) do
13: if d(b, x) ≤ min dist + 2r then
14: mark b as VISITED;
15: RangeSearch(b, x, r, min dist, result);
16: end if
17: end for
18: end if

The performance of HRG was then compared to those of the two most well known
tree structures M-tree [1] and SA-tree[4], and a graph data structure Incremental-
RNG [5] in terms of the number of distance computations and total response time
for similarity search and data structure construction2. The Euclidean distance
(L2) was used as the distance function in our experiments. Furthermore, for
similarity search, we used the range query to make our results comparable to
others since the experimental results of other approaches found in the literature
are based on this type of search. All the algorithms were implemented in Java
1.6 and tested on a 2.0 GHz PC with 2038 MB of RAM running 32-bit Microsoft
Windows Vista.

Similarity Search Performance

NDC In this test, the data structures in comparison were tested with different
range search radii, ranging from 10% to 100% of the maximum distance3 between
the two farthest objects in the dataset. HRG performed better than all other
structures with Synthetic-2, Synthetic-16 and HSV-3, as shown in Figures 2(a),
2(b) and 2(c). With Faces-175, HRG outperformed Incremental-RNG with a
comparable performance with M-tree (see Figure 2(d)). In case of Faces-175,
potentially high overlap among the regions in HGR offsets the anticipated benefit
of HRG. In case of such high dimensional data, we observed that SA-tree is the
best out of the structures in comparison.
2 Due to the page limit, the detailed figures on data structure construction times are

omitted, but available by request.
3 This distance is referred as the dataset length in Figures 2 and 3.

HRG: A Graph Structure for Fast Similarity Search in Metric Spaces 63

(a) Range query: Synthetic-2 (b) Range query: Synthetic-16

()

(c) Range query: HSV-3 (d) Range query: Faces-175

Fig. 2. Comparison of HRG by number of distance computations in range search. Note
that the scale of y-axis is different from one figure to another.

(a) Range query: Synthetic-2 (b) Range query: Synthetic-16

()

(c) Range query: HSV-3 (d) Range query: Faces-175

Fig. 3. Comparison of HRG by total range query evaluation time at various radii

64 O.U. Florez and S. Lim

Response Time. This test was conducted in a similar way to the above to mea-
sure the total evaluation time of range searches. All the test dataset was fit into the
main memory. The performance of HRG in this test was congruent with the result
of NDC, which was anticipated because the main cost during running time is the
computation of distances between objects, as the result is shown in Figure 3.

4 Conclusions and Future Work

This paper introduced a graph-based indexing algorithm and discussed its per-
formance for the similarity search problem in metric spaces. The proposed al-
gorithm, which uses a small representation of the search space, can be classified
as a compact partitioning algorithm. The notion of neighborhood present in the
spatial approximation search technique [4] is fully exploited in the graph. More-
over, since each vertex is the center of a hyperspherical region, our approach
only visits the neighbors which are close enough to the query object, thus saving
the evaluation of distances between the query object and other objects.

The experimental results showed that the proposed method performs better
than other tree and graph-based approaches in similarity search with datasets
of moderate dimensionality. In case of a high dimensional dataset, we observed
overlap between regions, which offsets the benefits of the proposed structure.

References

1. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proceedings of the 23rd International Conference on
Very Large Data Bases, San Francisco, CA, USA, pp. 426–435 (1997)

2. Traina, C., Traina, A., Seeger, B., Faloutsos, C.: Slim-trees: High performance met-
ric trees minimizing overlap between nodes. In: Zaniolo, C., Grust, T., Scholl, M.H.,
Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 51–65. Springer, Heidel-
berg (2000)

3. Vieira, M.R., Traina Jr., C., Chino, F.J.T., Traina, A.J.M.: Dbm-tree: A dynamic
metric access method sensitive to local density data. In: Brazilian Symposium on
Databases, pp. 163–177 (2004)

4. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB Jour-
nal 11(1), 28–46 (2002)

5. Hacid, H., Yoshida, T.: Incremental neighborhood graphs construction for multidi-
mensional databases indexing. In: Advances in Artificial Intelligence, pp. 405–416
(2007)

6. Hacid, H., Zighed, A.D.: An effective method for locally neighborhood graphs up-
dating. In: Database and Expert Systems Applications, pp. 930–939 (2005)

7. Zhao, D., Yang, L.: Incremental construction of neighborhood graphs for nonlinear
dimensionality reduction. In: Proceedings of the 18th International Conference on
Pattern Recognition, pp. 177–180 (2006)

8. Lee, C., Kim, D., Shin, H., Kim, D.-S.: Efficient computation of elliptic gabriel
graph. In: International Conference on Computational Science and Applications,
pp. 440–448 (2006)

9. Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. In:
Proceedings of IEEE, vol. 80, pp. 1502–1517 (1992)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 65 – 72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Word Sense Disambiguation as the Primary Step of
Ontology Integration

Marko Banek1, Boris Vrdoljak1, and A Min Tjoa2

1 Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, HR-10000 Zagreb, Croatia

{marko.banek, boris.vrdoljak}@fer.hr
2 Institute of Software Technology and Interactive Systems,

Vienna University of Technology, Favoritenstr. 9-11/188, A-1040 Wien, Austria
amin@ifs.tuwien.ac.at

Abstract. The recommendable primary step of ontology integration is annotation
of ontology components with entries from WordNet or other dictionary sources in
order to disambiguate their meaning. This paper presents an approach to auto-
matically disambiguating the meaning of OWL ontology classes by providing
sense annotation from WordNet. A class name is disambiguated using the names
of the related classes, by comparing the taxonomy of the ontology with the por-
tions of the WordNet taxonomy corresponding to all possible meanings of the
class. The equivalence of the taxonomies is expressed by a probability function
called affinity function. We apply two different basic techniques to compute the
affinity coefficients: one based on semantic similarity calculation and the other on
analyzing overlaps between word definitions and hyponyms. A software proto-
type is provided to evaluate the approach, as well as to determine which of the
two disambiguation techniques produces better results.

Keywords: ontology integration, OWL, word sense disambiguation, WordNet,
semantic similarity.

1 Introduction

The scientific community has recognized ontologies as a means of establishing an
explicit formal vocabulary to be shared between applications. The Web Ontology
Language (OWL) [13], a W3C Recommendation, has been accepted as a standard for
writing ontologies. The fact that the ontologies applied by collaborating applications
have been developed independently implies their possible inconsistency, thus shad-
owing the primary goal of their development, i.e. a common, standard source of
knowledge that overcomes heterogeneity.

Ontology mismatches mostly appear when the same linguistic term describes
different concepts or when different terms describe the same concept (semantic
mismatches). Hence, it is necessary to disambiguate the meaning of ontology compo-
nents, either by applying heuristic formulas and machine learning techniques to ana-
lyze the entire ontology content [4, 12] or by annotating the components with natural
language descriptions or entries from a lexical database like WordNet that impose
a clear, single meaning [3, 8, 11]. The first approach requires learning each time a

66 M. Banek, B. Vrdoljak, and A Min Tjoa

specified ontology is merged with another one. On the other hand, semantic annota-
tions employed in the second approach can be further reused without additional effort,
which is highly recommendable in cases when merging needs to be performed rather
frequently. Techniques that follow the latter approach define ontology annotation as
the first step of the integration process.

This paper presents an approach to automatically disambiguating the meaning of
OWL ontology classes as the first step of ontology integration. The contribution of
our work is to apply the names of the related ontology components to disambiguate
the meaning of the target component, taking into account the degree of their related-
ness. The complex process of disambiguating ontology components is performed by
using two different basic disambiguation techniques: one based on semantic similarity
calculation and the other based on the analysis of overlaps between word definitions
and hyponyms. A Java-based prototype software tool is provided to evaluate our ap-
proach, as well as to determine which of the two basic disambiguation techniques
produces a better result.

The paper is structured as follows. Section 2 gives an overview of the related work.
The algorithm for disambiguating the sense of ontology classes and the two different
applied techniques are described in Section 3. Section 4 presents experiments for the
evaluation of the presented algorithm. Conclusions are drawn in Section 5.

2 Related Work

Most ontology integration methods are of heuristic nature or machine learning-based
[5]. They produce mappings between the ontology components based on the analysis
of names, natural language definitions and the ontology structure. Since natural lan-
guage definitions of ontology components are not provided in a large majority of
cases, the correctness of name matching depends on the lexical similarity calculation
techniques (e.g. in [6]), which generally apply either the most frequent meaning, or
the one whose meaning is most similar to the term being compared with.

Annotation of ontology components with WordNet senses [7] or some other mean-
ing disambiguation entries has been defined as the first step of the integration process
by many authors. However, in all those works the attention has been paid to the later
steps, while annotations were either created manually [11] or considered to be pro-
vided earlier [3, 8]. In other cases the ontology components were simply supposed to
have a determined unambiguous meaning [2]. To the best of our knowledge, no exist-
ing ontology integration technique performs the annotation process i.e. class sense
disambiguation automatically.

An ontology mapping approach based on graph theory and described in [8] re-
quires the source ontologies to be annotated with WordNet senses. Multiple-word
component names are defined by combining WordNet senses (regarded as atomic
particles) using set operators. However, the process is described from the point when
the particular sense of the target word has already been determined.

The earliest disambiguation approaches [1] were based on analyzing text corpora.
While supervised approaches applied machine learning, the unsupervised ones auto-
matically translated a corpus in the target language to another language and registered
cases when the same term in the target language was translated to different terms in

 Word Sense Disambiguation as the Primary Step of Ontology Integration 67

the other language. Recent disambiguation approaches (e.g. [9]) exploit dictionary
entries of the target words as the only source data.

3 Disambiguating OWL Ontology Classes

The process of disambiguating the meaning of an ontology component is based on
analyzing the related components. There are three basic component types in OWL
ontologies: classes, instances and properties [13]. The central part of ontologies is
given by the classes, which conform to the concept of nouns in human thought and
reveal the taxonomic structure of ontologies (classes can form taxonomies by specify-
ing subsumptions, either directly, or using complex OWL intersection and union ex-
pressions). Object properties display an attribute-like relation between nouns.

Since finding compatible classes is the core of ontology integration, we entirely fo-
cus the disambiguation process on classes. Ontology classes will be associated with a
WordNet sense whenever such a possibility exists. We use WordNet due to its omni-
presence in the existing ontology alignment techniques [3, 8, 11].

3.1 Ontology Class Neighborhood and Class Sense Disambiguation

WordNet divides the searchable lexicon into four categories: nouns, verbs, adjectives
and adverbs. Each input word can have more than one meaning, which is also called
word sense. For instance, there are two noun senses of the entry student: (1) a learner
who is enrolled in an educational institution, (2) a learned person (especially in the
humanities). A word sense can be described by one or more synonyms and is called a
synset (e.g. the first meaning of student has synonyms pupil and educatee, while the
synonyms scholar and scholarly person conform to the second one). Each synset is
given a description sentence called gloss and may have antonyms. A WordNet entry
can either be a single word (scholar) or consist of several words (scholarly person).

WordNet includes a set of semantic relations for each word category. The largest
spectrum of relations exists for nouns, which comprise about 80% of all WordNet
entries [7]. Hyponymy/hypernymy is a transitive relation between nouns that repre-
sents subsumption and exactly conforms to the concept of subclasses/superclasses in
ontologies. All WordNet nouns are arranged in a single taxonomy consisting only of
the hyponymy/hypernymy relation. The part-whole relation is called mero-
nymy/holonymy. A portion of the WordNet taxonomy containing the two senses of
student can be seen in Fig. 1.

We associate a class name (always supposed to be noun), with a particular Word-
Net noun synset. Some classes will receive no annotation since there will be no
appropriate WordNet noun corresponding to their names, particularly if the names
consist of more than one word (e.g. PhDStudent in a university ontology). An annota-
tion will be created without applying the disambiguation process if the corresponding
WordNet noun term has a single sense (e.g. Professor). “Upper” i.e. more “general”
classes in ontology taxonomies are likely to have many senses (e.g. Student, Course,
Graduate in a university ontology).

68 M. Banek, B. Vrdoljak, and A Min Tjoa

Fig. 1. Portion of the WordNet taxonomy describing synsets student and undergraduate

We start the OWL ontology class disambiguation process by translating the com-
plex intersection and union constructs to subsumption relations, leaving subsumptions
and object properties as the only two edge types in the final taxonomy graph of the
ontology. The taxonomy of a university ontology fragment is shown in Fig. 2. Sub-
sumption edges are represented by full lines, always pointing from the subclass to the
superclass. Object property edges are represented by dashed lines, pointing from the
domain to the range class.

Fig. 2. Basic taxonomic relations of the university ontology

Similarly to the noun taxonomy of WordNet, a specified ontology class is “sur-
rounded” by classes that constitute its taxonomy: its subclasses, superclasses and
property range classes, which, on their part, have their own subclasses, superclasses
and property ranges. We call the part of the ontology taxonomy with the specified
class as its central point the neighborhood of that class. We disambiguate the target
ontology class by comparing its neighborhood taxonomy with WordNet taxonomies
of all noun synsets corresponding to the class name. The WordNet noun synset with
the taxonomy “most similar” to the target ontology class neighborhood will be stated
as the real meaning of the target class.

We define the distance between two classes in the ontology neighborhood as the
number of edges that form the shortest valid path between them. The neighborhood of
an ontology class of radius r consists of all classes whose distance from that class is
smaller than or equal to r. The neighborhood of radius 1 of a target class C includes
the following links: (1) all its direct subclasses, (2) all its direct superclasses, (3) all
the ranges of its own (i.e. not inherited) properties, (4) all classes whose property
range is the target class. Class Student in the university taxonomy has five classes in
its neighborhood of size 1: Undergraduate, Graduate, PhDStudent, AcademicCitizen
and Course (see Fig. 2). When creating the neighborhood of radius 2 or larger, we

 Word Sense Disambiguation as the Primary Step of Ontology Integration 69

eliminate paths going both “up” and “down” and paths containing more than one
property edge, since they mostly reach classes unrelated or even disjoint with the
target class (e.g. Professor – TeachingStaff – Assistant). Considering the target class
Student, the neighborhood of radius 2 will also include classes Professor and Re-
searchAssistant, but not TeachingStaff.

We define the probability that a sense Ci is the true meaning of an ontology class C
due to the fact that C is related to another class D in the same ontology as the affinity
between Ci and D, a(Ci, D)∈[0,1]. The highest of the affinity coefficients with D
across all senses of C implies the true meaning of C from the perspective of D. Con-
sidering that the affinity between Ci, the i-th sense of the target class C, and a class
DXj at distance X from Ci is expressed by some coefficient a(Ci, DXj), the total affinity
value (i.e. the one taking into account all classes from the neighborhood) of Ci is
calculated as weighted mean:

NN

R

j
NjiN

R

j
ji

R

j
ji

itotal RwRwRw

DCawDCawDCaw

Ca

N

⋅++⋅+⋅

⋅++⋅+⋅
=

∑∑∑
===

...

),(...),(),(

)(
2211

11
22

1
11

21

, (1)

where N is the radius of the neighborhood, ⎪RX⎪the total number of neighborhood
classes at distance X from C and wX are weights corresponding to each distance. In our
experiments we adopt two interpretations of the distance. In the first case, we ignore
the distance and assume that all neighborhood classes equally contribute to the final
score (wX = 1, 1 ≤ X ≤ N). In the second case, we assume that the influence of a class
is inversely proportional to the square of its distance (i.e. wX = 1/X 2, 1 ≤ X ≤ N).

Since classes at a very large distance from the target class are likely to represent
some unrelated concept [14] and are not expected to contribute much to the target
class disambiguation, we believe that the radius should not be larger than 5.

The affinity between the i-th sense of the target class C and a neighborhood class D

will be calculated using two different approaches presented in Section 3.2

3.2 Word Sense Disambiguation Techniques

The first disambiguation technique we apply expresses the affinity coefficient be-
tween two ontology classes as the value of semantic similarity function between the
equivalent WordNet synsets. Among the existing techniques for measuring semantic
similarity in thesauri we adopt the most recent one, presented by Yang and Powers
[14], which is also reported to be the most efficient. The range of the semantic simi-
larity function is the interval [0,1]. The WordNet noun taxonomy is interpreted as a
graph, with synsets as vertices and hyponymy/hypernymy and meronymy/holonymy
relations as edges. Each edge is given a weight β (0 < β < 1) according to the relation
type. All possible paths between the target vertex and all vertices corresponding to
different senses of the other word are constructed. Weights are multiplied across paths
and the highest product (which also denotes the shortest path) becomes the value of
semantic similarity between the target synsets.

In order to disambiguate a target class using a class from its neighborhood, we
construct all valid paths between every WordNet synset corresponding to the target
class and each of the N synsets corresponding to the neighborhood class (the sense of

70 M. Banek, B. Vrdoljak, and A Min Tjoa

the neighborhood class is also unknown). Following the standard solution outlined in
[14], the presumed true sense of the neighborhood class is the one with its WordNet
representative at the shortest distance from the representative of the particular sense
of the target class. Considering the neighborhood class Undergraduate (Fig. 2), the
affinity for scholar/scholarly person/student is determined by a six-edge path to the
only sense of undergraduate (see Fig. 1.). On the other hand, there is a two-edge path
and a much higher affinity value between student/pupil/educate and undergraduate.

While the target class must correspond to a WordNet noun entry, the neighborhood
class used to disambiguate the target class may be any complex combination of words
including even abbreviations. The contribution of each word participating in the com-
plex class name is calculated separately, using the formula given in [10].

The second disambiguation method is a “standard” disambiguation technique as in-
troduced by Liu, Yu and Meng [9]. Word senses are disambiguated by finding the
overlap among their definitions (i.e. glosses). For instance, computer disambiguates
terminal, as it can only be found in the gloss of its third sense (electronic equipment
consisting of a device providing access to a computer; has a keyboard and display).

For each two target words w1 and w2 the following four sets are extracted for each
of the senses: (1) all synonyms, (2) all words from the gloss, (3) synonyms of all
hyponyms, (4) all words from all the hyponyms’ glosses. 4×4 pair-wise comparisons
of the sets are performed, which is reduced to 10 independent cases due to symmetry
(we implement 10 different comparator functions). The existence of an overlap be-
tween any of the sets belonging to the senses s1 and s2 of words w1 and w2, respec-
tively, suggests a correlation between those two senses (i.e. synsets). If no overlap
exists for other pairs of senses of w1 and w2 or if the size of the latter is smaller (we
empirically determine the “winning” overlap to be at least 1.2 times bigger than all
others), the disambiguation is successful.

4 Experiments

A Java prototype tool that implements both disambiguation techniques has been de-
veloped in order to test our approach on real-life ontologies as well as to determine
which of the two disambiguation techniques works better. The experiments included
three target ontologies: the Wine and Food Ontology from [13], the Infectious Disease
Ontology [15] and the Computer Ontology developed at Stanford University [16].

Considering the optimal size of the target class neighborhood, we performed ex-
periments with four different neighborhood radii: 1, 2, 3 and 5. The affinity is com-
puted using both the distance-related weights and equal weights for all distances.

Following our notion of overlap comparison threshold (Section 3.2), we state that
an ontology class C is disambiguated only if the highest affinity value (associated
with a sense s of C) is at least thr times bigger than the second highest. We perform
the experiments for the following values of thr : 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7.

The statistics refer only to classes that can be associated with a WordNet noun with
at least two senses. We define recall R as the ratio between the number of ontology
classes that could successfully be disambiguated (with respect to thr) and the total
number of classes corresponding to a WordNet term with at least two senses. We
compare the results of the automatic disambiguation with those obtained by human

 Word Sense Disambiguation as the Primary Step of Ontology Integration 71

judgment and define precision P as the ratio of the number of correctly disambiguated
classes and the number of classes that could be successfully disambiguated. An in-
crease of thr is expected to produce a higher precision but a lower recall.

For each existing combination of radius size, weight and disambiguation technique
we calculate the average value of recall and precision across the three target ontolo-
gies. The percentage of ontology classes that conform to a WordNet noun entry is 7 of
20 (35%) for the Wine and Food Ontology, 90 of 150 (60%) for the Disease Ontology
and 19 of 44 (43%) for the Computer Ontology.

Due to a lack of space we do not provide statistics for all threshold values. Instead,
in Table 1 we give the recall and precision values for all different combinations with
the threshold set to its optimal value 1.1. A rise of thr contributes more to a reduction
of recall than to an increase of precision (the impact is measured by comparing the
geometric mean of recall and precision), thus producing worse results in total.

The disambiguation technique based on semantic similarity calculation works bet-
ter than the one based on analyzing glosses and hyponyms, achieving precision higher
than 90% while maintaining recall almost at 85% (the gloss-based technique gives a
slightly better recall, but the reduction of precision is more significant). Calculations
produced over a larger neighborhood (radii 3 and 5) give better results than those
made over a smaller one (although not as significantly as expected). Using different
weight systems did not create any significant impact. Thus, we propose the adoption
the simpler system (w=1, regardless of the distance).

As a conclusion to the experiments, we suggest using the disambiguation technique
based on semantic similarity calculation with neighborhood radius between 3 and 5.

Table 1. Entire results of the experiments with the threshold set to its optimal value

radius = 1 radius = 2 radius = 3 radius = 5
R P R P R P R P

w=1 0.818 0.905 0.847 0.905 0.847 0.905 0.847 0.905
Yang & Powers

w=1/D2 0.818 0.905 0.832 0.905 0.832 0.905 0.832 0.905

w=1 0.886 0.781 0.847 0.801 0.915 0.742 0.915 0.742
Liu, Yu & Meng

w=1/D2 0.886 0.780 0.886 0.780 0.915 0.759 0.915 0.759

5 Conclusion

This paper presents an approach to automatically disambiguating the meaning of
OWL ontology classes in order to produce sense annotations from WordNet, which is
the first step of the ontology integration process. The approach is based on analyzing
names of ontology classes most related to a disambiguation target class. The taxon-
omy of the target class neighborhood is compared with taxonomies of all WordNet
noun synsets corresponding to the target class name. Their equivalence is then ex-
pressed by an affinity coefficient. The approach was tested on three example ontolo-
gies using the developed software prototype. Analyzing the results of the experiments,
the disambiguation technique based on measuring semantic similarity between
WordNet nouns emerged as the optimal solution for calculating affinity coefficient
values.

72 M. Banek, B. Vrdoljak, and A Min Tjoa

References

1. Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation - Algorithms and Applica-
tions. Springer, New York (2006)

2. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and Ontology Matching with
COMA++. In: Özcan, F. (ed.) Proc. ACM SIGMOD Int. Conf. on Management of Data,
pp. 906–908. ACM Press, New York (2005)

3. Castano, S., Ferrara, A., Montanelli, S.: H-MATCH: an Algorithm for Dynamically
Matching Ontologies in Peer-based Systems. In: Cruz, I.F., Kashyap, V., Decker, S., Eck-
stein, R. (eds.) Proc. 1st Int. Wshp on Sem. Web and Databases, pp. 231–250 (2003)

4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map between Ontologies
on the Semantic Web. In: Proc. 11th Int. WWW Conf., pp. 662–673. ACM, New York
(2002)

5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, New York (2007)
6. Euzenat, J., Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. In: López

de Mántaras, R., Saitta, L. (eds.) Proc. 16th European Conf. on Artificial Intelligence, pp.
333–337. IOS Press, Amsterdam (2004)

7. Fellbaum, C. (ed.): WordNet. An Electronic Lexical Database. MIT Press, Cambridge
(1998)

8. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementa-
tion of Semantic Matching. In: Bussler, C., Davies, J., Fensel, D., Studer, R. (eds.) ESWS
2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

9. Liu, S., Yu, C.T., Meng, W.: Word Sense Disambiguation in Queries. In: Herzog, O., et al.
(eds.) Proc. 2005 ACM Int. Conf. on Information and Knowledge Management, pp. 525–
532. ACM Press, New York (2005)

10. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In:
Apers, P.M.G., et al. (eds.) Proc. 27th Int. Conf. Very Large Data Bases, pp. 49–58. Mor-
gan Kaufmann, San Francisco (2001)

11. Patel, C.O., Supekar, K., Lee, Y.: OntoGenie: Extracting Ontology Instances from WWW.
In: Proc ISWC 2003 Workshop on Human Language Technology for the Semantic Web
and Web Services, pp. 123–126 (2003)

12. Udrea, O., Getoor, L., Miller, R.J.: Leveraging Data and Structure in Ontology Integration.
In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 449–460. ACM Press, New York (2007)

13. World Wide Web Consortium: OWL Web Ontology Language Guide (W3C Recommen-
dation, February 10, 2004), http://www.w3.org/TR/2004/REC-owl-guide-
20040210/

14. Yang, D., Powers, D.M.W.: Measuring Semantic Similarity in the Taxonomy of WordNet.
In: Estivill-Castro, V. (ed.) Proc. 28th Australian Computer Science Conference, pp. 315–
322. Australian Computer Society (2005)

15. Infectious Disease Ontology,
http://www.duke.edu/~lgcowell/IDO_Workshop_Files/
IDO.9.19.07.owl

16. Stanford University Computer Ontology, http://ksl.stanford.edu/DAML/
computers.owl

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 73 – 80, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enriching Ontology for Deep Web Search

Yoo Jung An1, Soon Ae Chun2, Kuo-chuan Huang1, and James Geller 1

1 New Jersey Institute of Technology
2 CSI, City University of New York

ya8@njit.edu, chun@mail.csi.cuny.edu, kh8@njit.edu,
geller@njit.edu

Abstract. This paper addresses the problems of extracting instances from the
Deep Web, enriching a domain specific ontology with those instances, and us-
ing this ontology to improve Web search. Extending an existing ontology with a
large number of instances extracted from the Deep Web is an important process
for making the ontology more usable for indexing of Deep Web sites. We dem-
onstrate how instances extracted from the Deep Web are used to enhance a do-
main ontology. We show the contribution of the enriched ontology to Web
search effectiveness. This is done by comparing the number of relevant
Web sites returned by a search engine with a user’s search terms only, with the
Web sites found when using additional ontology-based search terms. Experi-
ments suggest that the ontology plus instances approach results in more relevant
Web sites among the first 100 hits.

Keywords: Deep Web, Semantic Web, Instance Extraction, Domain Ontology.

1 Introduction

The term Deep Web has been coined to refer to Web pages dynamically generated via
query interfaces, implemented as Web forms or Web services. Due to its dynamic
nature, existing Web crawlers cannot access the Deep Web [1]. Thus, accessing and
maintaining the huge amount of Deep Web information remain challenging research
issues [2]. In [3], information in Deep Web sites was categorized as being either in
textual or structured databases. While a textual database needs input keywords for
searching text documents, a structured database requires a user to fill in input fields of
a query interface. This paper focuses on structured databases. It addresses the problem
of how to extract data from the Deep Web to automatically enrich an ontology that
can support better search engines.

The purpose of the Semantic Web (SW) is to automate tasks that humans com-
monly perform on the WWW, using their intelligence. The SW depends heavily on
ontologies, each of which is a computer implementation of human-like knowledge
[4,5]. The software agents operating on the SW will need some human-like knowl-
edge to perform their tasks. Thus, the success of the SW critically depends upon the
existence of a sufficient amount of high-quality semantics contained in ontologies [6].
In our previous work [7], the Semantic Deep Web was introduced as a framework that
combines aspects of the Deep Web and the SW. (Note that this is not the same as the
Deep Semantic Web.) Because of ontologies’ promise of sharing knowledge, they will

74 Y.J. An et al.

play a dominant role on the SW [8] and, presumably, the Deep Web. In [7, 10], the
search interface elements of Deep Web sites have been extracted to automatically
build domain ontologies.

In this paper, we extract instances from the Deep Web (DW) to populate the ontol-
ogy. The enriched ontology is then used during Web search to improve the search
results for DW sites. The search terms entered by a user, augmented with domain
ontology instances, are expected to better describe the user’s interests. We claim that
the proposed method assists users with finding more relevant Web sites. A domain
ontology-based Web search module was built. An assessment was conducted by com-
paring the number of relevant DW sites returned by a search engine that used a user’s
search terms only, with the results returned by using search terms extended with on-
tology instances.

2 Related Work

OntoMiner [5] finds URLs on a partitioned segment of a Web page (e.g., of a hotel)
which are linked to instances. From each segment, labels which are concepts and their
sub-labels with corresponding values are extracted as instances. A result page after a
search, called data page, is a source for extracting instances in DeepMiner [9]. In our
research, we use concepts in an ontology which was automatically generated from the
DW in [10], to extract instances for these concepts. The significant difference of our
approach, compared with [5, 6, 9] is that we rely on extracting instances by dynami-
cally probing backend databases of a DW site. In contrast to most ontology learning
work, which focuses on Web documents, as in [6, 15, 16], the focus in our research is
on the DW.

Research [19, 20] on the DW has focused on Web forms, as they are entry points to
access the DW. In [19], the Hidden Web Exposer (HiWE) can automatically assign
values to the form, referencing a “Label Value Set (LVS)” that is initially a human
guided description for the HiWE. Form filling and submission are also research prob-
lems in [20]. In our previous work [7], automatic extraction of attributes of DW sites
was conducted at the schema level of HTML forms, which is comparable to [19]. On-
tology based search engines have been developed and equipped with specific features
in [21].

3 Enriching a Domain Ontology for the Semantic Deep Web

Enrichment of an ontology is a process that extends it by adding concepts, instances
and new relations between concepts [17]. Our previous work [10] dealt with the
schema level while this paper deals with the data level, as we utilize instances ex-
tracted from DW result pages. While the schema level extraction finds concepts such
as ‘city name,’ etc., the data level extraction results in instances such as ‘Newark.’
Our method for extracting instances from the DW is based on developing “robots”
(agents) that send many queries to the same DW site to extract as many data values as
possible. When a robot encounters an input field it may enter random values or leave
the field empty and then submit the page to elicit an informative response. Figure 1

 Enriching Ontology for Deep Web Search 75

shows the workflow for extending the ontology with instances. The concept discov-
ery of the robot is guided by a human in its initial stage. Initial pairs of a concept and
its corresponding instances are defined, which we call a robot image. The robot sub-
mits input values into the query interface. If the input values are not suitable for the
form, most Web sites display error messages. The analysis of the error messages often
gives useful clues to the robot to guess suitable input values and launch better probing
queries. Thus, the queried Web sources may provide information about concepts, in-
stances and semantic relationships, which is recorded in the ontology.

Some concepts in
schema level ontology

Instances in the
Query Interfaces

Robot Image

Select a Web data source
from the dataset

Launch probing queries

Finish all Web
Data sources

No Build Data
Level Ontology

Retrieve concepts with
instance

Obtain query results

Error
message?

No

Yes

Record data level ontology
fragment

Evaluate
Error Message

Yes

Fig. 1. A flow for generating data level ontology fragments

Consider a DW site, such as a flight reservation system. Our program generates a
list of candidate airport codes from AAA to ZZZ with the assumption that airport
codes consist of three letters. The probing program submits the form with a candidate
airport code (Figure 2), gets a result page and parses it. Next, the program extracts
available instances (e.g., airport name, etc.) from the result page (Figure 3). If the
candidate airport exists, it will be in the result page. Otherwise, an error or a “similar”
airport will be returned. The algorithm for crawling instances from a DW site is omit-
ted due to space limitations [22]. Table 1 shows data extracted from the DW. Con-
cepts in the first column and their corresponding concepts in the third column are in
relationships named in the second column. The number of extracted relationships is in
the fourth column.

The extracted instances are loaded into domain ontologies that were defined and
represented in OWL, e.g., the air travel domain ontology in [10]. In order to load the
DW instances into the domain ontology, a program was implemented in [22] using
the Protégé API [11, 12, 18]. For example, for John F. Kennedy International airport,
the property hasAirportCode is JFK, and it isAirportOf New York.

76 Y.J. An et al.

Fig. 2. A sample Web site with a dynamic query interface

Fig. 3. A sample Web site with results

4 Web Search with Domain Ontology-Based Query Extension

In this research, a domain ontology-based Web search module was implemented [22].
For example, if a user clicks on assertions related to airport codes or airports, the search
module will create an extended list of key words (i.e., “New York”, NYC, “Seoul”,
SEL). The assumption that a user inputs only “New York” and “Seoul” to search for a
flight which operates from “New York” to “Seoul” relies on [13], where it was reported
that a user, on average, enters 2.1 terms for a Web search. Thus, we assume that a user
who wants to flight from New York to Seoul may enter these two terms.

The algorithm for extending the query terms of a user can be found in [22]. It proc-
esses a user query string and separates it into phrases. Next, if a phrase is an instance
of the domain ontology, extract its properties. Properties refer to relationships and
objects of the properties refer to instances of the relationships in OWL. For example,
New York has properties such as isCityOf, hasAirport, hasAirportCode, etc., and ob-
jects of the properties are New York, John F. Kennedy International Airport, and

 Enriching Ontology for Deep Web Search 77

Table 1. Instances of Extracted Relationships

Class Name Relationship Class Name No. of Instances
city hasAirport Airport 1090
city isCityOf country 997
city isCityOf province 362
airport_code isAirportCodeOf airport 1090
country hasCity city 997
province hasCity city 362
country hasState province 61
province isStateOf country 61
airport hasAirportCode airport_code 1090
airport isAirportOf city 1090
airport code nearBy airport code 102
airport nearBy airport 102
airport sameAs airport_code 1090

Fig. 4. User feedback interface

NYC, respectively. These are appended to the user query (Q), and the extended query
(EQ) is resubmitted.

Using the user terms Q = {New York, Seoul} only resulted in a display with few
flight reservation Web sites. Then our system extended Q to EQ = {New York, John
F. Kennedy International Airport, Seoul, Seoul Incheon International Airport} with
respect to the user selections of semantics in Figure 4. Details of the evaluation proc-
ess can be found in [22]. Table 2 gives a flavor of the results. The extended search
string EQ results in several orders of magnitude fewer sites returned by Google. More
importantly, looking at the first 100 returned sites only, the number of relevant sites
found with EQ is always greater or equal to the number of sites found with Q.

78 Y.J. An et al.

Table 2. Case study results (small subset)

Q EQ Sites for Q
(Millions)

Sites for
EQ

Relev. Sites*
in top 100

for Q

Relev. sites
in top 100

for EQ
New
York,
Seoul

New York, John F. Kennedy
International Airport, Seoul, Seoul
Incheon International Airport

4.77 267 9 29

New
York,
Tokyo

New York, John F. Kennedy
International Airport, Tokyo,
Narita International Airport

118.00 503 1 8

 * Relevant. sites are the Web pages which contain entry points to Deep Web sites relevant to the
flight reservation domain.

5 Conclusions, Future Work and Discussion

In this paper, we first presented a novel approach to enhancing a domain ontology by
adding a large number of instances extracted from the DW to it. This process was semi-
automatic. The program crawled information from the DW site (http://www.united.
com/) but was not intelligent enough to automatically define semantic relationships be-
tween classes. Humans defined them based on the structure of a result page. In all, 3,385
instances of concepts and 8,494 instances of semantic relationships were extracted. Sec-
ondly, a prototype Web search module was implemented. We evaluated the success of
searching for airline Web sites, using the extended domain ontology. Our experiments
suggest that Web search results of a general purpose search were improved by our ap-
proach. More sites relevant to a user’s needs were located in the first 100 sites, and a
smaller number of sites was returned. As few users look beyond 100 sites, this is an
important improvement.

Naturally, the cases used for assessing the performance of the Web search module
are limited in this paper. For example, some users prefer cheap flights, while others
prefer direct flights. In addition, only the Air travel domain ontology among the eight
ontologies from [10] was enriched in this paper. After the other domain ontologies are
enriched, our ontology-based Web search module can process a user’s query across
the different domains by adding a domain related semantic choice to the user feed-
back interface (Figure 4). This is non-trivial future work and relies on the fact that
there is a bounded number of domains within E-Commerce.

While a large number of instances was extracted from a specific DW site, there are
many E-Commerce DW sites which a crawling program cannot access, due to secu-
rity reasons [14]. In fact, we faced several problems in reading HTML results from a
number of Web sites. A message, “Please activate scripting” means that the site de-
tects a Web browser of a client and its script option before it answers a user query.
Thus, a crawling program needs a facility of a Web browser. Similarly, a message of
“Permission denied” was encountered when we attempted what has been called cross-
site scripting.

On the other hand, automatic downloading of Web documents from a hidden Web
site [3] is easier than retrieving information from a backend database. In fact, a crawl-
ing program, which failed to read a DW page’s HTML content, could download Web
content from a textual database such as PubMed without problems. Considering this

 Enriching Ontology for Deep Web Search 79

paper’s result, namely that ontology instances extracted from the DW contribute to
locating relevant Web sites, community-wide efforts are necessary to extract large
numbers of instances from the DW.

References

1. Singh, M.P.: Deep Web structure. IEEE Internet Computing 6(5), 4-5 (September 2002)
2. He, B., Patel, M., Zhang, Z., Chang, K.C.-C.: Accessing the Deep Web: A Survey. Com-

munications of the ACM (CACM) 50(5), 94–101 (2007)
3. Ntoulas, A., Zerfos, P., Cho, J.: Downloading Textual Hidden Web Content Through

Keyword Queries. In: Proc. of the ACM/IEEE Joint Conf. on Digital Libraries (JCDL), pp.
100–109 (2005)

4. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies 43(5), 907–928 (1995)

5. Davulcu, H., Vadrevu, S., Nagarajan, S., Ramakrishnan, I.V.: OntoMiner: bootstrapping
and populating ontologies from domain-specific Web sites. IEEE Intelligent Sys-
tems 18(5), 24–33 (2003)

6. McDowell, L.K., Cafarella, M.: Ontology-driven Information Extraction with OntoSy-
phon. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 428–444. Springer, Heidelberg
(2006)

7. An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Semantic Deep Web: Automatic Attribute Ex-
traction from the Deep Web Data Sources. In: Proc. of the 22nd Annual ACM Symposium
on Applied Computing (SAC 2007), Seoul, Korea (March 2007)

8. Dou, D., McDermott, D.V., Qi, P.: Ontology Translation on the Semantic Web. Journal on
Data Semantics 2, 35–57 (2005)

9. Wu, W., Doan, A., Yu, C.T., Meng, W.: Bootstrapping Domain Ontology for Semantic
Web Services from Source Web Sites. In: Bussler, C.J., Shan, M.-C. (eds.) TES 2005.
LNCS, vol. 3811, pp. 11–22. Springer, Heidelberg (2006)

10. An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic Generation of Ontology from the
Deep Web. In: Proceedings of 6th International Workshop on Web Semantics (WebS
2007), September 3-7, 2007 (in Press, 2007)

11. Stanford Medical Informatics, Protégé 3.2.5 [Computer program API] (Retrieved, May
2007), http://protege.stanford.edu/doc/pdk/api/index.html

12. Stanford Medical Informatics, Protégé - OWL 3.2.1 [Computer program API] (Retrieved,
May 2007),
http://protege.stanford.edu/download/release-javadoc-owl/

13. Jansen, B.J., Spink, A., Saracevic, T.: Real Life, Real Users, and Real Needs: A Study and
Analysis of User Queries on the Web. Information Processing & Management 36(2), 207–
227 (2000)

14. Liddle, S., Embley, D., Scott, D., Yau, S.: Extracting Data Behind Web. In: Proceedings of
the Joint Workshop on Conceptual Modeling Approaches for E-business: A Web Service
Perspective (eCOMO 2002), pp. 38–49 (October 2002)

15. Omelayenko, B.: Learning of ontologies for the Web: the analysis of existent approaches.
In: Proceedings of the International Workshop on Web Dynamics (Retrieved, 2001),
http://www.dcs.bbk.ac.uk/webDyn/webDynPapers/omelayenko.pdf

16. Weber, N., Buitelaar, P.: Web-based Ontology Learning with ISOLDE. In: Proceedings of
ISWC 2006 Workshop on Web Content Mining with Human Language Technologies
(2006), http://www2.dfki.de/~paulb/

80 Y.J. An et al.

17. Faatz, A., Steinmetz, R.: Ontology Enrichment Evaluation. In: Motta, E., Shadbolt, N.R.,
Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 497–498.
Springer, Heidelberg (2004)

18. Stanford Center for Biomedical Informatics Research, Protégé 3.3.1 [Computer Program]
(Retrieved, 2007),
http://protege.stanford.edu/download/registered.html

19. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: Proceedings of the 27th
International Conference on Very Large Data Bases, pp. 29–138 (2001)

20. Liddle, S., Embley, D., Scott, D., Yau, S.: Extracting Data Behind Web Forms. In: Pro-
ceedings of the Joint Workshop on Conceptual Modeling Approaches for E-business: A
Web Service Perspective (eCOMO 2002), pp. 38–49 (2002)

21. Ramachandran, R., Movva, S., Graves, S., Tanner, S.: Ontology-based Semantic Search
Tool for Atmospheric Science. In: Proceedings of 22nd International Conference on Inter-
active Information Processing Systems for Meteorology, Oceanography, and Hydrology,
http://ams.confex.com/ams/Annual2006/

22. An, Y.J.: Ontology Learning for the Semantic Deep Web, Ph.D. Dissertation in Computer
Science, New Jersey Institute of Technology (January 2008)

POEM: An Ontology Manager Based on

Existence Constraints�

Nadira Lammari, Cédric du Mouza and Elisabeth Métais

Lab. Cedric, CNAM
Paris, France

{lammari, dumouza, metais}@cnam.fr

Abstract. Whereas building and enriching ontologies are complex and
tedious tasks, only few tools propose a complete solution to assist users.
This paper presents POEM (Platform for Ontology crEation and Man-
agement) which provides a complete environment for ontology building,
merge and evolution. POEM’s algorithms are based on existence con-
straints and Boolean equations that allow to capture the semantic of
concepts. POEM also integrates a semantic fusion that relies on Word-
Net and supports different storage formats. The different functionalities
are implemented as a set of web services.

1 Introduction

Sharing data from multiple heterogeneous sources has been for several years
a challenging issue in the area of Information Systems. From federated multi-
sources Data Bases to the Semantic Web challenge, modern applications need to
intensively exchange information. There is now evidence that ontologies are the
best solution for dealing with semantically heterogeneous data. By adding sense
to data sources, ontologies allow to “understand” their contents - and then to
provide pertinent information to the users.

Nowadays, all experts recognize ontology’s building and management as one
of the most critical problem in their large scale utilization. Many tools have been
proposed but they mainly lack in automatically taking into account the semantic
aspects in building, merging and validating ontologies. Usually the semantic part
of the work is done manually without guideline. Nowadays, many -small or large-
ontologies have been developed around the world; building a new one has to take
into account these legacy systems.

The POEM tool provides a complete environment for ontology building, merg-
ing, evolution, edition, transformation and storage. Due to space limitation, only
two aspects will be particularly developed in this paper: the concepts of exis-
tence constraints and Boolean equations that help to capture the semantic of
concepts, and the construction and reuse (i.e., merging) algorithms.

� Work partially funded by Semweb project,http://bat710.univ-lyon1.fr/∼semweb/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 81–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

82 N. Lammari, C. du Mouza, and E. Métais

Related Work

Many research work had been dedicated for building and maintaining ontolo-
gies: (a) ontology learning methodologies from dictionary, from text, from XML
documents, or from knowledge base [6,10,17], (b) ontology merging methods of
existing ontologies [14,13], (c) ontology re-engineering methods [8], and finally
(d) ontology construction from scratch [7,6,9].

Moreover, several approaches were recently proposed to perform the merging.
For instance [11] presents a merging based on WordNet and the Jaccard measure.
However this technique does not take into account the attributes of the different
concepts leading to the merging of non-similar concepts or redundancy in the
final ontology. [16] introduces another approach called FCA-Merge that uses
natural language techniques and formal concept analysis techniques. In [15] the
authors propose an automatic merging algorithm named OM algorithm, based on
the confusion theory for detecting concept matching. This algorithm is however
syntactic and does not merge concepts that are semantically equivalent.

Besides methodologies for building ontologies many tools are now available like
Protégé [4], Corporum [2], Text-To-Onto [5], Chimaera [1], OntoLin-

gua [3], etc. All these tools have an editing functionality. Some of them also
present merge and/or validation and/or reasoning functionalities. They however
lack mechanisms and policies implementing methods rules and guidelines.

The rest of the paper is structured as follows: Section 2 introduces the exis-
tence constraints and associated algorithms, Section 3 details the ontology merg-
ing technique, Section 4 emphases implementation and Section 5 concludes.

2 Existence Constraints and Associated Techniques

This section presents the concept of existence constraints and two of the basic
algorithms (for normalization and extraction) that will be compound to build
high level functionalities. These algorithms are detailed in [12].

2.1 Definitions of Existence Constraints

We distinguish three kinds of existence constraints: mutual, exclusive and condi-
tioned existence constraints. A mutual existence constraint defined between two
properties x and y of a concept c, denoted x ↔ y, describes the fact that any
instance associated to c has simultaneously the properties x and y. An exclu-
sive existence constraint defined between two properties x and y of a concept c,
denoted x ↔ y, means that any instance associated to c that has a property x
can not have y as another property and conversely. Finally, a conditioned exis-
tence constraint defined between two properties x and y of a concept c, denoted
x �→ y, captures the fact that any instance of c described by the property x must
also be described by the property y. The inverse in not always true. For exam-
ple, let vehicle be a concept representing vehicles such as planes and boats,
and described by a set of properties: move, transport, fly and float. The fact

POEM: An Ontology Manager Based on Existence Constraints 83

that any vehicle moves and transports is translated by transport↔moves. Also,
every vehicle that moves doesn’t systematically fly. However, every vehicle that
flies must move. These two assertions can be formalized using the conditioned
existence constraint: fly �→move. We suppose in our example that only planes fly
and there is no plane that floats. This hypothesis is translated into the exclusive
existence constraint: float ↔fly.

2.2 Normalization Technique

The normalization technique enables to build ontologies from a set of properties
and a set of existence constraints. It consists in automatically deducing valid
property subsets that are compatible with the existence constraints. Let S be a
subset of the property set of a given ontology O. S is said to be a valid subset
of properties of O if and only if S satisfies the following three rules:

– Homogeneity Rule: Any property of O linked to a property of S by a
mutual existence constraint is in S.

– Non-partition Rule: There is no exclusive existence constraint between
properties of S.

– Convexity Rule: Any property of O required by a group of properties of
S is in S (taking into account the conditioned existence constraints).

Intuitively, the sets of coexisting properties are first deduced, by taking into
account the mutual existence constraints. Then, by means of exclusive existence
constraints, the sets of properties that may coexist are derived. Finally, sets that
are compatible with the conditioned existence constraints are selected among the
sets of properties that may coexist. These sets describe concepts represented by
the ontology. These concepts are then organized into an Is A inheritance graph.

2.3 Translation Techniques

We present here two translation techniques described in [12] for the building
of ontologies from scratch and that we implanted in POEM. The first one
called O TO BF, transforms an ontology into a Boolean function while the second
called BF TO O is the reverse operation. O TO BF consists in building a disjunctive
Boolean function φ(x1, . . . , xn) where each xi corresponds to a property of the
ontology and each maxterm T represents a type of instance represented by each
concept C of the ontology. This maxterm is a conjunction of x′

i variables where
each x′

i is either equal to xi if the property associated to xi describes T or equal
to xi otherwise.

BF TO O derives from a Boolean function the set of existence constraints and
then using the normalization technique deduces the ontology. For the generation
of the existence constraints from a Boolean function φ(x1, . . . , xn) where each
xi corresponds to a property ai, the technique transforms φ from a disjunctive
form to a conjunctive one and then, by analyzing the different minterms of
the transformed expression, it derives the existence constraints by applying the
following rules to the conjunctive function:

84 N. Lammari, C. du Mouza, and E. Métais

– Rule 1: A minterm of φ of type xi is translated into the non-null constraint
– Rule 2: A minterm of type (xi + . . . + xj + xk) describes a conditioned

existence constraint “ai, . . . , aj �→ ak”.
– Rule 3: A minterm of type (xi+xj) is translated into the exclusive existence

constraint “ai ↔ aj”.
– Rule 4: Two attributes ai and aj coexist in R (ai ↔ aj) iff the two condi-

tioned existence constraints ai �→ aj and aj �→ ai are derived from φ.

3 Ontology Merging

POEM allows to build an ontology either from scratch or by reuse. For lack of
space, we will focus on our building mechanism based on merging. The different
ontology construction processes from scratch may be found in [12]. The merging
process can basically be decomposed into two steps: the matching step and the
integration step.

3.1 The Matching Step

The matching technique in POEM is realized for two normalized ontologies. It
encompasses two phases, property merging and concept merging. Let O1 and O2

be these two ontologies. To achieve the matching between them, we first retrieve,
for each property p from O1 and O2, its synset Sp from the general ontology
WordNet and then we compute for any couple of properties (pi, pj), such that
pi ∈ O1 and pj ∈ O2, the similarity degree (denoted SimDegree(pi, pj)) between
them according to the following formula:

SimDegree(pi, pj) =
|Spi ∩ Spj |
|Spi ∪ Spj |

According to this formula, the more numerous the synonyms of the two proper-
ties are, the higher the similarity degree is. Once the similarity degrees between
properties measured, we perform the property matching. In POEM, we merge
pi and pj iff they share at least one synonym, and there is no property in O1

(resp. O2) semantically closer to pj (resp. pi). More formally two properties pi

and pj are matched if and only if the three following conditions are satisfied:

(i) SimDegree(pi, pj) > 0,
(ii) ∃pk ∈ P2, SimDegree(pi, pk) > SimDegree(pi, pj) ,

(iii) ∃pk ∈ P1, SimDegree(pk, pj) > SimDegree(pi, pj).

where P1 (resp. P2) denotes the set of properties from O1 (resp. O2).
When merging two properties, we choose as common name for them the most

specific synonym synij they shared, i.e. the first one that occurs in (Spi ∩ Spj).
Once a property merging is performed, we replace pi and pj by synij in their
respective ontology.

For the merging of concepts, our approach distinguishes itself from other ex-
isting techniques because it considers all the following cases for the similarity
between concepts:

POEM: An Ontology Manager Based on Existence Constraints 85

– Case 1: a similarity both between concept names and between names of
their respective properties,

– Case 2: a similarity only between concept names,
– Case 3: a similarity only between property names of the concepts.

More precisely, let ci and cj be two concepts from an ontology O and πci (resp.
πcj) be the property set of ci (resp. cj). To estimate the similarity between ci

and cj , we refer to Jaccard measure defined by the ratio between the number of
shared properties of these two concepts and the union of their properties, i.e.:

jaccard(ci, cj) =
|πci ∩ πcj |
|πci ∪ πcj |

We assume the existence of a threshold value τ for the Jaccard measure to assert
the similarity or not between two concepts. We also define a decreasing factor γ to
attribute a lower similarity value when both concept names and property names
are not similar (what is considered as the highest similarity). Our algorithm for
estimating the similarity between two concepts ci and cj is:

if ci and cj share at least one synonym (their synsets are not disjoint) then
if jaccard(ci, cj) ≥ τ then

ci and cj are similar with a similarity degree equal to jaccard(ci, cj) (case 1)
else

if ci and cj have at least one parent Parent(ci) and Parent(cj) such that these
two parents share at least one synonym (their synsets are not disjoint) and
(jaccard(Parent(ci), Parent(cj)) ≥ τ) then

they are similar with a (lower) similarity degree equal to γ × jaccard(ci, cj) (case 2)
else unable to evaluate the similarity; return the concepts to the ontology engineer
endif

endif
else

if jaccard(ci, cj) ≥ τ then
they are similar with a (lower) similarity degree equal to γ × jaccard(ci, cj) (case 3)

else the two concepts are not similar
endif

end

After estimating all the similarity degrees between concepts, we merge two con-
cepts ci and cj if they have a positive similarity degree, and if a higher value
can not be found by replacing one of the two concepts by another one from the
same ontology. The property set of the resulting concept cres is the union of ci

and cj property sets. To chose a name for cres, we adopt the following strategy:

– in case 1, we choose for cres the name of the concept that participates more
in its building, that is to say the concept which has more properties in cres,

– in case 2, we choose the most specific name, i.e. the name that appears first
in the common synset of the two concepts,

86 N. Lammari, C. du Mouza, and E. Métais

– in case 3: we compute the confusion value (see [15] for definition) between
concept names according to their respective position in WordNet and we
choose the name of the concept with the lowest value.

Finally, the matching technique allows us to give the same names to similar con-
cepts and properties. The two ontologies O1 and O2 are transformed according
to the result of the matching into respectively O′

1 and O′
2.

3.2 The Integration Step

The final step of our process consists in building by a merge the ontology O3

from the two ontologies O′
1 and O′

2 obtained after matching. For that purpose, we
first translate the two ontologies into two Boolean functions φ1 and φ2 using the
O TO BF mapping technique for both ontologies, then we gather the two resulting
Boolean functions into one Boolean function φ3 and finally, by applying the
BF TO O mapping technique, we deduce the resulting ontology.

To gather the Boolean functions φ1 and φ2 into a Boolean function φ3 we
proceed to the following step-by-step algorithm:

let B the set of variables of φ1 and φ2

for each minterm T of φ1 and φ2 do
for each variable x in B do

if neither x nor x appears in T then T = T.x endif
endfor

endfor
if T does not appear in φ3 then φ3 = φ3 + T endif

4 Implementation

We design POEM in accordance with four principles: (i) modularity (POEM is
built as a set of seven modules, one for each basic functionality), (ii) reusability
(a web service architecture), (iii) extensibility and (iv) guidance (three levels of
guidance are proposed to give a cognitive support to human, expert or not).

The global architecture is basically a three-tier architecture with POEM, the
Sesame system and a database. The services in POEM are implemented in Java
JDK1.5 using MyEclipse 5.0 and the web service library XFire. Sesame acts as
a middleware for gathering and storing ontologies and metadata. It is deployed
with the Tomcat web server.

Figure 1 shows the interface of the POEM tool when merging two ontolo-
gies. The upper part of the interface is dedicated to the selection of ontologies
and export parameters. You can for instance with this interface select a ntriples
ontology and export it in RDF. You can also load it and proceed to concept
extraction that are displayed in the window below. For instance here we have for
the first ontology classes Airplane, Boat and Vehicle along with their proper-
ties. Finally POEM displays the ontologies loaded at bottom of the window. In
Figure 2(a) we see the result got by proceeding to the fusion with POEM. We

POEM: An Ontology Manager Based on Existence Constraints 87

Fig. 1. Merging two ontologies with POEM

(a) with POEM (b) with Protégé+Prompt

Fig. 2. Result of the merging

notice that POEM, based on semantical similarity of the concept names and of
their properties, decided to merge the concepts Airplane and Plane and the
resulting concept Airplane beholds the union of the properties that are seman-
tically different. The concept Vehicle has only two properties, since the former
conveyance and transport properties were identified as similar. Figure 2(b)
represents the merge with Protégé 3.3.1 (one of the most frequently used on-
tology manager tool). If the concepts were, in this case, merge correctly, we see
that the merge did not apply to properties. Similarly, our experiments show that
concepts whose names are not synonyms in WordNet but have numerous similar
properties are also not merge in Protégé.

88 N. Lammari, C. du Mouza, and E. Métais

5 Conclusion

In this paper we present the POEM existence constraints based platform to
assist ontology creation and maintenance with a guidance module. POEM takes
into account the semantic, via semantic constraints for the building tool and via
WordNet access for ontology merging. In this paper we focused on the building
and the merging algorithms, although other algorithms presented in [12] are also
implemented. For the next step we plan to integrate the detection of similarities
between properties in the ontology construction processes. Another perspective
is to extract properties and constraints from textual sources.

References

1. Chimaera, http://www.ksl.stanford.edu/software/chimaera/
2. Corporum-OntoExtract, http://www.Ontoknowledge.org
3. OntoLingua, http://ontolingua.stanford.edu/
4. Protege, http://protege.stanford.edu/
5. Text-To-Onto, http://webster.cs.uga.edu/∼mulye/SemEnt/
6. Agirre, E., Ansa, O., Hovy, E.H., Mart́ınez, D.: Enriching Very Large Ontologies

Using the WWW. In: Proc. Intl. ECAI Workshop on Ontology Learning (OL)
(2000)

7. Davies, J., Fensel, D., van Harmelen, F.: Towards the Semantic Web: Ontology-
driven Knowledge Management. Wiley, Chichester (January 2003)

8. Gómez-Pérez, A., Rojas-Amaya, D.: Ontological Reengineering for Reuse. In:
Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 139–156.
Springer, Heidelberg (1999)

9. Grüninger, M., Fox, M.S.: Methodology for the Design and Evaluation of Ontolo-
gies. In: Proc. Intl. IJCAI Workshop on Basic Ontological Issues in Knowledge
Sharing, pp. 1–10 (1995)

10. Khan, L., Luo, F.: Ontology Construction for Information Selection. In: Proc. Intl.
Conf. on Tools with Artificial Intelligence (ICTAI), pp. 122–127 (2002)

11. Kong, H., Hwang, M., Kim, P.: Efficient Merging for Heterogeneous Domain On-
tologies Based on WordNet. Jour. of Advanced Computational Intelligence and
Intelligent Informatics (JACIII) 10(5), 733–737 (2006)

12. Lammari, N., Métais, E.: Building and Maintaining Ontologies: a Set of Algorithms.
Data Knowl. Eng. (DKE) 48(2), 155–176 (2004)

13. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An Environment for Merging and
Testing Large Ontologies. In: Proc. Intl. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR), pp. 483–493 (2000)

14. Noy, N., Musen, M.: Prompt: Algorithm and tool for automated ontology merging
and alignment. In: Proc. Nat. Conf. on Artificial Intelligence and on Innovative
Applications of Artificial Intelligence, pp. 450–455 (2000)

15. Rasgado, A., Guzman, A.: A Language and Algorithm for Automatic Merging of
Ontologies. In: Proc. Intl. Conf. on Computing (CIC), pp. 180–185 (2006)

16. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-Up Merging of Ontologies. In:
Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 225–234 (2001)

17. Suryanto, H., Compton, P.: Discovery of Ontologies from Knowledge Bases. In:
Proc. Intl. Conf. on Knowledge Capture (K-CAP), pp. 171–178 (2001)

http://www.ksl.stanford.edu/software/chimaera/
http://www.Ontoknowledge.org
http://ontolingua.stanford.edu/
http://protege.stanford.edu/
http://webster.cs.uga.edu/~mulye/SemEnt/

Extending Inconsistency-Tolerant Integrity

Checking by Semantic Query Optimization

Hendrik Decker�

Instituto Tecnológico de Informática, Valencia, Spain
hendrik@iti.es

Abstract. The premise that all integrity constraints be totally satisfied
guarantees the correctness of methods for simplified integrity checking,
and of semantic query optimization. This premise can be waived for
many integrity checking methods. We study how it can be relaxed also
for applying semantic query optimization to an inconsistency-tolerant
evaluation of simplified constraints.

1 Introduction

For a given update, all known approaches to simplified integrity checking only
check certain instances of constraints, called ‘relevant cases’. Informally, relevant
cases are those that are potentially violated by the update. By focusing on
relevant cases, or further simplifications thereof, the otherwise prohibitive cost
of integrity checking can be reduced to feasible proportions [3,7].

Many methods for simplified integrity checking proceed along two phases.
First, a so-called simplification (essentially, a query, or a set of queries, derived
from relevant cases) is computed. Part or all of the simplification phase can
be computed at constraint specification time, for parametrized update patterns.
Second, the simplification is evaluated, at update time. The evaluation phase
typically involves access to stored data, but usually is more efficient than a
brute-force evaluation of all integrity constraints [3,7].

In [5] it was shown that several integrity checking methods can be soundly
applied also in databases that are inconsistent with some constraints. This came
as a surprise, because the focusing of such methods on relevant cases has always
been justified by the premise that integrity be totally satisfied, before updates
could be admitted and efficiently checked for preserving consistency. For conve-
nience, let us call this requirement the total integrity premise. Methods that con-
tinue to work well when this premise is waived are called inconsistency-tolerant.

In [4], we have investigated how different steps taken during the simplification
phase may have an effect on inconsistency tolerance. Up to now, the evaluation
phase has not been studied with regard to its relationship to inconsistency tol-
erance. Rather, that phase has been deemed independent of inconsistency tol-
erance. However, that point of view can no longer be upheld as soon as the

� Partially supported by FEDER and the Spanish MEC grant TIN2006-14738-C02-01.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 89–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 H. Decker

evaluation of simplifications is optimized by taking integrity constraints into
account.

A particular form of using integrity constraints for speeding up query evalua-
tion is semantic query optimization (SQO) [2]. In this paper, we study the use of
SQO for optimizing the evaluation of inconsistency-tolerant integrity checking.

In section 2, we ask the reader to consent on some preliminary conventions and
a basic definition. In section 3, we revisit the concept of inconsistency-tolerant
integrity checking. In section 4, a relationship of the latter to SQO is established.
Surprisingly, it turns out that SQO can be used for optimizing integrity checking,
even if the total integrity premise does not hold. In section 5, we conclude with
an outlook to future work.

2 Preliminaries

Unless specified otherwise, we are going to use terminology and notations that
are conventional in the logic databases community (see, e.g., [9]). Throughout
this paper, let ‘method’ always mean an integrity checking method.

An update is a finite set of database clauses to be inserted or deleted. An
integrity constraint (in short, constraint) is a first-order predicate logic sentence,
represented either as a denial (i.e., a clause without head whose body is a con-
junction of literals) or in prenex normal form (i.e., quantifiers outermost, nega-
tions innermost). An integrity theory is a finite set of constraints.

From now on, let the symbols D, IC , U , I and M always denote a database,
an integrity theory, an update, a constraint and, resp., a method. For simplicity
(and by a slight deviation from divergent definitions in the literature), let us
assume that the semantics of D is given by a distinguished Herbrand model of
D, and that I is satisfied (violated) in D iff I is true (resp., false) in that model.
Further, let D(IC) = sat and D(I) = sat denote that IC or, resp., I is satis-
fied in D, and D(IC) = vio (D(I) = vio) that it is violated. ‘Consistency’ and
‘inconsistency’ are synonymous with ‘satisfied’ and, resp., ‘violated’ integrity.
We write DU to denote the updated database; D and DU are also referred to as
the old and the new state, respectively.

Each M can be formalized as a mapping that takes as input a triple (D,IC ,U)
and outputs upon termination either ok or ko, where ok means that M sanctions
the update and ko that it does not.

For simplicity, we only consider classes of triples (D, IC , U) such that the
computation of M(D,IC ,U) terminates. In practice, that can always be achieved
by a timeout mechanism with output ko.

Note that, in general, ok and ko are not the same as the answers yes or,
resp., no to integrity constraints as closed queries; after all, the interpretation of
positive and negative answers to queried constraints in denial form is opposed to
the interpretation of the same answers to queried constraints in prenex normal
form. Similarly, we deliberately do not use, instead of ok and ko, the truth values
true and false, because, in general, the semantics of integrity may not be based
on logical consequence. Also, we do not use the integrity values sat and vio to

Extending Inconsistency-Tolerant Integrity Checking 91

denote the output of M (as done, somewhat carelessly, in earlier papers), since
sat in place of ok could suggest that DU (IC) = sat , although M may tolerate
inconsistency and hence output ok even if DU (IC) = vio.

Soundness and completeness of a method M can be defined as follows.

Definition 1. (Sound and Complete Integrity Checking)
M is called sound or, resp., complete if, for each (D,IC,U) such that D(IC)=sat,
(1) or, resp., (2) holds.

If M(D, IC, U) = ok then DU (IC) = sat . (1)

If DU (IC) = sat then M(D, IC, U) = ok . (2)

Although (1) and (2) only refer to the output ok of M, symmetric conditions
for ko could be defined. We omit that, since, as is easily seen, soundness and,
resp., completeness for ko is equivalent to.

Several methods (e.g., in [8,3]) have been shown to be sound and complete
for significant classes of triples (D, IC , U). Other methods (e.g., in [6]) are only
shown to be sound. Thus, they provide sufficient but not necessary conditions
for guaranteeing integrity of DU . In this paper, each named method is known to
be sound, and each anonymous method is tacitly assumed to be sound, unless
indicated otherwise.

3 Inconsistency-Tolerant Integrity Checking

In this section, we revisit the approach to inconsistency-tolerant integrity check-
ing as introduced in [5].

Methods usually justify the correctness (completeness) of their efficiency im-
provements by the total integrity premise D(IC) = sat of (1) (resp., (2)). The
idea of inconsistency-tolerant integrity checking is to have methods that are
capable of preserving integrity without insisting on that premise. Definition 2,
below, provides a way to realize this idea.

Each constraint I can be conceived as a set of particular instances, called
‘cases’, of I, such that I is satisfied iff all of its cases are satisfied. Thus, in-
tegrity maintenance can focus on satisfied cases, and check if their satisfaction
is preserved across updates. Violated cases can be ignored or dealt with at some
more convenient moment. This is captured by the following definition.

Definition 2. (Inconsistency-Tolerant Integrity Checking)
a) A variable x is called a global variable in I if x is ∀-quantified in I and ∃
does not occur left of the quantifier of x.

b) If I is of the form ←B or QW (where B is a conjunction of literals, Q is a
vector of ∀-quantifiers of all global variables in I and W is a formula in prenex
normal form), and if ζ is a substitution of the global variables in I, then ←Bζ
or, resp., ∀(Wζ) is called a case of I, where ∀(.) denotes universal closure. If ζ
is a ground substitution, then ←Bζ or, resp., ∀(Wζ) is called a basic case.

92 H. Decker

c) Let Cas(IC) denote the set of all cases of all I ∈ IC, and SatCas(D, IC) the
set of all C ∈Cas(IC) such that D(C) = sat.

d) M is called sound, resp., complete wrt. inconsistency tolerance if, for each
(D, IC, U) and each C ∈ SatCas(D, IC), (3) or, resp., (4) holds.

If M(D, IC, U) = ok then DU (C) = sat . (3)

If DU (C) = sat then M(D, IC, U) = ok . (4)

For convenience, we may speak, from now on, of an ‘inconsistency-tolerant
method’ or a ‘complete inconsistency-tolerant method’ when it is clear from
the context that we actually mean a method that is sound or, resp., complete
wrt. inconsistency tolerance.

Example 1. For relations p and q, let the second column of q be subject to the
foreign key constraint I =∀x,y ∃z(q(x, y) → p(y, z)), referencing the primary key
column of p, constrained by I ′ =← p(x, y), p(x, z), y = z. The global variables of I
are x and y; all variables of I ′ are global. For U = insert q(a, b), a typical method
M only evaluates the simplified basic case ∃z p(b, z) of I. If, for instance, (b, b)
and (b, c) are rows in p, M outputs ok , ignoring all irrelevant violated cases such
as, e.g., ← p(b, b), p(b, c), b = c and I ′, i.e., all extant violations of the primary key
constraint. M is inconsistency-tolerant if it always ignores irrelevant violations.
Of course, M outputs ko if there is no tuple matching (b, z) in p.

Obviously, each sound (3), resp., complete (4) inconsistency-tolerant method is
sound and, resp., complete in the sense of (1), resp., (2). Thus, inconsistency-
tolerant integrity checking significantly generalizes the traditional approach. The
latter imposes the total integrity premise, which deprives most applications of
integrity checking of a theoretical foundation and justification, since they often
are used also in the presence of inconsistency (which sometimes may not even
be noticed). As opposed to that, inconsistency-tolerant methods are capable of
tolerating any amount of inconsistency, including unsatisfiable integrity theories,
while making sure that updates do not introduce new violated cases of integrity.

Many known methods for integrity checking are inconsistency-tolerant. For a
representative selection of them, their inconsistency tolerance or intolerance has
been assessed in [5].

4 Semantic Query Optimization for Integrity Checking

Most methods in the literature pay little or no attention to the mechanisms
employed for evaluating simplifications. But in practice, considerable differences
of performance can be obtained by different query plans. In particular, query
optimization mechanisms such as SQO may use “semantic input”, i.e., integrity
constraints, for speeding up their performance. The integrity constraints that
provide such semantic input for query evaluation must be satisfied. Hence, to
use SQO for evaluating simplifications is problematic, since a possibly violated

Extending Inconsistency-Tolerant Integrity Checking 93

integrity theory presumably cannot be used soundly as semantic input for SQO.
However, we are going to see that SQO can be used for optimizing the evaluation
of simplifications if the constraints provided as semantic input are satisfied.

In 4.1, we show how to use SQO for optimizing the evaluation phase of integrity
checking if the total integrity premise holds. In 4.2, we show that SQO also may
serve for optimizing inconsistency-tolerant integrity checking.

4.1 How to Use SQO for Integrity Checking

SQO uses integrity constraints for optimizing query answering [2]. In general,
using an integrity theory as semantic input for SQO is sound if that theory
is satisfied in the given database state. For example, the integrity constraint
I =← p can be used to give a negative answer to the query ← p, q in some state
D as follows. D(I) = sat means that p is false in D, hence the answer to ← p, q
must be empty. Note that, by using the semantic knowledge that I is satisfied
in D, this answer can be given without any access to stored data.

The premise that the semantic input be satisfied, which ensures the soundness
of SQO, is similar to the total integrity premise, which ensures the soundness
of traditional integrity checking (1). So, in analogy to inconsistency-tolerant in-
tegrity checking, the question arises whether SQO also works when this premise
does not hold. In general, the answer is ‘no’, as can be seen by a slight modi-
fication of the example above. If D(I) = vio because p is true in D, then SQO

cannot use I for answering ← p, q.
Despite this negative result, we are going to see below that there is a way

to use SQO for optimizing the evaluation phase of simplified integrity checking,
which, in subsection 4.2, turns out to be inconsistency-tolerant.

The basic idea to optimize the evaluation of a simplification S is to use con-
straints as semantic input only if they are known to be satisfied in the state in
which S is to be evaluated. For instance, if the total integrity premise holds, then
each constraint that is not relevant for a given update is known to be satisfied in
the old and in the new state. Thus, irrelevant constraints can serve as semantic
input for SQO. More generally, each irrelevant case C of any constraint I can be
used by SQO for optimizing the evaluation phase if C it is known to be satisfied,
even if I is violated in the old state or potentially violated by the update.

This idea is formalized as follows. For each M and each triple (D, IC , U), let
SimM(D, IC , U) denote the simplification of IC computed by M for the update
U of D. Thus, M(D, IC , U) is determined by the evaluation of SimM(D, IC , U).
Now, we recall that it depends on M whether SimM(D, IC , U) is evaluated in
the old state D (such as, e.g., in the method described in [3]) or in the new state
DU (e.g., the method in [8]). Thus, let the state in which SimM(D, IC , U) is
evaluated be denoted by D∗. (For simplicity, this denotation does not indicate
its dependence on M, IC and U , since that will always be clear from the context.)

If SimM(D, IC , U) is evaluated by SQO, then also the integrity theory used
as semantic input for SQO must be specified. Let us describe that integrity
theory abstractly as a mapping sqo, which, for each method M and each triple

94 H. Decker

(D, IC , U), determines the semantic input sqo(M, D, IC , U) to be used by SQO

for evaluating SimM(D, IC , U).
Last, let Msqo be obtained from M by evaluating SimM(D, IC , U) by SQO

with sqo(M, D, IC , U) as semantic input. From this formalization, the result
below follows.

Theorem 1. Msqo is a sound integrity checking method if, for each triple
(D, IC, U), D∗(sqo(M, D, IC, U)) = sat holds. �

Informally, theorem 1 means that the evaluation phase of each method M can
be optimized by using SQO for evaluating the simplification SimM(D, IC , U)
in the state D∗ with semantic input sqo(M, D, IC , U) if that input is satisfied
in D∗. As already mentioned, sqo(M, D, IC , U) is satisfied in both D and DU if
it consists of nothing but cases of constraints that are considered irrelevant by
M, provided that the total integrity premise holds. Example 2 illustrates this.

Example 2. Let D = {q(a, b), r(c)}, IC = {← q(x, x), ← q(a, y), r(y)} and U =
insert r(a). Clearly, D(IC) = sat . For most methods M, SimM(D, IC , U) =
← q(a, a) (the conjunct r(a) is dropped from the relevant case ← q(a, a), r(a)
since r(a) is true in DU). Now, the evaluation of SimM(D, IC , U) by Msqo does
not need to access the database, since SQO detects that ← q(a, a) is subsumed by
the irrelevant constraint ← q(x, x), which is satisfied in both D and DU . Hence,
Msqo(D, IC , U) = ok.

4.2 SQO for Inconsistency-Tolerant Integrity Checking

The following trivial example shows that the use of SQO for evaluating simplifi-
cations is in general not sound if the total integrity premise does not hold.

Example 3. Let D = {p} and IC = {← p, ← p, q}. Clearly, D(IC) = vio. Further,
let U = insert q, and assume that M correctly identifies ← p, q as the only rele-
vant case. Since ← p is not relevant wrt. U , M may infer by the total integrity
premise that ← p is satisfied in both D and DU . For evaluating ← p, q, SQO

detects that ← p, q is subsumed by ← p, which yields the wrong output ok.

However, example 4 illustrates that SQO may be used for optimizing integrity
checking also in the presence of integrity violations.

Example 4. Let D = {q(a, b), r(b), r(c), s(b, c)}, U = insert r(a) and IC =
{← q(x, x), ← q(a, y), r(y), s(y, z)}. Clearly, the case ← q(a, b), r(b), s(b, c) is vi-
olated in D, while all other basic cases are satisfied. For most methods M for
simplified integrity checking, SimM(D, IC , U) = ← q(a, a), s(a, z). The evalua-
tion of ← q(a, a), s(a, z) does not need to access the database if SQO is used,
since this query is subsumed by ← q(x, x). The latter is an irrelevant constraint
and hence can be assumed to be part of the semantic input for the evaluation
of ← q(a, a), s(a, z) by SQO. Hence, Msqo(D, IC , U) = ok.

Extending Inconsistency-Tolerant Integrity Checking 95

Example 4 illustrates that SQO can be used for optimized integrity checking,
even if not all constraints are satisfied. However, as seen in example 3, methods
which use SQO are in general not inconsistency-tolerant in the sense of definition
2. So, the question arises under which conditions Msqo is inconsistency-tolerant.
An answer is given by theorem 2. It can be shown by applying the definitions.

Theorem 2. Msqo is inconsistency-tolerant if M is, and, for each triple
(D, IC, U), D∗(sqo(M, D, IC, U)) = sat holds. �

A possible problem with theorem 2 is that sqo(M, D, IC , U), i.e., the semantic
input, is required to be satisfied in D∗, i.e., the state in which SimM(D, IC , U) is
to be evaluated by SQO. That is immaterial if the total integrity premise holds,
since then, it suffices to make sure that the semantic input consists of nothing but
irrelevant cases of constraints. However, the integrity status of sqo(M, D, IC , U)
is not necessarily known at update time if inconsistency is to be tolerated.

A possible solution of this problem is an offline computation of a set of cases
of constraints in IC that are satisfied in D. Thus, at update time, any avail-
able set of such cases that also are irrelevant wrt. U can be used in place of
sqo(M,D,IC ,U) as semantic input to optimize the evaluation of SimM(D,IC ,U).

Another scenario where the problem identified above is ruled out is given
whenever the total integrity premise is enforced on distinguished, ‘hard’ parts of
the integrity theory, while violations may be tolerated for other, ‘soft’ constraints.
Then, theorem 2 applies nicely if all elements in sqo(M, D, IC , U) are hard
constraints, or cases thereof.

To conclude, we offer a thought that needs further study. Instead of limiting
the semantic input sqo(M, D, IC , U) to sets of irrelevant cases, it may be more
advantageous to reason with ‘generalized cases’ that exclude violated cases from
otherwise satisfied constraints or cases thereof. The following modification of ex-
ample 4 illustrates this thought. Consider D′ = D ∪{q(b, b)}, and IC , U as above.
Again, we obtain the sound output Msqo(D′, IC , U) = ok without access to the
database, but this time in the presence of the violated irrelevant case ← q(b, b).
The subsumption-based reasoning of SQO as in example 4 remains sound be-
cause the simplification ← q(a, a), s(a, z) is subsumed by the set of irrelevant
cases of ← q(x, x). Instead of having to compute that set at or before update
time, it seems to be easier to reason with the generalized case ← q(x, x), x=b, a
parametrized version of which can be easily obtained at constraint specification
time. That generalized case excludes the violated case ← q(b, b) from ← q(x, x) in
IC , and it is easy to infer that it subsumes the simplification ← q(a, a), s(a, z).

5 Conclusion

Traditionally, the correctness of simplified integrity checking relies on the total
integrity premise. It requires that the database be consistent with the integrity
theory imposed on it at all times, and in particular before each update. In [5]
we have shown that the total integrity premise can be waived without any cost.

96 H. Decker

Similarly, SQO requires that its semantic input, i.e., the integrity theory used
by SQO for optimizing the evaluation of given queries, be totally satisfied. Al-
though this requirement cannot be abdicated as easily as the total integrity
premise for integrity checking, we have shown that it is possible to use SQO for
optimizing the evaluation of simplifications of possibly violated constraints. More
precisely, we have shown that traditional integrity checking, which imposes the
total integrity premise, can be optimized by using irrelevant cases of constraints
as semantic input for SQO. Also, we have shown that the use of irrelevant cases
for applying SQO to the evaluation of simplifications is possible even if the total
integrity premise does not hold, as long as simplifications are computed by some
inconsistency-tolerant integrity checking method.

More research is needed to find out about further possible benefits of using
query optimization (not just SQO) for optimizing inconsistency-tolerant integrity
checking. We also intend to study the relationship between inconsistency-tolerant
integrity checking and consistent query answering (CQA) [1]. That should be in-
teresting since, like using SQO for optimizing inconsistency-tolerant integrity
checking, CQA also is an inconsistency-tolerant application of SQO. Other sit-
uations where violated constraints need to be tolerated can often be encoun-
tered in replicated databases. We are currently studying the applicability of
inconsistency-tolerant integrity checking for concurrent transactions in replicated
databases.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. 18th PODS, pp. 68–79. ACM Press, New York (1999)

2. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query
optimization. ACM Trans. on Database Syst (TODS) 15(2), 162–207 (1990)

3. Christiansen, H., Martinenghi, D.: On simplification of database integrity con-
straints. Fundam. Inform. 71(4), 371–417 (2006)

4. Decker, H., Martinenghi, D.: Classifying Integrity Checking Methods with regard to
Inconsistency Tolerance. In: Proc. 10th PPDP. ACM Press, New York (to appear,
2008)

5. Decker, H., Martinenghi, D.: A relaxed approach to integrity and inconsistency
in databases. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 287–301. Springer, Heidelberg (2006)

6. Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial
information. In: Proc. 13th PODS, pp. 45–55 (1994)

7. Martinenghi, D., Christiansen, H., Decker, H.: Integrity checking and maintenance
in relational and deductive databases and beyond. In: Ma, Z. (ed.) Intelligent Data-
bases: Technologies and Applications, pp. 238–285. Idea Group (2006)

8. Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta
Informatica 18, 227–253 (1982)

9. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, New York (2003)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 97 – 105, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Evaluation of Large and Sparse Graph
Reachability Queries

Yangjun Chen*

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9
ychen2@uwinnipeg.ca

Abstract. Given a directed graph G with n nodes and e edges, to check whether
a node v is reachable from another node u through a path is often required. Such
a problem is fundamental to numerous applications, including geographic navi-
gation, Internet routing, ontology queries based on RDF/OWL, and metabolic
network, as well as XML indexing. Among them, some involve huge but sparse
graphs and require fast answering of reachability queries. In this paper, we pro-
pose a novel method called core labeling to handle reachability queries for mas-
sive, sparse graphs. The goal is to optimize both query time and labeling time.
Our method consists of two schemes: Core-I and Core-II. For the Core-I label-
ing scheme, both the time and space requirements are bounded by O(n + e +
s⋅b), where s is the number of the start nodes of all non-tree edges (edges that
do not appear in the spanning tree of G); and b is the width of a subgraph of G.
The size of that subgraph is bounded by O(t), where t is the number of all the
non-tree edges. The query time of Core-I is bounded by O(logb). The Core-II
labeling scheme has constant query time, but the labeling time is increased to
O(n + e + s⋅b⋅logb).

1 Introduction

Given two nodes u and v in a directed graph G = (V, E), we want to know if there is
path from u to v. The problem is known as graph reachability. In many applications
(e.g., XML query processing), graph reachability is one of the most basic operations,
and therefore needs to be efficiently supported. A naive method is to precompute the
reachability between every pair of nodes – in other words, to compute and store the
transitive closure (TC for short) of the graph. Then, a reachability query can be an-
swered in constant time. However, this requires O(n2) space, which makes it impracti-
cal for massive graphs.

Recently, the interest in this problem is rekindled on large and sparse graphs for
some important applications such as XML data processing, gene-regulatory networks
or metabolic networks. It is well known that XML documents are often represented
by tree structures. However, an XML document may contain IDREF/ID references
that turn itself into a directed, but sparse graph: a tree structure plus a few reference
links. For a metabolic network, the graph reachability models a relationship whether

* The author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering

Council of Canada).

98 Y. Chen

two genes interact with each other or whether two proteins participate in a common
pathway. Many such graphs are sparse.

In [7], Wang et al. discussed an interesting approach, called Dual-I, for sparse
graphs. It assigns to each node v a dual label: (av, bv) and (xv, yv, zv). In addition, a t × t
matrix N (called a TLC matrix) is maintained, where t is the number of non-tree
edges. Another node u with (au, bu) and (xu, yu, zu) is reachable from v iff au ∈ [av, bv),
or N(xv, zu) - N(yv, zu) > 0. The size of all labels is bounded by O(n + t2) and can be
produced in O(n + e + t3) time. The query time is O(1). As a variant of Dual-I, one
can also store N as a tree (called a TLC search tree), which can reduce the space over-
head from a practical viewpoint, but increases the query time to logt. This scheme is
referred to as Dual-II.

In this paper, we propose two schemes: Core-I and Core-II to handle reachability
queries for massive, sparse graphs. For the Core-I labeling scheme, both the time and
space requirements are bounded by O(n + e + s⋅b), where s is the number of the start
nodes of all non-tree edges (edges that do not appear in the spanning tree of G); and b
is the width of a subgraph of G. The size of that subgraph is bounded by O(t), where t
is the number of all the non-tree edges. The query time of Core-I is bounded by
O(logb). The Core-II labeling scheme has constant query time, but needs O(n + e +
s⋅b⋅logb) labeling time. For sparse graphs, we assume t « n. In general, s ≤ t.

The remainder of the paper is organized as follows. In Section 2, we discuss the
concept of the core of a G. In Section 3, we describe our graph labeling schema. In
Section 4, a short conclusion is set forth.

2 Tree Labeling and Core of G

In this section, we present our labeling approach. The input is a directed graph G
with n nodes and e edges. We assume that it is acyclic. If not, we find all the strongly
connected components (SCCs) of G and collapse each of them into a representative
node. Obviously, each node in an SCC is equivalent to its representative node as far as
reachability is concerned. This process takes O(e) time using Tarjan’s algorithm [6].

The main idea of our approach is a new tree structure generated for G, called the
core of G, to do non-tree labeling. First, we define the core tree in 2.1. Then, in 2.2,
we show our labeling scheme.

2.1 Tree Labeling

As with Dual-I labeling, we will first find a spanning tree T of G. This can be done by
running the algorithm given in [7]. Then, we label T as follows.

By traversing T in preorder, each node v will obtain a number pre(v) to record the
order in which the nodes of the tree are visited. In a similar way, by traversing T in
postorder, each node v will get another number post(v). These two numbers can be
used to characterize the ancestor-descendant relationships as follows.

Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a descendant of v iff
pre(v’) > pre(v) and post(v’) < post(v).

Proof. See Exercise 2.3.2-20 in [5].

 On the Evaluation of Large and Sparse Graph Reachability Queries 99

The following example helps for illustration.

Example 1. In Fig. 1(a), we how a graph G. We find a spanning tree T in G and represent
all its edges by the solid arrows. The non-tree edges are represented by the dashed ar-
rows. See the pairs associated with the nodes of T. The first element of each pair is the
preorder number of the corresponding node and the second is its postorder number. With
such labels, the ancestor-descendant relationships can be easily checked.

For instance, by checking the label associated with r against the label for g, we see
that r is an ancestor of g in terms of Proposition 1. Note that r’s label is (5, 7) and g’s
label is (8, 5), and we have 5 < 8 and 7 > 5. We also see that since the pairs associated
with d and e do not satisfy the condition given in Proposition 1, d must not be an an-
cestor of e (with respect to T) and vice versa.

Let (p, q) and (p’, q’) be two pairs associated with nodes u and v. We say that (p, q) is
subsumed by (p’, q’), if p > p’ and q < q’. Then, u is a descendant of v if (p, q) is sub-
sumed by (p’, q’). In addition, if u and v are not on the same path in T, we have either
p < p’ and q < q’, or p’ < p and q’ < q. In the former case, we say, (p, q) is smaller
than (p’, q’), denoted (p, q) p (p’, q’). In the latter case, (p, q) is said to be larger than
(p’, q’).

a

b

c d f

e

g i

h

j

k

{d, f}
{d, g}
{d, h}
{f, g}

{d, f, g}
{d, f, h}
{d, g, h}
{f, g, h}
{d,f, g, h}

(a) (b)

(0, 11)

(1, 3)

(2, 1)

(3, 0)

(4, 2) (7, 4)

(6, 6)

(8, 5) (10, 8) (11, 9)

(9, 10)

r(5, 7)

{f, h}
{g, h}

a

f

e

g

h

d

(c)

Fig. 1. Sparse graph, anti-subsuming subsets, and core of G

2.2 Core of G

In order to capture the reachability through non-tree edges, we generate and keep a
new tree structure for the purpose of non-tree labeling.

Let T be a spanning tree of G. We denote by E’ the set of all the non-tree edges.
Denote V’ the set of all the end points of the non-tree edges. Then, V’ = Vstart ∪ Vend,
where Vstart stands for a set containing all the start nodes of the non-tree edges and
Vend for all the end nodes of the non-tree edges.

Definition 1. (anti-subsuming subset) A subset S ⊆ Vstart is called an anti-subsuming
set iff |S| > 1 and for any two nodes u, v ∈ S, labeled respectively with α and β, α is
not subsumed by β, nor is β subsumed by α.

As an example, consider G and T shown in Fig. 1(a) once again. With respect to T,
there are 5 non-tree edges: (d, k), (f, d), (g, c), (h, e), and (h, g). Then, Vstart = {d, f, g,
h}. We have altogether 11 anti-subsuming sets as shown in Fig. 1(b).

Definition 2. (critical node) A node v in a spanning tree T of G is critical if v ∈ Vstart
or there exists an anti-subsuming subset S = {v1, v2, ..., vk} for k ≥ 2 such that v is the

100 Y. Chen

lowest common ancestor of v1, v2, ..., vk. We denote Vcritical the set of all critical nodes.

In the graph shown in Fig. 1(a), node e is the lowest common ancestor of {f, g}, and
node a is the lowest common ancestor of {d, f, g, h}. So e and a are critical nodes. In
addition, each v ∈ Vstart is a critical node. So all the critical nodes of G with respect to
T are {d, f, g, h, e, a}.

Definition 3. (core of G) Let G = (V, E) be a directed graph. Let T be a spanning tree
of G. The core of G with respect to T is a tree structure with the node set being Vcritical
and there is an edge from u to v (u, v ∈ Vcritical) iff there is a path p from u to v in T
and p contains no other critical nodes. The core of G with respect to T is denoted Gcore
= (Vcore, Ecore).

Example 2. Consider the graph G and the corresponding spanning tree T shown in
Fig. 1(a). The core of G with respect to T is shown in Fig. 1(c).

In the past several decades, the problem of finding the lowest common ancestor of a
given pair of nodes in a tree has attracted much attention, starting with Aho et al. [1].
The query can be answered in O(1) time with O(n) preprocessing time and space
[2, 4]. Especially, the method discussed in [2] is based on the concept of Euler tour
and can be quite easily implemented. However, if we use such algorithms to find all
the critical nodes, we have to check all the possible anti-subsuming subsets and the
worst-case time complexity is O(2s), where s = |Vstart|.

For this reason, we devise an algorithm that explores T bottom-up to check only
those anti-subsuming subsets which should be checked. The time complexity of this
algorithm is bounded by O(n).

The process can be described as follows.
Algorithm core-generation(T)

1. Mark any node in T, which belongs to Vstart.
2. Let v be the first marked node encountered during the bottom-up searching of T.

Create the first node for v in Gcore.
3. Let u be the currently encountered node in T. Let u’ be a node in T, for which a

node in Gcore is created just before u is met. Do (4) or (5), depending on whether u
is a marked node or not.

4. f u is a marked node, then do the following.
 (a) If u’ is not a child (descendant) of u, create a link from u to u’, called a left-

sibling link and denoted as left-sibling(u) = u’.
 (b) If u’ is a child (descendant) of u, we will first create a link from u’ to u, called

a parent link and denoted as parent(u’) = u. Then, we will go along a left-
sibling chain starting from u’ until we meet a node u’’ which is not a child (de-
scendant) of u. For each encountered node w except u’’, set parent(w) ← u. Set
left-sibling(u) ← u’’. Remove left-sibling(w) for each child w of u. (See Fig. 2
for illustration.)

5. If u is a non-marked node, then do the following.
 (c) If u’ is not a child (descendant) of u, no node will be created.
 (d) If u’ is a child (descendant) of u, we will go along a left-sibling chain starting

from u’ until we meet a node u’’ which is not a child (descendant) of u. If the
number of the nodes encountered during the chain navigation (not including

 On the Evaluation of Large and Sparse Graph Reachability Queries 101

u’’) is more than 1, we will create new node in Gcore and do the same operation
as (4.b). Otherwise, no node is created.

u

u’
v’u’’ ...

u’’ is not a
child of u.

link to the left sibling

u

v’u’’ ...(a) (b)u’

Fig. 2. Illustration for the construction of Gcore

In Fig. 2(a), we show the navigation along a left-sibling chain starting from u’

when we find that u’ is a child (descendant) of u. This process stops whenever we
meet u’’, a node that is not a child (descendant) of u. Fig. 2(b) shows that the left-
sibling link of u is set to point to u’’, which is previously pointed to by the left-sibling
link of u’s left-most child. In addition, all the left-sibling links of the child nodes of u
are discarded since they will no longer be used.

Obviously, the algorithm requires only O(n) time since each node in T is accessed
at most two times.

Example 3. Consider the graph shown in Fig. 1(a). Applying the above algorithm to
its spanning tree T represented by the solid arrows, we will generate a series of data
structures shown in Fig. 3.

d d f d f g
d f g

e

d f g

e h

d f g

e h

a

(a) (b) (c) (d) (e) (f)

Fig. 3. Sample trace

First, the nodes d, f, g, and h in T are marked. During the bottom-up searching of T,
the first node created for Gcore is node d (see Fig. 3(a).) In a next step, node b is met.
But node for Gcore is created since b is not marked and has only one child (see 5.d in
Algorithm core-generation()). In the third step, node f is encountered. It is a marked
node and to the right of node d. So a link left-sibling(f) = d is created (see Fig. 3(b).)
In the fourth step, node g is encountered and another left-sibling link is generated (see
Fig. 3(c).) In the fifth step, node e is met. It is not marked. But it is the parent of node
g. So the left-sibling chain starting from node g will be searched to find all the chil-
dren (descendants) of e along the chain, which appear in Gcore. Furthermore, the num-
ber of such nodes is 2. Therefore, a node for e is created in Gcore (see Fig. 3(d).) Here,
special attention should be paid to the replacement of left-sibling(f) = d with left-
sibling(e) = d, which enable us to find easily the lowest common ancestor of d and
some other critical nodes. In the next two steps, we will meet node i and j. But no
nodes will be created for them. Fig. 3(e) and (f) demonstrate the last two steps of the
whole process.

102 Y. Chen

The following proposition shows the correctness of the algorithm.

Proposition 2. Let G = (V, E) be a directed graph. Let T be a spanning tree of G. Al-
gorithm core-generation() generates Gcore of G with respect to T correctly.

Proof. To show the correctness of the algorithm, we should prove the following: (1)
each node in Gcore is a critical node; (2) any node not in Gcore is not a critical node; (3)
for each edge (u, v) in Gcore there is a path from u to v in T.

First, we prove (1) by induction on the height h (the height of a node v in Gcore is
defined to be the longest path from v to a leaf node), at which a node in Gcore appears.

Basis step. When h = 0, each leaf node in Gcore is a node in Vstart. So it is a critical
node.
Induction hypothesis. Assume that every node appearing at height h = k in Gcore is a
critical node. We prove that every node v at height k + 1 in Gcore is also a critical node.
If v ∈ Vstart, v is a critical node by definition. Assume that v ∉ Vstart. According to the
algorithm, v has at least two children (see 5.d in Algorithm core-generation()). If all
its children belong to Vstart, v is the lowest common ancestor of these child nodes. As-
sume that at least one of them does not belong to Vstart. Let v1, ..., vi be the children of
v in Gcore. Assume that , ..., (j ≤ i) are those not belong to Vstart. Consider (1 ≤ r ≤ j).
It must be at height l ≤ k. According to the induction hypothesis, is a critical node.
Therefore, there exists an anti-subsuming subset Sr of Vstart such that is the lowest
common ancestor of all the nodes in Sr (1 ≤ r ≤ j). Therefore, v is the lowest common
ancestor of all the nodes in S1 ∪ ... ∪ Sj ∪ ({v1, ..., vi}\{

1i
v , ...,

jiv }).

In order to prove (2), we notice that only in two cases no node is generated in Gcore
for a node v ∉ Vstart: (i) v is to the right of a node, for which a node in Gcore is created
just before v is encountered; (ii) v has only one child, for which a node in Gcore is gen-
erated. Obviously, in both cases, v cannot be a critical node.

(3) can be seen from the fact that each parent link corresponds to a path in T and
such a path cannot contain another critical node (except the two end points) since the
nodes in T are checked level by level bottom-up.
In the following, we analyze the size of Gcore.

First, we notice that the number of the leaf nodes in Gcore is bounded by |Vstart|. Sec-
ondly, for each critical node that does not belong to Vstart has at least two children.
Therefore, the total number of such nodes is bounded by the number of the leaf nodes
in Gcore, so bounded by |Vstart|. Thus, the size of Gcore cannot be beyond 2|Vstart|.

Proposition 3. The size of Gcore is bounded by O(|Vstart|).

proof. See the above analysis.

3 Graph Labeling

In this subsection, we show our approach for graph labeling. The approach works in
two steps. In the first step, we generate a data structure, called the core label (for G).
It is in fact a set of pair sequences. In the second step, the core label is used to create
non-tree labels for the nodes in G.

 On the Evaluation of Large and Sparse Graph Reachability Queries 103

3.1 Core Labeling

Definition 4. (link graph) Let G = (V, E) be a directed graph. Let T be a spanning tree
of G. The link graph of G with respect to T is a graph, denoted Glink, with the node set
being V’ (the end points of all the non-tree edges) and the edge set E’ ∪ E’’, where (v,
u) ∈ E’’ iff v ∈ Vend, u ∈ Vstart, and there exists a path from v to u in T.

Example 3. The link graph of G shown in Fig. 4(a) with respect to the corresponding
T is shown in Fig. 4(a).

(a) (b)
c d f

e

g

h

k

c d f

e

g

h

k

a
a

h

g

c

{1, 1}

{1, 2}

{1, 3}

{1, 4}

e

f

d

k

{2, 1}

{2, 2}

{2, 3}

{2, 4}

(c)

Fig. 4. Link graph, combined graph , and disjoint chains

As the first step to generate a core label for G, we will unite Gcore and Glink to create a
combined graph, denoted Gcom = Gcore ∪ Glink, as shown in Fig. 4(b). In a next step, we
will use the algorithm discussed in [4] to decompose Gcom into a minimal set of dis-
joint chains as shown in Fig. 4(c). On each chain, if node v appears above node u,
there is a path from v to u in Gcom. Based on such a chain decomposition, we can as-
sign each node in Gcom an index as follows [4].

(1) Number each chain and number each node on a chain.
(2) The jth node on the ith chain will be assigned an index {i, j} as its index.

In addition, each node v (which is not a leaf node in Gcom) on the ith chain will be
associated with an index sequence of length b: L(v) = {1, j1} … {b, jb} such that for
any node with index {x, y} if x = i and y ≥ jx it is a descendant of v, where b is the
number of the disjoint chains. Such index sequences make up the core label of G. (see
Fig. 5(a) for illustration).

3.2 Non-tree Labeling: Core-I and Core-II

Based on the core label of G, we assign non-tree labels to nodes, which would enable
us to answer reachability queries quickly.

Let v be a node in the spanning tree T of G. Consider the set of all the critical
nodes in T[v], denoted Cv. We denote v- a critical node in Cv, which is closest to v.
We further denote v* the lowest ancestor of v (in T), which has a non-tree incom-
ing edge.

104 Y. Chen

(b)(a)

s2
s3
s4
s5
s6

L(h) = {1, 2}{2, 1}
L(e) = {1, 3}{2, 1}
L(f) = {1, _}{2, 2}
L(d) = {1, _}{2, 3}
L(g) = {1, 3}{2, _}

s1 L(a) = {1, 1}{2, 1}
φ(h)
φ(e)
φ(f)
φ(d)
φ(g)

φ(a)
= 2
= 3
= 4
= 5
= 6

= 1
a

b

c d
f

e

g i

h

j

k

(0, 11)

(1, 3)

(2, 1)

(3, 0)
(4, 2) (7, 4)

(6, 6)

(8, 5)
(10, 8) (11, 9)

(9, 10)
r[5, 9)

<1, ->

<3, ->

<3, {2, 1}> <2, -><-, ->

<-, {1, 4}>

<-, {2, 4}>
<5, {2, 3}> <4, {2, 1}> <6, {1, 3}>

<-, -> <-, ->

Core label of G:

(c)

Fig. 5. Core label and non-tree labeling

The following two lemmas are critical to our non-tree labeling method.

Lemma 1. Any critical node in Cv appears in T[v-].

Proof. Assume that there exists a critical node u in Cv, which does not appear in T[v-].
Let Cv = {u1, ..., uk} for some k. Consider the lowest common ancestor node of
u, u1, ..., uk. It must be an ancestor node of v-, which is closer to v than v-, contradict-
ing the fact that v- is the closest critical node (in T[v]) to v.

Lemma 2. Let u be a node, which is not an ancestor of v in T; but v is reachable from
u via some non-tree edges. Then, the only way for u to reach v is through v*.
Proof. This can be seen from the fact that any node which reaches v via some non-tree
edges is through v* to reach v [16].

Let Vcore = {v1, ..., vj}. We store the core label of G as a list: s1 = L(v1), ..., sj = L(vj)
(see Fig. 12(a)). Then, we define a function φ: Vcore → {1, ..., j} such that for each v ∈
Vcore φ(v) = i iff si = L(v). Based on the above concepts, we define Core-I below.

Definition 5 (Core-I) Let v be a node in G. The non-tree label of v is a pair <δ, τ>,
where
- δ = i if v- exists and φ(v-) = i. If v- does not exist, let δ be the special symbol “-”.
- τ = {x, y} if v* exists and {x, y} is the index of v*. If v* does not exist, let y be “-”.

Example 3. Consider G and T shown in Fig. 3(a). The core label of G with respect to
T is shown in Fig. 5(a). The values of the corresponding φ-function are shown in
Fig. 5(b).

Fig. 5(c) shows the tree labels and the non-tree labels. For instance, the non-tree label
of node r is <3, -> because (1) r- = e; (2) φ(r-) = φ(e) = 3; and (3) r* does not exist.
Similarly, the non-tree label of node f is <4, {2, 1}>. Special attention should be paid
the non-tree label of node e: <3, {2, 1}>. First, we note that e- is e itself. So φ(e-) =
φ(e) = 3. Furthermore, e* is also e itself. Therefore, the tree label of e* is in fact the
index of e.

Proposition 5. Assume that u and v are two nodes in G, labeled ((a1, b1), <δ1, τ1>)
and ([(a2, b2), <δ2, τ2>), respectively. Node v is reachable from u iff one of the follow-
ing conditions holds:
(i) (a2, b2) is subsumed by (a1, b1), or

(ii) There exists an index {x, y} in such that for τ2 = {x’, y’} we have x = x’ and y ≤ y’.

 On the Evaluation of Large and Sparse Graph Reachability Queries 105

Proof. The proposition can be derived from the following two facts:

(1) v is reachable from u through tree edges iff (a2, b2) is subsumed by (a1, b1).
(2) In terms of Lemma 6 and Lemma 7, v is reachable from u via non-tree edges iff

both u- and v* exist and the index sequence of u- contains an index {x, y} such that
for the index {x’, y’} of v* we have x = x’ and y ≤ y’.

Proposition 6. Let v and u be two nodes in G. It needs O(logb) time to check whether
u is reachable from v via non-tree edges or vise versa.

Proof. The proposition is derived from the fact that each index sequence in the core
label of G is sorted and its length is bounded by b.

As a variant of Core-I, we can store the core label of G as a matrix M. Number the nodes
in Gcom with 1, 2, ..., |Gcom |. For any i, j ∈ Gcom, let {xi, yi} be the index of i and L(j) be the
index sequence of j. If there exists an index {x, y} in L(j) such that x = xi and y ≤ yi, then
set M(j, i) = 1. Otherwise, M(j, i) = 0. We refer this scheme as Core-II. Obviously, we
need O(s⋅b⋅logb)) time to establish M. But the query time is reduced to O(1).

4 Conclusion

In this paper, we have discussed a new method to handle reachability queries for mas-
sive, sparse graphs. The goal is to optimize both query time and labeling time. Our
method consists of two schemes: Core-I and Core-II. For the Core-I labeling scheme,
both the time and space requirements are bounded by O(n + e + s⋅b), where s is the
number of the start nodes of all non-tree edges (edges that do not appear in the span-
ning tree of G); and b is the width of a subgraph of G. The size of that subgraph is
bounded by O(t), where t is the number of all the non-tree edges. The query time of
Core-I is bounded by O(logb). The Core-II labeling scheme has constant query time,
but the labeling time is increased to O(n + e + s⋅b⋅logb).

References

[1] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowset common ancestors in trees.
SIAM J. Comput. 5(1), 115–132 (1976)

[2] Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola,
A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

[3] Chen, Y.: On the decomposition of DAGs into disjoint chains. In: Proc. of 18th Int. DEXA
Conf. on Database and Expert Systems Application, September 2007. LNCS, vol. 4653, pp.
243–253. Springer, Heidelberg (2007)

[4] Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J.
Comput. 13, 338–355 (1984)

[5] Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison-Wesley, Reading (1969)
[6] Tarjan, R.: Depth-first Search and Linear Graph Algorithms. SIAM J. Compt. 1(2), 140–

146 (1972)
[7] Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual Labeling: Answering Graph Reach-

ability Queries in Constant time. In: Proc. of Int. Conf. on Data Engineering, Atlanta, USA,
April 8, 2006 (2006)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 106 – 115, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SQL TVF Controlling Forms - Express Structured
Parallel Data Intensive Computing

Qiming Chen and Meichun Hsu

HP Labs
Palo Alto, California, USA

Hewlett Packard Co.
{qiming.chen,meichun.hsu}@hp.com

Abstract. A key issue in supporting the synthesis of data intensive computation
and data management is to liberate users from low-level parallel programming,
by specifying applications functionally independent of the underlying server in-
frastructure, and further, by providing high-level primitives to express the con-
trol flow of applying functions to data partitions. Currently only few such
primitives, e.g. Map-Reduce and Cross-Apply, are available, and their expres-
sive power is limited to “flat parallel computing”. To deal with “structured par-
allel computing” where a function is applied to multiple objects with execution
order dependencies, a general framework for creating and combining such
primitives is required.

We propose the SQL-FCF framework as the database centric solution to the
above problem. We embed into SQL queries the Function Controlling Forms
(FCFs) to specify the flow control of applying Table Valued Functions (TVFs)
to multiple data partitions. We further support the extensibility of this frame-
work by allowing new FCFs to be defined from existing ones with SQL
phrases. Based on this approach, we provided a SQL based high-level interface
for “structured parallel computing” in architecting a hydrologic scientific com-
putation platform. Envisioning that the simple parallel computing primitives
will evolve and form a general framework, our effort is a step towards that goal.

1 Introduction

Data Intensive Computation is the technical merge of parallel computation and scal-
able data management [1,3,6,7,14-19]. When the support to parallel computing has
spread over multiple system layers, to liberate users from low-level parallel pro-
gramming has become a pressing need.

The basic way for lifting parallel programming interface to a higher-level is to
specify computation job functionally without mentioning “addresses”, such as mem-
ory, CPUs, and cluster nodes, leaving computation parallelization to a system layer.
To specify how functions are applied to data partitions, the notion of Function Con-
trolling Forms (FCF) is required. Simply speaking, a FCF is a meta-operator that
takes functions as parameter objects to form a new function. In fact the Map operator
in Map-Reduce [4] may be viewed as a simple FCF as

(Map f): <x1, …, xn> = <f:x1, …, f:xn>.

It expresses applying function f to all objects concurrently. This notion is brought
in from functional programming [2,10,11]. However, we are not dealing with a formal

 SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing 107

symbolic programming system. Instead, our effort is motivated by extending SQL for
expressing the control flow of applying TVFs that have effects on database states.
Along this line there exist some informal approaches where MapReduce [4,12] and
CROSS APPLY (Sql Server) [5] only deal with flat data, CONNECT BY (Oracle)
has determinate semantics only for data organized in a hierarchy rather than in a
graph.

In order to cover richer applications, it is necessary to provide an extended set of
FCFs for controlling the applications of a function to multiple objects based on certain
execution order dependencies, and further, to allow the FCF set itself extensible.

We have developed a novel framework, SQL-FCF, for interfacing data intensive
computation and parallel database management at a high-level. The context and con-
tributions of our research can be outlined as below.

− Motivated by providing database centric solutions, we push down applications to
databases for reduced data movement. We wrap them as a kind of User Defined
Functions (UDFs), Table Valued Functions (TVFs). The input of a TVF is a row
that represents a data partition directly or referentially, and the output is a row
set. In addition to conveying an output row set, a TVF may have database update
effects, leading to the order sensitivity of its executions. Thus we introduce
FCFs on TVFs to deal with the control flow of applying TVFs to data partitions.

− In order to support non-flat but structured parallel computing, we define FCFs to
specify the order dependency of applying TVFs to data partitions.

− We make the SQL-FCF framework extensible by providing the mechanisms for
defining new FCFs from existing ones with SQL phrases.

 We have applied this approach to architect a hydro-informatics system for sup-
porting data intensive applications on a database cluster. The hydrologic applications
are wrapped as TVFs; data are partitioned, and TVFs are made available over multi-
ple server nodes. A TVF is applied to the data partitions representing geographic re-
gions in certain order. Task management is handled at a system layer that interprets
SQL-FCF, parallelizes computing whenever possible, and invokes TVFs. The SQL-
FCF framework allows users to specify the order dependency of computations at a
high-level, leaving the parallel computing opportunities, either static implied in the
specification or dynamically appeared during the execution, interpreted and handled
by the system.

 The rest of this paper is organized as follows: Section 2 provides an example on
data dependent structured parallel computation; Section 3 discusses the proposed SQL
FCF framework; Section 4 concludes.

2 Introductory Example on Structured Parallel Computing

In this section we explain the need for handling structured parallel computing by the
watershed observation application. A watershed observation function is designed for a
kind of data intensive hydrologic computation, which is periodically applied to a river
drainage network, for hydrologic monitoring, feature extraction and prediction.

The data about a river drainage network are location sensitive geographic informa-
tion divided by regions. Multiple regions are modeled as a tree where recursively a

108 Q. Chen and M. Hsu

parent node represents a downstream region, and a child node represents an upstream
region. The data are stored in the regions table with attributes region_id, region_level,
parent_region_id, and region data. The regions table is partitioned over multiple server
nodes to be accessed in parallel whenever possible. The data partitioning scheme is
visible to all server nodes (actually replicated).

The region_level of a region represents its level of partitioning, as the length of its
longest descendant path counted bottom-up from the leaves of the regions tree. Figure
1 shows the hierarchical organization of regions and their levels of partitioning.

D3

A4

A6 A7 A8 A9

A1

A10

A12

A13 A15

A18 A17 C4

A19

B1

C3 B4

D4

C1 C2

D1

E2

F1

G1

H1

I1

F2

E3

B2

D2

E1

A5

B3

B5

A16

D3

C4

B1

C3

B4

D4

C1
C2

D1

E2

F1

G1

H1

I1

F2

E3

B2

D2

E1

B3 B5

A4A6 A7 A8 A9A1 A10A12A13 A15A18 A17A5 A16

P-Level 1

P-Level 2

P-Level 3

P-Level 4

P-Level 5

P-Level 6

P-Level 7

P-Level 8

P-Level 0

A1

Fig. 1. River drainage modeled as a regions tree with levels of data partition, computation must
be made bottom-up – parallelism opportunity exists but not a single step of “apply to all”

The watershed observation function is implemented in the following way.

− It is coded as a user defined TVF, whose execution can be pushed down to the da-
tabase engine for eliminating the data transfer round trip.

− The TVF, say f, is defined on a river region to conduct a computation job on that
region. The input of f is a region_id, but a small amount of information of the
upstream regions is also required for the computation. The output of f is some
information as a table or row set, but f also has effects on database updates which
will affect the successive computations.

− The same TVF is made available to all the participating server nodes.
− The watershed observation function is applied region by region from upstream to

downstream, i.e. the region tree is post-order traversed - the root is visited last.
− The parallel computation opportunities exist statically in processing the non-

conflict regions at the same level, or the regions without a common parent. Parallel
computations opportunities also exist dynamically in processing the regions with
all their children regions have been processed. These two kinds of opportunities
will be interpreted and realized at a system layer. Data communication is made
through database access.

The procedure given in Figure 2 shows the invocation of a function, Watershed
Analysis, in the post-order. Consider post-order tree processing as a “meta operator”,
postorder, for applying any function f that processes tree nodes in the post order. To-
gether, (postorder f) denotes a function, where f , that is consider as the operand

 SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing 109

Function (postorder f) (t)
Input: Tree t
Output: watershed current/predicted status
Procedure

 1: if t = ø then

 2: return
 3: for each i
 4: (postorder f) (t.child(i))
 5: f (t)

Function PostorderAnalysis (t)
Input: Tree t
Output: watershed current/predicted status
Procedure

 1: if t = ø then

 2: return
 3: for each i
 4: PostorderAnalysis (t.child(i))
 5: WatershedAnalysis (t)

Fig. 2. A post-order processing function Fig. 3. A “meta operator” takes function f as
its parameter for applying f in post-order

of postorder, can be substituted by a function, e.g. WatershedAnalysis. This is illus-
trated in Figure 3. This shows how a meta-operator controls the way of applying a
function . We will investigate how to express such function control operators in SQL.

3 The Proposed SQL-FCF Framework

Motivated by providing a SQL based high-level interface to support database-based
data intensive computation, we propose the SQL-FCF framework, which is character-
ized by the following.

− Certain procedure semantics is embedded into SQL query statements for ex-
pressing how TVFs are applied, in addition to what data are returned.

− It focuses on “structured parallel computation” in terms of SQL based FCFs.
− The SQL-FCF framework is extensible where new FCFs can be derived from

existing ones using SQL constructs.

3.1 SQL Framework for User Defined Functions

SQL Framework and its Changeable Parts. Let us distinguish two parts of the SQL
language. First, its framework which gives its overall rules and operators: select, join,
project (SJP), order, sort, etc, and second, its changeable parts, whose existence is
anticipated by the framework but whose particular behavior is not specified by it. For
example, the SJP related phrases are part of the SQL framework, but the UDFs are its
changeable parts. Thus the SQL language describes its fixed features and provides a
general environment for its changeable features.

Changeable Parts and Controlling Forms. We envisage that the most important en-
hancement to the changeable parts in SQL language is the availability of controlling
forms that can be generally used to build new functionalities from existing UDFs.

So far the only notable SQL language construct capable of affect the applying of
TVFs, a kind of UDFs, is the CROSS APPLY (plus OUTER APPLY) operator pro-
vided in Transact-SQL [5]; it expresses the way to apply a TVF to the rows of a table
and then union the results.

Although CROSS APPLY is more powerful than Map-Reduce in representing the
“apply-to-all” semantics, in that the input object can be filtered, and output results can

110 Q. Chen and M. Hsu

be further manipulated by SQL phrases, it is the only primitive for controlling TVFs,
and it actually does not indicate the order dependencies in applying TVF to multiple
objects.

Fixed and Extensible Controlling Forms. As we have seen, a SQL framework has a
set of primitive functions, plus a possible set of UDFs. In case the set of UDF control-
ling forms, FCFs, are empty, then the behavior of those UDFs is not extensible; if the
set of FCFs is not empty but fixed once and for all, then the flexibility of changing the
behavior of UDF applications is still limited. In fact, the set of FCFs determines the
capability of the SQL framework for embedding applications in a major way. To
make such capability extensible, further allowing the creation of new FCFs from ex-
isting ones with SQL phrases, is essential.

3.2 A SQL-FCF Example

The following SQL-FCF example illustrates the kind of hydrologic computation jobs
applied region by region along a geographic region tree in the post-order, which
represents the general feature of a class of similar scientific computations. The SQL-
FCF controls the “structured” flow of applying a TVF, f, from upstream regions to
downstream regions, i.e. bottom-up along the region tree represented in table
“regions”

 CONNECT APPLY f(region_id) TO regions
 BY region_id = PRIOR ALL parent_region_id
 START WITH region_level = 0;

This phrase does return a row set, however, different from a recursive query, it also
indicates the step of TVF executions, as

– the processing starts from the leaf regions at region_level 0;
– the processing is bottom-up, where f is fired on a parent region (in

downstream) after all its child regions (in upstream) have been processed;
– stepwise parallel computing opportunities are implied for non-dependent

function applications.

The unary operator, PRIOR, has the same precedence as the unary + and -
arithmetic operators. It evaluates the immediately following expression for matching
the parent_region_id of ALL child rows with the region_id of the current row, in the
order from children to parent. ALL is required as a parent can have multiple children.
On TVF executions, the above phrase dictates the post-order traversal order
dependency of applying f to multiple regions; on resulting data, it return the transitive
closure of the data hierarchy, plus other designed database effects of f.

 Note that the semantics, syntax as well as implementation of this FCF are
different from Oracle’s CONNECT BY. Our implementation ensures the order of
TVF applications, and a TVF is applied to each data partition (tree node) only once.
Similarly we also changed the SQL syntax for CROSS APPLY as sown later.

3.3 Core FCFs

A FCF, viewed as a “meta operator”, takes one or more TVFs as its parameters, ap-
plying a FCF to the parameter TVFs, denotes a new function.

 SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing 111

As samples, below we discuss two core FCFs. Note that this sample set is non-
exclusive, and the selection of them is based on their suitability to SQL semantics.

We start with the existing CROSS APPLY with syntactical alteration. For a TVF, f,
defined on row set R, CROOSS APPLY f to R means applying f to all the rows of R,
without any constraint on the applying order; the union of the resulting row sets of
applying f to each row of R, is joined to R as the return row set.

[CROSS APPLY] CROSS APPLY a TVF, f, to a row set R is denoted by καf : R

that returns a row set. α denotes the FCF, CROSS APPLY; κ denotes the attribute

name list, say Ai,…, Aj, of R whose values are taken as the function input; κf maps a

row in R to a row set. The procedure semantics of this FCF is illustrated in Figure 4.

[CROSS APPLY] f : R

Procedure

1: Set S = ø

 2: for each i {1,…,n} ti R

 3: S = S f (ti)

 4: return eq-join (R, S) on

Fig. 4. Procedure semantics of CROSS APPLY

The next FCF – CONNECT APPLY, is introduced for applying a TVF along the
data object hierarchy with order dependency (e.g. due to the TVF’s effects on data-
base states). The data objects (or their Ids) to be processed by the TVF are organized
in the tree structure, and stored in a table with a pair of parent-child attributes P and
C. Accordingly we represent the parent-child ordering as <P,C>.

Controlled by CONNECT APPLY, the executions start from applying the TVF to
the rows selected on a given condition, the order of tree traversal – in pre-order (top-
down) or in post-order (bottom-up), is indicated by another input parameter.

[CONNECT-APPLY] fCP ,,, : R

Procedure

1: Set S = ø

 2: for each row t (R)

 3: if ==0
 // ==0 indicates pre-order apply
 // where the function is applied to
 // the current row first before applied to
 // its children recursively.
 // Otherwise, in post-order apply,
 // the order is reversed

 4: then

 //first apply to the current row t

 5: S = S f (t)

 //then to child rows in CtP . (R)

 6: S = S fCPCtP ,,,. (R)

 7: else

 //first apply to child rows

 8: S = S fCPCtP ,,,. (R)

 //then to the current row t

 9: S = S f (t)
 10: return eq-join (R, S) on

Fig. 5. Procedure semantics of CONNECT APPLY

112 Q. Chen and M. Hsu

This FCF specifies both the steps of applying TVF and the returned data, which is the
join of the input table and the union of the results from stepwise function applications.

[CONNECT APPLY] CONNECT APPLY a TVF κf to a row set R is denoted by

κοϕγ fCP ,,, : R where γ stands for the FCF; κ for the input attributes of f ; ϕ is a

condition for selecting the rows in R, i.e. ϕσ (R), to start with. Attributes P and C are

the parent-child pair on R, underlying the “connect” condition tparent.C = tchild.P. The
ordering of applying is represented by ο = {0,1} with 0 for “pre-order” and 1 for
“post-order”. The procedure semantics is given in Figure 5.

3.4 Derive New SQL-FCFs from Existing Ones

While just a few FCFs already offer significant flexibility of TVF utilization, the
expressive power of SQL-FCF can be further enhanced by deriving new FCFs from
existing ones, in the following two major ways:

− specialize a FCF, and
− combine FCFs.

Specialization. A new FCF can be simply derived from an existing one, say F, by
instantiating certain parameters of F. Below is the example of specializing CON-
NECT APPLY to PREORDER APPLY and POSTORDER APPLY.

[PREORDER APPLY, POSTORDER APPLY]

 In CONNECT APPLY κοϕγ fCP ,,, , the apply ordering parameter ο = {0,1}

with 0 for “pre-order” and 1 for “post-order”, can be specialized such that

− κϕγ fCP 0,,, represents PREORDER APPLY, and

− κϕγ fCP 1,,, represents POSTORDER APPLY.

These can be illustrated by the following SQL examples.

 PREORDER APPLY f(region_id) TO regions
 BY parent_region_id, region_id
 START WITH region_level = MAX(region_level);

 POSTORDER APPLY f(region_id) TO regions
 BY parent_region_id, region_id START WITH region_level = 0;

Interpreted by the above semantics, they are equivalent to

 CONNECT APPLY f(region_id) TO regions
 BY PRIOR region_id = parent_region_id
 START WITH region_level = MAX(region_level);

 CONNECT APPLY f(region_id) TO regions
 BY region_id = PRIOR ALL parent_region_id START WITH region_level = 0;

respectively.

 SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing 113

Combination. A FCF can be defined from existing FCFs in the SQL framework that
can also be viewed as a special kind of parameterized query.

 For instance, a new FCF, CONC-CROSS APPLY, can be defined by joining the
results of two concurrent cross apply operations, with the following semantics

[CONC-CROSS APPLY]

− Let καf and καg be two CROSS APPLY functions defined on R where κf and

κg have the same input attribute list κ on R, such as Ai,…, Aj.

− Let the join two row sets R1, R2 on attributes κ (i.e. on condition R1.A,= R2.Ai
∧ … ∧ R1.Aj = R2.Aj) be represented by Jκ (R1, R2).

− CONC-CROSS APPLY καf and καg to R means Jκ (καf :R, καg :R).

Then in SQL-like syntax, for example,

 CONC-CROSS APPLY [f(region_id), g(region_id)] TO regions
means
 (CROSS APPLY f(region_id) TO regions) a JOIN
 (CROSS APPLY g(region_id) TO regions) b ON a. region_id = b. region_id

4 Concluding Remarks

This research is driven by the synthesis of data intensive computation and data man-
agement [7,9,13,14], where one aspect for seamlessly integrating them is to provide
high-level parallel computing interface functionally independent of the underlying
cluster infrastructure. Map-Reduce and Cross-Apply primitives are developed along
this direction, but need to evolve into more general ones and to form a framework for
dealing with “structured parallel computing”, not just “flat parallel computing”.

Motivated by providing a database centric solution, we pushed down data intensive
computation to the database layer for reduced data traffic, by wrapping computation
jobs as UDFs/TVFs, and study how to control their applications to data objects.

Up to now, the expressive power of SQL for specifying applications, in the major
way, depends on its set of UDFs. In a SQL dialect without the CROSS APPLY primi-
tive, its entire set of non-system functions are just the set of individual UDFs. By sup-
porting CROSS APPLY, the expressive power of T-SQL in utilizing TVFs is
expanded, but only limited to the case of applying a TVF to all objects in one shot. In
fact, as a “flat parallel computing” primitive, CROSS APPLY does not really require
the query processor to concern about the order of applying a TVF to the input rows.

In this work we have introduced the general notion of TVF Controlling Forms
(FCFs) into the SQL framework. This effort represents an initial step to systematically
and imperatively embed certain flow control on UDF applications into SQL query
statements (rather than scripts), in a way integrated with the data flows in query
processing. With this extension, applying TVFs can be controlled in a way consistent
with the dependency of data processing, such as the post-order tree traversal
illustrated in this report, implied by the nature of the applications. Specifically, our
contributions include the following.

114 Q. Chen and M. Hsu

− We proposed the notion of FCF and embedded the corresponding procedural
semantics to SQL, as a database centric solution to dealing with data dependent,
structured parallel computing.

− We provided a sample set of core FCFs for controlling the operational flow of
applying TVFs to data partitions.

− We developed the mechanisms for FCF extensibility, allowing new FCFs to be
defined from existing ones with SQL phrases.

Defining FCFs in the extended SQL framework complies with our vision on
database oriented data intensive computation. SQL-FCF is currently defined at a
virtual system layer. The interpretation of the “active SQL” statements involving FCF
operators, together with the rules for task parallelization, is handled by a virtual
system that “thinks in parallel”. This virtual system is built on top of DBMS but
works on the operational environment provided by the DBMS - whose data are stored
in the underlying database, and whose operators are implemented as UDFs (or stored
procedures) whenever possible.

This work also opens several directions to future research, in the synthesis of sci-
entific computing and database technology, in the synthesis of file based parallel
computing model and database based one, and in the synthesis of handling impera-
tive operation flows and declarative query results - towards a computational query
framework.

References

1. Asanovic, K., Bodik, R., Catanzo, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel
computing research: A view from Berkeley, Technical Report UCB/EECS-2006-183, U.
C., Berkeley, December 18 (2006)

2. Backus, J.: Can Programming be Liberated from the von Neumann Style? A functional
style and its algebra of programs. CACM 21(8) (1978)

3. Barclay, T., Gray, J., Chong, W.: TerraServer Bricks – A High Availability Cluster Alter-
native, Technical Report, MSR-TR-2004-107 (October 2004)

4. Barroso, L.A., Dean, J., H"olze, U.: Web search for a planet:”The Google cluster architec-
ture. IEEE Micro 23(2), 22–28 (2003)

5. Ben-gan, I., et al.: Inside Microsoft SQL Server 2005: T-SQL Programming (2006)
6. Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC, CMU-CS-07-128 (2007)
7. Chen, Q., Hsu, M., Dayal, U.: A Data-Warehouse/OLAP Framework for Scalable Tele-

communication Tandem Traffic Analysis. In: ICDE 2000, pp. 201–210 (2000)
8. Chen, Q., Hsu, M.: Inter-Enterprise Collaborative Business Process Management. In: Proc.

of 17th Int’l Conf. on Data Engineering (ICDE-2001), Germany (2001)
9. Chen, Q., Dayal, U., Hsu, M.: A Distributed OLAP Infrastructure for E-Commerce. In:

Proc. Fourth IFCIS CoopIS Conference, UK (1999)
10. Chen, Q., Kambayashi, Y.: Nested Relation Based Database Knowledge Representation.

In: ACM-SIGMOD Conference, pp. 328–337 (1991)
11. Chen, Q., Gardarin, G.: An Implementation Model for Reasoning with Complex Objects.

In: ACM-SIGMOD Conference, pp. 164–172 (1988)
12. Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In: In-

ternational Conference on Parallel Architecture and Compilation Techniques. ACM, New
York (2006)

 SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing 115

13. DeWitt, D., Gray, J.: Parallel Database Systems: the Future of High Performance Database
Systems. CACM 35(6) (June 1992)

14. Gray, J., Liu, D.T., Nieto-Santisteban, M.A., Szalay, A.S., Heber, G., DeWitt, D.: Scien-
tific Data Management in the Coming Decade. SIGMOD Record 34(4) (2005)

15. Hsu, M., Xiong, Y.: Building a Scalable Web Query System. In: Bhalla, S. (ed.) DNIS
2007. LNCS, vol. 4777, Springer, Heidelberg (2007)

16. HP Neoview enterprise datawarehousing platform, http://h71028.www7.hp.com/
ERC/downloads/4AA0-7932ENW.pdf

17. Netz, A., Chaudhuri, S., Bernhardt, J., Fayyad, U.: Integration of data mining and rela-
tional databases. In: Proceeding of the 26th Conference on Very Large Databases, pp.
719–722 (2000)

18. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-So-
Foreign Language for Data Processing. In: VLDB (2008)

19. Saarenvirta, G.: Operational Data Mining, DB2 Magazine 6 (2001)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 116 – 123, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Decidable Fuzzy Description Logic F-ALC(G)

Hailong Wang and Z.M. Ma

School of Information Science & Engineering, Northeastern University
Shenyang 110004, China

zongmin_ma@yahoo.com

Abstract. The existing Web Ontology languages and the corresponding de-
scription logics don’t support customized data type information. Furthermore,
they can’t process imprecise and uncertain information in the Semantic Web. In
order to solve these limitations, we propose a new kind of fuzzy description
logic, F-ALC(G), which can not only support the representation and reasoning
of fuzzy concept knowledge, but also support fuzzy data information with cus-
tomized fuzzy data types and customized fuzzy data type predicates.

Keywords: fuzzy ALC(G); customized fuzzy data types; Tableau algorithm.

1 Introduction

In real applications, there are a big deal of imprecision and uncertainty. So the fuzzy
extensions to description logics (DLs) which can process fuzzy ontology are neces-
sary. In fact, much work has been carried out towards combining fuzzy logic [1] and
DLs [2] during the last decade. The existing extensions [3], [4] can only process fuzzy
concept knowledge while cannot cover the representation and reasoning of fuzzy data
information. The Semantic Web is expected to process the fuzzy data information in
an intelligent way. Data type support [5] is one of the most useful features that OWL
is expected to provide. As an attempt to process fuzzy data information, Straccia pro-
poses f-SHOIN(D) in [6], but there is no reasoning algorithm for it, and it cannot sup-
port customized fuzzy data types and predicates.

To overcome the above limitations of the existing DLs, this paper presents a fuzzy
DL F-ALC(G) which can support fuzzy data information with customized fuzzy data
types and predicates. Furthermore, this paper gives an complete tableau algorithm for
F-ALC(G) and proposes a reasoning architecture for fuzzy data type reasoning. Also
the decidability of the tableau algorithm is discussed.

2 Syntax and Semantics of F-ALC(G)

Definition 1. A data type [7] is characterized by a lexical space, L(d), which is a non-
empty set of Unicode strings; a value space, V(d), which is a nonempty set, and a total
mapping L2V(d) from the lexical space to value space.

Definition 2. A base data type d is a special kind of data type which is built-in in
XML Schema, such as xsd: integer and xsd: string etc.

 A Decidable Fuzzy Description Logic F-ALC(G) 117

Definition 3. A data type predicate p is used to constrain and limit the corresponding
data types. It is characterized by an arity a(p).

Definition 4. The semantic of a fuzzy data type predicate p can be given by (ΔD, •D),
where ΔD is the fuzzy data type interpretation domain and •D is the fuzzy data type
interpretation function. Here •D maps each n-ary fuzzy predicate p to a function pD: ΔD

n
→ [0, 1] which is an n-ary fuzzy relation over ΔD. It means that the relationship of
concrete variables v1,…,vn satisfies predicate p in a degree belonging to [0,1]. We also
use a(p) to represent the arity of fuzzy predicate p.

Definition 5. A fuzzy data type group G is a triple (φG, DG, dom), where φG is a set of
predicates which have been defined by corresponding known predicate URIrefs, DG is
a set of base data types, and dom(p) is the domain of a fuzzy data type predicate,

dom(p) =
⎪⎩

⎪
⎨
⎧

=∈∈
∈

npaandDpifDddwheredd

Dpifp

GGGnn

G

)(\,...,),,...,(11 φ

Definition 6. Given a fuzzy data type group G = (φG, DG, dom) and a base data type
d∈DG, the sub-group of d in G, abbreviated as sub-group (d, G), is defined as:

sub-group(d, G) = {p∈φG | dom(p) = {d,…,d} (a(p) times)

Definition 7. Let G be a fuzzy data type group. Valid fuzzy G-data type expression E
is defined by the following abstract syntax:

E ::= ⊺D | ⊥D | p | p | {l1 , ... , ls} | (E1 ∧ … ∧ Es
) | (E1 ∨ …∨ Es

) | [u1, …,us]

Here ⊺D represents the fuzzy top data type predicate while ⊥D the fuzzy bottom data
type predicate; p is a predicate URIref; p is the relativized negated form of p; l1 , . . . ,
ls are typed literals; ui is a unary predicate in the form of ⊺D, ⊥D, p, or p . The semantic

of fuzzy data type expressions can be defined as follows:

1) ⊺D
D(v1 , …, vn) = 1;

2) ⊥D
D(v1 , …, vn) = 0

3) pD(v1 , …, vn) → [0,1];
4) pD(v1 , …, vn) = 1- pD(v1 , …, vn)
5) {l1 , ... , ls}

D(v) = ∨s
i=1(li

 D = v)
6) (E1 ∧ … ∧ Es

) D (v1 , …, vn) = (E1)
 D (v1 , …, vn) ∧ … ∧ (Es

) D (v1 , …, vn)
7) (E1 ∨ …∨ Es

) D (v1 , …, vn) = (E1)
 D (v1 , …, vn) ∨…∨ (Es

) D (v1 , …, vn)
8) ([u1, …,us])

D(v1,…,v s) = u1
D(v1)∧…∧us

D(vs)

In the fuzzy data type group, the supported data type predicates have been defined in
φG, while the unsupported ones can be defined based on the supported ones used
fuzzy data type expressions.

Definition 8. A fuzzy data type group G is conforming iff:
1) for any p∈φG \DG with a(p)= n (n ≥ 2), dom(p) = (w,…,w) (n times) for some

w∈DG, and
2) for any p∈φG \DG, there exists p’∈φG \DG such that p’D = pD, and

118 H. Wang and Z.M. Ma

3) the satisfiability problems for finite fuzzy predicate conjunctions of each sub-
group of G is decidable.

Definition 9. F-ALC(G) consists of an alphabet of distinct concept names (C), role
names (R = RA ∪RD) and individual names (I). F-ALC(G)-roles are simply role
names in R, where R∈ RA is called an abstract role and T∈ RD is called a data type
role. Let A be an atomic concept in C, R∈ RA, T1 ,…, Tn ∈ RD, E is fuzzy G-data
type expression. Then the valid F-ALC(G)-concepts are defined as follows:

C ::= ⊺|⊥| A | ¬C | C ⊓D | C ⊔D |∃R.C |∀R.C |∃T1,…,Tn. E |∀T1,…,Tn. E | ≥ m
T1,…,Tn. E |≤ m T1,…,Tn. E

The semantics of F-ALC(G) is given by an interpretation of the form I = (ΔI, •I, ΔD,
•D). Here (ΔI, •I) is an interpretation of the object domain, (ΔD, •D) is an interpretation
of the fuzzy data type group G, and ΔI and ΔD are disjoint each other. •I is an individ-
ual interpretation function and the semantics of abstract F-ALC(G)-concepts like ⊺, ⊥,
A, ¬C, C ⊓D, C ⊔D, ∃R.C, and ∀R.C can be referred to [3]. •D is an interpretation of
the fuzzy data type group G, which respectively assigns each concrete individual to
an element in ΔD, each simple data type role T ∈ RD to a function TI : ΔI×ΔD→[0, 1],
and each n-ary fuzzy predicate p to a function pD: ΔD

n → [0,1] which is an n-ary fuzzy
relation over ΔD. We have the following semantics for concrete F-ALC(G)-concepts
with fuzzy data type expressions-related constructors:

1) (∃T1,…,Tn. E) I(x) =)),...,()),(((sup 11,...,1 n
I

i
I

i
n
ivv vvEvxT

Dn
∧∧ =Δ∈

2) (∀T1,…,Tn. E) I(x) =)),...,()),(((inf 11,...,1 n
I

i
I

i
n
ivv vvEvxT

Dn
→∧ =Δ∈

3) (≥ mT1,…,Tn.E)I(x) =)),...,()),(((sup 111,...,,...,...,,..., 1111 ini
I

ij
I

ij
n
j

m
ivvvv vvEvxT

Dmnmn
∧∧∧ ==Δ∈

4) (≤ mT1,…,Tn.E) I(x) = 1 - (≥ (m+1) T1,…,Tn. E)I(x)

An F-ALC(G) knowledge base K is in the form of <T, A>, where T is a fuzzy
TBox and A a fuzzy ABox.

– A fuzzy TBox is a finite set of fuzzy concept axioms of the form C ⊑ D, where
C and D are F-ALC(G)-concepts.

– A fuzzy ABox is a finite set of fuzzy assertions of the form <α⋈n>. Here ⋈∈
{>, ≥, <, ≤}, n ∈ [0, 1], and α is the form either x: C, (x, v): T (v is concrete
variable) or (x, y): R (x, y ∈ I).

An F-ALC(G)-concept C is satisfiable iff there exists some fuzzy interpretation I
for which there is some x∈ ΔI

 such that CI(x) = n, and n∈(0,1]. A fuzzy interpreta-
tion I satisfies a fuzzy TBox T iff ∀x∈ΔI, CI(x) ≤DI(x) for each C ⊑ D. I is a model
of TBox T iff I satisfies all axioms in T. An interpretation I satisfies <x: C ⋈ n> iff

CI (x) ⋈n, satisfies < (x, v): T⋈ n > iff TI (x, v) ⋈ n, satisfies < (x, y): R⋈ n > iff
RI(x, y) ⋈ n. Then I is a model of ABox A iff I satisfies all assertions in A. Finally, a
fuzzy knowledge base K is satisfiable iff there exists an interpretation I which satis-
fies the TBox T and ABox A.

 A Decidable Fuzzy Description Logic F-ALC(G) 119

3 Reasoning for F-ALC(G)

3.1 Tableau Algorithm for F-ALC(G)-Concepts

For ease of presentation, we assume all concepts to be in negation normal form (NNF)

[8]. In addition, we use the symbols ▷ as a placeholder for the inequalities >, ≥ and ◁
for <, ≤, use the symbol ⋈ as a placeholder for all types of inequations. Also we use
the symbols ⋈-1, ▷-1, ◁-1 to denote their reflections, respectively. If ψ is an assertion
in F-ALC(G), then ψC is the conjugation [3] of ψ.

The tableaux algorithm for F-ALC(G) tries to prove the satisfiability of a concept
expression D by constructing a model of D. The model is represented by a so-called
completion forest. Its nodes correspond to either individuals (labeled nodes) or vari-
ables (nonlabeled nodes), each labeled node being labeled with a set of triples of the
form <C, X, k>, which respectively denote the concept, the type of inequality (X the
set {≥, >, <, ≤}), and the membership degree that the individual of the node has been
asserted to belong to C. We call such triples membership triples. While testing the
satisfiability of an F-ALC(G)-concept D, the sets of concepts C appearing in member-
ship triples are restricted to subsets of cl(D), which denotes the set of all sub-concepts
of D. We use clG(D) to denote the set of all the fuzzy G-data type expressions and
their negations occurring in these sub-concepts.

Definition 10. Let D be a F-ALC(G)-concept in NNF, RA
D the set of abstract roles

occurring in D, RD
D the set of concrete roles occurring in D, G a fuzzy data type

group, E∈clG(D) a (possibly negated) fuzzy data type expression, and X the set {≥,
>, <, ≤}. A tableau T = (SA, SD, L, DC, εA, εD) for D is defined as follows:

 SA is a set of individuals; SD is a set of variables,
 L: SA → 2cl(D) × X × [0,1] maps each individual in SA to membership triples,
 DC: is a set of fuzzy data type constraints of the form <E(v1,…,vn), X, k> or

inequations of the form (<vi1,…,vin>, <vj1,…,vjn>, ≠), where E∈clG(D),
v1,…,vn, vi1,…,vin, vj1,…,vjn∈SD, k∈[0, 1],

 εA: RA
D→ AA SS ×2 × X × [0,1] maps abstract role in RA

D to membership triples,
 εD: RD

D→ DA SS ×2 × X ×[0,1]maps data type role in RD
D to membership

triples.

A tableaux algorithm for F-ALC(G) works on a completion forest F for D. There are
two kinds of nodes in the completion forest: abstract nodes (the normal labeled nodes)
and data type nodes (nonlabeled leaves of F). Each abstract node x is labeled by a set
of triples L(x), which contains membership triples. We define L(x)={<C, X, k>},
where C∈ cl(D)∪{↑(R, {o}) | R∈RA

D and {o}∈ ID}. Each edge <x, y> is labeled with
a set of L(<x, y>) defined as, L(<x, y>)={<R, X, k>} where R is either abstract roles
occurring in RA

D, or data type roles in RD
D. In the first case, y is a node and called an

abstract successor of x; in the second case, y is a data type node, and called a data type
successor of x. For each {o}∈ ID, there is a distinguished node z{o} in F such that{o}∈
L(z).

We use a set DC(x) to store the fuzzy data type expressions that must hold with re-
gard to data type successors of a node x in F. Each element of DC(x) is either of the

120 H. Wang and Z.M. Ma

form <E(v1,…,vn), X, k>, or of the form (<vi1,…,vin>,<vj1,…,vjn>,≠), where E∈cld(D),
v1,…,vn, vi1,…,vin, vj1,…,vjn∈SD, and k∈[0, 1]. Here <v1,…,vn>,<vi1,…,vin> and
<vj1,…,vjn> are tuples of fuzzy data type successors of x. The tableaux algorithm calls
a fuzzy data type reasoner as a subprocedure for the satisfiability of DC(x). We say
that DC(x) is satisfiable if the fuzzy data type query

),...,;,....,(,),,...,(11)(),,...,,,...,(1)(,),,...,(111 jnjinixDCvvvvrnrxDCkXvvE vvvvkXvvE
jnjinirnr

≠∧∧><∧ ∈≠><><>∈<
 (1)

is satisfiable. DC(x) plays as the interface of the fuzzy DL concept reasoner and the
fuzzy data type reasoner.

Definition 11. A node x of a completion forest F is said to contain a clash if (at
least) it contains either an F-ALC-clash [3] or a Gf-clash. A node x of a completion
forest F contains a Gf-clash if it contains one of the following:

1) for some fuzzy data type roles T1,…,Tn, <≤ mT1,…,Tn .E, ▷, k > ∈ L(x) and there
are m+1 <T1,…,Tn>-successor < vi1,…,vin > (1≤ i ≤ m+1) of x with <E<

vi1,…,vin>, ▷, k>∈ DC(x) (1≤ i ≤ m+1), and (<vi1,…,vin>,<vj1,…,vjn>,≠)∉
DC(x) (1≤ i <j ≤ m+1);

2) for some abstract node x, DC(x) is unsatisfiable.

In the following, we give a tableaux algorithm that can construct a fuzzy tableau for
an F-ALC(G)-concept D, which is an abstraction of a model of the concept.

Input: F-ALC(G)-concept D;
Output: Boolean;
Algorithm:
Step1.Initialization for the complete forest F: If {o1}

,…, {ol} = I
D, the algorithm initializes the com-

pletion forest F to contain l+1 root nodes x0,
z{o1},…, z{ol} with L(x0) = {<D, X, k>} and L(z{oi}) =
<{oi}, ≥, 1>. The DC(x) of any abstract node x is
initialized to the empty set.

Step2.F is then expanded by repeatedly applying the com-
pletion rules, including F-ALC-complete rules [3]
and Gf-complete rules (shown in Fig.1), until no
rules can be applied any more.

Step3.If the completion rules can be applied in such a
way that they yield a complete, clash-free comple-
tion forest, then D is satisfiable, and the algo-
rithm returns TRUE; otherwise, D is unsatisfiable
and the algorithm returns FALSE.

Step4.Terminate.

3.2 A Flexible Reasoning Architecture

In order to provide reasoning services for F-ALC(G), we propose a reasoning archi-
tecture with three kinds of components: a tableaux-based fuzzy concept reasoner

 A Decidable Fuzzy Description Logic F-ALC(G) 121

Fig. 1. Gf-complete rules

running the F-ALC(G)-rules and two kinds of fuzzy data type reasoners. The first kind
of fuzzy data type reasoners is called fuzzy data type manager, while the second is
called fuzzy data type checkers. The detailed design of these can be referred to [9].

As shown in Fig. 2, the reasoning of fuzzy data type group is not included in the
fuzzy concept reasoner, but performs in the fuzzy data type reasoners. We can use the
fuzzy data type reasoners to decide the satisfiability of the query in formula (1). The
tableaux algorithm calls a fuzzy data type reasoner as a subprocebure

1) ∃
p▷-rule: if 1. <∃T1,…,Tn. E, ▷, k> ∈ L(x), and 2. x has no <T1,…,Tn>-successor <v1,…,vn> s.t.:

L(<x, vi>) = {< Ti, ▷, k>} (1≤ i ≤ n), and <E(v1,…,vn), ▷, k> ∈ DC(x),

then create a <T1,…,Tn>- successor <v1,…,vn> of x, such that: L(<x, vi>) = {< Ti, ▷, k>} (1≤ i ≤

n), and DC(x) = DC(x)∪{<E(v1,…,vn), ▷, k>}.

2) ∀
p◁-rule: if 1. <∀T1,…,Tn. E, ◁, k> ∈ L(x), and 2. x has no <T1,…,Tn>-successor <v1,…,vn> s.t.:

L(<x, vi>) = {< Ti, ◁-1, 1-k>} (1≤ i ≤ n), and <E(v1,…,vn), ◁, k> ∈ DC(x),

then create a <T1,…,Tn>- successor <v1,…,vn> of x, such that: L(<x, vi>) = {< Ti, ◁-1, 1-k>} (1≤ i

≤ n), and DC(x) = DC(x)∪{<E(v1,…,vn), ◁, k>}.

3) ∃
p◁-rule: if 1.<∃T1,…,Tn. E, ◁, k> ∈ L(x), and 2. x has a <T1,…,Tn>-successor <v1,…,vn> s.t.:

L(<x, vi>) = {<*, ▷, r>}(1≤ i ≤ n), and <E(v1,…,vn), ◁, k> ∉ DC(x), where <*, ▷, r> is conju-

gated with <*, ◁, k>, * stands for any binary relationship of the form <x, vi>,

 then DC(x) = DC(x)∪{<E(v1,…,vn), ◁, k>}.

4) ∀
p▷-rule: if 1. <∀T1,…,Tn. E, ▷, k> ∈ L(x), and 2. x has a <T1,…,Tn>-successor <v1,…,vn> s.t.:

L(<x, vi>) = {<*, ▷, r>}(1≤ i ≤ n), and <E(v1,…,vn), ▷, k> ∉ DC(x), where <*, ▷, r> is conju-

gated with <*, ▷-1, 1-k>, * stands for any binary relationship of the form <x, vi>,

then DC(x) = DC(x)∪{<E(v1,…,vn), ▷, k>}.

5) ≥
p▷-rule: if 1. <≥ mT1,…,Tn .E, ▷, k > ∈ L(x), and 2. there are no m <T1,…,Tn>-successors <

vi1,…,vin > (1≤ i ≤ m) connected to x s.t.: L(<x, vij>) = {< Tj, ▷, k>} (1≤ i ≤ m, 1≤ j ≤ n), and

<E(vi1,…,vin), ▷, k> ∈ DC(x) (1≤ i ≤ m) and (<vi1,…,vin>, <vj1,…,vjn>,≠)∈ DC(x) (1≤ i<j≤ m),
then create m new <T1,…,Tn>-successors < vi1,…,vin > (1≤ i ≤ m) connected to x s.t.: 1. L(<x,

vij>) = {< Tj, ▷, k>} (1≤ i ≤ m, 1≤ j ≤ n), and 2. DC(x) = DC(x)∪<E(vi1,…,vin), ▷, k> (1≤ i ≤ m),
and 3. DC(x) =DC(x)∪{(<vi1,…,vin>,<vj1,…,vjn>,≠)}(1≤ i<j≤ m).

6) ≤
p◁-rule: if <≤ mT1,…,Tn .E, ◁, k> ∈ L(x),

then apply ≥
p▷-rule for the triple <≥ (m+1)T1,…,Tn .E, ◁-1, 1-k >.

7) ≤
p▷-rule: if 1. <≤ mT1,…,Tn .E, ▷, k > ∈ L(x), and 2. x has m+1 <T1,…,Tn>-successors < vi1,…,vin

> (1≤ i ≤ m+1) s.t.:

a) L(<x, vij>) = {<*, ▷, r>}(1≤ i ≤ m+1, 1≤ j ≤ n), where <*, ▷, r> is conjugated with <*, ▷-1,
1-k>, * stands for any binary relationship of the form <x, vij>, and

b) <E(vi1,…,vin), ▷, k> ∈ DC(x) (1≤ i ≤ m+1), and
c) In the above m+1 <T1,…,Tn>-successors, there exists two different <T1,…,Tn>-successors

<vs1,…,vsn > and <vt1,…,vtn> (s≠t) s.t. {(<vs1,…,vsn>, <vt1,…,vtn>,≠)}∉ DC(x),
then for each pair vsj, vtj, where vsj and vtj are not the same data type Tj-successor of x, do: 1.
L(<x, vsj>) = L(<x, vsj>)∪L(<x, vtj>), and 2. replace vtj with vsj in DC(x), remove vtj, and 3.
L(<x, vtj>= ∅.

8) ≥
p◁-rule: if <≥ mT1,…,Tn .E,◁,k>∈L(x),

then apply ≤
p▷-rule for the triple <≤ (m-1)T1,…,Tn .E, ◁-1, 1-k >.

122 H. Wang and Z.M. Ma

Fig. 2. Framework architecture

for the satisfiability of DC(x). The fuzzy data type reasoner together with the tableau
algorithm for F-ALC(G) form the complete procedure to check the satisfiability of the
F-ALC(G)-concepts.

3.3 Decidability of the F-ALC(G) Tableau Algorithm

Theorem 1. If G = (φG, DG, dom) is a conforming fuzzy data type group, then the
satisfiability problem for finite fuzzy predicate conjunctions of G is decidable.

Proof. Let the fuzzy predicate conjunction be ζ = ζw1∧ … ∧ ζwk ∧ ζU, where DG =
{w1,…,wk}, ζwi is the fuzzy predicate conjunction for sub-group(ζwi, G), and ζU is the
sub-conjunction of ζ and only unsupported fuzzy predicates appear. According to
Definition 8, ζS = ζw1∧ … ∧ ζwk is decidable. ζU is unsatisfiable iff there exist

<p(v1,…,vn), ▷, k> and <p(v1,…,vn), ▷-, k’> (k ≥ k’) for some p∉φG appearing in ζU.
The satisfiability of ζU is clearly decidable.

Theorem 2. Let G be a conforming fuzzy data type group. The fuzzy G-data type
expression conjunctions of formula (1) are decidable.

Proof. We can reduce the satisfiability problem for fuzzy G-data type expressions to
the satisfiability problem for fuzzy predicate conjunctions over G;

1) [u1,…,us] constructor simply introduces fuzzy predicate conjunctions. Similarly,
its negation introduces disjunctions. According to the Definition 8, we can elimi-
nate relativised negations in [u1, …,us].

2) The and and or constructors simply introduce disjunctions of fuzzy predicate
conjunctions of G.

3) We can transform the tuple-level constraints to a disjunction of conjunctions of
variable-level constraints in form ≠ (vi, vj). The conjunctions is clearly decidable.

According to Theorem 1, the satisfiability problem of fuzzy predicate conjunctions of
G is decidable. So a fuzzy G-data type expression conjunction is satisfiable if one of
its disjuncts is satisfiable.

Theorem 3. For each F-ALC(G)-concept D in NNF, its satisfiability is decidable.

Proof. According to the reasoning architecture shown in Fig.2, the reasoning in fuzzy
concept and fuzzy data type group can be divided separately.

The tableau algorithm of F-ALC(G) is decidable. Let m = |sub(A)|, k = |RA
A|, w =|I|,

pmax = max{ p|≥ pT1,…,Tn. E}, l be the number of different membership degrees

Fuzzy data type Manager
Fuzzy
ALC(G)
Reasoner

Fuzzy data type checkers

 A Decidable Fuzzy Description Logic F-ALC(G) 123

appearing in A. The new nodes are generated by the ∃▷-, ∀◁-, ∃
p▷-, ∀

p◁-, ≥
p▷-, and

≤
p◁-rules as successors of an abstract node x. For x, each of these concepts can trig-

ger the generation of successors once at most, even if the node(s) generated are later

removed by either the ≤
p▷- or ≥

p◁-rules. Since sub(A) contains a total of m ∃▷-, ∀◁-,

∃
p▷-, ∀

p◁-, ≥
p▷-, ≤

p◁-concepts at most, the out-degree of the forest is bounded by

2lmpmax. The nodes are labeled with the sets of triples of the form <C, ⋈, k>, where
C ∈ sub(A)∪{↑(R, {o}) | R∈ RA

A and {o}∈ I}. Since the concrete nodes have no
labels and are always leaves, there are at most 24l(m+kw) different abstract node labels.
Hence paths are of length at most 24l(m+kw).

The reasoning of fuzzy data type group is actually to check the satisfiability of a
set of DC(x) of formula (1), which is decidable according to Theorem 2. So the pro-
cedure of checking the satisfiability of F-ALC(G)-concept D in NNF is decidable.

4 Conclusions

This paper presents a fuzzy DL F-ALC(G). We give its tableau algorithm and propose
a reasoning architecture for fuzzy data type reasoning. We will investigate the per-
formance of the algorithm and develop a reasoning machine to verify its efficiency.

Acknowledgments. Work is supported by the Program for New Century Excellent
Talents in University (NCET-05-0288).

References

1. Zadeh, L.A.: Fuzzy sets. J. Information and Control 8, 338–353 (1965)
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Descrip-

tion Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

3. Straccia, U.: Reasoning within fuzzy description logics. J. Journal of Artificial Intelligence
Research 14, 137–166 (2001)

4. Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with Very Ex-
pressive Fuzzy Description Logics. J. Journal of Artificial Intelligence Research 30, 273–
320 (2007)

5. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Proc.
17th International Joint Conference on Artificial Intelligence, pp. 199–204 (2001)

6. Straccia, U.: Towards a fuzzy description logic for the Semantic Web (Preliminary Report).
In: Proc. the 2nd European Semantic Web Conference, pp. 167–181 (2005)

7. Pan, J.Z., Horrocks, I.: OWL-Eu: Adding Customised Data types into OWL. J. Journal of
Web Semantics 4, 29–49 (2006)

8. Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web. J. IEEE
Transaction on Knowledge and Data Engineering 19, 246–260 (2007)

9. Wang, H.L., Ma, Z.M., Yan, L., Cheng, J.W.: A Fuzzy Description Logic with Fuzzy Data
Type Group. In: Proc. the 2008 IEEE International Conference on Fuzzy Systems, pp.
1534–1541. IEEE Press, Hong Kong (2008)

Ranking Entities Using Comparative Relations

Takeshi Kurashima, Katsuji Bessho, Hiroyuki Toda,
Toshio Uchiyama, and Ryoji Kataoka

NTT Cyber Solutions Laboratories, NTT Corporation,
1-1 Hikarinooka Yokosuka-shi, Kanagawa 239-0847, Japan
{kurashima.takeshi, bessho.katsuji, toda.hiroyuki,

uchiyama.toshio, kataoka.ryoji}@lab.ntt.co.jp

Abstract. This paper proposes a method for ranking entities (e.g. prod-
ucts, people, etc.) that uses the comparative sentences described in text
such as reviews, blogs, etc. as an indicator of an individual entity’s value.
A comparative sentence expresses a relation between two entities. The
comparative sentence “The quality of A is better than that of B” is ex-
pressed by the comparative relation {A,B,quality,better}. Given a query
(set of queries), the proposed method automatically finds the competitive
entities and extracts the comparative relations among them. From the
vast amount of comparative relations so extracted, the proposed method
then generates a graph modeling the behavior of a “potential customer”
to assess the relative importance of every entity against its competitors.
These ranking results help potential customers to know the position of
the entity among related entities and decide which one to choose.

1 Introduction

The prevalence of CGM (consumer generated media) enables consumers who
experienced the products to express their opinions on the Internet. One of the
important goals of potential customers is to choose one from among the many
candidates. To perform this, until recently, opinions about a product (e.g. “The
picture quality of camera A is good/bad”) were acquired by text extraction and
mining because the vast amounts of information available are mainly presented
as texts [1][2]. Existing systems attempt to help the user to choose a product by
providing side-by-side comparisons of summarized opinions on several products.

Systems that use opinions about a product, however, do not necessary lead to
the correct order among the competitors because the opinions about a product
are largely dependent on the person’s evaluation perspective. For example, a
product appreciated by someone who has not used other candidates may not be
appreciated by someone else who has tried other, better products. Only those
who have a wide perspective (i.e. knows two or more candidates) can estimate
the value of a product relative to its competitor(s) correctly. We thus focus on
comparative sentences such as “The picture quality of X is better than Y ”.
Different from opinions about an entity, comparative sentences, in many cases,
lead to the correct order since they are usually made by customers who have a
wide perspective, those who have actually experienced and used both entities.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 124–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ranking Entities Using Comparative Relations 125

This paper proposes a novel method for ranking the entities. We assume that
the user query(queries) can be a product name, a person name, or etc. The
competitors of the query(queries) are automatically discovered and ranked by
consumers’ opinions. The proposed method is based on graph-based analysis.
We generate a graph wherein each node corresponds to an entity, and each
edge expresses the relation between two entities. The feature of the graph is to
use comparative sentences in the CGM data as an indicator of an individual
entity’s value. The relation between two entities (e.g. X and Y) is induced by
the collection of the comparative sentence between X and Y present in the
CGM data (e.g. “The quality of X is better than Y ”, “I prefer Y to X” or
etc.). A comparative sentence “The quality of X is better than Y” is expressed
by a comparative relation {X,Y,quality,better(good)}. We find the competitive
entities of a query(queries) among the results of reliable pattern matching and
thus extract comparative relations more accurately (In this paper, the extraction
of features is not described, and will be tackled in future work). From the graph
we can measure the importance of every entity within a set of competitors. The
basic idea for entity ranking is that an entity has high rank if it is superior to
other “important” entities. The proposed graph structure models the behavior of
the “Potential Customer” who shops around for a better one. The centrality score
of a node is given by a probability distribution that represents the likelihood that
a potential customer will arrive at that product (entity). Systems that implement
our proposed method will provide a new search framework since the value of an
entity is not estimated from isolated opinions but rather its relationship with
other entities. An experiment shows that the proposed algorithm adopted raises
the precision and recall of the extracted comparative relations. The result of
movie ranking and visualization using the real blog data is also presented.

2 Related Work

A significant amount of work has been done on opinion and sentiment mining in
the research fields of natural language processing and text mining. They are usu-
ally classified as “sentiment classification” and “opinion extraction”. Sentiment
classification assigns a document or sentence into either a positive or negative
group. Turney et al. proposed an unsupervised method based on mutual infor-
mation between document phrases and the words “excellent” and “poor” to find
indicative words for sentiment classification[3]. Pang et al. treat the problem
as a topic-based text classification problem. They tried applying a supervised
method, e.g. SVM, kNN, or etc., to sentiment classification [4]. Dave et al. also
classified documents using a score function [5]. The classification is usually at the
document or sentence level. No details are extracted about what people liked or
didn’t like. On the other hand, the task of opinion extraction is to extract all or
part of the opinion relations that express entities, features, and opinions. Liu et
al. proposed a method for extracting language patterns to identify features that
uses association rule mining [6]. They also proposed the system called Opinion
Observer which enables the user to compare opinions on products [1][2]. Our

126 T. Kurashima et al.

research is related to opinion extraction but differs in that it mines comparatives
relations. Jindal et al. proposed a method based on CSR and LSR for extracting
language patterns indicative of comparative relations [7][8]. The language pat-
terns so extracted are used to extract each item of the comparative relations.
Our research focuses on knowledge discovery among extracted comparative re-
lations while they focused only on language pattern extraction. Our approach
is query dependent and selects only that information related to a query from
among all comparative relations described in the text. We then summarize them
to find the relative importance terms associated with the query’s competitors.

3 The Proposed Method for Ranking Entities

Our proposed method consists of three steps as listed below.

1. Extract comparative relations from CGM texts
2. Generate graph based on the “Potential Customer Model”
3. Compute graph centrality

We assume that the user query (queries) is an entity(entities), e.g., person,
product, or companiy, etc. It is used to identify the entity cluster which the user
is interested in. For the first step, the competitive entities that should have some
features in common with the query (queries) are automatically discovered. For
example, given the name of digital camera (e.g. “FinePix”) as the query, the
system finds its competitors (e.g. “IXY DIGITAL” and “EXILIM” etc.) which
have the same features (e.g. price, design, or weights etc). Comparative relations
among the collected entities including the query (queries) are then extracted.
(The definition of “comparative relation” is described in Sec. 3.1.)

The second step generates a graph wherein each node corresponds to an en-
tity, and each edge expresses the relation between two entities is generated. The
relation between entities(nodes) is induced by the collection of the comparative
relations extracted in the first step. The graph structure models the behavior of
the “Potential Customer” who shops around for a better entity. Finally, central-
ity values for a given generation graph are then computed.

3.1 The Definition

A comparative sentence expresses an ordering relation between two entities.
According to related work[7][8], English comparative sentence can be catego-
rized into the four types; (1)Non-Equal Gradable (2)Equative (3) Superlative
(4)Non-Gradable. Our research focus only on (1), they express a total ordering
of some entities with regard to certain features, because it typically expresses
user preference and represents important information in measuring the value of
an entity. Type (1) comparative sentences are expressed by the comparative re-
lation:R = {entity1,entity2,feature,opinion}. An entity can be a product name,
a person name, etc. Two entities are ranked according to a feature. An opinion
word is a expression of the user’s evaluation. The target of the opinion is entity1

Ranking Entities Using Comparative Relations 127

and the other is entity2. For example, “The quality of A is clearer than that
of B” is expressed by R={A,B,quality,clear}. This paper proposes a method for
extracting entity1, entity2 and opinion; future work includes the extraction of
features.

3.2 Comparative Relation Extraction

A method for extracting the comparative non-equal gradable relations as defined in
the previous section is described. In English linguistics, comparative sentences are
expressed with specialized morphemes (e.g. “more”,“most”,“-er”,“-est’, or etc.).
Likewise, Japanese comparative sentences use special language phrases (e.g.
“yori”, “ni kurabe”, or etc.). The most typical Japanese comparative sentence has
entity1 and entity2 appearing in the special pattern (e.g. “X no hou ga Y yori yoi
(X is better than Y)”). These patterns are useful in identifying comparative sen-
tences and the components of the comparative relations. However, those special
patterns, in most cases, are only used to express either entity1 or entity2; other en-
tities appear only in broad coverage noisy patterns that extract both many correct
and incorrect entities. For example, both enitity1 and a feature can appear with
the same particle “ha” or “ga” (e.g. “X ha Y yori yoi”). Accordingly, using these
generic patterns increases system recall while reducing precision. The proposed al-
gorithm takes as input a seed query (a few seed queries) and iteratively collects en-
tities identified by reliable results (i.e. both entity1 and entity2 are extracted since
they occur on one of the special language patterns of comparative sentences). The
collected entities are then used to (1) extract the comparative relations among the
competitors of the query (i.e. entity1 and entity2 must be competitors), and (2)
offset the limited coverage of generic patterns.

LanguagePatternMatching. Each document is first morphologically analysed
(whether the word is a noun,verb, etc) and separated into sentence segments by ’.’,
’,’, etc. Each sentence segment is converted into data as listed below:
t = [word1/morpheme1][word2/morpheme2]...[wordp/morphemep]

Language patterns are then used to match and identify entity1, entity2, and the
opinion from the source data after morphological analysis. The language patterns
used for extraction are manually prepared. For each pattern, words that match
“*” are extracted. The patterns of entity1 and entity2 are categorized as listed
below by their reliability in identifying each component of the relation.

– Special language patterns of comparative sentences that can identify each
component of a comparative relation with high precision/ low recall.

– Ambiguous language patterns that identify each component of the compar-
ative relation with low precision/ high recall.

For each component of the relation, two or more candidates can be extracted
from a sentence. We denote the candidate words of entity1 by x(t)={< x1, F (x1) >
, .., < xn, F (xn) >}, where xi is a word. F (x) is 1 if x is extracted by a special

128 T. Kurashima et al.

pattern, otherwise F (x) is 0. In the same way, the candidate words of entity2 are
denoted by y(t)={< y1, F (y1) >, .., < ym, F (ym) >}; the candidate words of the
opinion are denoted by z(t)={z1, , .., zo}.

Finding the Competitive Entities. The competitors of the query are ex-
tracted using the results of pattern matching. Let Q0 be a set of queries, Q be
a set of words expanded from Q0 in this step, and T be a set of the data after
pattern matching. We first set query Q0 to Q. The algorithm takes the seed and
then iteratively expands it using the data after pattern matching, where both
entity1 and entity2 are extracted by a special pattern. For each t in T , if either
entity1 or entity2 is not in Q but the other is in it, an entity not in Q is added to
Q because it is the competitor of the query with high probability. The scanning
of T is repeated several times until no further entity is added to Q.

Example 1. We have Q0={A, B} and the five pieces of data after pattern
matching as listed below:

t1: x(t1)={< C, 1 >, < F, 0 >}, y(t1)={< E, 1 >},
t2: x(t2)={< H, 1 >, < D, 0 >}, y(t2)={< G, 1 >},
t3: x(t3)={< A, 1 >}, y(t3)={< C, 1 >, < D, 0 >},
t4: x(t4)={< E, 0 >}, y(t4)={< B, 1 >}.
t5: x(t5)={< E, 1 >}, y(t5)={< C, 0 >, < D, 0 >}.

Let Qi be Q after the ith scan (Q0 are seed entities). At the first scan, C is
added to Q0 (i.e. Q1 = {A, B, C}) because t3 meets the conditions; F (A) = 1,
F (C) = 1, A ∈ Q0, and C /∈ Q0. At the second scan, E is added to Q1 (i.e.
Q2 = {A, B, C, E}) because t1 meets the conditions; F (C) = 1, F (E) = 1, C
∈ Q1, and C /∈ Q1. At the third scan, no other entity can be added to Q. The
result of the example is Q = {A, B, C, E}.

Identifying Each Item of the Comparative Relation. We assume that a
sentence has one comparative relation at most, and each comparative relation
has one entity1, one entity2, and one opinion at most. For each t, the collection
of Q is then applied to match x(t) and y(t) to choose one as the component
of the comparative relation from several candidate words. For t1, t2 and t3 in
Example 1, this matching process selects C in x(t1), E in y(t1), A in y(t3) and
C in y(t3). For t4 and t5, E in x(t4) and C in y(t5) are also selected although
neither of them appear in the special patterns. This step increases the precision
of the extracted comparative relation while keeping recall high.

Opinion is also choosed from z(t) by matching words stored in the opinion
dictionary whose entries are word, morpheme, and its PN(positive, negative,
or neutral) (e.g. {good,adjective,positive}). The PN is added to each relation
at the same time. If two or more opinion words are obtained by this matching
process, the word closest to the end of the sentence is considered first. Thus the
data after this step is a set of {x,y,z,PN}, where x ∈ x(t), y ∈ y(t), z ∈ z(t), and
PN is positive, negative or neutral.

Ranking Entities Using Comparative Relations 129

3.3 Generation Graph Based on the Potential Customer Model

In this section, we create a graph structure, where each node represents an
entity and each edge represents a relation between two entities. The following
subsections describe each of these steps in more detail.

Summarizing the Results of Comparative Relations. Preprocessing of
graph-based analysis, the results of comparative relations extracted in the previ-
ous section should be summarized. Let N be the total number of entities(nodes).
Sij is the total number of comparative relations that indicate that entity(node)
Vi is superior to entity(node) Vj . Gi is the total number of entities(nodes) asso-
ciated with Vi (i.e. the total number of neighbor nodes of Vi). When Sij > Sji,
we consider that Vi defeats Vj . Wi is the total number of victories out of Gi

(Wi ≤ Gi). These values are calculated.

Modeling the Behavior of Potential Customer. The proposed graph mod-
els the behavior of the “Potential Customer” who shops around for the best entity
by referring to the comparatives. The customer starts by looking at one product
(entity) and then proceeds to look at its competitors (entities). The customer’s
next choice depends on the comparative merit and demerit of the current entity
and the other entity. The better the entity is compared to the current entity, the
more likely it is that the customer will choose it. These transition probabilities
define a Markov chain between the entities. Our graph also considers self tran-
sition. If there are few competitors that are superior to the current product, self
transition probability is high (i.e. when there is a large number of products that
are superior, self transition is low). We denote Aij as the transition probability
from node Vi to node Vj . Matrix A is calculated by the following equation.

Aij =
Bij∑N

k=1 Bik

Bij =

⎧⎪⎨
⎪⎩

α
Sji

Sji+Sij
if i = j

β W (i)
G(i) if i = j

0 if i = j and Sij = 0 and Sji = 0

The probability of a transition to a neighbor node is calculated by the value
of S (if i = j) and self transition is calculated by the value of W and G (if i = j).
Parameters α and β assign a numeric weighting and they are used to control
their contribution ratios. Matrix A is finally calculated after normalization of
matrix B to ensure that the sum of probability from each node is 1.

Example 2. We have nodes V ={a,b,c,d} and S as listed below;

Sab=1, Sba=3, Sac=4, Sca=2, Sad=1, Sda=2

Sab=1 indicates that the total number of comparative relations that express
that “a is superior to b”(a > b) is 1. Fig. 1 shows how to calculate the transition
probability from node A to a neighbor node, and Fig. 2 shows how to calculate
the self transition probability of node a.

130 T. Kurashima et al.

Fig. 1. How to calculate the probability
of the transition to the neighbor node

Fig. 2. How to calculate the probability
of self transition

3.4 Computing Graph Centrality

The graph centrality score is calculated in order to measure the relative impor-
tance of an entity within its related entity cluster. The importance(score) of node
Vj is determined by Vi of those links connected to Vj . An entity is important if
it is superior to an other important entity. The equation is as follows.

S(Vj) = (1 − d) × Σ(Aij × S(Vi)) + d

The definition is similar to PageRank[9], which uses a link analysis algorithm
based on graph structure to find important web pages, in the following respect:
it uses jumping factor d. The jumping factor is the probability that the user
will stop visiting neighbor nodes and instead randomly visit any node in the
graph. However, it differs from PageRank in the following respect: each edge
in the graph has a weight. The calculated score of the entity is a probability
distribution that represents the likelihood that a potential customer who shops
around for a better product will arrive at any product.

4 Evaluation

We evaluated our proposed method using a prototype system based on the im-
plementation described in the previous section. The system crawls the Web and
collects blog entries or customer reviews. The text documents were morphologi-
cally analyzed using the JTAG morphological analyzer [10].

4.1 Evaluation of Comparative Relation Extraction

This section evaluates our proposed algorithm in extracting entity1 and entity2.
We assumed that the user query, Q0, asked for 5 movies that were screened in
October 2006 and collected 100 consumer reviews for each of the movies (500
movie reviews in total). The correct data sets were manually labeled by 3 human
labelers. Conflicts were resolved by majority vote. 63 documents actually con-
tained comparative sentences. The total number of entity1 and entity2 were 40
and 76 respectively. The comparative relations were extracted using the proposed
algorithm. We then evaluated the results in terms of the precision, recall and
F-Measure of entity1 and entity2, and observed how each step of the algorithms
listed below improved the precision, recall and F-measure.

Ranking Entities Using Comparative Relations 131

Table 1. The results of evaluation for extracting entity1 and entity2

(1) (1)+(2) (1)+(3) (1)+(2)+(3)

Precision 0.377 0.833 0.333 0.714
entity1 Recall 0.725 0.500 0.100 0.625

F-Measure 0.496 0.625 0.154 0.667
Precision 0.737 1.000 0.889 0.981

entity2 Recall 0.737 0.592 0.105 0.684
F-Measure 0.737 0.744 0.188 0.806

(1) Language pattern matching
(2) Identifying item using Q (Q is expanded from Q0)

Tab. 1 shows the evaluation result. It shows that step (2) improved the F-
measure of entity1 and entity2 because it increased the precision while keeping
the recall relatively-high. In particular, the results of entity1 were improved
dramatically (F-measure of entity1 increased from 0.496 to 0.625) because many
ambiguous patterns(low precision/ high recall) identified entity1.

In most real world documents, the same entity was described in different
words. For example, “M:i:3”,“M:I:3”, and “Mission Impossible 3” all refer to
the same movie. Our method can identify these synonyms successfully. To prove
this, we collected the formal movie names screened in Japan between January
1th 1995 and December 31 2006 and step(3) listed below is also shown.

(3) Identifying item using M(M is a collection of formal movie names)

The low recall of the combination of (1) and (3) indicates that the formal
movie names are used infrequently while their synonyms are used frequently.
The combination of (1), (2), and (3) yields the best F-measure because (3)
improves the recall of (1)+(2) (although in many cases it is difficult to prepare
them (e.g. person names, product names, etc.).

4.2 The Results of Movie Ranking and Visualization

We show an example of movie ranking and visualization based on the graph
structure and centrality score. We collected blog entries entered between 1th May
2006 and 31th January 2007 using an existing blog search engine[11]. “The Da
Vinci Code” which was screened in Japan from May 2006 was set as the query
of our system. After finding the competitors, we obtained 179 titles in total
and actually extracted their comparative relations(2326). The movie ranking
results are indicated in Tab. 2. As shown, the Japanese movie “MEMORIES OF
MATSUKO” had the top centrality score. The reason why the “MEMORIES
OF MATSUKO” gets high score is that the score is propagated from entities
with relatively high score such as the entity, “LIMIT OF LOVE -UMIZARU-”
or etc. The total number of comparative relations that indicate “MEMORIES
OF MATSUKO” is superior to “The Da Vinci Code” is 9 (out of the total of

132 T. Kurashima et al.

Table 2. The results of movie ranking (query is “The Da Vinci Code”, a numeric
weighting of trasition possibility to other node is 1.0, self trasition possibility is 1.0,
jumping factor d is 0.3)

Rank Movie Title Centrality Score

1 MEMORIES OF MATSUKO 0.3572

2 Tales from Earthsea 0.3179

3 LIMIT OF LOVE -UMIZARU- 0.2782

4 Pirates of the Caribbean: Dead Man’s Chest 0.2646

5 DEATH NOTE 0.2520

6 M:i:III 0.1880

7 The Girl Who Leapt Through Time 0.1835

8 The Da Vinci Code 0.1742
9 The Devil Wears Prada 0.1733

10 Over The Hedge 0.1654

Fig. 3. The visualized results of relations among movies (a numeric weighting of
transition possibility to other node is 1.0, self transition possibility is 1.0, jumping
factor d is 0.3)

11 comparative relations). The movie titles which are ranked ahead of “The Da
Vinci Code” tend to be the movies which are directly compared and superior to
the query. Another reason is that “MEMORIES OF MATSUKO” has high self
transition probability (its record is 17 victories and 6 defeats) while the query
has low self transition probability(its record is 5 victories and 23 defeats).

Fig. 3 shows an example of visualization based on the graph structure and
centrality score. In this visualization, we used Yamada’s method[12] and the
centrality scores are plotted on the 3rd dimension. The white spheres in the
graph correspond to nodes and the lines between them correspond to edges.

Ranking Entities Using Comparative Relations 133

Edge direction is represented by color; the “from” side is light and the “to” side
is dark. Two-way edges are white. This ranking and visualization enables the
person to understand the relationships between “The Da Vinci Code” and its
competitors, and the its relative importance.

5 Conclusion

This paper introduced a method for ranking: mining the importance of an en-
tity (e.g. product, person, company, etc.) relative to its competitors by using
comparative relations. There are two technical contributions:

– An algorithm is proposed that can accurately find competitive entities by
using the results of reliable pattern matching.

– A graph structure is proposed to model the behavior of the “Potential Cus-
tomer” who shops around for a better entity.

The results of experiments on actual Web-sourced data showed that the system
can extract relevant comparative relations for various movies with relatively high
precision. Our future work includes additional evaluations with other types of
queries (person or company). Feature extraction is another research interest.

References

1. Liu, B., Hu, M., Cheng, J.: Opinion Observer: Analyzing and Comparing Opinions
on the Web. In: Proc. of WWW 2005, pp. 342–351 (2005)

2. Hu., M., Liu, B.: Mining and Summarizing Customer Reviews. In: Proc. of KDD
2004, pp. 168–177 (2004)

3. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In: Proc. of ACL 2002, pp. 417–424 (2002)

4. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using
Machine Learning Techniques. In: Proc. of EMNLP 2002, pp. 76–86 (2002)

5. Dave, K., Kawrence, S., Pennock, D.: Mining the Peanut Gallery: Opinion Extrac-
tion and Sentiment Classification of Product Reviews. In: Proc. of WWW 2003,
pp. 519–528 (2003)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. of VLDB 1994, pp. 487–499 (1994)

7. Jindal, N., Liu, B.: Mining Comparative Sentences and Relations. In: Proc. of
AAAI 2006, pp. 1331–1336 (2006)

8. Jindal, N., Liu, B.: Identifying Comparative Sentences in Text Documents. In:
Proc. of SIGIR 2006, pp. 244–251 (2006)

9. Brin, S., Page, L., Motwami, R., Winograd, T.: The PageRank Citation Rank-
ing: Bringing Order to the Web, Technical report, Computer Science Department,
Stanford University (1998)

10. Fuchi, T., Takagi, S.: Japanese Morphological Analyzer using Word Co-occurence-
JTAG. In: Proc. of ACL-COLING 1998, pp. 409–413 (1998)

11. goo Blog, http://blog.goo.ne.jp/
12. Yamada, T., Saito, K., Ueda, N.: Cross-Entropy Directed Embedding of Network

Data. In: Proc. of ICML 2003, pp. 832–839 (2003)

http://blog.goo.ne.jp/

Query Recommendation Using Large-Scale Web

Access Logs and Web Page Archive

Lin Li1, Shingo Otsuka2, and Masaru Kitsuregawa1

1 Dept. of Info. and Comm. Engineering, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

{lilin, kitsure}@tkl.iis.u-tokyo.ac.jp
2 National Institute for Materials Science

1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
otsuka.shingo@nims.go.jp

Abstract. Query recommendation suggests related queries for search
engine users when they are not satisfied with the results of an initial in-
put query, thus assisting users in improving search quality. Conventional
approaches to query recommendation have been focused on expanding
a query by terms extracted from various information sources such as a
thesaurus like WordNet1, the top ranked documents and so on. In this
paper, we argue that past queries stored in query logs can be a source
of additional evidence to help future users. We present a query recom-
mendation system based on large-scale Web access logs and Web page
archive, and evaluate three query recommendation strategies based on
different feature spaces (i.e., noun, URL, and Web community). The ex-
perimental results show that query logs are an effective source for query
recommendation, and the Web community-based and noun-based strate-
gies can extract more related search queries than the URL-based one.

1 Introduction

Keyword based queries supported by Web search engines help users conveniently
find Web pages that match their information needs. A main problem, however,
occurs for users: properly specifying their information needs through keyword-
based queries. One reason is that queries submitted by users are usually very
short [8]. The very small overlap of the query terms and the document terms
in the desired documents will retrieve Web pages which are not what users are
searching for. The other reason is that users might fail to choose terms at the
appropriate level of representation for their information needs. Ambiguity of
short queries and the limitation of user’s representation give rise to the problem
of phrasing satisfactory queries.

The utilization of query recommendation has been investigated to help users
formulate satisfactory queries [1,3,4,8,9,10]. For example, new terms can be ex-
panded to the existing list of terms in a query and users can also change some

1 http://wordnet.princeton.edu/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 134–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Query Recommendation Using Large-Scale Web Access Logs 135

or all the terms in a query. We summarize the main process of query recommen-
dation in the following three steps:

1. choosing information sources where most relevant terms as recommendation
candidates can be found, given a current query;

2. designing a measure to rank candidate terms in terms of relatedness;
3. utilizing the top ranked relevant terms to reformulate the current query.

The selection of information sources in the first step plays an important role for
an effective query recommendation strategy. The general idea of existing query
recommendation strategies [3,4,9,10] has focused on finding relevant terms from
documents to existing terms in a query based on the hypothesis that a frequent
term from the documents will tend to co-occur with all query terms. On the
Web, this hypothesis is reasonable, but not always true since there exists a large
gap between the Web document and query spaces, as indicated by [4] which
have utilized query logs to bridge the query and Web document spaces. In this
paper, different from the above researches, we think that past queries stored
in the query logs may be a source of additional evidence to help future users.
Some users who are not very familiar with a certain domain, can gradually refine
their queries from related queries that have been searched by previous users, and
hence get the Web pages they want.

In this paper, we present and evaluate a query recommendation system using
past queries that provide a pool of relevant terms. To calculate the relatedness
between two queries, we augment short Web queries by three feature spaces,
i.e., noun space, URL space, and community (community means Web commu-
nity in this paper) space respectively. The three feature spaces are based on
Web access logs (the collected 10GB URL histories of Japanese users selected
without static deviation) and a 4.5 million Japanese Web page archive. We pro-
pose a query recommendation strategy using a community feature space which
is different from the noun and URL feature spaces commonly used in the lit-
erature [1,3,4,8,9]. The evaluation of query recommendation is labor intensive
and it is not easy to construct an object test data set for it at current stage.
An evaluation is carefully designed to make it clear that to which degree differ-
ent feature based strategies add value to the query recommendation quality. We
study this problem and provide some preliminary conclusions. The experimental
results show that query logs are an effective source for query recommendation,
and community-based and noun-based methods can extract more related search
keywords than the URL-based one.

The rest of this paper is organized as follows. Firstly, we introduce three
query recommendation strategies in Section 2. Then, we describe the details of
experiment methodology and discuss the experimental results in Section 3 and
Section 4 respectively. Lastly, we conclude our work in Section 5.

2 Query Recommendation Strategies

The goal our recommendation system is to find the related past queries to a cur-
rent query input by a Web user, which means we need to measure the relatedness

136 L. Li, S. Otsuka, and M. Kitsuregawa

between queries and then recommend the top ranked queries. Previous queries hav-
ing common terms with the input query are naturally recommended. However,
it is possible that queries can be phrased differently with different terms but for
the same information needs while they can be identical but for the different infor-
mation needs. To more accurately measure relatedness between two queries, most
of existing strategies augment a query by terms from Web pages or search result
URLs [1,5,8]. We think that the information related to the accessed Web pages by
Web users are useful sources to augment original queries because the preferences of
a user are reflected in form of her accesses. One important assumption behind this
idea is that the accessed Web pages are relevant to the query. At the first glance,
although the access information is not as accurate as explicit relevance judgment
in the traditional relevance feedback, the user’s choice does suggest a certain level
of relevance. It is therefore reasonable to regard the accessed Web pages as relevant
examples from a statistical viewpoint.

2.1 Three Feature Spaces for Query Recommendation

Given these accessed Web pages, we define three feature spaces as noun space,
URL space, and community space to augment their corresponding Web queries
and then estimate the relatedness between two augmented queries.
Noun Space. As we know, nouns in a document can more accurately repre-
sent the topic described by the document than others. Therefore, we enrich a
query with the nouns extracted from the contents of its accessed Web page sets,
which intends to find the topics hidden in the short query. Our noun space is
created using ChaSen, a Japanese morphological analyzer 2. Since we have al-
ready crawled a 4.5 million Japanese Web page archive, we can complete the
morphological analysis of all the Web pages in advance.
URL Space. The query recommendation strategy using the noun feature space
is not applicable, at least in principle, in settings including: non-text pages like
multimedia (image) files, documents in non-HTML file formats such as PDF and
DOC documents, pages with limited access like sites that require registration and
so on. In these cases, URLs of Web pages are an alternate source. Furthermore,
because the URL space is insensitive to content, for online applications, this
method is easier and faster to get recommendation lists of related past queries
than the noun feature space. Our URL space consists of the hostnames of ac-
cessed URLs in our Web logs. The reason that we use hostnames of URLs will
be explained in Sectioin 3.2.
Community Space. The noun and URL spaces are straightforward and com-
mon sources to enhance a query. In this paper, we utilize the Web community
information as another useful feature space since each URL can be clustered into
its respective community. The technical detail of creating community is in our
previous work [7] which created a web community chart based on the complete
bipartite graphs, and extracted communities automatically from a large amount

2 http://chasen-legacy.sourceforge.jp/

Query Recommendation Using Large-Scale Web Access Logs 137

Query W eb server
(Apache)

1 2 Relatedness

bank deposit 0.80
bank Asahi bank 0.70
bank Pay off 0.74

Query

Result
W eb server sorts

relatedness in ascending order
at each feature space.

noun com URL
0.95
0.90
0.30

0.85
0.30
0.00

Recommendation
Data

 L ogs
Data

Web C ommunity
Data

Web Archive
Data

Recommendation Data
was created in advance.

Result

Query

Query Query

Query

Web User

Web

the value of

Fig. 1. The architecture of our system

of web pages. We labeled each Web page by a community ID. As thus, these
community IDs constitute our community space.

2.2 Relatedness Definition

In this section we discuss how to calculate relatedness between two queries en-
riched by the three feature spaces. The relatedness is defined as

Rqx,qy =

∑
ei∈qx&ei∈qyfqx (ei)

+
∑

ei∈qx&ei∈qyfqy (ei)

2
,

where qx and qy are queries, and Rqx, qy is the estimated relatedness score be-
tween qx and qy. Let Q = {q1, q2, . . . , qx, . . . , qn} be a universal set of all search
queries where n is the number of total search queries. We augment the query
qx by adding one of the three feature spaces(i.e., noun, URL, and community
ID), denoted as: qx = {e1, e2, . . . , ex, . . . , em} where ex is an element of the used
feature space and m is the total number of elements. The frequencies of elements
in a query are denoted as fqx = {fe1 , fe2 , . . . , fex , . . . , fem} for a single feature
space. For URL space, we can get the frequencies of URLs visited by different
users using access information in our Web logs.

In addition, we create an excluded set which stores the highly frequent ele-
ments of URLs, communities and nouns contained in accessed Web page sets.
For example, the highly frequent elements of URLs are Yahoo!, MSN, Google
and so on, and the highly frequent elements of nouns are I, today, news and so
on. We exclude a highly frequent element eh from the frequency space of fqx if
the number of the test queries which feature spaces include eh are more than
half of the number of all the test queries used in our evaluation.

3 Experiment Methodology

3.1 Our System Overview

The goal of our query recommendation system is to find the related queries
from past queries given an input query. Figure 1 shows a sketch of the system
architecture consisting of two components. One is “Web Server(Apache)” where a

138 L. Li, S. Otsuka, and M. Kitsuregawa

(1) (2) (3) (4)

(Noun space)

(C ommunity space)

(UR L space)

(Noun space)

(Community space)

(UR L space)

" major consumer product mak er" " M izuho bank " " exchange rate" " Sony bank "
" unification of the bank s" " Sony" " foreign currency deposits" (nam ancial commodity)
" K oizumi cabinet inauguration" " rate" " megabank " (name) (name of financial commodity)
" deposit" " H itachi" " M izuho" (bank name) " J apanese-E nglish dictionary"
" restructure" " pay off" " Y en rate" " my car loan"

" deposit" " combative sport" " M izuho" (bank name) " exchange rate"
" A sahi bank " " national athletic meet" " my car loan" " bank ruptcy information"
" welfare fixed deposit" " advanced payment" " Saltlak e" (city name) " Y amanashi C huo bank "
" toto" (football lot) (a name of public lottery) " break -even point" " Suito shink in bank "
" K umik o E ndo" " announcer" " beauty" " Dai-I chi K angyo bank "

" K umik o E ndo" " national athletic meet" " Saltlak e" (city name) " traffic jam information"
" T azawa lak e" (company name) " marathon" " cherry tree"
" deposit" " announcer" (company name) " M izuho" (bank name)
" combative sport" " traveler's check " " cellular phone" " bulletin board" (company name)
" K awabe" " cleanness freak " " wine" " Syunsuk e Nak amura"

bank interest
bank comparison
bank rank ing
bank business hours
bank grading
bank charge
bank transfer charge
bank code
bank transfer
bank interest comparison

ofe

Google Suggestion

fin
of financial commodity

Fig. 2. The user interface of our system

user interactively communicates with our system. The user inputs a query to the
Web server, and then the Web server returns the list of related past queries to her.
The other is “Query Recommendation Data” storing the recommendation results
of the three strategies discussed in Section 2. Our Web logs, Web community, and
Web page archive data ensure the richness of information sources to augment
Web queries. The interface of our query recommendation system is illustrated
in Figure 2. A user can input a search query in Figure 2(1) while the related
queries recommended by the component “Query Recommendation Data” are
shown below and divided by using different feature spaces. Then, the user can
choose one recommended query to add or replace the initial query and submit
the reformulated query to a search engine selected from a dropdown list as
shown in Figure 2(2). Finally, the search results retrieved by the selected search
engine are listed in the right part. Furthermore, in Figure 2(3), there are two
slide bars which can adjust the lower and upper bounds of relatedness scores.
For each feature space, the maximal number of recommended queries is 20. If
the user wants more hints, she can click a button shown in Figure 2(4) to get
more recommended queries ordered by their relatedness scores with the initial
query. The more the recommended query is related to the initial query, the
query is displayed as a deeper red. Figure 2 presents recommendation of the
query “Bank” as an example. Since in this study we utilize Japanese Web data,

Query Recommendation Using Large-Scale Web Access Logs 139

U serID AccessTime R efSec U R L
1 2002/9/30 00:00: 00 4 http://www.tkl .iis.u-tokyo.ac.jp/welcome_j.html
2 2002/9/30 00:00: 00 6 http://www.jma.go.jp/JM A_H P/jma/index.html
3 2002/9/30 00:00: 00 8 http://www.kantei.go.jp/
4 2002/9/30 00:00: 00 15 http://www.google.co.jp/
1 2002/9/30 00:00: 04 6 http://www.tkl .iis.u-tokyo.ac.jp/K ilab/W elcome.html
5 2002/9/30 00:00: 04 3 http://www.yahoo.co.jp/
6 2002/9/30 00:00: 05 54 http://weather.crc.co.jp/
2 2002/9/30 00:00: 06 11 http://www.data.kishou.go.jp/maiji/
3 2002/9/30 00:00: 08 34 http://www.kantei.go.jp/new/kousikiyotei.html
5 2002/9/30 00:00: 07 10 http://search.yahoo.co.jp/bin/search? p=% C 5% B 7% B 5% A4

2002/9/30 00:00: 10 300 http://www.tkl .iis.u-tokyo.ac.jp/K ilab/Members/members-j.html5

Fig. 3. A part of our panel logs (Web access logs)

the corresponding English translation is in the bottom of this figure. If some
queries are only available in Japanese, we give a brief English explanation. For
example, the query “Mizuho” is a famous Japanese bank.

3.2 Data Sets

Web Access Logs. Our Web access logs, also called “panel logs” are provided
by Video Research Interactive Inc. which is one of Internet rating companies.
The collecting method and statistics of this panel logs are described in [6]. Here
we give a brief description. The panel logs consist of user ID, access time of
Web page, reference seconds of Web page, URL of accessed Web page and so on.
The data size is 10GB and the number of users is about 10 thousand. Figure 3
shows the details of a part of our panel logs. In this study, we need to extract
past queries and related information from the whole panel logs. We notice that
the URL from a search engine (e.g., Yahoo!) records the query submitted by a
user, as shown in Figure 3(a). We extract the query from the URL, and then the
access logs followed this URL in a session are corresponding Web pages browsed
by the user. The maximum interval to determine the session boundary is 30
minutes, a well-known threshold [2] such that two continuous accesses within 30
minutes interval are regarded as in a same session.

Japanese Web Page Archive. The large-scale snapshot of a Japanese Web
page archive we used was built in February 2002. We crawled 4.5 million Web
pages during the panel logs collection period and automatically created 17 hun-
dred thousand communities from one million selected pages [7]. Since the time of
crawling the Web pages for the Web communities is during the time of panel logs
collection, there are some Web pages which are not covered by the crawling due
to the change and deletion of pages accessed by the panels. We did a preliminary
analysis that the full path URL overlap between the Web access logs and Web
page archive is only 18.8%. Therefore, we chopped URLs to their hostnames and
then the overlap increases to 65%.

3.3 Evaluation Method

We invited nine volunteers(users) to evaluate the query recommendation strate-
gies using our system. They are our lab members who usually use search engines
to meet their information needs. We also compare these strategies with the query

140 L. Li, S. Otsuka, and M. Kitsuregawa

Table 1. Search queries for evaluation

Test Query Accessed Web Pages Group Test Query Accessed Web Pages Group
lottery 891 A bank 113 C
ring tone 446 B fishing 64 A
movie 226 C scholarship 56 B
hot spring 211 A university 50 C
soccer 202 B

Table 2. Evaluation results of our query recommendation system

Relevance of queries Noun space Community space URL space
irrelevant 0.037 0.244 0.341
lowly relevant 0.043 0.089 0.107
relevant 0.135 0.131 0.106
highly relevant 0.707 0.480 0.339
relevant and highly relevant 0.843 0.611 0.444
un-judged 0.078 0.056 0.107

recommendation service supplied by Google search engine. Nine test queries used
in our evaluation are listed in Table 1. The total number of queries evaluated by
users are 540 because they evaluate the top 20 of recommended queries accord-
ing to their relatedness values on each of the three feature spaces 3. To alleviate
the workload on an individual user, we divided the nine users to three group
(i.e., A, B, and C) as shown in Table 1. We ask each group to give their rele-
vance judgments on three queries. The relevance judgment has five levels, i.e.,
irrelevant, lowly relevant, relevant, highly relevant, and un-judged.

4 Evaluation Results and Discussions

4.1 Comparisons of Query Recommendation Strategies

The evaluation results of the recommended queries related with all search queries
are shown in Table 2 where each value denotes the percentage of a relevance
judgment level on each feature space. For example, The value with the “highly
relevant” judgment using noun space is 0.707 which means the percentage of
the “highly relevant” judgment chosen by the users in all recommended queries4

using the noun based strategy.
In Table 2, when the noun space based strategy is applied, there are more rec-

ommended queries evaluated “highly relevant” and fewer queries evaluated “irrel-
evant” than the other two feature spaces. Furthermore, if we combine the “highly
relevant” judgments and the “relevant” judgments, we still gain the best results in
the noun space while the percentage of the recommended queries judged as “irrele-
vant” using the URL space (i.e., 0.341) is higher than those using other two spaces.
In the community space, there are many recommended queries evaluated “highly

3 9 search queries * 20 recommended queries * 3 feature spaces = 540 evaluated queries.
4 9 search queries * 20 recommended queries = 180 evaluated queries.

Query Recommendation Using Large-Scale Web Access Logs 141

relevant” and “relevant”. Although the community based strategy produces less
related queries than the noun based strategy, it is more than the URL based strat-
egy. By using the URL space, the number of recommended queries judged as “irrel-
evant” is more than that of queries judged as “highly relevant” (e.g., “irrelevant”
vs. “highly relevant” = 0.341 vs. 0.339 in Table 2). In general, the noun and commu-
nity spaces can supply us with satisfactory recommendation while the URL space
based strategy cannot stably produce satisfactory queries related to a query.

4.2 Case Study with “Google Suggestion”

We compare the result of our case study in Figure 2with the query recommendation
service provided by Google Suggestion. In Figure 2 our system presents some good
recommended queries related to bank in the noun and community spaces such as
“deposit”, “my car loan”, “toto” and so on that are not given by Google Suggestion.

5 Conclusions and Future Work

In this paper, we design a query recommendation system based on three feature
spaces, i.e., noun space, URL space, and community space, by using large-scale
Web access logs and Japanese Web page archive. The experimental results show
that the community-based and noun-based strategies can extract more related
search queries than the URL-based strategy. We are designing an optimization
algorithm for incremental updates of our recommendation data.

References

1. Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query
log. In: KDD, pp. 407–416 (2000)

2. Catledge, L., Pitkow, J.: Characterizing browsing behaviors on the world-wide web.
Computer Networks and ISDN Systems 27(6) (1995)

3. Chirita, P.-A., Firan, C.S., Nejdl, W.: Personalized query expansion for the web.
In: SIGIR, pp. 7–14 (2007)

4. Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y.: Query expansion by mining user logs.
IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)

5. Glance, N.S.: Community search assistant. In: IUI, pp. 91–96 (2001)
6. Otsuka, S., Toyoda, M., Hirai, J., Kitsuregawa, M.: Extracting user behavior by

web communities technology on global web logs. In: Galindo, F., Takizawa, M.,
Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 957–968. Springer, Hei-
delberg (2004)

7. Toyoda, M., Kitsuregawa, M.: Creating a web community chart for navigating
related communities. In: HT, pp. 103–112 (2001)

8. Wen, J.-R., Nie, J.-Y., Zhang, H.: Query clustering using user logs. ACM Trans.
Inf. Syst. 20(1), 59–81 (2002)

9. Xu, J., Croft, W.B.: Query expansion using local and global document analysis.
In: SIGIR, pp. 4–11 (1996)

10. Zhu, Y., Gruenwald, L.: Query expansion using web access log files. In: Andersen,
K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 686–695.
Springer, Heidelberg (2005)

Description Logic to Model a Domain Specific

Information Retrieval System

Säıd Radhouani1, Gilles Falquet1, and Jean-Pierre Chevalletinst2

1 CUI, University of Geneva, Genève, Switzerland
{radhouani,falquet}@cui.unige.ch

2 IPAL-CNRS, Institute for Infocomm Research, Singapore
viscjp@i2r.a-star.edu.sg

Abstract. In professional environments which are characterized by a
domain (Medicine, Law, etc.), information retrieval systems must be able
to process precise queries, mostly because of the use of a specific do-
main terminology, but also because the retrieved information is meant
to be part of the professional task (a diagnosis, writing a law text, etc.).
In this paper we address the problem of solving domain-specific precise
queries. We present an information retrieval model based on description
logics to represent external knowledge resources and provide expressive
document indexing and querying.

1 Introduction

Information Retrieval Systems (IRS) are nowadays very popular, mainly due to
the popularity of the Web. Most IRS on the Web (also called Search Engines)
are general purpose, they don’t take into account the specificities of the user
domain of activity. We think there is a need for domain-adapted IRS: once the
document domain is known, certain assumptions can be made, some specific
knowledge can be used, and users may then ask much more precise queries than
the usual small set of keywords in use for Web search engines.

In this work, we explore the modeling of precise search engines adapted to
professional environments which are characterized by a domain: medicine, com-
puter, law, etc. Each domain has its own terminology, i.e. its own set of terms
that denote a unique concept in the domain. For example, in the medical do-
main, “X-ray” means an image obtained by the use of X-ray radiations, whereas
in Physics domain, “X-ray” means the radiations only. In addition, users of-
ten have precise information needs that correspond to professional tasks such
as writing medical reports, writing articles about specific events or situations,
exploring a scientific question, etc.

In this context, the qualifier “precise” denotes a query that contains terms
from a domain specific terminology and have a non trivial semantic structure.
For example, a journalist would like to formulate the following query:

Query 1. Give me documents that deal with “the US politician who
won the 2007 peace Nobel prize”.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 142–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Description Logic to Model a Domain Specific Information Retrieval System 143

The journalist is looking for a politician whose nationality is US. A relevant
document can for instance contain the name “Al Gore” without necessarily con-
taining the terms “politician” and “US”. This document may not be found by
a system merely based on terms matching. A possible solution is to specify that
“politician” and “US” are not the terms the user is looking for, but rather a
description of the element of interest. For solving this query, the system needs
some domain knowledge in order to infer that “Al Gore” is a “Politician”
and that his nationality is “US”. The underlying query language must also be
able to allow the use of relationships for describing the user information need.
Another particular case is the use of operators in the query:

Query 2. Give me “images with a hip without any pathology”.

A relevant answer to this query must contain the hip and must not contain any
pathology1 affecting it. A relevant document may contain a hip without pathology
together with other parts of the human anatomy affected by pathologies. For this
reason, the retrieval process must ensure, that only documents containing hip
affected by pathologies are excluded. This can be expressed by using a semantic
relationship between the query descriptors: “hip” affected by “pathology”. We
need domain knowledge during the indexing process to precisely describe the
documents’ content and we also need a document language able to allow this
kind of description.

Regarding the requirements we have presented, an IR model capable to solve
precise queries must involve the following interdependent components:

External resource: Solving precise queries requires domain knowledge, no-
tably its specialised terminology and its semantic relationships.This knowl-
edge must be expressed in a knowledge representation language and stored
in an external2 resource such as an ontology;

Expressive document language: In order to allow retrieving documents for
precise queries, we need an expressive document language which allows to
incorporate semantic relationships and specialised terminology within their
content description;

Expressive query language: The expression of precise queries requires a query
language which allows the user to explicitly use: i) the specialized terminology
of his domain of interest; ii) the semantic relationships between his query de-
scriptors and iii) the desired operators.

The rest of this paper is structured as follows: In Section 2, we will present the
most significant approaches that use domain knowledge for information retrieval
(IR). Section 3 will be dedicated to the knowledge formalism we chose for our
modelling. In Section 4, we will define our IR model presenting the document
model and the query model in detail. Section 5 presents our conclusions and
perspectives to develop the proposed approach.
1 No dislocation, no fracture, etc.
2 ”External” because it models knowledge which are not present in the documents

(queries) to be processed, at least in an explicit and complete form.

144 S. Radhouani, G. Falquet, and J.-P. Chevalletinst

2 External Resource Based Information Retrieval

There are mainly two categories of approaches that use ERs for IR: conceptual
indexing [1][2][3] and query expansion [4][5][6]. Both of them require a disam-
biguation step to identify, from the ER, the concepts denoted by the words
within the document and the query [7][8].

The conceptual indexing consists in representing documents (queries) by
concepts instead of words [9][10][11]. Thus, during the retrieval process, the
matching between a query and a document is done based on a non-ambiguous
vocabulary (concepts). So far, the approaches based on this technique have not
shown significant improvement in terms of retrieval performance [9][12]. One
of the factors on which depends the retrieval performance is the method used
to “interpret” the semantic document (query) content. In existing approaches,
once the concepts have been extracted, the documents (queries) are considered
as “bags of concepts”. Therefore, the semantic relationships that may exist be-
tween the concepts they contain cannot be exploited. Consequently, the docu-
ments dealing with a subject close to that of the query could not be found with
these approaches. Some works have shown interest in the representation of doc-
uments by semantic networks that connect the concepts of the same document.
However, these networks are only used for disambiguation and not during the IR
process [9]. The query expansion is a possible solution to this problem [5][6][13].

The idea behind query expansion is to use semantic relationships in order to
enrich the query content by adding, from the ER, concepts that are semantically
related to those of the query [5][6][13][14]. Several works analysed this aspect, but
few have had positive results. In response to these failures, researchers proposed
to extend the queries in a “careful” manner by selecting some specific relation-
ships during the expansion process [4][9]. This manner allowed to improve the
retrieval performance [9], but the extended queries are again considered as bags
of concepts, and their structure is ignored during the retrieval process.

The existing approaches seem to be insufficient considering the requirements
that we have presented. Indeed, they treat documents and queries as bags of
concepts and do not sufficiently consider their structure. They are therefore
incapable to solve precise queries which have complex semantic structures.

3 Formalism for Knowledge Representation

Several formalisms have been used in the IR modeling, notably Semantic Trees[15],
Conceptual Graphs[16] and Description Logics (DLs)[17]. Taking into account our
requirements, we found out that DLs are particularly appropriate for modeling in
our context. Indeed, DLs allow to represent the three sources of knowledge (doc-
uments, queries and ER) with the same formalism, which ensures that all these
sources can participate in the IR process in a uniform and effective way. This for-
malism provides also a high level of expressiveness, which is particularly suitable
for the representation of precise information needs. Finally it offers a comparison
operation that can implement the matching function of the IRS.

Description Logic to Model a Domain Specific Information Retrieval System 145

Description logics [18][19] form a family of knowledge representation for-
malisms based on logic. The basic notions of DL are atomic concepts and atomic
roles. The concepts are interpreted as subsets of the individuals that constitute
the domain to be modelled. The roles, are interpreted as binary relationships be-
tween individuals. Each DL is caracterised by constructors provided for defining
complex concepts (resp. roles) from atomic concepts (roles).

Semantics. An interpretation I of a DL vocabulary (a set of atomic concepts
and atomic roles) is a pair (ΔI , .I) where ΔI is a non-empty set called the domain
of discourse of I, and .I is a function which associates to each concept C a set
CI ⊆ ΔI , and to each role R, a binary relationship RI ⊆ ΔI × ΔI .

According to our model’s requirements, we chose from existing DLs the At-
tributive Language with Complements and Qualified number restrictions (ALCQ)
language. The syntax and the semantic of the ALCQ language are presented in
table 1. Given an atomic concept c, an atomic role R and the concept descriptions
C and D, the interpretation of a complex concept is defined in table 1.

Table 1. Syntax and semantic of the ALCQ language

Syntax Semantic

c cI

 ΔI

¬C ¬CI = ΔI \ CI

⊥ ∅
C � D CI ∩ DI

C � D CI ∪ DI

∀R.C {d ∈ ΔI |∀ e ∈ ΔI(RI(d, e) → e ∈ CI)}
∃R.C {d ∈ ΔI |∃ e ∈ ΔI(RI(d, e), e ∈ CI)}
≥ nR.C {d ∈ ΔI | |{e|RI(d, e), e ∈ CI}| ≥ n}
≤ nR.C {d ∈ ΔI | |{e|RI(d, e), e ∈ CI}| ≤ n}

A DL knowledge base is comprised of a terminological component, the TBox,
and an assertional component, the ABox. The TBox is made of general concept
inclusion (GCI) axioms of the form C ≡ D or C � D where C and D are two
concept expressions. For instance,

Parent ≡ Person � ∃hasChild . Person.

The ABox contains assertions of the form C(a) and R(a, b) where C is a
concept and a and b are individual identifiers. For instance

Person(Jacques), P erson(Maria), hasChild(Jacques, Maria)

Subsumption. An interpretation I satisfies the GCI C � D if CI ⊆ DI . I
satisfiest the TBox T , if I satisfies all GCIs in T . In this case, I is called model
of T . A concept D subsumes a concept C in T if C � D in every model I of T .

146 S. Radhouani, G. Falquet, and J.-P. Chevalletinst

What makes many description logics particularly appealing is the decidability
of the subsumption problem, i.e. the existence of algorithms that test if a concept
subsumes another one.

4 Semantic Descriptors-Based Information Retrieval
Model

We showed in Section 2 that approaches which consider documents (queries) as
bags of concepts are insufficient to solve precise queries. Thus we propose to use
DL expressions to represent documents and in particular the relationships that
exist between the elements of a document.

4.1 The Semantic Descriptor: A New Indexing Unit

Any concept from the knowledge base may constitute a semantic descriptor
when it is used withing a document (query). A semantic descriptor is an ALCQ
expression which is intended to match as precisely as possible the concept to
which it is referred to in the document (query). This expression is a conjunction
of which at least one concept serves to identify the semantic descriptor. It can also
contain other concepts which serve to “refine” the description of the semantic
descriptor in question. Formally, a semantic descriptor S is of the form:

S ≡ didf � ∃ described by.C1 � · · · � ∃ described by.Cn

where cidf is the identifying concept and C1, . . . , Cn are the refining concepts.
The name described by represents a generic relationship; in practical applica-

tions it will be replaced by a relationship (role) of the knowledge base.
Example: In a document containing “The Brazilian Minister of Sports Pelé”,
the semantic descriptor is identified by “Pelé” and described by “Minister of
Sports” and “Brazil”. Formally, this semantic descriptor is of the form:

S ≡ Pelé � ∃Occupation.Minister of Sports � ∃Nationality.Brazil

4.2 Document and Query Representation

Each document doc (query q) is represented by a concept Rdoc (Rq) defined by
the conjunction of the semantic descriptors belonging to doc (q). In order to
represent the documents and the queries using semantic descriptors, we propose
to use the role indexed by, which allows to associate a semantic descriptor S to
a given document (query) doc (q) to be indexed (solved). Formally, the repre-
sentation R of a given document or query containing the semantic descriptors
{S1 . . . Sn} is an ALCQ expression of the form:

R ≡ ∃ indexed by.S1 � . . . � ∃ indexed by.Sn

Description Logic to Model a Domain Specific Information Retrieval System 147

After the indexing process, the documents index is comprised of the original
TBox extended by the Rdoc concepts. During the querying process, the TBox is
extended by the concept Rq.
Examples: Query 2 (Section 1) contains two semantic descriptors (hip, pathology
affecting a hip) and a negation (without). It is represented by:

RQ2 ≡ ∃ indexed by.Hip � ¬∃ indexed by. (Pathology � ∃affect.Hip)

The query “Give me an image containing Zidane alone” can be represented by

RQ3 ≡ ∃ indexed by.Martin Luther King � = 1 indexed by.Person

Retrieval Process: The retrieval process consists in selecting the documents
that satisfy the query requirements. In DL terms, the retrieval process can be
seen as a task to retrieve those documents represented by concepts that are sub-
sumed by the concept representing the corresponding query. Thus, the matching
between a query q and a document doc is done by verifying that Rdoc � Rq

is true within the knowledge base. Finally, the set of relevant documents for a
given query q is {doc |Rdoc �T Rq}.

The design of the used ER has a major impact on search result. Indeed, the
matching function based on the calculation of the subsumption can be very ben-
eficial when the ER is rich in terms of is-a relationship. Indeed, through the
algorithm that computes the subsumption, the use of DL offers a capacity of
reasoning that can deduce implicit knowledge from those given explicitly in the
TBox, and therefore help to retrieve relevant documents for a given query even
if they do not share any words with it. However, using only the subsumption
has some limits. Indeed, depending on the domain, the ER may be organized ac-
cording to different semantic hierarchies. For instance, in the geographic domain,
the geometric containment is probably one of the most important hierarchical
relationship. The same is true for human anatomy. For example, if a user looks
for a fracture in the leg, he or she will certainly consider a document dealing
with a pathology of the tibia as relevant. Thus the retrieval system must take
into account the part of hierarchy that exists within the human anatomy. One
way to solve this problem is to twist the subsumption relation and to represent
the part of hierarchy as a subsumption hierarchy. Thus implicitly stating, for
instance, that a tibia is a leg. In this approach, a query

Rq ≡ ∃indexed by . (Fracture � ∃ location . Leg)

will correctly retrieve a document described by

Rdoc ≡ ∃indexed by . (Fracture � ∃ location . T ibia)

because Rdoc � Rq if Tibia � Leg .
Using subsumption to mimic another relation may lead, in certain circum-

stances, to unexpected and conter-intuitive deductions. A “cleaner” and seman-
tically safer approach consists in defining transitive properties to represent the

148 S. Radhouani, G. Falquet, and J.-P. Chevalletinst

various types of hierarchies that may exist in a given domain. The above example
would then lead to the following descriptors:

Rq ≡ ∃indexed by . (Fracture � ∃ location . (∃part of.Leg)

Rdoc ≡ ∃indexed by . (Fracture � ∃ location . T ibia)

If an axiom specifies that part of is transitive and the definition of Tibia is of
the form “... � ∃part of.Leg”, then the reasoner will infer that Rdoc � Rq.

5 Conclusion

In order to solve precise queries, we proposed an information retrieval model
based on a new indexing unit: the semantic descriptor. A semantic descriptor
is defined by concepts and relationships, and serves to describe the semantic
documents and queries content. We defined our model using the Description
Logic, which allows a uniform precise representation of documents and queries.

In order to assess the feasibility of our approach, we conducted some expe-
riences (not described here) on a medical document collection. The obtained
results are very promising and confirmed that the use of DL has a very good
impact on the retrieval performance. Indeed, the DL offers the opportunity to
use background knowledge about a specific domain. Thus, during the querying
process we can benefit from the powerful reasoning capabilities a reasoner offers,
notably the capacity to deduce the implicit knowledge from knowledge explicitly
given in the TBox.

It is obvious that using DL reasoners to perform IR tasks leads to perfor-
mances that are several orders of magnitude slower than classical index-based
IRS. Nevertheless, several issues could be worth studying to improve the DL
approach performances: i) document descriptors are generally simple (limited
to � and ∃ constructors), thus we could devise simpler reasoning algorithms, ii)
when queries are simple, reasoning becomes even simpler and iii) the document
corpus is generally stable and could be pre-processed in some way to facilitate
the reasoner’s work.

Acknowledgments. The authors would like to thank Mathieu Vonlanthen for
fruitful discussions about the use of DL reasoners to implement subsumption-
based information retrieval.

References

1. Biemann, C.: Semantic indexing with typed terms using rapid annotation. In: Pro-
ceedings of the TKE 2005-Workshop on Methods and Applications of Semantic
Indexing, Copenhagen (2005)

2. Mihalcea, R., Moldovan, D.: Semantic indexing using wordnet senses. In: Proceed-
ings of the ACL-2000 workshop on Recent advances in natural language processing
and information retrieval, Morristown, NJ, USA, pp. 35–45. Association for Com-
putational Linguistics (2000)

Description Logic to Model a Domain Specific Information Retrieval System 149

3. Vallet, D., Fernández, M., Castells, P.: An ontology-based information retrieval
model. In: G0́mez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
455–470. Springer, Heidelberg (2005)

4. Qiu, Y., Frei, H.P.: Concept based query expansion. In: Korfhage, R., Rasmussen,
E.M., Willett, P. (eds.) SIGIR, pp. 160–169. ACM, New York (1993)

5. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR 1994:
Proceedings of the 17th annual international ACM SIGIR conference on Re-
search and development in information retrieval, New York, NY, USA, pp. 61–69.
Springer, Heidelberg (1994)

6. Baziz, M., Aussenac-Gilles, N., Boughanem, M.: Désambiguisation et Expansion
de Requêtes dans un SRI, Etude de l’apport des liens sêmantiques. Revue des
Sciences et Technologies de l’Information (RSTI) série ISI 8, 113–136 (2003)

7. Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Trans-
actions on Information Systems 10, 115–141 (1992)

8. Sanderson, M.: Word Sense Disambiguation and Information Retrieval. Ph.d. the-
sis, University of Glasgow, Glasgow G12 8QQ, UK (1997)

9. Baziz, M.: Indexation conceptuelle guidée par ontologie pour la recherche
d’information. Thèse de doctorat, Université Paul Sabatier, Toulouse, France
(2005)

10. Smeaton, A., Quigley, I.: Experiments on using semantic distances between words
in image caption retrieval. In: Proc. of 19th International Conference on Research
and Development in Information Retrieval, Zurich, Switzerland (1996)

11. Uzuner, ö., Katz, B., Yuret, D.: Word sense disambiguation for information re-
trieval. In: AAAI/IAAI, p. 985 (1999)

12. Voorhees, E.M.: Natural language processing and information retrieval. In:
Pazienza, M.T. (ed.) SCIE 1999. LNCS (LNAI), vol. 1714, pp. 32–48. Springer,
Heidelberg (1999)

13. Mihalcea, R., Moldovan, D.I.: An iterative approach to word sense disambigua-
tion. In: Proceedings of the Thirteenth International Florida Artificial Intelligence
Research Society Conference, pp. 219–223. AAAI Press, Menlo Park (2000)

14. Baziz, M., Boughanem, M., Aussenac-Gilles, N., Chrisment, C.: Semantic cores
for representing documents in ir. In: SAC 2005: Proceedings of the 2005 ACM
symposium on Applied computing, pp. 1011–1017. ACM, New York (2005)

15. Berrut, C.: Une méthode d’indexation fondée sur l’analyse sémantique de doc-
uments spécialisés. Le prototype RIME et son application à un corpus médical.
Thèse de doctorat, Universitè Joseph Fourier, Grenoble, France (1988)

16. Chevallet, J.P.: Un Modèle Logique de Recherche d’Informations appliqué au for-
malisme des Graphes Conceptuels. Le prototype ELEN et son expérimentation sur
un corpus de composants logiciels. PhD thesis, Université Joseph Fourier, Grenoble
(1992)

17. Meghini, C., Sebastiani, F., Straccia, U., Thanos, C.: A model of information re-
trieval based on a terminological logic. In: SIGIR 1993: Proceedings of the 16th
annual international ACM SIGIR conference on Research and development in in-
formation retrieval, pp. 298–307. ACM, New York (1993)

18. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York (2003)

19. Brachman, R.J., Schmolze, J.G.: An overview of the kl-one knowledge represen-
tation system. In: Mylopoulos, J., Brodie, M.L. (eds.) Artificial Intelligence &
Databases, pp. 207–230. Kaufmann Publishers, San Mateo (1989)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 150 – 157, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Extending the Edit Distance Using Frequencies of
Common Characters

Muhammad Marwan Muhammad Fuad and Pierre-François Marteau

VALORIA, Université de Bretagne Sud
BP. 573, 56017 Vannes, France

{marwan.fuad, pierre-francois.marteau}@univ-ubs.fr

Abstract. Similarity search of time series has attracted many researchers re-
cently. In this scope, reducing the dimensionality of data is required to scale up
the similarity search. Symbolic representation is a promising technique of di-
mensionality reduction, since it allows researchers to benefit from the richness
of algorithms used for textual databases. To improve the effectiveness of simi-
larity search we propose in this paper an extension to the edit distance that we
call the extended edit distance. This new distance is applied to symbolic se-
quential data objects, and we test it on time series data bases in classification
task experiments. We also prove that our distance is a metric.

Keywords: Time Series, Symbolic Representation, the Edit Distance.

1 Introduction

Similarity search is an important problem in computer science, and it has a large
number of applications. Research in this area has focused on its different aspects. One
of these aspects is the distance metric used to measure the similarity between two data
objects. Another aspect of this problem is the so called “dimensionality curse”. One of
the best solutions to deal with dimensionality curse is to utilize a dimensionality re-
duction technique to reduce dimensionality, then to utilize a suitable indexing struc-
ture on the reduced data objects. There have been different suggestions to represent
time series, to mention a few; DFT [1] and [2], DWT [03], SVD[7], APCA [6],PAA [5]
and [11], PLA [9]...etc.. However, among dimensionality reduction techniques, sym-
bolic representation has many interesting advantages; it allows using text-retrieval
algorithms and techniques [6]. In the beginning distance measures available for sym-
bolic data processing were restricted to data structures whose representation is natu-
rally symbolic (DNA and protein sequences, textual data…etc). But later these
symbolic measures were also applied to other data structures that can be transformed
into strings by using some symbolic representation techniques. There are quite a few
distance metrics that apply to symbolically represented data. One of these measures is
the edit distance (ED) [10], which is defined as the minimum number of delete, insert,
and substitute (change) operations needed to transform string S into string T. Other
measures for sequence alignment were proposed. The edit distance has a main draw-
back; it penalizes all change operations in the same way, without taking into account

 Extending the Edit Distance Using Frequencies of Common Characters 151

the character that is used in the change operation. In order to overcome this drawback
we could predefine cost functions that gave the costs of all possible change opera-
tions. But this approach is inflexible and highly dependent on the application and
corresponding alphabet.

In this paper we propose a new general distance metric that applies to strings. We
call it “The Extended Edit Distance” (EED). This distance adds new features to the
well-known edit distance by adding an additional term to it. The new distance has a
main advantage over the edit distance in that it deals with the above mentioned prob-
lem straightforwardly, since there is no need to predefine a cost function for the
change operation. This distance can, by itself, detect if the change operations use
characters that are “familiar” or “unfamiliar” to the two strings concerned.

The rest of this paper is organized as follows: in section 2 we present a motivating
example followed by the EED. Section 3 contains the experiments that we conducted,
we discuss the results in section 4, and conclude in section 5 with some perspectives.

2 EED

2.1 Motivating Example

Given the string marwanS =1 , by performing two change operations in the first and

fifth positions we obtain the string aarwinS =2 . By calculating their edit distance we

get; 2),(21 =SSED . Let NDC be the number of distinct characters that two strings

contain, i.e.)}({)}({),(2121 SchSchSSNDC ∪= , where ch() is the set of characters

that a string consists of. In our example we have; 6),(21 =SSNDC . Now if we

change the same positions in 1S with different characters eb, we obtain the string:

barwenS =3 . By calculating the edit distance we get; 2),(31 =SSED (which is the

same as),(21 SSED). But we notice that 7),(31 =SSNDC . This means that one

change operation used a character that is more “familiar” to the two strings in the first
case than in the second case, in other words, 2S is closer to 1S than 3S . But the edit

distance couldn’t recognize this, since the edit distance was the same in both cases.

2.2 Definition-The Extended Edit Distance

Let Σ be a finite alphabet, and let *Σ be the set of strings on Σ . Let)S(
af ,)T(

af be the

frequency of the character a in S and T , respectively. Where S ,T are two strings in
*Σ . The extended edit distance (EED) is defined as;

⎥⎦
⎤

⎢⎣
⎡

∑−++=
Σ∈

),(min2),(),()()(T
a

S
a

a
ffTSTSEDTSEED λ

Where S , T are the lengths of the two strings TS, respectively, and where

0≥λ (R∈λ). We call λ the co-occurrence frequency factor.

152 M.M. Muhammad Fuad and P.-F. Marteau

Revisiting the example presented in section 2.1 we see that 4),(21 =SSEED ,

6),(31 =SSEED ; which is what we expected, since, according to the concept of

similarity we presented in section 2.1, 2S is more similar to 1S than 3S .

2.3 Proposition (P1): EED Is a Distance Metric

Let D be a set of objects. A function +→× DDd : is called a distance metric if the
following holds Dzyx ∈∀ ,, :

(p1)),(),(xydyxd = , (p2) 0),(=⇔= yxdyx , (p3)),(),(),(zydyxdzxd +≤ .

We prove below that EED is a metric.

(p1):),(),(STEEDTSEED = (this is obvious).

(p2): Since for all S in *Σ we have ∑=
Σ∈a

S
afS)(

.we can easily verify that:

TSffTS T
a

S
a

a
,0),(min2)()(∀≥⎥⎦

⎤
⎢⎣
⎡

∑−+
Σ∈

λ (1)

Let’s prove first that TSTSEED =⇒= 0),(:

If 0),(=TSEED , and taking into account (1), we get the two following relations:

0),(min2)()(=⎥⎦
⎤

⎢⎣
⎡

∑−+
Σ∈

T
a

S
a

a
ffTSλ (2)

0),(=TSED (3)

From (3), and since ED is metric we get: TS = . The backward proposition
0),(=⇒= TSEEDTS is obvious.

(p3):),(),(),(TREEDRSEEDTSEED +≤

RTS ,,∀ in *Σ . Since ED is metric, we have:),(),(),(TREDRSEDTSED +≤ (4)

Let ∑−+=
Σ∈a

T
a

S
a ffTSTSD),min(2),()()(. We have to show that for all *in ,, ΣRTS :

),(),(),(TRDRSDTSD ⋅+⋅≤⋅ λλλ (5)

First, we note that the following equivalences hold:

),(),(),(TRDRSDTSD ⋅+⋅≤⋅ λλλ),(2)()(T
a

a

S
a ffMinTS ∑⋅−+⇔

Σ∈

),(2,(2)()()()(T
a

a

R
a

R
a

a

S
a ffMinTRffMinRS ∑⋅−++∑⋅−+≤

Σ∈Σ∈

)()()()()()(,(),(),(T
a

a

S
a

T
a

a

R
a

R
a

a

S
a ffMinRffMinffMin ∑+≤∑+∑⇔

Σ∈Σ∈Σ∈

 Extending the Edit Distance Using Frequencies of Common Characters 153

Since ∑=
Σ∈a

R
afR)(, proving (5) is equivalent to proving (6):

),(),(),()()()()()()()(T
a

a

S
a

a

R
a

T
a

a

R
a

R
a

a

S
a ffMinfffMinffMin ∑+∑≤∑+∑

Σ∈Σ∈Σ∈Σ∈
 (6)

Second, we note that for all a in Σ we have:
)()()()()()(),(and),(R

a
R

a
T

a
R

a
R

a
S

a fffMinfffMin ≤≤
Furthermore, for all a in ∑we have: Either

),,()()()()(T
a

S
a

R
a

R
a fffMinf = ⇒),(),()()()()(T

a
S

a
T

a
R

a ffMinffMin ≤ ⇒

),(),(),()()()()()()()(T
a

S
a

R
a

T
a

R
a

R
a

S
a ffMinfffMinffMin +≤+

Or),,()()()()(T
a

S
a

R
a

S
a fffMinf = ⇒),(),()()()()(T

a
S

a
R

a
S

a ffMinffMin = ⇒

),(),(),()()()()()()()(T
a

S
a

R
a

T
a

R
a

R
a

S
a ffMinfffMinffMin +≤+

Or),,()()()()(T
a

S
a

R
a

T
a fffMinf = ⇒),(),()()()()(T

a
S

a
T

a
R

a ffMinffMin = ⇒

),(),(),()()()()()()()(T
a

S
a

R
a

T
a

R
a

R
a

S
a ffMinfffMinffMin +≤+

This shows that, for all a in ∑, the following inequality holds:

),(),(),()()()()()()()(T
a

S
a

R
a

T
a

R
a

R
a

S
a ffMinfffMinffMin +≤+

Summing over all a in ∑ we get a proof for proposition (6) and consequently a proof
for proposition (5). Adding (4) and (5) side to side we get (p3):

),(),(),(TREEDRSEEDTSEED +≤ . From (p1), (p2), and (p3) we get (P1) and con-

clude that EED is a metric.

3 Empirical Evaluation

We conducted four experiments of times series classification task based on the 1-NN
rule on the datasets available at UCR [12]. We used leaving-one-out cross validation.
As mentioned earlier, our new distance is applied to data structures which are repre-
sented symbolically. Time series are not naturally represented symbolically, but more
and more studies focus on symbolic representation of time series. One of the most
famous methods in the literature is SAX [4]. SAX, in simple words, consists of three
steps; 1-Reducing the dimensionality of the time series by using piecewise aggregate
approximation PAA 2-Discretization the PAA to get a discrete representation of the
times series 3-Using the MINDIST measure. To test EED (or ED) we proceeded in the
same way for steps 1 and 2 above to get a symbolic representation of time series, then
in step 3 we compared EED with ED and with the distance measure defined in SAX,
all applied to the resulting strings.

3.1 The First Experiment

The aim of the this experiment is to make a direct comparison among ED,EED and
SAX For this experiment, we used the same compression ratio that was used to test
SAX (i.e. 1 to 4). We also used the same range of alphabet size (3-10).

154 M.M. Muhammad Fuad and P.-F. Marteau

For each dataset we tune the parameters on the training set to get the optimal
values of these parameters; i.e. the values that minimize the error. Then we utilize
these optimal values on the testing set to get the error rate for each method and for
each dataset. As for parameter λ , for simplicity, and in all the experiments we
conducted, we optimized it in the interval [0, 1] only (step=0.25), except in the
cases where there was strong evidence that the error was decreasing monotonously
as λ increased.

For this experiment, we chose, at random, 4 datasets from the 20 datasets of
UCR [12]. The chosen datasets were CBF, Trace, Two_Patterns, Yoga. After op-
timizing the parameters on the training sets, we used these parameters on the test-
ing sets of these datasets; we got the results shown in Table. 1. (The best method is
highlighted)

Table 1. The error rate of ED, EED, SAX on the testing sets of CBF, Trace, Two Patterns, and
Yoga. The parameters used in the calculations are those that give optimal results on the training
sets, the alphabet size was chosen from the interval [3, 10].The compression ratio is (1:4).

 The Edit Distance
(ED)

The Extended Edit
Distance (EED)

SAX

CBF 0.029
* =10

0.026
 =3, =0.75

0.104
 =10

Trace 0.11
 =10

0.07
 =6, 1.25

0.42
 =10

Two_Patterns 0.015
 =3

0.015
 =3, =0

0.081
 =10

Yoga 0.155
 =7

0.155
 =7, =0

0.199
 =10

MEAN 0.077 0.066 0.201

STD 0.067 0.064 0.155

(*: is the alphabet size)

The results obtained show that EED was always better, or equal, to the other meth-
ods. Its average error is the smallest. The results also show that of all the three tested
methods EED has the minimum standard deviation

3.2 The Second Experiment

This experiment is an extension of the first experiment; we didn’t compare our new
distance with ED and SAX only, but we also compared it with other distances that are
applied for non–compressed time series. We chose the two most famous distances;
Dynamic Time Warping (DTW) [7] and Euclidean distance. We chose randomly 4
datasets of the remaining datasets in UCR [12]. These were Gun_Point, OSU Leaf,
50words, and Fish. We used the same compression ratio and the same range of alpha-
bet size that we used with in the first experiment. We proceeded in the same way. We
obtained the results shown in Table. 2.

 Extending the Edit Distance Using Frequencies of Common Characters 155

Table 2. The error rate of ED, EED, SAX, DTW together with the Euclidean distance on the
testing sets of Gun_Point, OSU Leaf, 50words, and Fish. The alphabet size was chosen
from the interval [3, 10]. The compression ratio is (1:4).

 Euclidean
Distance

DTW ED EED SAX

Gun-Point 0.087 0.093 0.073
 =4

0.06
 =4, =0.25

0.233
 =10

OSULeaf 0.483 0.409 0.318
 =5

0.293
 =5, =0.75

0.475
 =9

50words 0.369 0.310 0.266
 =7

0.266
 =7, =0

0.327
 =9

Fish 0.217 0.267 0.149
 =10

0.149
 =10, =0

0.514
 =10

MEAN 0.289 0.270 0.201 0.192 0.387

STD 0.173 0.132 0.111 0.108 0.131

The results of this experiment show that EED is superior to the other distances.

3.3 The Third Experiment

This experiment aims at studying the impact of using a wider range of alphabet size;
[3, 20], we proceed in the same way we did before; we randomly chose 7 datasets of
the remaining datasets. The 7 chosen datasets were Coffee, Beef, Adiac, ECG200,
Wafer, Swedish Leaf, Face (all). The compression ratio is the same as before (1:4).

Table 3. The error rate of ED, EED, SAX on the testing sets of Coffee, Beef, Adiac,
ECG200, Wafer, Swedish Leaf, and Face (all). The alphabet size was chosen from the
interval [3,20].The compression ratio is (1:4).

 The Edit Distance
(ED)

The Extended Edit
Distance (EED)

SAX

Coffee 0.071
 =12,13

0.0
 =14, =0.25

0.143
 =20

Beef 0.467
 =17

0.4
 =4, = 0.75

0.433
 =20

Adiac 0.555
 =18

0.524
 =19, =1

0.867
 =18

ECG200 0.23
=13

0.19
=5, =0.25

0.13
 =16

Wafer 0.008
=4

0.008
=4, =0

0.004
 =19

Swedish Leaf 0.344
=4

0.365
=7, =0.25

0.253
 =20

Face (all) 0.324
 =7

0.324
 =7, =0

0.305
 =19

MEAN 0.286 0.257 0.305

STD 0.199 0.200 0.284

156 M.M. Muhammad Fuad and P.-F. Marteau

EED was compared with ED and SAX. The final results on the testing sets are shown
in Table. 3.

The results of this experiment show that for this range of alphabet size, the average
error of the EED is the smallest. The standard deviation for ED for this range size is the small-
est. However, it’s very close to that of EED.

3.4 The Fourth Experiment

This experiment is designated to study the impact of using a different compression
ratio. We conducted it on the rest of the datasets in UCR [12].The compression ratio
of this experiment is (1:5). The alphabet range is [3, 10]. After proceeding in the same
way that we used for the other experiments we got the results shown in Table. 4

Table 4. The error rate of ED, EED, SAX on the testing sets of Lighting2, Lighting7, Syn-
thetic Control, Face (four),Trace, and Olive Oil the alphabet size was chosen from the
interval [3,10].The compression ratio is (1:5)

 The Edit Distance
(ED)

The Extended Edit
Distance (EED)

SAX

Lighting2 0.311
 =5

0.311
 =5, =0,0.75

0.377
 =3

Lighting7 0.247
 =5

0.247
 =5, = 0

0.479
 =7

Trace 0.11
 =10

0.09
 =8, =0.75

0.36
 =10

Synthetic Control 0.077
 =8

0.05
 =6, =0.25

0.03
 =10

Face (four) 0.045
 =5,6

0.045
 =5,6, =0

0.182
 =9

Olive Oil 0.267
 =7

0.267
 =7, =0,...,1

0.833

MEAN 0.176 0.168 0.377

STD 0.112 0.120 0.275

The results obtained show that EED was the best in almost all the datasets used in
this experiment. The average error of EED is the smallest. However, the standard deviation
for ED for this compression ratio is the smallest.

4 Discussion

In the experiments we conducted we had to use time series of equal lengths for com-
parison reasons only, since SAX can be applied only to strings of equal lengths. But
EED (and ED, too) can be applied to strings of different lengths. We also didn’t con-
duct experiments for alphabet size=2 because SAX is not applicable in this case (when
alphabet size =2 then the distance between any two strings will be zero with SAX, and
for any dataset). However, it’s important to mention that comparing EED or ED, with
SAX was only used as an indicator of performance. In fact, SAX is faster than any of

 Extending the Edit Distance Using Frequencies of Common Characters 157

EED or ED, even though the error it produces is greater in most cases than that of
EED or ED.

In order to represent the time series symbolically, we had to use a technique pre-
pared for SAX for comparison purposes. Nonetheless, a representation technique pre-
pared specifically for EED may even give better results.

The main property of the EED over ED is that it is more precise, since it considers
a global level of similarity that ED doesn’t consider

5 Conclusion and Perspectives

In this paper we presented a new distance metric applied to strings. The main feature
of this distance is that it considers the frequency of characters, which is something
other distance measures do not consider. Another important feature of this distance is
that it’s metric. We tested this new distance on a time series classification task, and
we compared it to other distances. We showed that our distance gave better results in
most cases. The main drawback of this distance is that it uses the parameter λ , which
is heuristic, it also increases the training phase. The future work concerns the elimina-
tion of this parameter.

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In:
Proceedings of the 4th Conf. on Foundations of Data Organization and Algorithms (1993)

2. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.,: Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In: Proceedings of the 21st Int’l
Conference on Very Large Databases, Zurich, Switzerland, pp. 490–501 (1995)

3. Chan, K., Fu, A.W.: Efficient Time Series Matching by Wavelets. In: Proc. of the 15th
IEEE Int’l Conf. on Data Engineering, Sydney, Australia, March 23-26, 1999, pp. 126–
133 (1999)

4. Lin, J., Keogh, E.J., Lonardi, S., Chiu, B.Y.-c.: A symbolic representation of time series,
with implications for streaming algorithms. DMKD 2003, 2–11 (2003)

5. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra: Dimensionality reduction for fast simi-
larity search in large time series databases. J. of Know. and Inform. Sys. (2000)

6. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra: Locally adaptive dimensionality reduc-
tion for similarity search in large time series databases. SIGMOD, 151–162 (2001)

7. Keogh, E.: Exact indexing of dynamic time warping. In: Proc. 28th Int. Conf. on Very
Large Data Bases, pp. 406–417 (2002)

8. Korn, F., Jagadish, H., Faloutsos, C.: Efficiently supporting ad hoc queries in large datasets of
time sequences. In: Proceedings of SIGMOD 1997, Tucson, AZ, pp. 289–300 (1997)

9. Morinaka, Y., Yoshikawa, M., Amagasa, T., Uemura, S.: The L-index: An indexing struc-
ture for efficient subsequence matching in time sequence databases. In: Proc. 5th Pacifi-
cAisa Conf. on Knowledge Discovery and Data Mining, pp. 51–60 (2001)

10. Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of the As-
sociation for Computing Machinery 21(I), 168–173 (1974)

11. Yi, B., K.: Fast time sequence indexing for arbitrary Lp norms. In: Proceedings of the 26st
International Conference on Very Large Databases, Cairo, Egypt (2000)

12. UCR Time Series datasets,
http://www.cs.ucr.edu/~eamonn/time_series_data/

Tracking Moving Objects in Anonymized Trajectories

Nikolay Vyahhi1, Spiridon Bakiras2, Panos Kalnis3, and Gabriel Ghinita3

1 Dept. of Computer Science, St. Petersburg State University, St. Petersburg, Russia
vyahhi@gmail.com

2 Dept. of Mathematics and Computer Science, John Jay College, City University of New York
sbakiras@jjay.cuny.edu

3 Dept. of Computer Science, National University of Singapore, 117590 Singapore
{kalnis,ghinitag}@comp.nus.edu.sg

Abstract. Multiple target tracking (MTT) is a well-studied technique in the field
of radar technology, which associates anonymized measurements with the ap-
propriate object trajectories. This technique, however, suffers from combinatorial
explosion, since each new measurement may potentially be associated with any
of the existing tracks. Consequently, the complexity of existing MTT algorithms
grows exponentially with the number of objects, rendering them inapplicable to
large databases. In this paper, we investigate the feasibility of applying the MTT
framework in the context of large trajectory databases. Given a history of object
movements, where the corresponding object ids have been removed, our goal is to
track the trajectory of every object in the database in successive timestamps. Our
main contribution lies in the transition from an exponential solution to a polyno-
mial one. We introduce a novel method that transforms the tracking problem into
a min-cost max-flow problem. We then utilize well-known graph algorithms that
work in polynomial time with respect to the number of objects. The experimental
results indicate that the proposed methods produce high quality results that are
comparable with the state-of-the-art MTT algorithms. In addition, our methods
reduce significantly the computational cost and scale to a large number of objects.

1 Introduction

Recent advances in wireless communications and positioning devices have generated
significant interest in the collection of spatio-temporal (i.e., trajectory) data from mov-
ing objects. Any GPS-enabled mobile device with sufficient storage and computational
capabilities can benefit from a wide variety of location-based services. Such services
maintain (at a centralized server) the locations of a large number of moving objects
over a long period of time. As an example, consider a traffic monitoring system where
each car periodically transmits its exact location to a database server. The resulting tra-
jectories can be queried by a user to retrieve important information regarding current or
predicted traffic conditions at various parts of the road network.

Nevertheless, the availability of such data at a centralized location raises concerns
regarding the privacy of the mobile clients, especially if the data is distributed to other
parties. A simple solution that partially solves this problem is to anonymize the trajec-
tory data, by not publishing the user id1. In the traffic monitoring system, for instance,

1 Assigning a fake id does not guarantee anonymity, since a user may be linked to a specific
trajectory using background knowledge (e.g., known home address as starting point).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 158–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tracking Moving Objects in Anonymized Trajectories 159

the ids of the individual users are not essential for measuring the traffic level on a road
segment. Therefore, the mobile users may not be willing to identify themselves, and
may choose to transmit only their location, but not their id. Furthermore, anonymous
data collection may be the only option in certain environments. For instance, in the traf-
fic monitoring system the trajectory data may be collected by sensors that are deployed
throughout a city. In this scenario, every vehicle that passes in front of a sensor auto-
matically generates a measurement that contains no information regarding its identity.

Even though anonymization is important for protecting the privacy of mobile users,
detailed trajectory data (i.e., coupled with object identifiers) are valuable in numerous
situations. For example, a law enforcement agency trying to track a suspect that was
seen in a car at a specific time, can certainly benefit from stored trajectory informa-
tion. In this scenario, anonymization severely hinders the tracking process, since there
is no information to link successive measurements to the same trajectory. A straightfor-
ward solution, given the similarity of the two problems, is to leverage existing methods
that are used in radar tracking applications. Multiple target tracking (MTT) [1,2] is a
well-studied technique in the field of radar technology, which associates anonymized
measurements with the appropriate object trajectories. This technique, however, is not
practical. The reason is that every possible combination of measurements must be con-
sidered, in order to minimize the overall error across all trajectories. Consequently, the
complexity of existing MTT algorithms grows exponentially with the number of ob-
jects, rendering them inapplicable to large databases.

In this paper, we investigate the feasibility of applying the MTT framework in the
context of large trajectory databases. Given a history of object movements, where the
corresponding object ids have been removed, our goal is to track the trajectory of every
object in the database in successive timestamps. Our main contribution lies in the tran-
sition from an exponential solution to a polynomial one. To this end, we introduce a
novel method that transforms the tracking problem into a min-cost max-flow problem.
We then utilize well-known graph algorithms that work in polynomial time with respect
to the number of objects. To further reduce the computational cost, we also implement
a pruning step prior to the construction of the flow network. The objective is to remove
all the measurement associations that are not feasible (e.g., due to a maximum veloc-
ity constraint). We perform an extensive experimental evaluation of our approach, and
show that the proposed methods produce high quality results that are comparable with
the state-of-the-art MTT algorithms. In addition, our methods reduce significantly the
computational cost and scale well to a large object population.

The rest of the paper is organized as follows: Section 2 defines formally the problem,
whereas Section 3 surveys the related work. A detailed description and analysis of our
algorithm is given in Section 4. In Section 5 we evaluate experimentally our method.
Finally, Section 6 summarizes the results and presents directions for future work.

2 Problem Formulation

Let H = {S1, S2, . . . , SM} be a long, timestamped history. A snapshot Si of H is
a set of locations (measurements) at time ti; the time difference ti+1 − ti between
consecutive timestamps is not constant. Each snapshot contains measurements from

160 N. Vyahhi et al.

S1 S3S2

(x3,y3)

(x1,y1)

(x2,y2)

(x9,y9)

(x8,y8)

(x7,y7)

(x6,y6)

(x5,y5)

(x4,y4)

Fig. 1. Multiple target tracking (MTT) example

exactly N objects, i.e., we assume that (1) an existing object may not disappear and
new objects may not appear during the interval [t1, tM] and (2) the measurements are
complete (there are no missing values). These assumptions may not hold in some cases,
but our goal in this paper is to solve a restricted version of the problem. We plan to
relax these constraints as part of our future work. Finally, we assume that the locations
are anonymized, meaning that there is no object id that matches a certain location; any
location measurement may correspond to any of the N objects.

Given N objects and a history H spanning M timestamps, an MTT query returns a
set of N trajectories, where each trajectory i has the form {(xi1 , yi1 , t1), (xi2 , yi2 , t2),
. . . , (xiM , yiM , tM)}. Each triple in the above set corresponds to the location of the
object at each of the M timestamps. To illustrate the significance of this result, consider
the following scenario: A suspect was seen driving in the vicinity of his home address
at time t1. What a data analyst may want to do, is issue a range query and retrieve a
set of points (i.e., measurements) that may be associated with the suspect (at time t1).
After the MTT query is resolved, each of these points will be the source of a unique
trajectory that will identify possible locations of the suspect at subsequent timestamps.

Figure 1 shows an example MTT query with M = N = 3. Each line connecting two
measurements in successive timestamps indicates that the two measurements belong
to the same trajectory. The three trajectories are disjoint and are formed such that the
overall error is minimized (the details of the error function are discussed in Section 4).
Given the illustrated associations in Figure 1, the topmost trajectory is represented as
{(x1, y1, t1), (x4, y4, t2), (x7, y7, t3)}.

3 Related Work

Multiple target tracking has been studied extensively for several decades, and a variety
of algorithms have been proposed that offer different levels of complexity and tracking
quality. They can be classified into three major categories: nearest neighbor (NN), joint
probabilistic data association (JPDA), and multiple hypotheses tracking (MHT).

NN techniques [2] require a single scan of the dataset; for every set of measurements
(i.e., from one timestamp), each sample is associated with a single track. The objec-
tive is to minimize the sum of all distances, where the distance is defined as a function

Tracking Moving Objects in Anonymized Trajectories 161

(a) Reid’s MHT (b) GNN (c) Our algorithm

Fig. 2. Trajectory reconstruction for different methods

of the difference between the actual and predicted values. Among existing NN algo-
rithms, the best is the global nearest neighbor (GNN) approach [3]. JPDA algorithms
[1] also require a single scan and, for every pair of measurement-track, the probabil-
ity of their association is calculated as the sum of the probabilities of all joint events.
An experimental evaluation of several NN and JPDA algorithms can be found in [3].
Even though some of these methods run in polynomial time (due to their greedy nature
that minimizes the error at each timestamp independently), their tracking quality is not
good, leading to many false associations.

Reid’s algorithm [4] is the most representative of the MHT methods. Instead of as-
sociating each measurement with a single track, multiple hypotheses are maintained,
whose joint probabilities are calculated recursively when new measurements are re-
ceived. Consequently, each measurement is associated with its source based on both
previous and subsequent data (multiple scans). During this process unfeasible hypothe-
ses are eliminated and similar ones are combined. Reid’s algorithm produces high qual-
ity results, but its complexity grows exponentially with the number of measurements.

An example that illustrates the superiority of multiple scan techniques over their
single scan counterparts is presented in Figure 2. In this example, two objects move
towards each other, until they “meet”; then, they suddenly change their trajectories and
move at opposite directions. GNN makes the wrong track assignments when the objects
are close to each other, just because these assignments happened to minimize the error
at some particular timestamp. On the other hand, Reid’s algorithm tracks the two objects
successfully, since it minimizes the error across all timestamps. This figure also shows
the output of our method, which exhibits an accuracy that is similar to Reid’s algorithm
but is able to run in polynomial time (as we will illustrate in the following sections).
The slight differences in the output between Reid’s algorithm and ours, are due to the
filters that are used to smooth the trajectories (Kalman filter for Reid, as opposed to a
simpler filter for our method).

To reduce the complexity of the tracking process, [5,6] employ clustering. They
group the set of measurements before forming the candidate tree, in order to remove
unlikely associations. In this way, the problem is partitioned into smaller sub-problems
that are solved more efficiently. Although this approach reduces the complexity, it still
utilizes single scan techniques that are not accurate.

Another interesting application of multiple target tracking is investigated in [7],
where the objective is to discover associations among asteroid observations that

162 N. Vyahhi et al.

correspond to the same asteroid. The authors introduce an efficient tree-based algo-
rithm, which utilizes a pruning methodology that reduces significantly the search space.
However, their problem settings are different from ours, since (1) they assume that there
is a given motion model that has to be obeyed, and (2) they are interested in returning
those sets of observations that conform to the motion model.

Finally, the idea of applying MTT techniques for the reconstruction of trajectories
from anonymized data, was introduced in [8]. The authors use five real paths and show
that Reid’s algorithm is able to associate the majority of the measurements with the cor-
rect objects. However, their objective is not how to efficiently track multiple targets, but
rather how to enhance the privacy of the users through path perturbation. In particular,
they modify the original dataset in such a way that Reid’s algorithm is confused.

4 Tracking Algorithm

This section discusses the details of our MTT algorithm. First, we present a brief
overview of the min-cost max-flow problem. Then, we explain how to construct the
graph from the history of location measurements and present a pruning mechanism that
reduces significantly the graph size. Finally, we discuss the implementation details of
our algorithm and analyze its computational complexity.

4.1 Preliminaries

A flow network [9] is a directed graph G = (V, E), where V is a set of vertices, E is a
set of edges, and each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0. If (u, v) /∈ E, it is
assumed that c(u, v) = 0. There are two special vertices in a flow network: a source s
and a destination t. A flow in G is a real-valued function f : V × V → R, satisfying
the following properties:

1. Capacity constraint: For all u, v ∈ V , we require f(u, v) ≤ c(u, v).
2. Skew symmetry: For all u, v ∈ V , we require f(u, v) = −f(v, u).
3. Flow conservation: For all u ∈ V �{s, t}, we require

∑
v∈V f(u, v) = 0. In other

words, only s can produce units of flow, and only t can consume them.

The max-flow problem is formulated as follows: given a flow network G, find a flow of
maximum value between s and t.

The min-cost max-flow problem is a generalization of max-flow, where:

1. For every u, v ∈ V the edge (u, v) has a cost w(u, v), and we require w(u, v) =
−w(v, u).

2. The flow conservation property of the flow network is replaced by the following
balance constraint property: For all u ∈ V , b(u) =

∑
v∈V f(u, v). Note that, b(u)

may have non-zero values for vertices other than the source or the sink. In other
words, every node in the network may be a producer or consumer of flow units, as
long as the following flow conservation condition is satisfied:

∑
u∈V b(u) = 0.

The cost of a flow f is defined as

cost(f) =
∑

(u,v)∈E

w(u, v)f(u, v)

Tracking Moving Objects in Anonymized Trajectories 163

1,1,1

1,1,2

1,1,N

1,N,N

1,2,2

1,2,1

2,1,1

2,1,2

2,1,N

2,2,1

2,2,2

2,N,N

1

s

N

2

M-1,1,1

M-1,1,2

M-1,1,N

M-1,2,1

M-1,2,2

M-1,N,N

1

N

2

t

cost

Fig. 3. Multi-target tracking (MTT) flow network

and the objective of the min-cost max-flow problem is to find the max-flow with the
minimum cost.

4.2 Problem Transformation

A straightforward transformation of the MTT problem into a flow network is shown
in Figure 3. Flow units are produced at the source s and consumed at the sink t; our
objective is to send a total of N flow units from s to t, each one identifying a single
object trajectory. All edges have capacity 1 in the forward direction, and 0 in the reverse
direction. Also, every edge (u, v) in the middle of the network (as shown in the figure)
has cost value w(u, v) in the forward direction, and −w(u, v) in the reverse direction.
The rest of the edges have zero cost.

The N vertices that are directly connected to s correspond to the first snapshot of
measurements (one vertex for each location). Following these vertices are series of
columns containing N2 nodes each. Every node in these columns is identified by a
triplet (ti, pi, pj), which has the following meaning: if a positive amount of flow runs
through this node, then the underlying object moves from location pi in timestamp
ti to location pj in timestamp ti+1. Consequently, edge (ti, pi, pj) → (ti+1, pj , pk)
represents a partial trajectory from three consecutive timestamps (pi → pj → pk),
where pi, pj , pk ∈ [1..N].

The cost for the aforementioned edge is equal to the association error of the third
measurement. As shown in Figure 4, if the first two measurements (pi and pj) belong to
the same track, their values can be used to predict the next location of the object, based
on the assumption that objects move on a straight line with constant speed. Therefore,
for every possible location pk, we can calculate the error of associating this measure-
ment with any of the existing tracks. This definition of error is also used in [4]. Note
that our method minimizes the sum of errors across all trajectories (similar to multiple
hypotheses tracking), as opposed to methods that work in a single scan. Finally, the N

164 N. Vyahhi et al.

pi Predicted:

pk

pj

Error

()12
1

++
+

−
−
−

+ ii
ii

ij
j tt

tt

pp
p

Fig. 4. Association error

nodes connected to the sink t correspond to the last set of measurements, and indicate
the final positions of the moving objects.

Observe that the above flow network may lead to incorrect trajectories, by associating
a single measurement with multiple tracks. For instance, if in the final solution we allow
a positive amount of flow through edges (1, 1, 1) → (2, 1, 1) and (1, 2, 1) → (2, 1, 2)
(Figure 3), then location 1 in timestamp 2 belongs to two different trajectories. One
way to overcome this limitation is to create a bottleneck edge (with capacity 1) for
each measurement that only allows a single unit of flow (i.e., track) to go through.
We call this structure a block. Figure 5(a) illustrates the (m, k)–block, i.e., the block
associated with the kth measurement of the mth timestamp. Let us use the notation
pm,k to identify that particular point location. Then, this block represents all partial
tracks pm−1,i → pm,k → pm+1,j , ∀i, j ∈ [1..N]. Since the capacity of the middle edge
is equal to 1, only one of these tracks can be selected.

Every (m, k)–block, where 1 < m < M and 1 ≤ k ≤ N , is characterized by the
following matrix:

C =

⎛
⎜⎜⎜⎝

c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
...

...
...

cN,1 cN,2 · · · cN,N

⎞
⎟⎟⎟⎠

where ci,j is the error in track pm−1,i → pm,k → pm+1,j , i.e., the distance between the
predicted location (based on the values of pm−1,i and pm,k), and pm+1,j . However, the
block structure consists of only (2N +1) edges, which are not sufficient to represent the
N2 error values that are included in matrix C. Therefore, we modify the aforementioned
block structure, and replace the middle part of the block with 2N vertices and N2 edges.
The result is shown in Figure 5(b). The N2 edges connecting the two middle columns
have the cost values associated with matrix C, while the remaining edges have cost
equal to zero, i.e., they do not affect the process of the min-cost max-flow calculation.

The difference of the modified block structure compared to the rest of the flow net-
work, is that we need to manually route the flows inside the block in order to guarantee
that only one flow unit goes through. Specifically, when a positive amount of flow runs
through a certain block, that block is automatically marked as active and the identifier of
the edge occupying the block is recorded. An active block may only output a single flow
unit, so an additional incoming flow has to be redirected backward in order to cancel the
existing flow (hence the negative weight values on the reverse edges). In particular, a
new flow is forced back through the reverse path of the existing flow, in order to select a
new location in the previous timestamp. This is depicted in Figure 6(a), where the block
is occupied by the flow with cost c1,1. When a new flow enters from vertex (2, 2, 1), it

Tracking Moving Objects in Anonymized Trajectories 165

m-1,1,k

m-1,2,k

m-1,N,k

m,k,1

m,k,N

m,k,2

(a) Single edge

m-1,1,k

m-1,2,k

m-1,N,k

m,k,1

m,k,N

m,k,2

m-1,3,k m,k,3

c1,1

cN,N

c1,2

(b) N2 edges

Fig. 5. Block structure for measurement pm,k

is only allowed to follow the path indicated by the arrows, which takes the flow in the
reverse direction towards vertex (2, 1, 1) and cancels the original flow. Next, as shown
in Figure 6(b), the incoming flow enters the block of the previous timestamp, where it
also cancels the flow with cost c1,1 and then follows the path to vertex (2, 1, 2). Con-
sequently, it selects measurement 2 at timestamp 3 (instead of measurement 1), which
results in two distinct trajectories.

There are N blocks in every timestamp, each one contributing O(N) vertices and
O(N2) edges to the overall network. Therefore, the total number of vertices in the flow
network is |V | = O(MN2), whereas the total number of edges is |E| = O(MN3).

4.3 Improving the Running Time

Solving the min-cost max-flow problem requires multiple shortest path calculations on
the MTT flow network (discussed in the next section). Therefore, the size of the net-
work is crucial for maintaining a reasonable running time. In its current form, however,
the size of the flow network becomes prohibitively large when the number of measure-
ments increases. To this end, we propose a pruning technique that may reduce signifi-
cantly the size of the network. Observe that any object can travel at most Rmax distance
between two consecutive timestamps. The actual value of Rmax depends on (i) the max-

2,1,1

2,2,1

3,1,1

3,1,2

c1,1

-c1,1

c2,1

(a) Redirection of a flow out of an
active block (block for p3,1)

1,1,1

1,2,1

2,1,1

2,1,2

c1,1

c1,2

-c1,1

(b) The above flow selects a differ-
ent location (block for p2,1)

Fig. 6. Functionality of new block structure

166 N. Vyahhi et al.

imum speed of the objects and (ii) the time interval between the two timestamps. Con-
sequently, every measurement pm,k can only be associated with those measurements
pm+1,i, ∀i ∈ [1..N], such that the distance between the two points is less than Rmax.
We can leverage this constraint in order to reduce the number of vertices and edges in-
side each block. Specifically, if we assume that there are, on average, K feasible associ-
ations for any measurement pm,k, the number of vertices in the flow network is reduced
to |V | = O(MNK), while the total number of edges is reduced to |E| = O(MNK2).
This may result in significant savings when K � N .

4.4 The MTT Algorithm

We have a single source s that needs to send N units of flow towards the destination
t. Among all feasible max-flows, we are interested in finding the one with the mini-
mum cost. A very efficient method for solving the min-cost max-flow problem is the
Successive Shortest Path Algorithm [10]. It leverages the Ford-Fulkerson algorithm [9]
that solves the max-flow version of the problem. The Ford-Fulkerson algorithm starts
with f(u, v) = 0 for all u, v ∈ V , and works iteratively by finding an augmenting
path where more flow can be sent. The augmenting paths are derived from the residual
network Gf that is constructed during each iteration. Formally, Gf = (V, Ef), where
Ef = {u, v ∈ V : cf (u, v) > 0}. cf (u, v) is called the residual capacity and is equal
to c(u, v) − f(u, v). Note that when an edge (u, v) carries a positive amount of flow in
the flow network, it will be replaced by edge (v, u) in the residual network (as shown
in Figure 6). This means that the residual network may contain edges with negative
weights, since w(v, u) = −w(u, v).

In the Successive Shortest Path Algorithm, instead of finding an augmenting path,
we find the path with the minimum cost (given the weight values of the edges on the
residual graph). Since the flow network may contain weights with negative values, we
need to utilize the Bellman-Ford algorithm [11] for the shortest path calculations. This
is not very efficient, as the Bellman-Ford algorithm has worst-case complexity O(|V | ·
|E|). In our MTT network, this translates to O(M2N2K3).

Instead, we use a well-known technique called vertex potentials, which transforms
the network into one with non-negative costs (provided that there are no negative cost
cycles). For every edge (u, v) ∈ E, where vertices u, v have potential p(u) and p(v), re-
spectively, the reduced cost of the edge is given by: wp(u, v) = w(u, v)+p(u)−p(v) ≥
0. It can be proved that the min-cost max-flow problems with edge costs w(u, v) or
wp(u, v) have the same optimal solutions. Therefore, by updating the node potentials,
we can utilize a more efficient shortest-path algorithm during the iterations of the Ford-
Fulkerson algorithm. Node potentials are initially set to zero2, and are updated as fol-
lows: after the calculation of the shortest path, for every u ∈ V , p(u) = p(u) + d(s, u),
where d(s, u) is the length of the shortest path from s to u.

The pseudo-code of our MTT algorithm is shown in Figure 7. It begins by construct-
ing the flow network (as explained in Sections 4.2 and 4.3) from the history of measure-
ments H . Then (lines 2-6), it initializes the flows and node potentials. At each iteration

2 If prior to the first iteration of the algorithm there exist negative costs, Bellman-Ford must be
invoked to remove them. In our case, however, we do not have negative costs before the first
iteration, since the total flow inside the network is zero.

Tracking Moving Objects in Anonymized Trajectories 167

Algorithm MTT(H, M, N)
1. Construct flow network from H
2. for each (u, v) ∈ E // Initialize flows
3. f(u, v) = 0
4. f(v, u) = 0
5. for each u ∈ V // Initialize node potentials
6. p(u) = 0
7. for i = 1 to N
8. Find shortest path p from s to t in Gf

9. for each u ∈ V // Update node potentials
10. p(u) = p(u) + d(s, u)
11. for each (u, v) ∈ p // Augment flow across path p
12. f(u, v) = f(u, v) + 1
13. f(v, u) = −f(u, v)
14. return N trajectories

Fig. 7. The MTT algorithm

of the Successive Shortest Path Algorithm (lines 8-13), a single unit of flow is added to
the network; the algorithm terminates after N iterations. The resulting trajectories are
returned by following each flow unit from s to t through the flow network.

Before analyzing the computational complexity of our algorithm, we should briefly
discuss a common problem that may occur in min-cost max-flow calculations. Due to
the negative weights of some edges in the residual network, there is a possibility that
negative cost cycles exist (we actually encountered this problem in our experiments).
In this case, the shortest-path calculations can not be performed and the algorithm fails.
Instead of terminating the algorithm when a negative cost cycle is detected, we imple-
ment a greedy approach that may generate non-optimal solutions. In particular, we (1)
output all the tracks that are discovered so far (which might not be optimal), (2) remove
all the vertices and edges associated with these tracks from the flow network, and (3)
start a new min-cost max flow calculation on the reduced graph.

4.5 Complexity

The computational complexity of the MTT algorithm shown in Figure 7, is directly
related to the complexity of the underlying shortest-path algorithm3. Theoretically,
the fastest running time is achieved with Dijkstra’s algorithm [12], using a Fibonacci
heap implementation for the priority queue. The complexity of Dijkstra’s algorithm is
O(|V | log |V | + |E|) = O(MNK log(MNK) + MNK2). Thus, the total running
time (due to N iterations) is O(MN2K(log(MNK) + K)). This corresponds to the
main contribution of our work, i.e., a multiple hypotheses tracking algorithm that works
in polynomial time, instead of exponential.

We have also experimented with other implementations of shortest-path algorithms,
which produced similar, and in some cases better, running times compared to the afore-
mentioned method. For instance, the computational complexity of the Fibonacci heap

3 The complexity of graph construction is O(MN2 + MNK2) and can be ignored.

168 N. Vyahhi et al.

structure has a large hidden constant; therefore, a simple binary heap is often more effi-
cient. The overall complexity is O(N(|V |+ |E|) log |V |) ≈ O(MN2K2 log(MNK)).
An interesting approach, which works surprisingly well, is to utilize Bellman-Ford’s al-
gorithm for finding the shortest paths. Even though the complexity of Bellman-Ford is
O(M2N2K3), in practice it runs much faster for our flow network due to the “left-
to-right” structure of the graph4. Furthermore, Bellman-Ford’s algorithm works with
negative costs as well, meaning that we do not have to maintain node potentials.

The space complexity of our method is dominated by the amount of storage required
to store the |E| edges of the flow network (around 20 bytes for each edge). Therefore,
the worst-case space complexity of our MTT algorithm is O(MNK2).

5 Experimental Evaluation

In this section, we evaluate the performance of the proposed MTT algorithm, and com-
pare it with a GNN implementation (using clustering) that is described in [6]. This
approach works in low polynomial time with a complexity of O(MNC2) (where C
is the average cluster size), and was shown to have the best performance among other
MTT techniques in the detailed experimental evaluation of [3]. We do not include Reid’s
MHT algorithm [4] in this comparison, since it could not produce any results within a
reasonable time limit. In the following plots, we use “GNN” to label the curves corre-
sponding to the GNN approach, and “MCMF” to label our own algorithm.

We experimented on a real road map of the city of San Francisco [13], containing
174,956 nodes and 223,001 edges5. The original map was scaled to fit in a [0, 10000]2

workspace. The trajectories are generated as follows: (1) We randomly select a starting
node and a destination node (from the map) for each object. (2) Each object then travels
on the shortest-path between the two points. At the first timestamp, the distance di cov-
ered by each object i is randomly selected between 0 and Rmax (as defined in Section
4.3). At subsequent timestamps, the distance is adjusted randomly by ±10% · Rmax,
while ensuring that it neither becomes negative nor exceeds Rmax. (3) Upon reaching
the endpoint, a new random destination is selected and the same process is repeated.

In each experiment we generate N random trajectories that are sampled for a period
of M timestamps. We then run the corresponding MTT algorithms (without the object
ids) and collect the resulting trajectories. These trajectories are compared to the original
ones, where we measure the success rate, i.e., the percentage of successive triplets (as
shown in Figure 4) that are associated with the correct trajectory. We use the CPU time
and the success rate as the performance metrics. Table 1 summarizes the parameters
under investigation, along with their ranges. Their default values are typeset in boldface.
In each experiment we vary a single parameter, while setting the remaining ones to their
default values. The total number of measurements varies from 50,000 to 500,000.

Figure 8(a) shows the running time of the two methods as a function of the object
cardinality. As expected, MCMF is slower than GNN, but it improves considerably over

4 Actually, we also enhanced the functionality of Bellman-Ford’s algorithm with a processing
queue (for vertices), which reduces the O(|V | · |E|) complexity.

5 This “network” corresponded to the map topology on which the objects move, and it has
nothing to do with the “flow network” of our algorithm.

Tracking Moving Objects in Anonymized Trajectories 169

Table 1. System parameters

Parameter Range
Number of objects (N) 50, 100, 300, 500

Number of timestamps (M) 500, 1000, 1500, 2000
Object speed (Rmax) 20, 40, 80, 160

 1

 10

 100

 1000

 10000

 100000

 500 300 100 50

C
P

U
 ti

m
e

[s
ec

]

Object cardinality

MCMF
GNN

(a) CPU time

 100

 90

 80

 70

 60
 500 300 100 50

S
uc

ce
ss

 r
at

e
[%

]

Object cardinality

MCMF
GNN

(b) Success rate

Fig. 8. Performance vs. object cardinality

Reid’s algorithm, which is exponential to the size of the input and fails to terminate even
in the simplest of cases. We expect that by employing “divide-and-conquer” techniques
(e.g., by forming clusters that are solved independently of each other, similar to the
methods used in [5,6]) our algorithm will scale to much larger datasets.

The main advantage of our approach over single scan methods is depicted in Figure
8(b). This plot shows the accuracy of the trajectory reconstruction process, in terms of
the percentage of correct associations. Even though GNN achieves lower running time,
its accuracy deteriorates rapidly with increasing number of objects. This is due to the
fact that more objects exhibit crossing trajectories, which confuses GNN (as shown in
Figure 2). Therefore, the results of GNN may be of little value in practice. On the other
hand, MCMF is very accurate and maintains a success rate of over 87%.

Figure 9 shows the CPU time for GNN and MCMF, as a function of the history
length M . GNN scales linearly with M , while the slope of the curve for MCMF exhibits
some variations. This behavior can be explained by the approximation that is discussed
in the last paragraph of Section 4.4. When negative cost cycles are detected, the size
of the graph is reduced and subsequent iterations are executed faster. Consequently,
the running time of our algorithm is also affected by the appearance of negative cost
cycles. Note that the complexity analysis in Section 4.5 corresponds to the worst-case,
i.e., when negative cost cycles never form. Regarding accuracy, both algorithms are
unaffected by the number of timestamps.

Next, we investigate the effect of the object speed on the CPU time. As shown in
Figure 10(a), both algorithms become slower as the speed increases. For GNN, this is
due to the fact that clustering is less effective when the objects move faster. MCMF is
also affected by the object speed, since the average number of feasible associations K
for each measurement increases. Finally, Figure 10(b) depicts accuracy as a function

170 N. Vyahhi et al.

 1

 10

 100

 1000

 2000 1500 1000 500

C
P

U
 ti

m
e

[s
ec

]

Number of timestamps

MCMF
GNN

Fig. 9. CPU time vs. number of timestamps

 1

 10

 100

 1000

 10000

 160 80 40 20

C
P

U
 ti

m
e

[s
ec

]

Object speed

MCMF
GNN

(a) CPU time

 100

 90

 80

 70

 60

 50
 160 80 40 20

S
uc

ce
ss

 r
at

e
[%

]

Object speed

MCMF
GNN

(b) Success rate

Fig. 10. Performance vs. object speed

of the speed of the moving objects. As the speed of an object increases, the successive
locations of its trajectory move further apart from each other. Therefore, within a snap-
shot there may be many measurements that are closer to the object’s previous location
than the correct one. The greedy nature of GNN is not able to deal with that and, for
high speeds, only 55% of the associations are correct. MCMF, on the other hand, is
clearly superior; its success rate is always over 83%.

6 Conclusions

In this paper, we investigate the feasibility of applying multiple target tracking tech-
niques in the context of anonymized trajectory databases. Existing methods are either
very slow (i.e., the complexity is exponential to the number of measurements), or very
inaccurate. The main contribution of our work lies in the novel transformation of the
MTT problem into an instance of the min-cost max-flow problem. This transformation
allows for a polynomial time solution in O(MN2K(log(MNK) + K)), where M is
the number of timestamps, N is the number of measurements in each timestamp, and K
is the average number of feasible associations for each measurement. Our initial results
indicate that the proposed method produces very accurate results.

Tracking Moving Objects in Anonymized Trajectories 171

In the future, we plan to extend our work in a number of directions. First, we will
investigate the feasibility of our method in complex scenarios where (1) new tracks may
be initiated at random timestamps, and (2) location measurements may be lost due to
errors on the wireless channel. Second, we will combine our methods with clustering,
in order to further reduce the computational and space complexity. Specifically, through
clustering, we will partition the tracking problem into a number of smaller sub-problems
that can be solved more efficiently.

References

1. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, London
(1988)

2. Blackman, S.S.: Multiple-Target Tracking with Radar Applications. Artech House (1986)
3. Leung, H., Hu, Z., Blanchette, M.: Evaluation of multiple radar target trackers in stressful

environments. IEEE Trans. on Aerospace and Electronic Systems 35(2), 663–674 (1999)
4. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. on Automatic Con-

trol 24(6), 843–854 (1979)
5. Chummun, M., Kirubarajan, T., Pattipati, K., Bar-Shalom, Y.: Fast data association using

multidimensional assignment with clustering. IEEE Trans. on Aerospace and Electronic Sys-
tems 37(3), 898–913 (2001)

6. Konstantinova, P., Nikolov, M., Semerdjiev, T.: A study of clustering applied to multiple tar-
get tracking algorithm. In: Proc. International Conference on Computer Systems and Tech-
nologies (Comp.Sys.Tech.), pp. 1–6 (2004)

7. Kubica, J., Moore, A.W., Connolly, A., Jedicke, R.: A multiple tree algorithm for the efficient
association of asteroid observations. In: Proc. ACM International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 138–146 (2005)

8. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: IEEE Interna-
tional Conference on Security and Privacy in Communication Networks (Secure Comm), pp.
194–205 (2005)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
The MIT Press, Cambridge (2001)

10. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall, Englewood Cliffs (1993)

11. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1), 87–90 (1958)
12. Dijkstra, E.: A note on two problems in connection with graphs. Numerische Mathematik 1,

269–271 (1959)
13. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformat-

ica 6(2), 153–180 (2002)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 172 – 185, 2008.
© Springer-Verlag Berlin Heidelberg 2008

REALM: Replication of Data for a Logical Group Based
MANET Database

Anita Vallur, Le Gruenwald*, and Nick Hunter

The University of Oklahoma
School of Computer Science

Norman, Oklahoma 73019 USA
ggruenwald@ou.edu

Abstract. Mobile Ad-Hoc Networks, or MANETs, provide communication be-
tween free-roaming mobile hosts without a fixed infrastructure. These
MANETs operate under conditions of limited battery power and may also ex-
perience frequent network partitioning. This paper introduces a data replication
technique called REALM (REplication of data for A Logical group based
MANET database). REALM takes advantage of application semantics when de-
termining where to place replicas of data items. It also tries to predict network
partitioning and disconnection ahead of time and creates copies of data items
accordingly. Experiments show that REALM increases the percentage of suc-
cessful transactions with or without the presence of network disconnection and
partitioning.

Keywords: Replication, data replication, algorithm, mobile databases, mobile
ad hoc network databases.

1 Introduction

A mobile ad hoc network is a collection of wireless enabled mobile devices called
mobile hosts. Every mobile host performs the functions of a router to enable commu-
nication between those mobile hosts that are not directly within each other’s commu-
nication range. The unpredictable movement of mobile hosts and the absence of a
fixed network infrastructure make MANET suitable for applications such as battle-
field, rescue operations and conferences.

Since power restrictions and network partitioning in MANETs cause data to be-
come unavailable, multiple copies of the same data are often created. This process of
creating multiple copies of the same data item is called data replication. Data replica-
tion is more complex in MANETs than in conventional distributed database systems.
This is because replication for MANETs should address the issues of power restric-
tions, mobility of clients and servers, network disconnection and partitioning, as well
as real-time requirements since many MANET applications are time-critical [12]. In
addition to these concerns, in practice, a MANET data replication scheme also needs
to deal with the following limitations:

* Contact author.

 REALM: Replication of Data for a Logical Group Based MANET Database 173

1. The data replication scheme should be able to work in the absence of a global node
positioning/location management system. This is because the use of such de-
vices/systems increases the power consumption of the mobile hosts in the network.
In addition, it is unrealistic to impose the use of these systems on applications
which may otherwise have no use for them.

2. The absence of motion parameters of mobile hosts like speed and direction should
not cause the data replication scheme to fail. It is not realistic to assume that infor-
mation about the movement of users is always known ahead of time, especially in
MANET applications like rescue operations.

MANET replication is a widely researched area. However, to the best of our
knowledge, all existing MANET data replication techniques assume the availability of
a GPS and/or that of the motion parameters of mobile hosts. This paper attempts to
propose a MANET data replication technique, called REALM (Replication of data for
A Logical group based MANET database) that does not make such assumptions.

Mobile hosts in typical MANET applications belong in groups based on the func-
tions they perform in the applications. Since all mobile hosts in a group perform the
same set of operations, they access the same set of data items. Members of every
group are spread across the network, and perform their functions in their locations.
Due to this many tend to move within a limited distance of one or two hops. They
collaborate with members of other groups in their locations to achieve the goals of the
MANET application. REALM capitalizes on this common MANET application se-
mantic by grouping mobile hosts into logical groups. Each logical group is comprised
of mobile hosts that will need to access the same data items.

REALM aims at increasing the percentage of successful transactions while reduc-
ing the energy consumption of mobile hosts, as well as balancing the energy con-
sumption of servers. By considering such groups of mobile hosts, REALM will be
able to replicate data items closer to clients that will need to access the data items
more often. This will reduce the execution time of transactions, and hence, will result
in an increased percentage of successful transactions.

The rest of this paper is organized as follows: Section 2 presents some representa-
tive MANET applications and identifies their semantics; Section 3 reviews some
existing works in MANET data replication; Section 4 describes the proposed replica-
tion technique (REALM); Section 5 introduces the prototype used to evaluate the
performance of REALM; Section 6 presents the results of the experiments performed;
and finally, Section 6 provides conclusions and future research directions.

2 MANET Applications

Since MANETs do not require a fixed infrastructure, they find use in a range of appli-
cations such as disaster rescue, personal area network [14] and one laptop per child
project [9]. In this section, we briefly describe some of these applications and iden-
tify the semantics that should be incorporated into the design of a data replication
technique.

174 A. Vallur, L. Gruenwald, and N. Hunter

1. Disaster Rescue Application: A disaster rescue application involves functions like
identifying injured people, getting medical aid to the injured, and identifying the
dead. Since each of these functions is performed by a group of personnel, they will
access the same set of data items. Members of different groups collaborate with
each other to achieve the overall goals of the application. For example, a member
of the group that rescues people from the disaster will need to collaborate with
members of the first aid team. Members of the same group are spread out, and they
provide their services in the rescue site at their allotted location. They may also
move around to provide their services at other locations.

2. One Laptop per Child Project Application: This non-profit project aims to sell
cheap and durable laptops to governments such as Africa. The laptops are a special
prototype designed by the project and serve as learning tools for their recipients.
One particular aspect of the design is that the computers work in an ad-hoc net-
work mode and can keep an Internet connection concurrently. The computers are
created with a long battery life, but are limited by their low processing capability
and storage space. In a school environment, groups of students require data for
their different classes. Students will also move from class to class where different
data may be needed.

3. Personal Area Network (PAN): PAN is a very popular application of MANET. It
allows users to set up their own network to be able to access their information on
different systems like laptops, desktops, pocket PCs and cell phones. In a house-
hold or small office environment, different groups of people can use the PAN to
access information pertaining to their interest. For example, in an office environ-
ment, the accounts team may need to access the revenue and expenditure of the
business, while the investment team may need access to sales statistics and fund
details. Since the network is set up for a small office, the users move around the
boundaries of the office.

The example MANET applications described above have the following common
characteristics:

1. Users belonging to the same group need to perform the same set of tasks. Hence
they access the same data items. For the purposes of data replication, such users
who need access to the same data item can be considered to be in the same logical
group. Knowledge of the existence of logical groups will allow every server in the
network to identify data items that will be highly accessed by clients that may
submit their transactions to it.

2. Users move randomly; however, their movement is mostly within a finite distance.
On average, the range of an 802.11b wireless card is about 100 meters. Hence,
from the above description, it is realistic to say that the movement of the users is
within one or two hop communication distance of an 802.11b wireless card.

3. Members of one group tend to communicate and collaborate with members of
other groups in order to achieve the objectives of the application.

The above identified common characteristics of MANET applications can be used to
improve data replication, as we will show in Section 4 where our proposed algorithm,
REALM, is presented.

 REALM: Replication of Data for a Logical Group Based MANET Database 175

3 Literature Review

While MANET replication is a widely researched area, there exists a limited number
of data replication techniques designed for MANET database systems. [4] provides
three models for replicating data in a distributed database. Static Access Frequency
allocates data on each server until storage is exhausted. Dynamic Access Frequency
and Neighborhood, introduces additional functionality to remove duplication between
neighboring hosts. The Dynamic Connectivity Based Grouping method improves
replication by removing redundancy between groups of mobile hosts. [5] improves on
these techniques by considering the occurrence of data update.

[6] uses the link strength between hosts when deciding which data item replicas to
eliminate. However, [6] relies on the availability of the movement information of
mobile hosts to calculate the link strength between them. These works also assume
that the access frequencies of data items are known ahead of time and do not change.
[7] improvises on these techniques by considering correlation between data items in
the calculation of data access frequencies.

[12] weighs data access frequencies based on the remaining energy level of the
host and the link strength of connections to other hosts. It considers server workload
and energy consumption when accessing replicas. It relies on the availability of GPS
as well as the movement information of the mobile hosts to calculate link strength as
well as to predict network partitioning.

As discussed in Section 1, the availability of a GPS or movement information of
mobile hosts is not always realistic in MANET applications. In addition, data access
frequency calculated by a server may change as move near and away from the server.
Hence, it is not realistic to assume that access frequencies are known ahead of time
and are constant. Apart from these limitations, no existing technique has explored the
effect of application semantics on data access in MANET applications. From our
study of MANET applications, we believe that knowledge of application semantics
can help servers store data items closer to clients that access them more frequently.
The next section describes REALM (REplication of data for A Logical group based
MANET database). REALM tries to incorporate application semantics in data replica-
tion to overcome the shortcomings of existing MANET replication works.

4 Proposed Replication Technique (REALM)

The main goal of REALM is to increase the percentage of successful transactions. It
also attempts to reduce the power consumed by the mobile hosts, and balance the
power consumed by servers in the network.

Unlike existing MANET works, REALM takes advantage of the characteristics of
typical MANET applications (presented in Section 2). REALM groups mobile hosts
based on the data items they will need to access. Mobile hosts that access the same set
of data items belong in the same logical group. Group membership of mobile hosts
helps in identifying the data items that any mobile host in the network will need to
access, as well as to identify the most frequently accessed data item on every server.

176 A. Vallur, L. Gruenwald, and N. Hunter

REALM does not require the use of GPS or the knowledge of movement information
of the mobile hosts in the network.

REALM consists of four algorithmic components, namely MANET Partition Pre-
diction Algorithm, Replica Allocation Algorithm, Replica Access Algorithm and Rep-
lica Synchronization Algorithm. Before describing these components, Sections 4.1
and 4.2 describe the transaction management architecture and data and transaction
types considered by REALM, respectively.

4.1 Transaction Management Architecture

Clients in a MANET application submit their transaction to any server in the network.
The coordinator is the server that receives the transaction from the client. The coordi-
nator selects servers to access the data items required to execute the transaction. After
the execution of the transaction, the coordinator collects the results and forwards them
to the client. As described in Section 2, group members in MANET applications are
spread out in the area of the application. Due to this, selecting participant servers
based on group membership will incur increased transaction execution times. Hence,
REALM relies on a decentralized MANET architecture in which data is accessed
from servers regardless of their group membership.

4.2 Data and Transaction Types

REALM considers both read only and read write data. Apart from real-time transac-
tion types, firm and soft, REALM also considers the following transaction types:

1. Accurate Value Transactions: These transactions need the most recent value of the
data to succeed. A transaction initiated to increase the death toll by 1 is an example
of an Accurate Value transaction.

2. Approximate Value Transactions: These transactions can tolerate outdated values
of data items. An example of this type of transaction is one that tries to access
weather information.

4.3 MANET Partition Prediction Algorithm

The MANET partition prediction algorithm is based on the Optimized Link State
Routing Protocol (OLSR) [11]. It is used by all servers in the network to predict the
occurrence of network disconnection/partitioning.

The MANET partition prediction algorithm capitalizes on the hello packets that are
used by OLSR to implement neighbor discovery. OLSR transmits one hello packet
every x seconds. In addition, OLSR calculates the strength of every link once every y
seconds (x and y are configurable). The value of y should be chosen after considering
the tradeoff between keeping the servers updated with changes in link quality and the
energy consumption overhead that it may pose. This ensures that the routing neighbor
tables are kept updated with minimal overhead of messages. Using the number of
hello packets that were expected and the number of hello packets that were actually
received, mobile hosts S1 and S2 at either side of a link calculate the link quality (LQ)
using the following formula [11]:

 REALM: Replication of Data for a Logical Group Based MANET Database 177

y seconds last the in expected packets hello of No.

y seconds last the in received packets hello of No.
 LQ = (1)

Then, S1 and S2 exchange their calculated values of LQ through a ‘Topology Con-
trol’ message. At either host, the value of LQ received from the other end is called
Neighbor Link Quality (NLQ). Using LQ and NLQ, S1 and S2 calculate the bidirec-
tional link quality as follows [11]:

Bidirectional link quality of the link connecting S1 and S2 = LQ * NLQ (2)

When the bidirectional link quality decreases beyond a preset threshold accompanied
by an increase in the transmission time, S1 and S2 predict their disconnection. Then
they identify other the mobile hosts that will become unreachable due to their discon-
nection. When the total number of servers that will be disconnected from S1 (S2) in-
creases beyond a preset threshold, S1 (S2) triggers replication.

4.4 Replica Allocation Algorithm

The replica allocation algorithm is executed by every server in the network to deter-
mine the data items that must be stored on it. It assumes that the group definitions and
group memberships of every mobile host are known by all servers. In addition, the
location of the original copy of every data item is stored in the replica table of every
server. Every server S triggers the execution of this algorithm when any one or more
of the following conditions is true:

1. The percentage of successfully executed transactions at S falls below a preset per-

centage. This ensures improved data availability in the network.
2. The occurrence of network partitioning is predicted by S.
3. The percentage of transactions executed on S that access data on other servers is

greater than those that access data on S. This is done to minimize the number of
remote transactions since such transactions consume higher server energy.

4. The energy level of S falls below the average energy level of the servers that are
one or two hops away from S. This is done for the server S to reduce the energy
consumption of S.

To illustrate the working of the replica allocation algorithm, consider the example
MANET topology in Fig. 1 where Ci and Sj denote a client and a server, respectively.
The ovals around Ci and Sj denote the communication range of Ci and Sj. This allows
the figure to represent the number of communication hops between Ci and Sj. Mobile
hosts with overlapping communication ranges can communicate directly. Mobile
hosts also act as routers and relay communication between unconnected mobile hosts.
For example, S1 and C1 communicate directly, while C1 and S2 communicate through
S1. Let S1, S2 and S3 store the original copies of data items D1, D2 and D3. Let the
original copies of D4, D5 and D6 be disconnected from the network. This might be due
to loss of energy on these servers or their movement into a different partition. Tables
1 and 2 represent the group membership of the mobile hosts in the network and the
access log maintained at server S3 respectively. At the time when replication is trig-
gered by S3, let C6 be disconnected from S3.

178 A. Vallur, L. Gruenwald, and N. Hunter

Fig. 1. Example MANET Topology

Table 1. Group Membership of Mobile Hosts

Group Name Group Members Data Items of Interest to
Group Members

G1 C1, C4 D1, D3
G2 C3, C5 D2, D5
G3 C2, C6, S2 D2, D4, D6

Table 2. Access Log at Server S3

Data Items Mobile Hosts Number of Accesses
of the Data Item

D4 C3 10
C3 12 D5
S2 20
C3 25 D2

 C6 8

When replication is triggered on S3, the following steps are performed:

1. Calculation of access frequencies: The access frequency of a data item D on server
S (AFD

S) is calculated as the number of transactions which were submitted to S by
clients that are currently within two hops from it.

 At S3, the access frequencies of the various data items are calculated as follows:
 AF D4

 S3 = Number of accesses made by C3 = 10
 AF D5 S3 = Number of accesses made by C3 + Number of accesses made by S2:

 = 12 + 20 = 32
 AF D2

 S3 = Number of accesses made by C3 = 25
The number of accesses for D6 made by C6 is not considered in the calculation of
the access frequency of D2 since C6 is not a one or two hop neighbor of S3.

2. Arrange the data items in the descending order of their calculated access frequency
in a list L. At S3, L consists of data items D5, D2 and D4, after arranging the data
items in the descending order of their access frequencies.

C2

C5 S2

C3

S3

C4

S1

C1

C6

 REALM: Replication of Data for a Logical Group Based MANET Database 179

3. For each mobile host within two hops from S, determine the data items of interest
to the mobile host based on its group membership. If any of these data items are
not already present in L, add it to L. At S3, D6 is added to L since it is one of the
data items of interest to group G3, to which S2 belongs. Hence, L at S3 consists of
D5, D2 and D4 and D6.

4. For each data item D in L, determine whether the original copy server of D or a
replica of D is connected to S. If so, eliminate D from L. In the example, since S2
stores the original copy of D2, S3 eliminates D2 from L. Hence, L at S3 consists of
D5, D4 and D6.

5. For every remaining data item D in L, if the mobile host that has accessed D
maximum number of times is a server, request that server to store a replica of D. If
the request is accepted, eliminate D from L. At S3, S2 is the mobile host which ac-
cesses D5. Hence S3 requests S2 to store a copy of D5. Once S2 accepts this request,
L at S3 then consists of D4 and D6.

6. Store the remaining data items in L on S until S runs out of free space. S3 stores D4
and D6.

4.5 Replica Access Algorithm

The aim of the replica access algorithm is to help increase the percentage of success-
ful transactions while also conserving the power consumption of mobile hosts. The
data access is based on the data and transaction type.

Since firm transactions have only one deadline, they are executed at the nearest
server that stores the required data. Soft transactions, on the other hand, have a higher
probability of execution compared to firm transactions. Hence, they are executed at
the nearest server with highest energy that stores the required data.

Accurate value transactions are executed at the server that has the most recent copy
of the data items. This is determined by the coordinator of the transaction by request-
ing the most recent timestamp of the required data item from servers that store copies
of it. Approximate value transactions are executed at the most updated server within
two communication hops of the coordinator.

Read only data items can be accessed from any server on which they are stored.
Hence, they are executed based on the transaction type. Read write data items are
accessed from any server they are stored in, if the energy level of the server is greater
than or equal to the average energy level of the servers in the network. This is possi-
ble because the replica synchronization algorithm of REALM ensures that servers
with energy level at least equal to the average server energy level in the network are
updated at all times.

4.6 Replica Synchronization Algorithm

The replica synchronization algorithm ensures that replicas of every data item in the
network are in sync. It does this by propagating updates to servers that store the up-
dated data item. However, since such an approach may lead to high server power
consumption, the update operation and the most recent update timestamp of the data
item is propagated only to servers with energy level at least equal to the average
power level of the servers in the network.

180 A. Vallur, L. Gruenwald, and N. Hunter

Once a server S receives a propagated update for a data item D it stores, it com-
pares the received timestamp with the last updated timestamp of its copy of D. If the
timestamps match, the two copies of D are in sync with each other. So S executes the
received update operation on D. If the timestamps differ, S requests a copy of the
most recent value of D.

5 Prototype Model

REALM has been implemented on an existing MANET prototype ([3]). This proto-
type consists of servers (laptops) on Fedora Core Linux operating system running the
MySQL database [10], and clients (PDAs) running the Familiar Linux operating sys-
tem. Both servers and clients in the network run the Optimized Link State Routing
Protocol (OLSR) with its link quality extension enabled. Clients in the network gen-
erate real-time firm and soft transactions.

Apart from REALM, two other replication models, namely, the No Replication
model and the Hara model ([5], [6]) have been implemented on the prototype for
purposes of performance comparison. The No Replication model allows us to com-
pare the performance of REALM with that of a system that does not store multiple
copies of data items. REALM and the Hara model are similar in that both assume a
decentralized MANET architecture and consider update transactions. REALM repli-
cates data items differently from the Hara model by allowing application semantics to
influence data replication. In addition, REALM also tries to predict the occurrence of
network partitioning and replicates data items as necessary.

We created a sample database based on the requirements of a fire rescue scenario.
The experimental prototype consisted of five servers and eight clients. Four logical
groups of mobile hosts were defined. At the start of every experiment, only the origi-
nal copy of every data item was created. Each client initiated a total of 1000 transac-
tions for every run of the experiment. A comparison between the performances of
REALM and the Hara model, as presented in Section 5, allows us to gauge the effec-
tiveness and overhead incurred by REALM.

6 Experimental Results

Experiments were performed using the prototype described in Section 5, varying the
dynamic parameters namely, Percentage of Firm transactions, Percentage of Accurate
transactions, Access Frequency, Frequency of Network Partitioning, Transaction Inter
Arrival Time and Read/Write Ratio. Due to space constraints, we present only some
of the graphs obtained from the experiments performed.

6.1 Effects of Firm Transactions

Fig. 2 shows the effect of the percentage of firm transactions on the percentage of
successful transactions and the server energy consumption. As the percentage of firm
transactions increases, the percentage of successful transactions decreases. REALM
executes a higher percentage of transactions successfully as it continually monitors

 REALM: Replication of Data for a Logical Group Based MANET Database 181

Effect of Percentage of Firm Transactions on the

Percentage of Successfully Executed Transactions

0

10

20

30

40

50

60

70

80

0 50 100 150

Percentage of Firm Transactions

No Replication

Hara

REALM

P
e
rc

e
n

ta
g

e
 o

f
S

u
c

c
e
s

s
fu

l

T
ra

n
s

a
c

ti
o

n
s

Effect of Percentage of Firm Transactions on the

Percentage of Average Server Energy Consumption

0

10

20

30

40

50

60

70

0 50 100 150

Percentage of Firm Transaction

No Replication

Hara

REALM

A
v

e
r
a

g
e

 S
e

r
v

e
r
 E

n
e

r
g

y

C
o

n
s

u
m

p
ti

o
n

(m
A

h
)

Fig. 2. Effect of Percentage of Firm Transactions

the percentage of successful transactions and replicates data items to improve this
metric. As a consequence of this, however, REALM incurs high server energy con-
sumption. The Hara model also incurs comparable server energy consumption as it
broadcasts data items in order to synchronize its replicas.

6.2 Effects of Accurate Value Transactions

Fig. 3 shows the effect of percentage of accurate value transactions on the percentage
of transactions executed and the average difference in energy consumption of two
servers.

Fig. 3. Effect of Percentage of Accurate Value Transactions

Effect of Percentage of Accurate Value Transactions on the
Percentage of Successful Transactions

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

Percentage of Accurate Value Transactions

No Replication

Hara

REALM

P
er

ce
n

ta
g

e
o

f S
u

cc
es

sf
u

l

T
ra

n
sa

ct
io

n
s

 Effect of Percentage of Accurate Value Transactions on the

Average Difference in Energy Consumption of Two Servers

0
5

10
15
20
25

0 20 40 60 80 100 120

Percentage of Acurate Value Transactions

No Replication

Hara

REALM

A
ve

ra
ge

 D
if

fe
re

nc
e

in
 E

ne
rg

y
C

o
n

su
m

p
tio

n
 b

et
w

ee
n

T

w
o

 S
er

ve
rs

 (m
A

h
)

182 A. Vallur, L. Gruenwald, and N. Hunter

The percentage of transactions successfully executed by the No Replication model
is independent of the percentage of accurate value transactions since it does not main-
tain copies of data items. REALM propagates updates as soon as they are processed;
increasing the number of updates replicas. Hence, it executes the highest percentage
of successful transactions among the models being studied. With increase in the num-
ber of accurate value transactions, the workload of those servers with the most up-
dated copy of data items increases. This causes the increase in imbalance of server
energy consumption of both the Hara model and REALM. REALM incurs the least
imbalance among the three models. This is because it replicates and accesses data
items considering the energy levels of servers.

6.3 Effect of Data Access Frequency

The effect of data access frequencies on the percentage of successful is shown in
Fig. 4. Data access frequency is represented using the zipf parameter θ. As θ in-
creases, the number of data items being accessed frequently decreases. Due to this,
Hara model as well as REALM increases the number of replicas in the network.
Hence, the percentage of successful transactions yielded by both models increases
with increase of θ. Unlike the Hara model, REALM considers the requirements of the
clients in addition to the access frequencies. Due to this, it is able to cater to the needs
of the clients better than the Hara model. This allows REALM to yield higher per-
centage of successful transactions even as the value of θ increases.

Fig. 4. Effect of Data Access Frequency

6.4 Effects of Network Partitioning Frequency

Fig. 5 shows the effect of frequency of network partitioning on the percentage of
successful transactions and the average server energy consumption. With increase in
the frequency of network partitioning, servers move into different partitions, increas-
ing the unavailability of data. REALM yields the highest percentage of successful
transactions among the models studied. This is because REALM tries to predict net-
work partitioning and triggers replication ahead of its occurrence. However, this also

Effect of Access Frequency on the Percentage of Successful
Transactions

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Zipf Parameter Theta Value

No Replication

Hara

REALM

P
er

ce
n

ta
g

e
o

f S
u

cc
es

sf
u

l

T
ra

n
sa

ct
io

n
s

 REALM: Replication of Data for a Logical Group Based MANET Database 183

Fig. 5. Effect of Frequency of Network Partitioning

causes its server energy consumption to rise. This is because, with every partition
prediction, REALM replicates data items. As the frequency of partitioning increases,
the number of times that replication is triggered increases.

6.5 Effects of Transaction Inter-arrival Time

Fig. 6 shows the effect of transaction inter arrival time (IAT) on the percentage of
successful transactions. The percentage of successful transactions increases with in-
crease in IAT. This is due to decrease in the time rate of server workload.

Fig. 6. Effect of Transaction Inter Arrival Time

Effect of Transaction Inter Arrival Time on the
Percentage of Transactions Successfully Executed

0
10
20
30
40
50
60

.2 .4 .6 .8 1

No Replication
Hara

REALM

Transaction Inter Arrival Time

T
ra

n
sa

ct
io

ns
 S

uc
ce

ss
fu

lly

E
xe

cu
te

d

Effect of Frequency of Network Partitioning on the Percentage
of Successful Transactions

0

10

20

30

40
50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2

Frequency of Network Partitioning

No Replication

Hara

REALM
P

er
ce

n
ta

g
e

o
f S

u
cc

es
sf

u
l

 T
ra

n
sa

ct
io

n
s

Effect of Frequency of Network Partitioning on the Average

Server Energy Consumption

0
10
20
30
40
50
60
70
80
90

0 0.2 0.4 0.6 0.8 1 1.2

Frequency of Network Partitioning

No Replication

Hara

REALM

A
ve

ra
g

e
S

er
ve

r
E

n
er

g
y

C
o

n
su

m
p

tio
n

184 A. Vallur, L. Gruenwald, and N. Hunter

The No Replication model queues up transactions that access the same data item on a
single server because each data item is only available in a single location. Unlike the
Hara model, REALM reduces the total execution time of every transaction consider-
ing communication distance as a factor for choosing participants. Hence, it yields the
highest percentage of successful transactions among the models studied.

7 Conclusions and Future Work

This paper presented a data replication technique called REALM for logically group
based MANET real-time databases. By considering groups of mobile hosts which
access the same set of data items, REALM is able to take advantage of the needs of
the clients in the network at the time of replication. REALM yields the best perform-
ance in terms of percentage of successful transactions and balance in server energy
consumption when compared to the existing techniques.

REALM can be further strengthened by developing a rigorous, power-efficient par-
tition prediction scheme. Clients can maintain replica tables to be able to make a more
informed choice of the transaction coordinator. The conditions for triggering replica-
tion can be checked after a preset number of transactions have been executed. Guide-
lines to choose this value can be established. In addition, REALM can also be
extended to tolerate overlapping and variable group definitions. This will involve a
scheme to update the group membership of mobile hosts.

References

1. Bellavista, P., Corradi, A., Magistretti, E.: REDMAN: A Decentralized Middleware Solu-
tion for Cooperative Replication in Dense MANETs. In: International Conference on Per-
vasive Computing and Communications Workshops, pp. 158–162 (2005)

2. Chen, K., Nahrstedt, K.: An integrated data lookup and replication scheme in mobile ad
hoc networks. In: SPIE International Symposium on the Convergence of Information
Technologies and Communications, pp. 1–8 (2001)

3. Gruenwald, L., Bernedo, P., Padbmanabhan, P.: PETRANET: A Power Transaction Man-
agement Technique for Real Time Mobile Ad-Hoc Network Databases. In: IEEE Interna-
tional Conference on Data Engineering (ICDE), p. 172 (2006)

4. Hara, T.: Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessi-
bility. In: IEEE INFOCOM, pp. 1568–1576 (2001)

5. Hara, T.: Replica Allocation Methods in Ad Hoc Networks with Data Update. ACM-
Kluwer Journal on Mobile Networks and Applications, 343–354 (2003)

6. Hara, T., Loh, Y.H., Nishio, S.: Data Replication Methods Based on the Stability of Radio
Links in Ad Hoc Networks. In: The 14th International Workshop on Database and Expert
Systems Applications, pp. 969–973 (2003)

7. Hara, T., Murakami, N., Nishio, S.: Replica Allocation for Correlated Data Items in Ad
Hoc Sensor Networks. ACM SIGMOD RECORD, 38–43 (2004)

8. Hauspie, M., Simplot, D., Carle, J.: Replication decision algorithm based on link evalua-
tion services in MANET. CNRS UPRESA 8022 – LIFL Univ. Lille (2002)

9. One Laptop Per Child (last accessed, April 2007), http://www.laptop.org
10. MySQL (last accessed, February 2007), http://www.mysql.com

 REALM: Replication of Data for a Logical Group Based MANET Database 185

11. OLSR (last accessed, February 2007), http://olsr.org
12. Padmanabhan, P., Gruenwald, L.: DREAM: Data Replication in Ad Hoc Mobile Network

Databases. In: IEEE International Conference on Data Engineering (April 2006)
13. Ratner, D., Reiher, P., Popek, G.J.: Roam: A Scalable Replication System for Mobility.

Mobile Networks and Applications 9(5), 537–544 (2004)
14. Sun, J.: Mobile Ad Hoc Networking: An Essential Technology for Pervasive Computing.

In: Proc. of ICII, Beijing, China, pp. 316–321 (2001)

A Cache Management Method for the Mobile

Music Delivery System: JAMS

Hiroaki Shibata, Satoshi Tomisawa, Hiroki Endo, and Yuka Kato

School of Industrial Technology, Advanced Institute of Industrial Technology,
1-10-40 Higashi-Ohi, Shinagawa-Ku Tokyo 1400011, Japan

Abstract. The authors have proposed a music delivery system JAMS
(JAMais vu System), which uses ad-hoc networks with mobile devices for
the localization services. In this paper, they focus on a cache management
scheme for JAMS to deliver music files efficiently. The proposed scheme
makes it possible to manage cache files robustly by using adaptive cache
delivery according to each node request. In addition, the authors conduct
a simulation experiment and obtain access failure ratio of music files
under various system conditions. The simulation results indicate that the
proposed scheme is suitable for the system using localization services.

Keywords: Ad-Hoc Networks, Music Delivery Services, P2P, Cache
Management.

1 Introduction

With the recent increased availability of high performance mobile data terminals
and broadband Internet access via mobile networks, mobile network services are
widely noticed. From these viewpoints, the authors have proposed music deliv-
ery system JAMS (JAMais vu1 System)[1][2], which uses ad-hoc networks with
mobile devices for localization services. The design concept is to give users a
surprise and a pleasure in their daily lives. Recently, context awareness tech-
nologies, which provide services according to user conditions and user features,
are widely noticed[3][4]. The standpoint of JAMS is opposite to them, and it
actively uses accidental transitions of situations.

JAMS users have stored music files in their own mobile terminals in advance,
and share the music files among other users staying in the same space, such as
a commuter train, a cafeteria, a classroom and so on. At that time, since the
space in which a user is staying changes every moment, JAMS users staying in
the same space also change and sharing music files change. As a result, service
contents vary according to users’ staying spaces, and JAMS makes it possible to
provide unexpected and subconscious services.

For such mobile music delivery services in ad-hoc networks, effective mu-
sic delivery schemes, which use cache data, are needed in order to avoid load
1 The feeling that you are a stranger to something which is actually familiar to you.

This is the antonym of “deja vu,” which is the feeling that you have previously
experienced something which is happening to you now.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 186–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Cache Management Method for the Mobile Music Delivery System: JAMS 187

processing concentration. Several studies have examined cache delivery methods
for sharing files. As for an effective cache management in P2P networks, a cache
management method of Winny is proposed[5]. Since this method needs some
stable nodes with enough resources and does not consider node mobility well,
it is difficult to apply it to JAMS. Effective cache delivery methods in ad-hoc
networks have been also proposed[6][7]. However, these methods deliver cache
data to networks beforehand according to prediction of frequency in use of a file,
and it is difficult to use them for JAMS (because of localization of contents).

In order to design a cache management method for JAMS, the following two
problems must be solved.

– The problem on localization of contents:
Because the targets of JAMS are local ad-hoc networks, existing files in a
“Space” change every moment. For this reason, it is necessary to design a
robust cache delivery method which is not affected by inequality of contents.

– The problem on mobile terminals:
Mobile terminals have many restrictions of resources, such as CPU power,
memory size, disk size and power consumption. Therefore, it is necessary to
deliver caches effectively with a simple method as much as possible. Load
balance is also needed.

To solve these problems, this paper proposes an adaptive cache delivery method
according to requests from nodes. This method does not optimize cache delivery
process. The proposed method makes it possible to manage cache data robustly
for JAMS. In addition, by conducting simulation experiments, this paper confirms
the effectiveness of the proposed method.

2 Overview of JAMS

This section describes the overview of JAMS. JAMS provides services by using
localization of contents, so that the authors explain the differences of contents
in different “Spaces”. Then, system architecture and system functions of JAMS
are shown.

2.1 Localization of Contents

In this paper, localization of contents is expressed as the word of “Space”. An
image of “Space” is shown in Fig. 1. In this figure, nodes within a specific range
construct a network (localization), and the network is defined as a “Space”. As
for JAMS, the localization is made by using ad-hoc networks. In a space within
a specific range (e.g. in the train, in the classroom etc.), an ad-hoc network is
constructed by mobile terminals which users in this space have, and music files
are shared among users in the network.

188 H. Shibata et al.

Fig. 1. An image of “Space”

2.2 System Architecture

System architecture of JAMS is shown in Fig. 2. JAMS is a pure P2P type
network service. The same application software is implemented on all of termi-
nal nodes, and those nodes communicate with each other on an equal position.
Therefore, both of sending and receiving functions of music data (the streaming
function) are implemented on one terminal. In addition, JAMS has the function
which calculates the node feature value by using music file characters of the
node and indicates the value to the user, and the function which calculates the
“Space” feature value by using feature values of nodes in the “Space”. Each node
also has the function for those (the feature value calculation function).

Moreover, the cache management method proposed in this paper has the
mechanism which deliver caches of music files to nodes in ad-hoc networks. For
that, a management function for nodes delivered cache files (the delivery DB)
and a management function for storing cache file (the cache DB) are implemented
on each node.

3 Cache Management Method

3.1 Design Concept

A characteristic of JAMS is to deliver caches of music data to ad-hoc networks
in order to deliver music files effectively in networks with mobile data terminals.
The authors determined the following three concepts for design of the cache
management method.

– Each node manages cache files autonomously.
– Cache replacement occurs according to changes in “Space”.
– An adaptive method is used instead of a statistical method.

A Cache Management Method for the Mobile Music Delivery System: JAMS 189

Fig. 2. System architecture

For the first concept, mobile terminals have many restrictions of resources, so
that it is necessary to adopt mechanisms with a light load to terminals. In partic-
ular, since JAMS is a pure P2P type network service and all nodes are on an equal
level, it is impossible to use some stable nodes for special roles. Therefore, dis-
tributed management of cache data are needed in order to avoid load processing
concentration. For the second concept, it is necessary to adopt a cache delivery
method which does not affect localization of contents. JAMS is a system which
provides different services according to users’ staying “Spaces.” Consequently,
the method which affects the feature of “Space” cannot be adopted. For the
third concept, it is necessary to design an effective cache delivery method which
is not affected by inequality of contents. Existing file types in a “Space” change
every moment. It is impossible to predict frequency in use of a file beforehand
and to use a statistical method.

3.2 Features of the Method

The authors designed the cache management method of JAMS based on the con-
cepts mentioned above. There are two features of the method. One is to conduct
distributed management of caches on terminal nodes, and the other is to remove
cache data by using time-out. The concrete features are described as follows.

– Cache Delivery:
A passive delivery method (an adaptive method) is used instead of an active
delivery one (an statistical method). Music data are stored in a node as

190 H. Shibata et al.

a cache file only when the node receives the music file via streaming from
another node.

– Cache Removal:
If there are no delivery requests of a cache until the time-out determined
beforehand, the cache is removed from the node automatically.

– Cache Replacement:
LRU (Least Recently Used) is used for replacement. Caches are replaced in
the order of their residual time to time-out, shortest first.

– Cache Management:
The source node of a cache manages the destination node of the cache. Hence,
relationship between nodes with the cache of a music file can be represented
by a tree structure whose root is the node with the original file. Cache search
is conducted recursively along the tree.

– Cache selection:
If the number of cache delivery requests to a node exceeds the threshold (ex.
3 for JAMS), the node informs the request node of a managed cache, and
distributes cache accesses. Caches are used in order of the layer number from
the root of the cache management tree, smallest first. If there are caches in
the same layer, those are used in order of their residual time to time-out,
shortest first.

As to the cache management, since cache delivery does not occur unless a node
receives music data, explicit process for joining new nodes to the ad-hoc network
is not needed. On the other hand, when cache removal occurs by exceeding
time-out, leaving nodes from the ad-hoc networks and so on, parts of the cache
management tree structure collapse. However, the starting point of cache search
is the node with the original file, therefore the tree can be constructed again.
When the node with the original file leaves from the network, the corresponding
file is removed from the search targets, and we just wait for removal of the
existing cache files in the network by time-out.

3.3 Procedure of the Method

The procedure of the cache management method is shown in Fig. 3. In this figure,
cache delivery process from the node A with the original file is represented. The
upper part indicates file delivery process via streaming according to requests
and cache storing process in the request nodes. The lower part indicates the
structure of the cache management tree. In this figure, parent nodes manage
the child nodes connected with them by lines. The authors explain the detail
processes as follows.

1. Node B and node C store the cache of node A. At that time, node H requests
music delivery to node A. Caches of node B and node C were delivered
directly from node A, therefore node B and node C directly connect lines
with node A on the cache management tree.

A Cache Management Method for the Mobile Music Delivery System: JAMS 191

Fig. 3. Procedure of the method

192 H. Shibata et al.

2. Node A delivers music data via streaming to node H. At that time, node E,
node D and node F request music delivery to node A. Since node H stores
the cache file now, the node is added to the management tree.

3. According to delivery requests, node A delivers music data via streaming to
node E, node D and node F. At that time, node G requests music delivery to
node A. As for JAMS, since the number of streams delivered simultaneously
from one node is three2node A cannot deliver the music data. Therefore,
node A informs node G of node C which has the shortest residual time in
the cache list of node A. Node D, node E and node F are added to the cache
management tree.

4. Node A introduces node C to node G, and then, node G requests music
delivery to node C. At that time, node C is available, and delivers music
data via streaming to node G.

5. Node G stores the cache file delivered from node C. Since the cache data is
managed by node C, node G is added to the cache management tree with
direct connection to node C. As for node B, since there are no delivery
requests of a cache until the time-out, the cache is automatically removed
from the node and the cache management tree.

4 Performance Evaluation

In order to verify the effectiveness of the proposed method, the authors devel-
oped a simulator for the cache delivery function, and conducted performance
evaluation. This section shows the experimental results.

4.1 Experimental Conditions

This paper confirms that the proposed method is not affected by the change
of “Spaces”, and is a robust and effective cache delivery scheme under various
system environments. For that purpose, several situations which have different
conditions are provided, and performance data are measured under the condi-
tions. The ratio of delivery requests to delivery failures is used for performance
evaluation metrics. It is defined as follows.

Failure ratio =
The number of delivery failures
The number of delivery requests

(1)

In this paper, this value was obtained for each node, and the average of them
was calculated. As for JAMS, there is a limit of the number of streams delivered
simultaneously from one node, so the failure ratio might become high unless
effective cache delivery is made.

2 The number of streams delivered simultaneously from one node depends on a per-
formance characteristic of a mobile terminal, available bandwidth and so on. As for
JAMS, the number is three, which was determined by the prior experiment using
PCs. In the case of using cell phones, this value is also supposed.

A Cache Management Method for the Mobile Music Delivery System: JAMS 193

The experimental condition is described in Tab. 1. Arrival rates use a Poisson
distribution and sojourn time uses a normal distribution with the mean values
indicated in the table. Nodes generating requests, requested nodes and requested
music files in a node are determined randomly. For the comparison, the failure
ratios were measured by using the following four methods.

Table 1. Experimental condition

No. Situation Arrival rate Sojourn time Feature

1 Cafeteria 0.0067/s 2700 s A few nodes and long sojourn time.
2 Platform 0.5/s 300 s A lot of nodes and short sojourn time.
3 Library 0.0017/s 5400 s A few nodes and long sojourn time.
4 Train 0.167/s 1200 s A lot of nodes and short sojourn time.

– Method A: This is the proposed method in this paper. It is the method that
a cache is managed by the node which delivers the cache data (the parent
node).

– Method B: This does not use cache mechanisms.
– Method C: This is the method that a cache is managed by the node which

has the original file of the cache data (the original node).
– Method D: This is the method that cache data are delivered beforehand

according to probability.

As for method D, the experiment classified nodes in the “Space” according
to similarity of music files (in this case, music genres were used for the classifi-
cation), and the source node of cache and the destination node were randomly
selected in the class with the largest number of nodes. Then, suitable files to
music features of the class were delivered as caches. This simulates the situa-
tion that files with the highest probability of selection are delivered as caches in
advance.

4.2 Experimental Results

The simulation experiment corresponding to six hours was conducted under the
situations in Tab. 1. Fig. 4 shows the experimental result. This figure indicates
the average of the failure ratios for the situations (the average of the failure
ratios of nodes) and the standard deviations of the averages for the situations
(σ). As a result, the authors confirmed that failure ratio of the proposed method
(method A) is the lowest for all situations and the method makes it possible to
deliver caches effectively. Moreover, they found that changes in situations have a
little effect on failure ratio for the method and it is a robust method for various
situations.

The following are discussions on the experimental results. First, in the situa-
tions for the experiment, the failure ratios of situation 1 and situation 3 (sojourn
times in“Spaces” are long, and the number of join and leave nodes is small) are

194 H. Shibata et al.

Fig. 4. Experimental results

high. This is because concentration of access to popular contents occurs after
many nodes stay in a “Space” within a certain period, and cache does not work
well with a lot of joining and leaving nodes. Second, the result on each method
is discussed. For method B, which does not use cache mechanisms, the failure
ratios of situation 1 and situation 3 are nearly 1. As a result, we found that
it is necessary to implement cache mechanisms for effective music delivery. For
method D, which delivers cache data to networks beforehand according to pre-
diction of frequency in use of a file, there is not remarkable effect of cache delivery
because situation change frequently occurs in JAMS (i.e. it is difficult to predict
frequency in use of a file) though prediction accuracy greatly affects failure ratio
on the method. We also found that failure ratios vary widely for situations. For
method C, which manages a cache file in the original node, failure ratio is high
because the next cache node is not introduced if access failure to a cache file
occurs.

We conclude that the proposed method can deliver cache files effectively to a
network under various conditions and can lower failure ratio of file access.

5 Conclusion

This paper proposed a effective cache management method for a music delivery
system JAMS, which uses ad-hoc networks with mobile terminals for localization
services. The proposed scheme makes it possible to manage cache files robustly
by using adaptive cache delivery according to each node request. Moreover, by

A Cache Management Method for the Mobile Music Delivery System: JAMS 195

conducting a simulation experiment and obtaining access failure ratio of music
files under various system conditions, the authors verified the effectiveness of the
proposed method.

References

1. Shibata, H., Tomisawa, S., Endo, H., Kato, Y.: A p2p network system for music
delivery using localization of contents. In: IPSJ DPS Workshop 2007, pp. 37–42
(2007)

2. Shibata, H., Tomisawa, S., Endo, H., Watabe, T., Oshiro, H., Kato, Y.: A mobile
music delivery system using field features of contents. IPSJ SIG-DPS DPS-133, 25–
30 (2007)

3. Corbett, D.J., Cutting, D.: AD LOC: Collaborative Location-based Annotation.
IPSJ Journal 48(6), 2052–2064 (2007)

4. Nakanishi, Y., Takahashi, K., Tsuji, T., Hakozaki, K.: iCAMS: A mobile communica-
tion tool using location and schedule information. IEEE Pervasive Computing 3(1),
82–88 (2004)

5. Kaneko, I. (ed.): Technologies of Winny. ASCII (2005)
6. Hara, T.: Replica allocation for correlated data items in ad-hoc sensor networks.

ACM SIGMOD 33(1), 38–43 (2004)
7. Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. IEEE Trans.

on Mobile Computing 5(1), 77–89 (2006)

EcoRare: An Economic Incentive Scheme for

Efficient Rare Data Accessibility in Mobile-P2P
Networks

Anirban Mondal1, Sanjay Kumar Madria2, and Masaru Kitsuregawa1

1 Institute of Industrial Science
University of Tokyo, Japan

{anirban,kitsure}@tkl.iis.u-tokyo.ac.jp
2 Department of Computer Science
University of Missouri-Rolla, USA

madrias@umr.edu

Abstract. We propose EcoRare, a novel economic incentive scheme for
improving the availability of rare data in Mobile-P2P networks. Eco-
Rare combats free-riding and effectively involves free-riders to improve
the availability (and lifetimes) of rare data. EcoRare also facilitates the
creation of multiple copies of rare items in the network since its novel
selling mechanism allows a given data to have multiple owners. Our per-
formance study demonstrates that EcoRare indeed improves query re-
sponse times and availability of rare data items in Mobile-P2P networks.

1 Introduction

In a Mobile Ad-hoc Peer-to-Peer (M-P2P) network, mobile peers (MPs) interact
with each other in a peer-to-peer (P2P) fashion. Proliferation of mobile devices
(e.g., laptops, PDAs, mobile phones) coupled with the ever-increasing popular-
ity of the P2P paradigm (e.g., Kazaa) strongly motivate M-P2P applications.
M-P2P applications facilitate mobile users in sharing information on-the-fly in
a P2P manner. Mobile devices with support for wireless device-to-device P2P
communication are beginning to be deployed such as Microsoft’s Zune [13].

This work focusses on improving the availability of rare data items. Rare items
are those, which get sudden bursts in accesses based on events. In the absence
of related events, rare items are generally of little interest to most M-P2P users,
hence they are typically hosted by relatively few MPs, who obtain them from
content distributors. For example, in case of an unexpected event such as a gas
emission, several users would be interested in knowing where gas-masks are avail-
able. This would lead to sudden bursts in accesses to data concerning gas-masks,
and users would urgently need this data in real-time. Peers, which host data con-
cerning gas-masks, obtain such data as advertisements from content providers
(e.g., shops selling gas-masks). Observe that the sudden bursts in accesses to
rare items generally occurs with a given time-frame, before and after which rare
items are accessed rarely. Similarly, in case of a sudden snowfall, many people
would want to know in real-time where shovels are available, thereby resulting in

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 196–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

EcoRare: An Economic Incentive Scheme 197

a sudden burst of accesses to data concerning shovels. Peers hosting data about
shovels obtain such data as advertisements from shops that sell shovels. Such
M-P2P interactions for effective sharing of rare data are currently not freely
supported by existing wireless communication infrastructures.

In the same vein, during a sudden heavy snowfall in an area usually having
negligible snowfall, many cars are likely to slip and require some repairs due to
the snow since most cars in areas of negligible snowfall are not typically equipped
with snow-related features such as snow tires. Thus, many drivers would require
real-time information about car repairs. Peers hosting data about car repairs
obtain them as advertisements from car-repair garages. Moreover, when an art
exhibition takes place in a city, many people attending the exhibition may be-
come interested in obtaining more knowledge about paintings, which would re-
sult in sudden bursts in accesses to data concerning paintings. Peers, who host
data about rare paintings, may have obtained the data from art connoiseurs
and shops selling art-related items. Observe how such sudden interest of several
users in paintings or in car repairing arises due to events. Incidentally, our target
applications mainly concern slow-moving objects e.g., people in art exhibitions.

Data availability in M-P2P networks is typically lower than in fixed networks
due to frequent network partitioning arising from user movement and mobile
devices switching ‘off’ when their generally limited energy is drained. Since a
large percentage of MPs are typically free-riders [14] (i.e., they do not provide
any data), the limited energy of a typically small percentage of MPs, which pro-
vide data, is quickly drained, thereby further reducing M-P2P data availability.
Availability of rare data is further exacerbated since they are generally stored at
relatively few MPs, which may be several hops away from query issuers. Notably,
existing M-P2P incentive schemes [26] do not consider rare data. Hence, we pro-
pose EcoRare, a novel economic incentive scheme, in which MPs collaborate
effectively with each other to improve the availability of rare data.

In EcoRare, each data item is associated with two (virtual-currency) prices,
namely the use price ρu and the sell price ρs. Paying the use price entitles the
query issuing MP MI to obtain some basic information about its queried data
item d, but MI does not obtain the ownership of d i.e., it cannot sell d. On the
other hand, by paying the sell price, MI obtains more detailed information about
d and it obtains ownership rights of d, hence it can sell d. Thus, in EcoRare,
a given data can have multiple owners. Such multiple owners hosting the same
data guard the data availability against the unavailability of some of the owners.
Observe that if MI pays the use price, it cannot sell d because it does not have
complete information concerning d. Intuitively, given a data d, the sell price of
d is always higher than its use price.

To put things into perspective, let us refer to our application scenarios. When
MI pays the use price for obtaining information about gas-masks and shovels, it
obtains information about only a few shops selling these items and the respec-
tive prices of these items at those shops. However, when MI pays the sell price,
it obtains additional information including complete catalogues of more shops
selling these items, information about how to order these items (e.g., by phone)

198 A. Mondal, S.K. Madria, and M. Kitsuregawa

and how to get these items delivered to MI . Observe that in the above scenar-
ios, the peer MS that hosts the queried data essentially acts as an agent for the
content-provider. Thus, the prices paid by MI to MS may be viewed as a com-
mission for giving MI information about the queried data. Similarly, MS may
be regarded as disseminating advertisements on behalf of the content-provider.

In case of paintings, paying the use price entitles MI to obtain some basic
information concerning the art shops, where replicas of the paintings can be
purchased. However, when MI pays the sell price, it obtains additional informa-
tion such as how to order the paintings and get them delivered, digital images
of collection of paintings by the same artist, educational documentary videos
about the historical and cultural aspects of the paintings and so on. For the
car-repairing application scenario, the use price allows MI to know only a few
addresses of car repair garages, while the sell price enables MI to get additional
information e.g., a video showing how to change a tire.

In essence, EcoRare requires a data-requestor to pay either the use price or
the sell price to the data-provider. EcoRare also requires query issuing MPs to
pay a constant relay cost to each MP in the successful query path to entice relay
MPs in forwarding queries quickly. Thus, EcoRare effectively combats free-riding
because free-riders would have to earn currency for issuing their own requests,
and they can earn currency only by hosting items and relaying messages. As
we shall see later, rare items are higher-priced than non-rare items in terms
of both use price and sell price. This provides free-riders with higher incentive
[23,8,20] to host rare items for maximizing their revenues. By enticing free-riders
to pool in their energy and bandwidth resources to host rare items, EcoRare
improves the availability and lifetimes of rare items due to multiple ownership
and the creation of multiple copies. Incidentally, querying in EcoRare proceeds
via broadcast which is limited to 8 hops to optimize communication overheads.

EcoRare considers both read-only and updatable data items. A rare item
owner can send the subsequent updates under a contract for a period of time
to the MPs, which have paid it the sell price for the data. For our application
scenarios, in case gas-masks or shovels go out of stock at some of the shops,
the previous owner of the data can send this information to the MP(s) that it
had previously sold the data to. Updates can also be in the form of appending
new information e.g., for the car-repair application scenario, the data owner
could provide the addresses of more car garages, where a slot for car repairing
is currently available. Moreover, the current buyer can also get the direct feed
from the content provider (e.g., a car-repair garage).

Incidentally, virtual currency incentives are suitable for P2P environments due
to the high transaction costs of real-currency micro-payments [24]. The works in
[5,6,28] discuss how to ensure secure payments using a virtual currency. Notably,
these secure payment schemes are complementary to our proposal, but they can
be used in conjunction with our proposal.

The main contributions of EcoRare are three-fold:

1. It combats free-riding and effectively involves free-riders to improve the avail-
ability (and lifetimes) of rare data.

EcoRare: An Economic Incentive Scheme 199

2. It facilitates the creation of multiple copies of rare items in the network since
its selling mechanism allows a given data to have multiple owners.

3. It indeed improves query response times and availability of rare data items
in M-P2P networks, as shown by a detailed performance evaluation.

To our knowledge, this is the first work to propose an M-P2P economic incentive
scheme for rare items.

2 Related Work

Economic models for resource allocation in distributed systems [7,15] do not
address unique M-P2P issues such as node mobility, free-riding and frequent
network partitioning. Economic schemes for resource allocation in wireless ad
hoc networks [17,27] do not consider free-riding. Schemes for combating free-
riding in static P2P networks [9,11,14,16,18] are too static to be deployed in
M-P2P networks as they assume peers’ availability and fixed topology.

Schemes for improving data availability in mobile ad hoc networks (MANETs)
(e.g., the E-DCG+ approach [12]) primarily focus on replica allocation, but do
not consider economic incentive schemes and M-P2P architecture. Interestingly,
the proposals in [25,26] consider economic schemes in M-P2P networks. However,
they focus on data dissemination with the aim of reaching as many peers as
possible, while we consider on-demand services. Furthermore, the works in [25,26]
do not consider free-riders and data item rarity issues.

The works in [2,28] use virtual currency to stimulate the cooperation of mobile
nodes in forwarding messages, but they do not consider prices of data items and
data item rarity issues. The proposals in [4,22] concentrate on compensating
forwarding cost in terms of battery power, memory, CPU cycles, but they do
not entice free riders to host data.

P2P replication suitable for mobile environments has been incorporated in
systems such as ROAM [19], Clique [21] and Rumor [10]. However, these systems
do not incorporate economic schemes. MoB [3] is an open market collaborative
wide-area wireless data services architecture, which can be used by mobile users
for opportunistically trading services with each other.

3 EcoRare: An M-P2P Economic Scheme for Rare Data

This section discusses the economic scheme of EcoRare. In particular, we present
the formulae for use price, sell price and the revenue of an MP.

Computation of the use price ρu

Table 1 summarizes the notations used in this paper. Using the notations in
Table 1, the use price ρu of a data item d is computed below:

ρu =
∫ t2

t1

(λ × eτD/τR dt) if τR ≤ τD

= 0 otherwise (1)

200 A. Mondal, S.K. Madria, and M. Kitsuregawa

Table 1. Summary of Notations

Symbol Significance

d A given rare data item

ρu The use price of d

ρs The sell price of d

λ Rarity score of a data item

τD Time of query deadline

τR Time of query response

nri
Number of read access to d during the ith time period

NCopies The total number of copies of a data item in the network

where [t2−t1] is a given time period. τR and τD are the query response times and
the query deadlines respectively. The term eτD/τR implies that faster response
times (w.r.t. the query deadline) for queries on d command higher price, which
is consistent with ephemeral M-P2P environments. For queries answered after
the deadline τD, ρu = 0 as the query results may no longer be useful to the user.

Rarity score λ of a data item d quantifies its rarity. λ depends upon the number
of MPs which host d, and the variability in access frequencies of d during the
past N periods of time e.g., shovels for removing snow are heavily accessed only
during a specific time-frame associated with the sudden snowfall, while at other
times, they may not be accessed at all. λ is computed below:

λ = (θ × (maxηr − minηr) × NP) / (
N∑

i=1

ηi) (2)

where N is the number of time periods over which λ is computed. θ = (maxηw -
minηw + 1), where maxηw and minηw are the maximum and minimum number
of write accesses to d during any of the last N time periods. Thus, for read-only
items, θ = 1. maxηr and minηr are the maximum and minimum number of
read-accesses to d during any of the past N time periods. NP is the ratio of the
total number of MPs in the network to the number of MPs that host d. Observe
that λ decreases with increasing number of MPs hosting d. This is because a
data item becomes less rare when it is hosted at more MPs, thus its rarity score
λ also decreases. Each MP knows the value of NP since every MP periodically
broadcasts its list of data items so that each MP knows the data items that are
hosted at other MPs. ηi is the total access frequency (i.e., total read accesses for
read-only items and the sum of reads and writes for read-write items) during the
ith time period. Thus, the term (

∑N
i=1 ηi) represents the total access frequency

of d during the last N time periods.

Computation of the sell price ρs

Using the notations in Table 1, the sell price ρs of an item d is computed below:

ρs = ρu × ((
N∑

i=1

nri) / NCopies) (3)

EcoRare: An Economic Incentive Scheme 201

Observe that ρs of a given item d depends upon the use price ρu of d. This
helps in ensuring that ρs always exceeds ρu, which is necessary in case of our
application scenarios. Here, nri is the number of read-accesses to d during the ith

time-period. Thus, the term (
∑N

i=1 nri) represents the total number of reads
to d during the last N time-periods. Ncopies is the total number of copies of d in
the network. Every MP knows the value of Ncopies since every MP periodically
broadcasts its list of data items so that each MP knows the data items that are
hosted at other MPs. Notably, the number of read-accesses to d must always
exceed the number of copies of d hosted in the network. This is because MPs
have limited memory, hence they will not host data items, whose number of
read accesses is relatively low. Due to memory space constraints, each MP tries
to host data items with relatively higher number of read accesses to maximize
its revenue from hosting the items. Thus, the term ((

∑N
i=1 nri) / Ncopies)

essentially represents a factor, which is always greater than 1. This guarantees
that the sell price ρs of any given item d always exceeds its use price ρu.

Revenue of an MP

Revenue of an MP is defined as the difference between the amount of virtual
currency that it earns (by hosting data items and providing relay services) and
the amount that it spends (by requesting data items and paying relay costs to
the MPs in the successful query path).

Suppose MP M hosts p data items, and for the ith item, the number of queries
(served by M) corresponding to use price is hui , while the ith item’s use price
is ρui . On the other hand, let the price of the ith item and its access frequency
corresponding to sell price be ρsi and hsi respectively. Now suppose the number
of items in the network not hosted by M is q. M issues rui queries corresponding
to use price for the ith such item, while the ith item’s use price is ρui . Moreover,
let the price of the ith item and its access frequency corresponding to sell price
be ρsi and rsi respectively for the items requested by M .

Assume MP M relays m messages and requires to pay relay commissions for
n messages in the course of issuing different queries. Thus, M ’s earnings from
relaying messages equals (m × K), while M ’s spending on relay cost is (n × K).
Here, K is a constant, which is a small percentage of the use price ρu of the
data item corresponding to the relay message. In this work, we consider K to be
5% of ρu. Observe that EcoRare provides higher incentive to MPs for hosting
items than for relaying messages. This is in consonance with EcoRare’s aim of
improving the availability of rare items by encouraging MPs to host such items.
Revenue ω of an MP is computed below:

ω = (

p�

i=1

(ρui × hui) +

p�

i=1

(ρsi × hsi)) − (

q�

i=1

(ρui × rui) +

q�

i=1

(ρsi × rsi))

+ ((m − n) × K)

202 A. Mondal, S.K. Madria, and M. Kitsuregawa

In the above equation, the first and second terms represent MP M ’s earnings,
while the third and fourth terms indicate M ’s spending. The last term relates
to the earnings and spending of M due to relay commissions.

4 Data Selling Mechanism of EcoRare

This section discusses the data selling mechanism of EcoRare such that multiple
copies of the rare data are created, which improves accessibility to rare data.

In EcoRare, data selling works in the following two ways:

– Query-based selling: When a query-issuing MP MI pays the sell price of a
data item d to the host MP MS of d, MI obtains a copy of d and also becomes
an owner of d, thus MI can now host and re-sell d.

– Push/Pull-based selling: When a data-providing MP’s energy becomes low or
when it is about to leave the network, it may decide to sell its rare data items
to earn currency (i.e., a push-based selling mechanism). On the other hand,
due to EcoRare’s economic model, free-riders need to earn currency, without
which they would not be able to issue any requests of their own. Hence, free-
riders may want to buy one or more rare data items from the data-providing
MPs so that they can earn currency by hosting these items (i.e., a pull-based
selling mechanism). Periodically, data-providing MPs (including MPs that
have obtained data via the selling and re-selling mechanisms) broadcast their
list of rare items to facilitate both push and pull-based selling mechanisms.

Observe that both the query-based and the push/pull-based selling mechanisms
are essentially equivalent to the data provider selling the data item d such that
both become owners of d. Thus, EcoRare allows multiple owners for any given
item d, and each owner is allowed to host and sell/re-sell d. Moreover, both
these mechanisms effectively create multiple copies of a given item d, thereby
improving the accessibility to rare items. In the absence of a selling mechanism,
rare items would become inaccessible once their original providers run out of
energy. Furthermore, multiple copies of rare items also facilitate shorter query
paths, thereby further improving both query response times and data availability.

Given that both these selling mechanisms have many similarities, we present
their algorithms in a unified manner. In these algorithms, we shall refer to the
data-providing MPs as the sellers, while the query-issuing MPs (in case of the
query-based selling mechanism) or the free-riders (in case of the push/pull-based
mechanism) shall be referred to as the buyers.

Figure 1 depicts the algorithm for a seller-MP MSell. In Line 1 of Figure 1, φ
= (λd ×ηd), where λd (computed by Equation 2) is the rarity score of item d and
ηd is d’s access frequency. Observe that φ reflects the revenue-earning potential
of d since d’s price increases with increase in both λd and ηd. Notably, items with
relatively high update frequencies are not considered for sale. This is because the
sale of frequently updated items would incur significant energy and bandwidth
overheads for the seller MP due to continuous update transmissions. As Lines
1-3 indicate, MSell sells items with relatively higher values of φ to maximize

EcoRare: An Economic Incentive Scheme 203

Algorithm EcoRare Seller MP
/* φ is an item’s revenue-earning potential */
(1) Sort all its data items in descending order of φ
(2) Compute the average value φavg of all its data items
(3) Select items for which φ exceeds φavg into a list Sell

/* Sell is the candidate set of items for selling */
(4) Broadcast the list Sell upto its n-hop neighbours

(5) for each data item d in Sell
(6) Wait for replies from potential buyers
(7) Receive replies from buyers into a list Sell List
(8) if Sell List is non-empty
(9) for each MP M in Sell List
(10) Sell d to M by sending d to M and granting M ownership of d
(11) Obtain the sell price of d from M
end

Fig. 1. EcoRare algorithm for seller-MP

its revenue from sales, while optimizing its energy consumption for transmitting
sold items to buyers. In Line 4, MSell’s broadcast message contains not only
the items for sale, but also the price, rarity score and recent access history
of each item. Moreover, this broadcast is limited only upto n-hops to reduce
communication overheads. For our application scenarios, we found a value of n
= 4 to be reasonable. In Lines 5-11, MSell receives replies from potential buyers,
and sells items to these buyers in lieu of the respective sell prices of the items.

Figure 2 depicts the algorithm for a buyer-MP MBuy. In Lines 1-4 of Figure 2,
MBuy receives broadcast messages from different seller-MPs, collates this broad-
cast information and sorts the items for sale in descending order of φ, which
is the revenue-earning potential of an item. In Lines 5-10, observe how MBuy

prefers to select items with higher revenue-earning potential φ for hosting for
maximizing its revenue per unit of its memory space since its memory space is
limited. Thus, MBuy greedily simulates the filling up of its memory space by
items with higher value of φ. In Lines 11-13, having selected the items to buy,
MBuy obtains the items from their corresponding sellers and pays the sell price
of these items to the sellers. In case MBuy does not have adequate currency
to make the payment, it is allowed to make the payment after it has earned
currency by hosting these items. This policy of allowing deferred payments al-
lows free-riders, which may initially not have enough currency to buy items, to
seamlessly integrate into participating in the network.

5 Performance Evaluation

This section reports our performance evaluation. MPs move according to the
Random Waypoint Model [1] within a region of area 1000 metres ×1000 me-
tres. The Random Waypoint Model is appropriate for our application scenarios,

204 A. Mondal, S.K. Madria, and M. Kitsuregawa

Algorithm EcoRare Buyer MP
Selli: Candidate data items for sale from seller-MP i

Spc: Its available memory space

(1) for each seller-MP i

(2) Receive broadcast message from i containing the set Selli
(3) Append all data items in Selli to a set bigSell

/* φ is an item’s revenue-earning potential */
(4) Sort all data items in bigSell in descending order of φ

(5) for each data item d in bigSell

(6) while Spc > 0
(7) /* sized is the size of d */
(8) if (sized ≤ Spc)
(9) Add d to a set Buy

(10) Spc = Spc - sized

(11) for each data item d in set Buy

(12) Send the sell price of d as payment to the corresponding data-provider of d

(13) Receive d (including re-sell rights) for d from the corresponding data-provider of d

end

Fig. 2. EcoRare algorithm for buyer-MP

which involve random movement of users. A total of 100 MPs comprise 15 data-
providers and 85 free-riders (which provide no data). Communication range of
all MPs is a circle of 100 metre radius. A time-period is 180 seconds, and periodi-
cally, every 180 seconds, MPs exchange messages to inform each other concerning
the items that they host. Table 2 summarizes our performance study parameters.

Table 2. Performance Study Parameters

Parameter Default value

No. of MPs (NMP) 100

Zipf factor (ZF) for queries 0.9

Queries/second 20

Bandwidth between MPs 28 Kbps to 100 Kbps

Probability of MP availability 50% to 85%

Size of a data item 50 Kb to 350 Kb

Memory space of each MP 1 MB to 1.5 MB

Speed of an MP 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Each data-provider owns 10 data items of varying sizes with different rarity
scores. We create three classes of items, namely rare, medium-rare and non-rare.
The number of items in each of these classes is decided using a highly skewed Zipf

EcoRare: An Economic Incentive Scheme 205

distribution (zipf factor = 0.9) over three buckets to ensure that the majority of
items in the network are rare in that they will be assigned high rarity scores.

We assign the rarity score λd to each item d as follows. For rare items, 0.7
≤ λd ≤ 1; for medium-rare items, 0.5 ≤ λd < 0.7; for non-rare items, 0 < λd

< 0.5. Hence, for each item d, we randomly assign the value of λd based on
the lower-bounds and upper-bounds of d’s class. Among the 15 data-providers,
each rare item is assigned randomly to only one MP, each medium-rare item is
randomly assigned to 1-2 MPs, while each non-rare item is randomly assigned to
3-4 MPs. Notably, the actual value of λd used for computing item prices during
the experiments is based on Equation 2, hence the above method is only used
to ensure that the majority of items in the network are rare. Furthermore, 90%
of the items are read-only, while the other 10% are read-write items. We decide
which items are read-only based on a random number generator.

Each query is a request for a single data item. 20 queries/second are issued
in the network. Items to be queried are randomly selected from all the items
in the entire network. Number of queries directed to each class of items (i.e.,
rare, medium-rare and non-rare) is determined by a highly skewed Zipf distri-
bution with Zipf factor of 0.9 to ensure that the vast majority of queries are
directed towards rare items. This is consistent with our application scenarios,
which involve sudden bursts in accesses to rare items. 90% of the queries are
for read-only items. Although selling is also applicable to updatable items (al-
beit with low update frequencies), since most queries in our experiments are for
read-only items, the selling mechanism impacts MP participation significantly.
70% of queries correspond to sell price, while the rest correspond to use price.

Performance metrics are average response time (ART) of a query and
data availability (DA). ART equals ((1/NQ)

∑NQ

i=1(Tf − Ti)), where Ti is the
query issuing time, Tf is the time of the query result reaching the query issuing
MP, and NQ is the total number of queries. ART includes data download time,
and is computed only for successful queries. (Unsuccessful queries die after TTL
of 8 hops, hence they are not considered for ART computations.) DA equals
((NS/NQ) × 100), where NS is the number of successful queries and NQ is the
total number of queries. Queries can fail due to MPs being switched ‘off’ due to
running out of energy or due to network partitioning.

Existing M-P2P economic incentive schemes do not consider data rarity issues.
As reference, we adopt an economic scheme designated as Econ. Econ is an
economic incentive-based model, which uses data item pricing formulae similar
to that of EcoRare, the difference being that Econ’s item pricing formulae do not
consider rarity scores λ of data items, and Econ supports neither selling of items
nor multiple ownership. Like EcoRare, Econ performs querying via broadcast.

Effect of Economic Incentives

To examine the effect of economic incentives, let us first compare EcoRare with
a non-economic non-incentive scheme (Non-Econ). Non-Econ provides
no incentives for MP participation and it does not prefer rare items. It does
not support selling of items. We define threshold revenue RevTH as 50% of the

206 A. Mondal, S.K. Madria, and M. Kitsuregawa

average revenue of the 15 data-providers in the network. The results in Figure 3
indicate that when the number NTH of MPs above RevTH increases, ART and
DA improve for EcoRare. This is due to more free-riders providing service as
MP revenues increase. To earn revenue for issuing their own requests, free-riders
host items (by paying sell price to data-providers) to increase their revenues.

Higher MP participation results in multiple paths to locate queried items.
Hence, queries can be answered within lower number of hops, thereby decreas-
ing ART. The existence of multiple query paths better preserves accessibility to
rare items, thereby improving DA. In contrast, Non-Econ shows constant per-
formance since it is independent of revenue, and it is outperformed by EcoRare
because it does not provide any incentives for improving MP participation.

 0

 50

 100

 150

403020

A
R

T
 (

s)

NTH

EcoRare
Non-Econ

(a) Average Query Response Time

100

60

20

403020

D
A

NTH

EcoRare
Non-Econ

(b) Data Availability

Fig. 3. Effect of economic incentives

Performance of EcoRare

Figure 4 depicts the performance of EcoRare using default values of the parame-
ters in Table 2. As more queries are answered, the energy of MPs decreases and
increasing number of MPs run out of energy, hence query paths to data items
become longer or inaccessible. Hence, ART increases and DA decreases for both
EcoRare and Econ. With increasing number of queries, network congestion and
overloading of some of the data-providers also increases ART.

The performance of EcoRare degrades at a considerably slower rate than that
of Econ because EcoRare’s selling mechanism (via the sell price) results in the
creation of multiple copies of rare items, thereby ensuring that rare items are
hosted at some MP. In contrast, since Econ does not consider any selling mech-
anism, rare items become inaccessible when their providers run out of energy.

MP Participation and Rare Item Lifetimes

Figure 5a depicts the percentage of host MPs in the M-P2P network over time.
An MP is regarded as a host MP if it hosts a data item, which is accessed at

EcoRare: An Economic Incentive Scheme 207

150

100

50

20161284

A
R

T
 (

s)

No. of queries (103)

EcoRare
Econ

(a) Average Query Response Time

100

60

20

20161284

D
A

No. of queries (103)

EcoRare
Econ

(b) Data Availability

Fig. 4. Performance of EcoRare

60

40

20

1000600200

H
o
st

 (
%

)

Time (s)

EcoRare
Econ

(a) Percentage of hosts

1000

600

200

0.70.50.30.1

L
if

e
ti

m
e
 (

s)

λ

EcoRare

(b) Rare item lifetimes

Fig. 5. MP participation and rare item lifetimes

least once (either via the use price or the sell price mechanism) during a given
time period. In EcoRare, the selling mechanism entices the effective conversion
of free-riders to host MPs. The percentage of host MPs plateaus over time due
to the majority of the free-riders having been already converted to host-MPs
and owing to some of the free-riders running out of energy. In contrast for Econ,
the percentage of hosts remains relatively constant over time since only the
data-providers host data due to the absence of a selling mechanism. In essence,
EcoRare’s selling mechanism increases MP participation levels upto the point
where the majority of the MPs are providing service to the network.

Figure 5b depicts the results when the rarity score λ of data items is varied.
For this experiment, we normalized the values of λ of different data items such
that 0 < λ ≤ 1 for each item d. We selected five data items corresponding to each
value of λ and computed the average of their lifetimes. Higher value of λ implies

208 A. Mondal, S.K. Madria, and M. Kitsuregawa

higher rarity score of data item d. Observe that lifetimes of items increase with
increasing value of λ because rare items are higher-priced, hence they are more
likely to be hosted by free-riders for maximizing revenues. We do not present
the results of Econ for this experiment as it does not consider item rarity.

6 Conclusion

We have proposed EcoRare, a novel economic incentive scheme for improving
the availability of rare data in M-P2P networks. EcoRare combats free-riding
and effectively involves free-riders to improve the availability (and lifetimes) of
rare data. Moreover, EcoRare facilitates the creation of multiple copies of rare
items in the network since its novel selling mechanism allows a given data to have
multiple owners. Our performance study shows that EcoRare indeed improves
query response times and availability of rare data items in Mobile-P2P networks.

References

1. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.C., Jetcheva, J.: A performance
comparison of multi-hop wireless ad hoc network routing protocol. In: Proc. MO-
BICOM (1998)

2. Buttyan, L., Hubaux, J.P.: Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM/Kluwer Mobile Networks and Applications 8(5) (2003)

3. Chakravorty, R., Agarwal, S., Banerjee, S., Pratt, I.: MoB: a mobile bazaar for
wide-area wireless services. In: Proc. MobiCom (2005)

4. Crowcroft, J., Gibbens, R., Kelly, F., Ostring, S.: Modelling incentives for collab-
oration in mobile ad hoc networks. In: Proc. WiOpt (2003)

5. Daras, P., Palaka, D., Giagourta, V., Bechtsis, D.: A novel peer-to-peer payment
protocol. In: Proc. IEEE EUROCON, vol. 1 (2003)

6. Elrufaie, E., Turner, D.: Bidding in P2P content distribution networks using the
lightweight currency paradigm. In: Proc. ITCC (2004)

7. Ferguson, D.F., Yemini, Y., Nikolaou, C.: Microeconomic algorithms for load bal-
ancing in distributed computer systems. In: Proc. ICDCS, pp. 491–499 (1988)

8. Garyfalos, A., Almeroth, K.C.: Coupon based incentive systems and the impli-
cations of equilibrium theory. In: Proc. IEEE International Conference on E-
Commerce Technology proceedings (2004)

9. Golle, P., Brown, K.L., Mironov, I.: Incentives for sharing in peer-to-peer networks.
In: Proc. Electronic Commerce (2001)

10. Guy, R., Reiher, P., Ratner, D., Gunter, M., Ma, W., Popek, G.: Rumor: Mobile
data access through optimistic peer-to-peer replication. In: Proc. ER Workshops
(1998)

11. Ham, M., Agha, G.: ARA: A robust audit to prevent free-riding in P2P networks.
In: Proc. P2P, pp. 125–132 (2005)

12. Hara, T., Madria, S.K.: Data replication for improving data accessibility in ad hoc
networks. IEEE Transactions on Mobile Computing 5(11) (2006)

13. http://www.microsoft.com/presspass/presskits/zune/default.mspx
14. Kamvar, S., Schlosser, M., Garcia-Molina, H.: Incentives for combatting free-riding

on P2P networks. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par
2003. LNCS, vol. 2790, pp. 1273–1279. Springer, Heidelberg (2003)

http://www.microsoft.com/presspass/presskits/zune/default.mspx

EcoRare: An Economic Incentive Scheme 209

15. Kurose, J.F., Simha, R.: A microeconomic approach to optimal resource allocation
in distributed computer systems. IEEE Trans. Computers 38(5), 705–717 (1989)

16. Liebau, N., Darlagiannis, V., Heckmann, O., Steinmetz, R.: Asymmetric incentives
in peer-to-peer systems. In: Proc. AMCIS (2005)

17. Liu, J., Issarny, V.: Service allocation in selfish mobile ad hoc networks using
vickrey auction. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I.
(eds.) EDBT 2004. LNCS, vol. 3268, pp. 385–394. Springer, Heidelberg (2004)

18. Ramaswamy, L., Liu, L.: Free riding: A new challenge to P2P file sharing systems.
In: Proc. HICSS, p. 220 (2003)

19. Ratner, D., Reiher, P.L., Popek, G.J., Kuenning, G.H.: Replication requirements
in mobile environments. Mobile Networks and Applications 6(6) (2001)

20. Ratsimor, O., Finin, T., Joshi, A., Yesha, Y.: eNcentive: A framework for intelligent
marketing in mobile Peer-to-Peer environments. In: Proc. ICEC (2003)

21. Richard, B., Nioclais, D., Chalon, D.: Clique: A transparent, peer-to-peer replicated
file system. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.)
MDM 2003. LNCS, vol. 2574, Springer, Heidelberg (2003)

22. Srinivasan, V., Nuggehalli, P., Chiasserini, C.F., Rao, R.R.: Cooperation in wireless
ad hoc networks. In: Proc. INFOCOM (2003)

23. Straub, T., Heinemann, A.: An anonymous bonus point system for mobile com-
merce based on word-of-mouth recommendation. In: Proc. ACM SAC (2004)

24. Turner, D.A., Ross, K.W.: A lightweight currency paradigm for the P2P resource
market. In: Proc. Electronic Commerce Research (2004)

25. Wolfson, O., Xu, B., Sistla, A.P.: An economic model for resource exchange in
mobile Peer-to-Peer networks. In: Proc. SSDBM (2004)

26. Xu, B., Wolfson, O., Rishe, N.: Benefit and pricing of spatio-temporal information
in Mobile Peer-to-Peer networks. In: Proc. HICSS-39 (2006)

27. Xue, Y., Li, B., Nahrstedt, K.: Optimal resource allocation in wireless ad hoc
networks: A price-based approach. IEEE Transactions on Mobile Computing (2005)

28. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple, cheat-proof, credit-based system
for mobile ad-hoc networks. In: Proc. IEEE INFOCOM (2003)

Identifying Similar Subsequences

in Data Streams

Machiko Toyoda1, Yasushi Sakurai2, and Toshikazu Ichikawa1

1 NTT Information Sharing Platform laboratories, NTT Corporation
9–11, Midori-cho 3-Chome Musashino-shi, Tokyo, 180–8585 Japan

{toyoda.machiko,ichikawa.toshikazu}@lab.ntt.co.jp
2 NTT Communication Science Laboratories, NTT Corporation

2–4, Hikaridai, Seika-cho, Keihanna Science City, Kyoto, 619–0237 Japan
yasushi.sakurai@acm.org

Abstract. Similarity search has been studied in a domain of time series
data mining, and it is an important technique in stream mining. Since sam-
pling rates of streams are frequently different, and their time period varies
in practical situations, the method which deals with time warping such as
Dynamic Time Warping (DTW) is suitable for measuring similarity. How-
ever, finding pairs of similar subsequences between co-evolving sequences
is difficult due to increase of the complexity because DTW is a method for
detecting sequences that are similar to a given query sequence.

In this paper, we focus on the problem of finding pairs of similar sub-
sequences and periodicity over data streams. We propose a method to
detect similar subsequences in streaming fashion. Our approach for mea-
suring similarity relies on a proposed scoring function that incrementally
updates a score, which is suitable for data stream processing. We also
present an efficient algorithm based on the scoring function. Our exper-
iments on real and synthetic data demonstrate that our method detects
the pairs of qualifying subsequence correctly and that it is dramatically
faster than the existing method.

1 Introduction

Data streams are becoming increasingly important in several domains such as
finance, sensor network environment, manufacturing, and network monitoring.
The processing and mining of data streams have attracted an increasing amount
of interest recently. Storing all the historical data is impossible, since the data
streams are unbounded in size and arrive online continuously. However, fast
responses are required.

Management of data streams has appeared as one of the most challenging ex-
tensions of database technology. Similarity search is required to continuously mon-
itor data streams. In the static case, this problem is treated as whole matching and
subsequence matching. Dynamic Time Warping (DTW) has been widely used as
a similarity measure, and many works have studied whole matching and subse-
quence matching. Since the sampling rates of streams are frequently different and

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 210–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Identifying Similar Subsequences in Data Streams 211

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000

V
al

ue

Time (Example #1)

#11 #12

#13

#14

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000

V
al

ue

Time (Example #2)

#21

#22 #23

#24

(a) Sequence #1 (b) Sequence #2

Fig. 1. Illustration of cross-similarity. These sequences have small and large spikes.

their time period varies in practical situations, the similarity measure which con-
siders time scaling such as DTW is important in data stream processing.

In this paper, we focus on detecting similar subsequence pairs and period-
icity from data streams. The problem we want to solve is as follows:

Problem 1 (Cross-similarity). Given two data streams, determine whether the
pairs of similar subsequences and periodicity in the sense of DTW at any point
in time.

The problem is illustrated in Fig. 1. Sequence #1 has three small spikes (#11,
#12, #14) and sequence #2 has two small spikes (#22, #23). The amplitude of
these spikes is almost the same, but the period is different. These sequences also
have three large spikes (#13, #21, #24), not of the same period. Intuitively,
cross-similarity means partial similarity between two sequences. For example,
the subsequence pairs #11 and #22, #11 and #23, #13 and #21, and #13 and
#24 show cross-similarity to sequences #1 and #2.

We propose a method for similarity matching on data streams, which visualizes
the positions of cross-similarity. Let us consider two evolving sequences X of length
n and Y of length m. As we show later, the naive solution requires O(nm2 + n2m)
time and space. Specifically, our method has the following nice characteristics:

– High-speed processing: our method discovers cross-similarity in O(m + n)
time instead of O(nm2 + n2m) time the naive solution requires.

– Low space consumption: the method also requires O(m + n) memory space
for detecting cross-similarity.

The remainder of the paper is organized as follows. Section 2 gives related work
on sequence matching and stream mining. Section 3 describes the problem de-
finition, and Section 4 introduces our method. Section 5 reviews the results of
the experiments, which clearly demonstrate the effectiveness of our method. In
Section 6, we give the conclusion.

2 Related Work

The database community has been researching problems in similarity queries
for time series databases for many years. Similarity matching of time-series data

212 M. Toyoda, Y. Sakurai, and T. Ichikawa

was first examined by Agrawal et al [1]. They proposed an indexing mechanism
called F-index, which uses the Discrete Fourier Transform (DFT) for feature ex-
traction and indexes only on the first few DFT coefficients using R*-tree [2]. This
method studied whole matching, and Faloutsos et al. [6] generalized this work
for subsequence matching. Moreover, to improve the search performance, the
method using Wavelet was proposed [4][14]. Indyk et al. [8] address the problem
of finding representative trends from time series data. Representative trends are
a period, which is the smallest distance between the first subsequence and other
subsequences and a subsequence which is the smallest distance between it and
all subsequences. In [5] and [18], Motif was defined as repeated subsequences.
These works focus on static data sets.

In studies on data streams, Gao et al. [7] introduced a strategy of process-
ing continuous queries with prediction and addressed the problem of finding
similarity-based patterns from data streams. AWSOM [12] is one of the first
streaming methods for forecasting and is intended to discover arbitrary period-
icities in single time sequences. Sakurai et al. [15] applied DTW to data streams
and proposed SPRING, efficiently monitors multiple numerical streams under
the DTW. SPRING is useful for detecting subsequences, which are similar to a
query sequence. Zhu et al. [20] focused on monitoring multiple streams in real
time and proposed StatStream, which computes the pairwise correlations among
all streams. SPRIT [13] addressed the problem of capturing correlations and find-
ing hidden variables corresponding to trends in collections of co-evolving data
streams. Braid [16] is a method to detect lag correlations between data streams
and uses geometric probing and smoothing to approximate the exact correlation.
Wang [19] combined the concepts of cross correlation and time warping and pro-
posed TWStream which captures correlation in data streams with a much more
robust similarity measure. However, none of the above methods satisfies the
specifications that we listed in the introduction.

3 Problem Definition

In this section, first, we introduce Dynamic Time Warping (DTW), which is
a similarity measure between sequences. Then, we define problems to study in
creating our objective.

3.1 Dynamic Time Warping

DTW (Dynamic Time Warping) is one of the most useful distance measures
[3][9][10][11]. Since DTW is a transformation that allows sequences to be
stretched along the time axis to minimize the distance between the sequences, it
can be used to calculate the distance between sequences whose lengths and/or
sampling rates are different. DTW is used in case of searching for sequences
that are similar to the query sequence. The DTW distance of two sequences is
calculated by the dynamic programming and is the sum of tick-to-tick distances
after the two sequences have been optimally warped to match each other. An

Identifying Similar Subsequences in Data Streams 213

Fig. 2. Illustration of DTW. The left figure indicates the alignment of measurements
by DTW. The right figure indicates the optimal warping path in the time warping
matrix.

illustration of DTW is shown in Fig. 2. The left figure is the alignment of mea-
surements by DTW for measuring the distance between two sequences. Even if
the sequence length of two sequences is the same, DTW aligns properly between
each element. The distance calculation uses the time warping matrix shown in the
right figure. The warping path is the set of grid cells in the time warping matrix,
which represents the alignment between the sequences and is shown as colored
cell in the figure. Let us formally consider two sequences: X = (x1, x2, ..., xn) of
length n and Y = (y1, y2, ..., ym) of length m. Their DTW distance D(X, Y) is
defined as:

D(X, Y) = f(n, m)

f(i, j) = ||xi − yj || + min

⎧⎪⎨
⎪⎩

f(i, j − 1)
f(i − 1, j)
f(i − 1, j − 1)

f(0, 0) = 0, f(i, 0) = f(0, j) = ∞
(i = 1, ..., n; j = 1, ..., m)

(1)

where ||xi−yj|| = (xi−yj)2 is the distance between two numerical values. Notice
that any other choice (say, absolute difference: ||xi − yj || = |xi − yj |) would be
fine; our upcoming algorithms are completely independent of such choices.

3.2 Cross-Similarity

Let us consider the two sequences X = (x1, x2, ...xn) and Y = (y1, y2, ..., ym).
X [is : ie] denotes the subsequence starting from time-tick is and ending at ie,
and Y [js : je] denotes the subsequence starting from time-tick js and ending
at je. Lx = ie − is + 1 is the length of X [is : ie] and Ly = je − js + 1 is the
length of Y [js : je]. Lw denotes the optimal warping path between X [is : ie] and
Y [js : je], and satisfies Lx ≤ Lw, Ly ≤ Lw, Lw < Lx +Ly. The problem we want
to solve is defined as follows:

Definition 1 (Cross-similarity). Given two sequences X and Y , a threshold
ε, and a minimum length of similar subsequence ζ, we detect pairs of similar
subsequences X [is : ie] and Y [js : je] satisfying the following conditions:

214 M. Toyoda, Y. Sakurai, and T. Ichikawa

1. D(X [is : ie], Y [js : je]) ≤ εLw

2. Lx ≥ ζ and Ly ≥ ζ

Our approach is different from the traditional time series analysis; our algorithm
is designed to find partial similarity between multiple sequences in the sense
of DTW. Thus, our algorithm is robust for sequences whose sampling rate is
different or time period varies. Identifying partial similarity between sequences is
called local alignment in the bioinformatics domain. We deal with local alignment
of numeric sequences in this paper, while local alignment in the bioinformatics
domain deals with symbol sequences.

An additional challenge is that we focus on data streams. Given two evolving
sequences X = (x1, ..., xi, ..., xn, ...) and Y = (y1, ..., yj , ..., ym, ...), we want to
find similar subsequence pairs between X and Y . Since data stream processing
requires low memory and high speed processing, the problem we want to solve is
more challenging. In the next section, we will give our approach to this problem.

4 Proposed Method

In this section, we propose a new method for cross-similarity on data streams.
First, we present a method with DTW for cross-similarity, then we describe our
method.

4.1 Naive Solution

For the cross-similarity problem, the most straightforward solution would be to
compute the distance between all possible subsequences of X and all possible
subsequences of Y . That is, the number of time warping matrices used for the
computation increase significantly every new time tick. We refer to this method
as Naive.

Let di,j(k, l) be the distance of the element (k, l) in the time warping matrix
of X and Y that starts from i on the x-axis and j on the y-axis. The distance
of the subsequence matching between X and Y can be obtained as follows.

D(X [is : ie], Y [js : je])
= dis,js(ie − is + 1, je − js + 1)

di,j(k, l) = ||xi+k−1 − yj+l−1|| + min

⎧⎪⎨
⎪⎩

di,j(k, l − 1)
di,j(k − 1, l)
di,j(k − 1, l − 1)

di,j(0, 0) = 0, di,j(k, 0) = di,j(0, l) = ∞
(i = 1, ..., n; k = 1, ..., n − i + 1; j = 1, ..., m; l = 1, ..., m − j + 1)

(2)

We compute the average distance d′ to evaluate the similarity of X [is : ie] and
Y [js : je].

d′ =
dis,js(ie − is + 1, je − js + 1)

Lw

(3)

Identifying Similar Subsequences in Data Streams 215

Fig. 3. Naive algorithm for detecting cross-similarity

where, again, Lw is the optimal warping path between X [is : ie] and Y [js : je].
We introduce an algorithm of the naive solution in Fig. 3. This algorithm updates
the distance array of incoming xi at time-tick i. The distance array of incoming
yj at time-tick j is also updated similarly by this algorithm. DTW is a sequence
matching method for finding similar sequences to a fixed-length query sequence,
thus the naive solution needs to create a new matrix for every time-tick. Since
the naive solution requires O(nm) matrices, O(nm2 + n2m) values have to be
updated.

4.2 Overview

As mentioned above, the naive solution requires O(nm) matrices, which is infea-
sible to use for data stream processing. Unlike the naive solution, our solution
requires a single matrix to detect cross-similarity. Our solution consists of (1) a
new scoring function to evaluate cross-similarity, and (2) a streaming algorithm
that uses the scoring function, each described next.

The scoring function provides a similarity measure for detecting cross-similarity.
The similarity between subsequences is computed by assigning a score after the
two sequences have been optimally warped to match each other. This function
has a similar flavor to the original DTW function. Whereas these functions are
essentially based on a dynamic programming approach, our function differs in
the following two ways. First, we obtain the final matching (i.e., cross-similarity)
by computing the maximum cumulative score, instead of computing the mini-
mum cumulative distance that the DTW function uses. The (i, j) cell of the
matrix contains the value s(i, j), which is the best score to match the prefix
of length i from X with the prefix of length j from Y . Second, we introduce
zero-resetting for the scoring function. A cumulative score of the matrix, s(i, j),
is replaced by zero if the score is a negative value. This approach has been pro-
posed in the bioinformatics domain (e.g., the Smith-Waterman algorithm [17]),
While the search techniques in this area are used for biological sequences, which
is represented by symbols, our scoring function handles numerical sequences. We
replace s(i, j) with zero if it is a negative value, which means the conditions of

216 M. Toyoda, Y. Sakurai, and T. Ichikawa

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000

V
al

ue

Time (Example #1)

#11 #12

#13

#14

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000

V
al

ue

Time (Example #2)

#21

#22 #23

#24

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

Ti
m

e
(E

xa
m

pl
e

#2
)

Time (Example #1)

(a) Example #1 (b) Example #2 (c) Cross-similarity

Fig. 4. Illustration of the proposed method. The left figure (a) and the center figure
(b) show data sequences. The right figure (c) shows cross-similarity between Example
#1 and Example #2. The result of detecting small spikes and large spikes is plotted
clearly.

Definition 1 are no longer satisfied for the subsequences of X and Y ending at
(i, j). A new alignment is then created from (i, j). An interval in which zero is
continued indicates that the subsequence pairs in the interval are not qualifying
at all.

Observation 1. Once we introduce zero-resetting, we can detect qualifying sub-
sequence pairs.

Zero-resetting is a good first step – we can evaluate the cross-similarity between
the partial sequence pairs, X [is : ie] and Y [js : je]. As the next task, we identify
the position of these subsequences in the scoring matrix, especially their beginning
position, is and js. In the static case, we can easily identify the beginning of the
qualifying subsequence pairs by backtracking the warping path from the end of the
pairs. To handle data streams efficiently, we propose to store the starting position
p(i, j) in the scoring matrix to keep track of the path in streaming fashion. More
specifically, the (i, j) cell of the matrix contains the score (i.e., s(i, j)), which in-
dicates the best score to match the prefix of length i from X and that of length j
from Y (i.e., i = 1, ..., n; j = 1, ..., m). Our matrix also stores p(i, j), which is the
starting position corresponding to s(i, j). The starting position p(i, j) is described
as a coordinate value. For example, consider a subsequence X [is : ie] and a subse-
quence Y [js : je], the starting position p(ie, je) would be (is, js). We will give an
arithmetic example of a scoring matrix later (Fig. 6).

Observation 2. The scoring matrix includes the starting position of each subse-
quence as well as its cumulative score. Thus, we can identify the pairs of similar
subsequences in streaming fashion.

The scoring function can tell us which subsequence pairs have a high score.
Finally, we visualize results of the scoring function using a scatter plot. This
scatter plot identifies the matching elements ie and je of similar subsequence
pairs X [is : ie] and Y [js : je], and the cross-similarity between X and Y is
reflected. The abscissa axis is an element of X and the ordinate axis is an element
of Y in the figure. Specifically, when subsequence pairs X [is : ie] and Y [js : je]
are similar, position (ie, je) of the figure is plotted.

Identifying Similar Subsequences in Data Streams 217

We illustrate the scatter plot in Fig. 4. Data sequences are shown in Fig. 4
(a) and (b), and the scatter plot that shows the cross-similarity between these
data sequences is shown in Fig. 4 (c). In the scatter plot, the square of solid lines
includes detected small spikes and the square of dotted lines includes detected
large spikes. Moreover, the relationship of subsequences emerges from this figure.
For example, in Fig. 4 (a) and (b) the small spikes #11 and #22 look similar.
For the scatter plot, the high level of similarity between #11 and #22 is shown
at the lower-left corner in the solid square. We can also observe the periodicity of
cross-similarity between two sequences. Six locations are regularly (horizontally
and vertically) plotted in the solid square, which means small spikes, similar to
#11 and #22, appear in cycles. Note that the intervals between these spikes are
different, thus we can identify the time-varying periodicity.

Observation 3. If we use the scatter plot, we can identify cross-similarity and
the existence of periodicity.

4.3 Algorithm

Given two evolving sequences X = (x1, ..., .xi, ..., xn, ...) and Y = (y1, ..., yj , ...,
ym, ...), the score S(X [is : ie], Y [js : je]) of X [is : ie] and Y [js : je] is computed
as follows:

S(X [is : ie], Y [js : je]) = s(ie, je)

s(i, j) = max

{
0
2ε − ||xi − yj|| + sbest

sbest = max

⎧⎪⎨
⎪⎩

s(i, j − 1)
s(i − 1, j)
s(i − 1, j − 1)

s(i, 0) = 0, s(0, j) = 0

(4)

We compute the average score s′ to evaluate the similarity of X [is : ie] and
Y [js : je].

s′ =
s(ie, je)

Lw

(5)

The starting position p(i, j) of the cell (i, j) is computed as follows:

p(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(i, j − 1) (sbest = s(i, j − 1))
p(i − 1, j) (sbest = s(i − 1, j))
p(i − 1, j − 1) (sbest = s(i − 1, j − 1))
(i, j) (sbest = 0)

(6)

We obtain the starting position of S(X [is : ie], Y [js : je]) as:

(is, js) = p(ie, je) (7)

218 M. Toyoda, Y. Sakurai, and T. Ichikawa

Fig. 5 shows an algorithm using the scoring function. For each incoming data
point, our method incrementally updates the scores s(i, j), and determines the
starting positions p(i, j) according to the computation of s(i, j). We identify the
subsequence pair X [is : ie] and Y [js : je] by using Equations (4)(5)(6)(7). We
report them as a qualifying subsequence pair when if they satisfy s′ ≥ ε, Lx ≥ ζ,
and Ly ≥ ζ. In this figure, we focus on computing scores when we receive xi at
time-tick i. Note that the scores of incoming yj at time-tick j are also computed
similarly by this algorithm.

Lemma 1. Given X and Y , then we have s(ie, je) ≥ εLw if X [is : ie] and
Y [js : je] satisfy the first condition of Definition 1.

Proof. From the first condition of Definition 1, we have

dis,js(ie − is + 1, je − js + 1) ≤ εLw

then
2εLw − dis,js(ie − is + 1, je − js + 1) ≥ εLw.

Since X [is : ie] and Y [js : je] satisfy the condition, from Equation (4), we have

s(ie, je) = 2εLw − dis,js(ie − is + 1, je − js + 1).

Thus, we obtain
s(ie, je) ≥ εLw

which completes the proof. �

We show the details of our algorithm in Fig. 6. Assume two sequences X =
(5, 12, 6, 10, 6, 5, 1), Y = (11, 6, 9, 4, 13, 8, 5), ε = 3, and ζ = 4. The algorithm
keeps s(i, j) and p(i, j) for the cell (i, j), however, for simplicity, in this figure we
show the average score of s(i, j) (i.e., s′), instead of the original score, s(i, j). The
colored cells mean qualifying subsequences. For example, the cell (6, 4) means
that the X [2 : 6] and Y [1 : 4] are similar, where their average score (i.e., score
per an element) is 4.6.

4.4 Complexity

Let X be an evolving sequence of length n and Y be an evolving sequence of
length m.

Lemma 2. The naive solution requires O(nm2+n2m) space and O(nm2+n2m)
time.

Proof. The naive solution has to maintain O(nm) time warping matrices, and
updates O(nm2) values if we receive xi at time-tick i, and O(n2m) values if
we receive yj at time-tick j to identify qualifying subsequences. Therefore, it
requires O(nm2 +n2m) time. Since the naive solution maintains two arrays of m
numbers and that of n numbers for each matrix, overall, it needs O(nm2 +n2m)
space. �

Identifying Similar Subsequences in Data Streams 219

Fig. 5. Proposed algorithm for detecting
cross-similarity

0
(7, 1)

0
(6, 1)

0
(4, 1)

5
(4, 1)

0
(2, 1)

5
(2, 1)

0
(1, 1)

111

7654321i

156106125j

2

3

4

5

6

7

0
(4, 1)

5.33
(4, 1)

5.5
(4, 1)

0.33
(2, 1)

5.5
(2, 1)

0
(1, 2)

5
(1, 2)

6

0
(4, 1)

1.5
(4, 1)

2.6
(2, 1)

4
(2, 1)

2.67
(2, 1)

1
(1, 2)

0
(1, 2)

9

3.33
(2, 1)

4.6
(2, 1)

4.5
(2, 1)

0
(2, 1)

1.5
(2, 1)

0
(1, 4)

5
(1, 2)

4

0
(2, 1)

0
(2, 1)

0
(2, 1)

0.6
(2, 1)

0
(1, 4)

5
(1, 4)

0
(1, 4)

13

0
(1, 4)

2.17
(1, 4)

3.2
(1, 4)

3.5
(1, 4)

4
(1, 4)

0
(1, 4)

1
(1, 6)

8

2.13
(1, 4)

3.86
(1, 4)

3.5
(1, 4)

0
(1, 4)

4.25
(1, 4)

0
(1, 7)

6
(1, 7)

5

0
(7, 1)

0
(6, 1)

0
(4, 1)

5
(4, 1)

0
(2, 1)

5
(2, 1)

0
(1, 1)

111

7654321i

156106125j

2

3

4

5

6

7

0
(4, 1)

5.33
(4, 1)

5.5
(4, 1)

0.33
(2, 1)

5.5
(2, 1)

0
(1, 2)

5
(1, 2)

6

0
(4, 1)

1.5
(4, 1)

2.6
(2, 1)

4
(2, 1)

2.67
(2, 1)

1
(1, 2)

0
(1, 2)

9

3.33
(2, 1)

4.6
(2, 1)

4.5
(2, 1)

0
(2, 1)

1.5
(2, 1)

0
(1, 4)

5
(1, 2)

4

0
(2, 1)

0
(2, 1)

0
(2, 1)

0.6
(2, 1)

0
(1, 4)

5
(1, 4)

0
(1, 4)

13

0
(1, 4)

2.17
(1, 4)

3.2
(1, 4)

3.5
(1, 4)

4
(1, 4)

0
(1, 4)

1
(1, 6)

8

2.13
(1, 4)

3.86
(1, 4)

3.5
(1, 4)

0
(1, 4)

4.25
(1, 4)

0
(1, 7)

6
(1, 7)

5

yj xi

Fig. 6. Proposed scoring function. The up-
per number indicates the score per an ele-
ment. The number in parentheses indicates
the starting position.

Table 1. Detail of data sets and experimental parameter settings

Data sets Seq#1 length Seq#2 length Threshold ζ

Sines 25000 25000 5.5e-5 500

Spikes 28000 28000 1.0e-6 1100

Temperature 30411 26151 1.5e-2 1800

Mocap 8400 4560 5.8e-1 240

Lemma 3. Our method requires O(m + n) space and O(m + n) time.

Proof. Our method maintains a single matrix, and updates O(m) numbers if we
receive xi at time-tick i, and O(n) numbers if we receive yj at time-tick j to
identify qualifying subsequences. Thus, it requires O(m + n) time and O(m + n)
space. �

5 Experiments

To evaluate the effectiveness of our method, we performed experiments on real
and synthetic datasets. We compared our method with the naive solution and
SPRING. SPRING is proposed by Sakurai et al. [15] and is a method based
on DTW for finding similar subsequences to a fixed-length query sequence from
data streams. SPRING is not intended to be used for finding cross-similarity,
but we can apply this method to solve the problem we mentioned in Section 1.
Specifically, an algorithm with SPRING for cross-similarity needs O(m2 + nm)
space and O(m2 + nm) time, since SPRING needs O(m) matrices, and updates
O(m2) values if we receive xi at time-tick i, and O(nm) values values if we
receive yj at time-tick j to identify qualifying subsequence pairs.

220 M. Toyoda, Y. Sakurai, and T. Ichikawa

Our experiments were conducted on an 3 GHz Intel Pentium4 with 2 GB of
memory, running Linux. The experiments were designed to answer the following
questions:

1. How successful is the proposed method in capturing cross-similarity?
2. How does it scale with the sequence length in terms of the computation

time?

5.1 Detecting Cross-Similarity

We used two real data sets and two synthetic data sets for our experiment.
The details of each data set and the settings of experiments are shown in
Table 1.

Sines: Sines is a synthetic data set which consists of discontinuous sine waves
with white noise (See Fig. 9 (a) and (b)). We varied the period of each sine wave
in the sequence. The intervals between these sine waves are also different.
Our method can perfectly identify all sine waves and the time-varying periodic-
ity as shown in Fig. 9 (c). In this figure, the difference in the period of each sine
wave appears as the difference in the slope.

Spikes: Spikes, which is a synthetic data set shown in Fig. 8 (a) and (b), consists
of large and small spikes. The data of different-length intervals between spikes
were generated by a random walk function. The period of each spike is also
different. In Fig. 8 (c) and (d), we can confirm that our method can detect large
spikes and small spikes. The difference in the period of each spike appears as the
difference in plot length; the wide spikes indicate the long plot length and the
narrow spikes indicate the short plot length.

Temperature: Temperature is measured by a temperature sensor about for 10 days
and it’s measurement value are Celsius (See Fig. 7 (a) and (b)). This sensor sends
a measurement value at one minute intervals. This data set lacks measurement
values at a lot of time. We set ζ to 1800, corresponds to about half a day.

Temperature #1 and Temperature #2 have the consecutive change of temper-
ature fluctuating from about 18 degrees centigrade to 32 degrees centigrade in
order to break in the weather. In spite of lack of measurement values, our method
is successful to detect these patterns (See Fig. 7 (c)).

Mocap: As an extension to multiple streams, we used the Mocap real data set.
Mocap is a real data set created by recording motion information from a human
actor while the actor is performing an action (e.g. walking, running, kicking).
Special markers are placed on the joints of the actor (e.g., knees, elbows), and
their x-, y- and z-velocities are recorded at about 120 Hz. The data were from
the CMU motion capture database 1. We selected the data of limbs from the
original data and used them as 8-dimensional data. These data include walking
1 http://mocap.cs.cmu.edu/

Identifying Similar Subsequences in Data Streams 221

 14

 18

 22

 26

 30

 34

 0 8000 16000 24000 32000

V
al

ue

Time (Temperature #1)

 14

 18

 22

 26

 30

 34

 0 8000 16000 24000 32000

V
al

ue

Time (Temperature #2)

 0

 8000

 16000

 24000

 32000

 0 8000 16000 24000 32000

T
im

e
(T

em
pe

ra
tu

re
 #

2)

Time (Temperature #1)

(a) Temperature #1 (b) Temperature #2 (c) Cross-similarity

Fig. 7. Discovery of cross-similarity using Temperature

Table 2. Detail of Mocap data sets. Lengths of each data sequence are different.

(a) Mocap #1 (b) Mocap #2

Sec. Time-tick Motions

0 - 8 0 - 960 walking

8 - 16 960 - 1920 running

16 - 20 1920 - 2400 jumping

20 - 29 2400 - 3480 walking

29 - 38 3480 - 4560 kicking

38 - 44 4560 - 5280 left-leg jumping

45 - 50 5400 - 6000 right-leg jumping

52 - 59 6240 - 7080 stretching

59 - 70 7080 - 8400 walking

Sec. Time-tick Motions

0 - 3 0 - 360 walking

4 - 9 480 - 1080 jumping

10 - 14 1200 - 1680 walking

16 - 20 1920 - 2400 punches

20 - 25 2400 - 3000 walking

26 - 33 3120 - 3960 kicking

33 - 38 3960 - 4560 punches

motion and the length of each data is different. The detail of motion in shown
in Table 2. We set ζ to 240, corresponds to about two seconds.

The result in Fig. 10 demonstrates our method can capture walking motion
perfectly and the plotted intervals are matched to the interval between walking
motions shown in Table 2.

5.2 Performance

We did experiments to evaluate the efficiency and to verify the complexity of
our method, which is discussed in Section 4.4.

Our method, the naive implementation, and SPRING are compared in terms
of computation time for varying the sequence length of X and Y . We used Sines
for this experiment, which allowed us to control the sequence length. Time is the
average processing time needed to update the scoring matrix for each time-tick
and to detect the qualifying subsequence pairs.

As we expected, our method identifies the qualifying subsequence pairs much
faster than naive and SPRING implementation as shown in Fig. 11. The trend
shown in the figure agrees with our theoretical discussion in Section 4.4. Our
method achieves a dramatic reduction in computation time.

222 M. Toyoda, Y. Sakurai, and T. Ichikawa

 0

 0.5

 1

 1.5

 2

 2.5

 0 7000 14000 21000 28000

V
al

ue

Time (Spikes #1)

 0

 0.5

 1

 1.5

 2

 2.5

 0 7000 14000 21000 28000

V
al

ue

Time (Spikes #2)

(a) Spikes #1 (b) Spikes #2

 0

 7000

 14000

 21000

 28000

 0 7000 14000 21000 28000

T
im

e
(S

pi
ke

s
#2

)

Time (Spikes #1)

 0

 7000

 14000

 21000

 28000

 0 7000 14000 21000 28000

T
im

e
(S

pi
ke

s
#2

)

Time (Spikes #1)

(c) Cross-similarity (small spikes) (d) Cross-similarity (large spikes)

Fig. 8. Discovery of cross-similarity using Spikes. Upper figures (a) and (b) show data
sequences. Lower figures (c) and (d) indicate results of cross-similarity.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

V
al

ue

Time (Sines #1)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 5000 10000 15000 20000 25000

V
al

ue

Time (Sines #2)

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

T
im

e
(S

in
es

 #
2)

Time (Sines #1)

(a) Sines #1 (b) Sines #2 (c) Cross-similarity

Fig. 9. Discovery of cross-similarity using Sines

 0

 1000

 2000

 3000

 4000

 5000

 0 1500 3000 4500 6000 7500 9000

T
im

e
(M

oc
ap

 #
2)

Time (Mocap #1)

Fig. 10. Discovery of cross-similarity using
Mocap

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

1e+061e+051e+041e+031e+02

T
im

e
(s

ec
)

Sequence length

"Naive"
"SPRING"

"Our method"

Fig. 11. Wall clock time for cross-similarity
as a function of sequence length

Identifying Similar Subsequences in Data Streams 223

6 Conclusions

We introduced the problems of cross-similarity over data streams and proposed
a new method to address this problem. Our method is based on two ideas.
With the scoring function, similar subsequence pairs are detected effectively
from data streams. With the streaming algorithm, cross-similarity are visualized
and periodicity can be discovered.

Our experiments on real and synthetic data sets demonstrated that our method
works as expected, detecting the qualifying subsequence pairs effectively. In
conclusion, our method have the following characteristics: (1) In contrast to
the naive solution, our method improves the performance greatly and can be
processed at high speed. (2) Our method requires only a single matrix to detect
cross-similarity and it consumes a small amount of resources.

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient Similarity Search in Sequence
Database. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993)

2. Beckmann, N., Keriegel, H.P., Schneider, R., Segger, B.: The r*-tree: An efficient
and robust access method for points and the rectangles. In: Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, Atlantic
City, NJ, May 1990, pp. 322–331 (1990)

3. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time
Series. In: AAAI 1994 Workshop on Knowledge Discovery in Databases (KDD
Workshop 1994), Seattle, Washington, USA, July 1994, pp. 359–370. AAAI Press,
Menlo Park (1994)

4. Chan, K., Fu, A.W.-C.: Efficient Time Series Matching by Wavelets. In: Proceed-
ings of the 15th International Conference on Data Engineering (ICDE 1999), Syd-
ney, Austrialia, May 1999, pp. 126–133 (1999)

5. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In:
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2003), Washington, DC, USA, August 2003,
pp. 493–498 (2003)

6. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in
Time-Series Database. In: Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, May 1994, pp. 419–
429 (1994)

7. Gao, L., Wang, X.S.: Continually Evaluating Similarity-Based Pattern Queries on a
Streaming Time Series. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, USA, June 2002, pp.
370–381 (2002)

8. Indyk, P., Koudas, N., Muthukrishnam, S.: Identifying Representative Trends in
Massive Time Series Data Sets Using Sketches. In: Proceedings of 26th Interna-
tional Conference on Very Large Data Bases (VLDB 2000), Cairo, Egypt, Septem-
ber 2000, pp. 363–372 (2000)

9. Jang, J.-S.R., Lee, H.-R.: Hierarchical Filtering Method for Content-based Mu-
sic Retrieval via Acoustic Input. In: Proceedings of the ninth ACM International
Conference on Multimedia, Ottawa, Canada, September-October 2001, pp. 401–
410 (2001)

224 M. Toyoda, Y. Sakurai, and T. Ichikawa

10. Kawasaki, H., Yatabe, T., Ikeuchi, K., Sakauchi, M.: Automatic Modeling of a
3D City Map from Real-World Video. In: Proceedings of the seventh ACM In-
ternational Conference on Multimedia (Part 1), Orlando, Florida, USA, October-
November 1999, pp. 11–18 (1999)

11. Mount, D.W.: Bioinfomatics: Sequence and Genome Analysis. Cold Spring Harbor,
New York (2000)

12. Papadimitriou, S., Brockwell, A., Faloutsos, C.: Adaptive, Hands-Off Stream Min-
ing. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS,
vol. 2944, pp. 560–571. Springer, Heidelberg (2004)

13. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming Pattern Discovery in Multiple
Time-Series. In: Proceedings of the 31th International Conference on Very Large
Data Bases (VLDB 2005), Trondheim, Norway, August-September 2005, pp. 697–
708 (2005)

14. Popivanov, I., Miller, R.J.: Similarity Search Over Time-Series Data Using
Wavelets. In: Proceedings of the 18th International Conference on Data Engineer-
ing (ICDE 2002), San Jose, CA, USA, February-March, 2002, pp. 212–221 (2002)

15. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream Monitoring under the Time
Warping Distance. In: Proceedings of IEEE 23rd International Conference on Data
Engineering (ICDE 2007), Istanbul, Turkey, April 2007, pp. 1046–1055 (2007)

16. Sakurai, Y., Papadimitriou, S.: Braid: Stream Mining through Group Lag Corre-
lations. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, June 2005, pp. 599–610 (2005)

17. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

18. Tanaka, Y., Uehara, K.: Discover motifs in multi-dimensional time-series using the
principal component analysis and the MDL principle. In: Perner, P., Rosenfeld, A.
(eds.) MLDM 2003. LNCS, vol. 2734, pp. 252–265. Springer, Heidelberg (2003)

19. Wang, T.: TWStream: Finding Correlated Data Streams under Time Warping.
In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 213–225. Springer, Heidelberg (2006)

20. Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data
Streams in Real Time. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X.,
Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 358–369.
Springer, Heidelberg (2003)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 225 – 240, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Tree-Based Approach for Event Prediction Using
Episode Rules over Event Streams

Chung-Wen Cho1, Ying Zheng2, Yi-Hung Wu 3, and Arbee L.P. Chen4

1 Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C.
2 Department of Computer Science, Duke University, U.S.A

3 Department of Information and Computer Engineering, Chung Yuan Christian University,
Taiwan, R.O.C.

4 Department of Computer Science, National Chengchi University, Taiwan, R.O.C.
alpchen@cs.nccu.edu.tw

Abstract. Event prediction over event streams is an important problem with
broad applications. For this problem, rules with predicate events and conse-
quent events are given, and then current events are matched with the predi-
cate events to predict future events. Over the event stream, some matches of
predicate events may trigger duplicate predictions, and an effective scheme is
proposed to avoid such redundancies. Based on the scheme, we propose a
novel approach CBS-Tree to efficiently match the predicate events over event
streams. The CBS-Tree approach maintains the recently arrived events as a
tree structure, and an efficient algorithm is proposed for the matching of
predicate events on the tree structure, which avoids exhaustive scans of the
arrived events. By running a series of experiments, we show that our ap-
proach is more efficient than the previous work for most cases.

Keywords: Continuous query, episode rules, minimal occurrence, event stream,
prediction.

1 Introduction

In many applications, events such as stock fluctuations in the stock market [11],
alarms in telecommunication networks [9], and road conditions in traffic control [8]
often arrive rapidly as a continuous stream. Particular events on this kind of streams
are important to applications but may expire in a short period of time. Therefore, an
effective mechanism that predicts the incoming events based on the past events is
helpful for the quick responses to particular events. An example is the forecast of
traffic jams according to the nearby road conditions. In daily rush hours, the avoid-
ance of all traffic jams is essential to traffic control. In general, there are two main
steps to enable effective prediction over event streams. The first step is to obtain the
causal relationships among events, which can be either derived from the past events
or given by users. The second step is to keep monitoring the incoming events and
utilize these relationships for online prediction. In this paper, we consider the causal

226 C.-W. Cho et al.

relationships in the form of rules and aim at designing an efficient algorithm for the
second step. In the following, we first illustrate the form of rules in our considera-
tion by a traffic control example.

Fig. 1 shows a map with four checkpoints denoted as a, b, c, and d. Suppose each
checkpoint is associated with a sensor that can periodically report its traffic condi-
tion, including the flow and occupancy [8]. The flow is the number of cars passing
by a sensor per minute. The occupancy is a ratio of one-minute interval in which the
detection zone is occupied by a car. If the sensor of a road reports low flow and
high occupancy, the traffic of this road can be regarded as “congested.” An example
rule, represented in the form of α β, is shown in Fig. 2, where α is called the
predicate and β the consequent. The predicate stands for a set of events that consti-
tute a directed acyclic graph. Each vertex in the graph represents an event, while
each edge from vertex u to vertex v indicates that the event u must occur before the
event v. For instance, the predicate in Fig. 2 makes it a condition that the two events
sensing high flow and low occupancy on segments a and b respectively precede the
event sensing high flow and high occupancy on segment c. Note that this predicate
allows the events on a and b to occur in any order. The consequent is a single event
and the rule means that the consequent will appear in the near future after the predi-
cate shows up.

Furthermore, two time bounds are assigned to the rule and its predicate, respec-
tively. The time bound on the predicate, called predicate window, is a temporal
constraint on the occurrences of all the events in the predicate, while the one on the
entire rule, called rule window, corresponds to the temporal constraint on the occur-
rences of all the events in the entire rule. Consider the rule in Fig. 2 again. If all the
events in the predicate occur within 10 minutes in accordance with the temporal
order specified in the predicate, the event in the consequent will appear with certain
probability in no more than 15 minutes. Specifically, segment d will become low
flow and high occupancy (i.e., traffic jam occurs on d). Therefore, once we find a
mach for the predicate over the traffic event stream, the traffic control system can
make a proper response accordingly, e.g., limiting the traffic flow from R1 to d or
guiding the traffic flow on c to R2, before the traffic jam on d occurs. We call this
kind of rules the episode rule [10]. The problem we address in this paper is thus
formulated below:

a

b

c d

R1

R2

a

b

c d

R1

R2

a = high flow
& low occupancy

b = high flow &
low occupancy

c = high flow &
high occupancy

d = low flow &
high occupancy

10 mins

15 mins

Ⅰ

Ⅱ

Ⅲ

a = high flow
& low occupancy

b = high flow &
low occupancy

c = high flow &
high occupancy

d = low flow &
high occupancy

10 mins

15 mins

Ⅰ

Ⅱ

Ⅲ

Fig. 1. A roadmap Fig. 2. An episode rule

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 227

Given a set of episode rules, keep monitoring each of them over the stream of
events to detect whether all the events in the predicate appear in the order as speci-
fied in the predicate of the rule and satisfy the time bound, and return as soon as a
match is found the event in the consequent together with the time interval it will
appear.

In this paper, we assume that the system receives only one event at a time. More-
over, we consider an event as a set of values from separate attributes and do not
explicitly distinguish them by the attributes. Continue the traffic control example in
Fig. 2. Let W, X, Y, and Z denote the traffic events “a = high flow & low occu-
pancy”, “b = high flow & low occupancy”, “c = high flow & high occupancy”, and
“d = low flow & high occupancy”, respectively. An example stream of traffic
events from timestamp 8:00 to 8:07 are depicted in Fig. 3, where the events W, X,
and Y within the time interval [8:02, 8:05] match the predicate. Thus, it would be
reported that event Z will arrive within the time interval (8:02, 8:17). We call the
occurrences of the events corresponding to the matches of the predicate as predicate
occurrences. Let the pair (e, t) denote the event e that occurs at time t. In this ex-
ample, we say that <(W, 8:02), (X, 8:03), (Y, 8:05)> is a predicate occurrence of
the episode rule in Fig. 2.

For an episode rule, there can be more than one predicate occurrence in a time
period. For example, given the episode rule in Fig. 2, in Fig. 3 there are three predi-
cate occurrences, O1=<(X, 8:00), (W, 8:02), (Y, 8:05)>, O2=<(W, 8:02), (X, 8:03),
(Y, 8:05)>, and O3=<(W, 8:02), (X, 8:03), (Y, 8:07)>. Note that only the time inter-
val of O2 ([8:02, 8:05]) does not enclose the time interval of any other. We call this
kind of occurrences the minimal occurrence [10]. The events of a minimal occur-
rence span a shorter period. From O2 and the rule window, it can be predicted that
event Z will occur within the time interval (8:05, 8:17). We call this time interval
the predicted interval of O2. It can be seen that the predicted intervals of O1 and O3
are (8:05, 8:15) and (8:07, 8:17), respectively. Since both the two predicted inter-
vals are enclosed in the predicted interval of O2, O1 and O3 provide less but redun-
dant information for prediction than O2. Therefore, one of our goals in this paper is
to discover all the minimal occurrences for the predicate of every episode rule but
ignore the other predicate occurrences. Notice that, many real time applications
such as intrusion detection systems concern when the consequent will likely occur,
rather than when it will most likely occur. Our work aims at promptly reporting the
time interval in which the consequent will occur for these applications.

The burst and endlessness characteristic of data streams make it impossible to re-
trieve every occurrence and then verify whether it should be reported. Thus, we need
an efficient way to ensure that no redundant information is reported (i.e., only mini-
mal occurrences are reported). Cho et al. [2] propose a method named ToFel

8:078:058:038:028:00

YYXWX

8:078:058:038:028:00

YYXWX

Fig. 3. An example stream of traffic events

228 C.-W. Cho et al.

(Topological Forward Retrieval) to match the minimal occurrences from the stream.
ToFel takes advantage of the topological characteristic in the predicate to find the
minimal occurrences by incrementally maintaining parts of the predicate occur-
rences, and thus avoids scanning the stream backward. It constructs one event filter
with a queue for each predicate to be matched. The filter continuously monitors the
newly arrived events and only keeps those that are likely to be parts of the minimal
occurrences. However, ToFel may suffer from the plenty of false alarms over the
stream, i.e., partial matches that do not finally lead to a minimal occurrence.
Moreover, since ToFel needs to keep the arrived events for the occurrences of a
predicate, the memory required by ToFel is proportional to the given episode rules.
In the following, we briefly introduce the other related works and then discuss the
difference between them and ours.

Over the past few decades, significant projects such as Ode [7] and SAMOS [6]
have developed individual active database management systems. One of the core
issues in these projects is to propose the algebra with a rich number of event opera-
tors to support various types of queries (composite events). For the content-based
subscription systems [1, 4], Aguilera et al. [1] index subscriptions as a tree structure
where a path from the root to a leaf corresponds to a set of subscriptions whose sets
of attribute-value-operator triples are identical. An event will be evaluated by trav-
ersing the tree from the root to some leaves. If a leaf is finally reached, the event
will fit the subscriptions corresponding to the retrieved path. Demers et al. [4] allow
users to specify a subscription whose match is formed from a set of events. Their
approach can deal with multiple descriptions simultaneously through the proposed
indexing techniques on the automata. Wu et al. [13] proposed an event sequence
query model (SASE) with attribute value comparison for RFID data streams. A
query plan based on NFA with a stack structure is proposed to retrieve the query
occurrences from the stream. In the RFID-based data stream management systems
proposed in [5, 12], query models and system architectures were discussed but no
detailed implementations were provided.

The difference between these works and ours mainly lies in our concept of the
minimum occurrence and the corresponding matching process over event streams.
The algorithms based on automata [4, 7, 13] or petri nets [6] cannot avoid redun-
dant predictions. Some of the complex event processors [4, 13] cannot cope with
graph-based queries. The query format considered in [1] is set-based while ours is
graph-based, and their answer must be matched at a timestamp while ours is
matched over a window of timestamps. As a result, all of them are not adaptable to
handle episode-based queries.

In this paper, we propose a novel approach called CBS-Tree (Circular Binary
Search Tree). CBS-Tree maintains the recently arrived events in a tree structure,
and an efficient algorithm is proposed for the retrieval of the predicate occurrences
upon the tree structure, which avoids scanning the stream repeatedly. The memory
requirement in CBS-Tree is only affected by the maximum of all the predicate
windows and thus is independent of the amount of episode rules. Moreover, since
the occurrence retrieval on CBS-Tree is triggered by the sinks of predicates (the
vertices with no edge out of them), the proposed approach does not need to
maintain the partial match for every predicate occurrence. Therefore, CBS-Tree
outperforms ToFel in processing time when the stream has plenty of false alarms.

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 229

The remainder of the paper is organized as follows. Section 2 presents the problem
statements including the preliminary and our problem. Section 3 introduces the CBS-Tree
method. Due to the limitation of space, all the formal proofs and pseudo codes are omitted
and can be found in [3]. The experimental results are discussed in Section 4. Finally, we
give a conclusion and the future directions in Section 5.

2 Problem Formulation

In this section, we first define several terms related to our problem, and then the
basic concepts used in our approach are presented. An episode is a directed acyclic
graph g, where each vertex stands for an event, and all vertices correspond to
distinct events. The event corresponding to vertex v is denoted as ε(v). Each di-
rected edge (u, v) in g indicates that ε(u) must precede ε(v). We call this precedence

the temporal order between vertex u and vertex v and denote it as u≺ v. Note that,

there can be more than one sources (the vertices with no edge into them) and sinks
in an episode.

An event stream can be represented as Ŝ = <(e1, t1), (e2, t2), … (en, tn) …>, where
t1<t2< …<tn …. Given an event sequence S’ = <(e’1, t’1), (e’2, t’2) …, (e’m, t’m)>,
where t’1<t’2< …<t’m, we define the time interval or interval of S’ as [t’1, t’m], and
the start time and end time of S’ as t’1 and t’m, respectively. Moreover, we say S’
occurs at timestamp t’m. S’ is a subsequence of Ŝ if there exist m integers i1, i2,…,
im, such that 1≤i1<i2< …<im and ∀1≤j≤m, e’j = eij and t’j = tij. Given an episode α

with a time bound ωα, the episode occurrence or occurrence of α over Ŝ is an event
sequence S with time interval [ts, te] satisfying that: (1) S is a subsequence of Ŝ; (2)
the events corresponding to the vertices in α have an one-to-one mapping to the
events in S; (3) the order in which the events occur in S is consistent with the tem-

poral order ≺ specified in α；and (4) te – ts ≤ ωα. Under the given one-to-one map-

ping, each vertex v in α corresponds to a unique instance of ε(v) in S, which is
called the mapping instance of v in S. Given any two occurrences of α, O1 and O2,
with intervals [ts1, te1] and [ts2, te2], respectively, if ts1≤ts2<te2≤te1 and te2–ts2<te1–ts1,
we say that [ts2, te2] is enclosed by [ts1, te1]. For ease of presentation, we also say
that O2 is enclosed by O1. Note that, the second condition excludes two occurrences
in the same time interval from consideration. A minimal occurrence of α is an (epi-
sode) occurrence that is not enclosed by any other (episode) occurrence of α. Note
that, with this definition, there can be multiple minimal occurrences in the same
time interval.

An episode rule ρ is a 5-tuple (α, β, ωα, ωρ, χ). Here, α is the episode represent-
ing the predicate of ρ and β is the event representing the consequent of ρ. ωα and ωρ

stand for the predicate window and rule window, respectively. The interpretation of
ρ is that if α has an occurrence O with interval [ts, te] (te − ts ≤ ωα), β will occur
during interval (te, ts + ωρ) with probability χ. We call the interval (te, ts + ωρ) the
predicted interval of the occurrence O.

The properties of minimal occurrences were discussed in [2, 3]. Due to the lack
of space, in the following, we just give an outline for minimal occurrences.

230 C.-W. Cho et al.

Property 1. If the occurrence of α O1 with interval [ts1, te1] is not a minimal
occurrence, there must be a minimal occurrence of α O2 with interval [ts2, te2] such
that the predicted interval of O1 is enclosed by that of O2.

By Property 1, any non-minimal occurrence can be ignored. Therefore, we con-
clude that only the minimal occurrences of α should be matched for the prediction
of β. We summarize it in Lemma 1.

Lemma 1. Given the episode rule ρ, the union of predicted intervals for β derived
from all the occurrences of α is exactly the same as the union of predicted intervals
derived from only the minimal occurrences of α.

Intuitively, we may infer that all the minimal occurrences should be matched if
each of them has a unique end time. However, it is possible to have multiple mini-
mal occurrences in the same time interval. Therefore, we need a unique way to
select one from a set of minimal occurrences whose time intervals are all identical.
We introduce the concept of latest occurrence, as defined below, which represents a
unique form for one kind of minimal occurrences. Based on the concept, only the
minimal occurrences in this form will be matched.

Definition 1. Latest instance of an event. Given a timestamp t and an event instance
(X, t1), where t1≤t, if there does not exist another event instance (X, t2) such that
t1<t2≤t, (X, t1) is called the latest instance of X to t.

Definition 2. Latest occurrence of an episode. Given a timestamp t, the occurrence
<(ε(v1), t1), (ε(v2), t2), … (ε(vn), tn)> of α, where tn≤t, is called the latest occurrence
of α to t if both of the following conditions hold:

(a) For every sink vj of α, (ε(vj), tj) is the latest instance of ε(vj) to t; (b) For
every non-sink vertex vk of α, if vk1, vk2, … vkm are the direct successors of vk,
where 1≤k<n and tk<tk1<tk2< … <tkm≤tn, (ε(vk), tk) is the latest instance of ε(vk)
to tk1.

Let Σt denote the set of all occurrences of α that occur at time t. By Definition 2,
the latest occurrence of α to t, denoted as LOt, is included in Σt. If Σt has one or
more minimal occurrences, LOt must be one of them. However, Σt is not always in
this case and LOt is not necessarily a minimal occurrence. We call the latest
occurrence that is also a minimal occurrence the min-latest occurrence. The latest
occurrences that are not minimal can be identified by checking whether they con-
tain any of special event instances in the min-latest occurrence previously obtained,
which are defined as follows.

Definition 3. Rejected event instance set. Given the episode α and the min-latest
occurrence <(ε(v1), t1), (ε(v2), t2), … (ε(vn), tn)> previously obtained, the rejected
event instance set is defined recursively as follows:

(a) (ε(v1), t1) is a rejected event instance; (b) Given that (ε(vi), ti) is a rejected
event instance, for every direct successors vj of vi, where 1≤i<j≤n, (ε(vj), tj) is also a
rejected event instance if there is no occurrence of ε(vi) in the time interval (ti , tj).

Given the rejected event instance set, the latest occurrence that contains a
rejected event instance must have the same start time as the min-latest occurrence
previously obtained. On the other hand, a latest occurrence that does not contain a

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 231

reject event instance must be a minimal occurrence. In the following, we formulate
these findings as Lemma 2 and Lemma 3, respectively.

Lemma 2. Given a min-latest occurrence O=<(ε(v1), t1), (ε(v2), t2), … (ε(vn), tn)>, the
latest occurrence O’ =<(ε(v’1), t’1), (ε(v’2), t’2), … (ε(v’n), t’n)>, where tn<t’n, is not a
minimal occurrence if it contains a rejected event instance deduced from O.

Lemma 3. A latest occurrence of α is a minimal occurrence if it does not contain any
rejected event instance.

To conclude this section, only the latest occurrences that do not contain any rejected
event instance are the min-latest occurrences we are looking for.

3 The CBS-Tree (Circular Binary Search Tree) Approach

In this section, we describe our tree-based method. Subsection 3.1 introduces the
proposed tree structure, CBS-Tree, and the tree maintenance. In subsection 3.2, we
present how to use CBS-Tree to accelerate the min-latest occurrence retrieval for a
given predicate episode.

3.1 CBS-Tree

The CBS-Tree, which is an index of recently arrived events over the stream, can
achieve a fast retrieval of the min-latest occurrence for a given episode. Let L be the
number of event instances recorded in the CBS-tree. We design CBS-Tree as a
complete binary tree with L leaves, where each leaf corresponds to an event in-
stance and each node is numbered from left to right in bottom-up fashion. As a
result, the most recent L event instances are kept in the leaves, which are numbered
from 1 to L. Moreover, the event instance with timestamp t is assigned to the leaf
node numbered ((t – 1) mod L) + 1. In addition, each internal node is associated
with two sets, the event set RE and the timestamp set RT, to respectively keep the
events and timestamps of all the event instances assigned to its descendants.

Let the event stream Ŝ be <(A, 1), (B, 2), (A, 3), (C, 4), (D, 5), (C, 6), (B, 7),
(D, 8), …>. For example, Fig. 4 shows the CBS-Tree with 7 leaves, corresponding
to the event instances in time interval [1, 7] over Ŝ. Each node in the tree is num-
bered as mentioned and the sets RE and RT of each internal node are depicted above
the node. In the leaf layer, node 1 stands for the event instance (A, 1), node 2 repre-
sents the event instance (B, 2), and so forth. For the internal node 8, since it is the
parent of nodes 1 and 2, its event set is {A, B} and timestamp set is {1, 2}.

Tree Maintenance. Initially, since no event has arrived, the event set and time-
stamp set of each node are empty. Once an event arrives, the maintenance operation
begins at the leaf node that corresponds to the timestamp of the arrived event, and
then iteratively updates its ancestors in bottom-up fashion. For example, in Fig. 5,
we show the final state of CBS-Tree after the event instance (D, 8) arrives. Since
we only need to record the events whose arrival times range from timestamps 2 to
8, node 1 corresponding to the event instance (A, 1) now corresponds to the event

232 C.-W. Cho et al.

1 3 4 5 6 72

8 9 10 11

12 13

14

RE: {A, B}
RT: {1, 2}

RE: {A, C}
RT: {3, 4}

RE: {C, D}
RT: {5, 6}

RE: {B}
RT: {7}

RE: {A, B, C, D}
RT: {1, 2, 3, 4, 5, 6, 7}

RE: {A, B, C}
RT: {1, 2 ,3 ,4}

RE: {B, C, D}
RT: {5, 6, 7}

(B, 2)(A, 1) (A, 3) (C, 4)(D, 5) (C, 6)(B, 7)

1 3 4 5 6 72

8 9 10 11

12 13

14

RE: {A, B}
RT: {1, 2}

RE: {A, C}
RT: {3, 4}

RE: {C, D}
RT: {5, 6}

RE: {B}
RT: {7}

RE: {A, B, C, D}
RT: {1, 2, 3, 4, 5, 6, 7}

RE: {A, B, C}
RT: {1, 2 ,3 ,4}

RE: {B, C, D}
RT: {5, 6, 7}

(B, 2)(A, 1) (A, 3) (C, 4)(D, 5) (C, 6)(B, 7)

1 3 4 5 6 72

8 9 10 11

12 13

14

RE: {B, D}
RT: {8, 2}

RE: {A, C}
RT: {3, 4}

RE: {C, D}
RT: {5, 6}

RE: {B}
RT: {7}

RE: {A, B, C, D}
RT: {8, 2, 3, 4, 5, 6, 7}

RE: {A, B, C, D}
RT: {8, 2 ,3 ,4}

RE: {B, C, D}
RT: {5, 6, 7}

(B, 2)(D, 8) (A, 3) (C, 4)(D, 5) (C, 6)(B, 7)

1 3 4 5 6 72

8 9 10 11

12 13

14

RE: {B, D}
RT: {8, 2}

RE: {A, C}
RT: {3, 4}

RE: {C, D}
RT: {5, 6}

RE: {B}
RT: {7}

RE: {A, B, C, D}
RT: {8, 2, 3, 4, 5, 6, 7}

RE: {A, B, C, D}
RT: {8, 2 ,3 ,4}

RE: {B, C, D}
RT: {5, 6, 7}

(B, 2)(D, 8) (A, 3) (C, 4)(D, 5) (C, 6)(B, 7)

Fig. 4. The CBS-Tree Fig. 5. The CBS-Tree after updating

instance (D, 8) instead. Therefore, we update the event set and timestamp set of
node 8 to {B, D} and {8, 2}, respectively. We then update node 12 and node 14
respectively. In this way, the tree maintenance at each timestamp requires travers-
ing only one path from a leaf to the root. Thus, the time complexity of tree mainte-
nance is O(logL).

3.2 CBS-Tree-Based Retrieval

We now present how to utilize the CBS-Tree for fast retrieval of the min-latest
occurrences. According to Definition 2, we retrieve all the event instances of a
latest occurrence in the inverse topological order of their corresponding vertices in
the episode. Take Fig. 2 as an example. We first find the mapping instances of ver-
tex (III), then vertices (II) and (I). During the retrieval, if one of the mapping in-
stances is a rejected event instance, we stop the retrieval and can be sure that there
is no min-latest occurrence.

In Algorithm 1, we present the algorithm named CBS-Tree Retrieval (shortly
CBR) for finding the min-latest occurrence of the episode α occurred within time
interval [lt, rt], where rt is the current time and lt = rt – ωα+ 1. In the algorithm, we
first determine whether the newly arrived event can be the mapping instance of a
sink in α. If this condition holds, we then retrieve the latest occurrence of α. Oth-
erwise, there is no new min-latest occurrence of α with end time rt. To retrieve the
min-latest occurrence, as depicted in lines 2-4 of Algorithm 1, we iteratively re-
trieve the latest instance mapped to every vertex in α by CBS-Tree, each of whose
direct successors has been associated with a mapping instance in [lt, rt]. In this way,
if there does not exist a mapping instance for a vertex, we say that no min-latest
occurrence of α with end time rt exists (line 5). The procedure FindLastestEven-
tOccurrence in line 4 returns the occurring time of the latest instance for a given
event and a time interval. The left-endpoint of the specified time interval is always
set to lt, and the right-endpoint is computed from the mapping instances of the di-
rect successors of v by Definition 2 (line 3). FindLastestEventOccurrence will re-
turn -1 to indicate that the desired latest instance is not found or is a rejected event
instance. Detailed descriptions of FindLastestEventOccurrence will be presented
later. In line 6, once a new min-latest occurrence is found, the corresponding re-
jected event instance set will be derived.

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 233

Algorithm 1 CBS-Tree Retrieval (r, α, lt, rt, R)
Inputs: The root of the CBS-Tree r, the predicate episode α, the specified time

interval [lt, rt], and the rejected event instance set R deduced from the min-latest

occurrence of α last retrieved.
Output: The min-latest occurrence of α with end time rt.
1. If the event instance with arrival time rt does not correspond to a sink of α,

return and report there does not exist the desired episode occurrence ;
Else let the event instance be the mapping instance of the sink corresponding
to it ;

2. While there exists a vertex v of α, which does not map to an event instance
and is a sink of α or all the direct successors of v have the mapping in-
stances over the event stream do

3. { If v is a sink node, t’ = rt – 1 ;
Else let {v1, v2, … vi} be the set of direct successors of v, {(ε(v1), t1), (ε(v2),
t2), …(ε(vi), ti)} be the set of the mapping instances of {v1, v2, … vi}, and t1
< t2 < … < ti, set t’ = t1 – 1 ;

4. t = FindLastestEventOccurrence (v.event, lt, t’, r) ; // v.event: the event cor-
responding to vertex v; r: the root of the CBS-Tree

5. If (t = -1) Return and report that there does not exist the min-latest occur-
rence with end time rt; }

6. Derive the rejected event instances from the newly retrieved min-latest oc-
currence by CBS-Tree, and report the retrieved min-latest occurrence ;

We now describe how the procedure FindLastestEventOccurrence proceeds by
using CBS-Tree. In general, the retrieval for a latest instance begins at the root, and
iteratively checks some children of the current node until a leaf node is reached. We
will show that the total number of paths we have to check from the root to leaves is
always at most 2. Hence the time complexity for retrieving an event instance is
O(logL) with a multiplier less than or equal to 2.

In the following, we will focus on the general case of CBS-Tree in which every
leaf corresponds to an event instance. At the end of this section, we then discuss the
special case of CBS-Tree where some leaves do not correspond to event instances.
For each node ń, we use ń.id, ń.lch, ń.rch, ń.LRE and ń.RRE to denote the node ID,
the left child, the right child, and the event sets of the left child and the right child,
respectively. Let ń.lmt and ń.rmt be the timestamps corresponding to the event
instances represented by the leaf nodes under ń whose ID number is the smallest
(the left-most leaf node) and the largest (the right-most leaf node), respectively.
Moreover, we use ń.lat and ń.smt to denote the largest and smallest timestamps in
the timestamp set of node ń, respectively. The leaf nodes corresponding to them are
denoted as nlatest and nearliest, respectively. According to the location of nlatest under ń,
we have three types of situations to consider. As shown in Fig. 6, Type 1 means that
nlatest is the rightmost leaf node, while the other two types indicate that nlatest is under
either ń.lch or ń.rch. The timestamps are also depicted in the figures.

Two useful properties for event instance retrieval are explored from the relation
of the timestamps represented by the leaf nodes under a given node. We respec-
tively present them in Property 2 and Property 3.

234 C.-W. Cho et al.

Property 2. Given a CBS-Tree and a node ń in it, if and only if ń.lch.lat <
ń.rch.smt, among the leaf nodes under ń, the latest updated one (nlatest) must be the
right-most leaf node.

Based on the above property, the following corollary can be derived.

Corollary 1. Given a CBS-Tree and a node ń in it, if ń.lch.lat < ń.rch.smt, (1) for
any two leaf nodes under ń l1 and l2, if and only if l1.id < l2.id, the timestamp of l1 <
that of l2, and (2) ń.lch.smt = ń.lch.lmt, ń.lch.lat = ń.lch.rmt, ń.rch.smt = ń.rch.lmt,
and ń.rch.lat = ń.rch.rmt.

ń

ń.rch.lmt
ń.rch.smt

nearliest

ń.rch.rmt
ń.rch.lat

ń.lch.rmt
ń.lch.lat

ń.lch.lmt
ń.lch.smt

Left sub-tree Right sub-tree

nlatest

ń

ń.rch.lmt
ń.rch.smt

nearliest

ń.rch.rmt
ń.rch.lat

ń.lch.rmt
ń.lch.lat

ń.lch.lmt
ń.lch.smt

Left sub-tree Right sub-tree

nlatest

ń

ń.rch.lmt

nlatest

nearliest

ń.rch.rmt ń.rch.latń.rch.smt ń.lch.lmt
ń.lch.smt

ń.lch.rmt
ń.lch.lat

Left sub-tree Right sub-tree

λ1λ2

ń

ń.rch.lmt

nlatest

nearliest

ń.rch.rmt ń.rch.latń.rch.smt ń.lch.lmt
ń.lch.smt

ń.lch.rmt
ń.lch.lat

Left sub-tree Right sub-tree

λ1λ2

ń

nlatest

nearliest

ń.lch.lmtń.rch.smt
ń.rch.lmt

ń.lch.latń.lch.smt

Left sub-tree Right sub-tree

ń.lch.rmt ń.rch.lat
ń.rch.rmt

λ1
λ2

ń

nlatest

nearliest

ń.lch.lmtń.rch.smt
ń.rch.lmt

ń.lch.latń.lch.smt

Left sub-tree Right sub-tree

ń.lch.rmt ń.rch.lat
ń.rch.rmt

λ1
λ2

Type 1. nlatest is the
rightmost leaf

Type 2. nlatest is under ń.lch Type 3. nlatest is under ń.rch
but not the rightmost leaf

Fig. 6. Three types of situations

The latest event instance retrieval can be categorized into four cases. The first three are
treated based on Property 2, while the last one is treated based on Property 3, which will
be presented later. The first three cases occur when ń.lch.lat < ń.rch.smt, and by Property
2, only Type 1 in Fig. 6 should be considered. Given a query event ė, the specified time
interval [lt, rt], and the currently retrieved node ń, the largest value of rt and the smallest
value of lt are limited by ń.rch.rmt and ń.lch.lmt, respectively. We therefore divide the
specifications of lt and rt into three cases: (1) rt=ń.rch.rmt, (2) lt = ń.lch.lmt and rt <
ń.rch.rmt, and (3) lt> ń.lch.lmt and rt < ń.rch.rmt. Fig. 7 shows these cases and their sub-
cases, which are detailed below. In these cases, if [lt, rt] has an overlap with the time inter-
val of ń.rch, we should first consider ń.rch and then ń.lch.

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 1(a)

case 1(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 2(a)

case 2(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

case 3
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 1(a)

case 1(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 1(a)

case 1(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 2(a)

case 2(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

rtlt
case 2(a)

case 2(b)
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

case 3
rtlt

ń.lch.lmt ń.lch.rmt ń.rch.lmt ń.rch.rmt

ń

case 3
rtlt

Fig. 7. Illustration of the first three cases

Case 1. rt = ń.rch.rmt. There are two sub-cases. (a) The specified time interval [lt,
rt] is entirely covered by the time interval [ń.rch.lmt, ń.rch.rmt], i.e., lt ≥ ń.rch.lmt.
By the definition of latest event instance, if there is an answer, it must be found in
the leaf nodes under ń.rch. Therefore, if ė is contained in the event set of ń.rch, we

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 235

then search the right sub-tree. Note that, we pass the larger of lt and ń.rch.lmt as the
left bound of the specified time interval for searching the right sub-tree. (b) The
specified time interval [lt, rt] has an overlap with the time interval [ń.lch.lmt,
ń.lch.rmt], i.e., lt ≤ ń.lch.rmt. We first check whether there is an instance of ė in the
right sub-tree, i.e., check whether ė is contained in the event set of ń.rch. If so, we
can obtain the answer by searching the right sub-tree. Otherwise, we check if there
exists any instance of ė in the left sub-tree by passing the time interval [lt,
ń.lch.rmt]. To sum up for case 1, only one of the two sub-trees should be searched.
Therefore, we can make a unique choice on the two children to follow during the
retrieval. Moreover, the same procedure of case 1 will be repeated in the next tree
level. As a result, at most 1 path of CBS-tree should be traversed in case 1.

Case 2. rt < ń.rch.rmt and lt = ń.lch.lmt. There are also two sub-cases. (a) The
specified time interval [lt, rt] has an overlap with the time interval [ń.rch.lmt,
ń.rch.rmt], i.e., rt ≥ ń.rch.lmt. Two steps are needed for this case. At step (i), we
check whether there is an instance of ė within [ń.rch.lmt, rt]. If not, we then proceed
to step (ii), searching the left sub-tree. (b) The specified time interval [lt, rt] is en-
tirely covered by the time interval [ń.lch.lmt, ń.lch.rmt], i.e., rt ≤ ń.lch.rmt. Obvi-
ously, if there is an answer, it must be found in the left sub-tree. Note that, we pass
the smaller of rt and ń.lch.rmt as the right bound of the specified time interval for
searching the left sub-tree in both sub-cases. Moreover, it will fall into case 2 again
in the next tree level, when step (i) of sub-case (a) and sub-case (b) are processed,
and fall into case 1, when step (ii) of sub-case (a) is processed. To sum up, at most
2 paths will be traversed if the answer exists. One is to repeatedly apply case 2 in
the deeper tree levels, and then finally ė is not found in the leaves, while the other is
for the execution of step (ii) of sub-case (a) (case 2 turns to case 1), and the answer
is found.

Case 3. rt < ń.rch.rmt and lt > ń.lch.lmt. This case can be reduced to case 1 or case
2, or recursively performed by itself. For this case, we first check the right sub-tree,
and then the left sub-tree if no answer exists in the right sub-tree. Note that, the
parameters lt and rt used for searching a sub-tree should be set as close as possible.
Moreover, if ń.rch.lmt is assigned as lt to search the right sub-tree, case 3 will be
reduced to case 2 in the next tree level. Otherwise, case 3 will be reconsidered
again. Similarly, if ń.lch.rmt is assigned as rt to search the left sub-tree, case 3 will
be reduced to case 1 in the next tree level. Otherwise, case 3 will also be reconsid-
ered again. In this way, if the answer exists in the right sub-tree, we can obtain it by
traversing at most 2 paths according to case 2. Otherwise, it costs at most 1 path to
see that there is no answer in the right sub-tree, and at most 1 path to retrieve the
left sub-tree according to case 1. In total, case 3 needs at most 2 paths to obtain the
answer.

We now present Property 3 followed by Case 4.

Property 3. Given a CBS-Tree and a node ń in it, let nlatest be the latest updated one
among the leaves under ń. For any two leaf nodes under ń nx and ny, the timestamp
of nx is larger than that of ny if nx.id ≤ nlatest.id and ny.id > nlatest.id.

According to Property 2, the following corollary can be derived.

Corollary 2. Given a CBS-Tree and a node ń in it, for two leaf nodes under ń nx
and ny, where nx.id ≤ nlatest.id and ny.id ≤ nlatest.id, the timestamp of nx is smaller than

236 C.-W. Cho et al.

that of ny if and only if nx.id < ny.id. The same statement also applies to the case
where nx.id > nlatest.id and ny.id > nlatest.id.

The last case occurs when ń.lch.lat > ń.rch.smt, and by Property 3, either Type 2
or Type 3 in Fig. 6 should be considered. Divide the leaves under ń into two non-
empty sets λ1 and λ2 such that nx.id ≤ nlatest.id ∀nx∈λ1 and ny.id > nlatest.id ∀ny∈λ2.
In Type 2, nlatest is under ń.lch and the time interval of the left sub-tree can be thus
divided into two regions [ń.lch.lmt, ń.lch.lat] and [ń.lch.smt, ń.lch.rmt]. Moreover,
the two sets of leaves λ1 and λ2 are associated with timestamps in the intervals
[ń.lch.lmt, ń.lch.lat] and [ń.lch.smt, ń.rch.rmt], respectively. To find the latest in-
stance of an event, we should first consider λ1 and then λ2. In Type 3, nlatest is a leaf
node under the right sub-tree but not the right-most one. Similarly, the time interval
of the right sub-tree is divided into two regions [ń.rch.lmt, ń.rch.lat] and [ń.rch.smt,
ń.rch.rmt]. Moreover, in this situation, λ1 and λ2 correspond to the interval
[ń.lch.lmt, ń.rch.lat] and [ń.rch.smt, ń.rch.rmt], respectively.
Case 4. There are two sub-cases to consider in this case. (a) rt ≥ ń.lch.lmt. It means
that rt is located at the interval of λ1 for either Type 2 or Type 3, as shown in Fig. 8,
and thus the interval [lt, rt] may span the intervals of both sets λ1 and λ2. Therefore,
we first search λ1 in the interval [ń.lch.lmt, rt] and then λ2 in [lt, ń.rch.rmt]. For the
retrieval in [ń.lch.lmt, rt], if lt > ń.lch.lmt, [lt, rt] is entirely covered by [ń.lch.lmt,
rt], which can be regarded as case 3. Otherwise, the retrieval in [ń.lch.lmt, rt]
belongs to case 2 since the left bound is fixed to ń.lch.lmt. Therefore, it requires at
most two paths to find the answer or one path to recognize no answer in [ń.lch.lmt,
rt]. For the later, the interval [lt, ń.rch.rmt] (λ2) is then considered. Similarly, the
retrieval in [lt, ń.rch.rmt] belongs to case 1 since the right bound is fixed to
ń.rch.rmt. Therefore, it only requires one path for the retrieval. (b) rt < ń.lch.lmt.
Since the leaf node corresponding to ń.lch.lmt is the leftmost one in the set λ1, any
leaf node in the interval [lt, rt] must be in the set λ2. Depending on whether rt is
equal to ń.lch.lmt or not, this sub-case is equivalent to either case 1 (rt = ń.lch.lmt)
or case 3 (rt < ń.lch.lmt).

nlatest

ń

rt lt case 4(a)

case 4(b)
rtlt

Type 2 ń

rt lt case 4(a)

case 4(b)
rtlt

Type 3

nlatestnlatest

ń

rt lt case 4(a)

case 4(b)
rtlt

Type 2 ń

rt lt case 4(a)

case 4(b)
rtlt

Type 3

nlatest

Fig. 8. The sub-cases of Case 4

Given the event ė, the specified time interval [lt, rt], and a node of the CBS-Tree
ń, the procedure FindLastestEventOccurrence iteratively considers one of the four
cases presented above. During the latest event instance retrieval, whenever an in-
stance in a leaf is retrieved, we check if it is a rejected event instance. If so, we
terminate the retrieval; otherwise, the occurring time of the instance is returned.

Let N be the number of vertices in an episode. The time complexity of CBS-Tree
will be O(NlogL). For the special case that the number of received event instances

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 237

is smaller than L, we adopt the DirectMatch [2] which simply retrieves the min-
latest occurrence of a predicate episode from raw data.

4 Experiment Results

In this section, we evaluate the performances of CBS-Tree and ToFel by a series of
experiments on real datasets. All the experiments are performed on a Pentium IV
2.4GHz PC with 2GB RAM and under the Microsoft Windows XP environment.
We consider two real datasets Intel lab data and Traffic data for performance
evaluation, which are respectively described in [3].

All the notations used for generating predicate episodes and their definitions are
stated as follows. AveV: the average number of vertices in a predicate episode,
AveE: the average number of out-edges for a vertex in the predicate episodes, and
AveW: the average size of the predicate window in a predicate episode. Let Γ(δ) be
the function of normal distribution with mean δ. To generate a predicate episode α
from the real dataset, we first generate the corresponding predicate window ωα by
Γ(AveWindow). Then, we randomly pick Γ(AveVertex) events as vertices from the
records with record numbers t, t+1, t+2, …, t+AveWindow−1 in the dataset. Let the
vertices in α be v1, v2, … vn. For each vertex vk (1≤k≤n), we compute the number of
its out-edges nedge from Γ(AveE). Then, we randomly select nedge different vertices
from the set {vi| k<i} as its direct successors. To avoid a vertex vj (1<j≤n) being
over-connected, we also add AveE dummy vertices denoted as vn+1, vn+2, …, vn+AveE
during the edge construction. If vk selects one of these vertices to be its direct suc-
cessor, no operation is carried out for this connection. If there are many isolated
sub-graphs in a seed, we add the minimum number of edges to combine them into a
connected graph. Note that, we only show the performance of our approach on the
matching of the min-latest occurrences, since it is the main cost of the event predic-
tion problem. Therefore, we only need to generate the set of predicate episodes with
predicate windows instead of the episode rules.

We set various parameters to evaluate our efficiency with respect to the sizes of
predicate windows and the structure of episodes. If not specified in the experiments,
the default settings for the number of episodes, AveV, and AveE are 10,000, 5, and
2, respectively. In the following, each figure corresponds to the results from a set of
experiments. Moreover, each point of a curve in the figure stands for the execution
time of one approach.

At first, we are interested in how the data distribution and the size of predicate
window influence the performances of CBS-Tree and ToFel. Given the predicate
episode α, if the event instances corresponding to the vertices of α come often,
ToFel needs to frequently maintain the queues of α for the arrived event instances
even if they finally do not form the min-latest occurrences. On the other hand, since
the matching of min-latest occurrence in CBS-Tree is triggered only by the event
instances corresponding to the sinks of α, the above situation which causes ToFel to
frequently perform queue updates is not significant to CBS-Tree. Therefore, ToFel
is more sensitive than CBS-Tree when the stream data is relatively dense. Table 1
shows the total frequencies of the k events with highest frequencies in the two real

238 C.-W. Cho et al.

Table 1. Event frequencies in the real datasets

 k=5 k=10 k=15 k=20 k=25 k=30 k=35 k=40
Intel lab dataset 1.3% 2.6% 3.8% 4.8% 5.8% 6.7% 7.6% 8.4%
Traffic dataset 26.4% 37.3% 44.2% 49.5% 53.4% 56.2% 58.6% 60.6%

datasets, respectively. Intuitively, a dataset with a smaller k and a larger total fre-
quency indicates a denser dataset. As we can see, the density of Traffic dataset is
significantly higher than Intel lab dataset.

For a sparse dataset, as the size of predicate window becomes larger, the event in-
stances are more likely to become a part of the minimal occurrence and the number of
answers increases. Therefore, the execution times of the two approaches will grow with
the increase of AveW since there are more episode occurrences in a large window (this
also implies more minimal occurrences). For a dense dataset, events can form episode
occurrences in a small window. However, in a large window, since some occurrences
turn to redundant ones, the number of minimal occurrences is thus reduced. As a result,
the execution times of the two approaches will decrease with the growth of AveW. Fig.
9 and Fig. 10 depict the performance of the two approaches with respect to the AveW
values varying from 50 to 500 on Intel lab data and the traffic data, respectively. CBS-
Tree outperforms ToFel for all the cases in both figures. In Fig. 9, the execution time of
CBS-Tree slightly increases with the growth of window size, but is still better than that
of ToFel in the cases of lager window sizes. In Fig. 10, since the traffic dataset is denser
than Intel lab dataset, ToFel spends significantly more time to process the traffic data
against the Intel lab data. In the following, we evaluate the performances of CBS-Tree
and ToFel by three sets of experiments with different settings of AveV, AveE, and the
number of predicate episodes, respectively. Due to the lack of space, we will only show
the cases that set AveW to 500.

The execution times of the two approaches with various AveV values are shown in
Fig. 11 and Fig. 12. As the number of vertices in an episode increases, the two ap-
proaches need more time to match a min-latest occurrence, and the number of answers
decreases as the AveV value increases. CBS-Tree outperforms ToFel in either Intel lab
data or the traffic data. In the experiments, most of the irrelevant event instances can be

0
1
2
3
4
5
6
7
8
9

10

50 100 150 200 250 300 350 400 450 500
AveW

tim
e

(s
ec

.)

ToFel CBS-Tree

0
200
400
600
800

1000
1200
1400
1600
1800
2000

50 100 150 200 250 300 350 400 450 500
AveW

tim
e

(s
ec

.)

ToFel CBS-Tree

0

5

10

15

20

25

30

35

40

5 6 7 8 9 10 11 12 13
AveV

tim
e

(s
ec

.)

ToFel CBS-Tree

Fig. 9. Execution time with
different AveW on Intel lab
data

Fig. 10. Execution time with
different AveW on Traffic
data

Fig. 11. Execution time with
different AveV on Intel lab
data

A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams 239

0

500

1000

1500

2000

2500

3000

3500

4000

5 6 7 8 9 10 11 12 13
AveV

tim
e

(s
ec

.)

ToFel CBS-Tree

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10
AveE

tim
e

(s
ec

.)

ToFel CBS-Tree

0

500
1000

1500
2000

2500
3000

3500
4000

4500

2 3 4 5 6 7 8 9 10
AveE

tim
e

(s
ec

.)

ToFel CBS-Tree

Fig. 12. Execution time with
different AveV on Traffic data

Fig. 13. Execution time with
different AveE on Intel lab
data

Fig. 14. Execution time with
different AveE on Traffic data

efficiently skipped by CBS-Tree when the value of AveV is large. Moreover, CBSTree
exhibits an excellent performance when the dataset is relatively dense.

In Fig. 13 and Fig. 14, we evaluate the performances of the two approaches with re-
spect to different settings of AveE. In this experiment, we set AveV to 14 for all the
cases. In general, the larger the number of edges in an episode is, the stronger the tem-
poral constraints among vertices in the episode will be. This results in a smaller number
of min-latest occurrences in the answer set. Therefore, the execution time of the ap-
proaches decreases as the AveE value increases. In the figures, CBS-Tree exhibits better
performance than ToFel no matter how large the value of AveE is. For ToFel, when the
number of edges in an episode is high, ToFel will take more time to maintain the queue
(In ToFel, an event instance for a vertex can be kept if there are some event instances
kept for all its direct predecessors. Intuitively, there are more direct predecessors for a
vertex when the AveE value is larger). This cancels out the time saved when fewer
answers are found under a large value of AveE.

5 Conclusion and Future Work

In this paper, we propose a novel approach to match the predicate episode of an
episode rule over event streams for the prediction of the consequent event. Our
approach only finds the minimal occurrence such that the duplicate prediction can be
avoided. The approach is based on the CBS-Tree which maintains the recent event
instances such that the minimal occurrence can be efficiently retrieved. We formulate
four cases for retrieving the event instances of the minimal occurrence via CBS-Tree.
Each of the four cases only takes O(logL) time complexity to retrieve the desired
event instance, where L is the number of event instances indexed in the tree. We
evaluate the performance of our approach by varying the size of predicate window
and the structural scale of the episode such as the number of vertices and the number
of edges between two vertices. The experiment results show that our approach
outperforms the previous work in most cases. The results also reveal that CBS-Tree
has the outstanding performance when the dataset is relatively dense. In the future, we
will extend our approach to handle more complex predicates such as the episodes with
negation operators or the events with multiple attributes.

240 C.-W. Cho et al.

References

1. Abadi, D.J., et al.: Aurora: A Data Stream Management System. In: Proceedings of the
ACM SIGMOD Conference, p. 666 (2003)

2. Cho, C.W., Zheng, Y., Chen, A.L.P.: Continuously Matching Episode Rules for Predicting
Future Events over Event Streams. In: Proceedings of joint conference of Asia-Pacific
Web Conference and International Conference on Web-Age Information Management, pp.
884–891 (2007)

3. Cho, C.W., Zheng, Y., Chen, A.L.P.: CBS-Tree: Event Prediction Using Episode Rules
over Event Streams, Tech. Report CS-1207-31, Department of Computer Science, Na-
tional Tsing Hua University (December 2007)

4. Demers, A.J., Gehrke, J., Hong, M.S., Riedewald, M., White, W.M.: Towards Expressive
Publish/Subscribe Systems. In: Proceedings of International Conference on Extending Da-
tabase Technology, pp. 627–644 (2006)

5. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O.,
Edakkunni, A., Hong, W.: Design Considerations for High Fan-In Systems: The HiFi Ap-
proach. In: Proceedings of Biennial Conference on Innovative Data Systems Research, pp.
290–304 (2005)

6. Gatziu, S., Dittrich, K.R.: SAMOS: an Active Object-Oriented Database System. IEEE
Database Engineering Bulletin 15(1-4), 23–26 (1992)

7. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite Event Specification in Active Da-
tabases: Model & Implementation. In: Proceedings of International Conference on Very
Large Data Bases, pp. 327–338 (1992)

8. Hall, F.L.: Traffic stream characteristics, Traffic Flow Theory. U.S. Federal Highway
Administration (1996)

9. Hätönen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: Knowledge Dis-
covery from Telecommunication Network Alarm Databases. In: Proceedings of Interna-
tional Conference on Data Engineering, pp. 112–115 (1996)

10. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of Frequent Episodes in Event Se-
quences. Data Mining and Knowledge Discovery 1(3), 259 (1997)

11. Ng, A., Fu, A.W.C.: Mining Frequent Episodes for Relating Financial Events and Stock
Trends. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pp. 27–39 (2003)

12. Wang, F., Liu, P.: Temporal Management of RFID Data. In: Proceedings of International
Conference on Very Large Data Bases, pp. 1128–1139 (2006)

13. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
Proceedings of the ACM SIGMOD Conference, pp. 407–418 (2006)

Effective Skyline Cardinality Estimation on Data

Streams�

Yang Lu, Jiakui Zhao, Lijun Chen, Bin Cui, and Dongqing Yang

Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, China

School of Electronics Engineering and Computer Science, Peking University, China
{yanglu,jkzhao,ljchen,bin.cui,dqyang}@pku.edu.cn

Abstract. In order to incorporate the skyline operator into the data
stream engine, we need to address the problem of skyline cardinality esti-
mation, which is very important for extending the query optimizer’s cost
model to accommodate skyline queries. In this paper, we propose robust
approaches for estimating the skyline cardinality over sliding windows
in the stream environment. We first design an approach to estimate the
skyline cardinality over uniformly distributed data, and then extend the
approach to support arbitrarily distributed data. Our approaches allow
arbitrary data distribution, hence can be applied to extend the opti-
mizer’s cost model. To estimate the skyline cardinality in online manner,
the live elements in the sliding window are sketched using Spectral Bloom
Filters which can efficiently and effectively capture the information which
is essential for estimating the skyline cardinality over sliding windows.
Extensive experimental study demonstrates that our approaches signifi-
cantly outperform previous approaches.

1 Introduction

Skyline queries are very important for many applications, such as data mining
and multi-criteria decision making, and have attracted much attention [4,9,12].
Given two multi-dimensional elements ξ1 and ξ2, if ξ1 is better than or equal to ξ2

over all dimensions and strictly better than ξ2 over at least one dimension, we say
that ξ1 dominates ξ2, and is marked as ξ1 � ξ2. If an element is not dominated
by any other element, it is a skyline element, and the skyline query returns all
skyline elements. Continuously monitoring skylines over sliding windows [11,14]
in the stream environment also received much attention; the skyline changes
over time as the window slides and the skyline changes are reported to the user
continuously in real-time manner. In order to incorporate the skyline operator
into the data stream engine, we need to solve the problem of skyline cardinality
estimation, which is very important for extending the optimizer’s cost model.

There are some previous works [2,5] which considered the problem of skyline
cardinality estimation over static datasets. However, the approaches are based
� This work is supported by project 2007AA01Z153 under the National High-tech

Research and Development of China and the National Natural Science Foundation
of China under Grant No.60603045.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 241–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 Y. Lu et al.

on very strong assumptions on the data distribution, e.g., no duplicate values
over each dimension. The approach in [6] allows duplicate values, but only two
possible values, e.g. 0 and 1, are allowed over the dimension which contains du-
plicate values, hence the restriction is still very strong. Since duplicate values
are very common, above approaches do not scale well to real-life applications.
In this paper, we propose robust approaches for estimating the skyline cardi-
nality, and our approaches can support the skyline computation over arbitrarily
distributed data. In addition, since the elements in the sliding window change
over time as the window slides, we use Spectral Bloom Filters [7] to continuously
capture the information which is essential for estimating the skyline cardinality.
Our contributions in this paper can be summarized as follows:

1. We propose an approach which only uses the value cardinality of each di-
mension to estimate the skyline cardinality, under the assumption that the
data over each dimension is uniformly distributed.

2. We design a robust approach which considers the data distribution over
each dimension. This enhanced approach can estimate the skyline cardinality
effectively and efficiently over arbitrarily distributed data.

3. We propose to use Spectral Bloom Filters to capture the information, such as
value cardinality and value frequency over each dimension, which is essential
for estimating the skyline cardinality over sliding windows.

4. We conduct extensive experimental study to demonstrate that our
approaches yield better performance than existing approaches.

The rest of this paper is organized as follows: Section 2 surveys related works;
Section 3 proposes our skyline cardinality estimation approaches; experimental
results are shown in Section 4, followed by our conclusion in Section 5.

2 Related Works

The skyline problem was originally studied as the maximal vector problem; Kung
et al. [10] proposed the first algorithm for finding the maximal vectors from a set
of memory resident vectors. Börzsönyi et al. [4] introduced the skyline operator
into relational database systems. Recently, continuously monitoring skylines over
sliding windows [11,14] also received much attention.

There are some previous works which considered the problem of skyline cardi-
nality estimation over static datasets. Under assumptions of statistical indepen-
dence across dimensions, no duplicate values over each dimension, and dimension
domains are all totally ordered, Bentley et al. [2] and Godfrey [8] proposed meth-
ods for estimating the skyline cardinality using carefully designed recurrence.
Under the same assumptions, Buchta [5] and Chaudhuri et al. [6] proposed to
estimate the skyline cardinality using integrals, and Buchta [5] further derived
that the skyline cardinality equals Θ

(
(ln n)k−1/(k − 1)!

)
, where n is the number

of elements in the space and k is the number of dimensions. Above approaches
cannot be applied to most real-life applications as the “no duplicate values” as-
sumption is impractical. Chaudhuri et al. [6] relaxed the “no duplicate values”

Effective Skyline Cardinality Estimation on Data Streams 243

assumption, but the dimensions which contain duplicate values can only have
two possible values, which is still a suffering constraint. In addition, the ap-
proach uses integrals to estimate the skyline cardinality, and the integrals have
no a close form, hence can only be approximated by some scientific computing
methods. In this paper, under assumptions of statistical independence across di-
mensions which is commonly used by query optimizers, we consider the problem
of sliding-window skyline cardinality estimation over arbitrarily distributed data
in the stream environment.

3 Skyline Cardinality Estimation

In this section, we introduce how to estimate the skyline cardinality over sliding
windows in the stream environment.

3.1 Estimation under Strong Assumptions

The approaches for skyline cardinality estimation proposed in [2,5,6] can be
extended to the stream context without modifications and are summarized by
Theorem 1, Theorem 2 and Theorem 3 respectively. Theorem 1 and Theorem 2
are theoretically equivalent. The three approaches suffer from the strong assump-
tions as described in Section 2, and hence do not apply to real-life applications.

Theorem 1. Suppose that there are n k-dimensional live elements in a sliding
window; under assumptions of statistical independence across dimensions, no
duplicate values over each dimension, and dimension domains are all totally
ordered, the expected number of the skyline elements Ψ(n, k) can be recursively
characterized as

Ψ(n, k) = Ψ(n − 1, k) +
1
n

Ψ(n, k − 1)

with initial conditions

Ψ(1, k) = 1 k ≥ 1
Ψ(n, 1) = 1 n ≥ 1.

Theorem 2. Suppose that there are n k-dimensional live elements in a sliding
window; under the same assumptions as those in Theorem 1, the expected number
of the skyline elements Ψ(n, k) can be characterized as

Ψ(n, k) = n

∫ 1

0

· · ·
∫ 1

0

(1 − x1 · · ·xk)n−1dx1 · · · dxk.

Theorem 3. Suppose that there are n k-dimensional live elements in a sliding
window; there are only two possible values over each of the first k◦ dimensions,
and there are no duplicate values over the other dimensions. For simplicity and
without loss of generality, suppose that the two possible values over the first k◦

dimensions are 1 and 0, and 1 dominates 0; pi denotes the probability that the

244 Y. Lu et al.

value of the ith dimension equals 1, where 1 ≤ i ≤ k◦. Under assumptions of
statistical independence across dimensions and dimension domains are all totally
ordered, the expected number of the skyline elements Ψ(n, k) equals

n
∑

v∈{0,1}k◦

∫ 1

0

· · ·
∫ 1

0

Φv(x1, · · · , xk−k◦)dx1 · · ·dxk−k◦

where Φv(x1, · · · , xk−k◦) can be characterized as

Φv(x1, · · · , xk−k◦) = P1(v) (1 − P2(v)x1 · · ·xk−k◦)n−1

P1(v) =
k◦∏
i=1

pvi

i (1 − pi)1−vi

P2(v) =
k◦∏
i=1

p1−vi

i .

3.2 Estimation over Uniformly Distributed Data

As we introduced previously, existing approaches assume that there are no du-
plicate values over each dimension or the dimension only has two possible values.
To achieve better applicability, we relax the restriction on the data distribution.
Under assumptions of statistical independence across dimensions and the data
over each dimension is uniformly distributed, we use the value cardinality, i.e.
the number of the distinct elements, over each dimension to characterize the ex-
pected number of the skyline elements. The theoretical analysis is based on the
Inclusion-Exclusion Principle [13]. Lemma 1 gives the probability that an ele-
ment is dominated by all other n elements. Lemma 2 gives the probability that
an element is dominated by at least one of other n elements. Lemma 3 gives the
probability that none of other n elements can dominate an element. Theorem 4
gives the expected number of the skyline elements in a sliding window which
contains n k-dimensional live elements.

Lemma 1. Suppose that ξ0ξ1 · · · ξn are n + 1 k-dimensional elements, where
ξi =< xi1, xi2, · · · , xik >. The data over each dimension is uniformly dis-
tributed, and the value cardinality of the jth dimension, i.e. the number of the
distinct values over the jth dimension, is cj; vj1, vj2, · · · , vjcj denote the dis-
tinct values over the jth dimension, where vj1 < vj2 < · · · < vjcj . Under
assumptions of statistical independence across dimensions, the probability that
∀i(1≤i≤n)(ξi � ξ0), i.e. P◦(n), can be characterized as,

P◦(n) =
k∏

j=1

cj∑
t=1

tn

cn+1
j

n ≥ 1, k ≥ 1.

Proof. P◦(n) can be characterized as,

P◦(n) = P{(∀i(1≤i≤n)(ξi � ξ0)}

Effective Skyline Cardinality Estimation on Data Streams 245

=
k∏

j=1

cj∑
t=1

P{x0j = vjt}P{∀i(1≤i≤n)(x0j ≥ xij) | x0j = vjt}

=
k∏

j=1

cj∑
t=1

(
1
cj

·
(

t∑
θ=1

1
cj

)n)
=

k∏
j=1

cj∑
t=1

tn

cn+1
j

.

Lemma 2. Under the same conditions as those in Lemma 1, the probability that
∃i(1≤i≤n)(ξi � ξ0), i.e. P•(n), can be characterized as,

P•(n) =
n∑

i=1

⎛
⎝(−1)i−1

(
n

i

) k∏
j=1

cj∑
t=1

ti

ci+1
j

⎞
⎠ n ≥ 1, k ≥ 1.

Proof. Using the Inclusion-Exclusion Principle [13] and Lemma 1, we have

P•(n) = P{(ξ1 � ξ0) ∨ · · · ∨ (ξn � ξ0)}

=
n∑

i=1

P{ξi � ξ0} −
∑

1≤i1<i2≤n

P{(ξi1 � ξ0) ∧ (ξi2 � ξ0)}

+
∑

1≤i1<i2<i3≤n

P{(ξi1 � ξ0) ∧ (ξi2 � ξ0) ∧ (ξi3 � ξ0)}

− · · · + (−1)n−1P{(ξ1 � ξ0) ∧ · · · ∧ (ξn � ξ0)}

=
(

n

1

)
P◦(1) −

(
n

2

)
P◦(2) +

(
n

3

)
P◦(3) − · · · + (−1)n−1

(
n

n

)
P◦(n)

=
n∑

i=1

(−1)i−1

(
n

i

)
P◦(i) =

n∑
i=1

⎛
⎝(−1)i−1

(
n

i

) k∏
j=1

cj∑
t=1

ti

ci+1
j

⎞
⎠ .

Lemma 3. Under the same conditions as those in Lemma 1, the probability that
�i(1≤i≤n)(ξi � ξ0), i.e. P�(n), can be characterized as,

P�(n) =
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛
⎝1 −

k∏
j=1

tj
cj

⎞
⎠

n

n ≥ 1, k ≥ 1.

Proof. By Lemma 2,P�(n) can be characterized as,
P�(n) = P{�i(1≤i≤n)(ξi � ξ0)} = 1 − P•(n)

=
n∑

i=0

⎛
⎝(−1)i

(
n

i

) k∏
j=1

cj∑
t=1

ti

ci+1
j

⎞
⎠ =

c1∑
t1=1

· · ·
ck∑

tk=1

(
k∏

l=1

1
cl

)
n∑

i=0

(−1)i

(
n

i

) k∏
j=1

tij
ci
j

=
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

l=1

1
cl

)
n∑

i=0

(
n

i

)⎛⎝−
k∏

j=1

tj
cj

⎞
⎠

i

=
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛
⎝1 −

k∏
j=1

tj
cj

⎞
⎠

n

.

246 Y. Lu et al.

Theorem 4. Suppose that there are n k-dimensional live elements in the slid-
ing window; the data over each dimension is uniformly distributed, and the value
cardinality of the jth dimension is cj; under the assumption of statistical inde-
pendence across dimensions, the expected number of the skyline elements Ψ(n, k)
can be characterized as,

Ψ(n, k) = n ·
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛
⎝1 −

k∏
j=1

tj
cj

⎞
⎠

n−1

where n ≥ 1 and k ≥ 1.

Proof. By Lemma 3 and Ψ(n, k) = nP�(n−1), the theorem can be easily proved.

3.3 Estimation over Arbitrarily Distributed Data

Theorem 4 assumes that the data over each dimension is uniformly distributed;
however, skewed data is very common in real-life datasets, and Theorem 4 may
not work well for such datasets. Corollary 1 gives an approach for estimating
the skyline cardinality over arbitrarily distributed data, in which probability
functions of all dimensions are considered.

Corollary 1. Suppose that ξ1ξ2 · · · ξn are n k-dimensional live elements in a
sliding window, where ξi = < xi1, xi2, · · · , xik >. The probability function of the
data over the jth dimension is fj; P{xij = vjt} = fj(t), vj1 < vj2 < · · · < vjcj ,
where cj is the value cardinality of the jth dimension. Under assumptions of
statistical independence across dimensions, the expected number of the skyline
elements Ψ(n, k) equals

n ·
c1∑

t1=1

· · ·
ck∑

tk=1

f1(t1) · · · fk(tk)

⎛
⎝1 −

k∏
j=1

tj∑
θ=1

fj(θ)

⎞
⎠

n−1

.

Proof. The proof borrows the same ideas from the proof of Theorem 4; for space
limitations, we omit the details.

Estimating the skyline cardinality using Corollary 1 has a computational com-
plexity of O(

∏k
j=1 cj), where cj is the value cardinality of the jth dimension;

if the number of dimensions and the value cardinalities of some dimensions are
large, the computational cost overhead is unacceptable. Definition 1 gives the
definition of high and low value cardinality. If a dimension was defined with high
value cardinality, we may consider that there are no duplicate values over the
dimension, hence the probability function of the dimension needs not to be con-
sidered and we can reduce the computational cost thereafter. With well tuned
threshold value ε, we can get good approximation of the skyline cardinality.

Definition 1 (High and Low Value Cardinality). Suppose that the proba-
bility function over a dimension is f ; the value of a randomly selected element

Effective Skyline Cardinality Estimation on Data Streams 247

F(1) F(2) F(t-1) F(t)

1

x

y

F(0)= 0

f(1)

f(2)

f(t)

F(c)=1

(a) high value cardinality

F(1)

1

x

y

F(0)= 0

f(1)

F(2)=1

(b) low value cardinality

Fig. 1. High and low value cardinality

has a f(t) probability to be vt, v1 < v2 < · · · < vc, where c is the value cardinality
of the dimension; if the following inequation∣∣∣∣∣

1
2

−
c∑

t=1

f(t) (1 − F (t))

∣∣∣∣∣ < ε, F (t) =
t∑

θ=1

f(θ)

holds, where ε is the threshold value, we say that the dimension has high value
cardinality; otherwise, the dimension has low value cardinality.

Figure 1 illustrates the high and low value cardinality defined in Definition 1,
where the area of the triangle is 0.5; if the area of the greyed regions approxi-
mates 0.5, we are sure that any two values over the dimension have a very small
probability to be equal, hence we may consider that there are no duplicate val-
ues over the dimension. Theorem 5 gives an efficient approach for estimating
the skyline cardinality over arbitrarily distributed data; since the probability
functions of dimensions with high value cardinality are no longer considered, the
computational complexity is significantly reduced. The cardinality threshold ε in
Definition 1 has great influence on the performance of this approach. If ε has a
very small value, fewer dimensions can have high value cardinality; in this case,
the computational complexity will be higher, but the result will be more accu-
rate. Otherwise, more dimensions can have high value cardinality; in this case,
the computational complexity will be lower, but the result may be less accurate.

Theorem 5. Suppose that ξ1ξ2 · · · ξn are n k-dimensional live elements in a
sliding window, where ξi = < xi1, xi2, · · · , xik >. The data over k◦ dimensions
has low value cardinality, and the data over each other dimension has high value
cardinality; without loss of generality, suppose that the data over each of the first
k◦ dimensions has low value cardinality, and the probability function of the data
over the jth dimension is fj; P{xij = vjt} = fj(t), vj1 < vj2 < · · · < vjcj , where
cj is the value cardinality of the jth dimension. If k = k◦, the expected number
of the skyline elements in the sliding window Ψ(n, k) equals

n ·
c1∑

t1=1

· · ·
ck∑

tk=1

f1(t1) · · · fk(tk)

⎛
⎝1 −

k∏
j=1

tj∑
θ=1

fj(θ)

⎞
⎠

n−1

.

248 Y. Lu et al.

If k > k◦, Ψ(n, k) can be approximated by

c1∑
t1=1

· · ·
ck◦∑

tk◦=1

f1(t1) · · · fk◦(tk◦)Ψt1,··· ,tk◦ (n, k)

where Ψt1,··· ,tk◦ (n, k) can be recursively characterized as

Ψt1,··· ,tk◦ (n, k) = Ψt1,··· ,tk◦ (n − 1, k) +
Ψt1,··· ,tk◦ (n, k − 1)

n

with initial conditions

Ψt1,··· ,tk◦ (1, k) = 1 (k ≥ k◦ + 1)

Ψt1,··· ,tk◦ (n, k◦ + 1) =

1 −
(

1 −
k◦∏

j=1

tj∑
θ=1

fj(θ)

)n

k◦∏
j=1

tj∑
θ=1

fj(θ)
(n ≥ 1).

Proof. The proof borrows the same ideas from the proof of Theorem 4; for space
limitations, we omit the details.

3.4 Computing Skyline Cardinality

In order to utilize the theorems presented above to estimate the skyline cardi-
nality, we have to get the information about the distribution of the data, such as
the value cardinality and the value frequency. In this subsection, we discuss how
we can compute the skyline cardinality online in a data stream environment.

The Spectral Bloom Filter (SBF) [7] is an extension of the standard bloom
filter [3] for supporting the estimation of the value frequency and the value cardi-
nality. The bit vector in the standard bloom filter is replaced by a counter vector
in SBF. Initially, all counters are set to 0; κ hash functions h1, h2, · · · , hκ are
used to hash elements into the counters. Three strategies, i.e. Minimum Selec-
tion (MS), Minimal Increase (MI), and Recurring Minimum (RM), are used to
maintain SBF. For sliding windows, in order to estimate the skyline cardinality
using Theorem 5, the RM strategy is the best choice, since it supports deletions
and has relatively lower error rate. In dynamic environments, the naive method
for estimating the skyline cardinality is to recompute the expected skyline cardi-
nality using Theorems 4 or 5 whenever the distribution is changed; however, the
method is both space and time inefficient and is not necessary. In our work, in the
case of estimating the skyline cardinality using Theorem 4, we use a threshold
value γc to demonstrate that when the change of the cardinality of a dimension
exceeds γc, the expected skyline cardinality should be recomputed. In the case
of estimating the skyline cardinality using Theorem 5, an additional threshold
value γf is used to demonstrate that when the change of the frequency of a value
exceeds γf , the expected skyline cardinality should be recomputed.

Effective Skyline Cardinality Estimation on Data Streams 249

Algorithm 1: Estimating Skyline Cardinality(k,�, γc, γf)

Input : k: the number of dimensions
�: the data stream
γc: threshold of cardinality change over a dimension
γf : threshold of frequency change of a value

begin1
n ← 0;2
while the data stream � is not terminated do3

wait until an element ξ arrives or expires;4
if ξ is an arriving element then5

n ← n + 1;6
for i ← 1 to k do7

find ← sbf [i].lookfor(ξ.x[i]);8
if find = false then9

v[i].insert(ξ.x[i]); λc[i] ← λc[i] + 1;10
end11
sbf [i].insert(ξ.x[i]); λf [i].insert(ξ.x[i]);12

end13

else14
n ← n − 1;15
for i ← 1 to k do16

num ← sbf [i].getnum(ξ.x[i]);17
if num = 1 then18

v[i].delete(ξ.x[i]); λc[i] ← λc[i] − 1;19
end20
sbf [i].delete(ξ.x[i]); λf [i].delete(ξ.x[i]);21

end22

end23
recompute ← false;24
for i ← 1 to k do25

if |λc[i]| > γc then26
recompute ← true; break;27

end28
if λf [i].check(γf) = true then29

recompute ← true; break;30
end31

end32
if recompute = true then33

card ← computeT5(n,k,sbf ,v); report(card);34
for i ← 1 to k do35

λc[i] ← 0; λf [i].clear();36
end37

end38

end39

end40

Algorithm 1 shows how to estimate the skyline cardinality over sliding win-
dows using Theorem 5; an array of SBFs maintained by the RM strategy are
used to summarize the data over each dimension. Initially, the number of the
live elements in the sliding window n is set to 0 (line 2); while the stream �
is not terminated, the algorithm waits until a new element arrives or a live ele-
ment expires (line 4). If a new element ξ arrives, the number of the live elements
in the sliding window is increased by 1 (line 6). Then, for each dimension of
the element, determine whether the dimension value is contained by the cor-
responding SBF (line 8); if not contained, the dimension value is inserted into
the vector v[i] which consists of the distinct values over the dimension and the
value cardinality change over the dimension λc[i] is increased by 1 (line 10). Fi-
nally, each dimension value of the new element is inserted into the corresponding

250 Y. Lu et al.

SBF and update the vector λf [i] which records the frequency changes of each
distinct value over the corresponding dimension. The process of processing an
expired element (lines 14-23) is just the reverse process of processing an arriving
element. After processing an element, the threshold values γc and γf are used
to determine whether the skyline cardinality needs to be recomputed (lines 24-
32); if needs to be recomputed, recompute the expected skyline cardinality using
Theorem 5 and reset λc and λf (lines 33-38). computeT5(n,k,sbf ,v) computes
the expected skyline cardinality, where n is the number of the live elements in
the sliding window, k is the number of the dimensions, v stores the distinct
values over each dimension, and sbf is the array of SBFs which can be used to
estimate the number of the times that a value occurs over a dimension. Given
the parameters, computing the expected skyline cardinality using Theorem 5 is
rather straightforward; for space limitations, we omit the details.

The algorithm for estimating the skyline cardinality using Theorem 4 is quite
similar but simpler, as we only need to record the value cardinality for each
dimension and consider the only threshold γc. But the method may suffer from
non-uniform distributions, since Theorem 4 assumes that the data over each
dimension is uniformly distributed, and skewed data distribution may affect the
accuracy of Theorem 4.

4 An Experimental Study

In this section, we experimentally evaluate the performance of our approaches,
i.e. Theorems 4 and 5, for estimating the skyline cardinality over sliding windows
in the stream environment. Since Theorems 1 and 2 are theoretically equivalent
and Theorem 2 can only be approximated by some scientific computing methods,
we consider Theorem 1 as a competitor of our approaches. We also compare our
approaches with Theorem 3 over datasets in which the value cardinality of a
dimension is limited to 2.

We use 3 hash functions and 3,000 counters for the SBF of a dimension. The
algorithms are implemented by the C++ programming language and run on a
2.0GHz Intel CPU with 1GB of memory. To better show the performance under
different data distributions, we conduct the experiments on synthetic datasets.
We test the performance over 3-dimensional and 6-dimensional datasets which
contain 30,000 elements, and the data over each dimension is generated by the
GNU Scientific Library [1]. The details of the datasets used in our experiments
are shown in Table 1, where c is the value cardinality of a dimension. The
skewed data over a dimension is generated by two distributions alternately. One
half of the skewed data submits to the uniform distribution and the other half
submits to the binomial distribution with parameters p and c◦. The random
number generator of binomial distribution returns the number of successes in c◦

independent trials with probability p. For “continuous distribution” in Table 1,
it represents that no duplicate values appear over a certain dimension.

For each dataset, the actual skyline cardinality is evaluated by the average
number of skyline elements of the sliding window; we use the average computed

Effective Skyline Cardinality Estimation on Data Streams 251

Table 1. Figures and corresponding datasets

Figure Dataset
Figure 2(a) 2 dimensions: continuous distribution;

1 dimension: uniform distribution and c = 50.
Figure 2(b) 2 dimensions: continuous distribution;

1 dimension: skewed distribution, c◦ = 50 and p = 0.5.
Figure 2(c) 1 dimension: continuous distribution;

1 dimension: uniform distribution and c = 50;
1 dimension: the first half data satisfies c = 100, the other half satisfies
c = 10, and the data over this dimension is randomly generated.

Figure 3(a) 2 dimensions: continuous distribution;
1 dimension: uniform distribution and c = 50.

Figure 3(b) 1 dimension: continuous distribution;
2 dimensions: uniform distribution and c = 50.

Figure 3(c) 2 dimensions: continuous distribution;
1 dimension: skewed distribution, c◦ = 50 and p = 0.5.

Figure 3(d) 1 dimension: continuous distribution;
1 dimension: skewed distribution, c◦ = 50 and p = 0.3;
1 dimension: skewed distribution, c◦ = 50, and p = 0.7.

Figure 3(e) 5 dimensions: continuous distribution;
1 dimension: uniform distribution and c = 2.

Figure 3(f) 3 dimensions: continuous distribution;
2 dimensions: uniform distribution and c = 50;
1 dimension: uniform distribution and c = 2.

skyline cardinality as the result of Theorems 4 and 5. In the experimental figures,
T1, T3, T4 and T5 represent the result of Theorem 1, Theorem 3, Theorem 4,
and Theorem 5 respectively.

4.1 Effect of the Thresholds

In the first set of experiments, we test the effect of the threshold ε, i.e. the
watershed of high and low value cardinality, to the performance of Theorem 5.
Figure 2(a) and Figure 2(b) illustrate the skyline cardinality with respect to
ε over two different datasets, when the sliding window size is set to 500. In
Figure 2(a), when ε is smaller than 0.01, the result of Theorem 5 is close to
the actual skyline cardinality; but when ε is greater than 0.015, the results of
Theorem 5 are degraded and superpose the results of Theorem 1. This happens
because the dimension with uniformly distributed data is judged as a dimen-
sion with low value cardinality when ε ≤ 0.01, and hence the result is a good
estimation of the actual skyline cardinality. The dimension is misjudged as a di-
mension with high value cardinality when ε ≥ 0.015. Thus the three dimensions
are all with high value cardinality. Theorem 5 is equivalent to Theorem 1 at this
moment and the results prove this point. The watershed of high and low value
cardinality in Figure 2(b) is greater than that in Figure 2(a), because the value

of |1/2 −
c∑

t=1
f(t) (1 − F (t)) | (see Definition 1) of a dimension in Figure 2(b) is

greater than that in Figure 2(a) due to the skewed data distribution. From above
results, we can see that the selection of ε is important for better performance
of Theorem 5, and we fix the cardinality threshold ε at 0.005 in the following
experiments.

252 Y. Lu et al.

(a) (b) (c)

Fig. 2. The effect of thresholds

Next, we evaluate the effect of the recomputation threshold on the accuracy
of skyline cardinality estimation. We fix the window size at 500. γc which is the
threshold of cardinality change over a dimension and γf which is the threshold of
frequency change of a value are given the same value for ease of the presentation.
We only need to examine γc for Theorem 4, while both γc and γf for Theorem 5.
In this experiment, we vary the threshold from 0% to 50% and calculate the
average error and times of recomputation. For example, 10% means that we do
not recompute the skyline until the change of value cardinality (value frequency)
on any dimension is larger than 10%. The average error stands for the difference
between the results of Theorems 4(5) and results of respective Theorems with
the certain percentage of changes. As shown in Figure 2(c), both the errors of
Theorem 4 and Theorem 5 increase when γc(γf) increases. However, the error
is not significant compared with skyline cardinality which is around 20, as we
recompute the skyline once the change on any dimension exceeds the threshold.
We also find that the error of Theorem 5 is smaller than that of Theorem 4.
The reason is that Theorem 4 computes the skyline cardinality only considering
the change of value cardinality, while Theorem 5 may recompute when the data
distribution changes.

4.2 Performance over Different Datasets

Figure 3(a) to Figure 3(f) present the experimental results of different approaches
under various data distributions. The actual skyline cardinality and the esti-
mated skyline cardinality of different methods increase when the window size
increases, as more objects need to be evaluated.

For the given window size and the number of dimensions, the results of Theo-
rem 1 remain the same regardless of the change of data distributions. Therefore,
Theorem 1 shows a poorer performance for the datasets, in which not all the
dimensions are of continuously distributed data. In Figure 3(a) and Figure 3(b),
both Theorem 4 and Theorem 5 provide a good estimation for the actual sky-
line cardinality and this fully supports the effectiveness of our methods. One
dimension with continuously distributed data is replaced by one dimension with
uniformly distributed data in Figure 3(b), and the actual skyline cardinality de-
creases accordingly for the intuitionistic reason that when the value cardinality

Effective Skyline Cardinality Estimation on Data Streams 253

(a) (b) (c)

(d) (e) (f)

Fig. 3. Performance under different datasets

of a dimension is reduced, more elements are probably dominated. The skewed
data distribution is introduced in Figure 3(c) and Figure 3(d), and Theorem 4
performs worse than Theorem 5 as we expect. The actual skyline cardinality
in Figure 3(d) is smaller than that in Figure 3(c) because of the reduced value
cardinality of one dimension. Comparing Figure 3(a) and Figure 3(c), we can
find that the live elements in the window have higher probabilities to be skyline
elements under skewed data distribution.

Next, we consider Theorem 3 as a competitor. The dataset used in Figure 3(e)
satisfies the assumptions of Theorem 3. We can see that the result of Theorem 3
is almost as good as that of Theorem 5. While in Figure 3(f), we cannot compute
the results of Theorem 3 directly as two dimensions are not continuously dis-
tributed. We treat them as continuously distributed to approximate the result
for Theorem 3. Both Theorem 4 and Theorem 5 outperform Theorem 3, because
the preconditions of Theorem 3 does not consider the data distribution whose
value cardinality is greater than 2.

5 Conclusion

In this paper, we relaxed the strong assumptions of previous work and proposed
Theorem 4, which only uses the value cardinality of each dimension to estimate
the skyline cardinality under the assumption that the data over each dimension
is uniformly distributed. We also gave a robust approach, i.e. Theorem 5, to
effectively estimate skyline cardinality over arbitrarily distributed data. To apply

254 Y. Lu et al.

Theorem 4 and Theorem 5 in the data stream environment, we used SBF to
capture the value cardinality and the probability that a value occurs over a
dimension. Finally, we compared our approaches with all previous approaches
by extensive experimental study, and our approaches, especially Theorem 5,
significantly outperform previous approaches.

References

1. http://www.gnu.org/software/gsl/
2. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number

of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978)
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of

ICDE 2001, pp. 421–430 (2001)
5. Buchta, C.: On the average number of maxima in a set of vectors. Inf. Process.

Lett. 33(2), 63–65 (1989)
6. Chaudhuri, S., Dalvi, N.N., Kaushik, R.: Robust cardinality and cost estimation

for skyline operator. In: Proceedings of ICDE 2006, p. 64 (2006)
7. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of SIGMOD 2003,

pp. 241–252 (2003)
8. Godfrey, P.: Skyline cardinality for relational processing. In: Seipel, D., Turull-

Torres, J.M.a. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg
(2004)

9. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: Proceedings of VLDB 2002, pp. 275–286 (2002)

10. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

11. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: Efficient skyline computa-
tion over sliding windows. In: Proceedings of ICDE 2005, pp. 502–513 (2005)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of SIGMOD 2003, pp. 467–478 (2003)

13. Rosen, K.H.: Discrete Mathematics and Its Applications, 4th edn. WCB/McGraw-
Hill, Boston (1999)

14. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Trans. Knowl. Data Eng. 18(2), 377–391 (2006)

http://www.gnu.org/software/gsl/

Detecting Current Outliers: Continuous Outlier

Detection over Time-Series Data Streams

Kozue Ishida and Hiroyuki Kitagawa

1 Graduate School of Systems and Information Engineering
2 Center for Computational Sciences

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan

kozue-i@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp

Abstract. The development of sensor devices and ubiquitous comput-
ing have increased time-series data streams. With data streams, current
data arrives continuously and must be monitored. This paper presents
outlier detection over data streams by continuous monitoring. Outlier de-
tection is an important data mining issue and discovers outliers, which
have features that differ profoundly from other objects or values. Most ex-
isting outlier detection techniques, however, deal with static data, which
is computationally expensive. Specifically, for outlier detection over data
streams, real-time response is very important. Existing techniques for
static data, however, are fraught with many meaningless processes over
data streams, and the calculation cost is too high. This paper introduces
a technique that provides effective outlier detection over data streams
using differential processing, and confirms effectiveness.

Keywords: outlier detection, DB-Outlier, data stream, time-series data.

1 Introduction

We face an explosive increase of data, so data mining, which identifies important
information and knowledge, has become increasingly important. Outlier detec-
tion is a data mining issue; it discovers outliers with features that differ greatly
from other objects or values. Applications include fraud detection, network in-
trusion detection, and financial analysis. Various outlier detection techniques
over static data have been proposed, including the statistical-based approach
[1,2] and distance-based approach [3,4].

The diffusion of sensor devices and improved ubiquitous computing have
brought with them an increase in time-series data streams. Because data arrives
continuously, the volume of data streams is very large. Data mining techniques
for data streams are therefore important; the same applies to outlier detection.

Examples of outlier detection over data streams are: to monitor observation
values from sensors continuously and detect outlier sensors that show values very

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 255–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 K. Ishida and H. Kitagawa

Fig. 1. Arrival of a State Set SM Fig. 2. Change of Data Distribution

different from other sensors, to monitor stock price movements of individual com-
panies and detect outlier companies whose stock prices change very differently
from those of other companies, or to monitor the location of moving objects and
detect outlier objects that are distantly-positioned from other objects.

When we have a set of objects that change state (such as observation values,
internal states, or locations) over time, and if object Oi’s state differs greatly
from other objects’ states at a given time, we can regard Oi as an outlier at the
time. In continuously monitoring of a set of objects in which the state changes
over time, we need to detect such outlier objects continuously.

Formally, when we have N objects whose state changes over time, let the
set of objects’ state at time tj , Sj = {sj

1, ..., s
j
N}, where each state tuple sj

i =
(aj

i1, ..., a
j
ik) describes the state of object Oi at tj . If the state of Oi, that is sj

i ,
differs greatly from that of other objects, then we regard Oi as an outler at tj .

We look at the problem of detecting outlier objects at current time tM , where
SM arrives continuously as data streams (S1, ..., SM), as shown in Fig. 1.

A straightforward solution to the problem is to apply the existing approach for
static data, at every arrival of SM . However, the yield of such an approach is too
voluminous. Therefore, repeating the process for every time stamp is inefficient.

In general, a state set SM is the change of the last state set SM−1. In many
cases, therefore, the differences between them are not great, as shown in Fig. 2.
In cases like this, we can detect outliers effectively in SM based on differential
calculation using the result of outlier detection for SM−1.

This paper proposes continuous outlier detection over data streams based on
distance-based outlier detection (DB-Outlier), which is the basic approach to
outlier detection. Experiments confirm effectiveness of the proposed approach.
The rest of the paper is organized as follows: Section 2 mentions related work on
outlier detection. Section 3 defines DB-Outliers and CDB-Outliers. Section 4 de-
scribes existing DB-Outlier detection methods as a preliminary to our proposal,
and Section 5 explains continuous CDB-Outlier detection, our proposed method.
Section 6 evaluates the effectiveness and efficiency of the algorithm compared
with existing algorithms. Section 7 presents conclusions and future work.

Detecting Current Outliers: Continuous Outlier Detection 257

2 Related Work

Various outlier detection methods have been proposed. This section introduces
existing work on outlier detection over static data and stream data.

2.1 Outlier Detection over Static Data

The major methods of outlier detection over static data are as follows:
Statistical-based approaches [1,2] assume that the dataset follows a statistical

model. With these method we detect objects that deviate from the model as
outliers. However, statistical approaches make a lot of assumptions (e.g., distri-
bution model), and have difficulty dealing with high dimensional datasets.

Clustering approaches (e.g., CLARANS [5], DBSCAN [6], BIRCH [7], Wave
Cluster [8], CLIQUE [9]) detect outliers as by-products. In most cases, the main
objective is to find clusters in the dataset. For that reason, this method does not
focus on outlier detection.

The density-based approach [10] adopts a Local Outlier Factor (LOF) which
represents the local density of each data point’s neighborhood and declares the
degree of outlierness. The method detects objects having a high LOF as outliers.

The distance-based approach [3,4] is a simpler and more common approach.
It merely calculates the distance between two data points; distance is a common
notion of many knowledge and technical areas. Effectiveness and importance are
shown in [3,4].

2.2 Outlier Detection over Stream Data

Because of increased interest, varied research is underway on data streams. The
same is true for outlier detection. L. Su et al. propose outlier detection on dis-
tributed data streams [11] based on their original outlier model. K. Yamanishi
et al. propose on-line outlier detection using statistical models [12,13].

Compared with these approaches, our proposal is simpler and more versatile
because we use the distance-based approach. Moreover, our proposed approach
features efficiency based on differential processing.

3 Definition of Outliers

3.1 DB-Outlier

A DB-Outlier is defined by E. M. Knorr et al. as follows [4]:

Definition 1. An object Oi in a dataset S is a DB(p, D)-outlier if at least frac-
tion p of the objects in S lie greater than distance D from Oi.

For an object Oi, the D-neighborhood of Oi contains the set of objects Oq ∈ S,
where d(Oi, Oq) ≤ D. Note that d(Oi, Oq) denotes the distance between Oi and
Oq. To simplify the discussion, we use another parameter M [M = N(1 − p),
N : data size of S], which is the maximum number of objects within the D-
neighborhood of an outlier. k represents the dimension of S.

258 K. Ishida and H. Kitagawa

Fig. 3. DB-Outlier, k = 2, p = 0.9,
N = 30

To clarify the definition, we show an ex-
ample in Fig. 3. We have 30 objects (N=30)
and parameter p = 0.9. Thus, if an object
has at most M [= 30(1 − 0.9) = 3] objects
in its D-neighborhood, which is described as
circles, then the object is a DB-Outlier. The
left object has 2(≤ M) objects in its D-
neighborhood, so it is a DB-Outlier. On the
other hand, the right object is a non-outlier,
because it has 12(> M) objects in its D-
neighborhood.

3.2 CDB-Outlier

In this paper, we call the current DB-Outlier
in a data stream “CDB-Outlier.” A data stream can be described as a state set
Sj(1 ≤ j ≤ M), which is illustrated in Fig. 1. We then provide the definition of
CDB-Outlier in Definition 2.

Definition 2. An object Oi is a DB-Outlier at time tj if tuple si
j of Oi is a DB-

Outlier in state set Sj . We call the DB-Outlier at current time tM CDB-Outlier.

4 Algorithms for DB-Outlier Detection

This section presents DB-Outlier detection algorithms for static data [4]. We
first explain the Simple algorithm. We then show the Cell-Based algorithm for
the quick processing which is used in our proposal.

4.1 Simple Algorithm

This algorithm merely follows the definition of DB-Outlier. It applies the follow-
ing processes for all objects in dataset S.

For each object Oi, we calculate the distance between Oi and other objects.
Once there are more than M objects in the D-neighborhood, we stop the search
and declare Oi as a non-outlier. Otherwise, we report Oi as an outlier.

The main drawback is time complexity O(kN2). This occurs because distance
is calculated every 2 points until the object has been judged.

4.2 Cell-Based Algorithm

To skip distance calculations, the Cell-Based algorithm [4] employs a cell struc-
ture on a data space.

Cell Structure. Oi’s tuple sj
i = (aj

i1, ..., a
j
ik) can be coded as a point in k-

dimensional space with axes of X1, ...,Xk. We divide this k-dimensional space
into cells whose diagonal is D

2 length (length of the side l = D
2
√

k
). Let Cx1,...,xk

describe the cell with x1-th index of X1 axis, ..., xk-th index of Xk axis.
We then define L1 neighbors and L2 neighbors of Cx1,...,xk

.

Detecting Current Outliers: Continuous Outlier Detection 259

Definition 3. The L1 neighbors of Cx1,...,xk
, L1(Cx1,...,xk

) are the immediately
neighboring cells of Cx1,...,xk

, defined as follows,
L1 (Cx1,..,xk

) = {Cu1,...,uk
| |ui − xi| ≤ 1 (1 ≤ i ≤ k) ∧ Cu1,...,uk

= Cx1,...,xk
}.

Definition 4. The L2 neighbors of Cx1,...,xk
, L2(Cx1,...,xk

), are cells that satisfy
the following formula,
L2(Cx1,...,xk

) = {Cu1,...,uk
| |ui − xi| ≤ �2

√
k�(1 ≤ i ≤ k) ∧ Cu1,...,uk

∈
L1(Cx1,...,xk

) ∧ Cu1,...,uk
= Cx1,...,xk

}.

Properties A

(A1) If Oi ∈ Cx1,...,xk
, Op ∈ Cx1,...,xk

, then d(Oi, Op) ≤ D
2 .

(A2) If Oi ∈ Cx1,...,xk
, Cu1,...,uk

∈ L1(Cx1,...,xk
), and Oq ∈ Cu1,...,uk

,
then d(Oi, Oq) ≤ D.

(A3) If Oi ∈ Cx1,...,xk
, Cu1,...,uk

∈ L1(Cx1,...,xk
), Cu1,...,uk

∈ L2(Cx1,...,xk
),

Cu1,...,uk
= Cx1,...,xk

, and Or ∈ Cu1,...,uk
, then d(Oi, Or) > D.

As shown in Fig. 4, it is obvious that property (A1) is met. Fig. 5 illustrates
property (A2). d(Oi, Oq) is max when the two objects are located as shown in
this figure. Fig. 6 illustrates property (A3). d(Oi, Or) is minimum when the two
objects are located as shown in this figure.

Fig. 4. Property (A1) Fig. 5. Property (A2) Fig. 6. Property (A3)

Let n, n1, and n2 be the numbers of objects in Cx1,...,xk
, L1 (Cx1,...,xk

), and
L2 (Cx1,...,xk

), respectively. Then we derive properties B from properties A as
follows:

Properties B

(B1) If n > M , Cx1,...,xk
contains no DB-outliers.

(B2) If n + n1 > M , Cx1,...,xk
contains no DB-outliers.

(B3) If n + n1 + n2 ≤ M , all objects in Cx1,...,xk
are DB-outliers.

We color cells that satisfy (B1) as red, (B2) as pink, and (B3) as yellow. We can
detect outliers in those cells without any distance calculation. Then we identify
nonempty and uncolored cells as white. The decision for cell colors is called
CCD (Cell-Color Decision). And the algorithm with CCD is as follows:

260 K. Ishida and H. Kitagawa

1. For each cell Cq, nq ← 0
2. For each object Oi, do:

Map Oi to an appropriate cell Cq, store Oi, and increment nq.
3. For each cell Cq, if nq > M , label Cq red.
4. For each red cell Cr, do:

Label each of the L1 neighbors of Cr pink, provided the neighbor has not
already been labeled red.

5. For each non-empty uncolored cell Cw, do:
a. n1ω ← Σi∈L1(Cω)ni

b. If nω + n1ω > M , label Cω pink.
c. Else

i. n2ω ← Σi∈L2(Cω)ni

ii. If nω + n1ω + n2ω ≤ M , label Cω yellow, mark all objects in Cω

as outliers.
iii. Else

1. Label Cω as white.
2. For each object Oi ∈ Cω, do:

a. Counti ← nω + n1ω

b. For each object Oq ∈ CL2 , CL2 ∈ L2(Cω), if (dist(Oi, Oq) ≤ D):
Increment Counti by 1. If Counti > M , Oi cannot be an outelir,
so goto(5ciii2)

c. Mark Oi as an outlier

Fig. 7. Cell-Based Algorithm

Algorithm. Fig. 7 illustrates the Cell-Based algorithm. Step 2 quantizes each
object to its appropriate cell. Step 3 labels all cells containing more than M ob-
jects, red(Property (B1)). Step 4 labels uncolored cells that have red cells in L1

neighbors, pink(Property (B2)). Other cells satisfying Property (B2) are labeled
pink in step 5b. Step 5cii labels cells satisfying Property (B3) as yellow, and
reports all objects in the cells as DB-Outliers. Finally, uncolored cells (not satis-
fying Properties (B1), (B2), (B3)) are labeled as white in step 5ciii. CCD is a set
of processes shown in step 3-5ciii1. We then operate only objects in white cells
(Cω) using an object-by-object process as follows: For each object Oi ∈ Cω , we
calculate distance between Oi and each object Oq in cells ∈ L2(Cω), and count
the number of objects in its D-neighborhood. We count n + n1 in Counti in ad-
vance because all L1 neighbors are always within the D-neighborhood. Once the
number of objects in the D-neighborhood exceeds M , we declare Oi a non-outlier.
If the count remains less than or equal to M after all calculation, we report Oi

as an outlier. We call this process for each white cell (5ciii2) WCP(White-Cell
Process), and the process for each object in a white cell (5ciii2a-c) WOP(White-
Object Process).

Cell-by-cell basis decisions using Properties B help to determine whether or
not an object in the cell is an outlier, and this leads to skipping a lot of distance
calculations and reducing the process time compared with the Simple algorithm.

Detecting Current Outliers: Continuous Outlier Detection 261

5 Proposed Method

This section describes continuous CDB-Outlier detection over data streams.
That means we consider the detection of DB-Outliers when a state set SM

arrives, as shown in Fig. 1.
The straightforward approach to detecting CDB-Outliers is to process DB-

Outlier detection for every state set SM . However, in most cases, the data dis-
tribution of SM is similar to that of SM−1, so processing for all objects in SM

again has many meaningless calculations. Therefore, our proposed method does
differential processing based on the change between SM−1 and SM using the
idea of the Cell-Based algorithm.

5.1 Assumptions

We do differential processing with objects whose states changed from tM−1 to
tM (say SC-Objects(State-Change Objects)) and their current state sets ΔM (=
{(Oi, s

M
i) | 1 ≤ i ≤ N ∧ sM−1

i = sM
i }). Our proposed method targets all state

sets except the initial state set (S1) of data streams. We use the original Cell-
Based algorithm for S1.

5.2 Differential Processing on an SC-Object

Fig. 8. Case[1]

To simplify the problem, we consider the case
with one SC-Object, OP . There are two ways
to change the state in the state space divided
into cells. Let “Oi ∈ Cj

x1,...,xk
” represent that

cell Cx1,...,xk
contains Oi at tj .

[1] Move to a different cell:
OP ∈ CM−1

x1,...,xk
, OP ∈ CM

x1,...,xk
,

CM−1
x1,...,xk

= CM
x1,...,xk

.

OP influences cells at tM−1 and tM and their L1

and L2 neighbors, which is described as colored
area in Fig. 8. Since n of CM−1

x1,...,xk
and CM

x1,...,xk

change and influence those cells.
[2] Move in the same cell:

OP ∈ CM−1
x1,...,xk

, OP ∈ CM
x1,...,xk

, CM−1
x1,...,xk

= CM
x1,...,xk

.

Because n of CM
x1,...,xk

does not change, red, pink, and yellow cells within L2

neighbor are not influenced. It influences only white cells within the L2 neighbor.
There are two cases:

[2a] There are white cells in L2(CM
x1,...,xk

).
[2b] CM

x1,...,xk
itself is a white cell.

Fig. 9 illustrates the case [2a], and Cω represents a white cell in L2(CM
x1,...,xk

).
Oq ∈ Cω can be influenced because OP can enter or exit Oq’s D-neighborhood.
In case [2b], as shown in Fig. 10, the area of OP ’s D-neighborhood will change,
and OP influences outlier decision of OP .

262 K. Ishida and H. Kitagawa

Fig. 9. Case[2a] Fig. 10. Case[2b]

5.3 Target Cells for Re-outlier Detection

Actually, there are more than one SC-Objects from tM−1 to tM . Therefore, we
expand the above idea to more than one SC-Objects. We identify the target cells
to reprocess, and classify them taking into account overlaps of each SC-Object’s
process. For example, the area of influence for case [1] contains that of case [2].
Targeted cells are the following 4 types.

Type A: Cells containing SC-Objects which have moved to or from another
cell, at tM (CM−1 and CM in Fig. 8), namely
TypeA = {Cx1,...,xk

| (1 ≤ i ≤ N) ∧ ((Oi ∈ CM−1
x1,...,xk

∧ Oi ∈ CM
x1,...,xk

) ∨ (Oi ∈
CM−1

x1,...,xk
) ∧ Oi ∈ CM

x1,...,xk
))}.

Type B: Cells of L1 and L2 neighbors of Type A (Colored cells, in Fig. 8),
except for those classified as Type A cells, namely
TypeB = {Cx1,...,xk

| (Cu1,...,uk
∈ L1(Cx1,...,xk

) ∧ Cu1,...,uk
∈ TypeA) ∨ (Cu1,...,uk

∈ L2(Cx1,...,xk
) ∧ Cu1,...,uk

∈ TypeA) ∧ Cx1,...,xk
∈ TypeA}.

Type C: White cells that are in the L2 neighbor of the cells that contain SC-
Objects having moved within the same cell (Cω in Fig. 9), except for those
classified as Type A and B cells, namely
TypeC = {Cx1,...,xk

| Cu1,...,uk
∈ L2(Cx1,...,xk

) ∧ (1 ≤ i ≤ N) ∧ (Oi ∈ CM−1
u1,...,uk

∧ Oi ∈ CM
u1,...,uk

∧ CM−1
u1,...,uk

= CM
u1,...,uk

∧ sM−1
i = sM

i) ∧ color(Cx1,...,xk
) =

white ∧ Cx1,...,xk
∈ TypeA ∪ TypeB}.

Type D: White cells that contain SC-Objects that have moved within the
same cell (CM in Fig. 10), except for those classified as Type A, B and C cells,
namely
TypeD = {Cx1,...,xk

| (1 ≤ i ≤ N) ∧ (Oi ∈ CM−1
x1,...,xk

∧ Oi ∈ CM
x1,...,xk

∧ CM−1
x1,...,xk

= CM
x1,...,xk

∧ sM−1
i = sM

i) ∧ color(Cx1,...,xk
) = white ∧ Cx1,...,xk

∈ TypeA ∪
TypeB ∪ TypeC}.

Detecting Current Outliers: Continuous Outlier Detection 263

5.4 Algorithm

We only process the target cells with the proposed algorithm, shown in Fig. 11.
The input is a set of SC-Objects and its state at tM , ΔM (= {(Oi, s

M
i) | (1 ≤

i ≤ N) ∧ sM−1
i = sM

i }). The output is CDB-Outliers.
Step 1 updates cells that contain SC-Objects at time tM . If the cell CM of

OP at tM differs from CM−1 at tM−1, then step 1a labels both cells, A(Case
[1]). If there are white cells Cω ∈ L2(CM), then step 1bi labels Cω, C(Case
[2a]). If the color of CM is white, then step 1bii labels CM , D(Case [2b]). Step
2 labels cells in L1 and L2 neighbor of Type A cells, B, and updates their n1

and n2. We have now targeted the cells to be reprocessed. We then classify the
targeted cells based on labels A, B, C and D. Cells labeled A are in Type A,
cells labeled B except for Type A cells are in Type B, cells labeled C except
for Types A and B cells are in Type C, cells labeled D except for Types A,
B, and C cells are in Type D. Step 3 does Re-CCD as shown in Fig. 12. Re-
CCD differs from CCD because it does not count objects in cells of L1 and
L2 neighbors, and uses only existing or updated n, n1 and n2. It also leads to
reduced processing. Step 4 processes WCP, mentioned in the original Cell-Based
algorithm (4.2), over Type C cells. Step 5 processes WOP over SC-Objects in
Type D cells.The objects in yellow cells and outlier objects in white cells are
output as CDB-Outliers.

6 Experiments and Results

Experiments with 2-dimensional (2-D) synthetic data and 3-dimensional (3-D)
real data confirm improved processing time for the proposed method.

All of our tests were run on a Microsoft Windows Vista machine with an AMD
Athlon(tm) 64 2 Dual Core Processor 3800+ 2GHz CPU and 1982MB of main
memory. We implemented the software with Java 1.6.0 02.

This section explains the comparative approaches, describes the datasets, and
provides the results and discussions.

6.1 Comparative Approaches

We compared our proposed method with two DB-Outlier methods.

CM(Cell-Based Method): A method that executes the Cell-Based algorithm
for every time stamp.
SM(Simple Method): A method that executes the minimal process of the Simple
algorithm with ΔM . It processes only SC-Objects and the neighbor objects that
can be influenced by SC-Objects.

Applying the original Simple algorithm for every time stamp takes huge com-
putation time and is beyond comparison. Hence, we do not show the comparison.

264 K. Ishida and H. Kitagawa

Input: ΔM

Output: CDB-Outliers
1. For each (OP , sM

P) ∈ ΔM , do: identify cell CM at tM

a. If(CM �= CM−1):
i. Store OP in CM , and update n of CM .
ii. Delete OP from CM−1, and update n of CM−1.
iii. Label CM and CM−1, A.

b. Else:
i. If there are white cells (Cω) in L2(CM), label Cω C.
ii. If color(CM) = white, label CM D.

2. For each cell CA of Type A, do:
a. For each cell CL1 ∈ L1(CM), do:

i. Update n1.
ii. Label CL1 B.

b. For each cell CL2 ∈ L2(CM), do:
i. Update n2.
ii. Label CL2 B.

3. For each cell CAB of Type A or B, do: Re-CCD.
4. For each cell CC of Type C, do: WCP.
5. For each cell CD of Type D, do:

a. For each SC-Object OP ∈ CD, do: WOP.

Fig. 11. Proposed Algorithm (tM−1 → tM)

1. If n > M , color red.
2. Else if n + n1 > M , color pink.
3. Else if n + n1 + n2 ≤ M , color yellow.
4. Else, do: WCP, color white.

Fig. 12. Re-CCD

6.2 Datasets

MO Data (2-D). We use moving objects’ data streams (MO data) generated by
the Mobi-REAL1 simulator. Fig. 13 describes the distribution of moving objects
at a given time, and each point represents each moving object. We set passes for
moving objects: dense at the skirt area and sparse at the central area. Therefore,
objects passing the central area are detected as CDB-Outliers. We use the x and y
coordinates for each object per time unit (1sec) as 2-D datasets. The area of this
simulation is 700 × 700[m2]. Parameters are: the number of objects is 10000, the
(SC-Objects)/(all objects) per time unit is 50[%], the average of moved distance
of the SC-Objects per time unit is 1.5[m], D = 15[m], and p = 0.9995.

Stock Data (3-D). We use daily stock dataset (Dec., 2007, Japan) [14] as a
3-D real dataset. We detect brands that behave very differently from others.
This dataset consists of the band, closing stock price, and completed amount
1 http://www.mobireal.net/index.html

Detecting Current Outliers: Continuous Outlier Detection 265

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

Fig. 13. MO Data

 0
 5

 10
 15

 20 5
 10

 15
 20

 25

 0
 5
 10
 15
 20
 25

Compreted amount

Stock data

Band Closing price

Compreted amount
Completed amount

10
Closing price

Fig. 14. Stock Data (×105)

and changes per day. To reduce the non-uniformity of each attribute, we assign
weights as band ×103, (closing stock price) ×102. Fig. 14 shows data distribution
at a given time. The data has 4039 objects. The average of (SC-Objects)/(all
objects) per time unit is 83% .

6.3 Results and Discussions

We compared the processing time for the proposed method (PM) and compar-
ative method (CM, SM), and evaluated the relationship with each parameter.

MO data (2-D). Figs. 15-20 shows results of MO data. In 2-D cases, SM takes
too long (around 30000(ms)) to process a dataset per 1000(ms), so we can say
that SM is not appropriate at all. Thus, we evaluate only CM and PM in 2-D
experiments. Fig. 15 shows time versus the ratio of SC-Objects in all objects per
second. Even if the ratio of SC-Objects reaches 100%, PM takes less time than
CM, about 70% of CM. This occurs because, even if all objects change in state,
not all objects move to different cells. Further, CM counts objects in L1 and
L2 neighbors every time. Fig. 16 shows the relationship between time and the
number of all objects. Both methods take more time as the number increases.
PM exceeds CM in all cases. Fig. 17 shows time versus the average of moved
distance of SC-Objects. With this result, we cannot see clear relation to each
other. Fig. 18 illustrates the correlation between time and p. CM and PM shorten
time as p grows. When p is large, the difference between CM and PM becomes
large. In Fig. 19, we change D. At around D = 30, PM time approximately
equals to CM. This occurs because, as shown in Fig. 20, the sum of reprocessed
cells in PM is almost equal to the sum of all cells around D = 30. Actually, there
are no CDB-Outliers for D > 25.

From the results, in many cases, PM is effective for continuous processing in 2-
D datasets. However, if reprocessed cells in PM increase, PM loses its advantage.

Stock Data (3-D). Fig. 21 shows the relationship between time and D, where
p = 0.997. It is obvious that CM is profoundly affected by D, and if we have

266 K. Ishida and H. Kitagawa

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Ratio of moving objects[%]

PM
CM

Fig. 15. MO Data: Time versus SC-
Objects/All Objects

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Sum of objects(10^4)

PM
CM

Fig. 16. MO Data: Time versus the
Number of All Objects

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Moved distance[m]

PM
CM

Fig. 17. MO Data: Time versus the Aver-
age Moved Distance

 0

 50

 100

 150

 200

 250

 300

 0.999 0.9992 0.9994 0.9996 0.9998 1

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

p

PM
CM

Fig. 18. MO Data: Time versus p

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

D[m]

PM
CM

Fig. 19. MO Data: Time versus D

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 5 10 15 20 25 30 35

T
h
e

n
u
m
b
e
r

o
f

c
e
l
l
s

D[m]

All
TypeA+B+C+D

Fig. 20. MO Data: Number of Re-
processed Cells versus D

small D, the process time is very long. With 3-D data, the number of all cells is
bigger than that of 2-D data. Moreover, the number of cells in L1 and L2 neigh-
bors is also bigger. Therefore the calculation cost is higher. On the other hand,
PM is little influenced by D, since we use differential calculation. Fig. 22 is the
relationship between process time and p, where D = 200×105. SM is profoundly
affected by p, because the smaller the p, the bigger the M . Therefore, distance

Detecting Current Outliers: Continuous Outlier Detection 267

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100 150 200 250 300 350 400

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

D(10^5)

PM
CM
SM

Fig. 21. Stock data: Time versus D

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.995 0.996 0.997 0.998 0.999 1

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

p

PM
CM
SM

Fig. 22. Stock Data: Time versus p

calculations until “the object is not an outlier” increase. On the other hand, PM
and CM are not significantly influenced because of cell-by-cell decisions.

PM can maintain the advantage of the cell-by-cell process with 3-D datasets.
Therefore, PM takes shorter than CM and SM. With those results, we can say
PM is also effective for 3-D datasets.

7 Conclusions and Future Work

In this paper, we have proposed continuous outlier detection over data streams.
We employ DB-Outlier, and based on the Cell-Based algorithm for quick process-
ing, we provide an effective algorithm using differential processing over data
streams. We evaluated our proposed method with synthetic and real datasets,
and showed its advantage over naive methods. Extensions to cope with high di-
mensional data and dynamic data streams are interesting future research issues.

Acknowledgment. This research has been supported in part by the Grant-in-
Aid for Scientific Research from MEXT (# 19024006).

References

1. Barret, V., Lewis, T.: Outliers in Statistical Data. Wiley, Chichester (2001)
2. Eskin, E.: Anomaly Detection over Noisy Data using Learned Probability Distrib-

utions. In: ICML, pp. 255–262 (2000)
3. Knorr, E.M., Ng, R.T.: Finding Intensional Knowledge of Distance-Based Outliers.

In: VLDB, pp. 211–222 (1999)
4. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-Based Outliers: Algorithms and

Applications. VLDB J. 8(3-4), 237–253 (2000)
5. Ng, R.T., Han, J.: Efficient and Effective Clustering Methods for Spatial Data

Mining. In: VLDB, pp. 144–155 (1994)
6. Ester, M., Kriegel, H.P., Xu, X.: A Database Interface for Clustering in Large

Spatial Databases. In: KDD, pp. 94–99 (1995)
7. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering

Method for Very Large Databases. In: SIGMOD, pp. 103–114 (1996)

268 K. Ishida and H. Kitagawa

8. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A Multi-Resolution
Clustering Approach for Very Large Spatial Databases. In: VLDB, pp. 428–439
(1998)

9. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clus-
tering of High Dimensional Data for Data Mining Applications. In: SIGMOD, pp.
94–105 (1998)

10. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based
Local Outliers. In: SIGMOD, pp. 93–104 (2000)

11. Su, L., Han, W., Yang, S., Zou, P., Jia, Y.: Continuous Adaptive Outlier Detection
on Distributed Data Streams. In: HPCC, pp. 74–85 (2007)

12. Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line Unsupervised Outlier
Detection using Finite Mixtures with Discounting Learning Algorithms. In: KDD,
pp. 320–324 (2000)

13. Yamanishi, K., Takeuchi, J.: Discovering Outlier Filtering Rules from Unlabeled
Data: Combining a Supervised Learner with an Unsupervised Learner. In: KDD,
pp. 389–394 (2001)

14. ITicker, http://homepage1.nifty.com/hdatelier/

http://homepage1.nifty.com/hdatelier/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 269 – 282, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Component Selection to Optimize Distance Function
Learning in Complex Scientific Data Sets

Aparna Varde1, Stephen Bique2, Elke Rundensteiner3, David Brown3,4, Jianyu Liang4,
Richard Sisson4,5, Ehsan Sheybani6, and Brian Sayre7

1 Department of Math and Computer Science, Virginia State University, Petersburg, VA
2 Naval Research Laboratory, Washington, DC

3 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA
4 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA

5 Center for Heat Treating Excellence, Metal Processing Institute, Worcester, MA
6 Department of Engineering and Technology, Virginia State University, Petersburg, VA

7 Department of Biology, Virginia State University, Petersburg, VA
{avarde@vsu.edu, stephen.bique@nrl.navy.mil,

rundenst@cs.wpi.edu, dcb@cs.wpi.edu, jianyul@wpi.edu,
sisson@wpi.edu, esheyban@vsu.edu, bsayre@vsu.edu}

Abstract. Analyzing complex scientific data, e.g., graphs and images, often re-
quires comparison of features: regions on graphs, visual aspects of images and
related metadata, some features being relatively more important. The notion of
similarity for comparison is typically distance between data objects which could
be expressed as distance between features. We refer to distance based on each
feature as a component. Weights of components representing relative impor-
tance of features could be learned using distance function learning algorithms.
However, it is seldom known which components optimize learning, given crite-
ria such as accuracy, efficiency and simplicity. This is the problem we address.
We propose and theoretically compare four component selection approaches:
Maximal Path Traversal, Minimal Path Traversal, Maximal Path Traversal with
Pruning and Minimal Path Traversal with Pruning. Experimental evaluation is
conducted using real data from Materials Science, Nanotechnology and Bioin-
formatics. A trademarked software tool is developed as a highlight of this work.

Keywords: Feature Selection, Data Mining, Multimedia, Scientific Analysis.

1 Introduction

Background. Performing analysis over complex data such as graphs and images
involves numerous challenges [1, 4, 5, 8, 12, 15, 18, 23]. These pertain to factors such
as nature of the data, semantics of the domain and requirements of specific problems.
In our work, the focus is on graphical and image data from scientific domains [16, 17,
6]. We deal with 2-dimensional graphs plotting results of scientific experiments as a
dependent versus an independent variable [16]. Our images are cross-sections of
samples taken under a microscope at various stages of scientific processes [17, 6].
Analyzing such graphs and images using techniques such as clustering, helps draw
conclusions about the concerned scientific processes. For example, if two graphs are
in the same cluster, the processes that led to them can be considered similar.

270 A. Varde et al.

Motivation. In order to capture subtleties of data, comparison of features is often
needed. Some features on graphs could be regions depicting critical phenomena. There
could be statistical observations on graphs showing behavior of process parameters.
Absolute position of points on graphs could be important to distinguish between proc-
esses [16]. Images have visual features such as particle size, image depth, color and
greyscale, and metadata features such as image source, location and type of microscope
[17, 6]. If a sample was taken with a transmission electron microscope that penetrates
through inner locations as opposed to a scanning electron microscope that observes
surfaces, the corresponding observations have very different connotations [17, 6]. Thus
a metadata feature such as type of microscope could be more important than a visual
feature such as color. It is therefore important to make feature-based comparisons. Ex-
perts at best have subjective criteria for comparison but do not have a distance function
for computational analysis. Various distance functions exist in the literature [10, 22, 12,
4]. However, it is seldom known apriori which of these best fits a given data set. Thus, it
is important to learn a notion of distance that incorporates the features of the data and
their relative importance.

Problem Definition. Features of complex data can be depicted by individual distance
functions, a weighted sum of which forms the distance function for the data. In our
work, an individual distance function depicting a feature is called a component.
Weights of components giving their relative importance can be learned using distance
function learning algorithms [19, 20]. However, it is challenging to select appropriate
components for learning. It is not feasible for experts to determine components to use
among all applicable ones. Also, it is desirable to optimize learning given factors such
as accuracy, efficiency and simplicity. Accuracy is the effectiveness of the distance in
preserving semantics and hence its usefulness in data analysis. Efficiency is a time
criterion. Faster learning is better with respect to resource consumption and reusabil-
ity. Simplicity relates to number of components in the distance. It is desirable to have
simpler distance functions for storage, indexing and retrieval. Thus the problem we
address is the optimization of distance function learning.

Proposed Solution. We aim to select combinations of components in distance func-
tion learning, incorporating the optimization criteria of accuracy, efficiency and sim-
plicity. Four component selection approaches are proposed.

• Maximal Path Traversal (MaxPT): Given that each path is a combination of
components, this considers the maximum number of possible paths.

• Minimal Path Traversal (MinPT): This covers a minimum number of paths in
component selection using a suitable stopping criterion.

• Maximal Path Traversal with Pruning (MaxPTP): This prunes some components
using a heuristic and traverses all the remaining paths.

• Minimal Path Traversal with Pruning (MinPTP): This uses a heuristic for prun-
ing components and traverses a minimum number of remaining paths

Comparative Assessment. We compare the selection approaches theoretically by
deriving their computational complexities. Experimental evaluation is conducted to
assess the approaches with respect to accuracy, efficiency and simplicity. Real data
from Materials Science, Bioinformatics and Nanotechnology is used for evaluation.
Results are analyzed based on usefulness of selection approaches in applications.

 Component Selection to Optimize Distance Function Learning 271

Notable Application. A decision support system called AutoDomainMine [21] has
been developed in the Heat Treating of Materials. This system uses MaxPTP to opti-
mize feature selection in distance function learning over graphical data since it is
found the most suitable for the given application based on our evaluation. The Auto-
DomainMine system is a trademarked software tool.

Contributions. The following contributions are made in this paper.
1. Proposing selection approaches to optimize distance function learning.
2. Deriving and comparing the computational complexity of the approaches.
3. Conducting evaluation with real data from three scientific domains.
4. Analyzing evaluation results in terms of usefulness in targeted applications.
5. Applying the MaxPTP approach to develop trademarked software.

2 Component Selection Approaches

In order to give the details of the approaches we first explain a few relevant concepts.
Distance Function: Let Wi be the weight depicting the relative importance of compo-
nent Ci and let m be the total number of components. The distance function D for the
given data is defined as ∑ =

= m

i iiCWD
1

Learning Algorithm: This refers to a supervised distance function learning algorithm
L. Given a training set S of graphs / images depicting notion of correctness in the
domain, and an initial distance function D, algorithm L learns the weights of the com-
ponents, and outputs the learned distance function D. (Details are in Section 4.2).
 Path: A path P is an arbitrary ordering of distinct component(s).
Accuracy: The accuracy α of a distance function is any valid measurement that char-
acterizes its effectiveness in preserving semantics. The measure is specific for a par-
ticular domain.
Convergence: Learning algorithm L is said to converge if error in learning weights of
components drops below a threshold є, calculation of error being domain-specific.
 For example, accuracy and error can be defined as success rate and failure rate in
clustering respectively [22] using true positives, true negatives, false positives and
false negatives given correct clusters.
 We now describe the selection approaches. Let L be a learning algorithm, S be a
training set of graphs / images, and m be all applicable components for the data set.

2.1 Maximal Path Traversal

The Maximal Path Traversal (MaxPT) approach explores the maximum possible
paths in selecting components for distance function learning and returns the one cor-
responding to the highest accuracy.

MaxPTP selects components any order (top down, bottom up or a random order).
The main requirement is that all paths must be considered. It uses each path, i.e., each
combination of components as the initial distance function D in the learning algorithm
L. The accuracy of the learned distance function is measured for each path. The one
giving highest accuracy is finally output as the learned distance function D. Our
MaxPT algorithm is presented next.

272 A. Varde et al.

MaxPT: Maximal Path Traversal

Input: Training Set S, Learning Algorithm L
Output: Learned distance function D

1. Identify all m applicable components for S
2. c=1
3. While mc ≤

 (a) Execute L with all possible combinations of components

 in ∑
=

=
c

i iiCWD
1

 and record accuracy α

 (b) c= c + 1
4. Output D with maximum accuracy as learned distance function

Justification. MaxPT follows the Epicurean philosophy of experiencing everything to
discover the best [13]. Hence, each path is traversed with the goal of finding an opti-
mal solution in terms of accuracy.

2.2 Minimal Path Traversal

In Minimal Path Traversal (MinPT) the aim is to learn a distance function efficiently.
Yet it aims to meet the basic needs of accuracy in the domain. MinPT proceeds top
down using a MinPT Heuristic defined as follows.
 MinPT Heuristic: If component Ci used alone as the distance function D gives
higher accuracy than component Cj alone then Ci is preferred over Cj in selecting a
combination of components in D.

MinPT uses each component Ci, as the distance D in algorithm L and calculates ac-
curacy over training set S. If for any Ci,, L converges, this is a stopping criterion. It
outputs the final D as the learned distance. Else, it considers the 2 best components
(giving highest accuracies) as the initial distance and executes L. If convergence still
does not occur, it continues with the best 3 components and so forth until L converges
or all best combinations are considered. Our MinPT algorithm is presented next.

MinPT: Minimal Path Traversal

Input: Training Set S, Learning Algorithm L
Output: Learned distance function D

1. Identify all m applicable components for S
2. i = 1
3. While mi ≤ and A has not yet converged
 (a) Execute L with D=C, and record accuracy α
 (b) i = i + 1
4. If L has not yet converged
 (a) c = 2
 (b) While mc ≤ and L has not yet converged

 (c) Execute L with ∑ =
= c

i iiCWD
1

where C1 … Ccc are

 the c best components based on accuracy
 (d) c = c+1
5. If L converges or maximum number of iterations is reached,
 output D as learned distance function.

 Component Selection to Optimize Distance Function Learning 273

Justification. MinPT avoids paths that do not seem promising. If a path with the best
and 2nd best components does not provide convergence, it is less likely that a path
with the best and 3rd best components will. Hence, as a next step it considers the best,
2nd best and 3rd best components since this offers faster expectation of convergence.

2.3 Maximal Path Traversal with Pruning

This approach explores maximum possible paths in distance function learning after
pruning some components based on a Tolerance Limit Heuristic.
 Tolerance Limit Heuristic: The tolerance limit denoted as τ is defined as the lowest
acceptable limit of accuracy. The tolerance limit heuristic states that if the accuracy of
a component Ci is less than τ, then the component is not useful.

Tolerance limit is different from error threshold. If learning algorithm L has error
threshold є then if error drops below є, L is said to converge. Threshold є thus defines
good performance. However, tolerance limit τ is a cut-off for the opposite extreme.

MaxPTP works as follows. It first considers each component Ci as distance D in
learning algorithm L and records accuracy α over training set S. Using the Tolerance
Limit Heuristic, it prunes components with accuracy α less than tolerance limit τ. For
the remaining r components, it traverses all paths, with each combination as the initial
distance in L. Among all the corresponding learned distance functions, the one giving
the highest accuracy is returned as the output. Our MaxPTP algorithm is given below.

MaxPTP: Maximal Path Traversal with Pruning

Input: Training Set S, Learning Algorithm L, Tolerance Limit τ
Output: Learned distance function D

1. Identify all m applicable components for S
2. i = 1
3. While mi ≤ and L has not yet converged
 (a) Execute L with D=Ci and record accuracy α
4. Prune out components with α < τ
 Let r= number of remaining components
5. c = 2
6. While rc ≤
 (a) Execute L with all possible combinations of components

 in ∑ =
= c

i iiCWD
1

and record accuracy α

 (b) c = c + 1
7. Output D with maximum accuracy as learned distance function

Justification. MaxPTP is analogous to MaxPT in traversing other paths even after
convergence occurs. This is done with a similar aim of attaining maximal accuracy
with respect to any given learning algorithm L. However, MaxPTP tends to learn
faster and favors fewer components by not exploring unwanted paths.

2.4 Minimal Path Traversal with Pruning

The component selection approach of Minimal Path Traversal with Pruning (MinPTP)
presents an interesting twist to MinPT. While MinPT traverses the minimum number
of paths, MinPTP tends to learn a distance function favoring the fewest components.

274 A. Varde et al.

MinPTP first considers each component Ci as distance D in learning algorithm L and
records its accuracy over training set S. If L converges for any component, this is a
stopping criterion and that component alone is the learned distance function. If not,
unwanted components are pruned using the tolerance limit heuristic. All components
with accuracy α less than tolerance limit τ get pruned. MinPTP then proceeds using
the remaining r components with accuracy greater than or equal to tolerance limit. It
uses all paths with 2 components from among the r components in descending order
of accuracies and continues with paths of 3, 4 components and so on till convergence
occurs or all such paths are considered. Our MinPTP algorithm is given below.

MinPTP: Minimal Path Traversal with Pruning

Input: Training set S, Learning algorithm L, Tolerance limit τ
Output: Learned distance function D

1. Identify all m applicable components for S
2. i = 1
3. While mi ≤ and L has not yet converged
 (b) Execute A with D=Ci and record accuracy α
 (c) i = i + 1
4. If L has not yet converged, prune out components with α < τ
 Let r= number of remaining components
 (a) c = 2
 (b) While rc ≤ and L has not yet converged
 (i) Execute A with combinations of c components in

 ∑ =
= c

i iiCWD
1

ordered from highest to lowest accuracy

 (ii) c = c +1
5. If L converges or maximum number of iterations is reached,
 output D as learned distance function

Justification. The main argument in MinPTP is that other paths need to be explored
rather than directly choosing the path that seemingly gives the maximum accuracy. It
favors combinations of fewer components thus differing from MinPT.

3 Computational Complexity

3.1 Derivation of Complexity

Complexity of MaxPT. We consider top down traversal. For the first m executions of
the learning algorithm, each component is considered individually. Then all paths
with 2 components are considered. From combinatorics, number of combinations of 2
components that can be made from m components is

)!2(!2

!

−m

m denoted as mC2.

Thus, this approach has mC2 combinations with 2 components. Next, it considers
paths with 3 components, i.e., mC3 combinations. Each combination is selected as the
initial distance function in the learning algorithm and hence one combination corre-
sponds to one execution of the algorithm. Thus, the total number of executions in
MaxPT is O(mC1 + mC2 + … mC(m-1) + mCm) which denotes its computational complex-
ity. This can be simplified and expressed as O(2m-1).

 Component Selection to Optimize Distance Function Learning 275

Complexity of MinPT. The MinPT approach first executes the learning algorithm m
times to find the individual accuracies given by the respective components. In every
subsequent execution it considers only the best combinations of components.

Hence, in addition to the m executions with single components, it involves at most
m-1 executions of the learning algorithm. Thus, the total number of executions can be
at most m + m-1 = 2m-1 which is of the order of m. MinPT therefore in the average
case gives a computational complexity of O(m).

Complexity of MaxPTP. In MaxPTP, for the first m executions of the learning algo-
rithm, each component is considered individually to determine its accuracy. Some
components are pruned using the tolerance limit. Then, all paths with 2 components
are considered from the r remaining components where mr ≤ . Number of combina-
tions of 2 components from r components is rC2.
 Extending this logic, total number of combinations for MaxPTP is: m combinations
with all components, followed by rC2 + … rCr combinations with r components. Thus,
the complexity of MaxPTP is O(m + rC2 + … rCr) which effectively implies O(2r-1).

Complexity of MinPTP. In this approach, after pruning the unwanted components
there are r components remaining with accuracies greater than or equal to the toler-
ance limit. Hence, MinPTP executes the learning algorithm at most r times.
 Since components are chosen in descending order of accuracies, it is reasonable to
expect that a fraction of the r executions will be sufficient to find a solution. To exe-
cute the learning algorithm with mr ≤ components, it is expected that execution time
will be reduced by a factor of r/m of the time needed for all m features. It is thus
found that the complexity of MinPTP is O((m)(m-1)/2) in the average case.

3.2 Comparative Discussion

The computational complexity of MaxPT is found to be O(2m-1) which gives an ex-
ponential search space. MinPT, on the other hand, has a computational complexity of
O(m), providing a search space that is linear with respect to the total number of com-
ponents m. It is thus clear that the complexity of MinPT is significantly lower than
that of MaxPT. In MaxPTP, the complexity is O(m + rC2 + … rCr) where mr ≤ .
Thus, the search space is exponential but with potentially fewer combinations than in
MaxPT, assuming that some components will be unwanted and get pruned out.
Hence, the complexity of MaxPTP is likely to be lower than that of MaxPT, though
both are exponential. Finally, consider MinPTP with complexity O((m)(m-1)/2) which
is quadratic. It is of a lower order than MaxPTP, though a higher order than MinPT.
 Thus, important points on computational complexity are summarized as follows:

• MaxPT has an exponential complexity, the highest among the approaches.

• MinPT has a linear complexity, the lowest among the approaches.

• MaxPTP has an exponential complexity, but lower than that of MaxPT.

• MinPTP has a quadratic complexity, thus lower than that of MaxPTP.

276 A. Varde et al.

4 Experimental Evaluation

4.1 Description of Real Scientific Data

Graphs modeling Heat Treating in Materials Science. One type of data we use
consists of scientific graphs from the domain of Materials Science. They model the
Heat Treating of Materials. Fig. 1 shows such a graph called a heat transfer curve. It
plots the heat transfer coefficient versus temperature of a material where the heat
transfer coefficient measures heat extraction capacity in a rapid cooling process called
quenching [16]. Some features of the graph correspond to physical phenomena in the
domain. For example, the Leidenfrost Point LF denotes the breaking of the vapor
blanket around the part [16]. Other features relate to statistical observations and abso-
lute position of points on the graph.

 Fig. 1. Heat Transfer Curve Fig. 2. Pollen Grain Fig. 3. Silicon Nanopore

Images with Cross-sections of Samples in Bioinformatics and Nanotechnology.
We deal with images taken under a microscope at various stages of scientific process
from the domains of Bioinformatics and Nanotechnology. These are cross-sections of
samples such as carbon nanofiber, silicon nanopore, pollen grain and herb leaf.

Fig. 2 shows an image from Bioinformatics. It is an inner cross-sectional view of
pollen grain. In comparing such images, visual features such as pixel size and grey-
scale (or color) are applicable. Also, domain experts consider other features pertaining
to metadata such as the level of zooming and the nature of the cross-section (e.g., side
view, inner view) [17].

Fig. 3 shows an image from Nanotechnology. It depicts the upper surface of a sili-
con nanopore array observed at the end of a chemical process called etching [6].
While comparing such images manually, experts observe visual features of the images
such as nanoparticle size, interparticle distance and nanoparticle height. Also, meta-
data features such as the stage of a process executed on the sample and the location of
the sample are applicable.

4.2 Learning Algorithms

LearnMet for Graphs. The input to LearnMet is a training set with correct clusters
of graphs provided by domain experts. LearnMet guesses an initial distance function
D as a weighted sum of components applicable to the domain. It uses D as the notion
of distance in clustering with a partition-based clustering algorithm to get predicted

 Component Selection to Optimize Distance Function Learning 277

clusters. It then evaluates clustering accuracy by comparing predicted and correct
clusters to obtain the error between them in terms of true positives, true negatives,
false positives and false negatives. It adjusts D based on the error using a Weight
Adjustment Heuristic [20], and re-executes the clustering and evaluation until error is
minimal or below a threshold. It outputs the D giving the lowest error as the learned
distance function.

Accuracy α of the learned distance function D is measured as follows. Consider a
distinct test set of correct clusters of graphs. Using the learned distance function,
predicted clusters are obtained over the test set. Comparing the predicted and correct
clusters, true positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN) are determined. Accuracy α is then measured as success rate [22, 20] given
as α = (TP+TN) / (TP+TN+FP+FN).

FeaturesRank for Images. In FeaturesRank, the inputs are pairs of images with
similarity levels (instead of clusters) thus considering another method of grouping
objects in scientific domains. The pairs of images are provided by experts in the form
of a training set. For each pair, experts identify whether they consider its images to be
different or similar and indicate the extent of similarity based on levels. This gives the
notion of correctness as per the domain. FeaturesRank defines a preliminary distance
function for the images as a weighted sum of distances between its features. It then
uses an iterative approach for learning. In each iteration the given images are hierar-
chically placed into clusters such that the number of levels of similarity in the clusters
is equal to that in the training set. Adjustments are made to the weights of the features
in the distance function based on the difference between the extent of similarity in the
clusters and the training samples using a Feature Weight Heuristic [19]. The distance
function corresponding to minimal error is returned.

The accuracy of the learned distance function is measured using a distinct test set
consisting of pairs of images with the correct extent of similarity for each pair given
by experts. Using the learned distance function, the images in the test set are clustered
in levels. For a given pair of images P = (Ia, Ib), if the extent of similarity in the clus-
ters is equal to that in the test set, then it is considered to be a correct pair. Accuracy is
then defined as the ratio of the number of correct pairs over the all the pairs used [19].
If AP refers to all the pairs and CP refers to the number of correct pairs, accuracy α is
measured as α = CP/AP.

4.3 Experimental Details

A summary of our rigorous experimental evaluation is presented here. In the experi-
ments shown below, error threshold is 0.01, maximum number of iterations is 1000
and tolerance limit is 0.25. The Materials Science training set has 50 graphs in 7 clus-
ters while the distinct test set has 40 graphs in 6 clusters. The Bioinformatics training
set has 200 images and the test set has 150 images, both with 3 levels of similarity.
The Nanotechnology training set has 150 images and test set has 100 images, both
with 4 levels of similarity. The total number of components in Materials Science,
Bioinformatics and Nanotechnology are 20, 15 and 17 respectively. The results of our
experiments are summarized in the charts below where, each bar shows observations
averaged for 10 experiments altering clustering seeds for randomization.

278 A. Varde et al.

Figs. 4, 5 and 6 show the average accuracy over test sets (distinct from training
sets) in Materials Science, Bioinformatics and Nanotechnology respectively. The
formulae given in Section 4.2 are used to measure the accuracy in each experiment
from which the average accuracy over ten experiments is calculated. It is seen that
MaxPT and MaxPTP give higher accuracies than MinPT and MinPTP. We also find
that the accuracies of MaxPT and MaxPTP are fairly equal to each other.

84
86

88

90

92
94

MaxPT MinPT MaxPTP MinPTP

Approach

A
cc

u
ra

cy
 (

%
)

84
85
86
87
88
89
90

MaxPT MinPT MaxPTP MinPTP

Approach

A
cc

u
ra

cy
 (

%
)

 Fig. 4. Accuracy – Materials Science Fig. 5. Accuracy - Bioinformatics

86

87

88

89

90

MaxPT MinPT MaxPTP MinPTP

Approach

A
cc

u
ra

cy
 (

%
)

0

50

100

150

200

MaxPT MinPT MaxPTP MinPTP

Approach

L
ea

rn
in

g
 T

im
e

(m
in

)

Fig. 6. Accuracy – Nanotechnology Fig. 7. Efficiency – Materials Science

Figs. 7, 8 and 9 respectively depict the average efficiency in terms of learning time
over the training sets in Materials Science, Bioinformatics and Nanotechnology. The
learning time is observed for each experiment from which the average over ten ex-
periments is calculated. The average learning time is found to be the highest in
MaxPT and the lowest in MinPT. MaxPTP needs far less learning time than MaxPT.

Figs. 10, 11 and 12 show the average simplicity in terms of the number compo-
nents in the learned distance in Materials Science, Bioinformatics and Nanotechnol-
ogy respectively. For each experiment the number of components is recorded from
which average for 10 experiments is calculated. We find that MinPTP yields distance
functions with the fewest number of components throughout, followed by MinPT.
MaxPTP gives distance functions with fewer components than MaxPT.

From all the evaluation conducted whose summary is presented above, we find
that:

• MinPT is optimal with respect to the efficiency criterion.
• MaxPT is optimal with respect to the accuracy criterion.
• MinPTP is optimal with respect to the simplicity crietrion.
• MaxPTP balances between the 3 criteria with accuracy almost equal to MaxPT.

 Component Selection to Optimize Distance Function Learning 279

0

20

40

60

80

100

MaxPT MinPT MaxPTP MinPTP

Approach

T
im

e
(m

in
)

0

50

100

150

200

MaxPT MinPT MaxPTP MinPTP

Approach

T
im

e
(m

in
)

 Fig. 8. Efficiency – Bioinformatics Fig. 9. Efficiency – Nanotechnology

0
5

10
15
20

25

MaxPT MinPT MaxPTP MinPTP

Approach

N
u

m
b

er
 o

f
C

o
m

p
o

n
en

ts

0

5

10

15

20

MaxPT MinPT MaxPTP MinPTP

Approach

N
u

m
b

er
 o

f
C

o
m

p
o

n
en

ts

 Fig. 10. Simplicity – Materials Science Fig. 11. Simplicity – Bioinformatics

0

5

10

15

20

MaxPT MinPT MaxPTP MinPTP

Approach

N
u

m
b

er
 o

f
C

o
m

p
o

n
en

ts

Fig. 12. Simplicity – Nanotechnology

5 Analysis of Results in Applications

5.1 Usefulness in Targeted Scientific Applications

1. Parameter Selection: In these applications users select process parameters in indus-
try based on results of experiments conducted in the laboratory. They are analogous to
transaction processing systems where data changes very frequently. Hence, to learn
distance functions catering to rapidly changing data, efficiency is critical. Thus,
MinPT which provides fast learning is likely to be useful here.

2. Simulation Tools: In these systems, simulations of real laboratory experiments are
conducted to save resources. Simulations often take as long as the real experiment and
require repeated access to the stored data. Hence issues such as storage, retrieval and
indexing of the data are important since each access could take a long time. Thus

280 A. Varde et al.

simplicity of the learned distance function is crucial. Hence, MinPTP which is opti-
mal in terms of simplicity would be the most useful here.
3. Intelligent Tutors: These applications typically demonstrate scenarios analogous to
human teachers to clarify concepts in a domain. Thus, it is important to emphasize
the importance of different optimization criteria. Hence it would be desirable to use
MaxPTP which balances accuracy, efficiency and simplicity.
4. Decision Support: In these applications, it is important to provide information for
making long-term decisions for issues such as optimizing the concerned scientific
processes. Hence, accuracy is critical, making MaxPT a seemingly obvious choice.
However, some decision support systems tend towards day-to-day transaction proc-
essing, making efficiency an issue. In some systems, fast retrieval of data is critical
for at-a-glance display of information. Thus storage, retrieval and indexing criteria
become important giving a considerable concern to simplicity. Hence, it may be use-
ful to choose MaxPTP to cater to all the needs of decision support systems.

5.2 Development of Trademarked Software

We developed a real application, namely, a decision support system for process opti-
mization, based on graphical data mining. This system called AutoDomainMine [21]
performs decision support in the Heat Treating of Materials. It is a trademarked soft-
ware tool of the Center for Heat Treating Excellence that supported this research.

From our evaluation of selection approaches, MaxPTP proved to be almost as good
as MaxPT in terms of providing optimal accuracy, while balancing well between the
other criteria of simplicity and efficiency. We thus preferred the use of the MaxPTP
approach in this application. MaxPTP was used for component selection in the
LearnMet [20] algorithm which performed distance function learning. The learned
distance function was used to cluster graphs obtained from laboratory experiments in
heat treating. The clustering criteria, i.e., experimental input parameters leading to the
clusters were learned by decision tree classifiers. These served as the basis for pre-
dicting the results of future experiments given their input parameters, thus helping to
choose materials in order to optimize scientific processes. The accuracy of the predic-
tion was based on the accuracy of the clustering which was dependent on the selection
of appropriate components to capture the semantics of the graphical data.

The AutoDomainMine system was evaluated over real data by conducting formal
user surveys with test sets distinct from training sets. It was found to give prediction
accuracy of approximately 96% [21]. The users concluded that this system provided
effective decision support as per their needs. It also showed a considerable improve-
ment over its earlier versions prior to optimizing distance function learning.

6 Related Work

In [12] an overview of different types of distances useful for similarity search in multi-
media databases is presented. However, they do not provide methods to learn a single
distance function encompassing various distance types. Hinneburg et al. [9] propose a

 Component Selection to Optimize Distance Function Learning 281

learning method to find the relative importance of dimensions for n-dimensional objects.
Their focus though, is on dimensionality reduction, rather than the semantics of the data.
In [24] they learn which type of position-based distance is applicable for the given data
starting from the general Mahalanobis distance. They do not consider other distance
types besides position-based. Wavelets [23] are often used for image processing in order
to compare and rank images. Wavelet coefficients need to be computed each time image
comparison is made which is computationally expensive. Our feature-based learning on
the other incurs a one-time cost of learning.

The FastMap algorithm [8] maps objects in multimedia databases to points in a
user-defined k-dimensional space preserving similarities in the original objects. In [1],
probabilistic measures are proposed for similarity search over images. The Min-
dReader system [11] guesses the distance function in the mind of the users based on
combining several examples given by users and their relative importance. In [15] they
propose a human computer interaction approach to perform content based retrieval of
images based on relevance feedback. Learnable similarity measures for strings are
presented in [3]. Distance function learning can also be performed using genetic algo-
rithms [7] and neural networks [2]. Our proposed approaches for component selection
can be used in conjunction with such state-of-the-art methods to optimize the learning
given factors such as accuracy, efficiency and simplicity.

Ensemble learning [22, 14, 25] trains multiple models from training data and
their outputs are combined to generate the final predicted result. Popular ensemble
based algorithms, such as hierarchical mixture of experts, often produce better re-
sults than single classifiers [14]. Techniques to enhance ensemble learning have
been studied. Zhou et al. [25] train many neural networks first, then assign random
weights to them and employ a genetic algorithm to evolve the weights to character-
ize fitness of the neural network. In our context each component could be a learner,
thus in combining them we get an ensemble. Our selection approaches could be
used to select learners in an ensemble, modifying heuristics as needed. Depending
on the potential applications, learners could be selected using MaxPT, MinPT,
MinPTP or MaxPTP approaches.

7 Conclusions

We address the problem of optimizing distance function learning for complex scien-
tific data. We define a distance function as a weighted sum of components where each
component depicts a feature of the data. We propose 4 component selection ap-
proaches: MaxPT, MinPT, MaxPTP and MinPTP. Evaluation with real data from
scientific domains shows that: MaxPT is likely to be useful when the goal is to attain
maximal accuracy in learning; MinPT is preferable when learning efficiency is of the
highest priority; MinPTP is most desirable when simplicity of learned distance is
important; MaxPTP is suitable when it is important to strike a good balance between
the three criteria. Thus, different selection methods can be used based on the priorities
of targeted applications. A notable outcome of this research is the development of a
decision support system that is a trademarked software tool.

282 A. Varde et al.

References

1. Aksoy, S., Haralick, R.: Probabilistic versus Geometric Similarity Measures for Image Re-
trieval. IEEE CVPR 2, 357–362 (2000)

2. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, England (1996)
3. Bilenko, M., Mooney, R.: Adaptive Duplicate Detection using Learnable String Similarity

Measures. In: KDD, pp. 39–48 (August 2003)
4. Chen, L., Ng, R.: On the Marriage of Lp-Norm and Edit Distance. In: VLDB, pp. 792–803

(August 2004)
5. Das, G., Gunopulos, D., Mannila, H.: Finding Similar Time Series. In: Komorowski, J., Żyt-

kow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 88–100. Springer, Heidelberg (1997)
6. Dougherty, S., Liang, L., Pins, G.: Precision Nanostructure Fabrication for the Investiga-

tion of Cell Substrate Interactions, Technical Report, Worcester Polytechnic Institute,
Worcester, MA (June 2006)

7. Friedberg, R.: A Learning Machine: Part I. IBM Journal 2, 2–13 (1958)
8. Faloutsos, C., Lin, K.: FastMap: A Fast Algorithm for Indexing, Data Mining and Visuali-

zation of Traditional and Multimedia Datasets. SIGMOD Record 24(2), 163–174 (1995)
9. Hinneburg, A., Aggarwal, C., Keim, D.: What is the Nearest Neighbor in High Dimen-

sional Spaces. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp.
506–515. Springer, Heidelberg (1997)

10. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, Califor-
nia (2001)

11. Ishikawa, Y., Subramanya, R., Faloutsos, C.: MindReader: Querying Databases through
Multiple Examples. In: VLDB, pp. 218–227 (August 1998)

12. Keim, D., Bustos, B.: Similarity Search in Multimedia Databases. In: ICDE, pp. 873–874
(March 2004)

13. Mitchell, T.: Machine Learning. WCB McGraw Hill, USA (1997)
14. Polikar, R.: Ensemble Based Systems in Decision Making. IEEE Circuits and Sys-

tems 6(3), 21–45 (2006)
15. Rui, Y., Huang, T., Mehrotra, S.: Relevance Feedback Techniques in Interactive Content

Based Image Retrieval. In: SPIE, pp. 25–36 (January 1998)
16. Sisson, R., Maniruzzaman, M., Ma, S.: Quenching: Understanding, Controlling and Opti-

mizing the Process, CHTE Seminar (October 2002)
17. Sheybani, E., Varde, A.: Issues in Bioinformatics Image Processing, Technical Report,

Virginia State University, Petersburg, VA (October 2006)
18. Traina, A., Traina, C., Papadimitriou, S., Faloutsos, C.: TriPlots: Scalable Tools for Multi-

dimensional Data Mining. In: KDD, pp. 184–193 (August 2001)
19. Varde, A., Rundensteiner, E., Javidi, G., Sheybani, E., Liang, J.: Learning the Relative Im-

portance of Features in Image Data. In: ICDE’s DBRank (April 2007)
20. Varde, A., Rundensteiner, E., Ruiz, C., Maniruzzaman, M., Sisson, R.: Learning Seman-

tics-Preserving Distance Metrics for Clustering Graphical Data. In: KDD’s MDM, pp.
107–112 (August 2005)

21. Varde, A., Rundensteiner, E., Sisson, R.: AutoDomainMine: A Graphical Data Mining
System for Process Optimization. In: SIGMOD, pp. 1103–1105 (June 2007)

22. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Algorithms with Java Im-
plementations. Morgan Kaufmann Publishers, San Francisco (2000)

23. Wang, J., Wiederhold, G., Firschein, O., Wei, S.: Content-Based Image Indexing and Search-
ing Using Daubechies Wavelets. International Journal of Digital Libraries 1, 311–328 (1997)

24. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance Metric Learning with Application to
Clustering with Side Information, NIPS, pp. 503–512 (December 2003)

25. Zhou, Z., Wu, J., Tang, W.: Ensembling Neural Networks: Many Could Be Better Than
All. Artificial Intelligence 137(1), 239–263 (2002)

Emerging Pattern Based Classification in

Relational Data Mining

Michelangelo Ceci, Annalisa Appice, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{ceci,appice,malerba}@di.uniba.it

Abstract. The usage of descriptive data mining methods for predictive
purposes is a recent trend in data mining research. It is well motivated by
the understandability of learned models, the limitation of the so-called
“horizon effect” and by the fact that it is a multi-task solution. In partic-
ular, associative classification, whose main idea is to exploit association
rules discovery approaches in classification, gathered a lot of attention
in recent years. A similar idea is represented by the use of emerging pat-
terns discovery for classification purposes. Emerging Patterns are classes
of regularities whose support significantly changes from one class to an-
other and the main idea is to exploit class characterization provided by
discovered emerging patterns for class labeling. In this paper we pro-
pose and compare two distinct emerging patterns based classification
approaches that work in the relational setting. Experiments empirically
prove the effectiveness of both approaches and confirm the advantage
with respect to associative classification.

1 Introduction

Discovering a characterization of classes has been a challenge for research in
machine learning and data mining. Emerging patterns (EPs) discovery is a de-
scriptive data mining task which aims at characterizing classes by detecting
significant differences between objects of distinct classes. EPs are introduced in
[6] as a particular kind of patterns (or multi-variate features) whose support
significantly changes from one data class to another: the larger the difference of
pattern support, the more interesting the pattern. Change in pattern support is
estimated in terms of support ratio (or growth rate). EPs with sharp change in
support (high growth rate) can be used to characterize object classes.

Originally, EPs discovery has been investigated for capturing difference be-
tween separate classes of objects which are stored in a single relational table.
Each tuple in the table represents an attribute-value vector describing an object
of one of the classes and each EP is discovered in form of a conjunction of at-
tribute values. Anyway, real-world data typically involve complex and heteroge-
neous objects with different properties which are modeled by as many relational
tables as the number of object types. Mining data scattered over the multiple
tables of a relational database (relational data) is a challenge in several domains,

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 283–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 M. Ceci, A. Appice, and D. Malerba

e.g., spatial domains, process mining and, in general, in domains where the effect
of an attribute is not limited to a specific unit of analysis. In this case, when
properties of some units (reference objects) are investigated, attributes of related
units (task-relevant objects) must be taken into account as well. Traditional EPs
discovery methods do not distinguish task-relevant from reference objects, nor
do they allow the representation of any kind of interaction. Recently, EP dis-
covey has been framed in the context of relational data mining [8] in order to
deal with both relational data and relational patterns [2].

Although (relational) emerging patterns discovery is specially designed for
a descriptive task, in this work, we exploit potentialities of EPs to deal with
the (relational) classification task. The rationale behind this undertaking can
be found in the goal of classification, that is, to learn the concept associated
to each class by finding regularities which characterize the class in question and
discriminate it from the other classes. The idea is to learn a relational classifier by
exploiting the knowledge implicitly encoded in the (relational) EPs that permits
to discriminate between different classes sharply.

In this paper, we propose and compare two EPs-based relational classifiers,
namely Mr-CAEP and Mr-PEPC. The former upgrades the EP-based classifier
CAEP [7] from the single relational table setting (propositional setting) to the
relational setting. It computes a membership score of an object to each class.
The score is computed by aggregating a growth rate based function of the rela-
tional EPs covered by the object to be classified. The largest score determines
the object’s class. The latter (Mr-PEPC) maximizes the posterior probability
that an object belongs to a given class. Probability is estimated by using a set
of relational EPs to describe an object to be classified and, then, to define a
suitable decomposition of the posterior probability à la naive Bayesian classifier
to simplify the probability estimation problem.

The paper is organized as follows. In the next section related works are dis-
cussed and the present work is motivated. The problem of relational emerging
patterns discovery is faced in Section 3. The two relational EP-based classi-
fiers are presented in Section 4. Lastly, experimental results are reported in
Section 5 and then some conclusions are drawn.

2 Related Works and Motivations

Data mining research has provided several solutions for the task of emerging pat-
terns discovery. In the seminal work by Dong and Li [6], a border-based approach
is adopted to discover the EPs discriminating between separate classes. Borders
are used to represent both candidates and subsets of EPs; the border differential
operation is then used to discover the EPs. Zhang et al. [20] have described an
efficient method, called ConsEPMiner, which adopts a level-wise generate-and-
test approach to discover EPs which satisfy several constraints (e.g., growth-rate
improvement). Recently, Fan and Ramamohanarao [9] have proposed a method
which improves the efficiency of EPs discovery by adopting a CP-tree data struc-
ture to register the counts of both the positive and negative class. All these

Emerging Pattern Based Classification in Relational Data Mining 285

methods assume that data to be mined are stored in a single data table. An
attempt of upgrading the emerging pattern discovery to deal with relational
data has been reported in [2], where the authors proposed to adapt the levelwise
method described in [15] to the case of relational emerging patterns.

In the last years, studies on emerging patterns discovery have generally re-
sulted in methods for building classifiers through a careful selection of high qual-
ity emerging patterns discovered in training data [7,10,11,13]. Indeed, the idea
of using descriptive data mining methods for predictive purposes has its roots in
studies on associative classification, where the goal is to induce a classification
model on the basis of discovered association rules.

Differently from emerging patterns based classification, associative classifi-
cation has been studied not only in the propositional setting [14,19], but also
in the relational one [4]. Interesting aspects of associative classification can be
summarized in the following points:

1. Differently from most of tree-based classifiers, whose univariate tests cause
the “horizon effect”, associative classifiers are based on association rules that
consider the simultaneous correspondence of values of different attributes,
hence promising to achieve better accuracy [3].

2. Associative classification makes association rule mining techniques applica-
ble to classification tasks.

3. The user can decide to mine both association rules and a classification model
in the same data mining process [14].

4. The associative classification approach helps to solve the understandabil-
ity problem [16] that may occur with some classification methods. Indeed,
many rules produced by standard classification systems are difficult to un-
derstand because these systems often use only domain independent biases
and heuristics, which may not fulfill user’s expectation. With the associa-
tive classification approach, the problem of finding understandable rules is
reduced to a post-processing task [14].

All these points are also valid in the case of emerging patterns based classifiers.
In addition, we argue that emerging pattern based classifiers take advantages
from the fact that EPs provide features which better discriminate classes than
association rules do.

3 Relational EPs Discovery

The problem of discovering relational emerging patterns can be formalized as
follows:

Given:
– a database schema S with h relational tables S = {T0, T1, . . . , Th−1}
– a set PK of primary key constrains on tables in S
– a set FK of foreign key constrains on tables in S
– a target relation T ∈ S 1

1 Objects in T play the role of reference objects, while objects in S − {T} play the
role of task relevant objects.

286 M. Ceci, A. Appice, and D. Malerba

– a target discrete attribute y ∈ T , different from the primary key of T , whose
domain is C = C1, C2, . . . , Cr

– a couple of thresholds 0 < minSup ≤ 1 and minGR ≥ 1

The problem is to find a set of relational emerging patterns.
Formally, a relational emerging pattern is a conjunction of predicates of two

different types:

Definition 1 (Structural predicate). A binary predicate p/2 is a structural
predicate2 associated to a table Ti ∈ S if a foreign key in S exists that connects
Ti and a table Tj ∈ S. The first argument of p represents the primary key of Tj

and the second argument represents the primary key of Ti.

Definition 2 (Property predicate). A binary predicate p/2 is a property
predicate associated to a table Ti ∈ S if the first argument of p represents the
primary key of Ti and the second argument represents another attribute in Ti

which is neither the primary key of Ti nor a foreign key.

Definition 3 (Relational Emerging Pattern).
A Relational Pattern is in the form:

〈S〉{〈attr(A)〉}0..n{〈rel(A, Rk)〉{〈attr(Rk)〉}0..n}0..n

{〈rel(Rk, Rk)〉{〈attr(Rk)〉}0..n}0..n where

– attr/1 represents the predicate associated to the target table T (key predi-
cate). The argument represents the primary key of T .

– rel/2 represents a generic structural predicate
– attr/2 represents a generic property predicate

A pattern P in this form is a relational pattern if the property of linkedness [12]
is satisfied (e.g. each variable should be linked to the variable in the key predicate
by means of structural predicates). A relational pattern P is a relational emerging
pattern if ∃t ∈ C GRt→t(P) > minGR and supt(P) > minSup.

Definitions of support and growth-rate are formally provided below.

Definition 4. The support supt(P) of the pattern P for the class t ∈ C is:
supt(P) = |Ot(P)|/|Ot|, where: Ot denotes the set of reference objects labeled
with class t, while Ot(P) denotes the subset of reference objects in Ot which are
covered by the pattern P .

Definition 5. The growth rate GRt→t(P) of the pattern P for distinguishing
the reference objects labeled with class t from the reference objects labeled with a
class different from t (in t = C − {t}), is computed as follows:

GRt→t(P) =
supt(P)
supt(P)

(1)

GRt→t(P) = 0
0 = 0 and GRt→t(P) = >0

0 = ∞.

2 “/2” indicates the predicate arity.

Emerging Pattern Based Classification in Relational Data Mining 287

The relational emerging pattern discovery is performed by exploring level-by-
level the lattice of relational patterns ordered according to a generality relation
(�) between patterns. Formally, given two patterns P1 and P2, P1 � P2 de-
notes that P1 (P2) is more general (specific) than P2 (P1). Hence, the search
proceeds from the most general pattern and iteratively alternates the candi-
date generation and candidate evaluation phases (levelwise method). In [2], the
authors propose an enhanced version of the level-wise method [15] to discover
emerging patterns from data scattered in multiple tables of a relational database.
Candidate emerging patterns are searched in the space of relational patterns sat-
isfying linkedness, which is structured according to the θ-subsumption generality
order [17].

Definition 6 (θ-Subsumption). Let P1 and P2 be two relational patterns on
a data schema S. P2 θ-subsumes P1 if and only if a substitution θ exists such
that P1 θ ⊆ P2.

Having introduced θ-subsumption, generality order between relational patterns
can be formally defined.

Definition 7 (Generality Order Under θ-Subsumption). Let P1 and P2
be two relational patterns. P1 is more general than P2 under θ-subsumption,
denoted as P1 �θ P2, if and only if P2 θ-subsumes P1, that is P1 θ ⊆ P2 for
some substitution θ.

θ-subsumption defines a quasi-ordering, since it satisfies the reflexivity and tran-
sitivity property but not the anti-symmetric property. The quasi-ordered set
spanned by �θ can be searched according to a downward refinement operator
which computes the set of refinements for a relational pattern.

Definition 8 (Downward Refinement Operator Underθ-Subsumption).
Let 〈G, �θ〉 be the space of relational patterns ordered according to �θ. A down-
ward refinement operator under θ-subsumption is a function ρ such that ρ(P) ⊆
{Q ∈ G|P �θ Q}.

The downward refinement operator is a refinement operator under θ-
subsumption. In fact, it can be easily proved that P �θ Q for all Q ∈ ρ(P).
This makes possible to perform a levelwise exploration of the lattice of rela-
tional patterns ordered by θ-subsumption.

Example 1. Let us consider the relational patterns:
P1: molecule(M).
P2: molecule(M), atom(M,A).
P3: molecule(M), logp(M,[1.8,3.7]).
P4: molecule(M), atom(M,A), charge(A,[1.7,2.1]).
P5: molecule(M), atom(M,A), bond(B,A).
P6: molecule(M), atom(M,A), bond(B,A), type(B,covalent).

288 M. Ceci, A. Appice, and D. Malerba

They are structured in a portion of a lattice ordered by θ-subsumption, that is:

P1
↙ ↘

P2 P3
↙ ↘

P4 P5
↓

P6

Emerging patterns for distinguishing reference objects labeled with class t
(target class) from reference objects labeled with class b (background class) are
then discovered by generating the pattern space one level at a time starting from
the most general emerging pattern (the emerging pattern that contains only the
key predicate) and then by applying a breadth-first evaluation in the lattice of
relational patterns ordered according to �θ.

When a level of the latticeis explored, the candidate pattern search space is
represented as a set of enumeration trees (SE-trees)[20]. The idea is to impose
an ordering on atoms such that all patterns in the search space are enumerated.
Practically, a node g of a SE-tree is represented as a group comprising: the head
(h(g)) that is the pattern enumerated at g, and the tail (t(g)) that is the ordered
set consisting of the atoms which can potentially be appended to g by ρ in order
to form a pattern enumerated by some sub-node of g. A child gc of g is formed
by taking an atom i ∈ t(g) and appending it to h(g), t(gc) contains all atoms
in t(g) that follow i (see Figure 1). In the case i is a structural predicate (i.e., a
new relation is introduced in the pattern), t(gc) contains both atoms in t(g) that
follow i and new atoms that can be introduced only after i has been introduced
(according to linkedness property). Given this child expansion policy, without
any pruning of nodes or pattern, the SE-tree enumerates all possible patterns and
avoids generation and evaluation of candidates equivalent under θ-subsumption
to some other candidate.

As pruning criterion, the monotonicity property of the generality order �θ

with respect to the support value (i.e., a superset of an infrequent pattern cannot
be frequent) [1] can be exploited to avoid generation of infrequent relational
patterns. Let P ′ be a refinement of a pattern P . If P is an infrequent pattern

Fig. 1. The enumeration tree over the atoms A = {a, b, c} to search the atomsets
a, b, c, ab, ac, bc, abc

Emerging Pattern Based Classification in Relational Data Mining 289

for a class t ∈ C (supt(P) < minSup), then P ′ has a support on Ot that is
lower than the user-defined threshold (minsup). According to the definition of
emerging pattern, P ′ cannot be an emerging pattern for distinguishing Ot from
Ot, hence it is possible to avoid the refinement of patterns which are infrequent
on Ot. Unluckily, the monotonicity property does not hold for the growth rate: a
refinement of an emerging pattern whose growth rate is lower than the threshold
minGR may or may not be an emerging pattern. However, growth rate can be
also used for pruning. In particular, it is possible to stop the search when it is
not possible to increase the growth rate with additional refinements [2].

Finally, as stopping criterion, the number of levels in the lattice to be explored
can be limited by the user-defined parameter MAXL ≥ 1 which limits the
maximum number of predicates in a candidate emerging pattern.

4 Relational Classification

Once relational emerging patterns are extracted, they are used to mine classifiers.
Two EPs-based relational classifiers are proposed in the following: Mr-CAEP and
Mr-PEPC.

4.1 Mr-CAEP

Mr-CAEP (Multi-Relational Classification based on Aggregating Emerging Pat-
terns) upgrades the EP-based classifier CAEP [7] to the relational setting. It
computes a membership score of an object to each class. The score is computed
by means of growth rate based function of the relational EPs covered by the
object to be classified. The largest score determines the object’s class.

The score is computed on the basis of the subset of relational emerging pat-
terns that cover the object to be classified. Formally, let o be the description
of the object to be classified (an object is represented by a tuple in the tar-
get table and all the tuples related to it according to foreign key constraints),
$(o) = {Rk ∈ $|∃θ Rkθ ⊆ o} is the set of relational emerging patterns that
cover the object o.

The score of o on the class Ci is computed as follows:

score(o, Ci) =
∑

Rk∈�(o)

GRCi→Ci
(Rk)

GRCi→Ci
(Rk) + 1

supCi(Rk) (2)

This measure may result in an inaccurate classifier in the case of unbalanced
datasets that is, when training objects are not uniformly distributed over the
classes. In order to mitigate this problem, we follow the same solution proposed
in [7] and we normalize this score on the basis of the median of the scores
obtained from training examples belonging to Ci.

Formally, the classification is based on the following equation:

class(o) = argmaxCi∈C
score(o, Ci)

medianto∈TS(score(to, Ci))
(3)

where TS represents the training set.

290 M. Ceci, A. Appice, and D. Malerba

4.2 Mr-PEPC

In Mr-PEPC (Multi-Relational Probabilistic Emerging Patterns Based Classi-
fier), relational emerging patterns are used to build a näıve Bayesian classifier
which classifies any object o by maximizing the posterior probability P (Ci|o)
such that o is of class Ci, that is, class(o) = arg maxiP (Ci|o). By apply-
ing the Bayes theorem, P (Ci|o) is reformulated as: P (Ci|o) = P (Ci)P (o|Ci)

P (o) .

Since P (o) is independent of the class Ci, it does not affect class(o), that
is, class(o) = arg maxiP (Ci)P (o|Ci). Under the conditional independence as-
sumption (näıve Bayes assumption), the likelihood P (o|Ci) can be factorized:
P (o|Ci) = P (o1, . . . , om|Ci) = P (o1|Ci)×. . .×P (om|Ci), where o1, . . . , om repre-
sent the set of attribute values. Surprisingly, näıve Bayesian classifiers have been
proved accurate even when the conditional independence assumption is grossly
violated [5].

The formulation reported above for näıve Bayesian classifiers is clearly lim-
ited to propositional representations. In the case of structural representations,
some extensions are necessary. The basic idea is that of using a set of relational
emerging patterns to describe an object to be classified, and then to define a
suitable decomposition of the likelihood P (o|Ci) à la naive Bayesian classifier to
simplify the probability estimation problem. P (o|Ci) is computed on the basis
of the subset $(o) ⊆ $:

P (o|Ci) = P (
∧

Rk∈�(o)

Rk|oi). (4)

The straightforward application of the näıve Bayes independence assumption
to all literals in

∧
Rk∈�(s)

Rk is not correct, since it may lead to underestimate

the probabilities for the case of classes for which several emerging patterns are
found.

To prevent this problem we resort to the logical notion of factorization [18]
which is given for clauses (i.e., disjunctions of literals) but we adapt it to the
notion of relational pattern.

Definition 9. Let P be a relational pattern, which has a non-empty subset Q ⊆
P of unifiable literals with most general unifier (mgu) θ. Then Pθ is called a
factor of P.

A factor of a pattern P is obtained by applying a substitution θ to P which
unifies one or more literals in P , and then deleting all but one copy of these
unified literals. In our context we are interested in particular factors, namely
those that are obtained by substitutions θ which satisfy three conditions:

1. Domain(θ) =
⋃

Rk∈�(o)

V ars(Rk) that is, the domain of θ includes all vari-

ables occurring in the relational pattern Rk ∈ $(o),
2. Domain(θ)∩Range(θ) = %, that is, θ renames all variables occurring in the

association rules Rk ∈ $(o) with new variable names,

Emerging Pattern Based Classification in Relational Data Mining 291

3. θ|V ars(Rk) is injective, that is, the restriction of θ on the variables occurring
in Rk is injective.

For each pattern P , a factor always exists. In the trivial case, it coincides with
P up to a redenomination of variables in P . A factor Pθ is minimal, when there
are no other factors of P with less literals than Pθ.

As stated previously, a straightforward application of the näıve Bayes in-
dependence assumption may result in totally unreliable probability estimates
because of the presence of redundant literals. For this reason, we impose that
P (o|Ci) = P (F |Ci) for any minimal factor F of

∧
Rk∈�(o)

Rk.

By separating the contribution of the conjunctions of literals corresponding
to structural predicates (struct(F)) from the contribution of the conjunction of
literals corresponding to property predicates (props(F)) we have:

P (o|Ci) = P (struct(F)|Ci) × P (props(F)|struct(F) ∧ Ci) (5)

Under the näıve Bayes independence assumption, P (struct(F)|Ci) can be fac-
torized as follows:

P (struct(F)|Ci) =
∏

relj(A,B)∈ struct(F)

P (relj(A, B)|Ci), (6)

where P (relj(A, B)) is computed on the basis of the relative frequency, com-
puted on the training set, that two tuples are associated according to foreign
key constraints.

The näıve Bayes conditional independence can also be assumed for the com-
putation of P (props(F)|struct(F) ∧ Ci), in which case

P (props(F)|struct(F) ∧ Ci) =
∏

attrj(A,v)∈ props(F)

P (attrj(A, v)|struct(F) ∧ Ci).

(7)
where P (attrj(A, v)|struct(F) ∧ Ci) is computed on the basis of the relative
frequency, computed on the training set, that the property predicate is satisfied
given struct(F) and Ci.

5 Experimental Results

Mr-CAEP and Mr-PEPC have been implemented as modules of the multi-
relational data mining system MURENA (MUlti RElational aNAlyzer) which
interfaces the Oracle 10g DBMS. We tested the methods on two real world data
sets: the dibEmail dataset and the North-West England Census Data. Both
data sets include numeric attributes, which are handled through an equal-width
discretization to partition the range of values into a fixed number of bins. Exper-
iments aim at both comparing Mr-CAEP vs. MrPEPC and comparing emerging
patterns based classification against associative classification approaches in the
context of relational data mining.

292 M. Ceci, A. Appice, and D. Malerba

5.1 Data Sets

Dibemail Data Set. These data concern incoming emails processed by the
mail server of the Department of Computer Science at University of Bari in the
period between 20-Aug-2007 and 3-Oct-2007.

In all, there are 91,291 incoming messages. For each incoming message some
information are stored. In particular, the client that dispatched the email, the
ip address of the machine that sent the email, the email size, time and date the
email was received, percentage of existing destination accounts, number of spec-
ified accounts. For each incoming message, multiple outgoing message can be
generated: one for each specified account plus accounts automatically generated
(mailing lists). In all, there are 111,787 outgoing message and for each outgo-
ing message, the receiver is stored. For each receiver (there are 188 receivers,
one for each employed) some information are available such as: role, number of
taught courses (if lecturer). For each course (there are 1,044 stored courses), we
considered the number of students attending the course, attending period and
academic year.

The training set referred to emails received in the period 20-Aug-2007 : 15-
Sep-2007 (52,920 incoming messages), while emails received in the period 16-Sep-
2007 : 3-Oct-2007 (38,371 incoming messages) are considered as testing objects.
In this application, the goal is to classify emails as spam or no-spam.

The North-West England Census Data. Data were obtained from both cen-
sus and digital maps provided by the European project SPIN! (http://www.ais.
fraunhofer.de/KD/SPIN/project.html). They concern Greater Manchester, one
of the five counties of North West England (NWE). Greater Manchester is di-
vided into into 214 census sections (wards). Census data are available at ward
level and provide socio-economic statistics (e.g. mortality rate) as well as some
measures of the deprivation of each ward according to information provided by
Census combined into single index scores. We employed the Jarman score that
estimates the need for primary care, the indices developed by Townsend and
Carstairs to perform health-related analyses, and the DoE index which is used
in targeting urban regeneration funds. The higher the index value the more de-
prived the ward. The analysis we performed was based on deprivation factors
and geographical factors represented in topographic maps of the area. Vectorized
boundaries of the 1998 census wards as well as of other Ordnance Survey digital
maps of NWE are available for several layers such as urban area (115 lines),
green area (9 lines), road net (1687 lines), rail net (805 lines) and water net (716
lines). Elements of each layer are stored as tuples of relational tables including
information on the type (TYPE). For instance, an urban area may be either a
“large urban area” or a “small urban area”. Topological relationships between
wards and objects in these layers are materialized as relational tables expressing
non-disjoint relations. The number of materialized “non disjoint” relationships
is 5313.

In this application, the goal is to classify the DoE index for targeting urban
regeneration funds. Results are obtained by means of a 10-fold cross validation.

Emerging Pattern Based Classification in Relational Data Mining 293

5.2 Mr-CAEP vs Mr-PEPC

In Table 1, results on the dibEmail Data set are reported. This table reports
accuracy results of Mr-CAEP and Mr-PEPC as well as the number of relational
EPs discovered by varying values of minGR and minSup. Results are in favour
of Mr-CAEP when minGR = 1. The situation changes for minGR = 1.5 when
results do not show a clear advantage of one approach over the other. Indeed,
it seems that Mr-PEPC suffers from problems coming from the high number of
probabilities to be computed and takes advantage from highly discriminating
emerging patters.

Table 1. Accuracy results on the dibEmail testing set for different values of minGR
and minSup (MAXL = 3)

minGR minSup Mr-CAEP Mr-PEPC No of discovered EPs

1 0.05 97.93 82.7 254

1 0.1 97.97 83 214

1.5 0.05 98.11 95.53 21

1.5 0.1 97.97 97.7 14

From a descriptive data mining perspective, the following EP has been discov-
ered for the class “spam”:

inmessage(A) ∧ inmessage outmessage(A, B)∧
∧inmessage percentageExistingAccounts(A, [48.0..57.6]).

This pattern has support of 0.06 and growth rate 5.32. It captures the fact that
when an incoming message is associated with an outcoming message and the
there is a high percentage of not existing destination accounts (percentage of
existing account between 48% and 57.6%), it can be used to discriminates spam
messages from nospam messages.

The same behavior is observed on North West England Census Data. In par-
ticular, in Table 2, it becomes evident the fact that the two classifiers reach the
same maximum predictive accuracy for different values of growth rate. Indeed, in
Figure 2, we see that Mr-CAEP is able to take advantage from the high number
of discovered emerging patterns, while Mr-PEPC reaches the best performance
when minGR = 2. By considering only Emerging Patterns with growth rate
equal to Infinity (Jumping Emerging Patterns), the accuracy of both classifiers
decreases. This suggests us that some useful information is lost when working
only with Jumping Emerging Patterns.

5.3 Associative Classification vs Emerging Patterns Based
Classification

In this subsection we compare Mr-PEPC with its associative classification coun-
terpart described in [4] in the context of spatial data mining. In that case, the

294 M. Ceci, A. Appice, and D. Malerba

Table 2. North West England Census Data. Mr-CAEP Vs Mr-PEPC: 10-Cross Vali-
dation average accuracy and average number of discovered EPs for different values of
minGR (minSup = 0.1, MAXL = 3).

minGR Mr-CAEP Mr-PEPC No discovered Eps

1 93.18 90 1858

1.5 91.36 92.27 820.9

2 90.28 93.18 603.9

2.5 90.28 91.82 549.6

3 90.28 90.91 531.7

3.5 90.28 90.28 518.7

7 90.28 89.37 345

30 90.28 89.83 280.7

100 90.28 89.83 280.7

classification is based on extracted association rules and is performed by resort-
ing to a näıve Bayesian classifier. The comparison is performed on the same cross
validation framework.

Results of the associative classifier on North West England Census Data are
reported in Table 3. Results vary on the basis of minimum support, minimum
confidence and number of literals in extracted association rules. It is noteworthy,
by comparing results in Table 2 with results in Table 3 in a predictive data
mining perspective, that the emerging pattern based classifier outperforms its
associative classification counterpart when minGR ∈ [1.5, 2.5].

In a descriptive data mining perspective, it is not possible to compare results.
Mr-PEPC returns relational emerging patterns, while the associative classifier
returns association rules. In the following, an example of discovered relational
emerging pattern for the class DoE index = low (zone to be addressed by regen-
eration funds) is reported:

ward(A) ∧ ward rails(A, B) ∧ ward carstairsidx(A, [−2.30..0.23]).
This emerging pattern has support of 0.24 and growth rate Infinity. It captures
the fact that when a ward is crossed by a railway and has a low value of Carstairs
index there is high demand for urban areas’ regeneration projects.

Fig. 2. Mr-CAEP Vs Mr-PEPC: average accuracy varying minGR on North West
England Census Data (minSup = 0.1, MAXL = 3)

Emerging Pattern Based Classification in Relational Data Mining 295

Table 3. DoE Index Associative Classification average accuracy

minsup minconf K Associative Classification

0.2 0.8 5 90.3
0.2 0.8 6 88.3
0.2 0.8 7 87.4
0.1 0.6 5 91.2
0.1 0.6 6 91.2
0.1 0.6 7 91.2

6 Conclusions

In this paper, we presented two emerging patterns based classifiers that work
in the multi-relational setting. The first approach classifies objects on the basis
of an heuristic evaluation function. The second approach is based on a proba-
bilistic evaluation. By comparing the two approaches, we noted that the prob-
abilistic approach suffers from the high number of considered emerging patters,
but takes advantages from more discriminative patterns. The comparison with
an associative classification approach, in fair conditions, confirm the advantage
of relational emerging patterns discovery. This because associative classification
considers many association rules that are not able to discriminate one class from
the others.

As future work, we intend to evaluate scalability of the proposed approaches.

Acknowledgment

This work is partial fulfillment of the research objective of ATENEO-2008 project
“Scoperta di conoscenza in domini relazionali”. The authors thank Costantina
Caruso for providing dibEmail data set.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) International Confer-
ence on Management of Data, pp. 207–216 (1993)

2. Appice, A., Ceci, M., Malgieri, C., Malerba, D.: Discovering relational emerging
patterns. In: Basili, R., Pazienza, M. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733,
pp. 206–217. Springer, Heidelberg (2007)

3. Baralis, E., Garza, P.: Majority classification by means of association rules. In:
Lavrac, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS
(LNAI), vol. 2838, pp. 35–46. Springer, Heidelberg (2003)

4. Ceci, M., Appice, A.: Spatial associative classification: propositional vs structural
approach. Journal of Intelligent Information Systems 27(3), 191–213 (2006)

5. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier
under Zeo-Ones loss. Machine Learning 28(2-3), 103–130 (1997)

296 M. Ceci, A. Appice, and D. Malerba

6. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and
differences. In: International Conference on Knowledge Discovery and Data Mining,
pp. 43–52. ACM Press, New York (1999)

7. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating
emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI),
vol. 1721, pp. 30–42. Springer, Heidelberg (1999)

8. Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Heidelberg (2001)
9. Fan, H., Ramamohanarao, K.: An efficient singlescan algorithm for mining essen-

tial jumping emerging patterns for classification. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 456–462 (2002)

10. Fan, H., Ramamohanarao, K.: A bayesian approach to use emerging patterns for
classification. In: Australasian Database Conference, vol. 143, pp. 39–48. Australian
Computer Society, Inc. (2003)

11. Fan, H., Ramamohanarao, K.: A weighting scheme based on emerging patterns for
weighted support vector machines. In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y.,
Yager, R.R., Zhang, B. (eds.) IEEE International Conference on Granular Com-
puting, pp. 435–440 (2005)

12. Helft, N.: Inductive generalization: a logical framework. In: Progress in Machine
Learning, pp. 149–157. Sigma Press (1987)

13. Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A new instance-based
lazy discovery and classification system. Machine Learning 54(2), 99–124 (2004)

14. Liu, B., Hsu, W., Ma, Y.: Integrative classification and association rule mining. In:
Proceedings of AAAI Conference of Knowledge Discovery in Databases (1998)

15. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

16. Pazzani, M., Mani, S., Shankle, W.: Beyond concise and colorful: learning intel-
ligible rules. In: Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining, pp. 235–238. AAAI Press, Menlo Park (1997)

17. Plotkin, G.D.: A note on inductive generalization. 5, 153–163 (1970)
18. Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal

of the ACM 12, 23–41 (1965)
19. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:

SIAM International Conference on Data Mining (2003)
20. Zhang, X., Dong, G., Ramamohanarao, K.: Exploring constraints to efficiently mine

emerging patterns from large high-dimensional datasets. In: Knowledge Discovery
and Data Mining, pp. 310–314 (2000)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 297 – 311, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Rosso Tiziano: A System for User-Centered Exploration
and Discovery in Large Image Information Bases

Giovanni Maria Sacco

Dipartimento di Informatica, Università di Torino, Corso Svizzera 185,
10149 Torino, Italy

sacco@di.unito.it

Abstract. Retrieval in image information bases has been traditionally addressed
by two different and unreconciled approaches: the first one uses normal query
methods on metadata or on a textual description of each item. The second one
works on low-level multimedia features (such as color, texture, etc.) and tries to
find items that are similar to a specific selected item. Neither of these ap-
proaches supports the most common end-user task: the exploration of an infor-
mation base in order to find the “right” items. This paper describes a prototype
system based on dynamic taxonomies, a model for the intelligent exploration of
heterogeneous information bases, and shows how the system implements a new
access paradigm supporting guided exploration, discovery, and the seamless
integration of access through metadata with methods based on low-level multi-
media features. Example interactions are discussed, as well as the major impli-
cations of this approach.

1 Introduction

Current research on image retrieval focuses on two different and unreconciled ap-
proaches for accessing multimedia databases: the metadata approach as opposed to
the content-based approach. In the metadata approach, each image is described by
metadata. Metadata types range from a set of keywords or a textual description, to
standardized structures for metadata attributes and their relationships like the MPEG-
7 standard [8], to ontologies [20]. While some metadata (e.g. image format) can be
automatically derived from the image itself, the vast majority of them are manually
entered. Once the items in the collection are described by metadata, the type and ac-
tual content of the item itself becomes irrelevant for browsing and retrieval and only
needed when the item itself has to be “shown” to the user. From this point of view, it
is intuitively appealing and straightforward to use techniques such as database queries
on structured metadata or text retrieval queries on metadata consisting of a textual
description of the multimedia item.

The content-based approach (CBIR, content-based image retrieval) describes the
image through low-level features such as color, texture, shape, etc. which are auto-
matically extracted from images. Retrieval is based on similarity among images: the
user provides an item (selected through metadata or, in some cases, at random) and
requests similar ones.

Both approaches suffer from significant drawbacks. The metadata approach relies
on descriptions that are known to be inaccurate, heavily dependent on the specific

298 G.M. Sacco

human classifier, ambiguous, etc. These problems can be alleviated by using onto-
logical metadata rather than plain text descriptions, but a level of subjectivity remains.
In addition, semantic annotation is costly, especially for large, existing databases.

CBIR originated as an attempt to overcome these problems, by stressing the auto-
matic extraction of “descriptions” from the image itself. This process is inexpensive
and parallelization can overcome any capacity problems. In addition, the characteriza-
tion is completely objective, and does not suffer from the inconsistencies caused by
human classification. However, despite significant improvements over the years, the
accuracy of CBIR systems is admittedly less than satisfactory. The main reason for
this is the semantic gap or “… the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data have for
the user in a given situation" [21]. We believe that no CBIR system will be able to
reconstruct all relevant information in all situations: in many practical cases, the in-
formation is just not there. As an example, a photo with a mountain scene is similar to
many other mountain scenes, but it can come from different (mountain) countries. If
the photo chosen as the cover for a leaflet by the Austrian Tourist Office turns out to
be from France or Italy, a less than enthusiastic client can be expected.

In considering user access, it is obvious that the dichotomy between the two ap-
proaches (metadata vs. low-level features) forces the user to use different access
strategies that only depend on the type of feature (conceptual or low-level) he is con-
sidering. Most importantly, from the user point of view, none of these approaches
really supports an exploratory access to the image collection, which we believe to be
the most common access paradigm. Consider our user looking for the cover photo for
the Austrian Tourist Office. She would probably like to find out which types of pho-
tos on Austria the information base stores: e.g. mountains, towns, museums, etc. Once
she focused on the most interesting type (according to her current requirements), say
mountains, she might be interested in knowing that there are winter, spring, etc. pho-
tos on mountains, or there are photos with a specific dominant, etc.

In short, the user needs to explore the information base. We define exploration as
an iterative activity in which the user must be able to:

1. have a systematic summary S of the entire universe U
2. freely focus on any subset of the entire universe F ⊆ U and have a systematic

summary S’ of F
3. repeat 2 by setting additional, secondary foci until the number of selected items is

sufficiently small for manual inspection.

The major difference between exploration and plain browsing rests on systematic
summaries that provide concise descriptions of content that would otherwise require a
time-consuming scan of the actual items. This implies that some sort of conceptual
organization exists and that the exploration system is able to summarize any subset of
the collection based on such organization. Closely linked to our definition of explora-
tion is the notion of discovery: the user exploring the information base will often
discover new and unexpected relationships among concepts. We want to stress here
that exploration is not an additional, desirable feature of a multimedia information
retrieval system. On the contrary, we believe that, in most practical cases, retrieval
without exploration is just a trial-and-error task, with no guarantee of the quality of
the user’s final choice.

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 299

The access paradigm supported by most current image retrieval systems is quite
different. Systems based on metadata use access techniques such as queries on struc-
tured data or text retrieval techniques that work on precise specifications and do not
support exploration because they produce flat result lists. The inadequacy of these
tools for exploration has been discussed in literature [14, 4]. CBIR systems use infor-
mation retrieval techniques that are centered on retrieval by similarity. This type of
access affords a very simple and intuitive user interaction, but offers no clue on what
the information base contains. Systems that organize images through hierarchical
clustering, e.g. [22], do offer an initial systematic summary of the collection, but do
not account for the iterative refinement required by our working definition of explora-
tion. From this point of view, they are similar to traditional taxonomies that offer
conceptual but static summaries.

There are very few exceptions. Sacco [14] considered the application of dynamic
taxonomies, a knowledge management model that supports exploration (and forms the
backbone of the present approach) to multimedia databases described by conceptual
metadata. The same model was used by Hearst et al. [4] to build a prototype system,
Flamenco, that was successfully applied to a rather large image collection [24]. These
works rely on conceptual metadata features and ignore low-level multimedia features.
From another perspective, El Niño, a prototype system by Santini and Jain [19], fo-
cuses on browsing based on low-level features and textual descriptions. As we com-
mented before, browsing is quite different from our definition of exploration. El Niño,
in fact, works on a multi-feature weighted similarity measure and relies on a visual
relevance feedback interface to modify these weights and try to match the user notion
of similarity.

The approach we describe here extends the initial ideas reported in [15] and pro-
poses a significant change in access paradigms, based on dynamic taxonomies. A
system was implemented in order to make all the implications of the non-traditional
design directions we are taking concrete. The prototype system discussed here has
several goals. First, we provide a single, coherent framework that seamlessly inte-
grates access by metadata and access by low-level features: it considerably simplifies
user access, and each access method reinforces the effectiveness of the other one.
Second, this framework is used to support the exploration of image collections, so that
both metadata and low-level features can be used to express interest foci, and at the
same time to systematically summarize them, in order to guide the user towards his
goal. A number of problems that are relevant in this context are discussed in the fol-
lowing. Finally, such a prototype system, in which different low-level features ap-
proaches can be easily integrated and compared, can provide an excellent test bed for
the future evaluation of different strategies, integrated access and human factors in
general. At the present stage, we report the first informal findings of users experi-
menting with the system.

The information base used in the examples below consists of 251 images of five
masters of the Italian Renaissance: Piero della Francesca, Masaccio, Antonello da
Messina, Paolo Uccello and Raphael. Each work was thoroughly classified according
to a number of topics that include, among others, the painter name, the type of paint-
ing (single, polyptic, etc.), the technique used (oil, tempera, etc.), the period in which
it was painted, current locations, the themes (religious painting, portrait), etc. Differ-
ently from other test image databases, which usually exhibit widely different images,

300 G.M. Sacco

the images in the sample collection are relatively similar and therefore harder to char-
acterize. In addition, the collection is a good representative of one of the most impor-
tant applications of image retrieval: museum and art collections. The sample infobase
is available on-line at http://tiziano.di.unito.it, and is managed by Knowledge Proces-
sors’ Universal Knowledge Processor [5].

Although we focus here on describing image information bases through low-level
features and metadata, the dynamic taxonomy approach can be used in a number of
variations, by considering metadata only or low-level features only, or by integrating
traditional CBIR retrieval by similarity with a dynamic taxonomy metadata descrip-
tion in order to clarify contexts for similar objects.

2 Dynamic Taxonomies Reviewed

Dynamic taxonomies ([13, 14], also known as faceted search) are a general knowl-
edge management model for complex, heterogeneous information bases. It has an
extremely wide application range [18] that includes, among others, electronic com-
merce, e-government, human resource management and medical guidelines and diag-
nosis. The intension of a dynamic taxonomy is a taxonomy designed by an expert, i.e.
a concept hierarchy going from the most general to the most specific concepts. A
dynamic taxonomy does not require any other relationships in addition to subsump-
tions (e.g., IS-A and PART-OF relationships) and directed acyclic graph taxonomies
modeling multiple inheritance are supported but rarely required.

Dynamic taxonomies work on conceptual descriptions of items, so that heteroge-
neous items of any type and format can be managed in a single, coherent framework.
In the extension, items can be freely classified under several topics at any level of
abstraction (i.e. at any level in the conceptual tree). This multidimensional classifica-
tion is a generalization of the monodimensional classification scheme used in conven-
tional taxonomies and models common real-life situations. First, an item is very rarely
classified under a single topic, because items are very often about different concepts.
Second, items to be classified usually have different independent features (e.g. Time,
Location, etc.), each of which can be described by an independent taxonomy. These
features are often called perspectives or facets.

By defining concepts in terms of instances rather than properties, a concept C is
just a label that identifies all the items classified under C. Because of the subsumption
relationship between a concept and its descendants, the items classified under C
(items(C)) are all those items in the deep extension of C, i.e. the set of items identified
by C includes the shallow extension of C (all the items directly classified under C)
union the deep extension of C’s sons. By construction, the shallow and the deep ex-
tension for a terminal concept are the same.

There are two important consequences of our approach. First, since concepts iden-
tify sets of items, logical operations on concepts can be performed by the correspond-
ing set operations on their extension. Second, dynamic taxonomies can infer all the
concepts related to a given concept C, on the basis of empirical evidence: these con-
cepts represent the conceptual summary of C. Concept relationships other than IS-A
are inferred through the extension only, according to the following extensional infer-
ence rule: two concepts A and B are related if there is at least one item d in the

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 301

infobase which is classified at the same time under A (or under one of A’s descen-
dants) and under B (or under one of B’s descendants). For example, an unnamed
relationship between Raphael and Rome can be inferred if an item classified under
Raphael and Rome exists in the infobase. At the same time, since Rome is a descen-
dant of Italy, also a relationship between Raphael and Italy can be inferred.

The extensional inference rule can be easily extended to cover the relationship be-
tween a given concept C and a concept expressed by an arbitrary subset S of the uni-
verse: C is related to S if there is at least one item d in S which is also in items(C). In
this way, the extensional inference rule can produce conceptual summaries not only
for base concepts, but also for any logical combination of concepts and, most impor-
tantly, access through dynamic taxonomies can be easily combined with other re-
trieval methods such as information retrieval, etc.

2.1 Information Access through Dynamic Taxonomies

The user is initially presented with a tree representation of the initial taxonomy for the
entire infobase. In general, each concept label has also a count of all the items classi-
fied under it (i.e. the cardinality of items(C) for all C’s), because this statistical infor-
mation is important to guide the search. The initial user focus F is the universe (i.e. all
the items in the infobase). In the simplest case, the user can then select a concept C in
the taxonomy and zoom over it. The zoom operation changes the current state in two
ways. First, the current focus F is refined by intersecting it with C (i.e., with
items(C)); items not in the focus are discarded. Second, the tree representation of the
taxonomy is modified in order to summarize the new focus. All and only the concepts
related to F are retained and the count for each retained concept C’ is updated to re-
flect the number of items in the focus F that are classified under C’. The reduced
taxonomy is a conceptual summary of the set of items identified by F, exactly in the
same way as the original taxonomy was a conceptual summary of the universe. In
fact, the term dynamic taxonomy is used to indicate that the taxonomy can dynami-
cally adapt to the subset of the universe on which the user is focusing, whereas tradi-
tional, static taxonomies can only describe the entire universe.

The retrieval process is an iterative thinning of the information base: the user se-
lects a focus, which restricts the information base by discarding all the items not in
the current focus. Only the concepts used to classify the items in the focus, and their
ancestors, are retained. These concepts, which summarize the current focus, are those
and only those concepts that can be used for further refinements. From the human
computer interaction point of view, the user is effectively guided to reach his goal, by
a clear and consistent listing of all possible alternatives.

The advantages of dynamic taxonomies over traditional methods are dramatic in
terms of convergence of exploratory patterns and in terms of human factors. Three
zoom operations on terminal concepts are sufficient to reduce a ten million-item in-
formation base to an average ten items [17]. Dynamic taxonomies require a very light
theoretical background: namely, the concept of a subject index (i.e. the taxonomic
organization) and the zoom operation, which seems to be very quickly understood by
end-users. Hearst et al. [4] and Yee et al. [24] conducted usability tests on a corpus of
art images described by metadata only, showing a significantly better recall than

302 G.M. Sacco

access through text retrieval and, perhaps more importantly, the feeling that one has
actually considered all the alternatives in reaching a result.

3 Combining Conceptual Access with Low-Level Multimedia
 Features

Access by low-level multimedia features is usually based on clustering: items are
grouped on the basis of the values of one or more features, say color, according to a
measure of similarity between any two items. The goal is to create clusters in such a
way that the similarity between any two items in a cluster K is higher than the similar-
ity between any item in K and any item not in K. Techniques of this type derive from
the ample body of research on clustering for textual information bases. Generally a
vector space model is used, in which a item is represented by an n-dimensional vector
x=(x1, …, xn). The similarity between any two items can then be computed as the
distance d(x, y) between the two vectors that represent the items; the cosine of the
angle between the two vectors is generally used, but other measures, such as Jaccard’s
coefficient, can be used. This geometric interpretation has an additional benefit, in
that a cluster of items can be represented by its centroid, which is either the barycen-
ter of the cluster or the item closest to it.

If we ignore the geometric interpretation of clusters, a cluster merely identifies a
set of items that are grouped together by some affinity. This definition is, for all ac-
cess purposes, equivalent to the definition of a concept in a dynamic taxonomy. In
fact, in a dynamic taxonomy, a concept denotes a set of items classified under it,
rather than a set of properties that instances of a concept must satisfy. Consequently, a
rather straightforward strategy to integrate clusters in a dynamic taxonomy is by add-
ing a top-most concept (or “facet”) for each clustering scheme, with its actual clusters
being the sons of this concept. For instance, if a clustering scheme by dominant color
exists, a facet labeled “dominant color” will be added at the top-most level. Its sons
will be all the clusters grouping items by dominant color similarity.

There are two obvious problems. The first one is how these clusters are to be la-
beled in such a way that their content is easily identifiable and understandable: label-
ing strategies are discussed in the following. The second problem is that, in most
situations, the number of clusters for each feature will be large and difficult to repre-
sent in the interface and to manipulate by users: hierarchical clustering schemes can
greatly simplify the effectiveness of interaction.

In the approach presented here, methods based on low-level features benefit from
dynamic taxonomies in two basic ways. First, combinations of concepts can be used
to supply a conceptual context to such methods, and consequently reduce noise. Such
a context “is essential for determining the meaning of an image and for judging image
similarity” [19]. Alternatively, when the user starts from retrieval based on low-level
features, dynamic taxonomies can be used to quickly summarize the result according
to the original conceptual taxonomy, thus increasing the precision of the result. This is
especially important in order to quickly correlate low-level features with metadata.

As an example, consider a user starting from a low-level feature such as a blue domi-
nant color. Focusing on it, the system will show in the conceptual summary that images
with a blue dominant color include skies, sea, lakes, cars, etc. Conversely, a user

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 303

focusing on skies will find that images of skies may have a blue dominant color, but
also a yellow one, a red one, etc. In both cases, the conceptual summary indicates which
conceptual contexts are available to further refine user access.

As we mentioned before, the integration of metadata access with access by low-
level features boosts the effectiveness of each type of access. Very simple features,
such as dominant color, are probably not sufficient per se to provide an effective
access to a large image base: however, when combined with other features, they can
provide a useful discrimination. On the other hand, the availability of low-level fea-
tures may make it useless to manually enter a large number of metadata descriptions,
and as we show below, even a simple and small metadata structure can produce sig-
nificant benefits in access and exploration.

In fact, an extremely important point in the application of dynamic taxonomies to
image (and, in general, multimedia) information bases is the dramatic convergence
dynamic taxonomies offer. Following the analysis reported in [17], assume that we
organize the taxonomy for an image base containing D items as a faceted taxonomy
with j facets. This means that the taxonomy is composed by j independent sub-
taxonomies, e.g. topics, dominant colors, luminance, etc. For the sake of simplicity,
assume that the set of terminal concepts T in the dynamic taxonomy is partitioned into
j subsets of the same size. Under this assumption, each partition has T/j (T/j≥2) termi-
nal concepts. Assume now that each image d is classified under one and only one leaf
concept C in each partition, and that the probability of classifying d under C is uni-
form for each partition. The average number of images to be manually scanned R (i.e.
the cardinality of the current focus F) after k zoom operations is

jkjT
T

j
DR

k

≤≤≥⎟
⎠
⎞

⎜
⎝
⎛= 0,2, (1)

Assume now an image base of ten million items, and a taxonomy of 1000 terminal
concepts organized in 10 facets, each having 100 terminal concepts. In the case of
low-level features, terminal concepts correspond to feature values (e.g. a specific
level of luminance). According to (1), on the average, one zoom operation produces a
focus with 100,000 images, two zooms produce a focus consisting of 1,000 images,
and three zooms select 10 images.

The main indications of this analysis are two. First, we do not need many features
as long as they are sufficiently uncorrelated [17] and even low-selectivity features can
be used in practice. Second, the upward scalability of dynamic taxonomies is dra-
matic, even with compact taxonomies. In the example, a maximum of 10 zoom opera-
tions can be performed: they are sufficient to produce a focus of 10 images for an
image base consisting of 1021 images.

4 Monodimensional vs. Multidimensional Clustering

Most current research accounts for the diversity of features by computing an overall
similarity distance for the images in the database by linearly combining the similarity
distance of each individual feature, such as low-level multimedia features (e.g. color)
or conceptual features, such as a painter name. Clustering groups items together ac-
cording to a single similarity measure, and consequently each item belongs to one and

304 G.M. Sacco

only one cluster. We call this type of clustering a monodimensional clustering by
analogy with classification theory. If a hierarchical clustering scheme is used, mono-
dimensional clustering is similar to a traditional, monodimensional taxonomy.

In alternative, each feature can be considered independently: each feature will re-
sult, in general, into a different clustering scheme because, for instance, two items
similar by texture may have different colors. In this case, an item will belong to dif-
ferent clusters. We call this multidimensional clustering1.

Here we criticize the use of monodimensional clustering schemes by comparing
them to multidimensional clustering schemes. By switching from monodimensional
clustering to multidimensional clustering on F features, the cost of clustering in-
creases by a factor F, because all the items have to be fully clustered for each feature.
However:

1. the notion of similarity is inaccurate and ineffective in monodimensional cluster-
ing and classification, and

2. an exponential growth in the number of clusters is required if the number of items
in a cluster is to be kept at a reasonable low level.

In monodimensional clustering, a given multimedia item is represented by a point
in a multidimensional space, computed as the weighted combination of the item’s
low-level multimedia features. Similarity between any two items is then computed as
the inverse of their distance in this space and depends on the weights used to combine
low-level features. Consider two low-level features such as color and texture. Differ-
ent users will generally use different weights to combine these features, according to
their interests: user A may be more interested in color than in texture, whereas user B
could be more interested in texture than in color. Different weights on these features
imply different similarity functions, so that items a and b can be similar for user A
and quite different for user B. However, since a single, predefined similarity function
is used for clustering, the resulting clustering scheme only accommodates those users
whose notion of similarity matches the predefined function. In order to accommodate
other users, in this same framework, clustering should be performed dynamically on a
similarity function given by the user himself. However, this is not feasible for two
reasons:

1. cost, as the dynamic reclustering of large information bases requires substantial
resources and time. Reclustering is required in El Niño [19]. A similar approach
in textual databases, Scatter-Gather [1], is criticized in [14];

2. human factors, because it is unlikely that the average, unskilled user would be
able to understand the effects of weights and hence come up with appropriate
weights for different features. A similar problem occurs in product selection in e-
commerce, and is discussed in [16].

Even validation of results can be seriously biased by a monodimensional cluster-
ing. In fact, weighting coefficients that combine feature similarity play a fundamental
part on clustering and access by similarity, so that it may become difficult to

1 Clustering theory is indeed defined in a multidimensional space: but in classic clustering an

item a only belongs to single cluster, whereas clustering schemes based on a multidimen-
sional classification can place the same item in different clusters, according to different simi-
larity measures.

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 305

discriminate between the actual advantages offered by specific features and the ran-
dom effects of a specific weighting scheme.

In addition, a hierarchical monodimensional clustering scheme is analogous to a
traditional monodimensional taxonomy, and the analysis reported in [17] applies. In
particular, the maximum resolution of a hierarchical clustering scheme with T termi-
nal clusters is MR=1/T. Compare this resolution with the maximum resolution of a
multidimensional scheme with the same number T of terminal clusters organized
according to j facets, which is MR=1/(T/j)j. The reducing power of a multidimen-
sional clustering scheme is jj/T(j-1) higher than the corresponding monodimensional
scheme.

From another prospective, note that the average number of images to be manually
scanned R is given by R=D/T. Therefore in order to have a reasonable result size, say
R ≅ 10, we need a number of terminal clusters that is just one order of magnitude less
than the image collection size. From the one hand, such a high number of clusters is
difficult to manage and access by end-users. From the other hand, there is no guaran-
tee that such a fine subdivision can be produced.

Therefore, the advantages of multidimensional clustering over monodimensional
scheme are analogous to those that we discussed for multidimensional vs. monodi-
mensional taxonomies: namely, a dramatically better scalability and the ability to
correlate different features. As an example, we can zoom on a specific texture cluster,
and immediately see all the color clusters for that texture. In addition, custom simi-
larities can be easily expressed.

In summary, we believe that multidimensional clustering strategies deserve close
attention, because of their faster convergence and, most importantly, because they
present visual similarities according to different perspectives (color, luminance, etc.),
and allow for a more articulated exploration of the information base.

5 Representing Low-Level Features and Clusters

In addition to metadata, each image in the sample collection is automatically de-
scribed by a number of independent low-level features. These include:

1. average image brightness
2. average image saturation
3. HSV histogram
4. clustering on average color in CIE L*a*b color space on a 4x4 grid

Each image was first reduced to a 250x250 size, while preserving the aspect ratio.
For all features except the last, images were converted to the HSV color space, which
is perceptually more accurate than the RGB color space. We record the image color
histogram, using the color reduction proposed by Lei et al. [7]. A Gaussian blur is
applied to the image before conversion to the HSV color space, in order to avoid
noise, and HSV colors are mapped to 36 bins based on the perceptual characteristics
of the color itself.

The last low-level feature records average colors. Each image axis is subdivided
into 4 intervals, giving 16 areas: the average color of each area is computed. The
aspect ratio is not preserved. Here, the image is first converted to the CIE L*a*b color

306 G.M. Sacco

Fig. 1. Multidimensional
low-level features: clus-
tering of average color
on a 4x4 grid. Clusters
are labelled by their
barycenter.

Fig. 2. Monodimensional low-
level features: average bright-
ness and average saturation

Fig. 3. Bidimensional low-
level features: reduced HSV
histogram

space, because linear color combinations in this space are perceptually more accu-
rate than in other spaces. Each image is then represented by a vector on 16 dimen-
sions and clustering is applied, based on the cosine measure. The entire collection
was clustered into 10 clusters, by using an agglomerative complete-link clustering
algorithm [6]. We predefined 10 clusters (see Fig. 1), a number chosen according to
the guidelines from [14]: a larger collection would require a hierarchical clustering
scheme.

Since the number and variety of low-level features that can be used to describe im-
ages is significant, we do not strive for an exhaustive coverage, and important features
such as textures, regions, shapes, and salient points [23] are not considered here. In-
stead, we focus on simple features and problems common to significant classes of
features.

Although the discussion in the previous sections focused on clustering, many low-
level features can be represented by a priori fixed hierarchical organizations of the
feature space. As an example, monodimensional image data such as average or domi-
nant color, overall luminance, etc., can be easily represented by a facet with k sons,
each representing a possible value. The label of each son can usually be provided by
the value (color, luminance level, etc.) itself. In the example, we subdivided both
average brightness and saturation in 10 intervals (figure 2). Although a much finer
subdivision is supported by measurements, finer subdivisions would be useless from
the perceptual point of view.

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 307

A similar organization applies also to a number of bidimensional features, such as
color histograms [10]. The color histogram facet can be represented by a 2-level hierar-
chy, where colors are enumerated on the first level (immediate sons of the facet). Each
color is further characterized, at the next level, by its normalized count, organized as
range of values. The structure reported in the figures is slightly more complex than
normal histograms. Here, in fact, the highest level reports principal colors (8 shades of
gray and the 8 main colors, red to purple); at the lower level, each main color is subdi-
vided into 4 actual colors, by using different luminance and saturation (figure 3).

More complex image representations such as spatial sampling of average color, sali-
ent points, etc. are not easily represented in this way. In these cases, hierarchical cluster-
ing is required, and the problem of conveying the “meaning” of each cluster has to be
solved. In traditional clustering, clusters are usually labeled by their centroid: either the
cluster barycenter or the item closest to it. Even with text-based clustering, the meaning
of the cluster is often so unclear as to pose serious cognitive challenges to the user [14].
With image representations, these problems are considerably worse, because the image
features used by clustering might be difficult to understand. In our example, we labeled
clusters by their stylized barycenter rather than by the image closest to the barycenter,
because a specific image might not convey the rationale used for clustering. For in-
stance, a tondo (i.e. a circular painting) is rather uncommon, since the usual format is
rectangular. If a tondo is used to label a cluster, users are likely to assume that the clus-
ter contains tondos, whatever the correct interpretation might be.

6 Examples of Exploration

Figures 4 to 9 report three different explorative sessions that show the significant
advantages of the current approach. In the first session, the user starts her exploration
from a low-level feature, the average image brightness, and selects dark paintings
(figure 4), i.e. paintings with a brightness of 20% or less. After the zoom operation,
the reduced taxonomy in figure 5 indicates that only Antonello da Messina and Raph-
ael painted dark paintings, and that almost all such paintings are portraits. If the user
displays these portraits, he will notice that they have a black background. If you won-
der why no other painters produced dark paintings, the explosion of the Technique
topic will show you that both painters are the only masters in the collection that use
oil painting. All the other masters used tempera, a technique using water and egg-yolk
(instead of oil) as a binding medium. Tempera paintings tend to be much brighter.

In the second session, exploration starts from metadata: Painter>Masaccio and
then Theme>Sacred are zoomed upon (figure 6). The result is then summarized ac-
cording to the HSV histogram, and paintings that have an orange-ish color are dis-
played (figure 7). As you will notice, almost all the sacred paintings by Masaccio fall
in this category: these are paintings with a golden background (the so-called fondo
oro) that is typical of Italian sacred paintings of the fifteenth century.

Finally, in the third and last session, clustering on a 4x4 grid is used to explore Por-
traits by Antonello da Messina (figure 8). From the clusters in the reduced taxonomy,
most portraits fall in a single cluster, which means they are visually very similar. In
fact, almost all the portraits by Antonello have a very dark background (see the first
session) and the face covers most of the painting (figure 9).

308 G.M. Sacco

Fig. 4. Zooming
on dark paintings

Fig. 5. Exploring dark paintings: only Raphael and Antonello have dark
items, and almost all are portraits. Dark portaits are expanded.

Fig. 6. Zooming
on Sacred paint-
ings after a zoom
on Masaccio

Fig. 7. Histogram summary of Masaccio’s sacred paintings: paintings
with orange-ish colors are displayed

Three simple and quick sessions show how the information base can be effortlessly
explored, gaining insights on its contents: in fact, we discovered relationships and fea-
tures of the image collection that no other access method would have made available.

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 309

Fig. 8. Zooming on
Portaits paintings, after
a zoom on Antonello

Fig. 9. Cluster summary of Antonello’s portraits: displaying the
selected cluster

7 Conclusions and Future Research

A unified intelligent browsing system for complex multimedia information bases was
presented. Dynamic taxonomies allow users to explore complex and large multimedia
information bases in a totally assisted way without unnecessary constrictions or
asymmetries in search paths. They effectively integrate low-level multimedia features
and conceptual metadata features in a unique, integrated visual framework, in which
both features can be used to focus on and to conceptually summarize portions of the
infobase.

The shift in the access paradigm has important implications on how low-level fea-
tures are selected and used in the present context. Traditional CBIR systems strive to
capture image “semantics” through a mix of high quality features. Here, instead, it is
much more important that the features used are easily understood by users and that
they capture image characteristics that are useful for exploration. In fact, we hypothe-
size that an array of simple features, such as the ones we used in the examples above,
may be adequate, because of the very quick convergence of dynamic taxonomies,
even for very large and more complex image collections. It is tempting to call RAIF
(redundant array of inexpensive features) such an approach and to see a strong anal-
ogy with RAID techniques in disk technology. In both cases, the intelligent combina-
tion of very simple items (features in the present context, disks in RAID) produces a
holistic result that is much better than the original components.

310 G.M. Sacco

Although formal usability studies are required, the first informal tests on people
reasonably familiar with the paintings in the information base show some interesting
trends. First, most explorations start from metadata with low-level features used in
later stages in order to find visual similarities among paintings characterized by se-
mantic metadata descriptions. If confirmed by formal experiments, this would indi-
cate that both access by metadata and by low-level features are required and must be
dealt with in a uniform way. In addition, feature-only CBIR’s that do not support
metadata access would not seem to match user interactions and requirements.

Second, users found that the ability to see images clustered according to different and
independent visual features quite important in exploring the information base, and in
discovering effective visual similarities. Again, if confirmed, this would make a case for
multidimensional clustering and simple, easy-to-understand low-level features.

References

1. Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/Gather: a cluster-based
approach to browsing large document collections. ACM SIGIR, 318–329 (1992)

2. Datta, R., Li, J., Wang, J.Z.: Content-Based Image Retrieval - Approaches and Trends of
the New Age. In: ACM MIR (2005)

3. Gärdenfors, P.: Conceptual Spaces – The Geometry of Thought. MIT Press, Cambridge
(2000)

4. Hearst, M., et al.: Finding the Flow in Web Site Search. Comm. of the ACM 45(9), 42–49
(2002)

5. Knowledge Processors, The Universal Knowledge Processor (1999),
http://www.knowledgeprocessors.com

6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Lei, Z., Fuzong, L., Bo, Z.: A CBIR method based on color-spatial feature, TENCON
1999. In: Proc of the IEEE Region 10 Conference, pp. 166–169 (1999)

8. Martinez, J. (ed.): MPEG 7 – Overview, ISO/IEC JTC1/SC29/WG11 N4980 (2002)
9. McDonald, S., Tait, J.: Search strategies in content-based image retrieval. ACM SIGIR,

80–87 (2003)
10. Niblack, W., Barber, R., et al.: The QBIC Project: Querying Images By Content Using

Color, Texture, and Shape. In: SPIE, vol. 1908, pp. 173–181 (1993)
11. Ranganathan, S.R.: The Colon Classification, vol. 4. Rutgers University Press, New Jersey

(1965)
12. Sanderson, M., Croft, B.: Deriving concept hierarchies from text. ACM SIGIR (1999)
13. Sacco, G.M.: Navigating the CD-ROM. In: Proc. Int. Conf. Business of CD-ROM (1987)
14. Sacco, G.M.: Dynamic Taxonomies: A Model for Large Information Bases. IEEE Trans-

actions on Knowledge and Data Engineering 12(3) (2000)
15. Sacco, G.M.: Uniform access to multimedia information bases through dynamic taxono-

mies. In: IEEE 6th Int. Symp. on Multimedia Software Engineering (2004)
16. Sacco, G.M.: The intelligent e-store: easy interactive product selection and comparison. In:

7th IEEE Conf. on E-Commerce Technology, IEEE CEC 2005 (2005)
17. Sacco, G.M.: Analysis and Validation of Information Access through Mono, Multidimen-

sional and Dynamic Taxonomies. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen,
T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 659–670. Springer,
Heidelberg (2006)

18. Sacco, G.M.: Some Research Results in Dynamic Taxonomy and Faceted Search Systems.
In: SIGIR 2006 Workshop on Faceted Search (2006)

 Rosso Tiziano: A System for User-Centered Exploration and Discovery 311

19. Santini, S., Jain, R.: Integrated Browsing and Querying for Image Databases. IEEE Mul-
tiMedia 7(3), 26–39 (2000)

20. Schreiber, A.T., Dubbeldam, B., Wielemaker, J., Wielinga, B.J.: Ontology-based photo
annotation. IEEE Intelligent Systems (2001)

21. Smeulders, A., et al.: Content-based image retrieval at the end of early years. IEEE Trans
on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

22. Stan, D.: A New Approach for Exploration of Image Databases. In: Proceedings of the
Grace Hopper Celebration of Women in Computing (2002)

23. Tian, Q., et al.: Image retrieval using wavelet-based salient points. Journal of Electronic
Imaging 10(4), 835–849 (2001)

24. Yee, K., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and
browsing. In: Proc ACM SIGCHI Conf. CHI 2003 (2003)

NM-Tree: Flexible Approximate Similarity

Search in Metric and Non-metric Spaces

Tomáš Skopal and Jakub Lokoč

Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic

{skopal,lokoc}@ksi.mff.cuni.cz

Abstract. So far, an efficient similarity search in multimedia databases
has been carried out by metric access methods (MAMs), where the uti-
lized similarity measure had to satisfy the metric properties (reflexivity,
non-negativity, symmetry, triangle inequality). Recently, the introduc-
tion of TriGen algorithm (turning any nonmetric into metric) enabled
MAMs to perform also nonmetric similarity search. Moreover, it simulta-
neously enabled faster approximate search (either metric or nonmetric).
However, a simple application of TriGen as the first step before MAMs’
indexing assumes a fixed “approximation level”, that is, a user-defined
tolerance of retrieval precision is preset for the whole index lifetime. In
this paper, we push the similarity search forward; we propose the NM-
tree (nonmetric tree) – a modification of M-tree which natively aggre-
gates the TriGen algorithm to support flexible approximate nonmetric
or metric search. Specifically, at query time the NM-tree provides a
user-defined level of retrieval efficiency/precision trade-off. We show the
NM-tree could be used for general (non)metric search, while the desired
retrieval precision can be flexibly tuned on-demand.

1 Introduction

As the digital devices for capturing multimedia data become massively available,
the similarity search in multimedia databases steadily becomes more important.
The metadata-based searching (using text/keywords/URL attached to multime-
dia documents, e.g., as at images.google.com) provides either limited search
capabilities or even is not applicable (for raw data). On the other hand, the
content-based similarity retrieval provides a native solution. The multimedia ob-
jects are retrieved based on their similarity to a query object (i.e., we suppose
the query-by-example modality). The similarity measure is domain-specific – we
could measure similarity of two images based on, for example, color histogram,
texture layout, shape, or any combination. In most applications the similarity
measure is regarded as computationally expensive.

In order to search a multimedia database efficiently enough, the database has
to be indexed so that the volume of explicitly computed similarity scores to
answer a query is minimized. That is, we try to avoid sequential scan over all
the objects in the database, and their comparing against the query object.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 312–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

NM-Tree: Flexible Approximate Similarity Search 313

1.1 Metric Search

A few decades ago, the database-oriented research established a metric-based class
of access methods for similarity search – the metric access methods (MAMs). The
similarity measure δ (dissimilarity or distance, actually) is modeled by a metric
distance function, which satisfies the properties of reflexivity, non-negativity, sym-
metry and triangle inequality. Based on these properties, the MAMs partition (or
index) the metric data space into classes, so that only some of the classes have to be
searched when querying; this results in a more efficient retrieval. To date, many
MAMs were developed, addressing various aspects – main-memory/database-
friendly methods, static/dynamic indexing, exact/approximate search, central-
ized/distributed indexing, etc. (see [21,15,4]). Although efficient in query process-
ing, MAMs force their users to employ just the metric similarity measures, which
is becoming a serious limitation nowadays.

1.2 Nonmetric Similarity

As the quantity/complexity of multimedia data grows, there is a need for more
complex similarity measuring. Here the metric model exhibits its drawbacks,
since the domain experts (being not computer scientists) are forced to “implant”
metric properties into their nonmetric measures, which is often impossible.

Fig. 1. Objections against metric properties in similarity measuring: (a) reflexivity (b)
non-negativity (c) symmetry (d) triangle inequality

However, a nonmetric similarity has also a qualitative justification. In partic-
ular, the reflexivity and non-negativity have been refuted by claiming that differ-
ent objects could be differently self-similar [11,19]. For example, in Figure 1a the
leaf on a trunk can be viewed as positively self-dissimilar if we consider the less
similar parts of the objects (here the trunk and the leaf). Or, alternatively, in
Figure 1b the leaf-on-trunk and leaf could be treated as identical if we consider
the most similar parts of the objects (the leaves). The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [13,14]. In Figure 1c, the more prototypical ”Great Britain and
Ireland” is more distant to the ”Ireland alone” than vice versa. The triangle
inequality is the most attacked property. Some theories point out the similar-
ity has not to be transitive [1,20]. Demonstrated by the well-known example, a

314 T. Skopal and J. Lokoč

man is similar to a centaur, the centaur is similar to a horse, but the man is
completely dissimilar to the horse (see Figure 1d).

1.3 Related Work

When compared to the rich research output in the area of metric access meth-
ods, there exist only few approaches to efficient nonmetric search. They include
mapping methods [2,12,7], where the nonmetric space is turned into a vector
space (mostly Euclidean). The distances in the target space are preserved more
or less approximately, while the approximation error is fixed and/or not known.
Similar approximate results achieve classification techniques [8,10]. Recently, an
exact search over a nonmetric database was introduced, assuming the query dis-
tribution is restricted to the database distribution [5], while the indexing is very
expensive (all pairwise distances on database objects must be computed).

Universal Solution. In our previous work we have introduced the TriGen algo-
rithm [17,16] – a universal approach to searching in (non)metric spaces – where
we addressed exact metric search, approximate metric search, (almost) exact
nonmetric search and approximate nonmetric search. All these retrieval types
can be achieved by turning the input (non)metric δ into a distance which satis-
fies the triangle inequality to some degree (including the full metric case). Such
a modified measure can be used by any MAM for indexing/querying. However,
as the proposed solution separates the measure conversion from the subsequent
MAM-related issues, querying on an index built using the modified measure can
be used to retrieval that is unchangeable in retrieval precision, that is, a retrieval
always exact or always approximate to some fixed extent. If the user wants to
adjust the desired precision, the entire database has to be reindexed.

Paper Contribution. In this paper we propose the NM-tree, a nonmetric (and
also metric) access method extending the M-tree. The NM-tree natively utilizes
the TriGen algorithm and provides retrieval precision adjustable at query time.

2 TriGen

The metric access methods are efficient because they use metric properties to in-
dex the database, especially the triangle inequality. However, in nonmetric spaces
a dissimilarity measure δ is not constrained by any properties, so we have no clue
for indexing. A way how to enable efficient nonmetric search is a transformation
to the (nearly) metric case by so-called T-bases. The reflexivity, non-negativity
and symmetry can be easily added to any nonmetric δ used for similarity search
(see [17]). We also assume the values produced by δ are scaled into 〈0, 1〉, which
is achieved for free when fixing the reflexivity and non-negativity.

The hard task is enforcing the triangle inequality. The TriGen algorithm
[17,16] can put more or less of the triangle inequality into any semimetric δ
(i.e., into any reflexive, non-negative, symmetric distance), thus any semimetric
distance can be turned into an equivalent full metric1, or to a semimetric which
1 In fact, the metric preserves the original query orderings (which is sufficient [17]).

NM-Tree: Flexible Approximate Similarity Search 315

satisfies the triangle inequality to some user-defined extent. Conversely, TriGen
can also turn any full metric into a semimetric which preserves the triangle in-
equality only partially; this is useful for faster but only approximate search. For
its functionality the TriGen needs a (small) sample of the database objects.

2.1 T-Bases

The principle behind TriGen is a usage of triangle triplets and T-bases. A triplet
of numbers (a, b, c) is triangle triplet if a + b ≥ c, b + c ≥ a, a + c ≥ b. The trian-
gle triplets can be viewed as witnesses of triangle inequality of a distance δ – if
all triplets (δ(Oi, Oj), δ(Oj , Ok), δ(Oi, Ok)) on all possible objects Oi, Oj , Ok are
triangle triplets, then δ satisfies the triangle inequality. Using triangle triplets
we measure the T-error – a degree of triangle inequality violation, computed as
the proportion of non-triangle triplets in all examined distance triplets.

Fig. 2. T-bases: (a) FP-base (b) RBQ(a,b)-base; for their formulas see [17]

A T-base f(x, w) is an increasing function (where f(0, w) = 0 & f(1, w) = 1)
which turns a value x ∈ 〈0, 1〉 of an input (semi)metric δ into a value of a
target (semi) metric δf , i.e., δf (·, ·) = f(δ(·, ·), w). Besides the input distance
value x, the T-base is parameterized also by a fixed weight w ∈ 〈−∞,∞〉 which
determines how concave or convex f should be. The higher w > 0, the more
concave f , which means also the lower T-error of any δf . Conversely, the lower
w < 0, the more convex f and the higher T-error of any δf (w = 0 means f is
identity). For example, in Figure 2 see two T-bases, the fractional power T-base
(FP-base) and one of the rational Bézier quadratic T-bases (RBQ-bases).

2.2 Intrinsic Dimensionality

When choosing very high w (i.e., very concave f), we could turn virtually any
semimetric δ into a full metric δf . However, such a modification is not very use-
ful. The more concave f , the higher intrinsic dimensionality [4,3] of the data
space – a characteristic related to the mean and variance computed on the set of

316 T. Skopal and J. Lokoč

pairwise distances within the data space. Simply, a high intrinsic dimensionality
of the data leads to poor partitioning/indexing by any MAM (resulting in slower
searching), and vice versa. On the other hand, the more convex f , the lower in-
trinsic dimensionality of the data space but also the higher the T-error – this
results in fast but only approximate searching, because now the MAMs’ assump-
tion on fully preserved triangle inequality is incorrect. Hence, we have to make
a trade-off choice – whether to search quickly but only approximately using a
dissimilarity measure with higher T-error, or to search slowly but more precisely.

2.3 The TriGen Algorithm

Given a user-defined T-error tolerance θ, a sample S of the database, and an
input (semi)metric δ, the TriGen’s job is to find a modifier f so that the T-error
of δf is kept below θ and the intrinsic dimensionality of (S, δf) is minimized2. For
each of the predefined T-bases the minimal w is found (by halving the weight
interval), so that the weight w cannot be further decreased without T-error
exceeding θ. Among all the processed T-bases and their final weights, the one
is chosen which exhibits the lowest intrinsic dimensionality, and returned by
TriGen as the winning T-modifier (for details of TriGen see [17]).

The winning T-modifier could be subsequently employed by any MAM to
index and query the database using δf . However, at this moment a MAM’s
index built using δf is not usable if we want to change the approximation level
(the T-error of δf), that is, to use another f . This is because MAMs accept the
distance δf as a black box; they do not know it is a composition of δ and f . In
such case we have to throw the index away and reindex the database by a δf2 .

In this paper we propose the NM-tree, a MAM based on M-tree natively uti-
lizing TriGen. In NM-tree, any of the precomputed T-modifiers fi can be flexibly
chosen at query time, allowing the user to trade performance for precision.

3 M-Tree

The M-tree [6] is a dynamic metric access method that provides good perfor-
mance in database environments. The M-tree index is a hierarchical structure,
where some of the data objects are selected as centers (references or local piv-
ots) of ball-shaped regions, and the remaining objects are partitioned among the
regions in order to build up a balanced and compact hierarchy, see Figure 3a.
Each region (subtree) is indexed recursively in a B-tree-like (bottom-up) way of
construction. The inner nodes of M-tree store routing entries

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), ptr(T (Oi))]

where Oi is a data object representing the center of the respective ball region,
rOi is a covering radius of the ball, δ(Oi, Par(Oi)) is so-called to-parent distance

2 As shown in [17,16], the real retrieval error of a MAM using δf is well estimated by
the T-error of δf , hence, θ can be directly used as a retrieval precision threshold.

NM-Tree: Flexible Approximate Similarity Search 317

Fig. 3. (a) M-tree (b) Basic filtering (c) Parent filtering

(the distance from Oi to the object of the parent routing entry), and finally
ptr(T (Oi)) is a pointer to the entry’s subtree. The data is stored in the leaves
of M-tree. Each leaf contains ground entries

grnd(Oi) = [Oi, id(Oi), δ(Oi, Par(Oi))]

where Oi is the data object itself (externally identified by id(Oi)), and δ(Oi, Par
(Oi)) is, again, the to-parent distance. See an example of entries in Figure 3a.

3.1 Query Processing

The range and k nearest neighbors (kNN) queries are implemented by traversing
the tree, starting from the root3. Those nodes are accessed whose parent regions
(R, rR) described by the routing entry are overlapped by the query ball (Q, rQ).

In case of a kNN query (we search for k closest objects to Q), the query
radius (or range) rQ is not known in advance, so we have to additionally employ
a heuristic to dynamically decrease the radius during the search. The radius is
initially set to the maximum distance in the metric space, that is, to 1.0 since
we have assumed a dissimilarity measure scaled to 〈0, 1〉, see Section 2.

Basic filtering. The check for region-and-query overlap requires an explicit
distance computation δ(R, Q), see Figure 3b. In particular, if δ(R, Q) ≤ rQ + rR,
the data ball R overlaps the query ball, thus the child node has to be accessed.
If not, the respective subtree is filtered from further processing.

Parent filtering. As each node in the tree contains the distances from the
routing/ground entries to the center of its parent node, some of the non-relevant
M-tree branches can be filtered out without the need of a distance computa-
tion, thus avoiding the “more expensive” basic overlap check (see Figure 3c). In
particular, if |δ(P, Q) − δ(P, R)| > rQ + rR, the data ball R cannot overlap the
query ball, thus the child node has not to be re-checked by basic filtering. Note
δ(P, Q) was computed in the previous (unsuccessful) parent’s basic filtering.
3 We outline just the principles, for details see the original M-tree algorithms [6,18].

318 T. Skopal and J. Lokoč

4 NM-Tree

The NM-tree is an extension of M-tree in terms of algorithms, while the data
structure itself is unchanged. The difference in indexing relies in encapsulating
the M-tree insertion algorithm by the more general NM-tree insertion (see Sec-
tion 4.1). The query algorithms have to be slightly redesigned (see Section 4.2).

4.1 Indexing

The distance values (to-parent distances and covering radii) stored in NM-tree
are all metric, that is, we construct a regular M-tree using a full metric. Since the
NM-tree’s input distance δ is generally a semimetric, the TriGen algorithm must
be applied before indexing, in order to turn δ into a metric δfM (i.e., searching for
a T-modifier fM under θ = 0). However, because at the beginning of indexing the
NM-tree is empty, there is no database sample available for TriGen. Therefore,
we distinguish two phases of indexing and querying on NM-tree.

Algorithm 1 (dynamic insertion into NM-tree)

method InsertObject(Onew) {
if database size < smallDBlimit then

store Onew into sequential file
else

insert Onew into NM-tree (using original M-tree insertion algorithm under δfM)
endif
if database size = smallDBlimit then

run TriGen algorithm on the database, having θM = 0, θ1, θ2, ..., θk > 0 ⇒
obtaining T-bases fM , fe1 , fe2 , ..., fek

with weights wM , we1 , we2 , ..., wek
for each object Oi in the sequential file

insert Oi into NM-tree (using original M-tree insertion algorithm under δfM)
empty the sequential file

end if }

For the whole picture of indexing in NM-tree, see Algorithm 1. The first phase
just gathers database objects until we get a sufficiently large set of database
objects. In this phase a possible query is solved sequentially, but this is not
a problem because the indexed database is still small. When the database size
reaches a certain volume (say, ≈ 104 objects, for example), the TriGen algorithm
is used to compute fM using the database obtained so far. At this moment we run
the TriGen also for other, user-defined θi values, so that alternative T-modifiers
will be available for future usage (for approximate querying). Finally, the first
phase is terminated by indexing the gathered database using a series of the
original M-tree insertions under the metric δfM (instead of δ). In the second
phase the NM-tree simply forwards the insertions to the underlying M-tree.

Notice: In contrast to the original TriGen [17], in NM-tree we require the T-
bases fi to be additionally inversely symmetric, that is, fi(fi(x, w),−w) = x. In
other words, when knowing a T-base fi with some weight w, we know also the
inverse f−1

i (·, w), which is determined by the same T-base and −w. The FP-base
and all RBQ-bases (see Section 2.1) are inversely symmetric.

NM-Tree: Flexible Approximate Similarity Search 319

4.2 Query Processing

When querying, we distinguish two cases – exact search and approximate search.

Exact search. The exact case is simple, when the user issues a query with zero
desired retrieval error, the NM-tree is searched by the original M-tree algorithms,
because of employing δfM for searching, which is the full metric used also for
indexing. The original user-specified radius rQ of a range query (Q, rQ) must
be modified to fM (rQ) before searching. After the query result is obtained, the
distances of the query object Q to the query result objects Oi must be modified
inversely, that is, to f−1

M (δfM (Q, Oi)) (regardless of range or kNN query).

Approximate search. The approximate case is more difficult, while here the
main qualitative contribution of NM-tree takes its place. Consider user issues
a query which has to be processed with a retrieval error ei ∈ 〈0, 1〉, where for
ei = 0 the answer has to be precise (with respect to the sequential search) and
for 0 > ei ≥ 1 the answer may be more or less approximate. The ei value must
be one of the T-error tolerances θi predefined before indexing (we suppose the
T-error models the actual retrieval error, i.e., ei = θi).

An intuitive solution for approximate search would be a modification of the re-
quiredδfM -baseddistances/radii stored inNM-tree into δfei-baseddistances/radii.
In such case we would actually get an M-tree indexed by δfei , as used in [17], how-
ever, a dynamic one – a single NM-tree index would be interpreted as multiple M-
trees indexed by various δfei distances. Unfortunately, this “online interpretation”
is not possible, because NM-tree (M-tree, actually) stores not only direct distances
between two objects (the to-parent distances) but also radii, which consist of aggre-
gations. In other words, except for the two deepest levels (leaf and pre-leaf level),
the radii stored in routing entries are composed from two or more direct distances (a
consequence of node splitting). To correctly re-modify a radius into the correct one,
we would need to know all the components in the radius, but these are not available
in the routing entry.

Instead of “emulating” multiple semimetric M-trees as mentioned above, we
propose a technique performing the exact metric search at higher levels and
approximate search just at the leaf and pre-leaf level. In Figure 4 see all the dis-
tances/radii which are modified to semimetric ones during the search, while the
modification is provided by T-bases associated with their user-defined retrieval
errors. Besides the to-parent distances, we also consider the query radius and
covering radii at the pre-leaf level, because these radii actually represent real dis-
tances to a furthest object in the respective query/data region. The query radius
and entry-to-query distances (computed as δ(·, ·)) are not stored in NM-tree, so
these are modified simply by fei (where fei is a T-base modifier obtained for
retrieval error ei). The remaining distances stored in NM-tree (δfM (·, ·)-based
to-parent distances and covering radii), have to be modified back to the original
ones and then re-modified using fei , that is, fei(f

−1
M (δfM (·, ·))).

320 T. Skopal and J. Lokoč

Algorithm 2 (NM-tree range query)

RangeQuery(Node N , RQuery (Q, rQ), retrieval error ek) {
let Op be the parent routing object of N // if N is root then δ(Oi, Op)=δ(Op, Q)=0

if N is not a leaf then {
if N is at pre-leaf level then { // pre-leaf level

for each rout(Oi) in N do {
if |fek

(δ(Op, Q)) − fek
(f−1

M (δfM (Oi, Op)))| ≤ fek
(rQ) + fek

(f−1
M (r

fM
Oi

)) then { // (parent filt.)

compute δ(Oi, Q)

if fek
(δ(Oi, Q)) ≤ fek

(rQ) + fek
(f−1

M (r
fM
Oi

)) then // (basic filtering)

RangeQuery(ptr(T (Oi)), (Q, rQ), ek)
}

} // for each ...

} else { // higher levels
for each rout(Oi) in N do {

if |fM (δ(Op, Q)) − δfM (Oi, Op)| ≤ fM (rQ) + r
fM
Oi

then { // (parent filtering)

compute δ(Oi, Q)

if fM (δ(Oi, Q)) ≤ fM (rQ) + r
fM
Oi

then // (basic filtering)

RangeQuery(ptr(T (Oi)), (Q, rQ), ek)
}

} // for each ...

}
} else { // leaf level

for each grnd(Oi) in N do {
if |fek

(δ(Op, Q)) − fek
(f−1

M (δfM (Oi, Op)))| ≤ fek
(rQ) then { // (parent filtering)

compute δ(Oi, Q)
if δ(Oi, Q) ≤ rQ then

add Oi to the query result
}

} // for each ...

}

Fig. 4. Dynamically modified distances when searching approximately

In Algorithm 2 see the modified range query algorithm4. In the pseudocode
the “metrized” distances/radii stored in the index are denoted as δfM (·, ·), rfM

Oi
,

while an “online” distance/radius modification is denoted as fek
(·), f−1

M (·). If
removed fM , f−1

M , fek
from the pseudocode, we would obtain the original M-tree

range query, consisting of parent and basic filtering steps (see Section 3.1).
4 For the lack of space we omit the kNN algorithm, however, the modification is similar.

NM-Tree: Flexible Approximate Similarity Search 321

Fig. 5. (a) Exact (metric) search (b) Approximate search

In Figure 5 see a visualization of exact and approximate search in NM-tree.
In the exact case, the data space is inflated into a (nearly) metric space, so
the regions tend to be huge and overlap each other. On the other hand, for
approximate search the leaf regions (and the query region) become much tighter,
the overlaps are less frequent, so the query processing becomes more efficient.

5 Experimental Results

To examine the NM-tree capabilities, we performed experiments with respect to
the efficiency and retrieval error, when compared with multiple M-trees (each
using a fixed modification of δ, related to a user-defined T-error tolerance). We
have focused just on the querying, since the NM-tree’s efficiency of indexing is
the same as that of M-tree. The query costs were measured as the number of
δ computations needed to answer a query. Each query was issued 200 times for
different query objects and the results were averaged. The precision of approx-
imate search was measured as the real retrieval error (instead of just T-error);
the normed overlap distance ENO between the query result QRNMT returned
by the NM-tree (or M-tree) and the correct query result QRSEQ obtained by
sequential search of the database, i.e. ENO = 1 − |QRNMT∩QRSEQ|

max(|QRNMT |,|QRSEQ|) .

5.1 The TestBed

We have examined 4 dissimilarity measures on two databases (images, polygons),
while the measures δ were considered as black-box semimetrics. All the measures
were normed to 〈0, 1〉. The database of images consisted of 68,040 32-dimensional
Corel features [9] (the color histograms were used). We have tested one semi-
metric and one metric on the images: the L 3

4
distance [17] (denoted L0.75), and

the Euclidean distance (L2). As the second, we created a synthetic dataset of
250,000 2D polygons, each consisting of 5 to 15 vertices. We have tested one
semimetric and one metric on the polygons: the dynamic time warping distance
with the L2 inner distance on vertices [17] (denoted DTW) and the Hausdorff
distance, again with the L2 inner distance on vertices [17] (denoted Hausdorff).

322 T. Skopal and J. Lokoč

0.1 0.2 0.3 0.4 0.5

2
5

1
0

2
0

5
0

1
0

0
2

0
0

POLYGONS

0.05-0.5% RQS, DTW

range query selectivity (%)

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

NM-Tree T-error=0.16
NM-Tree T-error=0.08
multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

multiple M-Trees T-error=0
NM-Tree T-error=0

0.1 0.2 0.3 0.4 0.5

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

POLYGONS

0.05-0.5% RQS, DTW

range query selectivity (%)

re
tr

ie
v
a
l
e
rr

o
r

multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.16
NM-Tree T-error=0.08

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

Fig. 6. Range queries on Polygons under DTW

10 20 30 40 50 60 70 80 90 100

2
5

1
0

2
0

5
0

1
0

0

COREL

kNN, L0.75

k

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

multiple M-Trees T-error=0
NM-Tree T-error=0

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

NM-Tree T-error=0.16
NM-Tree T-error=0.08
multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08

10 20 30 40 50 60 70 80 90 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

COREL

kNN, L0.75

k

re
tr

ie
v
a
l
e
rr

o
r

multiple M-Trees T-error=0.16
NM-Tree T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.08
multiple M-Trees T-error=0.01
NM-Tree T-error=0.01
multiple M-Trees T-error=0
NM-Tree T-error=0

Fig. 7. kNN queries on Corel under L 3
4

The TriGen inside NM-tree was configured as follows: the T-base pool con-
sisting of the FP-base and 115 RBQ-bases (as in [17]), sample size 5% of Corel,
1% of Polygons. The NM-tree construction included creation of 4 · 10 = 40
T-modifiers by TriGen (concerning all the dissimilarity measures used), defined
by T-error tolerances [0, 0.0025, 0.005, 0.01, 0.015, 0.02, 0.04, 0.08, 0.16, 0.32]
used by querying. The node capacity of (N)M-tree was set to 30 entries per node
(32 per leaf); the construction method was set to SingleWay [18]. The (N)M-trees
had 4 levels (leaf + pre-leaf + 2 higher) on both Corel and Polygons databases.
The leaf/inner nodes were filled up to 65%/69% (on average).

5.2 Querying

In the first experiment we have examined query costs and retrieval error of range
queries on Polygons under DTW, where the range query selectivity (RQS) ranged

NM-Tree: Flexible Approximate Similarity Search 323

50 100 150 200 250

0
5
0
0

1
0
0
0

1
5
0
0

POLYGONS

10NN, Hausdorff

DB size (x 1000)

q
u
e
ry

c
o
s
ts

NM-Tree T-error=0.16
multiple M-Trees T-error=0.16
NM-Tree T-error=0.32
multiple M-Trees T-error=0.32

NM-Tree T-error=0
multiple M-Trees T-error=0
NM-Tree T-error=0.08
multiple M-Trees T-error=0.08

50 100 150 200 250

0
0

.0
0

0
1

0
.0

1
0

.2
7

POLYGONS

10NN, Hausdorff

DB size (x 1000)

re
tr

ie
v
a

l
e

rr
o

r
(l
o

g
.

s
c
a

le
)

multiple M-Trees T-error=0.32
NM-Tree T-error=0.32
multiple M-Trees T-error=0.16
NM-Tree T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.08
multiple M-Trees T-error=0
NM-Tree T-error=0

Fig. 8. 10NN queries on varying size of Polygons under Hausdorff

0 0.0001 0.001 0.01 0.1 0.27

0
.5

1
2

5
1

0
2

0
3

2

POLYGONS

10NN, retrieval error vs. query costs

retrieval error (log. scale)

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

NM-Tree DTW
multiple M-Trees DTW

NM-Tree Hausdorff
multiple M-Trees Hausdorff

0 0.00001 0.001 0.1 1

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

COREL

1% RQS, retrieval error vs. query costs

retrieval error (log. scale)

q
u
e
ry

c
o
s
ts

multiple M-Trees L0.75
NM-Tree L0.75

multiple M-Trees L2
NM-Tree L2

Fig. 9. Aggregated performance of 10NN queries for Polygons and Corel

from 0.05% to 0.5% of the database size (i.e., 125–1250 objects), see Figure 6.
We can see that a single NM-tree index can perform as good as multiple M-tree
indexes (each M-tree specifically created for a user-defined retrieval error). In
most cases the NM-tree is even slightly better in both observed measurements –
query costs and retrieval error.

Note that here the NM-tree is an order of magnitude faster than sequential file
when performing exact (nonmetric!) search, and even two orders of magnitude
faster in case of approximate search (while keeping the retrieval error below 1%).
The Figure 6 also shows that if the user allows a retrieval error as little as 0.5–
1%, the NM-tree can search the Polygons an order of magnitude faster, when
compared to the exact (N)M-tree search.

In the second experiment we have observed the query costs and retrieval error
for kNN queries on the Corel database under nonmetric L 3

4
(see Figure 7). The

324 T. Skopal and J. Lokoč

results are very similar to the previous experiment. We can also notice (as in the
first experiment) that with increasing query result the retrieval error decreases.

Third, we have observed 10NN queries on Polygons under Hausdorff, with
respect to the growing database size, see Figure 8. The query costs growth is
slightly sub-linear for all indexes, while the retrieval errors remain stable. Note
the T-error tolerance levels (attached to the labels in legends) specified as an
estimation of the maximal acceptable retrieval error are apparently a very good
model for the retrieval error.

In the last experiment (see Figure 9) we have examined the aggregated per-
formance of 10NN queries for both Polygons and Corel and all the dissimilarity
measures. These summarizing results show the trade-off between query costs and
retrieval error achievable by an NM-tree (and the respective M-trees).

6 Conclusions

We have introduced the NM-tree, an M-tree-based access methods for exact
and approximate search in metric and nonmetric spaces, which incorporates the
TriGen algorithm to provide nonmetric and/or approximate search. The main
feature on NM-tree is its flexibility in approximate search, where the user can
specify the approximation level (acceptable retrieval error) at query time. The
experiments have shown that a single NM-tree index can search as fast as if
used multiple M-tree indexes (each built for a certain approximation level). From
the general point of view, the NM-tree, as the only access method for flexible
exact/approximate nonmetric similarity search can achieve up to two orders of
magnitude faster performance, when compared to the sequential search.

Acknowledgments

This research has been partially supported by Czech grants: ”Information Society
program” number 1ET100300419 and GAUK 18208.

References

1. Ashby, F., Perrin, N.: Toward a unified theory of similarity and recognition. Psy-
chological Review 95(1), 124–150 (1988)

2. Athitsos, V., Hadjieleftheriou, M., Kollios, G., Sclaroff, S.: Query-sensitive embed-
dings. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 706–717. ACM Press, New York (2005)

3. Chávez, E., Navarro, G.: A Probabilistic Spell for the Curse of Dimensionality.
In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp.
147–160. Springer, Heidelberg (2001)

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

5. Chen, L., Lian, X.: Efficient similarity search in nonmetric spaces with local con-
stant embedding. IEEE Transactions on Knowledge and Data Engineering 20(3),
321–336 (2008)

NM-Tree: Flexible Approximate Similarity Search 325

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Sim-
ilarity Search in Metric Spaces. In: VLDB 1997. LNCS, vol. 1263, pp. 426–435
(1997)

7. Farago, A., Linder, T., Lugosi, G.: Fast nearest-neighbor search in dissimilarity
spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9),
957–962 (1993)

8. Goh, K.-S., Li, B., Chang, E.: DynDex: a dynamic and non-metric space indexer.
In: ACM Multimedia (2002)

9. Hettich, S., Bay, S.: The UCI KDD archive (1999), http://kdd.ics.uci.edu
10. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances:

Image retrieval and class representation. IEEE Pattern Analysis and Machine In-
telligence 22(6), 583–600 (2000)

11. Krumhansl, C.L.: Concerning the applicability of geometric models to similar data:
The interrelationship between similarity and spatial density. Psychological Re-
view 85(5), 445–463 (1978)

12. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

13. Rosch, E.: Cognitive reference points. Cognitive Psychology 7, 532–547 (1975)
14. Rothkopf, E.: A measure of stimulus similarity and errors in some paired-associate

learning tasks. J. of Experimental Psychology 53(2), 94–101 (1957)
15. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco (2006)
16. Skopal, T.: On fast non-metric similarity search by metric access methods. In:

Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp.
718–736. Springer, Heidelberg (2006)

17. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Transactions on Database Systems 32(4), 1–46 (2007)

18. Skopal, T., Pokorný, J., Krátký, M., Snášel, V.: Revisiting M-tree Building Princi-
ples. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS
2003. LNCS, vol. 2798, pp. 148–162. Springer, Heidelberg (2003)

19. Tversky, A.: Features of similarity. Psychological review 84(4), 327–352 (1977)
20. Tversky, A., Gati, I.: Similarity, separability, and the triangle inequality. Psycho-

logical Review 89(2), 123–154 (1982)
21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space

Approach (Advances in Database Systems). Springer, Secaucus (2005)

http://kdd.ics.uci.edu

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 326–339, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Efficient Processing of Nearest Neighbor Queries in
Parallel Multimedia Databases

Jorge Manjarrez-Sanchez, José Martinez, and Patrick Valduriez

INRIA and LINA, Université de Nantes
manjarrez@univ-nantes.fr, jose.martinez@univ-nantes.fr,

Patrick.Valduriez@inria.fr

Abstract. This paper deals with the performance problem of nearest neighbor
queries in voluminous multimedia databases. We propose a data allocation
method which allows achieving a query processing time in parallel set-
tings. Our proposal is based on the complexity analysis of content based re-
trieval when it is used a clustering method. We derive a valid range of values
for the number of clusters that should be obtained from the database. Then, to
efficiently process nearest neighbor queries, we derive the optimal number of
nodes to maximize parallel resources. We validated our method through ex-
periments with different high dimensional databases and implemented a query
processing algorithm for full k nearest neighbors in a shared nothing cluster.

1 Introduction

Modern digital technologies are producing, in different domains, vast quantities of
multimedia data, thus making data storage and retrieval critical. Retrieval of multime-
dia data can be modeled in a space where both the queries and the database objects
are mapped into a multidimensional abstract representation, using signal processing
and analysis techniques. Each dimension is a describing feature of the content. For
instance, an image can be represented as a 256 dimensional feature vector where each
value corresponds to a bin in a color histogram [12].

Content Based Retrieval (CBR) of multimedia objects is performed in a query by
example approach. With CBR, the user supplies an example of the desired object
which is used to find a set of the most similar objects from the database. This winning
set can be obtained by a range approach or a best match approach. In the range ap-
proach, a threshold value is used to indicate the permissible similarity (or dissimilar-
ity) of any object in the database from the query object and all qualifying objects
within this range are returned. The similarity between the multidimensional represen-
tation of the query and each database object is estimated by computing their distance,
usually the Euclidean distance (L2). For the best match approach, the winning set is
restricted to the k-nearest neighbors (kNN)[22]. kNN is the most useful kind of query
in CBR. Conceptually, kNN query processing requires computing the distance from
every feature vector in the database to the feature vector of the object example to
determine the top best similarities. Obviously, performing a sequential scan of the
database for CBR can be very inefficient for large data sets. Two main approaches
have been proposed to avoid sequential scan and to speed up CBR: multimedia index-
ing and clustering.

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 327

Indexing of the feature vectors helps to speed up the search process. Using a data
space or space partitioning approach [8], the feature vectors are indexed so that non
interesting regions can be pruned. However, because of the properties of the multidi-
mensional data representation (time complexity is exponential with the number of
dimensions), the best recent results show that only queries up to 30 dimensions can be
handled [18][19]. Above this limit, the search performance of indexing becomes
comparable to sequential scan [24]. Other works propose to map the multidimensional
data representation to another space with reduced dimensions. This allows dealing
with a more manageable space at the expense of some loss of precision [2][3].

Clustering is a data partitioning approach. The aim is to form groups of similar ob-
jects, i.e. clusters. Most of the clustering schemes [16][25] construct a hierarchical
structure of similar clusters or make use of an index structure to access rapidly some
kind of cluster representative, such as the centroid, which typically is the mean vector
of features for each cluster. In the searching process, this hierarchy or index is trav-
ersed by comparing the query object with the cluster representatives in order to find
the clusters of interest. In both index and cluster-based strategies, the cost of comput-
ing the distances to determine similarity can be very high for large multimedia
databases.

In this paper, we address the problem of CBR performance in large multimedia da-
tabases by exploiting parallelism, i.e. using a parallel database system. We assume a
parallel (multiprocessor) system with the popular shared-nothing (SN) architecture
[20], where each node has its own processor(s), local memory and own disk. Each
node communicates with other nodes through messages over a fast interconnect. The
main advantage of SN (e.g. over shared-disk) is excellent cost/performance and scal-
ability. In this context, a major problem is data allocation on the different nodes in
order to yield parallel content-based retrieval. The process of data allocation consists
in data partitioning (producing a set of clusters) and data placement of the clusters
onto the different SN nodes. The problem can be stated as follows: given a database
of n multimedia objects, find the optimal number of clusters and nodes to yield effi-
cient processing of kNN queries.

Assuming a clustering or any group forming partitioning process such as the k-
means and based on a complexity analysis of CBR using clusters, we propose a data
allocation scheme which computes an optimal number of clusters and nodes. Fur-
thermore, the high dimensional representation of the multimedia objects is general
enough to apply to other kinds of data. Thus we could apply our allocation scheme to
any data that can be represented as multidimensional data objects, e.g. geographical
maps, DNA sequences.

The rest of the paper is organized as follows. In Section 2, we present our alloca-
tion scheme, with its data partitioning and placement methods. In Section 3, we vali-
date our proposal through simulation. In Section 4 we discuss related work and
Section 5 concludes.

2 Data Allocation Scheme

Our data allocation scheme proceeds in two steps: (1) data partitioning which pro-
duces a set of clusters, and (2) data placement which places the clusters on the nodes

328 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

of the SN parallel system. This aims to reduce the time required to perform full search
by partitioning the database among the nodes.

2.1 Data Partitioning

To overcome the problem introduced by the dimensionality of the data objects, which
eventually deteriorates a search into a sequential scan or worst, one possibility is to
rely on a clustering of the database. A priori, this process is computationally expen-
sive but can be done off-line, in a preprocessing step before query execution. The goal
is to minimize the number of objects distances to compute, by grouping them together
based on their similarity. We do not suggest the use of any specific clustering process.
This has been the focus of several works [13, 15, 5] which we can make use of to
yield efficient CBR. Thus, we assume that a given database of size n, can be parti-
tioned by using some clustering process, which produces a set C of clusters of similar
data objects.

Based on this partitioning of the database, when executing a query, the set of clus-
ters C can be pruned to a subset of candidate clusters C’ containing the most similar
objects. Our objective of this section is to propose an optimal number for |C| based on
the complexity analysis of the general searching process based on clustering.

For the case of searching via some data clustering, we can write the general com-
plexity as:

O(f(C)) + O(g(C')) (1)

In order to achieve optimal processing, this complexity should satisfy the following
constraints:

• to minimize O(g(C')) as a function of the number of candidate clusters, i.e.,
|C'| <<|C|;

• to ensure that O(f(C)) ≤ O(g(C'));
• to ensure that |C|<< n.

Let us consider the worst case of a search algorithm with:

• a linear selection of the candidate clusters;
• a sequential scan within each selected cluster;
• a full sort based on the merging of the results issued from the selected clus-

ters.

Under these constraints then the general complexity (1) becomes:

(2)

Lemma 1. The search algorithm modeled by equation 2 has cost ()nn 2logΟ under

the conditions:
; and classes of similar cardinalities.

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 329

Proof. First simplify by setting C’=1. Then propose nC = which gives a complex-

ity in .
Second, let us propose nnC 2log= and the use of a multiplicative constant

equal to ½ which is the relation between m, the set of features describing a data object
and n, so that nm ⋅= λ . Then in the worst case, the complexity of equation 2
becomes:

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⋅+⋅+

nn

n
n

nn

n
n

nn

n
nOnnO

2

22

2

2

2

22
log

loglog
log

log
log

loglog ,

i.e.,

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅++ nnnOnnO 222 log

2

1
loglog which is certainly in ()nnO 2log ■.

Our proposal for partitioning the database is then . Additionally, it
can be derived some algorithmic variations, from optimal to suboptimal in

, under less restrictive conditions, and ,
the optimal case can be obtained with a near multiplicative factor λ, since C’ is small
and independent of n.

2.2 Data Placement

Once the database is partitioned into clusters according to our proposal (above), we
need to place them onto the nodes of the parallel system. Our solution for the place-
ment of the clusters is to determine the number of nodes which yields the best (as-
ymptotically) achievable performance. Thus we state the following theorem,

Theorem. Assume a shared nothing parallel system of at least log2n nodes, then the
average complexity of any query is in .

Proof: The proof can be achieved as a result of Lemma 1 and of by a simple round
robin placement of the clusters over the available nodes. That is, distributing

 clusters over log2n nodes, each node will have clusters each one con-

taining in average objects. With clusters selected, in the
worst case the average number of selected classes on each node is only one. The local
complexities, executed in parallel over all the participating nodes, are then:

Since the last product factor is very small, we can ignore it. Thus we get the
approximation.

330 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

Consolidation of results must be carried out by merging the local results, which are

limited to the best k found data objects. In the worst case, each node returns as many
results as there are objects in the treated class, that is , and all the nodes
participate in the merging of the results, and the parallel complexity of the process is in :

()nn
nn

n Ο∈⋅ 2

2

log
log

.

The optimality is derived from the average size of the classes: increasing the num-
ber of nodes does not reduce the local complexities, they remain in . Assuming
also a fast interconnection network which allows parallel transfers, then the merging

process require only operations, which becomes
insignificant compared with local searching ■

The fact that the number of nodes obeys a logarithmic progression makes realistic its
implementation, in particular because our proposal is conceived to deal with very
large values of n. Also, as each node owns and works independently in a portion of
the database, different queries can run in parallel.

3 Validation

To validate the efficiency of our proposal, we developed an experimental platform. It
is written in Java 1.5 running on a shared-nothing cluster of Intel Xeon IA32 2.4GHz
nodes with 2GB of main memory each one. In this section, we describe the datasets
used, the k nearest neighbor searching process and the performance results obtained.

3.1 Experiments with Non Uniform Data Sets

Real data tends to form natural clusters of different sizes, which usually can be ap-
proximated by a Gaussian distribution. To validate our proposal we have crafted a
synthetic cluster generator. The data generated simulate hyper-spherical clusters of
feature vectors with uncorrelated features. Perhaps this has been a largely used ap-
proach as in [11][25] but we go far by varying some conditions at the interior of each
cluster with the aim of providing a close to real workload.

As we propose an interval of validity for the number of clusters, we have generated
several datasets. Each dataset is characterized by 〈n, d, |C|〉, which are the number of
points, the size of the multidimensional space and the number of clusters respectively.
Non uniform datasets were generated with the following range of values:

, , . Each
cluster is characterized by 〈r,δ,ρ〉. The radius r defines the space a cluster occupies; δ
is the density, i.e. the number of points per unit of volume. The population ρ deter-
mines the number of d-points in the cluster. They have the following range of values:
r∈{1,[1,3]}, the first value indicates uniform radius and whereas the second one
means radius is non uniform and is generated randomly in the interval using these

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 331

values as coefficients to the analytical cluster size. Similarly, the population is gener-

ated with , so that clusters does not have the same population. For fair-
ness of query processing, all generated datasets are normalized in [0,1]d by dividing
all the vectors values by the highest dimension component value, irrespective of the
dimension. After definition of all these parameters, to generate the clusters, first, |C| |
d-dimensional centers are randomly generated with some random radius, providing
the positioning of each cluster in the multidimensional space. Second, each cluster c is
populated with ρ d-dimensional Gaussian points, this stands for a more near to real
workload.

3.2 kNN Searching Process

We now describe our simple but effective algorithm to enable fast processing of kNN
queries in the parallel system. Keep in mind that the process follows the parameters
given in section 2.2 and it is disk based.

Step 1. Data Distribution
We did not try yet to develop a heuristic algorithm for optimizing the placement of
the clusters. But the placement algorithm can take into consideration proximities
between classes to distribute the nearest ones over different nodes, but as we show
this is a questionable tradeoff of investing in a minimal gain at the cost of some
(maybe) expensive process (cf 3.4). Here, they are distributed on the log2n machines
in a round-robin way. Therefore, all the nodes have almost the same number of
clusters.

Step 2. Cluster Selection
Query points are generated randomly under the same assumptions than the generated
datasets. To find the set of kNN objects for a query q, a sufficient number of classes
must be selected in order to ensure to return the best k d-points. Firstly, a sequential
disk-based search is executed to compare q with all the centroids, using the common
Euclidean distance, and using the radiuses to find the nearest clusters1. The first log2n
clusters are considered. For each selected cluster, we know the node it has been
placed during step 1.

With this simply heuristic, we aim at retrieving all the kNN which is equivalent to
a full search. Indeed, in several research works on kNN query processing analysis [15,
16] propose a threshold which guarantees the retrieval of all or a high percentage of
the NN. Here, taking the first ranked log2n clusters is a threshold large enough to
achieve full precision.

Step 3. Sequential Scans of the Selected Clusters
Once known the node for each cluster of interest, a parallel search is executed on
them to retrieve up to k objects. On each node, the scan of the locally selected class
takes place in the form of a mere sequential search and the use of a bounded priority

1 Let us note that even though the centroids of the clusters could fit into main memory, if we

consider that the data is actually stored in a database and our aim is to validate our proposal
for worst case conditions, then the process is disk-based.

332 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

queue to keep the best k responses. Therefore, each node returns a set of k sorted
elements to the master node.

Step 4. Merging
The master node merges the various results, prunes the list of the first k answers, and
returns it to the user or the application.

3.3 Performance Evaluation

In order to obtain experimental evidence of how well our data allocation method im-
proves the processing of nearest neighbor queries, we processed 1000 kNN queries
from the same data space for the above mentioned datasets. We measured the average
response time, the number of distance comparisons and disk IO’s. The results pre-
sented here are for databases of 107 data objects. The sizes of k for the queries are 50,
100 and 150.

0

5000

10000

15000

20000

25000

30000

50 100 150 256 500 600 700 800 900 1000

dimension

ti
m

e
m

il
li

se
c

min

max

avg

Fig. 1. Execution times for 1000 50 kNN queries for n=107 non uniform databases of different
data dimensionalities

Figures 1 to 3 show the behavior of the query algorithm for non uniform datasets.
Even when the trend to increase processing time with the dimensionality is exhibited,
in none of our experiments, it is exponential. It has also a tendency to increase less
rapidly as expected from our proposal.

The high difference between minimal values and maximal values is a java code
implementation issue and it is due to the activation of the garbage collector of the
JVM. We have removed some of the queries involved in the peak values and repeated
the experiments for them and obtained a considerable decrease in time. This corrobo-
rates that when the JVM memory usage becomes near the assigned memory, garbage
collection is activated, thus hurting performance.

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 333

0

5000

10000

15000

20000

25000

30000

35000

50 100 150 256 500 600 700 800 900 1000

dimensions

ti
m

e
m

il
li

se
c

min

max

avg

Fig. 2. Execution times for 1000 100 kNN queries for n=107 non uniform databases of different
data dimensionalities

0

5000

10000

15000

20000

25000

30000

50 100 150 256 500 600 700 800 900 1000

dimensions

ti
m

e
m

il
li

se
c

min

max

avg

Fig. 3. Execution times for 1000 150 kNN queries for n=107 non uniform databases of different
data dimensionalities

334 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

4000

5000

6000

7000

8000

9000

10000

11000

12000

50 100 150 256 500 600 700 800 900 1000

dimension

d
is

k
I/

O

min

max

avg

Fig. 4. Disk I/O count for the 50 kNN query processing over databases of different
dimensionalities

78000

79000

80000

81000

82000

83000

84000

85000

50 100 150 256 500 600 700 800 900 1000

dimension

d
is

ta
n

ce

min

max

avg

Fig. 5. Distance computations count for the 50 kNN query processing over databases of differ-
ent dimensionalities

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 335

Figures 4 and 5 have almost steady curves. This is due to the query processing al-
gorithm. In all cases, the parallel search is performed in the top log2n clusters, and
each processor returns at most k results. Almost similar values are obtained for k =
100 and 150, thus making unnecessary to present the curves. Here the cluster size is
the influence factor. This allows us to conclude that relatively small sizes for the clus-
ters help to reduce searching time. The key is then the cluster pruning process. Thus,
it is not required to be concerned on efficiency issues of the search in the interior of
the selected clusters. Notice that we use non uniform populations for the clusters as
would happen with real data and that having to process queries for large values of k is
also impractical. Even in the case when the CBR process is used for browsing; i.e.
when the user is not sure of her needs and needs a variety of results, we consider
better to wait and let the user lead the retrieval process as when relevance feedback is
used.

3.4 Effect of the Size of k

For most related works the size of k is a factor of influence in the number of disk I/O
and distances computed, directly affecting the response time. Under our scheme this
is not a main concern. The heuristic allows selecting the most relevant clusters which
are processed locally and only in the final merging result can have an effect; which is
however small as the results are merged from sorted lists and finally pruned to k. For
example, for 256 dimensional data sets from figure 1 the process time is 2709, 2697
and 2698 milliseconds for k=50, 100 and 150 respectively.

3.5 Effect of Data Placement

To maximize parallelism, the clusters selected Cs by the searching algorithm must be

equally distributed on the nodes and no more than clusters should be retrieved
from each one. That is, all the nodes are activated and contribute to speed up the
processing of a query and as it is retrieved an equal number of clusters from each one,
the workload is balanced. Theoretically, this should happen in an ideal situation, but
given that one can not anticipate all the possible queries so that all the nearest clusters
are distributed in different nodes, it is a NP-complete problem and it has been proved
that the optimal can be achieved in a very few cases [1].

To improve parallelism, candidate clusters must be equally placed on the nodes

and no more than clusters must be retrieved from each one. This has the effect
of activating all the nodes to rapidly process the query (intra-query parallelism) and
also to balance the processing load.

The proposed query processing algorithm prunes the clusters and selects the top
log2n ranked by their similarity with respect to the query object, then just the involved
nodes contribute to the final answer. The number of activated nodes in parallel are
showed in figure 6. Notice that in this work, the proposal is based on a worst case
assumption, i.e., processes are disk based and the placement algorithm is round robin,
thus there is room to improve the performance, but what is important to note is the
achieved performance behavior.

336 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

Nodes Activated

0

2

4

6

8

10

12

14

16

18

20

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Query

N
o

d
es

Fig. 6. Nodes activated simultaneously to process a query in 256 dimensions

Under Round Robin, the node more charged has to process four clusters, it can
handle that in average in 300 milliseconds for 500-d data.

4 Related Work

The idea of indexing methods is the early elimination of as much as possible regions
of the data space that are not of interest to the query, thus yielding a minimal subset to
search in. However they are good in average for 30 dimensional data. Above 30, the
problem known as curse of dimensionality arises and these methods are outperformed
by simple linear search [24]. Some noticeable recent work is iDistance [18][19] which
reports good performance up to 32 dimensions. Among the clustering methods, Clin-
dex [16] and ClusterTree [25] aim to fight the so called curse of dimensionality which
affects indexing methods. Even though they provide acceptable performance, there is
no report of how these structures can be implemented or behave in parallel settings. In
[14] it is presented an architecture of one processor-multiple disks to process range
queries using an interesting concept called proximity index allocation which measures
the similarity between nodes to later place them on the disks, avoiding to put similar
nodes together, this allows a near optimal allocation process. A shared nothing based
implementation is presented by [23], however they are based on the R-Tree which is
used to spatial data. In [6] Berchthold et al proposed an allocation method for the X-
Tree using a graph coloring algorithm. It has been reported that the Pyramid tree out-
performs the X-Tree by a factor of 800 in response time in centralized settings [25].
In [21] it is presented a four disk architecture concerned mainly with the placement
within each disk, i.e. a very low level placement scheme of wavelet coefficients. This
architecture is used for browsing image thumbnails by exploiting parallelism (they
use parallelism to retrieve the coefficients) but the final selected images must be re-
constructed in the clients’ side from the wavelet coefficients (kind of feature vector).
The Parallel M-Tree [26] and one extension [4] address the problem of distributing
the nodes of the M-Tree in the parallel system by computing the distance of each
newly object placed in a node with all the objects already available, it is achieved by

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 337

performing a range query with a radius equal to the distance from the object to its
parent. In [9][10], the authors propose an hybrid architecture of redundant multidisc
and shared nothing, to improve disk IO based in the Parallel R-Tree. However, they
provide results for 100, 000 data of up to 80 dimensions which are outperformed by
our proposal with much less resources. Recently, Liu et al [17] propose a clustering
based parallel spill tree altogether with a search method, in their study, they begin
with an initial 1.5 billion images which after “cleaning” remains in around 200 mil-
lion, a large enough image database but the dimensionality of the dataset is 100 and
their proposal needs 200 machines. In the contrary, we use 1000 descriptors and

 nodes, which in order to process the whole 200 millions images database
would require only 27 nodes.

5 Conclusions

In this paper we proposed a data allocation scheme for efficient kNN query processing
on multimedia databases in a shared-nothing architecture. Our proposal can be summa-
rized to the following contribution: an upper and a lower bound on the number of
fragments or clusters that can be obtained from the database and the number of nodes
required to maximize resources utilization and to achieve optimal parallel kNN search-
ing. The number of clusters is based on the complexity analysis of the general search
problem for CBR and the number of nodes in the parallel architecture is proposed on
the same principle but taking into consideration that it must be a feasible to implement
architecture. We validated our method for different non uniform datasets under worst
case considerations, any improvement such as a better placement scheme and putting
into main memory the centroids must signify a performance improvement. Here we
showed that our proposal stands for the derived algorithmic complexities.

Acknowledgements

The first author thanks the support of the CONACYT and IPN from Mexico, as well
as INRIA France.

References

1. Abdel-Ghaffar, K.A.S., El Abbadi, A.: Optimal Allocation of Two-Dimensional Data. In:
Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 409–418. Springer,
Heidelberg (1996)

2. Aggarwal, C.C.: On the Effects of Dimensionality Reduction on High Dimensional Simi-
larity Search. In: ACM PODS 2001: Symposium on Principles of Database Systems Con-
ference, pp. 256–266 (2001)

3. Aggarwal, C.C.: An efficient subspace sampling framework for high-dimensional data re-
duction, selectivity estimation, and nearest-neighbor search. IEEE Transactions on Knowl-
edge and Data Engineering 16(10), 1247–1262 (2004)

338 J. Manjarrez-Sanchez, J. Martinez, and P. Valduriez

4. Alpkocak, A., Danisman, T., Ulker, T.: A Parallel Similarity Search in High Dimensional
Metric Space Using M-Tree. In: Grigoras, D., Nicolau, A., Toursel, B., Folliot, B. (eds.)
IWCC 2001. LNCS, vol. 2326, pp. 166–171. Springer, Heidelberg (2002)

5. Attila Gürsoy, E.E.: Data Decomposition for Parallel K-means Clustering. In:
Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS,
vol. 3019, pp. 241–248. Springer, Heidelberg (2004)

6. Berchtold, S., Böhm, C., Braunmüller, B., Keim, D.A., Kriegel, H.: Fast parallel similarity
search in multimedia databases. In: SIGMOD Rec., vol. 26(2), pp. 1–12 (1997)

7. Berrani, S.-A., Amsaleg, L., Gros, P.: Approximate Searches: k-Neighbors + Precision. In:
CIKM 2003: Proceedings of the 12th ACM International Conference on Information and
Knowledge, pp. 24–31 (2003)

8. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index struc-
tures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3),
322–373 (2001)

9. Bok, K.S., Seo, D.M., Song, S.I., Kim, M.H., Yoo, J.S.: An Index Structure for Parallel
Processing of Multidimensional Data. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005.
LNCS, vol. 3739, pp. 589–600. Springer, Heidelberg (2005)

10. Bok, K.S., Song, S.I., Yoo, J.S.: Efficient k-Nearest Neighbor Searches for Parallel Multi-
dimensional Index Structures. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA
2006. LNCS, vol. 3882, pp. 870–879. Springer, Heidelberg (2006)

11. Chavez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of dimension-
ality in metric spaces. Information Processing Letters 85(1)(16), 39–46 (2003)

12. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M.,
Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by Image and Video Con-
tent: The QBIC System. IEEE Computer 28(9), 23–32 (1995)

13. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs
(1988)

14. Kamel, I., Faloutsos, C.: Parallel R-trees. In: SIGMOD 1992: Proceedings of the ACM in-
ternational Conference on Management of Data, pp. 195–204 (1992)

15. Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: An effi-
cient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern
Analysis and Machine Intelligence 24, 881–892 (2002)

16. Li, C., Chang, E., Garcia-Molina, H., Wiederhold, G.: Clustering for approximate similar-
ity search in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engi-
neering 14(4), 792–808 (2002)

17. Liu, T., Rosenberg, C.R., Rowley, H.A.: Clustering Billions of Images with Large Scale
Nearest Neighbor Search. In: 8th IEEE Workshop on Applications of Computer Vision
(WACV 2007), p. 28 (2007)

18. Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: Indexing the Distance: An Efficient Method to
KNN Processing. In: VLDB 2001: Proceedings of the 27th International Conference on
Very Large Data Bases, pp. 421–430 (2001)

19. Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree based indexing
method for nearest neighbor search. Journal of the ACM Transactions on Database Sys-
tems 30(2), 364–397 (2005)

20. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-
Hall, Englewood Cliffs (1999)

21. Prabhakar, S., Agrawal, D., El Abbadi, A., Singh, A., Smith, T.: Browsing and placement
of multi-resolution images on parallel disks. Multimedia Systems 8(6), 459–469 (2003)

 Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases 339

22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD 1995:
Proceedings of the International Conference on Management of Data, San Jose, California,
May 22-25, pp. 71–79 (1995)

23. Schnitzer, B., Leutenegger, S.T.: Master-Client R-Trees: A New Parallel R-Tree Architec-
ture. In: SSDBM 1999: Proceedings of the 11th International Conference on Scientific and
Statistical Database Management (1999)

24. Weber, R., Schek, H.J., Blott, S.: A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces. In: VLDB 1998: Proceedings of
the 24th International Conference Very Large Data Bases, pp. 194–205 (1998)

25. Yu, D., Zhang, A.: ClusterTree: Integration of Cluster Representation and Nearest
Neighbor Search for Large Datasets with High Dimensionality. IEEE Transactions on
Knowledge and Data Engineering 15(5), 1316–1337 (2003)

26. Zezula, P., Savino, P., Rabitti, F., Amato, G., Ciaccia, P.: Processing M-trees with parallel
resources. In: Research Issues In Data Engineering. Eighth International Workshop on
Continuous-Media Databases and Applications, pp. 147–154 (1998)

OLAP for Trajectories

Oliver Baltzer1, Frank Dehne2,
Susanne Hambrusch3, and Andrew Rau-Chaplin1

1 Dalhousie University, Halifax, Canada
obaltzer@cs.dal.ca, arc@cs.dal.ca

http://www.cs.dal.ca/~arc
2 Carleton University, Ottawa, Canada

frank@dehne.net
http://www.dehne.net

3 Purdue University, West Lafayette, IN, USA
seh@cs.purdue.edu

http://www.cs.purdue.edu/people/faculty/seh/

Abstract. In this paper, we present an OLAP framework for trajecto-
ries of moving objects. We introduce a new operator GROUP TRAJEC-
TORIES for group-by operations on trajectories and present three imple-
mentation alternatives for computing groups of trajectories for group-by
aggregation: group by overlap, group by intersection, and group by over-
lap and intersection. We also present an interactive OLAP environment
for resolution drill-down/roll-up on sets of trajectories and parameter
browsing. Using generated and real life moving data sets, we evaluate
the performance of our GROUP TRAJECTORIES operator. An imple-
mentation of our new interactive OLAP environment for trajectories can
be accessed at http://OLAP-T.cgmlab.org.

1 Introduction

Global positioning (GPS) and RFID systems are creating vast amounts of spatio-
temporal data for moving objects. Consider N moving objects on a 2D spatial
grid. Each object is identified by a unique tag number (similar to EPC in RFID).
Object movements are recorded through a set of readings ((x, y), i, t) indicating
that object (tag) i was detected at time t within the grid cell located at (x, y).
The N moving objects are represented by a relational table objects with N
records. Each record contains values tag, name, size, color, etc. describing one
object according to a star schema. Among them is a value trajectory representing
the movement of the respective object as a sequence [(x1, y1, t1), (x2, y2, t2), . . .
(xm, ym, tm)] of positions at time t = t1, t2, . . . tm. In order to efficiently analyze
large scale data sets representing moving objects, it is important to have available
the well established set of tools for OLAP analysis. In order to apply OLAP
tools towards moving object datasets, it is necessary to aggregate with respect
to trajectory as a feature dimension as well as a measure dimension.

We illustrate this with the example shown in Figure 1. Consider the trajecto-
ries shown in Figure 1a. We observe a number of individual objects that move

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 340–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://OLAP-T.cgmlab.org

OLAP for Trajectories 341

(a) (b) (c) (d) (e)

G
R

O
U

P
_T

R
A

JE
C

T
O

R
IE

S

GROUP-ID = G1
COUNT = 4

G
R

O
U

P
_T

R
A

JE
C

T
O

R
IE

S

GROUP-ID = G2
COUNT = 4

Fig. 1. OLAP For Trajectories Example. (a) Input data. (b) Groups with minimum
support. (c) Aggregate results reported (aggregate trajectories and counts). (d) Illus-
tration of operator GROUP TRAJECTORIES:Group by Intersection. (e) Illustration
of operator GROUP TRAJECTORIES:Group by Overlap.

on random paths plus 10 groups of objects that move together on similar paths.
Each group consists of more then five objects moving on similar paths which,
taken together, appear to the human eye as “bold” paths.

Consider the following SQL query where trajectory is both, a feature dimension
as well as a measure dimension:

SELECT AGGREGATE(trajectory) AS trajectory
COUNT(trajectory) as count

FROM objects
GROUP BY GROUP_TRAJECTORIES(trajectory,

resolution)
HAVING COUNT(*) >= 5

For this example, the aim of the GROUP BY operation with respect to fea-
ture dimension trajectory is to group similar trajectories and eliminate groups with
less than minimum support (less than 5 similar trajectories). The resulting set of
groups is shown in Figure 1b. Once the groups of trajectories have been deter-
mined, we report for each group an aggregate trajectory representing the trajecto-
ries in the group. In this example, the aggregate trajectory is the average trajectory
computed by calculating for each time ti the average of the locations (xi, yi) of the
trajectories in the group. The result is shown in Figure 1c, where each group is
represented by the aggregate trajectory and size of the group (count).

The goal of OLAP analysis for trajectories is to answer aggregate queries with
respect to the spatial movements of a set of objects represented in a relational ta-
ble objects. The main problem arising is how to aggregate with respect to feature
dimension trajectory. It is very unlikely that any two trajectories are exactly the
same. Hence, standard aggregation of records with equivalent trajectory values is
not very useful in most cases. We propose to partition the given trajectories into
disjoint groups of trajectories using a new operator which we term GROUP -
TRAJECTORIES. This operator returns for each trajectory a group identifier,
and then OLAP can proceed with standard aggregation according to the group
identifiers instead of the trajectories themselves.

342 O. Baltzer et al.

The main problem addressed in this paper is how to define and compute the
operator GROUP TRAJECTORIES such that the resulting groups allow for a
meaningful analysis of object movements via OLAP. We propose three different
versions of the operator GROUP TRAJECTORIES which compute groups of
trajectories that are appropriate for OLAP analysis of trajectories for different
circumstances and applications: Group by Overlap, Group by Intersection and
Group by Overlap and Intersection.

Section 3 will show in detail how these three different versions of our GROUP -
TRAJECTORIES operator are defined and computed. Our Group by Intersection
method aggregates subsets of trajectories that correspond to similar or synchro-
nous movements; see Figure 1d. Our Group by Overlap method aggregates subsets
of trajectories that correspond to sequences of movements with sufficient overlap
between subsequent trajectories; see in Figure 1e. The Group by Overlap and Inter-
section method aggregates subsets of trajectories that correspond to a combination
of sequences of movements and similar or synchronous movements.

In Section 4, we present an interactive OLAP environment for the analysis
of trajectories that allows resolution drill-down and roll-up as well as parameter
browsing. An experimental evaluation is outlined in Section 5. An implementa-
tion of our new interactive OLAP environment for trajectories can be accessed
at http://OLAP-T.cgmlab.org.

2 Related Work

There is a wealth of literature on spatiotemporal data analysis and aggrega-
tion. See e.g. [9] for a survey. This work studies aggregation by specific temporal
dimensions such as ”by day” or ”by year”, or by strict topological association
such as ”by location square” or ”within 10 km of” (e.g. [11]). In our case, we
wish to aggregate entire trajectories. For the detection of relationships among
trajectories in a moving object database we found in the literature five groups
of approaches: variations of frequent pattern or association rule mining (e.g.
[4,5,6,16]), clustering techniques (e.g. [8,12]), Computational Geometry tech-
niques (e.g [7]), neural network based techniques (e.g. [15]), and edit distance,
warping techniques and longest common subsequence (LCSS) extraction (e.g.
[13,14,17,18]). A comparison of our work with these approaches is omitted due
to page restrictions. It can be found in the extended version of this paper [2].

3 Computing Groups of Trajectories

In this section we present three different implementations of the operator GROUP -
TRAJECTORIES which compute groups of trajectories that are appropriate for
OLAP analysis of trajectories for different circumstances and applications: Group
by Overlap, Group by Intersection, and Group by Overlap and Intersection. We
first apply a time and space resolution mapping of our initial set T of trajectories.
This allows for the resolution drill-down and roll-up within our interactive OLAP
framework for trajectories to be discussed in Section 4. Next, we compute frequent

http://OLAP-T.cgmlab.org

OLAP for Trajectories 343

itemsets for the mapped set of trajectories and then apply a reverse mapping step.
Here, we determine for each frequent itemset f , the corresponding original group
c of trajectories and create a set C of resulting (f, c) pairs. A more detailed presen-
tation of our method is contained in the extended version of this paper [2].

The most important part of our method is the group merging phase. In this
paper, we present three different methods: (a) Group by Overlap (Sections 3.1),
(b) Group by Intersection (3.2), and (c) Group by Overlap and Intersection (3.3).

3.1 Group by Overlap

Our Group By Overlap method introduces a tunable parameter overlap ratio
threshold ORT which controls the strength of the grouping process. The inter-
active OLAP framework for trajectories discussed in Section 4 will allow for an
interactive tuning of this parameter.

Our Group By Overlap method is based on an overlap graph Γ , where each
vertex corresponds to a trajectory. For each frequent item set f and correspond-
ing set c of trajectories, we consider all pairs of trajectories ti, tj ∈ c and add
for each pair an edge (ti, tj) with label overlap ratio OS = 2·|f |

|ti|+|tj | . The overlap
ratio measures the size of the overlap relative to the sizes of the trajectories.
We then remove all edges where the overlap ratio OS is smaller than the chosen
overlap ratio threshold ORT and compute the connected components of the re-
maining graph. These components correspond to the groups of trajectories that
are reported. A more detailed presentation is contained in the extended version
of this paper [2].

The nature of the obtained groups of trajectories is determined by two factors.
(1) The overlap ratio threshold ORT determines how much two neighboring
trajectories within a group have to overlap. (2) The graph connected component
construction allows for an “adding up” of trajectories corresponding to a “relay”
type of movement. Depending on the chosen overlap ratio threshold ORT , the
“relay” parties will have to move in unison for more or less of their own individual
movements.

3.2 Group by Intersection

Our Group By Intersection method introduces a tunable parameter intersection
ratio threshold IRT which controls the strength of the grouping process. The
interactive OLAP framework for trajectories discussed in Section 4 will allow for
an interactive tuning of this parameter.

Our Group By Intersection method first creates an initial set G of groups of
trajectories, where each group c corresponds to a frequent itemset f determined
in the reverse matching in Section 3. Each group c is assigned a group strength
GS(c) which is initially set to the size of the respective frequent itemset. The
remainder of our method merges groups in G by iterating the following loop.
We compute for each pair gi, gj ∈ G a value intersection ratio AS(gi ∪ gj) =

min
(|gi∩gj |

|g1| ,
|gi∩gj |
|g2|
)

which represents the number of trajectories that occur in

344 O. Baltzer et al.

both gi and gj , relative to the sizes of gi and gj . We will consider as candidates
for merging all pairs gi, gj whose intersection ratio is larger than our input
parameter intersection ratio threshold IRT and compute for each such pair a
value merge strength MS(gi ∪ gj) = GS(gi)+GS(gj)

2 which is the average of their
group strength values. All candidate pairs are ranked by their merge strength
and we will merge the pair g∗i , g∗j with maximum merge strength, or one of the
maximal pairs if there are multiple. The group strength GS(gi∗ ∪ gj∗) of the new
merged group will be the merge strength MS(g∗i ∪ g∗j). This process is repeated
until there are no more pairs of groups with non zero merge strength, that is,
until there are no more pairs of groups with intersection ratio larger than the
intersection ratio threshold IRT . A more detailed presentation of our method is
contained in the extended version of this paper [2].

Our Group by Intersection method aggregates subsets of trajectories that
correspond to “marching band” style parallel movements. The nature of the
obtained groups of trajectories is determines by two factors. (1) The intersec-
tion ratio threshold IRT determines how many shared trajectories between two
groups are “sufficient” for them to be merged. (2) The merging process which
is similar in nature to a minimum spanning tree calculation. We merge first the
largest groups with sufficient shared trajectories and then work our way down
to the smaller groups. Unlike the Group by Overlap method which combines se-
quences of movements, the Group by Intersection method combines parallel of
movements.

3.3 Group by Intersection and Overlap

The goal of our Group by Intersection and Overlap method is to group both,
sequences of movements and parallel movements. It is a combination of our
methods in Sections 3.1 and 3.2. We create the same set G′ of groups of trajec-
tories as in Section 3.2 and the same overlap graph Γ as in Section 3.1. Then
we add to Γ a clique for each g ∈ G′ (i.e. edges between all pairs of trajectories
t1, t2 ∈ g) and compute the connected components of the modified graph Γ .
Each connected component corresponds to a group of trajectories.

The resulting groups are sequences of overlapping trajectories as in our Group
by Overlap method to which we add parallel trajectories as in our Group by In-
tersection method. The aggregation is guided by two parameters, the intersection
strength threshold IRT and the overlap ratio threshold ORT , which control the
width and length, respectively, of the generated groups.

4 Interactive OLAP for Trajectories

The algorithms for the three different versions of operator GROUP TRAJEC-
TORIES presented in Section 3 are guided by the following parameters: space
resolution, time resolution, minimum support, intersection ratio threshold and
overlap ratio threshold. This allows to analyze groups of trajectories for vari-
ous levels of resolution or connectedness, and provides another opportunity for

OLAP for Trajectories 345

50% noise 75% noise 95% noise

Group By Overlap

Group By Intersection

Input Data

Fig. 2. Test of robustness against noise. Top row: input data consisting of 10 groups
with 10 similar trajectories each and three levels of noise: 50%, 75% and 95%. Center
row: Groups computed by GROUP TRAJECTORIES: Group By Overlap (ORT = 0.5,
min support = 4). Bottom row: Groups computed by GROUP TRAJECTORIES:
Group By Intersection (IRT = 0.5, min support = 4). Groups are identified by color
(group identifier = color).

Fig. 3. School Buses Dataset and Groups reported (identified by color) using Group
by Overlap and ORT = 0.4, 0.5, 0.6, 0.7, respectively (min support = 5, min length
= 30)

OLAP analysis of trajectories. For example, for a high level analysis of GPS data
for the movement of a fleet of ships, time granularity “day” may be sufficient.
However, a drill-down to viewing the paths taken by a group of ships when

346 O. Baltzer et al.

entering a port may require a time granularity “minute”. As an example for
browsing a parameter like overlap ratio threshold, consider a set of trajectories
representing movements of people who pass on a disease virus. The aggregate,
using our Group by Overlap method, could be used to analyze the total move-
ment of the virus. In this example, our parameter overlap ratio threshold would
represent the amount of interaction between individuals required to pass on the
virus. Changing the threshold value allows to evaluate how far the virus will
spread based on different assumption about its transmission.

We have built a prototype interactive environment for the analysis of trajecto-
ries that allows resolution drill-down and roll-up as well as parameter browsing.
It can be accessed at http://OLAP-T.cgmlab.org.

5 Experimental Evaluation

Our Group by Overlap and Group by Intersection methods have a surprising
resilience against background noise. On the example shown in Figures 2, as well
as many other examples that we tested, they have no trouble reporting the
correct result for noise levels of 50%, 75% and even as high as 95%. At a noise
level of 95%, the human eye can no longer visually detect the original groups of
parallel paths but our methods have no problem reporting the correct result.

For the evaluation of our methods on real world data, we have chosen the
school buses dataset that can be freely obtained from [1]. The dataset contains
145 trajectories of buses that are moving in and around an urban area. Due to
page restrictions, we can not show the dataset here. It can be viewed by going
to http://OLAP-T.cgmlab.org and selecting the dataset “buses”.

Frequent itemsets mining without aggregation, as e.g. in [4,10,3] (plus a min-
imum length cutoff as used in our methods), would result in 76 groups being
identified. This large number of groups reported by frequent itemsets mining
based methods is often a disadvantage because it does not lead to signifficant
aggregation in an OLAP setting. Figure 3 shows the results obtained with our
Group by Overlap method for ORT values 0.4, 0.5, 0.6, and 0.7. We observe that
the parameter ORT in our Group by Overlap method allows for a much finer
control over the grouping of trajectories reported and that the Group by Overlap
method reports a considerably smaller number of groups.

A more detailed presentation of experimental results for our method is con-
tained in the extended version of this paper [2].

References

1. R-tree Portal (Last accessed, November 16, 2007), http://www.rtreeportal.org/
2. Baltzer, O., Dehne, F., Hambrusch, S., Rau-Chaplin, A.: Olap for trajectories.

Technical Report TR-08-11, School of Computer Science, Carleton University,
http://www.scs.carleton.ca

3. Cao, H., Mamoulis, N., Cheung, D.W.: Mining frequent spatio-temporal sequential
patterns. icdm, 82–89 (2005)

http://OLAP-T.cgmlab.org
http://www.rtreeportal.org/
http://www.scs.carleton.ca

OLAP for Trajectories 347

4. Gidófalvi, G., Pedersen, T.B.: Mining Long, Sharable Patterns in Trajectories of
Moving Objects. In: STDBM 2006: Proceedings of the 3rd Workshop on Spatio-
Temporal Database Management (2006)

5. Hwang, S.Y., Liu, Y.H., Chiu, J.K., Lim, E.P.: Mining mobile group patterns: A
trajectory-based approach. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 713–718. Springer, Heidelberg (2005)

6. Kim, D., Kang, H., Hong, D., Yun, J., Han, K.: STMPE: An Efficient Movement
Pattern Extraction Algorithm for Spatio-temporal Data Mining. In: Gavrilova,
M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y.,
Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 259–269. Springer, Heidelberg
(2006)

7. Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO–detecting relative mo-
tion patterns in geospatial lifelines. In: Developments in Spatial Data Handling:
Proceedings of the 11th International Symposium on Spatial Data Handling, pp.
201–214 (2004)

8. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD 2004: Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 617–622. ACM, New York (2004)

9. López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal Aggregate Computation:
A Survey. IEEE Transactions on Knowledge and Data Engineering 17(2), 271–286
(2005)

10. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.:
Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of
the 2004 ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 236–245 (2004)

11. Marchand, P., Brisebois, A., Bédard, Y., Edwards, G.: Implementation and eval-
uation of a hypercube-based method for spatiotemporal exploration and analysis.
ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2), 6–20 (2004)

12. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

13. Sclaroff, S., Kollios, G., Betke, M.: Motion mining: discovering spatio-temporal
patterns in databases of human motion. In: Proceedings of the ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (2001)

14. Shim, C.B., Chang, J.W.: A new similar trajectory retrieval scheme using k-
warping distance algorithm for moving objects. In: Dong, G., Tang, C.-j., Wang,
W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 433–444. Springer, Heidelberg (2003)

15. Sumpter, N., Bulpitt, A.: Learning spatio-temporal patterns for predicting object
behaviour (1998)

16. Verhein, F., Chawla, S.: Mining spatio-temporal patterns in object mobility data-
bases. Data Mining and Knowledge Discovery (2007)

17. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional tra-
jectories. In: Proceedings. 18th International Conference on Data Engineering,
2002, pp. 673–684 (2002)

18. Zeinalipour-Yazti, D., Lin, S., Gunopulos, D.: Distributed spatio-temporal similar-
ity search. In: CIKM 2006: Proceedings of the 15th ACM international conference
on Information and knowledge management, pp. 14–23. ACM, New York (2006)

A Probabilistic Approach for Computing

Approximate Iceberg Cubes�

Alfredo Cuzzocrea, Filippo Furfaro, and Giuseppe M. Mazzeo

ICAR-CNR, I-87036 Cosenza, Italy
and

University of Calabria, I-87036 Cosenza, Italy
{cuzzocrea,furfaro,mazzeo}@si.deis.unical.it

Abstract. An iceberg cube is a refinement of a data cube containing the
subset of cells whose measure is larger than a given threshold (iceberg
condition). Iceberg cubes are well-established tools supporting fast data
analysis, as they filter the information contained in classical data cubes
to provide the most relevant pieces of information. Although the problem
of efficiently computing iceberg cubes has been widely investigated, this
task is intrinsically expensive, due to the large amount of data which
must be usually dealt with. Indeed, in several application scenarios, ef-
ficiency is so crucial that users would benefit from a fast computation
of even incomplete iceberg cubes. In fact, an incomplete iceberg cube
could support preliminary data analysis by allowing users to focus their
explorations quickly and effectively, thus saving large amounts of com-
putational resources. In this paper, we propose a technique for efficiently
computing iceberg cubes, possibly trading off the computational effi-
ciency with the completeness of the result. Specifically, we devise an al-
gorithm which employs a probabilistic framework to prevent cells which
are probably irrelevant (i.e., which are unlikely to satisfy the iceberg
condition) from being computed. The output of our algorithm is an in-
complete iceberg cube, which is efficiently computed and prone to be
refined, in the sense that the user can decide to go through the compu-
tation of the cells which were estimated irrelevant during the previous
invocations of the algorithm.

1 Introduction

Iceberg cubes [3] are powerful tools for materializing interesting multidimensional
cubes/views from very large fact tables stored in multidimensional database
systems. Basically, iceberg cubes extend conventional data cubes [5], with the
specialized condition that the groups of tuples from the source data set to be
materialized into cells of the final cube are restricted to those satisfying a given
HAVING clause. More formally, given a data set S, an iceberg cube I on S is
� This work was supported by a grant from the Italian Research Project “Open-

KnowTech: Laboratorio di Tecnologie per la Integrazione, Gestione e Distribuzione
di Dati, Processi e Conoscenze”, funded by MUR.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 348–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Probabilistic Approach for Computing Approximate Iceberg Cubes 349

defined by a SELECT-GROUP-BY aggregation on S with an additional clause
(expressing the so-called iceberg condition) of the form HAVING AggOp(A) > T ,
where: (i) AggOp is an SQL aggregation operator, (ii) A is an attribute from
the fact table S, and (iii) T is a threshold value. In this paper, we consider the
basic iceberg-cube computation problem where AggOp is the COUNT opera-
tor, as iceberg cubes with complex aggregation predicates can be computed via
meaningfully exploiting efficient solutions for the baseline case [7].

Similarly to what happens with traditional data cube computation [2,6,16], as
real-life data are often characterized by large dimensionality, computing iceberg
cubes incurs in the so-called curse of dimensionality problem [3,6]. Therefore,
the problem of efficiently computing iceberg cubes has attracted the interest of a
growing community of researchers, and is becoming appealing for a large number
of modern applications such as frequent pattern mining [8,12].

The curse of dimensionality problem and excessive data cube sizes realisti-
cally limit the performance of state-of-the-art iceberg cubing algorithms. This
limitation is mainly determined by the fact that all the solutions proposed so far
aim at obtaining an exact computation of iceberg cubes, and neglect the oppor-
tunity of introducing some form of approximation. Indeed, in several application
scenarios, efficiency is so crucial that users would benefit from a fast computa-
tion of even incomplete iceberg cubes. In fact, an incomplete iceberg cube could
suffice to effectively support preliminary data analysis by allowing users to focus
their explorations quickly and effectively, thus saving large amounts of compu-
tational resources. The idea of using approximation for supporting preliminary
data explorations has been successfully exploited in several works dealing with
OLAP applications. For instance, a number of techniques for providing fast but
approximate answers to aggregate range queries have been proposed, such as
histograms [10], wavelets [11], and sampling [1].

This paper has been inspired by the following question: Can we define a
method that allows us to efficiently compute iceberg cubes, possibly trading off the
efficiency of the computation with the completeness of the result? In this regard,
starting from BUC [3] (one of the state-of-the-art techniques for the iceberg cube
computation), we propose an iceberg cubing algorithm based on a probabilistic
framework which is exploited to estimate whether groups of tuples satisfy the
iceberg conditions before aggregating them. Specifically, the source of efficiency
of our technique is that the probabilistic estimation prevents aggregations which
are unlikely to satisfy the iceberg condition from being computed. Indeed, the
probabilistic evaluation can result in “wrong” estimations, yielding a loss of cells
w.r.t. the exact iceberg cube. However, this is not a drawback of our technique,
as the user is given the possibility to progressively complete the computation of
the iceberg cube in the regions of data she is interested in.

2 Preliminaries

In this section we formally introduce the problem of computing an iceberg-cube
and provide the basic notations that will be adopted throughout the rest of the

350 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

paper. Let S be a data set defined over an n-dimensional domain whose dimen-
sions are D = {d1, d2, . . . , dn}. We will denote the cardinality of the domain
associated with the i-th dimension (with 1 ≤ i ≤ n) as wi. A tuple of S has
the form 〈val1, val2, . . . , valn, m〉, where valj is a value in the domain of dj and
m is a measure value. Given an aggregate operator op and a set of dimensions
G ⊆ D, the cuboid on S w.r.t. op and G is the set of tuples resulting from the
following SQL query:

SELECT G, op(m)
FROM S
GROUP BY G

Let op be an aggregation operator, T an integer value, and G a subset of D.
The choice of op and G, along with the value of T , define the following iceberg-
query Qop

T,G:

SELECT G, op(m)
FROM S
GROUP BY G
HAVING count(*)≥T;

The condition expressed in the HAVING clause will be said to be iceberg con-
dition. Basically, the answer of Qop

T,G on S is a subset of the cuboid on S w.r.t. op
and G. Specifically, it results from first grouping the tuples of S by the dimen-
sions in G, then selecting the groups consisting of at least T tuples, and finally
evaluating the aggregate operator op on the measure attribute m of the tuples
of each of the selected groups. In the following, when op and T are implied, we
will denote the iceberg-query Qop

T,G as QG. The answer of an iceberg query will
be said to be iceberg cuboid, and will be simply denoted by the set G.

The iceberg-cube on S with threshold T consists of the set of iceberg cuboids
resulting from all the iceberg-queries defined on S (corresponding to all the dif-
ferent group-bys of the dimensions in D) and will be denoted as Iop

S,T . Exploiting
the CUBE BY SQL operator, the iceberg-cube Iop

S,T can be obtained by means
of the following query:

SELECT D, count(*), op(m)
FROM S
CUBE BY D
HAVING count(*)≥T;

For instance, consider a 4-dimensional data set S representing the amount of
sales of a company w.r.t. the dimensions D = {customer, product, city, month}.
The iceberg cube on S consists of 16 (i.e., 2|D|) iceberg cuboids, corresponding to
all the different ways to aggregate sales. All the possible groupings of dimensions
of D define the lattice shown in Fig. 1. The lattice consists of n + 1 levels,
{L0, . . . , Ln}, where level Li (starting to count from the bottom) contains the

cuboids obtained by aggregating tuples in S w.r.t. all the possible
(
n
i

)
subset of

A Probabilistic Approach for Computing Approximate Iceberg Cubes 351

Fig. 1. Lattice of all the groupings of dimensions customer, product, city, month

D with cardinality i. We denote as ALL the singleton cell cuboid representing
the aggregate result of the tuples in S.

3 The Bottom-Up Cubing Algorithm

In this section we briefly recall BUC algorithm [3], since our proposal can be
viewed as a refinement of BUC employing a probabilistic estimation of the cells
which should be materialized in the output iceberg cube.

BUC exploits the antimonotonicity property of the COUNT operator to avoid
unnecessary computation. This is enabled by the bottom-up traversing of the
cuboid lattice during iceberg cube computation, i.e., from the lowest cuboid
(containing a single cell, aggregating all the tuples), towards the highest cuboid,
where the source tuple are grouped by all the non-measure attributes.

Consider the case of a data set S representing sales defined on the set of di-
mensions D = {customer, product, city, month}. Fig. 1 shows the corresponding
cuboid lattice. The arcs in the lattice represent the hierarchical relations between
pairs of cuboids. For instance, in Fig. 1, the cuboid {customer, product} is a super-
cuboid of {customer, product, city}, meaning that cells in {customer, product, city}
can be obtained from cells in {customer, product} by “disaggregating” tuples w.r.t
the dimension city. Similarly, a cell in {customer, product} can be obtained from
cells in {customer, product, city} by further aggregating them along the dimension
city.

Fig. 2 shows the BUC processing tree for our running example, i.e., how BUC
traverses the cuboid lattice, in order to compute the iceberg cube. Before going
into details, a basic concept of the BUC traversing order needs to be introduced.
A cell c of a given cuboid G is said to be descendant cell of a cell c′ in a cuboid G′

if G′ is a super-cuboid of G and c is obtained from c′ by means of disaggregation.
In other words, with respect to the original notion of cuboid lattices (mentioned
above), a descendant cell is a cell stored in a sub-cudoid, and thus it inherits the
corresponding hierarchical data generation properties.

352 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

ALL

product city monthcustomer

product, city product, month city, monthcustomer, product customer, city customer, month

customer, product,

city

customer, product,

month

customer, city,

month

product, city,

month

customer, product,

city, month

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fig. 2. Processing tree of BUC over the lattice of Fig. 1

BUC is driven in the computation by the processing tree as follows. It starts
by computing the unique cell in the cuboid ALL by aggregating all the tuples in
the data set. Then, it visits the processing tree and, for each node being visited,
it evaluates the cells of the corresponding cuboid by disaggregating the cells
of the super-cuboid. The antimonotonicity property of COUNT is exploited in
BUC as follows. Assume, for instance, that {customer, product} is the current
cuboid during iceberg cube computation. If the iceberg predicate fails on a cell
c of {customer, product}, then all its descending cells (in all the sub-cuboids
of {customer, product}, i.e., {customer, product, city}, {customer, product, city,
month} and {customer, product, month}) are pruned from the computation, since
the iceberg predicate will surely fail on these cuboid cells as well. This amenity is
the key that allows BUC to avoid unnecessary computation, thus outperforming
state-of-the-art top-down cubing algorithms (e.g., MultiWay [16]).

4 A New Efficient Probabilistic Approach

As explained before, algorithm BUC exploits the antimonotonicity of the count
operator to gain efficiency in the computation of the iceberg cube. Specifically,
at each step, BUC does not compute a cell of a cuboid QG if it is guaranteed,
from the results obtained at the previous steps for the parent cuboid of QG,
that this cell does not satisfy the iceberg condition. For instance, consider the
case that, in our running example, grouping tuples by attribute product results
in 8 tuples referred to the product moving walkway. If the threshold is T = 10,
then BUC does not compute the cells of the cuboid {product, customer} having
product=“moving walkway”, as all of them are associated with a count value not
greater than 8.

The idea underlying our approach is that of modifying the strategy imple-
mented in BUC in the sense that aggregations are not computed when their
evaluation is likely (instead of certain) to result in no cell whose count value

A Probabilistic Approach for Computing Approximate Iceberg Cubes 353

satisfies the iceberg condition. For instance, consider the case that, in our run-
ning example, grouping tuples by attribute product results in 1 000 tuples referred
to the product washer. Moreover, assume that there are 10 000 customers. This
means that, on the average, each customer bought 0.1 washers, and it is reason-
able to estimate that there is no customer who bought at least 10 washers. It is
worth noting that, in this case, BUC would accomplish the computation of the
cells of the iceberg cuboid {product, customer} with product=“washer”, and it
would probably obtain no cell.

In order to implement our strategy, it is mandatory to define a framework for
evaluating the probability that, given a cell c of the cuboid G and an attribute
A ∈ G, there is at least one non-null cell c′ in the cuboid G∪{A} having the same
values of the attributes in G as cell c. To this end, we investigate the following
(equivalent) problem: Given the threshold T and a cell c of a cuboid QG, if the
count value of c is s, what is the probability that grouping the tuples aggregated
in c w.r.t. an attribute A ∈ G of cardinality w results in at least one group
consisting of at least T tuples? This probability will be denoted as P(s, w, T),
and its value is given by:

P(s, w, T) = 1 −

� s
T

�∑
γ =0

(−1)γ ·
(
w
γ

)
·
(
w + s − γ · T − 1

s − γ · T

)

(
w + s − 1

s

) (1)

The above-reported formula can be explained as follows. Let F (s, w, T) the
number of ways of distributing s tuples among w groups such that each group
contains at most T −1 tuples, and let H(s, w) the number of ways of distributing
s tuples among w groups. It is easy to see that F (s,w,T)

H(s,w) is the probability that
the distribution of tuples among groups results in no group having at least T

tuples, thus P(s, w, T) is given by 1 − F (s,w,T)
H(s,w) . Therefore, formula 1 can be

proved by showing that

F (w, s, T) =
� s

T
�∑

γ =0

(−1)γ ·
(
w
γ

)
·
(
w + s − γ · T − 1

s − γ · T

)

and

H(s, w) =
(
w + s − 1

s

)
.

The latter easily derives from the fact that H(s, w) corresponds to the number
of multisets of cardinality s which can be obtained from b distinct elements (this
is equivalent to the number of combinations with repetitions of w elements from
which s elements must be selected). The formula for F (w, s, T) can be explained
as follows. We denote the absolute value of the j-th addend of the sum (which
corresponds to γ = j − 1) as Sj−1. Thus, the first term of the sum is S0 and is

354 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

equal to H(s, w). Hence, it counts all the ways of distributing s tuples among w
groups. This value takes into account also the number F 1 of distributions where
there exists at least one group containing more than T − 1 tuples. Hence, the
value of F (w, s, T) is given by H(s, w) − F 1. The second term of the sum in the
formula of F (w, s, T) (corresponding to γ = 1) provides an overestimation of

F 1. In fact, S1 is the product of
(
w
1

)
with

(
w + s − T − 1

s − T

)
. The former term

represents the ways of choosing an integer in the interval [1..w], while the latter
is equal to H(s−T, w). Thus, the rationale of this expression is that of evaluating
F 1 by counting the choices of a group of tuples among b possible ones, assigning
T tuples to it, and then counting the number of distributions of the remaining
s−T tuples among the b groups. Indeed, S1 overestimates F 1, as it counts twice
each configuration where exactly two groups of tuples contain at least T tuples,
three times each configuration where exactly three groups contain at least T
tuples, and so on. Intuitively enough, adding (resp., subtracting) each term Sj

(for j > 1) overcompensates (resp., undercompensates) the estimation of the
overall number of configurations provided by the previous terms of the sum.

On the basis of the probabilistic framework introduced above, we propose an
algorithm for computing an approximate iceberg cube (AIC). The algorithm
implements the same strategy as BUC, except that it exploits formula (1) to es-
timate whether it is reasonable (w.r.t. to a probability threshold) to go through
the computation of cells descending from an already computed one. The algo-
rithm invokes the below-reported (recursive) function computeDimension on the
source data set, and specifies the cardinalities of dimension domains, the count
threshold, and the probability threshold. The last argument (the starting dimen-
sion) of the main invocation of computeDimension is set to 0 and is used to drive
the recursive invocations through the processing tree, as it will be clearer in the
following.

The generic invocation of function computeDimension takes as first argument
a set of tuples S, which is the set of tuples aggregated into a cell c of the iceberg
cube computed by the previous invocations of computeDimension, and computes
(through recursive invocations) the cells of the iceberg cube descending from c.
We recall that, at the first invocation, the input set S is the whole data set over
which the iceberg cube must be computed (thus, it corresponds to the cell ALL
of the iceberg cube). Function computeDimension performs its task as follows.
First, it groups the tuples in S by attribute d, and stores these groups in an
array of tuple sets g. Thus, the i-th cell of g contains the tuples of S where
attribute d is equal to the i-th value of the domain of dimension d. Specifically,
at the first invocation, d = 0 and g consists of a unique cell containing the
whole data set S. After grouping the tuples, each cell stored in g contains the
set of tuples corresponding to a candidate cell of the iceberg cube. Then, the
array g is scanned and each cell g[i] is added to the output iceberg cube iff
it contains at least T tuples (i.e., it satisfies the iceberg condition). If this is
the case, the computation proceeds on the tuples in cell g[i], considering all the
dimensions following d. Thus, for each d′ > d (with d′ ≤ |D|), the probability

A Probabilistic Approach for Computing Approximate Iceberg Cubes 355

Function computeDimension

Input: A data set S, the array w of cardinalities of dimension domains,
a count threshold T , a probability threshold p, a starting dimension d

Output: The set of cells of the approximate iceberg-cube on S w.r.t. T and p
obtained by walking through the processing tree starting from dimension d

begin
TupleSet[] g=Group(S,d); // g is the array of tuple sets resulting from grouping S by d;
Cube I= new Cube(); //a new cube is instantiated as an empty set of cells;
for (i=1; i<=g.length; i++)

if (size(g[i])>= T) {
I.add(g[i]); // cell g[i] is added to the cube to be returned;
for (j=d+1; j<=w.length; j++)

if
�
P(size(g[i]), w[j], T)>p

�

I.union
�
computeDimension(g[i], w, T , p, j)

�
; // the cube to be returned is

// augmented with the result of the recursive
// invocations of computeDimension;

else
I.mark(g[i],j); // g[i] is marked as a cell refinable w.r.t. dimension j

}
return I;

end;

Fig. 3. A bottom-up algorithm for computing iceberg-cubes based on a probabilistic
approach

P that at least T tuples in g[i] have the same value on d′ is computed and,
if P exceeds the input probability threshold p, tuples in g[i] are processed by
recursively invoking computeDimension w.r.t. d′. Otherwise, if P < p, cell g[i]
is marked as a “cell refinable w.r.t. dimension d”, that is a cell which can be
possibly refined by further invocations of computeDimension. That is, during the
exploration of the (possibly) incomplete iceberg cube returned by our algorithm,
users can find a cell c marked as refinable and decide to force the evaluation of
its descendant cells, by running the algorithm on the set of tuples underlying c
w.r.t. the dimension d associated with c.

It is worth noting that our algorithm coincides with BUC when the probability
threshold is set to 0, as in this case descending cells of an already computed cell
are always computed if the parent cell has a count value satisfying the iceberg
condition.

The cost of function computeDimension depends on the cost of function group
and the cost of evaluating formula (1) for P . As regards the former, tuples can
be grouped in time linear w.r.t. the cardinality of S (as explained for BUC
algorithm). Formula (1) can be efficiently computed by observing that it can be
rewritten in the form:X

356 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

P(s, w, T) = 1 −
� s

T �∑
γ=0

(−1)γ ·
(
w
γ

)
·
(
w + s − γ · T − 1

s − γ · T

)
(
w + s − 1

s

) = 1 −
� s

T �∑
γ=0

aγ (2)

where the first term of the sum (γ = 0) is

a0 =

(
w + s − 1

s

)
(
w + s − 1

s

) = 1.

and the ratio between two subsequent terms (for γ > 0) of the sum is:

aγ

aγ−1
=

(γ − w − 1) · (w + s − γ · T − 1)! · (s − γ · T + T)!
γ · (w + s − γ · T − 1 + T)! · (s − γ · T)!

=

=
γ − w − 1

γ
·

�T
k=1(s − γ · T + k)

�T
k=1(w + s − γ · T − 1 + k)

=
γ − w − 1

γ
·

T�

k=1

s − γ · T + k

w + s − γ · T − 1 + k

Thus, each term aγ (with γ > 0) can be computed by means of O(T) floating
point operations. Since the value of P(s, w, T) results from � s

T � terms, we obtain
that the overall computation of P(s, w, T) can be accomplished by means of O(s)
floating-point operations. Each invocation of computeDimension computes P for
each cell of g, thus the overall cost of computing the probabilities is O(|S|).
However the cost of computing the probabilities can be considered negligible
w.r.t. that of grouping tuples, as the former can be always performed in main
memory, while the latter task requires disk accesses to retrieve the tuples to be
grouped.

Hence, the overall cost of a single invocation of computeDimension (which
takes into account the cost of function group and the evaluation of P , disre-
garding the cost of recursive invocations) is linear w.r.t. the cardinality of the
input data set S. The overall cost of computing the (approximate) iceberg cube
depends on the number of recursive invocations of computeDimension raised by
its main invocation (taking as argument the whole data set). The impact of
using a probability threshold to reduce the number of recursive invocations of
computeDimensions cannot be determined but experimentally. This is the matter
investigated in the following section.

5 Experimental Results

In order to test the effectiveness of our proposal, we performed experiments com-
paring the efficiency and the accuracy of our algorithm with BUC (the state-
of-the-art technique for the exact computation of iceberg cubes), for different

A Probabilistic Approach for Computing Approximate Iceberg Cubes 357

values of probability and count thresholds. We measured the efficiency of both
the algorithms by counting the number of calls of the group function for different
probability and count thresholds. Then, we computed the speed-up for different
values of the parameters. Specifically, being p the probability threshold and T
the count threshold, the speed-up of the probabilistic algorithm w.r.t. the clas-
sical BUC algorithm was measured as S(p, T) = C(0, T)/C(p, T), where C(x, y)
denotes the number of calls of function group in the case that the probability
and count thresholds are x and y, respectively1.

We adopted the number of calls of the group function as measure of the
computation efficiency because this is the operation with the largest cost. In
fact, when the database is large, its tuples cannot fit main memory, and their
grouping must be performed by means of several disk accesses 2. Therefore, it is
possible to disregard the cost of the other operations, including the computation
of P(w, s, T), which can be always performed in main memory by means of O(s)
floating point operations, as discussed in Sect. 4.

As regards the accuracy of the computation, it was measured as A(p, T) =
M(p, T)/M(0, T), where M(x, y) denotes the number of materialized cells in the
case that the probability and count thresholds are x and y, respectively. That is,
A(p, T) is the ratio between the number of cells materialized by our algorithm
and the number of cells in the exact iceberg cube returned by BUC.

We tested the performances of AIC on several synthetic data sets. Here we
present the results obtained on two different data sets, which are sufficient to
discuss the performances of AIC. The synthetic data sets are 4-dimensional,
each representing 1 million sales defined on the following dimensions (in brack-
ets, the cardinality of each dimension domain is reported): customer (50 000),
product (10 000), month (60), city (24). In order to simulate correlation between
attributes, we assumed that each customer is assigned a peak product and a peak
city, both chosen according to a zipf distribution (on the product domain and on
the city domain, respectively), and each product is assigned a peak month chosen
according to a uniform distribution (on the month domain). Then, we generated
each of the million sales as follows: (i) the customer c is chosen according to
a zipf distribution, (ii) the city is chosen according to a normal distribution
centered in the peak month of c, (iii) the product p is chosen according to a
normal distribution centered in the peak product of c, and (iv) the month is
chosen according to a normal distribution centered in the peak month of p. The
parameters of the zipf distributions were set to 0.3 and, respectively, 1.0 for
the first and the second data set, that will be denoted as D0.3 and D1.0 in the
following. The variances σ2 of the normal distributions were chosen such that
a range of size 6 · σ is at least as large as one half of the considered domain
size.

1 C(0, T) represents the number of tuple groupings performed by BUC, since, as re-
marked before, our algorithm coincides with BUC in the case that p = 0.

2 A more detailed measure of efficiency should consider the number of disk accesses.
However, we did not adopt this measure because the grouping operation can be
performed differently by different DBMSs.

358 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

* T=15T=5 T=10

50

25

0

0.60.450.30.15

S

Probability threshold

�

�

�

�

�

�

�

�

�

�

�

�
100

90

80

0.60.450.30.15

A %

Probability threshold

�
� �

�

�
�

�
�

�
�

�
�

(a) (b)

50

25

0

0.60.450.30.15

S

Probability threshold

�

�

�

�

�

�

�

�

�

�

�

� 100

90

80

0.60.450.30.15

A %

Probability threshold

� �
�

��
�

�
�

�

�
�

�

(c) (d)

Fig. 4. Speedup (a,c) and accuracy (b,d) of AIC on a D0.3 (a,b) and D1.0 (c,d)

Fig. 4 depicts the results obtained by running AIC on D0.3 (a,b) and D1.0

(c,d). As shown in Fig. 4 (a,c), the employment of AIC results in a speed-up w.r.t.
BUC, ranging from 8 to 50 in the considered cases. These diagrams also show
that the speed-up increases with both the count and the probability threshold.
Correspondingly, the accuracy of AIC, as shown in Fig. 4 (b,d), decreases with
both the count and the probability threshold. Intuitively enough, as the speedup
increases, the probability of loosing cells that must be materialized gets higher,
since a larger number of groupings which might result in cells satisfying the
iceberg condition is not performed. Therefore, a larger number of cells are likely
to be lost. This effect becomes more relevant as T increases, since P(s, w, T) (see
formula 1) decreases more rapidly than the number of cells whose count exceeds
T , due to the correlation among attributes and the data skewness. As a matter
of fact, the sensitivity on the data skewness is can be observed by comparing
the results shown in Fig. 4 (b,d): for the same T , the accuracy on D0.3 is better
than that on D1.0, being D0.3 less skewed than D1.0.

The effectiveness of our approach can be evaluated by simultaneously analyz-
ing the results reported in the above-mentioned diagrams. From these diagrams,
it turns out that the gain in terms of groupings saved is large compared with
the number of “lost” cells (which is between the 1% and the 18% of the overall
number of cells of the actual iceberg cube). This means that our probabilistic
framework effectively estimates, in most cases, whether a cell satisfies the iceberg

A Probabilistic Approach for Computing Approximate Iceberg Cubes 359

condition. Furthermore, the majority of the lost cells have count slightly larger
than the threshold (almost all lost cells have count within the range [T..2 · T]).
It is worth noting that loosing a number of cells is not a severe drawback, due
to the possibility of progressively refining the result starting from marked cells.

We remark that the order in which dimensions were processed by both BUC
and AIC was the descending order of domain cardinalities, as proposed in [3].
However, we also tried other orderings, obtaining larger execution times for BUC
(about twice, in the case of dimensions processed in ascending order), whereas
AIC turned out to be almost insensitive to the dimension ordering (for the
considered values of probability threshold). This can be considered as a further
benefit of AIC, which, differently from BUC, does not require a data preprocess-
ing for determining the actual cardinality of dimension domains.

6 Related Work

In this section, we provide an overview of state-of-the-art iceberg cubing algo-
rithms. Basically, state-of-the-art approaches pursue two main goals: (i) sharing
computation overheads as much as possible; (ii) applying the iceberg condition
in the cuboid lattice as deep as possible. These two principles have inspired both
top-down and bottom-up iceberg cube computation strategies. For instance, the
computation strategy of BUC is based on the second principle. On the other
hand, it is worth noting that these principles are pretty controversial, and cannot
be accommodated simultaneously. This evidence has stimulated the proliferation
of a novel class of iceberg cube computation methods, the so called hybrid meth-
ods. Devising innovative strategies beyond capabilities and performance of BUC
is the main goal of these proposals. Nevertheless, even though with a dependency
lower than first-generation proposals [12], the performance of hybrid methods is
still heavily affected by the curse of dimensionality problem and excessive data
cube sizes.

Top-down strategies do not perform well with iceberg cubes, being more tar-
geted to the computation of conventional data cubes. The reason of this is that,
contrary to bottom-up ones, these algorithms do not take any advantage from
the antimonotonicity property, as discussed in Section 1. However, top-down al-
gorithms can be still used to compute iceberg cubes, as follows: (i) compute the
full-materialized data cube first, and (ii) apply the iceberg predicate then in
order to prune (materialized) cells that do not satisfy the latter predicate. Ob-
viously, this approach is plausible only for small-sized cubes and low dimension
numbers, whereas it does not scale well when cubes grow in dimension number
and size.

MultiWay [16] is one of the most representative top-down iceberg cubing al-
gorithm. The main idea that underlies MultiWay consists in using a compressed
sparse array to load tuples from the target fact table, and then partitioning this
array in ad-hoc chunks supporting the simultaneous computation of multiple
cuboids in one pass only. The key of this approach relies in the chunk computa-
tion order, which must be arranged meaningfully [16].

360 A. Cuzzocrea, F. Furfaro, and G.M. Mazzeo

Among the hybrid iceberg cubing algorithms, StarCubing [12] is the most rep-
resentative one. The innovation carried out by StarCubing relies in the amenity
of combining bottom-up and top-down iceberg cubing methodologies in order to
devise a novel approach that efficiently supports simultaneous multidimensional
aggregations, which is a useful feature for several Data Warehousing and OLAP
applications. The resulting iceberg cubing methodology that underlies StarCub-
ing is indeed quite complex. First, StarCubing introduces the notion of shared
dimensions of the cuboid lattice in order to achieve an “intermediate” spanning
tree of the lattice that combines the strengths of both bottom-up and top-down
traversing orders. The relationships among cuboids define the so-called star-tree,
a novel data structure that efficiently supports both a-priori pruning like BUC,
which avoids unnecessary computation, and also simultaneous multidimensional
aggregations like MultiWay, which is instead not supported by BUC.

Apart from the previous proposals, which, in summary, constitute the state-
of-the-art iceberg cubing algorithms, other interesting research initiatives that
focus on research aspects related to iceberg cubes are the following. [7] deals with
the problem of computing iceberg cubes with complex OLAP-like aggregation
predicates. [4] advocates high-performance distributed and parallel computation
methodologies to solve the problem of computing very large iceberg cubes. [14]
introduces BP-Cubing, a novel bound prune approach for iceberg cubing that is
able to handle non-antimonotone aggregation operators via devising meaningful
bounding formulas for both simple and complex SQL aggregate functions. This
framework has also been successfully exploited for efficiently computing iceberg
quotient cubes [15]. [13] moves the attention from the classical exclusive pruning
strategy to novel inclusive and anti-pruning strategies. Finally, [9] considers the
interesting case of computing iceberg cubes on top of XML multidimensional
data repositories.

7 Conclusions and Future Work

A novel iceberg cube computation paradigm has been proposed and experimen-
tally assessed in this paper. While state-of-the-art cubing algorithms accomplish
the exact computation of the cube, we pursue an incomplete but faster computa-
tion, which results in an iceberg cube refinable under user control. Our approach
is driven by a probabilistic framework which is used to estimate whether a cell
satisfies the iceberg condition (that is, whether it should be materialized) on the
basis of the aggregate data associated with already computed cells.

Due to the possibility of progressively refining the iceberg cube under user
control, our method is highly flexible, so that it can be effectively used as baseline
component for advanced OLAP-based analysis tools.

Future work will be mainly devoted to investigate how to take into account
correlation among attributes in the probabilistic evaluation of the cells which are
likely to satisfy the iceberg condition. Furthermore, we will focus on extending
our approach to deal with aggregate operators other than count, which may be
useful in a number of OLAP-like application contexts.

A Probabilistic Approach for Computing Approximate Iceberg Cubes 361

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Ap-
proximate Query Answering. In: ACM SIGMOD (1999)

2. Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakr-
ishnan, R., Sarawagi, S.: On the Computation of Multidimensional Aggregates. In:
VLDB (1996)

3. Beyer, K., Ramakrishnan, R.: Bottom-Up Computation of Sparse and Iceberg
Cubes. In: ACM SIGMOD (1999)

4. Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: PnP: Parallel And External
Memory Iceberg Cube Computation. In: IEEE ICDE (2005)

5. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggre-
gation Operator Generalizing Group-By, Crosstab, and Sub-Total. In: IEEE ICDE
(1996)

6. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Effi-
ciently. In: ACM SIGMOD (1996)

7. Han, J., Pei, J., Dong, G., Wang, K.: Efficient Computation of Iceberg Cubes with
Complex Measures. In: ACM SIGMOD (2001)

8. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation.
In: ACM SIGMOD (2000)

9. Ming-fei Jian, F., Pei, J., Wai-chee Fu, A.: IX-Cubes: Iceberg Cubes for Data
Warehousing and OLAP on XML Data. In: ACM CIKM (2007)

10. Poosala, V., Ioannidis, Y.E.: Selectivity Estimation without the Attribute Value
Independence Assumption. In: VLDB (1997)

11. Vitter, J.S., Wang, M., Iyer, B.: Data Cube Approximation and Histograms via
Wavelets. In: ACM CIKM (1998)

12. Xin, D., Han, J., Xiaolei, L., Shao, Z., Wah, B.W.: Computing Iceberg Cubes by
Top-Down and Bottom-Up Integration: The StarCubing Approach. IEEE Trans.
on Knowledge and Data Engineering 19(1) (2007)

13. Zhang, X., Lienhua Chou, P.: Multiway Pruning for Efficient Iceberg Cubing. In:
Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 203–212.
Springer, Heidelberg (2006)

14. Zhang, X., Lienhua Chou, P., Dong, G.: Efficient Computation of Iceberg Cubes
by Bounding Aggregate Functions. IEEE Trans. on Knowledge and Data Engineer-
ing 19(7) (2007)

15. Zhang, X., Lienhua Chou, P., Ramamohanarao, K.: Computing Iceberg Quotient
Cubes with Bounding. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS,
vol. 4081, pp. 145–154. Springer, Heidelberg (2006)

16. Zhao, Y., Deshpande, P.M., Naughton, J.F.: An Array-based Algorithm for Simul-
taneous Multidimensional Aggregates. In: ACM SIGMOD (1997)

Noise Control Boundary Image Matching

Using Time-Series Moving Average Transform

Bum-Soo Kim, Yang-Sae Moon, and Jinho Kim

Department of Computer Science, Kangwon National University
192-1, Hyoja2-Dong, Chunchon, Kangwon 200-701, Korea

{bskim,ysmoon,jhkim}@kangwon.ac.kr

Abstract. To achieve the noise reduction effect in boundary image
matching, we exploit the moving average transform of time-series match-
ing. Our motivation is that using the moving average transform we may
reduce noise in boundary image matching as in time-series matching.
We first propose a new notion of k-order image matching, which applies
the moving average transform to boundary image matching. A bound-
ary image can be represented as a sequence in the time-series domain,
and our k-order image matching identifies similar boundary images in
this time-series domain by comparing the k-moving average transformed
sequences. Next, we propose an index-based method that efficiently per-
forms k-order image matching on a large image database, and prove its
correctness. Moreover, we present its index building and k-order image
matching algorithms. Experimental results show that our k-order image
matching exploits the noise reduction effect, and our index-based method
outperforms the sequential scan by one or two orders of magnitude.

1 Introduction

Owing to advances in storage and computing power, there have been many
research efforts on time-series matching to exploit large time-series databases
[1, 4, 7, 10]. In addition, there have been several recent attempts to apply these
time-series matching techniques to practical applications such as handwritten
recognition, image matching, query by humming, and biological sequence match-
ing [7,14,15,9]. Among these applications, in this paper we focus on the bound-
ary image matching that converts boundary images to time-series and identifies
similar images using time-series matching on those time-series [7, 14].

Using the moving average transform in boundary image matching we reduce
distortions of matching results caused by noise. The traditional research of re-
ducing noise has focused on an image itself rather than a time-series [2, 5]. In
contrast, we reduce the noise in a time-series converted from an image rather
than the image itself. For this time-series approach, we exploit the moving aver-
age transform used in time-series matching as a preprocessing technique [11,12].
This idea is derived from an observation that the moving average transform re-
duces noise of time-series. That is, we are motivated by an intuition that using
the moving average transform we may reduce noise in the image domain as well
as in the time-series domain.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 362–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Noise Control Boundary Image Matching Using Time-Series 363

To exploit the moving average transform in boundary image matching, we
propose a new notion of k-order similar. We say two boundary images are k-
order similar if their transformed time-series become similar after performing
k-order moving average transform. We now use this notion of k-order similar in
boundary image matching, which we call k-order image matching. After then,
we propose an efficient solution for this k-order image matching in large image
databases.

We propose an index-based method for the efficient k-order image matching.
This index-based approach uses a multidimensional index after transforming
high-dimensional time-series to low-dimensional points. In this paper, we for-
mally prove the correctness of the index-based method by showing that it incurs
no false dismissal. We then present the index-building and the k-order image
matching algorithms for the index-based method.

Through extensive experiments, we show the effectiveness of k-order image
matching and the superiority of our index-based method. Experimental results
show that, as the order k increases, the more images with noise are identified as
similar to the given query image. This means that our k-order image matching
works well even though boundary images contain some noise. To show the per-
formance superiority of our index-based method, we next compare its elapsed
time with that of the sequential scan. Compared with the sequential scan, our
index-based method reduces the elapsed time by one or two orders of magni-
tude since it prunes many unnecessary images through the index-based search.
According to these results, we believe that our k-order image matching and its
index-based solution provide a very practical way of realizing the noise control
boundary image matching.

2 Related Work

2.1 Time-Series Matching

A time-series is a sequence of real numbers representing values at specific time
points. (Hereafter, we use time-series and sequences interchangeably.) Finding
data sequences similar to the given query sequence from the database is called
time-series matching [1, 4, 6, 7, 10]. We say two sequences X and Y are similar
if the distance D(X, Y) is less than or equal to the user specified tolerance
ε [1, 4, 10]. In this paper we focus on the simplest similarity model that uses
the Euclidean distance and the ε-based range query. Given two sequences X =
{X [1], X [2], . . . , X [n]} and Y = {Y [1], Y [2], . . . , Y [n]}, the Euclidean distance
D(X, Y) is defined as

√∑n
i=1(X [i] − Y [i])2. Besides this Euclidean distance-

based model, several similarity models were proposed. For these other models,
readers refer to [11, 12] for preprocessing techniques, [6, 8] for dynamic time
warping (DTW) distance, and [6,7] for k-NN queries.

In this paper we use the whole matching, where the lengths of data and query
sequences are all identical. The first solution of whole matching by Agrawal
et al. [1] consists of preprocessing, range search, and post-processing steps. In

364 B.-S. Kim, Y.-S. Moon, and J. Kim

the preprocessing step, each data sequence of length n is transformed into an f -
dimensional point (f � n , we call it lower-dimensional transformation), and the
transformed points are stored in an f -dimensional R*-tree [1, 11]. In the range
search step, a query sequence is similarly transformed into an f -dimensional
point, and a range query is constructed using that point and the tolerance ε.
By evaluating the range query on the index, the candidates that are potentially
similar to the query sequence are identified. The lower-dimensional transforma-
tion guarantees there is no false dismissal, but may cause false alarms [1,4,10].
Thus, in the post-processing step, for each candidate sequence obtained, the
actual data sequence is accessed from the disk; the distance from the query
sequence is computed; and the candidate is discarded if it is a false alarm.

Moving average transform is useful in finding the trend of time-series data by
reducing the effect of noise [8, 11]. For a given sequence S = {S[1], . . . , S[n]},
the k-moving average transformed sequence Sk = {S(k)[1], . . . , S(k)[n−k+1]} is
computed as S(k)[i] = 1

k

∑i+k−1
j=i S[j]. Here, k is called the moving average order

or simply the order, and it can be varied according to the type of applications
and the degree of noise reduction [11]. Rafiei and Mendelzon [12] proposed a
solution to whole matching that supports the moving average transform of ar-
bitrary order. For a sequence of length n and the order k, they computed the
last (k-1) entries of the k-order moving average transformed sequence using the
first (k-1) entries of the original sequence in a circular manner. Recently, Moon
and Kim [11] proposed a single-index solution to subsequence matching that
supports the moving average transform of arbitrary order. They presented a no-
tion of poly-order moving average transform and used it in supporting arbitrary
orders.

2.2 Boundary Image Matching

Image matching [5] that finds similar data images to the given query image is
one of the most important research topics in image processing areas. In image
matching, colors [13], textures [3], or shapes [7, 14] were used as major fea-
tures. Among these features, we focus on the shape features of an image. Main
considerations in the shape-based image matching are object boundaries con-
tained in an image. In this paper we use the centroid contour distance (CCD
in short) [7, 14], which maps a boundary image to a time-series using the dis-
tance of each boundary point from the centroid. Figure 1 shows an example of
converting an image to a time-series by CCD.

Recently, two novel works were reported to use time-series of boundary im-
ages. First, using the rotation-invariant property of DFT magnitudes Vlachos et
al. [14] proposed a novel solution to rotation-invariant image matching. Their
method, however, has a weak point that matching accuracy may be worse due
to not using DFT phase information. Second, Keogh et al. [7] showed that
their tight lower bound LB Keogh [8] could also be used in rotation-invariant
image matching and provided a novel solution for the DTW distance. Their so-
lution is excellent, but it does not consider noise reduction to be solved in this
paper.

Noise Control Boundary Image Matching Using Time-Series 365

D
is

ta
nc

e

Boundary
extraction

Transformation
by CCD

Angle()°Angle()

Fig. 1. An example of converting an image to a time-series by CCD

3 Motivation of the Research

To use time-series matching for boundary images, we formally define similarity
between two boundary images and boundary image matching.

Definition 1. Let A and B be boundary images and X and Y be their corre-
sponding time-series. Boundary images A and B(or time-series X and Y) are
said to be similar if D(X, Y) ≤ ε. �	

Definition 2. Time-series converted from boundary images of the image data-
base are called data sequences, and a database that stores those time-series is
called the image time-series database. A time-series converted from a given query
boundary image is a query sequence. Given a query sequence and the tolerance,
finding data sequences similar to the query sequence from the image time-series
database is called boundary image matching. �	

Several papers on time-series matching used preprocessing techniques to reduce
distortions of time-series [11, 12]. Examples of preprocessing techniques include
moving average transform, shifting & scaling, and normalization. We note that,
if we reduce distortions of time-series using the preprocessing techniques, we may
reduce distortions of original boundary images. That is, by using preprocessing
techniques in the time-series domain, we may get an effect of reducing distortions
in the image domain. This is our motivation. In particular, we focus on the
moving average transform since it reduces noise of time-series data.

Figure 2 shows how boundary images and their time-series are changed by the
moving average transform. Figure 2(a) shows original images with some noise
and their boundary images. Figure 2(b) shows the corresponding time-series, and
Figure 2(c) its 8-moving average transformed time-series. Figure 2(d) shows the
reconstructed boundary images from the transformed time-series of Figure 2(c).
Comparing Figure 2(a) with Figure 2(d), we can graphically confirm that image
boundaries are smoothened by the moving average transform, which means that
noise of images are partly eliminated by the moving average transform.

The moving average order k plays an important role in controlling the degree
of noise reduction. Figure 3 shows the change of k and its influence on the noise
reduction. Figure 3(a) shows an original image with some noise, and Figure 3(b)
its boundary image. Figures 3(c) to 3(e) show the reconstructed boundary im-
ages from the k-moving average transformed sequences, where k is 2, 4, and 8.

366 B.-S. Kim, Y.-S. Moon, and J. Kim

0

10

20

30

40

50

0 45 90 1 35 180 225 270 315

0

5

10

15

20

25

30

35

40

0 45 90 1 35 180 225 27 0 315

IMG-1 IMG-2

0

5

10

15

20

25

30

35

40

0 4 5 90 135 1 80 225 27 0 3 15

0

10

20

30

40

50

60

0 45 9 0 1 35 180 225 270 315

(b) Time-series converted from the boundary images.

(c) Moving average transformed time-series (k=8). (d) Boundary images after the moving average transform (k=8).

IMG-1 IMG-2

(a) Original images with noise and their boundary images.

IMG-1 IMG-2

IMG-1 IMG-2

Fig. 2. Effect of reducing noise of boundary images by the moving average transform

(a) Original image

(c) 2-moving averaged image (d) 4-moving averaged image (e) 8-moving averaged image

(b) Boundary image

Fig. 3. Noise reduction effect of a boundary image by the moving average order

As shown in Figure 3, as the order k increases, the noise reduction effect also in-
creases. Thus, supporting arbitrary orders is necessary, and our image matching
system permits users to control the order k as an input value.

4 Boundary Image Matching Using Moving Average
Transform

4.1 The Concept

In Section 3, we already defined similarity between boundary images using their
time-series, and described boundary image matching based on that similarity.
In Definitions 1 and 2 of Section 3, however, we do not consider the noise reduc-
tion effect by the moving average transform. In particular, the degree of noise
reduction may vary by the order k. Thus, we need to redefine similarity between
boundary images by considering the order k. For this purpose, we first redefine
k-moving average transform for the time-series of boundary images.

Noise Control Boundary Image Matching Using Time-Series 367

Definition 3. If X = {X [1], . . . , X [n]} is a time-series of a boundary image, its
k-moving average transformed sequence X(k) =

{
X(k)[1], . . . , X(k)[n]

}
is defined

as Eq. (1):

X(k)[i] =
1

k
(X[i%n] + X[(i + 1)%n] + · · · + X[(i + k − 1)%n]) =

1

k

i+k−1�

j=i

X[j%n], (1)

where 1 ≤ i ≤ n, 1 ≤ k ≤ n − 1, and ‘%’ is a modular operator. �	

Definition 3 is the same as Rafiei et al.’s circular definition. In a boundary image,
the subsequent boundary point of the last boundary point is the first boundary
point, and this means that, in its corresponding time-series, the subsequent en-
try of the last entry is the first entry. Therefore, the extended moving average
transform is reasonable for handling the time-series of boundary images.

We next extend the definition of similarity by considering the moving average
transform.

Definition 4. Let A and B be boundary images, X and Y be the corresponding
time-series of length n, and X(k) and Y (k) be the k-moving average transformed
sequences. Boundary images A and B (or time-series X and Y) are said to be

k-order similar if D
(
X(k), Y (k)

)
≡
√∑n

i=1

(
X(k)[i] − Y (k)[i]

)2 ≤ ε holds. �	

Previous works [7, 14] on boundary image matching did not consider any pre-
processing technique, and they used the distance itself as the similarity measure.
In contrast, in order to consider the moving average transform, in Definition 4
we compute the distance between the k-moving average transformed sequences
rather than the original sequences. Using the k-order similarity we now extend
the definition of boundary image matching.

Definition 5. Given a query sequence Q of a query image, the tolerance ε, and
the moving average order k, finding data sequences that are k-order similar to
the given query sequence from the image time-series database is called k-order
image matching. �	
To efficiently handle a large image time-series database, we need to use an index
as many time-series matching solutions did. For this, we show that the lower-
dimensional transformation of time-series matching can also be used in our k-
order image matching.

Lemma 1. Let the transformation F convert sequences S and Q of length n to
sequences SF and QF of length f , and the lower-bounding condition of Eq. (2)
hold for S and Q. Then, F also satisfies the lower-bounding condition of Eq. (3)
for time-series X and Y of boundary images.

D(S, Q) ≥ D(SF , QF) ≡

���� f�
i=1

(SF [i] − QF [i])2 (2)

D
�
X(k), Y (k)

�
≥ D

�
X

(k)
F , Y

(k)
F

�
≡

���� f�
i=1

�
X

(k)
F [i] − Y

(k)
F [i]

�2
(3)

368 B.-S. Kim, Y.-S. Moon, and J. Kim

In Eq. (3), X
(k)
F and Y

(k)
F are f -dimensional sequences transformed from X(k)

and Y (k) by F , respectively.

Proof. If we replace S and Q in Eq. (2) with X(k) and Y (k), Eq. (2) becomes
identical to Eq. (3). Thus, if Eq. (2) holds for S and Q, Eq. (3) also holds for
X(k) and Y (k). �	

Next, to support arbitrary orders, we use the poly-order moving average trans-
form (poly-order transform in short) proposed by Moon and Kim [11]. They
defined the poly-order transform for subsequence matching, however, we han-
dle image time-series instead of subsequences. Thus, we redefine the poly-order
transform for image time-series rather than subsequences.

Definition 6. Given a time-series X of a boundary image and a set of orders
K = {k1, k2, . . . , km}, the poly-order (moving average) transformed set of X on
K, denoted by XK, is defined as

{
X(ki) | 1 ≤ i ≤ m

}
. �	

Using the poly-order transform incurs no false dismissal as follows.

Lemma 2. If an order k is an element of a set K (i.e., k ∈ K), and X and Y
are image time-series, then the lower-bounding condition of Eq. (4) holds.

D
�
X(k), Y (k)

�
≥ D

�
X(k),MBR

�
Y (k)
��

(4)

In Eq. (4), MBR
(
Y (K)

)
is an n-dimensional minimum bounding rectangle

(MBR) that bounds all sequences contained in Y (K).

Proof. Y (k) is contained in Y (K) by Definition 6. The n-dimensional point Y (k)

is contained in the n-dimensional MBR MBR
(
Y (K)

)
by the definition of MBR.

Thus, the distance from an arbitrary point to Y (k) is greater than or equal to
the distance from that point to MBR

(
Y (K)

)
. �	

We finally show that only one index is enough to support arbitrary moving
average orders in k-order image matching.

Theorem 1. If an order k is an element of a set K (i.e., k ∈ K), the transfor-
mation F satisfies the lower-bounding condition of Eq. (2), and X and Y are
image time-series, then the lower-bounding condition of Eq. (5) holds.

D
�
X(k), Y (k)

�
≥ D

�
X

(k)
F ,MBR

�
Y

(K)
F

��
(5)

In Eq. (5), Y
(K)
F is a set of f -dimensional sequences that are transformed from

n-dimensional sequences in Y (K) by F , and MBR
(
Y

(K)
F

)
is an f -dimensional

MBR that bounds all sequences in Y
(K)
F .

Proof. We omit the proof since Eq. (5) of the theorem trivially holds by Eqs. (3)
and (4). �	

Noise Control Boundary Image Matching Using Time-Series 369

Theorem 1 means that, if two image time-series X and Y are k-order similar, the
f -dimensional point transformed from X is in ε-distance with the f -dimensional
MBR MBR

(
Y

(K)
F

)
transformed from Y . In other words, Theorem 1 guaran-

tees that the candidate set consisting of the time-series Y such that the query
point X

(k)
F is in ε-distance with the stored MBR MBR

(
Y

(K)
F

)
contains no false

dismissal.

4.2 Index-Building and k-Order Image Matching Algorithms

Figure 4 shows the index-building algorithm. The inputs to the algorithm are an
image time-series database and a set of moving average orders, and the output is
a multidimensional index. In Lines (2) to (5), we store each data sequence in the
index through the poly-order transform and the lower-dimensional transforma-
tion. In Line (2) we construct a set of n-dimensional sequences by performing the
poly-order transform to the data sequence Y on the set of orders K. In Line (3)
we transform those n-dimensional sequences to f -dimensional sequences by the
lower-dimensional transformation F . In Line (4) we construct an f -dimensional
MBR by bounding those f -dimensional sequences. In Line (5) we finally store
that MBR into the multidimensional index with Y ’s identifier Y -ID. We con-
struct the multidimensional index by repeating these Lines (2) to (5) for each
data sequence (Lines (1) and (6)). In summary, we map each high-dimensional
data sequence to a low-dimensional MBR and store that MBR into the index
with its sequence identifier.

Procedure BuildIndex(Image time-series database DB, A set of orders)

(1) for each data sequence Y in DB do

(2) Make a set ()Y of n-dimensional sequences by using the poly-order moving average transform on ;

(3) Construct a set ()
FY of f-dimensional sequences by using the transformation F;

(4) Construct an f-dimensional MBR ()()FMBR Y by bounding all f-dimensional sequences;

(5) Make a record <Y-ID, ()()FMBR Y > , and store it into the index;

(6) end for

Fig. 4. The index-building algorithm

Figure 5 shows the k-order image matching algorithm. The inputs to the
algorithm are a query sequence X converted from a query image, a given toler-
ance ε, and a moving average order k, and the outputs are the k-order similar
data sequences. In the algorithm, we first construct a set of candidate sequences
by searching the index, and then identify the true k-order similar sequences
by accessing the image time-series database. In Line (1) we construct an n-
dimensional sequence X(k) from the n-dimensional query sequence X through
the k-order moving average transform. In Line (2) we obtain an f -dimensional
sequence X

(k)
F from X(k) through the lower-dimensional transformation F . After

then, in Line (3) we construct an f -dimensional range query using X
(k)
F and the

370 B.-S. Kim, Y.-S. Moon, and J. Kim

Procedure k-OrderImageMatching(Query sequence X, Tolerance ε , Order k)

(1) Make an n-dimensional sequence ()kX from X by using the k-order moving average transform;

(2) Transform ()kX to an f-dimensional sequence ()k
FX by using the transformation F;

(3) Make a range query using ()k
FX and ε ;

(4) Construct a candidate set by evaluating the range query on the index;

(5) Identify the true k-order similar images from the candidate set through the post-processing step;

Fig. 5. The k-order image matching algorithm

tolerance ε. In Line (4) we evaluate the range query on the multidimensional
index and construct a set of candidate sequences that are potentially k-order
similar to the query sequence. This candidate set contains false alarms as well
as the true k-order similar sequences. Therefore, in Line (5) we finally perform
the post-processing step that discards false alarms by retrieving the real data
sequences from the database and by computing their k-order distance to the
query sequence.

5 Experimental Evaluation

5.1 Experimental Data and Environment

We implemented a client-server system for k-order image matching. We also im-
plemented three noise addition methods: a blur method, a random-noise method,
and a mixed method. See Figure 6 for the screenshots explaining the blur method
and the random-noise method. The mixed method makes a new image by ex-
ploiting these two methods one by one. We regarded these blur or random-noise
effects as a kind of noise, and we used these noise images as data and query
images in the experiments.

In the experiments, we constructed an image database consisting of total 90
thousand images. For this, we first collected total 10 thousand original images
from the Web. Figure 7 shows examples of these original images. For the experi-
ments, we generated eight more noise images from each original image. Figure 6
explains how we generate these eight noise images from an original image. As
a result, we used total 90 thousand images consisting of 10 thousand original
images and 80 thousand noise images. About 100 thousand time-series are gen-
erated from 90 thousand images, and those time-series are stored in the image
time-series database. As shown in Figures 7(b) and 7(d), one image may contain
two or more boundary objects, and in these cases two or more time-series may
be extracted from one image.

The hardware platform of the server was a SUN Ultra 25 workstation equipped
with an UltraSPARC IIIi CPU 1.34GHz, 1.0GB RAM, and a 80GB hard disk.
The software platform was the Solaris 10 operation system. As a multidimen-
sional index, we used the R*-tree and set its index and data page sizes to 4,096
bytes. We converted each boundary image to a time-series of length 360 and
extracted eight DFT features from each time-series.

Noise Control Boundary Image Matching Using Time-Series 371

Blur method
(standard deviation=1.5)

Random-noise method
(noise amount=25%)

Original image

Blur method
(standard deviation=3.0)

Blur method
(standard deviation=3.0)

Blur method
(standard deviation=1.5)

Random-noise method
(noise amount=50%)

Random-noise method
(noise amount=25%)

Random-noise method
(noise amount=50%)

Fig. 6. Examples of eight different noise images generated from an original image

(a) Glass product (b) General merchandise (c) Kitchenware (d) People (e) Animal & Insect

Fig. 7. Examples of original images

5.2 Experimental Results

We performed extensive experiments using a variety of images to confirm the
effectiveness of k-order image matching. Figure 8 shows the experimental result
when a pot image is used as a query. In the experiment, we set the query tolerance
ε to the maximum among the tolerance values which returns two images as the 1-
order image matching result. For example, in 1-order image matching of Figure 8,
we get one or two images if ε ≤ 13.5 and three images if ε > 13.5, so we set ε
to 13.5. As shown in the figure, the larger moving average order causes the
more number of images similar to the query image. In particular, as the order k
increases, the noise pot images, which are generated from the same original pot
image, are returned as similar ones. This means that our k-order image matching
works well even for the large database having noise images.

Figure 9 summarizes the experimental results for other various images. In
Figure 9, the matching results mean the returned images through k-order image
matching, and the similar results the actual similar images that are generated
from the same original image. As shown in the figure, the larger k increases
the number of matching results in all cases, and all these matching results are
identified as the similar results. As a result, we can say that our k-order image
matching retrieves similar images relatively correctly, and the order k can be used
as a measure of controlling the degree of noise reduction. However, too large k
may return wrong images as similar ones. This is because non-similar images
as well as similar ones can be smoothened by the moving average transform.

372 B.-S. Kim, Y.-S. Moon, and J. Kim

Matching result images (ordered by the distance from the query sequence.)

M
oving average order (k)

1

2

4

8

16

32

Fig. 8. The k-order image matching result of a pot image (tolerance=13.5)

Query image Type Noise method The number of
images

Moving average order (k)
1 2 4 8 16 32

Cap Not used
Matching results 2 3 4 5 6 7

Similar results 2 3 4 5 6 7

Rabbit Not used
Matching results 2 5 7 7 8 8

Similar results 2 5 7 7 8 8

People
Blur method

(Standard deviation=1.5)

Matching results 2 5 5 5 6 7

Similar results 2 5 5 5 6 7

Bulb
Blur method

(Standard deviation=3.0)

Matching results 2 4 4 4 5 7

Similar results 2 4 4 4 5 7

Butterfly
Random-noise method

(Noise amount=50%)

Matching results 2 2 3 4 5 6

Similar results 2 2 3 4 5 6

Fig. 9. Summary of k-order image matching results for various query images

Therefore, we need to use k-order image matching in an interactive manner by
controlling the order k, i.e., we need to investigate the more returned images
step by step by increasing the order k.

We next compare the elapsed times of the proposed index-based method with
those of a sequential scan. To explain the experimental results, we define se-
lectivity [4, 6, 10] as the following Eq. (6), which means how many sequences
are returned as the 1-order image matching result. In the experiments, we first
determine a tolerance for each of selectivity 10E-4, 10E-3, and 10E-2, and then
measure the elapsed time by changing the order k for that determined selectivity.

Noise Control Boundary Image Matching Using Time-Series 373

An index-based method A sequential scan

10E+7

10E+8

e
(

se
c)

10E+6

10E+7

he
 e

la
ps

ed
 ti

m

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

Th

Moving average order (k) Moving average order (k) Moving average order (k)

10E+5

(a) Selectivity=10E-4 (b) Selectivity=10E-3 (c) Selectivity=10E-2

Fig. 10. The elapsed times for the original set

Selectivity =
Number of returned sequences by the 1-order image matching

Number of all sequences in the image time-series database
(6)

As query images, we used four image sets: 1) an original set consists of 20
original images; 2) a blur set 20 noise images by the blur method with standard
deviation of 1.5 and 3.0; 3) a random-noise set 20 noise images by the random-
noise method with noise amount of 25% and 50%; and 4) a mixed set 20 images
randomly selected from the image time-series database. We measured the elapsed
times of 20 images and used their average as the experimental result.

Figure 10 shows the experimental results of the original set. As shown in the
figure, our index-based method significantly reduces the elapsed time compared
with the sequential scan. (Note that Y -axis is a log-scale.) Using a multidimen-
sional index causes this improvement. In Figure 10, we note that, as the order k
increases, the elapsed time slightly increases in both methods. This is because, as
k increases, the number of candidates and their computation time for the moving
average transform also increase. In summary, the index-based method improves
the matching performance by 6.7 to 29.4 times over the sequential scan.

We next perform the experiments on the blur set, the random-noise set, and
the mixed set. These experimental results show a very similar trend to those
of the original set in Figure 10. That is, even though we use other image sets,
the index-based method significantly outperforms the sequential scan, and this
means that our index-based method shows better performance than the sequen-
tial scan regardless of image types.

6 Conclusions

In this paper we proposed a new approach in boundary image matching that
achieved the noise reduction effect by exploiting the moving average transform.
Contributions of the paper can be summarized as follows. First, considering
the moving average transform we proposed new concepts of k-order similar and
k-order image matching. The previous work did not consider the moving av-
erage transform, so we newly defined these concepts by extending the tradi-
tional definitions. Second, in Theorem 1 we formally proved that we could use a

374 B.-S. Kim, Y.-S. Moon, and J. Kim

multidimensional index in k-order image matching without incurring any false
dismissal. Third, we presented the index-building and the image matching algo-
rithms for k-order image matching. Fourth, through extensive experiments, we
showed the effectiveness of k-order image matching and the superiority of the
index-based method. Experimental results indicate that k-order image match-
ing and its index-based solution provide a very practical way of noise-controlled
image matching. In particular, to our best knowledge, this is the first attempt
to solve some problems of the image domain through appropriate techniques of
the time-series domain, and we believe that our approach can be widely used in
removing other types of distortions in image matching areas.

Acknowledgments. This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2007-331-D00381).

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence
Databases. In: Proc. the 4th Int’l Conf. on Foundations of Data Organization and
Algorithms, pp. 69–84. Chicago, Illinois (October 1993)

2. Brailean, J.C., et al.: Noise Reduction Filters for Dynamic Image Sequences: A
Review. In: Proceedings of the IEEE, vol. 83(9) (September 1995)

3. Do, M.N.: Wavelet-Based Texture Retrieval Using Generalized Gaussian Density
and Kullback-Leibler Distance. IEEE Trans. on Image Processing 11(2) (February
2002)

4. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in
Time-Series Databases. In: Proc. Int’l Conf. on Management of Data, pp. 419–429.
ACM SIGMOD, Minneapolis, Minnesota (May 1994)

5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall,
Englewood Cliffs (2002)

6. Han, W.-S., Lee, J., Moon, Y.-S., Jiang, H.: Ranked Subsequence Matching in
Time-Series Databases. In: Proc. the 33rd Int’l Conf. on Very Large Data Bases,
Vienna, Austria, pp. 423–434 (September 2007)

7. Keogh, E., et al.: LB Keogh Supports Exact Indexing of Shapes under Rotation
Invariance with Arbitrary Representations and Distance Measures. In: Proc. the
32rd Int’l Conf. on Very Large Data Bases, Seoul, Korea, September 2006, pp.
882–893 (2006)

8. Keogh, E., Ratanamahatana, C.A.: Indexing and Mining Large Time Series Data-
bases. In: Proc. The 12th Int’l Conf. on Database Systems for Advanced Applica-
tions, Tutorial, Bangkok, Thailland (April 2007)

9. Lee, A.J.T., et al.: A Novel Filtration Method in Biological Sequence Databases.
Pattern Recognition Letters 28(4), 447–458 (2007)

10. Moon, Y.-S., Whang, K.-Y., Han, W.-S.: General Match: A Subsequence Matching
Method in Time-Series Databases Based on Generalized Windows. In: Proc. Int’l
Conf. on Management of Data, pp. 382–393. ACM SIGMOD, Madison, Wisconsin
(June 2002)

11. Moon, Y.-S., Kim, J.: Efficient Moving Average Transform-Based Subsequence
Matching Algorithms in Time-Series Databases. Information Sciences 177(23),
5415–5431 (2007)

Noise Control Boundary Image Matching Using Time-Series 375

12. Rafiei, D., Mendelzon, A.O.: Querying Time Series Data Based on Similarity. IEEE
Trans. on Knowledge and Data Engineering 12(5), 675–693 (2000)

13. Theoharatos, C.: A Generic Scheme for Color Image Retrieval Based on the Mul-
tivariate Wald-Wolfowitz Test. IEEE Trans. on Knowledge and Data Engineer-
ing 17(6), 808–819 (2005)

14. Vlachos, M., Vagena, Z., Yu, P.S., Athitsos, V.: Rotation Invariant Indexing of
Shapes and Line Drawings. In: Proc. of ACM Conf. on Information and Knowledge
Management, Bremen, Germany, October 2005, pp. 131–138 (2005)

15. Zhu, Y., Shasha, D.: Warping Indexes with Envelope Transforms for Query by
Humming. In: Proc. Int’l Conf. on Management of Data, June 2003, pp. 181–192.
ACM SIGMOD, San Diego, California (2003)

Approximate Range-Sum Queries over Data

Cubes Using Cosine Transform

Wen-Chi Hou1, Cheng Luo2, Zhewei Jiang1, Feng Yan1, and Qiang Zhu3

1 Computer Science Department in Southern Illinois University Carbondale,
Carbondale, IL 62901, U.S.A

{hou, zjiang, fyan}@cs.siu.edu
2 Department of Mathematics and Computer Science in Coppin State University,

2500 West North Avenue, Baltimore, MD, 21216, U.S.A
cluo@coppin.edu

3 Department of Computer and Information Science in University of Michigan-
Dearborn, Dearborn MI 48128, U.S.A

qzhu@umich.edu

Abstract. In this research, we propose to use the discrete cosine trans-
form to approximate the cumulative distributions of data cube cells’ val-
ues. The cosine transform is known to have a good energy compaction
property and thus can approximate data distribution functions easily
with small number of coefficients. The derived estimator is accurate and
easy to update. We perform experiments to compare its performance with
a well-known technique - the (Haar) wavelet. The experimental results
show that the cosine transform performs much better than the wavelet
in estimation accuracy, speed, space efficiency, and update easiness.

1 Introduction

Data warehouse is a large collection of integrated data, built to assist knowledge
workers, such as executives, managers, analysts, etc., to make better and faster
decisions. It is often required that the data be summarized at various levels of
detail and on various combinations of attributes for on-line analytical processing
(OLAP), which allows analysts to gain insight into the data through a variety of
views. Typical OLAP applications include product performance and profitabil-
ity, effectiveness of sales programs or marketing campaigns, sales forecasting,
capacity planning, etc. Data warehousing and OLAP have increasingly become
a focus of the database industry. OLAP systems generally support a multidimen-
sional data model, known as a data cube [6]. A range-sum query, a very common
and useful type of query over data cubes, is to compute the sum of measure at-
tribute values of data cube cells that fall in the ranges specified by the query. It
is very useful in finding trends and discovering relationships between attributes
in OLAP. To facilitate range-sum query processing, prefix-sum cubes are pro-
posed [3,4,5,7]. Although these methods generally can answer range-sum queries
quickly, updates to data cubes can propagate to large portions of the prefix-sum
cubes, incurring tremendous overheads. In addition, these approaches all require
at least as much space as the original data cubes to store the prefix-sum cubes.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 376–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 377

Approximate query answering present an appealing alternative to conven-
tional query processing when exact answers are too slow or costly to derive.
Fast approximate answers are very useful in exploratory data analyses, such as
OLAP, decision support, and data mining. They provide quick summary infor-
mation to users to help refine search in a potentially tedious mining process or
in an ad-hoc drill-down and roll-up in OLAP [1]. In this research, we attempt to
find a method that not only can provide fast approximate answers to range-sum
queries, but also uses very little space. In addition, the approach is dynamically
updatable in the presence of updates to data cubes.

In this research, we propose to use discrete cosine transform (DCT) to ap-
proximate prefix-sum cubes. The discrete cosine transform is known to have a
good energy compaction property and thus can approximate the distribution of
data cube cells’ values easily using only a few low frequency terms. The derived
estimator is accurate and easy to update. We perform experiments to compare
its performance with a well-known technique, the (Haar) wavelet [11,15]. Exper-
imental results show that DCT performs better than the wavelet in estimation
accuracy, speed, space efficiency, and update easiness.

The paper is organized as follows. Section 2 reviews previous studies on data
cube compression and prefix-sum cubes. Section 3 introduces the notations.
Section 4 discusses approximation using cosine transform. Section 5 presents
the range-sum query estimation. Section 6 discusses the updatability of the co-
sine estimator. Section 7 presents the experimental results. Section 8 concludes
the paper.

2 Related Work

The condensed cube [16] condenses tuples from different cuboids that are aggre-
gated from the same set of tuples into one tuple. The quotient cube
method [8] partitions a cube into classes of cells with identical aggregate val-
ues to save storage space. Dwarf [14] accomplishes size reduction of data cubes
by factoring redundant prefixes and suffixes out of the data warehouse. Unfortu-
nately, the constructions of such cubes are generally complex and the effective-
ness of these reduction methods heavily depend upon the properties of the data
themselves. For range-sum queries, substantial portions of the size-reduced cubes
may have to be accessed. Li et al. [10] indicated that poor query performance
was observed in condensed and quotient cubes.

Quasi-cubes [2] slice the data cubes and approximate the distributions of
subcubes by linear functions. It is not clear how range-sum queries can be an-
swered when subcubes partially intersect with the ranges of queries. In addition,
updates are difficult to handle on the fly and periodical reconstructions of the
linear functions may be required.

To facilitate range-sum query processing, Ho et al. [7] computed the prefix
sums of data cubes. Although this method can answer queries fast, an update
in the worst case can propagate to the entire prefix-sum cube, which is as large
as the original data cube. To control the cascading of updates, Geffner et al.

378 W.-C. Hou et al.

[4,5] decomposed the prefix-sum cubes recursively and Chan et al. [3] organized
the prefix-sum cubes hierarchically; but the complexity of update still increases
exponentially with the number of dimensions. In general, update propagation is
a common problem for all these prefix-sum data cube approaches. Note that all
these approaches require tremendous amounts of space, at least as large as the
sizes of the original data cubes, to store the prefix-sum cubes.

The wavelet transforms [13] decompose the original signal by applying high-
pass and low-pass filters repeatedly until a predefined decomposition level is
reached. The Haar transform is conceptually simple and fast. It is proved that
the largest coefficients in absolute value carry the most important information
of the original signal in the Haar transform. Thus, the original signal can be
compressed using a small number of coefficients that have largest absolute values.
The wavelet transform has been used to compress histograms for selectivity
estimation [11]. Vitter et al. [15] compressed the data cubes using the Haar
wavelet and showed that estimates of aggregation queries can be derived quickly
and accurately. Matias et al [12] have enhanced the method with a dynamic
update scheme for its coefficients.

In this study, we use the discrete cosine transform (DCT) to approximate the
cumulative distribution of the measure attribute values in the data cubes. DCT
is known to have a good energy compaction property and thus can approximate
a distribution easily using a few (low-frequency) coefficients. DCT also has a
simple and efficient update method. Since the domains of dimension attributes
are all discrete or already discretized, we shall use “discrete cosine transform
and “cosine transform” interchangeably in the paper for simplicity.

The wavelet method [15] is most relevant to our approach as both attempt to
apply mathematical techniques to compress the data cubes. We shall have more
in depth comparisons of the two approaches in subsequent sections.

3 Notations

3.1 Attribute Value Normalization

Consider a data cube with d dimension attributes X1, . . ., Xd. By converting
a categorical domain to numerical, all dimension attributes can be viewed as
numerical. Let M be a measure attribute whose values are of interest. We assume
M has the set of real numbers R as its domain.

To simplify notations and algorithm implementation, dimension attribute val-
ues are normalized to a predetermined domain [0, 1]. Let maxXi and minXi be
the maximal and minimal values of attribute Xi, respectively. Then, each value
xi of Xi can be normalized as follows:

xz
i =

xi − min Xi

max Xi − min Xi
, min Xi ≤ xi ≤ max Xi (1)

From now on, we shall assume all attribute values are so normalized and shall
not distinguish xifrom xz

i , unless otherwise stated.

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 379

3.2 Range-Sum Queries

Let X = (X1, . . . , X d) be the set of dimension attributes. For each 1≤ i≤ d,
denoted by xi is a value of the attribute Xi. Given x = (x1, . . . , x d) ∈ [0, 1]d,
and y = (y1, . . . , yd) ∈ [0, 1]d, we say x ≤ y if xi≤ yi for all i=1, . . . , d.

We assume all range constraints in a range-sum query have the form ai <
Xi ≤ bi. Other forms of range constraints, such as ai ≤ Xi ≤ bi, ai ≤ Xi < bi,
ai < Xi < bi can all be converted to this form. For example, ai ≤ Xi ≤ bi can
be rewritten as a−

i < Xi ≤ bi where a−
i is largest Xi value that is smaller than

ai. Let {Xi1, ..., Xik} be the set of attributes on which range constraints, such
as ai < Xi ≤ bi, are posted in the queries. By denoting ai = 0 and bi = 1 for
i /∈ {i1, ..., ik}, a range-sum query Q(a, b), where a = (a1, . . . , ad) ∈ [0, 1]d, b =
(b1, . . . , bd) ∈ [0, 1]d, and ai ≤ bi for all i = 1, . . ., d, is to compute the sum of
measure attribute values for those cells whose dimension attribute values satisfy
ai < Xi ≤ bi for all 1 ≤ i ≤ d.

3.3 Empiric Distribution

Consider a random variable M that has a cumulative distribution function F . If
F is known, the probability of M falling in the range (a, b] is

P{a < X ≤ b} = F (b) − F (a) (2)

For simplicity, we shall use the term “distribution” for “cumulative distribution”
from now on. The empiric (cumulative) distribution represents exactly the data
distribution of the data cube without losing any information. Consider a data
cube as a sample from the measure attribute domain R. Each cell of the data cube
can be viewed as an observation. Given a set of n non-zero (measure attribute)
observations {v1, ..., vn}, whose coordinates in the data cube are {y1, y2, . . . ,
yn}, the empiric distribution function F̂ (x) is defined by

F̂ (x) =
∑

k

vk, whose yk ≤ x, x ∈ [0, 1]d (3)

Then given a sample of a random variable M , we can use the empirical distrib-
ution constructed from the sample to estimate the distribution of M .

Consider a one-dimensional example here. Given a sample of 6 measure at-
tribute values {3, 1, 4, 1, 2, 2} at coordinates {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}, we can
estimate the probability P{X ≤ 0.4} as the ratio of the sum of the values whose
coordinates are less than or equal to 0.4 (i.e., 8) to the sum of all the values
(i.e., 13), that is 8/13.

In this paper, our goal is to find an approximation, denoted by F̂m(X), to the
empiric distribution F̂ (X). The approximation shall use much less space and yet
with little information loss.

4 Empirical Distribution Estimation Via Cosine Series

In this section, we discuss how to derive an estimator for the empiric distribution.

380 W.-C. Hou et al.

Let the cosine series be denoted as φi(x), i ≥ 0,

φi(x) =
{

1, i = 0;√
2 cos iπx, i > 0;

That is, {1,
√

2cosπx,
√

2cos2πx, . . .,
√

2cosiπx, . . .}. Let Φi(x) =
∫ 1

x
φi(u)du,

That is,

Φi(x) =
{

1 − x, i = 0;
−

√
2 sin iπx

/
iπ, i > 0;

We assume for simplicity all dimension attributes have the same domain size D.
Consider a d-dimensional data cube with n non-zero measure attribute values
(or cell values) v1, v2, . . . , vn, whose coordinates are y1, y2, . . . , yn, respectively.
Then, the empirical distribution F̂ (x1, ..., xd) of the cells’ values can be repre-
sented by a cosine series with Dd coefficients, β̂i1,...,id

0 ≤ i1, ..., id ≤ D − 1,
as

F̂ (x1, ..., xd) =
D−1∑
i1=0

....

D−1∑
id=0

∧
β

i1,...,id

d∏
j=1

φij (xj) (4)

where β̂i1,...,id
’s are

β̂i1,...,id
=

n∑
k=1

vk(
d∏

j=1

Φ ij (ykj)) (5)

where ykj is the jth-dimension coordinate of yk,1 ≤ k ≤ n.
While the empirical function F̂ (x1, ..., xd) describes the exact distribution

of tuples, the storage of such a function could be large, especially when the
number of domain attributes d and the domain sizes thereof are large. To save
storage space, we opt to approximate the function by a smaller number of cosine
coefficients.

The cosine transform has a good energy compaction property; most energy
is preserved in the first few low frequency terms. Thus, one can approximate,
without much information loss, the empirical distribution F̂ (x1, ..., xd) with its
first md (low frequency) terms, denoted F̂m, as

F̂ (x1, ..., xd) ≈ F̂m(x1, ..., xd) =
m−1∑
i1=0

....

m−1∑
id=0

∧
β

i1,...,id

d∏
j=1

φij (xj) (6)

In general, the larger the m value, the better the approximation. It is noted that
only the md coefficients (real numbers) need to be stored for the approximate
frequency function. In contrast, besides the coefficients, the wavelet needs to
store the indexes of coefficients too (to indicate which terms are selected). Thus,
the cosine method is more space-efficient than the wavelet method.

Example 4.1: Consider a one-dimensional data cube with 6 non-zero measure
attribute values v’s: { 2, 1, 5, 4, 2,1} and their respective coordinates y’s :{0.12,

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 381

0.32, 0.33, 0.66, 0.80, 0.90}. The cosine transform of this distribution is derived
as follows.

β̂0 =
6∑

j=1

vjΦ0(yj) =
6∑

j=1

vj(1 − yj) = 7.65

β̂1 =
6∑

j=1

vjΦ1(yj) =
6∑

j=1

vj [−
√

2
π

sin πyj)] = −4.8951

The estimator of the empiric distribution with 2 coefficients is F̂2(x) = 7.65 −
4.8951(

√
2 cos πx).

5 Estimation of Range-Sum Queries

In this section, we elaborate on the estimation of range-sum queries using the
approximate empiric distributions derived in the previous section.

Let us illustrate our idea through a 1-dimensional case. Suppose X is a random
variable such that X ∈ [0, 1] with a cumulative distribution function F (x). The

Range-sum(m,a,b,β[],T)

Input: an integer m > 0, two vectors a = (a1, . . ., ad), b = (b1, . . ., bd),
l ≤ ai ≤ bi ≤ r, and md coefficients {β[0, . . ., 0], . . ., β[m − 1, . . ., m − 1]}
of the orthogonal series estimators F̂m(x).

Output: an estimation of Q(a, b).

begin
prob ← 0;
k ← 1;
for i ← 0 to 2d − 1 do

for j ← 0 to d − 1 do
if i mod 2j = 0 then

p[j] = a[j];
k ← (−k);

end
else

p[j] = b[j];
end

end
prob ← prob +k× Empiric-Distribution(m, p, β[]);

end
if prob> 0 then

return prob;
end
else

return 0 ;
end

end

Fig. 1. Estimate a Range-sum Query

382 W.-C. Hou et al.

Empiric-Distribution(m, p, β[])

Input: an integer m > 0, a vector p = (b1, . . ., bd), l ≤ bi ≤ r, and md

coefficients {β[0, . . ., 0], . . ., β[m − 1, . . ., m − 1]} of the orthogonal series
estimators F̂m(p).

Output: the empiric distribution F̂m(p) valued at p.

begin
s ← 0;
k ← 1;
for i1 ← 0 to m − 1 do

. ;
for id ← 0 to m − 1 do

s ← s + β[i1, . . . , id]Πd
j=1φij (pj);

end
end
return s;

end

Fig. 2. Compute the Empiric Distribution F̂m(p) at p

probability that a < X ≤ b is

P{a < X ≤ b} = F (b) − F (a) ≈ F̂m(b) − F̂m(a) (7)

Let us extend X to a d-variate random vector. Let a = (a1, ..., ad) ∈ [0, 1]d,
b = (b1, ..., bd) ∈ [0, · · · 1]d, and a < b A vertex of the hyperinterval (a, b]

(a, b] = {x = (x1, ..., xd) ∈ [0, 1]d : a1 < x1 ≤ b1, ..., ad < xd ≤ bd} (8)

is denoted as u = (u1, ..., ud) ∈ [0, 1]d with ui ∈ {ai, bi} for i = 1, . . ., d. Let
Δk(a, b) be the set of all vertices u with ui = ai for exactly k coordinates and
uj = bj for the remaining coordinates. Then,

P{ai < Xi ≤ bi, ∀ 1 ≤ i ≤ d} =
∑d

k=0
(−1)k

∑
u∈Δk(a,b)

F (u) (9)

Thus, the range-sum query Q(a, b) is estimated as

Q(a, b) ≈
∑d

k=0
(−1)k

∑
u∈Δk(a,b)

F (u). (10)

Example 5.1. Suppose d = 2, a = (a1, a2) ∈ [0, 1]d, b = (b1, b2) ∈ [0, 1]d,
a1 ≤ b1, a2 ≤ b2. Then, by Eq. (9)

P{ai < Xi ≤ bi, ∀ 1 ≤ i ≤ 2} = F (b1, b2)+F (a1, a2)−F (a1, b2)−F (b1, a2).

Figure 1 summarizes the computation of a range-sum query Q(a, b).
The above algorithm calls Empiric-Distribution, depicted in Figure 2, to com-

pute the empirical distribution of the measure attribute values F̂m(p) (i.e., Eq.(6)
at a specific point p.

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 383

5.1 Storage of the Estimator

By utilizing the good energy compaction property, one can further filter out high
frequency terms without much information loss. A technique, called Triangle
Sampling [9] can be applied. It stores only those coefficients whose indexes satisfy
i1 + + id ≤ m − 1. Thus, the number of the coefficients finally stored is
C(m+d−1, d) ≈ md/d!, which is much smaller than md. Note that the indexes
(i1, . . ., id) of the coefficients need not be stored because they are unique and
can be derived on the fly.

For example, consider a 2-dimensional case (d = 2) and m has been set to 3.
Then, there will be md (=32) coefficients in the approximation function, denoted
as Ci,j , 0 ≤ i, j ≤ m − 1. By triangle sampling, only 6 (=C(m + d − 1, d)) of
them that satisfy the condition: i1+i2 ≤ m−1 = 2, are kept. They are: C0,0, C0,1,
C0,2, C1,0, C2,0, C1,1. We will incorporate this technique in our implementation.

6 Dynamic Maintenance of the Estimator

As observed from Eq. (5), each coefficient β̂i1,...,id
of the transform is basically

the sum of the product of the measure attribute values and the products of basis
functions on the measure attribute value’s coordinates. Therefore, for insertion
or deletion of a measure attribute value, we can just compute the “contribution”
of the value to the transform and then combine them with the old coefficients.
That is, for insertion of a new value t at y = (y1, y2, . . . , yd), β̂i1,...,id

is updated
as

β̂i1,...,id
= β̂i1,...,id1 + t

d∏
j=1

Φij (yj) (11)

Similarly, for deletion of a value t at y = (y1, y2, . . . , yd), it is updated as

β̂i1,...,id
= β̂i1,...,id1 − t

d∏
j=1

Φij (yj) (12)

An update to the measure attribute value can be accomplished by a deletion
followed by an insertion. Let m be the number of coefficients of the estimator.
The complexities of an insertion, a deletion, and an update are all O(m).

Coefficients can be updated easily and dynamically. This property makes the
cosine transform well suited in data stream environments, where tuples contin-
uously flow in. The updates of the coefficients can be performed on the fly as
well as in batch. In addition, the computation workload can be easily distributed
among processors as the “contributions” of tuples can be computed separately.

7 Experimental Results

In this section, we report experimental results of estimating range-sum queries
using the cosine and wavelet methods.

384 W.-C. Hou et al.

7.1 Experiment Setup

We have implemented both methods in C++ and compiled them with GNU
C/C++ Compiler V3.2.3. The test platform is Redhat Linux Enterprise 4 run-
ning on a Dell Precision 360 workstation with 3.3 GHZ CPU and 1GB RAM.

Experiments are run on both synthetic and real-life datasets. The purpose
of using synthetic data is to study the methods in relation to different charac-
teristics of data in a controlled environment. The synthetic relations are gen-
erated following the TPC-D benchmark [18] with attribute values distributed
Zipfianly [17]. We generate distributions with two different z values, 0.5, and
1.0, which represent, roughly speaking, a slightly skewed and skewed distribu-
tion, respectively. The domain size of each dimension attribute is 1, 024 and the
sum of measure attribute values is 106.

We have also used a real-life dataset from the Bureau of Census [19]. We select
the data for a period of three-months, from January to March 2004. The dataset
has around 140, 000 tuples for each month. The dimension attributes are Age,
Education and State, whose ranges are [1, 99], [1, 46] and [1, 99], respectively,
and the measure attribute is count (or the number of tuples).

7.2 Estimation Accuracy

We ran 100 queries with randomly chosen ranges on dimension attributes. The
accuracy of estimation is measured by average relative errors.

Performance on Synthetic Datasets. Figures 3 and 4 show the estimation
results of range-sum queries over two-dimensional data cube with Zipf parame-
ters, 0.5 and 1.0, respectively. As shown in the figures, in general, the greater
the number of coefficients used, the better the results for both techniques.

As shown in Figure 3, the cosine method performed better than the wavelet
using the same number of coefficients for the slightly skewed distribution. The
wavelet generated average errors ranging from 3.93% for 100 coefficients to 1.07%
for 2, 000 coefficients, while ours from 1.02% to 0.33% for the same number of
coefficients.

Fig. 3. Two-dimensional Queries, z=0.5

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 385

Fig. 4. Two-dimensional Queries, z=1.0

Fig. 5. Three-dimensional Queries, z=0.5

Notice that with only 100 coefficients, our estimates are already very accurate
(around 1% error) in both cases. But the accuracy does not improve much when
the number of coefficients increases further. This demonstrates the good energy
compaction property of the cosine transform.

As mentioned earlier, the cosine transform stores only the coefficients, but
the wavelet needs to store the indexes with the coefficients. Thus, for the same
number of coefficients, the wavelet uses at least twice as much space as ours.
This further demonstrates the efficiency of the cosine transform.

As the distributions become more skewed (i.e., z = 1.0), it becomes more
difficult to capture the sharp changes in frequency and thus estimation accuracy
degrades. Nevertheless, our method demonstrates an even larger performance
edge over wavelet in the more skewed case (z = 1.0) than in the smoother case
(z = 0.5).

Figures 5 and 6 show the results of range-sum queries with constrains on
three-dimensional data cubes with Zipf parameters 0.5 and 1.0, respectively.
In general, the higher the dimension, the greater the number of coefficients is
needed to achieve a desired accuracy. This is mainly due to the increased number
of frequency values to be approximated (or compressed) in higher dimensional
spaces. Again, our method performed better than the wavelet method for the
same number of coefficients. In Figure 5, wavelet generated average errors rang-
ing from 28.04% for 1, 000 coefficients to 8.25% for 10, 000 coefficients, while

386 W.-C. Hou et al.

Fig. 6. Three-dimensional Queries, z=1.0

ours from 6.9% to 2.67% for the same number of coefficients. Wavelet’s errors
are about 4 times larger than ours.

As distributions become more skewed, the errors become greater like in the 2-
dimensional cases. For example, at z = 1.0, the wavelet generated average errors
ranging from 54.45% for 1, 000 coefficients to 29.88% for 10, 000 coefficients while
our approach generated from 8.68% to 0.81% for the same number of coefficients.
The wavelet’s errors are about 6 to 37 times larger than ours. In Figures 7 and 8,
we show the results of six-dimensional queries. With each dimension partitioned
into 16 regions, it results in a 166(= 16 million)-bucket histogram. The wavelet
generated large errors (e.g., > 100%) for small numbers of coefficients (e.g.,
1, 000, 2, 000, etc). Even for the largest number of coefficients we tested, i.e.,
8, 000 coefficients, the errors are still very large, for example, 49.5% for z = 0.5
and 59.3% for z = 1.0. Due to the large errors of wavelet, we present only the
results of cosine series in the following.

As a short summary, the cosine transform performs much better than the
wavelet in accuracy. Nevertheless, all these two methods use much less space
than a prefix-sum cube method, which requires at least as large space as the
original data cube (1024d cells).

A Real Dataset. Figures 9 and 10 show the results on the real dataset.

Fig. 7. Six-Dimensional Queries, z=0.5

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 387

Fig. 8. Six-Dimensional Queries, z=1.0

As in the synthetic experiments, our method performs better than the wavelet.
For example, with only 100 coefficients, as shown in Figure 9, the errors of the
wavelet and cosine methods are 12.45% and 1.68%, respectively.

For three-dimensional queries, as shown in Figure 10, with 100 coefficients,
our error is already below 10% while the wavelet still has an error as high as
54%.

7.3 Update and Estimation Speeds

As mentioned earlier, the higher the number of dimensions, the greater the
number of coefficients is required for an estimator to achieve an acceptable ac-
curacy. We assume that the estimators have 400, 3, 000, 8, 000 coefficients for
2-dimensional 3-dimensional, and 6-dimensional cases, respectively, which we
believe are generally large enough to yield reasonable accuracy.

Fig. 9. Real Dataset: Two-dimension Queries

Table 1. Update Speed

Time (μs) 2-dimension 3-dimension 6-dimension

Wavelet 4.7 6,906 —

Cosine 132 1,250 3,002

388 W.-C. Hou et al.

Fig. 10. Real Dataset: Three-dimension Queries

Table 2. Estimation Speed

Time (μs) 2-dimension 3-dimension 6-dimension

Wavelet 210 2,058 —

Cosine 72 389 1,321

Let m be the number of coefficients used in the estimators. It takes O(m) time
to update a cosine estimator, as shown in Eqs. (11) and (12). On the other hand,
wavelet takes O(logH) time to update the coefficients, where H is the size of the
underlying histogram (or the number of cells in the data cube), recalling that
wavelet is a histogram-based method. Note that the size of histogram generally
increases exponentially with the number of dimensions (d) of the histogram, i.e.,
H = |D|d, where |D| is the size of each dimension attribute domain (assumed to
be the same for all dimension attributes). Consequently, Table 1 shows wavelet
is much slower in high dimensional cases.

The cosine method has a complexity of O(2dm) for a range-sum query estima-
tion, as demonstrated in Eq. (9). The wavelet has a complexity of O(2dHlog(H)).
Hence, the wavelet estimator can be very slow in high dimensions, as shown in
Table 2.

8 Conclusions

In this paper, we develop a nonparametric statistical range-sum query estimation
approach, which is based upon the empiric distribution estimation by the cosine
series. First, we derive an estimator for the empiric distribution of measure
attribute values in a data cube, and then use the empiric distribution estimator
to compute the range-sum query estimates. The empiric distribution estimator
can be stored easily and updated efficiently. The experimental results have shown
that our approach produced much more accurate estimates than the wavelet
method. The proposed method is well suited for on-line approximate aggregate
query estimation over data cubes. It is simple, accurate, efficient, and adaptive.

Approximate Range-Sum Queries over Data Cubes Using Cosine Transform 389

References

1. Acharya, W., Gibbons, P., Poosala, V.: Aqua: A Fast Decision Support System
Using Approximate Query Answers. In: Proc. 25th VLDB Conference (1999)

2. Barbara, D., Sullivan, M.: Quasi-cubes: Exploiting approximation in multi-
dimensional databases. SIGMOD Record 26, 12–17 (1997)

3. Chan, C., Ioannidis, Y.: Hierarchical cubes for range-sum queries. In: Proc. VLDB,
pp. 675–686 (1999)

4. Geffner, S., Agrawal, D., Abbadi, A., Smith, T.: Relative prefix sums: an efficient
approach for querying dynamic OLAP Data Cubes. In: Proc. ICDE, pp. 328–335
(1999)

5. Geffner, S., Agrawal, D., Abbadi, A.: The Dynamic Data Cube. In: Zaniolo, C.,
Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp.
237–253. Springer, Heidelberg (2000)

6. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals. In: Proc. ICDE
Conference (1996)

7. Ho, C., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data cubes.
In: Proc. ACM SIGMOD Conference, pp. 73–88 (1997)

8. Lakshmanan, L., Pei, J., Han, J.: Quotient cube: How to summarize the semantics
of a data cube. In: Proc. 28th VLDB Conference, pp. 528–539 (2002)

9. Lee, J., Kim, D., Chung, C.: Multi-dimensional Selectivity Estimation Using Com-
pressed Histogram Information. ACM SIGMOD, 205–214 (1999)

10. Li, S., Wang, S.: Semi-closed cube: An effective approach to trading off data cube
size and query response time. Journal of Computer Science and Technology 20(3),
367–372

11. Matias, Y., Vitter, J., Wang, M.: Wavelet-based histograms for selectivity estima-
tion. In: ACM SIGMOD Conference, pp. 448–459 (1998)

12. Matias, Y., Vitter, J., Wang, M.: Dynamic Maintenance of Wavelet-Based His-
tograms. In: Proc 26th VLDB Conference, pp. 101–110 (2000)

13. Nievergelt, Y.: Wavelets Made Easy. Birkhauser, Basel (1999)
14. Sismanis, Y., Roussoupoulos, N., Deligiannakis, A., Kotidis, Y.: Dwarf: Shrinking

the petacube. In: Proc. ACM SIGMOD Conference, pp. 464–475 (2002)
15. Vitter, J., Wang, M., Lyer, B.: Data cube approximation and histograms via

wavelets. In: Proc. CIKM, pp. 96–104 (1998)
16. Wang, W., Feng, J.L.: Condensed cube: An effective approach to reducing data

cube size. In: Proceedings of the 18th International Conference on Data Engineering
(2002)

17. Zipf, G.: Human behavior and the principle of least effort. Addison-Wesley, Reading
(1949)

18. TPC benchmark D, decision support (1995)
19. http://www.bls.census.gov/sipp/ ftp.html#sipp04

http://www.bls.census.gov/sipp/_ftp.html#sipp04

Querying Multigranular Spatio-temporal Objects

E. Camossi1, M. Bertolotto1, and E. Bertino2

1 University College Dublin, Ireland�

Tel.: +353 (0)1 7162-913; Fax: +353 (0)1 2697-262
{elena.camossi,michela.bertolotto}@ucd.ie

2 Purdue University, Indiana, USA��

Tel.: +1 765 496-2399; Fax: +1 765 494-0739
bertino@cs.purdue.edu

Abstract. The integrated management of both spatial and temporal
components of information is crucial in order to extract significant knowl-
edge from datasets concerning phenomena of interest to a large variety of
applications. Moreover, multigranularity, i.e., the capability of represent-
ing information at different levels of detail, enhances the data modelling
flexibility and improves the analysis of information, enabling to zoom-in
and zoom-out spatio-temporal datasets. Relying on an existing multi-
granular spatio-temporal extension of the ODMG data model, in this
paper we describe the design of a multigranular spatio-temporal query
language. We extend OQL value comparison and object navigation in
order to access spatio-temporal objects with attribute values defined at
different levels of detail.

Keywords: Spatio-temporal query language, Spatial and temporal
granularities.

1 Introduction

As the available datasets are becoming increasingly large and often unnecessarily
detailed due to the development of sophisticated collection technologies, effec-
tive methods for presenting information to users are required. In such respect
approaches able to present the data at different levels of detail (i.e., granular-
ities) represent an effective solution to facilitate the analysis when additional
details are only required for specific subsets of the data. For example, zoom-out
operations can improve the efficiency of spatio-temporal data mining algorithms,
which are time consuming [1]. On the other hand, zoom-in operations can help
in refining the mining of specific data subsets. Multigranularity, multiresolution
and multiple representation have been investigated first for temporal data [5,6],
and more recently for both spatial [2,22] and spatio-temporal data [7,12,9,20].

� School of Computer Science and Informatics - University College Dublin, Belfield,
Dublin 4, Ireland.

�� CERIAS - Purdue University, 250 N. University Street West Lafayette, Indiana, USA
47907-2066.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 390–403, 2008.
� Springer-Verlag Berlin Heidelberg 2008

Querying Multigranular Spatio-temporal Objects 391

In particular, the ST ODMG data model [9] has been defined as extension
of ODMG [10], the reference model for object-oriented databases. ST ODMG
models multigranular spatio-temporal values, relying on the definition of tem-
poral granularity proposed by Bettini et al. [6], which is commonly adopted by
the temporal databases and reasoning community. The model also relies on a
notion of spatial granularity compliant with the formalization of stratified map
spaces proposed by Stell and Worboys [26]. Moreover, unlike other multigranular
models, it incorporates a framework for the conversion of spatio-temporal values
at different spatial and temporal granularities.

Since the effectiveness of a model greatly depends on the associated query lan-
guage, several spatio-temporal query languages have been developed
[13,15,17,19]. Among these approaches, in [13,15] SQL:99 has been extended
to spatio-temporal support. The extension of SQL proposed by Chen and Zan-
iolo [13] is based on user-defined spatio-temporal aggregates and functions in
order to minimize changes to SQL. Erwig et al. [15] propose an extension of
SQL to include spatio-temporal objects defined in terms of abstract data types
relying on the abstract framework defined in [18] for moving objects.

By contrast, the approaches by Huang and Claramunt [19] and by Griffiths
et al. [17] define how to query spatio-temporal values in an object oriented par-
adigm. Huang and Claramunt propose an OQL spatio-temporal extension that
includes spatio-temporal operators for evaluating spatial queries and topological
relationships; Griffiths et al. propose supporting queries against spatio-temporal
objects at application level.

This paper focuses on the access of multigranular spatio-temporal data, which
has not been discussed in the previous proposals. Specifically, we investigate the
impact of multigranularity on the specification and execution of spatio-temporal
queries. Spatio-temporal multigranularity may not be simply supported relying
only on data types and operators already available in object oriented and rela-
tional query languages: a specific query language must be designed in order to
support accesses to subsets of data that refer to spatio-temporal granules and
sets of granules, both explicitly and implicitly represented through constraints
against database values. Thus, simple expressions for representing temporal and
spatial granules at different granularities must be provided. Furthermore, ex-
pressions in a multigranular query language must support multigranular spatio-
temporal comparison of attribute values. Moreover, since an attribute can be
accessed with granules at a different granularity levels, a suitable set of value
conversions to convert spatio-temporal data at different granularities has to be
integrated in the query language. Such conversions should support attribute val-
ues conversions according to the semantics of the attribute involved in the query.
Therefore the types of conversion should vary according to the data types and
the semantics of the represented information.

In this paper we propose a multigranular spatio-temporal query language
which provides specific solutions to these requirements; its design relies on the
multigranular model defined in [9]. The overall conceptual design of a multigran-
ular spatio-temporal model and query language addresses some important issues

392 E. Camossi, M. Bertolotto, and E. Bertino

related to spatio-temporal multigranularity. Taking advantage of the extension
capability given by the object oriented paradigm, this design can be applied to
extend both object oriented and relational database models to support spatio-
temporal multigranularity.

The language herein presented extends OQL, the set-oriented content-based
query language associated with the ODMG data model, with features support-
ing queries against non-homogeneus multigranular spatio-temporal objects. The
two mechanisms supported by SQL for querying data, namely value comparison
and object navigation, have been extended with multigranular spatio-temporal
capabilities: we have extended the conventional path expressions in order to
query multigranular spatio-temporal objects, whose attributes can be accessed
according to given spatial and temporal elements [16], expressed at multiple
granularities.

Whenever attribute values at different granularities have to be accessed and
compared in a multigranular path expression, multigranular conversions [9] are
applied to obtain values expressed at a common granularity. Throughout the
paper, the formalization we propose is described in details and its application is
illustrated through significative examples. Moreover, we specify the consistency
conditions for accessing multigranular spatio-temporal values.

The paper is organized as follows. In Section 2 we briefly describe the main
characteristics of the ST ODMG model. In Section 3 we specify how multigran-
ular spatio-temporal values are accessed, while in Section 4 we give some illus-
trative examples of multigranular spatio-temporal queries. The complete syntax
of ST ODMG queries is reported in the Appendix. Finally, Section 5 concludes
the paper outlining future research directions.

2 ST ODMG: A Multigranular Spatio-temporal Model

Granularities in ST ODMG are specified as mappings from an index set IS to the
power set of the T IME and the SPACE domains, respectively. T IME is totally
ordered. The supported SPACE domain is 2-dimensional (i.e., a proper subset
of R2). For instance, days, weeks, years are temporal granularities; meters,
kilometers, feet, yards, provinces and countries are spatial granularities.

Each subset of the temporal and spatial domains corresponding to a single
granularity mapping is referred to as a temporal or spatial granule, i.e., given

(a) 1945 (b) 1992

Fig. 1. Example of spatio-temporal geometric value

Querying Multigranular Spatio-temporal Objects 393

a granularity G and an index i ∈ IS, G(i) is a granule of G that identifies
a subset of the corresponding domain. Through granules we can specify the
validity spatio-temporal bounds of attribute values. For instance, we can say
that a value reporting the measure of the daily temperature in Dublin is defined
for the first and the second day of January 2000. The granules of interest for this
example can be identified by three textual labels: ‘01/01/2000”, ‘02/01/2000”,
and ‘Dublin”, that respectively identify two temporal and one spatial granules.

The interior of granules of the same granularity cannot overlap1. Moreover,
non-empty temporal granules must preserve the order given by the index set.

Spatial and temporal granularities are related by the finer-than relation-
ship [5]. Such a relationship formalises the intuitive idea that different granulari-
ties correspond to different partitions of the domain, and that, given a granule of
a granularity G, usually a granule of a coarser granularity H exists that properly
includes it. For example, granularity days is finer-than months, and granularity
months is finer-than years. Likewise, municipalities is finer-than countries. If
a granularity G is finer-than H , we also say that H is coarser-than G.

Beyond the conventional database values, an ST ODMG database schema
can include spatial, temporal, and spatio-temporal values. 2-dimensional geo-
metric vector features can be represented. Multigranular spatial and temporal
data are uniformly defined as instances of two parametric types: SpatialSG(τ)
and TemporalTG(σ), which are specified according to a granularity (spatial and
temporal, respectively) and an inner type. The inner type can be a type without
spatio-temporal characteristics, or a geometric type. Moreover, multigranular
spatio-temporal types are defined as compositions of Spatial and Temporal.

Figure 1 illustrates the changes of the political boundaries of Balkan nations
in different historical periods. A legal ST ODMG type specification for this value
is Temporalyears(Spatialcountries(set〈Polygon〉)).

Granularity conversions are provided in order to represent data at the most
appropriate level of detail for a specific task, i.e., to increase or reduce the level
of detail used for data representation. In ST ODMG different semantics can be
applied when converting values. The conversion of multigranular geometrical fea-
tures is obtained through the composition of model-oriented and cartographic
map generalisation operators [23] that guarantee topological consistency [4,24],
an essential property for data usability. Refinement operators perform the in-
verse functions. Such operators are classified according to the type of conversion
applied [9]. For example, merge operators merge adjacent features of the same
dimension into a single one, while splitting operators subdivide single features
in adjacent features of the same dimension. Other supported operators perform
contraction and thinning (whose inverse is expansion); abstraction and simplifi-
cation (whose inverse is addition).

On the other hand, the model provides also operators for converting quanti-
tative (i.e., not geometrical) attribute values, both temporal and spatial. These
conversions are classified in families according to the semantics of the operation

1 Temporal granules, according to the definition in [5], do not overlap, while spatial
granules can overlap on the granule boundaries.

394 E. Camossi, M. Bertolotto, and E. Bertino

performed: selection (e.g., projection, main, first), and aggregation (e.g., sum,
average) convert values to coarser representation; their inverse functions, re-
striction and splitting, convert attribute values to finer representations, according
to downward hereditary property [25] or according to a probability distribution,
respectively. The different semantics we provided for converting spatio-temporal
values at finer granularities have been introduced to address indeterminacy and
imprecision that affect such type of conversion.

Granularity conversions have been proven to return legal values of the type
system defined [9]. Moreover, those that generalize geometric attribute values
to coarser spatial granularities have been proven preserve the semantics of the
spatio-temporal data represented [9].

3 Multigranular Spatio-temporal Queries

The query language we propose extends value comparison and object naviga-
tion paradigms of OQL [10] to support multigranular spatio-temporal values.
Multigranular spatio-temporal path expressions are the key concept of the re-
sulting language: indeed, they are used to specify multigranular spatio-temporal
queries. The access to multigranular class attributes is performed according to
spatial and temporal elements and expressions, which specify portions of SPACE
and T IME domains at a given granularity, in explicit or implicit form, respec-
tively. Whenever path expressions involve different granularities, during their
evaluation granularity conversions described in the previous section are applied.
In the remaining of the section, multigranular spatial and temporal elements,
expressions, and path expressions are described.

3.1 Spatial and Temporal Elements and Expressions

Temporal elements have been formally introduced by Gadia [16], and then ex-
tended with respect to temporal granularities by Bertino et al. [3]. In a multi-
granular model, a temporal or spatial element is a set of granules expressed at
the same granularity. For instance, {1999, 2000, 2001}years is a temporal element
at granularity years, whereas {Roma, Berlin, Zurich}municipalities is a spatial el-
ement at granularity municipalities. Temporal and spatial elements can be con-
verted to different granularities. Let ΥH be a temporal (respectively, a spatial)
element, with temporal (respectively, spatial) granularity H . Let G be a temporal
(respectively, spatial) granularity, such that G & H or H & G, then G(ΥH) de-
notes the conversion of ΥH to granularity G. For instance, months({1999, 2000,
2001})years denotes the temporal element at granularity months {January 1999,
February 1999, · · · , December 2001}months.

Temporal and spatial elements at the same granularity can be combined by us-
ing the convential set operators: complement (\), intersection (∩), and union (∪).
Moreover, operators first and last, relying on the order of temporal granules,
can be applied to temporal elements. For instance, first({1999, 2000, 2005}years)
returns the year 1999.

Querying Multigranular Spatio-temporal Objects 395

Temporal and spatial elements can be represented explicitly, as in the pre-
vious examples, or implicitly, by means of temporal and spatial expressions.
Expressions represent conditions that are evaluated on database objects. In-
tuitively, the temporal and spatial elements resulting from temporal and spatial
expressions specify when and where such conditions are satisfied. Conditions are
specified through temporal and spatial variations of conventional comparison
operators (i.e., =, <>, <, >, <=, >=) and binary topological relationships as
defined by Egenhofer and Franzosa [14] (i.e., equal, disjoint, meet, overlap,
contains, inside, cover, coveredby). For instance, each temporal comparison op-
erator (i.e., =T ,<>T ,<T ,>T ,<=T ,>=T) compares (spatio-)temporal and con-
ventional values, and the resulting temporal expression represents the set of
instants when the comparison is satisfied. Analougously, spatial expressions in-
volving spatial comparison operators (i.e., =S ,<>S,<S ,>S ,<=S,>=S) specify
where a comparison is satisfied. Consider for example the spatio-temporal value:

v = {〈2004, {〈France,‘Raffarin’〉, 〈United Kingdom,‘Blair’〉}countries〉,

〈2007, {〈France,‘Fillon’〉, 〈United Kingdom,‘Brown’〉}countries〉}years.

The temporal expression v=T ‘Brown’ returns the temporal element {2007}years,
whereas the spatial expression v =S ‘Brown’ returns the spatial element {United
Kingdom}countries.

Similarly, temporal and spatial variations of topological relationships are pro-
vided. For instance, equalsT , disjointT , meetT , overlapsT , containsT , insideT

can be applied between spatio-temporal values: the resulting temporal expres-
sions represent the set of instants when the values satisfy the topological relation-
ships. By contrast, equalsS, disjointS , meetS, overlapsS , containsS, insideS

are applied between spatial and spatiotemporal values, and return where the
specified topological relationships are satisfied.

3.2 Spatio-temporal Access and Path Expressions

Spatio-temporal path expressions are extension of conventional path expressions
as used in object-oriented languages and models: the access to object attribute
values is specified also according to temporal and spatial elements as described
in the previous section. The access to conventional object attribute values is
obtained through the usual postfix dot notation. To specify the access to spatio-
temporal attribute values the ↓ operator is provided. As in conventional path
expressions, the nesting of attribute accesses is allowed, and internal nodes in a
path expression must result in single object identifiers.

Example 1. We define an object type for describing geographical historical maps.
For each map the information recorded includes the political boundaries, the
capital and the name of the head of government of each country. The definition
of class Map in ST ODMG syntax is as follows:

class Map ((extent Maps, key ...) {
attribute Temporalyears(Spatialcountries(set〈Polygon〉)) boundaries {...};
attribute Temporalyears(Spatialcountries(Point)) capitals {...};
attribute Temporalyears(Spatialcountries(string)) head of government {...};
};

396 E. Camossi, M. Bertolotto, and E. Bertino

Consider object o of type Map and value v of attribute head of government such
that:

v = {〈2004, {〈France,‘Raffarin’〉, 〈United Kingdom,‘Blair’〉}countries〉,
〈2005, {〈France,‘Raffarin’〉, 〈Germany,‘Merkel’〉,
〈United Kingdom,‘Blair’〉}countries〉,
〈2007, {〈France,‘Fillon’〉, 〈Germany,‘Merkel’〉,
〈United Kingdom,‘Brown’〉}countries〉}years.

Then, the temporal path expression o.head of goverment ↓ {2007}years re-
turns the spatial value: {〈France, ‘Fillon’〉, 〈Germany,‘Merkel’〉, 〈United King-
dom,‘Brown’〉}countries.
By contrast, the spatial path expression o.head of goverment ↓{France}countries

returns the temporal value: {〈2004,‘Raffarin’〉, 〈2007,‘Fillon’〉}years. �

Whenever the spatial or temporal element involved in a spatio-temporal path
expression includes more than one granule, the access results in a subset of the
specified attribute value that corresponds to the restriction of the attribute value
to the given element, as illustrated in the following Example.

Example 2. Given object o and value v of Example 1, the temporal path ex-
pression o.head of goverment ↓ {2004, 2005}years returns the spatio-temporal
value:
v = {〈2004, {〈France,‘Raffarin’〉, 〈United Kingdom,‘Blair’〉}countries〉,

〈2005, {〈France,‘Raffarin’〉, 〈Germany,‘Merkel’〉,
〈United Kingdom,‘Blair’〉}countries〉}years.

Moreover, the spatial path expression o.head of goverment ↓ {France, United
Kingdom}countries returns the spatio-temporal value:
v′ = {〈2004, {〈France,‘Raffarin’〉, 〈United Kingdom,‘Blair’〉}countries〉,

〈2005, {〈France,‘Raffarin’〉, 〈United Kingdom,‘Blair’〉}countries〉,
〈2007, {〈France,‘Fillon’〉, 〈United Kingdom,‘Brown’〉}countries〉}years. �

Given a spatio-temporal path expression, the following consistency property
holds.

Property 1. (Spatio-temporal path expression consistency) Given object o, at-
tribute a defined for o, and (temporal or spatial) element el, the access o.a ↓ el
resulting in value v verifies the following consistency conditions:

If a is a temporal (spatial) attribute and
– el is a spatial (temporal) element, o.a ↓ el is undefined;
– el is a temporal (spatial) element including a single granule, v is a con-

ventional i.e., non-temporal (non-spatial) value;
– el is a temporal (spatial) element including two or more granules, v is a

temporal (spatial) value;
If a is a spatio-temporal attribute and

– el is a temporal element including a single granule, v is a spatial value;
– el is a spatial element including a single granule, v is a temporal value;
– el is a spatial element including two or more granules, v is a spatio-

temporal value. �

Querying Multigranular Spatio-temporal Objects 397

Whenever the granularity in a spatio-temporal path expression differs from that
of the value accessed, a granularity conversion is applied. To apply a granularity
conversion, the starting and the target granularities must be related according
to the finer-than relationship. If for the attribute being accessed a suitable gran-
ularity conversion has been defined in the database schema, such a conversion is
applied. Otherwise, we can specify which conversion to apply in the path expres-
sion by using the access operator of the form ↓gconv, where gconv is a granularity
conversion. To avoid conflicts, granularity conversions specified in path expres-
sions take precedence over those specified in the schema. This enables to convert
attribute values according to different semantics. Moreover, even if not required
to perform the access, the application of an existing granularity conversion can
be forced by specifying the access operator in the form ↓G, where G is the target
granularity of the conversion. For instance, when performing a temporal access,
the value can be conveniently converted to a different spatial granularity, and
vice versa, to format the access result.

Example 3. Given value v for attribute head of government of Example 1, the
access o.head of goverment ↓lastyears→decades {2000-2009}decades returns the
spatial value:

{〈France,‘Fillon’〉, 〈Germany,‘Merkel’〉, 〈United Kingdom,‘Brown’〉}countries.

To perform such an access, value v has been first converted to granularity
decades according to the granularity conversion lastyears→decades. Then, the
resulting spatio-temporal value has been accessed according to the temporal
element {2000-2009}decades. �

4 Querying Multigranular Spatio-temporal Objects

The spatio-temporal query language described in the previous section extends
the OQL syntax [10] to multigranular spatio-temporal path expressions as de-
scribed above. Queries have the usual OQL select-from-where form. According
to the OQL specification, spatio-temporal path expressions can be used in the
target list to specify the data to retrieve, and in the where clause to express the
conditions against multigranular spatio-temporal objects.

The complete syntax for the specification of multigranular spatio-temporal
queries is presented in the Appendix. In this section, we describe its application
through some illustrative examples, emphasizing the use of granularity conver-
sions when querying multigranular attribute values. In particular, we focus on
the access to spatio-temporal values, performed converting both spatio-temporal
elements and attribute values. The access to temporal and spatial values follows
straightforwardly. Moreover, we demonstrate the expressiveness of the spatio-
temporal extensions of comparison and topological operators, which can be used
to restrict the constraints used in the search, as well as to characterize the query
results.

398 E. Camossi, M. Bertolotto, and E. Bertino

In these examples, the database schema including the class Map of Example 1
is extended with class Flight, representing passenger aircrafts. For each flight
performed by an aircraft, we record its flight number, the departure and arrival
airports, and the name of the pilot who flew the plane. Moreover, we record the
spatial location of the aircraft during the flight. According to this specification,
the class Flight in ST ODMG is defined as follows:

class Flight (extent Flights, key ..) {
attribute Temporalminutes(string) flightNum;

attribute Temporalminutes(string) departure;

attribute Temporalminutes(string) arrival;

attribute Temporalhours(string) pilot {
mainhours→months, restrhours→minutes };

attribute Temporalminutes(Spatialmeters(set〈Region〉)) trips {
r mergemeters→provinces, r contrprovinces→countries };

};

In particular, the spatio-temporal attribute trips reports the spatial location of
the aircraft over time. For such attribute two spatial multigranular conversions
have been specified, which support converting the aircraft location from the spa-
tial granularity meters to the spatial granularity provinces, and from provinces
to countries. The first conversion specified, i.e., r merge, merges multiple re-
gions in order to give the spatial representation of the aircraft with respect to a
single region; by contrast, r contr (i.e., region contraction), collapses regions in
single points preserving topological consistency.

Other conversions have been specified for the temporal attribute pilot. Gran-
ularity conversion main converts the temporal value of this attribute to granu-
larity months selecting the more frequent pilot name recorded for each month;
by contrast, granularity conversion restr converts the same values to finer gran-
ularity minutes by applying the downward hereditary property [25], according
to which if a multigranular value assumes the value v in a granule g, value v also
refers to any finer granule g′ included in g. For instance, given a value represent-
ing the address of a person, defined with temporal granularity years, each value
referring to a year Y is the valid address of that person for every day of year Y .

Given the above specification for class Flight, the following query retrieves (the
names of) the pilots flying the flight with number ‘AZ555’ during December 2007:
select distinct a.pilot ↓ hours({12/2007}months)

from Flight f

where f.flightNum ↓ minutes({12/2007}months) = ‘AZ555’

We can further refine the query asking which pilot has more often flown such a
flight, during the same period of time. The query has to be modified as follows:

select a.pilot ↓ {12/2007}months

from Flight f

where f.flightNum ↓ minutes({12/2007}months) = ‘AZ555’

Querying Multigranular Spatio-temporal Objects 399

The granularity conversion main is automatically applied for converting the value
of attribute pilot to granularity months. According to the semantics of this
conversion, the value of pilot occurring more often in the selected month is the
value for this month.

Beyond quantitative queries, multigranular spatio-temporal expressions that
return geometric data can also be defined. For example, what follows is an exam-
ple of a more complex query which retrieves the capitals and the corresponding
countries that have been flown over by flight number ‘AZ555’ flown on Christmas
2007:

select distinct m.capitals,

(f.trips↓countries((f.flightNum↓ minutes({25/12/2007}days))=T ‘AZ555’))

<>S ⊥
from Map m, Flight f

where f.flightNum ↓ minutes({25/12/2007}days) = ‘AZ555’ and

f.trips ↓ minutes({25/12/2007}days) overlapsS

m.capitals ↓restryears→days {25/12/2007}days.

Starting from the where clause, the topological test:
f.trips ↓ minutes({25/12/2007}days) overlapsS

m.capitals ↓restryears→days {25/12/2007}days

compares two spatial values at granularity countries. The first value represents
the trajectory of aircrafts, given through the position of their centroid over time,
which is returned executing the temporal access on attribute trips. The tempo-
ral element specified for the access is given at granularity minutes as expected
for such attribute, but granularity conversions r merge and r contr, defined
in class Flight, are applied to convert its value to granularity countries. The
result is further refined thanks to the access to attribute flightNum specified
in the where clause. This spatial value is compared in the topological test with
the capitals of the countries represented in some map on Christmas 2007, which
are returned accessing attribute capitals. Note that the spatio-temporal value
of attribute capitals is converted from granularity years to granularity days
before evaluating the expression by appling granularity conversion restr, which
supports downward hereditary property [25]. The spatial element resulting from
the topological comparison includes the granules at granularity countries where
the trajectories of the aircraft overlapped some country capitals.

To answer the query, however, this value is not sufficient, and we can note no
attribute is defined in the database schema to represent the countries given in the
maps. However, this information is implicitly stored because of the multigranular
support, and through multigranular spatio-temporal path expressions we can
make it explicit. Indeed, the required value is obtained by the spatial expression
specified in the target list: (f.trips ↓countries

((f.flightNum ↓ minutes({25/12/2007}days))=T ‘AZ555’)) <>S ⊥

This path expression is a little more complex than the previous ones: we have
two nested path expressions, and a temporal and a spatial expression. First, the

400 E. Camossi, M. Bertolotto, and E. Bertino

temporal path expression f.flightNum ↓ minutes({25/12/2007}days) returns
the flight numbers of the flights flown during Christmas 2007. This value (let
it be v) is temporally compared with the flight number ‘AZ555’: the temporal
expression v =T ‘AZ555’ returns the temporal element at granularity minutes
specifying the exact time of occurrence for the flight ‘AZ555’ during Christmas
2007. Then, this temporal element, namely te, is used to access the attribute
trips in the temporal path expression f.trips ↓countries te. This temporal
access returns the trips performed by the flight already selected through the
where clause during the period of time specified by temporal element te. Before
performing the access, the value of trips is converted at spatial granularity
countries by appliying granularity conversions r merge and r contr. The spatial
value at granularity countries resulting from the access (let it be v′) is then
involved in the spatial comparison v′<>S ⊥. This straightforward comparison
simply returns the spatial element including the granules where v′ is defined, at
granularity countries, which at the end represents the (granules of) countries
whose capitals have been flown over by the aircrafts selected through the where
clause.

5 Conclusions

In this paper we have defined a multigranular spatio-temporal object oriented
query language. The language is based on the spatio-temporal model we previ-
ously defined in [9]. The query language extends OQL, the ODMG query lan-
guage, to support multigranular spatio-temporal access. The access to
spatio-temporal values is given in terms of spatial and temporal elements and
expressions. Their use in multigranular spatio-temporal path expressions, com-
bined with multigranular conversions, allows one to access and compare spatio-
temporal values expressed at different granularities.

Unlike previous work on spatio-temporal query languages, in this paper we
provide a formalization that addresses several important issues arising from
the introduction of spatio-temporal multigranularity. Despite the importance
of multigranularity and of the integrated management of spatio-temporal in-
formation, no currently available DBMS include suitable tools for dealing with
spatio-temporal data at different levels of detail. The overall design proposed
in [9] and in this paper is suitable for the development of both object-oriented
and relational multigranular spatio-temporal models and query languages. Our
design relies on ODMG and the related query language OQL: the features we
introduce to support spatio-temporal multigranularity extend the model type
systems with specific types and suitable operators for handling time and space,
as well as spatial and temporal granularities. Accordingly, the model Data De-
finition Language, value comparison and object navigation have been extended
to support multigranular spatio-temporal types and expressions.

The work presented in this paper can be refined and extended in different
ways. First of all, we plan to develop a software prototype to assess the effec-
tiveness and to test the performance of our approach. In this respect, a suitable

Querying Multigranular Spatio-temporal Objects 401

indexing system for spatio-temporal values (such as the one proposed in [8] for
dealing with the expiration of historical values, and the one proposed in [27]), an
efficient representation for those values to support value coalescing, and an effi-
cient implementation for granularity conversions, are desirable. Moreover, in or-
der to build a comprehensive spatio-temporal information system, conventional
spatial operations, like intersections and overlay, should be integrated in the
formalization provided. Finally, we plan to extend spatio-temporal comparison
operators to support qualitative semantics both for time and space.

Acknowledgement

Research presented in this paper was funded by a Strategic Research Cluster
grant (07/SRC/I1168) by Science Foundation Ireland under the National De-
velopment Plan. The authors gratefully acknowledge this support. The work of
Elena Camossi is supported by the Irish Research Council for Science, Engineer-
ing and Technology.

References

1. Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio -temporal data.
Journal of Intelligent Information Systems 27(3), 187–190 (2006)

2. Balley, S., Parent, C., Spaccapietra, S.: Modelling Geographic Data with Multiple
Representations. International Journal of Geographical Information Science 18(4),
327–352 (2004)

3. Bertino, E., Ferrari, E., Guerrini, G., Merlo, I.: T ODMG: An ODMG Compliant
Temporal Object Model Supporting Multiple Granularity Management. Informa-
tion Systems 28(8), 885–927 (2003)

4. Bertolotto, M.: Geometric Modeling of Spatial Entities at Multiple Levels of Res-
olution. Ph.D. Thesis, Università degli Studi di Genova (1998)

5. Bettini, C., Dyreson, C., Evans, W., Snodgrass, R., Wang, X.: A Glossary of Time
Granularity Concepts. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Sem-
inar 1997. LNCS, vol. 1399, pp. 406–413. Springer, Heidelberg (1998)

6. Bettini, C., Jajodia, S., Wang, X.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, Heidelberg (2000)

7. Bittner, T.: Reasoning about qualitative spatio-temporal relations at multiple lev-
els of granularity. In: van Harmelen, F. (ed.) Proc. of the 15th European Conf. on
Artificial Intelligence. IOS Press, Amsterdam (2002)

8. Camossi, E., Bertino, E., Guerrini, G., Mesiti, M.: Handling Expiration of Multi-
granular Temporal Objects. Journal of Logic and Computation 14(1), 23–50 (2004)

9. Camossi, E., Bertolotto, M., Bertino, E.: A multigranular Object-oriented Frame-
work Supporting Spatio-temporal Granularity Conversions. International Journal
of Geographical Information Science 20(5), 511–534 (2006)

10. Cattel, R., Barry, D., Berler, M., Eastman, J., Jordan, D., Russel, C., Schadow,
O., Stanienda, T., Velez, F.: The Object Database Standard: ODMG 3.0. Morgan-
Kaufmann, San Francisco (2000)

402 E. Camossi, M. Bertolotto, and E. Bertino

11. Claramunt, C., Thériault, M.: Managing Time in GIS: an event oriented approach.
In: Clifford, J., Tuzhilin, A. (eds.) Proc. of the Int’l Workshop on Temporal Data-
bases: Recent Advances in Temporal Databases, pp. 23–42. Springer, Heidelberg
(1995)

12. Claramunt, C., Jiang, B.: Hierarchical Reasoning in Time and Space. In: Proc. of
the 9th Int’l Symposium on Spatial Data Handling, pp. 41–51 (2000)

13. Chen, C.X., Zaniolo, C.: SQLST : A Spatio-Temporal Data Model and Query Lan-
guage. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS,
vol. 1920, pp. 96–111. Springer, Heidelberg (2000)

14. Egenhofer, M.J., Franzosa, R.D.: Point-Set Topological Spatial Relations. Interna-
tional Journal of Geographical Information Science 5(2), 161–174 (1991)

15. Erwig, M., Schneider, M.: STQL – A Spatio-Temporal Query Language. In: Ladner,
R., Shaw, K., Abdelguerfi, M. (eds.) Mining Spatio-Temporal Information Systems,
ch. 6, pp. 105–126. Kluwer Academic Publishers, Dordrecht (2002)

16. Gadia, S.K.: A homogeneus relational model and query languages for temporal
databases. ACM Transactions on Database Systems 13(4), 418–448 (1988)

17. Griffiths, T., Fernandes, A.A.A., Paton, N.W., Barr, R.: The Tripod spatio-
historical data model. Data Knowledge and Engineering 49(1), 23–65 (2004)

18. Güting, R.H., Bhölen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Shneider,
M., Vazirgiannis, M.: A Foundation for Representing and Querying Moving Ob-
jects. ACM Transaction On Database Systems 25, 1–42 (2000)

19. Huang, B., Claramunt, C.: STOQL: An ODMG-based Spatio-Temporal Object
Model and Query Language. In: Proc. of the 10th Int’l Symposium on Spatial
Data Handling (2002)

20. Khatri, V., Ram, S., Snodgrass, R.T., O’Brien, G.: Supporting User Defined Gran-
ularities and Indeterminacy in a Spatio-temporal Conceptual Model. Annals of
Mathematics and Artificial Intelligence 36(1), 195–232 (2002)

21. Kim, D.H., Ryu, K.H., Kim, H.S.: A spatio-temporal database model and query
language. Journal of Systems and Software 55(2), 129–149 (2000)

22. Kulik, L., Duckham, M., Egenhofer, M.J.: Ontology driven Map Generalization.
Journal of Visual Language and Computing 16(2), 245–267 (2005)

23. Muller, J.-C., Lagrange, J.P., Weibel, R. (eds.): GIS and Generalization: method-
ology and practice. Taylor and Francis, Abington (1995)

24. Saalfeld, A.: Topologically consistent line simplification with the Douglas-Peucker
algorithm. Cartography and Geographic Information Science 26(1), 7–18 (1999)

25. Shoham, Y.: Temporal Logics in AI: Semantical and Ontological Considerations.
Artificial Intelligence 33(1), 89–104 (1987)

26. Stell, J.G., Worboys, M.: Stratified Map Spaces: A Fomal Basis for Multi-
Resolution Spatial Databases. In: Proc. of 8th Int’l Symposium on Spatial Data
Handling (1998)

27. Zhang, D., Gunopulos, D., Tsotras, V.J., Seeger, B.: Temporal Aggregation over
Data Streams using Multiple Granularities. In: Proc. of 8th Int’l Conf. on Extending
Database Technology, pp. 643–663 (2002)

28. ORACLETM, Oracle Corp., http://www.oracle.com
29. PostgreSQL, Inc., http://www.postgresql.org

http://www.oracle.com
http://www.postgresql.org

Querying Multigranular Spatio-temporal Objects 403

Appendix: Syntax of Multigranular Spatio-temporal
Queries

In the following, we report the syntax of ST ODMG queries in Backus-Naur form.
<query> ::= select [distinct] <target list> from <q source> where

<search condition>;
<target list> ::= [<target list>,] <value>

<q source> ::= [<q source>] class name class alias

<search condition> ::= [not] <cond> |

<search condition> <bin bool op> <search condition>
<value> ::= [<path>].value | <conv value> | <t value> | <s value> | <st value>
<path> ::= object name.<internal path>

<internal path> ::= [<internal path>.]attribute name

<conv value> ::= conv attr name | <t value> ↓[<g conv>] t granule | [not] <conv value> |

<s value> ↓[<gconv>] s granule | <conv value> <bin op> <conv value> |

<t value> <comp op> <conv value> | <s value> <comp op> <conv value>
<t value> ::= temp value | temp attr name [<t access>] | [not] <t value> |

<t value> <bin op> <t value> | <st value> ↓[<g conv>] s granule

<s value> ::= spat value | spat attr name [<s access>] | [not] <s value> <s value>|

<bin op> <s value> |<st value> ↓[<g conv>] t granule

<st value> ::= spatio-temp value | st attr name [<access>]
<access> ::= <s access> | <t access>

<t access> ::= ↓[<g conv>] <temp elem>
<temp elem> ::= explicit temp elem | <t expr> | t gran name (<temp elem>) |

first(<temp elem>) | last(<temp elem>)

<t expr> ::= <temp value> <bin opT > <conv value>

<s access> ::= ↓[<g conv>] <spat elem>
<spat elem> ::= explicit spat elem | <s expr> | s gran name (<spat elem>)

<s expr> ::= <spat value> <bin opS > <conv value>
<bin op> ::= <comp op> | <toprel> | <arithm op> | <bool op> | <set op>

<arithm op> ::= + | - | / | *
<bool op> ::= and | or
<set op> ::= \ | ∪ | ∩
<comp op> ::= = | <> | < | > | <= | >=
<toprel> ::= equal | disjoint | meet | overlap | contains | inside | cover | coveredby

<bin opT > ::= <comp opT > | <toprelT >

<comp opT > ::= =T | <>T | <T | >T | <=T | >=T

<toprelT > ::= disjointT | meetT | overlapsT | equalsT | containsT | insideT |

coverT | coveredbyT

<bin opS > ::= <comp opS > | <toprelS >

<comp opS > ::= =S | <>S | <S | >S | <=S | >=S

<toprelS > ::= disjointS | meetS | overlapsS | equalsS | containsS| insideS|

coverS| coveredbyS

Non terminal symbols conv attr name, spatial attr name, temporal attr name, st-
attr name are names for conventional, spatial, temporal and spatio-temporal at-

tributes, while attr name is a generic attribute name, used in a nested path. Nested
paths must result in a single object identifier; temp value, spat value, spatio-
temp value are explicit temporal, spatial and spatiotemporal values, respectively;
class name is a class name, and class alias is the class alias. s granule and t granule
are a spatial and a temporal granule, respectively; t gran name and s gran name
are a temporal and a spatial granularity name, respectively; explicit temp element
and explicit spat element are a temporal and a spatial element, respectively, rep-
resented explicitly. Terminal elements <temp elem> and <spat elem>, when re-
ferred to in temporal and spatial access (<t access> and <s access>), include
more than one granule. Finally, terminal element <g conv> is a granularity con-
version. Note that <g conv>, when applied in attribute access, represents a gran-
ularity conversion that should be applicable to the attribute value.

Space-Partitioning-Based Bulk-Loading for the

NSP-Tree in Non-ordered Discrete Data Spaces�

Gang Qian1, Hyun-Jeong Seok2, Qiang Zhu2, and Sakti Pramanik3

1 Department of Computer Science,
University of Central Oklahoma, Edmond, OK 73034, USA

gqian@ucok.edu
2 Department of Computer and Information Science,

The University of Michigan, Dearborn, MI 48128, USA
{hseok,qzhu}@umich.edu

3 Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824, USA

pramanik@cse.msu.edu

Abstract. Properly-designed bulk-loading techniques are more efficient
than the conventional tuple-loading method in constructing a multidi-
mensional index tree for a large data set. Although a number of bulk-
loading algorithms have been proposed in the literature, most of them
were designed for continuous data spaces (CDS) and cannot be directly
applied to non-ordered discrete data spaces (NDDS). In this paper, we
present a new space-partitioning-based bulk-loading algorithm for the
NSP-tree — a multidimensional index tree recently developed for
NDDSs . The algorithm constructs the target NSP-tree by repeatedly
partitioning the underlying NDDS for a given data set until input vec-
tors in every subspace can fit into a leaf node. Strategies to increase the
efficiency of the algorithm, such as multi-way splitting, memory buffering
and balanced space partitioning, are employed. Histograms that charac-
terize the data distribution in a subspace are used to decide space par-
titions. Our experiments show that the proposed bulk-loading algorithm
is more efficient than the tuple-loading algorithm and a popular generic
bulk-loading algorithm that could be utilized to build the NSP-tree.

1 Introduction

Applications that require multidimensional indexes often involve a large amount
of data, where a bulk-loading (BL) approach can be much more efficient than the
conventional tuple-loading (TL) method in building the index. In this paper, we
propose an efficient bulk-loading algorithm for a recently-developed index tree,
called the NSP-tree [14], in non-ordered discrete data spaces (NDDS).

A non-ordered discrete data space models vector data whose components are
discrete with no inherent ordering. Such non-ordered discrete domains as the
� Research supported by US National Science Foundation (under grants # IIS-0414576

and # IIS-0414594), US National Institute of Health (under OK-INBRE Grant #
P2PRR016478), The University of Michigan, and Michigan State University.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 404–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 405

gender and profession are quite common in database applications. To support
efficient similarity queries in NDDSs, the space-partitioning-based NSP-tree was
proposed in [14]. The conventional TL algorithm of the NSP-tree inserts one vec-
tor at time into a leaf node of the tree. When a leaf overflows, its corresponding
data space is split into two subspaces and its vectors are moved into one of the
subspaces to which they belong. While the TL method is capable of constructing
a high-quality NSP-tree, it may take too long to index a large data set, which
is typical for many contemporary applications. For example, genome sequence
databases, with non-ordered discrete nucleotides ‘a’, ‘g’, ‘t’ and ‘c’, have been
growing rapidly in size in the past decade. The size of the GenBank, a popu-
lar collection of publicly available genome sequences, increased from 71 million
residues (base pairs) and 55 thousand sequences in 1991, to more than 65 billion
residues and 61 million sequences in 2006 [8]. Hence, an efficient bulk-loading
technique is essential in building an NSP-tree for such applications. Unfortu-
nately, there is no bulk-loading algorithm specially designed for the NSP-tree.

Bulk-loading has been an important research topic for multidimensional index
structures. There are a number of bulk-loading algorithms proposed for multidi-
mensional indexes in continuous data spaces (CDS), such as the R-tree [9]. One
major category of such bulk-loading algorithms is based on sorting, which can
be further divided into the bottom-up approach and the top-down approach [1].
In the bottom-up approach [6,11,12,16], vectors to be indexed are sorted accord-
ing to certain global one-dimensional criteria and then placed in the leaves in
the sorted order. The minimum bounding rectangles (MBR) of the leaves are
sorted using the same criteria to build the first non-leaf level. The index is thus
recursively constructed level by level until all MBRs can be fit into one node.
In the top-down approach [2,7], all vectors are sorted using certain criteria and
then divided into M subsets of roughly equal size, where M is the size of the
root. The MBRs of the subsets are stored in the root. Subtrees corresponding to
the subsets are recursively constructed in the same manner until vectors in the
subsets can be fit into a leaf node. Unfortunately, these sorting-based algorithms
cannot be directly applied in the NDDS, where no ordering exists.

Another category of bulk-loading algorithms is called the generic bulk-loading.
Instead of sorting, these algorithms utilize some basic operations/interfaces (e.g.,
splitting an overflow node) from the corresponding TL algorithm of the target
index tree. Therefore, generic bulk-loading algorithms can be applied to every
target index tree having required operations although they may not be optimized
for the index tree due to their generic nature. One such popular generic bulk-
loading algorithm [3], denoted by GBLA in this paper, employs a buffered tree
structure to reduce disk I/Os by accumulating inserted vectors in the buffer of
a tree node and pushing the buffered vectors into child nodes when the buffer is
full. The leaf nodes of the target tree are built first. The MBR of the leaves are
then used to build their parent nodes. The target tree is, therefore, built level by
level from bottom up. Another type of generic bulk-loading algorithms utilizes
a sample-based approach [5,4]. A seed index is first built in memory based on
sample vectors from the data set. The remaining vectors are then assigned to

406 G. Qian et al.

individual leaves of the seed structure. The leaves are processed in the same way
recursively until the whole target index is constructed.

Recently, a bulkloading algorithm named NDTBL [17] was proposed for the
ND-tree [13,15], a data-partitioning-based indexing method for NDDSs. NDTBL
first builds linked subtrees of the target ND-tree in memory. It then adjusts those
subtrees to form a balanced target ND-tree. Some operations in the TL algorithm
for the ND-tree are extended and utilized to choose and split data sets/nodes
during the process.

In this paper, we propose a new bulk-loading algorithm for the NSP-tree,
called NSPBL (the NSP-tree Bulk-Loading). It is a space-partitioning-based al-
gorithm that employs a bottom-up process. Vectors to be loaded are first placed
into a solo (typically oversized) leaf node of an intermediate tree structure. The
leaf node(s) are repeatedly divided into a number of normal or oversized leaf
nodes based on space partitions, while the tree structure grows upward as corre-
sponding non-leaf nodes are created and split. Histograms that record the space
distribution of the vectors in a leaf are used to find balanced splits of the sub-
space for the leaf. Memory buffers are adopted in the bulk-loading process to
reduce unnecessary disk accesses. A multi-way splitting strategy that allows an
oversized node to be directly split into more than two new nodes is employed to
reduce splitting overhead. The final intermediate tree has the same structure as
that of the target NSP-tree. Therefore, no post-processing is needed. Our exper-
imental study demonstrates that NSPBL is more efficient than the conventional
TL algorithm and the popular generic GBLA in constructing the NSP-tree. The
quality of the built NSP-trees is comparable among these three methods.

The rest of this paper is organized as follows. Section 2 introduces the essential
concepts and notation for the NDDS and the NSP-tree. Section 3 discusses
the details of NSPBL. Section 4 presents the experimental results. Section 5
concludes the paper.

2 Preliminaries

The concepts of NDDSs were discussed in [13,15], while the NSP-tree was intro-
duced in [14]. For completion, we briefly describe some relevant concepts here.

2.1 Concepts and Notation

A d-dimensional NDDS Ωd is defined as the Cartesian product of d alphabets:
Ωd = A1×A2× ...×Ad, where Ai(1 ≤ i ≤ d) is the alphabet of the i-th dimension
of Ωd, consisting of a finite set of letters with no natural ordering. For simplicity,
we assume Ai’s are the same in this paper. As shown in [15], the discussion can
be readily extended to NDDSs with different alphabets. α = (a1, a2, ..., ad) is
a vector in Ωd, where ai ∈ Ai (1 ≤ i ≤ d). A discrete rectangle R in Ωd is
defined as R = S1 × S2 × ... × Sd, where Si ⊆ Ai(1 ≤ i ≤ d) is called the
i-th component set of R. R is also called a subspace of Ωd. For a given set SV
of vectors, the discrete minimum bounding rectangle (DMBR) of SV is defined

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 407

as the discrete rectangle whose i-th component set (1 ≤ i ≤ d) consists of all
letters appearing on the i-th dimension of the given vectors. The DMBR of SV
is also called the current data space for the vectors in SV . The DMBR of a
set of discrete rectangles can be defined similarly. For a given space (subspace)
Ω′

d = A′
1 ×A′

2 × ...×A′
d, a space split of Ω′

d on the i-th dimension consists of two
subspaces Ω′1

d = A′
1×A′

2×...×A′1
i ×...×A′

d and Ω′2
d = A′

1×A′
2×...×A′2

i ×...×A′
d,

where A′1
i ∪ A′2

i = A′
i and A′1

i ∩ A′2
i = ∅. The i-th dimension is called the split

dimension, and the pair A′1
i /A′2

i is called the dimension split (arrangement) of
the space split. A partition of a space (subspace) is a set of disjoint subspaces
obtained from a sequence of space splits.

As discussed in [13,14], the Hamming distance is a suitable distance measure
for NDDSs. The Hamming distance between two vectors gives the number of
mismatching dimensions between them. A similarity (range) query is defined as
follows: given a query vector αq and a query range rq of Hamming distance, find
all the vectors whose Hamming distance to αq is less than or equal to rq .

2.2 NSP-Tree Structure

The NSP-tree [14] is designed based on the space-partitioning concepts. Let Ωd

be an NDDS. Each node in the NSP-tree represents a subspace from a partition
of Ωd, with the root node representing Ωd. The subspace represented by a non-
leaf node is divided into smaller subspaces for its child nodes via a sequence of
(space) splits.

The NSP-tree has a disk-based balanced tree structure. A leaf node of the
NSP-tree contains an array of entries of the form (key, optr), where key is a
vector in Ωd and optr is a pointer to the indexed object identified by key in
the database. A non-leaf node contains the space-partitioning information, the
pointers to its child nodes and their associated auxiliary bounding boxes (i.e.,
DMBRs). The space-partitioning information in a non-leaf node N is represented
by an auxiliary tree called the Split History Tree (SHT). The SHT is an unbal-
anced binary tree. Each node of the SHT represents a split that has occurred
in N . The order of all the splits that have occurred in N is represented by the
hierarchy of the SHT, i.e., a parent node in the SHT represents a split that has
occurred earlier than all the splits represented by its children. Each SHT tree
node has four fields: i) sp dim: the split dimension; ii) sp pos: the dimension
split arrangement; iii) l pntr and r pntr: pointers to an SHT child node (internal
pointer) or a child node of N in the NSP-tree (external pointer). l pntr points
to the left side of the split, while r pntr points to the right side. Using the SHT,
the subspace for each child of N is determined. The pointers from N to all its
children are, in fact, those external pointers of the SHT for N . Note that, from
the definition, each SHT node SN also represents a subspace of the data space
resulted from the splits represented by the SHT nodes from the root to SN (the
root represents the subspace for N in the NSP-tree).

Figure 1 illustrates the structure of an NSP-tree. In the figure, a tree node is
represented as a rectangle labeled with a number. Each non-leaf node contains
an SHT. There are two DMBRs for each child. DMBRij represents the j-th

408 G. Qian et al.

DMBR
12

DMBR
11

Level 1 (root)

Level 2

Level 3 (leaf)

1 SHT
1

DMBR
11

DMBR
12

DMBR
21

DMBR
22

2 SHT
2

More children ...

More

DMBRs ...

4
key

1
key

2

op
1

op
2

More

entries ...
More leaves ...

…

DMBR
12

DMBR
11

3 SHT
3

…

SHT

SHT node NSP tree node

N1

N2

Internal Pointer External Pointer

Fig. 1. Example of the NSP-tree Fig. 2. Example of the SHT

(1 ≤ j ≤ 2) DMBR for the i-th (1 ≤ i ≤ M) child at each node, where M is the
maximum fan-out of the node, which is determined by the (disk) space capacity
of the node. Figure 2 shows an example SHT. Each SHT node is represented as
a circle. A solid pointer in the figure represents an internal pointer that points
to an SHT child node, while a dotted pointer is an external pointer that points
to a child of the relevant non-leaf node of the NSP-tree that contains the SHT.

3 Space-Partitioning-Based Bulk-Loading

3.1 Key Idea of the Algorithm

The key idea of our bulk-loading algorithm NSPBL is to first load all vectors
into one (large) node and then keep splitting overflow nodes until an NSP-tree
structure is eventually constructed in a bottom-up fashion. Instead of splitting
a node by directly dividing the relevant data (vectors) set, NSPBL partitions
the underlying space for the relevant data (vectors) set into subspaces and then
places the relevant vectors into the subspaces (nodes) that they belong to.

To achieve a good target NSP-tree and reduce the I/O cost for bulk-loading,
NSPBL adopts the following strategies: (i) Partitioning current data space. In-
stead of partitioning a whole NDDS, NSPBL partitions the current data space
(see Section 2.1) for a given set of input vectors. This improves the target tree
quality because partitioning subspaces that contain no input vectors is not only
wasting but also making the target tree unnecessarily larger. (ii) Utilizing his-
tograms of letters appearing on each dimension for the input vectors. One chal-
lenge for building an index tree using space partitioning is to make each partition
as balanced as possible so that both space utilization and search performance of
the resulting tree are high. NSPBL tackles this challenge by using the global data
distribution information from the histograms to properly split a data space. (iii)
Seeking a balanced multi-way splitting. The conventional two-way splitting is in-
efficient for bulk-loading. NSPBL adopts a multi-way splitting strategy to allow
an overflow node (space) to be split into more than two new nodes (subspaces).
In fact, a multi-way split is still determined by a series of two-way splits of the
current data space for the overflow node. However, the spliting is propagated up
to the parent node only once, rather than multiple times as required by the con-
ventional two-way splitting. During the series of two-way splits, NSPBL always
pick the subspace with the most vectors to split so that a balanced multi-way

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 409

split can be achieved in the end. (iv) Adopting a memory buffer (page) for each
new leaf node resulting from splitting. When an overflow leaf node (space) is
split, its vectors should be distributed into the new leaf nodes. Using a memory
buffer for each new leaf node can significantly reduce the number of I/Os needed
to write to the new leaf nodes.

NSPBL employs an intermediate disk-based tree structure (see Figure 3),
called the Space-partitioning Bulk-Loading tree (SBL-tree). The structure of
the SBL-tree is similar to that of the target NSP-tree (see Section 2.2): (1) the
entry structures of a leaf node and a non-leaf node are the same as those in an
NSP-tree, (2) the maximum number of entries for a non-leaf node is the same
as that in an NSP-tree, i.e., M , and (3) each non-leaf node contains an SHT,
which stores the space splitting history information for the node.

The SBL-tree differs from the

Level 1 (root)

Level 2

Level 3 (leaf)

SHT
Non-leaf

Entry 1

More

children ...

More

Entries ...

Leaf

Entry 1

More

entries ...

More

leaves ...

… …

Non-leaf

Entry 2

SHT
Non-leaf

Entry 1
... SHT

Non-leaf

Entry 1
...

…

Leaf

Entry 1

More

entries ... …

Histo-

gram

Normal Leaf Buffered Leaf

Fig. 3. Example of the SBL-tree

NSP-tree by having two types
of leaf nodes: normal leaves and
buffered leaves. A normal leaf
has at most M entries, like that
in an NSP-tree. If a leaf node
has more than M entries, it is
a buffered (i.e., non-final) leaf.
A buffered leaf overflows
according to the target NSP-
tree. Hence it needs to be split.
To facilitate the splitting, each buffered leaf node N maintains a histogram for
each dimension D to record the frequencies (in percentage) of letters that ap-
pear on D in the indexed vectors in N . Once NSPBL turns all buffered leaves
into normal leaves by space partitioning, the target NSP-tree can be obtained
by outputting the final SBL-tree with corresponding DMBRs computed.

3.2 Main Procedure

The main procedure of algorithm NSPBL is given as follows. It invokes functions
SplitBufferedLeaf and SplitNonLeafNode to repeatedly split overflow nodes until
the target NSP-tree for the given set of input vectors is constructed.
Algorithm 3.1 : NSPBL
Input: a set SV of input vectors in a d-dimensional NDDS.
Output: an NSP-tree TgtT ree for SV on disk.
Method:
1. create an SBL-tree BT with an empty leaf N as root;
2. load all vectors in SV into N and create relevant histograms for N ;
3. if size of N ≤ M then {
4. create target NSP-tree TgtT ree with single node N ; }
5. else {
6. let Bleafset = {N};
7. while Bleafset �= ∅ do {
8. fetch an overflow leaf CN ∈ Bleafset and let Bleafset = Bleafset − {CN};
9. [rleafset, adoptSHT] = SplitBufferedLeaf(CN);

10. add leaves with size > M in rleafset into Bleafset;
11. calculate two DMBRs for every leaf with size ≤ M in rleafset;

410 G. Qian et al.

12. if CN is not the root of BT then {
13. replace entry for CN in its parent PN with entries for nodes in rleafset;
14 incorporate adoptSHT into PN ; }
15. else {
16. create a non-leaf node PN as the new root;
17. add entries for nodes in rleafset into PN ;
18. add adoptSHT into PN ; }
19. if PN overflows then {
20. [rnodeset, adoptSHT] = SplitNonleafNode(PN);
21. if PN is not the root of BT then {
22. replace entry for PN in its parent P with entries for nodes from rnodeset;
23. incorporate adoptSHT into P ; }
24. else {
25. create a non-leaf node P as the new root;
26. add entries for nodes in rnodeset into P ;
27. add adoptSHT into P ; }
28. propagate overflow/splitting up to the root of BT when needed; } }
29. create target NSP-tree TgtT ree based on BT , and create DMBRs for non-leaf

nodes in their corresponding entries in parents ; }
30. return TgtT ree.

Algorithm NSPBL initially loads all input vectors into one leaf node (steps 1
- 2). Relevant histograms are computed during the loading (note that these
histograms reflect the global data distribution of the whole data set). If this leaf
is not oversized, the target NSP-tree has been obtained (steps 3 - 4). Otherwise,
the oversized leaf node is put into a set that keeps track of buffered leaves during
the bulk-loading process (step 6). For each buffered leaf, NSPBL invokes function
SplitBufferedLeaf to split it into multiple new leaves using its histograms (steps
8 - 9). Some of the new leaves may be normal leaves whose two DMBRs are
computed (step 11) and stored into their corresponding entries in their parents
(steps 13 or 17). The others may still be buffered leaves that need further splitting
(step 10). In fact, eventually every leaf will be a normal leaf node that can
be directly copied into the target NSP-tree in step 29. NSPBL constructs the
non-leaf nodes of the SBL-tree in a bottom-up fashion (steps 12 - 28). Unlike
the TL algorithm for the NSP-tree, NSPBL does not require a top-down look-
up phase (i.e., ChooseSubtree). It effectively uses the maintained histograms
and the derived splitting history information (SHTs) to decide proper nodes
(subspaces) for input vectors. In addition, it adopts a multi-way splitting rather
than a conventional two-way splitting. Hence NSPBL is expected to be more
efficient than the conventional TL approach. When an SHT adoptSHT for a set
of new nodes resulting from a split is incorporated into an existing non-leaf node
PN or P (steps 14 and 23), NSPBL replaces the external pointer of the current
SHT of existing PN or P that points to the original node before splitting (i.e.,
CN or PN) with an internal pointer that points to the root of adoptSHT . For
a new root, adoptSHT is simply added to it as its SHT (steps 18 and 27). The
target NSP-tree is obtained when no buffered leaf exists (steps 4 and 29). The
two DMBRs for leaf and non-leaf nodes are computed at different times (steps
11 and 29) to reduce the bulk-loading I/Os. The algorithms used for computing
the DMBRS are the same as those for the NSP-tree[14].

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 411

3.3 Splitting a Buffered Leaf Node

Function SplitBufferedLeaf splits a buffered leaf node CN into multiple new leaf
nodes. It does this by repeatedly invoking function SplitSpace to split the un-
derlying data space for CN into subspaces. The splitting decisions are recorded
in an SHT. At the end of the function, the vectors in CN are loaded into the
resulting subspaces (leaf nodes) and the histograms for each node are updated.

To achieve a balanced space partition for the buffered leaf node N , in the
process of multi-way splitting, SplitBufferedLeaf always pick the subspace with
the most vectors to split. Since it is too expensive to actually count the vectors
in subspaces, SplitBufferedLeaf uses the maintained histograms for N to esti-
mate the number of vectors in a subspace. Such a heuristic assumes that the
dimensions are mutually independent for the given data set.

As mentioned earlier, NSPBL associates a memory buffer (page) to each new
leaf node (subspace). If there are B pages of memory space available, we can-
not split the given data space into more than B subspaces. In addition, it is
unnecessary to split a leaf node with ≤ M vectors. Hence, the number of sub-
spaces resulted from multi-way splitting is bound by B and the number of sub-
spaces/leaves with ≤ M vectors.

Function 3.1 : SplitBufferedLeaf
Input: (1) a buffered leaf node N containing a set of input vectors in a d-dimensional
NDDS; (2) the number B of memory buffer pages.
Output: (1) a set NS of new leaf nodes; (2) the corresponding SHT T for the adopted
split.
Method:
1. create the current data space Ω′ based on the histograms for N ;
2. create an empty priority queue PQueue of SHT node pointers;
3. create a pseudo SHT node pointer P that corresponds to Ω′;
4. insert P into PQueue with priority key |N | (i.e., size of N);
5. set the number of used memory buffers cur buf cnt = 0;
6. while PQueue is not empty do {
7. dequeue the next SHT pointer CP from PQueue with priority key value vec cnt;
8. if cur buf cnt ≥ B then {
9. set CP as an external pointer; }

10. else {
11. if CP is the pseudo SHT node pointer P then {
12. [dim, lset, rset, lratio, rratio] = SplitSpace(Ω′, histograms for N);
13. create a new SHT node SHT N with split information dim, lset and rset;
14. construct SHT T with SHT N as its root; }
15. else {
16. construct subspace DS based on both Ω′ and the space split information in

the SHT T from its root to CP ;
17. [dim, lset, rset, lratio, rratio] = SplitSpace(DS, histograms for N);
18. create a new SHT node SHT N with split information dim, lset and rset;
19. set CP as an internal pointer that points to SHT N ; }
20. lcnt, rcnt = vec cnt ∗ lratio, rrtatio;
21. if lcnt, rcnt > M ∗ SPLIT RATIO then {
22. enqueue SHT N.l pntr, r pntr with priority key lcnt, rcnt; }
23. else { set SHT N.l pntr, r pntr as an external pointer; }
24. cur buf cnt++; } }

412 G. Qian et al.

25. create a set NS of cur buf cnt new SBL-tree leaf nodes to which the external
pointers of T point;

26. load each vector in N into one N ′ of the new leaf nodes in NS according to
the subspaces given by T and update the histograms for N ′ accordingly;

27. return NS and T .

Function SplitBufferedLeaf first uses the histograms for N to determine the cur-
rent data space Ω′ represented by N (step 1). The letters in the D-th component
set of Ω′ are those letters with frequencies > 0 in the histogram for dimension
D. A priority queue PQueue of SHT node pointers are maintained by Split-
BufferedLeaf (step 2). The SHT node pointers in PQueue are those pointers in
the SHT T returned at the end of the function. Each pointer corresponds to a
subspace of Ω′ (step 16) and the estimated vector count in that subspace is used
as the priority key for PQueue. This allows SplitBufferedLeaf to always pick the
subspace with the largest estimated number of vectors to split (step 7) so that a
balanced space partition can be achieved. The multi-way splitting process starts
from Ω′, which is represented by a pseudo SHT node pointer P (steps 3 - 4).
The process does not stop until all the pointers in PQueue are exhausted (step
6). When there is no memory buffer page left (step 8), space-splitting stops.
The remaining pointers in PQueue are all set to be external pointers (step 9).
Otherwise, function SplitSpace is invoked to split the subspace corresponding to
the current pointer CP , and the SHT T is constructed and grown (steps 11 -
19). Steps 20 - 23 estimate the vector counts in the two new subspaces resulted
from the space split. Depending on the estimated vector count in a subspace,
the corresponding SHT node pointer is either enqueued or set to be an external
pointer (no more split on that subspace). SplitBufferedLeaf terminates when all
buffer pages are used up or there is no subspace to split. New leaf nodes for the
subspaces are then created based on the SHT T , and loaded (steps 25 - 26).

SplitBufferedLeaf uses an additional adjustable parameter SPLIT RATIO(≥
1) to further control whether a subspace should be split or not (step 21). Ob-
viously, the greater the value of SPLIT RATIO, the more bulk-loading I/Os
are needed, since SplitBufferedLeaf will potentially produce less subspaces. The
benefit of a greater SPLIT RATIO value is that the space utilization of the
target tree may be improved, since more vectors may be fit in a subspace. Our
experimental results show that for uniform data sets, different SPLIT RATIO
values make no much difference in the space utilization of the target tree. Thus,
a SPLIT RATIO value of 1 can be used for uniform data. On the other hand,
when the data set for bulk-loading is skewed, that is, the frequencies of different
letters in the alphabet are quite different, a greater SPLIT RATIO value may
result in a target tree with a better space utilization.

Function SplitSpace splits a given subspace into two subspaces and returns the
split information. Two heuristics are adopted when choosing the split dimension:
H1: choose the dimension with a larger span, i.e., more distinct letters appearing
in contained vectors; H2: choose the dimension that has a more balanced split.
Histograms are used to support the two heuristics.

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 413

Function 3.2 : SplitSpace
Input: (1) a d-dimensional subspace DS; (2) histograms H for all the dimensions.
Output: space split information: (1) dim; (2) lset; (3) rset; (4) lratio; (5) rratio.
Method:
1. max span = max{spans of all dimensions in DS};
2. dim set = the set of dimensions with max span;
3. best balance = 0;
4. for each dimension D in dim set do {
5. sort into list L0 in descending order the letters on the D-th dimension of DS

based on their frequencies recorded in H for dimension D;
6. set lists L1, L2 to empty, weight1 = weight2 = 0;
7. for each letter l in L0 do {
8. if weight1 ≤ weight2 then {
9. weight1 = weight1 + frequency of l on Dth dimension;

10. add l to the end of L1; }
11. else {
12. weight2 = weight2 + frequency of l on Dth dimension;
13. add l to the beginning of L2; } }
14. concatenate L1 and L2 into L3;
15. for j = 2 to |L3| do {
16. set1 = {letters in L3 whose position < j};
17. set2 = {letters in L3 whose position ≥ j};
18. fi = sum of letter frequencies in seti for i = 1, 2;
19. if f1 ≤ f2 then { current balance = f1/f2; }
20. else { current balance = f2/f1; }
21. if current balance > best balance then {
22. best balance = current balance;
23. dim = D, lset = set1, rset = set2; lratio, rratio = f1, f2/(f1 + f2); } } }
24. return dim, lset, rset, lratio, rratio.

Function SplitSpace first picks those dimensions with the maximum span (steps
1 - 2). For each such dimension D, it first sorts the letters appearing on D based
on their frequencies into a “U”-shaped list, i.e., letters with higher frequencies
are placed at two ends (steps 5 - 14). It then finds the most balanced dimension
split (steps 15 - 23).

3.4 Splitting a Non-leaf Node

Function SplitNonleafNode splits a non-leaf node N into several new non-leaf
nodes. The main idea is to break the SHT of N into several subtrees so that
the number of external pointers (to SBL-tree nodes) under each subtree is ≤ M .
The function then splits N into new non-leaf nodes according to the subtrees
of the SHT. Let ext set(SN) denote the set of external pointers in a subtree
rooted at node SN from an SHT in the following description.

Function 3.3 : SplitNonLeafNode
Input: an overflow non-leaf node N of an SBL-tree BT in a d-dimensional NDDS.
Output: a set SS of new normal non-leaf nodes and the corresponding SHT N.SHT
for the adopted split.
Method:
1. let S = { SN | SN is an SHT node in N.SHT and |ext set(SN)| ≤ M and

|ext set(SN.parent)| > M };
2. for each SN in S do {
3. create a new non-leaf node N ′ for given SBL-tree BT ;
4. move subtree ST ′ rooted at SN from N.SHT into N ′;

414 G. Qian et al.

5. change the internal pointer pointing to ST ′ in SN.parent of N.SHT to
the external pointer pointing to N ′;

6. move those entries in N that correspond to external pointers in ext set(ST ′)
to N ′ and create a new entry for N ′ in N ;

7. add N ′ into the set SS of new non-leaf nodes for BT ; }
8. return SS and the updated N.SHT .

Function SplitNonleafNode essentially uses the split history information in the
SHT of the given overflow non-leaf node N to find a set of subspaces that contain
as many child nodes as possible without overflowing (step 1). It then creates a
new non-leaf node for each subspace, links them to the SBL-tree, and adjusts
the SHT and relevant entries in the original N (steps 2 - 7).

4 Experimental Results

To evaluate NSPBL, we conducted extensive experiments. Typical results from
the experiments are reported in this section.

Our experiments were conducted on a PC with Pentium D 3.40GHz CPU,
2GB memory and 400 GB hard disk. Performance evaluation was based on the
number of disk I/Os with the disk block size set at 4 kilobytes. The available
memory sizes used in the experiments were simulated based on the program con-
figurations rather than real physical RAM changes in hardware. The data sets
used in the presented experimental results included both real genome sequence
data and synthetic data. Genomic data (geno) was extracted from bacteria
genome sequences of the GenBank [8], which were broken into q-grams/vectors of
25 characters long (i.e., 25 dimensions). Two synthetic data sets were generated
using the Zipf distribution [18] with parameter values of 0 (zipf0 – uniform) and
3 (zipf3 – very skewed), both of which were 40 dimensional and had an alphabet
size of 10 on all dimensions. For comparison purposes, we also implemented both
the conventional TL algorithm (TL) of the NSP-tree [14] and the representative
generic bulk-loading algorithm GBLA [3]. All programs were implemented in
C++. According to [3], we set the size (disk block count) of the external buffer
(pages on disk) of each index node of the buffer-tree in GBLA at half of the node
fan-out, which was decided by the available memory size.

4.1 Effect of Adjustable Parameter

Function SplitBufferedLeaf uses an adjustable parameter SPLIT RATIO to
provide an additional control on whether a subspace should be split or not. The
number of bulk-loading I/Os and the space utilization of the bulk-loaded NSP-
trees by NSPBL for different SPLIT RATIO values are presented in Table 1.
From the table, we can see that greater SPLIT RATIO values always result
in more bulk-loading I/Os. For uniform data (zipf0), different SPLIT RATIO
values yield almost the same space utilization for the bulk-loaded NSP-trees. For
very skewed data (zipf3), increasing the value of SPLIT RATIO significantly
improves of the space utilization. Genomic data, which is much less skewed than
zipf3, has a behavior more similar to that of zip0 than that of zipf3. Based on

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 415

Table 1. Effect of different SPLIT RATIO values

zipf0 zipf3 geno
SPLIT RATIO io ut% io ut% io ut%

1 418,620 65.7 612,189 44.2 279,694 75.7
2 769,079 65.8 765,348 60.1 431,425 80.5
4 976,624 65.7 969,844 65.8 529,228 82.8
6 1,112,688 65.7 1,113,127 64.2 533,578 82.7

the result, we can conclude that, for data with a distribution close to the uniform
one, a SPLIT RATIO value of 1 is acceptable; for skewed data sets, although
a greater SPLIT RATIO value causes more bulk-loading I/Os, the benefit of a
high quality target tree is overwhelming. For the experimental results presented
in the following subsections, we used a SPLIT RATIO value of 1 for geno and
zipf0 data, and a SPLIT RATIO value of 2 for zipf3 data.

4.2 Efficiency Evaluation

Figure 4 (logarithmic scale in base 10 for Y-axis) shows the number of I/Os
needed to construct NSP-trees using the TL algorithm, GBLA, and NSPBL for
synthetic and genomic data sets of different sizes. The memory available for the
algorithms was set to 4 megabytes. From the figure, we can see that NS PBL
significantly outperformed the conventional TL algorithm. On average, NSPBL
was about 80 times faster than the TL algorithm in our experiments. For uni-
form synthetic data and genomic data, when the database size was small, GBLA
was more efficient than NSPBL. This is because GBLA employs an in memory
buffer-tree and can almost build the entire NSP-tree in memory in such a case,
while NSPBL only uses memory as I/O buffers. As the database size became
much larger than the available memory size, NSPBL was much more efficient
than GBLA. For example, on average, NSPBL was 5.4 times faster than GBLA
when bulk-loading 10 million genomic vectors. NSPBL is particularly efficient
in bulk-loading the very skewed data set zipf3. This shows that the strate-
gies adopted by NSPBL, such as balanced multi-way splitting, were effective.

0 5 10

x 10
6

10
5

10
6

10
7

10
8

of indexed vectors

of

 I/
O

s

zipf0

TL
GBLA
NSPBL

0 5 10

x 10
6

10
5

10
6

10
7

10
8

of indexed vectors

of

 I/
O

s

zipf3

TL
GBLA
NSPBL

0 5 10

x 10
6

10
2

10
4

10
6

10
8

of indexed vectors

of

 I/
O

s

geno

TL
GBLA
NSPBL

Fig. 4. Bulk-loading performance comparison

Experiments were
also conducted to
study the effect of
different memory
sizes on the per-
formance of GBLA
and NSPBL. Table
2 shows the number
of I/Os needed by
these two algorithms
to construct the NSP-trees for 4 million vectors of synthetic and genomic data
under different sizes of available memory. From the table, we can see that
NSPBL was always more efficient than GBLA. When the memory size was small
comparing to the database size, the performance of NSPBL was significantly
better than that of GBLA. On the other hand, when the memory was very

416 G. Qian et al.

Table 2. Effect of memory size on bulk-loading performance

zipf0 zipf3 geno
Memory io io io io io io

GBLA NSPBL GBLA NSPBL GBLA NSPBL
64KB 4,723,892 626,686 18,365,289 1,077,452 3,906,983 399,954
4MB 1,819,533 418,620 10,862,459 765,348 1,046,984 279,694

256MB 659,238 322,019 7,382,932 641,957 375,590 216,599

large so that almost the entire NSP-tree could be fit in it, the performance
difference between the two algorithms became smaller. In real applications such
as genome sequence searching, since the available memory size is usually small
comparing to the huge database size, NSPBL has a significant performance
benefit. In other words, for a fixed memory size, the larger the database size
is, the more performance benefit the NSPBL can provide. This can also be
observed in Figure 4.

4.3 Quality Evaluation

To evaluate the effectiveness of NSPBL, we compared the quality of the NSP-
trees constructed by all algorithms. The quality of an NSP-tree was measured
by its query performance and space utilization. Table 3 shows the query perfor-
mance of the NSP-trees constructed by the TL algorithm, GBLA, and NSPBL
for synthetic and genomic data. These trees are the same as those presented
in Figure 4. Query performance was measured based on the average number
of I/Os for executing 100 random range queries at Hamming distance 3. The
results show that for uniform synthetic data and genomic data, the NSP-trees
constructed by NSPBL have comparable performance as those constructed by
the TL algorithm and GBLA. For very skewed data, the performance of the
NSP-trees from NSPBL is much better. This shows the advantage of applying
histograms in NSPBL, which are capable of capturing global data distribution
information, resulting a better tree structure. On the other hand, both the TL
algorithm and GBLA only partition the space/data based on vectors already
indexed in their structures, which may not accurately reflect the actual global
distribution of the whole data set.

Table 4 shows the space utilization of the same set of NSP-trees for synthetic
and genomic data.

From the table, we can see that the space utilization of those NSP-trees con-
structed by NSPBL varied more than that of the NSP-trees from the other al-
gorithms. This is because, as a space-partitioning-based approach, NSPBL does
not guarantee the minimum space utilization. However, the space utilization of
those NSP-trees was reasonably good due to the heuristics employed by NSPBL
to find a balanced split in the bulk-loading process. The result for zipf3 was
even better than those for TL and GBLA.

Besides the experiments reported above, we have also conducted experiments
with data sets of various alphabet sizes and dimensionalities. The results were
similar. Due to the space limitation, they are not included in this paper.

Space-Partitioning-Based Bulk-Loading for the NSP-Tree in NDDSs 417

Table 3. Query performance comparison

zipf0 zipf3 geno
key# io io io io io io io io io

TL GBLA NSPBL TL GBLA NSPBL TL GBLA NSPBL
100000 136 144 148 605 596 433 192 192 207
400000 269 238 246 1,534 1,497 1,019 344 342 344
1000000 400 400 400 2,718 2,704 1,542 476 468 518
4000000 679 680 680 6,010 6,007 2,502 771 766 782
10000000 1,053 1,032 1,039 9,704 9,611 3,489 1,046 1,048 1,104

Table 4. Space utilization comparison

zipf0 zipf3 geno
key# ut% ut% ut% ut% ut% ut% ut% ut% ut%

TL GBLA NSPBL TL GBLA NSPBL TL GBLA NSPBL
100000 59.5 63.4 63.7 54.0 52.6 60.6 69.5 69.7 63.2
400000 60.4 58.0 56.1 53.6 52.4 62.4 69.5 70.2 69.3
1000000 65.7 65.7 65.7 54.2 53.9 60.9 78.8 79.6 66.6
4000000 65.7 65.7 65.7 54.4 54.0 60.1 76.1 76.5 75.7
10000000 81.8 81.1 80.0 54.6 54.1 60.7 65.8 65.9 55.8

5 Conclusions

There is an increasing demand for applications such as genome sequence search-
ing that involve similarity queries on large data sets in NDDSs. Index structures
such as the NSP-tree [14] are crucial to achieving efficient evaluation of similarity
queries in NDDSs. Although many bulk-loading techniques have been proposed
to construct index trees in CDSs in the literature, no bulk-loading technique has
been developed specifically for the NSP-tree in NDDSs.

In this paper, we present a space-partitioning-based algorithm NSPBL to
bulk-load the NSP-tree for large data sets in NDDSs. NSPBL constructs a tar-
get NSP-tree by repeatedly partitioning the underlying space of the data set
rather than partitioning the data set directly. To avoid accessing individual in-
put vectors, it partitions the space based on the histograms for component let-
ters of the vectors. To achieve better efficiency and effectiveness of bulk-loading,
NSPBL adopts several strategies including partitioning the current space rather
than the whole space, splitting an overflow node into multiple nodes rather than
always two nodes, applying effective heuristics to choose balanced space splits,
and associating a buffer page to each leaf node.

Our experimental results demonstrate that NSPBL significantly outperforms
the conventional TL method and the popular generic bulk-loading algorithm
GBLA [3], especially when being used for large data sets, for skewed data sets,
and with limited available memory. The target NSP-trees obtained from all the
algorithms have comparable searching performance and space utilization.

References

1. Arge, L., Berg, M., Haverkort, H., Yi, K.: The Priority R-tree: a practically efficient
and worst-case optimal R-tree. In: Proc. of SIGMOD, pp. 347–358 (2004)

2. Berchtold, S., Bohm, C., Kriegel, H.-P.: Improving the query performance of high-
dimensional index structures by bulk-load operations. In: Proc. of EDBT, pp. 216–
230 (1998)

418 G. Qian et al.

3. Bercken, J., Seeger, B., Widmayer, P.: A generic approach to bulk loading multi-
dimensional index structures. In: Proc. of VLDB, pp. 406–415 (1997)

4. Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques. In: Proc.
of VLDB, pp. 461–470 (2001)

5. Ciaccia, P., Patella, M.: Bulk loading the M-tree. In: Proc. of the 9th Australian
Database Conference, pp. 15–26 (1998)

6. DeWitt, D., Kabra, N., Luo, J., Patel, J., Yu, J.: Client-server paradise. In: Proc.
of VLDB, pp. 558–569 (1994)

7. Garcia, Y., Lopez, M., Leutenegger, S.: A greedy algorithm for bulk loading R-
trees. In: Proc. of ACM-GIS, pp. 2–7 (1998)

8. http://www.ncbi.nlm.nih.gov/Genbank/
9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc.

of SIGMOD, pp. 47–57 (1984)
10. Jermaine, C., Datta, A., Omiecinski, E.: A novel index supporting high volume

data warehouse insertion. In: Proc. of VLDB, pp. 235–246 (1999)
11. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proc. of CIKM, pp. 490–499

(1993)
12. Leutenegger, S., Edgington, J., Lopez, M.: STR: A Simple and Efficient Algorithm

for R-Tree Packing. In: Proc. of ICDE, pp. 497–506 (1997)
13. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: The ND-tree: a dynamic indexing tech-

nique for multidimensional non-ordered discrete data spaces. In: Proc. of VLDB,
pp. 620–631 (2003)

14. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: A space-partitioning-based indexing
method for multidimensional non-ordered discrete data spaces. ACM TOIS 23,
79–110 (2006)

15. Qian, G., Zhu, Q., Xue, Q., Pramanik, S.: Dynamic indexing for multidimen-
sional non-ordered discrete data spaces using a data-partitioning approach. ACM
TODS 31, 439–484 (2006)

16. Roussopoulos, N., Leifker, D.: Direct spatial search on pictorial databases using
packed R-trees. In: Proc. of SIGMOD, pp. 17–31 (1985)

17. Seok, H.-J., Qian, G., Zhu, Q., Pramanik, S.: Bulk-loading the ND-tree in non-
ordered discrete data spaces. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DAS-
FAA 2008. LNCS, vol. 4947, pp. 156–171. Springer, Heidelberg (2008)

18. Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley, Read-
ing (1949)

http://www.ncbi.nlm.nih.gov/Genbank/

Efficient Updates for Continuous Skyline

Computations�

Yu-Ling Hsueh1, Roger Zimmermann2, and Wei-Shinn Ku3

1 Dept. of Computer Science, University of Southern California,
Los Angeles, CA 90089

2 Computer Science Department, National University of Singapore, Singapore 117543
3 Dept. of Computer Science and Software Engineering, Auburn University,

Auburn, AL 36849
hsueh@usc.edu, rogerz@comp.nus.edu.sg, weishinn@auburn.edu

Abstract. We address the problem of maintaining continuous skyline
queries efficiently over dynamic objects with d dimensions. Skyline queries
are an important new search capability for multi-dimensional databases.
In contrast to most of the prior work, we focus on the unresolved issue of
frequent data object updates. In this paper we propose the ESC algorithm,
an Efficient update approach for Skyline Computations, which creates a
pre-computed second skyline set that facilitates an efficient and incremen-
tal skyline update strategy and results in a quicker response time. With the
knowledge of the second skyline set, ESC enables (1) to efficiently find the
substitute skyline points from the second skyline set only when removing or
updating a skyline point (which we call a first skyline point) and (2) to del-
egate the most time-consuming skyline update computation to another in-
dependent procedure, which is executed after the complete updated query
result is reported. We leverage the basic idea of the traditional BBS sky-
line algorithm for our novel design of a two-threaded approach. The first
skyline can be replenished quickly from a small set of second skylines -
hence enabling a fast query response time - while de-coupling the computa-
tionally complex maintenance of the second skyline. Furthermore, we pro-
pose the Approximate Exclusive Data Region algorithm (AEDR) to reduce
the computational complexity of determining a candidate set for second
skyline updates. In this paper, we evaluate the ESC algorithm through rig-
orous simulations and compare it with existing techniques. We present ex-
perimental results to demonstrate the performance and utility of our novel
approach.

1 Introduction

Skyline query computations are important for multi-criteria decision making ap-
plications and they have been studied intensively in the context of spatio-temporal
� This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC),

IIS-0534761, NUS AcRF grant WBS R-252-050-280-101/133 and equipment gifts
from the Intel Corporation, Hewlett-Packard, Sun Microsystems and Raptor Net-
works Technology. We also acknowledge the support of the NUS Interactive and
Digital Media Institute (IDMI).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 419–433, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

ESC Query Processor

S1 Skyline
Evaluation

S2 Skyline
Evaluation Data Set

 Request
Skyline Query

 Results B

D

D
iscarded
 points

N
ew

 S
1

points

C A

I/O Access

Data
Updates

Fig. 1. ESC system framework

databases. Skyline queries have been defined as retrieving a set of points, which
are not dominated by any other points. An object p dominates p′, if p has more fa-
vorable values than p′ in all dimensions. Some of the prior work on skyline queries
assumed that data objects are static [13,15]. Other approaches assumed that the
skyline computation involved only a partial of dynamic dimensions [4]. In this pa-
per, we address Efficient Updates for Continuous Skyline Computations over dy-
namic objects (ESC for short), where objects with d dynamic dimensions move in
an unrestricted manner. Each dimension represents a spatial or non-spatial value.
Towards an efficient continuous skyline computation the following challenges must
be addressed: an effective incremental skyline query result update mechanism that
is needed provides a fast response time of reporting the current query results, and
an efficient strategy to reduce the search space dimensionality is required.

Existing work [6,14,19] generally computes a number of data point subsets,
each of which is exclusively dominated by one skyline point. Therefore, when a
skyline point moves or is deleted, only its exclusively dominated subset must be
scanned. The determination of such an exclusive data set is very computationally
complex in higher dimensions and it incurs a serious burden for the system
in a highly dynamic environment. Therefore, these systems are often unable
to provide up-to-date query results with a quick response time. We propose
the ESC algorithm to efficiently manage the query results by delegating the
time-consuming skyline update computations to another independent procedure,
which is processed after the query processor reports the latest skyline query
results. The key idea is to maintain a second skyline (or S2) set which is a
skyline candidate set pre-computed when a traditional skyline (which we refer
as the first skyline, S1) point requests an update. With the knowledge of the
second skyline set, the skyline query result can be updated within a limited
search space and the expensive computations (e.g., searching for new second
skylines to substitute a promoted second skyline point) can be decoupled from
the first skyline update computations.

Figure 1 shows the framework of the ESC system. The query processor ini-
tially computes the first and second skyline points. Any updates (A) performed
on the data set are also submitted to the query processor. First, Task (B)
examines whether the update request (e.g., inserting or removing a data point)

Efficient Updates for Continuous Skyline Computations 421

affects the first skyline set. If the request point becomes a new S1 point, Task (B)
inserts the new S1 point into the current S1 set and removes the current skyline
points that are dominated by the new S1 point. These discarded S1 points (new
S2 points) are processed by Task (D) later to update the S2 set. In case that
an update request stems from a removed or moving S1 point, some exclusive
points are left un-dominated. The query processor searches for new substitute
S1 points only from the S2 set. The query results (C) are immediately output
as soon as Task (B) is completed. The processing time of the sequence of Tasks
(A)(B)(C) is the system response time to a skyline query update. Task (D)
maintains the S2 points when any S2 point is inserted or removed. To enhance
Task (D), which involves the expensive computation of determining exclusive
data points where (D) searches for new or substitute S2 points from the rest of
the data set, we also propose an approximate exclusive data region computation
with lower amortized cost than existing techniques [14,19]. The remainder of
this paper is organized as follows. Section 2 describes the related work. Section 3
presents and details our continuous skyline query processing design. We exten-
sively verify the performance of our technique in Section 4 and finally conclude
with Section 5.

2 Related Work

Borzsonyi et al. [1] proposed the straightforward non-progressive Block-Nested-
Loop (BNL) and Divide-and-Conquer (DC) algorithms. The BNL approach re-
cursively compares each data point with the current set of candidate skyline
points, which might be dominated later. BNL does not require data indexing
and sorting. The DC approach divides the search space and evaluates the sky-
line points from its sub-regions, respectively, followed by merge operations to
evaluate the final skyline points. Both algorithms may incur many iterations
and are inadequate for on-line processing. Tan et al. [17] presented two progres-
sive processing algorithms: the bitmap approach and the index method. Bitmap
encodes dimensional values of data points into bit strings to speed up the dom-
inance comparisons. The index method classifies a set of d-dimensional points
into d lists, which are sorted in increasing order of the minimum coordinate.
The index scans the lists synchronously from the first entry to the last one.
With the pruning strategies, the search space is reduced. The nearest neigh-
bor (NN) method [5] indexes the data set with an R-tree. NN utilizes nearest
neighbor queries to find the skyline results. The approach repeats the query-
and-divide procedure and inserts the new partitions that are not dominated by
some skyline point into a to-do list. The algorithm terminates when the to-do-
list is empty. The branch and bound skyline (BBS) algorithm [13] traverses an
R-tree to find the skyline points. Although BBS outperforms the NN approach,
the performance can deteriorate due to many unnecessary dominance checks.

422 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

Finally, many of the recent techniques aim at continuous skyline support for
moving objects and data streams. Lin et al. [8] present n-of-N skyline queries
against the most recent n of N elements to support on-line computation against
sliding windows over a rapid data stream. Morse et al. [11] propose a scalable
LookOut algorithm for updating the continuous time-interval skyline efficiently.
Sharifzadeh et al. [16] introduce the concept of Spatial Skyline Queries (SSQ).
Given a set of data points P and a set of query points Q, SSQ retrieves those
points of P which are not dominated by any other point in P considering their
derived spatial attributes with respect to query points in Q. For moving query
points, a continuous skyline query processing strategy is presented in [4] with a
kinetic-based data structure. However, prompt query response is not considered
in the design. A suite of novel skyline algorithms based on a Z-order curve [3]
is proposed in [6]. Among the solutions, ZUpdate facilitates incremental skyline
result maintenance by utilizing the properties of a Z-order curve. Other related
techniques can be found in the literature [2,9,12,18,19]. However, all the afore-
mentioned studies differ from the main goal of this research which is to support
frequent skyline data object updates efficiently while providing a quick response.

3 ESC Algorithm

3.1 The Problem Definition of Continuous Skyline Queries

The formal definition of skyline points in d-dimensional space is a distinct object
set P , where any two objects p = (x1, ..., xd) and q = (y1, ..., yd) in the set satisfy
the condition that if for any k, xk < yk, there exists at least one dimension of
m ≤ d that satisfies xm > ym. We say p dominates q (p (q for short), iff xk < yk,
∀k (1 ≤ k ≤ d). The general setup of the problem consists of a set of dynamic
query and data objects with d dimensions. Moving objects can freely maneuver

1

1

2

8

7

6

5

4

3

3
1S

5
1S

S1

2

1
1S

9876543

4
1S

Region I

9
edge of the universe

S2

1
2S

2
1S

2
2S

Region II

Region III
6p

Fig. 2. S1 and S2 sets

Efficient Updates for Continuous Skyline Computations 423

in an unrestricted and unpredictable fashion, meaning that their parameters xk

may arbitrarily change their values. The major challenging issue of a continuous
skyline query is to avoid unnecessary dominance checking on irrelevant data
points for skyline query result updates. After observing the BBS algorithm [13],
we deduced that when evaluating the skyline query result, a set of second skyline
(S2) points can always be obtained with little extra work while retrieving the
first skyline (S1) points. We refer to the traditional skyline query result as the
first skyline, consisting of S1 = {s1

1, ..., s
m
1 }. The second skyline S2 = {s1

2, ..., s
k
2}

is defined as follows:

Definition 1. A data point p is a second skyline point iff p ∈ (P − S1) and
�p′ ∈ (P − S1 − p), p′ (p. Informally, all S2 points are dominated by S1 and
the rest of the data points (P − S1 − S2) are dominated by both S1 and S2.

When a S1 point si
1 is removed or at least one value of its dimensions changes, the

S2 points are naturally considered as new S1 point candidates to “substitute” si
1.

The features of a S2 set are as follows: (1) it is a pre-computed set that covers all
the new S1 candidate points, and (2) S2 is a relatively small data set. Therefore,
with the knowledge of S2, the query processor can efficiently update the query
result and provide a quicker response time to the query requester. An example is
shown in Figure 2. If the S1 point s2

1 moves to Region I, the search space for ESC
to update the query result only involves the S1 and the S2 sets. In this case, s2

1

remains a S1 point, but it dominates s1
1. ESC needs to remove s1

1 from the S1 set
and s1

1 becomes a new S2 point, since no existing S2 point can dominate it. Due
to the movement of s2

1, ESC searches for new S1 points from the S2 set. Since s2
2

(an exclusive data point) is left un-dominated, s2
2 becomes a new S1 point and is

removed from the S2 set. The ESC algorithm delegates the necessary S2 mainte-
nance (an independent procedure from S1 updates) to the query processor after
S1 updates are completed. For example, new S2 points must be retrieved to sub-
stitute s2

2. To avoid scanning through the entire data points in Region III for new
S2 points, we propose an approximate exclusive data region (AEDR) computation
in contrast to a traditional exclusive data region (EDR) computation. Based on
our observation and analysis, we provide the lemmas for incrementally updating
the skyline query results in the following sections. Table 1 summarizes the symbols
and functions we use throughout the following sections.

Table 1. Symbols and functions

Symbols Descriptions
P Number of data objects
d Number of dimension
S1 First skyline point set (traditional skyline query result set)
S2 Second skyline point set
DataRtree Disk-based Rtree for indexing P
S1Rtree Main-memory Rtree for indexing S1 points
S2Rtree Main-memory Rtree for indexing S2 points
EDR(p) A set of data points in the exclusive data region
AEDR(p) A set of data points in the approximate exclusive data region
W (p) A set of skyline points in the dominance area of p
p.DomArea The dominance area of p

424 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

3.2 Second Skyline Computation

The existing work [14,19] performs time-consuming exclusive data point compu-
tations for the skyline query result updates. In Figure 3, the gray areas represent
the traditional EDRs that contain exclusive data points. An EDR is not usually
pre-computed because of the complexity of the calculation. In contrast, since
the S2 points (new S1 candidates) can be easily computed before any S1 point
issues an update, the query processor is able to satisfy a query request with
the latest query result and with a quicker response time. To further reduce the
search space of visiting S2 points to update the skyline query result, we introduce
and define a dominance set for each S1 point si

1. A dominance set contains a
group of S2 points which are dominated by si

1 (denoted by D(si
1)) to substitute

a removed or moving si
1 point when the dominance relationship has changed.

For example in Figure 3 the dominance set of s2
1 includes s2

2. If s2
1 is removed,

ESC only checks the S2 points in D(s2
1), instead of the entire S2 points. In this

example, s2
2 becomes a new S1 point, so it is removed from S2. We formally

define a dominance set and establish Lemma 1 which states that a dominance
set must contain all the necessary S1 candidate points as follows:

Definition 2. (Dominance Set: D(si
1))

A dominance set of a skyline point si
1 (denoted by D(si

1) = {sr
2, ...s

v
2}) is a

S2 subset where ∀sw
2 ∈ D(si

1), si
1 (sw

2 , and 0 ≤ (sw
2 .mindist − si

1.mindist) ≤
(sw

2 .mindist − st
1.mindist), ∀st

1 ∈ (S1 − si
1). Each D(si

1) is exclusive from any
other dominance set; therefore, S2 = D(S1), where D(S1) = D(s1

1)+ ...+D(sm
1)

and m is the size of S1.

Lemma 1. Given a dominance set D(si
1). Let A be the skyline points extracted

from EDR(si
1). D(si

1) must contain A (A is a subset of D(si
1)).

Proof. (By contradiction) Let p ∈ A be a point not included in D(si
1). This is a

contradiction, since p is only dominated by si
1. Therefore, it must be in D(si

1).
It follows that D(si

1) must contain all points in A.

In Figure 3, D(s2
1) = {s1

2, s
2
2} contains two S2 points in the set which is a su-

perset of A = {s2
2}. One can observe that some non-exclusive S2 points (e.g.,

s1
2 and s4

2) can be assigned to different dominance sets. Intuitively, the S1 point
with the minimal mindist to the query point (which has the largest dominance
area) may dominate the most S2 points. Thus, it might produce a load imbal-
ance problem because the query processor needs to perform many dominance
checks when a skyline point with a short mindist moves. To ensure that each
dominance set contains evenly distributed S2 points, the ESC algorithm in-
serts a non-exclusive S2 point sw

2 into D(sj
1), where sj

1 has the minimal value
of (sw

2 .minsit − sj
1.mindist) among all other S1 points. In our algorithm, we

utilize the BBS approach to initially compute the skyline query results. Along
with the query evaluation, S2 points and the dominance set of each S1 point
are computed during the execution of the modified BBS dominance-checking

Efficient Updates for Continuous Skyline Computations 425

1

1

2

8

7

6

5

4

3

5
1S

2

1
1S

9876543

4
1S

9

2
1S

3
1S

1
2S

2
2S

3
2S

4
2S

1p

exclusive data region

Fig. 3. Dominance set v.s. EDR set

procedure which runs a window query to determine a set of candidate skyline
points. Let e be the next discarded entry during the process of the dominance-
checking procedure (e is dominated by some S1 point). Therefore, the algorithm
proceeds to insert e into a dominance set and examines whether e is a S2 point.
Given is a heap H = {si

1...s
k
1} that represents the set of the existing skyline

points whose entries intersect with e. Since BBS always visits entries in the
ascending order of their mindist, we have ∀s ∈ H , s.mindist < e.mindist. With
the sorting of H by the mindist in descending order, ∃sj

1 ∈ H , sj
1 (e and the

value of (e.minsit−sj
1.mindist) > 0 is minimal among all other S1 points. Next,

Lemma 2 is provided to prove the correctness of the S2 extraction.

Lemma 2. Given a point p which is dominated by S1′ = {si
1...s

j
1}, where

S1′ ⊂ S1. If ∀st
2 ∈ D(S1′), st

2 � p, p must be a S2 point.

Proof. Since p is not dominated by (S1−S1′), p can never be dominated by any
S2 point in D(S1 − S1′) either, by transitivity. Therefore, if p is not dominated
by any S2 point in D(S1′), p is guaranteed to be a final S2 point.

The pseudo code is shown in Algorithm 1, where the additional conditions (Lines
10-16 and 19-27) are inserted into the dominance-checking code for retrieving S2
points and determining the dominance sets. Line 4 sorts the heap in descend-
ing order of the mindist such that the skyline points with larger mindist are
examined first. Line 12 obtains the dominating skyline point er for p which is
inserted into D(er) later. Based on Lemma 2, Lines 13–15 check whether p is a
S2 point. Lines 20–23 ensure that each S2 is a data point. If e is an intermediate
node, BBS is performed to retrieve local skyline points from the entry. Lines 23
and 25 insert the final S2 points O′ into S2 and update the S2 set by deleting
those S2 points that are dominated by O′. To find such a set, the algorithm
performs S2Rtree.W (O′), which is a window query that finds the S2 points in
the dominance areas of O′.

426 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

Algorithm 1. ESC dominance-check(p)
1: insert all entries of the root R in the heap
2: isDominated = false, er = φ
3: while heap not empty do
4: remove top heap entry e //the heap is sorted in descending order of mindist.
5: if (e is an intermediate entry) then
6: for (each child ei of e) do
7: if (ei intersects with p) then insert ei into heap
8: end for
9: else
10: if (e � p) then
11: isDominated = true;
12: let er = e, if er is not empty //er : the first S1 point dominating p

13: for (each S2 skyline point si
2 ∈ D(e)) do

14: if (si
2 � p) then set p as a regular data point and return isDominated

15: end for
16: end if
17: end if
18: end while
19: if (isDominated) then
20: if (p is an intermediate entry) then
21: perform DataRtree.BBS(p) that returns a skyline point set O
22: let O′ ∈ O be the data set that is not dominated by S2.
23: S2 = S2 + O′ − S2Rtree.W (O′) and insert O′ into D(er)
24: else
25: S2 = S2 + p − S2Rtree.W (p) and insert p into D(er)
26: end if
27: end if
28: return isDominated

3.3 Description of the ESC Algorithm

The main procedures of the ESC algorithm include S1Evaluation for the S1
updates and S2Evaluation for the S2 set maintenance. ESC delegates most of
expensive computations that are irrelevant to S1 query results to S2Evaluation.
To improve the performance of S2Evaluation, we introduce the concept of an
approximate exclusive data region (AEDR) that helps to reduce the amortized
cost of the S2 updates. When d = 2, the traditional EDR is a regular rectangle.
However, an EDR has an irregular shape in higher dimensions. For example, in
Figure 4(a), si

2 is a skyline point to delete. The EDR is an irregular rectangle
after deleting the overlapping area with the dominance area of sk

2 and sv
2. Based

on this observation, we can obtain a regular shaped EDR only when we consider
the skyline points which have a value xi larger than that of si

2 in only one
dimension. Because these points are completely “outside” of the EDR, they can
trim the entire areas that represent the upper dimensional value xi.

Definition 3. (AEDR)
Let si

2 = (x1, x2, ..., xd), and sj
2 = (y1, y2, ..., yd). AEDR(si

2) = si
2.DomArea −

(si
2.DomArea ∩ sj

2.DomArea), ∀sj
2 ∈ (S2− si

2), there exists exactly one xk < yk,
1 ≤ k ≤ d .

For example, in Figure 4(b), si
2 is the skyline to delete and the solid rectangle box

is an AEDR, which is a regular shape resulting from trimming the overlapping
dominance areas of si

2 and sj
2. ESC utilizes the AEDR to search for the new

S2 points by traversing the R-tree. Each MBR e extracted from the heap is

Efficient Updates for Continuous Skyline Computations 427

kS2

iS2
(12, 7, 9)

(16, 3, 18)

vS2

(21, 1, 13)

(a) 3-d EDR example

jS2
iS2

(12, 3, 9)
(4, 1, 17)

(b) AEDR example

Fig. 4. Traditional EDR v.s. AEDR

checked whether it intersects with the AEDR. If true, ESC checks whether e is
dominated by the existing S2 points.

When a S1 point p is newly inserted into the system or when it moves, ESC
needs to re-group a new dominance set for p. A simple solution is to check
every S2 point which currently belongs to a dominance set of some S1 point
and migrate the S2 point to the dominance set of p if necessary. Instead, we
provide FindDomSet, (the pseudo code is presented in Algorithm 2) applying
the following Lemma that presents a heuristic to avoid checking the entire S2
set.

Lemma 3. Given a new S1 point sk
1 , re-group the points in D(si

1), only where
∀si

1 ∈ (S1 − sk
1), si

1.mindist ≤ sk
1 .mindist.

Proof. Proof by definition. Let sw
1 be a S1 point that has the value of (sw

1 .mindist
> sk

1 .mindist). ∀p ∈ D(sw
1), the value of (p.mindist − sw

1 .mindist) must be
smaller than the value of (p.mindist − sk

1 .mindist). Therefor, p must remain in
the same dominance set of sw

1 . Hence, it is not necessary to re-group these points
in D(sw

1).

Algorithm 2. FindDomSet(sk
1)

1: for (each p ∈ D(si
1), where si

1 ∈ (S1 − sk
1) and si

1.mindist < sk
1 .mindist) do

2: if (sk
1 � p) then

3: D(si
1).remove(p)

4: D(sk
1).insert(p)

5: end if
6: end for

The ESC algorithm is implemented in an event-driven fashion to handle the
skyline query updates. The main procedures include S1Evaluation (Algorithm 3)
and S2Evaluation (Algorithm 4). When the query processor receives a request
(from a point in S1, S2, or a regular data point), it first performs S1Evaluation

428 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

to examine whether the request affects the S1 set (the query result) and outputs
the updated S1 points if the set has been modified. Then S2Evaluation processes
the rest of non-S1-related computations. In the S1Evaluation procedure, Line 6
performs the S1Rtree.dominace-descending function where the dominance checks
access the S1Rtree in the descending order of the mindist of the entries. We
use the same principle of the ESC dominance-check algorithm (discussed in
Section 3.2) to find the dominating S1 point sk

1 (Line 7) for a request point p. If
p becomes a new S2 point evaluated by S2Evaluation, p is inserted into D(sk

1).
Lines 9−10 update the S1 set if p is a new S1 point and delete the I set, which
is an existing S1 set dominated by p. I is obtained by executing a window query
S1Rtree.W (p), using the dominance area of p as the range on the S1Rtree. Line
11 inserts the new S1 point p into S̃1 and S1Evaluation will later pass this set
to S2Evaluation where FindDomSet(S̃1) is performed to find a S2 set for D(p).
Since all the points in I become new S2 points (inserted into S̃2 in Line 12),
the S2 set is updated later in S2Evaluation by adding the S̃2 set. Lines 15−24
basically check all the S2 points ∈ D(p′) whether they are still dominated by
p after p moves or is removed from the system. In Line 18, since o (a new S1
point after p moves) can never dominate any S1 point, o is added to the S1 set
directly. This is because o is an exclusive data point, and therefore o must not
dominate any existing S1 points.

Algorithm 3. S1Evaluation(p)
1: let �S1 = φ be a new S1 point set

2: let �S2 = φ be a new S2 point set
3: let S2 = φ be the existing S2 points to remove
4: p′ be the last-updated point of p
5: S1 = S1 − p′, if p was a S1 point
6: isDomByS1 = S1Rtree.dominace-descending(p)

7: let sk
1 be the S1 point with the minimal (p.minsit−sk

1 .mindist) value among all other S1 points

8: if (isDomByS1 == false) then
9: I = S1Rtree.W (p)
10: S1 = S1 + p − I

11: �S1.insert(p)

12: �S2.insert(I)
13: D(p).insert(i), ∀i ∈ I
14: end if
15: if (p was a S1 point) then
16: for (each o ∈ D(p′)) do
17: if (S1Rtree.dominace-descending(o) == false) then
18: S1 = S1 + o
19: D(p).remove(o)

20: �S1.insert(o)

21: S2.insert(o)
22: end if
23: end for
24: end if
25: output the updated S1 set and continue S2Evaluation(p, isDomByS1, sk

1 , �S1, �S2, S2) procedure

S2Evaluation is a more expensive procedure than S1Evaluation, because it
involves AEDR computations to find a set of new S2 points to substitute a

Efficient Updates for Continuous Skyline Computations 429

moving or removed S2 point. Lines 6−7 are processed if p is a new S2 point.
The insertion of p may dominate some existing S2 points; therefore, Line 6 finds
the dominated S2 points (S2Rtree.W (p)) and removes them from the S2 set.
Similarly, in Line 10, since each point in S̃2 was originally a S1 point, the D(S̃2)
set is directly removed from the S2 set without performing a window query to
look for the dominated points. The deletion of the S2 point set S2 is executed in
Lines 11−12 and A contains the substitute S2 points, after S2 is removed from
the S2 set. Finally, FindDomSet is performed to find a group of S2 points for
each point in S̃1.

Algorithm 4. S2Evaluation(p, isDomByS1, sk
1 , S̃1, S̃2, S2)

1: Let p′ be the last-updated point of p
2: S2.insert(p′), if p was a S2 point
3: if (isDomByS1 == true)) then
4: isDomByS2 = S2Rtree.dominace(p)
5: if (isDomByS2 == false)) then
6: S2 = S2 + p − S2Rtree.W (p)

7: D(sk
1).insert(p) and D(sk′

1).remove(p), where sk′
1 (�= sk

1) was the dominating point of p
8: end if
9: end if
10: S2 = S2 + �S2 − D(�S2)

11: A = DataRtree-AEDR(S2), where A is a regular data set and is not dominated by S2 points.

12: S2 = S2 − S2 + A //A substitutes S2

13: FindDomSet(�S1)

4 Experimental Evaluation

We evaluated the performance of the ESC algorithm by comparing it with
the well-known BBS approach [14] and the DeltaSky algorithm [19]. For the
EDR computations in BBS, we adopt the ABBS (Adaptive Branch-and-Bound
Search) [19] to avoid complex irregular-shaped EDR computations. ABBS ba-
sically traverses the R-tree and determines whether an intermediate MBR ei

intersects with the dominance area of a skyline to delete. If this is true, it fur-
ther checks whether any existing skyline dominates ei. All of these algorithms
utilize R-trees as the underlying structure for indexing the data and skyline
points. We use the Spatial Index Library [7] for the R-tree index. A page size
of 4Kbytes is deployed, resulting in node capacities between 94 (d = 5) and 204
(d = 2). S1 and S2 sets are indexed by a main-memory R-tree to improve the
performance of the dominance checks. Our data sets are generated on a terrain
service space of [0, 1000]2 with the random walk mobility model [10]. Each object
moves with a constant velocity until an expiration time. The velocity is then re-
placed by a new velocity with a new expiration time. We generated from 100,000
to 1,000,000 normal distributed data points with dimensions in the range of 2
to 5. The object update ratio is set in a range from 1% to 10%. Experiments are
conducted with a Pentium 3.20 GHz CPU and 1 GByte of memory. The query
results are evaluated in an event-driven approach. Therefore, the query processor

430 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

Table 2. Simulation parameters

Parameter Default Range
P 100,000 100,000, 500,000, 1,000,000
d 5 2, 3, 4, 5
fupdate 10% 1%, 5%, 10%

calls different procedures based on each specific event type. The main measure-
ment in the following simulations is the response CPU time (from receiving a
data update request to the S1 update completion time or the evaluation time of
S1Evaluation) and the overall CPU time (the evaluation time of S1Evaluation
plus S2Evaluation). For ABBS and DeltaSky the overall CPU time also repre-
sents the response time. Our experiments use several metrics to compare these
algorithms. Table 2 summarizes the default parameter settings in the following
simulations.

4.1 Update Ratio

First, we evaluated the impact of the update ratio. Figures 5(a) and (b) show the
response time and overall CPU time as a function of update ratio, respectively,
and Figure 5(c) illustrates the I/O cost for the three methods. We fix the data
cardinality at 100,000 and dimensionality at 5. The ESC approach achieves a
better performance than ABBS and DeltaSky for all update rates. The degrada-
tion of DeltaSky is caused by the expensive Maximum Coverage computations
scanning over the projection lists and the increase of skyline point size which
incurs bigger projection lists. ESC also outperforms both methods in terms of
the overall CPU time, since the amortized cost of the AEDR computations and
exclusive data evaluation is lower than the other two methods.

 0

 100

 200

 300

 400

 500

 600

1051

R
es

po
ns

e
C

P
U

 T
im

e
(s

ec
) ESC

DeltaSky
ABBS

(a) Response CPU time

 0

 100

 200

 300

 400

 500

 600

1051

O
ve

ra
ll

C
P

U
 T

im
e

(s
ec

)

ESC
DeltaSky

ABBS

(b) Overall CPU time

 0

 50

 100

 150

 200

 250

1051

I/O
 C

os
t

ESC
DeltaSky

ABBS

(c) I/O cost

Fig. 5. Performance v.s. Update Ratio (P = 100k, d = 5)

4.2 Dimensionality

Next we report on the impact of the dimensionality on the performance of all
three methods. Figures 6(a), (b) and (c) show the CPU overheads and I/O cost

Efficient Updates for Continuous Skyline Computations 431

 0

 100

 200

 300

 400

 500

 600

5432

R
es

po
ns

e
C

P
U

 T
im

e
(s

ec
) ESC

DeltaSky
ABBS

(a) Response CPU time

 0

 100

 200

 300

 400

 500

 600

5432

O
ve

ra
ll

C
P

U
 T

im
e

(s
ec

)

ESC
DeltaSky

ABBS

(b) Overall CPU time

 0

 50

 100

 150

 200

 250

5432

I/O
 C

os
t

ESC
DeltaSky

ABBS

(c) I/O cost

Fig. 6. Performance v.s. Dimensionality (P = 100k, fupdate = 10%)

v.s. the dimensionality ranging from d = 2 to 5, respectively. When d increases,
the performance of all methods is degraded because the exclusive data point
computations are complex and R-trees fail to filter out irrelevant data entries in
higher dimensions. From all the figures we can see that ESC outperforms ABBS
and DeltaSky in terms of the CPU time and I/O cost.

4.3 Cardinality

Figures 7(a) and (b) show the response and overall CPU time as a function of the
number of data points, respectively, and Figure 7 (c) illustrates the corresponding
I/O cost. Overall, the CPU overheads increase as a function of the number of data
points. ESC achieves a significant reduction in terms of the response CPU time
compared to ABBS and DeltaSky. ESC takes advantage of the pre-computed
S2 points retrieved by the latest S2Evaluation procedure and quickly locates
relevant new S1 candidates for substituting a removed or moving S1 point. As
we can see from the experimental results, the adoption of AEDR helps ESC to
achieve better overall CPU performance and competitive I/O cost with DeltaSky.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1000k500k100k

R
es

po
ns

e
C

P
U

 T
im

e
(s

ec
) ESC

DeltaSky
ABBS

(a) Response CPU time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1000k500k100k

O
ve

ra
ll

C
P

U
 T

im
e

(s
ec

)

ESC
DeltaSky

ABBS

(b) Overall CPU time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1000k500k100k

I/O
 C

os
t

ESC
DeltaSky

ABBS

(c) I/O cost

Fig. 7. Performance v.s. Cardinality (d = 5, fupdate = 10%)

5 Conclusions

In this paper, we propose an incremental skyline update approach. Our ESC
algorithm achieves a faster response time and better overall CPU performance.

432 Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku

With the adoption of the pre-computed S2 sets, ESC can efficiently update the
skyline query results and delegate the most complex computations to a separate
procedure that executes after the updates of the query results are completed.
An approximate exclusive data region (AEDR) is proposed and our experiments
confirm the feasibility of AEDR which has a low amortized cost of the exclu-
sive data evaluation in high dimensional and dynamic data environments. The
S1Evaluation procedure first examines all the incoming data requests and up-
dates the S1 result if necessary and the S2Evaluation procedure integrates our
lemmas and heuristics to achieve a low CPU overhead and reduced I/O cost.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proceedings
of the 17th International Conference on Data Engineering (ICDE), Heidelberg,
Germany, pp. 421–430 (2001)

2. Chan, C.Y., Eng, P.-K., Tan, K.-L.: Stratified computation of skylines with
partially-ordered domains. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA, pp. 203–214
(2005)

3. Gaede, V., Günther, O.: Multidimensional Access Methods. ACM Comput.
Surv. 30(2), 170–231 (1998)

4. Huang, Z., Lu, H., Ooi, B.C., Tung, A.K.H.: Continuous Skyline Queries for Moving
Objects. IEEE Trans. Knowl. Data Eng. 18(12), 1645–1658 (2006)

5. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Al-
gorithm for Skyline Queries. In: Proceedings of 28th International Conference on
Very Large Data Bases (VLDB), Hong Kong, China, pp. 275–286 (2002)

6. Lee, K.C.K., Zheng, B., Li, H., Lee, W.-C.: Approaching the Skyline in Z Order.
In: Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB), pp. 279–290. University of Vienna, Austria (2007)

7. S.I. Library, http://www.research.att.com/∼marioh/spatialindex/index.html
8. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the Sky: Efficient Skyline Compu-

tation over Sliding Windows. In: Proceedings of the 21st International Conference
on Data Engineering (ICDE), Tokyo, Japan, pp. 502–513 (2005)

9. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Representative
Skyline Operator. In: Proceedings of the 23rd International Conference on Data
Engineering (ICDE), Istanbul, Turkey, pp. 86–95 (2007)

10. McDonald, A.B.: A mobility-based framework for adaptive dynamic cluster-based
hybrid routing in wireless ad-hoc networks. Ph.D. Dissertation proposal, University
of Pittsburgh (1999)

11. Morse, M.D., Patel, J.M., Grosky, W.I.: Efficient Continuous Skyline Computation.
In: Proceedings of the 22nd International Conference on Data Engineering (ICDE),
Atlanta, GA, USA, p. 108 (2006)

12. Morse, M.D., Patel, J.M., Jagadish, H.V.: Efficient Skyline Computation over Low-
Cardinality Domains. In: Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB), pp. 267–278. University of Vienna, Austria (2007)

13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm
for Skyline Queries. In: Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, New York, NY, USA, pp. 467–478 (2003)

14. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in
Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

http://www.research.att.com/~marioh/spatialindex/index.html

Efficient Updates for Continuous Skyline Computations 433

15. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the Best Views of Skyline: A Semantic
Approach Based on Decisive Subspaces. In: Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB), Trondheim, Norway, pp. 253–264
(2005)

16. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Proceedings of the
32nd International Conference on Very Large Data Bases (VLDB), Seoul, Korea,
pp. 751–762 (2006)

17. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation.
In: Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB), pp. 301–310. Morgan Kaufmann Publishers, San Francisco (2001)

18. Tian, L., Wang, L., Zou, P., Jia, Y., Li, A.: Continuous Monitoring of Skyline Query
over Highly Dynamic Moving Objects. In: Sixth ACM International Workshop on
Data Engineering for Wireless and Mobile Access (MobiDE), Beijing, China, pp.
59–66 (2007)

19. Wu, P., Agrawal, D., Egecioglu, Ö., Abbadi, A.E.: Deltasky: Optimal Maintenance
of Skyline Deletions without Exclusive Dominance Region Generation. In: Pro-
ceedings of the 23rd International Conference on Data Engineering (ICDE), The
Marmara Hotel, Istanbul, Turkey, pp. 486–495 (2007)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 434 – 449, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Semantic Decision Tables: Self-organizing and
Reorganizable Decision Tables

Yan Tang1, Robert Meersman1, and Jan Vanthienen2

1 Semantic Technology and Application Research Laboratory (STARLab),
Department of Computer Science,

Vrije Universiteit Brussel, Pleinlaan 2 B-1050 Brussels, Belgium
{yan.tang,robert.meersman}@vub.ac.be

2 Katholieke Universiteit Leuven, Faculty of Business and Economics
Department of Decision Sciences and Information Management

Naamsestraat 69, 3000 LEUVEN Belgium
jan.vanthienen@econ.kuleuven.be

Abstract. A Semantic Decision Table (SDT) provides a means to capture and
examine decision makers’ concepts, as well as a tool for refining their decision
knowledge and facilitating knowledge sharing in a scalable manner. One chal-
lenge SDT faces is to organize decision resources represented in a tabular for-
mat based on the user’s needs at different levels. It is important to make it self
organized and automatically reorganized when the requirements are updated.
This paper describes the ongoing research on SDT and its tool that supports the
self organizations and automatic reorganization of decision tables. We argue
that simplicity, precision, and flexibility are the key issues to respond to the pa-
per challenge. We propose a novel combination of the principles of Decision
Support and Database Modeling, together with the modern technologies in On-
tology Engineering, in the adaptive self-organization and automatic reorganiza-
tion procedures (SOAR).

1 Introduction

Sharing decision resources efficiently is mandatory for group decision making. The
problems of ambiguity, inconsistency and scalability, which occur while drawing a
decision table amongst a decision group, are tackled by Semantic Decision Table
(SDT, [20]). SDT provides a means to capture and examine decision makers’
concepts, as well as a tool for refining their decision knowledge and facilitating
knowledge sharing in a scalable manner. An SDT is the result of annotating a set of
decision tables (or any well structured decision resources) with ontologies. It contains
richer decision rules than a mere decision table, as it specifies the hidden decision
rules and meta-decision rules of a decision table. We guide a decision group to con-
struct an SDT using an efficient stepwise methodology described in [19]. Note that
the term “decision table” used in this paper is a table that contains decision rules,
which can be an incomplete rule set.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 435

In our current research projects, such as the EC Prolix project1, SDT is used as a
tool embedded in decision processes of a system in order to improve its flexibility and
effectiveness, such as in [21]. An important feasibility provided by SDT is to visual-
ize the results in the form of decision tables when the decisions are taken in every mi-
cro process. Recently, we get increasing requirements of managing the decision tables
at a high level; enabling them self organized and automatically reorganized when the
user queries are updated. We consider this kind of decision tables as an extension to
SDT. It needs to automatically check the dependencies of different knowledge blocks,
quickly adapt to dynamic inputs, and accurately generate the decision tables. These
requirements become the challenges of this paper.

A traditional decision table takes the form of a ‘flat’ reasoning structure with three
basic constituents [3]. One constituent is the condition stubs and action stubs; the sec-
ond one holds the condition entries and the action entries; the third one includes the
decision rules, each of which corresponds to a combination of the elements in the
above two constituents. The only constituent type used for reasoning is the third one,
which is physically represented as the table columns.

SDT, in general, also contains these three constituent parts. In addition, SDT pro-
vides three types of sub-elements for reasoning: 1) the one that corresponds to the de-
pendencies between the conditions (or between the actions); 2) the hidden decision
rules, constraints or operational dependencies between the conditions and the actions;
and 3) the (possible) meta-rules of a set of decision tables.

The three extra elements of SDT are the key approaches to the paper challenges. In
this paper, we propose a novel combination of the principles of Decision Support and
Database Modeling, together with the modern technologies in Ontology Engineering,
in the procedures called SOAR. SOAR is the abbreviation of the collection of the
adaptive Self-Organization and Automatic Reorganization procedures for SDT. In this
paper, we propose to use the principles of data dependencies in Database Modeling to
constrain the output of SOAR, and thus improve its precision.

In our early paper [19], we are careful to stress that SDT, as a sort of group deci-
sion support system, has a natural connection with ontology engineering. Ontologies
[6, 7], in modern computer science realm, are used to model a domain so far as a uni-
verse of discourse. An ontology, by definition, is supposed to be consistent. Seeing
the reasoning feasibility provided by modern ontology engineering, we store the deci-
sion rules at different levels, including the meta-decision rules and other constraints,
as a set of axioms in an ontology. In this paper, SOAR contains the checksum of the
ontological constraints before generating the outputs. By doing so, we can ascertain
that its outputs are consistent. We argue that simplicity, precision, and flexibility are
the key issues to respond to the algorithm.

The approach of considering SDTs as self-organizing and reorganizable decision
tables is based on the characteristics of semantics stored in SDTs. SDT is defined as a
decision table with appropriate semantics, containing the constraints at different level,
as well as a system that supports data learning. The remainder of this paper is struc-
tured as follows. In section 2, we present a grounded understanding of Semantic

1 The objective of PROLIX is to align learning with business processes in order to enable or-

ganizations to faster improve the competencies of their employees according to continuous
changes of business requirements. URL: http://www.prolixproject.org/

436 Y. Tang, R. Meersman, and J. Vanthienen

Decision Tables (SDTs, section 2.1) and the paper motivation (section 2.2). We de-
sign the procedures in SOAR in section0. SOAR checks whether all the constraints
represented by an SDT are satisfied before the outputs are generated. It also provides
the outputs at different levels. Section 3.1 details the main constraints used for SDT.
An SDT tool called “SDT SOAR Plug-in” that supports SOAR is demonstrated in
section 3. We present our experimental analysis in section 4. We compare our work
with the existing technologies, and discuss both the advantages and disadvantages of
our work in section 5. Section 6 contains the paper conclusion and the future work.

2 Background

Based on the de-facto standard [3], there are three basic elements in a decision table:
the conditions, the actions (or decisions), and the rules that describe which actions
might be taken based on the combination of the conditions. A condition is described
by a condition stub and a condition entry. A condition stub contains a statement of a
condition. Each condition entry indicates the relationship between the various condi-
tions in the condition stub. An action (or decision) contains an action stub and an
action entry. Each action stub has a statement of what action to be taken. The action
entries specify whether (or in what order) the action is to be performed for the combi-
nation of the conditions that are actually met in the rule column.

Table 1. A simple example of a traditional decision table2, which is used to decide whether we
hire a driver or not

 1 2 3 …

Condition

Has driver’s license Yes Yes Yes …

Previous job Bus driver N/A N/A …

Language French, Dutch French English …

Action

Hire * …

Hire and train * …

Table 1 presents a part of a simple decision table with three conditions: “Driver’s li-
cense type”, “Previous job” and “Language”; and two actions: “Hire” and “Hire and
train”. The condition “Has driver’s license” has two condition entries - “Yes (the per-
son has a driver’s license)” and “No (the person doesn’t have a driver’s license)”. The
rule column with ID ‘1’ expresses a decision rule as “If one person has a driver’s li-
cense, his previous job is a bus driver and he speaks French and Dutch, then hire
him”.

2 A traditional decision table is often used as a complete set of decision rules in computer sci-

ence, e.g. decision tables as a programming tool [2]. Strictly speaking, if Table 1 only con-
tains three decision columns, it is not called a traditional decision table. Rather, it is a table
consists of three decision rules.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 437

2.1 SDT: Semantic Decision Table

The notion of Semantic Decision Table (SDT, [20]) was initially introduced to tackle
the following problems in a traditional decision table: 1) ambiguity in the information
representation of the condition stubs or action stubs, 2) conceptual duplication
amongst the conditions, 3) uncertainty in the condition entries, and 4) difficulties in
managing large tables (also known as the scalability problem). What makes an SDT
different from a traditional decision table is its semantics. Unlike traditional decision
tables, the concepts, variables and decision rules are explicitly defined.

An SDT is modeled in three-layer format: 1) the layer of the decision binary fact
types called SDT lexons, 2) the SDT commitment layer that contains the constraints
and axioms of these fact types; and 3) the layer of decision tasks or applications. The
three-layer format is designed based on the principles of Developing Ontology-
Grounded Methods and Applications approach to ontology engineering (DOGMA,
[17]), which has been the main research topic at the VUB STARLab over ten years.

An SDT lexon is a quintuple < γ , t1, r1, r2, t2>, where γ is a context identifier. γ

is assumed to point to a resource, and serves to disambiguate the terms t1, t2 into the
intended concepts. r1, r2, which are “meaningful” in this specific context γ , are the

roles referring to the relationships that the concepts share with respect to one another.
For example, a lexon <γ , driver, has, is issued to, driver’s license>3 explains a fact

that “a driver has a driver’s license”, and “a driver’s license is issued to a driver”. The
linguistic nature of a lexon represents that a fundamental DOGMA characteristic is its
grounding in the linguistic representation of knowledge. The community of decision
makers chooses (or has to agree on) a given (natural) language, e.g. English, to store
and present lexon terms and roles.

An SDT commitment corresponds to an explicit instance of an intentional interpre-
tation by a decision task. It contains a set of rules in a given syntax, and describes a
particular application view of reality, such as the use by the application of the (meta-)
lexons in the lexon base. The commitments need to be expressed in a commitment
language that can be easily interpreted. Suppose that the above lexon - <driver, has, is
issued to, driver’s license> - has the constraint as “EACH driver should have AT
LEAST ONE driver’s license”. We apply the mandatory constraint on the lexon writ-
ten as below:

P1 = [driver, has, is issued to, driver’s license]:
MAND (p1).4

(1)

The decision rules in a decision table can be equivalently mapped into a set of SDT
commitments. For example, the following commitment is the decision rule in
column 1 of Table 1.

In this use case, SDT is the result of annotating a decision table with ontologies.
The goal of using SDT is to tackle the problems, such as the ambiguity problem

3 In this paper, we do not focus on the discussion of the context identifier γ , which is omitted

in other lexons. E.g. <γ , driver, has, is issued to, driver’s license> is thus written as <driver,

has, is issued to, driver’s license>.
4 The syntax can be found at: http://www.starlab.vub.ac.be/website/SDT.commitment.example

438 Y. Tang, R. Meersman, and J. Vanthienen

(P2 = [Has driver’s license, has, is of, value],

 P3 = [Previous job, has, is of, value],

 P4 = [Language, has, is of, value],

 P5 = [action, is about, is a, Hire])

 : IMP5 (AND (P2 (value) = ‘Yes’, P3 (value) = ‘Bus
driver’, P4 (value) = ‘French, Dutch’), P5).

(2)

and the conceptual duplication problem, early discussed in this section. During the an
notation process, the decision makers need to specify all the hidden rules, such as
“EACH driver should have AT LEAST ONE driver’s license” shown above. Thus, an
SDT contains richer decision rules than a mere decision table.

There are many other interesting use cases of SDT. One of them is to embed SDT
in a process, separate decision rules from the process in order to improve the system
flexibility [21]. An important feasibility provided by SDT is to visualize the process
results in the form of decision tables when the decisions are taken in every micro
process. A detailed explanation is given in the next subsection.

2.2 A Use Case of SDT and Motivation

Suppose we have a training process in the domain of human resource management.
We want to train the employees from different companies, e.g. MIVB6. Firstly, we
collect the data of the employees from the company. The data can be personal infor-
mation or professional background, e.g. the name, the address and the driving skills.
Then, we decide which courses he should take. The decisions are drawn based on
many decision rules, which can be modeled and embedded in various approaches,
such as business process models7 (BPM, [16]).

This use case is a simplified one we encounter in the EC Prolix project. We are
motivated to use SDT because of its advantages. An SDT is a subtype of a decision
table. It has all the advantages of a decision table. E.g. a decision table is extremely
convenient and user-friendly for non-technical people. It can be easily imported to
their workbench, such as Excel8. An SDT is a decision table enhanced by semantics,
which makes it better than a mere decision table. As early discussed at the beginning
of section 2.1, SDT has many advantages over a decision table. For example, an SDT
doesn’t contain any ambiguities in the decision items, as they are properly annotated
with ontologies. We refer to [19, 20, 21] for more details.

In addition, we’re motivated to use SDT because of the feasibility of building
SDTs. We build an SDT with the method in [20], which requires domain ontologies.

5 IMP is the implication operator. AND is the conjunction operator. This SDT commitment is

verbalized as: IF the value of ‘Has driver’s license’ is ‘Yes’, AND the value of ‘Previous job’
is ‘Bus driver’, AND the value of ‘Language’ is ‘French, Dutch’, THEN the action is about
(to) ‘Hire’”.

6 It is a public transport company in Belgium. http://www.mivb.be
7 Nevertheless, the decision rules are separated from the processes.
8 Excel is part of the Microsoft® Work Suit, which are widely used by many enterprises. An Excel

file contains a spreadsheet, which is used to design informal decisions. http://office.microsoft.
com/en-us/excel/

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 439

In the Prolix project, one training center, such as GENO9 in the project, is respon-
sible for training the employees from many companies. Different companies can have
different database systems and applications; therefore, the domain ontologies are con-
structed to improve the interoperability. We can use the available ontologies to build
an SDT.

Recently, we get detailed requirements as follows:

• The first (and probably the most important) requirement is to automati-
cally check the constraints, quickly adapt to dynamic inputs, and accu-
rately (re-)generate the SDT. As soon as a user adds a new constraint, the
SDTs earlier generated should be rechecked.

• The second requirement is to present SDT at different levels when
needed. A user may have a question on a specific decision in an SDT. For
example, he wants the explanation of the first column in Table 1. He sees
the formal SDT commitments bundled with the SDT. Unfortunately, he is
not familiar with the syntax of the commitments. In a worse case, he even
didn’t contribute to the SDT commitment writing in the decision group. A
simple solution is to provide the verbalization of the SDT commitments in
a natural language. For example, “EACH driver should have AT LEAST
ONE driver’s license” is the verbalization of the commitment P1 =
[driver, has, is issued to, driver’s license]: MAND (p1). The user is happy
when there are only a few sentences. He gets nervous when he sees a big
bunch of text. Therefore, we need a better solution to categorize the in-
formation. In practice, we observe that SDTs are often layered. One deci-
sion rule presented in a SDT can be propagated in another SDT. It gives
us a hint to present SDT at different levels. Whenever a user wants to
know a specific detail level, the system needs to automatically generate
another SDT at required level.

The above requirements are the paper challenge and the main motivation: SDT needs
to be self organized and automatically reorganized when the user queries are updated.
We have been working on a tool called SDT Plug-in10 for more than two years. The
plug-in implements many user scenarios of SDT, such as the SDT annotation scenario
demonstrated in [20]. In this paper, we focus on the above requirements, design a col-
lection of the adaptive self organized and automatically reorganized procedures
(SOAR), which is introduced in section 3 and implemented in section 3.2.

3 SOAR

SOAR is a collection of the adaptive Self-Organization and Automatic Reorganization
procedures used for SDT. Fig. 1 shows the pseudo code for three main procedures.

 9 http://www.geno-stuttgart.de/
10 It is a Java plug-in used in the DOGMA Studio Workbench, which is an ontology engineer-

ing tool developed by VUB STARLab. It collects the implementations of all the researching
efforts at the lab, e.g. the implementation of the ontology creation methodologies, domain
ontology modeling and visualization. A detailed explanation of DOGMA Studio Workbench
and the plug-ins can be found at: http://www.starlab.vub.ac.be/website/tools.

440 Y. Tang, R. Meersman, and J. Vanthienen

Boolean consistent(DT, SDTC[],
ONT[][]){
for all constraints in ONT[]{

if(DT satisfies ONT[]){
for all constraints in SDTC[]{

 DT satisfies SDTC[];
return true;

 }
 }
 }else

return false;
}

(b) Pseudo code for the SDT consis-
tency checking

Generate_1(condition stub[], action
stub[], SQL query){
 load data from database based on SQL
query;
 generate key rows in decision table DT;
 complete DT;
 load ontology constraints set ONT[];
 load SDT commitments SDTC[];
while (consistent(DT, SDTC[], ONT[][])

 is false){
user edits SDTC[];
generate_1(condition stub[], action

stub[]);
 }
 generate SDT;
}

(a) Pseudo code for generating SDT from
the database and user defined table lay-
out

Generate_2 (action, column ID){
 load relevant ontological constraints
set ONT[];
 load relevant SDT commitment set
SDTC[] ;
while (SDT of next level exists){
visualize SDT of next level;
visualize ONT[];
generate the verbalization;

 }
}

(c) Pseudo code for generating SDT of all
levels

reorganize(SDT, commitment[]){
 load ontology constraints set ONT[];
for all constraints in commitment[]{

if (database is not consistent
with new

 constraint){
 propose to delete this con-

straint;
 user deletes the constraint;
 }

 }
while(consistent(SDT, commitment[],

ONT[][])
 is false){

delete inconsistent SDT column;
 }
 generate SDT;
}

(d) Pseudo code for reorganizing an
existing SDT when new commitments are
added

Fig. 1. Pseudo code for SOAR

We explain Fig. 1 as follows:

• The procedure generate_1 () is executed to generate SDT from the data
stored in the database. First, users need to provide condition stubs (e.g.
“Name” and “Has driver’s license” in Table 2) and action stubs (e.g. “Driv-
ing course type” and “Language course type” in Table 2) for the table layout,
which are the input of the procedure. Second, users need to provide at least
one key condition stub of the table. For example, “Personnel ID” is the key
condition stub in Table 2. Other data is automatically filled in Table 2 by
looking up in the database system. This process is based on the unique key
and the foreign keys in DB models. Third, users need to provide an SQL
query to select a few records from the database. In a big company, the data-
base can be rather big; therefore, we need the select query to ensure the size
of the generated SDT under control. For example, we select our data in de-
partment X for Table 2. Fourth, when a temporary generated SDT is incon-
sistent with the ontologies, users need to edit11 the SDT commitments, which
are often predefined and stored as a set of business rules.

11 Based on the requirement in practice, users are not allowed to change the ontologies, but they

can override the ontological constraints in the SDT commitments.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 441

Table 2. A decision table that decides which training courses are suitable for an employee in
department X

Fig. 2. Two SDTs that shows a decision rule at two different levels

• The procedure reorganize () is executed when a user adds new commitments
to an existing SDT. The system first checks the consistency of the existing
database with the commitment set. It proposes to the user to delete this con-
straint when there is a conflict. For example, if the user wants to add a com-
mitment as “each user has at least one previous relevant job”. The existing
database may not satisfy his mandatory constraint (see the “Language” data
that is automatically filled in the condition entries in Table 2). The solution
proposed in this procedure is to delete12 this constraint in the commitment
set. Then, the system checks the consistency of the commitment set with the
existing ontology. Users need to edit the commitment set when the conflicts
happen.

• The procedures generate_2 () is executed when a user wants to visualize a
decision rule of all levels. First, a user provides an action/decision stub in an
existing SDT, e.g. “Driving course type” in Table 2, and a column number of
an SDT, e.g. column “1” in Table 2. Then, the system loads all the relevant
SDT commitments and ontological constraints. An SDT commitment or an

12 In practice, it costs too much if users change the database system in a company just for one

SDT. Therefore, they are required to delete the constraint in SDT commitments when the
conflicts happen.

442 Y. Tang, R. Meersman, and J. Vanthienen

ontological constraint is relevant when it contains this action. Then, the sys-
tem finds a set of condition stubs needed by this action. It generates another
SDT by filling the actual data, which are retrieved from the database system,
in the conditions. This process is repeated until no more SDT can be gener-
ated (see two SDTs in Fig. 2). The SDT on the left side explains the decision
rule with column ID “1” in Table 2 (see the case of “Tom”). It shows all the
relevant conditions for “Driving course type D”, such as “(the ability to)
Read road sign”. The SDT on the right side (Fig. 2) shows a more general
decision rule about “Driving course type”. Relevant SDT commitments are
listed. In the meanwhile, necessary verbalizations of the SDT commitments
and ontological constraints are generated. For example, the SDT commit-
ment in Fig. 2 is verbalized as: the value of “Driving skill” is the total
number of “Read road sign (skill level)”, “Basic control (skill level)” and
“Manage vehicle distance (skill level)”; if the value of “Driving skill” is less
than or equal to 12, and it is larger than 8, then the value of “Driving course
type” is “D”.

All the procedures in SOAR contain the consistency checking. We have defined 22
SDT constraint types in 6 categories. In the next subsection, we explain how to check
the consistency of a few SDT constraints, which are mostly used in SOAR.

3.1 Constraints in Semantic Decision Tables

A traditional decision table takes the form of a ‘flat’ reasoning structure represented
by three basic constituents. The first one contains the stubs of conditions and ac-
tions/decisions (e.g. “Has driver’s license” is a condition stub in Table 2. “Driving
course type” is a decision stub); the second one holds the entries of the conditions and
actions/decisions (e.g. “Yes” is a condition entry for the condition “Has driver’s li-
cense” in Table 2. “D” is a decision entry for the decision “Driving course type”); the
third one includes the decision rules, each of which corresponds to a combination of
the elements in the above two constituents. The only constituent used for reasoning is
the third one, which is physically represented as the table columns (e.g. column 1 in
Table 2).

SDT, in general, also contains these three constituent types. In addition, SDT pro-
vides three sub-element types for reasoning13:

1) The one that corresponds to the dependencies between the conditions (or
between the actions). For example, the condition of “Experience (years)”
partly depends on the condition “Previous relevant job” in Table 2.

2) The one that represents the hidden decision rules, constraints or opera-
tional dependencies between the conditions and the actions. For
example, the rule “if a person is about to be retired, then he doesn’t need
to be trained” can be specified for Table 2.

3) The (possible) meta-rules of a set of decision tables. For instance, we can
specify a meta-rule for Table 2 as “if a column doesn’t contain any deci-
sions, then the table should not contain this column14”.

13 Note that all the constraints used for reasoning are stored as SDT commitments.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 443

The three extra elements of SDT contain the main constraints in SOAR. The SDT
constraints mostly used in SOAR are the constraints of dependencies, such as subset
dependencies, and logical operators, such as implication.

As discussed in [13], dependencies in the most general sense are constrained rela-
tions in database modeling. Among all kinds of dependencies, multivalued dependen-
cies, subset dependencies, and mutual dependencies are the mostly used. Based on the
work in [8, 13], we carefully bring the database modeling principles into the ontology
engineering and decision engineering. We mainly use multivalued dependencies,
equality, subset, exclusion, mandatory, uniqueness and value constraints in [8].

The types of constraints depend on the requirements in practice. According to Hal-
pin, the total number of constraint types, in theory, is infinite [8]. Including ORM, the
various constraints among data have been extensively studied in the literature
[1, 5, 8]. The specification illustrated in this section can be further translated into first-
order-logic. The translation is useful for reasoning.

With regard to SOAR, it takes the knowledge of data in the database into account.
Every record has its meaning. In other words, data has its semantics. It recalls the de-
bates on whether separate data from knowledge or not, which has been carried on for
a long time, e.g. in [14]. We argue that every data has its semantics. It is comparable
to the fact that the content in a webpage has its meaning in the context of Semantic
Web. By doing so, our approach can benefit from the modern technologies of seman-
tics and ontologies. A drawback can be the difficulties at the implementation level.

By now, we have designed the self-organizing and reorganizing procedures and
explained main constraints used in SOAR. In the next subsection, a tool that supports
SOAR will be demonstrated.

3.2 SDT SOAR: A Tool to Support Self-organizing and Reorganizable Decision
 Tables

SOAR (Fig. 1) is developed as SDT SOAR Plug-in in DOGMA Studio Workbench
1.015. The Workbench is constructed according to the plug-in architecture in Eclipse16.
There, plug-ins, being loosely coupled ontology viewing, querying or editing modules
support the different ontology engineering activities and new plug-ins continuously
emerge. MySQL Server17 is used as the database management system to store the em-
ployee information.

There are five main views in the SDT SOAR Plug-in as indicated in Fig. 3. The top
view is the SDT tabular view. The bottom view in the left corner represents a tree

14 It is not necessary to delete such columns in many cases. Otherwise, the debate on the com-

pleteness of decision table may arise. However, we put this meta-rule here, because our in-
tension is to use it as an example to demonstrate the meta-rules of a decision table.

15 DOGMA Studio is a tool suite, which contains both a Workbench and a Server, to sup-
port DOGMA ontology engineering approaches. http://www.starlab.vub.ac.be/website/
dogmastudio

16 Eclipse is an open development platform, which supports Java language (http://java.sun.com/). It
is mainly used for enterprise development, embedded device development, rich client plat-
form, application frameworks and language IDE. http://www.eclipse.org/

17 MySQL is a multithreaded, multi-user SQL database management system (DBMS). http://www.
mysql.com/

444 Y. Tang, R. Meersman, and J. Vanthienen

Fig. 3. SDT SOAR Plug-in screenshot

view of the domain ontologies, e.g. the ontology of HRM of drivers, with which the
SDT is built. The bottom view in middle is the concept definitions categorized in
glosses. The concept definition view gives the definitions when a concept in the on-
tology tree is selected (see ‘Basic_Control’ in Fig. 3).The bottom views in the right
corner are the views of formal SDT commitments and SDT commitments in pseudo
natural language. Users can add a new commitment and visualize its verbalization.
For example, the window with the title “View SDT Commitment” in Fig. 3 shows a
new rule “if the age of an employee is more than 55, then he doesn’t need to take any
courses”. SDT-SOAR will automatically check and regenerate the SDTs at different
levels, such as shown in Fig. 2, when the new rule is added.

In this section, we focus on how the procedures in SOAR are designed and imple-
mented. In the next section, we present experimental analysis of SOAR.

4 Experimental Analysis

We have conducted several experimentations to evaluate SOAR.
The experimental setup is as follows: We use Intel(R) Pentium(R) processor

1500MHZ with 2 GB memory running Microsoft Windows XP professional version
2002 with Service Pack 2. We implement SDT-SOAR using JRE 1.6.0_02. The em-
ployee information is stored in MySQL Sever of version 5.2.

Fig. 4 shows the cost in milliseconds for generating SDTs from the local database.
We increase the SDT size by adding its decision columns. In our problem settings,
every decision column in an SDT corresponds to an employee. The more employees
are selected from the local database, the bigger the resulting SDT becomes. The

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 445

Fig. 4. Cost of generating SDTs from local DB

Fig. 5. Cost of regenerating and reorganizing SDTs

generated SDTs are stored as XML files (see the table on the right hand in Fig. 4).
The minimum size of the XML file is 18.6 KB (SOAR 2008-03-05 16-16-36.xml),
which is generated in 4005 milliseconds. The maximum XML file size is 180 KB
(SOAR 2008-03-05 16-57-57.xml) generated in 29533 milliseconds. It increases line-
arly when the SDT sizes up gradually.

Fig. 5 illustrates the cost in milliseconds while regenerating and reorganizing
SDTs. Once a user introduces a new commitment, such as shown in the figure, SDT
SOAR checks the consistency in an SDT. The inconsistent decision columns are re-
moved. The cost shown in Fig. 5 has is an irregular line, which means that the cost of
regenerating and reorganizing an SDT does not depend on the size of the original
SDT.

446 Y. Tang, R. Meersman, and J. Vanthienen

5 Related Work and Discussion

In the past, decision tables mainly used for computer programming can be found in
many literatures, such as [4, 12, 18]. The application area of decision tables have been
gradually moved from computer programming to many other domains during the last
50 years. A renewed research interest of decision tables focuses on the construction of
the table itself [22]. As Vanthienen indicated, the application field of decision tables
is enlarged into knowledge engineering, especially in the contexts of verification and
validation of knowledge based systems, efficient execution of knowledge based sys-
tems, knowledge base maintenance, knowledge acquisition and knowledge discovery.

The approach of this paper is in the application area of knowledge validation and
knowledge discovery. We focus on the discussion of the self organization and auto-
matic reorganization of Semantic Decision Tables (SDTs). A similar solution is
SORCER introduced in [10]. SORCER is a learning system that induces second-order
decision tables from a given data set. Each entry (a condition entry or a decision en-
try) of a first-order decision table corresponds to a single value; while each entry of a
second-order decision table is a value set. The authors in [10] tend to enhance com-
prehensibility of a decision tables by transforming a first-order decision table into a
second-order decision table. By doing so, they can also reduce the table size without
losing the decision rules. Our approach goes further than their work. We call both a
first-order decision table and a second-order decision table as ‘traditional’ decision
tables. For example in Fig. 2, the table on the left hand is a first-order decision table
and the table on the right hand is a second-order table. The work in [10] is restricted
to the transformation of these two kinds of tables. We provide a more generic trans-
formation algorithm described in the SOAR procedures. Moreover, the work in [10]
only uses the ‘if-then-else’ deduction rules for the transformation. We use various
constraints, such as the mandatory constraint, the subset constraint and the exclusion
constraint18, for the transformation. Similar debates can be applied to the approaches
that are similar to SORCER, such as [9, 11].

Another interesting approach similar to ours is using decision tables in a decision
table based development framework of decision support system [22, 23]. Decision ta-
bles are automatically created data patterns. We share the same comprehension of that
fact that the decision logics behind a decision table are the key issues in the automatic
decision table generation. The methods in [22, 23] use various classification
techniques while generating the decision tables. For instance, classical neural net-
works, machine learning and classification tree algorithm. The generating rules of an
applied domain are keyword (or label) based. Therefore, the resulting decision tables
are not always accurate. In this paper, the semantics of SDT are from both the deci-
sion logics and the constraints in the domain ontologies. An ontology, by definition,
deals with the concepts and their relations in a domain instead of the keywords. It has
been proven that an ontology-based system can dramatically increase the accuracy of
a process result, e.g. key words searching versus ontology-based searching [15].
Therefore, we argue that SOAR procedures in this paper, which are ontology based,
can increase the accuracy of the generated decision tables.

18 Note that those constraints are not used at the level of database but at the level of the decision

table.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 447

Comparing to all the research efforts of the related work listed above, SDT has
many basic yet important characteristics provided by modern ontology engineering.
An SDT is the result of annotating (a set of) decision table(s) with a domain ontology.
It can be stored in computers (e.g. the SDT xml files shown in Fig. 4) and is explicit,
sharable, formal and conceptual. Comparing to a traditional decision table, an SDT
contains richer decision rules. All the verification and validation rules of a decision
table are specified in the form of ontological commitments of SDTs. Based on the
constraints in the SDT commitments, SOAR ensures the precision of the resulting re-
organized SDTs.

In this paper, we use SDTs to learn rules from data and match new rules with exist-
ing data. Another simple yet important understanding of SDTs is as follows. An SDT
can also be considered as a decision table with appropriate semantics in order to de-
fine the decision logic in a modeling setting. In this case, we don’t need to involve the
database or actual case as we do in this paper.

A disadvantage of SDT might be its dependency on the availability of the domain
ontology. According to our experience, to create an ontology costs a lot of time. For
example, we used to spend six man months to create a HRM (Human Resource Man-
agement) ontology based on O*NET19 in PoCehrMOM Project20. Therefore, SDT is
feasible when one of the following conditions is satisfied: 1) there exist domain on-
tologies; 2) there exists formal knowledge documentations, which can be easily con-
verted into an ontology; 3) the domain is rather small.

6 Conclusion and Future Work

In this paper, we focus on the discussion of Semantic Decision Tables (SDTs) as self-
organizing and reorganizable decision tables. SOAR is developed as a collection of
the adaptive Self-Organization and Automatic Reorganization procedures used for
SDT. SOAR is precise, simple and flexible. While reorganizing an SDT, SOAR con-
tains the consistency checking based on the constraints in the SDT commitments. We
introduce 7 constraints and 4 logical operators mainly used in formal SDT
commitments. SOAR ensures the precision of the process of self-organization and re-
organization by always satisfying these constraints. In our current projects (e.g. the
EC Prolix project), we observe that it’s rather easy to implement SOAR because the
algorithm used in the SOAR procedures is rather simple (see the pseudo code in
Fig. 1). The reasoning logics of SDTs are often layered. For example, the SDT on the
right hand in Fig. 2 explains the SDT on the left hand in Fig. 2. The latter SDT repre-
sents part of the reasoning logics of Table 2. By using SOAR, end users can visualize
SDTs at different levels. We call it visualization flexibility.

SOAR is implemented as a tool called SDT-SOAR. We have conducted several ex-
periments to evaluate SDT-SOAR. The cost of generating an SDT from local database

19 O*NET provides a full-access, online version of the occupational network database.

http://online.onetcenter.org/
20 PoCehrMOM Project (Project omtrent Competenties en functies in e-HRM voor technologische

toepassingen op het Semantisch Web door Ontologie en Meertalige terminologie). The project is
to use ontologies to enhance human resource management. http://cvc.ehb.be/PoCeHRMOM/
Frameset.htm

448 Y. Tang, R. Meersman, and J. Vanthienen

server increases linearly when the size of the SDT grows. The cost of regenerating
and reorganizing an SDT does not depend on the size of the original SDT.

Currently, the tool SDT-SOAR only supports a few constraints, such as the value
constraint. In the future, we will implement all constraints discussed in the paper. One
of our recent ongoing researches focuses on using RuleML21 to store and interchange
the SDT commitments. Later on, we will add a new SDT-SOAR function, which
reads RuleML as the input and generates SDTs as the output.

Acknowledgments. The research is partly supported by the EC Prolix project. It is
authors’ pleasure to thank all the STARLab members for the paper discussion.

References

1. Camps Paré, R.: From Ternary Relationship to Relational Tables: A Case against. Com-
mon Beliefs, SIGMOD Record 31(20) (2002)

2. Cavouras, J.C.: On the Conversion of Programs to Decision Tables: Method and Objec-
tives. Commun. ACM 17(8), 456–462 (1974)

3. CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
4. Geesink, L.H., van Dijk, J.E.M.: The construction of decision tables in PROLOG. Ange-

wandte Informatik archive 30(7), 294–301 (1988)
5. Goelman, D., Song, I.-Y.: Entity-Relationship Modeling Re-revisited. In: Atzeni, P., Chu,

W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 43–54. Springer,
Heidelberg (2004)

6. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Shar-
ing. In: Workshop on Formal Ontology, Padva, Italy; In book Formal Ontology in Concep-
tual Analysis and Knowledge Representation. Kluwer Academic Publishers (1993)

7. Guarino, N., Poli, R.: Formal Ontology in Conceptual Analysis and Knowledge Represen-
tation. Special issue of the International Journal of Human and Computer Studies 43(5/6)
(1995)

8. Halpin, T.: Information Modeling and Relational Database: from Conceptual Analysis to
Logical Design. Morgan-Kaufmann, San Francisco (2001)

9. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases. In:
Proc. of the 21st international conference on very large databases (VLDB 1995), Zurich,
Switzerland, pp. 420–431. Morgan Kaufman, San Francisco (1995)

10. Hewett, R., Leuchner, J.H.: The Power of Second-Order Decision Tables. In: Proc. of the
Second SIAM International Conference on Data Mining, Arlington, VA, USA. SDM 2002,
April 11-13, 2002. SIAM, Philadelphia (2002)

11. Kohavi, R.: The Power of Decision Tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995.
LNCS(LNAI), vol. 912, pp. 174–189. Springer, Heidelberg (1995)

12. Langenwalter, D.F.: Decision tables - an effective programming tool. In: Proc. of the first
SIGMINI symposium on Small systems, pp. 77–85. ACM, New York (1978)

21 The Rule Markup Language (RuleML) is a markup language developed to store rules in

XML. The Rule Markup Initiative has taken steps towards defining a shared Rule Markup
Language (RuleML), permitting both forward (bottom-up) and backward (top-down) rules in
for deduction, rewriting, and further inferential-transformational tasks. http://www.ruleml.
org/

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 449

13. Sadri, F., Ullman, J.D.: Template dependencies: a large class of dependencies in Relational
Databases and its complete approximatization. Journal of the ACM (JACM) 29(2), 363–
372 (1982)

14. Sheth, A.: Data Semantics: What, Where and How? Database Applications Semantics. In:
Proc. of the Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), Stone
Mountain, Atlanta, Georgia, USA, Chapman & Hall, Boca Raton (1996)

15. Sheth, A.P., Ramakrishnan, C.: Semantic (Web) Technology In Action: Ontology Driven
Information Systems for Search, Integration and Analysis. IEEE Data Engineering Bulle-
tin, IEEE Data Engineering 26(4), 40–48 (2003)

16. Smith, H., Fingar, P.: Business Process Management: The Third Wave, 1st edn. Meghan-
Kiffer, USA (2002)

17. Spyns, P., Meersman, R., Jarrar, M.: Data Modeling versus Ontology Engineering.
SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4), 12–17
(2002)

18. Sterbenz, R.F.: Tabsol decision table preprocessor. ACM SIGPLAN Notices archive 6(8)
(September 1971); special issue on decision tables, pp. 33 – 40, B.F. Goodrich Chemical
Company, Cleveland, Ohio. ACM, New York (ISSN:0362-1340)

19. Tang, Y.: On Conducting a Decision Group to Construct Semantic Decision Tables. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp.
534–543. Springer, Heidelberg (2007)

20. Tang, Y., Meersman, R.: On constructing semantic decision tables. In: Wagner, R., Revell,
N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 34–44. Springer, Heidelberg
(2007)

21. Tang, Y., Meersman, R.: Organizing Meaning Evolution Supporting Systems Using Se-
mantic Decision Tables. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 272–284. Springer, Heidelberg (2007)

22. Vanthienen, J.: Ruling the business: about Business Rules, Decision Tables and Intelligent
Agents. In: Vandenbulcke, J., Snoeck, M. (eds.) New directions in Software Engineering,
pp. 103–120, 160. Leuven University Press, Leuven (2001)

23. Wets, G., Vanthienen, J., Mues, C., Timmermans, H.: Extracting complete and consistent
knowledge patterns from data. In: van Harmelen, F. (ed.) Proc. of Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning: V&V Workshop,
Trento, Italy (1998) ISSN 1613-0073

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 450 – 464, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Translating SQL Applications to the Semantic Web

Syed Hamid Tirmizi, Juan Sequeda, and Daniel Miranker

Department of Computer Sciences, The University of Texas at Austin, USA
{hamid,jsequeda,miranker}@cs.utexas.edu

Abstract. The content of most Web pages is dynamically derived from an un-
derlying relational database. Thus, the success of the Semantic Web hinges on
enabling access to relational databases and their content by semantic methods.
We define a system for automatic transformation of SQL DDL schemas into
OWL DL ontologies. This system goes further than earlier efforts in that the en-
tire system is expressed in first-order logic. We leverage the formal approach to
show the system is complete with respect to a space of the possible relations
that can be formed among relational tables as a consequence of primary and
foreign key combinations. The full set of transformation rules is stratified, thus
the system can be executed directly by a Datalog interpreter.

1 Introduction

It has been estimated that Internet accessible databases contain up to 500 times more
data compared to the static Web and that three-quarters of these databases are man-
aged by relational database management systems [HeP07]. Thus, enabling the integra-
tion of relational databases and their content with the Semantic Web is critical to the
Semantic Web’s success.

The Semantic Web provides an ontology-based framework for integration, search
and sharing of data drawn from diverse sources. Broadly stated, there are two archi-
tectural approaches to integrating databases with the Semantic Web. The more com-
monly researched approach is the development of wrapper systems that map a
relational database schema to an existing domain ontology [AnB05, Bar04, Che06,
Lab05, Lab06, Rod06]. To date there has been little work automating the creation of
such wrappers. Thus, wrapper systems appear to be a labor-intensive solution.

The second approach, which is the subject of the work in this paper, concerns the
automatic transformation of database content and/or schema to a Semantic Web repre-
sentation, i.e. RDF and OWL [Biz03, LiD05, Ast07]. In this approach it is assumed that
the data model entails a logical model of the application domain, and by syntactically
analyzing the model’s physical encoding in SQL Data Description Language (DDL) the
logical model may be recovered. While many legacy databases were defined using strict
relational syntax and semantics, and thus may encode modest application domain se-
mantics, the current SQL standard coupled with modern software design methodology
enables rich expression of domain semantics; albeit not in a form readily accessible to
automated inference mechanism [Seq07]. In addition to foreign key constraints, SQL
DDL supports a variety of constraints on the range of values allowed in a table.
Building on related work we define a system for automatic transformation of relational

 Translating SQL Applications to the Semantic Web 451

databases into OWL-DL ontologies. Two critical elements distinguish our transforma-
tion system from past efforts. First, the entire system is defined in first order logic
(FOL) eliminating syntactic and semantic ambiguities in our rules. Much of the related
work is expository in nature, at times influenced by domain specific examples and/or
specifying the resulting rules in English prose. Often the influence of examples from a
particular domain can result in incorrect rules. Second, we present a notion of complete-
ness of our system in terms of a space of all possible relations describable by SQL DDL
considering the interactions of primary and foreign keys in relations. We have parti-
tioned the space of relations and have covered the transformation of each partition with
sets of rules applicable to that partition.

Further, we observe that the FOL expression of our transformation system is strati-
fied. Thus, in addition to implementation in Prolog environments, the system may in-
tegrate with databases supporting Datalog interpreters.

2 Related Work

A number of researchers have made inroads on this problem and serve as a foundation
for our work [Sto02, LiD05, Ast07].

Stojanovic et al. [Sto02] provide rules for translation of relational schemas to
Frame Logic and RDF Schema. This work formally defines rules for identification of
classes and properties in relational schemas. It does not have the capability of captur-
ing richer semantics that cannot be expressed in RDF Schema.

Li et al. [LiD05] propose a set of rules for automatically learning an OWL ontol-
ogy from a relational schema. They define the rules using a combination of some for-
mal notation and English language. Our analysis shows that some of their rules miss
some semantics offered by the relational schema and some rules produce specific re-
sults for inheritance and object properties that may not accurately depict concepts
across domains or database modeling choices. We believe these shortcomings are due
to lack of a formal system and thorough examination of examples capturing a variety
of modeling choices in various domains.

Astrova et al. [Ast07] provide expository rules and examples to describe a system
for automatic transformation of a relational schema to OWL Full. When it was pub-
lished this work was the most comprehensive. Since the rules were not formally de-
fined, a number of transformations are ambiguous.

In addition to the lack of correctness due to informal specification of rules, these
systems do not provide any notion of completeness of their rules. By completeness we
mean consideration of all possible database key structures that may encode an onto-
logical relationship. We present the results of a construction that enumerates such
key structures and document that our transformation system is complete and unambi-
guous. In the rest of the paper, first we present the disparities between relational
databases and ontologies. Then we systematically present how relational database
schemas can be transformed into OWL ontologies. First, with the help of an example,
we show how a domain expert can translate a relational schema in SQL DDL into an
OWL ontology. Then, we present our assumptions and transformation rules, and

452 S.H. Tirmizi, J. Sequeda, and D. Miranker

explain them using the same example. We also provide a comparison of human and
automatically generated ontologies and relate the differences using our discussion on
disparities as a basis.

3 Extracting Knowledge from a Relational Schema

Consider a relational database for a university and its definition (see Table 1).
The Person table contains data about all the people, some of them may be students

and present in Student table, and some may be professors and present in Professor ta-
ble. The Dept table lists the departments in the university where each department has
a unique name, and the Course table lists the courses for every department. The Se-
mester table contains a list of semesters which have a year and one of the three sea-
sons, Spring, Summer or Fall, associated with them. A course could be offered in a
particular semester with a particular professor, and recorded in Offer table. Two of-
fered courses could be co-offered, and recorded as a self-relation in the Offer table. A
student could study an offered course, which is recorded in Study table. Also, a stu-
dent could be registered in a semester with or without taking a course, and this infor-
mation is recorded in the Reg table.

Table 1. Schema of a University Database

University Database Schema
create table PERSON { ID integer primary key, NAME varchar not null }
create table STUDENT { ROLLNO integer primary key, DEGREE varchar,
 ID integer unique not null foreign key references PERSON(ID) }
create table PROFESSOR { ID integer primary key, TITLE varchar,
 constraint PERSON_FK foreign key (ID) references PERSON(ID) }
create table DEPT { CODE varchar primary key,
 NAME varchar unique not null }
create table SEMESTER { SNO integer primary key, YEAR date not null,
 SESSION varchar check in (‘SPRING’, ‘SUMMER’, ‘FALL’) }
create table COURSE { CNO integer primary key, TITLE varchar,
 CODE varchar not null foreign key references DEPT(CODE) }
create table OFFER { ONO integer primary key,
 CNO integer foreign key references COURSE(CNO),
 SNO integer foreign key references SEMESTER(SNO),
 PID integer foreign key references PROFESSOR(ID),
 CONO integer foreign key references OFFER(ONO) }
create table STUDY { ONO integer foreign key references OFFER(ONO),
 RNO integer foreign key references STUDENT(ROLLNO),
 GRADE varchar, constraint STUDY_PK primary key (ONO, RNO) }
create table REG { SID integer foreign key references STUDENT(ID),
 SNO integer foreign key references SEMESTER(SNO),
 constraint REG_PK primary key (SID, SNO) }

For a domain expert, it is easy to recognize the concepts in this database structure,
and to identify the semantics of their properties and different kinds of relationships
that exist between these concepts. Table 2 shows an ontology corresponding to the
given schema, developed by a domain expert.

 Translating SQL Applications to the Semantic Web 453

Table 2. Parts of an ontology corresponding to the schema in Table 1, developed by a domain
expert. The ontology is presented in OWL Abstract Syntax. The highlighted sections in the
table are later compared with an automated output.

Domain Expert’s Ontology
Ontology(<urn:sql2owl>
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>))
 ObjectProperty(<REG_I> inverseOf(<REG>))
 ObjectProperty(<OFFER.CONO> Transitive Symmetric
 domain(<OFFER>) range(<OFFER>))...
 DatatypeProperty(<COURSE.CNO> Functional
 domain(<COURSE>) range(xsd:integer))
 DatatypeProperty(<SEMESTER.YEAR> Functional
 domain(<SEMESTER>) range(xsd:date))
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>)
 range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string))...
 Class(<PERSON> partial ...)
 Class(<PROFESSOR> partial <PERSON> ...)
 Class(<STUDENT> partial <PERSON>
 restriction(<STUDY.RNO_I> minCardinality(0)) ...)
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1))
 restriction(<COURSE.CNO> cardinality(1)) ...) ...)

4 Disparities between Relational Databases and Ontologies

While relational databases are capable of efficiently managing large amounts of struc-
tured data, ontologies are very useful for knowledge representation. Since these two
data models are aimed towards different requirements specified by their domains, it is
reasonable to expect some disparities among them in terms of capabilities.

To define a relational database to ontology transformation system, it is important to
understand the mismatches between the two data models, and to make educated
choices when confronted with such problems. Here we discuss some key issues – in-
heritance modeling, property characteristics and open/closed world assumptions – that
affect a transformation system.

4.1 Inheritance Modeling

Relational databases do not express inheritance. However, inheritance hierarchies can
be modeled in a variety of ways in relational schemas. Also, some modeling choices are
harder to identify automatically. Given a foreign key definition between two entities, we
would like to know whether a subclass relationship exists between the entities involved.
If such patterns exist, we can map them to subclass relationships in the ontology.

The following list presents possible foreign key patterns to model inheritance:

• Foreign key is also the primary key: The Professor-Person relationship in our uni-
versity schema is an example. This pattern uniquely identifies inheritance. An ex-
ception to this would be vertical partitioning of tables, but since we assume 3NF
databases for our system, this case can be transformed to inheritance.

• Foreign key and primary key are disjoint: The Student-Person relationship in our
university schema is an example. However, the Course-Dept relationship modeled

454 S.H. Tirmizi, J. Sequeda, and D. Miranker

in the same schema is a counterexample. In fact, this pattern is the most common
one used for expressing one-to-many relationships.

• Foreign key is a subset of the primary key: This is also not a good candidate for
automatic translation to an inheritance hierarchy in the ontology. Many counterex-
amples for this pattern can be presented, particularly the ones for modeling ‘part-
of’ relationships between entities.

4.2 Characteristics of Relationships

While relational schemas can capture some cardinality constraints on relationships be-
tween entities by defining constraints on foreign keys, they lack the expressive power
to define relationships with interesting logical characteristics, like symmetry and tran-
sitivity etc. On the other hand, expressing such characteristics of relationships is natu-
ral to ontology languages like OWL, which are based on some form of logic.

For example, the self-relation on the Offer entity, that represents co-location of
an offered course with another offered course, is symmetric and transitive. While
these characteristics are obvious to a domain expert, the relationship is expressed
like any other self-relationship in the relational schema, which may not have the
same characteristics. Consider the example: Employee(ID,Name,MgrID), where ID
is the primary key, and MgrID is a foreign key to the Employee table itself refer-
encing manager’s ID. This relationship is clearly not symmetric, and may or may
not be transitive.

The example clearly shows that it is hard to identify logical characteristics of rela-
tionships in a relational schema without using the domain knowledge. Therefore, our
rules do not capture these characteristics automatically.

4.3 The Effect of Open/Closed World Assumptions

Relational databases usually operate under the closed world (CW) assumption. This
means that whatever is not in the database is considered false. On the other hand,
knowledge bases operate in open world (OW) where whatever is not in the knowledge
base is considered unknown. This assumption is natural for knowledge bases that of-
ten contain incomplete knowledge, and grow incrementally.

Therefore, the concept of a constraint has very different meanings in the two
worlds [Mot07]. In a database setting, a constraint is mainly used for validation. In
contrast, in an ontology, a constraint expresses some characteristics of classes or rela-
tionships but does not prevent assertion of any facts. In addition, some assertions may
even result in unintuitive inferences.

When developing an ontology based on a relational schema, it is very important to
keep these differences in mind. The question whether the open world should be closed
or not depends upon the domain and application requirements. In our system, we pro-
duce an ontology with open world assumption. If needed, one way to close the world
will be to assert that all inferred classes are pair-wise disjoint.

 Translating SQL Applications to the Semantic Web 455

5 Translating SQL to Semantic Web

In this section, we explain the transformation of a relational schema to an ontology.
First we present our assumptions and explain the rationale behind them. Then, we list
the predicates and functions we have defined to express transformation rules in first
order logic. In the next section, we explain the transformations for data types, classes,
properties and inheritance, and provide mapping tables or first order logic rules to
formally define the transformations.

5.1 Assumptions

In order to translate a relational schema into an ontology, we make the following
assumptions:
• The relational schema, in its most accurate form, is available in SQL DDL. Data-

bases evolve due to changing application requirements. Such modifications are of-
ten reflected solely in the physical model, usually expressed in SQL DDL, making
it the most accurate source for the structure of the database.

• The relational schema is normalized, at least up to third normal form. While all
databases might not be well normalized, it is possible to automate the process of
finding functional dependencies within data and to algorithmically transform a re-
lational schema to third normal form [DuW99, Wan00].

5.2 Predicates and Functions

We have defined a number of predicates and functions to aid the process of defining
transformation rules in first order logic.

There are two sets of predicates in our system. RDB predicates test whether an ar-
gument (or a set of arguments) matches a construct in the domain of relational data-
bases. Such predicates are listed below:

Rel(r) r is a relation; e.g. Rel(PERSON) holds, Rel(ID) does not
Attr(x,r) x is an attribute in relation r; e.g. Attr(ID,PERSON) holds
NN(x,r) x is an attribute (or a set of attributes) in relation r with NOT

NULL constraint(s); e.g. NN(NAME,PERSON) holds
Unq(x,r) x is an attribute (or a set of attributes) in relation r with UNIQUE

constraint; e.g. Unq({NAME},DEPT) holds
Chk(x,r) x is an attribute in relation r with enumerated list (CHECK IN)

constraint; e.g. Chk(SESSION,SEMESTER) holds
PK(x,r) x is the (single or composite) primary key of relation r; e.g.

PK({ONO,RNO},STUDY) holds; Also: PK(x,r) Unq(x,r) NN(x,r)
FK(x,r,y,s) x is a (single or composite) foreign key in relation r and references

y in relation s; e.g. FK({ID},STUDENT,{ID},PERSON) holds
NonFK(x,r) x is an attribute in relation r that does not participate in any foreign

key; e.g. NonFK(NAME,DEPT) holds
On the other hand, ontology predicates test whether an argument (or a set of argu-
ments) matches a construct that can be represented in an OWL ontology. These predi-
cates are:

456 S.H. Tirmizi, J. Sequeda, and D. Miranker

Class(m) m is a class
ObjP(p,d,r) p is an object property with domain d and range r
DTP(p,d,r) p is an data type property with domain d and range r
Inv(p,q) when p and q are object properties, p is an inverse of q
FP(p) p is a functional property
IFP(p) p is an inverse functional property
Crd(p,m,v) the (max and min) cardinality of property p for class m is v
MinC(p,m,v) the min cardinality of property p for class m is v
MaxC(p,m,v) the max cardinality of property p for class m is v
Subclass(m,n) m is a subclass of class n

The constructs represented by ontology predicates are described as they appear in the
rules mentioned in the upcoming sections of this paper.

We have also defined the following functions:

fkey(x,r,s) takes a set of attributes x, relations r and s, and returns the foreign
key defined on attributes x in r referencing s

type(x) maps an attribute x to its suitable OWL recommended data type (we
discuss data types in more detail in a later section)

list(x) maps an attribute x to a list of allowed values; applicable only to at-
tributes with a CHECK IN constraint, i.e. Chk(x) is true

In addition to the predicates and functions listed above, we describe the concept of a
binary relation, written BinRel, as a relation that only contains two (single or compos-
ite) foreign keys that reference other relations. Such tables are used to resolve many-
to-many relationships between entities. Using RDB predicates, we formally define
BinRel as follows:

Rule Set 1:

BinRel(r,s,t)
Rel(r) FK(q,r,_,t) FK(p,r,_,s) p q Attr(y,r) ¬NonFK(y,r)
FK(z,r,_,u) fkey(z,r,u) {fkey(p,r,s),fkey(q,r,t)}

This rule states that a binary relation r between two relations s and t exists if r is a re-
lation that has foreign keys to s and t, and r has no other foreign keys or attributes
(each attribute in the relation belongs to one of the two foreign keys). Note that there
is no condition that requires s and t to be different, allowing binary relations that have
their domain equal to their range.

5.3 Transformation Rules and Examples

In this section we present rules and examples for transformation of a relational data-
base to OWL ontology.

Producing Unique Identifiers (URIs) and Labels
Before we discuss the transformation rules, it is important to understand how we can
produce identifiers and names for classes and properties that form the ontology.

The concept of globally unique identifiers is fundamental to OWL ontologies. Each
class or property in the ontology must have a unique identifier, or URI. While it is
possible to use the names from the relational schema to label the concepts in the on-
tology, it is necessary to resolve any duplications, either by producing URIs based on

 Translating SQL Applications to the Semantic Web 457

fully qualified names of schema elements, or by producing them randomly. In addi-
tion, for human readability, RDFS labels should be produced for each ontology ele-
ment containing names of corresponding relational schema elements. Due to lack of
space, we have not used fully qualified names in our examples. When needed, we ap-
pend a name with an integer to make it unique, e.g. ID1, ID2 etc.

Transformation of Data Types
Transformations from relational schemas to ontologies require preserving data type
information along with the other semantic information. OWL (and RDF) specifica-
tions recommend the use of a subset of XML Schema types [XMLSch] in Semantic
Web ontologies [OWLRef, RDFSem].

In Table 3 we present a list of commonly used SQL data types along with their cor-
responding XML Schema types. During transformation of data type properties, the
SQL data types are transformed into the corresponding XML Schema types.

Table 3. Common SQL types and corresponding XML Schema types recommended for OWL

SQL Data Type XML Schema Type SQL Data Type XML Schema Type

INTEGER xsd:integer VARCHAR xsd:string
FLOAT xsd:float DATE xsd:date

BOOLEAN xsd:boolean TIMESTAMP xsd:dateTime

Identifying Classes
According to OWL Language Guide [OWLGde], “the most basic concepts in a do-
main should correspond to classes …”. Therefore we would expect basic entities in
the data model to translate into OWL classes.

Given the definition of a binary relation, it is quite straightforward to identify
OWL classes from a relational schema. Any relation that is not a binary relation can
be mapped to a class in an OWL ontology, as stated in the rule below.

Rule Set 2:
Class(r) Rel(r) ¬BinRel(r,_,_)

Remember that a binary relation has exactly two foreign keys and no other attributes
(see Rule Set 1). Keeping that in mind, we can see that this very simple rule covers a
number of cases for identifying classes:

• All tables that do not have foreign keys should be transformed to classes. There-
fore, we conclude Class(PERSON), i.e. Person should be mapped to a class since it
has no foreign key. The same reasoning holds for the Dept and Semester tables.

• All tables with one foreign key can be mapped to classes since they cannot be bi-
nary relations. Hence Student, Professor and Course should be mapped to classes.

• Tables with more than two foreign keys should be transformed to classes as well.
Such tables may represent an entity or an N-ary relationship between entities. For-
tunately, in OWL, both the cases can be modeled the same way, i.e. by translating
the entity or the N-ary relationship into a class [Noy06]. From our example, Offer
represents an N-ary relationship, and modeled as a class using the given rule.

458 S.H. Tirmizi, J. Sequeda, and D. Miranker

• For tables containing exactly two foreign keys, presence of independent attributes
qualifies them to be translated to classes. The table Study, with an independent at-
tribute Grade, is an example, and is translated to an OWL class.

Thus Rule Set 2 identifies the OWL classes from the database schema. For example:
Class(PERSON), Class(STUDENT), Class(DEPT), Class(STUDY), Class(OFFER)

Identifying Object Properties
An object property is a relation between instances of two classes in a particular direc-
tion. In practice, it is often useful to define object properties in both directions, creat-
ing a pair of object properties that are inverses of each other. OWL provides us the
means to mark properties as inverses of each other. In our work, when we translate
something to an object property, say ObjP(r,s,t), it implicitly means we have created
an inverse of that property, which we write as ObjP(r’,t,s).

There are two ways of extracting OWL object properties from a relational schema.
One of the ways is through identification of binary relations, which represent many-
to-many relationships. The following rule identifies an object property using a binary
relation.

Rule Set 3:
ObjP(r,s,t) BinRel(r,s,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

This rule states that a binary relation r between two relations s and t, neither being a
binary relation, can be translated into an OWL object property with domain s and
range t. Notice that the rule implies Class(s) and Class(t) hold true, so the domain and
range of the object property can be expressed in terms of corresponding OWL classes.

From our university database schema, the Reg table fits the condition. Reg is a bi-
nary relation between Student and Semester entities, which are not binary relations.
Therefore, ObjP(REG,STUDENT,SEMESTER) holds, and since we can create in-
verses, ObjP(REG’,SEMESTER,STUDENT) and Inv(REG,REG’) also hold true.

Foreign key references between tables that are not binary relations represent one-
to-one and one-to-many relationships between entities. A pair of object properties that
are inverses of each other and have a maximum cardinality of 1 can represent one-to-
one relationships. Also, one-to-many relationships can be mapped to an object prop-
erty with maximum cardinality of 1, and an inverse of that object property with no
maximum cardinality restrictions.

In OWL, a property with min cardinality of 0 and max cardinality of 1 is called
functional which we represent by the functor FP. If an object property is functional,
then its inverse is inverse functional, represented by the functor IFP. In addition to
specifying cardinality restrictions on properties in general, we can also specify such
restrictions when a property is applied over a particular domain. In our rules, we use
ontology predicates Crd, MinC and MaxC to specify these restrictions. The examples
following the rules explain the use of these predicates.

The following rule set identifies object properties and their characteristics using
foreign key references (not involving binary relations, covered in Rule Set 3) with
various combinations of uniqueness and null restrictions. To simplify the rules, we
first define a predicate NonBinFK that represents foreign keys not in or referencing
binary relations and then express the rules in terms of this predicate.

 Translating SQL Applications to the Semantic Web 459

Rule Set 4:
NonBinFK(x,s,y,t) FK(x,s,y,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

a.
ObjP(x,s,t), FP(x),

MinC(x’,t,0)
NonBinFK(x,s,y,t) ¬NN(x) ¬Unq(x)

b.
ObP(x,s,t), FP(x),

Crd(x,s,1), MinC(x’,t,0)
NonBinFK(x,s,y,t) NN(x) ¬Unq(x)

c. ObjP(x,s,t), FP(x), FP(x’) NonBinFK(x,s,y,t) ¬NN(x) Unq(x)

d.
ObjP(x,s,t), FP(x),
Crd(x,s,1), FP(x’)

NonBinFK(x,s,t) NN(x) Unq(x) ¬PK(x,s)

Each rule in Rule Set 4 states that a foreign key represents an object property from the
entity containing the foreign key (domain) to the referenced entity (range). Since a
foreign key references at most one record (instance) of the range, the object property
is functional. This entails that the inverse of that object property is inverse functional.
An example is the foreign key from Study to Student which gives us:
ObjP(RNO,STUDY,STUDENT), FP(RNO), Inv(RNO’,RNO), IFP(RNO’).

Rules 4a and 4b represent variations of one-to-many relationships.

• We can apply a stronger restriction on cardinality of the object property if the for-
eign key is constrained as NOT NULL. Without this constraint (rule 4a), the mini-
mum cardinality is 0, which is covered by functional property predicate. With this
constraint (rule 4b), we can set the maximum and minimum cardinality to 1.

• According to these rules, we can infer only the minimum cardinality restriction of
0 on the inverse property. Since an instance in the range could be referenced by
any number of instances in the domain, we cannot apply a maximum cardinality
restriction on the inverse property.

The other two rules, 4c and 4d, represent one-to-one relationships, modeled by apply-
ing a uniqueness constraint on the foreign key. It means that an instance in the range
can relate to at most one object in the domain, making the inverse property functional
too. This also means that the original object property is inverse functional as well.

The difference between rules 4c and 4d is that of a NOT NULL constraint that, like
one-to-many relationships mentioned above, if present, gives us a stronger cardinality
restriction on the object property represented by the foreign key.

Notice that none of the rules allow the foreign key to be the same as the primary
key of the domain relation. Rule 4d restricts this by providing an extra condition,
whereas the negation of uniqueness or NOT NULL constraints in rules 4a-c, by defi-
nition, implies this condition.

Examples of object properties and their characteristics obtained from the relational
schema by applying Rule Sets 3 and 4 are:

ObjP(REG,STUDENT,SEMESTER), ObjP(REG’,SEMESTER,STUDENT), Inv(REG,REG’)
ObjP(RNO,STUDY,STUDENT), FP(RNO), IFP(RNO’), MinC(RNO’,STUDENT,0)
ObjP(ID1,STUDENT,PERSON), FP(ID1), FP(ID1’), Crd(ID1,STUDENT,1)

Identifying Data Type Properties
Data type properties are relations between instances of classes with RDF literals and
XML Schema data types. Like object properties, data type properties can also be

460 S.H. Tirmizi, J. Sequeda, and D. Miranker

functional, and can be specified with cardinality restrictions. However, unlike object
properties, OWL DL does not allow them or their inverses to be inverse functional.

Attributes of relations in a database schema can be mapped to data type properties
in the corresponding OWL ontology. Rule Set 5 identifies data type properties.

Rule Set 5:
a. DTP(x,r,type(x)), FP(x) NonFK(x,r)

b. DTP(x,r,type(x)), FP(x), Crd(x,r,1) NonFK(x,r) NN(x,r)

c. DTP(x,r,type(x) list(x)), FP(x) NonFK(x,r) Chk(x,r)
Rule Set 5 says that attributes that do not contribute towards foreign keys can be mapped
to data type properties with range equal to their mapped OWL type. Since each record
can have at most one value per attribute, each data type property can be marked as a
functional property. When an attribute has a NOT NULL constraint, rule 5b allows us to
put an additional cardinality restriction on the property. Rule 5c allows us to infer
stronger range restrictions on attributes with enumerated list (CHECK IN) constraints.

Table 4. Parts of an ontology corresponding to the University Database, produced automatically
using our transformation rules. The output format is OWL Abstract Syntax. The underlined parts
highlight the differences compared to the human-developed ontology shown in Table 2.

Automatically Produced Ontology
Ontology(<urn:sql2owl>
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>))
 ObjectProperty(<REG_I> inverseOf(<REG>))
 ObjectProperty(<OFFER.CONO> Functional
 domain(<OFFER>) range(<OFFER>))
 ObjectProperty(<OFFER.CONO_I> InverseFunctional
 inverseOf(<OFFER.CONO>))
 ObjectProperty(<STUDENT.ID> Functional InverseFunctional
 domain(<STUDENT>) range(<PERSON>))
 DatatypeProperty(<COURSE.CNO> Functional
 domain(<COURSE>) range(xsd:integer))
 DatatypeProperty(<SEMESTER.YEAR> Functional
 domain(<SEMESTER>) range(xsd:date))
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>)
 range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string)) ...
 Class(<PERSON> partial ...)
 Class(<PROFESSOR> partial <PERSON> ...)
 Class(<STUDENT> partial restriction(<STUDENT.ID> cardinality(1))
 restriction(<STUDY.RNO_I> minCardinality(0)) ...)
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1))
 restriction(<COURSE.CNO> cardinality(1)) ...) ...)

In some cases, it may be possible to apply more than one rule to an attribute. In such
cases, all possible rules should be applied to extract more semantics out of the rela-
tional schema. Some data type properties extracted from our sample university data-
base schema are:

DTP(ID1,PERSON,xsd:integer), FP(ID1), Crd(ID1,PERSON,1)
DTP(SESSION,SEMESTER,xsd:string∩{SPRING,SUMMER,FALL}), FP(SESSION)
DTP(NAME1,PERSON,xsd:string), FP(NAME1), Crd(NAME1,PERSON,1)

 Translating SQL Applications to the Semantic Web 461

Identifying Inheritance
Inheritance allows us to form new classes using already defined classes. It relates a
more specific class to a more general one using subclass relationships [OWLGde].

Inheritance relationships between entities in a relational schema can be modeled in
a variety of ways. Since most of these models are not limited to expressing inheri-
tance alone, it is hard to identify subclass relationships.

The following rule describes a special case that can be used only for inheritance
modeling in a normalized database design.

Rule Set 6:
Subclass(r,s) ← Rel(r)∧Rel(s)∧PK(x,r)∧FK(x,r,_,s)

This rule states that an entity represented by a relation r is a subclass of an entity rep-
resented by relation s, if the primary key of r is a foreign key to s. In our sample uni-
versity schema, we can clearly identify that Subclass(PROFESSOR,PERSON) holds.

As a result of applying our rules on the given relational schema, we get the ontol-
ogy shown in Table 4

A comparison of the ontologies produced by the domain expert (Table 2) with the
one produced automatically using our rules (Table 4) shows a number of differences.
For example, our rules are unable to capture the subclass relationship of Student with
Person, or the symmetric and transitive characteristics of the co-location relationship
among Offer instances. These examples clearly show that automatic translation of a
relational schema to an ontology has some limitations, and that these limitations are
inline with the disparities we have identified earlier.

5.4 Implementation

The FOL expression of our transformation system is stratified enabling direct integra-
tion of the transformation system with databases supporting Datalog interpreters.
Theorem: The transformation system defined by the union of rules in rule sets 1
through 6 is stratified.

The proof is left to the reader. Hint: The predicates BinRel and NonBinFK are the
only predicates that appear in both the head and body of a rule.

6 Completeness of Transformation

A notion of completeness of a SQL DDL to ontology transformation is that the rules
of the transformation system cover the entire range of possible relations that can be
described in a SQL schema. The interaction of the foreign keys with primary keys
provides clues about the kinds of relationships that exist between the entities, e.g.
one-to-one, one-to-many etc.

Theorem: The space of relations describable in SQL DDL using various combina-
tions of primary key and foreign key references between the relations can be parti-
tioned into 10 disjoint cases of key combinations. Our transformation system covers
the entire space of relations.

The formal proof is beyond the space limits of this paper. The proof involves a syn-
tactic enumeration of the cases and a closure operation over the space of relations.
Fig. 1 provides a useful summary of the theorem and its proof.

462 S.H. Tirmizi, J. Sequeda, and D. Miranker

(Rule sets 2, 5)

Space of
relations

0 FKs

FK=PK

FK PK

i FKi=PK

¬(i FKi=PK)

i FKi=PK

FKi FKj=PK (i j)

Otherwise

Has non-FK attrs

All attrs in FKs

All attrs in FKs

Has non-FK attrs

1 FK

2 FKs

>2 FKs

(Rule sets 2, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 6)

(Rule set 3)

(Rule sets 2, 4)

(Rule sets 2, 4, 5)

(Rule sets 2, 4)

Fig. 1. The tree describes the complete space of relations when all possible combinations of
primary and foreign keys are considered. For each branch, applicable rules are listed.

Briefly, we first partition the space by examining the number of foreign keys that a
relation contains. All relations without any foreign keys can be easily translated into
classes in an ontology. Similarly, relations with more than two foreign keys usually
represent N-ary relationships, and the rules for N-ary relationships are applicable to
them. The cases for one or two foreign keys are more interesting and give rise to more
possibilities like binary relations, inheritance or new classes. However, for each pos-
sible branch, we have carefully defined sets of rules for producing ontology classes
and properties.

7 Discussion

SQL DDL is a standard for representing the physical schema of applications that use
relational databases. Although SQL DDL it is not a knowledge representation lan-
guage, it is capable of capturing some semantics of the application domain. We have
defined a system for automatic transformation of normalized SQL DDL schemas into
OWL DL ontologies. We have defined our entire set of transformation rules in first
order logic eliminating syntactic and semantic ambiguities and allowing for easy im-
plementation of the system in languages like Datalog.

Once an ontology is defined for a domain represented by a relational schema, the
actual database content can be easily translated into a corresponding RDF representa-
tion. We have also ensured compatibility with description logics based OWL DL,
which is essential to assuring decidability for reasoning represented by the relational
model.

We have demonstrated that an automatic transformation system has its deficiencies
when it comes to identifying inheritance and other rich semantic elements. Although
it is easy to generate specific examples of relational encodings of inheritance, there is

 Translating SQL Applications to the Semantic Web 463

neither a unique encoding, nor an encoding whose syntax, without further qualifica-
tion, can be strictly interpreted as inheritance. Thus, transformation systems that cre-
ate inheritance relationships will incorrectly produce too many, or too few. Thus,
there may always be an opportunity for human judgment to fill in gap between the
expressive power of SQL DDL and OWL.

Independent of the issues that arise from the differences in expressive power, a fair
criticism of the automated transformation approach, in general, is that the scope of
success may be highly dependent on the amount of domain semantics captured in
SQL DDL, which in turn correlates to the age of the database application and the so-
phistication of its developers. However, if the success of an application of an
automated transformation is limited, it is still possible to add missing semantics using
the techniques being developed in wrapper-based approaches. Such semi-automated
systems have been explored in the context of strict relational data integration [BaM07,
Mil00]. Further, functioning relational database applications are prone to schema
modification. One can envision a system where an automated transformation boot-
straps a more powerful wrapper system. In the advent of database schema evolution a
combined system may be able to reason about and propagate the changes.

References

[AnB05] An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings be-
tween Relational Tables and Ontologies from Simple Correspondences. In: Pro-
ceedings of On The Move to Meaningful Internet Systems (2005)

[Ast07] Astrova, I., Korda, N., Kalja, A.: Rule-Based Transformation of SQL Relational
Databases to OWL Ontologies. In: Proceedings of the 2nd International Confer-
ence on Metadata & Semantics Research (October 2007)

[Bar04] Barrasa, J., Corcho, O.: R2O, an Extensible and Semantically Based Database-to-
Ontology Mapping Language. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.)
SWDB 2004. LNCS, vol. 3372, Springer, Heidelberg (2005)

[BaM07] Barbançon, F., Miranker, D.P.: SPHINX: Schema integration by example. Journal
of Intelligent Information Systems (in press, available on-line SpringerLink)

[Biz03] Bizer, C.: D2R MAP - A Database to RDF Mapping Language. In: Proceedings of
the Twelfth International World Wide Web Conference (WWW) (2003)

[Che06] Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., et al.: Towards a Se-
mantic Web of Relational Databases: a Practical Semantic Toolkit and an In-Use
Case from Traditional Chinese Medicine. In: Proc. of the 5th International Seman-
tic Web Conference (2006)

[DuW99] Du, H., Wery, L.: Micro: A normalization tool for relational database engineers.
Journal of Network and Computer Applications 22(4), 215–232 (1999)

[HeP07] He, B., Patel, M., Zhang, Z., Chang, K.C.: Accessing the deep web. Communica-
tions of the ACM 50(5), 94–101 (2007)

[Hor03] Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: Proceedings of the 2nd International Semantic Web Conference
(2003)

[Lab05] de Laborda, C.P., Conrad, S.: Relational. OWL: a data and schema representation
format based on OWL. In: Proceedings of the 2nd Asia-Pacific Conference on
Conceptual Modeling, vol. 43, pp. 89–96 (2005)

464 S.H. Tirmizi, J. Sequeda, and D. Miranker

[Lab06] de Laborda, C.P., Conrad, S.: Database to Semantic Web Mapping using RDF
Query Languages. In: 25th International Conference on Conceptual Modeling
(November 2006)

[LiD05] Li, M., Du, X., Wang, S.: Learning ontology from relational database. In: Proceed-
ings of the Fourth International Conference on Machine Learning and Cybernetics
(2005)

[Mil00] Miller, R., Haas, L.L., Hernández, M.: Schema mapping as query discovery. In:
Proceedings of the VLDB Conference (2000)

[Mot07] Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: Proceedings of the 16th International Conference on World Wide
Web (2007)

[Noy06] Noy, N., Rector, A. (eds.): Defining N-ary Relations on the Semantic Web. W3C
Working Group Note (11/14/2007), http://www.w3.org/TR/2006/
NOTE-swbp-n-aryRelations-20060412/

[OWLGde] Smith, M.K., Welty, C., McGuinness, D.L. (eds.): OWL Web Ontology Language
Guide. W3C Recommendation /REC-owl-guide-20040210/> (11/15/2007) (2004),
http://www.w3.org/TR/

[OWLRef] Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C
Recommendation (11/14/2007), http://www.w3.org/TR/2004/REC-
owl-ref-20040210/

[RDFSem] Hayes, P. (ed.): RDF Semantics. W3C Recommendation (11/26/2007),
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[Rod06] Rodriguez, J.B., Gomez-Perez, A.: Upgrading relational legacy data to the seman-
tic web. In: Proceedings of the 15th international Conference on World Wide Web
(2006)

[Seq07] Sequeda, J.F., Tirmizi, S.H., Miranker, D.P.: SQL Databases are a Moving Target.
In: Position Paper for W3C Workshop on RDF Access to Relational Databases
(October 2007)

[Sto02] Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive web sites into the
semantic web. In: Proceedings of the ACM Symposium on Applied Computing
(2002)

[Wan00] Wang, S., Shen, J., Hong, T.: Mining fuzzy functional dependencies from quantita-
tive data. In: IEEE International Conference on Systems, Man and Cybernetics
(October 2000)

[XMLSch] Biron, P.V., Permanente, K., Malhotra, A. (eds.): XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation (11/26/2007), http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 465 – 478, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Agent Framework Based on Signal Concepts for
Highlighting the Image Semantic Content

Mohammed Belkhatir

Center for Multimedia Computing, Communications & Applications,
Monash University, Sunway Campus

Belkhatir.mohammed@infotech.monash.edu

Abstract. This paper addresses the image semantic gap (i.e. the difficulty to
automatically characterize the image semantic content through extracted low-
level signal features) by investigating the formation of semantic concepts (such
as mountains, sky, grass...) in a population of image agents: abstract structures
representing the image visual entities. Through the development of processes
mapping extracted low-level features to concept-based visual information, our
contribution is twofold. First, we propose a learning framework mapping signal
(color, texture) and semantic concepts to highlight the image agents. Contrary
to traditional architectures considering high-dimensional spaces of low-level
extracted signal features, this framework addresses the curse of dimensional-
ity. Then, at the image agent population level, the agents communicate about
the perceived semantic concepts with no access to global information or to the
representations of other agents, they only exchange conceptual information.
While doing so they adapt their internal representations to be more successful at
conveying the perceived semantic information in future interactions. The image
content is therefore soundly inferred through these concept-based linguistic
interactions.

The SIR1_Agent prototype implements our theoretical framework and its ar-
chitecture revolves around functional modules enabling the characterization of
concept-based linguistic structures, highlighting the image agents and enforcing
interactions and coordination between them.

Index Terms: Semantic-based Image Indexing & Retrieval, Multi-Agent
Systems.

1 Introduction

In order to address the impossibility of the content-based image indexing and retrieval
systems to characterize the image semantics (also called semantic gap [14]) two classes
of automatic semantic extraction architectures have been prevalent in the literature.

The first, dealing with image categorization, operate at the global image level
[3,6,13,15]. In [13], several experimental studies lead to the specification of 20 se-
mantic categories or image scenes describing the image content at a global level (such

1 Signal/Semantic integration for Image Retrieval.

466 M. Belkhatir

as group of people, cityscapes and landscapes…). Each of these categories is then
linked to several low-level features gathered within the complete feature set. The
most recent automatic annotation models at the image global level are based on statis-
tical approaches [3,6,15]. Blei and Jordan [3] extend Dirichlet’s latent allocation
model and propose a correlation model linking words and images. The latter is based
on the hypothesis that a Dirichlet distribution can be used to generate a combination
of latent factors (more than 200) which are then used to generate words and image
regions. This parametric model is based on the Expectation-Maximization algorithm
to estimate these latent factors. A model which has shown interesting performance
improvements [6] is based on a doubly non-parametric approach, for which the prob-
abilities are generated from each element of a training set. These models learn the
joint probability of associating words to image features and use it to generate the
probability of associating a word to a given query image. In [15], the image indexing
approach is guided by the dependencies between annotating words represented by the
hierarchy derived from a textual ontology. While the models above predict the prob-
ability of an annotating word given an image, one is interested in generating the set of
all index words characterizing the image visual entities. Therefore, a second class of
architectures, operating at the visual entity level, have been proposed in [4,10,16].

One of the early solutions presented a probabilistic framework based on estimating
class likelihoods of local areas, labeled as either man-made vs. natural or inside vs.
outside objects [4]. In [16], training sample regions of images are categorized into
eleven clusters through a neural network mapping (e.g. tree, fur, sand…). To alleviate
the restrained cardinality of the proposed previous sets of visual clusters, a richer in-
dex vocabulary consisting of 26 image labels called Visual Keywords (such as sky,
people, water…) is specified in [10]. However, this solution relies on a query-by-
example solution for querying and no language allowing the manipulation of the ex-
tracted semantics has been proposed. The main disadvantage of this second class of
frameworks relies on the specification of restrained and fixed sets of semantic classes.
Regarding the fact that several artificial objects have high degrees of variability with
respect to signal properties such as color and texture variations, an interesting solution
is to extend the extracted visual semantics with signal characterizations in order to
enrich the image index vocabulary.

Accordingly, a new generation of systems integrating semantics and signal descrip-
tions has emerged, which are based on a loosely-coupled association of textual anno-
tations with a relevance feedback (RF) framework operating on low-level signal
features [18].

The contribution of this paper is in the domain of automatic image semantic index-
ing through the specification of:

1. processes establishing a correspondence between extracted low-level features
 and concept-based visual (color, texture and spatial) information,

2. a learning framework based on support vector machines highlighting image agents,
abstract structures representing visual entities within an image document.

3. an architecture enabling interactions and coordination between these agents in
order to highlight the semantic content.

Let us note that at the core of our proposal is the notion of image agents (IAs)
since their specification is an attempt to operate beyond simple low-level processes

 An Agent Framework Based on Signal Concepts 467

[14] or semantic-based architectures considering the image global level [3,6,13,15].
Their interactions and coordination is indeed fundamental to highlight the semantic
content at the visual entity level.

In the remainder, we deal in section 2 with the characterization of the concept-
based signal structures. Section 3 details the learning framework highlighting image
agents. Section 4 presents the architecture enabling interactions and coordination be-
tween these agents and section 5 covers our experimental instantiation.

2 From Low-Level Signal Features to Conceptual Description

2.1 Color Characterization

Our symbolic representation of color information is guided by the research carried out
in color naming and categorization. Under the impulsion of Berlin and Kay, works
have revolved around stressing a step of correspondence between color stimuli and
‘basic color terms’ [1] which they characterize by the following properties: their ap-
plication is not restricted to a given object class, i.e. the color characterized by the
term “olive color” is not valid; they cannot be interpreted conjointly with object parts,
i.e. “the maple leaf color” is not a valid color; their interpretation does not overlap
with the interpretation of other color terms and finally they are psychologically mean-
ingful. Further works proposed in [8] consist of an experimental validation of the ‘ba-
sic color term’ notion in the HVC perceptive color space. The latter belongs to the
category of user-oriented color spaces (as opposed to material-oriented spaces such as
RGB), i.e. spaces which define color as being perceived by a human through tonality
(describing the color wavelength), saturation (characterizing the quantity of white
light in the color spectral composition) and brightness (related to color intensity).
Given a series of perceptive evaluations and observations, eleven color concepts
(black, blue, cyan, green, grey, orange, purple, red, skin, white, yellow) are high-
lighted, each described by tonality, brightness and saturation values.

Characterizing the aforementioned symbolic color concepts involves algorithmi-
cally transforming the extracted low-level features specified in the RGB space (pri-
mary step for low-level color extraction) to tonality, brightness and saturation values
in the perceptually uniform HVC space. We detail this process in section 5.1.

2.2 Texture Characterization

The study of texture in computer vision has lead to the development of several com-
putational models for texture analysis used in several content-based image retrieval
architectures [9]. However, these texture extraction frameworks mostly fail to capture
aspects related to human perception. Therefore, we propose a solution specifying a
computational framework for texture extraction which is the closest approximation of
the human visual system. The action of the visual cortex, where an object is decom-
posed into several primitives by the filtering of cortical neurons sensitive to several
frequencies and orientations of the stimuli, is simulated by a bank of Gabor filters.

Although several works have proposed the identification of low-level features and
the development of algorithms and techniques for texture computation, few attempts
have been made to propose an ontology for texture symbolic characterization and

468 M. Belkhatir

naming. In [2], a texture lexicon consisting of eleven high-level texture categories is
proposed as a basis for symbolic texture classification. In each of these categories, a
texture concept which best describes the nature of the characterized texture is pro-
posed. We consider the following texture concepts as the representation of each of
these categories: bumpy, cracked, disordered, interlaced, lined, marbled, netlike,
smeared, spotted, uniform and whirly. We discuss the automatic mapping between the
extracted low-level texture features and these concepts in section 5.1.

3 A Learning Framework Highlighting Multimedia Agents

Our architecture operating at the image agent level is characterized by a learning
framework which maps signal color and texture concepts to semantic concepts.

It first tackles the issue related to the use of segmentation algorithms which
strongly affect the performance of the indexing processes and are moreover ill-suited
for processing image corpus of important sizes (>10K) due to their computational cost
by considering a compact grid-based index representation.

It then deals with the curse of dimensionality which affects non-parametric models
(such as density estimation kernels [3,6]) through the dimensionality reduction of the
signal feature representation spaces. Indeed, since low-level signal features used in
automatic indexing frameworks are of high dimensionality (typically in the order of
102

 to 103) and data in high-dimension spaces are sparse, it is necessary to gather
enough observations to make sure that the estimation is viable and therefore the
convergence rate is low. Consequently, it is crucial to consider the dimensionality
reduction of the signal feature representation spaces. Moreover, contrary to the state-
of-the-art approaches for dimensionality reduction (such as PCS, MDS, SVD…)
which are opaque (i.e. they operate dimensionality reduction of input spaces without
making it possible to understand the signification of elements in the reduced feature
space), our framework will itself be based on a transparent readable characterization.
We propose to reduce the dimensionality of input signal features by taking into ac-
count a symbolic signal representation.

We consider a set SC of semantic concepts csem[1]… csem[nsem] and a knowledge base
K consisting of annotated training objects (i.e. they correspond to a unique semantic con-
cept with probability 1). Let an object o within this set, it is represented by a set of rec-
tangular image regions rma={r1,…, rn} and is indexed by a semantic concept csem[i], sets
of color {cCol_1, …, cCol_j} and texture {ctex_1, …, ctex_k} concepts (where j,k≤11)

3.1 Formal Model

In order to highlight image agents and their associated semantic concepts, we consider
applying on a new image (i.e. not indexed) a rectangular grid defining the {r1, …, ri…}
image regions.

In order to determine which semantic concept is associated with a given image re-
gion, we have a set of points {x1, …, xi…} in an n-dimensional input space Sn of sig-
nal color and texture concepts (here n=22), a set of labels {y1, …, yi…} such that the
yi value equals 1 if xi corresponds to semantic concept csem[i] and -1 otherwise. The
goal is to determine a function f: SN { ± 1} which associates each point with its

 An Agent Framework Based on Signal Concepts 469

corresponding label. This function shall provide good results on the training set and
be capable of generalizing on images which are not semantically indexed. For this, we
consider support vector machines which, for separable problems, are based on algo-
rithms highlighting the unique optimal hyperplane discriminating the data among the
class of hyperplanes. This approach is easily extended to non-linearly separable prob-
lems. The learning process consists in maximizing a function which considers the
distance between each training data and class borders. The optimal position of a class
border is obtained as a linear combination of training data within the border neighbor-
hood: they are called support vectors. The latter play a crucial role in the learning
process. In the case of non-linearly separable problems, projection kernels are used
and support vector machines are then based on the resolution of the following optimi-

zation problem:
φ,,

min
bw 2

1
wTw + C ∑

=

l

i 1
φ I subject to yi (w

T ψ (xi) + b) ≥ 1-φ i and φ i ≥ 0.

Here, training vector xi is set in correspondence in a space of higher dimension
(sometimes infinite) through the function ψ . Support vector machines then determine

a separating linear hyperplane in this space. K(xi,xj)=ψ (xi)
Tψ (xj) is the projection

kernel and C the penalty parameter of the error term. Among the possible kernels
(linear, polynomial, radial basis function, sigmoid…), we choose the radial basis
function: K(xi,xj) = exp(- γ ||xi-xj||

2), γ > 0 where γ is a kernel parameter. It is tradi-

tionally used in the case of non-linearity between the class labels and the input attrib-
utes. It holds several advantages with respect to other kernels, in particular it requires
fine-tuning less hyper-parameters and its computational complexity is reduced.

Support vector machines in their initial formulation are destined to discrimination
problems involving two classes. We adopt a particular learning strategy to solve our
multi-class problem called “one-against-rest” where a classifier is highlighted for
each of the semantic concepts to optimize inter-class separation. However, this ap-
proach results in the specification of classifiers which generate a binary output. We
would like to associate a confidence value for the proposed classification. For this, we
consider the problematic of probabilistic estimation for these classifiers [12] and use a

logistic function of the form P(yi=1|f)=
)exp(1

1

BAf ++
 where f is the output of the

support vector machines for input xi and yi= ± 1 represents the class label. This doubly
parametric function allows linking outputs of support vector machines to corresponding
posterior probabilities. This method implies solving a non-linear optimization problem
involving the pair of parameters (A,B) such that ∑

i
ti log(pi) + (1-ti) log (1-pi) is mini-

mized; where pi=
)exp(1

1

BAfi ++
 is the inferred posterior probability and ti=

2

1+iy is

the target binary coding for the pair (xi,yi).

3.2 Application

Once the learning framework has learned the visual vocabulary, the approach subjects
an image to be indexed to a multi-scale, grid-based recognition against these semantic

470 M. Belkhatir

a) Learning framework linking each grid-based image region with a semantic-concept and its
posterior recognition probability

csem_r1 =
water

 K csem_r1 =
people

K

{r23}{r1}

ia1ia2

{r63} {r43}

Fig. 1. Architecture for the highlighting of image agents and the characterization of their corre-
sponding semantic concept

concepts. An image to be processed is scanned with grids of several scales. Each one
features image regions {r1, …, ri…} characterized by a feature vector of signal color
and texture concepts. The latter is compared against signal concept vectors of labeled
image patches corresponding to semantic concepts in the knowledge base K (figure
1.a)). Recognition results for all semantic concepts are computed and then reconciled
across all grid regions which are aggregated according to configurable spatial tessella-
tion (figure 1.b)) in order to highlight image agents. Each agent is linked to a semantic
concept with maximum recognition probability. Let us note that for an image agent,
other semantic concepts with non-zero recognition probabilities could be highlighted.
We therefore link the latter to a vector structure Sem with nsem elements correspond-
ing to all semantic concepts considered. Values Sem[i], i ∈ [1,nsem] are real values in
the interval [0,1] corresponding to the recognition probabilities for each of the seman-
tic concepts. We can have cases where recognition probabilities for two distinct se-
mantic concepts are equal or very close. Therefore, to make a decision on the seman-
tic concept to index the image agent, we take into account the global distribution of
objects within the documents in the knowledge base. In particular, the relations be-
tween them will help us reinforce the recognition values of semantic concepts for a
given image agent. The framework instantiating this paradigm is a multi-agent system
enforcing interaction and coordination between the agents detailed in the next section.

4 A System Enforcing Interactions and Coordination between the
 Multimedia Agents

4.1 Specifying the Agents

The agent-based system uses two types of agents: the image agents and the mediator
agents. On an individual level, the image agents all have the ability to perceive color

 An Agent Framework Based on Signal Concepts 471

and texture low-level features, to conceptualize their perception through highlighting
color and texture concepts and to infer a set of semantic concepts with their recogni-
tion probability values (as detailed in section 3).

The mediator agents are responsible for determining the relational context between
two image agents ia1 and ia2 and to inspect the knowledge base for highlighting iden-
tical relational configurations and their associated semantic concepts. They are then
responsible for suggesting ia1 and ia2 to reinforce recognition values for the semantic
concepts involved. On the population level, the image agents communicate with each
other through mediator agents about a visual relational context and adapt to other
agents in order to infer their index semantic concept, i.e. the semantic concept with
the highest final recognition value.

4.1 Towards Concept-Based Interaction

When an agent is to communicate about the world, a symbolic representation of the
perception is needed. Two interacting image agents communicate through a mediator
agent with semantic concepts.

Mediator agents compute spatial configurations between image agents, i.e. com-
pact structures summarizing spatial relations which hold between them. In order to
model the conceptual (spatial) information, we first consider a subset of the topologi-
cal relations highlighted in the RCC-8 theory [5]; four relations which are exhaustive
and relevant to our context are chosen. Considering 2 image agents (ia1 and ia2),
these relations are (s1=C, ia1,ia2): ‘ia1 partially covers (in front of) ia2’, (s2=C_B,
ia1, ia2): ‘ia1 is covered by (behind) ia2’, (s3=P, ia1, ia2): ‘ia1 is a part of ia2’, (s4=T,
ia1, ia2): ‘ia1 touches ia2 (is externally connected)’ and (s5=D, ia1, ia2): ‘ia1 is dis-
connected from ia2’. Directional relations Right(s6=R), Left(s7=L), Above(s8=A),
Below(s9=B) are invariant to basic geometrical transformations (translation, scaling).
Two relations specified in the metric space are based on the distances between visual
objects. They are the Near(s10=N) and Far(s11=F) relations. We will discuss their em-
pirical automatic characterization in section 5.3. A spatial configuration is supported
by a vector structure Sc with eleven elements corresponding to the previously intro-
duced spatial relations. Values Sc[i], i ∈ [1,11] are booleans stressing that the spatial
relation si links the two considered image agents.

4.2 Enabling Interaction and Coordination

For the communication protocol, two image agents ia1 and ia2 are randomly chosen.
They are respectively linked to two vector structures Sem1 and Sem2 with nsem ele-
ments corresponding to all semantic concepts considered. Values Sem1[i] and
Sem2[j] (i,j ∈ [1,nsem]) are real values in the interval [0,1] corresponding to the recog-
nition probabilities for each of the semantic concepts.

The image agent ia1 starts the protocol by establishing a contact with a mediator
agent and communicating its Sem1 structure, i.e. the semantic concepts with non-zero
recognition probabilities linked to it (represented by step 1 in fig. 2). The image agent
ia2 interacts with the same mediator agent by communicating its Sem2 structure (rep-
resented by step 2 in fig. 2).

472 M. Belkhatir

The mediator agent then computes the spatial configuration between ia1 and ia2
(step 3 in fig. 2) and inspects spatial configurations between pairs of annotated objects
within documents in the knowledge base resembling the spatial configuration between
ia1 and ia2 (step 4 in fig. 2).

A reinforcement value which is proportional to the number of occurrences of spa-
tial configurations within the knowledge base involving semantic concepts Sem1[i]
and Sem2[j] (i,j ∈ [1,nsem]) is then proposed to ia1 (step 5 in fig. 2) and ia2 (step 6 in
fig. 2). Let us note that spatial configurations between annotated objects in the knowl-
edge base are pre-computed and stored in lookup tables inspected by the mediator
agents.

Image agents ia1 and ia2, respectively linked to vectors of semantic concepts Sem1
and Sem2, shall finally combine for each of the concepts Sem1[i] and Sem2[j] respec-
tively (i,j ∈ [1,nsem]) (i) their recognition probability values (ii) a reinforcement value
proportional to the number of spatial configurations between two objects annotated by
Sem1[i] and Sem2[j] within a document of the knowledge base resembling the spatial
configuration between ia1 and ia2. We have chosen to use fuzzy sets, which are a gen-
eralization of set theory with a membership relation transformed in a function with val-
ues in the interval [0,1]. The membership function of an element with respect to a fuzzy
set A of a universe U, noted μ

A
associates each element of the universe with the plausi-

bility that it is an element of A [7]. Let USC the (discrete) universe of all semantic
concepts. In this universe, we define fuzzy sets by taking into account the recognition
probability of two given semantic concepts and the relational (spatial) information hold-
ing between them. We define a membership function characterizing the plausibility for a
given semantic concept sc∈USC to be the index concept of an image agent by adding (i)
and (ii).

<P:0, T:1, D:0, C:0, C_B:0, R:0,
L:0, A:1, B:0, N:1, F:0>

<P:0, T:1, D:0, C:0, C_B:0, R:0,
L:0, A:1, B:0, N:1, F:0>

<hut:0.4…>

<foliage: 0.8…>

<P:0, T:1, D:0, C:0, C_B:0, R:0,
L:0, A:1, B:0, N:1, F:0>

Mediator
Agent

(…)

Knowledge Base

5 <hut: …>

6 <foliage: …>

(…)

31

2
4<hut:0.4+ …>

ia1

ia2

<foliage: 0.8+ …>

Fig. 2. Communication protocol between two image agents and a mediator agent

 An Agent Framework Based on Signal Concepts 473

5 Experimental Instantiation

The SIR_Agent prototype implements our theoretical framework and its organization
revolves around five functional modules:

1. the first provides the extraction of the signal-based content (color, texture
and spatial features) and its mapping into concept-based linguistic structures.

2. the second supports the learning framework for highlighting the image
agents.

3. the third consists of the architecture enabling interaction and coordination
between the image agents.

4. the fourth module is the knowledge base comprising all documents annotated
at the visual object level.

5. the communication interface allows the user formulating his query through
semantic concepts.

In the remainder, we will detail the automatic characterization of our framework
and its experimental validation.

5.1 Automatic Characterization of Concept-Based Signal Features

Highlighting color concepts. After a first step of low-level color extraction in the
RGB space for each pixel of a rectangular region, we set up a transformation process
for characterizing this information in the HVC space.

Indeed, the use of the RGB color space firsthand is inefficient since the perceptive
similarity between color pairs is not taken into account. Consequently, the color in-
formation is conveyed in the HVC perceptive space, which is moreover uniform.

The transformation process from the RGB triples to coordinates in the HVC space
is adapted from the algorithm described in [11]:

1. The first step consists in transforming the coordinates in the RGB color space
into (X, Y, Z) components such that:

X = 0.607R + 0.174G + 0.201B; Y = 0.299R + 0.587G + 0.114B; Z = 0.066G +
1.117B

2. The second step transforms the (X, Y, Z) in (M1, M2, M3) such that:

M1 = 11.6 [(X /X0)
1/3 - (Y /Y0)

1/3]; M2 = 0.4 x 11.6 [(Y / Y0)
1/3 - (Z / Z0)

1/3];

M3 = 0.23 x [11.6 (Y/Y0)
1/3 - 1.6]

where X0, Y0 et Z0 represent the values of X, Y et Z for the color reference:
white.

3. The components in the (H, V, C) space are then determined from (M1, M2, M3)

H’ = arctan (M2 /M1); S1 = [8.88 + 0.966 x cos (H’)] x M1 ;

S2 = [8.025 +2.558 x sin (H’)] x M2

H = arctan (S2/S1); V = 11.6 (Y/Y0)
1/3 – 1.6; C = 2

2
2
1 SS +

474 M. Belkhatir

Components H, V and C correspond respectively to the values of tonality, luminos-
ity and saturation. They are then mapped to the eleven color concepts introduced in
section 2.1.

We iterate this process for all pixels and we finally obtain the pixel percentage cor-
responding to each color concept for the rectangular region processed. These data
constitute a vector structure consisting of eleven dimensions with each dimension
representing the pixel percentage for a given color concept.

Characterization of texture concepts. We focus on computational texture extraction at
the level of a rectangular regions and characterize it by its Gabor energy distribution
within seven spatial frequencies covering the whole spectral domain and seven angu-
lar orientations. It is then represented by a 49-dimension vector, with each dimension
corresponding to a Gabor energy.

The eleven high-level texture concepts, foundation of our framework for texture
symbolic characterization are automatically mapped to the 49-dimension vectors of
Gabor energies through support vector machines. We adopt the one-against-rest ap-
proach where a separate classifier is designed for each of the eleven texture concepts
for reasons of optimized inter-class separation. For each of the eleven texture con-
cepts, the best cross-validation rate is given in table 1. Let us note that the SVMs are
able to label new instances of unknown textures with corresponding texture concepts
with a high accuracy, cross-validation percentages being all higher than 80%.

Table 1. Cross-Validation Percentages

TW B C D I L M N S Sp U W
% 83,7 85,2 88,9 91,9 94,5 98 86,8 83,4 90 97,3 81,4

Generation of symbolic spatial relations. For the automatic characterization of
spatial relations, an image agent is characterized by its centre of gravity ia_g as
well as two pixel sets: its interior, noted ia_i and its boundary, noted ia_b. To deal
with the automatic computation of topological relations, two image agents ia1 and
ia2 are characterized by intersections of their interior and boundary sets: ia1_i ∩
ia2_i, ia1_i ∩ ia2_b, ia1_b ∩ ia2_i and ia1_b ∩ ia2_b. Each topological relation is
mapped to the results of these intersections, e.g. (DC, ia1, ia2) iff. ia1_i ∩ ia2_i
=∅, ia1_i ∩ ia2_b =∅, ia1_b ∩ ia2_i =∅ and ia1_b ∩ ia2_b =∅. The interest of
this computation method relies on the association of topological relations to the
previous set of necessary and sufficient conditions involving attributes of image
agents (i.e interior and boundary). The computation of directional relations be-
tween ia1 and ia2 is based on their centers of gravity ia1_c(x1c, y1c) and ia2_c(x2c,
y2c), the minimal and maximal coordinates along the [Ox) axis (x1min, x2min and
x1max, x2max) as well as the minimal and maximal coordinates along the [Oy) axis
(y1min, y2min and y1max, y2max) of their four extremities. Finally, to distinguish be-
tween near and far relations we use the Dnf constant given by Dnf =

d(0 ,0.5*[σ1,σ2]
T) where d is the Euclidean distance between the null vector 0 and

[σ1,σ2]
T is the vector of standard deviations of the localization of centers of gravity

for each visual object in each dimension from the overall spatial distribution of all

 An Agent Framework Based on Signal Concepts 475

visual objects in the corpus. Dnf is therefore a measure of the spread of the distri-
bution of centers of gravity. This distance agrees with results from psychophysics
and can be interpreted as the bigger the spread, the larger the distances between
centers of gravity are. We will say that two image agents are near if the Euclidean
distance between their centers of gravity is inferior to Dnf, far otherwise.

5.2 Experimental Highlighting of Multimedia Agents

Automatic Extraction. As far as the feature extraction processes are concerned, our al-
gorithm is summarized below:

- Given an image in the index corpus
- We set a rectangular grid over it highlighting the visual regions {r1, …, ri…}

of size 35x35 pixels, regions overriding by 12 pixels with respect to [Ox)
and [Oy).

- For each region, we characterize the color and texture concepts as presented
in section 5.1. It is then described by a 22-dimension structure.

o After a step of low-level characterization in the RGB space, the
color concepts are highlighted in the perceptual HVC space.

o For the textures, the Gabor energy matrices are linked to the texture
concepts.

Learning Process. The algorithm for the learning process is as follows:

- Given a ‘positive’ set of annotated training objects in the knowledge base,
i.e. corresponding to the semantic concept being learnt:

o We set over it a rectangular grid highlighting the regions with size
35x35 pixels.

o We extract the color and texture concepts for each region with their
associated recognition probabilities.

o Features corresponding to the region are used as training input for
the learning framework.

Highlighting the multimedia agents. For the recognition step, the algorithmic process is
based on five steps:

- Given an image segmented into regions
- For each semantic concept, we use the probabilistic classifier which provides

an output value.
- We obtain for each region the probabilities linked to the visual semantic

concepts
- We consider as the representative visual semantic concept the one associated

to the maximum recognition probability
o In case of a « conflict » (i.e. a block such as two distinct visual se-

mantic concepts have the same maximum probability values), the
decision will be based on taking into account the visual semantic
concepts with the maximum recognition probabilities in adjacent
regions.

- We agglomerate the regions with respect to the protocol described in section
3.2 in order to highlight the image agents.

476 M. Belkhatir

Semantic concepts

Entity Phenomenon

Sky Substance/MatterPhysical Object Thing

Forest/Wood

Material/Stuff

Vegetation/Flora Process

Water

Waterfall Beach Lake Pool

Living thingGroundManmade Object

Body PartPlant PartRock Geological Form

Structure/ConstructionWay

Window Pillar Building Fence Wall House
H

Road Stairs

Field Forest Beachfront Floor Organism

Flower Grass

Natural Process

Chemical

Explosive

Fur

Chemical Process

Fire/Flame

Animal/Material

FireworksPebble Leaf Foliage Trunk Face Beach Mountains Dune

Natural Object

Group/Grouping

People/
Crowd

Transport

Vehicle

Plane Car Boat Bicycle

Train

Plant

Fig. 3. Lattice organizing semantic concepts

5.3 Validation

Semantic concepts are organized within a visual ontology (provided as a lattice-based
structure in fig. 3).

The evaluation is carried out on a corpus of color personal photographs instead of
the Corel collection since it has been argued that the latter is much easier to annotate
and retrieve; and in fact does not capture the difficulties inherent in real world data-
sets (example images are provided in [10]). It is based on the notion of visual rele-
vance which consists in quantifying the correspondence between query and index
image document. We compare our framework with an image retrieval system based
on a semantic approach: the Visual Keyword (VK) system S1 [10] and a state-of-the-
art loosely-coupled system S2 combining a text-based framework for querying on se-
mantics and a relevance feedback process operating on color and texture features to
enrich the semantic characterization with additional signal information (such as in
[18]). We test our framework by proposing semantic concept queries corresponding to
all concepts in the lattice of fig. 3. Recall/precision curves of fig. 4 illustrate the aver-
age results obtained for these queries. The average precision of SIR_Agent (0.3625) is
here higher than the average precisions of the VK system S1 (0.334) and the loosely-
coupled S2 system (0.305).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

on

S1 (av.p: 0.334)

S2 (av.p:0.305)

SIR_Agent (av.p:0.3625)

Fig. 4. Recall/Precision Curves for all semantic concept queries

 An Agent Framework Based on Signal Concepts 477

6 Conclusion

We proposed in this paper the specification of the SIR_Agent system which explores
the formation of semantic concepts in a population of image agents, abstract struc-
tures representing visual entities within an image document. These agents are indi-
vidually highlighted through a statistical model which considers the joint distribution
of signal (color, texture) and semantic concepts. The strength of our approach relies
on avoiding the pre-processing of images with computationally-expensive automatic
segmentation processes, and on the use of “transparent” processes as well as compact
grid-based representations for the semantic characterization. Moreover, contrary to
traditional frameworks considering high-dimensional spaces of low-level extracted
signal features, this model addresses the curse of dimensionality.

Then, at the image agent population level, the agents communicate about the
perceived semantic concepts through mediator agents with no access to global infor-
mation or to the representations of other agents, they only exchange conceptual in-
formation. While doing so they adapt their internal representations to be more suc-
cessful at conveying the perceived semantic information in future interactions. The
image content is therefore soundly inferred through these concept-based linguistic
interactions. We have proposed an experimental instantiation of our theoretical
framework and evaluated its quality in an image retrieval task. The results obtained,
after comparison with two state-of-the-art image retrieval systems and considering a
corpus of personal photographs instead of the “easy-to-process” Corel dataset, al-
lowed us to validate our proposal on a set of semantic concept queries.

References

[1] Berlin, B., Kay, P.: Basic Color Terms: Their universality and Evolution. UC Press
(1991)

[2] Bhushan, N., et al.: The Texture Lexicon: Understanding the Categorization of Visual
Texture Terms and Their Relationship to Texture Images. Cognitive Science 21(2), 219–
246 (1997)

[3] Blei, D., Jordan, M.: Modeling Annotated Data. ACM SIGIR, 127–134 (2003)
[4] Bradshaw, B.: Semantic based image retrieval: a probabilistic approach. ACM MM, 167–

176 (2000)
[5] Egenhofer, M.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-

J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)
[6] Feng, S., et al.: Multiple Bernoulli Relevance Models for image and video annotation. In:

CVPR, pp. 1002–1009 (2004)
[7] Gacogne, L.: Elements of fuzzy logics. Hermes Editions (1997)
[8] Gong, Y., et al.: Image Indexing and Retrieval Based on Color Histograms. Multimedia

Tools and App. II, 133–156 (1996)
[9] Leow, W.K., Lai, S.Y.: Invariant matching of texture for content-based image retrieval.

MMM, 53–68 (1997)
[10] Lim, J., Jin, J.S.: A structured learning framework for content-based image indexing and

visual query. Multimedia Systems 10(4), 317–331 (2005)
[11] Miyahara, M., Yoshida, Y.: Mathematical Transform of (R,G,B) Color Data to Munsell

(H,V,C) Color Data. In: SPIE, vol. 1001, pp. 650–657 (1988)

478 M. Belkhatir

[12] Platt, J.C.: Probabilities for Support Vector Machines. Advances in Large Margin Classi-
fiers, pp. 61–74. MIT Press, Cambridge (1999)

[13] Mojsilovic, A., Rogowitz, B.: Capturing image semantics with low-level descriptors. In:
ICIP, pp. 18–21 (2001)

[14] Smeulders, A., et al.: Content-based image retrieval at the end of the early years. IEEE
PAMI 22(12), 1349–1380 (2000)

[15] Srikanth, M., et al.: Exploiting Ontologies for Automatic Image Annotation. ACM SIGIR,
1349–1380 (2005)

[16] Town, C.P., Sinclair, D.: CBIR Using Semantic Visual Categories. TR2000-14. AT&T
Labs, Cambridge (2000)

[17] Vapnik, V.: Statistical Learning Theory. Wiley, NYC (1998)
[18] Zhou, X., Huang, T.: Unifying Keywords and Visual Contents in Image Retrieval. IEEE

Multimedia 9(2), 23–33 (2002)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 479–492, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Proscriptive Metadata in an XML DBMS

Hao Jin1 and Curtis Dyreson,2

1 Expedia, Seattle, WA, USA
hjin@expedia.com

2 Utah State University, Logan UT, USA
Curtis.Dyreson@usu.edu

Abstract. MetaXQuery is a language for querying data enhanced with
metadata. The MetaXQuery data model (MetaDOM) attaches metadata to each
element in an XML data collection, and extends XQuery with several constructs
to process and query metadata. In this paper we show how to extend a native
XML DBMS, namely eXist, to support MetaXQuery. The additional query
functionality can be efficiently implemented by judicious reuse of eXist’s
indexes and query evaluation engine.

Keywords: XML, metadata, XQuery, indexing.

1 Introduction

Metadata is an integral component of many data collections. It plays a key role in
describing, interpreting, and proscribing data. Specific kinds of metadata, in
particular, knowledge classification metadata and temporal metadata have heretofore
been studied in great detail. But data models and query languages that combine the
disparate varieties of metadata, such as security, reliability, cost, time, locale, privacy,
language, and content descriptors, are rare. Each kind of metadata often has a unique
semantics, especially for query evaluation. For instance, security metadata is active in
restricting access to data whereas content descriptors are inert; they simply provide
additional information.

This paper outlines the implementation of a system to support the manifold
varieties of metadata in a single, XML-based framework. XML is an important format
for data exchange and representation on the web. In our approach both data and
metadata are described in XML (and perhaps related using RDF [22]). The data and
metadata are combined in a unified data model (a MetaDOM [8]) that can be queried
with MetaXQuery [14],[15].

This paper is organized as follows. First we briefly review MetaXQuery and
describe the implementation challenges. Next we present an algebra for evaluating a
MetaXQuery query. Finally, we outline extensions to a native XML DBMS to support
MetaXQuery and report on experiments to measure the cost of processing metadata.
More on the project, including all code and an on-line demo, is available from the
project’s home page.1

1 http://www.cs.usu.edu/~cdyreson/pub/MetaXQuery

480 H. Jin and C. Dyreson

1.1 Motivation

Suppose that a bank uses an XML document, customers.xml, to store the account
and balance information of its customers. Figure 1(a) shows a part of the XML
document, and Figure 1(b) is the data model for this document fragment.

(b) The data model for customer.xml

SSN name account

Jones ID balance

5000 4411 111-111-1111

<customer>
 <SSN>111-111-1111</SSN>
<name>Jones</name>

 <account><ID>4411</ID>
<balance>
5000

</balance>
 </account>
</customer>

(a) customer.xml

<customer>
<SSN>111-111-1111</SSN><name>Jones</name>
<meta:security allowed=”Jones”>
<account><ID>4411</ID>

 <meta:time begin=”2008-1-8” end=”2008-2-7”>
 <balance>5000</balance>
</meta:time>
<meta:time begin=”2008-2-8” end=”now”>
 <balance>8000</balance>
</meta:time>

 </account>
</meta:security>

</customer>

(c) customer.xml with embedded metadata

customer

Fig. 1. A motivating example

This is a simplified data model for demonstration purposes since white space has
been removed. The document in Figure 1(a) is incomplete because the balance of the
account changes over time, and we’d like to record how it changes, in addition to the
current balance. Moreover, when the data is provided to a user, we certainly don’t
want everyone to be able to see the entire document. In particular, we want only
authorized users to see the account data.

Figure 1(c) gives an example of how time and security metadata might be
embedded in the XML data. The lines in bold denote metadata. The account
balance changes over time, and we also want to add security constraints to tell the
application which users can access which part of the data. The <meta:security>
element restricts access to the customer Jones. The <meta:time> element that
wraps the balance element tells us that this account has a balance of 5000 from 2008-
1-8 to 2008-2-7, and then a balance of 8000 from 2008-2-8 to now. The “meta:”
namespace is used to specify that this information is metadata rather than data. This

 Supporting Proscriptive Metadata in an XML DBMS 481

example is very simple; in general, the metadata can be complicated and involve
complex data types.

Every query uses the metadata to constrain the data. Consider a query to find the
current account balance, e.g., “//account“. Implicit in the evaluation of this query
is a user’s perspective. The perspective is a combination of metadata that represents
the context in which the query is posed. For instance, suppose that the user’s
perspective is a security of “Jones” (set when the user “logged into” the system) and
the time “now” (a default setting). A query filters the data by matching the user’s
perspective to the metadata. The data that is visible from that perspective is shown in
Figure 1(a), i.e., the current snapshot of the data. Effectively, the evaluation of a query
computes a view of the data that “conforms to” the metadata in the user’s perspective.

Finally, let’s consider the role of meta-metadata. Suppose that Jones closes his
account. The security on Jones’s account should evolve to denote that Jones used to
have access (prior to now), but from now on he no longer has access. The lifetime of
each security restriction is meta-metadata, that is, it is metadata for the security
metadata. The reason that it is important to model the evolving security is that Jones
should be denied access to his “no-longer-current” account (e.g., ATM cash
withdrawals) because the account is closed, but he should still have access to old
account information (e.g., for tax purposes). When Jones changes his query to “roll
back” the database to 2008-2-6, he should see his account with a balance of 5000. It is
rare that an information system supports meta-metadata (for instance relational
DBMSs do not support versioned security) but if it did Jones could still access the
archived information on his account after his account has closed.

1.2 Review of MetaDOM

MetaDOM [8] extends the Document Object Model (DOM) by adding an optional
meta property to a node’s Information Set. But in all other respects, the data model is
the same as DOM. The value of the meta property is a reference to the root node of a

20 142

security

user

Joe

transaction_time

timestamp

begin end

2 5

Metadata Data

1

2 4

3 5

Meta ID: 1

1

books

user

Fred

meta book

book1

book

book2

3

8

9 11

security

user

Joe

transaction_time

timestamp

begin end

6 9

Meta ID: 2

13 meta

15 21

Fig. 2. An example MetaDOM

482 H. Jin and C. Dyreson

nested MetaDOM, which describes the metadata for a node. The metadata can be
recursively nested, that is, a node in a MetaDOM may itself have a meta property.
Each level of nesting adds another level of metadata.

Figure 2 shows an example MetaDOM. The two book nodes in the data are annotated
with metadata concerning security restrictions and transaction time information. The
security metadata proscribes access to the node (and its descendents) to just Joe or Fred.
The transaction time metadata records when the node is stored in the database, e.g., it was
present between times 2 and 5. Note that each piece of metadata is itself a MetaDOM,
which allows meta-metadata to be added to nodes in the metadata.

1.3 Review of MetaXQuery

There are several kinds of queries that can be evaluated on a metadata-enhanced data
model. Elsewhere we described queries that involve grouping [14] and cleaning the
metadata[15], but here we focus on queries that access the data, and are constrained
by the metadata.

All queries implicitly utilize the metadata. Implicit in each query is the perspective
of the user that issues the query. The perspective covers the user’s security rights,
privacy settings, and locale, among other metadata settings. Whenever a query is
evaluated the metadata must be consulted to ensure that the user’s perspective
matches the metadata. Usually a mismatch will crop the user’s view of the data, e.g., a
user without the proper security certificate cannot access secure data.

As an example consider the following query to find books from the perspective of
user Fred as of time 4. The perspective is explicitly given at the start of the query in
this example, usually the perspective will be implicitly acquired via a login process to
the DBMS and applied to all queries in that session.

 PERSPECTIVE
 <security>Fred</security>
 <transaction_time>4</transaction_time>
 FOR $b IN //book
 RETURN <booksAvailableToFred>
 {$b}
 </booksAvailableToFred>

Enforcing perspective is very important for the system because each user of the
system should be allowed access to only the data that matches their perspective. Since
materializing the view of the data for each perspective would be prohibitively
expensive, the perspective is dynamically matched during a query by the
filterByPerspective function that is added to each path expression in the query. The
function is defined below (the style of the definition is from the XQuery spec. [23]).

Definition [filterByPerspective]. The filterByPerspective function takes a sequence
of data nodes and the root node of a perspective MetaDOM. It filters the data
sequence, keeping only those nodes that match the perspective.

meta-fn:filterByPerspective($node as meta-dm:node()*,
 $pNode as meta-dm:node())
 as meta-dm:node()*

█

 Supporting Proscriptive Metadata in an XML DBMS 483

In the query given above, the path expression in the FOR clause would be modified to
the following:

 FOR $b IN meta-fn:filterByPerspective(//book, P)

where P is the root of the perspective MetaDOM, but the rest of the query remains the
same. For a sequence of queries, a user can set or modify the implicit perspective
using the pragma keyword. Pragmas are typically used to furnish hints for query
evaluation. MetaXQuery adds a perspective pragma, which identifies a
perspective document. An example of loading an XML file as the perspective is given
below.

(::pragma perspective perspective.xml ::)

1.4 Implementation Challenges

The overarching goal of implementing MetaXQuery is reusing existing standards and
technology. For instance, MetaXQuery is upwards-compatible with XQuery, as is
MetaDOM with DOM. Ideally, few changes will have to be made to a native XML
DBMS (XDBMS) to implement MetaXQuery. But there are two key implementation
challenges. First, MetaXQuery introduces data scopes into the data model. In the data
model, metadata must be (logically) separate from the data so that wildcard queries
(e.g., a descendent axis) explore only within the intended scope. Only the meta axis
can bridge scopes. Unfortunately, XDBMSs do not support separate scopes for data.
The second important challenge is supporting the filterByPerspective function. The
function applies additional constraints to nodes identified by every path expression in
a query. There is one check that must be performed for each kind of metadata.
Additional levels of metadata add even more constraints. So efficient implementation
of filterByPerspective is critically important to building support for (proscriptive)
metadata into an XDBMS.

2 The Metadata Tree Algebra

In this section we describe how to extend an algebra for XML to support
MetaXQuery. We chose to extend the Tree Algebra for XML (TAX) [12]. We first
review TAX and then describe how to extend it.

2.1 TAX

TAX provides low-level operations for the evaluation of XQuery queries. XQuery
queries can be translated to TAX expressions for fast evaluation. Typical operators in
TAX (selection, projection, etc.) take a collection of data trees as input, a pattern tree
and an adornment as parameters, and produce a collection of data trees as output. A
pattern tree is a simple, intuitive specification of how to locate nodes of interest. Each
node in a pattern tree represents a variable that is bound to some nodes in the data
model (e.g., a DOM node). Each edge represents a relationship between a pair of

484 H. Jin and C. Dyreson

bound variables. A TAX pattern tree has two types of edges, parent-child (pc) and
ancestor-descendant (ad). A pc edge is used for a parent or child axis in a path
expression while an ad edge represents an ancestor or descendent axis. Additionally, a
pattern tree has an adornment which is a Boolean formula of predicates. Fig. 3 shows
a simple pattern tree for the path expression “/books/book”. Variables $1 and $2
are related by a parent-child edge meaning that $1 must be a parent of $2 in the data
model. When both variables are bound to a node, the associated adornment can be
evaluated. The adornment tests to ensure that the name attribute of $1 is “books”
and the name attribute of $2 is “book”.

2.2 MetaTAX

In this paper we introduce MetaTAX, which is an extension of TAX to support
metadata.

2.2.1 Meta Edges
MetaTAX introduces meta edges to the pattern tree. The meta edge is inserted into the
pattern tree whenever a meta axis is used in a MetaXQuery path expression. Figure 4
gives an example of a pattern tree for the path expression “/books/book/
meta::security.”

2.2.2 Perspective Filtering
In addition to the meta axis MetaXQuery has a filterByPerspective function that is
invoked in most queries. The filterByPerspective function combines a function to
project metadata, called getMetadataValues, with a function to select data using
metadata, called filterByMetadataValues. In the rest of this section we show how to
translate each of these functions into MetaTAX operators or plans.

The getMetadataValues function retrieves a specified type of metadata value for
the input data nodes. In MetaTAX the function call translates to a simple pattern tree
with a meta edge and a selection list (SL) on the metadata type node. For example,
the function getMetadataValues("security", /books/book) would translate
into a pattern tree shown in Figure 5. The pattern tree specifies which nodes are of
interest in this query (books, book, meta, and security), and the Selection List
(SL) acts as the adornment parameter. It lists the nodes (and their descendants) that
are output from the evaluation of the pattern tree.

$1.name = books &
$2.name = book

$1

$2

pc

 $1.name = books &
$2.name = book &
$3.name = security

$1

$2 meta

$3

pc

pc
meta

Fig. 3. A pattern tree for /books/book Fig. 4. A MetaTAX pattern tree that explores
the meta axis

 Supporting Proscriptive Metadata in an XML DBMS 485

The filterByMetadataValues operation selects data nodes that satisfy a given
metadata condition. In MetaTAX, the operation is modeled as a projection of the data
nodes with certain metadata conditions. Projection in TAX is different from
projection in the relational algebra. In relational algebra, selection and projection are
orthogonal operations: selection chooses rows and projection chooses columns. But in
a tree data model, there are no such obvious orthogonal dimensions like rows and
columns, so the role of projection is quite similar to selection. Projection selects only
certain nodes, eliminating others. A sample pattern tree for the function
filterByMetadataValues("security", /books/book, "Joe") is shown in
Figure 6. The pattern tree specifies which part of the input data is of interest. The
projection list (PL) tells the query processor which nodes to preserve in the output. In
projection, no matter whether the nodes are in the projection list or not, all of their
contents are preserved from the input.

The filterByPerspective function is a combination of the getMetadataValues and
filterByMetadataValues functions. Theoretically it iterates through each metadata type
element in the perspective, getting the value of the element. For each kind of metadata it
calls the filterByMetadataValues function to determine whether the data node matches
the metadata in the perspective. Those that match are kept in the node list.

For persistent data collections a better strategy is to use indexes on the metadata to
quickly find which metadata matches a given perspective. For each kind of metadata,
the index lookup will return a list of metadata trees that match the perspective. The
lists for each kind of metadata are then joined together to produce a final list of
metadata that matches the perspective, and that list is in turn joined with the data to
produce a result. Assuming there are N kinds of metadata, this strategy will require N
index lookups and N joins (N-1 joins of the different kinds of metadata and one join
with the data). The join order can be rearranged to improve efficiency. Most of the
time there will be far more data than metadata, so the join with the data should be
delayed as long as possible. The metadata candidate lists should be joined first to find
out which combinations of metadata match the perspective. The resulting
combinations are then joined with the data.

pc

$1

$1.name = books &
$2.name = book &
$3.name = security
SL = {$3}

$2 meta

$3

pc

meta

meta

$1

$1.name = books &
$2.name = book &
$3.name = security
$3.content = Joe
PL = {$2}

$2 meta

$3

pc

pc

Fig. 5. Sample Pattern Tree for the getMeta-
dataValues Function

Fig. 6. Sample Pattern Tree for the filterBy-
Perspective Function

3 Plan for Extending a Native XML Database

The algebra outlined in Section 2 to support metadata is relatively straightforward to
implement in a native XML DBMS (XDBMS). XDBMSs store XML documents in a

486 H. Jin and C. Dyreson

back-end database or flat file. Usually, one or more indexes are created to improve
query evaluation efficiency. Storing metadata is straightforward since the metadata is
also an XML document. Each chunk of metadata is identified by a “metaID”
attribute in the metadata. An element in the data subsequently references a chunk of
metadata with a “metaRef” attribute. Typically, many elements will share the same
metadata or have no metadata, so the metadata will be much smaller in size than the
data.

Many XDBMS query evaluation engines use a path index to efficiently evaluate
a query. A path index locates nodes for a given path expression, which saves on the
(prohibitive) cost of traversing the data model to find the nodes. The result of the
path index lookup is then combined with other index lookups (e.g., a text or word
index) to process additional search conditions in a query, but in this section we will
focus on a path index to illustrate how we plan to incorporate metadata in query
evaluation.

Let’s use the data model in Figure 2 as an example. In the data part of Figure 2, the
path index would map “/books/book” to the list of nodes with ID 2 and 4, as
shown in Table 1. We extend the path index with an additional column to record the
Meta Ref value for a list of nodes, as shown in Table 2. Figure 2 shows that the
metadata chunk with a Meta ID of 1 is associated with the data node with ID.

Table 1. Original XML Path Index

Data Path Node List
/books/book (2, 4)

Table 2. New XML Path Index

Data Path Node List Meta Ref
/books/book (2) 1
/books/book (4) 2

A perspective includes constraints on the metadata. For instance, a user might
query from a transaction time perspective of 3 (i.e., rollback the database to time 3)
and a security of Joe. Additional indexes are constructed to efficiently search for
chunks of metadata that satisfy a specific constraint. Table 3 shows an index for
transaction time metadata, while Table 4 illustrates one for security metadata. The
Node ID column identifies the source of the metadata in the metadata document.
Since meta-metadata could be present, each row in the index includes a Meta-meta
Ref column. The data model in Figure 2 has no meta-metadata so that column
contains NULLs.

Now let’s demonstrate the use of the indexes with an example. Suppose we have
the following query: “Find book data that is available to the user Joe and exists in the
database at time 3.” The steps in the query execution plan for this query are shown in
Figure 7. The transaction time index is used to find intervals that include time 3.
Similarly the security index is used to find metadata chunks for the user Joe (Figure
7(a)). The path index is then used to locate nodes that match the path expression
“//book” (Figure 7(b)). The results of the index lookups are joined on the Meta ID
column (the join order is determined during query optimization) generating a result
(Figure 7(c)).

 Supporting Proscriptive Metadata in an XML DBMS 487

Table 3. Level 1 Index on Transaction Time

Time Meta
ID

Node
ID

Meta-meta
Ref

[2,5] 1 3 NULL
[6,9] 2 15 NULL

Table 4. Level 1 Index on Security

Security Meta
ID

Node
ID

Meta-meta
Ref

Joe 1 9 NULL
Fred 1 11 NULL
Joe 2 21 NULL

4 Implementation in eXist

eXist [16] is an open-source, native XML DBMS. We chose to modify eXist both
because the source is available, and also eXist outperformed other systems in our
benchmark system.

 Meta ID Meta ID

Transaction Time 3 User Joe

Meta ID Node ID

1 3

Meta ID Node ID

1 9

2 21

Meta ID Node ID

1 2

2 4

Path index of data

(a) Joining metadata conditions (b) Joining with data index (c) Result

Node ID

2

Fig. 7. Use of indexes to solve the example query

4.1 Storage

eXist stores an XML document by adding it to a collection, which can hold a set of
XML documents. A document is serialized and stored in a paged, data file when it is
added to the collection. We use a “MetaDocRef” processing instruction in the data
to identify its metadata. When the data is parsed, the metadata is also parsed and
added to a separate metadata collection. Information about the metadata is placed into
the metadata indexes. As discussed in the previous section there is an index for each
kind of metadata, e.g., a security index. The index is built when a metadata is parsed
and stored. We used eXist’s B+-tree index classes for each metadata index rather than
using a specialized index, e.g., a temporal index.

4.2 Meta Axis

The implementation of meta axis is straightforward. We had to modify the XQuery
parser to recognize the meta axis. The XQuery parser in eXist is created by ANTLR
(ANother Tool for Language Recognition), so it is easy to modify. The parsing rules
in eXist closely follow the EBNF defined in the W3C XQuery standard. We extended
the axisStep rule to accept a meta axis step. We also added a class to evaluate the
step, and added to the abstract syntax tree so that the new class would be invoked
when the meta axis was used.

488 H. Jin and C. Dyreson

4.3 Perspective

In order to help the users access and query the metadata, we extended eXist with the
filterByPerspective function. Essentially the function implements the query
evaluation plan discussed in Section 3.

5 Experiments

We chose the XMark benchmark [20] to test our MetaXQuery implementation. We
designed experiments to evaluate the scalability of our system and also to compare the
performance of different query strategies mentioned above. We performed the
experiments on a single-processor 1.7GHz Pentium IV machine with 1GB of memory
running Windows XP Professional and Sun JDK version 1.4.2. We chose a subset of
the XMark queries that were both supported by eXist (e.g., Q3 was not supported) and
within a certain performance bound. For the original XMark queries, please refer to
[20]. Table 5 shows the parameters for the data generation of each experiment. The
Factor column is the XMark factor used to generate the data. Different factors
generate documents of different sizes as shown in the Document Size column. The
experments also varied the kinds of metadata (# of Metadata Properties) and how
varied the metadata is (# Metadata Trees).

Table 5. Experiment Parameters

Experiment Factor
Document Size

(MB)
Metadata
Properties

Metadata
Trees

1 0.01 1.1 0 to 3 # of elements

2 0.01, 0.02, 0.03,
0.04 0.05

1.1, 2.3, 3.5, 4.8,
5.8

2 1

Experiment 1 tests the scaling factor of the MetaXQuery processor with increasing

types of metadata. The experiment fixes the size of the data and metadata, and
increases the types of metadata from 0 to 3. The queries used in this experiment are
the optimized and the metadata fragment is the same as the total number of data
elements. All of these fragments have different values so that the effect of the index is
maximized. Figure 8 shows the performance of selected queries in experiment 2. We
only choose some of the queries here to make the graph clearer. All of the queries
show a sub-linear increase in time with the increasing number of metadata types,
which indicates that the system will scale as the number of metadata types increases.

Experiment 2 compares two query execution strategies of the filterByPerspective
function. As mentioned in Section 2.2, there could be a naïve implementation of
filterByPerspective that iterates through every data node and checks if its metadata
matches the perspective. We suggested that a much better strategy would be to use the
index to find all the metadata fragments that match the perspective first and then join

 Supporting Proscriptive Metadata in an XML DBMS 489

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3

Number of metadata types

Ti
m

e
(s

)

Q2 Q5 Q16 Q17 Q20

1.1
5.8

Q1 Q2 Q5 Q6 Q7 Q13 Q14 Q15 Q16 Q20

0

5

10

15

20

25

Time(s)

Size(MB)

Test Case

Fig. 8. Performance data of experiment 2 Fig. 9. Performance data comparing the traversal
method with the index join method

them with the data nodes. In this experiment we compare these two query evaluation
strategies. We call the first strategy the traversal method and the second the index join
method. We tested a series of data documents from factor 0.01 to 0.05. For each test
we used the same metadata value for all the elements. For the traversal method, it is
pretty much the same as using different metadata fragments or values because it
checks the metadata value of every data node. For the index join algorithm on the
other hand, the index doesn’t help much so it’s mostly the cost of joins. This is
actually reasonable because with the help of data structures like B+-trees, index
lookup is always a very fast operation. So the dominant part of the query execution is
still going to be the joins. We use the same experimental setup as the previous
experiments so that the results are the same as the original data. Figure 9 shows the
performance of the experiment. As we expected, the index join method outperforms
the traversal method in most of the test cases. And furthermore, it shows much better
scalability. The cost of the traversal method increases linearly with the data size, but
the indexes and joins (a merge-join) show sub-linear increase. The results justify our
work in developing the more efficient metadata association join algorithm in filtering
data with metadata conditions.

6 Related Work

There are few papers on systems to manage metadata in native XML databases. The
most widely used language on the web for annotating a document with metadata is the
RDF [22]. Several strategies for unifying the representation of XML and RDF have
been proposed [11], but query languages have largely targeted either RDF or XML.
There have been several RDF query languages proposed in the literature. For a
comparison of these RDF query languages, please refer to [10].

There are several systems that support metadata similar to MetaXQuery. Mihaila et
al. suggest annotating data with quality and reliability metadata and discuss how to
query the data and metadata in combination [18]. The SPARCE system wraps or

490 H. Jin and C. Dyreson

superimposes a data model with a layer of metadata [19]. The metadata is active
during queries to direct and constrain the search for desired information. Stavrakas et
al. embed descriptive metadata in a semistructured data model to query information in
different contexts [21]. A similar approach is taken by Jagadish et al. in researching
Colorful XML [13]. But proscriptive metadata, the focus of this paper (and our earlier
work [7],[8]), is not considered in either approach. Systems that provide mappings
between metadata models at the schema-level are also popular [17]. MetaXQuery
differs from these systems by focusing on XQuery extensions to support metadata,
and by building a framework whereby the semantics of individual kinds of metadata
can be specified as “plug-in” components.

Support for particular kinds of metadata has been researched. Two of the most
important and most widely discussed types of (proscriptive) metadata are temporal
metadata and security metadata. Temporal extensions of almost every W3C
recommendation exist, for instance, τXQuery [9] and τXSchema [6]. There has also
been research on security in XML management systems, e.g., [4]. Our approach is to
build an infrastructure that supports a wide range of different kinds of metadata in the
same vein as our previous efforts with the semistructured data model [7] and XPath
data model [8].

It is common to transform queries into efficient low-level, algebraic operators. The
XML algebras include the Tree Algebra for XML (TAX) [12], the XML Query
Algebra [3], and an algebra on a graph structure [2]. Research on query execution
plans and especially join algorithms include containment queries [24], structural joins
[1], and twig joins [5]. We extended the TAX algebra to support our metadata
functionalities and also borrowed ideas from some of the join algorithms for our
metadata association join.

7 Conclusion

Support for metadata is lacking from most native XML DMBSs (XDBMSs). In this
paper we describe how to efficiently store and query metadata in an XDBMS. We
focused on the challenge of efficiently matching a metadata perspective during query
evaluation. Efficient matching is essential to ensuring that proscriptive metadata is
quickly and correctly handled. This paper makes three primary contributions. First, it
extends the Tree Algebra for XML (TAX) with constructs to support metadata. Meta
edges were added to pattern trees to provide access to the metadata. We also showed
how to model various metadata-related functions using the extended pattern trees. The
second contribution is the implementation of MetaDOM and MetaXQuery in an open
source XDBMS. The implementation stores metadata in a separate metadata
collection. The collection is consulted during evaluation of a MetaXQuery query,
especially as the query’s perspective is matched to the metadata. The matching
process uses indexes and joins already available in an XDBMS, so it can be
implemented with few changes to XDBMS’s architecture. Finally, we experimentally
showed that the cost of evaluated MetaXQuery queries is modest, especially when
those queries can be optimized.

 Supporting Proscriptive Metadata in an XML DBMS 491

References

[1] Al-Khalifa, S., Jagadish, H.V.: Multi-level operator combination in XML query
processing. In: CIKM, pp. 134–141. McLean, Virginia (November 2002)

[2] Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.: Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In: ICDE, San Jose,
California, pp. 141–152 (February-March 2002)

[3] Beech, D., Malhotra, A., Rys, M.: A Formal Data Model and Algebra for XML. W3C
XML Query working group note (September 1999)

[4] Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and Enforcing Access Control
Policies for XML Document Sources. WWW Journal 3(3), 139–151 (2000)

[5] Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, June 2002, pp. 310–321 (2002)

[6] Currim, F., Currim, S., Dyreson, C., Snodgrass, R.T.: A Tale of Two Schemas: Creating a
Temporal XML Schema from a Snapshot Schema with τXSchema. In: Bertino, E.,
Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K.,
Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 348–365. Springer, Heidelberg
(2004)

[7] Dyreson, C., Böhlen, M., Jensen, C.: Capturing and Querying Multiple Aspects of
Semistructured Data. In: VLDB, Edinburgh, Scotland, pp. 290–301 (September 1999)

[8] Dyreson, C., Böhlen, M., Jensen, C.: “METAXPath”. In: Proceedings of the Inter. Conf.
on Dublin Core and Metadata Applications, Tokyo, Japan, pp. 17–23 (2001)

[9] Gao, D., Snodgrass, R.T.: Temporal Slicing in the Evaluation of XML Queries. In:
VLDB, Berlin, Germany, September 2003, pp. 632–643 (2003)

[10] Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query Languages,
http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query

[11] Hunter, J., Lagoze, C.: Combining RDF and XML Schemas to Enhance Interoperability
Between Metadata Application Profiles. In: WWW, Hong Kong, pp. 457–466 (May
2001)

[12] Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree
Algebra for XML. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp.
149–164. Springer, Heidelberg (2002)

[13] Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivasta, D., Wiwatwattana, N.:
Colorful XML: one hierarchy isn’t enough. In: SIGMOD, Paris, France, pp. 251–262
(2004)

[14] Jin, H., Dyreson, C.E.: Grouping in MetaXQuery. In: Proceedings of WISE Conference,
Brisbane, Australia, pp. 688–693 (2004)

[15] Jin, H., Dyreson, C.E.: Sanitizing using Metadata in MetaXQuery. In: ACM SAC (2005)
[16] Meier, W.: eXist: An Open Source Native XML Database, http://exist.

sourceforge.net
[17] Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Generic

Model Management. In: SIGMOD, San Diego, California, June 2003, pp. 193–204 (2003)
[18] Mihaila, G.A., Raschid, L., Vidal, M.-E.: Using Quality of Data Metadata for Source

Selection and Ranking. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997,
pp. 93–98. Springer, Heidelberg (2001)

[19] Murthy, S., Maier, D., Delcambre, L.M.L., Bowers, S.: Super-imposed Applications using
SPARCE. In: ICDE, Boston, MA, p. 861 (March 2004)

[20] Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In: Proceedings of VLDB Conference, Hong
Kong, China, pp. 974–985 (2002)

492 H. Jin and C. Dyreson

[21] Stavrakas, Y., Pristouris, K., Efandis, A., Sellis, T.: Implementing a Query Language for
Context-Dependent Semistructured Data. In: Benczúr, A.A., Demetrovics, J., Gottlob, G.
(eds.) ADBIS 2004. LNCS, vol. 3255, pp. 173–188. Springer, Heidelberg (2004)

[22] World Wide Web Consortium. RDF Primer, W3C Recommendation (February 2004),
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[23] World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model, W3C Working
Draft (October 2004), http://www.w3.org/TR/2004/WD-xpath-datamodel-
20041029/

[24] Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On Supporting
Containment Queries in Relational Database Management Systems. In: SIGMOD, Santa
Barbara, California (2001)

XPath Rewriting Using Multiple Views

Junhu Wang1 and Jeffrey Xu Yu2

1 Griffith University, Gold Coast, Australia
J.Wang@griffith.edu.au

2 Chinese University of Hong Kong, Hong Kong, China
yu@se.cuhk.edu.hk

Abstract. We study the problem of tree pattern query rewriting using
multiple views for the class of tree patterns in P {//,[]}. Previous work has
considered the rewriting problem using a single view. We consider two
different ways of combining multiple views, define rewritings of a tree
pattern using these combinations, and study the relationship between
them. We show that when rewritings using single views do not exist, we
may use such combinations of multiple views to rewrite a query, and even
if rewritings using single views do exist, the rewritings using combina-
tions of multiple views may provide more answers than those provided
by the union of the rewritings using the individual views. We also study
properties of intersections of tree patterns, and present algorithms for
finding rewritings using intersections of views.

1 Introduction

Query rewriting using views has many applications including data integration,
query optimization, query caching, and support of physical data independence
[5]. Given a query, it studies finding another query using only the views to pro-
duce correct answers to the original query. In the literature, two types of query
rewritings are studied, namely, equivalent rewritings and contained rewritings.
Given a view, V , and a query, Q, an equivalent rewriting produces all answers
to the original query Q using view V , whereas a contained rewriting may pro-
duce a subset of the answers to Q using V . Both types of rewritings have been
extensively studied in the relational database context [5].

Recently, xml query rewriting has attracted attention because of the rising
importance of xml data [2, 3, 6, 7, 9, 14]. XPath lies in the center of all xml

languages, where the major classes of XPath expressions that have been studied
are tree patterns [1, 8]. Among previous work on rewriting XPath queries using
views, Xu and Ozsoyoglu [14] studied the complexity of finding equivalent rewrit-
ings for four types of tree patterns studied in [8] and presented an approach for
finding and minimizing such rewritings. Mandhani and Suciu [7] presented, in
addition to cache organization, an efficient but incomplete method for finding
equivalent rewritings of tree patterns involving /, //, [] and * when the pat-
terns are assumed to be minimized and may have value-based predicates. In [6],
Lakshmanan et al. studied maximal contained rewritings of tree patterns where

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 493–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

494 J. Wang and J.X. Yu

paper

section section

examplesubsection

referencereference

paper

example

reference

paper

paper

n1

n2

n3

Fig. 1. Example xml tree t

both the views and queries are in P {//,[]}, both in the absence and in the pres-
ence of non-recursive, non-disjunctive dtds. As the name implies, the maximal
contained rewriting is a rewriting that contains all other contained rewritings.

All of the above works focus on rewriting the query using a single view. In
other words, no combination of views is considered for the purpose of rewriting.
In this paper we study tree pattern rewriting using multiple views, and our work
is motivated by the following observations. Suppose we have a set V of views
and the query Q. Then

1. It is possible for Q to have no contained rewritings using any individual view
in V , but it can be (partially) answered using the combination of some of the
views. As a simple example, the query Q=article[table][figure]/author
cannot be (partially) answered using either V1 = article[table]/authoror
V2 = article[figure]/author, but it can be answered using V1 ∩ V2, which
is equivalent to Q.

2. Even if Q does have contained rewritings using V1, and/or Q does have
contained rewritings using V2, there may be contained rewritings of Q using
some combination of V1 and V2 (e.g., intersection) which provide strictly
more answers to Q than the union of all contained rewritings of Q using the
individual views. This is demonstrated by Example 1.

3. Even if a query Q does not have an equivalent rewriting using V according
the conventional definition of rewriting [6, 7, 14], it is still possible to find all
of the correct answers to Q using V for all xml trees. This is demonstrated
in Example 2.

The example below demonstrates observation 2.

Example 1. Consider the views
V1= paper//subsection//reference,
V2= paper//example/reference

and the query
Q= paper//subsection//example/reference//paper.

XPath Rewriting Using Multiple Views 495

a

x

x

x

b

c

d

b

 c
x

y
d e

(a) Q

a

x

x

x

b

c

d

(b) V

x

x

y
e

(c) Q1

a

x

x

x

b

c

d
x

y
e

(d) Q1 ◦ V

x

y

(e) Q2

a

x

x

x

b

c

d
y

(f) Q2 ◦ V

Fig. 2. Q has no equivalent rewriting using V according to conventional definition, but
Q can be fully answered using V : Q1 ◦ V ∩ Q2 ◦ V = Q

It can be verified that
V1 ∩ V2 = paper//subsection//example/reference,

and evaluating the pattern reference//paper over the answers of V1 ∩ V2 will
produce the same answers as Q, that is, reference//paper is an equivalent
rewriting of Q using V1 ∩ V2. However, the maximal contained rewriting of Q
using V1 is

reference//example/reference//paper,
and the maximal contained rewriting of Q using V2 is

reference//subsection//example/reference//paper.
As we show next, the rewriting using V1 ∩ V2 produces strictly more answers
than the union of the answers produced by the maximal contained rewritings
using V1 and V2 individually. For the xml tree t shown in Fig.1, evaluating V1

over t produces (the subtrees rooted at) n1 and n2, and evaluating V2 over t
produces (the subtrees rooted at) n2 and n3. Therefore, the maximal contained
rewriting using V1 or V2 will produce no answers for Q, but the rewriting using
V1 ∩ V2 will produce the paper node under n2.

The next example demonstrates observation 3.

Example 2. Consider the query Q and view V shown in Fig.2 (a) and (b) respec-
tively. It can be verified that Q has no equivalent rewritings using V according to
the conventional definition. But given any xml tree t, we can find Q(t) using the
view as follows. We evaluate the query Q1 = x/x[e]/y over the subtrees in V (t),
and denote the results as Q1(V (t)); we then evaluate Q2 = x/y over the subtrees
in V (t), and obtaining a set denoted as Q2(V (t)). Finally, we take the intersection
of Q1(V (t)) and Q2(V (t)). It can be verified that Q(t) = Q1(V (t)) ∩ Q2(V (t)).

We will study contained and equivalent rewritings of tree patterns in P {//,[]}

using multiple views in the absence and presence of dtds, with the intersection
and union operations. Our main contributions are summarized below.

496 J. Wang and J.X. Yu

– We define (contained and equivalent) rewritings of a tree pattern using two
different combinations of views, and show the relationship between these
rewritings.

– We show the intersection of some tree patterns, if not empty, can be ex-
pressed as the union of tree patterns, and provide an efficient algorithm to
translate the intersection into union.

– Based on the above , we provide algorithms for finding the maximal contained
rewritings and equivalent rewritings using the intersection of views. We also
show the effect of an non-recursive dtd on the rewritings.

The rest of the paper is organized as follows. Section 2 provides the back-
ground and notations. Section 3 presents the algorithm for reformulating inter-
sections of tree patterns into union, and studies rewritings using the intersection
of views. Section 4 defines rewritings using a different combination views, and
compare them with rewritings using the intersection. Section 5 considers the
effects of non-recursive dtds. Section 6 surveys related work. Finally Section 7
concludes the paper.

2 Preliminaries

2.1 XML Trees and Tree Patterns

Let Σ be an infinite set of tags. An xml tree is a tree such that every node is
labeled with a tag in Σ. A tree pattern (TP) is a tree with a unique distinguished
node, and with every node labeled with a tag in Σ, and every edge labeled with
either / or //. Such a TP corresponds to an XPath expression involving the
child axis, descendant axis, and branching condition []. A tree pattern has a tree
representation. Fig.2 show several TPs, and the TP in Fig.2 (b) represents the
XPath expression a//x[b]/x[c]/x[d]. Here, single and double lines represent /-
edges and //-edges respectively. The distinguished node is indicated by a circle.
Note: the TPs in our discussion correspond to the fragment P {//,[]} defined in [8].
A subset of P {//,[]}, denoted P {//}, contains all TPs that has a single root-to-leaf
path.

Let T be an xml tree or a TP, and v be a node in T . We will use N(T) to
denote the set of all nodes in T , rt(T) to denote the root of T , and label(v)
to denote the label of v. For any TP P , DNP and DPP denote, respectively, the
distinguished node and distinguished path of P (i.e., the path from rt(P) to DNP).

A matching of a TP, P , in an xml tree, t, is a mapping δ from N(P) to N(t)
satisfying the following conditions: (1) root-preserving, i.e., δ(rt(P)) = rt(t),
(2) label-preserving, i.e., ∀v ∈ N(P), label(v) = label(δ(v)), and (3) structure-
preserving, i.e., for every edge (x, y) in P , if it is a /-edge, then δ(y) is a child
of δ(x); if it is a //-edge, then δ(y) is a descendant of δ(x), i.e, there is a path
from δ(x) to δ(y). Each matching δ produces a subtree of t rooted at δ(DNP),
denoted subt

δ(DNP), which is called an answer to the TP. We use P (t) to denote
the answer set of P on t:

P (t) = {subt
δ(DNP) | δ is a matching of P in t}.

XPath Rewriting Using Multiple Views 497

Let T be a set of xml trees. We use P (T) to denote the union of answer sets
of Q on the trees in T . That is, P (T) =

⋃
t∈T P (t).

2.2 Intersection and Extension of TPs

Two tree patterns, P and Q, are said to be comparable if label(rt(P))= label(rt(Q))
and label(DNP) = label(DNQ). LetP1, . . . , Pn be comparableTPs. For any XML tree
t, the intersection of P1, . . . , Pn, denoted P1 ∩ · · · ∩Pn, returns P1(t)∩ · · · ∩Pn(t).
The union of P1, . . . , Pn, denoted P1 ∪ · · · ∪ Pn, returns P1(t) ∪ · · · ∪ Pn(t).

Let P and Q be TPs such that label(DNP) = label(rt(Q)). The extension of
P using Q, denoted Q ◦ P , is the TP obtained by merging DNP with rt(Q).
The distinguished node of Q ◦ P is DNQ. Fig.2 (d) shows the extension of V
(Fig.2 (b)) using Q1 (Fig.2 (c)). It is easy to see that, for any xml tree t,
(Q ◦ P)(t) = Q(P (t)), that is, (Q ◦ P)(t) is equivalent to the union of answer
sets of Q on the subtrees in P (t).

Let P1, . . . , Pn be comparable TPs, and Q be a TP such that rt(Q) and DNVi

have identical labels. We denote by Q◦(P1∩· · ·∩Pn) the extension of P1∩· · ·∩Pn

using Q, which returns, for any t, Q(P1(t) ∩ · · · ∩ Pn(t)).

2.3 TP Containment

Let P and Q be TPs. P is said to be contained in Q, denoted P ⊆ Q, if for every
xml tree t, P (t) ⊆ Q(t). It is shown in [1] that P ⊆ Q iff there is a containment
mapping from Q to P . Recall: A containment mapping (CM) from Q to P is
a mapping δ from N(Q) to N(P) that is label-preserving, root-preserving as
discussed in the last section, structure-preserving (which now means for any
/-edge (x,y) in Q, (δ(x), δ(y)) is a /-edge in P , and for any //-edge (x, y),
there is a path from δ(x) to δ(y) in P) and is output-preserving, which means
δ(DNQ) = DNP . A homomorphism from Q to P is similar to a CM, except there is
no requirement of output-preserving.

The following lemma is proved in [13].

Lemma 1. For TPs P1, . . . , Pn, P ∈ P {//,[]}, P ⊆ P1 ∪ · · · ∪ Pn iff there is
i ∈ [1, n] such that P ⊆ Pi.

3 TP Rewriting Using Intersections of Views

A view is an existing TP. We define rewritings using intersections of views as
follows.

Definition 1. Let Q be a query, and V1, . . . , Vn be comparable views. If V1 ∩
· · · ∩ Vn is non-empty, and there exists Q′ such that label(rt(Q′)) = label(DNV1),
and Q′ ◦ (V1 ∩ · · · ∩ Vn) ⊆ Q, then we say Q′ ◦ (V1 ∩ · · · ∩ Vn) is a contained
rewriting (CR) of Q using V1 ∩ · · ·∩Vn. If Q′ ◦ (V1 ∩ · · · ∩Vn) = Q, we say Q′ is
an equivalent rewriting (ER) using V . The maximal contained rewriting (MCR)
of Q using V1 ∩ · · · ∩ Vn, denoted MCR(Q, V1 ∩ · · · ∩ Vn), is the union of all CRs
of Q using V1 ∩ · · · ∩ Vn.

498 J. Wang and J.X. Yu

Note that when n = 1, the above definition reduces to those in [6] (CR and MCR)
and [14] (ER).

3.1 Properties of Intersections

In this section we identify conditions under which the intersection of TPs are
not empty, and present algorithms to translate the intersection into the union
of TPs. We present these results using two TPs. Generalization to more TPs is
simple.

In many cases the intersection of two TPs P and Q is an empty query, that is,
it always returns the empty set. For example, when P = a/b/x and Q = a/c//x.
The question arises: when is P ∩ Q a non-empty query? We have the follow
answer to this question.

Lemma 2. P ∩ Q is non-empty iff there is a path P ′ in P {//} such that P ′ ⊆
DPP , and P ′ ⊆ DPQ.

The lemma is true because, when there is no dtd, every TP is non-empty, and
P ∩ Q is non-empty iff DPP ∩ DPQ is non-empty.

Let’s call the path P ′ in lemma 2 a common distinguished path of P and
Q. If DPP and DPQ do not have //-edges, then only when DPP = DPQ there
is a CDP of P and Q, which is DPP itself. However, if DPP and DPQ do have
//-edges, then there may be (infinitely) many CDPs of P and Q. For example,
if P = a//x[b]//y, Q = a//x[c]//y, then P and Q have the CDPs a//x//y,
a//x//x//y, a//x//x//x//y and so on. But there are only a finite number of
CDPs that are of interest to us. These CDPs are annotated to form annotated
CDPs.

Definition 2. Let P and Q be comparable TPs in P {//,[]}. An annotated CDP
(ACDP) of P and Q is a CDP P ′ of P and Q such that (1) every node in P ′ is
annotated with either 1, or 2, or both, (2) there is a (unique) CM mP from DPP

to P ′ such that every node in DPP is mapped a node annotated with 1 (or both
1 and 2), and for every node v in P ′ annotated with 1 (or both 1 and 2), there
is a unique node u in DPP such that mP (u) = v, (3) there is a (unique) CM mQ

from DPQ to P ′ such that every node in DPQ is mapped a node annotated with 2
(or both 1 and 2), and for every node v in P ′ annotated with 2 (or both 1 and
2), there is a unique node u in DPQ such that mQ(u) = v.

Intuitively, an ACDP of P and Q is a path in P {//} which contains exactly one
“copy” of DPP and one “copy” of DPQ (the nodes annotated with 1 form a copy
of DPP , and the nodes annotated with 2 form a copy of DPQ) and every node
appears in at least one of the copies. Fig.3 shows all ACDPs of P = a//x[b]//y
and Q = a//x[c]//y.

Next we present an algorithm that finds all ACDPs of P and Q. Let P1 =
DPP and P2 = DPQ. We can find all ACDPs of P and Q by calling the function
merge(P1, P2). In the function, a position in Pj refers to either a node or a
//-edge in Pj . Each position in Pj is given a unique position number, with

XPath Rewriting Using Multiple Views 499

a 1,2

x 1,2

y 1,2

a 1,2

x 1

x 2

y 1,2

a 1,2

x 2

x 1

y 1,2

Fig. 3. ACDPs of a//x[b]//y and a//x[c]//y

the position number of rt(Pj) being 0, and each subsequent position’s position
number increases by 1. The function merge(Pi, Pj) finds the ACDPs of Pi and
Pj by “inserting” the nodes of Pi into Pj . To do so, it needs to find a position,
in Pj , for every node in Pi. There are three stages in the process. The first
stage (lines 1-6) is to scan Pi top-down, marking each node v in Pi with a
set of markings. Each marking is of the form {s : A(v, s)} (except for rt(Pi),
which is marked {0}), where s is a position, and A(v, s) is a set of positions. The
meaning of this marking is that if parent(v) is merged into Pj in position s, then
the possible positions where v can be inserted in Pj are those in A(v, s). The
criterion to choose the positions in A(v, s) is label-preservation and structure-
preservation. The second stage (lines 8-10) removes the impossible positions from
the markings, going from bottom-up. The only possible position for DNPi is the
last position in Pj . Based on structure-preservation, if impossible positions for
v are found and deleted, then impossible positions for parent(v) may be found
and deleted. In the last stage (lines 13-29), if every node has a possible position,
we pick a position sv for each node v in Pi according to the markings, and
construct a ACDP. For each combination of positions (each combination has one
position for every node in Pi) there is a ACDP constructed. Finally the function
returns all ACDP constructed this way.

Example 3. Let P1 = a//x//y/y and P2 = a//x//x//y. Fig.4 shows the process
of running merge(P1, P2).

First, we identify and label each position in P2. There are 7 positions labeled
0, 1, . . . , 6, as shown in the figure. In stage 1, we mark each node in P2 with its
possible positions. The a-node is marked {0}. If the a-node is put in position
0, then the possible positions of the next node are 1,2,3,4,5. Therefore, the first
x-node is marked with (0 : {1, 2, 3, 4, 5}). If the x-node is put to position 1, then
the next node may be put to positions 1,3 or 5, to preserve label and structure
of Pi. If the x-node is put to position 2, then the possible positions for its child
are 3 and 5, . . ., if the x-node is put to position 5, then its child must be put to
position 5 (after the x-node). Therefore, the child of the x-node is marked with
the markings as shown in the figure. Finally, the last node of P1 must be put to
the last position, position 6, in P2. Thus if its parent is put to position 1 or 3,
then there are no possible positions for it. If its parent is put to position 5, the

500 J. Wang and J.X. Yu

Algorithm 1. merge(Pi, Pj)

1: let pos(rt(Pi)) = {0}, S = ∅
2: for every subsequent node v in Pi do
3: for all s ∈ pos(parent(v)) do
4: let position(v, s) = Find Position(v, Pi, s, Pj)
5: mark v with (s : position(v, s))
6: let pos(v) =

�
s∈pos(parent(v)) position(v, s)

7: if pos(v) = ∅ then return ∅
8: for each node v in Pi (starting from v = DNPi

) do
9: while ∃ marking (s : position(v, s)) for v such that position(v, s) = ∅ do

10: delete s from position(parent(v), s′) for all s′

11: if pos(v) = ∅ return ∅
12: for each node v in Pi choose a position sv from its markings. Initially, v = rt(Pi) and sv = 0.

For each subsequent node v, pick a position from position(v, sparent(v))

13: for each combination of positions found above do
14: let P ′ = Pj , annotate every node with j
15: for v in Pi do
16: if position sv points to node u in P ′ then
17: annotate u with i.
18: if prt(u) is annotated with i or i, j and (parent(v), v) is /-edge then
19: change (prt(u), u) to /-edge
20: else if position sv represents //-edge (u1, u2) in P ′ then
21: insert a label(v)-node u0 between u1 and u2
22: if u1 is annotated with i or i, j then
23: let edge (u1, u0) be of the same type as (parent(v), v)
24: else
25: let edge (u1, u0) be of type //
26: let edge (u0, u2) be of type //; let position sv point to this edge (u0, u2)
27: add P ′ to S
28: return S

it can go to position 6. This explains the markings of the last node of P1. In
stage 2, we remove the impossible positions in the markings. Because position
1 and 3 of the first y-node prohibits the second y-node to be put in position 6
(as indicated by the markings (1, {}) and (3, {}), we know positions 1 and 3 are
impossible for the first y-node. Thus we delete them from its markings. In stage
3, for each combination of the positions, we construct an ACDP. A combination
of position is made of a position for each node in P1. In this example, the
combinations of positions are (0,1,5,6), (0,2,5,6), . . ., (0,5,5,6). We use (0,5,5,6)
to explain the construction process. Initially P ′ = P2 and every node in P ′ is
annotated with 2. Position 0 points to the root of P2, therefore we annotate
rt(P1) with 1. Position 5 points to a //-edge, therefore we insert an x-node,
x0, in this position and annotate this node with 1. The edge (x, x0) and (x0, y)
are to be of type // in this case. Now position 5 points to the edge (x0, y).
Since the position for the next node is also 5, we insert another x-node, x1,
between x0 and y, and annotate x1 with 1. The last node of P1 has position
6, so we annotate the y-node in P2 with 1. Since x1 is annotated with 1, we
can change the the edge type of (x1, y) to that of the corresponding edge in
P1, in this case, /. The resulting P ′ is a ACDP: it is a1,2//x2//x2//x1//y1/y1,2,
where the superscripts indicate the annotation. The ACDPs constructed using
other combinations are: a1,2//x1//x2//x2//y1/y1,2, a1,2//x1,2//x2//y1/y1,2,
a1,2//x2//x1//x2//y1/y1,2, and a1,2//x2//x1,2//y1/y1,2.

XPath Rewriting Using Multiple Views 501

Algorithm 2 Find Position(v, Pi, s, Pj)

1: if s is node u in Pj then
2: if (parent(v), v) is //-edge then
3: let A consist of all //-edges after u and all nodes labeled label(v) after u.
4: else if (parent(v), v) is /-edge then
5: if u has child u′ then
6: if (u, u′) is //-edge then add this //-edge to A
7: if label(u′) = label(v) then add u′ to A
8: if s is //-edge (u1, u2) in Pj then
9: add s to A
10: if (parent(v), v) is //-edge then
11: add all //-edges after u2 and all nodes labeled label(v) after u1 to A
12: if (parent(v), v) is /-edge and label(u2) = label(v) then add u2 to A
13: if v is the last node in Pi then
14: delete from A all positions except that of DNPj

15: return A

Number of ACDPs. Let n and m be the number of edges in Pi and Pj respec-
tively, and f(m, n) be the worst-case number of ACDPs of Pi and Pj (which occurs
when all nodes in Pi and Pj have the same label, and all edges are //-edges).
The following theorem can be proved using induction on m and n.

a

x

x

y

a

x

y (1: {1, 3, 5}), (2: {3, 5}), (3: {3, 5}), (4: {5}), (5: {5})

y (1: {}), (3: {}), (5: {6}).

1

2
3

4

5
6

0 {0}

(0: {1, 2, 3, 4, 5})

p2 p1

Fig. 4. Finding ADCPs of P1 and P2

Theorem 1. f(m, n) = f(n, m), which can be calculated recursively as follows:

f(m, n) = f(m − 1, n) + 2(f(m − 1, n − 1)
+ f(m − 1, n − 2) + · · · + f(m − 1, 1)).

For example, f(m, 1) = 1, f(2, 2) = 3, f(3, 2) = 5, f(3, 3) = 13, f(4, 3) = 25,
f(4, 4) = 63 and so on. Thus f(m, n) grows exponentially in general. However,
in most practical cases, the number of ACDPs is much smaller than f(m, n).

Complexity. Algorithm merge(Pi, Pj) runs in O(|Pi| × |Pj |2), where |Pi| is
the number of nodes in Pi: function Find Position runs in O(|Pj |), the top-
down scan visits each node in Pi once, and for each node in Pi, the function
Find Position is called at most 2|Pj | times. The bottom-up scan and the con-
struction of ACDPs can be done in O(|Pi| × |Pj |).

502 J. Wang and J.X. Yu

a

 b
 x

y
z

z c

(a) P1

a

 b
 x

x c

x

(b) P2

a

 b
 x

y
z

z cx

x

x

(c) MTP

Fig. 5. TPs P1, P2 and the MTP of P1, P2

Let P be a TP in P {//,[]}. For every node v in P , we use Pv to denote the
subpattern of P rooted at v. Let v be a node in DPP , and u be the child of v on
DPP (if u exists). We call the subpattern obtained by removing Pu from Pv the
branching subtree at v. For example, in Fig.5 (a), the branching subtrees are
indicated by the dotted oval. Next we define merged TPs (MTPs) of P1 and P2.

Definition 3. Let P1 and P2 be comparable TPs, and P ′ be an ACDP of P1 and
P2. Let δi be the unique CM from Pi to P ′ that maps every node in Pi to a node
in P ′ annotated with i. The merged TP (MTP) of P1 and P2 wrt to P ′ is the
TP obtained as follows: for every node v in Pi, add the branching subtree at vi

under δi(vi).

Fig.5 (c) shows the only MTP of the TPs in Figures 5 (a) and (b).
The following theorem is straightforward.

Theorem 2. Let P1 and P2 be TPs in P {//,[]}. The union of all MTPs of P1

and P2 is equivalent to P1 ∩ P2.

Note also that the subpatterns of the MTPs rooted at the distinguished nodes
are all identical.

3.2 Finding MCRs Using V1 ∩ V2

Let Q be the query and V1 and V2 be comparable views. We assume V1 ∩ V2 is
not empty, and V1 � V2, V2 � V1. Suppose V1 ∩ V2 is equivalent to V ′

1 ∪ · · · ∪ V ′
k.

Clearly Q′ ◦ (V1 ∩ V2) ⊆ Q if and only if Q′ ◦ V ′
i ⊆ Q for all i ∈ [1, k]. In other

words, Q′ is a CR of Q using V1 ∩ V2 iff it is a CR of Q using V ′
i for all i ∈ [1, k].

Therefore, to find the MCR of Q using V1 ∩ V2, we can find the MCR of Q using
each Vi and intersect them. That is,

MCR(Q, V1 ∩ V2) =
k⋂

i=1

MCR(Q, V ′
i).

Example 4. Consider the views V1, V2, V ′
1 , V ′

2 and the query Q in Fig.6. V1∩V2 =
V ′

1 ∪V ′
2 . We find the MCR of Q using V ′

1 , which is y/z, and the MCR of Q using
V ′

2 , which is also y/z. Thus y/z is the MCR of Q using V1 ∩ V2.

XPath Rewriting Using Multiple Views 503

a

x

yb

(a) V1

a

x

yc

(b) V2

a

x

yb c

(c) V ′
1

a

x

y

b

c

x

(d) V ′
2

a

x x

y c
b

c

z

(e) Q

Fig. 6. Finding MCR using intersection

Algorithm 3. Finding equivalent rewriting
1: for i = 1 to n do
2: if exists node v such that DPv

Q is isomorphic to pi then

3: if subv
Q ◦ V ′

i = Q then

4: if ∀j ∈ [1, k], V ′
j ⊆ V ′

i then

5: return subv
Q

a

x

y

x

x

(a) V1

a

x

x

y

b

c

(b) V2

a

x

x

y

b

c

x
x

(c) V ′
1

a

x

x

y

b

cx
x

(d) V ′
2

Fig. 7. Example for illustrating ER using intersection

3.3 Finding ERs Using V1 ∩ V2

Suppose Q has an ER Q′ using V1 ∩ V2, and V1 ∩ V2 = V ′
1 ∪ · · · ∪ V ′

k, that is,
Q′◦(V ′

1 ∪· · ·∪V ′
k) = Q. By Lemma 1, there exists i ∈ [1, k], such that Q′◦V ′

i = Q.
Hence for all j ∈ [1, k], Q′◦V ′

j ⊆ Q′◦V ′
i , and thus there is a CM from Vi to Vj , so

the length of DPV ′
i

cannot be longer than that of DPV ′
j
. Furthermore, DPQ′◦V ′

i
is

isomorphic to DPQ, and the subpattern of Q rooted at the node that corresponds
to DNV ′

i
, is an ER of Q using V ′

i (by Lemma 4.8 of [14]).
Using the properties above, we provide a heuristic algorithm, Algorithm 3, for

finding ERs using V1 ∩ V2. In the algorithm, we assume p1, · · · , pn (n ≤ k) are
the shortest ACDPs of V1 and V2, and the corresponding MTPs are V ′

1 , · · · , V ′
n

1.
For any node v on DPQ, the path from rt(Q) to v is denoted DPv

Q, and the
subpattern rooted at v is denoted subv

Q. The basic idea of the algorithm is as
follows. For each shortest ACDP pi, we first check whether it is isomorphic to
some DPv

Q, if not, there is no ER using V ′
i ; if yes, we further check whether subv

Q

is an ER using V ′
i . If yes, we further check whether all other MTPs of V1 and V2

are contained in Vi. If yes, subv
Q is returned as an ER of Q using V1 ∩ V2. It is

easy to prove the following theorem.

1 Note that although there may be many ACDPs of V1 and V2, usually there are few
shortest ones.

504 J. Wang and J.X. Yu

Theorem 3. (1) If Q has an ER using V1 ∩ V2, then V1 ∩ V2 is equivalent to a
single TP V . (2) Algorithm 3 finds the ER if it exists.

Example 5. (1) Consider the views in Fig.6. Since V1 ∩V2 = V ′
1 ∪V ′

2 , DPV ′
1

is the
shorter than DPV ′

2
, and V ′

2 � V ′
1 , we know there is no ER of Q using V1 ∩ V2 for

any Q. (2) Consider the two views V1 and V2 in Fig.7. There are two MTPs V ′
1

and V ′
2 , and V ′

2 ⊆ V ′
1 . Therefore, for any TP Q, Q′ is an ER of Q using V1 ∩ V2

iff Q′ is an ER using V ′
1 .

4 Rewriting Using Other Combinations of Views

We now define a second type of rewritings of Q using multiple views that does
not require the views to be comparable.

Definition 4. Let V1, . . . , Vn be some views with identical root label (possibly
Vi = Vj for some i, j), and Q be a query. If there are TPs Q1, . . . , Qn such that⋂n

i=1(Qi ◦ Vi) ⊆ Q, and
⋂n

i=1(Qi ◦ Vi) is non-empty, then we say 〈Q1, . . . , Qn〉
is a contained rewriting of Q using 〈V1, . . . , Vn〉. If

⋂n
i=1(Qi ◦Vi) ⊇ Q also holds,

we call the CR an equivalent rewriting.

Intuitively, if there is a contained rewriting
⋂n

i=1(Qi ◦ Vi), then to partially
answer Q over t, we can evaluate Qi over Vi(t) and then find the intersection⋂n

i=1 Qi(Vi(t)). Note that, when n = 1, the definition reduces to that in [6] (CR
and MCR) and [14] .

4.1 Relationship between Rewritings Using 〈V1, V2〉 and Rewritings
Using V1 ∩ V2

First, it is easy to prove the following lemma.

Lemma 3. Let V1 and V2 be comparable views. Then Q ◦ (V1 ∩ V2) ⊆ (Q ◦V1)∩
(Q ◦ V2).

However, generally Q ◦ (V1 ∩ V2) � (Q ◦ V1) ∩ (Q ◦ V2). Consider V1 = a//b/x
and V2 = a//c/x, and Q = x//z. Clearly V1 ∩ V2 = ∅, hence Q ◦ (V1 ∩ V2) = ∅.
However, (Q ◦ V1) ∩ (Q ◦ V1) = ∅. This example also shows that sometimes even
if V1 ∩ V2 is empty, it is still possible to have CRs of Q using 〈V1, V2〉, although
there are clearly no CRs of Q using V1 ∩ V2.

The next lemma identifies some special cases where Q ◦ (V1 ∩V2) = (Q ◦V1)∩
(Q ◦ V2).

Lemma 4. Let V1 and V2 be comparable views. If one of the following conditions
holds, then Q ◦ (V1 ∩ V2) = (Q ◦ V1) ∩ (Q ◦ V2).

(1) DPV1 = DPV2 , and all edges in DPV1 are /-edges.
(2) Every edge in DPQ is a /-edge.
(3) V1 ⊆ V2 or V2 ⊆ V1.

XPath Rewriting Using Multiple Views 505

Using the above lemmas, we can prove the following theorem:

Theorem 4. Let V1, V2 be comparable views. For any query Q, if there is a CR
of Q using V1 ∩ V2, then there is a CR of Q using 〈V1, V2〉.

Note that the above theorem does not say there is CR using 〈V1, V2〉 which
contains the CR using V1 ∩ V2. The next example shows that it is possible for Q
to have a CR using V1 ∩ V2, and this rewriting is not contained in any CRs of Q
using 〈V1, V2〉.

Example 6. Let V1 = a//x//z, V2 = a//y/z, and Q = a//x//y/z//c. It can be
verified that V1 ∩ V2 = a//x//y/z. Now let Q′ = z//c, then Q′ ◦ (V1 ∩ V2) = Q.
Thus Q′ is an ER of Q using V1 ∩ V2.

If there are Q1 and Q2 such that (Q1 ◦ V1) ∩ (Q2 ◦ V2) ⊆ Q, then DPQ1

must be z/c or z//c, and DPQ2 must be z/c or z//c, because rt(Qi) must be
labeled z and DNQi must be labeled c. One can verify that if DPQ2 = z//c,
then (Q1 ◦ V1) ∩ (Q2 ◦ V2) is not contained in Q, and if DPQ2 = z/c, then
(Q1 ◦ V1) ∩ (Q2 ◦ V2) is not equivalent to Q either.

5 The Presence of Non-recursive dtds

In the following, we assume every TP P is satisfiable under a non-recursive dtd

G, that is, there is an xml tree t which conforms to G, and P (t) = ∅.
In the presence of G, no label in an XML tree can appear in a path more than

once. Thus any TP that is satisfiable under G cannot have a path that contains
two or more nodes with the same label. Therefore, for any comparable views V1

and V2, there is at most one ACDP of V1 and V2, and at most one MTP of V1 and
V2. In other words, V1 ∩ V2 is equivalent to a single TP V ′ under G. Therefore,
to find the MCR or ER of Q using V1 ∩ V2, we only need find the MCR or ER of
Q using V ′, and this can be done using the method of [6]. Furthermore, we can
prove (see full version of this paper) the following theorem, which implies that,
in the presence of G, Q′ is a CR using V1 ∩ V2 iff 〈Q′, Q′〉 is a CR of Q using
〈V1, V2〉.

Theorem 5. Let V1 and V2 be comparable views, and label(rt(Q′)) = label(DNV1).
In the presence of G, Q′ ◦ (V1 ∩ V2) is equivalent to (Q′ ◦ V1) ∩ (Q′ ◦ V2).

6 More Related Work

Besides the recent works discussed in Section 1, several other papers dealt with
tree pattern query rewriting. In particular, [10] studied the problem of query an-
swerability using views for general XPath queries, that is, given Q and V1, · · · , Vn,
whether there are Q1, · · · , Qn such that Q1 ◦V1∪· · ·∪Qn ◦Vn = Q. [3] addressed
the problem of answering XPath queries using a single materialized view where,
for the view, a combination of node references, typed data values, and full paths
may be stored. However, the way in which a query is answered using the view

506 J. Wang and J.X. Yu

is different from ours (and those in Section 1): one can follow node references
to go to the original document, so the original xml tree cannot be discarded.
[2] studied a different type of equivalent rewriting using multiple views in the
presence of structural summaries and integrity constraints: the answer sets of
the views are nodes rather than subtrees, and the answers to the new query
are obtained by combining answers to the views through a number of algebraic
operations. [11] studied correct rewritings of TPs, using a single view, which can
be seen as a special form of contained rewritings. [4] attempted to speed-up the
finding of MCRs using single views by combining the views into a single tree.
[12] studied equivalently answering XPath queries using multiple views based on
the assumption that the Dewey codes are stored in the materialized views so
that the common ancestors of nodes in different views can be found. Our work
is clearly different from all of the above.

7 Conclusion

We studied the problem of rewriting TP queries using multiple views for the
class P {//,[]}, and defined rewritings using two different combinations of views.
We studied the relationship between the two types of rewritings and presented
efficient algorithms to reformulate the intersection of TPs into a union of TPs,
as well as algorithms for finding the MCRs and ERs using intersections of views.
Our definitions and algorithms enable us to make better use of the views in order
to answer a query.

Acknowledgement. This work is partially supported by Griffith University New
Researcher’s Grant (GUNRG36621) and grant from the Research Grant Council
of the Hong Kong Special Administrative Region, China (CUHK418205). The au-
thors are grateful for helpful comments by Professor Rodney Topor.

References

1. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree
pattern queries. In: SIGMOD (2001)

2. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured materi-
alized views for XML queries. In: VLDB (2007)

3. Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R., Pirahesh, H.: A framework for
using materialized XPath views in XML query processing. In: VLDB (2004)

4. Gao, J., Wang, T., Yang, D.: MQTree based query rewriting over multiple XML
views. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653,
pp. 562–571. Springer, Heidelberg (2007)

5. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4) (2001)
6. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using

views. In: VLDB (2006)
7. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases.

In: VLDB (2005)
8. Miklau, G., Suciu, D.: Containment and equivalence for an XPath fragment. In:

PODS (2002)

XPath Rewriting Using Multiple Views 507

9. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting nested
XML queries using nested views. In: SIGMOD (2006)

10. Tajima, K., Fukui, Y.: Answering XPath queries over networks by sending minimal
views. In: VLDB (2004)

11. Tang, J., Zhou, S.: A theoretic framework for answering XPath queries using views.
In: XSym. (2005)

12. Tang, N., Yu, J.X., Özsu, M.T., Choi, B., Wong, K.-F.: Multiple materialized view
selection for xpath query rewriting. In: ICDE (2008)

13. Wang, J., Yu, J.X., Liu, C.: On tree pattern rewriting using views. In: Benatallah,
B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart, C. (eds.)
WISE 2007. LNCS, vol. 4831, pp. 1–12. Springer, Heidelberg (2007)

14. Xu, W., Özsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In:
VLDB (2005)

Superimposed Code-Based Indexing Method for

Extracting MCTs from XML Documents

Wenxin Liang1,4, Takeshi Miki2, and Haruo Yokota3,4

1 CREST, Japan Science and Technology Agency (JST)
2 Nomura Research Institute

3 Department of Computer Science, Tokyo Institute of Technology
4 Global Scientific Information and Computing Center, Tokyo Institute of Technology

{wxliang, takeshi}@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract. With the exponential increase in the amount of XML data
on the Internet, information retrieval techniques on tree-structured XML
documents such as keyword search become important. The search results
for this retrieval technique are often represented by minimum connect-
ing trees (MCTs) rooted at the lowest common ancestors (LCAs) of the
nodes containing all the search keywords. Recently, effective methods
such as the stack-based algorithm for generating the lowest grouped dis-
tance MCTs (GDMCTs), which derive a more compact representation
of the query results, have been proposed. However, when the XML doc-
uments and the number of search keywords become large, these methods
are still expensive. To achieve more efficient algorithms for extracting
MCTs, especially lowest GDMCTs, we first consider two straightforward
LCA detection methods: keyword B+trees with Dewey-order labels and
superimposed code-based indexing methods. Then, we propose a method
for efficiently detecting the LCAs, which combines the two straightfor-
ward indexing methods for LCA detection. We also present an effective
solution for the false drop problem caused by the superimposed code. Fi-
nally, the proposed LCA detection methods are applied to generate the
lowest GDMCTs. We conduct detailed experiments to evaluate the ben-
efits of our proposed algorithms and show that the proposed combined
method can completely solve the false drop problem and outperforms
the stack-based algorithm in extracting the lowest GDMCTs.

1 Introduction

Recently, there has been an exponential increase in the amount of data, such as
life science data [22,20], bibliography data [24] and online encyclopedia data [23],
that are disseminated and shared over the Internet in the form of XML docu-
ments. These are often modeled as ordered labeled trees. Information retrieval
techniques on tree-structured XML documents such as keyword search are there-
fore important. Keyword search allows users to find relevant information without
any prior knowledge of the schema of the underlying data or any need to learn com-
plex queries [1, 2, 4, 25, 11, 14]. For example, assume an XML document consists

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 508–522, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Superimposed Code-Based Indexing Method for Extracting MCTs 509

 [root,1]
(shakespear)

[p1,1.1]
 (play)

[t1,1.1.1]
 (title)

[a1, 1.1.2]
 (act1)

[l1,1.1.1.1]
 (Hamlet)

[p2,1.2]
 (play)

[t2,1.2.1]
 (title)

[a2, 1.1.3]
 (act2)

 [l2,1.1.2.1]
(King, Mother)

[l3,1.1.3.1]
 (Brother)

[a3, 1.2.2]
 (act1)

[a4, 1.1.3]
 (act2)

[l4,1.2.1.1]
(King, Lear)

 [l5,1.2.2.1]
(Mother, Duke)

[l6,1.2.3.1]
 (King)

Fig. 1. An example XML document tree (labeled by Dewey number)

1.1.3.1 1.1.1.1
1.1.2.1

1.2.1.1

1.2.3.1

1.2.2.1 1.2.1.1
1.1.2.1

1.2.2.1

DukeBrother King Lear MotherHamlet

Fig. 2. An example keyword B+tree

of Shakespeare’s plays in Figure 1. Users might be interested in finding the rela-
tionship between the query keywords king and mother. The search system returns
the relevant answers corresponding to the query keywords that might all appear
within the same act or in different acts but within the same play, and so on.

In keyword searches over XML documents, the search results are often rep-
resented by minimum connecting trees (MCTs) rooted at the lowest common
ancestors (LCAs) of the nodes containing all the query keywords. Therefore,
keyword searching over XML document trees resolves the problem of detecting
the LCAs of the nodes that contain all the query keywords. For example, the an-
swer for the query by keywords king and mother over the XML tree of Figure 1
might be the subtrees rooted at [a1] and [p2].

Recently, many studies have been conducted on detecting the LCAs of the
nodes containing query keywords over XML documents [25, 8, 14, 12, 18]. How-
ever, these methods only focus on finding LCAs and do not consider techniques
for extracting XML subtrees rooted at the LCAs. To provide effective query
answers to the users, the query system must efficiently extract the MCTs that
are the subtrees rooted at the LCAs containing all the keywords. Hristidis et
al. [10] propose an efficient stack-based algorithm for computing the MCTs and
the lowest grouped distance MCTs (GDMCTs) that derive more compact rep-
resentation of the query results. However, Hristidis’s algorithm still results in
expensive time complexity when handling large XML documents with complex
keyword queries. Therefore, a more efficient algorithm for extracting MCTs, es-
pecially the lowest GDMCTs containing all the query keywords, is necessary.

510 W. Liang, T. Miki, and H. Yokota

We make the following main technical contributions in this paper: 1) To effec-
tively detect the LCAs of the nodes containing all the query keywords, we first
consider two straightforward indexing methods: keyword B+trees with Dewey-
order labels and superimposed code-based methods. In the first method, the
nodes of the XML tree are labeled by Dewey numbers and stored in a B+tree
index. Then, the LCAs of the nodes containing the query keywords can be found
by comparing the Dewey-order label of each node containing the corresponding
keyword. In the superimposed code-based method, fixed-length superimposed
codes (signatures) are first assigned to the nodes of the XML tree. Second, the
query signature is determined by the logical OR of the signatures of all the
query keywords. Finally, the LCAs of nodes containing all the query keywords
are determined by the logical AND of the query signature and the signature
of each node of the XML tree. However, false drop problems may occur in the
superimposed code-based method; 2) Keyword B+trees with Dewey-order labels
and superimposed code-based methods are effective in finding the LCAs but ex-
pensive in query cost. To reduce the query cost, we propose an efficient LCA
detection method that combines the keyword B+tree with the Dewey-order la-
bel and the superimposed code-based indexing methods. In this method, both
the superimposed codes and the Dewey-order labels of the nodes are first stored
in a B+tree index. Second, it searches for the leaf nodes in the B+tree by the
signature of any one query keyword. After finding the leaf nodes, the LCAs are
determined by a logical AND operation between the query signature and those
of the corresponding nodes. The combined method reduces the comparisons of
many internal nodes and the query can be completed using only one query key-
word. Therefore, it is superior in performance compared with the two original
methods. However, the false drop problem still cannot be avoided; 3) We also
present an effective method to solve the false drop problem. In this method, the
signatures of all the keywords are used to find the corresponding leaf nodes in
the B+tree index. Then, the LCAs can be determined by detecting the common
Dewey-order labels of the corresponding nodes; 4) We apply the proposed LCA
detection methods to generate the lowest GDMCTs. We perform experiments to
evaluate the performance of detecting LCAs comparing the proposed combined
method with the original ones. The experimental results indicate that our pro-
posed LCA detection method is cost-efficient and can completely solve the false
drop problem. We also conduct experiments to compare the query time using
our proposed methods with that using the stack-based method. The experimen-
tal results show that the proposed combined method can completely solve the
false drop problem and outperforms the previously known stack-based method
in extracting the lowest GDMCTs.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce related work. Section 3 describes the notation and definitions of LCAs
and MCTs. In Section 4, we discuss two straightforward methods for finding
LCAs and propose an efficient method combining the two methods. In Section 5,
we describe the lowest GDMCTs extraction algorithms based on the proposed
LCA detection methods and compare the query costs of the proposed methods

Superimposed Code-Based Indexing Method for Extracting MCTs 511

and the SA algorithm. Section 6 describes the experimental evaluation, shows
the benefits of our approach and compares it with the stack-based algorithm.
Finally, Section 7 concludes this paper and outlines future work.

2 Related Work

The first research area relevant to this work is LCA computation to detect the
LCA of two or more nodes over tree-structured data such as XML documents.
Computation of the LCA of two nodes has been intensively studied over the past
30 years. References [3] and [21] first introduced the problem of finding LCAs
in trees. In [9], Harel and Tarjan introduced upper and lower bounds for the
problem of LCAs. In [17], Schieber et al. presented a simpler algorithm with
optimal asymptotic bounds for finding the LCAs in trees. References [9] and [15]
showed that the LCA query can be computed in constant time after linear-time
preprocessing in arbitrarily directed trees. However, these algorithms are still
too complicated to implement effectively. In [25], Xu et al. proposed efficient
algorithms for computing the smallest LCAs in XML databases using Dewey-
order labels. Computing the LCA of nodes utilizing these labels does not require
any disk access that would degrade the performance of the query. The concept
of a binary superimposed code was first introduced by Kautz and Singleton [13].
Since then, it has been extensively studied and applied to many areas such as
data security and cryptology [19, 7], broadcasting in radio networks [5] and so
on. In our proposed method, we use Dewey-order labels and superimposed codes
to find the LCAs.

The second area of research relevant to this paper is the work on keyword
search over XML documents. XRANK [8] considered the problem of producing
ranked results for keyword search queries in hierarchical and hyperlinked XML
documents. A specific document fragment, namely the subtree, is returned as
the keyword search results in XRANK. In [6], Cohen et al. proposed a semantic
search engine over XML documents that employed more techniques of informa-
tion retrieval than XRANK. However, these studies did not consider the prob-
lem of extracting the MCTs containing the query keywords. In [10], Hristidis et
al. proposed an effective stack-based algorithm (SA) for computing the lowest
GDMCTs rooted at the LCAs of nodes containing the query keywords. However,
as XML documents and the number of query keywords become larger because
of more complex queries, Hristidis’s algorithm still causes high query costs.

3 Notation and Definitions

In this section, we introduce notation and definitions of the LCAs and MCTs
used in this paper1. An XML document is represented by the conventional order
labeled tree T . Each node v of the XML tree T corresponding to an XML element
or leaf is labeled with a tag or string value λ(v). Each node is assigned a unique

1 Some notation and definitions described in this section refer to the reference [10].

512 W. Liang, T. Miki, and H. Yokota

id id(v) and a Dewey-order label lab(v) as a 2-tuple column [id(v), lab(v)], as
shown in Figure 1.

Definition 1 (LCA). Given a set of n nodes v1, ..., vn and an input XML tree
T , the LCA of the set of nodes v1, ..., vn, lca(v1, ..., vn) is defined as the node v
in T that is ancestor to all the nodes v1, ..., vn, and is farthest from the root.

Definition 2 (MCT). Given a set of n nodes v1, ..., vn and an input XML
tree T , the MCT of nodes v1, ..., vn is the minimum subtree Tm that connects
v1, ..., vn. Conversely, the MCT of nodes v1, ..., vn is the subtree rooted at the
LCA of v1, ..., vn.

Given a list of m keywords, k1, ..., km, the MCT of keywords k1, ..., km is the
MCT of nodes v1, ..., vn that contain k1, ..., km. For example, given two query
keywords (King, Mother) for the XML tree in Figure 1, the MCTs containing
both keywords are shown in (1 − 6) as follows, where each root of (1 − 6) is an
LCA that contains the two keywords.

root → p1 → a1 → l2

↘ p2 → t2 → l4
(1)

p2 → t2 → l4

↘ a3 → l5 (2)

root → p1 → a1 → l2

↘ p2 → a1 → l5
(3)

a1 → l2 (4)
root → p1 → a1 → l2

↘ p2 → a4 → l6
(5)

p2 → a3 → l5

↘ a4 → l6 (6)

Assume a list li(1 ≤ i ≤ m) of nodes that contain keywords ki. The number
N of MCTs for keywords k1, ..., km can be determined by the length of the list
|li| as follows:

N = |l1| × |l2| × ... × |lk|. (7)

Therefore, larger numbers of query keywords generate more MCTs. To reduce
the redundancy of MCTs, a set of MCTs can be combined into grouped distance
trees. We first define the distance MCT (DMCT) as follows.

Definition 3 (DMCT). Given a set of nodes v1, ..., vn and an input XML tree
T , the DMCT Td of the MCT Tm of nodes v1, ..., vn is the tree such that:

1. Td contains v1, ..., vn;
2. Td contains lac(vi, vj), where vi, vj ∈ [v1, ..., vn], i = j; and
3. there is an edge labeled with the distance d between each node v1, ..., vn and

lac(vi, vj).

The DMCTs corresponding to (1 − 6) are shown in (8 − 13) as follows:

root
3→ l2
3

↘ l4 (8)

p2
2→ l4
2

↘ l5 (9)

root
3→ l2
3

↘ l5 (10)

Superimposed Code-Based Indexing Method for Extracting MCTs 513

a1
1→ l2 (11)

root
3→ l2
3

↘ l6 (12)

p2
2→ l5
2

↘ l6 (13)

However, because the number of DMCTs is the same as the number of MCTs,
the problem of exponential explosion in the number of subtrees still cannot be
resolved. Next, we define grouped DMCTs as follows.

Definition 4 (GDMCT). A grouped DMCT (GDMCT) Tg contains the DMCT
Td if Td and Tg are isomorphic. Assume M is the mapping of the nodes in Td to
those in Tg, and M′ is a corresponding mapping of the edges of Td to those of Tg,
which must meet the following conditions.

1. If vd and vg are nodes of Td and Tg, respectively, and M(vd) = vg, then the
label of vg contains the ID of vd.

2. If ed and eg are edges of Td and Tg, respectively, and M′(vd) = vg, then the
labels of vd and vg are the same.

For example, the followingGDMCTs (14), (15)and (16)containDMCTs (8, 10, 11),
(9, 13) and (12), respectively.

root
3→ [l2, l5]
3

↘ [l2, l4, l6] (14)

p2
2→ [l5]
2

↘ [l4, l5] (15)

a1
1→ [l2] (16)

Therefore, grouping the DMCTs into GDMCTs can effectively reduce the
number of results. However, there might be some GDMCTs with roots that are
ancestors of other GDMCTs. The lowest GDMCT rooted at the smallest LCA
does not contain any roots of other GDMCTs. The following gives the definitions
of the smallest LCA and lowest GDMCT.

Definition 5 (Smallest LCA). Given a set of nodes v1, ..., vn in an input tree
T , the smallest LCA of v1, ..., vn is the node v such that:

1. v is the LCA of v1, ..., vn; and
2. v is not an ancestor of any other LCAs of v1, ..., vn.

Definition 6 (Lowest GDMCT). Given a set of nodes v1, ..., vn in an input
tree T , a GDMCT is a lowest GDMCT if it is rooted at the smallest LCAs of
v1, ..., vn.

For the same example we used before, the lowest GDMCTs of GDMCT (14),
(15) and (16) are as follows:

p2
2→ [l5]
2

↘ [l4, l5] (17)
a1

1→ [l2] (18)

514 W. Liang, T. Miki, and H. Yokota

4 LCA Detection Method

In this section, we first consider two straightforward methods for detecting LCAs
of nodes containing query keywords: the method using keyword B+trees with
Dewey-order labels and the method based on superimposed codes. However, the
query cost is expensive using these methods because both require traversal of
all the nodes of the XML tree. To reduce the query cost, we propose an efficient
method combining both methods. We also present an effective solution for the
false drop problem caused by the superimposed code.

4.1 Keyword B+tree with the Dewey-Order Label Method

Dewey order assigns a vector to each node representing the path from the root of
the tree to the node. The containment relationship (parent-child and ancestor-
descendant relationships) between two nodes can be conveniently and simply
detected by the path: the common ancestor of a set of nodes can be found by
comparing the Dewey-order labels of the nodes. For example, assume a query by
keywords (Hamlet, King) in the XML tree of Figure 1. The common ancestor
of the nodes [l1, 1.1.1.1] and [l2, 1.1.2.1] that contain the query keywords can be
found by their Dewey-order labels: their common ancestor is the node [p1, 1.1],
which has the common label of [l1, 1.1.1.1] and [l2, 1.1.2.1].

In this method, each query keyword is assigned to a B+tree index, and each
entry of the B+tree stores all the leaf nodes that contain the keyword, together
with their Dewey-order labels. For example, the XML tree of Figure 1 can be
transformed into the B+tree shown in Figure 2. In the query phase, assume a
query with keywords (Hamlet, King). We scan the keyword B+tree for each query
keyword to find the corresponding leaf nodes. In this example, the correspond-
ing node for keyword Hamlet is [a1, 1.1.1.1], and those for keyword King are
[a2, 1.1.2.1], [a4, 1.2.1.1] and [a6, 1.2.3.1]. Therefore, the LCA for the two query
keywords is the node [s1, 1.1], because of the common label between node a1

and a2. This method is effective for finding the LCAs, but it results in expensive
query cost, as we will discuss in Section 5.2.

4.2 Superimposed Code-Based Method

Signature file partitioning techniques based upon superimposed codes are widely
applied in such research areas as information retrieval and data security. Assume
the size of the signature file F is S; according to superimposed coding, each query
keyword yields a word signature, i.e., a bit sequence of size S. These bit sequences
are OR-ed together to form the signature file F . To create a word signature, each
word is hashed to m bit positions in the range 1 − S. The corresponding bits
are set to “1”, while all the other bits are set to “0”. For example, consider the
two files F1 and F2 of Table 1. The signature of each file can be generated by
OR-ing the word signatures of all the keywords.

Given a query signature Q, for the signature Si of file Fi, if Q ∧ Si = Q, Fi

is a candidate of the query result, which is called a drop. However, some drops

Superimposed Code-Based Indexing Method for Extracting MCTs 515

Table 1. Examples of file signatures

F1 F2
Keyword Signature Keyword Signature

Lear 1000001 Hamlet 0100001
King 0100010 King 0100010
Duke 0101000 Mother 0100100

Brother 1100000 Brother 1100000
File signature 1101011 File signature 1100111

Table 2. Examples of drops

Query keywords Query signature F1 F2
King, brother 1100010 actual drop actual drop
King, mother 0100110 no match actual drop
Lear, King 1100011 actual drop false drop

actually do not correspond to all the query keywords. These drops are called
false drops, while the drops that actually satisfy the query predicate are called
actual drops. Table 2 shows example drops for different queries.

In this section, we propose an LCA detection method based on superimposed
codes. Assume the set of keywords of an XML document is K and the keywords
in the leaf node KNi are kj ∈ K(1 ≤ j � |KNi|). The superimposed code Si

for the leaf node KNi can then be calculated by OR-ing the signatures of the
keywords S(kj):

Si = S(k1) ∨ S(k2) ∨ . . . ∨ S(k|KNi|). (19)

Next, the superimposed code Spi of the parent node PNi can be computed by:

Spi = Sc1 ∨ Sc2 ∨ . . . ∨ Scm, (20)

where Sc1, Sc2, . . . , Scm denotes the signatures of the child nodes CN1, CN2, . . . ,
CNm of PNi.

In the query, the query signature Q is determined by OR-ing the signature of
each query keyword. Then, we investigate whether the query signature and each
node signature NSi satisfy the condition:

Q ∧ NSi = Q. (21)

All the nodes satisfying the above condition are candidate LCAs that may
contain all the query keywords. However, there may be some false drops in the
candidate LCAs.

4.3 Combined Method

The B+tree with the Dewey-order label and superimposed code-based methods
are effective in finding the LCAs. However, they result in expensive query costs.
To reduce the query cost, in this section we propose an efficient method that
combines B+trees with Dewey-order labels and superimposed codes.

516 W. Liang, T. Miki, and H. Yokota

1100000 1.1.3.1 0100001 1.1.1.1
0100110 1.1.2.1
1100011 1.2.1.1
0100010 1.2.3.1

0101100 1.2.2.1 1000001 1.2.1.1 0100110 1.1.2.1
0101100 1.2.2.1

Duke Brother King Lear MotherHamlet

Fig. 3. An example keyword B+tree with superimposed codes

XML Tree

w

N

[log2N] +1

...

B+tree(fanout:k)

F

K

[logkK] +1

...

(a)XML tree (b) Keyword B+tree

Fig. 4. Notations for query cost comparison

getLCA(w1 , ...wk){
Q = H(w1) ∨ ...H(wk);
For (i = 0 to k){

NSi=getNodeSignature(wi);//Get the word

signature of wi from the keyword B+tree
Li=getResultSI(Q, NSi);

}
Return getTrueDropLCA(L1 , ...Lk);

}
getResultSI(Q, NS){

L=Null;
For (i = 0 to |NS|){

If (Q ∧ NS(i) = Q){
L.add(NS(i));

}
}
Return L;

}
getTrueDropLCA(L1 , ...Lk){

N.addAll(L1);
For (i = 1) to |L1|}

For (j = 1 to k){
For (s = 1 to |Lj |){

If(L1(i) = Lj(s)){
Break;

}
If(j = |Li|){

N.remove(L1(i));
}

}
}

}
Return N;

}

Fig. 5. False drop resolution algorithm

getLowestGDMCT(l1 , ...ln, KL1, ...KLk){
Assume L represents the list of (l1, ...ln) and G

represents the list of GDMCT
L=getSmallestLCA(l1 , ...ln, KL1, ...KLk);
For (i = 0 to n){

G=getGDMCT(l1, ...ln, KL1, ...KLk, i);
Return (L, G);

}
}
getSmallestLCA(l1 , ...ln, KL1, ...KLk){

L=Null;
For (i = 0 to n){

For (j = 0 to k){
If (i! = j){

If (lj .substring(li)){
Break;

}
If (j = n){

L.add(li);
}

}
}

}
Return G;

}
getGDMCT(KL1, ...KLk, n){

For (i = 0 to k){
For (j = 0 to |KLi|){

If(KLi(j).subtring(n)){
G ← KL(j);

}
}

}
Return G;

}

Fig. 6. Lowest GDMCT detection algo-
rithm

In the combined method, each node of the XML tree is assigned a superim-
posed code as in the original superimposed code-based method, and then both
the superimposed code and the Dewey-order labels of nodes are stored in a key-

Superimposed Code-Based Indexing Method for Extracting MCTs 517

word B+tree, as shown in Figure 3. Assume a query with keywords k1, . . . , km.
The query signature Q is determined by OR-ing the signature of each keyword
Si, 1 ≤ i ≤ m, namely, Q = S1 ∨S2)∨ . . . ,∨Sm. The candidate LCAs can be de-
termined by scanning the B+tree with any keyword ki, 1 ≤ i ≤ m of the query, if
the query signature Q and the node signature NS corresponding to the keyword
satisfy the condition Q∧NS = Q. However, the candidate results may still have
false drops.

We present an effective resolution for the false drop problem. For any keyword
ki, 1 ≤ i ≤ m in the query, it is evident that the node with signature NS in the
B+tree satisfying Q∧NS = Q must contain the keyword ki itself. For 1 ≤ i ≤ m,
we can obtain the node sets N1, N2, . . . , Nm for each query keyword ki, 1 ≤ i ≤ m
by using the condition Q ∧ NS = Q. Each node set Ni, 1 ≤ i ≤ m must contain
the corresponding keyword ki, 1 ≤ i ≤ m. Assume the Dewey-order label sets
of Ni, 1 ≤ i ≤ m are Li, 1 ≤ i ≤ m. The nodes that have the common label
among Li, 1 ≤ i ≤ m are the LCAs that must contain all the query keywords.
The algorithm for false drop resolution is shown in Figure 5.

5 Extracting Lowest GDMCTs

5.1 KBDLM and KBSIM

In this section, we present two methods for computing the lowest GDMCTs
based on the keyword B+tree with Dewey-order labels method and the combined
method, which are called the keyword B+tree with Dewey-order label method
(KBDLM) and the keyword B+tree with superimposed code method (KBSIM),
respectively. In the KBDLM and KBSIM, the LCAs are first determined by the
keyword B+tree with Dewey-order labels or the superimposed codes. Then, the
smallest LCAs, i.e., the root of the lowest GDMCTs, can be found by comparing
the Dewey-order labels among the LCAs. The length of each edge can be com-
puted by comparing the length between the label of the root and that of each
leaf node. The lowest GDMCT detection algorithm is illustrated by Figure 6.

5.2 Query Cost Comparison

In this section, we evaluate the query cost for the proposed methods, KBDLM
and KBSIM, and the SA algorithm. Firstly, we give some notation for query cost
comparison shown in Table 3; some parameters are illustrated in Figure 4.

Query Cost of the SA Algorithm. According to reference [10], the query
cost of the SA algorithm is:

O(log2N ∗ F 2m) = O(logN ∗ N2m). (22)

Query Cost of the KBDLM. In the KBDLM, the height of the keyword
B+tree is [logkK] + 1, as shown in Figure 4 (b). In the worst case, with one
query keyword, it is necessary to scan all the entries of the B+tree. The number

518 W. Liang, T. Miki, and H. Yokota

Table 3. Notation for query cost comparison

notation description notation description
m number of query keywords K number of keyword

k fanout (node entries) of B+tree N number of leaf nodes in the XML tree
w mean number of keywords in each node F mean number of nodes for each keyword
b comparison cost for one bit B comparison cost for one string
r mean number of strings of the labels l bit length of the signature
n mean string length of the query keywords d mean length of the Dewey-order labels

of required comparisons for finding the nodes containing the keyword is m ×
k × ([logkK] + 1). Therefore, the cost of finding the nodes containing all the m
keywords is:

m × k × ([logkK] + 1) × n × B. (23)

The cost for finding the LCAs by comparing their Dewey-order labels is:

Fm−1 × d × B. (24)

In the worst case, the number of parents of the lowest GDMCTs is N , so the
cost for computing the lowest GDMCT is N ×m×F . Therefore, the total query
cost of KBDLM is the sum of the above costs:

m × k × ([logkK] + 1) × n × B + Fm−1 × d × B + N × m × F. (25)

F can be represented by N and K, because F = wN
K . Therefore, the query

cost of the KBDLM can be expressed by the following equation in terms of the
order of N :

O((
wN

K
)m−1 + (

wN2

K
)) = O(Nm−1 + N2). (26)

When m ≤ 3, the cost is O(N2); when m ≥ 4, it is O(Nm−1).

Query Cost of the KBSIM. In the KBSIM, the cost for finding the nodes
containing the keywords is the same as for the KBDLM. Then, the cost for
detecting the LCAs of the nodes containing the keywords is b× l × (F − 1) ×m.
Next, in the worst case, the cost of finding the false drops in the detected LCAs
is (m − 1)N2. Finally, the cost for computing the lowest GDMCTs is the same
as the KBDLM, N × m × F . Therefore, the total query cost of the KBSIM can
be calculated by:

m × k × ([logkK] + 1) × n × B + b × l × (F − 1) × m

+(m − 1)N2 + N × m × F.
(27)

The total cost of the KBSIM is O(N2) by substituting F = wN
K in the above

equation. Therefore, when m > 2, the proposed combined method KBSIM has
lower costs than either the KBDLM or SA algorithms.

Superimposed Code-Based Indexing Method for Extracting MCTs 519

Table 4. Experimental environment

CPU AMD Opteron 2.2 GHz
Memory 6 GB

OS Linux version 2.6.9
Database PostgreSQL 8.1.3
Hard Disk DRAILD

Java 1.5.0 07

Table 5. False drop rate of detected LCAs

1 MB, 2 keywords 5 MB, 2 keywords
Original method R = 7.6% R = 10.3%

Combination method R = 0% R = 0%

6 Experimental Evaluation

We conducted experiments to evaluate the benefits of the proposed combined
method, KBSIM. Firstly, we show that the KBSIM can completely solve the
false drop problem in contrast to the original superimposed code-based method.
Then, we compare the execution time for keyword queries using the KBSIM
with that using the KBDLM and SA algorithms with different numbers of query
keywords and different sizes of XML documents.

The experiments were performed in the environment shown in Table 4. The
XML data collections used in the experiments were generated by xmlgen of the
XMark benchmark [16]. Three kinds of data were generated by using different
scaling factors of 0.01, 0.05 and 0.1, respectively. The sizes of the generated
XML data are about 1 MB, 5 MB and 10 MB, respectively. The experiments
were performed using sets of keywords having different frequencies introduced
in [10]. Namely, low, corresponding to keywords with frequencies between 1 and
10, medium, corresponding to keywords with frequencies 11–200, and high, cor-
responding to keywords with frequencies greater than 200.

6.1 Evaluating False Drop Resolution

We applied the original superimposed code-based method and the combined
method with false drop resolution to detect the LCAs using the XMark data of
1 MB and 5 MB with two query keywords. Table 5 shows the false drop rates
R of the detected LCAs. We can see that the proposed combined method can
completely solve the false drop problem in LCA detection caused by the original
superimposed code-based method.

6.2 Evaluating Query Performance

To evaluate the query performance of the proposed algorithms, we firstly per-
formed experiments to observe and compare the query time with different num-
bers of query keywords using the KBSIM, KBDLM and SA algorithms. The

520 W. Liang, T. Miki, and H. Yokota

XML data size (10MB)

0

5

10

15

20

25

30

35

40

45

2 4 6 10 15

Number of Keywords

Q
ue

ry
 ti

m
e

(m
s)

SA
KBDLM
KBSIM

Fig. 7. Query time for keywords with low
frequency

XML data size (10MB)

0

100

200

300

400

500

600

700

0 5 10 15 20

Number of Keywords

Q
ue

ry
 ti

m
e

(m
s)

SA
KBDLM
KBSIM

Fig. 8. Query time for keywords with
medium frequency

XML data size (10MB)

0

5000

10000

15000

20000

25000

2 4 6 10 15

Number of keywords

Q
ue

ry
 ti

m
e

(m
s)

SA
KBDLM
KBSIM

Fig. 9. Query time for keywords with high
frequency

Number of query keywords = 4

0
50

100
150
200
250
300
350
400
450

1 5 10
XML data size (MB)

Q
ue

ry
 ti

m
e

(m
s) SA

KBSIM

Fig. 10. Query time for different sizes of
XML data

size of the XMark data used in the experiments was 10 MB, and the keyword
frequencies ranged from low to high. Figure 7 presents the performance of each
method as the number of keywords increases for keywords at low frequencies. It
shows that the SA performs slightly better than both proposed algorithms for
the low-frequency keywords. Figure 8 shows the query time as the number of
keywords with medium frequency increases. This figure indicates that both the
proposed algorithms are superior to the SA algorithm, and the KBSIM performs
better than the KBDLM at these keyword frequencies. Figure 9 presents the re-
sults of query time as the number of keywords at high frequencies increases. It
is evident that KBSIM is overwhelmingly superior to the other two methods.

Superimposed Code-Based Indexing Method for Extracting MCTs 521

However, the query time using the KBDLM increases extremely quickly when
the number of high-frequency keywords is more than four2.

We next conducted experiments to observe the performance of the KBSIM and
SA algorithms with different sizes of XML documents. We measured the query
times for XMark data of 1 MB, 5 MB and 10 MB with four high-frequency
query keywords. Figure 10 represents the query time of the two methods for
each XML document. This figure shows that as the XML document becomes
larger, the proposed KBSIM performs more efficiently than the SA algorithm.

7 Conclusion and Future Work

With the exponential increase in the amount of XML data on the Internet, infor-
mation retrieval techniques on tree-structured XML documents such as keyword
search become important.In keyword searches over XML documents, the search
results are often represented by MCTs rooted at the LCAs of the nodes contain-
ing all the query keywords. In this paper, we first considered two straightforward
LCA detection methods: keyword B+trees with Dewey-order labels and superim-
posed code-based indexing methods. Then, we proposed a method for efficiently
detecting the LCAs, which combines the two straightforward indexing methods.
We also presented an effective resolution for the false drop problem caused by the
superimposed codes. Finally, we applied the proposed LCA detection method to
generate the lowest GDMCTs over XML documents. We also conducted detailed
experiments to evaluate the benefits of our proposed algorithms and to show that
the proposed combined method can completely solve the false drop problem and
outperform the previously known stack-based algorithm in extracting the lowest
GDMCTs.

In the future, we plan to consider more sophisticated keyword searches over
XML documents such as the user context-based keyword search. We will also work
on the issue of search result ranking so that we can provide more effective search
results to the users.

Acknowledgment

This work was partially supported by the Grant-in-Aid for Scientific Research
of MEXT Japan #16016232, by CREST of JST (Japan Science and Technology
Agency) and by the TokyoTech 21COE Program “Framework for Systematiza-
tion and Application of Large-Scale Knowledge Resources”.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based
Search over Relational Databases. In: ICDE, pp. 5–16 (2002)

2. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: Enabling Keyword Search over
Relational Databases. In: SIGMOD, p. 627 (2002)

2 The query time using the KBDLM for more than four keywords is not shown in
Figure 9.

522 W. Liang, T. Miki, and H. Yokota

3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On Finding Lowest Common Ancestors
in Trees. In: STOC, pp. 253–265 (1973)

4. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
Searching and Browsing in Databases using BANKS. In: ICDE, pp. 431–440 (2002)

5. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective Families, Superimposed Codes,
and Broadcasting on Unknown Radio Networks. In: SODA, pp. 709–718 (2001)

6. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: VLDB, pp. 45–56 (2003)

7. Dyer, M., Fenner, T., Frieze, A., Thomason, A.: On Key Storage in Secure Net-
works. J. of Cryptology 8(4), 189–200 (1995)

8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword
Search over XML Documents. In: SIGMOD, pp. 16–27 (2003)

9. Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

10. Hristidis, V., Koudas, N.: Keyword Proximity Search in XML Trees. IEEE
TKDE 18(4), 525–539 (2006)

11. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: VLDB, pp. 670–681 (2002)

12. Kaae, R., Nguyen, T.-D., Nørgaard, D., Schmidt, A.: Kalchas: A Dynamic XML
Search Engine. In: CIKM, pp. 541–548 (2005)

13. Kautz, W.H., Singleton, R.C.: Nonrandom Binary Superimposed Codes. IEICE
Trans. Inform. Theory 10(4), 363–377 (1964)

14. Li, Y., Yu, C., Jagadish, H.V.: Schema-Free XQuery. In: VLDB, pp. 72–83 (2004)
15. Nykänen, M., Ukkonen, E.: Finding Lowest Common Ancestors in Arbitrarily Di-

rected Trees. Inf. Process. Lett. 50(6), 307–310 (1994)
16. XML Benchmark Project, http://www.xml-benchmark.org
17. Schieber, B., Vishkin, U.: On Finding Lowest Common Ancestors: Simplification

and Parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)
18. Schmidt, A., Kersten, M.L., Windhouwer, M.: Querying XML Documents Made

Easy: Nearest Concept Queries. In: ICDE, pp. 321–329 (2001)
19. Stinson, W.D.R., van Trung, T., Wei, R.: Secure Frameproof Codes, Key Distribu-

tion Patterns, Group Testing Algorithms and Related Structures. J. of Statistical
Planning and Inference 86, 595–617 (2000)

20. Swiss-Prot, http://www.ebi.ac.uk/swissprot/
21. Tarjan, R.E.: Applications of Path Compression on Balanced Trees. J. ACM 26(4),

690–715 (1979)
22. TrEMBL, http://www.ebi.ac.uk/trembl/
23. The Free Encyclopedia: Wikipedia, http://www.wikipedia.org/
24. XML Version of DBLP, http://dblp.uni-trier.de/xml/
25. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML

Databases. In: SIGMOD, pp. 537–538 (2005)

http://www.xml-benchmark.org
http://www.ebi.ac.uk/swissprot/
http://www.ebi.ac.uk/trembl/
http://www.wikipedia.org/
http://dblp.uni-trier.de/xml/

Fast Matching of Twig Patterns

Jiang Li and Junhu Wang

School of Information and Communication Technology
Griffith University, Gold Coast, Australia

Jiang.Li@student.griffith.edu.au, J.Wang@griffith.edu.au

Abstract. Twig pattern matching plays a crucial role in xml data process-
ing. Existing twig pattern matching algorithms can be classified into two-
phase algorithms and one-phase algorithms. While the two-phase
algorithms (e.g., TwigStack) suffer from expensive merging cost, the one-

phase algorithms (e.g., TwigList, Twig2Stack, HolisticTwigStack) ei-
ther lack efficient filtering of useless elements, or use over-complicated data
structures. In this paper, we present two novel one-phase holistic twig
matching algorithms, TwigMix and TwigFast, which combine the efficient
selection of useful elements (introduced in TwigStack) with the simple lists
for storing final solutions (introduced in TwigList). TwigMix simply intro-
duces the element selection function of TwigStack into TwigList to avoid
manipulation of useless elements in the stack and lists. TwigFast further
improves this by introducing some pointers in the lists to completely
avoid the use of stacks. Our experiments show TwigMix significantly and
consistently outperforms TwigList and HolisticTwigStack (up to sev-
eral times faster), and TwigFast is up to two times faster than TwigMix.

1 Introduction

The importance of fast processing of xml data is well known. Twig pattern
matching, which is to find all matchings of a query tree pattern in an xml data
tree, lies in the center of all xml processing languages. Therefore, finding efficient
algorithms for twig pattern matching is an important research problem.

Over the last few years, many algorithms have been proposed to perform twig
pattern matching. Al-Khalifa et al [3] gave an algorithm which breaks a query
tree into binary (parent-child and ancestor-descendant) relationships, finds solu-
tions for them, and merges such partial solutions to get the final solutions. One
problem of this approach is the large number of partial solutions and hence the
high cost in the merging phase. To overcome this problem, Bruno et al [4] pro-
posed a holistic twig join algorithm called TwigStack, which breaks the query
tree into root-to-leaf paths, finds individual root-to-path solutions, and merges
these partial solutions to get the final result. One vivid feature of TwigStack
is the efficient filtering of useless partial solutions through the use of function
getNext(). It is shown that when there are only //-edges, every root-to-leaf path
solution returned by the algorithm will contribute to some final solutions. Later
on several improvements of TwigStack were made either to deal with /-edges

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 523–536, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

524 J. Li and J. Wang

(e.g., TwigStackList [9]), or to make use of index structures (e.g., TSGeneric+
[7],iTwigJoin [6]). Chen et al [5] observed that the holistic two-phase algorithms
still suffer from high merging costs, and they proposed a one-phase algorithm,
Twig2Stack, which avoids the merging phase by storing final solutions in hier-
archical stacks. It is claimed that Twig2Stack outperforms TwigStack. Qin et al
[10] proposed another one-phase algorithm, TwigList, which uses a much sim-
pler data structure, a set of lists, to store the final solutions. Due to the simpler
data structure and hence the reduction in random memory access, TwigList
achieves better performance than Twig2Stack [10]. Twig2Stack and TwigList
can avoid the high cost of the merging phase, but they lose an important abil-
ity of the holistic approach, which is efficiently locating twig occurrences and
discarding useless elements. More recently Jiang et al [8] proposed a one-phase
holistic twig matching algorithm called HolisticTwigStack, which maintains
the overall solutions in linked stacks. However, a considerable amount of time is
taken to maintain the linked stacks.

In this paper, we present two novel one-phase holistic twig matching algo-
rithms, TwigMix and TwigFast, which combine the efficient selection of use-
ful elements introduced in [4] with the simple data structure for storing final
solutions introduced in [10]. TwigMix simply introduces the getNext() func-
tion of TwigStack into TwigList to avoid manipulation of useless elements
in the stack and lists. TwigFast further improves this by introducing some
pointers in the lists to completely avoid the use of stacks, based on the ob-
servation that the overhead of maintaining the pointers is generally negligi-
ble compared with the pushing/popping-up of elements into/from the stack.
We conducted extensive experiments with both real and synthetic data. Our
experiments show that (1) TwigMix significantly and consistently outperforms
TwigList and HolisticTwigStack (up to several times faster), and TwigFast
performs even better (up to two times faster) than TwigMix; (2) compared with
TwigList, TwigMix saves an average of 75.93% of elements from being pushed
into stack and an average of 70.19% of elements from being appended into the re-
sult lists. Since the result lists built by our algorithms are far shorter than those
built by TwigList, our algorithms relieve the problem of memory consumption.

The rest of the paper is organized as follows. Section 2 provides background
knowledge and recalls the major features of TwigStack and TwigList. TwigMix
is presented in detail in Section 3. In Section 4, we present TwigFast. The
experiment results are reported in Section 5. Finally, Section 6 concludes this
paper.

2 Background

2.1 Terminology and Notations

An xml document is modeled as a node-labeled tree, referred to as the data tree.
A twig pattern is also a node-labeled tree, but it has two types of edges: /-edge
and //-edges, which represent parent-child and ancestor-descendent relationships
respectively. The twig matching problem is to find all occurrences of the twig

Fast Matching of Twig Patterns 525

a1

a2

d1b1

b2 c1

(2, 3: 2)

(1, 12: 1)

(4, 9: 2)

(5, 6: 3) (7,8: 3)

(10, 11: 2)

(a) t

a

cb
(b) Q

Fig. 1. Example data tree t and tree pattern Q

pattern in the data tree. Fig.1 shows a data tree t (where we use ai to denote
nodes labeled a, and so on) and a twig pattern Q. There is one occurrence of Q
in t: (a2, b2, c1).

For data trees, we adopt the same region-based coding scheme used in
TwigStack. Each node v is coded with a tuple of three values: (v.start, v.end:
v.level). Such a coding scheme has several useful properties: (1) ancestor-
descendant and parent-child relationships can be identified in constant time:
∀v1, v2 ∈ Nodes(t), v1 is an ancestor of v2 iff v1.start < v2.start ≤ v2.end <
v1.end, and v1 is the parent of v2 iff it is the ancestor of v2, and v2.level−v1.level =
1. (2) v1, v2 do not have ancestor-descendant relationship, and v1 lies in a path to
the left of the path where v2 lies iff v1.end < v2.start (See Fig. 1 (a)). These prop-
erties will be used extensively in our algorithms.

Below, we will use elements to refer to nodes in a data tree, and nodes to re-
fer to nodes in a twig pattern. We will also use x-child (resp. x-descendant,
x-element) to refer to a child (resp. descendant, element) labeled x. As in
TwigStack, for each node n, there is a stream, Tn, consisting of all elements
with the same label as n arranged in ascending order of their start values. Note
that an element may appear in several streams if there are nodes with identi-
cal labels in Q. For each stream Tn, there exists a pointer PTn pointing to the
current element in Tn. The function Advance(Tn) moves the pointer PTn to the
next element in Tn. The function getElement(Tn) retrieves the current element
of Tn. The function isEnd(Tn) judges whether PTn points to the position after
the last element in Tn. In addition, for node n, the functions isRoot(n) (resp.
isLeaf (n)) checks whether node n is the root (resp. leaf), and parent(n) (resp.
children(n)) returns the parent (resp. set of children) of n.

2.2 TwigStack and TwigList

To facilitate our explanation, we briefly recall the major features of TwigStack
and TwigList here.

As mentioned earlier, TwigStack uses a function getNext(q) to efficiently filter
useless elements. For self-containment, we copy the function into Algorithm 1.
In the function, nextL(Tn) and nextR(Tn) return getElement(Tn).start and
getElement(Tn).end respectively. The function has the following properties: if
q is root(Q) (the root of Q), then getNext(q) always returns a node n that has

526 J. Li and J. Wang

Algorithm 1. getNext(q) [4]
1: if (isLeaf(q)) return q
2: for qi ∈ children(q) do
3: ni = getNext(qi)
4: if (ni �= qi) return ni

5: nmin = minargni
nextL(Tni

)

6: nmax = maxargni
nextL(Tni

)

7: while (nextR(Tq) < nextL(Tnmax)) do
8: Advance(Tq)

9: if (nextL(Tq) < nextL(Tnmin
)) return q else return nmin

a minimal descendant extension [4], i.e., (1) for each child n′ of n, the current
element of Tn has a descendant which is the current element of Tn′ , and each
child of n recursively has this property; (2) the current element of n has the
minimum start value among all nodes that have property (1). The function
also moves the pointer PT (Tni) when the current element in Tni no longer has
descendants in Tnj , for some of child nj of ni (lines 7,8).

TwigList is based on the following observation [10]: for each a-element v, its b-
descendants can be arranged in a minimal interval, such that every b-descendant
of v falls into this interval, and b-elements that are not descendants of v do not fall
into the interval. As a consequence, we can use a pair of position values, vstartb

and vendb
, to specify the interval for all b-descendants of v. For example, for the

data tree shown in Fig.2 (a), all descendants of the a-nodes can be arranged
in a list b1, b2, b3, b5, b4, and a1startb

= a1endb
= 1, a2startb

= 2, a2endb
= 3,

a3startb
= 4 and a3endb

= 5 will tell us the b-descendants of each a-element. The
data structure used in TwigList is thus a set of lists, one list, Ln, for each node
n in Q. Each element v in Ln has pairs of start and end pointers pointing to the
start and end positions of descendant intervals (one interval for each child of n).
These lists are used to store the final solutions. For instance, for the date tree
and query in fig.2 (a),(b), the lists built by TwigList are shown in fig.2 (d). In
the figure, a1, a2 are not put into list La because they do not have c-descendants.
The main algorithm of TwigList is a procedure to construct the lists, once this
is done, it uses another procedure TwigList-Enumerate to efficiently enumerate
the final solutions. To construct the lists, TwigList uses a stack, S. Elements
are pushed into the stack in pre-order, and top(S) is popped up when a non-
descendant of top(S) arrives, and it is then checked to see whether it should be
appended to the corresponding list.

3 TwigMix: Introducing Efficient Element Filtering into
TwigList

3.1 Overview of TwigMix

We explain the basic ideas used in TwigMix using the example in Fig. 2. TwigMix
uses the same data structure as TwigList, but it introduces the getNext() func-
tion to avoid pushing useless elements into the stack S and appending useless

Fast Matching of Twig Patterns 527

s1

a1 a2 a3

b1 b2 b3 b4

b5

c1

a

b c

a3

b5 b4 c1

a3

b1 b2 b3 b5 b4 c1

(a) (b) (c) (d)

Fig. 2. An example to explain the basic ideas of TwigMix

elements into the lists. In Fig. 2, if we apply the TwigList algorithm, all of the
elements will be pushed into S. When the elements are popped up from the
stack, the algorithm will determine whether to append them to the result lists.
For this example, a1 and a2 are not appended to the result lists because they
can not find their c-descendants. However, b1,b2 and b3 are still appended to
the result list although they do not contribute to the final solutions. Fig. 2 (d)
shows the structure of the final lists constructed by TwigList. For TwigMix, due
to the introduction of getNext(), a1 and a2 can be directly abandoned and will
not be pushed into S. The elements b1, b2, b3 will not be pushed into S either
because they can not find their ancestors in S. The final result lists are shown in
Fig. 2 (c). Therefore, TwigMix does not waste time in pushing/popping-up b1,
b2, and b3 into/from stack and appending them to result list Lb. It also saves
memory because b1, b2 and b3 do not need to be stored in the lists. If the data
tree is large, the savings of time and space will be quite significant (see Section 5
for examples).

3.2 TwigMix

TwigMix differs from TwigList in its way of constructing the final result lists.
Once the lists are constructed, it uses the same procedure TwigList-Enumerate
in [10] to enumerate all final solutions.

Our new algorithm for building the result lists, TwigMix-Construct, is shown
in Algorithm 2. Like TwigList, we use a stack S to achieve bottom-up processing
of elements. For each node ni ∈ Nodes(Q), we use a counter ni.counter to record
the number of elements in stack S for that query node. In Algorithm 2, after
initialization, the function getNext(q) is repeatedly called (lines 3,4) to get the
query node which has a minimal descendant extension (see Section 2.2). The
loop will stop until there are no elements not processed for any of the leaf nodes
(see the end(q) function). Line 7 is particularly important. If the returned query
node nact is the root, its current element is directly pushed into the stack S.
However, if it is not the root, the counter of parent(nact) is checked to see
whether any elements of parent(nact) are in the stack. We push the current
element of Tnact into S only when there are elements of parent(nact) in S (this
is why the elements b1, b2 and b3 in Fig.2 (a) are not pushed into stack). The
counters are maintained at line 11 and line 20, when an element is pushed into

528 J. Li and J. Wang

Algorithm 2. TwigMix-Construct(Q)
1: initialize stack S as empty;
2: initialize the list Lnj

as empty, nj .counter as 0, for all nodes nj ∈ Nodes(Q);

3: while ¬end(Q) do
4: nact = getNext(root(Q))
5: vact = getElement(nact)
6: toList(S, region(vact)) // region(v) denotes the interval (v.start, v.end)
7: if isRoot(nact) OR parent(nact).counter > 0 then
8: for nk ∈ childrennact do
9: vact.startnk

= length(Lnk
) + 1

10: push(S, vact)
11: nact.counter + +

12: Advance(Tnact)

13: toList(S, (∞,∞))

14: procedure end(q)
15: return ∀ni ∈ Nodes(q) : isLeaf(ni) ⇒ isEnd(Tni

)

16: procedure toList(S, r)
17: while S �= ∅ AND r � reg(top(S)) do

18: vj = pop(S)
19: let vj ’s type be nj // the type nj is memorized when vj is pushed into S
20: nj .counter − −
21: for nk ∈ childrennact do
22: vj .endnk

= length(Lnk
)

23: append vj into list Lnj

or popped up from S. When an element is pushed into S, the start positions of
its descendant intervals are set (lines 8,9). In the sub-procedure toList(S, r), we
check whether the current element in the node returned by getNext(root(Q))
is a descendant of top(S), if not, we pop up top(S), set the end positions of its
descendant intervals, and append it directly to the corresponding list. Note that,
unlike the procedure in TwigList, we do not need to check whether top(S) can
be appended to list because all elements pushed into the stack are guaranteed
to appear in some final solution (provided Q has no /-edges). At the end of the
algorithm, we apply an infinite interval to toList in order to pop up all elements
from S.

Example 1. Consider the twig pattern and the data tree in Fig. 2. Initially, the
current elements of the query nodes are (a1, b1, c1). All the first three calls of
getNext(a) return node b. Because the counter of b’s parent a is 0, the elements
b1, b2, b3 are not pushed into the stack S. The fourth call of getNext(a) returns
node a. Node a is the root of the query tree, so a3 is directly pushed into S and
the start positions of its descendant intervals are recorded. The counter of node
a increases by 1. The next two calls of getNext(a) return node b. Because the
counter of node a is 1, the elements b5, b4 are pushed into the S stack. Next,
getNext(a) returns node c. The coming of c1 results in b5 and b4 being popped
up and appended to Lb. Finally, the range (∞,∞) makes c1 and a3 pop up and
they are appended to Lc and La respectively. When a3 is appended to La, the
end positions of its descendant intervals are recorded.

Fast Matching of Twig Patterns 529

3.3 Analysis of TwigMix

In this section, we show the correctness of TwigMix and analyze its time and
space complexity. We prove the following lemma first.

Lemma 1. Suppose Q has no /-edges. TwigMix pushes an element into stack S
iff the element contributes to some final solutions.

Proof [sketch] (only if) If getNext(root(Q)) returns qact, then qact has a min-
imal descendant extension (see Section 2.2). Therefore, the current element vact

of Tqact (line 5) has a descendant in Tni for each child ni of qact. Line 7 and
line 10 make sure that only if qN is root(Q) or S contains an element of type
parent(qact) do we push vact into S. In both cases, vact participates in at least
one final solution, since we assume there are only //-edges in Q.

(if) If anelementv of typenparticipates in somefinal solution,getNext(root(Q))
will return n when the current element of Tn is v. If n is the root, v will be pushed
into S directly. Otherwise, the stack S will contain at least one element of type
parent(n) when v is returned in line 5, because elements are pushed into stack in
pre-order, and an element will be popped up from S after its descendants have
been popped-up (line 17-18). Hence v will also be pushed into S. ⊥
Theorem 1. Given a twig pattern (that has //-edges only) and an XML data
tree, TwigMix correctly builds up the final result lists.

Proof [sketch] We only need to show that (1) elements contributing to final
solutions will be appended to the lists, and (2) for each element in the list, its
descendant intervals are correctly set. (1) is true because of Lemma 1 and the
fact that every element pushed in the stack S is appended in the result list. (2) is
true because, for any element vact satisfying the condition in line 7, it is pushed
into S before any of its descendants are pushed into S. Therefore, the lists of the
children nodes of nact has no descendants of vact before vact is pushed into S at
line 10. However, after vact is pushed into S, the next element in Tni pushed into
S for any child ni of n must be a descendant of vact. Therefore, line 9 correctly
sets the start positions of the descendant intervals for vact. Furthermore, vj is
popped up from S only when all of its descendants have been popped up and
appended to lists. Therefore, line 21-22 correctly sets the end positions of vj ’s
descendant intervals. ⊥

Complexity analysis. Algorithm 2 scans each stream Tn from start to end
once, through the functions getNext() and Advance(Tnact) at line 12. For each
element in Tn it may push it into stack, pop it up from stack, append it to
list, and set its start and end positions for its descendants. Suppose d is the
maximum degree of nodes in Q. For each element appended to result lists, at
most d intervals need to be recorded and recording an interval needs constant
time. Pushing/popping-up an element into/from the stack S can be finished in
constant time. Therefore, the worst-case time complexity is O(d · N) (N is the
sum of the sizes of the input streams), which is linear in N . The worst-case space
complexity is linear in the sum of the sizes of the occurrences of the twig pattern
(the sum of the sizes of the final lists).

530 J. Li and J. Wang

Fig. 3. An example to illustrate the basic ideas of TwigFast

Considerations of /-edges. getNext(q) does not guarantee the returned node
can be expanded to a solution when /-edges exist. Therefore, Algorithm 2 does
not guarantee all of the elements moved into the stack S and result lists will
appear in final solutions when /-edges exist. To make sure the final results enu-
merated are still correct, we need to modify the enumeration algorithm so that it
checks the satisfaction of parent-child relationship, for /-edges, when outputting
final solutions.

To improve the efficiency of enumeration, one can use the strategy of adding
sibling links as in [10]. This strategy can not prevent useless elements from be-
ing pushed into the stack S and appended into the result lists. To reduce the
manipulation of useless elements, we can incorporate the getNext(q) function
of algorithms that try to reduce the useless intermediate path solutions when
/-edges exist (e.g. TwigStackList [9], iTwigJoin [6],etc). However, these algo-
rithms may result in the elements of the query nodes returned by getNext(q)
are not in pre-order. Therefore, TwigMix-Construct needs to be adjusted.

4 TwigFast: Avoiding Manipulation of Elements in Stacks

4.1 Limitations of TwigMix

TwigMix integrates the holistic approach into TwigList, so only potentially
useful elements are pushed into stack S and result lists. The time taken by
pushing/popping-up elements into/from stack will become significant for large
data trees. In order to get a glimpse of the number of elements that pass through
S, we implemented TwigMix and did some experiments over the DBLP data set.
The selected queries are listed in Table 1. As shown in the table, for all three
queries, the number of elements pushed into S is very large. Therefore, if we can
directly build up the final lists without using the stack, the performance can be
significantly improved.

Fast Matching of Twig Patterns 531

Algorithm 3. TwigFast(Q)
1: initialize the list Lni

as empty, and set ni.tail = 0, for all ni ∈ Nodes(Q);

2: while ¬end(Q) do
3: nact = getNext(root(Q))
4: vact = getElement(nact)
5: if ¬isRoot(nact) then
6: SetEndPointers(parent(nact), vact.start)

7: if isRoot(nact) ∨ parent(nact).tail �= 0 then
8: if ¬isLeaf(nact) then
9: SetEndPointers(nact, vact.start)
10: for nk ∈ children(nact) do
11: vact.startnk

= length(Lnk
) + 1

12: vact.cancestor = nact.tail
13: nact.tail = length(Lnact) + 1

14: append vact into list Lnact

15: Advance(Tnact)

16: SetRestEndPointers(Q, ∞)

17: procedure SetEndPointers(n, actL)
18: while n.tail �= 0 do
19: vn = element(n.tail)
20: if vn.end < actL then
21: for nk ∈ children(n) do
22: vn.endnk

= length(Lnk
)

23: n.tail = vn.cancestor
24: else
25: break

26: procedure SetRestEndPointers(n, actL)
27: if ¬isLeaf(n) then
28: SetEndPointers(n, actL)

29: for qi in children(n) do
30: SetRestEndPointers(ni, actL)

Table 1. Limitation of TwigMix

Query Number of elements
pushed into S

//dblp//inproceedings[//title]//author 915,856
//dblp//article[//author][//title]//year 553,062
//dblp//inproceedings[//cite][//title]//author 149,015

4.2 TwigFast

TwigFast uses a data structure that is essentially the same as that of TwigMix,
but to avoid the use of stack S, it adds some pointers in the lists. More specif-
ically, each element appended to the result list has a pointer, cancestor, that
points to its closest ancestor in the same list. With these pointers, the elements
on the same path can be linked together. For example, in Fig. 3(f), the ele-
ment a3 has a pointer pointing to its closest ancestor a1. For each result list, a
tail pointer is also maintained to point to the last element that still has poten-
tial descendants in the future. Together with the pointers that point to closest
ancestors, we can easily maintain a list of elements which still have potential
descendants, and these elements must be on the same path. For example, in

532 J. Li and J. Wang

Fig.3(f), with the pointers, we can easily find a3 and a1 still have potential
descendants, but a2 will not contribute to any new solutions in the future, so it
is skipped by the pointer.

The purpose of the cancesor and tail pointers is to make it possible to cor-
rectly set descendant intervals for each element. When an element e is about to
be appended to LE , the start positions of intervals are determined (line 10 to 11).
For each child Ci of query node E, the start position is equal to length(LCi)+1.
The end positions of an element can be determined when the element will not
have any new descendants coming in the future (line 9). For each child Ci of
query node E, the end position is equal to length(LCi). For example in Fig.3(f),
the coming of a3 indicates a2 will not have any new descendants in the future,
so the end positions of a2 are determined.

Example 2. Consider the data tree and twig pattern shown in Fig.3. The first call
of getNext() returns a, with a1 being the current element (vact) of Ta. Since a is
the root of Q, and a is not the leaf, the procedure SetEndPointers(a, vact.start)
is called but it does nothing since a.tail = 0. Now the start positions of a1’s de-
scendant intervals are set to 1, and a1.cancestor = 0, a.tail = 1, and a1 is
appended to list La, and current element of Ta is set to a2 (Fig.3 (c)). The sec-
ond call of getNext also returns a, and SetEndPointers(a, a2.start) is called.
Since a.tail = 0, and a1.end ≥ a2.start (i.e., a2 is a descendant of a1), the
procedure finishes with nothing done. Now lines 10 to 15 sets the start posi-
tions of a2’s descendant intervals as 1, and a2.cancestor = 1, a.tail = 2, ap-
pends a2 to La ((Fig.3 (d))), and advances Ta to a3. The next call of getNext()
returns b, which is a leaf node. The current element of Tb is b1. Therefore,
SetEndPointers(a, b1.start) is called. Since a.tail = 0, and a2.end > b1.start,
the procedure returns to line 7. Since a.tail > 0, b1 is appended to Lb (line 14),
and PT (Tb) points to b2. Similarly, the next call of getNext() returns c, and
we append c1 to Lc, and make PT (Tc) point to c2 (Fig.3 (e)). The next call
of getNext() returns a with vact = a3. SetEndPointers(a, a3.start) is called.
Since a2.end < a3.start, i.e., a2 no longer has b-descendants or c-descendants,
we set the end positions of a2 as 1 and 1 for b and c. We then set the start
positions of a3 as 2 and 2, a3.cancestor = 1 (pointing to a1), a.tail = 3, append
a3 to La and advance Ta (Fig.3 (f)). The next two calls of getNext() return
b and c respectively, so we append b2 and c2 to Lb and Lc respectively, and
advance Tb and Tc (Fig.3 (f)). Now we use the infinite value to set the remaining
end positions. That is, the end positions of a3 to 2. The final lists are shown in
Fig.3 (h).

Correctness and complexity. Both the correctness of TwigFast and the linear
time and space complexity of Algorithm 3 can be established, in a way similar
to TwigMix.

Considerations of /-edges. For TwigFast, the strategy of adding sibling links
[10] can also be applied. But one thing should be noted. TwigFast directly builds

Fast Matching of Twig Patterns 533

up the final solutions into result lists, so ancestors are always appended to result
lists before their descendants. Therefore, when we set end pointers for an element,
if it can not find its children, it should be marked as useless. The enumeration
algorithm will skip this element.

5 Experiments

In this section, we present the experiment results on the performance of TwigMix
and TwigFast against TwigList [10] and HolisticTwigStack [8], with both real-
world and synthetic data sets. TwigList is the most up-to-date one-phase twig
pattern matching algorithm that applies the bottom-up approach. It is claimed
to significantly outperform Twig2Stack [5] which, in turn, is claimed to be faster
than TwigStack. HolisticTwigStack is also a one-phase holistic twig pattern
matching algorithm, but the data structure used is complicated and expensive
to maintain.

The algorithms are evaluated with the following metrics: (1) number of ele-
ments pushed into the S stack and result lists, (2) processing time.

5.1 Experiment Set-Up

The XML document parser we used is Libxml2 [2]. We implemented a generator
in C to generate element encodings (start, end, level) for each element in an
XML document. A simple XPath parser is also implemented, which generates
the twig tree from an XPath expression.

We implemented TwigMix, TwigFast, TwigList and HolisticTwigStack in
C++. All the experiments were performed on 1.6GHz Intel Centrino Duo proces-
sor with 1G RAM. The operating system is Windows XP. We used the following
three data sets for evaluation:

TreeBank: We obtained TreeBank XML document from the University
of Washington XML repository [1]. The data is deep and has many re-
cursive elements with the same label. The maximal depth is 36 and there
are more than 2.4 million elements.
DBLP: DBLP XML document is also obtained from the University of
Washington XML repository [1]. This data set is wide and shallow. There
are more than 3.3 million elements.
XMark: XMark is a synthetic data set, which is generated by the XML
Benchmark Project [11]. We set the scaling factor as 2. The generated
document is 226M with more than 3.33 million elements.

5.2 Experiment Results

We compared the algorithms TwigMix, TwigFast against TwigList and
HolisticTwigStack with different twig pattern queries over the three data sets
above. The queries are listed in Table 2.

534 J. Li and J. Wang

Table 2. Queries over TreeBank, DBLP and XMark

Data set Query XPath expression

TreeBank TQ1 //S[//MD]//ADJ
TreeBank TQ2 //S[//VP//IN]//NP
TreeBank TQ3 //S//VP//PP[//NP//VBN]//IN
TreeBank TQ4 //S//VP//PP[//NN][//NP[//CD]//VBN]//IN
TreeBank TQ5 //S[//VP][//NP]//VP//PP[//IN]//NP//VBN
DBLP DQ1 //dblp//inproceedings[//title]//author
DBLP DQ2 //dblp//article[//author][//title]//year
DBLP DQ3 //dblp//inproceedings[//cite][//title]//author
DBLP DQ4 //dblp//article[//author][//url]//ee
DBLP DQ5 //article[//volume][//cite]//journal
XMark XQ1 //item[//location]//description//keyword
XMark XQ2 //people//person[//address//zipcode]//profile//education
XMark XQ3 //item[//location][//mailbox//mail//emph]//description//keyword
XMark XQ4 //open auction[//parlist]//bidder
XMark XQ5 //people//person[//address//zipcode]//profile

Number of elements moved to S and result lists. We compared the
number of elements pushed into stack S and appended to the result lists during
processing. TwigFast and HolisticTwigStack do not push an element into
the stack S, so we compared TwigMix with TwigList. The comparison results
are presented in Table 3 and 4. Apart from the number of elements, we also
calculated the reduction percentage made by TwigMix.

As shown in the tables, TwigMix reduces a large percentage (up to 99.9%)
of elements moved to stack S and result lists. In some queries, the number of
elements reduced is over 1 million. Even though one operation on stack or list
is minor, such a large percentage of reduction is enough to significantly reduce
the overall time. Additionally, the reduction is significant over all of the three
data sets regardless of the structural characteristics of the data, which means
the performance improvements brought by TwigMix are consistent.

The reduction of elements appended to result lists shows the advantage of
TwigMix in memory consumption. Since the elements appended to result lists will
not be released until the results enumeration finishes, they will waste memory
space if they do not contribute to the final solutions. Therefore, the useless
elements eliminated by TwigMix can significantly reduce the usage of memory.

Processing time. The comparison of processing time is illustrated in Fig.4.
As shown, both TwigMix and TwigFast significantly outperform TwigList and
HolisticTwigStack. TwigFast shows better performance than TwigMix because
it does not need to push elements into stack. This demonstrates that the overhead
of maintaining the cancestor and tail pointers in TwigFast is well worthwhile.
If we observe the figure together with Table 3 and Table 4, we can see that the
processing time is closely related to the number of elements moved to S and result
lists. In other words, the reduction of elements for processing directly brings the
improvement of performance. For example, for query TQ4, the percentage of
reduction is up to 99.1% such that the gap of processing time is huge. For query
DQ1, against TwigMix, TwigFast saves 915,856 elements from being pushed into
the stack, so the processing time nearly decreases by 2 times.

Fast Matching of Twig Patterns 535

Table 3. Number of elements pushed into S

Query TwigMix Elements TwigList Elements Reduction percentage Useful Elements

TQ1 34 166,940 99.9% 34
TQ2 608,683 883,479 31.1% 608,683
TQ3 40,058 1,047,564 96.1% 40,058
TQ4 11,728 1,283,194 99.1% 11,728
TQ5 64,745 1,637,551 96.0% 64,745
DQ1 915,856 1,257,621 27.2% 915,856
DQ2 553,062 1,485,788 62.8% 553,062
DQ3 149,015 1,428,692 89.6% 149,015
DQ4 126,490 1,270,476 90.0% 126,490
DQ5 52,783 508,499 89.6% 52,783
XQ1 124,066 316,594 60.8% 124,066
XQ2 31,861 140,254 77.3% 31,861
XQ3 63,124 541,558 88.3% 63,124
XQ4 52,941 184,874 71.4% 52,941
XQ5 51,325 127,410 59.7% 51,325

Table 4. Number of elements appended to result lists

Query TwigMix Elements TwigList Elements Reduction percentage Useful Elements

TQ1 34 13,686 99.8% 34
TQ2 608,683 770,052 21.0% 608,683
TQ3 40,058 207,930 80.7% 40,058
TQ4 11,728 414,380 97.2% 11,728
TQ5 64,745 797,917 91.9% 64,745
DQ1 915,856 1,257,384 27.2% 915,856
DQ2 553,062 1,484,711 62.7% 553,062
DQ3 149,015 1,222,789 87.8% 149,015
DQ4 126,490 1,183,417 89.3% 126,490
DQ5 52,783 398,708 86.8% 52,783
XQ1 124,066 255,278 51.4% 124,066
XQ2 31,861 82,829 61.5% 31,861
XQ3 63,124 410,540 84.6% 63,124
XQ4 52,941 167,433 68.4% 52,941
XQ5 51,325 89,241 42.5% 51,325

(a) TreeBank (b) DBLP (c) XMark

Fig. 4. Processing Time(ms)

6 Conclusion

We presented two novel one-phase twig pattern matching algorithms that effi-
ciently find twig pattern occurrences. TwigMix introduces holistic ideas into the

536 J. Li and J. Wang

original bottom-up approach, such that the elements that do not contribute to
final solutions are not moved into the stack and result lists. TwigFast directly
builds up final solutions without pushing/popping-up elements into/from the
stack. The better overall performance of our algorithms has been substantiated
in our experiments. Since the result lists built by our algorithms are far shorter
than those built by TwigList, our algorithms relieve the problem of memory
consumption.

Acknowledgement. This work is partially supported by Griffith University
New Researcher’s Grant (GUNRG36621).

References

1. http://www.cs.washington.edu/research/xmldatasets/
2. http://xmlsoft.org/
3. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., Wu, Y., Koudas, N., Srivastava, D.:

Structural joins: A primitive for efficient XML query pattern matching. In: ICDE,
p. 141 (2002)

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD Conference, pp. 310–321 (2002)

5. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2stack: Bottom-up processing of generalized-tree-pattern queries over XML
documents. In: VLDB, pp. 283–294 (2006)

6. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: SIGMOD Conference, pp. 455–466 (2005)

7. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed XML docu-
ments. In: VLDB, pp. 273–284 (2003)

8. Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q., Che, D.: Efficient processing of XML twig
pattern: A novel one-phase holistic solution. In: Wagner, R., Revell, N., Pernul, G.
(eds.) DEXA 2007. LNCS, vol. 4653, pp. 87–97. Springer, Heidelberg (2007)

9. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent
child edges: a look-ahead approach. In: CIKM, pp. 533–542 (2004)

10. Qin, L., Yu, J.X., Ding, B.: TwigList: Make twig pattern matching fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

11. Schmidt, A., Waas, F., Kersten, M., Florescu, D., Manolescu, I., Carey, M., Busse,
R.: The XML benchmark project. Technical Report INS-R0103, CWI (April 2001)

http://www.cs.washington.edu/research/xmldatasets/
http://xmlsoft.org/

XML Filtering Using Dynamic Hierarchical

Clustering of User Profiles

Panagiotis Antonellis and Christos Makris

Computer Engineering and Informatics Department, University of Patras,
Rio 26500, Greece

adonel@ceid.upatras.gr, makri@ceid.upatras.gr

Abstract. Information filtering systems constitute a critical component
in modern information seeking applications. As the number of users
grows and the information available becomes even bigger it is crucial
to employ scalable and efficient representation and filtering techniques.
In this paper we propose an innovative XML filtering system that uti-
lizes clustering of user profiles in order to reduce the filtering space and
achieves sub-linear filtering time. The proposed system employs a unique
sequence representation for user profiles and XML documents based on
the depth-first traversal of the XML tree and an appropriate distance
metric in order to compare and cluster the user profiles and filter the
incoming XML documents. Experimental results depict that the pro-
posed system outperforms the previous approaches in XML filtering and
achieves sub-linear filtering time.

1 Introduction

Information filtering systems [1] are systems that provide two main services:
document selection (i.e., determining which documents match which users) and
document delivery (i.e., routing matching documents from data sources to users).
In order to implement efficiently these services, information filtering systems
rely upon representations of user profiles, that are generated either explicitly
by asking the users to state their interests, or implicitly by mechanisms that
track the user behaviour and use it as a guide to construct his/her profile. Initial
attempts to construct such profiles typically used ”bag of words” representations
and keyword similarity techniques to represent user profiles and match them
against new data items. These techniques, however, often suffer from limited
ability to express user interests, being unable to fully capture the semantics
of the user behaviour and user interests. As an attempt to face this lack of
expressibility, there have appeared lately a number of systems that use XML
representations for both documents and user profiles and that employ various
filtering techniques to match the XML representations of user documents with
the provided profiles. The process of filtering XML documents is the reverse of
searching XML documents for specific structural and value information. An XML
document filtering system stores user profiles along with additional information
(e.g. personal information of the user, email address). When an XML document

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 537–551, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

538 P. Antonellis and C. Makris

arrives, the system filters it through the stored profiles to identify with which of
them the document fits. After the filtering process has finished, the document
can be sent to the corresponding users with matching profiles.

1.1 Existing Approaches

The existing XML filtering systems can be categorized as follows:

Automata-based Systems. The prominent examples of automata-based sys-
tems are XFilter [2] and YFilter[7]. Systems in this category incorporate Finite
State Automata (FSA) to quickly match the document with the user profiles. In
these systems, each data node causes a state transition in the underlying finite
state automata representation of the filters.

Sequence-based Systems. Systems in this category represent both the user
profiles and the XML documents as string sequences and then perform subse-
quence matching between the document and profile sequences. FiST [12] employs
a novel holistic matching approach, that instead of breaking the twig pattern into
separate root to leaf paths, transforms (through the use of the Prüfer sequence
representation) the matching problem into a subsequence matching problem.
In order to provide more efficient filtering, user profiles sequences are indexed
using hash structures. XFIS [4] represents XML documents and user profiles
using a novel sequence representation based on post order traversal and Prüfer
sequences. XFIS supports on-line filtering of XML documents in only one pass,
thus it is ideal for on-line applications and filtering systems.

Stack-based Systems. The representative system of this category is AFilter [5].
AFilter utilizes a stack structure while filtering the XML document against user
profiles. Its novel filtering mechanism leverages both prefix and suffix common-
alities across filter statements, avoids unnecessarily eager result/state enumer-
ations (such as NFA enumerations of active states) and decouples the memory
management task from result enumeration to ensure correct results even when
the memory is tight.

Push Down Approaches. XPush [9] translates the collection of filter state-
ments into a single deterministic pushdown automaton. The XPush machine
uses a SAX parser that simulates a bottom up computation and hence doesn’t
require the main memory representation of the document. XSQ [13] utilizes a
hierarchical arrangement of pushdown transducers augmented with buffers.

Suitable clustering algorithms for semistructured documents were extensively
studied in [11]. XML document clustering was based in modeling the XML doc-
uments as trees, calculating the tree edit distance between them and applying
a modified hierarchical clustering algorithm [8]. The tree edit distance is com-
puted as the minimum-cost sequence of operations required to convert one given
tree to another [10] [14]. In [6] the authors suggest the usage of tree structural
summaries to improve the performance of the distance calculation and at the
same time to maintain or even improve its quality. In [3] the authors introduce a

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 539

novel compact representation of XML documents based on edge summaries. The
proposed structure is utilized along with a suitable distance metric to efficiently
cluster homogeneous and heterogeneous XML documents.

1.2 Motivation and Contribution

Existing XML filtering approaches are not always effective in filtering XML doc-
uments against a rapidly growing number of stored user profiles for the following
reasons:

– Usually, filtering systems cover a wide range of user interests and topics,
thus each incoming XML document is relevant to a small portion of stored
user profiles. However this fact is ignored by most filtering systems and the
XML documents are checked against all user profiles.

– Systems considering similarities between stored user profiles, e.g. AFilter,
utilize those similarities only to reduce extra checks, thus they keep checking
every XML document against all user profiles.

In this research work we propose a filtering system that:

– Utilizes a unique sequence representation for both user profiles and XML
documents based on the preorder traversal of XML tree.

– Measures similarity between two given user profiles or between an XML
document and a user profile based on an innovative metric that utilizes a
modification of the Levenshtein distance between the corresponding string
representations.

– Creates an hierarchical structure of clusters using a hybrid hierarchical clus-
tering algorithm based on the above mentioned metric.

– Applies a dynamic hierarchical filtering approach for each incoming XML
document, based on the formed structure of clusters. The number of different
levels of filtering depends on the number of previous matches in each level
of clusters.

The rest of the paper is structured as follows. Section 2 introduces the utilized
sequence representation and describes the distance metrics adopted; section 3
discusses analytically the clustering and filtering processes; section 4 discusses
the experimental results and section 5 presents our conclusions.

2 Sequence Representation and Distance Metrics

2.1 Sequence Representation of XML Trees

In this work, we use a unique sequence representation of XML documents and
user profiles, based on the preorder traversal of XML trees.

Every XML document can be easily modeled as an XML tree, where every
enclosed element or attribute is modeled as a child in the XML tree. On the other

540 P. Antonellis and C. Makris

Fig. 1. Modeling a user profile as XML
tree

Fig. 2. Modified edit distance between
two user profiles

hand, tree modeling of user profiles (expressed in XPath[19]) is not straightfor-
ward, as they may contain special relations (such as //, etc). In this paper we
consider only parent/child (/) and ancestor/ descendant relations (//), which is
the most used relation in user profiles. In order to model such a relation, we add
an extra node in the XML tree, labeled with *. Figure 1 depicts an example of
modeling a user profile (expressed in XPath) as an XML tree.

In order to construct the sequence representation of an XML tree, we need
to replace each distinct tag label with a single unique char. For this reason, we
utilize a dictionary structure that assigns each distinct tag with a single char
label and keeps track of the correspondence between tag labels and char labels.
In the rest of this paper, for simplicity reasons, we will refer to the XML nodes
directly with their char labels.

Based on the above observations, we introduce a novel tree sequence represen-
tation (TSR) of XML trees, based on preorder traversal, with the property that
every XML tree is represented by a unique sequence representation. Each node of
the XML tree is encoded by the pair <Parent><Node><Depth>, where <Parent>
represents the parent’s char label, <Node> represents the current node’s char la-
bel and <Depth> represents the current’s node depth. If the current node is the
root node, we replace <Parent> with &. For example, let us consider the XML
tree in Figure 1. The encoding of the C node is BC2, where B is the char label
of node’s parent, C is the node’s char label and 2 is its depth in the XML tree.
The TSR of an XML tree is calculated by preorder traversing the XML tree and
appending in each step the string encoding of every node reached. For example,
the TSR of the XML tree presented in Figure 1 is &A0 AB1 BB2 BC2 A*1 *D2.
The depth information is stored in order to avoid ambiguity in cases of nested
nodes with the same label. For example, in Figure 1, if the TSR didn’t store the
depth for every node, the node D could be child of either the two B nodes.

2.2 Distance between User Profiles

In order to construct clusters of similar user profiles, we need to define a measure
of the distance between two given user profiles. Previous works in this area
propose the tree edit distance as a measure of the distance between any two
labeled trees. The tree edit distance counts the cost of the total number of simple

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 541

edit operations required to transform one tree to another. Initially, each edit
operation costs 1, but someone can assign different costs in every edit operation.

The following simple edit operations are allowed:

– Delete. Deletion of a single node.
– Insert. Insertion of a single node.
– Replace. Replacement of an existing node with another one.

The semantics of user profiles require some modification to the above measure.
For this reason, we make the following assumptions:

– Delete operations are allowed only in leaf nodes or in ancestor/descendant
cases and cost 1.

– Insert operations are allowed only in leaf nodes or in ancestor/descendant
cases and cost 1.

– Replace operations are allowed everywhere, but cost as much as the minimum
weight of the two corresponding nodes (replaced and replacement node). The
intuition behind this is that the more descendants a tree node has, the more
important is for the corresponding user profile semantics. However, if the
replaced node has a * label, then the replacement cost is 0.

– The weight of a node v, denoted as w(v) is the total number of nodes in the
subtree rooted at v.

Ancestor/descendant cases correspond to the presence of a *-label. In those
cases, it is allowed to delete/insert a parent/child node of a *-labeled node.
Figure 2 depicts an example of the modified edit distance between two user
profiles. In this case, in order to transform User Profile 1 into User Profile 2, the
following edit operations are required:

– Insertion of the E-labeled node under the *-labeled node.
– Insertion of the E-labeled node under the C-labeled node.
– Replacement of the *-labeled node with the B-labeled node.

Following the previously mentioned assumptions, each of the first two edit
operations cost 1, while the third edit operation costs 0. Hence the modified edit
distance between the two user profiles is 2.

In order to calculate our modified tree edit distance between two user pro-
files, we need a distance metric that reduces the problem of calculating tree
edit operations into that of calculating the sequence edit distance between user
profiles TSRs. For this reason we employ a modification of the Levenshtein dis-
tance between the TSRs of user profiles. The original Levenshtein algorithm [16]
(also called Edit-Distance) calculates the least number of edit operations that
are necessary to modify one string to obtain another string. The most common
way of calculating this is by the dynamic programming approach. A tableau is
initialized measuring in the (m, n)-cell the Levenshtein distance between the m-
character prefix of one with the n-prefix of the other word [20]. The tableau can
be filled from the upper left to the lower right corner. Each jump horizontally or
vertically corresponds to an insert or a delete, respectively. The cost is normally

542 P. Antonellis and C. Makris

Fig. 3. Modified edit distance between a user profile and an XML document

set to 1 for each of the operations. The diagonal jump can cost either one, if the
two characters in the row and column do not match, or 0, if they do. Each cell
always minimizes the cost locally. This way the number in the lower right corner
is the Levenshtein distance between the words.

However, in TSR, every node is represented as a pair of char labels and an
integer representing its depth, thus we modify the Levenshtein distance to con-
sider pair of chars instead of single chars. The depth information is used only
in the case of nested nodes with the same tag, in order to distinguish between
them. Moreover, in order for the user profiles semantics to be fulfilled, we ap-
ply the previously mentioned assumptions to the modified Levenshtein distance
algorithm. Table 1 presents the modified Levenshtein algorithm applied for the
two user profiles in Figure 2.

Table 1. Modified Levenshtein Algorithm

&A0 AB1 BD2 BE2 AC1 CE2

0 1 2 3 4 5 6

&A0 1 0 1 2 3 4 5
A*1 2 1 0 1 2 3 4
*D2 3 2 1 0 1 2 3
AC1 4 3 2 1 2 1 2

2.3 Distance between an XML Document and a User Profile

The distance between an XML document and a user profile is measured in a
similar manner with the distance between two user profiles. This fact is critical,
as the filtering algorithm should be able to compare the distance between two
user profiles and the distance between an XML document and a user profile. The
only differences are the following:

– Delete operations in the side of the XML document cost 0.
– Replace operations cost as much as the weight of the user profile’s corre-

sponding node.

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 543

The above rules ensure that a user profile’s distance from an XML document is
0 iff its tree representation is a subtree of the XML document’s representation.
Figure 3 depicts an example of the modified edit distance between a user profile
and an XML document. In this case, in order to transform the XML document
into the user profile, the following edit operations are required:

– Deletion of the R-labeled node.
– Deletion of the B-labeled node (under the R-labeled node).
– Deletion of the L-labeled node.
– Replacement of the E-labeled node with the C-labeled node.
– Replacement of the B-labeled node and the F-labeled node with the *-labeled

node.

Following the assumptions made before, the first three edit operations cost
0. The fourth edit operation costs as much as the weight of the C-labeled node,
e.g. 1. Finally the last edit operation costs 0. Hence the modified edit distance
between the user profile and the XML document is 1.

The distance is calculated again utilizing a modified Levenshtein distance
algorithm based on the previously presented assumptions.

One crucial property of the use of the two previously described metrics is
expressed in the following lemma:

Lemma 1. Given two user profiles P1, P2 and an XML document D, suppose
that distance(D, P2) = 0. Then distance(D, P1) ≤ distance(P2, P1)

Proof. Since distance(D, P2) = 0, then a segment of the XML document matches
exactly with P2. Let us denote by S that segment and S′ the rest of the XML
document (excluding S). Let us consider distance(S′, P1). There are two cases:

– distance(S′, P1) ≤ distance(P2, P1)
– distance(S′, P1) > distance(P2, P1)

In the first case, we can delete S from D (deletion costs 0), and thus:
distance(D, P1) = distance(S′, P1) ⇔ distance(D, P1) ≤ distance(P2, P1)
In the second case, we can delete S′ from D (deletion costs 0). Thus,
distance(D, P1) = distance(S, P1).
However, because S matches with P2, we have:
distance(S, P1) = distance(P2, P1) ⇔ distance(D, P1) = distance(P2, P1).
Thus in every case we have proved that: distance(D, P1) ≤ distance(P2, P1).�

The above lemma allows us to apply a clustering technique in order to reduce
the filtering space and thus create an hierarchical filtering scheme as explained
in the next sections. In particular, consider a cluster of user profiles, C, and
its centroid profile P . The centroid profile is the profile that has the minimum
average distance from the rest of the user profiles. In addition, consider that the
most distant profile from the centroid is the profile O and its distance from P is
d. Finally, consider an XML document D whose distance from P is r. If r ≥ d,
then based on Lemma 1, we can assume that there is no profile in the cluster

544 P. Antonellis and C. Makris

Fig. 4. Example of a cluster hierarchy forest

C whose distance from D is 0. If there was such a profile Z, then its distance
from P should be greater than r, based on Lemma 1. However, the most distant
profile’s distance from P is d ≤ r, thus there is no such a profile as Z in the
cluster C.

3 Filtering System

Our filtering system consists of two subcomponents: User profile clustering and
Filtering algorithm. The user profile clustering process is activated once, when
the system is initialized. When an XML document arrives, the filtering algo-
rithm is invoked to find those user profiles that match with the XML document.
The filtering algorithm utilizes the hierarchical structure of clusters formed at
the clustering phase in order to find those user profiles that match with each
incoming XML document.

3.1 User Profile Clustering

Our XML filtering system utilizes a modified hierarchical clustering algorithm, in
order to form a cluster hierarchy. The proposed clustering algorithm is a classical
hierarchical clustering algorithm which utilizes the previous described distance
metric between two user profiles. Our clustering algorithm works as follows:

At first, every user profile is considered as a single cluster. In every step, the
algorithm finds the two closest clusters and merges them in one cluster. For
every newly formed cluster, the algorithm calculates the cluster centroid, which
is that user profile which minimizes the average distance with the rest user
profiles in that cluster. In addition, the algorithm calculates the max distance,
which is the distance between the cluster’s centroid and the most distant user
profile inside the cluster. The max distance will be utilized during the filtering
process, described in Section 3.3. Finally, the clustering algorithm keeps track
of the cluster hierarchy, thus every formed cluster points to the two clusters it
was formed by. The clustering algorithm stops until only two top-level clusters
have remained. The result of our clustering algorithm is a cluster hierarchy forest
(with two root nodes) in which every node has exactly two children nodes (expect

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 545

of the leaf nodes). Every node u of that tree stores pointers to every-leaf node
(e.g. user profile) contained in the subtree rooted at node u, a pointer to its
centroid profile and its max distance.

Figure 4 shows an example of a such a cluster hierarchy forest. The clusters
C6 and C7 are the two root nodes of the forest. As it can be seen, every cluster in
the forest has exaclty two children, except of the low-level clusters (P1 through
P9) which represent the stored user profiles. Every cluster in the forest stores
pointers to its low-level user profiles, thus, for example, cluster C5 has pointers
to user profiles P1, P2, and P3. Due to space limitations, the max distance and
centroid profile for every cluster are not shown into the figure.

3.2 Filtering Algorithm

The filtering algorithm is used in order to filter an incoming XML document
through the previously described cluster hierarchy forest. The result of the fil-
tering process is a list of user profiles that match with the incoming XML docu-
ment. The incoming XML document is then forwared to the corresponding users
of the matched profiles.

Before describing the filtering algorithm, we give two important definitions
which will be used through out the filtering algorithm.

Definition 1. A user profile p matches with an incoming XML document D iff
distance(p, D) = 0.

The distance between a user profile and an XML document is measured as
described in Section 2.3, thus the above definition ensures that a user profile
matches an XML document iff its corresponding tree representation is a subtree
of the XML document’s tree representation.

Definition 2. An XML document D matches with a cluster of user profiles C
iff distance(D, c) ≤ m, where c is the cluster’s centroid and m is the cluster’s
max distance.

The above definition is based on Lemma 1. So, if distance(D, c) ≤ m, then it is
possible that the cluster C contains a user profile that matches with D. On the
other hand, if distance(D, c) > m, it is not possible that the cluster C contains
a user profile that matches with D. Thus, if an XML document D matches with
a cluster C, then it should be filtered through all the user profiles contained in
C. Otherwise, we can ignone the unmatched cluster and all its user profiles. This
notion is exploited by our filtering algorithm in order to dramatically decrease
the filtering space, thus achieving much better filtering time than the other
filtering algorithms.

The proposed algorithm utilizes a list of active clusters, called activeList,
which at any moment contains all the clusters that should be checked against
the next incoming XML document. This list is updated after an XML document
has been filtered as described later. In addition, the filtering algorithm adds a
counter called matchCnt in every cluster of the hiearchy tree. This counter counts

546 P. Antonellis and C. Makris

how many XML documents have been matched with the corresponding cluster.
Finally, the filtering algorithm initializes an extra global counter, called totCnt,
that counts the total number of XML documents that have been filtered.The
filtering process is as follows:

When first initialized, the activeList contains only the two top clusters
in the hierarchy forest. As a result, the first incoming XML document will be
checked against the two clusters in the activeList. At any step of the filtering
process, every incoming XML document is checked only against the clusters of
the activeList. For every matched cluster, the filtering algorithm increases
its matchCnt and then filters the XML document against all the user profiles
contained in that cluster, by simply calculating the distance between the XML
document and every user profile as described in Section 2.3. Every profile that
matches with the XML document is added to the output resultset of profiles.
However, the process of filtering an XML document with all the user profiles
within a cluster is the bottleneck of the filtering algorithm because it requires
checking the XML document with all the user profiles. Based on this notion, we
propose a dynamic filtering process which takes into consideration the number
of matchings per cluster and updates accordingly the activeList. The intuition
is that if a cluster has a lot of matchings, then the matched XML documents
are always checked against all its user profiles, thus if we want to reduce that
cost, we should split that cluster. In the same manner, if a cluster has very
few matchings, then we can eliminate the cost of checking every incoming XML
document with its centroid by merging that cluster with its sibling cluster. Thus,
after an XML document has been filtered, the filtering algorithm checks the value
of matchCnttotCnt of all the clusters contained in the activeList and compares them
with two thresholds: topThr and bottomThr. If the matchCnt

totCnt for a cluster C is
greater than topThr, then we remove C from the activeList and insert into
the activeList the two children of C. On the other hand, if the matchCnt

totCnt
for a cluster C is less than bottomThr, we remove C and its sibling from the
activeList and insert into the activeList the parent cluster of C. Thus, in
every step of the filtering process, we try to eliminate the cost of checking an
XML document with the centroids of the clusters in the activeList and the
cost of filtering an XML document with all the user profiles within a matched
cluster.

For example, consider the cluster hierarchy tree presented in Figure 4. Ini-
tially, the activeList contains the clusters C6 and C7. Thus every incoming
XML document is checked against those clusters and if it matches with one
or both of them, it is filtered through the user profiles of the matched clus-
ter(s). After a few XML documents have been filtered, suppose that the value of
matchCnt
totCnt for the cluster C6 has exceeded the topThr. In such a case, the filter-

ing algorithm removes C6 from the activeList and inserts the clusters C5 and
C2 into the activeList. Thus, every incoming XML document is now checked
against clusters C5, C2 and C7.

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 547

The values of topThr and bottomThr vary between 0 and 1 and are not
strictly defined and can be adjusted accordingly to the needs of every system.
We propose the following indicative values: topThr = 0.3 and bottomThr = 0.05.

4 Experiments

We tested our filtering system against FiST[12], which is one of the state-of-the-
art algorithms for filtering XML documents against twig pattern user profiles.
We chose FiST because it supports twig pattern user profiles, unlike other sys-
tems (e.g. AFilter, XFilter) which support only linear path expressions. Our
filtering system was implemented in Java using the freeware Eclipse IDE[18]. In
order to obtain comparable and reliable results, we also implemented a FiST-like
algorithm in Java using Eclipse.

In our experiments we used three different datasets: the DBLP dataset[15], the
Shakespeare’s plays dataset[17] and the Sigmod Record dataset[21]. For each of
those datasets, we also generated a random number of user profiles with arbitrary
depth and fan-out.

Our first experiment was to investigate the influence of the topThr threshold
in the performance of our algorithm. For that purpose, we disabled the checking
for the bottomThr threshold and we used our algorithm to filter 100 documents
through 1000 user profiles. Both utilized documents and user profiles were arbi-
trarly selected from the 3 aforementioned datasets. The initial value of topThr
was 0.1 and in each step of this experiment we increased topThr by 0.1 until
it became 0.9. We measured the total filtering time of 100 documents required
by our algorithm in each step and we present the results in Figure 5. As we
can see, the total filtering time for the 100 XML documents decreases as the
value of topThr increases, until topThr reaches 0.4. At that point, the filtering
time has its global minimum value (approximately 115000ms). After that point,
the filtering time starts to increase again as the value of topThr increases. This
trend of the filtering time can be explained as follows: at first, when topThr

Fig. 5. Filtering time in relation with topThr threshold

548 P. Antonellis and C. Makris

Fig. 6. Filtering time in relation with bottomThr threshold

has a low value (e.g 0.1, 0.2), the filtering algorithm acts aggressively and splits
very often the clusters belonging to activeList, thus it moves deep in the clus-
ter hieararchy. As a result, the size of the activeList becomes very large and
each incoming document is always cheched against a large number of low-level
clusters. However, as the value of topThr increases (e.g 0.3, 0.4), the filtering
algorithm becomes less aggressive and splits fewer clusters, resulting in a smaller
activeList. Every incoming XML document is now checked against a moderate
number of top-level clusters, thus the total filtering time is reduced and reaches
its minimum value when topThr becomes 0.4. However, after that point and
as the value of topThr continues to increase, the filtering algorithm acts more
conservatively and rarely splits the clusters contained in activeList. Although,
the size of activeList remains very small, the clusters contained in activeList
are very large (as they are not splitted easily) and whenever an incoming XML
document matches with a cluster in activeList it is filtered out through all the
profiles belonging to the corresponding cluster, thus requiring more time to be
filtered.

Our second experiment was to investigate the influence of the bottomThr
threshold in the performance of our algorithm. For that purpose, we standarized
topThr to 0.4, while in each step of that experiment we incremented bottomThr
by 0.02 (starting from 0.02) until it reached 0.2 (half value of topThr). We mea-
sured the total filtering time of 100 documents required by our algorithm in
each step and we present the results in Figure 6. As we can see, the filtering
time behaves in a similar manner with the first experiment: it decreases until
bottomThr becomes 0.1 and increases after that point. The explanation behind
this is that low values of bottomThr result in a very conservative filtering al-
gorithm which rarely merges two clusters of the activeList, thus the size of
activeList never decreases even if some of its clusters are rarely matched with
an incoming XML documents. However, as the value of bottomThr increases,
the filtering algorithm starts to merge more easily rarely matched clusters, thus
the activeList contains less but more popular clusters, thus the filtering time
decreases. Further increase of bottomThr (> 0.1) results in an aggresive merging
of clusters contained in activeList, thus the activeList contains only some

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 549

Fig. 7. Filtering time required for 200 documents by FiST and our algorithm (HCF)

few top-level clusters, which in turn results in a lot of cluster matchings for every
incoming XML document. Those matchings increase the filtering time, as the
XML document has to be filtered out through all the user profiles contained in
every matched top-level cluster.

Our third experiment was to compare our proposed algorithm with Fist, one
of the state-of-the-art XML filtering algorithms. During this experiment we mea-
sured the total time required by the two algorithms for filtering a set of 200 XML
documents. We varied the number of stored user profiles between 200 and 1000
in order to investigate the relation between the number of user profiles and the
required filtering time. The results of this experiment are presented in Figure 7.

According to Figure 7, our algorithm (referred as HCF) outperforms FiST in
every step of that experiment and the difference in filtering time increases dra-
matically as the number of user profiles grows. In particular, in the case of 200
user profiles, our algorithm is 41% faster while in the case of 1000 user profiles,
our algorithm is 72% faster. Another important notion is that FiST requires lin-
ear filtering time, while our algorithm requires sub-linear time. The effectiveness
of our algorithm is due to the reduction of the filtering space achieved by employ-
ing the cluster hierarchy forest. As a result, the number of user profiles needed
to be checked against every incoming XML document is very small related to
the total number of stored user profiles.

5 Conclusions and Future Work

In this paper we have presented a new XML filtering system that uses cluster-
ing of user profiles in order to scale well as the number of user profiles grows.
The proposed system utilizes a unique sequence representation for user profiles
and XML documents, based on the preorder traversal. Based on this sequence
representation, we proposed a modification of the Levenshtein distance metric
in order to calculate the distance between two user profiles or between an XML
document and a user profile. The proposed metric reduces the problem of cal-
culating the tree edit distance into that of calculating the modified Levenshtein

550 P. Antonellis and C. Makris

distance between the sequence representations. Our system applies hierarchical
user profile clustering in order to succeed sub-linear filtering time, based on the
number of matchings per cluster. Our experimental results showed that the pro-
posed system outperforms the previous algorithms in XML filtering and requires
sub-linear time to filter the incoming XML documents.

As future work, we intend to compare our filtering algorithm with more ap-
proaches (such as AFilter, YFilter etc) as well as to utilize alternative clustering
techiques such as k-Means; moreover, we aim to extend our filtering algorithm
in order to additionally support value-predicate user profiles instead of only
structural user profiles.

Acknowledgements

Panagiotis Antonellis’ work was supported in part by the Hellenic State Schol-
arships Foundation (IKY).

References

1. Aguilera, M.K., Strom, R.E., Stunnan, D.C., AsHey, M., Chandra, T.D.: Matching
Events in a Content-based Subscription System. In: PODC 1999, pp. 53–61 (1999)

2. Altinel, M., Franklin, M.I.J.: Efficient Filtering of XML Documents for Selective
Dissemination of Information. In: VLDB 2000, pp. 53–64 (2000)

3. Antonellis, P., Makris, C., Tsirakis, N.: XEdge: Clustering Homogeneous and Het-
erogeneous XML Documents Using Edge Summaries. In: ACM SAC 2008 (to ap-
pear, 2008)

4. Antonellis, P., Makris, C.: XFIS: An XML Filtering System based on String Repre-
sentation and Matching. International Journal on Web Engineering and Technology
(IJWET) 4(1), 70–94 (2008)

5. Canadan, K., Hsiung, W., Chen, S., Tatemura, J., Agrrawal, D.: AFilter: Adaptable
XML Filtering with Prefix-Caching and Suffix-Clustering. In: VLDB 2006, pp. 559–
570 (2006)

6. Dalamagas, T., Cheng, T., Winkel, K., Sellis, T.: Clustering XML documents us-
ing Structural Summaries. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 547–556. Springer, Heidelberg
(2004)

7. Diao, Y., Altinel, M., Franklin, M.: Path sharing and predicate evaluation for high-
performance XML filtering. TODS 28(4), 467–516 (2003)

8. Francesca, F., Gordano, G., Ortale, R., Tagarelli, A.: Distance-based Clustering of
XML Documents. In: MGTS 2003, pp. 75–78 (2003)

9. Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In:
SIGMOD 2003, pp. 419–430 (2003)

10. Isert, C.: The editing distance between trees. Technical Report, Ferienakademie,
for course 2: Bume: Algorithmik Und Kombinatorik, Italy (1999)

11. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs (1988)

12. Kwon, J., Rao, P., Moon, B., Lee, S.: FiST: Scalable XML Document Filtering by
Sequencing Twig Patterns. In: VLDB 2005, pp. 217–228 (2005)

XML Filtering Using Dynamic Hierarchical Clustering of User Profiles 551

13. Peng, F., Chawathe, S.: XSQ: A streaming XPath Queries. In: TODS 2005, pp.
577–623 (2005)

14. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 1245–1262 (1989)

15. http://kdl.cs.umass.edu/data/dblp/dblp-info.html
16. http://www.levenshtein.net/
17. http://xml.coverpages.org/bosakShakespeare200.html
18. http://www.eclipse.org
19. http://www.w3.org/TR/xpath
20. http://www.levenshtein.net
21. http://www.dia.uniroma3.it/Araneus/Sigmod/Record/DTD/index.html

http://kdl.cs.umass.edu/data/dblp/dblp-info.html
http://www.levenshtein.net/
http://xml.coverpages.org/bosakShakespeare200.html
http://www.eclipse.org
http://www.w3.org/TR/xpath
http://www.levenshtein.net
http://www.dia.uniroma3.it/Araneus/Sigmod/Record/DTD/index.html

Person Retrieval on XML Documents

by Coreference Analysis
Utilizing Structural Features

Yumi Yonei, Mizuho Iwaihara, and Masatoshi Yoshikawa

Department of Social Informatics, Graduate School of Informatics, Kyoto University
Yoshidahonmachi, Sakyo-ku, Kyoto, 606-8501 Japan

Abstract. Keyword retrieval of the present day exploits frequencies and
positions of search keywords in target documents. As for retrieval by two
or more keywords, semantic relation between keywords is important. For
retrieving information about a person, it is common to search by a pair
of keywords consisting of person’s name and his/her attribute of the in-
terest. By using dependency analysis and coreference analysis, correct
occurrences of pairs of person and his/her attributes can be retrieved.
However, existing natural language analysis does not consider the factor
that logical structures of the documents strongly influence probabilistic
patterns of coreference. In this paper, we propose a new way of person re-
trieval by computing a maximum entropy model from linguistic features
and structural features, where structural features are learned from prob-
abilistic distribution of coreference over XML document structures. Our
method can utilize strong correlation between XML document structures
and coreference, thus having superior accuracy than existing methods.

1 Introduction

Keyword retrieval of the present day exploits frequencies and positions of search
keywords in target documents. As for retrieval by two or more keywords, seman-
tic relation between keywords is important. For retrieving information about a
person, it is common to search by a pair of keywords consisting of person’s name
and his/her attribute of the interest. For example, when we want to know George
Walker Bush’s birthplace, we can set a pair of search keywords; “George Walker
Bush” and “birthplace”. However if semantic relation between the keywords is
not considered, documents that describe a different person’s birthplace may be
retrieved. In this paper, we aim at improving accuracy of person retrieval by
considering coreference relation between keywords consisting of person’s name
and his/her attribute. Coreference analysis is aimed at resolving references of
expressions such as “his birthplace”, where the word “his” is called anaphor,
and the problem is to find antecedent, which is the word that appears before the
anaphor and represents the person or object the anaphor is referring to.

By using dependency analysis and coreference analysis which have been stud-
ied in the field of natural language processing, it is possible to retrieve contents in

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 552–565, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Person Retrieval on XML Documents by Coreference Analysis 553

� �
<article>

<name> George W. Bush </name>
<body>

<p> George Walker Bush (born July 6, 1946) is the forty-third
and current President of the United States of America.
He previously served as the forty-sixth Governor of Texas
from 1995 to 2000 and is the eldest son of former United
States President George Herbert Walker Bush.
He was inaugurated as President on January 20, 2001 and his
current term is scheduled to end at noon on January 20, 2009.

</p> ...
</body>

</article>

� �
Fig. 1. XML document and coreference

which query keywords have semantic dependencies so that search precision can be
improved. Coreference analysis that identifies objects that refer to the same entity
in documents is performed by machine learning using probabilistic knowledge such
as grammatical relationships and string matching. These clues are called features.
However, applying dependency analysis and coreference analysis to document re-
trieval still has a problem because they need language resources such as large-scale
dictionaries and their accuracies are still not enough for web pages.

On the other hand, in structured documents such as XML and HTML, coref-
erence is often influenced by their document structures. For example, in Fig.1, a
person’s name appears in a name node which holds the title of the article. The
possibility that the contents about the person are written all over the article
is high. Therefore, it can be concluded that it is mostly certain that “He” in
the paragraph of Fig.1 indicates the person of the article name, though “George
Hervert Bush” is closer in the text.

In this way, for deciding whether coreference relation exists between two
words, we can utilize probabilistic relationship between the relative logical po-
sitions of these words and coreference. We call it a structural feature. Docu-
ment structures such as sections and itemizations are usually given by one or
more writers at the time the document was authored. Therefore, we can reason-
ably assume that strong correlation exists between coreference and document
structures.

Regarding structural coreference, extracting relationship between attributes
and values from tables in HTML documents have been studied[3][16]. Also for
improving accuracy of image search, extracting sentences that describe the tar-
get image have been studied[5][17]. As for HTML and XML documents, it is
thought that the search accuracy of web pages can be improved by using struc-
tural information of documents. However, for documents of Web pages, not only
the document structure but also linguistic relationships needs to be considered,
because a long text may be written in one text node of a document and corefer-
ence can exist within the same text node. Therefore, retrieval with high accuracy
requires both linguistic features and structural features. To the authors’ knowl-
edge, no work has been done in the literature on integrating linguistic features

554 Y. Yonei, M. Iwaihara, and M. Yoshikawa

and structural features of web documents to produce a probabilistic model for
coreference analysis.

In this paper, we propose construction of structural features from XML docu-
ment trees, where structural features represent subtree patterns having positive
or negative correlation with coreference between antecedents and anaphors. We
also introduce linguistic features from existing work for detecting coreference of
person subjects. Then a maximum entropy model is constructed from training
data[2]. Experimental results show that our approach of combining structural
and linguistic features have superiority over the methods that consider either
structural or linguistic features alone. Also, since our abstraction of subtrees
patterns is effective, our definition of structural features overperformed support
vector machine with tree kernel. Our method has little part that depends on the
natural language of the interest; switching from Japanese to other languages can
be done by replacing language-specific features and dictionaries.

The rest of the paper is organized as follows: In Section 2, we describe re-
lated work. In Section 3, we describe our approach of analyzing coreference for
person retrieval that utilizes both linguistic and document-structural features.
In Section 4, we present experimental results of coreference analysis on XML
documents converted from Wikipedia. Section 5 is a conclusion.

2 Related Work

A number of researches have been done on utilizing natural language analysis
for web retrieval. Reputation mining from the Internet extracts pairs of “object”
and “evaluation” from a large amount of free sentences regarding commodities of
multiple fields. By associating the extracted “object” and its “evaluation” in the
same sentence, the structure of the pair is extracted. In [10], pairs of “attribute”
and “evaluation value” that appear in different sentences are extracted by apply-
ing coreference analysis for opinion extraction. Feature-based learning approach
has been extensively used for coreference analysis. Features regarding document
structures, such as distance in the number of sentences, are considered in [6][10],
but in a simple way that the feature checks whether or not an antecedent and
anaphor are apart in more than three sentences. Such a feature fails to cap-
ture long-distance coreference occurring in structured documents, such as those
between the title and its body. Also, structural constructs such as itemization
and section/subsections have never been considered in the coreference analy-
sis research. In this paper we define structural features that effectively capture
coreference patterns.

Table analysis and image retrieval also extract relationships between objects
by considering the document structure of web pages. Semantic information such
as attributes and their values can be extracted from a table by considering rela-
tive positioning of cells in the table, as well as the relationship between captions
and tables. The method of [3] considers similarity between cells in the table to ex-
tract attribute and attribute values. The method of [16] also considers clustering
of similar tables by analyzing data contents and its configuration in the tables.

Person Retrieval on XML Documents by Coreference Analysis 555

As for image retrieval, there are researches on extracting sentences and/or
keywords that are related to an image from its surrounding texts. In [5], three
preceding document nodes till the parent node are considered for candidates
containing sentences explaining the image. In [17], three types of web contexts
regarding usage of the image are defined, by considering sentences appearing
around the image, the document structure and the link structure.

Our method is unique in the respect that we utilize the fact that the same au-
thor(s) introduces logical structures as well as coreference between sentences, so
that document structures and coreference patterns should have probabilistic cor-
relations. By integrating linguistic and structural learning, a great improvement
on retrieval accuracy can be expected. Also, unlike the approaches mentioned
above, our approach can automatically capture cases where coreference occurs
between two distant positions in a document, such as coreference between section
titles and their bodies.

Recently, information retrieval on semi-structured data is extensively studied,
where IR-style full-text querying is integrated with structural querying on XML
documents[1][13]. Query answers are ranked by relevancy scores, where IR-style
scoring of term and tag frequencies is extended to find most-relevant subtrees.
Relevancy scoring also considers other factors such as exhaustivity and speci-
ficity. However, these scoring models do not directly reflect linguistic relationship
between keywords as natural-language sentences, rather indirect indicators of lin-
guistic relationships, such as term proximities and term distributions, are used.
A finer search accuracy shall be achieved, by combining structural factors and
natural-language factors.

3 Linguistic and Structural Features of XML Documents

We describe our approach on person retrieval by structural and linguistic coref-
erence on XML documents.

3.1 Coreference

Machine learning with features has been used for analyzing coreference. In this
paper, we describe our method of extracting linguistic and structural features
from input XML documents, to obtain pairs of antecedent and anaphor can-
didates which appear in the documents. Then we apply machine learning over
those features for learning coreference relations.

Linguistic features. The following four types of linguistic features are from [6].
These features have little implementation complexity but have good classification
accuracies.

1. Features that use vocabulary information (10 features)
Scores on string matching of an anaphor candidate and an antecedent can-
didate are introduced as features. String matching is further classified as
“complete matching”, “forward matching”, “backward matching”, “main

556 Y. Yonei, M. Iwaihara, and M. Yoshikawa

word (most right content word) matching”, etc. In general, it is likely that
an anaphor candidate and an antecedent candidate are the same objects if
they have matching substrings.

2. Features that use morphological and syntactical information
(7 features)
Grammatical information of both anaphor and antecedent candidates, such
as their parts of speech, demonstratives, particles, tense of attributive modi-
fiers of noun phrases, can be used as features. For example, when instruction
attribute “the” lies on top of a noun phrase, the probability of the noun
phrase being a fixed noun phrase is high.

3. Features that use semantic information (6 features)
Semantic information from dictionaries and collections of peculiar expres-
sions can be used as features. Peculiar expressions include person names and
place names. We use Cabocha[9] for obtaining peculiar expression analysis.
If semantic attribute of an anaphor candidate and an antecedent candidate
is the same, there is a high possibility that they have coreference.

4. Features that use distance information between noun phrases
(3 features)
If there is a relatively long distance between an anaphor candidate and an
antecedent candidate, the possibility of not having coreference is high. We
can use as features regarding several different distances, such as the sen-
tence distance and noun-phrase distance between anaphor and antecedent
candidates.

The above grammatical and semantical features are dependent on the target
natural language. In this paper, we are dealing with XML documents containing
Japanese texts, but our method can be easily modified to another target language
by incorporating grammatical and semantical features of the target language.

Structural features. In structured documents such as XML and HTML, coref-
erence can be strongly influenced by their document structures. Even if two
words are separated in a document, there is a high possibility that they are in
the coreference relation if they have a parent-child relationship in the XML doc-
ument tree. On the contrary, even if an anaphor candidate and an antecedent
candidate appear in the vicinity of text, coreference might not occur if they are
distant in the document tree. Therefore, features regarding structural character-
istics of document trees shall be introduced for coreference analysis. We focus on
the document path from the node of an antecedent candidate to the node of an
anaphor candidate, possibly via their least common ancestor, and call the path
a coreference combination subtree (CCST). We utilize structural characteristics
of the subtree as features of coreference analysis.

Fig.2 is an example of generating a CCST. Fig.2 (a) shows an entire XML docu-
ment tree. An antecedent candidate appears in the title node of a section node, and
an anaphor candidate appears in a paragraph node of a section node. Its CCST
is generated automatically as shown in Fig.2 (b). As CCSTs include essential in-
formation that influence coreference, such as distance between antecedent and

Person Retrieval on XML Documents by Coreference Analysis 557

article

name

section

body

section section

p titletitle item title section section

title itemANT ANP

section

ptitle

ANT ANP

(a)

(b)

Fig. 2. Generating the CCST

article

name body

section

section

item

ANT

ANP

article

name body

section

item

ANT

ANP

article

name body

section

item

item

ANT

ANP

article

name body

ANP

ANP

//

(a) (b) (c)

(d)

Fig. 3. Generating the k-CCST

anaphor candidates in the document tree and node types (such as section, title,
body, etc), we can employ CCSTs as structural features.

If we generate CCSTs for all the combination of antecedent and anaphor
candidates within a document, the number of subtrees is too large to be efficient
features. Also, there could be many similar subtrees which represent the same
coreference pattern. Such similar subtrees need to be grouped. We extract a
subtree whose height is k from the root of the CCSTs. In this paper, we call it a
k-coreference combination subtree (k-CCST). We focus only on top-k portion of a
subtree and replace the subtrees below height k with nodes representing arbitrary
subtrees. This generalization is simple but based observation that coreference is
frequently occurring either (a) between two nodes connected by a small number
of edges or (b) between a node representing a logical region such as section body
and a node representing its title.

Fig.3 shows generation of k-CCST at k=2. Three CCSTs of Fig.3 (a) (b) and
(c) are different from each other, but all of them have the same important char-
acteristics such that all the antecedent candidates appear in “name” nodes, while
the anaphor candidates appear in “body” nodes. Fig.3 (d) shows the k-CCST
with k=2, which generalizes the subtrees of Fig.3 (a)(b) and (c) by substituting
subtrees deeper than k=2 with the descendant-or-self node “//”. We employ
k-CCSTs as structural features. We use the following parenthesized notation of
subtrees for structural features:

(article (name ANTECEDENT)(body ANAPHOR))

Here, the paths from the subtree root to both ANTECEDENT and ANAPHOR
nodes contain at most k nodes, and they are regarded as having “//” nodes just
in front of the ANTECEDENT and ANAPHOR nodes.

Learning machine. As for learning machines, we consider two models: the
maximum entropy model[2] has been successfully used for feature-based learning

558 Y. Yonei, M. Iwaihara, and M. Yoshikawa

in natural language processing, and support vector machine (SVM) utilizing tree
kernels are known to be effective for learning tree-structured data[7].

1. Maximum entropy model
The maximum entropy model is an algorithm which estimates a probabilistic
model for conditional probabilities p(x, y) from given frequencies C(x, y)
such that events x and y co-occur.
First, arbitrary functions, called feature functions, that return 1 or 0 are
defined over two events x and y, and constraints on feature functions are
computed. For example, suppose that event x is a structural feature repre-
sented by the k-CCST shown below:

(article (name ANTECEDENT)(body ANAPHOR))

Also suppose that event y represents the coreference relation (the correct
answer) between the antecedent and anaphor candidates. Then we have the
following feature function:

fi(x, y) =
{

1 if x ∧ y
0 otherwise

This function returns 1 when the antecedent candidate appears in the article
name, the anaphor candidate appears in the body and they are actually in
the coreference relation. The probabilistic model is calculated by the formula
(1).

p(x, y) =
1

z(x)
e
�

i λifi(x,y) (1)

z(x) =
∑

y

e
�

i λifi(x,y) (2)

Here, λ is a parameter which defines weight on each feature. Also, z(x) is
a normalization factor. Here, the probabilistic model needs to satisfy the
following constraints: P̃ (fi) is the expected value of features by the training
data, and P (fi) is the expected value of features obtained by the model.
The model is required to make these expected values identical. The entropy
model is represented by the formula (3):

H(P) = −
∑
x,y

p(x, y)logp(x, y) (3)

2. Support vector machine(SVM) using tree kernel
SVM classifies classes, constructing a separation hyperplane to maximize the
margin which is a distance between training points called support vectors
located in the class boundary neighborhood and separating plane[4]. If it
is not possible to linearly separate, it classifies training data by mapping
the input space to a higher-dimension feature space by using kernel trick.
The kernel method accesses in the form of the inner product of two data.

Person Retrieval on XML Documents by Coreference Analysis 559

The function that gives the product is called a kernel function and SVM can
classify higher dimensional data by selecting an appropriate kernel function.
Tree kernels for learning tree-structured data are known[7]. When two trees
V1, V2 have node sets T1, T2 and edge sets E1, E2, the tree kernel is defined
as follows.

K(T1, T2)=
∑

v1∈V1

∑
v2∈V2

∑
s1∈Sv1(T1)

∑
s2∈Sv2(T2)

KS(s1, s2) (4)

KS(s1, s2) = I(s1 = s2) (5)

Here, Sv(T) is the set of subtrees having v ∈ V as roots and KS is assumed
to be a kernel function defined between two subtrees. I() in the formula (5)
is a function which returns 1 if and only if the proposition in the parentheses
is true and returns 0 otherwise. Also, s1 = s2 becomes true if and only if two
subtrees are completely identical. As mentioned above, SVM can be used to
learn document structures by using tree kernel. We use the combination of
vectors of linguistic features returning 0 or 1 and tree structures from CCSTs
as training data. We note that we do not restrict the height of CCSTs to
given k for SVM, since tree kernel has its own generalization mechanism.

In this paper, we adopt both the maximum entropy model and SVM as learning
machines and compare their performances. We call the model generated from
training data a coreference model.

3.2 Applying Coreference Analysis to Person Retrieval

When a coreference exists within a document where the antecedent is a person
name, we can reasonably assume that the anaphor part contains descriptions
related to the person. As for CCSTs, if the feature

(article (name ANTECEDENT)(body ANAPHOR))

has relatively high weight after learning and thus correlation between this feature
and coreference is highly likely, there is a high possibility that the body node
containing the anaphor candidate mentions about the person name appearing
in the article-name attribute node. In this way, for person retrieval on XML
documents by pair keywords of person name and person’s attribute, retrieval
answers should be improved by reporting subdocuments in which the person
name and person’s attribute are in the coreference relation. Also, in a more
flexible way, we can sort subdocuments by the probabilities of the coreference
relation of each subdocument.

4 Experiments

We have conducted a series of experiments to evaluate effectiveness of structural
features to coreference analysis of XML documents.

560 Y. Yonei, M. Iwaihara, and M. Yoshikawa

Table 1. Experimental data

Ex.1 Ex.2 Ex.3 Ex.4
number of ANAPHOR 333 521 6 72

number of ANTECEDENT 75 96 4 4
number of pairs 12,597 22,758 18 33

number of correct answers 240 390 7 14
number of incorrect answers 12,357 22,269 11 19

4.1 Experimental Conditions

Experimental data. XML documents converted from Japanese version of
Wikipedia1 are used for benchmark. We used the following four articles:

– Ex.1: Koki Kameda (professional boxer)
– Ex.2: Yasuo Fukuda (prime minister)
– Ex.3: The gasoline dispute in the Diet
– Ex.4: The Security Council of Japan

Ex.1 and Ex.2 are articles whose article name is a person’s name. Ex.3 and Ex.4
are articles whose article name is other than a person’s name. The characteristics
of experimental data are shown in Table 1. Since our focus is person retrieval,
we try to extract coreference regarding persons. In this setting, an anaphor can-
didate should be a noun phrase or a zero-pronoun (Japanese-specific grammar
where pronoun is omitted) that represents a person in a document, and an an-
tecedent candidate should be a person’s name. For example, “Bush”, “him”, and
“president”, etc. can become anaphor candidates, while “George Walker Bush”
and “Barack Hussein Obama, Jr ”, etc. are regarded as antecedent candidates.
Antecedent candidates of a specified anaphor candidate need to be retrieved
from the entire text preceding the anaphor candidate.

Traditional coreference analysis often searches antecedent candidates within
the same paragraph or within a few preceding sentences of an anaphor candi-
dates. On the other hand, for structured documents such as XML, structural
relationship can cause coreference between two distant locations in the text. An-
other difference is that learning of document structures needs to be done from
the entire document. As shown in Table 1, the number of incorrect answers is
significantly larger than that of correct answers, because every pair of antecedent
and anaphor candidates within a document becomes incorrect coreference if it
is not correct.

If our method is applied to non-human subjects, linguistic features for detect-
ing human subjects, such as peculiar expressions for humans, need to be replaced
by features for detecting subjects of the interest.

Features. We introduced linguistic features from [6]. In our experiments, we
used Chasen[12] and Cabocha[9] for morphological analysis, peculiar expression
tag allocation, and dependency analysis. These processes are automatic. For se-
mantic features involving dictionaries, we use the EDR electronic dictionary[14].
1 http://ja.wikipedia.org/

Person Retrieval on XML Documents by Coreference Analysis 561

Table 2. Distribution of k-CCSTs(k=2) about all examples

k-CCSTs(k=2) number of right answers

(1) (item ANTECEDENT ANAPHOR) 91
(2) (p ANTECEDENT ANAPHOR) 153
(3) (item ANTECEDENT (normalist ANAPHOR)) 4
(4) (article (name ANTECEDENT)(body ANAPHOR)) 357
(5) (section (title ANTECEDENT)(section ANAPHOR)) 4
(6) (body (p ANTECEDENT)(section ANAPHOR)) 42
(7) (body (section ANTECEDENT)(section ANAPHOR)) 0
(8) (normalist (item ANTECEDENT)(item ANAPHOR)) 0
(9) (section (normalist ANTECEDENT)(normalist ANAPHOR)) 0
(10) (section(p ANTECEDENT) (p ANAPHOR)) 0
(11) (section (section ANTECEDENT)(section ANAPHOR)) 0
sum 651

In the EDR concept dictionary, each entry word has the following binary flags:
“Human”, “Human’s attribute”, and “Human and subject having human-like
behavior”. We used these flags as features to probabilistically infer that the
word is referring a human.

Structural features of XML documents of Wikipedia are automatically gen-
erated based on the algorithm illustrated in Fig.2 and Fig.3. Structural features
of k-CCSTs at k=2 generated from all examples are shown in Table 2.

In Table 2, subtree (1) and (2) are the cases where the coreference pair appears
in the same item node or in the same paragraph. Subtree (3) is the case where
an antecedent candidate appears in an item node and its anaphor candidate ap-
pears in its child element, meaning that the coreference pair has a parent-child
relationship. Subtree (4) is the case that an antecedent candidate appears in a
name node that is the title of the article, and (5) is the case where an antecedent
candidate appears in the title node of a section node and an anaphor candidate
appears in the section body. Subtree (6) is the case where an antecedent candi-
date and an anaphor candidate appear in different a section and a paragraph.
The subtrees (7)–(11) mean that the antecedent candidate and the anaphor can-
didate have a sibling relationship in the document tree structure. It is observed
that the frequency of coreference relations occurring within the same document
node of XML is high. However, the frequencies of coreference relations occurring
between a parent and a child (3), and between a “name” or “title” node and
its body are also high. These results show that certain structural patterns have
significantly higher possibilities of coreference than others, so that structural
features can be an effective classifier for coreference.

Learning machines. As for learning machines, we compare the maximum en-
tropy model and SVM with tree kernel. We use the tool [11] for the maximum
entropy model and SV M light[15] for SVM with tree kernel. For the maximum en-
tropy model, linguistic features and structural features from k-CCSTs with vary-
ing k are used for input. For the SVM with tree kernel, the same linguistic features
and structural features from the entire CCSTs are used. The training data and the
classification data are selected from all data at random half.

562 Y. Yonei, M. Iwaihara, and M. Yoshikawa

4.2 Evaluation Method

The data classified by the learning machines are evaluated according to precision
and recall. Coreference relations corresponding with the results by a human
subject are counted as correct answers. Precision and recall are calculated by
the following formulas:

precision =
number of coreference relations correctly identified

number of coreference relations identified by the system

recall =
number of coreference relations correctly identified

total number of correct coreference relations

Since the recall tends to fall if the precision rises, and the precision falls if the
recall rises, we use F-measure that is the harmonic mean of the precision and
the recall as an evaluation measure. F-measure is calculated by the following
formula:

F -measure =
2 × precision × recall

precision + recall

4.3 Experiment Results and Discussions

To evaluate effectiveness of structural features for coreference analysis of XML
documents, we have compared analysis results with and without structural fea-
tures. In addition, in order to examine the effect of height parameter k of k-
CCSTs, we tested for k=2, k=3 and k= ∞. Moreover, we compared results of
SVM with tree kernel and the maximum entropy model, in order to investigate
which tree generalization is more effective.

Comparing performance of features. To evaluate whether structural fea-
tures is effective for analyzing coreference in XML documents, we implemented
the following three methods using different features: (I) coreference analysis us-
ing only linguistic features, (II) coreference analysis using both linguistic and
structural features, and (III) coreference analysis using string matching and struc-
tural features. We use the maximum entropy model for learning machine. As for
structural features, k-CCSTs at k=2 is used. The experiment result is shown in
Table 3.

From Table 3, the analysis using both linguistic and structural features (II) has
better F-measure values for all the test data than the analysis using linguistic fea-
tures only (I). From this, we can see that structural features can improve corefer-
ence analysis of XML documents. By comparing coreference analysis using string
matching and structural features (III) with coreference analysis using structural
features (II), the former obtained results such that precision is high but recall is
low. This can be explained as the analysis of (III) can return correct answers when
partial string matches are identifying correct coreference, while this method tends

Person Retrieval on XML Documents by Coreference Analysis 563

Table 3. Experiment results about Comparing performance of features (%)

Ex.1 Ex.2 Ex.3 Ex.4

precision 74.3 76.0 51.3 31.2
(I)linguistic recall 40.8 66.8 57.5 48.7

F-measure 52.7 71.1 54.2 38.0
precision 77.0 78.9 69.3 75.0

(II)linguistic & structural recall 48.1 69.2 91.7 54.8
F-measure 59.2 73.7 74.9 63.3
precision 90.6 92.0 82.0 86.0

(III)string matcing & structural recall 38.9 33.5 62.0 54.8
F-measure 54.4 49.1 70.6 66.7

Table 4. Experiment results about
height of CCSTs (%)

Ex.1 Ex.2 Ex.3 Ex.4

precision 77.0 78.9 69.3 75.0
k=2 recall 48.1 69.2 91.7 54.8

F-measure 59.2 73.7 74.9 63.3
precision 75.4 77.6 69.3 75.0

k=3 recall 46.2 68.6 91.7 54.8
F-measure 57.3 72.8 74.9 63.3
precision 72.1 78.0 69.3 75.0

k=∞ recall 49.3 72.0 91.7 54.8
F-measure 58.6 74.9 74.9 63.3

Table 5. Experiment results about
comparing learning machines (%)

Ex.1 Ex.2 Ex.3 Ex.4

precision 72.1 78.0 69.3 75.0
maxent recall 49.3 72.0 91.7 54.8

F-measure 58.6 74.9 74.9 63.3
precision 97.4 85.3 63.3 88.0

tree kernel recall 30.6 61.2 83.3 30.4
F-measure 46.6 71.3 719 45.2

to fail for the cases that cannot be judged by partial string matching, like the case
where “George Walker Bush” is mentioned as “the president”.

The recalls for all the feature sets are not better than expected. It is because
the number of negative instances is extremely larger than positive instances,
so that learning models tend to return negative answers. For this problem, we
expect improvement by assigning weights to instances and/or ordering instances
according to the document structure; tournament model[6] shows ordering on
flat texts.

Height of CCSTs. We compared k-CCSTs of varying k, where k=2, 3, and ∞
(no pruning by height). Both linguistic and structural features were used, and
the maximum entropy model was used for learning. The results are shown in
Table 4.

For Ex.3 and Ex. 4, all subtrees have obtained the same results, because
these documents do not have CCSTs of height larger than two. For Ex. 1 and
Ex. 2, k=2 has obtained better results for both precision and recall against k=3.
For k=∞, namely the case where CCSTs not pruned by the height were used
as structural has obtained results such that the recall is the highest of three
while the precision is low. As for F-measure, one at k=2 is the highest for Ex.1
and one at k=∞ is the slightly highest for Ex. 2. In total, there was no clear
difference for varying tree heights. However, if CCSTs with k=∞ are used as
structural features, the number of features becomes enormous as documents be-
come complex. In addition, generality is lost and structural features from k=∞

564 Y. Yonei, M. Iwaihara, and M. Yoshikawa

tend to become hard to be applied to other documents. Therefore, by the point
that k-CCSTs with k=2 produces more general and less number of features,
subtrees with k=2 are producing most desirable results.

Comparing learning machines. We compared performance of coreference
analysis by the maximum entropy model and SVM with tree kernel. As for fea-
tures, we use both linguistic and structural features for this experiment. To com-
pare the learning methods, CCSTs with k=∞ were used as structural features.
Table 5 shows the experiment results.

For all the test examples, learning by the maximum entropy model has ob-
tained better F-measure values than that of SVM using tree kernel. Except for
Ex. 3, SVM using tree kernel has higher precision and lower recall than those of
the maximum entropy model. Namely, SVM using tree kernel returns correct an-
swers with higher probabilities, but the fewness of correct answers impacted the
F-measure. Since the expression of feature space is implicit in the kernel model,
it is hard to investigate the cause of this tendency. However, the dropped correct
answers indicate that SVM with tree kernel is failing to capture the patterns
where anaphors are occurring in arbitrary levels of a body subtree.

5 Conclusion

In this paper, we proposed a new way of person retrieval through coreference
analysis that utilizes structural features of XML documents. As for structural
features, we proposed k-CCSTs, and our experimental results over XML docu-
ments of Wikipedia show significant improvement of accuracy to coreference
analysis which utilizes only linguistic features. F-measure of the coreference
analysis by structural and linguistic features is higher than that of coreference
analysis by only linguistic features. We also found that the height of k-CCSTs
shows little impact on accuracy for our benchmark, and subtrees with k=2 were
most advantageous because of their generality and compactness. Finally, we
compared the maximum entropy model and SVM using tree kernel as learn-
ing machines for our person retrieval. The results show that F-measure by the
maximum entropy model was higher than that by SVM using tree kernel.

As future work, improvement on recall can be expected by resolving the prob-
lem of unbalanced positive and negative instances. Also, we would like to apply
our method to various collections of XML and HTML documents, and to apply
retrieval of non-person entities, such as merchandizes, for reputation mining.

Acknowledgments

This work is in part supported by a Grant-in-Aid for Scientific Research of
MEXT Japan (#18300031), and Strategic International Cooperative Program
of JST (Japan Science and Technology Agency).

Person Retrieval on XML Documents by Coreference Analysis 565

References

1. Amer-Yahia, S., Lalmas, M.: XML search: languages, INEX and scoring. ACM
SIGMOD Record 35(4) (2006)

2. Berger, A.L., Pietra, S.D., Pietra, V.J.D.: A Maximum Entropy Approach to Nat-
ural Language Processing. Computational Linguistics 22(1), 39–71 (1996)

3. Chen, H., Tsai, S., Tsai, J.: Mining Tables from Large Scale HTML Texts. In: 18th
International Conference on Computational Linguistics, pp. 166–172 (2000)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines:
And Other Kernel-Based Learning Methods. Cambridge University Press, Cam-
bridge (2000)

5. Idehara, H., Fujimoto, N., Takeno, H., Hagihara, K.: A Sentence Extraction Tech-
nique Based on HTML Parsing Tree Structures around Images for WWW Image
Retrieval. IEICE technical report. Dependable computing 105(340), 19–24 (2005)
(in Japanese)

6. Iida, R., Inui, K., Matsumoto, Y., Sekine, S.: Noun Phrase Coreference Resolu-
tion in Japanese Based on Most Likely Antecedent Candidates. Transactions of
Information Processing Society of Japan 46(3), 831–844 (2005) (in Japanese)

7. Kuboyama, T., Shin, K., Kashima, H.: Flexible Tree Kernels based on Counting
the Number of Tree Mappings. In: Workshop on Mining and Learning held with
ECML/PKDD (2006)

8. Kehler, A.: Probabilistic Coreference in Information Extraction. Association for
Computational Linguistics, 163–173 (1997)

9. Kudo, T., Matsumoto, Y.: Chunking with Support Vector Machines. IPSJ SIG
Notes 2000(107), 9–16 (2000) (in Japanese)

10. Kobayashi, N., CIida, R., CInui, K., Matsumoto, Y.: Opinion Extraction Using
a Learning-Based Anaphora Resolution Technique. In: The Second International
Joint Conference on Natural Language Processing, pp. 175–180 (2005)

11. Le, Z.: Maximum Entropy Modeling Toolkid for Python and C++.
http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

12. Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., Takaoka,
K., Asahara, M.: Morphological Analysis System ChaSen version 2.2.9 Manual.
Nara Institute of Science and Technology (2002)

13. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: efficient
and versatile top-k query processing for semistructured data. The VLDB Jour-
nal 17(1) (2008)

14. Yokoi, T.: The EDR electronic dictionary. Communications of the ACM 38 (1995)
15. SVMlight, http://dit.unitn.it/∼moschitt/Tree-Kernel.htm
16. Yoshida, M., Torisawa, K., Tsujii, J.: Extracting ontologies from World Wide

Web via HTML tables. Pacific Association for Computational Linguistics, 332–
341 (2001)

17. Zettsu, K., Tanaka, K.: Extraction and Visualization of Image Contexts from Web.
In: DEWS, 6-p-05 (2003) (in Japanese)

http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html
http://dit.unitn.it/~moschitt/Tree-Kernel.htm

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 566–580, 2008.
© Springer-Verlag Berlin Heidelberg 2008

HFilter: Hybrid Finite Automaton Based Stream
Filtering for Deep and Recursive XML Data

Weiwei Sun, Yongrui Qin, Ping Yu, Zhuoyao Zhang, and Zhenying He

School of Computer Science and Technology, Fudan University
220 Handan Road, Shanghai 200433, China

{wwsun, yrqin, yuping, zhangzhuoyao, zhenying}@fudan.edu.cn

Abstract. XML filtering applications are gaining increasing popularity
recently. Automata are generally adopted to construct query indexes for
evaluating large numbers of XPath queries over XML streams. Usually only
shallow data are observed in existing approaches. How to process deep and
recursive XML data with low memory limitation efficiently is still a
challenging issue. In this paper, we propose HFilter, a Hybrid Finite Automaton
(HFA) based stream filtering approach, to solve this problem. We introduce the
basic two-tier HFA (lazy DFA tier and NFA tier) first, which realizes data
prefix sharing and memory overflow control to improve the filtering
throughput. Then an optimized three-tier HFA with an extra pre-expanded DFA
tier is put forward, which significantly reduces the restarting cost of HFA after
memory overflow. Experiments show that our approaches work more
efficiently than existing ones.

Keywords: XML stream filtering, deep and recursive XML data, hybrid finite
automaton, data prefix sharing, memory overflow control.

1 Introduction

XML has been widely accepted as the de facto standard for data exchange. How to
obtain interested information from XML streams has become a problem of great
importance. The XML filtering system matches continuously arriving XML
documents to large numbers of queries and delivers the matched documents
accordingly. Queries in XML filtering systems are expressed in XPath generally.
Automata are widely adopted to index XPaths to accelerate evaluating XPath queries
over XML streams.

Most works focus on improving the throughputs of filtering engines, however, few
of them study the problem of filtering deep and recursive XML data efficiently.
Usually only shallow XML data are observed in experiments. For example, the
average depth of XML streams in most experiments is 5 to 6 in YFilter [2, 4].

However, complicated XML data predominate in some situations. For example, the
source data for experiments in [5] illustrate ten different data sets, four of them have
the average depth greater than 11, and recursion exists in half of them. The maximum
depth of these data sets even extends to 36. How to process stream of deep and
recursive XML data efficiently is an essential and imminent problem.

 HFilter: Hybrid Finite Automaton Based Stream Filtering 567

This problem becomes particularly challenging in the context of low memory
limitation. NFA based approaches are space efficient. They can deal with any kinds of
XML data with low memory requirement. But their throughputs are usually low. Lazy
DFA based approaches are time efficient. But for complicated XML data, they require
exponential number of states [5] and run out of memory frequently. In this case, their
performances are even worse than that of NFA based approaches.

Similar to the query set, paths from the root to other elements of XML data
instances also have the same prefixes. If the engine memorizes the active states of
these prefixes, it will need to compute them only once and thus improve the filtering
performance. The elements at deeper locations of paths are encountered with lower
possibility than nodes in their prefixes. Memorizing states of these deep elements will
consume a lot of the main memory and have less improvement on the filtering
performance.

Based on these observations, we propose HFilter, a Hybrid Finite Automaton
(HFA) based filtering approach for deep and recursive XML data with low memory
limitation. The basic HFA consists of two tiers (Fig. 1(a)). The core of an HFA is a
lazy DFA. The shell of an HFA is an NFA.

Lazy DFA Pre-expanded DFA
NFA

(a) Basic HFA: two-tier HFA (b) Three-tier HFA

Fig. 1. HFA: Hybrid Finite Automaton

This hybrid structure takes advantage of both NFA and lazy DFA, and realizes data
prefix sharing and memory overflow control. First, the core processes the shallow
parts of the XML data instances. It memorizes the active states of the data prefixes
which are short and encountered very frequently. Elements of these common prefixes
can be processed efficiently. Second, the shell processes the deep parts of the XML
data instances, which have few common data prefixes. All the active states for these
parts are deleted immediately after being processed to reduce the memory
consumption.

Since the core of HFilter is a lazy DFA, memory overflow is inevitable after
running for a long time generally. To reduce the cost of restarting, we propose a three-
tier HFA (Fig. 1 (b)). Its core is divided into two tiers: DFA and lazy DFA. The DFA
tier is pre-expanded and memory-resident during the whole running time. When the
system runs out of memory, only the lazy DFA tier is cleared and needs to be
recomputed. New states in the lazy DFA tier can be re-expanded directly from the
DFA tier instead of from the initial state. Therefore, the three-tier HFA restarts more
quickly and performs much better in the warming up phase.

The rest of the paper is organized as follows. Section 2 provides background on
XML filtering and sketches the NFA based approaches and lazy DFA approaches.

568 W. Sun et al.

Section 3 and Section 4 propose the HFilter strategy, discuss its two-tier and three-tier
implementations. Section 5 shows the performance analysis and comparison. Section
6 surveys related works. Section 7 presents our conclusions and discusses future
works.

2 Background

Fig. 2 (a) is an example of a recursive DTD. Fig. 2 (b) shows an instance of this DTD.
Fig. 2 (c) gives a sample query set, Q.

In this paper, we define location level of an element as its position in a path from
root. For example, in the path {/a/b/b}, the location level of root element /a is 1, the
location level of the first /b in this path is 2, and that of the second /b is 3.

In XML stream processing systems, queries, instead of the data, are usually
indexed. Two typical finite automaton based filtering engines are widely adopted,
which are NFA based [1, 2, 3, 4, 9, 10, 13] and lazy DFA based [5, 6, 7, 8, 12].

 (a) (b) (c)

Fig. 2. (a) DTD graph, (b) an XML instance of (a), (c) a query set Q

2.1 NFA Based Filtering Engine

Considering the prefix commonality in the query set, an NFA based filtering engine
constructs the NFA as the query index from the query set. For each query, an NFA
will be constructed, and all these NFAs will be combined into a single NFA [2, 4].
Fig. 3 shows an example of a combined NFA for the query set Q shown in Fig. 2(c).

Fig. 3. The combined NFA for Q shown in Fig. 2 (c)

Q:
/a//b
/a//c
/a/*/b/c/c
/a/*/c/c/b

 HFilter: Hybrid Finite Automaton Based Stream Filtering 569

For the NFA based filtering engine, a special runtime stack is maintained. Since
the NFA may have many active states at the same time, the stack should be able to
track the multiple active paths.

Example 1. To process the path {/a/b/b} in the XML instance shown in Fig. 2 (b), the
initial top state set of the runtime stack is {0}. After the “start-of-element” event of
the root /a has been processed, the top state set is {1, 2}. Then after the “start-of-
element” event of the first /b has been processed, the top state set is {2, 3, 4}. And
after processing the second /b, the top state set is {2, 4, 6}. Then the following events
are three “end-of-element” events and the top three state sets are popped.

The characteristics of NFA based approaches can be described as follows:
• Advantages: The NFA consumes a very small amount of main memory.
• Disadvantages: This mechanism always needs to compute the top set of the
active states. Many of the state sets are repeatedly computed, which costs a lot of
execution time.

2.2 Lazy DFA Based Filtering Engine

In general, for a DFA based filtering engine, constructing the eager DFA will result in
exponential number of states and lead to memory overflow. Therefore, the DFA is
constructed in a lazy way in most cases and called the lazy DFA [5].

For the lazy DFA based filtering engine, a special query index is maintained, while
a special runtime stack is maintained in NFA. Every DFA state of lazy DFA contains
an NFA state table and thus new DFA states can be computed at the runtime other
than pre-computed before filtering and save the physical memory. The runtime stack
of lazy DFA always pushes or pops only one DFA state.

The filtering engine memorizes all sets of the active NFA states which have been
encountered by inserting new DFA states into the lazy DFA. When the same set of
active NFA states are needed next time, the engine can get the target DFA state
immediately which leads to a high throughput.

Example 2. When processing the path {/a/b/b} using lazy DFA�three sets of active
states will be generated: {1, 2}, {2, 3, 4} and {2, 4, 6}. Fig. 4 shows an example of a
lazy DFA: the lazy DFA after processing the whole XML instance shown in Fig. 2
(b). The NFA state ID sets in the eclipses in Fig. 4 are NFA tables.

b

Fig. 4. An example of lazy DFA

The lazy DFA engine has a warming up phase at the beginning of the filtering and
enters a stable phase later. During the warming up phase, the engine spends a lot of
time in expanding new lazy DFA states. Therefore, the runtime filtering performance
is much worse than that during the stable phase.

570 W. Sun et al.

The characteristics of lazy DFA based approaches can be described as follows:
•·Advantages: The lazy DFA based filtering engine usually has a much better
filtering performance than the NFA.
•·Disadvantages:

a) It consumes more runtime memory than the NFA based engine. Frequent
memory overflow may happen when processing deep and recursive XML
data.

b) The warming up cost is very high. When the filtering system restarts
frequently due to memory overflow, it suffers a lot from the warming up
phase and degrades to very low performance.

3 HFilter: A Hybrid Finite Automaton (HFA) Based Filtering
Approach

When the main memory is large enough, the lazy DFA based approaches always
perform much better than the NFA based approaches. However, when processing
deep and recursive XML data, lazy DFA may perform even worse than NFA.

This is because the memory consumption of lazy DFA is very high and that might
lead to frequent memory overflow. When overflow happens, the system needs to
delete all the expanded lazy DFA states to release the memory and restart the engine
from the initial state. Due to the limitation of the main memory and the complexity of
the XML data, the restarting may happen very frequently. Thus the lazy DFA based
engine suffers a lot from the warming up phase.

To solve this problem, in this section we propose HFilter, a Hybrid Finite
Automaton (HFA) based filtering approach. The basic HFA is a two-tier structured
query index (shown in Fig. 1 (a)).

3.1 The Structure of Two-Tier HFA

The two-tier HFA is the combination of lazy DFA and NFA. It only memorizes the
frequently processed states to improve the filtering performance and deletes the other
states immediately after processed to avoid frequent memory overflow.

As mentioned in Section 1, many of the paths from the root to other elements in
XML data instances usually have the same prefixes. For example, the paths {/a/b/c,
/a/b/d} have the same prefix {/a/b}. Elements at deeper locations of paths, such as the
elements /c and /d in this example, are usually encountered much less frequently than
shallow nodes in their same prefixes, such as /a and /b.

Therefore, to construct a two-tier HFA, a maximum expanding depth Dexp of the
HFA should be specified. The depth Dexp indicates that the parts with depth no greater
than Dexp of the XML data instances will be processed by the core of two-tier HFA
and the rest parts will be processed by the shell. The optimal value of Dexp can be
specified according to apriori knowledge, such as the average depth of the data set,
the frequent label path patterns in the data set, the number of XPath queries and the
probability of * and //, etc.

 HFilter: Hybrid Finite Automaton Based Stream Filtering 571

This structure can benefit from both of the lazy DFA and the NFA structures.
When processing deep and recursive XML data, HFilter can achieve a relatively
higher filtering performance and has relatively lower memory consumption.

3.2 The Execution of Two-Tier HFA

The execution of the two-tier HFA is a little more complicated than the lazy DFA and
the NFA. For the HFA, it needs to maintain a special query index as in the lazy DFA,
and a special runtime stack as in the NFA, at the same time.

1) When the location level of current processing element is no greater than Dexp,
the HFA mainly maintains the lazy DFA part of the query index and works
like a lazy DFA.

2) When the location level of current processing element is greater than Dexp, the
HFA mainly maintains the runtime stack. In this case, the stack needs to
process a set of multiple active NFA states each time and keep track of
multiple active paths, working like an NFA.

Example 3. The part contained in the largest dotted eclipse shown in Fig. 5 is the first
tier of the two-tier HFA. This tier will be cleared when the system runs out of
memory. Outside of this eclipse there are four NFA state sets which are processed
during the filtering process and form the second tier of HFA. They will be deleted
immediately after being processed.

Fig. 5. An example of a two-tier HFA (with Dexp=3)

When the location level of current processing element is Dexp+1, the two-tier HFA
works different from both of the lazy DFA and the NFA.

Case 1. If the event is “start-of-element”,
1) HFilter needs to push the set of active NFA states into the runtime stack first.

We can accomplish this according to the NFA table of the top lazy DFA state.
Because the set we want to push into the stack contains the same NFA states
as those in the NFA table. Taking the execution of lazy DFA shown in Fig. 5
for example, if the top lazy DFA state is {2, 4, 6} and the current processing
element is /c, then we should push the NFA state set {2, 4, 6} into the stack.
Then the HFA can process /c like an NFA, which results in the NFA state set
{2, 5, 8}.

572 W. Sun et al.

2) After the above operation, the HFA works like an NFA. The lazy DFA state
that was on top remains on the stack. In this way, when processing the “start-
of-element” events of the sibling elements of current element, the stack
operations can be the same.

Case 2. If the event is “end-of-element”, there are still two sets of NFA states on the
top of the runtime stack. One set is for the element with the location level equal to
Dexp+1, and the other is for the element with the location level equal to Dexp. There is
also a lazy DFA state on the stack for the element with the location level equal to Dexp
at the same time. The HFilter needs to pop the two sets of NFA states off the stack,
but still keep the top lazy DFA state on the stack. After these operations the two-tier
HFA works like a lazy DFA again.

3.3 Handling Memory Overflow

Although HFilter decreases the frequency of memory overflow, there are still chances
for the system to consume all the main memory. When memory overflow happens, all
the lazy DFA states have to be deleted to release the main memory. Then the lazy
DFA tier of the HFA will restart from the initial state.

4 HFilter with Three-Tier HFA

When the HFilter with two-tier HFA runs out of memory, it needs to restart the HFA
from the initial state which has a very high cost. On the other hand, for the elements
of which the location levels are small, the number of DFA states for all of them is
usually small too. And these DFA states are expected to be processed frequently.
Therefore, we can expand the DFA states for the shallow elements in advance and
reduce the cost of restarting the HFA.

In this section, we propose a three-tier HFA with an extra pre-expanded DFA tier
(shown in Fig. 1 (b)) for HFilter to reduce the cost of restarting when memory
overflow happens thus to further improve the filtering performance.

Fig. 6 shows an example of a three-tier HFA. The first tier of the three-tier HFA is
the part contained in the largest solid eclipse. It is a pre-expanded DFA. The second
tier is the part contained in the largest dotted eclipse excluding the first tier part. It is a
lazy DFA. Outside of the largest dotted eclipse is the third tier. It is an NFA.

b

c

b

Fig. 6. An example of a three-tier HFA (with Dpre=2, Dexp=3)

 HFilter: Hybrid Finite Automaton Based Stream Filtering 573

When memory overflow happens, only the lazy DFA tier needs to be cleared to
release the memory. Since there is a pre-expanded DFA in the three-tier HFA, the
restarting cost of three-tier HFA is much lower than that of the two-tier HFA.

4.1 Pre-expanding the Lazy DFA

The idea is to expand the lazy DFA states in advance, according to the query set and
the DTD of the XML stream. To avoid very high consumption of memory, we only
pre-expand those DFA states for the shallow parts of XML data.

We need to specify the pre-expanding depth Dpre before pre-expanding. We
construct a DFA which contains all related states for the elements with location levels
no greater than Dpre. For example, the Dpre of the three-tier HFA shown in Fig.6 is 2.

However, we can not choose a great value of Dpre. Because when the Dpre is great,
the number of DFA states for the pre-expanded DFA may be very large and the DFA
consumes a lot of memory. In most cases, the value of Dpre is much smaller than Dexp.

The pre-expanded DFA construction takes several steps. We describe the process
as follows:

1) Construct an NFA for the given query set. This process is the same as that
described in YFilter [2, 4]. This NFA structure is available all the filtering
time.

2) Extract all the paths of which the length is not greater than Dpre. For example,
for the non-simple DTD shown in Fig. 2 (a), there are two paths in all: {/a/b,
/a/c} when Dpre=2.

3) Take every path as a serial input of elements and expand the DFA states in a
similar way just like the lazy DFA.

4) After all the paths generated in Step 2 have been processed in Step 3, the
construction is completed. Then, delete the NFA tables contained in DFA
states except the initial DFA state, for these NFA tables consume a lot of
memory. An example is shown in Fig. 7.

(a) Before deleting NFA tables (b) After deleting NFA tables

Fig. 7. The pre-expanded DFA for Q shown in Fig. 2(c) (with Dpre=2)

4.2 The Execution of HFA with Pre-expanded DFA

For the elements of which the location levels are greater than Dpre+1, the pre-
processed HFA engine works the same as the two-tier HFA engine. We only discuss
the processing of elements with location levels no greater than Dpre+1.

574 W. Sun et al.

1) When processing elements of which location levels are smaller than Dpre+1,
a) If the event is “start-of-element”, HFilter pushes the target DFA state of

the top DFA state into the runtime stack directly.
b) If the event is “end-of-element”, HFilter simply pops the top DFA state

off the stack.
2) When processing elements of which the location levels equals to Dpre+1,

a) If the event is “start-of-element”, the target lazy DFA state does not exist
at the first time. In order to compute the new lazy DFA state, the naive
way is to compute it from the initial state. A full path from the root to
the current element should be kept track of. After the lazy DFA state has
been computed, HFilter will push this lazy DFA state into the runtime
stack. Next time when HFilter processes the same lazy DFA state,
HFilter need not compute it again.

b) If the event is “end-of-element”, HFilter simply pops off the top lazy
DFA state.

4.3 Optimizing the Computing of New Lazy DFA States

With the pre-expanded DFA, for the elements with location level no greater than Dpre,
we can obtain the target state from the DFA directly without additional computation.

For elements with a greater location level, the three-tier HFilter works almost the
same as the two-tier HFilter. The only difference is when processing an element with
a location level equal to Dpre+1, HFilter needs to compute the new lazy DFA state at
the first time (as mentioned, we assume that Dpre< Dexp, therefore the new state must be
a lazy DFA state and can not be an NFA state). Otherwise, the three-tier HFA works
exactly like the two-tier HFA.

In order to compute the new lazy DFA state, as mentioned in Section 4.2, the naive
way is to compute it from the initial state. However, the computing cost is very high.

To reduce the computing cost, we should compute the new lazy DFA state from an
intermediate DFA state. For this DFA state, it needs to keep the NFA table. For
example, we can keep the NFA tables of the DFA states of which the related location
levels are Dpre-1. But we can not keep the NFA tables of the DFA states of which the
related location levels are Dpre, because these DFA states are usually the main part of
the DFA that we have pre-expanded. Keeping all the NFA tables of them will lead to
a very high memory consumption. On the other hand, the cost of computing the new
lazy DFA states will become higher when we choose a smaller value.

Therefore, we need to keep some NFA tables for computing new lazy DFA states.
Here we assume that we keep all the NFA tables of the DFA states of which the
related location levels are Dpre-1. Besides, we need to keep track of the partial path of
which the location levels are from Dpre-1 to Dpre. With this partial path and the NFA
table contained in the top DFA state on the runtime stack, we can compute those new
lazy DFA states at the location level that equals to Dpre+1 and insert them into the
HFA.

Example 4. Fig. 8 shows an example of this optimization. For this HFA, to process the
path {/a/b/c} at the first time, it does not need to compute new lazy DFA states for
elements /a and /b. Because their location levels are no greater than Dpre. But it needs

 HFilter: Hybrid Finite Automaton Based Stream Filtering 575

to compute a new lazy DFA state when the “start-of-element” event of /c is
encountered. Given the partial path {/b/c} and the initial NFA table {1, 2}, the
computing result is the NFA table {2, 5, 7} and then the new lazy DFA state is
obtained. This process takes two steps. However, it will take three steps without the
optimization.

c

b

 Fig. 8. The optimized three-tier HFA (with Dpre=2, Dexp=3)

4.4 Handling Memory Overflow

There are more chances of memory overflow for the three-tier HFA than the two-tier
HFA, because the pre-expanding might lead to higher memory consumption during
the filtering process. When the system runs out of memory, similar to the two-tier
HFA, only the lazy DFA states expanded during the filtering process will be deleted.
The pre-expanded DFA is memory-resident during the whole running time. Then, the
lazy DFA tier can be re-expanded directly from the pre-expanded DFA tier and it
achieves a higher filtering performance during the warming up phase.

5 Experiments

We compare HFilter with two popular XML filtering techniques—YFilter [2, 4] and
lazy DFA [5]. Experiments of filtering performance are run on a synthetic data set:
News Industry Text Format (NITF) DTD1, and XML document sets are generated
with IBM´s Generator tool [11]. We repeatedly filter each XML document set twice.
All the experiments reported here are performed on a Celeron 2.66GHz processor
with 1GB main memory running JVM 1.4.2 on Linux 2.6. We take the YFilter’s
source code2 to implement the NFA-tier of HFilter.

When the filtering system runs out of memory, we need to release the memory
consumed by HFilter. During the memory releasing process, we remove all the
references of useless objects. Due to the unpredictable garbage collection process of
the JVM, we also make some attempts to force the JVM to release most part of the
unused memory that are still occupied by it. These efforts may cost some time.
However, for different implementations of filtering systems, such as implemented in
C++ or in Java, the memory releasing processes are greatly different from each other.

1 Nitf-2-5.dtd. http://www.nitf.org/nitfdocumentation/nitf-2-5.dtd
2 YFilter 1.0 release. http://yfilter.cs.berkeley.edu/code release.htm

576 W. Sun et al.

On the other hand, some optimizations of the garbage collection process of the JVM
will be of much help. Therefore, in our experiments we simply omit the costs of the
memory releasing processes.

Workload parameters of our experiments are listed in Table 1. We choose the
maximum depth of XML data set as the default value of maximum query depth of our
testing query set. The default value of probability of “*” and “//” is set to be 10%.
And as mentioned, the values of the maximum expanding depth Dexp and the pre-
expanding depth Dpre of the HFA are specified according to apriori knowledge. In our
experiments, we set the default values of Dexp and Dpre according to the experiment
results. We only generate single path queries in our experiments.

Table 1. Workload parameters

Parameter Range Default Value Description
NQ 10k to 40k 20k Number of queries

Davg 11 to 15 13 Average depth of an XML data set
Dexp 13 13 Maximum expanding depth of HFA
Dpre 9 9 Pre-expanding depth of HFA

Note that, we performed all the experiments in a fixed physical memory

environment which is 1 GB, but our two-tier HFA and three-tier HFA schemes can
easily adapt to other low physical memory environments as we can adjust the values
of Dexp and Dpre according to the runtime memory usage and the input XML stream.
When the physical memory is larger, increasing the value of Dpre can further improve
the performance of the warming up phase. Meanwhile, increasing the value of Dexp is
beneficial as well due to the increase of the physical memory. In other words, our
schemes have very good adaptability in different physical memory environments. In
some extreme cases, for example, if the physical memory is too low to use the pure
lazy DFA scheme, we can still adjust our HFA schemes with small enough values of
Dexp and Dpre to adapt the special environment. When the values of both Dexp and Dpre
decrease to zero, our HFA schemes will degrade to NFA scheme. In the contrary
cases, if the physical memory is extremely large and can use the lazy DFA and HFA
schemes without leading to the restarting of the filtering engine, our HFA schemes are
still the best choice. This is because the parameter Dpre can be set to a particularly
large value to ensure all the necessary DFA states can be pre-expanded and thus the
filtering engine can reach its maximum filtering speed.

5.1 Results and Analysis

We analyze the performance of HFilter with varying Davg and NQ. The measures in
Fig. 9 and Fig. 10 are the average throughputs and the restarting times, or in other
words, the times of memory overflow after 2,000 documents filtered twice.

The effect of varying Davg of different XML data sets on the performance of the
four approaches is shown in Fig. 9 (a). The Davg of the three XML data sets is 11, 13
and 15, respectively. The maximum depths of them are 16, 18 and 20 respectively.
When the Davg is small, the three-tier HFA(3T-HFA), two-tier HFA(2T-HFA)and lazy
DFA based approaches have high throughputs, but the NFA based approach’s

 HFilter: Hybrid Finite Automaton Based Stream Filtering 577

throughput is relatively low. As the Davg increases, the performance of lazy DFA
decreases quickly. That is because lazy DFA has high memory consumption with
regard to deeper XML data, thus memory overflow happens frequently, degrading the
filtering performance. On the other hand, as the Davg increases, the performance of the
three-tier HFA and two-tier HFA decrease slowly and become closer to the
performance of NFA. It is because in our approaches, elements whose depth are
greater than Dexp are processed by the NFA tier of the two HFA. Thus when the Davg of
the data set increases, more elements are processed by the NFA. However, elements
with depth no greater than Dexp can still be efficiently processed with our approaches.
Therefore our hybrid approaches still perform better than the NFA based approaches.
On average, the throughputs of our hybrid approaches are more than 30% higher than
non-hybrid approaches.

(a) Effect of Davg (b) Effect of NQ

Fig. 9. Throughputs

Fig. 9 (b) depicts the effect of varying NQ on the throughputs and restarting times.
Although the throughputs of all the four schemes become lower as the NQ increases,
our HFA schemes still outperform the lazy DFA and the NFA. It is reasonable that the
performance of all methods decreases as NQ increases due to more frequent memory
overflows. The throughputs of our hybrid approaches are about 24% higher than non-
hybrid approaches on average. Attributed to the pre-expanding process, three-tier
HFA performs better than two-tier HFA in most cases.

Fig. 10 (a) and (b) show the restarting times of the four schemes. The NFA scheme
does not need to restart during the whole filtering process as it abandons the active
states immediately after processed to keep the occupied memory small. Since the lazy
DFA scheme remembers all the history active states in order to reuse those states
efficiently, the amount of occupied memory may increase quickly when processing
deep and recursive XML data. Therefore, the restarting happens frequently.
Meanwhile, the restarting cost of the lazy DFA scheme is very high and it even
performs worse than the NFA scheme when Davg becomes larger. The two-tier HFA
scheme restarts much fewer times compared with the lazy DFA scheme since its NFA
tier saves a large amount of memory during filtering. Due to the pre-expanding
process, the restarting of the three-tier DFA scheme happens the most frequently of
all. Note that, after restarting, new states of the three-tier DFA that process deeper

578 W. Sun et al.

elements of the XML data can be computed from the pre-expanded tier directly. Thus
the restarting cost of the three-tier DFA scheme is very low and it still outperforms
the two-tier DFA and lazy DFA schemes though it restarts more times.

 (a) Effect of Davg (b) Effect of NQ

NQ 3T-
HFA

2T-
HFA

Lazy
DFA

NFA

10k 6 2 8 0
20k 10 2 9 0
30k 16 3 10 0
40k 30 4 13 0

Davg 3T-
HFA

2T-
HFA

Lazy
DFA

NFA

11 9 2 3 0
13 10 2 9 0
15 25 5 21 0

Fig. 10. Restarting times

6 Related Works

Automata based XML stream filtering techniques are widely studied in recent years.
They can be classified into NFA based approaches and lazy DFA based approaches.

NFA based approaches. XFilter [1] is Finite State Machine (FSM) based approach.
It builds a FSM for each path query. XQRL [9] and XScan [10] are FSM-based
approaches too. YFilter [2, 4] is Nondeterministic Finite Automaton (NFA) based
approach which constructs a single NFA to represent all XPath queries by sharing the
common prefixes of the paths. [13] developes a filtering engine called YFilter* to
enhance YFilter’s ability to handle nested path queries. It works efficiently with
precision loss. Xtrie [3] divides queies into sub-strings that only contain parent-child
(“/”) axis. All sub-strings are indexed by a trie-based data structure which takes
advantage of the sharing of common sub-strings.

Lazy DFA based approaches. In [5], the filtering engine is Deterministic Finite
Automaton (DFA) based and expanded lazily during the filtering process. It is more
efficient than YFilter. Some optimizations of [5] are proposed in [7] and [8]. XPush
Machine [6] is another similar system, which uses a single deterministic pushdown
automaton to index all path queries. [12] studies cache-conscious technique to
improve filtering performance, and applies this technique to DFA based approaches.

Above approaches are not suitable for processing deep and recursive XML data in
low memory limitation environment.

7 Conclusions and Future Works

In this paper, we have proposed an XML stream filtering system, called HFilter, for
processing deep and recursive XML data in low memory limitation environment. The
basic HFilter is a two-tier Hybrid Finite Automaton (HFA) based approach, which
combines the lazy DFA based approaches and the NFA based approaches. It
processes the shallow parts of XML data using a lazy DFA and processes the deep

 HFilter: Hybrid Finite Automaton Based Stream Filtering 579

parts using an NFA. Therefore, the filtering process can achieve a higher throughput
due to the usage of lazy DFA and data prefix sharing. On the other hand, the memory
consumption decreases due to the usage of NFA.

We have also proposed a three-tier HFA approach with an extra pre-expanded
DFA tier. It can accelerate the restarting process of HFilter when memory overflow
happens, since the lazy DFA tier can be re-expanded directly from the DFA tier other
than from the initial state.

Our experiments show that with multi-tier HFA, HFilter provides significant
throughput improvement above 25% on average compared with existing approaches.
The two-tier HFA reduces the frequency of memory overflow drastically and it
outperforms the lazy DFA and the NFA. The three-tier HFA reduces the cost of
restarting greatly. Although it also increase the frequency of memory overflow, it still
performs better than the two-tier HFA in most cases due to the pre-expanded tier. The
three-tier HFA can be re-expanded efficiently from the pre-expanded tier directly
after restarting and has very low restarting cost. Therefore, the three-tier HFA
schemes is the best one in our experiments.

In future, to enhance the flexibility of HFilter, we will focus on developing a self-
adaptable mechanism which adjusts values of Dexp and Dpre dynamically with the
change of data and queries.

Acknowledgments. This research is supported in part by the National Natural
Science Foundation of China (NSFC) under grant 60503035, 60703093, the National
High-Tech Research and Development Plan of China under Grant 2006AA01Z234
and SRF for ROCS, SEM.

References

1. Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective
dissemination of information. In: VLDB (2000)

2. Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: Efficient and Scalable Filtering of
XML Documents. In: ICDE (2002)

3. Chan, C., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient filtering of XML documents
with XPath expressions. In: ICDE (2002)

4. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and predicate
evaluation for high-performance XML filtering. ACM Trans. on Database Systems
(TODS) 28(4) (2003)

5. Green, T., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML streams with
deterministic automata and stream index. ACM Trans. on Database Systems (TODS) 29(4)
(2004)

6. Gupta, A., Suciu, D.: Stream processing of XPath queries with predicates. In: SIGMOD
(2003)

7. Onizuka, M.: Light-weight XPath processing of XML stream with deterministic automata.
In: CIKM 2003 (2003)

8. Chen, D., Wong, R.: Optimizing The lazy DFA approach for XML stream processing. In:
The Fifteenth Australasian Database Conference (ADC) (2004)

9. Florescu, D., Hillery, C., Kossmann, D., Lucas, P.: The BEA/XQRL streaming XQuery
processor. In: VLDB 2003 (2003)

580 W. Sun et al.

10. Ives, Z., Halevy, A., Weld, D.: An XML query engine for network-bound data. VLDB
Journal 11(4) (2002)

11. Diaz, A.L., Lovell, D.: XML Generator, http://www.alphaworks.ibm.com/
tech/xmlgenerator

12. He, B., Luo, Q., Choi, B.: Cache-conscious automata for XML filtering. In: ICDE 2005
(2005)

13. Zhang, X., Yang, L., Lee, M., Hsu, W.: Scaling SDI systems via query clustering and
aggregation. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS,
vol. 2973, pp. 208–219. Springer, Heidelberg (2004)

��������	
	���� ���������	���� ���� �������

��� ��
����� �����	���� ����

������ ��	
�
1� ����
��� ���
��1� ��� ����
�� ������2,�

1 ���������	
���� ��������
���� � �al �� ������ �� �������� �����
����� ������
��������	
�����
��������� �����������	������
��������

2 ��� � ���������	
 ��������!�� "
 #$%# " & ��� ���� � "�'��� ���
���	�����������		���

��������� ��� �(�����)�����)��� * ��)� ��� ���� �� ������ * �
)��� ������� ��� ��� �)������ ����&��� ��������� ��+ ,)�- � ���* ��
)���� & �������' * � ����&��� �����)� �� ���)�) �� ���������+ ���
���* �)���� * ���)�) �� ��������� �� �������� ������� � � . ��� � ��
���� * ���' �����)��� � ��� �/ ����� ������ ���� � ��� �����0��� �
 * ���� .����� � ���� � ��� ���� ���	
�+ ��� ��������� ���� ��� � ��
����&��� �����)� �� ��� 1���� �� ���� � ��� 21��3+ ,� ��) ��������
�� ���� ������ ���� 1�� * � ��)� ��� ���� ������ �����)�) �� �����
����� ���* �)���� * � !������������� . �'� ���+ ���� ����� �� � ����
��. ������� ���� �� ����� ���)�0��� ���� ��� �� �����4����� ���� ���
* � ��)� ��� ����+ ��� �� � ��� ���� ��� �� ���)�0� �������� � ���
������ * ���)�) �� ��������� &� �� ����� *������� ��� ��)� ���� ����
���� ��)�� 2�� �� ��� � 1��3+ �5����)���� �� . ���� ��� �� � ���
���� ��� �� ��� �&���������� *����� ���� 1��+

� �������	�
��

��� ����
�� �����
���� �������� ���������� ������� �����! "��� ���
����
��� �#�
�
$�� %�� &�'(
�� ��������
�� �������
�� &(��! �##�
���
���� �	��
��
�� #���%���� �	�� �
)����� %��� ����� �% ����� *+,- ���#
�� ��� ����	�
�� ����
��� ���� .	����� ����	�� �% �##�
���
�� ��.	
������� ��� �% ����"��� ���������'

��
��� ��� ����
����	�� �% ���� �	����� ����� ����
�� ������
���� ��� ���� ��
���� �% ����
�� ����/ ���� �	#��'��
����� �0��	�
��� �'����
���0
��� ���- *1,- 2�
������ #�#��� *3�+�1,� ����������� & ��- ���	� ���� �
�� ��� ���� �� �
����� ���
4&�� �
$� 5
�� 6��4 �������� ���� ��� ������ %�� ��� �##�
���
���! %����"�� ��
������ ��� ����
�� ����� ���	%���	���� ��� ���
�� ������� ���� �#��
��
$��
��� ���� ���#��� �� �	����� ����"��� ���������
��
��- ��
� ��#��
���� ����� %��
.	���'
�����
�� �##�
���
��� ���� 	�� ��'��� .	��
�� �� ������ ����� ���	��� �%
����- 2� �������� "
�� &(��'����� �##�
���
���� .	���'
�����
�� �##�
���
��� ��'
.	
�� %����� ������ "�
�� �������
�� ���"�� "�
���- 7����� ���� ���	�� �� �����

	
������ *8,- ��#
��� �0��#��� ��� ���
�
�� �	##��� ������� ��� ��������
�
�
����� ���� ��������� "���� �����
���� ���� #��
��� �% ��'��� .	��
�� ���
�'
����#����� "
�� #��
��
� �	��'����
�� �% ��" ���� *3� 8,-

� 6� . �� ��'� � ����' 7����� "�0�� ������ � * �)��� ����*� ������� �� ���
�����.� ���� �)�� ��� ���� �����+

���� ������	
� �� ���� ��� �� ������ ������� ���� � !� "#$� %&!&� ''� %!&(%)%� � !�
	© �'������*+��,�� ���,�� -����,.��� � !

�8/ 9+ : ���� ;+ :)���� ���
+ 9�& ��

�������� ������� %���� ���� %��� ���'�����
�� ������� ���� �
��! �� #�����'
���
� ����� �� �0��	�� .	��
��- ���� ���� ����	�� ��� ������ �
������� "�
��
����
��� �% �
��� ��
� ������� (1 ������ (+ ����� *9,- ��� ����	�
���
�� ��'
�"��� ��� ��
� ������ ��� ��� �
�� ��� ���� ����
�
������ ������
$�� �� ���
���
���� �������� #��%������� ����������- 7�"����� ����
����	��� �������� ��
������ #���%���� ��� #�
���� �	� ���� ��� (1 ����� �
�� #������ ��� ��
�'
�����
��
�#��� �� ���#���� �
��� *:,- ��
� �	�������� ����� *;,
� �	� ��/ �! ���

������
�� ��# ���"��� #�������� ��� ��
� ������ �#����< ��! ���
�������
�
��
� ������ ���
� �)�� #��� �
$��< ��� ���! ��� ������#���� �% ����"���
��� ��%�"��� �����
.	�� �
�
�� �
�� ������� �	�� �� �	��
������
�� ��� #��%����'

�� *;� =,- 6� � ���	��� �������� ������� ���	�� �� ���
���� �� �� ����
�
��� ���
���� �� �
�� ��� ��
� ������ #��%�������� �	� ���� �� (1 ����� #��%�������-

��� ���
� 	�
� �% ���� �����%�� ���"��� �
�� ��� ��
� ������
� �
���� ��#
'
����� 8 �� :8 �� *>,- ��� (1 ����� �
$�
� ��#
����� 1 �� 8 �� *+?,- ��� ���
� 	�
�
�% ���� �����%�� ���"��� ��
� ������ ��� (1 �����
� � ����� ����� ��#
�����
31 �� +1= ����� *>,- ��� ��##
�� �% #��� ������� �� ����� �
���
� ������
���
�� ��� �����
$��
�� �% ���� "
��
� ��� #���� ������ ���
��� ���	�� *;,- ��	��
��� #��� ����	� �
����
�#���� ��� ������ �
������� 	�
�
$��
�� �% ��������
������� *>,- ��� #�������� #��� ����	�
� �������
�� �����
� ��� ����� ��	��

��� �	��� @��!� ���� ������ �	����	�� ������������ *8� ;� >,- @�� ������ �	#���
��.	���
���� �����
�� %��� ��� ���
��
�� �% ���� �
�� #���- A�
�� @�� #���
���
� �����
� #���%��� %�� � "
�� ����� �% ���� ������� ������ ������ ��	�
�� �����'
������ ����
� �0�
�
�� #��� ������ �
������� #��%������� %�� .	���'
�����
��
"�������� *8,- ��	�� ��������
�� #��� ����	�� ���� ���� ��������
�#��������

� � �	���� �% ������
� ��� �������
�� ����'�#�
�
$�� �������/ ���� ������
2B *++,� ������� *+1,� C�����@��� *+3,� ����� *+8,� ����� �
������ *+9,� C��'
�
�� *8� +:,� ���-- 7�"����� �����	�� ���#���� ���� �����
�	�� ��� ���� �% ����
����
�
���� ���� D����
��! ��� �����
�� ���� �
��
����
��! �##�
���
����
� �����
������� �� �#��
�� ������
�� "�� �
��� �� ���#���� ����- ��
� #�#�� #��#����
�"� ��" ����'�#�
�
$��� �����'�����
�	�� #��� ����	�� %�� ���#���� ����- ���
�
� �% ��� #��#���� #��� ����	��
� �� ����
��� ����	�� ��� ���������
��
�� �%
������ #���%���� ��� �� �
�	������	��� ���
���/ �! ���������� #��%������� %��
"�
���< ��� ��! �
��'#��%������� �����-

��� ����
���� �% ��
� #�#��
� �����
$�� �� %����"�- ����
�� 1 ��D��� ��� ��
�
�����#�� ���
��	������� ��� 	�� �% �������� ������� ������ %�� ���#���� ����-
����
�� 3-1
�����	��� �	� ����'�#�
�
$�� ������� #��
�
��- ����
�� 8 ���
�"�
������� "���- ����
�� 9 ���#���� ��� #��%������� �% ��� �
)����� ������� ������-
����
�� : �����	��� ��� #�#��-

� ������ ��� ������ ��	
�	��
��

��� �����	
�� ���� �� � ���	��� ���
���

2� ���#���� ����������
� ����� �� ���# #���� "������� � ������� ���
�� e
�
���
D���
�� ��� ����
��
� ����
��� ��� � ��" ����
�� �% e
� �������- ��	��
�� ���
�� e ��� ����
� � �
���� ���#���� �����
��� � ��� �% �����
���� �	#���<

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �8>

e t ssnum name salary dept

e1 t1 323 John 10k Math

e1 t3 323 John 10k Info

e1 t5 323 John 12k Info

e2 t2 854 Paul 20k Eco

e2 t4 854 Paul 21k Eco

 (a)

ts e

1 e1

2 e1

3 e1

4 e2

5 e2

ts t

1 t1

2 t3

3 t5

4 t2

5 t4

ts ssnum

1 323

2 323

3 323

4 854

5 854

ts name

1 John

2 John

3 John

4 Paul

5 Paul

ts salary

1 10k

2 10k

3 12k

4 20k

5 21k

ts dept

1 Math

2 Info

3 Info

4 Eco

5 Eco

 (b)

e t ssnum name salary Dept

e1 t1 323 John 10k Math

e1 t3 323 John 10k Info

e1 t5 323 John 12k Info

e2 t2 854 Paul 20k Eco

e2 t4 854 Paul 21k Eco

(d)(c)

e t salary

e1 t1 10K

e1 t5 12K

e2 t2 20K

e2 t4 21K

e t dept

e1 t1 Math

e1 t3 Info

e2 t2 Eco

e t ssnum

e1 t1 323

e2 t2 854

e t name

e1 t1 John

e2 t2 Paul

	
�� �� 2�3 , ��)��� ��)� ��� ������ � �)�� ��� �� 1�������� ������������ �+ 2&3
���������* �.��� ���? ts@ ���� ��� ����+ 2�3 ��)� ��� ���+ 2�3
�
 ��� �� ���
����� .������ �� &���'+ A���� .������ �� ���� ��� �)������+

���� ���
� �����
���� �� � �
������# t ��� ������� ��� ����� �� ��� ����
��!
�% e �� �- 5
�	�� +-� ��#
��� � ���#�� ���#���� �����
�� ��
�	��� ������ ����

�	����� ��������
� ������ ����� ������� ��
�������!- 2� ��
� �0��#��� ��
�
��� ����
���� �% ��
� #�#��� �
��
� ���	��� �� �� �
���� ��� ������� �������/
ti < ti+1-

(�� ti ��� tj �� �"� �
������#� �	�� ����/ �! ti < tj < ��� ��! ��� ����� �%
�� ���
�� e
� ���
D�� �� ti ��� �� tj � �	� ����
�� 	�������� ���"��� ����-
6� ��� ����� �% e ����
�� 	�������� ���"��� ti ��� tj �
�
� �������� ���� ����
�� ��� �	#��
����
D�� �� e, ti!- ��� �	#�� e, ti!
� ��
� �� �� ����� �� ����� %��
���� t ∈ [ti, tj)- 2� 5
�- +-�- ����E� �	#�� e1�t3!
� ��
�� %�� ���� t ∈ [t3, t5)-

��� ����� �
����� ����

@�� #���� ��� ��� ����
�	��� �% � �	#��
� ������	�
�� ������ ��������� ���
������ �	#��� "
��
� � #��� ��.	���
���� *+;,- F��� �	#��
� �� @�� #���
�
#������� �� � �	#�� ������ �7! #���
�
�� �������� ���	� ��� �	#��� �	�� �� ���
������ �% ��� �	#��� �)���� �% ���
����'������ ���	�� ��� �����
�#��������
��'
�#��
D�
�%�����
�� *+=,- 5
�	�� 1 ��#
��� � ��#
��� �	#�� %�����- 6�
��	�������

� 5
�- 3-�� ���� @�� #��� ��� � #��� ������ �7! �����
�
��
�%�����
�� �	��

 e1 t1 323 10K John Math

Implementation-specific information

Offsets of variable–length
 attributes

Record Header(RH)

Record length

	
�� � ������� ���� * �)�� ��
1��+ A����&��������� �����&���
��� �)) ��� ������ �� ��� ��� *
��� 45��������� �����&���+

NSM Page

(a) (b)

PH RH1 e1

t1 323 10k

John Math RH2

e1 t3 323

10k John Info

RH3 e1 t5

323 12k John

Info …

Offset vector

line size

L2 Cache

line 1

line 4

line 3

line 2

line 5

line 6

line 7

 Offset vector

RH2 e1 t3

10k John Info

RH3 e1 t5

323 12k John

t1 323 10K

PH RH1 e1

	
�� �� 2�3 1�� ���� ��� �+ 2&3 7���� &�����
� � * � ��� !��� B4�� : ��C� ������ ���� ��B+

�8D 9+ : ���� ;+ :)���� ���
+ 9�& ��

�� ��� #���
����
D�� ��� ��� ����� ����
�
�� %��� �#���- �� ������ �	#��� "
��
�
� #���� ��� �����
�� �)���� �% �	#��� ��� ��#�
� �� 	���� ����	� *+=,- ��#
������
��� �	#�� �#��� ���"� ��"�"���� "�
�� ��� �)��� ������ ���"� 	#"����-

2� ���� �����/ �! ���� � ����� %����
�� �% ��� ����
�	��� �% �� ���
�� e ���
�
��'����
��< ��� ��! �
��'����
�� ����
�	��� ����
���#�������� ���� �
��-
A
�� @��� ����
% ���� ��� ����
�	��
� 	#������ ��� ��� ����� ����
�	��� ���
�	#�
�����
� ��� ��" �	#�� ������
�� ��� ��" ����
�� �% e- 5�� �0��#���
�
5
�- +-� ��� 	#���� �% ����E� ��#������� �� t3 ����� �� ��� ��#�
���
�� �% �
�
���	�� ���� ��� ������- A� ���� ��
� ��#� �% ��#�
���
�� �����	� ����������-
���
�#������
��	� ����
� ��� ��� �
�� �#��� ����	��� �� ����
�� ���	�������
�� �
�� �#��� ����� �
��	���� ����
�� ��"����� *+>,- ���
��	�
� ���� ����
�� ���
������ �
������� ������� �
��� "
�� ��� ���� ����/ �! "����� �
�� ��� ��
�
������ ����"
����< ��! #���	��� ��� ��
� ������ ��� ��� (1 �����< ���!
4#���
��� %����� ��#�������� �%
�%�����
�� ���� ��� �� ������
� ��� %	�	���

��	��
�� ���� ���� ������4 *;�=,< ��� ��!
�������� ��� ���	�� �% G�H ������
"�����
� "�
�
�� %�� ���� ����
��-

G���
��� %��
������� ��� %����"
�� .	���/ 4D�� ����E� ������ �
�����4 ���
���	�� ���� ��� @�� #��� �% 5
�- 3-�
� �������
� ��
� ������ ��� ���� ���
����� �
�� �
$�
� ������� ���� ��� �	#�� �
$�- 6� ���"�
� 5
�- 3-�� �� �0��	�� ���
.	���� ��� #��� ������ ��� ��� �)��� ������ ��� D��� ������
� ��� �����
� �����
�� ������ ����E� �	#��� ����� �
��� + ��� 1!- @�0�� ���� ���� �	#��
� ������
�
��� ����� ����� �
��� 3 �� ;!- ��� �	#�� ������ ��� ����E� ���� ��� ���	��
"�
�� ��� 	������ %�� ��� .	���� ��� ���	���
� ��� ����� "
�� ���� �	#��� ����
��
�� ��� "���� �% ��
� ������ ����"
���� (1 ����� �#��� ��� G�H ������-

��� �����	���
��� �
����� ����

6� ��������
�� ������� ����� �� @��
� ��� ���	�
	����	� ��	���� �	��� ���!
*+;,� ���� ������ �	�������	�� ������������ *8,- 6�
��	�������
� 5
�- +-�� ���
#���
�
��� ����
����� � �����
�� R "
�� ��
�� n�
��� n �	�'�����
���- F��� �	�'
�����
�� �����/ +! ��� ���	�� �% �� ����
�	�� �% R< ��� 1! ��� �	#�� �	��������

����
%�
�� ��� ��
�
��� �	#��� ���� ��� ���	�� ���� %���- F��� �	�'�����
��
�
������ �� � ���	��� �����
��
� �� @�� #���-

��� �����'�)� ���"��� ��� ��� @�� ��� ��
�� ��
�� �0#����� *1?�1+�11,- ���
���� �
��� ��������� �% ��� ���/ �! ��
�	��� ���	�� ��������� ��������	�/ "
��
���� � ���� ����� ���� ���� ��� ���	�� �% ����
�	���
�������
� � �
��� .	���
*13,< ��! ��
�	��� ���� �	�
�����	� *18,/ �� ��� ���	�� �% �� ����
�	�� ��� ������
����
�	�	���� ��� ������� %	����� ���#����
�� �##���	�
�
��- ��� ���� �
���
���"����� �% ��� ���/ �! ��������� ���� ����/ 4�
�� ����� ���"��� ���� ����
�
��� �� ������ �� �	��
#�� ����
�	��� ��� ����
� #�������4 *1+,< ��! ���������

�	�� 	� �������	�� / ��� #��%���� #����� %��
�����
��� ����	�� �	��
#�� �
��
���
#���� ���� �� �� 	#����� %�� ����
������� �	#�� *1+,< ���! ��������� ��	���� �	�� /
��� ������ � �	#�� ������ ��� � �	������� %�� ���� ���	�< ��� ��! ��������� ��
��

���	��������	� �	��� / %�� .	��
��
�����
�� ������� ����
�	���� ��� ����� �� I�
�
��� #���
�
#��
�� �	�'�����
��� ��������- 2� ���
�
�� �� ��� ���"����� �%������'
�
����� 	�
�� ��� %�� ���#���� ���� ���� ��� ���
� ����
�� ���	������-

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �8�

(a) (b)

L2 Cache TDSM Pages

PH1 TH1 e1

t1 John …

Offset vector

PH4 TH1 e1

t1 Math TH2

e1 t5 Info

…

Offset vector

PH2 TH1 e1

t1 323 …

Offset vector

PH3 TH1 e1

t1 10k TH2

e1 t3 12k

…

Offset vector

line 1

line 4

line 3

line 2

line 5

line 6

line 7

line 8

e1 t5 12k

PH4 TH1 e1

t1 Math TH2

e1 t5 Info

t1 10k TH2

PH3 TH1 e1

Offset vector

 Offset vector

	
�� �� 2�3 ���� �����+ 2&3 ���� ����� &����� � * � ��� !��� B4�� : ��C� ������
��� ������)��� �� t4B+

� �������
�
��� ��	������	
���� ��� �!����

��
� ����
�� #������� �"� ��"� �����'�����
�	�� ����'�#�
�
$�� #��� ����	���
�#��
D����� ��
����� %�� ���#���� ����/ ��� ���#���� �����#��
�
�� �������
����� ����! ��� ��� ��� �	������� ����
�
��
�� ����� ���!- 2� ��� ��'
.	��� �	�����
��� 3-+ ��� 3-1 #������ ���� ��� ���- �	�����
�� 3-3 �
��	����
���� #��%�������
��	��-

��� ���	��� �����	���
��� �
����� ���� ������

����
� � ���#���� �0����
�� �% ���- 6�
��	�������
� 5
�- +-�� ���� ����
��� ����� ��� �
������# ����
�	��
� � ��#����� �	�'�����
�� ��
� ���- �������
��� �
������# ����
�	��
� ������ "
�� ���� �% ��� ����� ����
�	���- A
�� ��
�
�##������ ���� ��� ��� %����"
�� ���������� "��� ���#���� �� ���/ �!
�
���
�� ����
�� ���	������ ��� �����
�#����� ������ �
������� 	�
�
$��
��<
��� ��!
� ���	��� ��� 	#���� ���� "��� ��� ����
�	��� �% �� ���
�� ��� 	#������
�
��� ���� ��� #���� ����
�� ��� 	#����� ���	�� ��� ���
D��-

6����	�� ���� ���
�� ����
�� ���	�������
�
����
�� ���� ���"����� %���
���- 2� #���
�	���� %�� .	��
��
�����
�� ������� ����
�	���� ���� ����� ��
I�
� ��� #���
�
#��
�� �	�'�����
���� ��� ���� �� ���
�� �	�������� �	� ���� ��
�
������# ���� ���
	��� 	�� *19,!- �	�� � ���#���� I�
� ��� �� ������� ��#��
����
�� �
��'����
�� ����
�	��� ��������� ����
���#�������� *19,-

G���
��� %��
������� ��� %����"
�� .	���/ 4D�� ����E� ������ ��� ��#�������
�� t44 ��� ���	�� ���� ��� ���� #���� �% 5
�- 8-� ��� �������
� ��
� ������-
�� �0��	�� ��� .	���� ���� ����� �� ���� ����E� ��#�������� ��� �����
�� ���
���� �� I�
� ��� ������ ���	�� �� �
������#�- 6� ���"�
� 5
�- 8-�� ���� ���	�
�
������ "
�� � �	#�� ������� �� ���
�� �	������� ��� � �
������#� ����
�� �� ���
"���� �% 	��%	� ����� �#��� ��� ��
� ������ ����"
���- ��
�
�� ��� ������
���	�� �� �
������# ����	��� ���
�
���� G�H ������-

��� �� �������
� ��
�
������ ���� � � �

6�
��	�������
� 5
�- +-�� ��� ���� �% ���
�/ �! �� ����� ����
�%�����
�� ����
����< ��� ��! �� ����" ���� �	#�� ��������	��
���- 2� ����� �� ����" ���� �	#��

�8E 9+ : ���� ;+ :)���� ���
+ 9�& ��

t1
1 1 2 2

323 John t5 10K 12K t3 Math Info

Ssnum
zone Salary zone Dept zone

Sub-Page
Header(SPH)

Name
zone

Creation time

Zone offsets

	
�� �� �&����� ��� �

��������	��
���� ��� ���#� ��� ��� ����
�	�� ���	�� �% � �	#��
� ��� ���� #����
��
� @��- 7�"����� 	��
�� @��� ��� �����
$�� ����
�	�� ���	�� "
��
� � #����
�� ����� ���	����� ���	�� ��� ������ ���� ����-

A
��
� � #���� ��� #���� �	#���
��� ����
����� �� ���� �	#��� �% �
��
��� �	�'
#���� ���� �
��
��� ���
�� �	�������� ��� �	#��� �% ��� �
���� �	�'#��� ���� ���
���� ���
�� �	�������- ��	�� � �	�'#��� ������� ��� ����	�� �% �� ���
��- A
��
�
� �	�'#���� ��� #���� ��� ���	�� �% �� ����
�	�� ����
�	�	���
� �� ���������

	��- ��	�� ���� �	�'#���
� #���
�
����
��� � ����
�	�� $����� "���� �
� ���
��
�� �% ��� ���#���� �����
��- �� �	� 	#� ��� #���
�
��� � #��� ���
$�������
�
�	�'#���� ��� ���� �	�'#��� ����
�����
� ����
�	�� $����- ��� ����
���� �% ��
�
����
�� ����
�� ��� ���
�� �% ��� ��� �
��	���� ��� ���� "���� ��� "���� �
�����
�% �� ���
�� ���� ��� D�
� � �
���� #���-

!

��"�
� #���� (�� s �� � �	�'#��� ������
�� ��� �
����� �% �� ���
�� e- 6�
����
�	�� $���
� �� ���� "
��
� s� ����
�� ��� �
����� �% �� ����
�	�� a �% e/ ���
���	�� ����� �� a ���� �
��- 5��
��������
� 5
�- 9� ��� $��� �% ����E� �������
������ ��������
�� �	�����
�� ���	���- F��� ����
�	�� $��� �% �� ����
�	�� a
�
#��%���� �� � �
������# ������ ����
�� ��� �
������#� �% 	#����� �� a- ���
���	�� �% a ��� #	� �� ��� ��� �% ��� �
������# ������
� ��� ���� ����� ��
�
������#�- A��� � ���
����'������ ����
�	��
� ���� �
��'����
���
�� ���	�� ���
#������� �� �� �)��� ������ ��
� ��� ��#� $���
� 5
�- 9-

(�� tc �� ��� ��"��� �
������#
����
%�
�� � �	#�� ������
�� � ����� �% ��
���
�� e< tc
� ������ ��� ������	� ���� �% e/ ����
� 5
�- +-� ��� �����
�� �
�� �%
���
�� ����
� t1- �� ���
� ���	������� tc
� ��� ������
� ��� �
������# ������
�% ���� ����
�	�� $���< ������� tc
� ������ ���� ���� �� ��� �	�'#��� �����- ��	��

% �� ����
�	�� $��� ������ � �
���� ���	��
�� �
������# ������
� ��#��- 5��
�0��#���
� 5
�- 9� ��� �
������# ������ �% ����E� ���	� $���
� ��#��-

������
�� %�� ��� �	����� ���	� �% �� ����
�	�� ���� ��� ���� ������ ���!
"
��
� � $���
� ���� �� � �
�#�� �)��� ���#	���
��/ ��� �	����� ���	�
� ��"���
������ �� ��� ���� #��
�
��- �� D�� �� �
����
��� ���	� ���� ��� �	�����! ���
�
�� � �
������# t� ��� �
������# ������ ���
% ��������� ��� �)���� �% ���
����
������ ���	��!
� D��� ������- A
��
� ��� �
������# ������� ��� ����� %�� ���
#��
�
�� � �% ��� �������� �
������# t′ ��"�� ���� t- 5
������ ��� ���	� ������ ��
��� #��
�
�� � "
��
� ��� $���
� ����-

��"� ��� ��� ��� $����
�� 6�
��
����� ��%���� � �	�'#��� ������ ��� "����
�
����� �% �� ���
�� e- 6� ���"�
� 5
�- 9� ���� �	�'#���
� #������� �� � �	�'
#��� ������ ��7! �����
�
��/ ��� �����
�� �
�� �% e ��� � ������ �% #�
�� ��!�

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �8�

"����
� ��� �����
�� �)��� �% ��� $��� ������#���
�� �� �� ����
�	�� a �% e
��� �
� ��� �	���� �% � �
��
��� ���	��-

6� �� ���
�� ��� ���� ���� �� ���� �	������ �% ����
���� � ������ �% �	�'#���
�)����
� ���
� �0#����� �� �� �	�� ������� ���� � ������ �% �	#�� �)����
�
@��- ��	�� %�� ���
� ����� ����� �� ����� ��� #��� ������ ��� ��� �)��� ������
����
�	�	���� �� ����� ����
�� ��� #��� ������ ���� ����� ��� �)��� ������ �� �
����� #��� �%
�- �	�� � ���
�� ���
�� ��
��
����
�� "��� ������
�� %�� �	�'#����
"
��
� � #���- 6�
��	�������
� 5
�- :-��
� � ��� #���� ��� �	�'#��� �#��� ���"�
	#"���� "�
�� ��� �)��� ������ ���"� ��"�"����-

$���� ��"� ����� �
�	��
��� ���	� "���� ��� "���� �
����� �% �� ���
�� ����
��� D�
� � �
���� #���� ���� � �	�'#���
� ��� ����� �� D�
� � �
���� #���- ���
��#�� "
�� ��
� ����� �	�'#��� #������� �� %����"�- (�� s �� � ����� �	�'#���
����
�� ��� �
����� �% �� ���
�� e ��� t �� ��� �
�� �% ��� ���� 	#���� �% e- ���
���	�
�� ����
���
� �����
�� � ��" �	�'#��� s′ ���
�
�
��
$
��
� "
�� ��� ���'
�
�� �% e ���
� �� t- ��
� ���	�
��
�����	��� ���� �
�
���! ���	������ �	� ���
��
�#������ ���������/ ��� ������ %�� e �	#��� ��
�� �� � �
������# ti� �	��
���� ti ≥ t�
� ���� #��%����� "
��
� s′ ��� ��� ������ %�� e �	#��� ��
�� �� �
�
������# tj � �	�� ���� tj < t�
� ���� #��%����� "
��
� s-

�����
��	 ���	�������� ���� ���#����
�� ����"� �� 4����� G�H �������
"�
�� ��� ��	������ %�� �
�� ��� ��
� ������ ����"
����� "�
�� ��� ���4 *8,-
�� ��	����
�� �
������#� ��� ���	�� %�� ���� ����
�	�� ��������� ��� �������
%	����� ���#����
�� �##���	�
�
�� ���� @��- 6� ��� �	����� ����� �% ���
�'
#��������
��� "� ��
��� %��	� �� �
������# ���#����
��� 	�
�� �"� ������
�
���"�
��� ���#����
�� �������/ �����	���� ��� ����� *1:� 1;,- ��� �
��
�����
������ ������� �� ����� ����
�� ��� �
��
��� �
������#�- ����� "
��
� ���� ��'
��
�	�� $���� ���� �
������#
� ��#����� ��
�� #��
�
�� "
��
� ��� �����- ���
����� ������
� 	��� �� �0#��
� ��� %��� ���� ��%������� �� �
������#�
� �� ��'
��
�	�� $��� ��� ������ ��� ������ ����
�	�	���- A
�� ��� ����� ������� ����
��%������
� ������ �� � ����� %��� ��� #���
�	� ���-

��� ����������

G���
��� ��� .	��� 4D�� ����E� ������ �
�����4- 6� ���"�
� 5
�- :-�� ���
�'
#����� ��� ����� �#��� ��� ��� ��
� ������ ����"
��� ����	��� �� ��
� .	����
����	��
� ���
�� %����
�� ��� ���� ���	� ������� �
��� �� �##���� �� ��� ���
@��!- 2� ���
�
��� ���
�#����� ��� ���� �#��
�� �����
��� ����	�� ��� ��.	�����
���	�� ��� ������ ����
�	�	���- ��� ���� ��.	
��� ���� ������� �#��� ���� @���
����	��/ �!
� ������ 	�������� ���	�� ���� ����< ��� ��!
� %�����
$�� ������
���
�� ��������� "������ @�� ������ � ������ %�� ���� �	#��- G����.	������ �
��� #���
� �0#����� �� �����
� ���� ���� ���� ��� ������#���
�� @�� #���-
��	�� ��� ����
�#����� �
�� ����"
��� ��� ��
� ������ �#��� 	�
�
$��
��-
��� �
�� �)��� �% ��� ���#������� �% ���
� ��� ���
�
���� �)��� ������ %�� ����
��#�������� �	�
�� ���
D���
�� �#����
���-

2� ���� �% �
��'
����
��� ����� ���� ���
�� ��� � �
���� ����
��- ��	�� ���� ��'
��
�	�� $��� "
��
� � ��� #��� ������ � �
���� ���	� ��� ��� �� ��#�� �
������#

�88 9+ : ���� ;+ :)���� ���
+ 9�& ��

PSP Page

(a)

PH e1 e2

SPH1 323 John

t5 10k 12K

t3 Math Info

e1 sub-page

(b)

L2 Cache

SPH1 323 John

t5 10k 12K

PH e1 e2 line 1

line 3

line 2

(c)

L2 Cache

SPH1 323 John

t5 10k 12K

PH e1 e2 line 1

line 3

line 2

t3 Math Info line 4

e2 sub-page

	
�� �� 2�3
�
 ���� ��� �+ 2&3 7���� &����� � * � ��� !��� B4�� : ��C� ������
���� ��B+ 2�3 7���� &����� � * � ��� !��� B4�� : ��C� ������ ��� ������)��� �� t4B+

������- G����.	������ � ��� �	�'#��� ��� � ����	� �
�
��� �� � ��#
��� �	#�� %��'
���
� @��- 6� � ���	��� � ��� #��� ��� �� @�� #��� ���� �
�
��� ����	��
��� �����
��� "��� 	��� %�� ��� ���#���� ����-

G���
��� ��� .	��� 4D�� ����E� ������ ��� ��#������� �� t44- 6� ���"�
�
5
�- :-�� �� ��������	�� � �	#�� ���	�� ��� ���� ����� �� #��%��� I�
�� �����
����
�	�� $���� ������ ����
�	�	��� "
��
� � �
���� �	�'! #���� "
���	� ������
��
�	��
�� ��� #��� �� �##���� �� ��� ��� ����!-

" ����� #��$

������� �##������� ���� ���� �������� #��#����
� ����� �� ���
��� �
�� #��'
%������� %�� ���� �#����
���- ��
� ����
�� %��	��� �� �##������� ���� 	�� #���
����	�� �
)����� %��� @��- &���� �##������� ���� %��	� �� �)�� #��� ���'
������� ��� �� �����'�����
�	� �����
���� ��� ���� ������� �������-

2� *1=,� *;, ��� *>, �����'�����
�	� #��� ����	�� ���� ���� #��#����� ������
���� ���#�
��� ����
�
�� 6���
�	��� 6����� �6J! ��� G�����- 6���� ������
�6J
� ��� ������� �� ���-
��� � �����
�� R "
�� ��
�� �� �6J #���
�
��� ����
#���
��� � ����
����- ��� ith �
�
#��� ������ ��� ��� ���	�� �% ��� ith ����
�	��
�% R- A
�� ��
� �##������ �6J #���
��� � �
�� ������ �% �#��
�� �����
�� %��
��.	���
�� ������ �� ���	�� �% ��� ����
�	��- @������������ �6J ������ ����
�
����� ��.	���� �� ���
��� ���� #��%������� %�� 	#�����- ��	�� 	�
�� �6J %��
���#���� ���� ���� ��� ���
� ����
�� ���	������-

6 �	���� �% ������
� ��� �������
�� ����'�#�
�
$�� �������
�#������
���/ ������ 2B *++,� 5����	��� �
����� *+>,� ����� *+8,� G'����� *8� +:,� ���--
����� ������� ���	�� ��� �	#�� ��������	��
�� ���� �% ��� 	�
�� �����
.	��
�	�� �� I�
�
���0�� ��� ��	��'����� ��������	��
��� *+>� 8,- 7�"����� �0��#�
G'����� ��� 5����	��� �
������ �� ���� ����� ����
� ����� ��.	���� ������ ���
�
#��%������� �)�� %��� ��� ���� #������� �� @��-

5����	��� �
����� *+>, ������ �"� ��#
�� �% � �����
��� ��� 	�
�� ��� ��� ���
����� 	�
�� @��- ��� ���� ��.	���� ��������� �	�
�� .	��� �0��	�
�� ��� �#'
#��#�
����� �����	��� ���"��� �
�����- A
�� ��
� �##������ 5����	��� �
�����
#���
��� ������ .	��� #��%������� ���� �
���� ������� ����� ��� #���
�� ��#�'
������- 7�"����� �� 5����	��� �
����� ���� ��� ���� ���
���� �� ������ ���#����
���� ��� #������ �% ����
�� ���	������ ��� ��� ���� ����
�����-

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �8%

G'����� *8,
�#������� � �����
�� �� � �������
�� �% �����
��
$�� ������##
��
#��I���
��� ���� ���� ����
�	�� �##����
� �� ���� #��I���
��� �� ������!- ���

�#�������� #��I���
��� ��� ������
��� ������
�� �� %��.	��� .	��
��< � ���
�
��
"�������
� ������� %�� ��
� #	�#���- �� ���
��� �
�� #��%������� %�� .	���'

�����
�� "��������� G'�����/ �! ����� #��I���
��� %��� ��� ���� �����
�� ��
�
)����� ����
�	���< ��! ����"� � #��I���
�� %��� � �
��� �����
�� �� �����
�
��� �	���� �% ����� ����
�	��� %��� ����� �����
��� ���� #��'I�
��!< ���! ������
#��I���
��� 	�
�� ���< ��! 	��� I�
�
���0�� �� ��������	�� �	#���< ��� �! 	���
���#����
�� �� ���
� �� �0#���
��
� ������� �#���- ���
�#��������
�� �% G'
�����
�#�
�
��� ���	��� ���� #��I���
��� %��� ��� ���� �����
�� ���� ��� ����
�	���� �% �	#���- ��	�� G'�����
� 	����� �� ���
� ����
�� ���	������-

% ��&�����	 '(�����
��

��
� ����
�� ���#���� ��� #��%������� �% ��� �
)����� ������� ������- 5�� ���'
�
��� �����#��
�
��� �� ����
� �0#����� �� �	�#��%��� ��� ����
���'%��"���
��� ��� �	� �� ��� ���� �% �#���� ���� ����
� ���#���� �� @�� ��� ���-

@�� ��� ��� ������� �%��� 	�� ���
� �"� ���� �% .	��� �����
.	�� ����
��� #���
�� ���
�
���� #��%�������
�#��������� *1?,- 6� ��� #������ #�#��
���� %��	��� �� ��� �
)������� ���"��� @��� ���� ��� ��� ������� �� ���
"�� ���� ��� ������
� #����� "� ����
�#�������� � ����� �� @�� ��� �
��� ������� ��������
� GKK %��� �������- ��� #��%������� �% ����� �������
��������
� ����	��� "
��
����
��� �������� ��� .	��� "��������� ���������
%����"
�� ��� �#��
D���
��� �% ��� ���� ������ #��������
� *1>� 3?,-

2� ����� �� ���� ���#���� I�
�� ���
�� ��� ��� �� #����
$� ����
��� �����#��
'
�
��� ��� �
)����� ������� ������ ��� ���#����
� ��� �����0� �% ��	����
��
���0-
���
�#�������� ������� �������� 	�� ��� �
�� �#�
� �'���� ���'����! *3+,� �
�
'�
����
����
���0 ���	��	�� �������� 	��� %�� ���#���� ����- 2� ��� ��.	���
�	�����
�� 9-+ ���
�"� ��� ���'���� ��� #�������
��
�#��������
�� "
�� ���-
�	�����
�� 9-1 ����	���� ��� #��%������� �% ��� ������� ������-

%�� ���� �	�
 &����� ���&������

�
������ ��&������ ��� ���'����
� � ���
��� �% ��� �K����- (��% �����
�����
� ���� ��� ��� ������ ����
����- @��'���% ������ ������ ����!
����� �
����
������ %��� ��� ���� ��� �����
� ���� ������
�%�����
��- 6� � �
��� ������ ���'
���� #���� #���
�
�� ��� �	�������'�
�� �#���- 6� ����� �% ��
���0 #���
� �

(a) (b)

TH1 e1 t1 323 10k John Math

TH2 e1 t3 323 10k John Info

TH3 e2 t2 854 20k Paul Eco

TH4 e2 t4 854 21k Paul Eco

Offset vector

TH1 e1 t1 323 10k John Math

TH2 e1 t3 323 10k John Info

TH3 e2 t2 854 20k Paul Eco

TH4 e2 t4 854 21k Paul Eco

Offset vector

D1

[e1,+∞), [t1, t5), D1

[e1,+∞), [t5,+∞), D2

I1 [e1,+∞), [t1,+∞), D1

I1

D1

TH5 e1 t5 323 12k John Info

TH4 e2 t4 854 21k Paul Eco

Offset vector

D2

	
�� �� 2�3 ������� ��"����� � � � *
�
+ 2&3 ��)� ����� * D1 �� t5+

�%$ 9+ : ���� ;+ :)���� ���
+ 9�& ��

(a) (b)

e1 e2

SPH2 t2 854 Paul t4 20k 21k Eco

SPH1 t1 323 John 10k t3 Math Info

e1 e2

SPH2 t2 854 Paul t4 20k 21k Eco

SPH1 t1 323 John 10k t3 Math Info

e1 e2

SPH2 t4 854 Paul 21k Eco

SPH1 t5 323 John 12k Info

D1

D1

D2

[e1,+∞), [t1,+∞), D1

I1

[e1,+∞), [t1, t5), D1

[e1,+∞), [t5,+∞), D2

I1

	
�� �� 2�3 ������� ��"����� � � � *
�
+ 2&3 ��)� ����� * D1 �� t5+

��
#��� [emin, emax)� [tstart, tend)� I!� "���� [emin, emax)
� � �	�������
��������
[tstart, tend)
� � �
��
������� ��� " ���
����
D�� �% � ��
�� #���- �	�� �����

��
����� ���� ��� ���� #���� �% ��� �	����� ������ �� I �����
� �	#��� ���!�
�	�� ���� e ∈*�min��max! ��� t ∈*tstart, tend!- "
� ��
� �� �� ���
� %�� ����
�
������# t ∈ [tstart, tend).

�	#��� "
��
� � ���� #��� ��� ������� �� ���
�� �	������� ��� ���� �� �
��'
����#- 2% ���
�����
�� �% � �	#�� ��	��� � ���� #��� ����L�"� ��� ���'���� 	���
�
����� ���� �
���� ����	���� �
��� �� � ����
���
�� �% ����- 6 �	������� �#�
�
���	�� "��� ��� ����L�"
�� ���� #��� ���� �����
�� �	����� �	#���- 2�
� �
�
���
�� � �#�
�
� � �K����/ �	#��� "
�� �	������� ������� ���� �� �.	�� �� ��� �#�
�
�	������� ��� ����� �� ��� ��"�� ��������� ���� #���- 6 �
�� �#�
� ���	�� "���
��� ����L�"
�� ���� #���� D� �����
�� ���� �	����� ��� �
����
��� �	#���- ���
�
�� �#�
� �% D ��#������
�� �	#��� ������
�� �� ��� �	����� �
�� t/ +! ��� tend

�% D
� ��� �� t< 1! � ��" ���� #��� D′ "
�� �
��
������� [t, +∞)
� ���������<
 3! �	#��� �% D ���
� �� t ��� ��#
��
� D′ 5
�- ;-�!- 6%��� � �
�� �#�
��
% ���
�	���� �% �	#��� ��#
��
� D′ �0����� � ��������� θ� � �	������� �#�
� �% D′
�
#��%�����- 6�
���0 #��� �#�
�
� �
�
��� �� � ���� #��� �#�
�-

��&����� '�
(� � ��� �#�
� �% � ��� #���
� #��%����� �� %����"�- (�� D
��� D′ ��� ���#���
����� ��� ����L�"
�� ��� ��� ��"�� ��������� ���� #����-
����	���� �
���# ��� �	�'#���� �% D "
�� �	������� ������� ���� �� �.	�� �� ���
�#�
� �	������� ��� ����� �� D′-
$��� �
���# +! %�� ���� �	�'#��� s �% D� � �	�'#��� s′ "
�� ��� ���� �	�������

� �������
� D′< 1! ���� ����
�	�� $���
� s′
�
�
�
��
$�� �� ��� ���� ������
���	� %��� ��� ������#���
�� ����
�	�� $��� �% s< ��� 3! ��� ������� �
������#
�##���
��
� �� ����
�	�� $��� �% s�
� ��#
��
� ��� ������ �% s′ 5
�- =-�!-

%�� !����	
����) ��

���� ��� ����
�

*��+��� ��� !����	
����� ��� ���� ������ #��#����
� *3?� 1>, ����� �
���#���� �����
�� R �� � ��� �% % ���
�
�� ��� $ �
������#�- F��� ���
�� �

� �	�I��� �� 	#�����< ���� 	#���� ���	��
�� �� �
������# �� ��������� � ��"
���
�� ����
�� ���!� "���� ���	�
� ��������
� � �	#�� �% R- ��� #��#���
�� δ
�% ���
�
�� 	#����� �� ���� �
������#� ������ ���� ������� *1>,�
� ���	��� ��
�� ��������- ��	�� ��� ����� �	���� �% �	#���
� R
�/ E + δE(T − 1)- R
�
���	��� �� ��
���0�� �� ���'������ 	�
�� @��� ���� �� ���- ��� ����
�
�� ����	��� ��� ��������
�����
�� ��� .	��� �����- ��� ������� ����
� ����	���

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �%#

0

20000

40000

60000

80000

1% 5% 10% 15%

O
cc

u
p

ie
d

d
a

ta
 p

a
g

e
s

Data agility

PSP TDSM NSM

	
�� �� �� ���� � �� �� *���� � * ����
�������

0

1

2

3

1% 5% 10% 15%

E
la

p
se

d
T

im
e

 p
e

r

tu
p

le
(m

s)

Data agility

PSP TDSM NSM

	
�� ��� ,������ ������� ��)� ��� ����
�� *���� � * ���� �������

�� ��� �	���� �% ���	#
�� ���� #����- ���
�����
�� ����
� ����	��� �� ���
������� �
�� ���#��� �	�
�� ���
�����
�� �% � �	#��- ��� ���� �% � .	��� &
�
����	��� �� ����� #���������/ �! ��� ������� �	���� �% ���� #���� ������
�
��
� ������< ��! ��� ������� �	���� �% (1 ����� �
���� "��� ��� ��.	�����
#���� ��� ��
�'������ ���
����< ��� ���! ��� �0��	�
�� �
�� "��� ��� ��.	�����
#���� ��� ��
�'������ ���
����- �� �� �� ������� �� #���
���� "� %����" *1>, ���
���	�� ���� � .	��� q ��� ��� %����"
�� %���/

������ qa ���������� ���	 R
���� e ∈ [ei, ej) �� t ∈ [tk, tl)
"���� qa
� ��� �	���� �%
������� �
��'����
�� ����
�	���� [ei, ej) ��
������� �%
���
�� �	�������� �����
�
�� qs ������	�
�� �	�������� ��� [tk, tl) � �
��
�������
�����
�
�� qt ������	�
�� �
������#�-

��

���� ��� ����������
 ����� 6 ����� �	���� �% �
�	���
��� ���� ����
#��%����� �� ���#��� @��� ���� ��� ���- 7�"����� �	� �� ��� ���� �% �#����
���� %�" ���	��� ��� #�������� ����
�- 5�� ��� #�������� �
�	���
���� ���� ��� ���'
������ �� %����"�- 6 ���#���� �����
�� R
� ���	��� �� ���� ��� 8'���� �	���
�
����
�	����
� ���
�
�� �� �� ���
�� �	������� ��� � �
������#- 5�	� ����
�	��� �%
R ��� �
��'����
��- �
��'����
�� ����
�	��� ��� ���	��� �� ����
���#��������
���� �
��� "
�� ��� ���� ��
�
��- E ��� T ��� ���#���
���� ��� �� 1??� ���
�
��
��� 1?? �
������#�- 6� ��� D��� �
������#� 1??� �	#��� ���
�������
� R ���
�	#�� #�� ���
��!- ����� �� ���� �% ��� %����"
�� +>> �
������#�� δE ���
�
���
�������� ��������� ��� 	#�����- ��� ���� ��
�
�� δ
� ���
��
� ����� �� ����
�
�
)����� ���#���� �����
���-

�
�	���
��� ��� #��%����� �� � ���
����� �	�� ���� 1-=? 7$ ����
	� �������
�	��
�� �� A
���"� ������ 1??3- ��
� ���#	��� %���	��� +� ��
� ������
 ���1'::;�7$!� =?? �7$ 5��� ��� 2 × 2 �� (1 �����- ��� ����� �
�� �
$�

� :8�- ��� ������� �������� "��� ���D�	��� �� 	�� � =�� #��� �
$�- ���
�0��	�
�� �
��
� ����	��� �� ��� %	���
�� '����(���	������)	����� #���
���
�� ��� 6�2 A
�31- ��� (1 ����� ������� ������ ��� ��������� 	�
�� 2���� C�	��-

����
�
��	����)	��� 5
�	�� > ��#
��� ��� ������� ����� �� %	���
�� �% ��� ���� ��
�
��-
��� ��.	
��� 	# �� ≈ 7.4 �
��� ���� ������� �#��� ���� @�� ��� ≈ 2 �
��� ����
������� �#��� ���� ����- ��� �	#��
��
�� �% ��� ���
��� @��
�������� �� ���
��
�
��
��������� ����	��� �
����
� ��� ��
�
�� ��� �
����
� ��� �	���� �% �	#���
#�� ���
��� ������ �
����
� ��� �
�� �#��� ����� �� ���-

�%/ 9+ : ���� ;+ :)���� ���
+ 9�& ��

qs=2000, qt=10 qs=20, qt=100

δ=5%

δ=15%

0

20

40

60

1 2 3 4
L
o

a
d

e
d

d
a

ta
 p

a
g

e
s

Number of requested attributes

PSP TDSM NSM

0

50

100

150

1 2 3 4

L
o

a
d

e
d

 d
a

ta
 p

a
g

e
s

Number of requested attributes

PSP TDSM NSM

0

5

10

15

1 2 3 4

L
o

a
d

e
d

 d
a

ta
 p

a
g

e
s

Number of requested attributes

PSP TDSM NSM

0

15

30

45

1 2 3 4

L
o

a
d

e
d

 d
a

ta
 p

a
g

e
s

Number of requested attributes

PSP TDSM NSM

	
�� ��� ,������ � ���� ���' ����� �� *���� � * ��� �)&�� * ��!����� �����&���

����������	�
� ��������	�
��

���

��
�

�

����

����

����

� � � �

�
�
��
�
�
�
�
�	

�
�
�
�

�������	
�����������������

�	�
�	� 	�

�

����

����

����

� � � �

�
�
��
�
�
�
�
�	

�
�
�
�

�������	
�����������������

�	�
�	� 	�

�

����

����

�����

� � � �

�
�
��
�
�
�
�
�	

�
�
�
�

������	
��������� �������

�	�
�	� 	�

�

����

����

����

� � � �

�
�
��
�
�
�
�
�	

�
�
�
�

�������	
�����������������

�	�
�	� 	�

	
�� �� ,������ �/ �����)����� �� *���� � * ��� �)&�� * ��!����� �����&���

"������	�)	��� �� #���
�� %�
� ���#��
��� �%
�����
�� ������ "� ���	�� ����
��� ���� ��.	���� ��� ������ %��� �
��- 5
�	�� +? ��#
��� ���
�����
�� ����� ��
%	���
�� �% ���� ��
�
��- 2�����
���
� @�� ��� �� ������� ≈ 2 �
��� %����� ����

� ���- ��� ��
� ������
� ���� "
�� @�� � �
���� "�
�� �	M��� �� #	�� ��� ���
����
�	��� �% � �	#��� "�
�� "
�� ���� �� ���
�
���� �)���
� ������ %�� �	�'#���
�������
$��
���- 6����	�� ���� #��%������� ��� #����
$�� �� ��� %��� ���� ���
�#����
�� ������ �����	��� ������� "�
�� ��.	���� %�� �	��
#�� �����
���� ����
�0�
�
�� ���� #��%�������- @��� ���� ���� #��%������� ���	�� �� "����
%
���� ���� ��� ����
�	��
� 	#����� �� � �
��-

'����)	��� �� ����	��� ��� .	��� ����� "� ����
��� � ���������� ��
�� ���#����
�����
��� δ = 5%� ��� � �
���� ��
�� ���#���� �����
��� δ = 15%- 5�� ����
���#���� �����
��� �
��� .	��� "�������� ��� ����
�����- F��� .	��� "�������
����
��� �% +?? .	��
��- B	��
��
� � "�������
������ ��� ���� �% �	���� �%
������	�
�� ���
�� �	��������� qs� ��� ���� �	���� �% ������	�
�� �
������#��
qt� ��� ��� ���� �	���� �% ���#���� ����
�	���� qa- ��� �	�������
�������� ���
��� �
��
�������� �% .	��
�� �% � �
��� "������� ��� 	�
%������� �
���
�	���
�
��� �	�������'�
������# �#���- ��� ��#����� ���	��� %�� � �
��� "������� ���

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �%>

����������	�
� ��������	�
��

���

��
�

�

���

���

���

� � � 	
�
�
�
�
��
�	

��
�
�
�
�
��

�������	
�����������������

�
 ��� ���

�

���	

����

����

� � � 	

�
�
�
�
��
�	

��
�
�
�
�
��

�������	
�����������������

�
 ��� ���

�

���

���

���

� � � 	

�
�
�
�
��
�	

��
�
�
�
�
��

������	
��������� �������

�
 ��� ���

�

����

����

����

� � � 	

�
�
�
�
��
�	

��
�
�
�
�
��

�������	
�����������������

�
 ��� ���

	
�� ��� ,������ �5���� � ��)� �� *���� � * ��� �)&�� * ��!����� �����&���

��� ������� �% #��%������� ���
���� �� ��� +?? .	��
�� ���#��
��
�- ��� D���
%�	� .	��� "��������
������ � �����
���� ����� �	�������
�������� qs = 2000�
� ����� �
��
�������� qt = 10� ��� �
)����� �	����� �% ���#���� ����
�	���/
qa ���
�� %��� + �� 8- ��� ������ %�	� .	��� "��������
������ � ����� �	�������

�������� qs = 20� � �����
���� ����� �
��
�������� qt = 100� ��� �
)����� �	�����
�% ���#���� ����
�	���/ qa ���
�� %��� + �� 8-

5
�	�� ++ ��#
��� ��� ������� �	����� �% ���� #���� ������
� ��
� ������
�� ���"�� ��� .	��� "�������� �����
��� �����- 6� ���"�
� 5
�- ++� ��� ���
���� �	�#��%��� @��
� ��� �����- 2� �������� ���� ��� ������ �����
�� ����
��� ���� "��� %�" ����
�	��� ���
�������- 5
�	�� +1 ��#
��� ��� ������� �	�'
���� �% (1 ����� �
����� "��� ��� ��.	����� #���� ��� ��
�'������ ���
����-
6� ���"�
� 5
�- +1�
� ��� ������ ��� ��� ���� �������� ���� (1 ����� �
����
���� @��- 2� #���
�	���� ��� ��������� 	# �� > �
��� ���� (1 ����� �
���� ����
@��- 5
�	�� +3 ��#
��� ��� ������� �0��	�
�� �
��� "��� ��� ��.	����� #����
��� ��
�'������ ���
����- ���� ��� � ������ �����
�� ���� ��� ���� "��� �
�
���� ����
�	��
�
�������- ���� #��%������� �����
������ ���� .	
���� �� qa�
��� �	���� �%
������� ����
�	���
� � .	����
��������- ��
�
� �	� �� ���#����
I�
��- 6� ���"�
� 5
�- +3� ���
� %����� ���� �
���� @�� ��� ����/ �� �������
≈ 6.54 �
��� %����� ���� @�� ��� ≈ 6.18 %����� ���� ����� "��� ���� ���
�������
� ��
� ������- @��� ���� ��� #��%������� ��# ���"��� ��� ��� @��
���	�� �� �
����
% ���� "��� %������ %��� �
�� ������ ���� %��� ��
� ������-

2� �	������ ���
�#����� #��%������� ��/ i! ���	�
�� �
�� ���� ��� �����%��
�
��� ���� ���� ��� ������
� ��� ������ �
�������!< ii!
������
�� �)�� ���
����� �
� ���� � ������ %����
�� �% ���� D��
� �)�� #��� ���
� ����� �
���!<
��� iii!
������
�� G�H 	�
�
$��
�� ���� G�H ������ ��� "�����
� "�
�
�� %��
���� ����
�� ��
� �	#�� ��������	��
���!-

) ���	���
��

��� ������ �
������� 	�
�
$��
��
� �
���� ��#������ �� ��� #��� ����	�- ��
�
#�#�� #��#���� ���� ��� ���� �"� ��" ����'�#�
�
$��� �����'�����
�	�� #���

�%D 9+ : ���� ;+ :)���� ���
+ 9�& ��

����	�� �#��
D����� ��
����� %�� ���#���� ����- ��� �#�
�
$�� #��%������� �� ���
������ �% ��� ������ �
������� �� ����
�
�� ��� ���������� �% ���� ��� @��
"�
�� ���
�
�� ���
� ���#���
�� ���"�����/ �! ��� ���
�� ����
�� ���	������ ��
�##���� �� @��!< ��� ��! ��� ����"� ���� �	#�� ��������	��
���� ���� "
���	�
#��%���
�� ������ ���#���� I�
�� �� �##���� �� ����!- 2� ���
�
�� �� ���
���������� �%�������
����� ��� ��� �� 	��� %�� ��� ���#���� ���� "
�� ���
���� #��%������� �� @��-

6����	�� "�
�#�������� � ����
���'%��"��� ����� ���� �0�
�
��
�������'

�� %���	��� ���� ���� �� �� %	����� �0#�����- 2� #���
�	���� ���� #��%�������
��� �� �	������
����
�#�����
% I�
� �����
.	��� ���� ���#��� �� ����
��� #��'
�
�
��
�� ���� ����� 	��� %�� ���#���� ����� ��� ���
����/
�
� �	� ��0� ����N

�&��	�

#+ �� ��&��'��� �+� "���� 7+� F������)��� �+� 7�������'� �+@ ,�+@ =�� ��0� ���� ,��G

��� /@ "����)��'��� ������+ ��@ 7��<� ��+ #�>H#8D 2/$$�3

/+ �� ��&��'��� �+� ������� �+� ,&���� �+� I���0 � � �� �+@ ,�+@ ��� ��� * ��
,����������� ��� 2��C� ��)� * � � 7)����� <�.����3+ ��@ A��"� ��+ ##�$H##E$
2/$$�3

>+ �� ��&��'��� �+� F������)��� �+@ J=�� ��0� ���� ,��B@ ,� ���� 6� �� ��)� I��
7)� ��� ; ��+ ��@ �7�� /$$�� ��+ /H##+ ���� 7)���� � ������ � � ,��)�� �
2/$$�3

D+ �� ��&��'��� �+� ,&���� �+:+� "��'��� ,+� 7���� K+@ ,�+@ 7��� ��@ , 7 �)��
=������� �"��+ ��@ A��"� ��+ ��>H�ED 2/$$�3

�+ "��'��� �+@ <����� <������� � ����&��� �����)
��* �)����+ ��������� ��� ���
�"���� ��
 ��������!� �	�	���� �� ������� 2/$$�3

E+ ,���)�'�� ,+� ��6���� �+� I���� �+� 6 �� �+@ �"��� � � � ����
� ���� �@
6���� � �� ��)� ; G ��@ A��"� ��+ /EEH/��+ � ���� 9�*)���� ��� ��������
2#%%%3

�+ ,���)�'�� ,+� ��6���� �+� I���� �+� �' ��'��� �+@ 6������ <����� �� * � 7����

��* �)����+ ��@ A��"� ��+ #E%H#8$ 2/$$#3

8+ I�� L+� ���!�0� ,+@
��� ��� 7���� 7 ���� �
��*������� 2
77
3+ ��� A��"
: ���� #E2/3� />�H/D% 2/$$�3

%+ ��� � �+� ���������� :+� ���� ����� �+6+� ,���)�'�� ,+@ ,�+@ 7� �� @ ��� �����
��) ��
��� ��� � *�) �� ���� =�����0��� �+ ��@ A��"� ��+ E%EH�$� 2/$$D3

#$+ ,���)�'�� ,+� ; �������-� 1+9+� ��� ���� �+@ M��� 7 �
� ������� � 7)) ��
��� I���.���+ ��@ �7��� �+ #$� 2/$$E3

##+ ��&����!� �������������������	��
#/+ �������� ��������������������	��
#>+ A��� �1 ��� ���������������	��	����	��
#D+ " ��0�
+,+� L' .�'�� �+� 1��� 1+@ � ����"NK#$$@ I�����
��������� M��� �5�

���� �+ ��@ 7��<� ��+ //�H/>� 2/$$�3
#�+ 7����� �+� ����� :+� ;��)�.��� �+� I����� 6+@ ,�+@ "����&��@ � ������&��� �� ����

�����) * � �������� ����+ ��@ =��� /$$E� "��'����� 7,� ��,� ��+ /$�H/#8+
���1�K ,�� ����� � 2/$$E3

#E+ A������� ��������������������	�����	�����	�
����	�
�������	�
#�+ 7 ������� ;+
+� 9� ���4��� �+@ , ���)� ���� � �� ���� � ���+ ��@ 1������� �+"+

2��+3 ,7� ��;�=� #%8�� ��+ /E8H/�%+ ,7�
����� 1�. O �' 2#%8�3

http://www.sybase.com/
http://www.sensage.com/
http://www.vectornova.com/
http://www.vertica.com/v-zone/product_documentation

<����=���)�0��� 7�����7 ���� ��
��� ��� �� �%�

#8+ <�)�'�������� <+� ;���'�� :+@ > ���� �� ���� ��� ����5���+ ��@ ����&��� ����
���)��� �����)�+ ��;��.�I���� 1�. O �' 2/$$$3

#%+ <�)�)����� <+� ��6���� �+:+� �� M+@ , 7��� * � �������� ���� ��+ ��� A��"
: ���� #/2/3� 8%H#$# 2/$$>3

/$+ I���0 � � �� �+� ������ A+� ,&���� �+� ������� �+@
��* �)���� ����� P� �� <����
=���)�0�� ����"����+ ��@ A��"� ��+ D8�HD%8 2/$$E3

/#+ ,&���� �+@ 7 �)� �� ��� * � 6��� ��� ������ ����+ ��@ 7��<� ��+ /%/H/%� 2/$$�3
//+ ,&���� �+:+� ������� �+� I����)� 1+@ 7 �)���� ��� ��+ < .��� ���@ I . ��P���

��� ,�� ���� <�����G ��@ ��;�=�� A��� ���� 7����� 2� ������� /$$83
/>+ ,���)�'�� ,+� ��6���� �+� I���� �+@ ����
��� ��� �� * � <����� ��� ����&����

 � ���� ��) �� I����������+ ��� A��" : ���� ##2>3� #%8H/#� 2/$$/3
/D+ ,&���� �+� ������� �+� ��������� �+@ ����������� 7)������ � ��� �5���� � ��

7 �)��=������� ����&��� �����)�+ ��@ ,7� ��;�=� /$$E� ��+ E�#HE8/ 2/$$E3
/�+ � ����� L+� �� ����� A+� ������� "+@ �(����� ��)� ��� : ��
� ������� �����

�������+ ��@ �7�� /$$/� �+ #$>+ ���� 7)���� � ������ � � ,��)�� � 2/$$/3
/E+ < ��� �+� I ��� �+A+@ ����&��� 7)������ �+ ��;�=� <��+ //2>3� >#H>% 2#%%>3
/�+ <�)��� A+� �.���� ;+@ I . � 6���� � ��&�� ���@ ���� �� 7)������ � * <����

�� �� ��� M������ * 7)������� <����� ��+ ��@ A��"� ��+ 8�8H8E% 2/$$E3
/8+ I��'���� <+,+�
����� :+�+@ ���� � ������@ ,� ,�������� 7�����7 ���� � �� ��

��� ������!�+ ��@ A��"� ��+ D#�HD/8 2/$$>3
/%+ �� � O+�
�������� �+� L����� :+@ 7 �� � ���� * � =���������� ��� ��������� �

��������+ ,7� �����+ ����&��� ����+ /�2>3� /%%H>D/ 2/$$/3
>$+ : ���� 9+� :)���� ;+@ ����5��� ��������� � ����&����+ ��@ ,7� ��5������ 7 ��

������ � �� �)��� � ��� 9� .����� ������)��� 7�9� /$$� 21 ��)&�� /$$�3
>#+ �)��� �+"+� ���0&���� "+@ ���
��* �)���� * � ��������� � ,����� ���� �+ ��@

,7� ��;�=� #%%$� ��� #%%$� ��+ >�>H>E>+ ,7�
����� 1�. O �' 2#%%$3

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 596 – 609, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exploiting Interactions among Query Rewrite Rules in
the Teradata DBMS

Ahmad Ghazal, Dawit Seid, Alain Crolotte, and Bill McKenna*

Teradata Corporation
100 N. Sepulveda Blvd. El Segundo, CA, 90245

{ahmad.ghazal,dawit.seid,alain.crolotte,
bill.mckenna}@teradata.com

Abstract. Query rewrite (QRW) optimizations apply algebraic transformations
to a SQL query Q producing a SQL query Q’. Both Q and Q’ are semantically
equivalent (i.e. they produce the same result) but the execution of Q’ is gener-
ally faster than that of Q. Folding views/derived tables, applying transitive clo-
sure on predicates, and converting outer joins to inner joins are some examples
of QRW optimizations. In this paper, we carefully analyze the interactions
among a number of rewrite rules and show how this knowledge is used to de-
vise a triggering mechanism in the new Teradata extensible QRW subsystem
thereby enabling efficient application of the rewrite rules. We also present re-
sults from experimental studies that show that, as compared to a conventional
recognize-act cycle strategy, exploiting these interactions yields significant re-
duction in the time and space cost of query optimization while producing the
same re-written queries.

1 Introduction and Problem Definition

The growing sophistication of business intelligence applications developed on top of
relational DBMSs is tremendously increasing the complexity of automatically generated
queries posed to the DBMS. Nowadays, it is not unusual to see SQL queries that span
hundreds of lines. A common feature of these SQL queries is that they are inefficiently
composed as compared to, for example, a semantically equivalent query that may be
produced by a knowledgeable SQL programmer. This is partly the result of multiple
layers of abstraction that are required by the applications. For example, in data ware-
housing, numerous views and derived tables are used for security, for implementing
business rules and semantic layers and for capturing complex intermediate results. Que-
ries over these views tend to be very complex. For example, users tend to define views
that project all fields of the underlying tables and then implement applications that gen-
erate queries that project only a subset of those fields.

In general, there are two main techniques to optimize queries in a traditional
DBMS: logical query rewrite and physical query plan optimization. Query rewrite
(QRW) is a process of converting a given SQL query into a more simplified and
mostly more efficient SQL query without changing its semantics. The physical opti-
mizer typically uses a cost-based approach to perform join order planning and other
types of query optimization.

* This work was completed while the author was employed at Teradata Corp. The author is now

employed at ParAccel, Inc.

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 597

Query rewrite plays a critical role in optimizing the aforementioned types of com-
plex queries which would normally pose tremendous challenges to a pure cost-based
query optimizer that solely relies on enumerating various plans to choose the efficient
one. QRW can be rule-based (heuristic), like predicate pushing, or cost-based, like
rewriting a query to use a materialized view (join index in Teradata). Also, QRW can
be applied before or during join planning or after join planning is complete. For ex-
ample, group-by push down is done during join planning, while writing to a common
buffer space is a rewrite that happens after join planning is done. In this paper we
focus on rewriting queries before join planning and discuss the challenges in effi-
ciently implementing these rewrites and our approach that exploits the triggering
interactions among these rewrites.

A key challenge in implementing a query rewrite subsystem is determining how
the numerous rewrite rules interact. As we will later show experimentally, it will not
be efficient to reapply all rewrite rules every time we apply a particular rewrite. One
of the ways to minimize this search space is to determine cases where a given rewrite
triggers another rewrite. To the best of our knowledge, [1] is the only paper that pre-
sented a focused discussion of this issue for a limited set of query rewrite rules,
namely subquery (view) merging, distinct pushdown/pull-up, INTERSECT to exis-
tential subquery conversion and common subexpression replication. In this paper we
discuss interactions among a broader set of rewrite rules including projection push-
down, view-folding, outer-to-inner join conversion, join elimination, predicate move-
around, predicate satisfiability-and-transitive closure (SAT-TC) and set operation
simplification.

Exploiting the interactions among an expanded set of rewrites is necessary, for ex-
ample, to effectively simplify the complex queries involving layered views (derived
tables) mentioned above. For instance, queries that project only a subset of fields from
views that project all fields of the underlying tables provide opportunities to apply
projection pushing into lower blocks which in turn may trigger join elimination as
well. Merging derived tables or views is also an important rewrite that allows the
optimizer to consider various other rewrites like outer join to inner join conversion
and join elimination.

Another important challenge is handling cross-block triggering where rewrite of a
particular SQL query block b may also enable the rewrite of a parent block of b or a
sub-block of b. Hence, a particular query rewrite rule application to a given block has
three dimensions of triggers, namely triggering other re-writes on the same block, re-
writes on upper level blocks and re-writes on lower level blocks. For example, Predi-
cate Pushing rewrite of a block triggers the same re-write on the block’s sub-blocks
whereas applying the view folding (view merging) rule on a block may trigger the
join elimination re-write on the upper blocks. The upward/downward triggering rela-
tionship can also exist between different rewrite rules. For example, predicate push-
down may trigger SAT-TC on a child block while outer-to-inner join conversion may
trigger SAT-TC on the same block. We give a simple example of how these cross-
block interactions are exploited to produce efficient queries using query ”Q1” based
on the TPC-H data model that we utilize throughout the document. The TPC-H data
model is a retail model fully described in [16]. It consists of 8 tables with history over
8 years. We are presenting examples using mainly Ordertbl (primary key (PK)
=o_orderkey) containing the orders, Lineitem (PK=l_orderkey, l_linenumber)

598 A. Ghazal et al.

containing the line items associated to these orders and Customer (PK=c_custkey)
contains customers placing orders. The field names in these tables are self-describing.
By convention fields in Ordertbl are preceded by “o_” while fields in Lineitem are
preceded by “l_” and fields in Customer by “c_”. There is a FK-PK relationship be-
tween l_orderkey and o_orderkey and a FK-PK relationship between o_custkey and
c_custkey and some customers do not have orders.

Q1:SELECT DT.x, DT.y

 FROM (SELECT l_orderkey, l_shipdate, l_comment
 FROM Lineitem
 WHERE extract(month from l_shipdate) <= 6

 UNION ALL
 SELECT l_orderkey, l_shipdate, l_comment
 FROM Lineitem

 WHERE EXTRACT(MONTH FROM l_shipdate) >= 7
) DT(x,y,z), Ordertbl O

 WHERE y = ‘1995-12-24’ AND O.o_orderkey=DT.x;

During the first re-write, projection pushing into the derived table DT removes the
field z. Also, predicate y = ‘1995-12-24’ can be pushed into each UNION ALL branch.
Pushing in y = ‘1995-12-24’ then triggers SAT-TC to be applied on each UNION ALL
branch. Applying SAT-TC on each UNION ALL branch finds the first branch unsat-
isfiable since l_shipdate = ‘1995-12-24’ AND extract(month from l_shipdate) <= 6 is
FALSE for all values of l_shipdate. This triggers UNION ALL branch elimination,
which removes unsatisfiable UNION ALL branches, to remove the first branch. Now,
since only one block remains in the sub-query, view (derived table) folding rewrite
becomes possible. The application of this rule will merge the inner block to the outer
block resulting in the following simplified query:

SELECT l_orderkey, l_shipdate FROM Lineitem, Ordertbl O WHERE
EXTRACT(MONTH FROM l_shipdate) >= 7 AND l_shipdate=’1995-12-24’ AND
l_orderkey = O.o_orderkey;

To perform the above kinds of re-writes, the query rewrite system needs to exploit

the order independence property of the rewrite rules and apply them in multiple itera-
tions. For instance, in the above example, even if we applied SAT-TC first followed
by Predicate Pushdown, the rewrite system should still be able to eventually achieve
the same effect as above. A rewrite system that applies the rules in some fixed order
will miss valid rewrites. In order to retain order independence of rewrite rules, a re-
write system needs a way to prevent those rewrite rules that remove predicates or
query blocks from restricting other rewrite rules. In this paper we resolve this problem
by adopting an approach that performs redundant predicate removal in a post-
processing phase.

Our query rewrite framework follows the typical iterative recognize-act inference
cycle approach [14] along with an inter-rule triggering scheme. However, the multi-
block nature of SQL queries presents the challenge of deciding how to effectively
perform the first iteration of rule application; from then on, the triggering mechanism
takes over. Specifically, given a set of n rewrite rules and another set of m eligible
query blocks, how to apply the n rules on the m query blocks? One design issue to be
addressed here is whether we apply all rules for each block or apply a rule on all

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 599

blocks. If we apply a rule on all blocks, how to determine whether a top-down, bot-
tom-up or arbitrary order is appropriate? To address these problems, we propose a
two-phased approach. In the first phase, we apply all rewrites on all blocks and then
capture (set) the three dimensional triggers for each block. Then, we iterate over the
triggered rewrites until we achieve the final rewritten query.

Contributions: In summary, this paper makes the following contributions:

(1) A detailed study of interactions involving a broad set of query rewrite rules
including predicate pushdown, outer-to-inner join conversion, join elimina-
tion, predicate satisfiability-and-transitive closure (SAT-TC) and set opera-
tion simplification.

(2) Present a query rewrite framework that is able to handle the multi-
dimensional triggering involved in multi-block queries while retaining the
order independence of rewrite rules. We also present a two-phased algorithm
for efficiently implementing a rewrite driver that is scalable enough for de-
ployment in a commercial database system.

The remainder of this paper is organized as follows: In section 2 we review previ-
ous work and highlight how our work relates to existing query rewrite frameworks.
In section 3 we give a brief description of the query rewrite rules included in our
framework. Section 4 presents the tree-dimensional triggering interactions among
query rewrite rules and section 5 describes our query rewrite driver that implements
algorithms to exploit the triggering interactions. Section 6 presents experimental re-
sults and we conclude in section 7.

2 Previous Work

Query rewrite based optimization (aka semantic optimization) has been studied since
the late 80's. The Starburst extensible database system [1] is one of the early efforts to
support query rewrite as a distinct phase of query optimization. The starburst paper
[1] presented a suite of rewrite rules focused on merging multi-block queries into a
single SELECT block, and also described a production rule engine for choosing and
executing these rules (i.e. pairs of condition and action). It also discussed the trigger-
ing interaction of these rules. A subsequent paper [2] presented the design and
implementation of starburst's rule engine for query rewrite optimization. This rule
engine grouped rules into rule classes and introduced a variety of execution controls
ranging from totally data-driven to totally procedural. It also incorporated a budget
control scheme for controlling the resources taken for query optimization as well as
guaranteeing the termination of rule execution. In this paper we look at the triggering
interaction of a broader set of query rewrite rules than those presented in the starburst
papers. While our query rewrite engine is similar to that of starburst's in general, we
present a number of novel techniques that address the challenge of efficiently apply-
ing rewrite rules on large multi-block queries.

There have also been a number of extensible query optimization frameworks that
supported query rewrite rules [3,4,5,6,7,9]. Prominent among them are the Volcano
[3] and the Cascades [4] extensible architectures that evolved from Exodus [5]. In
these systems, rules are used universally to represent knowledge of the search space.

600 A. Ghazal et al.

Two kinds of rules are used, namely transformation rules that map an algebraic ex-
pression into another and implementation rules that map an algebraic expression into
an operator tree. Unlike the starburst framework, the Volcano/Cascades frameworks
(a) do not use two distinct optimization phases because all transformations are alge-
braic and cost-based, (b) the mapping from algebraic to physical operators occurs in a
single step, and (c) instead of applying rules in a forward chaining fashion (Star-
burst's), they use goal-driven application of rules.

In [15], the query rewrite technique called “predicate move-around” is presented as
a generalization of the classical predicate pushdown technique. The predicate move-
around technique pushes predicates down, up and sideways in the query graph which
makes it particularly helpful for queries which can not be rewritten into single block
queries. Predicate move-around is also one of the query rewrites we cover but we
focus on how it interacts with other query rewrite techniques. In [8] a method called
Chase and Back-chase that exploits the systematic interaction of various query rewrite
techniques to achieve better optimization is described. An example of such a useful
interaction is when the presence of certain integrity constraints enables the use of
indexes and materialized views in rewriting a query. The paper focuses on the use of
indexes and materialized views, semantic optimization and join elimination (minimi-
zation). The interactions explored in [8] are complementary to those presented here.

In [12], a cost-based query transformation framework is described. It also presents
a suite of heuristic and cost-based query optimization techniques. Some of the particu-
lar query rewrites rules discussed in [12] overlap with ours. However, [12] does not
address the interactions among these rewrites and how these interactions can be
exploited to efficiently apply the rewrite rules. Also [13] presented a variety of trans-
formations to un-nest sub-queries in order to get a single SELECT query block. How-
ever, this paper does not use a rule based rewrite engine.

In our previous work, we have addressed the problems of optimizing multi-block
queries [10] and outer join elimination [11]. These approaches presented in these
papers correspond to particular re-write rules discussed in the current paper. Unlike
these papers, we present a more generic framework here.

3 Individual Rewrite Rules

This section provides a high level description of each of the rule-based rewrites. We
believe that these query rewrites are found in most commercial relational database
systems in one form or another. We also do not claim here that the set of rewrite rules
below is exhaustive but still it represents the most important rewrite rules. Also, in
what follows, we use the term view as a generic reference to views, derived tables and
WITH definitions.

• Projection Pushdown (PP) – This rewrite removes unreferenced col-

umns/expressions from the SELECT lists of views. For example, this rewrite
was applied to Q1 in section 1 where the z field was removed from the de-
rived table DT.

• Outer-to-Inner Join Conversion (O2I) – This rewrite converts left/right outer
joins into inner joins when it is guaranteed that all unmatching rows from the

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 601

inner table are filtered out by another predicate (i.e. the WHERE clause or an-
other containing ON clause). For example, the left outer join in “SELECT *
FROM Lineitem L LEFT OUTER JOIN Ordertbl O ON L.l_orderkey =

O.o_orderkey WHERE O.o_orderstatus = ‘F’” can be converted to an inner
join since the WHERE clause eliminates all unmatching rows. Similar logic
can be used to convert full outer joins to left, right outer joins or inner joins.

• View Folding (VF) – This rule transforms a query by folding (merging) views
with the main query. The resulting query no longer references the folded
view. For example, the derived table DT was folded within Q1 in section 1.

• Predicate Move-around (PM) – This transformation moves predicates around
views or subqueries. Pushing DT.y = ‘1995-12-24’ into DT in Q1 is an ex-
ample of this rewrite.

• SAT-TC (SATisfiability-Transitive Closure) – This rewrite rule checks
whether a set of predicates are mathematically unsatisfiable (yield empty an-
swer set). In Q1, l_shipdate = ‘1995-12-24’ AND EXTRACT(MONTH FROM
l_shipdate) <= 6 is an example of such a situation. Also, for predicates that
cannot be proven to be unsatisfiable, transitive closure is applied to derive
new predicates. For example, “l_orderkey = 1” is the transitive closure of
“l_orderkey=o_orderkey and o_orderkey = 1”.

• Set Operation Branch Elimination (SOBE) – If a set operation has a branch
with an unsatisfiable condition, the query can be rewritten without the branch.
Removing the first branch of the UNION ALL in Q1 is an example of that.

• Join Elimination (JE) – Redundant joins can be eliminated from queries and
this helps the overall performance of those queries. An inner join is redundant
if the join is based on equality between a primary key and foreign key. Simi-
larly, outer joins based on equality on unique fields from the inner table are
redundant. In both cases the join can be removed along with either the parent
table in the inner join case or the inner table in the outer join case. In both
cases, the table to be removed should not have any projections that can not be
mapped to other tables. An example of inner join elimination is shown below
in Q2 and Q3. Assuming that o_orderkey = l_orderkey is a PK-FK relation-
ship (based on referential integrity), the join between lineitem and ordertbl in
Q2: “SELECT o_orderkey FROM Lineitem, Ordertbl WHERE l_orderkey =
o_orderkey” can be removed resulting in query Q3: “SELECT l_orderkey
FROM Lineitem WHERE l_orderkey IS NOT NULL”.

4 Interactions among Rewrites

As stated previously, a rewrite can trigger other rewrites as illustrated by the example
in section 1. Section 5 will show how the QRW driver takes advantage of the trigger-
ing mechanism to apply the rewrites efficiently and completely. In this section we
discuss the triggering relationships among rewrites and illustrate them with some
simple examples. The trigger information is captured in Table 1 below. In this table,
the three dimensions of triggering relationships are represented as (a blank in the table
stands for “no trigger”):

602 A. Ghazal et al.

• Self, i.e. the rewrite in the row can trigger the rewrite in the column on the
same block.

• Parent, i.e. the rewrite in the row can trigger the rewrite in the column on the
parent block.

• Child, i.e. the rewrite in the row can trigger the rewrite in the column on all
children blocks.

Table 1. Triggers Table

 PP O2I VF PM SAT-TC JE SOBE
PP SELF SELF
O2I SELF SELF SELF
VF PARENT PARENT PARENT PARENT
PM SELF CHILD/

PARENT
SELF

SAT-
TC

 CHILD/
PARENT

 PARENT

JE SELF
SOBE SELF

The following subsections explain, with some examples, the above interactions.

4.1 Projection Pushdown

Removing columns from a view may allow that view to be folded. For example, if a
view with some window functions is joined to another table, it cannot be folded.
However, if the window functions are not referenced, they can be removed. In Q4
below the derived table DT can not be folded since it has a window function which
needs to be applied before the restriction in the main query. Q4: “SELECT Y FROM
(SELECT SUM(l_quantity) OVER (ORDER BY l_orderkey), l_orderkey FROM

Lineitem) DT(x,y) WHERE y < 1000”. Pushing the main query projection into DT
produces Q5: ”SELECT y FROM (SELECT l_orderkey FROM Lineitem) DT(y) WHERE
y < 1000”. DT can be folded in Q5 producing Q6: ”SELECT l_orderkey FROM
Lineitem WHERE l_orderkey < 1000”.

To see how Projection Pushdown can affect Join Elimination, consider a view with
an FK-PK join that has columns from the dimension table in the SELECT list of the
view. If these columns are not referenced and are removed from the view, the join to
the dimension table can possibly be eliminated. Q7: “SELECT x FROM (SELECT

l_orderkey, o_orderdate FROM Lineitem, Ordertbl WHERE l_orderKey=

o_orderkey) DT(x,y)” is an example where DT contains a PK-FK join but has pro-
jections on the Ordertbl parent table which prevents eliminating the join. Pushing the
projections into DT produce query Q8 : “SELECT x FROM (SELECT L_orderkey FROM
Lineitem, Ordertbl WHERE l_orderkey= o_orderkey) DT(x)”. The join in DT can
now be removed from Q8 since Ordertbl has no projections other than the PK fields
which results in the query Q9: “SELECT X FROM (SELECT l_orderkey FROM

Lineitem) DT(x)”.

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 603

4.2 Outer to Inner Join Conversion

O2I may allow a view to be folded since there are several semantic restrictions on
folding views that either contains outer joins or are involved in outer joins. For exam-
ple, DT in Q10 cannot be folded since it is involved in a full outer join and its
WHERE clause needs to be evaluated before the join. Q10: “SELECT * FROM Cus-
tomer FULL OUTER JOIN (SELECT o_custkey FROM Ordertbl WHERE
o_orderstatus = ‘F’) DT(x) ON c_custkey = DT.x WHERE DT.x BETWEEN 1

AND 100”. The full outer join in Q10 can be converted to a right outer join since the
predicate on DT.X filters out all NULL value of DT. This conversion produces Q11:
“SELECT * FROM Customer RIGHT OUTER JOIN (SELECT o_orderkey FROM Or-
dertbl WHERE o_orderstatus = ‘F’) DT(x) ON c_custkey = DT.x WHERE DT.x

BETWEEN 1 AND 100”. DT in Q11 can now be folded since its WHERE clause can be
combined with the main query WHERE clause. The final query is Q12: “SELECT
Customer.*, o_orderkey FROM Customer RIGHT OUTER JOIN Ordertbl ON
c_custkey = o_custkey WHERE o_orderstatus = ‘F’ AND o_orderkey BETWEEN 1

AND 100”.
Teradata applies SAT-TC to each ON clause individually and selectively applies

SAT-TC across the WHERE clause and ON clauses or between different ON clauses.
The details of this logic are beyond the scope of this paper but we can assert that there
are more opportunities for SAT-TC with inner joins than outer joins. Therefore, O2I
triggers SAT-TC. For example, SAT-TC cannot be applied on the combination of the
WHERE and ON clauses in Q13: “SELECT * FROM Lineitem LEFT OUTER JOIN
Ordertbl ON l_orderkey = o_orderkey WHERE o_orderkey = 1”. The outer join in
Q13 can be converted to inner since the condition on o_orderkey filters out all un-
matching rows. Applying O2I on Q13 produces Q14: ” SELECT * FROM Lineitem,
Ordertbl WHERE l_orderkey = o_orderkey AND o_orderkey = 1”. Applying SAT-
TC on Q14 derives l_orderkey = 1 and the final query Q15: ” SELECT * FROM
Lineitem, Ordertbl WHERE l_orderkey = o_orderkey AND o_orderkey = 1 AND

l_orderkey = 1”.
Finally, O2I can enable inner join elimination. For example, if o_orderkey =

l_orderkey is a PK-FK relationship then the join in Q14 or Q15 can be eliminated

4.3 View Folding

Folding a view containing an outer join into a block that has a join between the view
and another table can lead to the view’s outer join being converted to an inner join.
For example, consider Q16: “SELECT Lineord.* FROM (SELECT * FROM Lineitem
LEFT OUTER JOIN Ordertbl ON L_orderkey = O_orderkey) Lineord INNER JOIN

Customer C ON Lineord.o_custkey = C.c_custkey”. Lineord can be folded into
the query producing Q17: “SELECT Lineitem.*, Ordertbl.* FROM Lineitem LEFT
OUTER JOIN Ordertbl ON L_orderkey = O_orderkey INNER JOIN Customer C ON

o_custkey = c_custkey”. The outer join between Lineitem and Ordertbl can be
converted to an inner since o_custkey = c_custkey filters out all un-matching rows of
Ordertbl.

Folding a view combines the view’s ON/WHERE clause with the containing
block’s ON/WHERE clause so additional opportunities to apply SAT-TC may be-
come available. Q18: “SELECT * FROM (SELECT * FROM Lineitem, Ordertbl

604 A. Ghazal et al.

WHERE l_orderkey = o_orderkey) Lineord WHERE Lineord.l_orderkey = 1”.
Lineord can be folded simplifying Q18 to Q19: “SELECT * FROM Lineitem, Or-
dertbl WHERE l_orderkey = o_orderkey AND l_orderkey = 1”. Now, it is obvi-
ous that o_orderkey=1 can be derived in Q19.

View Folding can trigger Join Elimination. For example, Ordertbl is a child table
of Customer based on c_custkey = o_custkey. If Q16 is modified to have no projec-
tions on the Customer table then the join with Customer can be eliminated resulting in
Q20: ”SELECT * FROM Lineitem, Ordertbl WHERE l_orderkey = o_orderkey and
o_custkey IS NOT NULL”.

Folding a view with an unsatisfiable condition into a block that is a branch of a set
operation allows Set Operation Branch Elimination to remove this branch. To illus-
trate this concept consider Q21: “SELECT * FROM (SELECT * FROM Lineitem WHERE
EXTRACT(MONTH FROM l_shipdate) <= 6) DT1 UNION ALL (SELECT * FROM
(SELECT * FROM Lineitem WHERE EXTRACT(MONYH FROM l_shipdate) >= 7 AND

l_shipdate = ‘2008-02-02’) DT2)”
The derived table DT2 has a contradiction and when it is folded SOBE can be ap-

plied producing Q22: “SELECT * FROM Lineitem WHERE EXTRACT(MONTH FROM

l_shipdate) <= 6”.

Note that all these triggers are applied on the PARENT block since after view folding
the view block is merged to its parent.

4.4 Predicate Move-Around

Moving predicates around, like pushing them into a view may allow outer joins in the
view to be converted to inner joins. For example, consider the query Q23: “SELECT *
FROM Customer, (SELECT COUNT(*), o_orderkey, o_custkey FROM Lineitem

LEFT OUTER JOIN Ordertbl ON l_orderkey = o_orderkey GROUP BY o_orderkey,

o_custkey) DT(x,y,z) WHERE x = 1”. The condition x = 1 can be pushed into DT
which in turn can change the outer join in DT into an inner join. Applying both re-
writes produces the query Q24: “SELECT * FROM Customer, (SELECT COUNT(*),
o_orderkey, o_custkey FROM Lineitem , Ordertbl WHERE l_orderkey =

o_orderkey AND o_orderkey = 1 GROUP BY o_orderkey, o_custkey) DT(x,y,z)”
Introducing new predicates into a view via predicate move-around may also allow

SAT-TC to find contradictions or derive new predicates. For example, pushing
“o_orderkey =1” in the previous example allows the derivation of “l_orderkey = 1”.
In addition, these new predicates can be pushed into child blocks or pulled to the
parent block.

4.5 SAT-TC

TC-derived predicates may be pushed into child blocks like views or subqueries.
They could also be pulled up for the parent block. Unsatisfiable conditions found by
SAT in a set operation branch would allow the branch to be removed like query Q1
in section 1.

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 605

4.6 Join Elimination

Eliminating an outer join may allow more derivation of predicates and therefore trig-
ger SAT-TC. To see this, consider the join sequence (Lineitem L1 INNER
JOIN OrderTbl ON l_orderkey = o_orderkey) LEFT JOIN Cus-
tomer ON O1.o_custkey = c_custkey INNER JOIN Linetem L2
on L1.l_orderkey = L2.l_orderkey. If c_custkey is a unique column, the
left outer join can be eliminated. The remaining two inner joins can then be combined
and the condition “O1.o_orderkye = L2.l_orderkey” can be derived.

4.7 Set Operations Branch Elimination

If removing branches of a set operation results in a single remaining SELECT or
UNION ALL in a view, it may be possible to fold the view. This is illustrated by the
simplified query of Q1 in section 1.

5 The Rewrite Driver

The objective of the QRW driver is to maximize the benefit of rewrites without
spending too much time doing that. The maximum benefit of the rewrites is accom-
plished by applying them as much as possible. Without the triggering knowledge, the
QRW driver could incur a significant overhead that overshadows the benefits of the
rewrites. We use the algorithm NoTriggersRewrite to illustrate the potentially large
cost of a QRW driver. Before we proceed, it is important to distinguish between fired
and applied rewrites. We say a rewrite rule is fired/attempted on a query block when
the rule’s conditions are checked on a given query block. A fired rule may or may not
succeed. We say a rewrite is applied on a query block when it resulted in a re-written
query block. The NoTriggersRewrite algorithm, shown below, basically keeps firing
all rewrites indiscriminately until no more rewrites are possible.

Procedure NoTriggersRewrite(Q)

• Q is the input query. It is also the output after applying rewrites to it.
• Assume that there are n rewrites R1, R2, …, Rn. We also assume that Q has

m blocks B1, B2, …, Bm
Begin

While (TRUE) do
Begin
 Applied = FALSE
 For i=1 to n do
 For j=1 to m do
 Fire Ri on Bj. If successful then apply Ri on Bj and set Applied = TRUE.
 If (NOT Applied) return
End

End

606 A. Ghazal et al.

Every time a rewrite is fired at any block, Procedure NoTriggersRewrite tries all
rewrites on all blocks of the query. This is the case since applying a rewrite can make
the same rewrite or other rewrites become applicable to the same block or other
blocks. For example, deriving a condition at a given block B1 enables applying push-
ing predicates to all children blocks of B1. The main loop of NoTriggersRewrite
could go on for quite some time. This happens, for instance, when a sequence of
predicate derivation takes place in a block which enables pushing a condition to all
children of that block. Pushing these conditions in turn enables SAT-TC and this
sequence could continue for the depth of the nested blocks.

The QRW driver can be implemented more efficiently using the triggers informa-
tion presented in section 4. The basic idea is that instead of firing all rewrite rules for
each applied rule, we only fire those rules that have interaction with the applied re-
write. In order to implement this idea, we introduce a third state for rules, called en-
abled, in addition to fired and applied. We say a rule is enabled on a block when a
previously applied rewrite makes it eligible to be fired on the block. Below, we give
the TriggersRewrite which is based on rule interactions:

Procedure TriggersRewrite(Q)
• Let Q and the rewrite array be the same as NoTriggersRewrite.
• T is an n by n array that represents the triggers table in section 4.
• E is a boolean m by n array used to mark which rewrite is enabled on which

block. For example, if E[i,j] is TRUE then Ri isto be fired on Bj. Initially all
entries are set to TRUE (i.e. all rewrites to be fired on all blocks).

Begin
While (at least one entry in E is TRUE) do
Begin
 For i=1 to n do
 For j=1 to m do
 If E[i,j]
 Begin
 Set E[i,j] = FALSE;
 FireRi on Bj. If successful then
 Begin
 Apply Ri on Bj
 For k=1 to n

if T[i,k] is SELF, set E[k,j] to TRUE
else if T[i,k] is PARENT, set E[k,l] to TRUE where Bl is the parent
of Bj
else if T[i,k] is CHILD, set E[k,l1],E[k,l2]…,E[k,lq] to TRUE where
Bl1, Bl2, .., Blq are the child blocks of Bj;

 End
 End
End

End

To simplify the discussion, we assume that the rewrites are ordered based on
Table 1. Algorithm TriggersRewrite terminates when no more rewrites can be applied

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 607

just like NoTriggersRewrite. Since all entries in E[i,j] are initialized to TRUE, Trig-
gersRewrite fires all rewrites on all blocks during the first iteration. After that only
rewrites enabled on the relevant blocks are fired.

For very complex queries, the cost of the TriggersRewrite algorithm may be too
high thereby increasing the overall query optimization time to unacceptable level. To
avoid this situation, some control on the resource consumption of the rewrite engine is
necessary. Presently, we adopt a simple approach that uses a pre-specified cap on
resource consumption including amount of time taken and/or number of rewrite itera-
tion performed.

Finally, we remark that both NoTriggersRewrite and TriggersRewrite are guaran-
teed to eventually terminate. Although we do not provide a complete proof due to
space limitation, termination can be shown by observing that cyclic triggering interac-
tion can occur only in a particularly restricted scenario which eventually lead to a
finite rewrite path. As shown in [17], if there are no cycles in the triggering interac-
tion graph of a given set of rules, the rules are guaranteed to terminate. In our algo-
rithms the cycles lead to finite rewrite path in the graph due to two reasons: (1) each
rewrite performs a monotonic update and hence at some point it runs out of a rewrite
which prevents it from triggering any other rewrite, and (2) no redundant predicates
are derived by a rewrite rule and hence one rewrite rule can not undo the result of
another.

6 Experiments

The goal of our experimental study was to evaluate the efficiency of the QRW sub-
system by comparing the resource consumption of TriggersRewrite with NoTriggers-
Rewrite. We performed the experiments on a 100GB TPC-H database on a 2-node
dual-core machine with 36 disks (73GB @15K RPM) attached. We adapted 30 real-
life queries to the TPC-H data model representing a mix of queries with aggregates,
views and derived tables. We ran the driver in both TriggersRewrite and NoTriggers-
Rewrite versions, as presented in section 5. In all cases, the plans obtained by the two
methods were identical. Also in all cases, the amount of system resources utilized by
TriggersRewrite was lower than or identical to those utilized by NoTriggersRewrite.
The detailed results associated from these experiments are shown in Table 2.

Table 2. Resource Consumption by TriggersRewrite vs. NoTriggersRewrite

Driver Version

QRW
parsing
time (µs)

Total
optimizer
time (µs)

QRW mem-
ory utilized
(Kbytes)

TriggersRewrite 5,777 27,803 472

NoTriggersRewrite 18,968 41,529 1,413

As shown in Table 2, we measured the average amount of rewrite parsing time, i.e.
the amount of time the parser spent in the rewrite part of the query optimization proc-
ess, expressed in microseconds, the average total optimizer time (also expressed in
microseconds) and the average amount of memory utilized by the rewrite code

608 A. Ghazal et al.

(expressed in Kilobytes). Overall, NoTriggersRewrite consumed more than 3 times
more resources than TriggersRewrite. In addition, in four of the queries involving a
large number of blocks, NoTriggersRewrite required prohibitively large parsing time
and amount of memory. In order to avoid bias in the analysis, we excluded these que-
ries from consideration when analyzing the results.

The total optimizer time for the two driver versions has been shown in column two
of Table 2. We have shown both the QRW parsing time and the total optimizer time
which includes QRW parsing time but for memory we have shown only the total
memory used. This is because the optimizer reuses memory previously utilized by the
QRW parsing process. For the 26 queries included in the analysis, the TriggersRe-
write algorithm is overall more efficient in the sense that it produces the same execu-
tion plan at a lower cost than NoTriggersRewrite. Specifically, the total optimizer
time is, on the average, 50% lower for TriggersRewrite than NoTriggersRewrite.
Such a reduction is particularly important for applications like active data warehous-
ing (ADW) where the DBMS has to simultaneously execute a very large number of
short-running queries and for such queries optimization time (including query re-
writes) is a significant portion of the total execution time.

7 Conclusions and Future Work

We presented the interaction among a set of important query rewrite rules and showed
how this interaction knowledge is used to devise a triggering mechanism in the Tera-
data QRW driver in order to efficiently attempt the rewrites on the complex, multi-
block queries. We also demonstrated through experiments on a real dataset that the
triggering scheme actually reduces the resources consumed by the QRW driver.

There are a number of avenues to pursue in future work. First is to explore adding
cost-based rewrites to the suite of the current rule based rewrites. Cost considerations
are particularly important when multiple rewrites are possible on a query or to decide
whether to further rewrite a query or not. Another issue is developing a more dynamic
ordering of rewrite rules since certain orders of rewrites are more efficient than oth-
ers. Yet another issue coming up with a more intelligent way to dynamically control
the resource consumption of the QRW sub-system. A promising approach to this end
is using a measure of the overall complexity of the query to estimate the expected
resource consumption of the rewrite process in order to dynamically set the resource
consumption control. For example, one can use the estimated overall runtime of the
query (i.e. computed before query rewrites are applied) and set the control on the
query rewrite resource consumption as some fraction of this overall time. Typically,
queries that are expected to take a long time to run (sometimes called “strategic que-
ries” in Teradata parlance) may be allowed more resource for query rewrite phase as
the potential gains from exhaustive rewrites can be large. In contrast, queries that are
expected to run fast can be allocated smaller query rewrite resource since the cost-
benefit ratio of query rewrites is potentially small. In addition to setting it dynami-
cally, we also can provide knobs for database administrators to set the optimal ratio
appropriate for the particular query workload of their particular databases.

 Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS 609

References

[1] Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/rule Based Query Rewrite Optimi-
zation in Starburst. SIGMOD, 39–48 (1992)

[2] Pirahesh, H., Cliff Leung, T.Y., Hasan, W.: A Rule Engine for Query Transformation in
Starburst and IBM DB2 C/S DBMS. In: ICDE, pp. 391–400 (1997)

[3] Graefe, G., McKenna, W.J.: The Volcano Optimizer Generator: Extensibility and Effi-
cient Search. In: ICDE, pp. 209–218 (1993)

[4] Graefe, G.: The Cascade Framework for Query Optimization. IEEE Data Engineering
Bulletin 18(3), 19–29 (1995)

[5] Graefe, G., Dewitt, D.J.: The Exodus Optimizer Generator. SIGMOD, 160–172 (1987)
[6] Cherniack, M., Zdonik, S.: Changing the Rules: Transformations for Rule-based Optimiz-

ers. SIGMOD, 61–72 (1998)
[7] Warshaw, L.B., Miranker, D.P.: Rule-based Query Optimization, Revisited. In: CIKM,

pp. 267–275 (1999)
[8] Popa, L., Deutsch, A., Sahuguet, A., Tannen, V.: A Chase Too Far? In: SIGMOD, pp.

273–284 (2000)
[9] Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries Across Diverse

Data Sources. In: VLDB, pp. 276–285 (1997)
[10] Ghazal, A., Bhashyam, R., Crolotte, A.: Block Optimization in the Teradata RDBMS. In:

Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp.
782–791. Springer, Heidelberg (2003)

[11] Ghazal, A., Crolotte, A., Bhashyam, R.: Dynamic Constraints Derivation and Mainte-
nance in the Teradata RDBMS. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P.
(eds.) DEXA 2001. LNCS, vol. 2113, pp. 390–399. Springer, Heidelberg (2001)

[12] Ahmed, R., Lee, A., Witkowski, A.: Cost-Based Query Transformation in Oracle. In:
VLDB, pp. 1026–1036 (2007)

[13] Elhemali, M., Galindo-Legaria, C.A., Grabs, T., Joshi, M.M.: Execution Strategies for
SQL Subqueries. In: SIGMOD, pp. 993–1003 (2007)

[14] Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems in OPS5:
An Introduction to Rule-based Programming. Addison-Wesley, Reading (1985)

[15] Levy, A.Y., Mumick, I., Sagiv, Y.: Query Optimization by Predicate Move-around. In:
VLDB, pp. 96–108 (1994)

[16] TPC-H specification – Transaction Performance Council, http://www.tpc.org
[17] Aiken, A., Widon, J., Hellerstein, J.M.: Behavior of Database Production Rules: Termina-

tion, Confluence, and Observable Determinism. In: SIGMOD, pp. 59–68 (1992)

Optimal Preference Elicitation for

Skyline Queries over Categorical Domains

Jongwuk Lee1, Gae-won You1, Seung-won Hwang1,
Joachim Selke2, and Wolf-Tilo Balke2

1 Department of Computer Science and Engineering, POSTECH, Korea
2 L3S Research Center, Leibniz Universität Hannover, Germany

{julee,gwyou,swhwang}@postech.edu
{selke,balke}@L3S.de

Abstract. When issuing user-specific queries, users often have a vaguely
defined information need. Skyline queries identify the most “interesting”
objects for users’ incomplete preferences, which provides users with intu-
itive query formulation mechanism. However, the applicability of this
intuitive query paradigm suffers from a severe drawback. Incomplete
preferences on domain values can often lead to impractical skyline re-
sult sizes. In particular, this challenge is more critical over categorical
domains. This paper addresses this challenge by developing an iterative
elicitation framework. While user preferences are collected at each iter-
ation, the framework aims to both minimize user interaction and max-
imize skyline reduction. The framework allows to identify a reasonably
small and focused skyline set, while keeping the query formulation still
intuitive for users. All that is needed is answering a few well-chosen ques-
tions. We perform extensive experiments to validate the benefits of our
strategy and prove that a few questions are enough to acquire a desired
manageable skyline set.

1 Introduction

The information need of users in today’s databases and information systems has
evolved from SQL-style exact match queries to answering vague queries. To ad-
dress this need, new query paradigms like top-k retrieval or skyline queries have
been recently studied. These paradigms assess the grades of match in all data-
base objects with respect to a given query, and only identify the best matching
results.

More specifically, the strengths of two paradigms are complementary. Top-k
retrieval returns only the best k objects based on a user-specific utility function
combining scores with respect to all queried attributes. While top-k queries al-
ways provide a focused and manageable set, it is difficult for end-users to define
an exact utility function for their individual preferences. In contrast, skyline
queries do not require users to define a utility function, and simply identify “in-
teresting” objects that are not “dominated” by any other objects. While this
intuitive query formulation has been a key strength of skyline queries, it is im-
possible for users to control the size of skyline. In particular, when the number of

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 610–624, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 611

Table 1. Toy dataset for Example 1

ID type color brand

o1 convertible red Ferrari

o2 sedan red Ferrari

o3 convertible blue Ferrari

o4 sedan blue Toyota

o5 roadster blue Honda

queried attributes increases, the size of skyline also increases exponentially, i.e.,
curse of dimensionality. This challenge is especially more critical over categorical
domains.

This paper deals with skyline queries over categorical domains in which the
challenge of skyline queries is more critical. Although both paradigms have been
mostly applied for numerical domains in the previous literatures (e.g., minimiz-
ing price or distance), these can also be used for categorical domains as well (e.g.,
maximizing a preference on favorite color or brand). To illustrate, Example 1
describes how skyline queries work in categorical domains.

Example 1. Consider a customer shopping for an ideal car with respect to three
attributes type, color and brand. Suppose that a user gives specific preferences
that he/she prefers ‘convertible’ to ‘sedan’ for type, ‘red’ to ‘blue’ for color, and
‘Ferrari’ to ‘Honda’ for brand. Based on these preferences, we identify car o1 as
one of the best choices, i.e., a skyline object, from the toy dataset in Table 1.
This means o1 is superior to o2 and o3 in all dimensions, i.e., o1 dominates o2

and o3. However, the user preferences are not sufficient to determine a preference
between o1 and o4, or o1 and o5, i.e., o1 is incomparable with o4 or o5.

As Example 1 illustrates, in practical scenarios, the amount of preference in-
formation available to query processing is usually limited, because specifying all
relationships requires considerable effort for the user. Missing relationships are
thus interpreted as indifference, or equal importance for the user. As a result,
skyline query results will typically include all the incomparable objects, due to
incomplete user preferences.

This paper studies the problem of eliciting preferences enough to acquire
a concise skyline result set. In particular, we use the cardinality of different
domain values with respect to the database instance (and a priori knowledge on
user preferences, if exists). This makes users elicit more useful preferences with
minimal user efforts. Ideally, such an elicitation process achieves both minimizing
user interaction and maximizing skyline reduction. We thus aim at developing
and evaluating an optimal elicitation process. In summary, this paper has the
following contributions:

– We study preference elicitation in numerical and categorical domains and
design an optimal elicitation strategy (Section 2)

612 J. Lee et al.

– We develop Framework MaxPrune to identify skylines with reasonable size
by implementing our optimal elicitation strategy. (Section 3)

– We validate effectiveness and efficiency of Framework MaxPrune. (Section 4)

This paper is organized as follows. Section 2 presents preliminaries on qualita-
tive preference and elicitation model over categorical domains. Section 3 proposes
a framework adopting optimal elicitation method in the given problem setting,
and Section 4 validates Framework MaxPrune. Section 5 briefly reviews existing
efforts related to our work. Finally, Section 6 discusses our future work.

2 Preliminaries

This section states preliminaries to help understand our framework. Let D be
a data space with finite n attributes {D1, D2, . . . , Dn}, where Di denotes a
set of possible domain values on ith attribute. Specifically, let D be possible
alternatives, i.e., D := D1 × D2 × . . . × Dn, and A be actual alternatives as
a subset of D, i.e., A ⊆ D. An alternative a = (a1, . . . , an) is contained in a
product set A := A1 × A2 × . . . × An. A weak order is denoted as . on the set
of alternatives A, by setting a . b if and only if a is equal to or more preferred
than b. The asymmetric part and symmetric part of weak order, denoted as �
and ∼, correspond to strict order and indifference, respectively.

2.1 Qualitative Preferences

We first discuss strengthes and weaknesses of qualitative preferences. Specifically,
given alternatives a and b, it clearly requires much less cognitive effort to tell
which one among a � b, b � a, and a ∼ b holds. This ignores any numerical
values and solely considers an induced weak order. However, for large D and A,
it seems hopeless to ask the user about his/her preferences in a qualitative way,
since there are

(|D|
2

)
pairs to be compared. An exception is a numerical attribute

domains with an inherent order based on which users can express preference
straightforwardly, e.g., ascending order of “price”.

For practical aspects, we introduce ceteris paribus semantics which provides an
intuitive meaning [24,13]. For instance, saying “red �color blue” means “The user
prefers red cars to blue ones, if everything else is equal”. Since this is exactly the
meaning of just saying “red cars are better than blue ones”, stating preferences in
terms of attribute value comparisons is highly intuitive. Based on ceteris paribus
semantics, preference monotonicity between alternatives can be constructed over
multi-attribute domains. This construction rule exploits Pareto aggregation, a
relational operator that maps a sequence of weak orders into a binary relation
on a set. Specifically, let W1, . . . , Wk be weak orders on set S := S1 × . . . × Sk.
The operator of Pareto aggregation, denoted as Par, is defined as follows: For
a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ S, it is (a, b) ∈ Par(W1, . . . , Wk) if and only
if aiWibi is true, for any 1 ≤ i ≤ k. It is easy to show that Par(W1, . . . , Wk) is
derived from weak orders on S.

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 613

Returning to the problem of reconstructing a total order . on A from attribute
orders .1, . . . ,.n, it is known that Par(.1, . . . ,.n) is the best reconstruction
of .. We have the following reasons: First, Par(.1, . . . ,.n) is always a subset
of .. Second, for any superset of Par(.1, . . . ,.n), there exists a utility function
inducting weak orders .1, . . . ,.n. We thus will base our model on .1, . . . ,.n

and Par(.1, . . . ,.n). For the sake of representation, we simplify Par(.1, . . . ,.n)
into .Par. Also, The symmetric part and asymmetric part of .Par correspond
to �Par and ∼Par, respectively.

The final questions to be answered are then: What are the “best” alternatives?
What alternatives should be returned by the database system when the attribute
orders .i are known? To answer these questions, we adopt skyline queries lever-
aging Pareto aggregation, and define the “best” actual alternatives to be exactly
those that are not strictly dominated in A with respect to Par(.1, . . . ,.n). More
formally, we define dominance and skyline, respectively. (These definitions are
consistent with the definition of skyline used in all the existing skyline work.)

Definition 1. An alternative a ∈ A strictly dominates an alternative b ∈ A if
and only if ai .i bi, for any index i, and there is an index j such that aj �j bj.

Definition 2. An alternative a ∈ A is a skyline object if and only if there is no
alternative b ∈ A that strictly dominates a.

2.2 Preference Elicitation

The term preference elicitation refers to the task of collecting information about
the user’s preferences. In the existing skyline work, it is usually assumed that
.1, . . . ,.n are complete total orders for preference elicitation. However, this
assumption is unrealistic over categorical domains.

We first discuss how to model preference elicitation for collecting more “in-
formative” user preferences. In particular, we model preference elicitation as an
iterative process in which the user answers which one among a �i b, b �i a, and
a ∼i b holds, where a, b ∈ Di. User preferences are consistently collected for t

iterations, which is essentially binary relations .(t)
1 , . . . ,.(t)

n , where index t ∈ N
refers to the time index of elicitation iteration. As preference elicitation accu-
mulates monotonically, preference knowledge also accumulates in any elicitation
step, i.e., for any i and t, the relation .(t+1)

i is a superset of .(t)
i . Since we know

that the “true” orders .i are reflexive and transitive, an elicited order .(t)
i also

must have these properties. We formally state an elicitation step at time t. (For
simplicity, we denote the existing derived notations as follows: �(t)

i , ∼(t)
i , .(t)

Par,
�(t)

Par, and ∼(t)
Par.)

Definition 3. Given weak orders .(t)
1 , . . . ,.(t)

n , an elicitation step from time t
to time t + 1 is the following procedure:

(1) Choose attribute values a, b ∈ Di on ith attribute, where neither a .(t)
i b nor

b .(t)
i a is true.

(2) Ask the user which one among a �i b, b �i a, and a ∼i b is true.

614 J. Lee et al.

(3) If a �i b is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�

(a, b)
�
.

If b �i a is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�

(b, a)
�
.

If a ∼i b is true, define �(t+1)
i to be the transitive closure of �(t)

i ∪
�

(a, b), (b, a)
�
.

The elicitation process starts at time t = 0 with weak orders .(0)
i , which can

contain initial information on user’s preferences. That is, it can contain domain-
specific preferences shared by all users, or personalized preference information
based on a user profile.

2.3 Optimal Elicitation Method

The hardest part of preference elicitation is asking the user the right questions.
Some questions may result in a large decrease of skyline size when stepping from
SKY

(
A,.(t)

Par

)
to SKY

(
A,.(t+1)

Par

)
, while other questions might not. For example,

we know nothing about the user’s preferences, but we know A to contain roughly
as many blue cars as red cars. It thus would be a reasonable strategy to ask the
first question about the preference relationship between attribute values “red”
and “blue”. If the user is not indifferent between both, the answer to this question
can be expected to result in a large decrease of skyline size (assuming a good-
natured data distribution in A). Based on this property, we formally state an
elicitation method as follows:

Definition 4. An elicitation method E is a deterministic algorithm that takes
initial attribute weak orders .(0)

1 , . . . ,.(0)
n as input and performs a sequence of

elicitation steps until time t is reached with .(t)
1 , . . . ,.(t)

n being weak orders.

Clearly, the optimality of elicitation method depends on the distribution of ac-
tual alternatives A and prior knowledge of typical user preferences. To represent
these notions, we introduce the following notations: Let Wi be the set of all
possible weak orders on Di. Also, let W := W1 × · · ·×Wn, and let Q be a prob-
ability distribution on W , where Q = (Q1, . . . , Qn) denotes a random variable
having distribution Q. We use distribution Q to model prior knowledge of user
preferences. (We will later discuss different elicitation decisions based on the
distribution Q in details.) Up to now, we assumed both the elicitation method
E and the user’s preferences w ∈ W used for answering the elicitation questions
to be fixed. To allow more precision in further definitions, we extend notations
by making these assumptions explicit. We thus denotes notation .(t)

Par at time t

as .(t)
E,w,Par

Our goal finds a minimal sequence of questions with the smallest number t for∣∣∣SKY
(
A,.E,w,Par

)∣∣∣ ≤ k by stepsE,w(k), where k means user-specific retrieval
size. This setting is similar to that of top-k retrieval except for two major differ-
ences: First, while a result set in top-k retrieval is assumed to contain the “best”
k objects, in our setting a set of all the optimal objects (of size at most k) is
required to be returned. Second, in top-k retrieval the user has to be proactive
and state her/his preferences in advance. In our case, the active part is played by
an internal framework. We formally state the optimality of elicitation method.

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 615

Definition 5. Denote the class of all elicitation methods that take an additional
N-valued input argument by C. For any E ∈ C, write E(k) to denote the behavior
of E when given input k. An elicitation method E ∈ C is optimal (with respect
to D, A, and Q) if and only if

E
(

stepsE(k),Q(k)
)

≤ E
(

stepsF (k),Q(k)
)

holds, for k ∈ N, ∀F ∈ C, and the number of questions E(·).

The idea underlying this definition is that an optimal elicitation method should
ask questions in a way such that the number of expected questions needed to
reach the target skyline size is as small as possible. Note that the definition of
optimality is relative to D, A, and Q. In practice, we are looking for a general
optimal algorithm that work well regardless of the choice of D, A, and Q. This
corresponds to a greedy algorithmic approach, where in any elicitation step, the
most desirable question leading to the best possible reduction in skyline size will
be chosen. Without loss of generality, the next definition presents a step-optimal
elicitation method, which also guarantees global optimality. (We will discuss this
property in Section 3.)

Definition 6. A greedy elicitation method E is called step-optimal (with respect
to D, A, and Q) if and only if, when given attribute preorders .(t)

1 , . . . ,.(t)
n for

input, the algorithm E maximizes the term

∣∣∣SKY
(
A,.(t)

Par

)∣∣∣− E
(∣∣∣SKY

(
A,.(t+1)

F,Q′,Par

)∣∣∣
)

over all greedy elicitation methods F (given the same input), with Q′ =
(Q′

1, . . . , Q
′
n) as a random variable that is distributed according to Q conditioned

on the fact that Q′
i is a superset of .(t)

i , for any i.

3 Optimal Elicitation Framework

In this section, we implement an optimal elicitation framework (discussed in
Section 2.3) in a restricted problem setting. In particular, our framework aims
at maximizing expected pruning cardinality (Definition 5) at each elicitation step,
based on which the greedy elicitation strategy has global optimality.

3.1 Problem Setting

At each iteration, our framework shows a sample pair1 (a, b) such that a, b ∈ Di,
and prune out objects that are never qualified as skyline objects. This means,
when a user selects a over b , every object o with non-preferred attribute value
1 Note the sample corresponds to a question on some pair a and b, asking which among

a � b, b � a, or a ∼ b holds.

616 J. Lee et al.

b can be pruned, if there exists another object o′ having the same values as o
in all dimensions except for o′(Di) = a. We formally state this pruning process
as follows. (Due to the space limitation, we leave all the proofs to our technical
report [20].)

Lemma 1 (Pruning Process). For user preference a .i b on a, b ∈ Di, we
safely prune out object o such that o(Di) = b, if there exists object o′ such that
o′(Di) = a and ∀j(1 ≤ j ≤ n, j = i) : o(Dj) = o′(Dj).

Note that, we assume that there always exists such dominating object o′, which
simplifies the pruning process. We argue that this assumption is often true in
real-life data, as highly preferred values often have high frequency as well (as
Zipf’s law similarly observed, i.e., the frequency of any word is roughly inversely
proportional to its rank in the number of frequency). This observation implies
that a dominating (or highly preferred/ranking) object o′ is highly likely to exist
as in our assumption.

3.2 Framework MaxPrune

We first derive a sample (a, b) maximizing pruning cardinality PC(·) at the tth

step. Specifically, pruning cardinality PC(·) means the number of pruned objects
by Lemma 1. Let si denote a sample at the ith step. Note that PC(·) is conditional
for prior elicitation– For a set of skyline objects after an elicitation of the tth

step, denoted as SKY(A,.(t)
st,w,Par), PC(st) of sample st = (a, b) depends on prior

samples, s1, . . . , st−1. In particular, when a user answers his/her preference on
st, w = a .(t)

i b, we remove objects with value b from a set of current skyline
objects SKY(A,.(t−1)

Par). PC(st, w| SKY(A,.(t−1)
Par)) is thus denoted as

∣∣∣SKY
(
A,.(t−1)

Par

)∣∣∣− ∣∣∣SKY
(
A,.(t)

st,w,Par

)∣∣∣.
Observe that PC(st, w| SKY(A,.(t−1)

Par)) is maximized when the number of ob-
jects in SKY(A,.(t−1)

Par) with less preferred attribute value is maximal. We for-
mally state this property as follows:

Lemma 2 (Maximizing Pruning Cardinality). For user preference w =
a .(t)

i b of st = (a, b) on a, b ∈ Di, PC(st, w| SKY(A,.(t−1)
Par)) is maximized,

when the number of objects with less preferred value b is maximal.

Based on Lemma 2, we discuss how to decide a sample maximizing pruning
cardinality. In fact, since pruning cardinality depends on user preference w, we
develop a probabilistic framework with the following two scenarios, with and
without a-priori knowledge based on distribution Q for user preference.

– Without a-priori knowledge on Q: With no a-priori knowledge, we as-
sume that a probability that each value in a sample pair is selected is equal
chances, i.e., 1

2 . That is, this probability implies that the user equally prefers

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 617

either one among the two values. Distribution Q for user preferences thus
follows uniform distribution on W . For instance, when showing a sample
(‘Ferrari’, ‘Honda’) for ‘brand ’, we assume that a user prefers each value
with 1

2 probability.
– With a-priori knowledge on Q: On the other hand, we may have a-priori

knowledge on user preferences, e.g., such as query frequency from prior query
logs. Based on this we can model user preferences more realistically. The
distribution Q for user preferences shows different distributions according to
W . For instance, when a relative preference probability between ‘Ferrari’ and
‘Honda’ is pf and ph respectively, the probability of choosing ‘Ferrari’ over
‘Honda’ can be computed as pf/(pf + ph), while that of choosing ‘Honda’ is
ph/(pf + ph)2.

For ease of understanding, we first develop our framework assuming no a-
priori knowledge, which is later extended to consider also a-priori knowledge.
In particular, we develop the notion of expected pruning cardinality based on
the probabilistic assumption that the selected probability of the two values is
equivalent.

Theorem 1 (Expected Pruning Cardinality). Assuming no a priori knowl-
edge, expected pruning cardinality EPC(st| SKY(A,.(t−1)

Par)) is maximized, when
presenting sample st = (a, b) in which the number of objects with value a and b

in SKY(A,.(t−1)
Par) is maximal.

Theorem 1 can be straightforwardly extended to consider the case of a-priori
knowledge. Let the relative preferences of a and b in st = (a, b) be pa and pb,
respectively. In that case, expected pruning cardinality EPC(st| SKY(A,.(t−1)

Par))
is maximized, when choosing sample st = (a, b) which maximizes pb × ca and
pa × cb in which ca and cb is the cardinality of objects with value a and b in
SKY(A,.(t−1)

Par).
Based on Theorem 1, we derive the global optimality of greedy elicitation at

each step. Specifically, when choosing a sample with the highest expected pruning
cardinality at each step, global pruning cardinality also guarantees optimality.
To prove this property, we first show properties on the order of samples selected
from each step in Lemma 3 and Lemma 4. Based on these properties, we can
show that global pruning optimality in Theorem 2 can be derived from selecting
maximal expected pruning cardinality at each step.

Lemma 3 (Exchange of adjacent samples). Given a sequence of samples
S = (s1, ..., st), changing the order of an arbitrary pair of adjacent samples has
no effect on the sum of the expected pruning cardinality.

Lemma 4 (Ordering Independence). Changing the order of a given se-
quence of samples S = (s1, ..., st) has no effect on the sum of the expected pruning
cardinality.
2 Assume that this relative preference is independent regardless of other relative

preferences.

618 J. Lee et al.

Table 2. Illustration of MaxPrune

type card. color card. brand card.

convertible 40 red 60 Ferrari 35

sedan 30 blue 40 Honda 35

roadster 20 - - Toyota 30

sports car 10 - - - -

Theorem 2 (Global Pruning Optimality). Choosing si (1 ≤ i ≤ t) maxi-
mizing expected pruning cardinality at each iteration leads to optimal sampling
S = {s1, ..., st}, which maximizes overall expected pruning cardinality SUM(S) =∣∣∣SKY

(
A,.(0)

Par

)∣∣∣−
∣∣∣SKY

(
A,.(t)

Par

)∣∣∣.
We now develop our framework based on Theorem 2. We name our framework
as MaxPrune, where overall expected pruning cardinality is maximized by iden-
tifying an optimal sample at each steep. We briefly describe how Framework
MaxPrune works. As an initial state, all current skyline objects are initialized
as the entire set of data instances. Framework MaxPrune then follows the fol-
lowing three steps– First, it selects a sample with the highest expected pruning
cardinality from all current skyline objects. Second, it collects a user preference
with respect to the given sample, based on which it prunes all dominated ob-
jects having a non-preferred value from the current skyline. Lastly, it updates
the cardinalities in each dimension. The processes are repeated until the number
of skyline objects is reduced to at most k.

To illustrate, we describe how Framework MaxPrune works over our example
dataset in Table 2. First, we consider samples with the highest expected pruning
cardinality, e.g., ‘convertible’ and ‘sedan’ for type, ‘red’ and ‘blue’ for color, and
‘Ferrari’ and ‘Honda’ for brand. Among these, we decide to obtain a preference
elicitation on ‘red’ and ‘blue’ first, since its expected pruning cardinality (The-
orem 1) is the highest, e.g., 1

2 (60 + 40). Once the elicitation result is obtained,
for instance ‘red’ �brand ‘blue’, for each object with ‘red’, we can prune out ob-
jects with ‘blue’ sharing the same remaining attribute values. For the remaining
objects, we then update the cardinality of attribute values for each attribute.
Framework MaxPrune continues this iterative process until the size of skylines
is reduced to k or less. We formally state Framework MaxPrune as follows:

1. Initialize SKY(A,.(0)
Par) as the entire data set.

2. Select the most effective sample as a pair of values with the highest expected
pruning cardinality (Theorem 1).

3. Elicit preference information on the sample, and according to the user pref-
erence, prune out “dominated” objects from current skylines. (Lemma 1)

4. Update the cardinality of attribute values for each attributes.

5. Repeat step 2, 3, and 4 until | SKY(A,.(t)
Par)| ≤ k.

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 619

Table 3. Parameters for Experimental Setup

Parameter Value : Default

Database Size N 100K
Dimensionality n [3,7] : 4
Number of distinct values m [3,7] : 4
Retrieval Size k(%) [1,20] : 5
Skewness of Data z [0,2] : 1
Skewness of Query Frequency z′ [0,2] : 1
Kendall τ distance d [0,1] : 0.5

4 Experimental Evaluation

This section validates the effectiveness and efficiency of frameworks MaxPrune
and MaxPruneQF 3 using various synthetic datasets. Our experiments were car-
ried out on a Intel(R) Xeon(TM) machine with 3.20 GHz dual processors and
1GB RAM running LINUX. Our algorithms were implemented in C++ language.

4.1 Data and Preference Generation

For the purpose of extensive evaluations, we generate synthetic datasets by vary-
ing experiment settings, including the data size N , the number of distinct attribute
values m, and the user-specified retrieval size k% (of N), as described in Table 3.
Especially, we randomly generate m distinct attribute values and query frequency
for each dimension, according to Zipfian and Uniform distributions, varying the
skewness from z = 0 (uniform) to z = 2. Note that we generate datasets to fol-
low the assumption described in Section 3.1, i.e., there exists at least one object
for every attribute value combination. Specifically, we first populate one object for
every alternative, and then generate N objects according to Zipfian distribution.

We then generate user preferences and interactions to compare our frameworks
MaxPrune and MaxPruneQF with and without a priori knowledge, e.g., query fre-
quency Q. In particular, we randomly generate query frequency for each dimension
based on Zipfian distribution with the skewness z′ = [0, 2]. We then follow user
interactions on Q, to prefer values in the descending order of query frequency for
each dimension. Note, if this descending order of query frequency coincides with the
descending order of cardinality, i.e., when two orders are perfectly correlated, the
behavior of MaxPrune and MaxPruneQF will be identical. We thus observe their be-
havior over the varying correlations. In particular, we adopt the Kendall τ distance
d = 1

n

∑n
1 Ki(Wi,Oi) [15], a widely-adopted metrics to quantify the correlation

between two orderings Wi and Oi. Ki(Wi,Oi) is defined as follows:

Ki(Wi,Oi) =

∑
(p,q) |Wi(p) > Wi(q) ∧ Oi(p) < Oi(q)|

m(m − 1)/2

3 Framework MaxPruneQF extends MaxPrune to use prior knowledge, i.e., realistic
distribution of user preferences, as discussed in Section 3.

620 J. Lee et al.

0 5 10 15 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

k (%)

R
at

io

MaxPrune

MaxPruneQF

3 4 5 6 7

0.6

0.7

0.8

0.9

1.0

m

R
at

io

MaxPrune

MaxPruneQF

3 4 5 6 7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

n

R
at

io

MaxPrune

MaxPruneQF

(a) over k(%) (b) over m (c) over n

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1.0

d

R
at

io

MaxPrune

MaxPruneQF

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1.0

z

R
at

io

MaxPrune

MaxPruneQF

0 0.5 1 1.5 2

0.7

0.75

0.8

0.85

0.9

0.95

1.0

z’

R
at

io

MaxPrune

MaxPruneQF

(d) over d (e) over z (f) over z′

Fig. 1. Number of iterations over varying parameters

where (p, q) denotes a possible pair of values and Wi(p) and Oi(p) represent each
position in the respective ordering.

4.2 Experimental Results

In this section, we report our experiment results validating the pruning effec-
tiveness and efficiency of our proposed frameworks. Table 3 describes experiment
settings used. In particular, we adopt the following performance metrics:

– Effectiveness: We use the number of iterations until we identify the k best
results, averaged over 100 runs. We report relative performance against that
of Framework Random which randomly selects a sample to present.

– Efficiency: We measure the runtime performance of our framework at each
iteration, compared with that of Framework Random.

Pruning Effectiveness: Figure 1 reports the effectiveness of our frameworks
over varying parameters. Note, the y−axis represents the relative number of
iterations of our proposed frameworks, compared to that of Random.

Ratio =
iterations with our framework

iterations with Random
.

First, Figure 1(a) reports our results over varying retrieval size k%. Observe
that, Framework MaxPrune and MaxPruneQF , by minimizing user interactions,
significantly outperforms Framework Random– For instance, when k = 20%,
Framework MaxPrune saves 28% and 38% from Framework Random and Frame-
work MaxPruneQF respectively. Our frameworks similarly dominate the baseline

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 621

2 4 6 8 10 12
10

0

10
1

10
2

10
3

interaction

R
es

po
ns

e
T

im
e

(μ
s)

Random
MaxPrune
MaxPruneQF

5 10 15 20 25 30
10

1

10
2

10
3

10
4

10
5

10
6

10
7

interaction

R
es

po
ns

e
T

im
e

(μ
s)

Random
MaxPrune
MaxPruneQF

(a) over m = 4, n = 4 (b) over m = 6, n = 6

Fig. 2. Number of remaining skyline tuples

approach over m and n, which can be observed in Figure 1(b) and (c) respec-
tively. Also, observe that our frameworks scale more gracefully compared to
Random. That is, the performance gaps increase as m and n increase– For in-
stance, when m = 7 in Figure 1(b), MaxPrune and MaxPruneQF save about 27%
and 32% from Random respectively, while they save 10% and 18% when m = 3.
Similarly, when n = 7 in Figure 1(c), this saving reaches up to 32% and 41%
respectively.

Second, Figure 1(d) validates the effectiveness over varying correlation distance
(quantified as a Kendall τ distance d discussed above). As already analyzed above,
MaxPrune and MaxPruneQF behave identically when d = 1, which can be ob-
served from Figure 1(d). As d increases, the performance gap increases, which
reaches up to 55% when d = 0.5. Third, Figure 1(e) and (f) validate the effective-
ness with respect to the skewness of datasets and query frequency, respectively.
Observe from the figures that, the relative effectiveness of our proposed frame-
works increase as the skewness increases, especially for MaxPruneQF . For instance,
when z = 2 and z′ = 2 Framework MaxPruneQF saves 43% and 32% from that of
Random, respectively. In summary, we validate that our framework significantly
outperforms Random in datasets with high cardinality and dimensionality, espe-
cially in the presence of high skewness in both data and query frequency.

Runtime Performance: Figure 2(a) validates the efficiency of our frameworks
by reporting an average response time for each iteration over the default setting
(Table 3). Note that y-axis is log-scaled. As the figure reports, the response time
of our frameworks is comparable to Random at all iterations, which is impressive
considering Random blindly picks a random sample. Further, our framework
starts to outperform Random, as the number of remaining skyline objects rapidly
decreases over the iterations. For instance, after the 4th iteration, our framework
begins to deal with a much smaller sample pool and outperforms Random from
this point on. Similarly, Figure 2 reports results for extended parameters with
m = 6 and n = 6.

622 J. Lee et al.

5 Related Work

We summarize related work on skyline computation and the representation of
user preferences.

Skyline computation: Skyline queries have been first studied as maximal vec-
tors in [19]. Later, Börzsönyi at el. [5] introduced skylines queries in database ap-
plications. Next, Tan et al. [23] proposed progressive skyline computation using
auxiliary structures. Kossmann et al. [18] improves (D&C) algorithm, and pro-
posed nearest neighbor (NN) algorithm. Similarly, Papadias et al. [22] developed
branch and bound skyline (BBS) algorithm which achieves I/O optimal prop-
erty. Meanwhile Chomicki et al. [10] developed sort-filter-skyline (SFS) algorithm
leveraging pre-sorting lists, and Godfrey et al. [12] proposed linear elimination-
sort for skyline (LESS) algorithm with attractive average-case asymptotic com-
plexity. Recently, there have been active research efforts to address “curse of
dimensionality” problem of skyline queries [6,7,21] using inherent properties of
skylines such as skyline frequency, k-dominant skylines, and k-representative sky-
lines. All these efforts, however, focused only on numerical domains with inherent
orders, and did not consider skyline queries over categorical domains.

Preference foundation: For representing a variety of user preferences, Kießling
[16,17] proposed a framework using binary preference relations. Similarly,
Chomicki [9,10] developed a preference model, which consists of a basic pref-
erence winnow operator and its combinators. These preference models refer that
qualitative models are more “intuitive” than quantitative models [11,14], which
is consistent with our view. Meanwhile, Balke et al. [3,4,1,2] studied how to use
incomplete preference information for skyline queries: In particular, [3,4] studied
how to identify skylines over user-specified partial orders. More recently, [1] ex-
tended the notion of equivalence to include the inter-attribute equivalence, and
[2] discussed a sophisticated user interface in the cooperative process of identi-
fying partial orders. Meanwhile, Chen and Pu [8] summarizes methods eliciting
user preferences. However, this framework does not address how to collect and
leverage user-specific preferences. Our work helps users to elicit the most infor-
mative partial information on their preferences.

6 Future Work

We plan to extend our work in several ways. First, we can extend our framework
into general environment combining numerical and categorical domains. Our
technical report [20] discusses this extension in more details. Second, we want
to develop new pruning heuristics that are less restricted than the one used in
MaxPrune yet computationally feasible, to support sparse data sets. Lastly, we
plan to explore how elicitation methods can make use of more complicated a-
priori knowledge on the preference distribution (e.g., dependencies in probability
between attributes or attribute values).

Optimal Preference Elicitation for Skyline Queries over Categorical Domains 623

Acknowledgments

This research has been partially supported by the Korean Research Foundation
Granted funded by the Korean Government (MOEHRD, Basic Promotion Fund;
KRF-2007-331-D00377) and the German Research Foundation (DFG) within the
Emmy Noether Programme.

References

1. Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting matters– controlling skyline sizes by
incremental integration of user preferences. In: Kotagiri, R., Radha Krishna, P.,
Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
551–562. Springer, Heidelberg (2007)

2. Balke, W.-T., Güntzer, U., Lofi, C.: User interaction support for incremental re-
finement of preference-based queries. In: RCIS (2007)

3. Balke, W.-T., Güntzer, U., Siberski, W.: Exploiting indifference for customization
of partial order skylines. In: IDEAS (2006)

4. Balke, W.-T., Güntzer, U., Siberski, W.: Getting prime cuts from skylines over
partially ordered domains. In: BTW (2007)

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
6. Chan, C.-Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional

skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

7. Chan, C.-Y., Jagadish, H., Tan, K.-L., Tung, A.K., Zhang, Z.: Finding k-dominant
skyline in high dimensional space. In: SIGMOD (2006)

8. Chen, L., Pu, P.: Survey of preference elicitation methods. In: EPFL Technical
Report (2004)

9. Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.G.,
Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, Springer, Heidelberg (2002)

10. Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE
(2003)

11. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, Chichester (1976)
12. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets.

In: VLDB (2005)
13. Hansson, S.O.: What is ceteris paribus preference? Journal of Philosophical

Logic 25(3), 307–332 (1996)
14. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Preferences and Value

Tradeoffs. Wiley, Chichester (1976)
15. Kendall, M.: A new measure of rank correlation. In: Biometrica (1938)
16. Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–

322 (2002)
17. Kießling, W., Köstler, G.: Preference SQL- design, implementation, experience. In:

VLDB, pp. 311–322 (2002)
18. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm

for skyline queries. In: VLDB (2002)
19. Kung, H.T., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors.

Journal of the Association for Computing Machinery (1975)

624 J. Lee et al.

20. Lee, J., You, G., Hwang, S., Selke, J., Balke, W.-T.: Optimal preference elicitation
for skyline queries over categorical domains. POSTECH Technoical Report (2008),
http://ids.postech.ac.kr/∼parfum/skyline.pdf

21. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative
skyline operator. In: ICDE (2007)

22. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progessive algorithm for
skyline queries. In: SIGMOD (2003)

23. Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB
(2001)

24. von Wright, G.H.: The Logic of Preference. An Essay. Edinburgh University Press
(1963)

http://ids.postech.ac.kr/~parfum/skyline.pdf

Categorized Sliding Window in Streaming Data

Management Systems

Marios Papas1, Josep-L. Larriba-Pey2, and Pedro Trancoso1,�

1 Department of Computer Science
University of Cyprus, Nicosia, Cyprus

{cs03pm3,pedro}@cs.ucy.ac.cy
2 DAMA-UPC and Department of Computer Architecture

Universitat Politècnica de Catalunya, Barcelona, Spain
larri@ac.upc.edu

Abstract. For many applications, data is collected at very large rates
from various sources. Applications that produce results from this data
have a requirement for very efficient processing in order to achieve timely
decisions. An example of such a demanding applications is one that takes
decisions on stock acquisition based on the price updates that happen
constantly while the market is open for transactions. Our proposed tech-
nique is a simple yet effective way to reduce the access time to the stream-
ing data.

In this paper we propose an efficient indexing technique that improves
the access time to data elements in sliding windows of streamed database
systems. This technique, called Categorized Sliding Window, is based on
splitting the data into categories and using bit vectors to avoid accesses
to non-relevant data.

Our experimental results show large improvements compared with
simpler techniques. For the standard Linear Road benchmark we observe
a performance improvement of 3.3x for a complex continuous query. Also
relevant is the fact that 90% of the performance improvement is achieved
with only 65% of the maximum number of categories, which represents
a memory overhead of only 13.5%.

1 Introduction

The increasing capability of efficiently collecting and transferring large amounts
of data has triggered a new set of applications that are able to process informa-
tion in real-time and produce results to support decision making. The amount
of data that usually flows per unit of time is so large that storing it for future
analysis is in many cases out of the question. As such, the processing needs to be
performed as the elements of the data stream arrive. As the processing can not
be done over all incoming data, it is instead performed over a window of data
that changes over time, the sliding window. Due to the time constraints imposed
� Pedro Trancoso is member of the HiPEAC Network of Excellence (EU FP7 program).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 625–634, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

626 M. Papas, J.-L. Larriba-Pey, and P. Trancoso

by this online real-time operation, traditional database management systems are
not able to handle the queries on the streamed data. As such, new Streaming
Database Management Systems have been proposed [2,7]. Nevertheless, the ac-
cess to the data elements of the stream in such systems is still a challenge [9,13].
In some cases, the systems analyze only part of the data [8]. In other cases,
potential query results (e.g. statistical metrics such as max, min, avg, etc.) are
updated as data is added to the window statistics [11]. Finally, there is some
work on implementing indexing techniques for sliding windows [12].

In this paper we propose a new indexing technique for the incoming streamed
data, the Categorized Sliding Window (CSW). This technique uses multiple bit
vectors as an efficient way to index the streaming data, which is stored in a
sliding window. Each bit vector represents a category of data, hence the name of
the technique. A category could be a range of values for a certain attribute field
of the streaming data. The bit vectors have as many bits as there are elements
in the sliding window. If the Nth bit has value “1” in the bit vector of category
“A”, then the corresponding Nth element in the sliding window belongs to that
same category “A”. Figure 1 depicts an example of the CSW structures.

Category A [0..99]

1692212941411852

0

0

0

0

0

0

0

0

0

0

0

0 1 1

11

11

Data

Sliding Window

Index (Bit Maps)

Category C [200..299]

Category B [100..199]

Fig. 1. Categorized Sliding Window Structures

To validate the proposed structure, an implementation of the Categorized Slid-
ing Window is presented. This implementation is evaluated on a real system us-
ing both synthetic data and data from the standard Linear Road benchmark [6].
The queries tested are also part of the same benchmark. The results show that
while the memory overhead of the proposed structure is only around 20% for
100 categories, the performance improvement, compared to the sequential scan
baseline case, can be up to 3.3x for the Linear Road benchmark queries. Also
relevant is the fact that 90% of the performance improvement is achieved with
only 65% of the maximum number of categories. This performance benefit is
achieved with a memory overhead of only 13.5%.

This paper is organized as follows. The Categorized Sliding Window tech-
nique is presented in Section 2, the experimental setup and results are shown in
Sections 3 and 4, respectively. The relevant related work is presented in Section 5
while the conclusions for this work are discussed in Section 6.

Categorized Sliding Window in Streaming Data Management Systems 627

2 Categorized Sliding Window

Given that the data in the sliding window changes frequently, traditional in-
dexing techniques used in DBMS are not applicable. Therefore, searching data
is usually done by performing a simple sequential scan over all the elements in
the sliding window. We call this technique the Baseline Sliding Window (BSW).
Each element of the window is a pointer to the element of the data structure
holding the complete information, i.e. all the data fields of the incoming data.
Elements are added to the window as they arrive from the input stream and
are removed from the window as their “lifetime” expires. This happens when
either the list has reached its maximum number of pre-determined elements or
the element has stayed in the list for more time than what had been pre-defined.

The contribution of this work is to provide a mechanism that reduces the
processing time by accessing the data in a faster way. To achieve this goal we
propose an indexing capability that is efficiently updated even with streaming
data. Newly incoming data do not trigger time consuming updates to the index
structure as opposed to traditional indexing techniques, which need to be rebuilt
whenever the data changes.

With the proposed technique, the incoming data is logically divided into dif-
ferent categories. Therefore, we call the proposed approach Categorized Sliding
Window (CSW). Categories may be defined, for example, as ranges of values of a
certain attribute. For each of these categories, there is a bit vector with as many
bits as there are elements in the sliding window. Therefore, there is a one-to-one
relation between the bits in the bit vector of each category and the elements in
the sliding window. This bit vector is used to index the data. The result is that
whenever a query is performed, if the query is looking for a particular data that
is found on a certain category, the search is limited to the elements belonging to
that category. This technique helps in accessing the relevant data to the query
in a faster way. It is important to note that a “1” in the bit vector does not
necessarily represent an entry for the data being looked for. This is due to the
fact that the bit vector represents all the values in the corresponding category.
Therefore, when looking for a certain value, the bit vector may have “1” values
that are actually representing other values of that same category. Such values
are called False Positives.

The maintenance of the bit vector results in a memory overhead. On the one
hand, a CSW with a single category is the structure with the smallest memory
overhead but conceptually performs the same as a BSW, with the difference that
the access through the bit vector results in a penalty compared to the simpler
access to the BSW structure. On the other hand, a CSW with as many categories
as distinct values in the categorized field, is the structure with the most efficient
accesses, i.e. with no false positive accesses, but is also the one with the largest
memory overhead due to all the bit vectors. An efficient CSW structure is one
with a configuration that achieves a good balance between the number of false
positives and the memory overhead.

The next paragraphs describe the implementation details for the main oper-
ations of CSW.

628 M. Papas, J.-L. Larriba-Pey, and P. Trancoso

Allocation. There are two basic structures required for the implementation of
CSW. First is a buffer that is allocated in order to hold all data elements of
the sliding window. This buffer is to be used as a circular buffer. In order to
support that feature, two counters are needed: one indicating the head of the
buffer (Start) and another one indicating the tail of the buffer (Finish). Second
is a table with N bit vectors, where N is the number of supported categories.
Each supported category has a corresponding logical Category Bucket, i.e. a bit
vector. Each Category Bucket can be mapped into chunks that we call blocks.
Each block has the size of the processor register, allowing for optimized bit-wise
operations.

Insertion. First we need to map the category identifier of the tuple that we are
inserting to a Category Bucket. We achieve this by applying a mapping function
to the category attribute of the incoming tuple. Then we need to find within the
bit vector of that Category Bucket, the block that contains the bit in position
Finish, that corresponds to entry in the buffer used to store the tuple. Notice
that the block, i.e. set of contiguous bits, is the granularity of the operations
performed on the bit vector. If the buffer is not completely full we insert the
new element in the buffer position pointer by the counter Finish and we advance
that counter to the next position. Finally, we update the bits of the block we
retrieved previously in order to have a “1” in the position corresponding to the
entry where the tuple was inserted in the buffer. If the buffer is full, then we
insert the tuple in the buffer position pointed by the Finish counter, we update
the bits of the block we retrieved, and we advance both the Start and Finish
counters by one position. The tuple that is being replaced can either be deleted or
stored somewhere else but the bit in the bit vector of the corresponding category
of the replaced tuple must be reset to “0”.

Retrieval. In order to retrieve a specific data element we first need to deter-
mine the category which the requested data belongs to. This is done using a
mapping function, which may be implemented as a hash function, that takes as
input the requested field value and returns the corresponding category. Then,
we search over the bit vector of the corresponding category and for every bit
set to “1”, we access the corresponding data element in the window. The search
on the bit vector is done in a blocked manner, i.e. bits are analyzed in blocks.
If a block of bits contains only “0” bits (simple check operation), then we will
immediately continue the search on to the next block. Otherwise, we will analyze
the different bits within the block in order to determine which bits are set to
“1”. The advantage of first applying the simple check operation is that there will
be enough categories so that data is spread across the different categories and
consequently the bit vector will be sparse, i.e. many blocks contain only “0”s.
Every time a “1” bit is found, the corresponding data element in the window
is checked to verify that it matches the requested field value and is not a false
positive.

Categorized Sliding Window in Streaming Data Management Systems 629

3 Experimental Setup

In order to test the proposed technique, a system containing all the structures
as discussed in the previous section was implemented. The system implements
both BSW and CSW techniques to store and query streaming data. The imple-
mentation was done in C++ and compiled using g++ with the -O3 optimization
flag option. For this work we used gcc version 4.1.1. The machine on which we
compiled and executed our implementation was a typical home desktop system
using an Intel Pentium 4 Processor 640 at 3.2GHz with 2MB L2 Cache and
800MHz Front Side Bus with Hyper Threading Technology. The main memory
size is 1GB and the hard drive is an 80GB SATA at 7200RPM. The operating
system used was Fedora Core 5.

The benchmark used to evaluate the proposed technique was the Linear Road
Benchmark [6]. The Linear Road benchmark was designed to stress Stream Data
Management Systems (SDMS). The benchmark models the data that can be
gathered from the traffic in expressways and the possible queries that may be
posed to this data. The benchmark defines four queries: Toll Notification, which
is a Continuous Query, and Account Balance, Daily Expenditures, and Travel
Time Estimation, which are Historical Queries.

For our experiments, we used as input data set 1 million Position Reports, i.e.
the basic data structure for the Toll Notification query. Each such structure is
composed of 15 fields, where each field was 4-Byte. The data populated in these
structures is of two types: Synthetic Data (SynD) and Simulated Data (SimD).
For the Synthetic Data, the data values were created in order to satisfy certain
specific criteria, such as the degree of selectivity (ratio between the number of
data elements that satisfy the query criteria and the total number of data ele-
ments). For the Simulated Data, the data values were created from Linear Road
Benchmark [6] specifications. In order to test our proposed technique, we cat-
egorized the data based on the position reports in the segment field (m iSeg),
which has 100 discrete values for each expressway. This field represents the seg-
ment of the expressway on which the vehicle emitted its position report. In our
implementation we only considered one simulated expressway.

For our experiments we used two types of queries. The Simple Query (SQ)
is defined as how many position reports were received from segment X of the
expressway 0 that are stored inside the sliding window scope. This represents
a subquery from a more complex Linear Road Benchmark query. The Complex
Query (CQ) represents the Toll Notification query of the Linear Road Bench-
mark. This query is triggered whenever a position report is received for which
the previous position report of the same car was located in a different segment.

4 Experimental Results

4.1 Memory Space

One important factor in evaluating the proposed technique is to determine its
memory overhead. In the case of BSW, the allocated memory depends on only

630 M. Papas, J.-L. Larriba-Pey, and P. Trancoso

two factors: the size of the data structure used to store the Tuple (Timestamp
and Category ID) and the Window Size, i.e. how many tuples we want to store
inside the window. In the case of CSW, the memory allocated depends on one
additional factor, the number of Category Buckets of the CSW.

Considering the size of a CSW entry to be 60-Byte, the size of a Position Re-
port, the allocated memory needed for CSW in comparison with BSW is 20.8%,
41.6%, and 62.5% more for 100, 200, and 300 Category Buckets, respectively.

4.2 Query Selectivity

From the characteristics of the CSW technique, we expect that as the selectivity
is reduced, the performance benefits of CSW against the existing BSW will
increase. To prove this point we have tested the simple query on synthetic data,
therefore controlling the selectivity values. The results of the speedup achieved
by CSW compared to BSW is shown in Figure 2.

0

5

10

15

20

25

30

35

97% 3% 0.3% 0%

Category Selectivity

S
pe

ed
up

 [B
S

W
/C

S
W

]

10K 100K 1M Window Size

Fig. 2. Speedup for different selectivities and window sizes

From Figure 2 we can observe that, as expected, as the selectivity decreases,
the speedup increases. This effect is more relevant as the data window size in-
creases, because the speedup observed for 100K and 1M data window sizes is
much larger than for the 10K data window size. While it is important to notice
that the speedup achieved is larger than 30% for the smallest selectivity, it is
also important to note that the speedup is always larger than one (the dotted
horizontal line on the chart) even for the larger selectivity values.

4.3 Window Size

Another interesting factor to consider in the analysis is the data window size that
is handled by the techniques. To achieve this goal we analyzed the performance

Categorized Sliding Window in Streaming Data Management Systems 631

of CSW and BSW for window sizes ranging from 10K to 100K elements. Also, we
considered different setups, the synthetic data and simple query (SynD-SQ) and
also the simulated data with both the simple (SimD-SQ) and complex (SimD-
CQ) queries. Although not depicted due to space limitations, the results show
that for every configuration and window size, the speedup is always larger than
one. It is also relevant to notice that although stable results can only be produced
with the synthetic data as the selectivity of the simulated data changes for
different window sizes and runs, the speedup achieved by the simple query is
much larger than the one achieved by the complex query. Also, the trend seems
to indicate that the speedup does not change much with the increase of the
window size although for the simulated data and simple query the speedup seems
to increase as the window size increases.

4.4 Number of False Positives

Another relevant factor is the number of false positives, i.e. “1” values in the bit
vectors that actually represent real values that do not belong to the value being
searched. To study the effect of false positives on the CSW we have tested this
technique with synthetic data that represents a range of selectivity values and
false positive rates. The results are depicted in Figure 3.

0%

20%

40%

60%

80%

100%

120%

10% 30% 50% 70% 90%

Category Selectivity

N
or

m
al

iz
ed

 Q
ue

ry
 R

es
po

ns
e

T
im

e
[n

-f
p/

0-
fp

]

0% 25% 50% 75% 100% False Positives

Fig. 3. Normalized query response time for different for selectivity and false positive
rates

In Figure 3 we can observe that for selectivity values larger than 30%, the
normalized response time is independent of the selectivity value. Also relevant is
the fact that the difference in the response time is at most approximately 30%
between a false positive rate of 100% (all entries are false positives) and one of
0% (no entries are false positives).

632 M. Papas, J.-L. Larriba-Pey, and P. Trancoso

4.5 Number of Categories

One of the most important questions that CSW is faced is how many category
buckets, or categories, are necessary in order to obtain good performance. The
tradeoff in this case is that the larger the number of buckets, the better the
performance should be. At the same time, the larger the number of buckets,
the larger the amount of memory consumed with the extra data structures. The
speedup achieved by CSW against BSW for different number of category buckets
is show in Figure 4. The experiments are performed for a data window size of
100K elements and we tested the complex query as described in Section 3.

0.5

1

1.5

2

2.5

3

3.5

1 10 20 30 40 50 60 70 80 90 100 110

Category Buckets

S
pe

ed
up

 [B
S

W
/C

S
W

]

90%

80%

70%

Fig. 4. Speedup for different for categories buckets

In Figure 4 we can first observe that other than the case for a single category
bucket, the speedup is always larger than one (lower horizontal dotted line). Also
important is the fact that, as expected, the larger the number of buckets, the
larger the speedup achieved. In this case, the speedup reaches 3.3x for more than
100 buckets, in a maximum of 100 distinct values for that specific category. In
addition to the line of speedup equal to one, we have drawn three more horizontal
dotted lines: 90%, 80%, and 70% of the maximum speedup. It is interesting to
notice that 90% of the maximum speedup is achieved for 65 category buckets,
which is only 65% of the maximum buckets. If we setle for 80% of the maximum
speedup, this is achieved for 40 category buckets or only 40% of the maximum
buckets. As such, the results show that it is possible to achieve a very high
speedup with a small memory overhead.

5 Related Work

The need to process large amounts of dynamically evolving data demands for
new systems and query languages. AQuery [15] is a query language based on

Categorized Sliding Window in Streaming Data Management Systems 633

the relational data model that can support order-oriented queries. Aurora [1] is
a database system that is able to process continuous streams of data as well as
combine historical with real-time data. Aurora provides the basic data-stream
processing functionality. Aurora has lead to Borealis [2,3], a distributed stream
processing engine. STREAM [5] is a data stream management system which
addresses the issue of data management and query processing in the presence
of multiple continuous and time-varying data streams. The query language sup-
ported by STREAM is known as CQL [4]. TelegraphCQ [10] is a relational-based
system that is able to process continuous streams of data and is the implemen-
tation of the Telegraph dataflow engine. Tribeca [16] is a system that applies a
compiled query to arbitrarily long streams of data. PIPES [14] is an infrastruc-
ture that supports the implementation of data stream management systems for
continuous data-driven query processing.

An important factor in the performance of stream query processing is the
ability to efficiently access the relevant data from the sliding window. It is pos-
sible to address this issue in various ways. One way is to keep updating certain
statistical values for each data element that is inserted into and deleted from
the window [11]. This way, a query on such a value may be answered without
accessing the data at all. This is very efficient but not general enough. Another
approach is to use only a sample of the data in order to determine the outcome
of the query [8]. While this approach is also efficient, the accuracy of the results
is not guaranteed. Some initial projects used traditional indexing structures on
the sliding window data elements. The problem with this approach is that up-
dating the index structures is a costly operation that, in the case of streaming
data, needs to be performed very often as the data elements in the window are
replaced constantly. To avoid this problem you may decide to update the indexes
only after n elements have been changed. Alternatively, Golab et al. [12] have
suggested to partition the sliding window and create an index per partition, as
opposed to a global index for all data. This way, the index that needs to be
built is only the one corresponding to the new partition, and only at the point
that there have arrived enough data to form a new partition. This method is
more efficient than the previous ones but still not enough for high rates of data.
The simplicity of the bit vector-based category approach allows it to perform
efficiently and scale well to high rates of streams of data.

6 Conclusions

In this paper we propose an efficient indexing technique that improves the ac-
cess time to data elements in sliding windows of streamed data, which we call
Categorized Sliding Window. This technique is based on splitting the data into
categories and using bit vectors to avoid accesses to non-relevant data. Exper-
imental results show large improvements compared with traditional techniques
in stream data management systems. For the standard Linear Road benchmark
we observe a performance improvement of 3.3x for a complex continuous query.

634 M. Papas, J.-L. Larriba-Pey, and P. Trancoso

Also relevant is the fact that 90% of the performance improvement is achieved
with only 65% of the maximum number of categories, i.e. a memory overhead
of 13.5%.

Acknowledgments

Josep-L. Larriba-Pey would like to thank Generalitat de Catalunya for its sup-
port through grant number GRE-00352 and Ministerio de Educación y Ciencia
of Spain for its support through grant TIN2006-15536-C02-02.

References

1. Abadi, D.J., et al.: Aurora: a New Model and Architecture for Data Stream Man-
agement. The VLDB Journal 12(2), 120–139 (2003)

2. Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: Proc.
of CIDR 2005 (2005)

3. Ahmad, Y., et al.: Distributed Operation in the Borealis Stream Processing Engine.
In: Proc. of SIGMOD 2005, pp. 882–884 (2005)

4. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic
Foundations and Query Execution. The VLDB Journal 15(2), 121–142 (2006)

5. Arasu, A., et al.: Stream: the stanford stream data manager (demonstration de-
scription). In: Proc. of SIGMOD 2003, pp. 665–665 (2003)

6. Arasu, A., et al.: Linear Road: A Stream Data Management Benchmark. In: Proc.
of VLDB 2004, pp. 480–491 (2004)

7. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing.
SIGMOD Record 29(2), 261–272 (2000)

8. Babcock, B., Datar, M., Motwani, R.: Sampling from a Moving Window Over
Streaming Data. In: Proc. of SODA 2002, pp. 633–634 (2002)

9. Babcock, B., et al.: Models and Issues in Data Stream Systems. In: Proc. of PODS
2002, pp. 1–16 (2002)

10. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In: Proc. of CIDR 2003 (2003)

11. Datar, M., et al.: Maintaining Stream Statistics over Sliding Windows. SIAM Jour-
nal of Computing 31(6), 1794–1813 (2002)

12. Golab, L., Garg, S., Ozsu, M.T.: On Indexing Sliding Windows over On-Line Data
Streams. In: Proc. of EDBT, pp. 712–729 (2004)

13. Golab, L., Ozsu, M.T.: Issues in Data Stream Management. SIGMOD Rec. 32(2),
5–14 (2003)

14. Krämer, J., Seeger, B.: PIPES: A Public Infrastructure for Processing and Explor-
ing Streams. In: Proc. of SIGMOD 2004, pp. 925–926 (2004)

15. Lerner, A., Shasha, D.: AQuery: Query Language for Ordered Data, Optimization
Techniques, and Experiments. In: Proc. of VLDB 2003, pp. 345–356 (2003)

16. Sullivan, M.: Tribeca: A Stream Database Manager for Network Traffic Analysis.
In: Proc. of VLDB 1996, p. 594 (1996)

Time to the Rescue - Supporting Temporal

Reasoning in the Rete Algorithm for Complex
Event Processing

Karen Walzer, Matthias Groch, and Tino Breddin

SAP Research CEC Dresden, Germany
karen.walzer@sap.com

Abstract. Complex event processing is an important technology with
possible application in supply chain management and business activity
monitoring. Its basis is the identification of event patterns within multi-
ple occurring events having logical, causal or temporal relationships.

The Rete algorithm is commonly used in rule-based systems to trigger
certain actions if a corresponding rule holds. The algorithm’s good perfor-
mance for a high number of rules makes it ideally suited for complex event
detection. However, the traditional Rete algorithm does not support ag-
gregation of values in time-based windows although this is a common re-
quirement in complex event processing for business applications.

We propose an extension of the Rete algorithm to support temporal
reasoning, namely the detection of time-based windows by adding a time-
enabled beta-node to restrict event detection to a certain time-frame.

1 Introduction

Complex event processing (CEP) is a technology to monitor and control infor-
mation systems driven by events. It is applied, for instance, in business process
or supply chain monitoring to detect complex events consisting of single events
with logical, temporal or causal relationships. Many designs have been proposed
for this purpose, for instance [1] uses a finite state automaton for event detection
and Li and Jacobsen [2] showed the efficiency of the Rete algorithm to match a
high number of rules and thus complex events.

Traditionally, the Rete algorithm [3] is used for production-based logical rea-
soning, matching a set of facts against a set of inference rules. A rule defines
a predicate and the action that should take place, if the predicate holds. This
corresponds to defining a complex event combining single events and execut-
ing an action such as the creation of a new event when the complex event is
detected. The algorithm’s linear complexity makes it capable of dealing with a
high number of complex event patterns.

Business applications often require the definition of complex events which
consider temporal relationships among single events. Then, time-based windows
are utilized to ensure that event detection takes place only for the time of an
events’ relevance. This is achieved by restricting processing to events matching

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 635–642, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

636 K. Walzer, M. Groch, and T. Breddin

a pre-defined time-frame, e.g. occurring within 1 hour or between 1 and 2 pm.
It is often desirable to aggregate events, for instance to calculate the average of
a certain event data item over time, such as a temperature sensor value. Time-
based windows allow for this event aggregation over a pre-defined time. However,
the traditional Rete algorithm does not support such temporal operators, but
is limited to operations such as unification and predicate extraction. A simple
matching using comparisons with timestamp attribute values is possible and
extensions to allow for detection of relative relationships have been suggested,
e.g. in [4,5]. However, sophisticated temporal operators such as sliding windows
were not regarded so far.

In this paper, we present an extension of the Rete algorithm to support tem-
poral reasoning using time-based windows and thus to enable complex event
processing. Our method to support temporal constraints in the Rete algorithm
significantly extends existing work [2,6] for the detection of event patterns using
time-based sliding windows. It uses an incremental window approach to contin-
uously update the current window and its aggregation values.

The remainder of this paper is organized as follows. We present an overview
of related work in Section 2. Then, we continue with a definition of terms and a
brief description the Rete algorithm in Section 3. Section 4 presents an overview
of our approach for time-based sliding windows in Rete and finally Section 5
concludes the paper.

2 Related Work

This section introduces related work in the area of temporal support for the Rete
algorithm.

The Padres [2] and the ILOG JRules [4] event processing systems are based on
the Rete algorithm. In both cases, the Rete algorithm is extended to incorporate
clocks. Timestamps are used and before and after predicates are introduced.
However, the realization of time-based windows is not addressed.

Gordin and Pasik [6] describe a method to support set-oriented methods for
forward chaining rule-based systems. The presented ideas are extended in our
work to support event aggregation in Rete.

In [7], a traditional production system based on the Rete algorithm is ex-
tended with temporal reasoning by storing past and developing events in a tem-
poral database, a so-called time map. An interval time representation is used.
The system supports detection of events occurring during, before or after other
events. It is further possible to model uncertain relationships. However, the se-
mantics of the operators as well as the conceptual details remain unclear. It is
not stated whether the start or the end time-point of the interval are used for
the before and after operators. Time-based windows are also not considered.

Teodosiu and Pollak [8] present a method to remove obsolete temporal facts
where the used Rete network is extended with timers in order to discard events

Time to the Rescue - Supporting Temporal Reasoning 637

after a specified time interval elapsed. Their concept can be used to discard
events after they are no longer part of a sliding time-based window.

3 Temporal Support in Rete

In the following, we present our notion of instantaneous and complex events and
introduce the Rete algorithm.

3.1 Definitions

Events indicate a state change of the world. They are n-tuples containing an ar-
bitrary number of data items. For instance, an OrderArrival event contains data
related to an arriving order, e.g. the customer name and address, the ordered
items and their quantity as well as a timestamp denoting the occurrence time of
the order.

Let T = (T ; ≤) be an ordered time domain. Then, let I := {[ts, te] ∈ T ×T |ts ≤
te} be the set of time intervals with ts as start and te as the end time-point of
the interval. Let D be the set of atomic values where atomic values are ele-
mentary data types, such as strings. Then, let E := {(k1, .., kn, kn+1, ts, te)|ki ∈
D, [ts, te] ∈ I} be the set of events.

An event is characterized by the time of its occurrence, which is stored as
the event’s timestamp. Instantaneous events are single events which occur at a
certain point in time. They have a duration of zero, ts = te. The aforementioned
OrderArrival event is an example of an instantaneous event.

Complex events describe the occurrence of a certain set of events (instan-
taneous or complex) having relationships defined using logical and/or temporal
operators. These operators commonly include conjunction, disjunction and nega-
tion as logical operators and can include temporal operators such as before and
after to define the order of events. The supported operators vary for the different
CEP systems. We consider the timestamp of a complex event as an interval con-
sisting of a start and end point for each event to avoid the unintended interpre-
tation occuring for time-point semantics [9,10]. This notion follows [11] and [12].
It allows the usage of Allen’s [13] thirtheen temporal operators to determine
the relationship between two events having interval timestamps. Consequently,
complex events always have a duration, i.e. ts < te.

3.2 The Rete Algorithm

The Rete algorithm [3] is a pattern matching algorithm traditionally used for
production-based logical reasoning systems. Its aim is to match a set of facts
against a set of inference rules (productions). Facts reside in the working mem-
ory and are n-tuples containing any number of data items. They represent in-
formation on something that is the case in the world. Facts are valid until they
turn out to be false and are changed or retracted from the working memory. A

638 K. Walzer, M. Groch, and T. Breddin

A
lp

ha
 N

et
w

or
k

CA B

B
et

a
N

et
w

or
k

ß

ß

ß

a A.x = 3 a B.y < 2 a C.z > 7

ß

m
em

ß

m
em

a

m
ema

m
ema

m
em

A.x=3 & B.y<2 & C.z>7

Rule 2

B.y<2 & C.z>7

Rule 1

du
m

m
y

tu
pl

e

Fig. 1. Example Rete network for two rules

rule contains a premise stating conditions to be met by fact data items and a
set of actions to be triggered if the premise holds.

The algorithm creates an acyclic network of the rule premises, the so-called
Rete network. Figure 1 shows an example for a network for two rules with a
root node (a Rete tree). The Rete network, starts with a root node which is
split into the type nodes which distinguish between different facts. Then, an
alpha node network is typically followed by a beta-node network. Whenever the
working memory is changed, i.e. facts are ”asserted”, ”retracted” or ”updated’,
a working memory element (WME) is created for the changed fact and then
propagated in a forward-chaining fashion through the network nodes from the
root to the leaf nodes. Thereby, alpha-nodes perform simple conditional tests,
i.e. they act as a filter by passing only the matching WMEs to the next node. At
the end of the alpha node network, the resulting WMEs matching all previous
nodes are stored in the alpha memory.

Beta-nodes perform joins by combining different WMEs, typically WME lists
(from now on called tuples) coming from a beta memory with individual WMEs
from an alpha memory. A new WME in the input alpha memory leads to a right
activation on the beta node. Then, the new WME is compared to specific WMEs
of each tuple of the beta input memory. The specific WMEs to be used are spec-
ified in the join criteria. When a new tuple is added to the input beta memory,
a left activation of the beta-node takes place, specific values of a predefined set

Time to the Rescue - Supporting Temporal Reasoning 639

of the new tuples are compared to particular values of each WME in the alpha
memory. Upon an occurring match, a new tuple representing the match is added
to the beta memory of the beta-node to be passed to subsequent beta nodes or
to a terminal node (action trigger).

In other words, beta nodes store partial matches of rules to avoid re-evaluation.
When a tuple has reached the end of the beta node branch, it is passed to the
terminal node. It represents a complete match of the facts contained in the tuple
and results in the execution of the corresponding actions.

4 Proposed Solution

In the following, we will describe the assumptions underlying our system and
its semantics. Then, we will introduce a possible approach to sliding window
definition in Rete.

4.1 Preliminaries

We assume a loosely-coupled system with a global clock. The occurrence of a
complex event can be viewed as the occurrence of a combination of instantaneous
events across distributed systems. In our system, the instantaneous events are
transmitted asynchronously to the central CEP engine which is based on the
Rete algorithm. Lamport’s happened-before relation [14] holds. As stated in [15],
Lamport’s happened-before relation does not always hold. However, techniques
to deal with the related issues are known, for instance [16] is using heartbeats
to overcome them.

4.2 Event Aggregation Using Time-Based Windows

A window is a limitation of the view on data, i.e. instead of considering all input
elements, only an extract of them is considered. Two common types of windows
are distinguished: tuple-based and time-based windows, cf. to [17, 18]. Tuple-based
windows limit the view to the last n input items whereas time-based windows pro-
vide only elements which arrived within a fixed time span. We focus on time-based
windows with relative time-constraints, e.g. 5 minutes. We do not support windows
with given absolute time constraints, e.g. a window to occur between 1 and 2 pm.

We define a time-based window as the set of events whose end time-point is in
a given window interval, i.e. ω(tsw , tew) := {x ∈ E|tex ≥ tsw ∧ tex ≤ tew} where
tsw denotes the start and tew the end time of the window. The size of a window
dw = d(tew , tsw) states its duration in time units, e.g. 5 minutes. It is defined by
the user for each window. Using this definition means that an event can start
before the window in which it is considered.

Assuming, the current time is t0, then the boundaries of the last finished
window can be calculated as follows. The end time of it is the current time, i.e.
tew = t0. The start time is the difference between its end time and the window
size, i.e. tsw = d(tsw , tew). The data items with end timestamps between the start

640 K. Walzer, M. Groch, and T. Breddin

and the end time are part of the window. Using this calculation, the window is
sliding, i.e. its boundaries are constantly shifted with ongoing time. It is referred
to as a sliding time-based window.

The Rete algorithm performs eager evaluation, i.e. the node network’s inner
state is updated with every inserted, modified or retracted tuple or fact, respec-
tively. Hence, we currently consider only sliding time-based windows without
a slide parameter. For window evaluation, we pursue an incremental approach,
where the current window is continuously updated depending on incoming events
and passing time. The resulting changes, i.e. the addition or deletion of window
elements, are propagated to successive nodes in the Rete tree. This approach is
suited for eager evaluation.

We extend the existing beta nodes with features for window evaluation and
event aggregation. Using a beta-node for this purpose allows for the evaluation
of windows for instantaneous events as well as for tuples. From now on, we will
refer to these extended nodes as time-driven aggregation nodes (TDA). Besides
the join-function of beta nodes, TDAs are capable of keeping track of the current
state of a time window as well as performing on-the-fly aggregation functions to
the elements of the window. A TDA node is used just as a normal beta-node
in the Rete network. Depending on the rule definition, either its aggregation
function, the window function or both are used. For the last case, a TDA node
first performs the join of the incoming tuples and WMEs, then it checks for the
window constraints and finally performs the aggregation function.

The events that should be considered for the window and/or for the aggre-
gation need to be specified explictly, e.g. consider the rule IF (A.x = 3 ∧ B.y <
2∧window[5min, AV G(C.z) > 40](C.z > 7))THENX . It describes the conjunc-
tion of particular events A and B with an average value of an attribute of event
C. The average is calculated time-frames of for 5 minutes using all attributes
with C.z > 7. The resulting Rete tree would look like in Figure 1, except that
the first beta-node (rightmost) would be a TDA node. This means, the TDA
node is inserted right below the alpha node of event C and obtains the WMEs
which have matched the filter criteria C.z > 7.

The process of the window evaluation will be described in the following. Our
approach is inspired by the work of Gordin and Pasik [6] as well as Ghanem et
al. [19].

Tuples (from the left) and WMEs (from the right) arriving at the TDA are
filtered depending on whether their end timestamps are outside the window
bounds or not. The stored window boundaries are adjusted continuously in the
TDA node. Every time an event x ∈ E arrives at the node, the current window
end time tew is set to the arrival time of that event. The corresponding window
start time can easily be determined by simply subtracting the window size from
the window end time tsw = d(dw, tew). The arrived event is propagated to be
considered in the aggregation function or in the child nodes of the TDA node.
Furthermore, each new event is sent to a garbage collection (GC) thread which
creates a callback entry in a queue for it in order to discard the event once it
is out of the window bounds. The time after which the event can be discarded

Time to the Rescue - Supporting Temporal Reasoning 641

is the window size. After this time passed, the positive event is out of window-
bounds and a negative event is send to the TDA node by the GC thread. Then,
the TDA node sends a message that the corresponding event can be discarded
to its child nodes. If the child nodes, e.g. other windows, do not need the event
anymore, the WME reference counter for the event can be decreased by one. If
no references exist any longer, i.e. the reference counter is zero, the WME can
be deleted. In any case, the aggregation function is updated, when an event is
outside a window.

The TDA node keeps track of the current state of the aggregation function.
For instance, in case of the average function, it stores a double value representing
the sum of the event attribute of interest and an integer denoting the number
of events contributing to the aggregated value. With every arriving or expired
event, the beta memory and the aggregation result are updated.

Whenever, an event is no longer part of any sliding windows, it can be dis-
carded from the alpha/beta-memory of the TDA node and possibly also from
the working memory. Consequently, the event can no longer fullfill its temporal
constraints. The other nodes in the Rete network can be informed to determine
if they can also discard the event. Garbage collection mechanisms based on this
sliding window timeout, a default event lifetime or a calculated lifetime based
on an event’s relative relationships are outlined in [8, 5].

5 Conclusion

We have presented concepts of how the Rete algorithm can be extended with
the detection of event patterns containing time-based sliding windows by the
introduction of time-enabled beta-nodes.

We are currently evaluating the proposed concepts by extending the business
rule management system JBoss Drools [20] with support for sliding windows.
The current version of the Drools extension is online available at [21].

In conjunction with the detection of relative temporal constraints, event garbage
collection [5] and the original features of the Rete algorithm, the proposed concepts
form a good basis for temporal reasoning in Rete.

Acknowledgements. We wish to acknowledge Maik Thiele, Michael Ameling
and Thomas Heinze for helpful comments on earlier drafts of this paper. Fur-
thermore, we thank the Drools developer team, especially Edson Tirelli, for the
interesting discussions and their contribution to the presented concepts and the
ongoing implementation.

References

1. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.:
Cayuga: A general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)

2. Li, G., Jacobsen, H.A.: Composite subscriptions in content-based publish/subscribe
systems. In: Middleware, pp. 249–269 (2005)

642 K. Walzer, M. Groch, and T. Breddin

3. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artif. Intell. 19(1), 17–37 (1982)

4. Berstel, B.: Extending the RETE Algorithm for Event Management. In: TIME
2002: Proceedings of the Ninth International Symposium on Temporal Representa-
tion and Reasoning (TIME 2002), Washington, DC, USA, vol. 49. IEEE Computer
Society, Los Alamitos (2002)

5. Walzer, K., Breddin, T., Groch, M.: Relative Temporal Constraints in the Rete
Algorithm for Complex Event Detection. In: DEBS 2008: 2nd International Con-
ference on Distributed Event-Based Systems (to appear, 2008)

6. Gordin, D.N., Pasik, A.J.: Set-oriented constructs: from Rete rule bases to database
systems. In: SIGMOD 1991: Proceedings of the 1991 ACM SIGMOD international
conference on Management of data, pp. 60–67. ACM Press, New York (1991)

7. Maloof, M.A., Kochut, K.: Modifying Rete to Reason Temporally. In: ICTAI, pp.
472–473 (1993)

8. Teodosiu, D., Pollak, G.: Discarding unused temporal information in a produc-
tion system. In: Proc.of the ISMM International Conference on Information and
Knowledge Management CIKM 1992, Baltimore, MD, pp. 177–184 (1992)

9. Bohlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporal data
models. In: ICDE, pp. 192–200 (1998)

10. Yoneki, E., Bacon, J.: Unified semantics for event correlation over time and space
in hybrid network environments. In: Meersman, R., Tari, Z. (eds.) OTM 2005.
LNCS, vol. 3760, pp. 366–384. Springer, Heidelberg (2005)

11. Bry, F., Eckert, M.: Temporal order optimizations of incremental joins for com-
posite event detection. In: Proceedings of Inaugural Int. Conference on Distributed
Event-Based Systems, Toronto, Canada, June 20–22, 2007. ACM, New York (2007)

12. Galton, A., Augusto, J.: Two approaches to event definition. In: Hameurlain, A.,
Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556.
Springer, Heidelberg (2002)

13. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26, 832–843 (1983)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

15. White, W.M., Riedewald, M., Gehrke, J., Demers, A.J.: What is ”next” in event
processing? In: PODS, pp. 263–272. ACM, New York (2007)

16. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:
PODS 2004: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 263–274. ACM Press, New York
(2004)

17. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

18. Ghanem, T.M., Aref, W.G., Elmagarmid, A.K.: Exploiting predicate-window se-
mantics over data streams. SIGMOD Rec. 35(1), 3–8 (2006)

19. Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.:
Incremental evaluation of sliding-window queries over data streams. IEEE Trans.
Knowl. Data Eng. 19(1), 57–72 (2007)

20. JBoss: JBoss Rules (2007), http://labs.jboss.com/drools/
21. Red Hat, Inc.: Drools development branch for temporal reasoning,

http://anonsvn.labs.jboss.com/labs/jbossrules/branches/temporal rete/

http://labs.jboss.com/drools/
http://anonsvn.labs.jboss.com/labs/jbossrules/branches/temporal_rete/

Classifying Evolving Data Streams Using Dynamic
Streaming Random Forests�

H. Abdulsalam, D.B. Skillicorn, and P. Martin

School of Computing, Queen’s University
Kingston, ON Canada, K7L 3N6

{hanady,skill,martin}@cs.queensu.ca

Abstract. We consider the problem of data-stream classification, introducing a
stream-classification algorithm, Dynamic Streaming Random Forests, that is able
to handle evolving data streams using an entropy-based drift-detection technique.
The algorithm automatically adjusts its parameters based on the data seen so far.
Experimental results show that the algorithm handles multi-class problems for
which the underlying class boundaries drift, without losing accuracy.

1 Introduction

Data-stream based applications are widely exploited by modern organizations. Such
applications are required to analyze (or mine) streams of unlimited data records, by ob-
serving each data record only once, or possibly few times. Mining data streams require
incremental, online, and fast algorithms which extract important information from data
records on the fly, and can produce online results. Stream-mining algorithms should
also adapt to changes in the distribution of the data, and be able to approximate results
when necessary.

This paper addresses the data-stream classification problem. The field of stream clas-
sification has received much attention [1–5], but some problems exist:

– Algorithms typically require a large training time as a result of using huge amounts
of data to build the classification model.

– Algorithms lack the ability to handle multi-class classification problems.
– Many algorithms have low classification accuracy and cannot handle concept drift.

Unlike standard classification algorithms that have three different sequential phases,
(training, testing, and deployment), each associated with its own dataset, stream classi-
fication algorithms have only one stream of data containing both labelled and unlabelled
data records. Based on the distribution of the labelled records through the input stream,
possible scenarios are proposed by Abdulsalam et al.[6], and shown in Figure 1.

The Streaming Random Forests algorithm [6] is a stream classification algorithm
combining the ideas of the standard Random Forests algorithm by Breiman [7] and
streaming decision trees [1, 2]. It demonstrates good classification accuracy when tested.
It cannot, however, deal with concept drift.

� The work reported in this paper has been supported by Kuwait University.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 643–651, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

644 H. Abdulsalam, D.B. Skillicorn, and P. Martin

The main contribution of this paper is to define the Dynamic Streaming Random
Forests algorithm, a stream-classification algorithm that extends the Streaming Ran-
dom Forests algorithm. It is able to handle Scenario 1 and so successfully deals with
concept changes. We incorporate ideas proposed by Vorburger and Bernstein [8] to de-
fine an entropy-based concept-change detection technique. In addition, the algorithm
automatically adjusts its parameters based on the data seen so far. It handles only ordi-
nal and numerical attributes, and it is able to handle multi-class problems. Experimental
results show that our algorithm successfully handles concept drift.

The remainder of the paper is organized as follows: Section 2 states some back-
ground. Section 3 explains the Streaming Random Forests algorithm. Section 4 intro-
duces the Dynamic Streaming Random Forests algorithm. Section 5 shows experimental
results. Section 6 presents related work. Finally, Section 7 draws our conclusions.

2 Background

Streaming decision trees. A streaming decision tree under construction consists of
internal nodes, containing an inequality on one of the attributes, frontier nodes that have
not yet been either split or turned into leaves, and leaf nodes. Upon each record arrival,
the record is routed down the tree, based on the attributes values and the inequalities of
the internal nodes, until it reaches a frontier node. As each frontier node is considered,
the Hoeffding bound [9] is used to decide if this node has accumulated enough records
for a robust decision [1].

Using an entropy measure to detect concept drift. Shannon’s entropy [10] is a mea-
sure of the disorder or randomness associated with a random variable. Finding the en-
tropy for a dataset with known distribution requires using the following equation:

H(x) = −
∑

x

P (x) log2(P (x)),

where x is a discrete random variable, and P (x) is the probability mass function of
x. For detecting concept changes using entropy, the two-windows paradigm [8, 11] is
typically used, where two sliding windows are tracked; one window is the current win-
dow and the other is a reference window that represents the latest distribution. If the
entropies of the two windows are different then a change has occurred.

The standard Random Forests algorithm. The Random Forests algorithm [7] is a
classification ensemble technique developed by Breiman. It grows a number of binary
decision trees and the classification for each new record is the plurality of the votes
from the trees. It uses the Gini index for selecting split attributes. For a dataset of n
records and m attributes, three conditions must be satisfied when growing each tree:

– A subset of n records, chosen from the original dataset at random with replacement
must be used as the training set.

– A randomly-chosen M � m attributes are evaluated in building each frontier node.
– No pruning is needed. Each tree is grown to the maximum size possible.

Classifying Evolving Data Streams Using Dynamic Streaming Random Forests 645

3 The Streaming Random Forests Algorithm

Streaming Random Forests [6] is a stream-classification algorithm that builds streaming
decision trees with the techniques from Breiman’s Random Forests. Its classification
accuracies are approximately equal to those of Random Forests.

The Streaming Random Forests algorithm grows binary decision trees each from a
different block of data. The trees are grown using the Hoeffding bounds to decide when
to stop building on each node [1]. The algorithm selects the attribute to split using the
Gini index. It takes two parameters, namely the number of trees to be built and the
number of records used to grow each tree (tree window).

Each newly arrived record is routed down the tree under construction, until it reaches
a frontier node, where the attribute values of the record contribute to compute the Gini
indexes. The values of each attribute (numerical or ordinal) are discretized into fixed-
length intervals. The boundaries between the intervals are the possible split points.

As a frontier node of the current tree accumulates nmin records, where nmin is a
defined parameter, both the Hoeffding and Gini tests are applied. If the Hoeffding test
is satisfied, then the frontier node is transformed into an internal node with an inequality
based on the best attribute and split point reported by the Gini index test.

If the number of records that have reached the frontier node exceeds a threshold
(node window), and the node has not yet been split, the node is transformed into a
leaf if the accumulated records are almost all from one class. Otherwise, the node is
transformed into an internal node based on the best attribute and split point so far.

By the end of the tree window, a node might have been split and generated two
frontier nodes that might have not seen enough data to get transformed into an internal
or a leaf node. A limited form of pruning is therefore required to resolve this situation.
A detailed explanation of the tree-building procedure and the tree-pruning method can
be found in the Streaming Random Forests paper[6].

4 The Dynamic Streaming Random Forests Algorithm

The Dynamic Streaming Random Forests algorithm is a self-adjusting stream classifi-
cation algorithm that is able to reflect concept changes. The algorithm, like the basic
Streaming Random Forests algorithm, initially grows a defined number of trees. The dif-
ference is that the tree window is not constant for all trees. Instead, whenever a number
of treemin records have contributed to building a tree, the current classification error of
the tree is calculated. If the error is greater than a threshold (tree threshold), then the
algorithm stops building this tree and switches to building the next tree. Otherwise, the
algorithm continues building the current tree using half the previous number of records,
before it enters another test phase. Each tree has, therefore, a different tree window that
is never greater than 2 ∗ treemin. The parameters treemin and tree threshold, are ini-
tially assigned defined values. A typical value for tree threshold is 1/C, where C is
the number of classes. This threshold ensures that none of the trees performs worse than
a random tree.

Once the total number of trees have been grown, the algorithm enters a test phase
where the classification accuracy for the forest is calculated using previously unseen

646 H. Abdulsalam, D.B. Skillicorn, and P. Martin

labelled data records. The classification error (treeerrori), for each individual tree i, is
also calculated and used to assign a weight to the tree.

In addition, the algorithm derives new values of the parameters to use in the subse-
quent building phase at time t + 1 (i.e. when a new block of labelled records arrives):

– A new tree threshold is calculated as the average error of trees at time t:

tree threshold(t + 1) =
1
U

U∑
i=1

treeerrori(t)

where U is the number of trees in the forest.
– A new nmin is calculated using the equation:

nmin(t + 1) =
ln(1/δ)

2(ΔGini(t))2

where ΔGini(t) = Ginihighest−Ginisecond highest is computed during the build-
ing phase at time t, and ΔGini(t) is the average value of ΔGini(t).

– A new treemin is calculated using the equation:

treemin(t + 1) = nmin(t + 1) ∗ treesize(t)

where treesize(t) is the average of all tree sizes from the building phase at time t.

Whenever a new block of labelled data records arrives, the algorithm replaces w%
of the total number of trees with new trees, grown from newly arrived data records. The
trees with the largest treeerror are replaced. The value of w is obtained empirically.
We choose it to be 25%. We believe that this percentage is enough to keep the learned
concept up-to-date while not forcing too much time for each building phase. New trees
are grown using the derived parameters. If there is a concept change in the data, then the
values of these parameters are reset to their initial values since their most recent values
were derived based on data records for the old concept. More trees are replaced in the
case of concept changes to reflect the new distribution.

Concept drift can be thought of in different ways. There are three categories:

– Category 1: changes that are generated from variation in noise.
– Category 2: changes that are generated from a gradual change in the underlying

rules defining the classes.
– Category 3: changes that are generated by a sudden change in the underlying rules.

We use an entropy measure to detect concept changes in streams based on the two-
windows paradigm [8, 11]. We base our idea on the work done by Vorburger and Bern-
stein [8]. Since the distribution of the data is not known, the probability mass function
cannot be used directly. Instead, we use counters to find the probabilities of occurrences
of values associated with a specific interval and specific class within each attribute for
the current and reference windows. The difference in entropies of the two windows for
each attribute is calculated as:

Hi = |
C∑

c=1

K∑
k=1

[ukccur log2 ukccur − ukcref
log2 ukcref

]|

where C is the number of classes, K is the number of intervals for attribute i, and ukccur

and ukcref
are the ratios of the number of records within an interval k and assigned to

Classifying Evolving Data Streams Using Dynamic Streaming Random Forests 647

class c, to the total number of records of the current and reference windows, respec-
tively. The absolute value is taken for Hi because the magnitude of the change is what
really matters.

For a data stream with m attributes, the final entropy difference between the current
and reference windows is calculated as the average of Hi, 0 ≤ i ≤ m:

H =
1
m

m∑
i=1

Hi.

The possible values of H are in the range [0, | log2 1/C|]. H is zero when entropies of
both windows are equal, and hence, there is no drift, while H is maximized and equal
to | log2 1/C| when a change appears.

The entropy H is normalized by dividing it by its maximum possible value: H ′ =
H/| log2 1/C|. The value of H ′ is hence in the range [0,1] and represents the percentage
of the concept change. The algorithm records a change in distribution if H ′ > γ +
HAV G, where HAV G is the accumulated average entropy of the entropies computed
since the last recorded change, and γ is a constant threshold defined empirically. If a
change is detected, more trees must be replaced.

We use H ′ to find the percentage of the number of trees to replace (R):

R =

{
H ′∗U if(H ′∗U + 1

C ((1−H ′)U)>U/2),
H ′∗ U +U/2 otherwise

This equation considers H ′ as the percentage of the trees to replace only if the remaining
set of unchanged trees, which is calculated as (1 − H ′)U , has a higher probability
of contributing to making the correct classification decision when combined with the
replaced set of trees. We approximate the fraction of the number of unchanged trees that
might positively share in the classification decision as 1/C, since a tree with uniformly
random guessing still has a probability of 1/C of getting the correct classification. If
the number of trees to replace plus the number of remaining trees that are expected to
give correct classification is less than half of the total number of trees, then the number
of trees to replace is calculated as H ′ ∗ U + U/2. The equation, therefore, forces the
algorithm to replace at least half of the trees when a change occurs.

5 Experimental Settings and Results

We base the implementation of our algorithm on the Streaming Random Forests [6],
implemented using Fortran 77. The machine on which we conduct our experiments uses
a Pentium 4 3.2 GHz processor and 512MB RAM. We test our algorithm on synthetic
datasets generated using the DataGen tool by Melli [12].

We generate a number of datasets and combine them into one dataset having concept
changes of the three categories. The combined dataset has 5 attributes and 5 classes. The
size of the dataset is 7 million records, with concepts changes described in Figure 2.

For all our experiments, the algorithm grows 50 trees using M = 3 attributes for
each node. The initial values of tree threshold, nmin, and treemin are 1/C = 0.2,
200, and 3000 respectively. The sizes of the current and reference windows are 1000
records. The value of γ we use is 0.05, and w is set to 25%.

648 H. Abdulsalam, D.B. Skillicorn, and P. Martin

We evaluate our algorithm based on the following criteria:

1. Entropy-based concept drift detection technique. Figure 3 shows the values of
H ′, HAV G, and γ +HAV G with respect to the number of records of the stream. The al-
gorithm records seven concept changes at points 501000, 1506000, 2049000, 5011000,
5533000, 6032000, and 6501000. Note that a window of 1,000 records reflecting the
new concept needs to be seen before detecting a change. Actual change points therefore,
appear earlier than the detected changes. The first recorded change represents a drift of
category 1. The entropy value of the second simulated drift, where the noise drops to
1% at point 1,000,000 does not show any significant change. This drift is therefore not
recorded. The subsequent five recorded changes represent the points during the gradu-
ally drifting concept (category 2 drift), where the noise is unchanged and equal to 1%.
Some of the boundaries are, however, not recorded.

The last recorded change is the category 3 drift. All the recorded changes have similar
entropy values in the range of [0.07,0.1] except for the last change, which has a value
of 0.27. This is because both the noise and learning rules change.

2. Classification accuracy. Figure 4 shows the classification error, versus the number
of processed records. The recorded points of the graph corresponds to each time the
algorithm has finished building/modifying the forest.

The results show that the algorithm successfully reacts to concept changes of cate-
gories 1 and 3. This can be seen at the first two drift points of the data (category 1), and
the last point (category 3). Although the entropy change-detection technique did not
detect a change for the second change point (at record 1,000,000), the algorithm still
performs well, giving an error that is approximately equal to the data noise.

The experiments record poor classification during the period of category 2 drift,
shown at the point where the classification error is about 7.5% and the subsequent few
points. The justification for this is that, since the data from new learning rules are added
into the old dataset gradually, with the first block of mixed data having only 10% of the
new records, the model does not see enough records to learn the new concept. Instead,
it considers the data generated from new learning rules as an increase in the noise pre-
sented in the data. The classification error for this block of data should therefore, be
around 10%. Our algorithm performs better, and records a classification error of 7.5%,
which drops as the number of records from the new concept increases until it reaches
classification errors in the range of [1.65%,2.55%].

3. Dynamic adjustment of parameters. We illustrate the dynamic nature of the algo-
rithm by testing the variation of the parameter values during the execution of the algo-
rithm. We consider tree threshold, nmin, treemin, and the number of trees to replace.
Figures 5, 6, 7, and 8 represent the values of the four parameters respectively.

The figures show that, when a concept change is detected, the values of the para-
meters are reset to their initial values. As shown in Figures 5, 6, and 7, the values
of tree threshold, nmin, and treemin decrease when the model is better representing
the data records for the following reasons: 1) The stronger the trees, the higher their
classification accuracy, and therefore, the smaller the value of tree threshold. 2) Small
values of nmin and treemin mean that the algorithm is performing well and does not
require a large number of data records in order to update its model.

Classifying Evolving Data Streams Using Dynamic Streaming Random Forests 649

Fig. 1. Possible scenarios for data streams Fig. 2. Concept drift of the synthetic data

Fig. 3. Entropy versus number of records Fig. 4. Classification error of the forest

Fig. 5. tree threshold values Fig. 6. nmin values

Fig. 7. treemin values Fig. 8. Number of trees to replace

650 H. Abdulsalam, D.B. Skillicorn, and P. Martin

Figure 8 shows that 50 trees are grown initially, then 25% of the trees (12 trees) are
normally replaced, unless a concept drift is detected, where the number of replaced trees
increases based on the change significance. For the first six drift points, the number of
trees to be replace varies between 29 and 30 trees, which shows that the significance of
the changes are almost equal. The number replaced trees for the last drift is 39. This is
because the value of the entropy difference for this drift is the highest.

6 Related Work

Decision trees based on Hoeffding bounds have been widely used for stream classifica-
tion [1, 2, 5, 13]. Trees ensembles have also been used for stream classification [3–5].

Many of these algorithms are designed for only two class problems. Single decision
tree algorithms typically require either significant processing time or memory to handle
concept changes [2, 4]. CVFDT [2] handles concept changes by growing an alternative
tree for each node. A node is replaced with its alternative tree whenever it records poor
classification accuracy. Fan proposed an algorithm that depends on learning four models
from combining old and new data [4]. The best model that represents the current data
is selected for classification.

Ensemble classifiers have better utilization of data and are more accurate than single
classifiers. Many of them are, however, tested only on two-class problems.

7 Conclusion

This paper has presented the Dynamic Streaming Random Forests algorithm, a
self-adjusting stream-classification algorithm that handles evolving streams using an
entropy-based change-detection technique. The algorithm extends the Streaming Ran-
dom Forests algorithm [6]. It gives the expected behavior when tested on synthetic data
with concept drift; the concept drift points were detected; the parameters were automat-
ically adjusted, and the classification error was approximately equal to the noise in the
data.

References

1. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

2. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings
of the ACM International Conference on Knowledge Discovery and Data mining, pp. 97–106
(2001)

3. Chu, F., Wang, Y., Zaniolo, C.: An adaptive learning approach for noisy data streams. In:
Proceedings of the IEEE International Conference on Data Mining, pp. 351–354 (2004)

4. Fan, W.: A systematic data selection to mine concept-drifting data streams. In: Proceedings
of the ACM International Conference on Knowledge Discovery and Data Mining, pp. 128–
137 (2004)

5. Zhu, X., Wu, X., Yang, Y.: Dynamic classifier selection for effective mining from noisy data
streams. In: Proceedings of the IEEE International Conference on Data Mining, pp. 305–312
(2004)

Classifying Evolving Data Streams Using Dynamic Streaming Random Forests 651

6. Abdulsalam, H., Skillicorn, D.B., Martin, P.: Streaming random forests. In: Proceeings of the
International Database Engineering and Applications Symposium, pp. 225–232 (2007)

7. Breiman, L.: Random forests. Technical Report (1999), www.stat.berkeley.edu
8. Vorburger, P., Bernstein, A.: Entropy-based concept shift detection. In: Proceedings of the

International Conference on Data Mining, pp. 1113–1118 (2006)
9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of

American Statistical Association 58(1), 13–30 (1963)
10. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Com-

puting and Communications Review 5(1), 3–55 (2001)
11. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach

to detecting changes in multi-dimensional data streams. Technical Report (2005)
12. Melli, G.: Scds-a synthetic classification data set generator. Simon Fraser University, School

of Computer Science (1997)
13. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams.

In: Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data
Mining, pp. 523–528 (2003)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 652 – 659, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On a Parameterized Antidivision Operator for
Database Flexible Querying

Patrick Bosc and Olivier Pivert

IRISA-ENSSAT, Technopole Anticipa, BP 80518
22305 Lannion Cedex, France

{Patrick.Bosc,Olivier.Pivert}@enssat.fr

Abstract. In this paper, we introduce an algebraic relational operator called
antidivision and we describe a range of interpretations that can be attached to
this operator in the context of databases with fuzzy relations (i.e., relations that
contain weighted tuples).

Keywords: Relational databases, Antidivision, Fuzzy relations.

1 Introduction

The idea of extending usual Boolean queries with preferences has become a hot topic
in the database community. One of the advantages of this approach is to deliver
discriminated answers rather than flat sets of elements. Fuzzy sets are a natural means
to represent preferences and many works have been undertaken to define queries
where fuzzy predicates can be introduced inside user queries. The objective of this
article is to illustrate the expressiveness of fuzzy sets with a certain type of queries,
that we call antidivision queries, in the context of regular databases. Like other
operators, the regular antidivision is not flexible at all and small variations in the data
may lead to totally different results. Using fuzzy relations counter to a certain extent
this behavior by taking into account the notion of graded membership (of a tuple to a
relation). First, let us make clear what we mean by antidivision. Let r be a relation of
schema R(X, A) and s a relation of schema S(B, Y), with A and B compatible (sets
of) attributes. We call antidivision the operator ∦ defined the following way:

r[A ∦ B]s = {x | ∀b ∈ s[B], (x, b) ∉ r}.

In other words, an antidivision query r[A ∦ B]s retrieves the X-values present in
relation r which are associated in r with none of the B-values present in s. In the
following, in order to simplify the formulas and with no loss of generality, we will
assume that the schema of s is S(B). Some examples of (non-fuzzy) antidivision
queries are given hereafter:

- a consumers’ association aims at assessing some chemical products (e.g.
cosmetics) in order to give them quality labels so as to express their level of
safety. In this context, an antidivision query could be: retrieve the products
which do not contain any noxious component in a proportion higher than 5%.

 On a Parameterized Antidivision Operator for Database Flexible Querying 653

- the Atomic Energy Research Center aims at finding a site for implanting a
nuclear waste processing plant. In this context, an antidivision query could be:
retrieve the sites which are at least hundred miles away from any geographic
point where the seismic risk is higher than 2 (on a given scale).

It can be noticed that an antidivision is nothing but an antijoin (denoted hereafter by

⊲) followed by a projection over X:

r[A ∦ B]s = (r ⊲ s)[X].

We call this operator antidivision by analogy with the relation between a

semijoin and an antijoin: a division query r[A ÷ B]s (resp. a semi-join query r ⋉ s)
retrieves the X-values which are associated in r with all of the B-values present in s
(resp. the tuples from r which join with at least one tuple from s) while an

antividision query r[A ∦ B]s (resp. an antijoin query r ⊲ s) retrieves the X-values
associated with none of the B-values from s (resp. the tuples from r which join with
none of the tuples from s).

Our purpose is of course not to introduce a superfluous algebraic operator but to
show that the concept of antidivision seen as an atomic operator allows to reach a
wide range of useful semantics when one moves from regular relations to fuzzy
ones.

The remainder of the paper is organized as follows. In section 2, we deal with the
possible formulations of the antidivision operator in a regular database context in both
relational algebra and SQL. Section 3 is devoted to the antidivision in the context of
databases involving fuzzy relations (i.e., relations which contain weighted tuples). We
first give some basic notions concerning fuzzy relations and fuzzy queries, then we
point out the different semantics that can be attached to the antidivision operator in
such a context. The conclusion recalls the main contributions and mentions some
perspectives for future work.

2 Antidivision of Regular Relations

In the framework of the relational algebra, an antidivision can be expressed using a

difference (–), a join (⋈) and two projections as:

r[X] – (r ⋈ s)[X] (1)

In SQL, a possible formulation is:

select X from r where X not in (select X from r, s where r.A = s.B).

Example 1. Let us consider the relations prod which describes the composition of
some chemical products and nox which gathers the identifications of noxious
components. Let us consider the query “retrieve the products which do not contain
any noxious component in a proportion higher than 5%”. Let us suppose that nox =
{c1, c2, c5} and prod is:

654 P. Bosc and O. Pivert

prod p c prop
 p1

p1
p1
p2
p2
p3
p3

c1
c2
c3
c1
c4
c2
c6

3
4

93
9

91
8

92

This query can be expressed as: ((Prod : prop > 5)[p, c]) [c ∦ c] Nox
and its result is {p1}.♦

Another vision of the antidivision in an SQL-like language can be based on an
inclusion:

select X from r group by X having set(A) includes_none (select A from s)

where the Boolean predicate includes_none is defined as:

includes_none (E, F) ≡ (E ∩ F) = ∅ ≡ (E ⊆ cp(F)) ≡ (F ⊆ cp(E)).

where cp(E) denotes the complement of set E.

This vision corresponds to the following definition of the antidivision:

 r[A ∦ B]s = {x | s ∩ Ω(x) = ∅} = {x | s ⊆ cp(Ω(x)} = {x | Ω(x) ⊆ cp(s)} (2)

where Ω(x) = (r : X = x)[A] i.e., is the set of A-values associated with x in r.

3 Antidivision of Fuzzy Relations

In this section, we first recall some basic notions related to fuzzy relations and fuzzy
queries, before defining the antidivision operator in a context of fuzzy relations.

3.1 About Fuzzy Relations and Fuzzy Queries

Let us recall that fuzzy set theory [11] aims at representing sets whose boundaries are
not sharp. A fuzzy set F defined on a domain X is associated with a membership
function μF from X into the unit interval [0, 1]. The closer to 1 the membership degree
μF(x), the more x belongs to F. The support S(F) and the core C(F) of a fuzzy set F are
defined respectively as the following two crisp sets:

S(F) = {x ∈ X | μF(x) > 0}
C(F) = {x ∈ X | μF(x) = 1}

In the database domain, fuzzy set theory can serve as a basis for defining a flexible
querying approach [5]. The key concept is that of a fuzzy relation, i.e., a relation
designed as a fuzzy subset of Cartesian products of domains. Thus, any such fuzzy
relation r can be seen as made of weighted tuples, denoted by μ/t, where μ expresses

 On a Parameterized Antidivision Operator for Database Flexible Querying 655

the extent to which tuple t belongs to the relation, i.e., is compatible with the concept
conveyed by r. Of course, since regular databases are assumed to be queried, initial
relations (i.e., those stored in the database) are special cases of fuzzy relations where
all the tuple weights are equal to 1.

Example 2. Let us consider a database with the relation employee(num, name,
salary, age, living-city). From a given initial extension of this regular relation, it is
possible to get the intermediate fuzzy relation fy-emp shown in Table 1 containing
those employees who are “fairly young”. It is assumed that the membership
function associated with the flexible predicate “fairly young” is defined as follows:
μfy(x) = 0 if age ≥ 45, μfy(x) = 1 if age ≤ 30, linear in between. It can be noticed
that no element is a full member of the fuzzy relation fy-emp since no employee
reaches the maximal degree 1. In the fuzzy relation obtained, only the tuples t such
that μfy(t) > 0 appear. ♦

Table 1. The extension of the relation fy-emp

 num name salary age living-city degree

 76
26
12
55

martin
tanaka
smith
lucas

12500
12000
12000
13000

40
37
39
35

New-York
Chiba
London
Miami

0.3
0.4
0.4
0.8

The regular relational operations can be extended to fuzzy relations by considering
fuzzy relations as fuzzy sets on the one hand and by introducing gradual predicates in
the appropriate operations (selections and joins especially) on the other hand. A
definition of the division of fuzzy relation can be found in [4]. For more details about
query language aspects, the reader may refer to [3] where a fuzzy SQL-like language
is described.

3.2 Principle and Formulation of the Antidivision of Fuzzy Relations

Starting from expression (1), and denoting by res the relation resulting from the
antidivision query, one gets, for an element x present in relation r, the degree:

μres(x) = min(μsupport(r[X])(x), 1 – μproj(r⋈s, X)(x))

 = min(1, 1 – max a∈s ⊤(μs(a), μr(x, a)))

 = min a∈s (1 – ⊤(μs(a), μr(x, a))) (3)

where ⊤ denotes a triangular norm generalizing the conjunction, e.g., min or product.
As to the expression based on an inclusion, it becomes:

r[A ∦ B]s = {μ/x | x ∈ support(r[X]) and μ = Inc(s, cp(Ω(x)) > 0} (4)

656 P. Bosc and O. Pivert

where Inc(s, cp(Ω(x)) denotes the degree of inclusion (∈ [0, 1]) of s in cp(Ω(x)). The
graded inclusion indicator Inc can be defined the following way [1]:

Inc(E, F) = min x ∈ X (μE(x) → μF(x)) (5)

where → denotes a fuzzy implication operator, i.e., a mapping from [0, 1]2 into [0, 1].
There are several families of fuzzy implications, notably R-implications [7]:

p →R q = sup u ∈[0, 1] {u | ⊤(u, p) ≤ q}

It is possible to rewrite these implications as:

p →R q = 1 if p ≤ q, f(p, q) otherwise

where f(p, q) expresses a degree of satisfaction of the implication when the antecedent
(p) exceeds the conclusion (q). The implications of Gödel (p →Gö q = 1 if p ≤ q, q
otherwise), Goguen (p →Gg q = 1 if p ≤ q, q/p otherwise) and Lukasiewicz (p →Lu q =
1 if p ≤ q, 1 – p + q otherwise) are the three most used R-implications and they are

obtained resp. with the norms ⊤(x, y) = min(x, y), ⊤(x, y) = xy and ⊤(x, y) = max(x
+ y – 1, 0).

As to S-implications [7], they generalize the (usual) material implication p ⇒ q =
((not p) or q) by:

p →S q = ⊥(1 – p, q)
The minimal element of this class, namely Kleene-Dienes’ implication obtained with

⊥ = max expresses the inclusion of the support of E in the core of F (1 is reached
then). This is also the case for Reichenbach’s implication (obtained with the norm
product).

Let us discuss the impact of the type of implication (R- or S-) on the semantics of
the antidivision. The degrees in the divisor (relation s) act as:

• importance levels if Kleene-Dienes’ implication is used; in this case, the higher
the degree attached to an element a of s, the more the degree attached to <a, x>
in r impacts the final degree attached to x in the result; the complement of the
degree attached to a (i.e., 1 – μs(a)) corresponds to a guaranteed satisfaction
level;

• thresholds with any R-implication; here, the higher the degree attached to an
element a of s, the smaller the degree attached <a, x> in r must be so as to get a
final degree attached to x equal to 1; when the degree attached to <a, x> in r is
higher than 1 minus the degree attached to a in s, a penalty is applied, which
varies with the R-implication considered.

Example 3. Let us come back to the context of example 1 and consider relations prod
and nox again. This time, these relations are supposed to be fuzzy in order to express
that a component can be more or less noxious and that the proportion of a component
in a chemical product can be more or less important. Let us consider the query
“retrieve the products which do not contain any highly noxious component in a
significant proportion”.

 On a Parameterized Antidivision Operator for Database Flexible Querying 657

prod p c μ nox c μ
 p1

p1
p1
p2
p2
p3
p3

c1
c2
c3
c1
c4
c2
c6

0.3
0.85

1
1

0.7
1

0.9

 c1
c2
c4
c5
c6

0.8
0.3
0.1
0.6
0.4

The fuzzy term “significant” can be defined for instance as μsig(x) = 0 if x ≤ 3,

μsig(x) = 1 if x ≥ 7, linear in-between. This fuzzy term is used to obtain the relation
prod above by means of a fuzzy selection applied on a regular relation of schema (p,
c, proportion) such as that from Example 1. The degrees in relation nox are supposed
to be specified explicitly (the divisor relation can even be given in extension in the
query). Let us consider the extensions of prod and nox given above. The antidivision
query can be expressed as:

(Prod [p, c]) [c ∦ c] Nox

With Gödel’s implication, one gets the result: {0.15/p1}since:

μ(p1) = min(0.7, 0.15, 1) = 0.15, μ(p2) = min(0, 1) = 0, μ(p3) = min(0, 0.1) = 0.

With Goguen’s implication, one gets {0.5/p1} since:

μ(p1) = min(7/8, 0.5, 1) = 0.5, μ(p2) = min(0, 1) = 0, μ(p3) = min(0, 0.25) = 0.

With Lukasiewicz’ implication, one gets {0.85/p1, 0.2/p2, 0.7/p3} since:

μ(p1) = min(0.9, 0.85, 1) = 0.85, μ(p2) = min(0.2, 1) = 0.2, μ(p3) = min(0.7, 0.7) = 0.7.

With Kleene-Dienes’ implication, one gets {0.7/p1, 0.2/p2, 0.6/p3} since:

μ(p1) = min(0.7, 0.7, 1) = 0.7, μ(p2) = min(0.2, 0.9) = 0.2, μ(p3) = min(0.7, 0.6) = 0.6.

♦

Now, let us give a semantic justification of expression (4). It is important to notice
that if an R-implication is used in (5), one loses the equivalence valid in the Boolean
case between Inc(s, cp(Ω(x))) and Inc(Ω(x), cp(s)). Indeed, with an R-implication, the
truth value of (p →R q) is not equal to [(not q) →R (not p)] in general. Now:

Inc(s, cp(Ω(x))) = min a∈s (μs(a) →R 1 – μΩ(x)(x, a))

Inc(Ω(x), cp(s)) = min a∈Ω(x) (μΩ(x)(a) →R 1 – μs(a))

On the other hand, the equivalence between Inc(s, Ω(x)) and Inc(Ω(x), cp(s)) is
preserved by S-implications.

In the case of an R-implication, the “correct” choice for defining the antidivision is
thus to use Inc(s, cp(Ω(x))) – as in expression (4) – and not Inc(Ω(x), cp(s)). Indeed,
the expected behavior is that the degrees attached to the elements of the divisor act as
thresholds, and not the opposite. Finally, we have :

658 P. Bosc and O. Pivert

μr[A ∦ B]s(x) = Inc(s, Ω(x)) = min a∈s (μs(a) → 1 – μr(x, a)) (6)

Dubois and Prade [6] have shown that R-implications and S-implications can be
expressed using a common format, i.e.:

p → q = 1 – cnj(p, 1 – q)

where cnj denotes a triangular norm ⊤ when the implication is an R-implication, and
a non-commutative conjunction ncc when it is an R-implication. For example, the
operators ncc associated with Gödel’s and Goguen’s implications are respectively:

nccGö(x, y) = 0 if x + y ≤ 1, y otherwise

nccGg(x, y) = 0 if x + y ≤ 1, (x + y – 1)/x otherwise.

Hence, we get the generic expression for the antidivision of fuzzy relations:

μr[A ∦ B]s(x) = min a∈s (1 – cnj(μs(a), μr(x, a))) (7)

which generalizes (3) by taking into account non-commutative conjunctions.

Remark. Expression (4) – whose interpretation rests on formula (7) – also generalizes
the definition of the antidivision based on an intersection, i.e.:

R[A ∦ B] S = {x | s ∩ Ω(x) = ∅} (8)

Indeed, from this expression, it comes:

μr[A ∦ B]s(x) = 1 – μ∩(s, Ω(x))

 = 1 – max a∈s ⊤(μs(a), 1 – μr(x, a))

 = min a∈s (1 – ⊤(μs(a), μr(x, a)))

which is nothing but formula (3).
In order to obtain the generic semantics that we propose for the antidivision in

relational algebra, it would be necessary to parameterize the Cartesian product by the
conjunction operator. On the one hand, this would not be very easy to do for an end-
user (it is not obvious how to choose the right conjunction operator to get the desired
threshold-based or importance-based behavior) and, on the other hand, this raises a
semantic difficulty since the Cartesian product is by nature a symmetrical operator
(but it would not stay so if it were based on a non-commutative conjunction).

In an SQL-like language, the most simple solution is to parameterize the operator
includes_none introduced above by the fuzzy implication desired. We get an
expression of the form:

select x from r
group by x
having set(A) includes_none fuzzy implication (select B from s)

where includes_none fuzzy implication (E, F) = Inc fuzzy_implication (F, cp(E)).

 On a Parameterized Antidivision Operator for Database Flexible Querying 659

4 Conclusion

In this paper, we have introduced the concept of an antidivision operator, which, in
the classical relational framework, corresponds to a non-primitive operator since it
can be expressed by means of an antijoin, a projection and a difference. Seeing this
operator as an atomic operator becomes particularly interesting when one moves to
the framework of fuzzy relations. We have provided a generic definition for the
antidivision operator, based on a graded inclusion, which captures a wide range of
semantics.

Among the perspectives for future work, it would be worthy dealing with the
optimization of antidivision queries both in the regular relational database model and
the fuzzy extension of this model. In particular, it would be interesting to study
whether some optimization mechanisms proposed for antijoin queries, such as those
described in [10], could be adapted to the processing of antidivision queries.

Another extension of this work concerns the application of the antidivision
operator proposed here to the context of information retrieval. In different information
retrieval models, it is indeed possible to specify inside a user query a set of (possibly
weighted) unwanted keywords [8, 9]. We thus believe that the antidivision operator
would be a well suited tool for interpreting the “negative part” of a query, in the same
way that a fuzzy division operator can be used to interpret its “positive part” (i.e., the
set of required keywords), as described in [2].

References

1. Bandler, W., Kohout, L.: Fuzzy power sets and fuzzy implication operators. Fuzzy Sets
and Systems 4, 13–30 (1980)

2. Bordogna, G., Bosc, P., Pasi, G.: Fuzzy inclusion in database and information retrieval
query interpretation. In: Proc. ACM SAC 1996, pp. 547–551 (1996)

3. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE
Transactions on Fuzzy Systems 3, 1–17 (1995)

4. Bosc, P., Pivert, O., Rocacher, D.: About quotient and division of crisp and fuzzy
relations. Journal of Intelligent Information Systems 29, 185–210 (2007)

5. Bosc, P., Prade, H.: An Introduction to the Treatment of Flexible Queries and Uncertain or
Imprecise Databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in
Information Systems, pp. 285–324. Kluwer Academic Publishers, Dordrecht (1997)

6. Dubois, D., Prade, H.: A theorem on implication functions defined from triangular norms.
Stochastica 8, 267–279 (1984)

7. Fodor, J.: On fuzzy implication operators. Fuzzy Sets and Systems 42, 293–300 (1991)
8. Lee, J.H., Kim, W.Y., Kim, M.H., Lee, Y.J.: On the evaluation of Boolean operators in the

extended Boolean retrieval framework. In: Proc. SIGIR 1993, pp. 291–297 (1993)
9. Pasi, G.: A logical formulation of the Boolean model and of weighted Boolean models. In:

Workshop on Logical and Uncertainty Models for Information Systems (LUMIS 1999),
pp. 1–11 (1999)

10. Rao, J., Lindsay, B.G., Lohman, G.M., Pirahesh, H., Simmen, D.E.: Using EELs, a
practical approach to outerjoin and antijoin reordering. In: Proc. ICDE 2001, pp. 585–594
(2001)

11. Zadeh, L.A.: Fuzzy sets. Inf. Control, vol. 8, pp. 338–353 (1965)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 660–667, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Providing Explanations for Database Schema Validation

Guillem Rull*,**, Carles Farré**, Ernest Teniente**, and Toni Urpí**

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
1-3 Jordi Girona, Barcelona 08034, Spain

{grull,farre,teniente,urpi}@lsi.upc.edu

Abstract. We propose a new method for database schema validation that pro-
vides an explanation when it determines that a certain desirable property of a
database schema does not hold. Explanations are required to give the designer a
hint about the changes of the schema that are needed to fix the problem identi-
fied. Our method is an extension of the CQC method, which has been shown
successful for testing such properties.

1 Introduction

Database schema validation is related to check whether a database schema correctly
and adequately describes the user intended needs and requirements. The correctness
of the data managed by database management systems is vital to the more general as-
pect of quality of the data and thus their usage by different applications. A well-
known approach to this problem is aimed at checking whether the database schema
satisfies desirable properties such as schema satisfiability, query liveliness, non-
redundancy of constraints, etc.

An important drawback of previous research in this area is that none of the meth-
ods proposed to deal with this problem [3,5,9] is able to provide explanations when a
certain property does not hold. Therefore, the designer has to consider the full data-
base schema to identify the required schema changes that would fix the problem.

As an example, assume the database schema includes the following two tables:

CREATE TABLE Category (
 name char(10) PRIMARY KEY,
 salary real NOT NULL,
 CONSTRAINT chMinSal CHECK (salary >= 50000),
 CONSTRAINT chMaxSal CHECK (salary <= 30000))

CREATE TABLE Employee (
 ssn int PRIMARY KEY,
 name char(30) NOT NULL,
 catName char(10) NOT NULL,
 CONSTRAINT chCatName CHECK (catName <> 'ceo'),
 CONSTRAINT fkCat FOREIGN KEY (catName) REFERENCES Category(name))

* This work was supported in part by Microsoft Research through the European PhD Scholar-

ship Programme.
** This work was supported in part by the Ministerio de Educación y Ciencia under project

TIN2005-05406.

 Providing Explanations for Database Schema Validation 661

The previous schema may not contain any tuple. The reason is that it is impossible
to insert a category since it should have a salary lower than 30000 and higher than
50000. Moreover, since employees must always belong to categories (as stated by the
fkCat constraint) it is also impossible to insert any employee in the previous database.

Previous methods allow determining that the schema is not satisfiable but they do
not give any hint about the reasons that motivate this problem. Taking into account
that this could be just a small part of the schema, it may be very hard for the designer
to identify the modification that would arrange the problem.

A possible solution may be to use black-box techniques [1,6] to compute an ex-
planation, which is understood as a set of constraints responsible for the non-
satisfaction of the property. However, these techniques require several executions of
the method used to test the property. As schemas become larger, a faster way to per-
form this computation is needed.

In this paper, we adopt the same definition of explanations as [1,6], but we follow
a glass-box approach, which is aimed at computing an explanation with a single exe-
cution of the method at the same time that it checks whether the tested property holds.
We extend the CQC method [4] for this purpose. In the previous example, a single
execution of the method we propose in this paper would provide the explanation
{chMinSal, chMaxSal, fkCat}. In addition, the modifications of the CQC method we
propose here result also in a substantial efficiency improvement since they reduce the
search space required to find the solution to the tested property.

In some cases, the explanation provided by our method may be non-minimal. An
explanation is minimal if there is no proper subset of it that is also an explanation. If
we were interested in minimal explanations, we could obtain them through a black-
box strategy by executing our method as many times as constraints the non-minimal
explanation has. Clearly, since the new method is more efficient than the original one
and the number of constraints taken into account is never greater than the constraints
in the schema (being usually much lower), our approach also improves efficiency of
previous black-box techniques [1,6] for obtaining a minimal explanation.

Next section reviews basic concepts. Section 3 describes the CQCE method, our
proposal to draw explanations. Conclusions are given in Section 4.

2 Base Concepts

A database schema is a tuple (DR, IC) where DR is a finite set of deductive rules and
IC a finite set of constraints. A deductive rule has the form

p(X̄) ← r1(X̄1) ∧…∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧…∧ ¬rm(Ȳs) ∧ C1 ∧…∧ Ct.
Symbols p, ri are predicates. Tuples X̄i, Ȳi contain terms, which are either variables or
constants. The terms in tuple X̄ are distinct variables. Each Ci is a built-in literal in the
form of t1 θ t2, where t1 and t2 are terms and operator θ is <, ≤, >, ≥, = or ≠. Atom p(X̄)
is the head of the rule, and ri(X̄i), ¬ri(Ȳi) are positive and negative ordinary literals
(those that are not built-in). Rules must be safe, that is, every variable that occurs in X̄,
Ȳi, Ci must also appear in some X̄j. Predicates that appear in the head of a rule are de-
rived predicates, also called IDB predicates. The rest are base predicates, also called
EDB predicates.

662 G. Rull et al.

We define a derived inconsistency predicate Ici for each constraint in IC. A data-
base instance violates a constraint Ici ← L1 ∧ ... ∧ Lk if Ici is true, i.e. if there is some
ground substitution σ that makes (L1 ∧ ... ∧ Lk)σ true.

In this paper, we assume that schema validation properties are expressed in terms
of a goal G = ← L1 ∧ … ∧ Lm and a set of conditions to enforce F ⊆ IC [3]. In this
way, we say that a schema validation property is satisfiable if there is at least one da-
tabase instance that makes G true and does not violate any integrity constraint in F.
An explanation for the non-satisfaction of a schema validation property is a set of in-
tegrity constraints E ⊆ F such that (G, E) is not satisfiable.

3 The Approach

The main aim of our approach is to perform satisfiability tests for schema validation
properties expressed in the formalism stated above, in such a way that (1) if the prop-
erty is satisfiable, we provide a concrete database instance in which such a property
holds; otherwise, (2) if the property is not satisfiable, we provide an explanation.

Reference [3] showed how to use the CQC method [4] to validate highly expres-
sive database schemas (featuring integrity constraints, negations and comparisons).
However, the CQC method does not provide any kind of explanation when a schema
validation test fails. In this paper, we propose an extension of the CQC method that
provides such an explanation. We refer to this extension as the CQCE method.

Roughly, the original CQC method performs validation tests by trying to construct
a database instance for which the tested property holds. The method uses different
Variable Instantiation Patterns (VIPs) [4], according to the syntactic properties of the
database schema considered in each test, to instantiate the ground EDB facts to be
added in the database. Adding a new fact may cause the violation of some constraints.
When a violation is detected, some previous decisions must be reconsidered to ex-
plore alternative ways to reach a solution (e.g., reinstantiate a variable with another
constant). In any case, the CQC method does not prescribe any particular execution
strategy for the generation of the different alternatives.

The extension we propose in this paper is to define an execution strategy that ex-
plores only those alternatives that are indeed relevant for reaching the solution. In or-
der to do this, we need to modify the internal mechanisms of the CQC method to
gather the additional information that is required to detect which alternatives are rele-
vant. If none of these alternatives leads to a solution, this same information will be
used to build one explanation: the explanation of why this execution has failed.

3.1 Example

Let us consider the example presented in the introduction, expressed here in the logi-
cal formalism required by our method. Due to space reasons, we consider neither the
primary keys nor the attribute Employee.name. However, these modifications do not
affect the computed explanation.

DR = {isCat(X) ← Cat(X, S)}
IC = {Ic1 ← Emp(X, Y) ∧ Y = ‘ceo’, Ic2 ← Emp(X, Y) ∧ ¬isCat(Y),

Ic3 ← Cat(X, S) ∧ S > 30, Ic4 ← Cat(X, S) ∧ S < 50}

 Providing Explanations for Database Schema Validation 663

Suppose we want to check whether schema validation property (G = ← Emp(X, Y),
IC) is satisfiable, that is, whether the Employee table may have at least one tuple in its
extension. Fig. 1 shows a CQCE-derivation that tries to construct an EDB to prove
that this property is satisfiable. Each row in the figure corresponds to a CQCE-node
that contains the following information (columns): (1) The goal to attain: the literals
that must be made true by the EDB under construction. (2) The conditions to be en-
forced: the set of conditions that the constructed EDB is required to satisfy. (3) The
extensional database (EDB) under construction. (4) The conditions to be maintained:
a set containing those conditions that must remain satisfied until the end of the CQCE-
derivation. (5) The set of constants used so far.

The transition between an ancestor CQCE-node and its successor is performed by
applying a CQCE-expansion rule to a selected literal (underlined in Fig. 1) of the an-
cestor CQCE-node (see Section 3.2).

The first two steps shown in Fig. 1 instantiate variables X and Y from literal
Emp(X, Y) in order to obtain a ground fact to be added to the EDB. The constants used
to instantiate the variables are determined according to the corresponding Variable In-
stantiation Patterns (VIPs) [4] and their data type (int, real or string). A label is at-
tached to the constant occurrences, indicating the node where they were introduced.
Step 3 inserts the instantiated literal to the EDB under construction. Label 3 is at-
tached to the new tuple to keep record of which node was responsible for its insertion.
After this step, we get a node with an empty goal, i.e. []. However, the work is not
done yet, since we must ensure that the four constraints are not violated by the current
EDB. Steps 4 and 5 evaluate constraint Ic1, which is violated.

The analysis of a violation consists in finding those ancestor CQCE-nodes in the cur-
rent derivation that take a decision whose reconsideration may help to avoid, repair, the
violation. Each one of these CQCE-nodes is a repair for the violated constraint. The set
of repairs for Ic1 is recorded in the failed CQCE-node 5 where constraint Ic1 was vio-
lated. One way to repair this violation is change the value of constant ceo2 in order to
make ceo2 = ceo false. The label 2 attached to constant ceo indicates that this constant
was used in the expansion of CQCE-node 2 to instantiate a certain variable. Thus, we
can backtrack to node 2 and try another instantiation for variable Y. This means node

 Goal to attain Conditions
to enforce

EDB Used
constants

Conditions
to maintain

 {Emp(01, ceo2)3}

← Emp(X, Y)

← Emp(01, Y)

 []

{Ic1, Ic2, Ic3, Ic4} = C0

1:A2.1

2:A2.1

{Ic1, Ic2, Ic3, Ic4}

{Ic1 ← [Emp(01, ceo2)3 ∧] ceo2 = ceo,
 Ic2, Ic3, Ic4}

∅

∅

{50, 30,
ceo, 0}

{50, 30,
ceo}

{50, 30,
ceo, 0}

C0

C0

C0

∅ ← Emp(01, ceo2) {Ic1, Ic2, Ic3, Ic4} {50, 30,
ceo, 0}

C0

3:A2.2
 {Emp(01, ceo2)3} [] {Ic1 ← Emp(X, Y) ∧ Y = ceo,

 Ic2, Ic3, Ic4}
{50, 30,
ceo, 0}C0

4:B2

 Node
 ID

 1

 2

 3

 4

 5
5:Failed derivation

Fig. 1. Example of CQCE-derivation

664 G. Rull et al.

 Goal to attain Conditions
to enforce

EDB

13:A2.1

Used
constants

Conditions
to maintain

{Emp(01, a2)6}

← Emp(01, Y)

 []

← isCat(a2)10 {Ic3, Ic4}

6:A2.1

7:A2.2

11:B3

{Ic1, Ic2, Ic3, Ic4}

{Ic2 ← [Emp(01, a2)6 ∧] ¬isCat(a2),
 Ic3, Ic4}

∅

{Emp(01, a2)6}

{50, 30,
ceo, 0}

{50, 30,
ceo, 0, a}

{50, 30,
ceo, 0, a}

C0

C0

C0

← Cat(a2, S)11 {Ic3, Ic4} {Emp(01, a2)6}
{50, 30,

ceo, 0, a} C0

← Cat(a2, 5012)11 {Ic3, Ic4} {Emp(01, a2)6} {50, 30,
ceo, 0, a}

C0

 [] {Ic3 ← Cat(X, S) ∧ S > 30,
 Ic4, Ic1, Ic2}

{Emp(01, a2)3,
 Cat(a2, 5012)13}

{50, 30,
ceo, 0, a} C0

14:A2.2

 [] {Ic3 ← [Cat(a2, 5012)13 ∧] 5012 > 30,
 Ic4, Ic1, Ic2}

{Emp(01, a2)3,
 Cat(a2, 5012)13}

{50, 30,
ceo, 0, a} C0

15:B2

∅ ← Emp(01, a2) {Ic1, Ic2, Ic3, Ic4} {50, 30,
ceo, 0, a}

C0

{Emp(01, a2)6} []
{Ic1 ← Emp(X, Y) ∧ Y = ceo,
 Ic2, Ic3, Ic4}

{50, 30,
ceo, 0, a} C0

 Node
 ID

 2

 6

 7

10

11

12

13

14

15
16:Failed derivation

{Emp(01, a2)6} [] {Ic1 ← [Emp(01, a2)6 ∧] a2 = ceo,
 Ic2, Ic3, Ic4}

{50, 30,
ceo, 0, a}

C0 8

8:B2

9:B5
{Emp(01, a2)6} [] {Ic2 ← Emp(X, Y) ∧ ¬isCat(Y),

 Ic3, Ic4}
{50, 30,

ceo, 0, a}
C0 9

10:B2

12:A1

Fig. 2. An alternative CQCE-(sub)derivation

2 is one of the repairs for the violation, so node 2 is included in the set of repairs of
node 5. Other possible way to repair the violation is avoid the insertion of tuple Emp(01,
ceo2)3 to the EDB. Label 3 indicates that this tuple was inserted in order to satisfy the
literal Emp(01, ceo2) from the goal of node 3. The only possible way to avoid this inser-
tion is by means of avoiding the presence of this literal in the goal. However, as the lit-
eral comes from the original goal (note there is no label attached to it), the insertion of
the tuple to the EDB cannot be avoided. Therefore, the set of repairs of node 5 is {2}.

With this information into account, the method will try to construct an alternative
CQCE-(sub)derivation to achieve the initial goal, which will be rooted at CQCE-node
2 (the repair of node 5). Moreover, in order to keep track of what has happened in the
failed derivation, node 2 will record the set of repairs of node 5 together with the ex-
planation of why that derivation failed, that is, the set {Ic1}.

Fig. 2 shows an alternative CQCE-derivation rooted at node 2. Steps 6, 7, 8 of this
new derivation are similar to steps 2, 3 and 4, but step 6 uses a fresh constant ‘a’ to
instantiate variable Y. Step 9 selects literal a2 = ceo. Since such a comparison is false,
Ic1 is not violated now, and so, it is removed from the set of conditions to enforce.

Steps 10 and 11 deal with referential constraint Ic2, which introduces a new
(sub)goal: isCat(a2). To achieve it, tuple Cat(a2, 5012)13 is added to the EDB (step 14),
but this addition violates constraint Ic3 (step 16).

 Providing Explanations for Database Schema Validation 665

As before, the analysis of the violation is performed. In this case, the set of repairs,
recorded in node 15, is {12, 10}. The intuition is that the violation was originated by
the instantiation of variable S in node 12, and that this instantiation was required to
achieve the (sub)goal introduced by node 10.

The method will try to construct another alternative (sub)derivation rooted at
CQCE-node 12. Any derivation starting from node 12 will fail because each possible
instantiation for variable S in Cat(a2, S) will lead to the violation of either Ic3 or Ic4,
with {12, 10} as the set of repairs in any case. Therefore, the method marks CQCE-
node 12 as failed. Its explanation is {Ic3, Ic4}, and the set of repairs is {10}. The
method will visit now this node 10. This node enforces referential constraint Ic2, and
so, leads to the violation of constraints Ic3 and Ic4. Since there is not an alternative
(sub)derivation rooted at node 10, the method marks this node as failed. The explana-
tion for this failure is the explanation of its only (sub)derivation plus the referential
constraint Ic2, i.e. {Ic2, Ic3, Ic4}. The set of repairs of node 10 is the empty set. There-
fore, there is no point in reconsidering any previous decision, so the method ends
without being able of constructing an EDB that satisfies the initial goal, and returns
{Ic2, Ic3, Ic4} as the set of integrity constraints that explains such a failure (the expla-
nation indicated in the introduction). Note that since node 2 does not belong to the set
of repairs of node 10, the explanation for the failed derivation in Fig. 1, recorded at
node 2, is discarded and not included in the final explanation.

3.2 Formalization

Let S = (DR, IC) be a database schema, G0 = ← L1 ∧ … ∧ Ln a goal, and F0 ⊆ IC a set
of constraints to enforce, where G0 and F0 characterize a certain schema validation
property in the terms defined in [3]. A CQCE-node is a 5-tuple of the form (Gi, Fi, Di,
Ci, Ki), where Gi is a goal to attain; Fi is a set of conditions to enforce; Di is a set of
ground EDB atoms, an EDB under construction; Ci is the whole set of conditions that
must be maintained; and Ki is the set of constants appearing in DR, G0, F0 and Di.

A CQCE-tree is inductively defined as follows:

1. The tree consisting of the single CQCE-node (G0, F0, ∅, F0, K) is a CQCE-tree.
2. Let T be a CQCE-tree, and (Gn, Fn, Dn, Cn, Kn) a leaf CQCE-node of T such that Gn

≠ [] or Fn ≠ ∅. Then the tree obtained from T by appending one or more descen-
dant CQCE-nodes according to a CQCE-expansion rule applicable to (Gn, Fn, Dn,
Cn, Kn) is again a CQCE-tree.

It may happen that the application of a CQCE-expansion rule on a leaf CQCE-node
(Gn, Fn, Dn, Cn, Kn) does not obtain any new descendant CQCE-node to be appended
to the CQCE-tree because some necessary constraint defined on the CQCE-expansion
rule is not satisfied. In such a case, we say that (Gn, Fn, Dn, Cn, Kn) is a failed CQCE-
node. Each branch in a CQCE-tree is a CQCE-derivation consisting of a (finite or infi-
nite) sequence (G0, F0, D0, C0, K0), (G1, F1, D1, C1, K1), … of CQCE-nodes. A CQCE-
derivation is successful if it is finite and its last (leaf) CQCE-node has the form ([], ∅,
Dn, Cn, Kn). A CQCE-derivation is failed if it is finite and its last (leaf) CQCE-node is
failed. A CQCE-tree is successful when at least one of its branches is a successful
CQCE-derivation. A CQCE-tree is finitely failed when each one of its branches is a
failed CQCE-derivation.

666 G. Rull et al.

Fig. 3 shows the formalization of the CQCE-tree exploration process. Expand-
Node(T, N) is the main algorithm, which generates and explores the subtree of T that
is rooted at N. The CQCE method starts with a call to ExpandNode(T, Nroot) where T
contains only the initial node Nroot = (G0, F0, ∅, F0, K). Constants, literals and con-
straints in Nroot are unlabeled. If the CQCE method constructs a successful derivation,
ExpandNode(T, Nroot) returns “true” and T.solution pinpoints its leaf CQCE-node. On
the contrary, if the CQCE-tree is finitely failed, ExpandNode(T, Nroot) returns “false”
and Nroot.explanation ⊆ F0 is an explanation for the unsatisfiability of the tested
schema validation property.

RepairsOfGoalComparison and RepairsOfIc (called by HandleLeaf in Fig. 3)
return the corresponding set of repairs for the case in which the violation is in the goal
and in a condition to enforce, respectively. Due to space reasons, we refer to the full

ExpandNode(T: CQCE-tree, N: CQCE-node): Boolean
if N is a solution node then T.solution := N; B := true
else

B := false
Apply one CQCE-expansion rule R.
if children(N, T) = ∅ then HandleLeaf(T, N)
else

U := children(N, T)
while ∃M ∈ U ∧ ¬B

if ExpandNode(T, M) then B := true
else if N ∉ M.repairs then N.repairs := M.repairs; N.explanation := M.explanation; U := ∅
else

if R is A1-rule or A2.1-rule then HandleDecisionalNode(T, N)
else /*R is B3-rule*/ HandleSelectionOfConstrWithNegs(T, N)
U := U - {M}

return B

HandleLeaf(T: CQCE-tree, N: CQCE-node)
if N.selectedLiteral is from N.goal then

N.repairs := RepairsOfGoalComparison(N.selectedLiteral, T); N.explanation := ∅
else /*N.selectedLiteral is from N.selectedCondition*/

N.repairs := RepairsOfIc(N.selectedCondition, T, N)
Let us assume N.selectedCondition defines predicate Ici.
if there is a constraint Ic defining predicate Ici in root(T).conditionsToEnforce then

N.explanation := {Ic}
else /*N.selectedCondition appeared as a result of a negative literal in the goal*/

N.explanation := ∅

HandleSelectionOfConstrWithNegs(T: CQCE-tree, N: CQCE-node)
Let children(N, T) = {M}; Let us assume N.selectedCondition defines predicate Ici.
N.repairs := M.repairs - {N}
if there is a constraint Ic defining predicate Ici in root(T).conditionsToEnforce then

N.explanation := M.explanation ∪ {Ic}
else

N.explanation := M.explanation

HandleDecisionalNode(T: CQCE-tree, N: CQCE-node)
N.explanation := ∅; N.repairs := ∅
for each node C ∈ children(N, T)

N.explanation := N.explanation ∪ C.explanation; N.repairs := N.repairs ∪ (C.repairs - {N})

Fig. 3. Formalization of the CQCE-tree exploration process

 Providing Explanations for Database Schema Validation 667

version of the paper [7] for the formalization of these algorithms and of the CQCE-
expansion rules. The intuition has already been given in Section 3.1.

4 Conclusions

We have proposed the CQCE method, an extension of the CQC method [4] for data-
base schema validation, aimed at providing the database designer with an explanation
for why a given database schema does not satisfy a certain desirable property.

The CQCE method computes one explanation with a single execution, at the same
time that it checks whether the tested property holds. This addresses an important
drawback of previous research because none of the existing methods for schema vali-
dation [3,5,9] provides any kind of explanation when the tested property fails.

We have implemented the CQCE method in a database schema validation tool:
SVTE [2]. An experimental evaluation comparing one single execution of this imple-
mentation with one single execution of the original CQC method (as implemented in
[8]) can be found in the full version of the paper [7]. Those experiments have shown
that the modifications of the CQC method proposed here to obtain an explanation re-
sult in a significant efficiency improvement.

References

1. Bailey, J., Stuckey, P.J.: Discovery of Minimal Unsatisfiable Subsets of Constraints Using
Hitting Set Dualization. In: PADL, pp. 174–186 (2005)

2. Farré, C., Rull, G., Teniente, E., Urpí, T.: SVTE A Tool to Validate Database Schemas
giving Explanations. In: DBTest 2008 Workshop (to appear, 2008)

3. Farré, C., Teniente, E., Urpí, T.: A New Approach for Checking Schema Validation
Properties. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS,
vol. 3180, pp. 77–86. Springer, Heidelberg (2004)

4. Farré, C., Teniente, E., Urpí, T.: Checking Query Containment with the CQC Method. Data
Knowl. Eng. 53(2), 163–223 (2005)

5. Halevy, A.Y., Mumick, I.S., Sagiv, Y., Shmueli, O.: Static Analysis in Datalog Extensions.
J. ACM 48(5), 971–1012 (2001)

6. Rull, G., Farré, C., Teniente, E., Urpí, T.: Computing Explanations for Unlively Queries in
Databases. In: CIKM 2007, pp. 955–958 (2007)

7. Rull, G., Farré, C., Teniente, E., Urpí, T.: Providing Explanations for Database Schema
Validation. Research Report LSI-08-14-R, Universitat Politècnica de Catalunya (2008),
http://www.lsi.upc.edu/dept/techreps/techreps.html

8. Teniente, E., Farré, C., Urpí, T., Beltrán, C., Gañán, D.: SVT: Schema Validation Tool for
Microsoft SQL-Server. In: VLDB 2004, pp. 1349–1352 (2004)

9. Zhang, X., Özsoyoglu, Z.M.: Implication and Referential Constraints: A New Formal
Reasoning. IEEE Trans. Knowl. Data Eng. 9(6), 894–910 (1997)

Temporal Conformance of Federated

Choreographies

Johann Eder1,2 and Amirreza Tahamtan2

1 Alpen-Adria University of Klagenfurt, Dept. of Information Systems, A-9020
Klagenfurt, Austria

eder@isys.uni-klu.ac.at
2 University of Vienna, Dept. of Knowledge and Business Engineering,

Rathausstrasse 19/9, A-1010 Vienna, Austria
amirreza.tahamtan@univie.ac.at

Abstract. Web service composition is a new way for implementing busi-
ness processes. In particular, a choreography supports modeling and enact-
ment of interorganizational business processes consisting of autonomous
organizations. Temporal constraints are important quality criteria. We
propose a technique for modeling temporal constraints in choreographies
and orchestrations, checking whether the orchestrations satisfy the tem-
poral constraints of a choreography and compute internal deadlines for the
activities in an interorganizational workflow.

Keywords: Web Services, Composition, Choreographies, Orchestration,
Temporal Conformance.

1 Introduction

A major step toward integration of web services into organizations is their com-
position, enabling single web services be composed to an orchestration and chore-
ographies describing the collaboration of orchestrations. Temporal aspects are
important quality criteria in business processes. Temporal constraints are en-
visioned as part of the negotiations for setting up choreographies. It must be
ensured that activities are performed in a timely manner and right information
is delivered to right activities at the right time such that overall temporal re-
strictions are satisfied. Choreographies and orchestrations may have deadlines
which specify the latest time point in which they must finish execution. Tempo-
ral conformance checking assists organizations to provide services with a higher
QoS and reduces the process costs as violation of temporal constraints leads to
costly exception handling mechanisms [1].

Federated Choreographies have been introduced in [2] as a hierarchical archi-
tecture for a consistent modeling of choreographies and orchestrations. Central
to the model is the notion of conformance. Structural [3], temporal, data flow,
and messaging conformance are different aspects.

Here we propose an algorithm for checking of temporal constraints of federated
choreographies and generate a temporal execution plan. Based on this, one can

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 668–675, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Temporal Conformance of Federated Choreographies 669

decide wether execution of the model leads to temporal exceptions and necessary
modifications can be done. The algorithm works in a distributed manner and
there is no need for a central role. A choreography defines the interaction among
partners, accessible activities and which activities this partner has to execute.
Because of the distributed functionality of the algorithm, one partner may need
data from another partner to process locally. A partner can request for data
which is only associated to its accessible activities. Such activities are defined
in the choreography and are public to all partners, i.e. data provider has not
to reveal its private data but only required data for interaction. This enables
partners to hide their internal process logic whilst allow for interaction. Temporal
conformance checking has a build-time and a run-time aspect. At build time we
check whether all orchestrations meet the temporal restrictions given by the
choreographies. At run-time, execution is monitored to allow for predictive and
pro-active time management, i.e. to diagnose potential violations of temporal
constraints early enough such that counter-measures still can be taken.

Temporal aspects of web services have been studied in [4,5,6]. [4] uses temporal
abstractions of protocols for compatibility and replaceability analysis based on a
finite state machine formalism. [5,6] exploit an extension of timed automata for
modeling time properties of web services. Our approach can cover cases modeled
in these works and additionally allows for explicit deadlines. This work extends
previous works by addressing the conformance and verification problem and
provides an a priori execution plan at build-time (both best and worst cases)
consisting of valid execution intervals for all activities with consideration of the
overall structure and temporal restrictions. The calculated execution plans can
be monitored at run-time.

2 Federated Choreographies

There are mainly two ways for modeling choreographies: by protocols between
orchestrations and by abstract processes [7]. Protocols have the advantage of
flexibility and that only a minimum of information about processes is disclosed.
They have the disadvantage that the overall process is never explicitly mod-
eled, a drawback for process awareness. Abstract processes model the choreog-
raphy as a (global) process which integrates the disclosed views of the par-
ticipating processes [8]. They have the disadvantage that all partners share
the global process, even, if subsets of partners have closer relationships [9,10].
Federated choreographies [2] overcome this disadvantage by allowing abstract
processes with different level of abstraction, organized in a hierarchy. The ab-
stract processes describe a business process in various level of detail. This ap-
proach is more flexible than typical compositional approaches and provides ad-
vantages like a better business secrecy, extendability and uniform modeling. The
main idea of this approach is presented in fig. 1. The upper layer is composed of
shared choreographies. A choreography may support another one, i.e. the former
is a partial extension of the latter. The supporting choreography is an extended
subset (of activities) of the supported choreography. The support relationship

670 J. Eder and A. Tahamtan

Fig. 1. Federated choreographies

is acyclic. A choreography which is only supported and realized by other nodes
and in turn supports no choreography is called the global choreography. A node
refers to a choreography and/or orchestration. Informally, the global choreogra-
phy captures the core of the business process and its supporting choreographies
reflect how its parts are carried out in reality. The bottom layer consists of realiz-
ing orchestrations. Each partner provides its own internal realization of relevant
parts of the choreographies. The presented approach is fully distributed. Each
partner has local models of all choreographies in which it participates. Addition-
ally, each partner holds and runs its own model of the orchestration. There is no
need for a centralized coordination. For a detailed discussion refer to [2,3].

Both nodes are modeled as workflows. To avoid the complex metamodel of
[2], this paper is based on a simplified process model. A generic workflow model
is used in this paper as a structure for representing temporal information. A
workflow is a collection of activities and the dependencies between them. Ac-
tivities correspond to individual steps in a process. Dependencies determine the
execution sequence of activities and the data flow. Activities can be executed
sequentially, in parallel and conditionally. Consequently, a workflow can be rep-
resented by a directed acyclic graph, where nodes correspond to activities and
edges to dependencies. All activities have a unique name and two corresponding
events. An event is either start of an activity (denoted as for an activity a) or
its end (denoted ae for an activity a). In this paper we model the relationship
between a supporting and a supported choreography simply by event correspon-
dence. e1 ≡ e2 denotes that event e1 corresponds to event e2. Note that e1 and
e2 may belong to different nodes.

To represent time information, the workflow model is augmented with the
following temporal types: time points, durations and deadlines. We refer to such
a graph as timed graph (TG) [1] (See Fig. 3 and 4)

Temporal Conformance of Federated Choreographies 671

3 Temporal Conformance

Amongst other conformance issues temporal conformance is a key requirement
of the federated choreographies. It should be ensured that the flow of informa-
tion and tasks is done in a timely manner with consideration of the structural
dependencies. In addition it must be checked that no deadline is violated.

3.1 Prerequisites

The concepts used for calculation of temporal plans come from the field of op-
erations research. Two kinds of constraints are used:

– Implicit constraints are derived implicitly from the structure of the
process.

– Explicit constraints, e.g. assigned deadlines, can be set or enforced
explicitly.

All activities of a node have durations. In this work deterministic values for
durations are used. We are aware that activity durations may vary. However,
we use fixed values for clarification of the concepts. We calculate an interval in
which an activity can execute as described in [11]. This interval is delimited by
earliest possible start(eps) and latest allowed end(lae). eps is the earliest point in
time in which an activity can start execution and lae the latest point in time in
which an activity can finish execution without violating the deadline. Both eps
and lae are calculated for best case and worst case. The best case is given, if the
shortest path is executed and the worst case when the longest path is executed.

3.2 The Proposed Approach

Fig. 1 illustrates the starting point of the algorithm. To make the presentation
less complex we assume that only one global choreography exists.

The calculation of a node’s TG is based on iteratively delimiting the initial
intervals of activities because of implicit and explicit constraints. In addition,
other nodes with a link may also impose a restriction on the TG because of
additional activities present in them which may further tighten the interval. A
link identifies a dependency between two nodes and is either a support or realize
relationship. A valid execution interval is calculated when all constraints are
considered: implicit, explicit constraints and links. The conformance condition
must always be met i.e. eps+duration of an activity eps+d must be less or equal
to its lae in both best and worst cases.

One important issue to consider is when one node has multiple incoming links
as depicted in fig. 2. The numbers beside the arrows show the order of execution.
The method assignValuesTo is described in subsection 3.3. Temporal values are
assigned from G to S1 (1), after recalculations at S1, they are assigned to G (2).
An assignment may change the values of the target node. This cycle is repeated
for S2 (3,4). If S2 again modifies G, the most recently modified values may again

672 J. Eder and A. Tahamtan

Fig. 2. Supported choreography with multiple incoming links

impose a restriction on S1. In other words, two or more nodes with the same
supported/realized node may affect each other indirectly even with no direct
link. This cycle of assignment-recalculation must be iterated for all supporting
and realizing nodes of a choreography as long as a stable state is reached i.e.
no values are changed after an assignment. Change of a TG can be propagated
in both directions, i.e. along incoming and outgoing links. After change of the
values of a node G, all of its incoming and outgoing links are marked and the
recalculated values are propagated for all links with a source or target node G.

3.3 Methods

Following notations are used in the methods: a.bc.eps and a.bc.lae denote the
best case eps and lae. a.wc.eps and a.wc.lae represent these values for the worst
case. a.d duration of an activity a. a.pred and a.succ set of predecessors and
successors of an activity a respectively. a.pos position of an activity a in the
TG. as denotes the start-event of an activity a and ae its end-event. G.deadline
deadline of a TG G. d.max maximum allowed duration of a node. Upper case
letters represent the nodes and lower case letters the activities.

initialize(G)
This method initializes the eps and lae-values of a node to 0 and ∞ respec-

tively. The reason is that eps can only become greater and lae smaller.
calculate(G, G.deadline)
This method takes as input a node and the output is the calculated TG for

best and worst cases.
When recalculating a node’s TG, existing eps(lae) is replaced by the recently

calculated eps(lae), if the calculated values are greater(smaller) than existing
values. This method is used for pre-calculation of TGs as well as for recalculation
of a TG after assignment from another node.

assignValuesTo(G, H)
This method assigns values from one node to another. It uses event correspon-

dence for assignment. Correspondence of start events is used for assignment of
eps and correspondence of end events for lae.

checkConformance(G)
The above method checks if the conformance condition is fulfilled (See

section 3.2)

Temporal Conformance of Federated Choreographies 673

Calculation of Timed Graphs and Temporal Conformance Checking
temporalConformanceFederation()

-initialization and precalculation-
conf := true
initialize(Cg)
calculate(Cg)
conf := checkConformance (Cg)

for all directly and indirectly supporting choreographies
and realizing orchestrations G of Cg in a topological
order {

initialize(G)
change := assignValuesTo(Cg , G)
if change = true

G.deadline := G.first.eps + G.d.max
calculate (G)

endif
change: = AssignValuesTo(G, Cg)
if change = true

calculate(Cg)
conf := checkConformance(Cg)
mark all incoming and outgoing edges of Cg

endif
endfor }

-recalculation and conformance checking-
Repeat {

select randomly a marked edge e such that G is the
supported choreography and H the supporting
choreography or realizing orchestration

change: = AssignValuesTo(G, H)
if change = true

calculate H
conf := checkConformance (H)
mark all incoming and outgoing edges ∈ H

endif
change: = AssignValuesTo(H , G)
if change = true

calculate G
conf := checkConformance (G)
mark all incoming and outgoing edges ∈ G

endif
unmark e }

Until (all edges are unmarked
�

conf = false)

In the initialization and precalculation phase after initialization of the global
choreography, its TG is calculated without considering other nodes. That means
only implicit and explicit constraints are considered. Maximum duration d.max
is considered for calculating the deadline of other nodes than the global chore-
ography which is the maximum duration during which a workflow can execute
whereas a deadline denotes a point in time. Like deadlines, d.max is given a

674 J. Eder and A. Tahamtan

Fig. 3. After steps 1 and 2

Fig. 4. After steps 3 and 4

priori. It suffices in this phase to assign the values to each node only once. These
values just serve as initial values for further calculations. A variable change indi-
cates the change of a TG. If change becomes true all incoming and outgoing links
of the corresponding node are marked. Start and target node of each marked link
must be revisited and recalculated if any value is changed. Multiple marks on
an edge has no additional effect.

The recalculation and conformance checking phase consists of recalculation of
the precalculated TGs in the previous phase. For all marked edges, the cycle of
assignment-recalculation is repeated until a stable state is reached or the con-
formance condition is violated. A stable state is reached if all marked edges are
unmarked. Figures 3 and 4 show by a numeric example how TGs are calcu-
lated. Because of space limitations a simple example is chosen. The dependency
between nodes and the steps of this example are described in fig. 2. Note that
fig. 3 and fig. 4 demonstrate only one cycle. Note that this cycle must be iterated
as long as a stable state is reached.

We have implemented a prototype as proof of concept. The workflow specifi-
cations of nodes together with deadlines, d.max and links are read as input. The
tool calculates the execution plan for all nodes and checks if the conformance
condition is met.

Temporal Conformance of Federated Choreographies 675

3.4 Proof of Termination

We informally prove that the algorithm terminates. Algorithm terminates in
two cases: if there are no marked edges or the conformance condition is violated.
Because the number of edges is finite, in a finite number of steps the stable state
is reached. If such a stable state does not exist, after a finite number of steps the
conformance condition is violated. The reason is with each iteration, if changes
are made, the lae becomes smaller and the eps greater until eps + a.d > lae.

4 Conclusions

Temporal quality criteria play an important role in business processes. We pro-
posed a technique for modeling and checking of temporal constraints of choreogra-
phies and orchestrations. A time plan is generated for each choreography and or-
chestration representing valid execution intervals for their activities. This time plan
is used at run-time for monitoring purposes and allows for pro-active time manage-
ment to avoid temporal failures. The algorithm is fully distributed such that there is
no need to compromise the autonomy of partners in interorganizational workflows.

Acknowledgments. This work is partly supported by the Commission of the
European Union within the project WS-Diamond in FP6. STREP.

References

1. Panagos, E., Rabinovich, M.: Predictive workflow management. In: Proc. of the 3rd
Int. Workshop on Next Generation Information Technologies and Systems (1997)

2. Eder, J., Lehmann, M., Tahamtan, A.: Choreographies as federations of choreogra-
phies and orchestrations. In: Proc. of CoSS 2006 (2006)

3. Eder, J., Lehmann, M., Tahamtan, A.: Conformance test of federated choreogra-
phies. In: Proc. of IESA 2007 (2007)

4. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of
web service protocols. In: Proc. of CAiSE Forum (2005)

5. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis in web
service compositions. In: Proc. of ARES 2006 (2006)

6. Kazhamiakin, R., Pandya, P., Pistore, M.: Representation, verification, and com-
putation of timed properties in web service compositions. In: Proc. of ICWS 2006
(2006)

7. Andrews, T., et al.: Business process execution language for web services (bpel4ws).
ver. 1.1. BEA, IBM, Microsoft, SAP, Siebel Systems (2003)

8. Banerji, A., et al.: Web services conversation language (wscl) 1.0. Technical report,
W3C (2002)

9. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),
46–52 (2003)

10. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach. Int.
J. Cooperative Inf. Syst. 13(4), 337–368 (2004)

11. Eder, J., Panagos, E., Rabinovich, M.: Time Constraints in Workow Systems. In:
Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, Springer, Heidelberg
(1999)

Relational Database Migration: A Perspective

Abdelsalam Maatuk, Akhtar Ali, and Nick Rossiter

School of Computing, Engineering & Information Sciences, Northumbria University,
Newcastle upon Tyne, UK

Abstract. This paper presents an investigation into approaches and
techniques used for database conversion. Constructing object views on
top of a Relational DataBase (RDB), simple database integration and
database migration are among these approaches. We present a categori-
sation of selected works proposed in the literature and translation tech-
niques used for the problem of database conversion, concentrating on mi-
grating an RDB as source into object-based and XML databases as tar-
gets. Database migration from the source into each of the targets is dis-
cussed in detail including semantic enrichment, schema translation and
data conversion. Based on a detailed analysis of the existing literature, we
conclude that an existing RDB can be migrated into object-based/XML
databases according to available database standards. We propose an inte-
grated method for migrating an RDB into object-based/XML databases
using an intermediate Canonical Data Model (CDM), which enriches
the source database’s semantics and captures characteristics of the tar-
get databases. A prototype has been implemented, which successfully
translates CDM into object-oriented (ODMG 3.0 ODL), object-relational
(Oracle 10g) and XML schemas.

1 Introduction

Object-oriented and Web technologies have become mainstream due to their pro-
ductivity, flexibility and extensibility [9,10]. The dominance of traditional RDB
and its limitation to support the benefits provided by these new technologies mo-
tivate its migration into Object-Oriented DataBase (OODB), Object-Relational
DataBase (ORDB) and XML [1,2,11,12]. This paper aims to provide an in-
vestigation into the problem of DataBase Migration (DBM), to review various
techniques and proposals, to identify their differences, and to assess the impact
of existing literature and how it shapes current and future research in this area.
We focus on the case where the input is an RDB and the outputs are OODB,
ORDB and XML. Hence, we do not cover the inverse of the process (e.g., migrat-
ing OODB into RDB). Many proposals exist in the literature for handling data
stored in RDBs through Object-Oriented (OO)/XML interfaces, i.e., Object-
to/from-Relational (OR) and Xml-to/from-Relational (XR) mapping, connect-
ing an existing RDB into non-RDB system that might be conceptually different,
and migrating an RDB into other databases [9,15,8,16,19]. New requirements of
database systems determine which technique is most suitable to adopt.

Database application migration is a process in which all components (i.e.,
schema, data, application programs, queries and update operations) of a source

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 676–683, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relational Database Migration: A Perspective 677

database application are converted into their equivalents in a target database
environment. However, application programs and queries conversion is a soft-
ware engineering job and is, therefore, out of the scope of this paper, i.e., we
assume that DBM includes schema translation and data conversion. A schema
of an existing data model can be translated into an equivalent target schema
expressed in the target data model through applying a set of mapping rules.
The translation of a source schema to a target schema consists of two sub-
phases. The first one, called DataBase Reverse Engineering (DBRE), aims to
recover the conceptual schema, e.g., Entity Relationship Model (ERM), which
expresses explicit and implicit data semantics of the source schema. Explicit se-
mantics involves relation, attributes, keys and data dependencies. It is necessary
to extract extra semantics that are not expressed explicitly in RDBs (e.g., re-
lationships). The second phase, called DataBase Forward Engineering (DBFE),
aims to obtain the target physical schema from the conceptual schema obtained
in the first phase. However, source schema can be translated directly to a tar-
get one without intermediate representation [8]. An expert user or a tool might
be required to provide missing semantics or to refine the result to exploit the
target database concepts [16,8]. Data Conversion is a process of converting data
from the source into the target database. Data stored as tuples in an RDB are
converted into complex objects/literals in object-based databases or elements
in XML document. This involves unloading and restructuring relational data,
and then reloading it into a target database in order to populate the schema
generated earlier during the schema translation process [9].

The remainder of this paper is organised as follows. Section 2 surveys current
approaches and techniques related to database conversion. In Section 3, DBM pro-
posals, the focus of this paper, are discussed in detail. Section 4 concludes the paper.

2 Approaches and Techniques

2.1 Conversion Approaches

There are three approaches related to database conversion. The first approach is
for handling data stored in RDBs through OO/XML interfaces. Connecting an
existing RDB to a conceptually different database system is the second approach.
The third approach is migrating an RDB into a target database. The first and
second approaches deal with schema translation, whereas in the third approach,
both schema and data are completely migrated into a target database.

Viewing Objects on Top of RDBs: Data may be required to be processed in
object/XML form and stored in relational form based on the concept of object
for programs and RDB for persistence. A single object might be represented
by several tuples in several tables, therefore, joining these tables is required for
queries. However, converting these objects to tabular forms to be stored in and
retrieved from RDB systems leads to a semantic gap between two different para-
digms, which is known as the OR impedance mismatch. To avoid this, developers
have to write huge amount of code to map objects in programs into tuples in an

678 A. Maatuk, A. Ali, and N. Rossiter

RDB, which might be time-consuming to write and execute. Another solution
is via using OR mapping middleware, which is a software layer that links OO
Programming Languages (OOPLs) concepts to data stored in RDBs through
ODBC or JDBC drivers. Similarly, RDBs data can be published as XML docu-
ments using special declarative languages to be exchanged over the Web, with
which users see views that can be queried using XML query languages. However,
mapping using middleware requires schema mapping time.

Database Integration: A connection could be established between RDBs and
other databases allowing the applications built on top of new DBMS accessing
both relational and object/XML DBMSs giving an impression that all data are
stored in one database. This presents a simple level of DataBase Integration
(DBI). This is achieved using a special type of software called Gateways, which
support connectivity between DBMSs and do not involve the user in SQL and
RDB schema. Hence, queries and operations are converted into SQL and the
results are translated into target objects. Most commercial DBMSs provide flex-
ibility on gateways construction among heterogeneous databases. The difference
between Gateways and mapping tools is that, in Gateways, objects are persis-
tently stored in the new target database system, whereas in the mapping, objects
are created and handled in the normal way but are stored in an RDB. However,
in both approaches old data, stored in an RDB, is retained.

Database Migration: Migration of an RDB into its equivalents is accomplished
in the literature for two databases. The first database is an RDB, the source,
and the second database, the target, represents the result of DBM process. The
process is performed with or without the help of an Intermediate Conceptual
Representation (ICR), e.g., ERM. The input source schema is enriched seman-
tically and translated into a target schema. Generally, relations and attributes
are translated into equivalent targets. Foreign Keys (FKs) may be replaced by
another domain or relationship attributes. Relationships can be extracted by
analysing data dependencies or database instances. Data stored in the source
database is converted into the target database. FKs realise relationships between
tuples, which are converted into value-based or object identifier references. The
challenge in this process is that data of one relation may be converted into a
collection of literal/references rather than into one corresponding type. This is
because of the heterogeneity between the concepts and structures of source and
target data models.

2.2 Translation Techniques

Existing techniques can be classified into two types: Source-to-Target (ST) and
Source-to-Conceptual-to-Target (SCT).

ST Technique: This type of technique translates a physical source code into
an equivalent target. However, as the target schema is generated using one-step
mapping with no ICR for enrichment, this technique usually results in an ill-
designed database as some of the data semantics are ignored. This approach
could take the following forms:

Relational Database Migration: A Perspective 679

Flat Technique: This technique converts each relation into object class/XML
element in target database [9,16]. FKs are mapped into references to connect
objects. However, the flattened form of RDBs is preserved in the generated
database, with which object-based model features and the hierarchical form of
XML model are not exploited. This means that the target database is seman-
tically weaker and of a poorer quality than the source. Moreover, creating too
many references cause degraded performance during data retrieval.

Clustering Technique: This technique is performed recursively by grouping
entities and relationships together starting from atomic entities to construct
more complex entities until the desired cluster is achieved, which is labelled
with the strong entity name [19]. However, this technique may lead to complex
structures, data redundancy and is prone to error in translation.

Nesting Technique: This technique uses the iterated mechanism of nest oper-
ator to generate a nested target structure from relational inputs [7]. The target
is extracted from the best possible nesting outcome. However, the technique has
some limitations, e.g., mapping each table separately and ignoring integrity con-
straints. Besides, the process is quite expensive, as it needs all tuples of a table
to be scanned repeatedly to get the best possible nesting.

SCT Technique: This type of technique enriches a source schema by seman-
tics that might not have been clearly expressed in it and their interrelationships.
Then, the schema is translated from logical into conceptual through recovering
the domain semantics and making them explicit. Finally, the results are repre-
sented as a conceptual schema, which can be translated into the target effectively.
In this way the technique results in a good well-designed target database. Infer-
ring conceptual schema from a logical RDB schema has been extensively studied
by many researchers based on analysing schema, data and queries. Chiang et al.
presented a method for extracting an Extended ERM (EERM) from an RDB [5]
through derivation and evolution of key-based inclusion dependencies. Alhajj
developed algorithms for identifying candidate keys to locate FKs in an RDB
using data analysis [1]. Andersson extracts a conceptual schema by investigating
equi-join statements [3]. The approach uses a join condition and the distinct
keyword for attribute elimination during key identification.

3 Migrating RBD into OODB/ORDB/XML

This section discusses proposals for migrating RDBs into OODB/ORDB/XML
databases. Table 1 shows a comparison of some proposals showing input, output,
technique used, data semantics, prerequisites and features of DBM process.

Migrating RBD into OODB: Several methods have been proposed for mi-
grating RDBs into OODBs without using an ICR [16,4,8,9]. Premerlani and
Blaha propose a procedure for mapping an RDB schema into an OMT schema
[16]. They produce an initial schema and determine Primary Keys (PKs) and
FKs by resolving synonyms and homonyms. Then, horizontally partitioned
classes are refined, and relationships are identified using keys evaluation. Fahrner

680 A. Maatuk, A. Ali, and N. Rossiter

Table 1. RDB migration (prerequisites, features, input and output databases)

Proposal ST DC Tec Data Semantics Input Prerequisites Features Output
AS AG IN RI OP SA UI OODB ORDB XML

[9]
√ √

ST
√ × √ × × RDB FD,ID,ED × H

√ × ×
[8]

√ × ST
√ √ √ √ √

RDB keys,FD,ID,3NF
√

H
√ × ×

[2]
√ √

SCT
√ √ √ × × RDB keys,DD,Ins × L

√ × ×
[15]

√ × ST
√ √ × × × ERM ERM × H

√ × ×
[16]

√ × ST
√ √ √ × √

RDB keys,non-3NF × H
√ × ×

[4]
√ × ST

√ √ √ × × RDB FD,ID,ED,non-3NF × H
√ × ×

[18]
√ × ST

√ √ × √ √
UML UML class diagram × - × √ ×

[14]
√ × ST

√ √ √ √ √
UML UML class diagram

√
- × √ ×

[10]
√ √

SCT
√ √ √ √ × RDB PKs,FKs

√
L × × √

[12]
√ √

ST
√ × × × × EERM FD,ID

√
H × × √

[6]
√ × SCT

√ √ √ √ × RDB 3NF
√

H × × √
[11]

√ √
SCT

√ √ × × √
RDB FD,MVD,JD,TD

√
L × × √

[7]
√ × ST

√ √ × × √
RDB PKs,FKs

√
H × × √

ST: Schema Translation DC: Data Conversion MVD: Multi-valued Dependency TD: Transitive De-
pendency Ins: Data instances FD: Functional Dependency ED: Exclusion Dependency ID: Inclusion
Dependency JD: Join Dependency UI: User Interaction SA: Standard Adoption L: Low consider-
ation H: High consideration Tec: Technique AS: Association AG: Aggregation IN: Inheritance RI:
Referential Integrity OP: Optimization

√
: Yes ×: No

and Vossen propose a method in which an RDB schema is normalised to 3NF,
enriched by semantics using data dependencies and translated into an ODMG-
93 OODB schema [8]. Moreover, the resulting schema is then restructured (by
the user) with respect to OO paradigm options, e.g., binary relationship rela-
tions are eliminated and integrity constraints are mapped into class methods.
Castellanos et al. present a method that improves an RDB schema semanti-
cally (by analysing the schema and data) and converts it into an object-based
schema, called BLOOM schema [4]. Narasimhan et al. propose a procedure for
mapping an ERM into an OO schema [15]. The approach suggests creating a
separate constraint class as a subclass for each of OODB classes. Yan and Ling
present a method that produces an OODB schema from an RDB using clustering
technique [19]. A cluster of relations is identified from a main relation and its
component/subclass relations, which are not participating in relationships with
other relations. Besides, the method proposes generating OIDs for identified ob-
jects by concatenating the key of each tuple with the relation name. Alhajj and
Polat re-engineer an RDB into an OODB using an RID graph as an ICR [2].
The graph, which is similar to EERM is derived and optimised for identifying
relationships. Finally, RDB tuples are migrated into objects in OODB.

Migrating RDB into ORDB: A number of researchers have considered ex-
ploiting user-defined types in Oracle 8i/9i and SQL3 from conceptual mod-
els [18,14]. The logical structure of an ORDB schema is achieved by creating
object-types using UML, based on which tables are created to store data. Multi-
valued attributes are defined using arrays. An association relationship is mapped
using REF/collection of REFs. An inheritance is defined using FKs or REF types
in Oracle 8i and using the UNDER clause in Oracle 9i/SQL3 [14]. Although most
ORDB concepts are presented in these proposals, they are aimed at producing
an ORDB schema from conceptual models rather than DBM. However, if a DBM

Relational Database Migration: A Perspective 681

process uses a conceptual model as an ICR then these proposals could be useful
in schema translations.

Migrating RDB into XML: Fong and Cheung introduce a method, in which
data semantics are extracted from an RDB into an EERM, which is then mapped
into an XSD graph. An XML logical schema is extracted from the XSD graph [10].
The authors suggest mapping FKs into element hierarchy, which may cause redun-
dancy when an element has a relationship with more than one element. Kleiner
and Lipeck translate an ERM to DTD [12]. However, some data semantics cannot
be represented, e.g., the limitation of DTD in specifying composite keys. Vela and
Marcos propose an approach for extending UML to represent an XML Schema in
graphical notation, which has a unique equivalence with XML Schema [20]. Du et
al. propose translation rules for converting an enriched RDB schema into a semi-
structured model, called ORA-SS, which is then translated into XML Schema [6].
However, they adopt an exceptionally deep clustering technique, which is prone
to errors. Fong et al. propose a procedure to translate RDB views into XML doc-
uments [11]. The approach de-normalises an RDB into joined tables and trans-
lates them Document Object Models (DOMs), which are integrated into one DOM,
which is then mapped into an DTD schema. Based on the generated DTD schema
and data dependencies, each tuple of the joined tables is loaded into an instance in
DOM and then transformed into an DTD document. Lee et al. present two algo-
rithms, called NeT and CoT, to translate an RDB schema to DTD using a language
named XSchema [7]. The CoT algorithm is proposed to remedy the drawbacks of
NeT, e.g., the mapping of each table separately and not taking into account in-
tegrity constraints.

4 Discussion

In this paper, we have presented a survey of existing approaches and techniques
used for database conversion. Our investigation into DBM problem shows that
different proposals have different focuses. Each proposal has some assumptions to
facilitate the process, which might be a point of limitations or a drawback. While
existing works for migrating into OODBs focus on schema translation using
ST techniques, we note that most works for migrating to XML are following
SCT techniques, focusing on generating a DTD schema and data. Moreover,
all researches on the generation of ORDBs are focused on design rather than
migration. It could be concluded, based on our analysis of the literature, that
there are several areas in need of more attention for migrating RDBs to object-
based/XML databases.

Due to focusing on schema rather than data, proposals either ignore data
loading or assume working on virtual target databases and data remain stored
in RDBs. Moreover, there are still shortcomings in implementation of loading
an RDB data to more than one environment. Using middleware may lead to
slow performance making the process expensive at run-time because of dynamic
mapping of tuples to complex objects. However, using object-based DBMSs and

682 A. Maatuk, A. Ali, and N. Rossiter

native-XML, objects can be stored and retrieved directly without any need for
translation layers, hence saving development time and improving performance.

Some semantics (e.g., inheritance) have not been considered during DBM. ERM
and DTD do not support inheritance. Despite UML’s ability to model data seman-
tics such as aggregation and inheritance, UML is still weak to handle the hierarchi-
cal structure of the XML data model [10]. UML should be extended by adding new
stereotypes to specify ORDB and XML models features [14,20]. Although gener-
alization/specialzation and categorization could be realized in an RDB, they have
been either ignored or briefly mentioned without delving into its different types,
e.g., union and multiple inheritance, and its constraints. Translating inheritance
relationships from RDBs to object-based/XML databases needs more attention.
Standard adoption is essential for more portability and flexibility. In the ODMG
3.0 model, referential integrity is maintained via inverse references. SQL4 has an
ability to address complex objects in ORDBs. Compared to DTD, XML Schema
offers a much more extensive set of data types, and provides a powerful referencing,
nesting and inheritance mechanisms of attributes and elements.

Most of the existing proposals and techniques generate a database that is
either flat relational or has a deep level of clustering/nestng. It would be desirable
to avoid the flattened form and reduce clustering levels of objects structure to the
lowest in order to increase utilisations of advantages that target models provide
and to avoid undesirable redundancy. This requires preservation of semantics of
the source database and relocating them into an ICR, which takes into account
the relatively richer data model of the target database.

The Way Forward: The existing work does not provide a solution for more
than one target database or for either schema or data conversion. Besides, none
of the existing proposals can be considered as a method for migrating an RDB
into an ORDB. Several challenges could arise when a DBM process aims at
several target databases, which are fundamentally different and have different
design characteristics. An integrated method, which deals with migration from
RDB to OODB/ORDB/XML covering both schema and data is not yet in exis-
tence. We propose a complete method [13], which is able to preserve the structure
and semantics of an existing RDB in a CDM, to generate OODB/ORDB/XML
schemas, and to find an effective way to load data into target databases without
lose or unnecessary redundancies. The method is superior to the existing pro-
posals as it can produce three different output databases. Besides, the method
exploits the range of powerful features that target data models provide such as
ODMG 3.0, SQL4, and XML Schema. A system architecture is designed and a
prototype has been implemented, which resulted successfully in target databases.

References

1. Alhajj, R.: Extracting the Extended Entity-Relationship Model from a Legacy
Relationals Database. Info. Syst. 28, 597–618 (2003)

2. Alhajj, R., Polat, F.: Reengineering Relational Databases to Object-Oriented: Con-
structing the Class Hierarchy and Migrating the Data. In: WCRE 2001, pp. 335–344
(2001)

Relational Database Migration: A Perspective 683

3. Andersson, M.: Extracting an Entity Relationship Schema from a Relational Data-
base through Reverse Engineering. In: 13th Int. Conf. on the ER Approach, pp.
403–419 (1994)

4. Castellanos, M., Saltor, F., Garćıa-Solaco, M.: Semantically Enriching Relational
Databases into an Object Oriented Semantic Model. In: Karagiannis, D. (ed.)
DEXA 1994. LNCS, vol. 856, pp. 125–134. Springer, Heidelberg (1994)

5. Chiang, R.H., Barron, T.M., Storey, V.C.: Reverse Engineering of Relational Data-
bases: Extraction of an EER Model from a Relational Database. Data Knowl.
Eng. 12, 107–142 (1994)

6. Du, W., Lee, M., Ling, T.W.: XML Structures for Relational Data. In: WISE (1),
pp. 151–160 (2001)

7. Lee, D., Mani, M., Chiu, F., Chu, W.W.: NeT and CoT: Translating Relational
Schemas to XML Schemas using Semantic Constraints. In: CIKM, pp. 282–291
(2002)

8. Fahrner, C., Vossen, G.: Transforming Relational Database Schemas into Object-
Oriented Schemas according to ODMG 1993. In: Ling, T.-W., Vieille, L., Mendel-
zon, A.O. (eds.) DOOD 1995. LNCS, vol. 1013, pp. 429–446. Springer, Heidelberg
(1995)

9. Fong, J.: Converting Relational to Object-Oriented Databases. SIGMOD
Record 26, 53–58 (1997)

10. Fong, J., Cheung, S.K.: Translating Relational Schema into XML Schema Defin-
ition with Data Semantic Preservation and XSD Graph. Info. & Soft. Tech. 47,
437–462 (2005)

11. Fong, J., Wong, H.K., Cheng, Z.: Converting Relational Database into XML Doc-
uments with DOM. Info. & Soft. Tech. 45, 335–355 (2003)

12. Kleiner, C., Lipeck, U.W.: Automatic Generation of XML DTDs from Conceptual
Database Schemas. GI Jahrestagung (1), 396–405 (2001)

13. Maatuk, A., Ali, A., Rossiter, N.: A Framework for Relational Database Migration.
TR (2008), http://computing.unn.ac.uk/staff/cgma2/papers/RDBM.pdf

14. Marcos, E., Vela, B., Cavero, J.M.: A Methodological Approach for Object-
Relational Database Design using UML. Soft. and Syst. Modeling 2, 59–75 (2003)

15. Narasimhan, B., Navathe, S.B., Jayaraman, S.: On Mapping ER Models into OO
Schemas. In: 12th int. Conf. on the Entity-Relationship Approach, vol. 823, pp.
402–413 (1993)

16. Premerlani, W.J., Blaha, M.R.: An Approach for Reverse Engineering of Relational
Databases. Communications of the ACM 37, 42–49 (1994)

17. Soutou, C.: Inference of Aggregate Relationships through Database Reverse Engi-
neering. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp.
135–149. Springer, Heidelberg (1998)

18. Urban, S.D., Dietrich, S.W., Tapia, P.: Succeeding with Object Databases: Map-
ping UML Diagrams to Object-Relational Schemas in Oracle 8, pp. 29–51. John
Wiley and Sons, Ltd, Chichester (2001)

19. Yan, L., Ling, T.W.: Translating Relational Schema with Constraints into OODB
Schema. In: The IFIP WG 2.6 Database Semantics Conf. on Interoperable Data-
base Systems, vol. A-25, pp. 69–85 (1993)

20. Vela, B., Marcos, E.: Extending UML to Represent XML Schemas. In: CAiSE
Short Paper Proceedings (2003)

21. Zhang, X., Zhang, Y., Fong, J., Jia, X.: Transforming RDB Schema to Well-
structured OODB Schema. Info. & Soft. Tech. 41, 275–281 (1999)

http://computing.unn.ac.uk/staff/cgma2/papers/RDBM.pdf

DB-FSG: An SQL-Based Approach for Frequent

Subgraph Mining�

Sharma Chakravarthy and Subhesh Pradhan

IT Laboratory & Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019

{sharma@cse.uta.edu,subhesh kp}@yahoo.com

Abstract. Mining frequent subgraphs (FSG) is one form of graph min-
ing for which only main memory algorithms exist currently. There are
many applications in social networks, biology, computer networks, chem-
istry and the World Wide Web that require mining of frequent subgraphs.
The focus of this paper is to apply relational database techniques to
support frequent subgraph mining. Some of the computations, such as
duplicate elimination, canonical labeling, and isomorphism checking are
not straightforward using SQL. The contribution of this paper is to ef-
ficiently map complex computations to relational operators. Unlike the
main memory counter parts of FSG, our approach addresses the most
general graph representation including multiple edges between any two
vertices, bi-directional edges, and cycles. Experimental evaluation of the
proposed approach is also presented in the paper.

1 Introduction

Frequent subgraphs (FSG) is one form of graph mining. However, for FSG min-
ing there currently exist only main memory algorithms [4]. There are many
applications in social networks, biology, computer networks, chemistry and the
World Wide Web that require mining of frequent subgraphs over large data sets.
These main memory algorithms do not scale very well for large data sets. Hence,
there is a need for developing scalable algorithms for frequent subgraph mining.
An SQL-based approach [9,5] is one way of doing that by exploiting the buffer
management and optimization techniques already provided and fine tuned in a
RDBMS. However, applying limited representation and computations provided
by a RDBMS for graph mining is not trivial. Representation of a graph, gener-
ation of larger subgraphs, checking for exact and inexact matches of subgraphs
using relational representation and operators is one of the contributions of this
paper.

The remainder of the paper is organized as follows. The different graph mining
algorithms that motivated the development of a SQL-based approach for frequent
subgraph mining is discussed in section 2. An overview of DB-FSG algorithm

� This work was supported, in part, by Air Force grant F30602-01-2-0570 and NSF
(grants EIA-0216500, IIS-0326505, MRI 0421282, and IIS 0534611).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 684–692, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining 685

for FSG is provided in section 3. The design issues related to DB-FSG algorithm
is detailed in section 4. Experimental results are discussed in section 5. Finally,
conclusions and future work are discussed in section 6.

2 Related Work

Subdue [2] is one of the earliest graph mining algorithms that detects the best
substructure using the minimum description length principle [8]. It also mines for
interesting concepts, detect anomalies, and similarities between graph structures.
FSG [4] and others [10,3] are main memory algorithms that mine graph sets to
discover frequent subgraphs. FSG uses canonical labeling to determine subgraph
isomorphism. It considers an undirected graph representation without multiple
edges (between two vertices) or cycles. Hence, FSG cannot mine over general
forms of directed graphs, graphs with multiple edges, and cycles. gSpan [11] is
another frequent subgraph mining approach which uses depth first search and
generates lesser candidate items than FSG. The depth-first traversal and book
keeping requires special data structures and is not clear how it can be mapped
using relational operators.

DB-Subdue [1] and HDB-Subdue [6] (SQL-based versions of Subdue) detect
interesting subgraphs that compress a graph (or a forest) maximally using the
minimum description length (or MDL) principle. HDB-Subdue handles multiple
edges, cycles, and hierarchical reduction to deal with a general graph. However,
HDB-Subdue did not support mining over a set of input graphs to discover
frequent subgraphs.

3 Overview of DB-FSG

Normally, graphs are represented as a set of edges and vertices. DB-FSG repre-
sents graphs using two relations: i) a vertex table and ii) an edge table which
store the vertices and the edges of the graph, respectively. For the set of graphs
shown in Figure 1(a), the corresponding vertex and edge tables are shown in
Figures 1(b) and 1(c), respectively. Graph Id (in short GID) attribute in the
tables helps to identify the edges and vertices belonging to the same graph.

(a) Example Graph

Vertex No. Vertex Name Graph Id
1 A 1
2 B 1
3 C 1

1 A 2

2 B 2

3 C 2

4 D 2

1 A 3

2 B 3

3 D 3

(b) Vertex Table

Vertex 1 Vertex 2 Edge Label Graph Id
1 2 AB 1
2 3 BC 1
1 2 AB 2
1 4 AD 2

2 3 BC 2

1 2 AB 3

1 3 AD 3

(c) Edge Table

Fig. 1. Sample Graph and Corresponding Vertex and Edge Table

686 S. Chakravarthy and S. Pradhan

Vertex 1 Vertex 2 Edge No. Edge Label Vertex 1 Name Vertex 2 Name Graph Id
1 2 1 AB A B 1
2 3 2 BC B C 1
1 2 3 AB A B 2
2 3 4 BC B C 2
1 4 5 AD A D 2
1 2 6 AB A B 3
1 3 7 AD A D 3

Fig. 2. Oneedge Table

As the edge table does not contain information about vertex labels, tuples of
edge table cannot represent substructures of size one. Hence, we create a new
relation called oneedge by joining the vertex and the edge tables as shown in
Figure 2. The oneedge table will contain all the instances of substructures of
size one as tuples. For a one-edge substructure, the edge direction is always
from the first vertex to the second vertex. Hence, there are no attributes in the
oneedge table which specify the direction. For a higher edge substructure, we
introduce connectivity attributes to denote the direction of edges between the
vertices of the substructure. The oneedge table is the base table that will be used
for generating higher size substructures. For each edge in the oneedge table, we
assign a unique identifier called the edge number.

We need to systematically generate subgraphs of increasing size in all the
input graphs and obtain the count for the isomorphic substructures across the
graphs. To expand a one-edge substructure to a two-edge substructure, we join
oneedge relation with itself on matching vertices. To ensure that the expansion
is done within the same graph, we impose a constraint that the GID (each graph
has an id termed GID) of both one-edge substructures should be same. We term
the resulting two-edge substructure table as instance 2. In general, substructures
of size i are generated by joining instance (i-1) relation with oneedge relation.
In order to avoid expansion of instances on edges that are already present (re-
member that our approach unlike FSG handles multiple edges and cycles), we
impose the rule that the new edge being added should not have the same edge
number as the edge already present in the substructure instances. In case of
substructures that have two or more edges, we would need attributes to denote
the direction of the edges. The From and To (F and T for short) attributes in
the instance n table serve this purpose. An n-edge substructure is represented
by n+1 vertex numbers, n+1 vertex labels, n edge numbers, n edge labels, and
n From and To pairs. In general, 6n+3 attributes are needed to represent an
n-edge substructure. Though edge numbers are part of every instance n table,
owing to the space constraint, we will be showing it only in sections where they
are necessary.

4 Details Of DB-FSG Approach

DB-FSG algorithm is shown below. Some of the major aspects - new sub-
structure instance representation, unconstrained expansion and pseudo duplicate

DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining 687

elimination, canonical label ordering and frequency counting and substructure
pruning are eleborated further. For a comprehensive description, refer to [7].

Algorithm 1. DB-FSG Algorithm
1: Create oneedge (instance 1) table by joining vertex table and edge table
2: Remove the edges with instance count less than support from the oneedge table
3: for n=2 to MaxSize do
4: Join instance (n-1) with oneedge table to generate instance n
5: Eliminate pseudo duplicates from instance n table
6: Canonically order instance n table on vertex labels
7: Project distinct vertex label, edge label and gid to obtain one instance per substructure for

each graph and store in dist n table.
8: Group dist n table by vertex label and edge label to obtain substructures and its count
9: Retain only the instances of substructure satisfying support and store it in instance n table

10: If there are no instances of substructure satisfying support then stop

11: end for

The algorithm starts by creating one-edge substructure instance by joining
vertex table and edge table as shown in the step 1 of algorithm 1. The oneedge
instances with frequency less than the user specified support value are pruned.
The remaining one edge instances are expanded to two-edge instances and the
two-edged substructure instances having frequency less than the support value
are pruned. As shown in steps 3 to 11 of the algorithm 1, the expansion and
pruning of sub-graphs continues till user specified MaxSize is reached or until the
subgraphs cannot be expanded any further. Due to the unconstrained expansion,
the same substructure may be generated in many ways. Hence, pseudo duplicate
elimination is required to remove such duplicates as mentioned in step 5 of the
algorithm 1. Also, due to unconstrained expansion similar substructure instances
may be generated in different order. Hence, canonical ordering is performed in
step 6 of the algorithm 1 to identify such substructures instances. Similarly, to get
the correct frequency of the substructures, substructure counting and pruning is
done in steps 7, 8 and 9 of the algorithm 1.

DB-FSG [7] represents a substructure as a tuple of a relation. The repeating
vertex number of a cycle or a multiple edge is marked by ‘0’ and the correspond-
ing vertex label is marked by ‘-’, respectively. The marking of repeating vertices
avoids redundant expansion on the same vertex. This form of representation can
represent most general forms of a graph including cycles and multiple edges.

However, this representation is not sufficient to represent a set of graphs.
For example, this representation cannot represent a set of graphs shown in In
DB-FSG, we need to distinguish between graphs in which the same substructure

Fig. 3. DB-FSG graph representation

688 S. Chakravarthy and S. Pradhan

appears. Hence, we have added one more attribute (Graph ID or GID) to denote
which graph a substructure belongs to. Each graph is assigned a unique GID
and all the substructures belonging to same graph will have the same GID. New
substructure instance representation of size two for Figure 3 is shown in table 1.

Table 1. DB-FSG instances

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 GID F1 T1 F2 T2 F3 T3
1 2 3 4 A B C D AB AD CA 1 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 1 1 2 2 3 3 1
1 2 3 4 A B C D AB AD CA 2 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 2 1 2 2 3 3 1
1 2 3 4 A D C D AB AD CA 3 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 3 1 2 2 3 3 1
5 6 7 8 A D C D AB AD CA 3 1 2 3 1 1 4
5 6 7 0 A C D - AD DC CA 3 1 2 2 3 3 1

Unconstrained expansion generates all possible substructures in an arbitrary
graph input. However, this unconstrained expansion also results in the same
instance to be generated in different order (will be termed pseudo duplicates).
In order to identify same instances that grew in different order, we have imple-
mented pseudo duplicate elimination by constructing an edge code that is unique
to an instance. We have introduced a new attribute called ecode in instance n
table. This attribute will store edge code of each instance in the table. Then by
comparing ecodes, we can identify and remove pseudo duplicates more efficiently.
Details can be found in [7].

4.1 Canonical Ordering

In order to identify two similar substructure instances, vertex labels and the
connectivity attributes need to be used (unlike vertex numbers or edge numbers
for pseudo duplicate elimination). If two instances have same vertex labels and
edge directions, then they can be identified as similar (or isomorphic) instances.
In SQL, we can identify similar substructures only if the vertex labels and con-
nectivity map of each tuple is canonically ordered. Since databases do not allow
rearrangement of columns (only rows by using group by and order clauses), to
obtain canonical ordering, we have to transpose the rows of each substructure
into columns, sort and reconstruct them to get the canonical order. To facilitate
construction of canonically ordered instance n table, we introduce an additional
attribute called ID in unordered instance n table. Each instance (tuple) in the
instance n table should have unique ID for which rownum is used as ID value.
Table 2 shows instance 2 table for Fig 3 before canonical ordering.

Owing to the table space constraints, canonical ordering of only the second and
third instance are shown below. We project the vertex numbers and vertex names
from the instance table and insert them row wise into a relation called unsorted as
shown in Fig 4(a). We also include the position in which the vertex occurs in the
original instance. To differentiate between the vertices of different instances, we

DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining 689

Table 2. Before Canonical Ordering

ID V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2
1 1 3 4 A C D AD DC 1 1 3 3 2
2 1 4 3 A D C AD DC 2 1 2 2 3
3 3 4 1 C D A DC AD 3 2 1 3 1

carry the Id value from the instance table onto the unsorted table. Next, we sort
the table on Id and vertex label and insert it into a table called Sorted as shown
in Fig 4(b) with its New attribute pointing to the new position of the vertex
and the attribute Old pointing to the old position of the vertex. Similarly, the

Id V VL Pos
2 1 A 1
2 4 D 2
2 3 C 3
3 3 C 1
3 4 D 2
3 1 A 3

(a) Unsorted Table

Id V VL Old New
2 1 A 1 1
2 4 D 2 2
2 3 C 3 3
3 3 C 1 1
3 4 D 2 2
3 1 A 3 3

(b) Sorted Table

Id EL F T
2 AD 1 2
2 DC 2 3
3 DC 2 1
3 AD 3 1

(c) Old Ext Table

Fig. 4. Canonical Ordering Intermediate Tables

connectivity attributes are also transposed into a table called Old Ext as shown
in Fig 4(c). Since the sorting on vertex numbers has changed its position, we
need to update the connectivity attributes to reflect this change. Therefore, we
do a 3 way join of Sorted and Old Ext tables on the Old attribute of the Sorted
table to get the updated connectivity attributes which we call New Ext as in
Tab 3. Next, we sort the New Ext table on Id and the attributes F (From vertex)
and T (Terminating vertex). Since, we also need ecode and GID attributes for

Table 3. New Ext

Id EL F T
2 AD 1 3
2 DC 3 2
4 DC 3 2
4 AD 1 3

Table 4. Sorted Ext

Id EL F T
2 AD 1 2
2 DC 3 2
4 AD 1 3
4 DC 3 2

expansion of the instances, the ecode and GID attribute were also transposed to
tables called label ecode n and label GID n. To differentiate between the GID
and ecode of different instances, we carry the Id value from the instance table
onto the respective tables.

Now, we have the ordered vertex as well as connectivity map tables. Hence,
we can do a 2n+3 way join (where n is current substructure size) of n+1 Sorted
tables, label GID n table, label ecode n table and n Sorted Ext tables to recon-
struct the original instance in a canonical order. Table 5 shows the substructures
after canonically ordering vertex numbers and connectivity attributes.

690 S. Chakravarthy and S. Pradhan

Table 5. Instance table - After canonical ordering

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2
1 3 4 A C D AD DC 1 1 3 3 2
1 3 4 A C D AD DC 2 1 3 3 2
1 3 4 A C D AD DC 3 1 3 3 2

(a) Graph with
multiple instances

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2
1 3 4 A C D AD DC 1 1 3 3 2
1 3 4 A C D AD DC 2 1 3 3 2
1 3 4 A C D AD DC 3 1 3 3 2
5 7 8 A C D AD DC 3 1 3 3 2
.

(b) Instance table with multiple instances

Fig. 5. Multiple Instances of same substructure

4.2 Frequency Counting and Substructure Pruning

A graph may have many instances of the same substructure. For example, if we
consider substructure in Fig 5(a), it has two instance in graph 3 of Fig 3. Fig 5(b)
shows the instances of substructure in Fig 5(a). If we count the frequency of the
substructure from the instance table, it will give a count of four. Even though, the
correct frequency count across the graph set is three. Hence, to obtain the correct
frequency of a substructure in the graph set, we need to include only one instance
per substructure within a graph. However, we need to preserve all instances of
a substructure that satisfy the support condition for future expansion. In order
to get one instance per substructure of size n, we project distinct vertex labels,
edge labels, connectivity map and GID and store it into dist n table. Then, a
GROUP BY operation on vertex labels, edge labels and connectivity map in
dist n table will provide the correct frequency of each substructure. Since, the
substructures having less frequency than support value will not contribute to
future expansion, we can store only those substructures that satisfies the support
value in sub fold n table. Then, we can prune the instance n table by removing
instances of substructures that are not in sub fold n table.

5 Experimental Analysis

The experiments were conducted on a Linux machine (running on dual processors
with 2.4 GHz CPU speed and 2 GB memory) of the Distributed and Parallel
Computing Cluster at UTA (DPCC@UTA) using Oracle 10g.

For the comparison of DB-FSG with FSG, we performed experiments on data
sets containing 100K - 300K graphs, with each graph containing 30 to 50 edges
and 30 to 50 vertices. The support value was set to 1% and the maximum
substructure size (MaxSize) was set to 5. When we tried to compare DB-FSG
with FSG, it was observed that FSG was not able to detect all the frequent

DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining 691

patterns in the input graphs and failed to detect all the embedded subgraphs.
Also, FSG does not handle multiple edges and cycles. Hence, the results are not
discussed here. Other main memory FSG systems

Other set of experiments were performed to analyze the performance of the
DB-FSG algorithm for different data sets, for various support values, and for
different types of graphs (that is, simple graph without cycles and multiple edges,
graph with cycles, and graph with multiple edges). Each graph in the data set
has 40 edges and 40 vertices. The data sets are varied from 50K of graphs
(2 million vertices and 2 million edges in the data set) to 300K of graphs (12
million vertices and 12 million edges in the data set). The frequent substructures
embedded in the data set had support value of 3% and 4%. The parameters used
for the set of experiments were MaxSize - 5, Support - 1%. Fig 6(a) gives the

 Time (seconds)
Type

Graph
Simple Cycles Multiple

Edges
50K 391.23 431.74 560.8

100K 1510.4 1516.365 1735.8
150K 2572.61 2313.04 2639.49
200K 3680.08 3233.4 3535.39
250K 4663.78 4387.89 4590.78
300K 5692.28 5297.8 5604.93

(a) Performance of DB-FSG on different
graphs

 Time (seconds)
Graph

Support
100K 200K 300K

1% 1892.89 3912.11 6088.9
3% 1679.05 3697.68 5722.07
5% 1516.64 3280.12 5374.15
7% 1064.64 2224.03 4323.82

(b) Performance of DB-FSG for varying
support

Fig. 6. Summary of Experiments

processing time required by DB-FSG on data sets containing graphs without
cycles and multiple edges, graphs with cycles and graphs with multiple edges.
The experimental results showed that the processing time of algorithm increases
linearly as the size of the data set grows. The number of substructures instances
discovered in data set containing graph with cycles are lesser than the graphs
without cycles and graphs with multiple edges. Hence, the processing time of the
data sets containing cycles was less than the graphs without cycles and graphs
with multiple edges.

Then, we conducted experiments to analyze the performance of the algorithm
for varying support value. The frequent substructures embedded in the data sets
had support value of 1%, 3%, 5% and 7%. We varied the support value from 1%
to 7% (keeping the MaxSize as 5) in order to evaluate the performance of the
DB-FSG on those data sets. Figure 6(b) gives shows the relation of support value
with the processing time. The experimental results showed that the processing
time decreased as the support value increased. For greater support value, more
substructures will be pruned in earlier iterations of the algorithm. Hence, less
processing time is required. The number of substructure instances retained for
7% of support value will be lesser than the number of instances retained for
support value of 1% in each expansion iteration. Hence, the processing time for
each steps DB-FSG like substructure expansion, pseudo duplicate elimination,
canonical ordering and substructure counting and pruning will require lesser
time for user defined support value of 7% than for 1%.

692 S. Chakravarthy and S. Pradhan

6 Conclusions

In this paper, for the first time, we have applied relational database approach
for frequent subgraph mining. The graph representation used in this paper can
represent the most general form of graph including graphs with cycles and multi-
ple edges (between two vertices). Our approach addresses all aspects of frequent
subgraph mining – from candidate generation to pseudo duplicate elimination to
canonical ordering – all using standard SQL. Our experimental results show that
this approach is highly scalable for very large data sets whereas main memory
approaches are likely to fail. Currently, we are further optimizing the efficiency
of the algorithm.

References

1. Chakravarthy, S., Beera, R., Balachandran, R.: Database approach to graph min-
ing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI),
vol. 3056, pp. 341–350. Springer, Heidelberg (2004)

2. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Sys-
tems 15(2), 32–41 (2000)

3. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from
graphs: Mining graph data. Mach. Learn. 50(3) (2003)

4. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM 2001: Proc. of
the 2001 IEEE International Conference on Data Mining, Washington, DC, USA,
pp. 313–320. IEEE Computer Society, Los Alamitos (2001)

5. Mishra, P., Chakravarthy, S.: Performance evaluation and analysis of k-way join
variants for association rule mining. In: James, A., Younas, M., Lings, B. (eds.)
BNCOD 2003. LNCS, vol. 2712, pp. 95–114. Springer, Heidelberg (2003)

6. Padmanabhan, S.: HDB-Subdue, a relational database approach to graph mining
and hierarchial reduction. Master’s thesis, CSE Dept., U T Arlington (2004)

7. Pradhan, S.: A Relational Database Approach to Frequent Subgraph (FSG)
Mining. Master’s thesis, The University of Texas at Arlington (August 2006),
http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Pra06MS.pdf

8. Rissanen, J.: Stochastic Complexity in Statistical Inquiry Theory. World Scientific
Publishing Co., Singapore (1989)

9. Sarawagi, S., Thomas, S., Agrawal, R.: Integrating mining with relational database
systems: Alternatives and implications. In: SIGMOD Conference, pp. 343–354
(1998)

10. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explor. Newsl. 5(1), 59–68 (2003)

11. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM 2002:
Proc. of the 2002 IEEE Int. Conf. on Data Mining, pp. 721–731 (2002)

http://itlab.uta.edu/ITLABWEB/Students/sharma/theses/Pra06MS.pdf

Efficient Bounds in Finding Aggregate Nearest
Neighbors

Sansarkhuu Namnandorj, Hanxiong Chen, Kazutaka Furuse, and Nobuo Ohbo

Dept.Computer Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305, Japan
{sansar,chx,furuse,ohbo}@dblab.is.tsukuba.ac.jp

Abstract. Developed from Nearest Neighbor (NN) queries, Aggregate Nearest
Neighbor (ANN) queries return the object that minimizes an aggregate distance
function with respect to a set of query points. Because of the multiple query
points, ANN queries are much more complex than NN queries. For optimizing the
query processing and improving the query efficiency, many ANN queries algo-
rithms utilizes pruning strategies, with or without an index structure. Obviously,
the pruning effect highly depends on the tightness of the bound estimation. In this
paper, we figure out a property in vector space and develop some efficient bound
estimations for two most popular types of ANN queries. Based on these bounds,
we design the indexed and non-index ANN algorithms, and conduct experimental
studies. Our algorithms show good performance, especially for high dimensional
queries, for both real dataset and synthetic datasets.

1 Introduction

ANN Queries are novel forms of NN queries. Given two sets of points in spatial
database P and Q, P = {p1, p2, . . . , pN} is the static source dataset and Q = {q1, q2,
. . . , qn} is the query points set. As defined in [1], the aggregate distance between
a data point and query points set Q can be expressed by adist(p, Q) = f(|pq1|, |p
q2|, . . . , |pqn|), where |pqi| is the Euclidean distance between point p and qi. Given
a set P of static points, ANN Queries retrieves the data point p in P having minimal
aggregate distance to Q. For ANN, different function f gives ANN different meaning.
For example, if f is the sum function, then the ANN queries will find the point p with
minimal total aggregate distance to Q. And if f is the max function, then the ANN
query will return the point p which minimizes the maximum distance to the points in
Q. ANN query now is becoming more and more important in many domains, such as
clustering, outlier detection[3], GIS and mobile computing applications[8].

Now NN and ANN problems are reasonably well solved for low dimensional appli-
cations. A wide variety of solutions indexed by spatial access methods (SAM) such as
the R-tree[2] and the R*-tree[9] have been proposed. Though most of them work well in
low dimensional space, many studies have shown that traditional indexing methods fail
in high dimensional space. According to [6], NN search could be meaningless in high
dimensional spaces due to the well-known curse of dimensionality. In order to com-
pute as few distances as possible, some pruning strategies are always used to optimize
the query processing in ANN queries [1,7,8]. Some metrics are utilized to prune the
search space for queries optimization. [10] uses an ellipse to approximate the extent of

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 693–700, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

694 S. Namnandorj et al.

all query points, and the distance or MBR derived from the ellipse is used to prune in-
termediate index nodes during search via the R*-tree. Obviously a tight bound enables
filtering out more data which cannot belong to the answer set. Our task is to find better
bounds for ANN queries.

As defined in [1], there can be many versions of ANN queries by the definition of
aggregate distance, and MQM may be a general solution. However, we believe that
the most useful versions are (weighted) sum ANN query and maximum ANN query.
Some functions can be easily solved instead of using MQM. For example, minimum
ANN query is answered by finding the NN point of each query point and returning the
smallest one among them, in cost of |Q| times that of a single NN query.

In vp-ANN [4], Luo et al proposed two projection-based, non-indexing pruning
strategies for sum ANN query processing. It also assumes that all query points can
fit in main memory and only consider the sum function. Though the efficiency for sum
ANN queries in low dimensional data is not so good as index-based methods, it per-
forms efficiently for high dimensional datasets. However, this method also suffers from
the disadvantage that the bound becomes loose when query points are distributed hence
many data points remain after the filtering phase.

Therefore, we limit to sum ANN and maximum ANN, figure out a more effective
bound and develop efficient algorithms.

2 Efficient sum and maximum ANN Algorithms

In this section, we first give some denotations and the definition of the problem we are
to solve. We then figure out the theoretic tight bounds, based on which our efficient
algorithms are successfully proposed. Given a query object q and a non-negative radius
r, an r-neighbor search (r-N search) of q is to retrieve the objects in the r-neighbor of q,
r-N(q, r) = {p|p ∈ P and d(q, p) < r}. We call this region by r-neighbor region. Due
to space limitation, we omitted the detail implementation of r-N because it is almost
straightforward with spatial index.

Sum ANN Query and Maximum ANN Query: If the aggregate distance of ANN query,
f , is defined as sum function, we call it sum ANN query. Sum ANN query returns the
data object that minimizes sum of distances to each query points. Similarly it is a maxi-
mum ANN query when f is maximum function. Maximum ANN query returns the data
object that minimizes the maximum distance to query points.

The Theoretic Bounds
For an arbitrary point set Q in a vector space, the following property holds.

Lemma 1. Given a point set Q = {q1, q2, ..., qn} ∈ IRd, and let G be the geomet-
ric centroid point of Q. For an arbitrary point X ∈ IRd, if r ≤ |GX |, then r · n ≤
sum(X, Q).

Proof. By the property of vector space, for each point qi in Q:
−→GX = −−→Gqi + −→qiX.

Summing up i, we have n · −→GX =
∑n

i=1

−−→Gqi +
∑n

i=1

−→qiX =
∑n

i=1

−→qiX

Efficient Bounds in Finding Aggregate Nearest Neighbors 695

The last equation holds because
∑n

i=1

−−→Gqi = 0 due to the fact that G is the geometric
centroid of Q. Considering the assumption r ≤ |GX |, finally we have

n · r ≤ n · |GX | =

∣∣∣∣∣
n∑

i=1

−→qiX

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣−→qiX
∣∣∣ = sum(X, Q) (1)

Lemma 2. Given a point set Q = {q1, q2, ..., qn} ∈ IRd, and an arbitrary point X
∈ IRd. If there exists any qi ∈ Q which satisfies 0 ≤ r ≤ |Xqi|, then r ≤ max(X, Q).

Proof.
r ≤ |Xqi| ≤ max (|Xq1| , |Xq2| , ..., |Xqn|) = max(X, Q) (2)

By Lemma 1, we know that given a certain point G then we can find sum ANN only
from within the circle having radius r, centered at G. Similarly, by Lemma 2, we can
find max ANN from the intersection of such circles having radius r, centered at qi.
Utilizing the above properties, we can develop more efficient algorithms for sum and
maximum ANN queries.

r-NQC Method for Sum ANN Query
By using Lemma 1, we can prune a lot of data points from the target of sum ANN
searching as in the algorithm shown in Figure 1.

Algorithm r-NQC(Q: Set of the query points)

/* r = ∞; bestDist = ∞; bestANN = null */
1. G ← the geometric centroid of Q.
2. for each point p in P do
3. if dist(p, G) ≤ r
4. if adist(p,Q) < bestDist
5. bestDist = adist(p,Q); bestANN = p; r = bestDist/n
6. end for
7. return bestANN

Fig. 1. Algorithm of the r-NQC method for sum ANN

In the algorithm r-NQC, any data point fails to satisfy Lemma 1 is discarded imme-
diately(line 3). Otherwise if the aggregate distance of the point is better than best ANN
found so far, then the best ANN and the circle radius r is updated (line 5). In other
words, the condition of Lemma 1 is dynamically updated, which refines the bound.

Indexed r-NQC Method for Sum ANN Query
There is another idea that combines Lemma 1 with index structure to search a highly
desired area and prune the other search space. To make the area as smaller as possible,
it is better to search around a point which has a high probability to be the best ANN
initially. By experience, the nearest neighbor point of the geometric centroid of Q in
dataset (say, vp ∈ P) can be a good choice. Let its average distance to each point of Q
be r, then by Lemma 1, only those points nearer than r can be answer. The best one in
the remaining set is the answer of ANN. If no one satisfies the condition, then vp will be

696 S. Namnandorj et al.

Algorithm indexed r-NQC(Q: Set of the query points)

1. G ← the geometric centroid of Q
2. bestANN = NN(G) // the NN of G as current best candidate
3. bestDist = adist(bestANN,Q); r = bestDist/n
4. R ← r-N(G, r) // r-N search
5. for each point p in set R do
6. if adist(p,Q) < bestDist
7. bestDist = adist(p,Q); bestANN = p
8. return bestANN

Fig. 2. Algorithm of the indexed r-NQC method for sum ANN

the best ANN. The following Figure 2 gives the detail of the algorithm. In the algorithm
indexed r-NQC, NN query and r-N query is called once. If the dataset is indexed, then
many efficient methods proposed for NN queries can be used. By using the idea of the
Branch-and-Bound method ([5]), we can perform both NN and r-N queries efficiently.
If the dataset is indexed (for example, by R-tree), in the algorithm indexed r-NQC, we
can use the r-N method (line 2) and Branch-and-Bound method (line 4).

r-NQP Method for Maximum ANN Query
By Lemma 2, we want to give a proper r and figure out the intersection region, R.
However, checking whether a point is included in R costs the same as calculating its
aggregate distance. One way to reduce the cost for calculate region R is to take the
region R as an intersection of only two regions which are as far away from each other
as possible. Figure 3 shows the algorithm mentioned above. In algorithm r-NQP, the
region R is taken as the intersection of C(q1, r) and C(q2, r) where q1 and q2 are far
away from each other (line 1 and 2), and r is dynamically updated while checking data
points.

Indexed r-NQP for Maximum ANN Query
To utilize index structures in r-NQP, similarly to indexed r-NQC, we need to find a vp
corresponding to Lemma 2. This time, the data point nearest to the center of the MBR

Algorithm r-NQP(Q: query point set)

/* r = ∞; bestDist = ∞; bestANN = null; q0 is a random element of Q */
1. point q1 ← the farthest point from q0 in Q.
2. point q2 ← the farthest point from q1 in Q.
3. for each point p in P do
4. if dist(p, q1) < r and dist(p, q2) < r
5. if adist(p,Q) < bestDist
6. bestANN = p; bestDist = adist(p,Q); r = bestDist
7. end for
8. return bestANN

Fig. 3. Algorithm of the r-NQP method for max ANN

Efficient Bounds in Finding Aggregate Nearest Neighbors 697

Algorithm indexed r-NQP(Q: query point set)

1. calculate point G as the center of MBR of Q
2. bestANN =NN(G) // nearest neighbor of G
3. bestDist = adist(bestANN,Q); r = bestDist
4. point q1 ← the farthest point from bestANN in Q.
5. point q2 ← the farthest point from q1 in Q.
6. set C1 =r-N(q1, r); and C2 =r-N(q2, r);
7. set R = C1 ∩ C2 // intersection of C1 and C2

8. for each point p in set R do
9. if adist(p,Q) < bestDist
10. bestDist = adist(p,Q); bestANN = p
11. end for
12. return bestANN

Fig. 4. Algorithm of the indexed r-NQP method for max ANN

of Q is a good choice. This is because, if the aggregate distance is defined as maximum
function, then the aggregate centroid of Q will be the center of MBC1 of Q. Calculating
the center of MBC costs order of n2. But calculating the center of MBR costs only order
of n, and it is near from the center of MBC in many cases.

Now it is ready to utilize R-tree structure to build the r-NQC method as shown in
Figure 4.

3 Experiments

All the experiments are run with Intel Pentium(R) 4 CPU 2.33GHz PC, 1GB main
memory. The query set is memory-resident, and the dataset is indexed by R-tree for
MBM, indexed r-NQC and indexed r-NQP. We used workloads of 40 queries. The query
points were generated randomly in the workspace of P , and distributed uniformly in a
MBR of Q. We compare the CPU cost of our methods against MBM and Projection-
Based method, studying the following cases of variation. That is, area of MBR M of
Q, query set size n, and number of dimension of both synthetic and real dataset P . The
synthetic high dimension datasets have 100,000 uniform points generated randomly in
[0 , 1]. The real dataset (68,040 points, 9-dimensional) is the image features extracted
from the Corel image collection available at http://kdd.ics.uci.edu/.

First, we study the effect of query size n, fixing the ratio of query range over the data
range, M , to 0.08 in 2-dimensional dataset. In Figure 5(a), the CPU costs of MBM,
r-NQC and indexed r-NQC increase similarly as well, but the CPU cost of Projection-
Based increases rapidly with increasing of n. This is because the candidate region of
Projection-Based includes many data points, and has to calculate so many aggregate
distances. Calculating aggregate distance costs order of n. For other methods, their can-
didate points number are affected by n slightly, that is, the influence of n is smaller than
Projection-Based. As in Figure 5(b), the CPU costs of r-NQP and indexed r-NQP are
almost constant. Because while the M is fix, the largest distance between query points

1 Minimum Bounding Circle: the smallest circle covering Q.

698 S. Namnandorj et al.

Fig. 5. CPU Cost vs Query Size (Dimension=2, MBR of Query=0.08)

Fig. 6. CPU Cost vs Dimension (Query size=64, MBR of Query=0.16)

is constant, therefore, area of candidate region (C(q1, r) ∩ C(q2, r)) will be constant,
too.

In order to measure the effect of dimensionality of dataset, we set n = 64 and
M = 0.16 as shown in Figure 6. Figure 6(a) shows that the CPU cost of r-NQC is
constantly low with increasing the number of dimensions. If the number of dimensions
is small, indexed r-NQC is fastest, but for high dimensional dataset indexed r-NQC gets
slowly due to the NN search and r-N search on R-tree. It shows that using R-tree for
NN or r-N searching on high-dimensional dataset is meaningless. But indexed r-NQC
improves the problem with high-dimensional datasets as an index-based method. In
Figure 6(b), there are same result as Figure 6(a). Non-index method r-NQP is constantly
fast for any dimensional dataset, and index-based methods MBM and indexed r-NQP
increase their CPU costs with increasing of the number of dimension, especially MBM
increases more sharply.

The experimental result on real dataset is shown in Figure 7 for sum and Figure 8
for max. As shown in the figures, our methods outperforms MBM method in almost all

Efficient Bounds in Finding Aggregate Nearest Neighbors 699

Fig. 7. CPU Cost vs MBR of Query for sum. Query sizes n are (a):4, (b):64, and (c):1024

Fig. 8. CPU Cost vs MBR of Query for max. Query sizes n are (a):4, (b):64, and (c):1024

cases. When the query size n is small, their CPU costs are similarly low, but when n
increases, the CPU cost of MBM increases much rapider with increasing of M . In con-
trast, our methods, especially indexed r-NQP for maximum ANN queries only increases
slightly when n becomes larger.

4 Conclusion

ANN Queries are the extension of NN queries but are more complex because of multiple
query points. Based on the coordinate space, we consider the most popular cases of sum
function and maximum function in ANN queries. Assuming that Q is memory-resident
we described and analyzed r-NQC method for sum ANN queries and r-NQP method
for maximum ANN queries, and compared them with index-based method MBM and
non-index method Projection-Based. Our strategy finds the proper search region and
enables efficient pruning of irrelevant ones. The experimental results demonstrate that
the methods we proposed perform as good as the index-based method MBM in low

700 S. Namnandorj et al.

dimensional datasets. In high dimensional space, our methods perform much better than
other methods. Our non-index methods improved the problems of non-index methods
which have been proposed so far. Moreover, we improved the problems of index-based
methods by utilizing the spatial index structure R-tree. In the future, we intend to explore
the case of other ANN functions to give a general solution. Also, theoretical analysis
on the pruning effect of the new bound against various distributions and dimensionality
of data, is under going.

References

1. Papadias, D., Tao, I., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial
datasets. ACM Trans. Database Syst. 30(2), 529–576 (2005)

2. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD 1984,
pp. 47–57 (1984)

3. Aggarwal, C.C., Yu, P.S.: Outlier Detection for High Dimensional Data. In: SIGMOD 2001,
pp. 37–46 (2001)

4. Luo, Y., Chen, H., Furuse, K., Ohbo, N.: Efficient Methods in Finding Aggregate Nearest
Neighbor by Projection-Based Filtering. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007,
Part III. LNCS, vol. 4707, pp. 821–833. Springer, Heidelberg (2007)

5. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD 1995, pp.
71–79 (1995)

6. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is Nearest Neighbors Meaning-
ful? In: Proc. of the Int. Conf. Database Theories, pp. 217–235 (1999)

7. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group Nearest Neighbor Queries. In: ICDE
2004, pp. 301–312 (2004)

8. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate Nearest Neighbor Queries in Road Net-
works. IEEE TKDE 17(6), 820–833 (2005)

9. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD 1990, pp. 322–331 (1990)

10. Li, H., Lu, H., Huang, B., Huang, Z.: Two ellipse-based pruning methods for group nearest
neighbor queries. In: GIS, pp. 192–199 (2005)

A Grid-Based Multi-relational Approach to

Process Mining

Antonio Turi, Annalisa Appice, Michelangelo Ceci, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{turi,appice,ceci,malerba}@di.uniba.it

Abstract. Industrial, scientific, and commercial applications use infor-
mation systems to trace the execution of a business process. Relevant
events are registered in massive logs and process mining techniques are
used to automatically discover knowledge that reveals the execution and
organization of the process instances (cases). In this paper, we investigate
the use of a multi-level relational frequent pattern discovery method as a
means of process mining. In order to process such massive logs we resort
to a Grid-based implementation of the knowledge discovery algorithm
that distributes the computation on several nodes of a Grid platform.
Experiments are performed on real event logs.

1 Introduction

Many information systems, such as Workflow Management Systems, ERP sys-
tems, Business-to-business systems and Firewall systems trace behavior of run-
ning processes by registering relevant events in massive logs. Events are described
in a structured form that includes properties of cases and activities. A case rep-
resents the process instance which is being handled, while an activity represents
the operation on the case. Information on timestamp and on the person execut-
ing the event (performer) is available in the logs. Both activities and performers
may belong to different categories. Event logs are stored in multi-terabyte ware-
houses and sophisticated data mining techniques are required to process this
huge amount of data and extract knowledge concerning the execution and orga-
nization of the recorded processes. This huge amount of data is the main concern
of research in process mining whose aim is to discover a description or prediction
of real process, control, organizational, and social structures [10].

Process mining poses several challenges to the traditional data mining tasks.
In fact, data stored in event logs describe objects of different type (cases, ac-
tivities and performers) which are naturally modeled as several relational data
tables, one for each object type. Foreign key constraints express the relations
between these objects. This (relational) data representation makes necessary
distinguishing between the reference objects of analysis (cases) and other task-
relevant objects (activities and performers), and to represent their interactions.
Another challenge is represented by the temporal autocorrelation. Events are
temporally related according to a timestamp. This means that the effect of a

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 701–709, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

702 A. Turi et al.

property at any event may not be limited to the specific event. Furthermore, ac-
tivities and performers are generally organized in hierarchies of categories (e.g.
the performer of operations on a text file can be a writer or a reader). By de-
scending or ascending through a hierarchy, it is possible to view the same object
at different levels of abstraction (or granularity). Finally, reasoning is the process
by which information about objects and their relations (e.g. operator of indirect
successor) are used to arrive at valid conclusions regarding the object relations
[7]. This source of knowledge cannot be ignored in the search.

Currently, many algorithms [2,1,11,3] have dealt with several of these chal-
lenges and some of them are integrated into the ProM framework [12]. Any-
way, to the best of our knowledge, methods of process mining neither support
a multi-level analysis nor use inferential mechanisms defined within a reasoning
theory. Conversely, the multi-relational data mining method SPADA [5] offers
a sufficiently complete solution to all the challenges posed by the process min-
ing tasks in descriptive case. However, SPADA is not applicable in practice.
Indeed, frequent pattern discovery is a very complex task, particularly in the
multi-relational case [5]. In addition SPADA, similarly to most of the multi-
relational data mining algorithms, operates with data in main memory, hence it
is not appropriate for processing massive logs. Advantages of the multi-relational
approach in facing the challenges of the process mining justify the attempt of
resorting to the computational power of distributed high-performance environ-
ments (e.g., computational Grids [4]) to mitigate the complexity of the relational
frequent pattern discovery on massive event logs.

In this paper, we present G-SPADA, an extension of SPADA, which discovers
approximate multi-level relational frequent patterns by distributing exact com-
putation of locally frequent multi-level relational patterns on a computational
Grid and then by post-processing local patterns in order to approximate the set
of the globally frequent patterns as well as their supports. Distributing relational
frequent pattern discovery on a Grid poses several issues. Firstly, relational data
must be divided in data subsets and each subset has to be distributed on the
Grid. Split must take into account relational structure of data, that is, each data
split must includes a subset of reference objects and the task-relevant objects to
reconstruct all interactions between them. Secondly, it is necessary a framework
for building the Grid applications utilizing the power of distributed computation
and storage resources across the Internet. Finally, processing local patterns to
approximate global ones requires a way of combining distinct sets of patterns
into a single one and obtaining an estimate of the global support.

2 Multi-level Relational Frequent Pattern Discovery

The multi-level relational pattern discovery task is formally defined as follows:
Given: a set S of reference objects, some sets Rk, 1 ≤ k ≤ m of task-relevant ob-
jects, a background knowledge BK which includes hierarchies Hk on the objects
in Rk and domain knowledge in form of rules, a deductive database D that is
formed by an extensional (DE) part where properties and relations of reference

A Grid-Based Multi-relational Approach to Process Mining 703

objects and task-relevant objects are expressed in derived ground predicates and
an intensional part (DI) where domain knowledge in BK is expressed in form
of rules, M granularity levels in the descriptions (1 for the highest), a set of
granularity ψk which associate each object in Hk with a granularity level to deal
with several hierarchies at once, a threshold minsup[l] for each granularity level
l (1 ≤ l ≤ M), Find, for each granularity level l, the frequent1 relational patterns
which involve properties and relations of task relevant-objects at level l of Hk .

The relational formalization of the task of frequent pattern discovery is based
on the idea that each unit of analysis (or example) D[s] includes a reference
object s ∈ S and all the task-relevant objects of Rk which are (directly or
indirectly) related to s according to some foreign key path in D. The frequency
(support) of a pattern is based on the number of units of analysis, i.e., reference
objects, covered by the pattern. An example of relational pattern is:

Example 1. Let DE be the extensional database described in Example 1. A
possible relational pattern P1 on D is in the form:

P1: case(A), activity(A,B), is a(B,activity), before(B,C), is a(C,activity),
description(C,workinprogress), user(B, D), is a(D, performer) [72.25%]

P1 expresses the fact that a process A is formed by two sequential activities,
namely B and C, the performer of B is generic. The support is 72.5%.

By taking into account hierarchies on task-relevant objects, relational patterns
can be discovered at multiple level of granularity.

Example 2. Let us consider two level hierarchies defined on performers and ac-
tivities defined in the followings:

administrator, user → performer ; namemaker, delete, workflow → activity
P2 is a finer-grained relational pattern than P1 obtained by descending one level
in hierarchies. P2 is in the form:
P2: case(A), activity(A,B), is a(B,namemaker), before(B,C), is a(C,workflow),

description(C,workinprogress), is a(D, administrator) [62.5%]
P2 provides better insight than P1 on the nature of B, C and D.

In SPADA [5], multi-level relational frequent patterns are discovered according
to the levelwise method [6] that is based on a breadth-first search in the lattice
of patterns spanned by θ-subsumption [8] generality order (.θ).

3 G-SPADA

Similarly to Partition [9], G-SPADA splits a dataset into several partitions to
be processed independently. It approximates the multi-level relational frequent
pattern discovery by means of a three stepped strategy. In the first step, the set
of original N reference objects is partitioned into n approximately equally-sized
subsets (n << N). Each partition includes a subset of the reference objects
and the set of task-relevant objects. In the second step, the frequent pattern
1 With support greater than minsup[l].

704 A. Turi et al.

computation is parallelized and distributed on n nodes of a Grid platform, one
node for each partition. In this way, G-SPADA generates n parallel executions
of SPADA at the same time and retrieves local patterns which are frequent in
at least one of the data partition. In the third step, G-SPADA approximates the
set of globally frequent patterns by merging patterns discovered at the nodes.

The basic idea in approximating the global patterns is that each globally fre-
quent pattern must be locally frequent in at least k partitions of the original
dataset. In the case k is set to 1, this guarantees that the union of all local
solutions is a superset of the global solution. However, a merge step with k = 1
may generate several false positives, i.e. patterns that result locally frequent but
globally infrequent. Hence, value of k should be adequately tuned between 1 and
n in order to find the best trade-off between false positive and false negative fre-
quent patterns. The merge step also attempts to approximate values of support
for the global patterns starting from the local values of support.

3.1 Relational Data Partitioning

G-SPADA pre-processes the deductive database of logs and completes the de-
scription explicitly provided for each example (DE) with the information that is
implicit in the domain knowledge (DI). An example of this saturation step is:

Example 3. Let us consider the deductive database:
case(c1). case(c2). activity(c1,a1). activity(c1,a2). activity(c1,a3). activ-
ity(c2,a4). time(a1,10). time(a2,25). time(a3,29). time(a4,13). descrip-
tion(a1,create). ...
before(A,B):-activity(C, A1),activity(C, A2), time(A1,T1), A1= A2,
time(A2,T2), T1<T2, not(activity(C, A), A = A1, A = A2, time(A,T),
T1<T, T<T2).
By performing the saturation step, the following predicates are made explicit in
the database: before(a1,a2). before(a2,a3).

Saturation precedes data partitioning. In this way, redundant inferences are
prevented for properties and relations of task-relevant objects shared from two
or more reference objects belonging to different data partitions.

Data partitioning is performed by randomly splitting the set of reference ob-
jects in n approximately equal-sized partitions such that the union of the par-
titions is the entire set of reference objects. These data partitions are enriched
by adding the ground predicates which describe properties and relations of the
reference objects falling in the partition at hand. Subsequently, properties and
relations of task-relevant objects related to reference objects according to some
foreign key path are also added to the partition.

3.2 Distributing Computation on Grid

Each dataset partition is shipped along with the G-SPADA pattern discovery
algorithm to computation nodes on Grid using gLite2 middleware. This is done
2 gLite (http://glite.web.cern.ch/glite/) is a next generation middleware for Grid com-

puting which provides a framework for building Grid applications.

A Grid-Based Multi-relational Approach to Process Mining 705

by submitting parametric jobs described in JDL (Job Description Language)
through the CLI (command line interface). Submission of jobs on Grid are di-
vided in several steps: (i) Authenticate on a UI (user interface) through PKI
based authentication system with proxy credentials (GSI); (ii) Prepare the jobs
(JDL, shell script to automate procedure, input file); (iii) Upload (Stage-in)
a set of dataset; (iv) Submit a relative parametric job; (v) Check/wait results;
(vi) Finally, once the job is executed on Grid, we get the output (Stage-out) files
containing the frequent pattern sets along with their support for each sample.

3.3 Computing Approximate Global Frequent Patterns

The n sets of local frequent patterns are collected from the computation nodes
of the Grid platform and then merged to approximate the set of global patterns.

For each local pattern discovered in at least k data partitions (1 ≤ k ≤ n), G-
SPADA derives an approximate of the global support by averaging the support
values collected on the partitions where the pattern is found to be frequent. The
check that the same local pattern occurs in different partitions is based on an
equivalence test between two patterns under θ-subsumption, which corresponds
to performing a double θ-subsumption test (P .θ Q and Q .θ P). Local pat-
terns occurring in less than k partitions are filtered out. The global frequent
patterns obtained following this merge procedure approximate the original fre-
quent patterns which can be possibly mined on the entire dataset.

An example of approximate global process pattern is:
case(A), activity(A,B), is a(B,namemaker), before(B,C), is a(C,workflow),

description(C,workinprogress) [7, 72.5%]
which describes the order of execution between two activities, namely B and C,
in the process A. B is a name-maker activity while C is a workflow activity. In
addition, C is described as work in progress. 7 means that this pattern is found
in 7 partitions (sample-level support), while 72.5% indicates the macro average
support obtained by averaging the support values computed on the 7 samples.

4 Experimental Results

Experiments are performed by processing event logs provided by THINK3 Inc3

in the context of the TOCAI.It project4. THINK3 is a global player in Cad
and Plm market whose mission is to help manufacturers optimizing their entire
product development processes. G-SPADA is run on the deductive database
that is obtained by boiling down the event logs from January 1st to February
28th, 2006 and considering as domain knowledge the definition of the “before”
predicate. In the experiments, each case (process instance) traced in the logs
is considered as a whole and multi-level relational patterns are discovered from
traced business processes. These patterns capture the possible relation between
the order of activities and the properties of their performers.
3 http://www.think3.com/en/default.aspx
4 http://www.dis.uniroma1.it/∼tocai/index.php

706 A. Turi et al.

activity [59578] performer [73]
+ − − workflow [52929] + − − administrator [3]
| + −− o1,o2,o4,o5,o7,... | + −− mueller,cma,admin
+ − − namemaker [6689] + − − user [70]
| + −− o0,o3,o6,o9,o11,o14,... | + −− altendorfer,amaeder,andrea,...
+ − − deleteEnt [230]
| + −− o392,o439,o476, ...
+ − − prpDelete [122]
| + −− o11828,o11829,o11830,...
+ − − prpModify [1]
| + −− o54318
+ − − cast [7]

+ −− o1609,o1672,o1673,o8299,o8300,...

Fig. 1. Three-level hierarchies on activity and performer

4.1 Data Description

Data trace the behavior of 21,256 instances of a business process recorded in
the period under analysis. A case is traced by registering its events. Each event
describes the activity executed within a case and the activity performer. The
activities correspond to six tasks (or classes of operations), that is, workflow,
namemaker, deleteEnt, prpDelete, prpModify and cast while the performers are
the category of person (or system) executing the activity, that is, user or ad-
ministrator. This corresponds to model activities and performers by means of
three-level hierarchies (see Figure 1). Each hierarchy is mapped into the three
granularity levels thus allowing to deal uniformly with both hierarchies at once.
By descending or ascending through the hierarchy, it is possible to view the same
activity or performer at different levels of granularity.

For each activity, a text description of the operation is registered in the event
logs. This text includes a left part and a right one (“left::right”). The right
part is a characterization of the description of the operation provided in the
left part. Some examples of descriptions registered in the event logs are: cre-
ate::workinprogress, t2f::freigabe, wip2f::freigabe.

Thirty-six distinct descriptions are registered in the logs, but several of them
share the same left or right part: k2f::freigabe, m2f::freigabe , document::doccad,
document::doccad3d. By interpreting this structure, the activity descriptions is
practically boiled down into two predicates, that is:

leftDescription(activity, text). rightDescription(activity, text).
Finally, each performer is described by the belonging group. Twenty two dis-

tinctive groups are registered in the event logs. Performers labeled as users and
administrators can possibly belong to the same group.

4.2 Local and Global Multi-level Relational Patterns Discovery

G-SPADA is run on the event logs including 395,404 ground predicates. Ref-
erence objects are the cases, while task-relevant objects are the activities and
performers. In this way, the description of an activity and of the group of its
performer is not limited to the specific event.

A Grid-Based Multi-relational Approach to Process Mining 707

Table 1. Number of global frequent patterns discovered by varying k in [1,20]

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#P 428 424 412 412 400 372 372 364 356 356 344 344 314 312 312 311 263 259 259 235

Data of the event logs are split into twenty partitions. The discovery of the
local multi-level frequent relational patterns is then distributed on twenty nodes.
The Grid infrastructure is required to process the huge amount of data registered
in the logs. Indeed, SPADA generates a memory exception when running on the
entire dataset. Multi-level relational patterns are discovered at each node with
minsup[l] = 0.2 (l = 1, 2) and max len path = 9 5. Finally, for each level of
granularity, global patterns are approximated from the local ones by varying k
between 1 and 20. The number of discovered global patters are reported in Table
1. Obviously, the number of global patterns decreases by increasing k.

Global patterns provide a compact description of the instances of process
traced in the logs. They provide a multi-level insight of the order of execution
and/or organization of the processes traced in the logs.

At level 1, G-SPADA discovers the global relational pattern P1:

P1: case(A),activity(A,B),before(B,C),user(B,D),is a(B,activity),is a(C,activity),
is a(D,performer),descright(C,release). [k=20, avgSup=63.55%]

P1 captures the execution order between two activities (B and C) within a case
(A). One activity (B) is performed by a generic performer D, while the other
activity (C) is described as a release activity. By descending one level of the
hierarchies, G-SPADA discovers the finer grained global relational pattern P2:
P2: case(A),activity(A,B),before(B,C),user(B,D),is a(B,workflow),

is a(C,workflow),is a(D,user),descright(C,release).[k=20,avgSup=51.43%]
P2 clarifies that the performer C is a user, while B and D are workflow activities.
Support of P2 is reconstructed from the support of P2 on the local partitions,
that is, P2 covers at least 10935 cases registered in the original event logs.

The pattern P3:
P3: case(A),activity(A,B),before(B,C),user(B,D),is a(C,workflow),is a(D,user),

descright(B,construction),descright(C,release). [k=4, avgSup=29.06%]

is a specialization of P2 under θ-substitution which describes B as a construction
activity. Obviously, the support of P3 decreases with respect to the support of
P2, due to the θ−substitution antimonotonicity of support.

Finally, the relational pattern:
P4: case(A), activity(A,B),before(B,C),before(C,D),

is a(B,namemaker), is a(C,workflow), is a(D,workflow),
descleft(C,creation), descleft(D,wip2k) [k=16, avgSup=21.35%]

describes the execution order among three sequential activities, namely B, C
and D. B is a namemaker activity, while C and D are workflow activities. C is
described as a creation activity, while D is described as wip2k operation.

5 max len path is the maximum number of predicates to be included in a pattern.

708 A. Turi et al.

5 Conclusions

In this paper, we present G-SPADA, an extension of the system SPADA, to
discover approximate multi-lever relational frequent patterns in the context
of process mining. G-SPADA exploits a multi-relational approach in order to
deal with both multiple nature of data stored in event logs and temporal au-
tocorrelation. G-SPADA faces the need of processing massive logs by resort-
ing to a grid based architecture. Experiments on the real event logs allow us
to discover interpretable patterns which capture regularities in the execution
of activities and the characteristics of the performers of a business process.
Such patterns can be used to deploy new systems supporting the execution
of business processes or analyzing and improving already enacted business pro-
cesses.

Acknowledgments

This work is in partial fulfillment of the research objectives of “TOCAI.it”
project “Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in
Internet”. The authors wish to thank THINK3 Inc. for providing data.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

2. Cook, J.E., Wolf, A.L.: Software process validation: Quantitatively measuring the
correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol. 8(2),
147–176 (1999)

3. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

4. Li, T., Bollinger, T.: Distributed and parallel data mining on the grid. In: ARCS
Workshops. LNI, vol. 41, pp. 370–379. GI (2004)

5. Lisi, F.A., Malerba, D.: Inducing multi-level association rules from multiple rela-
tions. Machine Learning 55(2), 175–210 (2004)

6. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

7. Michalski, R.S.: A theory and methodology of inductive learning, pp. 323–348
(1993)

8. Plotkin, G.D.: A note on inductive generalization 5, 153–163 (1970)
9. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining as-

sociation rules in large databases. In: VLDB, pp. 432–444 (1995)
10. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., de

Medeiros, A.K.A., Song, M., Verbeek, H.M.W.: Business process mining: An in-
dustrial application. Inf. Syst. 32(5), 713–732 (2007)

A Grid-Based Multi-relational Approach to Process Mining 709

11. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The prom framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

Extraction of Opposite Sentiments in Classified

Free Format Text Reviews

Dong (Haoyuan) Li1, Anne Laurent2, Mathieu Roche2, and Pascal Poncelet1

1 LGI2P - École des Mines d’Alès, Parc Scientifique G. Besse, 30035 Nı̂mes, France
{Haoyuan.Li,Pascal.Poncelet}@ema.fr

2 LIRMM - Université Montpellier II, 161 rue Ada, 34392 Montpellier, France
{laurent,mroche}@lirmm.fr

Abstract. Most of the previous approaches in opinion mining focus on
the classifications of opinion polarities, positive or negative, expressed in
customer reviews. In this paper, we present the problem of extracting
contextual opposite sentiments in classified free format text reviews. We
adapt the sequence data model to text mining with Part-of-Speech tags,
and then we propose a belief-driven approach for extracting contextual
opposite sentiments as unexpected sequences with respect to the opinion
polarity of reviews. We conclude by detailing our experimental results
on free format text movie review data.

1 Introduction

Opinion mining received much attention in finding personal opinions from user gen-
erated contents, such as customer reviews, forums, discussion groups, and blogs,
where most of the previous approaches concentrate on the classifications of opin-
ion polarities, positive or negative, in free format text reviews [9,14,2,16,5,8,15].
Although the positive-negative classifications are determinative, the opposite sen-
timents expressed in classified reviews, within the context of topic, become more
and more interesting for decision making.

For instance, about a notebook computer, a positive review may contain the
sentences like “however the graphics performance is not enough”, or in a negative
review we may also find “anyway this notebook is beautiful”, and such critiques
are important to improve the quality of products. However, even sentence-level
sentiment classifications [2,5,15] extract the sentences that express the opposite
sentiment with the positive-negative connotations different to document-level
opinion polarity, such sentences may be not within the same context of the topic
about the review.

In this paper, we present a belief-driven approach for extracting contextual
opposite sentiments in classified free format text reviews. A training-extracting
process is considered: Given a topic context, first a sequential pattern mining
algorithm is applied to a set of classified training reviews, in order to generate
the contextual models of opinion polarity with respect to current topic. Then,
from such contextual models, a belief base is constructed to represent the opinion

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 710–717, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extraction of Opposite Sentiments in Classified Free Format Text Reviews 711

polarity by using a dictionary of antonyms1 of the adjectives contained in the
contextual models. Finally, the unexpected sequence mining process proposed
in our previous work [7] is performed to the target reviews for extracting all
sentences that contradict the belief base, which stand for the contextual opposite
sentiments.

The rest of this paper is structured as follows. Section 2 introduces the related
work. In Sect. 3 we first formalize the data model, then propose the contextual
models and belief base on sentiment polarities, and then present the process of
extracting contextual opposite sentiments. Section 4 details our experiments on
positive-negative movie-review data. Section 5 is a short conclusion.

2 Related Work

Opinion mining in free format text contents is closely connected with the Natural
Language Processing (NLP) problems, where the positive or negative connota-
tion can be annotated by the subjective terms at document-level [9,14,2,8] or
sentence-level [2,16,5,15].

In [2], a term frequencies based scoring system is proposed for determin-
ing both document- and sentence-level sentiment polarities. The approach pro-
posed in [5] extracts the features of products contained in customer reviews with
positive-negative polarities, which can be considered as a sentence-level opinion
classification. Compared to our approach, [16] proposed a model for classifying
opinion sentences as positive or negative in terms of the main perspective ex-
pressed in the opinion of document, which identifies facts and opinions, and can
be considered as a contextual approach. Another contextual notion, so called
contextual polarity, is proposed in [15], which is determined by the dependency
tree of the structure of sentences; in our approach, we use sequential pattern
mining to determine the frequent structures of contextual models for sentiment
polarity.

Actually, the opinion polarities are often given by the adjectives [3,13]. We
use WordNet [4] for determining the antonyms of adjectives required for con-
structing the belief base, which has been used in many NLP and opinion mining
approaches. For instance, in the proposal of [6], WordNet is also applied for
detecting the semantic orientation of adjectives.

3 Extracting Contextual Opposite Sentiments

3.1 Data Model

We are given a set of free format text reviews that have been already classified
into positive-negative opinion polarities. Each review consists in an ordered list
of sentences, and each sentence consists in an ordered list of words. In order to

1 The antonym dictionary is based on the WordNet project, which can be found at
http://wordnet.princeton.edu/

712 D. (Haoyuan) Li et al.

involve the words in the context of reviews, the Part-of-Speech tag (PoS tag)
introduced in the TreeTagger approach [11] is considered, and a list of such PoS
tags is available in [10]. With respect to this list, we do not consider the difference
between the different tags of the adjectives (J instead of JJ, JJR and JJS), of
the adverbs (R in stead of R, RB, RBR and RBS), of the nouns (N in stead of
N, NN, NNS, NP and NPS), and of the verbs (V in stead of V, VB, VBD, VBG,
VBN, VBP and VBZ).

A word, denoted as w, is a lemma associated with a simplified PoS tag. For
example (be|V) is a word where be is a lemma and V is the base tag standing
for the verbs. Without loss of generality, we use the wild-card ∗ and a simplified
PoS tag for denoting a generalized vocabulary. For example, (∗|V) denotes a
vocabulary that is a verb. Especially, we use (NEG) for denoting the adverb
(not|R), (n′t|R), and other negation expressions, so that by default when we say
the term word, we do not include (NEG).

Let W = {w1, w2, . . . , wn} be a set of a limited number of distinct words, a
clause, denoted as s, is an ordered list of words w1w2 . . . wk. The length of a clause
is the number of words contained in the clause, denoted as |s|. For example,
(film|N)(be|V)(good|J) is a clause with length 3, in the order (film|N) followed
by (be|V) and then followed by (good|J). A word could also be a clause with
length 1 if it is reduced to one lemma and its associated PoS tag. An empty
clause is denoted as ∅, we have s = ∅ ⇐⇒ |s| = 0. The concatenation of clauses
is denoted as the form s1 · s2.

Within the context of mining sequence patterns [1], a word is an item and a
clause is a sequence. Given two clauses s = w1w2 . . . wm and s′ = w′

1w
′
2 . . . w′

n,
if there exist integers 1 ≤ i1 < i2 < . . . < im ≤ n such that wi = w′

ji
for all

wi, then s is a sub-clause of s′, denoted as s � s′. If we have s � s′, we say
that s is contained in s′, or s′ supports s. If clause s is not contained in any
other clauses, then we say that the clause s is maximal. For example, the clause
(film|N)(good|J) is contained in the clause (film|N)(be|V)(good|J), but is not
contained in the clause (be|V)(good|J)(film|N).

A sentence, denoted as S, is a maximal clause that is terminated by one of the
following symbols “: ; . ? !” in the given text reviews. A document, denoted as
D, is an ordered list of sentences. Given a document D, the support or frequency
of a clause s, denoted as σ(s,D), is the total number of sentences S ∈ D that
support s. Given a user specified threshold of support called minimum support,
denoted as min supp, a clause is frequent if σ(s,D) ≥ min supp.

3.2 Contextual Models of Sentiment Polarity

We represent sentiment polarities as rule-format on clauses, that is, sα ⇒ sβ ,
where sα and sβ are two clauses; given a clause s, if we have sα · sβ � s, then we
say that the clause s supports the rule r, denoted as s |= r. We therefore propose
a belief system for formalizing the opposite sentiments expressed in classified
reviews. A belief on clauses, denoted as b, consists of a rule sα ⇒ sβ and a
semantical constraint sβ ∼ sγ , where the clause sγ is semantically contradicts
the clause sβ . We note a belief as b = [sα; sβ ; sγ]. A belief constrains that if the

Extraction of Opposite Sentiments in Classified Free Format Text Reviews 713

clause sα occurs in a clause s, i.e., sα � s, then the clause sβ should occur in s
after sβ , and the clause sγ should not occur in s after sα, that is,

[sα; sβ ; sγ] ⇐⇒ sα � s =⇒ sα · sβ � s ∧ sα · sγ � s.

A clause s that verifies a belief b is expected, denoted as s |= b; that violates
a belief b is unexpected, denoted as s |= b. Given a belief b = [sα; sβ; sγ] and a
clause s such that sα � s, the unexpectedness is considered as:

sα · sβ � s ∧ sα · sγ � s =⇒ s |= b.

Example 1. Given a belief b = [(be|V); (good|J); (bad|J)] and two clauses s1 =
(be|V)(a|DT)(good|J)(film|N), s2 = (be|V)(bad|J)(actor|N), we have s1 |= b
and s2 |= b. �	

Let M+ be the positive sentiment and M− be the negative sentiment, a sen-
timent M ∈ {M+, M−} can be expressed in documents (denoted as D |= M),
sentences (denoted as S |= M), clauses (denoted as s |= M) or vocabularies
(denoted as v |= M). In addition, we denote the negation of a sentiment M as
M , so that we have M+ = M− and M− = M+. The negation is taken into
account in other text-mining applications (for instance for synonym/antonym
extraction process [13]).

Proposition 1. Given a sentiment M ∈ {M+, M−}, if a document D |= M ,
then there exists at least one sentence S ∈ D such that S |= M ; if a sentence
S |= M , then there exists at least one word w � S such that w |= M or at least
one clause (NEG)v � S (or w(NEG) � S) such that w |= M .

We focus on the sentiments expressed by the sentences that contain adjectives
and nouns/verbs, such as “this is a good film”. The sentiment expressed by
sentences like “this film is well produced” is currently not considered in our
approach. Note that we extract basic words relations without the use of syntactic

Contextual Model Sentiment Rule Belief Pattern
J-N model (∗|J) ⇒ (∗|N) [(∗|J); ∅; (∗|N)]

[(NEG)(∗|J); ∅; (∗|N)]

N-J model (∗|N) ⇒ (∗|J) [(∗|N); (∗|J); (∗|J)]
[(∗|N); (∗|J); (NEG)(∗|J)]

V-J model (∗|V) ⇒ (∗|J) [(∗|V); (∗|J); (∗|J)]
[(∗|V); (∗|J); (NEG)(∗|J)]
[(∗|V)(NEG); (∗|J); (∗|J)]

J-V model (∗|J) ⇒ (∗|V) [(∗|J); (∗|V); (∗|V)(NEG)]

NEG-J-N model (NEG)(∗|J) ⇒ (∗|N) [(NEG)(∗|J); ∅; (∗|N)]

N-NEG-J model (∗|N)(NEG) ⇒ (∗|J) [(∗|N)(NEG); (∗|J); (∗|J)]

V-NEG-J model (∗|V)(NEG) ⇒ (∗|J) [(∗|V)(NEG); (∗|J); (∗|J)]

J-V-NEG model (∗|J) ⇒ (∗|V)(NEG) [(∗|J); ∅; (∗|V)(NEG)]

Fig. 1. Contextual models of sentiment polarity

714 D. (Haoyuan) Li et al.

analysis tools [12] to avoid the silence in the data (i.e. syntactic relations not
extracted by the natural language systems).

With the adoption of rules and beliefs, we can extract the contextual in-
formation from reviews by finding the most frequent clauses that consist of at
adjectives and nouns/verbs by sequential pattern mining algorithms, where the
frequent nouns and verbs reflect topic of reviews, and the sentence-level senti-
ment polarities are expressed by frequent adjectives.

We propose a set of contextual models for constructing the belief base of
opinion polarities within the context of review topic, listed in Fig. 1, where the
word (∗|J) stands for each antonym of the word (∗|J). Given a review, each
sentence violating a belief generated from one of the belief patterns listed in Fig.
1 stands for an opposite sentiment.

3.3 Extracting Contextual Opposite Sentiments

We now introduce the training-extracting process of our approach. Let V be a
set of adjectives expressing the sentiment M , we denote V the set that contains
the antonym(s) of each word contained in V . Thus, for each (∗|J) ∈ V , we
have (∗|J) |= M and (∗|J) ∈ V . Given a training document DL such that for
each sentence S ∈ DL, there exist at least one adjective (∗|J) ∈ V or there
exist (NEG) and at least one adjective (∗|J) ∈ V . In order to construct the
belief base of contextual models, we first apply a sequential pattern mining
algorithm for discovering all maximal frequent clauses from DL with respect to
a minimum support threshold, denoted as DF . For each clause s ∈ DF , if s
verifies a contextual model listed in Fig. 1 with the listing-order, then a set of
beliefs can be generated from s corresponding to the belief pattern(s) of each
contextual model. A belief base BM can therefore be constructed with respect
to the topic of reviews.

Example 2. Given a clause s = (this|DT)(be|V)(a|DT)(good|J)(film|N), we
have that s supports the J-N and V-J models, and the sentiment rules are
(good|J) ⇒ (film|N) and (be|V) ⇒ (good|J). We have the priority of J-N model
is higher than V-J model, so that (good|J) ⇒ (film|N) is used for generating
beliefs. Let (bad|J) be the antonym of (good|J), we have two beliefs generated:
[(bad|J); ∅; (film|N)] and [(NEG)(good|J); ∅; (film|N)]. �	

Given a classified review DM and a belief base BM corresponding to the sen-
timent polarity M , the procedure of extracting unexpected sentences can be
briefly described as follows. For each sentence S ∈ DM and for each belief b ∈ BM

such that b = [sα; sβ ; sγ], sα is first matched for improving the performance; if
sα � S, and then if sα ·sβ � S and sα ·sγ � S, then S is an unexpected sentence
expressing the contextual opposite sentiment M . A detailed description of the
representation of belief base and the unexpected sequence mining process can
be found in [7].

Extraction of Opposite Sentiments in Classified Free Format Text Reviews 715

4 Experiments

The data sets we use for evaluating our approach are the movie-review data2

introduced in [8]. We combined these reviews into two documents D+ (containing
1,000 positive reviews, 75,740 sentences, and 21,156 distinct words) and D−

(containing 1,000 negative reviews, 67,425 sentences, and 19,714 distinct words).
The two dictionaries V+ and V− are generated from D+ and D−, by finding most
frequent positive/negative adjectives.

Positive Frequency Negative Frequency
1 good 2146 bad 1414
2 great 882 stupid 214
3 funny 441 poor 152
4 special 282 awful 109
5 perfect 244 silly 97
6 beautiful 202 horrible 71
7 nice 184 suck 65
8 entertaining 179 violent 64
9 wonderful 165 sad 56
10 excellent 146 ugly 44

Fig. 2. The dictionaries V+ and V−

To not make our experiments too complex, we selected ten most frequent
adjectives for each dictionary, listed as Fig. 2. The training documents D+

L (con-
tains 1,678 sentences) and D−

L (contains 3,842 sentences) are therefore generated
from D+ and D− by gathering the sentences containing at least one adjective
from V+ and V−.

The maximal frequent clauses (standing for D+
F and D−

F) and the sentiment
rules (standing for P+ and P−) extracted by the sequential pattern mining
algorithm are shown in Fig. 3. For instance, with min supp = 0.001, we find
160 distinct sentiment rules from 572 discovered maximal frequent clauses in
positive reviews, however with min supp = 0.01, only 8 distinct sentiment rules
are found from 19 frequent clauses. The 10 most frequent sentiment rules are
listed in Fig. 4. The antonym dictionaries for constructing the belief bases are
given by WordNet. For respecting the size limit of this paper, we list a small
part of the two belief bases in Fig. 5.

In order to analyze the accuracy of our approach, we randomly select a number
of beliefs for extracting the sentences that express the sentiment opposite to
the documents D+ and D−. For instance, as the beliefs listed in Fig. 5, the
5 beliefs of positive sentiment produced totally 304 unexpected sentences, and
236 of them express the negative sentiment; the 5 beliefs of negative sentiment
produced totally 136 unexpected sentences, and 97 of them express the positive
sentiment. Within these beliefs, the average accuracy is about 74.48%.
2 http—//www.cs.cornell.edu/People/pabo/movie-review-data/

716 D. (Haoyuan) Li et al.

0 0.002 0.004 0.006 0.008 0.01

Minimum support

0

100

200

300

400

500

600

N
um

be
r

of
 c

la
us

es

Sentiment rules
Maximal frequent clauses

0 0.002 0.004 0.006 0.008 0.01

Minimum support

0

100

200

300

400

500

N
um

be
r

of
 c

la
us

es

Sentiment rules
Maximal frequent clauses

(a) (b)

Fig. 3. (a) Maximal frequent clauses and sentiment rules of positive reviews. (b) Max-
imal frequent clauses and sentiment rules of negative reviews.

Positive Sentiment Rules Negative Sentiment Rules

〈(be|V)〉 ⇒ 〈(good|J)〉 〈(bad|J)〉 ⇒ 〈(guy|N)〉
〈(good|J)〉 ⇒ 〈(film|N)〉 〈(bad|J)〉 ⇒ 〈(be|V)〉
〈(good|J)〉 ⇒ 〈(be|V)〉 〈(bad|J)〉 ⇒ 〈(movie|N)〉
〈(good|J)〉 ⇒ 〈(performance|N)〉 〈(bad|J)〉 ⇒ 〈(film|N)〉
〈(good|J)〉 ⇒ 〈(movie|N)〉 〈(bad|J)〉 ⇒ 〈(thing|N)〉
〈(good|J)〉 ⇒ 〈(friend|N)〉 〈(bad|J)〉 ⇒ 〈(year|N)〉
〈(great|J)〉 ⇒ 〈(film|N)〉 〈(bad|J)〉 ⇒ 〈(time|N)〉
〈(great|J)〉 ⇒ 〈(be|V)〉 〈(bad|J)〉 ⇒ 〈(dialogue|N)〉
〈(special|J)〉 ⇒ 〈(be|V)〉 〈(stupid|J)〉 ⇒ 〈(be|V)〉
〈(special|J)〉 ⇒ 〈(effect|N)〉 〈(poor|J)〉 ⇒ 〈(be|V)〉

Fig. 4. The 10 most frequent sentiment rules

Belief Base of Positive Sentiment Belief Base of Negative Sentiment
[〈(be|V)〉 ; 〈(good|J)〉 ; 〈(bad|J)〉] [〈(not|R)(bad|J)〉 ; ∅; 〈(guy|N)〉]
[〈(be|V)〉 ; 〈(good|J)〉 ; 〈(not|R)(good|J)〉] [〈(n’t|R)(bad|J)〉 ; ∅; 〈(guy|N)〉]
[〈(be|V)〉 ; 〈(good|J)〉 ; 〈(n’t|R)(good|J)〉] [〈(bad|J)〉 ; 〈(be|V)〉 ; 〈(be|V)(not|R)〉]
[〈(bad|J)〉 ; ∅; 〈(film|N)〉] [〈(bad|J)〉 ; 〈(be|V)〉 ; 〈(be|V)(n’t|R)〉]
[〈(not|R)(good|J)〉 ; ∅; 〈(film|N)〉] [〈(good|J)〉 ; ∅; 〈(film|N)〉]
[〈(n’t|R)(good|J)〉 ; ∅; 〈(film|N)〉] [〈(not|R)(bad|J)〉 ; ∅; 〈(film|N)〉]
· · · · · · · · · · · ·

Fig. 5. The belief base for mining unexpected sentences

5 Conclusion

In this paper we present a belief-driven approach that extracts contextual op-
posite sentiment as unexpected sentences from classified free text reviews. We
adapt the sequence data model to text mining with Part-of-Speech tags, so that

Extraction of Opposite Sentiments in Classified Free Format Text Reviews 717

the extraction is associated with the semantic property of each word contained
in the text reviews, thus the sequence mining techniques can be applied. Our ex-
perimental results show that the accuracy of the extracted opposite sentiments
is in the acceptable range. Our future work includes to combine the adverbs and
the conjunctions (like however, but) into the extraction process, and to integrate
contextual opposite sentiments into document-sentence classifications.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)
2. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: Opinion ex-

traction and semantic classification of product reviews. In: WWW, pp. 519–528
(2003)

3. Esuli, A., Sebastiani, F.: PageRanking WordNet synsets: An application to opinion
mining. In: ACL, pp. 424–431 (2007)

4. Fellbaum, C.: WordNet: An electronic lexical database. MIT Press, Cambridge
(1998)

5. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD, pp. 168–177
(2004)

6. Kamps, J., Mokken, R.J., Marx, M., de Rijke, M.: Using WordNet to measure
semantic orientation of adjectives. In: LREC, pp. 1115–1118 (2004)

7. Li, D.H., Laurent, A., Poncelet, P.: Mining unexpected sequential patterns and
rules. Technical Report RR-07027 (2007), LIRMM (2007)

8. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)

9. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: EMNLP, pp. 79–86 (2002)

10. Santorini, B.: Part-of-Speech tagging guidelines for the Penn Treebank project.
Technical Report MS-CIS-90-47, Department of Computer and Information Sci-
ence, University of Pennsylvania (1990)

11. Schmid, H.: Probabilistic Part-of-Speech tagging using decision trees. In: NeMLaP
(1994)

12. Sleator, D.D., Temperley, D.: Parsing English with a link grammar. In: 3rd Inter-
national Workshop on Parsing Technologies (1993)

13. Turney, P.D.: Mining the Web for synonyms: PMI-IR versus LSA on TOEFL.
In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp.
491–502. Springer, Heidelberg (2001)

14. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsu-
pervised classification of reviews. In: ACL, pp. 417–424 (2002)

15. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-
level sentiment analysis. In: HLT/EMNLP (2005)

16. Yu, H., Hatzivassiloglou, V.: Towards answering opinion questions: Separating facts
from opinions and identifying the polarity of opinion sentences. In: EMNLP, pp.
129–136 (2003)

Navigational Path Expressions on XML Schemas

Federico Cavalieri1, Giovanna Guerrini1, and Marco Mesiti2

1 Università di Genova, Italy
guerrini@disi.unige.it

2 Università di Milano, Italy
mesiti@dico.unimi.it

Abstract. XML Schema is employed for describing the type and struc-
ture of information contained in valid XML documents. As for a docu-
ment, a schema can be navigated and its components can be identified
through a path language. In this paper we discuss the drawbacks of us-
ing XPath for this purpose and present XSPath, a language tailored for
specifying path expressions on schemas.

1 Introduction

XML Schema [9] is being extensively used to represent domain specific document
structures. Due to the presence of many alternative and repeatable elements, the
dimension of the schemas can be considerable, while most valid documents con-
tain a small subset of the elements declared in the schema. For example in the
biological domain, MAGE-ML [7] is employed for the representation of different
aspects of experiments (like measures, protocols, bio-materials, bio-sequences).
The need may arise to retrieve the structure of the bio-materials element, that is,
to retrieval components of the schema itself. Moreover, applications can request
to Web servers only a given type of data (e.g., only the bio-sequences). There-
fore, approaches for the retrieval of document elements based on type/structure
constraints expressed through their schemas are needed as well.

Similar issues arise in other domains where languages for the retrieval of
schema components as well as facilities of accessing parts of documents on the
basis of schema constraints are desired. Queries on schemas obviously play an
important role for retrieving information from multiple heterogeneous sources,
in both query formulation and query optimization [3,6]. They allow to inspect
the schema to obtain a proper formulation of queries. They are also useful in
the identification and specification of mappings between schema elements. Also
in third party data management [5] schema queries can be useful. The data
owner can locally keep the schema of her data and can express queries on the
local schema to locally download only a limited parts of remote documents, with
positive effects on transfer time. We have personally experimented the usefulness
of schema queries in the context of schema evolution [4] for the identification of
schema components to be updated.

Because of the hierarchical nature of XML Schema, navigational expressions
on the schema structure are a natural means to retrieve its main components

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 718–726, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Navigational Path Expressions on XML Schemas 719

Fig. 1. email.xsd schema

(namely, element declarations, complex and simple type definitions), to navigate
in complex types structures, and to filter schema elements according to their
values for properties like minimal and maximal occurrences of an element.

The adoption of XPath [10] for the specification of navigational expressions
on schemas would result in the specification of complex expressions that do not
reflect the user expectation in query formulation. Moreover, the occurrence of
references to element declarations and the possibility to define the type of an
element as global, require to specify expressions over internal links. Navigation
through links is, however, not supported in XPath [10]. Suppose, for instance,
that we wish to denote the global mail element in the schema in Fig. 1. The
following XPath expressions could be specified.

– /xsd:schema/xsd:element[@name="mail"].However, this expression would
return the mail element without the specification of its complex type.

720 F. Cavalieri, G. Guerrini, and M. Mesiti

Fig. 2. Low and high level schema representations

– /xsd:schema/xsd:complexType[@name=../xsd:element[@name="mail"]/
@type]. It would return the complex type of the mail element.

They are quite verbose and the intuition is that a simpler expression like “/mail”
would be preferred. A simple extension of this query like: “find the declaration of
the body element within mail” would make the XSPath specification furthermore
complicated while we would expect an expression like “/mail/body”.

Starting from the requirements for schema querying, broadly discussed in the
extended version of this paper [2], a two level graph-based representation of
schemas (Sec. 2) is introduced for abstracting the details of schemas when they
are not required. We then propose XSPath, a path language specifically tailored
for XML Schema (Sec. 3) that derives from XPath and allows the specification
of path expressions on the two level graph representation of schemas. The paper
concludes by discussing how XSPath expressions are interpreted (Sec. 4).

2 Schema Representation

Low Level Schema Representation. The representation of a schema is a graph G
consisting of a set of nodes and a set of edges among nodes. Nodes of a schema
can have one of the following types: root representing the <schema> root com-
ponent (a single node of this type must occur in each schema); element repre-
senting an element; type representing XSD types (both global and local), further
specialized in simpleType and complexType types; attribute representing an
attribute; operator representing an operator employed to specify the structure
of an element or type. The node type is introduced as their generalization [2].

To distinguish different types of nodes in the graphical representation, ap-
propriate symbols and colors are employed [2]. Nodes can be connected through

Navigational Path Expressions on XML Schemas 721

Step ::= AxisSpec NodeSpec Predicate*
AxisSpec ::= LevelSpec "::" AxisName "::"
LevelSpec ::= "HL" | "LL"
AxisName ::= (usual axis. Check [2])
NodeSpec ::= NodeType "(" QName? ")"
NodeType ::= "attribute" | "element" | "node" | "operator" | "type"
BasicCond ::= ExistCond|PosCond|TypeCond|DTypeCond|PropCond|ResCond
ExistCond ::= "exists(" SinglePath ")"
PosCond ::= "position()" CompareOp IndexPos
TypeCond ::= "type()" EqOp (SinglePath | BuiltInType) |

"type() is" ("simple" | "complex" | "anonym")
DTypeCond ::= "typeDerivedFrom(" SimpleType ")"
PropCond ::= "property(" PropertyName ")" (CompareOp Value)?
ResCond ::= "restriction(" RestrictionName ")" (CompareOp Value)?
IndexPos ::= Number | "last()"
EqOp ::= "=" | "!="
CompareOp ::= "<=" | ">=" | "<" | ">" | EqOp

Fig. 3. Step and Basic conditions specification

direct and link edges. Direct edges model the hierarchical structure of the schema
whereas link edges represent the structure of an element whose type is global,
and a node which is a reference to a global element. The occurrence of link edges
makes the schema a graph rather than a tree.

The left side of Fig. 2 reports the graph representation of the email.xsd
schema in Fig. 1. The symbol for node attachment, within the mailType node,
is dashed to denote that it is a reference/link to the global attachment ele-
ment. Simple types have been reported next to the symbol representing the
element whereas dashed lines are used to represent a link edge from an ele-
ment to its global type. Since schemas are XML documents, they are totally or-
dered. The node rank is reported in the low level representation of the schema in
Fig. 2.

High Level Schema Representation. In navigating schemas, however, we may
be not interested in the detailed internal structure of complex types. A higher
level representation allows the specification of simpler navigational expressions.
The high level representation of a schema is a graph in which nodes of type
operator are removed. The subelements the operators bind are attached to the
corresponding type. The right side of Fig. 2 shows the high level representation
of our running example.

3 XSPath Specification

The basic building block of XSPath is the path expression that consists of a
sequence of one or more steps, separated by /, and optionally beginning with /.
The only exception (i.e., zero steps) is the expression / which returns the entire
schema. XSPath expression evaluation is similar to that of XPath expressions.

722 F. Cavalieri, G. Guerrini, and M. Mesiti

3.1 Steps

Step specification includes: axis specification, node specification, and (optionally)
predicates as reported on top of Fig. 3. The axis specification determines the
direction toward which nodes should be identified starting from the context node
and moving at a given level of abstraction. Axis specification is thus composed
of the abstraction level and the axis name (as in XPath). The abstraction level
is denoted LL for low level and HL for high level. When the context node is
an operator in a complex type, the nodes identified by the axis are within the
internal structure of the complex type.

Example 1. Consider the schema in Fig. 2. The following table reports for each
context node and axis specification, the identified nodes. To uniquely identify
each node, the name of the node is coupled with its rank in the graph. �

Context node AxisSpec Identified Nodes

sequence21 LL::child choice22,content26

sequence21 HL::child picture23, audio24,movie25,content26

picture23 LL::parent choice22

picture23 HL::parent anonymT20

subjectType3 LL::descendant sequence4,address5,name6

subjectType3 HL::descendant sequence4,address5, addressType27,name6

Once the axis has been specified, the node specification determines the node to
be selected in that direction. Selection criteria can be the type of a node and
its name. For each node type a function is available to select all correspond-
ing nodes. The node() function allows the selection of all nodes independently
of their type. Each one of these functions takes an optional QName parameter
which further refines the selection keeping only nodes of that type having the
specified name. Inline type declarations, including anonymous ones, can be ad-
dressed using the type() function. The qualified name, eventually specified for
the operator constructor, can only be sequence, choice, or all.

Example 2. Consider the schema in Fig. 2. Starting from the given context
nodes, the application of the node specification filters the nodes as follows. �

Context Nodes NodeSpec Identified Nodes

sequence4, address5, name6 node() sequence4, address5, name6

picture23, audio24, video25 element(picture) picture23

sequence8, sequence21, choice22 operator(sequence) sequence8, sequence21

Predicates can be employed in node specification to further filter the sequence of
nodes by specifying conditions delimited by square brackets. Each node of the
sequence is the context for the evaluation of conditions. Conditions can be the
boolean combination of basic conditions whose syntax is in the bottom of Fig.
3. All the kinds of conditions require compatibility among the operands. When
compatibility does not occur, the false value is returned.

Navigational Path Expressions on XML Schemas 723

Abbr.for Long Form Short Form
HL::child

Axis HL::descendant-or-self /
LL::child !
LL::descendant-or-self !!
attribute() @*
attribute(QName) @QName
operator() *
operator(OperatorName) OperatorName

Node type type() #*
type(QName) #QName
element() *
element(QName) QName
self::node() .

Step HL::parent::node() ..
LL::child::type() type()

Predicate [position()=IndexValue] [IndexValue]
[exists(SinglePath)] [SinglePath]

Table 1. Abbreviated Syntax

– ExistCond. For each node of the sequence, the existence of a path is checked.
The condition is satisfied by the node whenever the path evaluation returns
a non-empty set.

– PosCond. The nodes of the sequence whose position meets the comparison
criteria are returned. The position is compared with a number or with last()
representing the last position in the sequence.

– TypeCond. This condition can be applied to nodes representing elements,
types, or attributes. The condition is satisfied by a node in the sequence if:
(i) its type meets the comparison criterion with a simple type (either built-in
or user-defined); (ii) its type is simple, complex, or anonymous.

– DTypeCond, ResCond. These conditions are satisfied by nodes representing
simple types. A node satisfies the first condition if its type meets the com-
parison criterion with a built-in native type (or the type returned by the
evaluation of a path).

– PropCond. This condition is satisfied by nodes with properties. A node in the
sequence satisfy the condition if the property meets a comparison criterion.

Example 3. Consider the schema in Fig. 2. Starting from the given context
nodes, the application of predicates filters the nodes as follows. �

Context Nodes Predicate Ident. Nodes

sequence13,sequence21 exists(LL::child::operator()) sequence21

from14,to15,date16,subject17 position()>=last()-1 date16 subject17

mail2, attachment19 type() is anonym attachment19

address5,name6 property(minOccurs)=0 name6

3.2 Abbreviated Syntax

Following the same idea of XPath, XSPath commonly used expressions can be
expressed in the abbreviated syntax. Table 1 shows all available shorter forms
along with their equivalent long form.

724 F. Cavalieri, G. Guerrini, and M. Mesiti

XSPath expr. eval.
1 EXT /HL::child::element(mail)/HL::child::element(attachment)

ABBR /mail/attachment {19}
2 EXT /HL::child::type(envelopeType)/HL::child::attribute(header)

ABBR /#envelopeType/@header {18}
3 EXT /HL::descendant-or-self::element()[/#HL::child::type()=’subjectType’]

ABBR //*[type()=’subjectType’] {14, 15}
4 EXT /HL::descendant-or-self::type()[restriction(pattern)]

ABBR //#*[restriction(pattern)] {27}
5 EXT HL::child::element(attachment)/LL::child::operator(sequence)

/LL::child::operator(choice)
ABBR ./attachment!sequence!choice {22}

Fig. 4. Examples of XSPath expressions

Child and descendant-or-self axes can be abbreviated both at high and low level.
At high level, the abbreviation is identical to the abbreviation in XPath (i.e. //).
At low level, the / separator between two steps is removed when it is followed by
! or !!. This simplifies the specification of paths at low level. The relative expres-
sion LL::child::operator(sequence)/LL::child:operator(choice), for in-
stance, can be shortened as !sequence!choice.

Also the following entire steps can be abbreviated: the step which identifies
the current nodes, the parent nodes of the context node, and the context node
type definition. Conditions on the position of a node in a sequence and on the
existence of a path can be abbreviated as well. Since a node of type element
is always associated with a single node of type type the following kind of path:
lev::child::element(elemName)/lev::child::type()/. . . where lev is one of
the possible levels, and elemName is the name of an element, can be shortened
as follows: lev::child::element(elemName)/. . .

3.3 Examples of Navigational Expressions

Referring to the schema in Fig. 2, some examples of navigational expressions
are presented. For each query, Fig. 4 reports the corresponding extended and
abbreviated XSPath expressions and the nodes identified in the graph. Query
(1) shows the simpler form of expression: starting from the root node /, it allows
to navigate through elements. The type of node attachment can be omitted
because each node has always a single type. The expression allows the navigation
through a link edge. Query (2) shows a path starting from a node representing a
type (identified through the # symbol) and ending up with a node representing
an attribute (identified through the @ symbol). Query (3) shows a path starting
from an arbitrary descendant node (using // in the abbreviated syntax) arriving
at any node representing an element (* means any name). A structural condition
is imposed for selecting nodes whose type is subjectType. Query (4) shows an
expression used to find types. Specifically, the filtering condition checks that the
identified node has a restriction property whose type is pattern. The previous
expressions work on the high level representation of a schema. Query (5), by
contrast, is an example of expression working at both levels. Indeed, a high level
step is employed to identify element attachment starting from the context node
mail. Then, through low level steps the choice operator is reached.

Navigational Path Expressions on XML Schemas 725

4 Conclusions

In this paper we have proposed a navigational XML Schema query language.
The language derives from XPath and is characterized by a seamless switch-
ing between abstraction levels in navigating the schemas, where the low level
exposes the operators in the definition of complex types structures while the
high level masks them. As far as we know this is the first attempt to develop
a path language for XML Schema. However, our work takes advantage of con-
cepts developed in the area of XPath 2.0, XQuery, and both relational [6] and
object-oriented [3] schema-based query languages. XPath 2.0 expressions can
contain conditions on the type of elements and attributes, on the repeatability
of an element, and so on. XSPath, however, differs from XPath 2.0 because it
is specifically tailored to work on schemas rather than on documents. Moreover,
XSPath has been designed to work on a graph schema model more complex than
the Infoset (tree) model of XML documents.

XSPath semantics can be found in [2]. The semantics relies on the XPath se-
mantics [11]. XSPath expressions allow the identification of nodes in the schema
graph of type element, operator, root, type, and attribute. Since XSPath
expressions could be exploited to identify nodes in valid documents, a correspon-
dence between each type of nodes in the schema and the nodes in a document
must be specified. XPath expressions on the documents are obtained for the
identification of elements and attributes relying on a function (DP , see [2]) that
is applied on each node returned from the evaluation of an XSPath expression
and generates a set of XPath expressions. These XPath expressions are then
applied on the valid documents to return the document portions.

An interpreter for XSPath expressions has been developed, using the parser
generator JavaCC (https://javacc.dev.java.net/). Each expression is translated
into a union of XPath expressions. A single expression gives rise to a union of
XPath expressions because a given node in the graph representation of a schema
can be reached from the root through different paths. The obtained XPath
expressions can be executed through XQilla (http://xqilla.sourceforge.net/) on
schemas and documents contained in a commercial XML-enabled DBMS.

References

1. Amer-Yahia, S., et al.: Approximate Matching in XML. In: ICDE (2003)
2. Cavalieri, F., Guerrini, G., Mesiti, M.: Navigational Path Expressions on XML

Schemas. Technical report (2008), http://www.disi.unige.it/person/GuerriniG
3. Chaudhri, V.K., Karp, P.D.: Querying Schema Information. In: KRDB. CEUR

Workshop Proceedings, vol. 8, pp. 4.1–4.6(1997)
4. Guerrini, G., Mesiti, M., Sorrenti, M.: Schema Evolution: Incremental Validation

and Efficient Document Adaptation. In: Xsym, pp. 92–106 (2007)
5. Hacigumus, H., et al.: Providing Database as a Service. In: ICDE (2002)
6. Lakshmanan, L., Sadri, F., Subramanian, S.: SchemaSQL – An Extension to SQL

for Multidatabase Interoperability. ACM Transaction on Database Systems 26(4),
476–519 (2001)

http://www.disi.unige.it/person/GuerriniG

726 F. Cavalieri, G. Guerrini, and M. Mesiti

7. Spellman, P.T., et al.: Design and implementation of microarray gene expression
markup language (MAGE-ML). Genome Biology 3 (2002)

8. Theobald, A., Weikum, G.: Adding Relevance to XML. In: Suciu, D., Vossen, G.
(eds.) WebDB 2000. LNCS, vol. 1997, pp. 105–124. Springer, Heidelberg (2001)

9. W3C. XML Schema, Second Edition (2004)
10. W3C. XML Path Language (XPath) 2.0 (2007)
11. Wadler, P.: Two Semantics for XPath (1999)

Transforming Tree Patterns with DTDs for

Query Containment Test

Junhu Wang1, Jeffrey Xu Yu2, Chengfei Liu3, and Rui Zhou3

1 Griffith University, Gold Coast, Australia
J.Wang@griffith.edu.au

2 Chinese University of Hong Kong, Hong Kong, China
yu@se.cuhk.edu.hk

3 Swinburne University of Technology, Melbourne, Australia
{cliu, rzhou}@ict.swin.edu.au

Abstract. We study the problem of testing xpath query containment
under dtds, where the xpath expressions are given as tree patterns
involving /,//,[] and *, and the dtd are given as acyclic schema graphs.
We focus on efficient algorithms to transform a tree pattern P involving
* into a new one P ′ which does not have *, using dtd G, so that testing
containment of P in any other pattern Q under G is reduced to testing
whether P ′ is contained in Q without dtd, provided Q does not have *.

1 Introduction

Query containment, which is to decide whether the answer set of one query
is always a subset of another, is fundamental for many applications including
query optimization and query rewriting using views. The problem has been well
studied for relational databases. With the increasing importance of XML data,
the problem of XML query containment has attracted many researchers (see,
e.g., [5,4,6]). In particular, algorithms for testing containment of tree patterns
were studied, in the absence of dtds, in [3]. Recall: a tree pattern represents
an xpath expression that may involve the child axis (/), descendant axis (//),
branching conditions ([]), and wildcard (*). When a dtd is present, [7] shows
that if the dtd is duplicate-free and the tree patterns involve only / and [], then
testing whether tree pattern, P , is contained in another pattern, Q, under the
dtd can be reduced to testing whether P is contained in Q under two types of
constraints implied by the dtd. This result was recently extended in [2] to tree
patterns involving /,// and [], under non-recursive and non-disjunctive dtds.
It is shown that in this case, testing whether P is contained in Q can be done
by chasing P to P ′ using five types of constraints (hereafter referred to as the
LWZ constraints) implied by the dtd, and then test whether P ′ is contained in
Q without the dtd.

In this paper, we study efficient algorithms for testing containment of tree
patterns involving all of /,//,[] and *, under dtds that can be represented as
acyclic schema graphs. It is worth noting, however, for such tree patterns,
testing whether one is contained in another is co-NP hard even when there is

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 727–734, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

728 J. Wang et al.

a

g b e

c d

+ ?

1

(a) dtd G

*

a

c d
(b) TP P

b

a

d
(c) TP Q

Fig. 1. Example dtd and tree patterns

no dtd [3]. Thus it is unlikely that an efficient algorithm exists in the presence
of dtds. In this work we concentrate on a common restricted case, that is, with
P involving * but Q not. It turns out that allowing the extra * in P makes
the problem considerably more complicated, and a straightforward extension to
the constraint-based method of [7] and [2] will not work. Thus we use a direct
transformation approach: to transform P to an equivalent DAG-pattern P ′ under
the dtd using a set of algorithms (rather than constraints and chase rules) first,
and then do further processing using the LWZ constraints. We make the following
contributions: (1) Given dtd G as an acyclic schema graph, we transform TP
P involving * into P ′ without *, such that for any tree pattern Q that does not
have *, P is contained in Q under G iff P ′ is contained in Q without G. (2)
We define DAG-patterns, and show DAG-patterns are a necessary means in the
above process of transformation.

The rest of the paper is organized as follows. The preliminaries are given
in Section 2. Section 3 presents the TP transformation algorithms. Section 4
concludes the paper.

2 Preliminaries

dtds, xml Trees and Tree Patterns. We assume a set Σ of xml tags, and
adopt the approach of [2] to model a non-disjunctive dtd as a connected directed
graph G such that (1) each node is labeled with a distinct tag, (2) each edge is
labeled with one of 1, ?, +, and ∗, which indicate “exactly one”, “one or zero”,
“one or many”, and “zero or many”, respectively. Here, the default edge label is
∗, and (3) there is a unique node, called the root, which has an incoming degree
of zero. The set of tags occurring in G is denoted ΣG. Because a node in a dtd

G has a unique label, we also refer to a node by its label. In this paper we will
implicitly assume all dtds are acyclic. Such a graph represents a non-recursive
and non-disjunctive dtd. We will use dtd and schema graph interchangeably.
A dtd example is shown in Figure 1 (a).

An xml tree is a tree with every node labeled with a tag in Σ. A tree pattern
(TP) is a tree with a unique distinguished node, and with every node labeled
with a symbol in Σ∪{∗} (here * is the wildcard which represents any tag), every
edge labeled with either / or //. The path from the root to the distinguished
node is called the distinguished path. Figure 1 (b) and (c) show two TPs P and
Q, where single and double lines are used to represent /-edges and //-edges

Transforming Tree Patterns with DTDs for Query Containment Test 729

respectively, and a circle is used to indicate the distinguished node. A TP cor-
responds to an xpath expression. The TP in Figure 1 (b) corresponds to the
expression a/∗ [c]//d. Let P be a TP. We will use DNP, and DPP to denote the
distinguished node and the distinguished path of P respectively. Note: the TPs
in our discussion correspond to the fragment P{//,[],∗} defined in [3]. A subset of
P{//,[],∗}, denoted P{//,[]}, contains all TPs that do not have *-nodes.

Below, for any tree or dtd T , we will use N(T), E(T) and rt(T) to denote
the node set, the edge set, and the root of T respectively. We will also use
label(v) to denote the label of node v, and call a node labeled a an a-node.
An xml tree t is said to conform to dtd G if (1) for every node v ∈ N(t),
label(v) ∈ Σ(G), (2) label(rt(t)) = label(rt(G)), (3) for every edge, (u, v) ∈ E(t),
there is a corresponding edge (label(u), label(v)) in G, and (4) for every node
v ∈ N(t), and every tag τ ∈ Σ(G), the number of children of v labeled with τ is
constrained by the label of the edge (label(v), τ) that appears in G. We denote
the set of all xml trees conforming to G by TG.

A matching of a TP P in an xml tree t is a mapping δ from N(P) to N(t)
which is (1) label-preserving, i.e., ∀v ∈ N(P), label(v) = label(δ(v)) or label(v)
= ∗, (2) root-preserving, i.e., δ(rt(P)) = rt(t), and (3) structure-preserving, i.e.,
for every /-edge (x, y) in P , δ(y) is a child of δ(x); for every //-edge (x, y), there
is a path from δ(x) to δ(y). Each matching δ produces a node δ(DNP), which is
known as an answer to the TP. We use P (t) to denote the answer set of TP P
over an xml t, i.e., P (t) = {δ(DNP) | δ is a matching of P in t}.

A TP P is said to be satisfiable under G, if there exists an xml tree t ∈ TG

such that P (t) = ∅. In this paper, when we discuss TPs under a dtd G, we will
implicitly assume the TPs involved are satisfiable under G.

Tree Pattern Containment and Containment Mapping. A TP P is said
to be contained in another TP Q, denoted P ⊆ Q, if for every xml tree t,
P (t) ⊆ Q(t). In the presence of dtd G, P is said to be contained in Q under G,
denoted P ⊆G Q, if for every xml tree t ∈ TG, P (t) ⊆ Q(t). P and Q are said
to be equivalent (resp. equivalent under G) if P ⊆ Q and Q ⊆ P (resp. P ⊆G Q
and Q ⊆G P).

*-nodes and *-paths. We call a node labeled * a *-node. In addition, we use
*-path to refer to a path, in a TP, that starts from a non-∗ node, followed by
a consecutive sequence of ∗-nodes, and ends with a non-∗ node or a leaf *-node
in P . In particular, a *-path that ends with a leaf *-node in P will be called an
open *-path, and a *-path that ends with a non-* node will be called a closed
*-path. Given any tree T , we use the term a-parent (resp. a-child, a-descendant)
to refer to the parent (resp. child, descendant) node which is labeled a.

3 Tree Patter Transformation under DTDs

Given a TP P and a dtd G, we will transform P into another pattern, P ′,
such that P ′ =G P , and for every TP Q ∈ P{//,[]}, P ⊆G Q iff P ′ ⊆ Q. This
process is divided into three steps: (1) *-node relabeling, (2) *-path expansion,

730 J. Wang et al.

a

g

u

y

x

c

e

z

+

+

h b

 ds+

i

j

(a) G2

a

*

*
d

x

y

u1

u2

*

h

u4
u3

u0

u5

u7

u6

*
u8

(b) P2

a

*

*
x

y

u1

u2

*

h

u4 u3

u5

u7

u6

e

b
s

d

z

*u8

(c) P ′
2

a

*

*
x

y

u1

u2

*

h

u4 u3

u0

u5

u7

u6

*
u8

e

b
s

d

e

i

e

z

i

(d) P ′′

2

(d) P ′′
2

a

*

*
x

y

u1

u2

*

h

u4

u3

u0

u5

u7

u6

d

e

i
b

s

z

*
i

(e) P ′′′
2

a

x

y

h

u7

u3

u0

u5

d

e

i
b

s

z

i

u6

(f) P ′′′′
2

Fig. 2. DTD G2, TP P2, and the transformed patterns

and (3) processing using LWZ constraints. We focus on steps (1) and (2) here.
We assume label(rt(P)) = ∗ (Otherwise, relabel rt(P) with label(rt(G))).

3.1 Relabeling ∗-Nodes

Consider the TP P and dtd G in Figure 1. With G, any node that has both
c-child and d-descendant must be a b-node. Therefore, the ∗-node in P can be
relabeled with b, resulting a TP equivalent to P under G.

Generally, *-node relabeling can be done using the algorithm FindLabel in [1]
which can find, for each node v, the set L(v) of all possible labels under G. We
can relabel v with c if L(v) = {c}. The algorithm runs in O(|N(P)| × |N(G)|2).

3.2 Expanding ∗-Paths

Before presenting our algorithms for expanding *-paths, we need to define some
terms and notation. We will use a sequence of dot-separated labels to denote a
path in G, and say a path in a dtd is a mandatory path if all of its edges are
labeled 1 or +. Let G be a dtd, and p = a1.a2. · · · .an be a path in G. By an
“instance” of p, we mean a chain of nodes v1, v2, . . . , vn connected by /-edges
such that label(vi) = ai (i ∈ [1, n]). We will also use /-path to refer to a path
that consists of only /-edges.

Definition 1. Let pV = u0/-1u1/-2 · · · /-kuk be a *-path in TP P (where /-i is
either / or //), and pG = l0.l1. · · · .lm (m ≥ k) be a path in G. We say pG is an
image of pV in G if there is a mapping ρ from N(pV) to N(pG) such that

Transforming Tree Patterns with DTDs for Query Containment Test 731

Algorithm 1. ExpandTP(P , G)

1: for all closed *-path p in P do
2: ExpandClosedStarPath (p, G)
3: for all open *-path p in P do
4: ExpandOpenStarPath (p, G)
5: if *-paths p1, . . . , pm share some *-nodes and u is the last common *-node on p1, . . . , pm then
6: if ∃ a τ -node on newpath(p1), . . . , newpath(pm), and either Condition (A) or Condition

(B) is true then
7: merge the nodes labeled τ on the paths newpath(p1), . . . , newpath(pm)

1. ∀i ∈ [0, k], ρ(ui) ∈ L(ui);
2. ∀i ∈ [0, k − 1], ρ(ui) is before (resp. immediately before) ρ(ui+1) if /-i is //

(resp. /).

The mapping ρ above is called a match of pV in pG. The set of all images of pV

in G is denoted image(pV , G).

For example, for the TP and dtd in Figure 2, a.c.e.b.d, a.c.e.x.b.d, a.e.x.b.d are
images of the *-path u0//u1/u2//u3, while a.c.u.b.d, a.g.u.b.d are not. Note that
if pV is not a /-path, there can be more than one match of pV in an image pG.
For example, there are two matches of u0//u1/u2//u3 in a.c.e.x.b.d, which map
u1, u2 to c, e and e, x respectively. It can be easily proved that, a path pG ∈ G is
an image of a *-path pV = u0/-1u1/-2 · · · /-kuk ∈ V iff it starts from label(u0), ends
at a node in L(uk), and passes through a node in each of L(u1), . . . , L(uk−1),
and satisfies the length requirement of pV .

Definition 2. Given a node x ∈ G, we use Mx to denote the set of all nodes in
G reachable by some mandatory path from x, including x itself. Let p be a path
in G and x, y be two nodes in p such that x appears before y. We use p[x, y) to
denote the set of nodes on p from x to the node immediately before y.

We are now ready to explain the *-path expansion process. Given G and P , the
expansion of P using G is done by the procedure ExpandTP(P , G), as shown in Al-
gorithm 1. The procedure first calls the two sub-procedures, ExpandClosedStar
Path and ExpandOpenStarPath, to expand each individual *-path. Expand
ClosedStarPath, as shown in Algorithm 2, deals with a closed *-path pV =
u0/-1u1/-2 · · · /-kuk in V . It expands pV by adding an additional path between u0

and uk, and possibly adding some children nodes under the nodes that are on the
new path. For example, after expanding the *-path u0//u1//u2//u3, the pattern
P2 in Figure 2 (b) will become P ′

2 shown in Figure 2 (c). We now explain the algo-
rithm by looking at how it transforms P2 into P ′

2. First, image(pV , G) is found,
and the common nodes a1, . . . , an that lie on all p ∈ image(pV , G) are found
(line 2-3). In our example, we find image(pV , G2) contains a.c.e.b.d, a.c.e.x.b.d,
a.e.x.b.d, and the common nodes are a1 = e and a2 = b. Since the dtd is acyclic,
these common nodes appear in the same order in all paths in image(pV , G), and
they are arranged in such an order: a1, . . . , an (line 7-8). We then add a new
path from u0 to uk that passes through a sequence of nodes, v1, . . . , vn, labeled

732 J. Wang et al.

Algorithm 2. ExpandClosedStarPath (pV , G)
1: Suppose pV = u0/-1u1/-2 · · · /-kuk.

2: Find the image set image(pV , G);
3: Find the set C of common nodes, excluding label(u0) and label(uk), on all paths in

image(pV , G);
4: if C = ∅ then
5: n ← 0;
6: else
7: Suppose C = {a1, . . . , an};
8: Take any path from image(pV , G) and check the order of occurrence of a1, . . . , an on the

path; Assume the order is a1, . . . , an.
9: Add an additional path u0//v1// · · · //vn−1//vn//uk in V , where label(vi) = ai (for all i ∈

[1, n]);
10: a0 ← label(u0); an+1 ← label(uk); v0 ← u0; vn+1 ← uk;
11: for all p ∈ image(pV , G) do
12: take each node z ∈ p − {uk} and find Mz, the mandatory descendant set of z;
13: M(n + 1, p) ← {};
14: for (i = n to 0, i − −) do
15: if on every path in image(pV , G), ai is immediately before ai+1 then
16: change (vi, vi+1) to /-edge;
17: for all p ∈ image(pV , G) do
18: M(i, p) ← M(i + 1, p) ∪�z∈p[ai,ai+1) Mz;

19: Mi ← �
p∈image(pV ,G) M(i, p) − {ai};

20: for each label τ ∈ Mi do
21: if ∃τ ′ ∈ Mi such that there is a mandatory path from τ ′ to τ in G then
22: Mi ← Mi − {τ};
23: for each τ ∈ Mi − Mi+1 do
24: add a τ -child v under vi and label the edge (vi, v) with //, if vi does not have a τ -

descendant already;
25: if the only path from ai to τ in G is the edge (ai, τ) then
26: relabel (vi, v) with /;

vspace-0.4cm

a1, . . . , an respectively, and the edges on this path are temporarily labeled //
(line 9). Each edge on the path will be relabeled with / if their labels appear in
parent-child relationship in all paths of image(pV , G) (line 14-16). In our exam-
ple, we add a path from u0 to u3 that passes through an e-node, followed by a
b-node, and the edge between the b-node and u3 is relabeled with /. Line 11-12
find the mandatory descendant set Mz for each node z which lies in a path in
image(pV , G). Based on this, line 17-19 find the set Mi of all nodes x ∈ G such
that, for all p ∈ image(pV , G), there exists a node y in p[ai, uk) such that there
is a mandatory path from y to x. Note that Mi+1 ⊆ Mi. In our example, we find
M0 = {z, s, j}, M1 = {s, j} and M2 = {s, j}. Line 20-22 refine Mi by removing
redundant nodes, i.e, nodes that can be reached by mandatory paths from other
nodes (this is for efficiency reasons). In our example, node j is removed from
M0, M1 and M2, resulting M0 = {z, s}, M1 = {s} and M2 = {s}. Since the
pattern P is assumed to be satisfiable under G, the node vi may be added a
τ -descendant for every τ ∈ Mi. Line 23-24 add such descendant nodes (if such
descendants do not exist already), but if a τ -descendant is added under vi+1,
there is no need to add it under vi (this explains the condition τ ∈ Mi −Mi+1 in
line 23). In our example, we add an s-node under the b-node, and add a z-node
under v0 (≡ u0). Line 25-26 then relabel the edge (vi, v) with / if possible. In
the example, the edge from the b-node to the s-node is relabeled.

Transforming Tree Patterns with DTDs for Query Containment Test 733

a

b

x
c d

y
e g

(a) G3

a

*

*

e g
()(b) P3

a

*

*
e g

x

y

x

y

(c) P ′
3

a

*

*

e g

x

yy

(d) P ′′
3

Fig. 3. DTD G3, TP P3, and chased patterns

ExpandOpenStarPath is a minor variation of ExpandClosedStarPath, which is
used to expand open *-paths. For example, it expands the *-path u6//u8 by
adding an i-child under u6, as shown in Figure 2 (d). The main difference from
ExpandClosedStarPath lies in line 3, where label(uk) is not excluded, and in
line 9, where the new path is u0//v1// · · · //vn−1//vn. In addition, the n+1 and
n in line 13 and 14 are changed to n and n − 1 respectively. We omit the details
here due to page limit.

Let us denote the new path added due to *-path p, using the sub-procedures,
newpath(p). After expanding all individual *-paths, the main procedure
ExpandTP(V , G) considers the case where some *-paths, e.g., p1, . . . , pm, share
*-nodes. If u is the last common *-node on all these *-paths (i.e., u appears on
all p1, . . . , pm, and no *-descendant of u appears in all p1, . . . , pm), then it checks
whether u satisfies one of the following conditions:

Condition (A): every match of p1, in every image of p1, maps u to a position
at or after τ .

Condition (B): ∀ pG ∈ image(p1, G)) and ∀ match e of p1 in pG, if τ is after
e(u), then for any j ∈ [1, m], and any image qG of pj such that qG contains
e(u) and u can be matched to e(u), the segment on pG from e(u) to τ appears
on qG, and every edge on the segment is labeled ? or 1.

If Condition (A) is true (in this case τ must appear in all images of p2, . . . , pm),
all the τ -nodes on newpath(p1), . . ., newpath(pm) are merged (and so are the
path segments from the common start node to the τ -node in the new paths).
For example, in Figure 2, the node u2 is the last common *-node on the *-
paths u0//u1/u2//u3, u0//u1/u2/u4//u5, and u0//u1/u2/u6. u2 is mapped to
a position at or after e by all matches of u0//u1/u2/u6 in all images of these
paths. Therefore, we can merge the e-nodes on the new paths added for these
*-nodes (the pattern after expanding all individual *-paths is P ′′

2 in Figure 2),
resulting P ′′′

2 as shown in Figure 2 (e).
Note that the condition (A) and (B) above are important. If neither condi-

tion is true, we should not merge the τ -nodes, even if every newpath(p1), . . .,
newpath(pm) has a τ -node. For example, for the dtd G3 and TP P3 in Figure 3,
the new paths added for both *-paths pass through an x-node and a y-node (see
Figure 3 (c)), and we can only merge the x-nodes on the new paths, not the
y-nodes (see Figure 3 (d)).

734 J. Wang et al.

DAG-Patterns. Observe that expanding a closed *-path will result in an ad-
ditional path (that does not have ∗-nodes) between the first node and the last
node of the ∗-path, making the transformed pattern a directed acyclic graph,
which we call a DAG-pattern (see P ′

2 to P ′′
2 in Figure 2). A DAG-pattern is a

generalization of a TP, and the definitions of matching, containment mapping,
containment, and equivalence (of TPs) can all be trivially extended to DAG-
patterns.

Complexity of Expansion. The *-path expansion of V using G runs in
O(|E(G)| ×|N(G)|× M), where M is the number of *-nodes in V .

3.3 The Completeness of the Transformation

After *-node relabeling and *-path expansion, we should use the LWZ constraints
and chase rules to further transform the pattern. Then we can remove all *-nodes
and edges connected to *-nodes, and obtain a TP, denoted P ′ (see Figure 2 (f)).

Theorem 1. For any query Q ∈ P{//,[]}, P ⊆G Q iff P ′ ⊆ Q.

4 Conclusion

We presented polynomial time algorithms to transform a TP P ∈ P{//,[],∗} into
a TP P ′ ∈ P{//,[]}, under a dtd G, such that for any TP Q ∈ P{//,[]}, P ⊆G Q
iff P ′ ⊆ Q. This allows us to test P ⊆G Q using containment mappings, and
to extend the method of [2] to find contained rewritings of TPs in P{//,[]} using
views in P{//,[],∗} in the presence of dtds.

Acknowledgement. This work is partially supported by grant from the Re-
search Grant Council of the Hong Kong Special Administrative Region, China
(CUHK418205) and Australian Research Council Grant DP0878405.

References

1. Lakshmanan, L.V., Ramesh, G., Hui (Wendy) Wang, Z.J.Z.: On testing satisfiabilty
of tree patterns. In: VLDB (2004)

2. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using
views. In: VLDB, pp. 571–582 (2006)

3. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1) (2004)

4. Neven, F., Schwentick, T.: XPath containment in the presence of disjunction, DTDs,
and variables. In: ICDT, pp. 315–329 (2003)

5. Schwentick, T.: XPath query containment. SIGMOD Record 33(1), 101–109 (2004)
6. ten Cate, B., Lutz, C.: The complexity of query containment in expressive fragments

of xpath 2.0. In: PODS, pp. 73–82 (2007)
7. Wood, P.T.: Containment for XPath fragments under DTD constraints. In:

Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572,
pp. 297–311. Springer, Heidelberg (2002)

XSelMark: A Micro-benchmark for Selectivity

Estimation Approaches of XML Queries

Sherif Sakr

National ICT Australia (NICTA)
Sydney, Australia

sherif.sakr@nicta.com.au

Abstract. Estimating the sizes of query results and intermediate re-
sults is a crucial part of any effective query optimization process. Due
to several reasons, the selectivity estimation problem in the XML do-
main is more complicated than that in the relational domain. Several
research efforts have proposed selectivity estimation approaches in the
XML domain. Lacking of a suitable benchmark was one of the main
reasons which prevented a real assessment and comparison between the
approaches to be conducted. In this paper we propose a selectivity es-
timation benchmark for XML queries, XSelMark. It consists of a set of
25 queries organized into seven groups and covers the main aspects of
selectivity estimation of XML queries. These queries have been designed
with respect to an XML document instance of a popular benchmark
for XML data management, XMark. In addition, we suggest some cri-
teria of assessing the capability and quality of XML queries selectivity
estimation approaches. Finally, we use the proposed benchmark to as-
sess the capabilities of the-state-of-the-art of the selectivity estimation
approaches.

1 Introduction

Modern implementations of query processors are heavily relying for their effi-
cient performance on sophisticated optimizer components to achieve a proper
selection of many optimization decisions such as: access paths, join orders and
materialization strategies. Estimating the sizes of query results and intermediate
results is a crucial part of any effective query optimization process. In fact, the
selectivity estimation problem in the XML domain is more complicated than
that in the relational domain. There are several reasons behind this such as: 1)
the absence of strict schema notion in the XML data. 2) the dualism between
structural and value-based querying. 3) the high expressiveness of the XML
query languages [5]. 4) the non-uniform distribution of tags and data. 5) the
correlation and dependencies between the occurrences of the elements. In the re-
cent past, several research efforts have proposed different selectivity estimation
approaches in the XML domain [6,15,16]. However, these approaches are never
comprehensively assessed, evaluated and compared. One of the main reasons for
this situation is that there is a lack of a suitable benchmark that facilitates the
ability to conduct such real assessments and comparisons.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 735–744, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

736 S. Sakr

Although the XML research community has proposed several benchmarks
[3,7,13,14,17,20] which are very useful for their intended targets and perspectives,
none of these benchmarks fits in the context of being able to assess and evaluate
the different selectivity estimation approaches of XML queries. The author of
this paper has been faced with this problem during his work in [16,18]. In [13],
Michiels et al. have motivated the crucial need of different micro-benchmarks
in order to get a good understanding of the different aspects in implementing
efficient query processors in the XML domain. Therefore, the goal of this paper
is to contribute and develop an XML Micro-benchmark, XSelMark, which is
mainly focussed on exercising the selectivity estimation aspects of XML queries.
The proposed benchmark aims of to be a guide for researchers and implementors
in benchmarking and improving their research efforts in this domain. XSelMark
consists of 25 queries organized into seven groups where each group is intended
to address the challenges posed by the different aspects of XML query result size
estimation.

The remainder of this paper is organized as follows. Section 2 briefly gives an
overview on the related benchmarks in the XML domain. Section 3 describes the
main aspects of the selectivity estimation problem in the XML domain. Section
4 presents the set of queries of the XSelMark benchmark. A brief overview and
an assessment of the supported features of the-state-of-the-art in the selectiv-
ity estimation approaches of XML queries is presented in Section 5 before we
conclude Section 6.

2 Related Work

In general, XML benchmarks can be classified into two main categories: 1) Ap-
plication (Macro) benchmarks [3,14,17,20] which are used to evaluate the overall
performance of an XML management system. Hence, this kind of benchmarks
are not very useful for conducting a detailed assessment of specific aspects of
an implementation that need improvement. 2) Micro-benchmarks [7,13] which
are designed to assess the performance of specific features of a system. In this
section we give a brief overview about the state-of-the-art of XML benchmarks.

XMach-1 [3] is a scalable multi-user benchmark. It is based on a web appli-
cation and considers text documents and catalog data. It only defines a small
number of XML queries that cover multiple functions and update operations
for which system performance is determined. The main goal of XMach-1 is to
test how many queries per second the query engine can execute. XBench [20] is
designed to cover a large number of XML database applications. These appli-
cations are characterized by whether they are data-centric or text-centric and
whether they consist of a single document or multiple documents. XMark [17]
is a single-user benchmark. The database model is based on an internet auc-
tion site and consists of one big regularly structured XML document with text
and non-text data. The TPOX benchmark [14] is based on a financial applica-
tion scenario. It is mainly focussed on exercising all aspects of XML database
management systems such as: storage, indexing, logging, transaction processing

XSelMark: A Micro-benchmark for Selectivity Estimation Approaches 737

and concurrency control. The work load of TPOX consists of insert, update and
delete operations as well as query operations.

XPathMark [7] is a Micro XPath 1.0 benchmark for XMark. It presents a set
of XPath queries which covers the major aspects of the XPath language includ-
ing different axes, node tests, Boolean operators, references, and functions. The
targets of XPathMark is to assess the functional completeness, correctness, effi-
ciency and data scalability of XPath implementations. MemBeR [13] is another
Micro-Benchmark which has a main focus to benchmark the XQuery engines
with respect to the efficiency of their implementation to four important XQuery
constructs: XPath navigation, XPath predicates, XQuery FLWORs and XQuery
Node Construction.

3 Main Aspects of Selectivity Estimation in the XML
Domain

When looking for an efficient, capable and accurate selectivity estimation ap-
proach for XML queries, there are several issues that need to be addressed.
From the experience of our work in [16,18], the major issues of this problem
include:
– It should support structural and data value queries. In principal, all XML

query languages can involve structural conditions in addition to the value-
based conditions. Therefore, any complete selectivity estimation system for
the XML queries requires maintaining statistical summary information about
both of the structure and the data values of the the underlying XML docu-
ments. A recommended way of doing this is to separate the structural sum-
maries of the XML document from the data summaries and then group the
related data values according to their path and data types into homogenous
sets [11].

– It must be practical. The performance characteristics of the selectivity esti-
mation process is a crucial aspect for any approach. The selectivity estima-
tion process of any query or sub-query must be much faster than the real
evaluation process and the required summary structure(s) for achieving this
estimation process must be efficient in terms of memory space consumption.

– It should be strongly capable. The standard query language for XML namely
XPath and XQuery are very rich languages. It provides a wide set of func-
tions and features such as: structure and content-based search, path expres-
sions, element construction, join, sort, duplicate elimination and aggregation
operations. Thus, a good selectivity estimation approach should be able to
provide accurate estimates for a wide range of these features.

– It should be composable. The XML query languages, specially XQuery, are
compositional in nature as sub-expressions are combined with each other to
form the final query. Hence, a good selectivity estimation approach should
be able to estimate the selectivity of the final expressions as well as each
sub-expressions. This feature is crucial for any cost-based query optimizer
to enable a proper selection of cheap execution plans.

738 S. Sakr

– It must be accurate. On the one hand, providing an accurate estimation for
the query optimizer can effectively accelerate evaluation process of any query.
However, on the other hand, providing the query optimizer with incorrect
selectivity information will lead the query optimizer to incorrect decisions
and consequently to inefficient execution plans.

– It should be independent. The selectivity estimation process should be in-
dependent of the actual evaluation process and should be applicable with
different query engines which are applying different evaluation mechanisms.

4 XSelMark Benchmark Queries

XMark [17] is a well-known benchmark for XML data management. The XMark
database is modelling an internet auction web site. XMark comes with an XML
generator that produces XML documents according to a numeric scaling factor
proportional to the document size. We base the queries of our proposed bench-
mark on the structure of the XMark document ”auction.xml” which is described
in detail in [17]. The set of queries of our proposed benchmark, XSelMark, rep-
resents a mix of XML queries which covers a wide set of the major selectivity
estimation aspects in the domain of XML queries. They are designed in a way
to allow a realistic assessment for the advantages and shortcomings of the pro-
posed XML selectivity estimation approaches and to identify their respective
impact. The set of queries are expressed using two standard XML query lan-
guages XPath and XQuery. Due to lack of space, we do not present the source
code of some queries. The source code of all queries can be downloaded from the
benchmark Web site at [1]. The queries are grouped under subsection headings
which indicate the feature to be tested.

4.1 Group 1: Path Expressions

Q1) Path expression with non-recursive axes: Find the names of all per-
sons. /site/people/person/name/text()
Non-recursive XPath axes are child, parent, attribute, following-sibling and
preceding-sibling.
Q2) Path expression with recursive axes: Find all description nodes de-
scendant of all item nodes. /site//item//description
Recursive XPath axes are descendant, descendant-or-self, ancestor and ancestor-
or-self.
Q3) Path expression with wild cards: Return the item subtrees of all re-
gions. /site/regions/*//item/*
Q4) Path expression with ordered-based axes: Return the description
nodes which are following the tags with the name closed auction.
/site//closed_auction/following::description
where ordered-based axes are following, following-sibling, preceding and preceding-
sibling. Supporting such type of queries requires capturing specific statistical in-
formation about the order of the elements in the XML documents.
Q5) Branching XPath Expressions: Return the names of all persons who
have age information in their profiles. /site//person[profile/age]/name

XSelMark: A Micro-benchmark for Selectivity Estimation Approaches 739

4.2 Group 2: Twig Expressions

Q6) Simple twig expression: Return the names and descriptions of all items.
for $b in //item return ($b/name,$b/description)

Q7) Twig expression with element construction: Return the restructured
results of the names and descriptions of all items.
for $b in //item
return
<Result>

<name>{$b/name}</name>
<description>{$b/description}</description>

</Result>

4.3 Group 3: Predicates

The estimation of predicate selectivity is a well-known problem in database the-
ory and practice. Most common solutions of this problem rely on histograms for
capturing the distribution of data values, and on the use of the uniform distri-
bution when nothing is known about the data involved in the predicate. In the
context of XML, predicate selectivity estimation poses new challenges such as:
1) The predicates can be structural-based as well as value based. 2) Positional
predicates represent a special form of predicates over the order information of
the elements in the XML document. 3) XML elements are usually distributed
in a non-uniform way, hence assuming a simple uniform distribution of the ele-
ments structure may lead to many potential estimation errors especially when
the operated sequence of nodes are constructed by merging nodes from different
groups of data elements.
Q8) Positional Predicates: Return the third bidder of each open auction.
Q9) Equality Predicates: Return the closed auctions with price equal to 40.
Q10) Range Predicates: Return the closed auctions with price less than 40.
Q11) Conjunctive/Disjunctive Predicates: Return the closed auctions with
price greater than 40 and less than 100.
Q12) Predicates with merged nodes from different paths: Return the
african and asian items with id value greater than ’item100’.
for $b in (/site//africa/item, /site//asia/item)
where data($b/@id)> ’item100’
return $b

An accurate estimation of such query should consider the different distribution
for the data values nodes resulting from each different path expression as well as
the percentage of each path in construcing the nodes of the operated sequence.
Q13) Predicates with merged nodes from different paths and hybrid
nature: Return the price nodes and quantity nodes with value greater than 100.
for $b in (/site//price,/site//quantity)
where data($b) > 1 and data($b) > 100
return $b

740 S. Sakr

This query is more challenging than the previous one because the resulting
nodes of the operated sequence are representing completely different data items
(price, quantity) which may have totally different distributions for their data
values.
Q14) String Predicates: Return all persons with id value greater than ”per-
son200”.

4.4 Group 4: Value-Based Joins (Theta Joins)

This group of queries assess the ability and the accuracy of the selectivity esti-
mation approaches on effective and accurate dealing with value-based join oper-
ations between the data values of XML nodes.
Q15) Value-based join instances where the values of each operand are
constructed by path expression: Return all pairs of increase value and price
value where the increase value is greater than the price value.
Q16) Value-based join instances where the values of one operand are
constructed by path expression and the values of the other operand
are constructed by path expression manipulated with arithmetic ex-
pression: Return all pairs of increase value and price value where the increase
value is greater than the price value multiplied by 2.
for $x in /site//increase, $y in /site//price
where data($x) > data($y) * 2
return <pair>{$x,$y}</pair>
Q17) Equi-Joins of data values: Return all pairs of increase value and price
value where the increase value is equal to the price value.

4.5 Group 5: Arithmetic and Comparison Operations over Data
Value Statistics

This group of queries assess the ability of the selectivity estimation approaches
on their ability of not only being able to capture summary information about the
data values of the XML elements but also on their ability of applying arithmetic
and comparison operations over these summary information in a consistent and
accurate way which does not hurt the quality of the selectivity estimation results.
Q18) Arithmetic over Data Value Statistics 1: Return all pairs of increase
value and price value where the sum of the increase value and the price value is
greater than 100.
for $x in /site//increase, $y in /site//price
where data($x) + data($y) > 100
return <pair>{$x,$y}</pair>

Q19) Arithmetic over Data Value Statistics 2: Return all pairs of increase
value and price value where the sum of the increase value and the price value is
equal to 100.
Q20) Arithmetic and Comparison operations over Data Value Statis-
tics 3: Return all triples of increase value, price value and income where the
sum of the increase value and the income value is greater than the sum of the
price value and the income value.

XSelMark: A Micro-benchmark for Selectivity Estimation Approaches 741

4.6 Group 6: Nested Expressions

XQuery, as with many other XML query languages such as SQL/XML [4], is a
free nesting language, where nested queries can be used for many targets such
as reshaping elements or computing aggregate values. Since the result of nested
queries may be the input for navigational or filtering operations in the outer
query, predicting the size of nested query results will require building on-the-fly
statistics about these intermediate results.
Q21) Let - Aggregates: Return the names of persons and the number of items
that they bought.
for $p in /site/people/person
let $a :=

for $t in /site//closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item>
<person>{$p/name/text()}</person>
<count>{count($a)}</count>

</item>

Q22) Predicates with values constructed by aggregate function: Return
the open auctions with sum of bidder increases that are greater than 1000.
for $b in /site/open_auctions/open_auction where
sum(data($b/bidder/increase)) > 1000 return
<increase>{$b}</increase>

4.7 Group 7: Data Dependent Estimations

This group of queries requires capturing additional specific forms of summary
information about the data values of the underlying XML documents.
Q23) Full Text Search: Return the names of all items whose description con-
tains the word ”gold”.
Q24) Distinct Operator: Return the distinct price values.
Q25) Existential Document Order: Return the open auctions where a cer-
tain person issued a bid before another person.
for $b in /site/open_auctions/open_auction
where
some $pr1 in $b/bidder/personref[@person = "person20"],

$pr2 in $b/bidder/personref[@person = "person51"]
satisfies $pr1 << $pr2

return <history>{$b}</history>

5 XML Selectivity Estimation: An Assessment of the
State-of-the-Art

The work of Aboulnaga et al. [2] is considered to be the first to deal with the
selectivity estimation of simple path expressions. They presented two different

742 S. Sakr

techniques: path tree and Markov table which capture any distinct path of length
up to m and its selectivity. XPathLearner system [12] has employed the same
summarization and estimation techniques presented in [2] with two main mod-
ifications: 1) it gathers and refines the required statistical information in an
on-line manner from query feedbacks. 2) it supports the handling of predicates
by storing statistical information for each distinct tag-value pair in the source
XML document. In [19] Wang et al. have proposed a special histogram structure
for the selectivity estimation of XPath queries in a dynamic context named as
Bloom Histogram. A bloom histogram H is constructed by sorting the frequency
values of the distinct paths in XML data and then grouping the paths with sim-
ilar frequency values into buckets. In [10], Li et al. have described a histogram-
based framework for estimating the selectivity of XPath expressions with a main
focus on the order-based axes (following, preceding, following-sibling, preceding-
sibling).

In [6] Fisher et al. have proposed the SLT XML tree synopsis. The main idea
of this summary synopsis is to remove the repeated patterns in the XML tree
and to replace the multiple occurrences of equal subtrees by pointers to a single
occurrence of the subtree. In [15] Polyzotis et al. have proposed the XCluster
synopses as a clustering-based framework that can capture the key correlations
between and across structure and values of different types. XCluster employs the
well-known histogram techniques for summarizing the data values. This approach
can support twig queries with predicates. However, the authors did not mention
how XCluster can be extended to deal with more complicated query situations
such as value-based join operations and nested expressions.

The work of [16,18] has described the design and implementation of a rela-
tional algebraic based framework for estimating the selectivity of XQuery ex-
pressions. In this approach, XML queries are translated into relational algebraic
plans [9]. Summary information about the structure and the data values of the
underlying XML documents are kept separately. Then by exploiting the rela-
tional algebraic infrastructure, the special properties of the generated algebraic
plans, the summary information and a set of inference rules, the relational esti-
mation approach is able to provide accurate selectivity estimations in the context
of XML and XQuery domains.

5.1 Features Assessment

We used the set of XSelMark benchmark queries for an initial assessment of
the supported features by the state-of-the-art. Table 1 lists the set of queries
supported by each approach. The assessment has shown some interesting pre-
liminary results: 1) Most of the selectivity estimation approaches [8,10,12,19]
are limited on their abilities to support only small subsets of the XML query
languages. They are only able to deal with structural XPath queries. 2) The
two synopses of [10,6] are the only two synopses which are able to support the
selectivity estimation of order-sensitive XPath axes. 3) The approaches of [15,16]
cover a wider range of the XML query features. The synopsis of [15] is the only
one which is able to deal with the estimation of full text search queries while

XSelMark: A Micro-benchmark for Selectivity Estimation Approaches 743

Table 1. An assessment of the state-of-the-art of the selectivity estimation approaches

XPath- Path-Order Bloom SLT XCluster Relational
Learner [12] Histogram [10] Histogram [19] Gramar [6] [15] Alg. Est. [16,18]

Q1 X X X X X X
Q2 X X X X X X
Q3 X X X X X X
Q4 - X - X - X
Q5 X X - X X -
Q6 - - - - X X
Q7 - - - - X X
Q8 - - - X - X
Q9 X - - - X X
Q10 X - - - X X
Q11 X - - - X X
Q12 - - - - - X
Q13 - - - - - X
Q14 - - - - X X
Q15 - - - - - X
Q16 - - - - - X
Q17 - - - - - X
Q18 - - - - - X
Q19 - - - - - X
Q20 - - - - - X
Q21 - - - - - X
Q22 - - - - - -
Q23 - - - - X -
Q24 - - - - - -
Q25 - - - - - -

[16] is able to uniquely deal with many of the features of XQuery languages such
as join operation and different type of predicates.

6 Conclusion

Several research efforts have been invested on designing Macro-Benchmarks to
assess the overall performance of XML data management systems. There is cur-
rently a big demand for several Micro-Benchmarks which assess specific aspects
in the XPath, XQuery and XML management system domains. Several research
efforts have proposed different selectivity estimation approaches in the XML
domain. Due to the lack of a suitable benchmark, it was difficult to assess, eval-
uate and compare these approaches and in order to get a clear view about the
state-of-the-art. We proposed XSelMark as a Micro-Benchmark to assess the
the selectivity estimation approaches of XML queries. An initial assessment for
the features and capabilities of the current approaches has shown that most of
them are limited to supporting the estimation of the structural XPath queries.
Hence, several avenues for further research and development are still widely open
in this domain to provide accurate, capable and complete frameworks aligned
with the rich querying capabilities of the standard XML query languages. We
believe that XSelMark is useful for both researchers and developers. It identifies
the major aspects of selectivity estimation of XML queries, helps researchers to
discover the strengths and weaknesses of the current approaches and provides
the researchers and developers with a clearer view of developing more enhanced
mechanisms of selectivity estimation of XML queries. As a future work, we are
planning to use XSelMark to perform more detailed assessment of the selectivity
estimation approaches of XML queries in terms of their accuracy, performance
and memory requirements.

744 S. Sakr

References

1. XSelMark: A Micro-Benchmark of Selectivity Estimation of XML Queries,
http://XSelMark.sourceforge.net/

2. Aboulnaga, A., Alameldeen, A., Naughton, J.: Estimating the Selectivity of XML
Path Expressions for Internet Scale Applications. In: VLDB (2001)

3. Böhme, T., Rahm, E.: XMach-1: A Benchmark for XML Data Management. In:
BTW (2001)

4. Eisenberg, A., Melton, J.: Advancements in SQL/XML. SIGMOD Record 33(3),
79–86 (2004)

5. Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and
XPath 2.0 Data Model (XDM). World Wide Web Consortium Proposed Recom-
mendation (November 2006), http://www.w3.org/TR/xpath-datamodel

6. Fisher, D., Maneth, S.: Structural Selectivity Estimation for XML Documents. In:
ICDE (2007)

7. Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated
Data. Database and XML Technologies (2005)

8. Freire, J., Haritsa, J., Ramanath, M., Roy, P., Siméon, J.: StatiX: making XML
count. In: SIGMOD (2002)

9. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts.. In: VLDB (2004)
10. Li, H., Lee, M., Hsu, W., Cong, G.: An Estimation System for XPath Expressions.

In: ICDE (2006)
11. Liefke, H., Suciu, D.: XMill: An efficient compressor for XML data. In: Chen, W.,

Naughton, J.F., Bernstein, P.A. (eds.) SIGMOD (2000)
12. Lim, L., Wang, M., Vitter, J., Parr, R.: XPathLearner: An On-line Self-Tuning

Markov Histogram for XML Path Selectivity Estimation. In: VLDB (2002)
13. Michiels, P., Manolescu, I., Miachon, C.: Toward microbenchmarking XQuery. In-

formation System 33(2) (2008)
14. Nicola, M., Kogan, I., Schiefer, B.: An XML transaction processing benchmark. In:

SIGMOD (2007)
15. Polyzotis, N., Garofalakis, M.: XCluster Synopses for Structured XML Content.

In: ICDE (2006)
16. Sakr, S.: Cardinality-Aware and Purely Relational Implementation of an XQuery

Processor. PhD thesis, University of Konstanz (2007)
17. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark:

A Benchmark for XML Data Management. In: VLDB (2002)
18. Teubner, J., Grust, T., Sakr, S., Maneth, S.: Dependable Cardinality Forecasts for

XQuery. In: VLDB (2008)
19. Wang, W., Jiang, H., Lu, H., Xu Yu, J.: Bloom Histogram: Path Selectivity Esti-

mation for XML Data with Updates. In: VLDB (2004)
20. Yao, B., Özsu, T., Keenleyside, J.: XBench - A Family of Benchmarks for XML

DBMSs. In: VLDB Workshop (2003)

http://XSelMark.sourceforge.net/
http://www.w3.org/TR/xpath-datamodel

A Method for Semi-automatic Standard

Integration in Systems Biology

Dagmar Köhn1 and Lena Strömbäck2

1 Universität Rostock, Institute for Computer Science, Chair for
Database and Information Systems, Germany

dk103@informatik.uni-rostock.de
2 Linköpings Universitet, Department of Computer and Information Science, Sweden

lestr@ida.liu.se

Abstract. The development of standards for biological pathways has
led to a huge amount of model data stored in a variety of different formats
represented in XML (e. g. SBML) or OWL (e. g. BioPAX). There is an
urgent need for the conversion of data between the formats, but the fact
that the transformation is hard to realize hampers the integration of data
in the area. This article proposes a general, semi-automatic solution by
transforming XML Schema based data into an OWL format. Biologists
will be supported in querying data of any format and comparing different
data files or schemas to each other using OWL as a common format for
matching. Additionally, a backwards transformation to XML Schema
is provided. The paper presents a first architectural approach and its
prototype implementation. The evaluation showed that the approach is
promising.

1 Motivation

Advanced experimental methods within biology rapidly generate new knowledge
about how genes, proteins, and other substances interact. A major goal within
the area is a complete description of the protein interaction network underlying
cell physiology [9]. Moreover, the understanding of genetic networks and protein
pathways is recognized as being a crucial part of future genomics research [4].
Reusable software modules, new ontologies [12], and improved technologies for
database and knowledge management [5] are the key players for solutions to these
challenges in the future. To fulfill the biological vision, emphasis has been put
on representation formats that allow for exchange and integration of knowledge.
An investigation during spring 2006 [18] showed that there were more than 80
defined formats for the representation of pathway models or related information.
Of those, 14 are in common use. In most cases, the standards are defined using
the eXtensible Markup Language (XML, [20]), but some of them also use the
Web Ontology Language (OWL, [23]).

The different communities in Systems Biology have been struggling with the
fact that there exist diverse standards that do overlap partly, but at the same

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 745–752, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

746 D. Köhn and L. Strömbäck

time do have their own specific strengths. The importance of standard integration
becomes more and more obvious as the number of interdisciplinary research
projects increases constantly [17,19]: The projects become more comprehensive
and different formats have to be used for the modulation and analysis of parts of
the system. To provide an interface between the standards, a transformation of
one standard into the others has to be made available. Some communities already
provide converters, for example on www.sbml.org for SBML models. However,
the main drawback of this solution is the hard encoded transformation: As soon
as a new version of a standard is available, the converter has to be adapted.
Another problem is that a great number of converters are needed and have to
be maintained for all the combinations of pathway standards to be supported.
To overcome those problems, the approach taken in this work provides a more
general solution. The described architecture could, if fully investigated, be a
tool that provides both semi-automatic conversion between formats and re-use
of old conversions when new versions of a representation format appear – which
is needed but not available with current technology.

This paper describes an architecture for semi-automatic integration of stan-
dards. First, it shortly describes XML Schema and OWL model. Afterwards,
we present the implemented architecture which builds on existing technology,
such as schema matchers and converters from XML to OWL. The comparison
of XML and OWL has already been discussed in several fields of research before
[2,7,8,16] and the solution introduced here re-uses the mapping recommendation
of [7] with an improved implementation that is adjusted to the needs of biolog-
ical data transformation. In a similar way, OWL matching tools (e. g. SAMBO
[13], Protègè [14], COMA++ [1]) are re-used. We describe the results of our
evaluations which showed that our approach is feasible.

2 Standards and Standard Definition Formalisms

XML Schema [22] defines the formats’ structure and supports the development
of an XML model which is syntactically restricted to the occurrence of certain
elements. When an XML instance fulfills the requirements of the XML Schema
it is valid and complies with the according standard.

As an example, we consider a small extract of an SBML file taken from the Re-
actome Database [10] (listing 1.1 1): The XML Schema defines elements of simple
(e.g. speciesReference, ll 3-4), compound, or complex types (e.g. reaction,
ll 1-13, consisting of listOfReactants (ll 2-5), listOfProducts (ll 6-9) and
listOfModifiers (ll 10-12)). In addition, the definition of attributes (e.g. name
and id for reaction) is possible. The nesting of elements sets up the document
structure starting from a single root element.

1 EGFR stands for “Epidermal Growth Factor Receptor”. The Reactome IDs cor-
respond to the following molecules: REACT 2812 1 =̂ ATP; REACT 9820 1 =̂
EGF:EGFR dimer; REACT 2741 1 =̂ ADP; REACT 9673 1 =̂ EGF:Phospho-
EGFR dimer.

www.sbml.org

A Method for Semi-automatic Standard Integration in Systems Biology 747

1 <reaction name=" EGFR_autophosphorylation" id="REACT_9388_1">
2 <listOfReactants>
3 <speciesReference species ="REACT_2812_1" />
4 <speciesReference species ="REACT_9820_1" />
5 </listOfReactants>
6 <listOfProducts>
7 <speciesReference species ="REACT_2741_1" />
8 <speciesReference species ="REACT_9673_1" />
9 </listOfProducts>

10 <listOfModifiers>
11 <modifierSpeciesReference species =" REACT_9820_1" />
12 </listOfModifiers>
13 </reaction >

Listing 1.1. Code snippet from the SBML XML Schema for the EGFR model

Interaction
Name
Shortname
Availability
Evidence
Participants

Physical Interaction
Interactiontype

Conversion
Left Right
Spontenious

Biochemical
Reaction
Delta-G
Delta-H
Delta-S
EC-number
KEQ

Complex Assembly
Transport with
biochemical
reaction

Transport

Control
Controlltype
Controller
Controlled Catalysis

Cofactor
Direction

Modulation

Fig. 1. Extract from the BioPAX model

OWL specifies an OWL model of semantic concepts and verifies OWL docu-
ments against it. This is exemplified in Figure 1 which shows part of the BioPAX
specification:

An OWL model defines owl:Classes independently, which are put into IS A
relations using owl:SubclassOf constructs (e. g. Conversion is subclass of
PhysicalInteraction). The attributes (e g. Left for conversion) are defined
by using owl:DatatypeProperty and owl:ObjectProperty.

As OWL concentrates on the semantics behind terms it is very specific in the
definition of relations between classes, i. e. subClassOf, intersectionOf, and
unionOf. On the contrary, the only way of defining semantics in XML Schema
is the hierarchical composition of elements and type definitions which lead to
an implicit definition of semantics, i.e. the semantic of an element cannot be
detected automatically by a machine, but only from the elements’ context. For
example, the XML element name in the SBML example (listing 1.1, line 1) is the
name of a reaction. The same syntax is also used for the name of other entities,
such as species names. Researchers argue that a general transformation between

748 D. Köhn and L. Strömbäck

XML Schema and OWL model is not feasible, as XML Schema does “not contain
any semantic information, whereas OWL is derived from RDF, which is meant to
express semantic relations between elements” [7]. However, we agree that XML
Schema contains little implicit semantics “conveyed on the basis of a shared
understanding derived from human consensus” [11], which makes a translation
possible.

3 Integration of XML-Based and OWL-Based Standards

In this work, the focus is on a generic, but semi-automatic solution for the
matching of different pathway standards supporting re-usability and compar-
ibility of biochemical models defined in XML- and OWL-based formats. The
general architecture can be divided into the following steps:

1. Provide a schema definition (e. g. the SBML Schema), if the initial point was
an instance file (e. g. an SBML model)

2. Transform the XML Schema into an OWL model representation
3. Repeat 1 and 2 for all standards that are to compare
4. Match the (created) OWL models on OWL level
5. Use the matching correspondences to either form a joint format containing

all the information of both starting schemas, or to assign data of the source
document to the target document

To illustrate the use of the architecture, we could imagine the integration of
PSI MI information with an existing BioPAX model. This task can be realized
by transforming the according XML Schema version of the PSI MI standard
into an OWL model representation (step 2) and performing a matching of the
PSI MI OWL model and the BioPAX OWL model (step 4). For corresponding
parts, the existing data of both models can then be integrated and merged into
a comprehensive model (step 5). A second use case is the transformation of a
given data set in a standard format into another standard format, e. g. adding an
SBML data source to a BioPAX data repository. In that case, the (SBML) XML
Schema of the instance file is transformed into an OWL model presentation (step
2) and then is matched with the (BioPAX) OWL model (step 4). A valid OWL
instance file in BioPAX format is created and the appropriate data provided by
the SBML instance file is integrated (step 5).

The steps mentioned above are realized in the architecture as follows: During
the transformation step, an existing XML Schema is transformed into an equiv-
alent OWL model considering the XML Schema concepts listed in table 1. The
transformation keeps naming and structure of the original models to provide
best mapping results during the matching process. In particular, the hierarchy
of the XML Schema remains unchanged. Concepts such as cardinalities or data
models (differences between choice, sequence and all) are of minor interest
though. No additional names or ids should be generated in order to avoid a dis-
tortion of matching results later on. The result of the transformation is a valid
OWL model that can be read by existing OWL tools.

A Method for Semi-automatic Standard Integration in Systems Biology 749

Table 1. XML Schema – OWL model transformation rules

XML Schema OWL model

xsd:complexType owl:Class
xsd:element owl:DatatypeProperty

owl:ObjectProperty
xsd:attribute owl:DatatypeProperty
xsd:import reference in name attribute
xsd:enumeration rdfs:comment
xsd:pattern rdfs:comment
xsd:annotation rdfs:comment

To get back from the created OWL model to the XML based representa-
tion, the whole transformation XML Schema → OWL model is recorded (recall
transformation) using the XML Path Language (XPath [21]). By storing XPath
expressions during the transformation step, the XML Schema can be re-created
from the generated OWL model as each part of the created OWL model and its
equivalent in the according XML Schema can be unambiguously identified.

In a matching step, the created and/or the original models are matched. A
matching “takes two schemas S1 and S2 as input and returns a mapping between
those two schemas as output”[15]. The resulting mapping then defines relations
between the two schemas and therefore allows for a comparison of common
parts in both schemas. There exist a number of matching algorithms [6] which
use different techniques, for example syntactical matching or structure match-
ing. Since perfect matching involves semantic interpretation, a semi-automatic
approach has to be used here.

The three modules mentioned constitute the essential functionality of the
approach to allow for a first evaluation. They have been realized as a prototype
implementation. The recall transformation has been implemented, but not yet
integrated into the system.

4 Evaluations

The evaluation of the architecture addresses the following questions: How much
information is lost during the transformation step? How good is the transforma-
tion algorithm compared to other XML to OWL converters? How satisfying is
the result of the transformation? Basis for all evaluations was a set up list of 17
correspondences between the three most commonly used standards (SBML, PSI
MI, BioPAX).

Most important is the estimation how much information the transformation
step loses. As COMA++ supports a matching on XML Schema and on OWL
model level, it has been used to compare the matching results for different stan-
dards on both XML and OWL level. Column 1 and 2 in table 2 show the sum-
mary of results for the examplified matching of SBML → PSI MI on XML
Schema and OWL model level: COMA++ finds six of the 17 suggestions on

750 D. Köhn and L. Strömbäck

Table 2. Correspondences on XML Schema and OWL level found by COMA++ using
the recall transformation and the XML2OWL tool [3] to match SBML and PSI MI

Schema level OWL level
criterion original model recall transformation XML2OWL

total suggestions 6 8 13
found proposed correspondences 1 2 2
additional correct suggestions 2 3 4

Recall(%) 5.88 11.76 11.76
Precision(%) 16.67 25.00 15.38

RelRecall(%) 15.87 25.00 28.57
RelPrecision(%) 50.00 62.50 46.15

Fmeasurerel 0.24 0.36 0.35
overallrel 0.31 0.50 0.57

XML Schema level, and eight of the 17 suggesions on OWL model level. All
matching suggestions found on XML Schema level are also detected on OWL
model level. In contrast to the Recall, the Relative Recall (RelRecall) takes into
account additionally found correspondences which were not originally in the list
of expected correspondences. Here, two additional correspondences were found
on XML Schema level and three additional on OWL model level. The fact that
the recall in all cases is much lower than the relative recall shows that the list of
proposed correspondences set up to evaluate the architecture misses some “ob-
vious” suggestions and that some of the proposed correspondences might have
been too specific to be found by matching algorithms. Looking at the precision
measures, the values are close for both attempts. A precision of around 50% is at
any rate acceptable for the matching. Finally, it should be mentioned that SBML
and BioPAX do have more overlaps than SBML and PSI MI. Unfortunately, the
comparison of matching results on both levels could not be done using BioPAX,
as it is an OWL-based standard that does not provide an XML Schema.

Regarding the quality of the transformation step see table 2, column 2 and 3 for
a comparison of the implemented transformation with the existing XML2OWL
tool [3] – a promising approach that also supports the conversion of XML Schema
to OWL model [2,3]. Looking at the result model one gets from the XML2OWL
tool, a lot of additional ids and names are created, so that the matcher finds a
greater number of matching correspondences (13), which – on the other hand –
are often not correct (only six of the 13 correspondences being reasonable). As
a consequence, the relative precision is much lower for that approach.

The correspondences between the (created) OWL models are found during
the matching step. The three matching tools COMA++, Protègè and SAMBO
have been evaluated (compare results in table 3) and COMA++ and SAMBO
have been identified as most suitable. For example, both found a reasonable
number of matching suggestions for the SBML → PSI MI matching. SAMBO
gave 12 correspondences using the prototype implementation, and COMA++

returned five correspondences. Some matching tools returned better results for
the matching of certain pairs of standards than for others, e. g. the matching of

A Method for Semi-automatic Standard Integration in Systems Biology 751

Table 3. Correspondences for Different Matchings using SAMBO (S), Prompt (P),
and COMA++ (C): x/x results from prototype/XML2OWL approach, * matching not
executed,

�
all total number of matching results,

�
reas correct correspondences

SBML →PSI MI SBML →BioPAX PSI MI →BioPAX

S P C S P C S P C
�

all 12/8 3/* 8/13 0/0 1/* 7/95 2/0 6/0 0/0
�

reas 12/8 3/* 5/6 0/0 1/* 2/5 3/0 6/0 0/0

SBML → PSI MI worked best using SAMBO (five of the six proposed suggestions
found correctly), whereas the SBML → BioPAX matching was performed best
by COMA++ (two of the 5 proposed suggestions found correctly). As mentioned
before, the high number of matchings in COMA++ using the XML2OWL trans-
formation approach (see table 3,

∑
all) results from articifially generated IDs,

which cannot be considered as valid correspondences. Please note that the eval-
uations only consider automatically gained results which have to be enhanced
by semi-automatic alignment by the users in order to improve the results.

5 Conclusions and Future Directions

In this paper, an architecture for the version-indepentent integration of biological
data stored in various formats has been proposed. The evaluations in the last
section of the paper have shown that the approach is promising. Results can
be further improved in the future by enhancing both the matching algorithms
and the transformation of XML Schema into OWL model. Also, user interaction
needs to be implemented. The conclusion drawn from the evaluation section is
that the architecture can support the user during his work on different stan-
dards, especially during the integration process of data, and during the search
for data available in different standards. Future tasks include the complete im-
plementation of the architecture and a more comprehensive evaluation.

Acknowledgements. We acknowledge the financial support of the Center
for Industrial Information Technology, the German Academic Exchange Service
(DAAD), and the German Research Foundation (DFG). The first author is a
member of the DFG research training school “dIEM oSiRiS” (GRK 1387). The
second author is member of the EU Network of Excellence REWERSE (Sixth
Framework Programme project 506779). We also thank Patrick Lambrix and He
Tan for comments on the work and support with the SAMBO system.

References

1. Aumueller, D., Do, H.-H., et al.: Schema and ontology matching with coma. In:
Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, June 2005, pp. 906–908. SIGMOD, ACM Press, New York (2005)

752 D. Köhn and L. Strömbäck

2. Bohring, H., Auer, S.: Mapping xml to owl ontologies. In: Proceedings of the 13.
Leipziger Informatik-Tage, vol. 72, pp. 147–156 (2005)

3. Brischniz: The xml2owl demonstration platform (last checked: 2008-06-10),
http://xml2owl.sourceforge.net/

4. Collins, F.S., Green, E.D., et al.: A vision for the future of genomics research.
Nature 422, 835–847 (2003)

5. Davidson, S., Overton, C.G., et al.: Challenges in integrating biological data
sources. Journal of Computational Biology 2(4), 557–572 (1995)

6. Doan, A., Halevy, A.: Semantic integration research in the database community:
A brief survey. AI Magazine 26 (March 2005)

7. Ferdinand, M., Zirpins, C., et al.: Lifting xml schema to owl. In: Web Engineering -
4th International Conference, ICME 2004, pp. 354–358. Springer, Heidelberg (2004)

8. Gibbons, F.: The psi mi to biopax converter approach, from an email-conversation
(last checked 2008-06-10) (May 2006),
http://llama.med.harvard.edu/∼fgibbons

9. Hermjakob, H., Montecchi-Palazzi, L., et al.: The hupo psi’s molecular interaction
format - a community standard for the representation of protein interaction data.
Nature Biotechnology 22(2), 177–183 (2004)

10. Joshi-Tope, G., Gillespie, M., et al.: Reactome: a knowledgebase of biological path-
ways. Nucleic Acids Research 33, D428-D432 (2005)

11. Shengping, L., Jing, M., et al.: Xsdl: Making xml semantics explicit. In: Bussler,
C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 64–83.
Springer, Heidelberg (2005)

12. Lambrix, P.: Ontologies in Bioinformatics and Systems Biology. In: Artificial In-
telligence Methods and Tools for Systems Biology, October 2005. Computational
Biology, vol. 5, pp. 129–147. Springer, Heidelberg (2005)

13. Lambrix, P., He, T.: Sambo -a system for aligning and merging biomedical on-
tologies. Journal of Web Semantics, Special issue on Semantic Web for the Life
Sciences 4, 196–206 (2006)

14. Fridman Noy, N.: PROMPT (last checked 2008-06-10) (2000),
http://protege.stanford.edu/plugins/prompt/prompt.html

15. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10, 334–350 (2001)

16. Reif, G.: The weesa project (last checked 2008-06-10) (2005),
http://www.infosys.tuwien.ac.at/weesa/

17. Rübenacker, O., Moraru, I., et al.: Kinetic modeling using biopax ontology. In:
IEEE International Conference on Bioinformatics and Biomedicine, pp. 339–348
(2007)

18. Strömbäck, L., Hall, D., et al.: A review of standards for data exchange within
systems biology. Proteomics 7(6), 857–867 (2007)

19. Uhrmacher, A.M., Rolfs, A., et al.: Dfg research training group 1387/1: diem osiris
- integrative development of modelling and simulation methods for regenerative
systems. it - Information Technology 49(6), 388–395 (2007)

20. W3C. Extensible Markup Language (1999), http://www.w3.org/XML
21. W3C. XML Path Language (November 1999), http://www.w3.org/TR/XPath
22. W3C. Xml schema (May 2001), http://www.w3.org/XML/Schema
23. W3C. Web Ontology Language (2004), http://www.w3.org/2004/OWL/

http://xml2owl.sourceforge.net/
http://llama.med.harvard.edu/~fgibbons
http://protege.stanford.edu/plugins/prompt/prompt.html
http://www.infosys.tuwien.ac.at/weesa/
http://www.w3.org/XML
http://www.w3.org/TR/XPath
http://www.w3.org/XML/Schema
http://www.w3.org/2004/OWL/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 753–760, 2008.
© Springer-Verlag Berlin Heidelberg 2008

FDBMS Application for a Survey on Educational
Performance

Livia Borjas1, Alejandro Fernández1, Jorge Ortiz1, and Leonid Tineo2

1 IUT Federico Rivero Palacios, Departamento de Informática,
Carretera Panamericana,Caracas, Venezuela

{lborjasIUT,afernandezIUT,jortizIUT}@gmail.com
2 Universidad Simón Bolívar, Departamento de Computación,

Apartado 89000, Caracas 1080-A, Venezuela
leonid@usb.ve

Abstract. Important efforts have been done in providing fuzzy querying capa-
bilities. Nevertheless, at present time too few real life systems are taking ad-
vantage of these works. We present here an application for reviewing results of
a periodical student opinion survey on educational performance of professors.
This application has been developed using SQLfi Fuzzy DBMS.

Keywords: SQLf, Fuzzy Querying, Database Application.

1 Introduction

Emerging technologies that support decision-making processes are the tip of the ice-
berg under review. This is the case of queries involving user preferences whose defi-
nition and use lead to discriminated answers. Fuzzy Sets theory applied to data has
originated the so-called Fuzzy Databases, which allow [3]: ⎯ Imprecise data in a
modeled reality, such as: “Leo’s age is young and his performance is high”. Here
young and high are imprecise values for attributes age and performance. ⎯ Fuzzy
queries over precise data, such as: “Find the most popular professors according to
their students opinion”. Here most popular express a user preference in the require-
ment. Some works are intended to provide fuzzy database systems: ⎯ OMRON [12],
a fuzzy information retrieval library that contains a SQL variant with fuzzy logic on
traditional databases; ⎯ FQUERY [10] is an effort that adds fuzzy query functional-
ity over a small database management system; ⎯ FSQL [5] is an extension of SQL
for fuzzy relational databases; ⎯ SQLf [2][7][8], is a fuzzy logic based extensions of
SQL over relational databases that includes more querying structures than other fuzzy
database languages. Based on it, SQLfi, a Fuzzy Database Management System has
been implemented with Oracle 9i Java [4].

Some work has been made in fuzzy querying built for specific applications[3].
Nevertheless too few applications have been made with support on FDBMS, we can
enumerate [1][6][9][12]. We present here a complete, real and practical example of
fuzzy queries on relational databases using SQLfi. The study case is Professor Educa-
tional Performance Survey at Universidad Simón Bolívar, Caracas Venezuela. They

754 L. Borjas et al.

have a periodical survey of student opinion on the educational performance of the
professors. All this survey obtained data is stored in a relational database has not been
sufficiently taken advantage of. This database could be used to the support of some
decision making using fuzzy querying capabilities.

Rest of this paper is organized as follows: ⎯ Section 2 gives an Exposition of the
Problem solved by the application. ⎯ Section 3 briefly shows the Fuzzy Querying
Background. ⎯ Section 4 describes the application in terms of Fuzzy Queries Design.
⎯ Section 5 presents User Interfaces provided by the application for the specification
of fuzzy queries. ⎯ Section 6 points out the Concluding Remarks of this work.

2 Exposition of the Problem

Universidad Simón Bolívar (USB) has a relational database with data collected form
the survey of student opinion on teaching performance. It consists of an item list of
professor aptitudes, attitudes and facts that student evaluates according own apprecia-
tion. USB has a matrix organization: Departments are conformed by professors, while
students are assigned to Coordinations of Studies. Students may be enrolled to courses
associated to their corresponding studies program that are offered by different de-
partments. Professors are evaluated for contract renovation, promotion and/or pro-
grams of stimulus to the outstanding work. The academic department chief and the
different served study programs coordinators must give a substantial opinion about
the professor performance. In the survey process, students give appreciation of their
enrolled courses professors. Each professor is notified the result about his own
performance.

At present time, this survey database has not been sufficiently taken advantage of
thus the survey is in risk of lost its significance. Moreover, some decisions are made
without the suitable support. Each academic department chief is notified of the survey
result about each one of the professors in the department. Nevertheless the coordina-
tor of studies program has no information form the survey result. Stimulus programs
committees have no access to the survey result but with a copy that must be given by
the professor.

We present a first approach to the solution of this problem. We have developed an
end-user application for formulation of fuzzy queries in this study case. With this tool
academic department chiefs, program studies coordinator and stimulus programs
committees would be able to review the survey of student opinion in a rather semantic
way, using natural language terms with a fuzzy based intrinsic interpretation. These
terms use makes the application closer to what it is to be reflected in a professor per-
formance review, thus accurately and individually orienting the education, training
and development needs of the professor headcount.

3 Fuzzy Querying Background

Fuzzy database are currently in the spotlight due to the significant advantages they offer
regarding query results: flexibility that cannot be achieved through classic database
management systems (CDBMS). This flexibility feature adds elements that contribute to

 FDBMS Application for a Survey on Educational Performance 755

decision-making processes. In a classic query, only rows perfectly meeting condition are
retrieved. While in a fuzzy query frontier rows are included in the answer that is rows
that are close to meet conditions, within an accepted range established by the search
criteria. Through these fuzzy database management systems (FDBMS), we are able to
define our own search criteria based on linguistic terms that are familiar for final user in
its competence domain. Meaning for these terms is user dependent and is based on
fuzzy set theory. Therefore, the answer of a fuzzy query becomes a fuzzy relation or
fuzzy answer set. Answers are discriminated by their satisfaction degree to querying
condition. This degree is a real number in (0,1] set, where 1 represents total satisfaction,
and 0 represents total exclusion, values in the middle are less rigid they are partially
included or satisfy the query with a lower reliability level. In order to avoid super-
populated answers and undesired low quality answers, the fuzzy query may be cali-
brated with a threshold for satisfaction degrees.

Example 1: Suppose we want to find young people from PERSON relation in Table
1. The term young would not be accepted by a CDMBS, we would have to say, for
example, that: “young persons are those between 15 and 25 years of age” obtaining
CLASSIC query result in Table 1 . On the other hand, a FDBMS might handle the
term young by creating a predicate that establishes a flexible range to identify a young
person as in Fig. 1, we restrict the query with the threshold 0.5, obtaining FUZZY
query result in Table 1.

0,00
0,50
1,00

0 5 10 15 20 25 30 120

Fig. 1. Membership function of the fuzzy predicate young for the Example 1, which semantics
is as follows: “anyone starts to become a young since turns 10 till reaches 15, then continues to
be young between 15 and 25 years of age, and definitively ceases to be young after turning 30.”

We can see in previous example that different results are obtained when using a
CDBMS or a FDBMS, and note that, with the FDBMS, we can have more useful
results to count on, especially in decision-making support, due to gradual answer.

Some fuzzy query languages have been proposed. SQLf is defined as a structured
fuzzy query language for relational databases originated as an extension of standard
SQL through the use of fuzzy sets. A SQLf query has the following syntax:

select <attributes> from <relations> where <fuzzy condition>
with calibration [n|λ|n,λ]

The result is a fuzzy set of rows formed by attributes in the select clause form the
Cartesian product of the relations in the from clause. The membership degree of each
row is given by the satisfaction degree to the fuzzy condition. In the where clause,
some logical expressions can be used with user-defined fuzzy terms (atomic predi-
cates, modifiers, connectors, comparators and quantifiers) and predefined fuzzy op-
erators [2]. The with calibration clause specify a tolerance which may express a
maximum number “n” of best rows (quantitative) or may specify a satisfaction degree

756 L. Borjas et al.

Table 1. Instance of PERSON relation, results of CLASSIC query and a FUZZY query

PERSON

Name Age

Carmen Domínguez 26

Daniel Rodríguez 12

Isabel Castro 14

José Chacon 13

José Sánchez 25

Juan Amado 27

León Judá 33

Nadia Núñez 20

Pedro Ramírez 15

Ramón Carrizo 30

CLASSIC

Name Age

Pedro Ramírez 15

Nadia Núñez 20

José Sánchez 25

FUZZY

Name Age μ

Pedro Ramírez 15 1.0

Nadia Núñez 20 1.0

José Sánchez 25 1.0

Isabel Castro 14 0.8

Carmen Domínguez 26 0.8

José Chacon 13 0.6

Juan Amado 27 0.6

“λ” where returned row must have degree greater or equal to “λ” (qualitative). Fuzzy
terms are specified by means of a create fuzzy statement.

create fuzzy <term kind > <term name> as <term specification>

4 Fuzzy Queries Design

Database schema for USB survey of student opinion is quite complex. For shake of
simplicity, we present a reduced version of this schema. We denote underlined the
primary keys and italics the foreign keys. Relational schema is: DEPARTMENT(did,
dname), PROFESSOR (pid, pname, did), COORDINATION(oid, oname), COURSE
(cid, cname, did), PROGRAM(oid, cid), PERIOD (rid, rbegin, rend), SURVEY (vid,
cid, rid, snum, pid), ITEM (vid, inum, irep, ivalue). For the expression of fuzzy que-
ries we need to define linguistic terms. In this work, terms are Spanish that is Vene-
zuela’s official language. We have established:
⎯ Predicates: excelente, bueno, regular and deficiente (in English: excellent, good,
regular and deficient). In order to simplify the user specification of these predicates,
we establish an entailment between them, using only three parameters Xe, Xb and Xr
that would be replaced in the actual definition. See Fig. 2.

⎯ Comparators: MuchoMejorQue, MejorQue, PeorQue and MuchoPeorQue (in
English: Far better, Better, Worse and Much Worse). For simplicity of final user

0,00

0,50

1,00

1 Xr-0.5 Xr Xb-0.5 Xb Xe-0.5 Xe 5

Fig. 2. Fuzzy predicates deficiente, regular, bueno and excelente

 FDBMS Application for a Survey on Educational Performance 757

0,00

0,50

1,00

-4 XP XP+1 Xp 0 Xm XM-1 XM 4

Fig. 3. Fuzzy comparators MuchoPeorQue, PeorQue, MejorQue and MuchoMejorQue

specification, we establish only one parameter for each comparator XM, Xm, Xp or
XP. In this case the comparison degree is specified to be the satisfaction degree of the
distance between elements x and y measured as the difference in a fuzzy set that de-
fines the comparator. See Fig. 3.
⎯ Quantifiers: LaMayoría, LaMitad and LaMinoría (in English: Most, Half, and Few).
We establish an entailment between these quantifiers, using only two parameters XM
and Xm that would be replaced in the actual quantifiers’ definition. See Fig. 4.

0,00

0,50

1,00

0 ... Xm Xm+0.25 ... XM-0.25 XM ... 1

Fig. 4. Fuzzy quantifiers LaMinoría, LaMitad and LaMayoría

In the application queries espeficitaion is made via a final user interface. Therefore,
user needs to know neither SQLf nor fuzzy sets therory. Some fuzzy queries that user
may buid using our application, an their expression in SQLf, are these:

Example 2: Given a period $X1, a course $X2, an item number $X3, and a threshold $X4,
professors that have excellent result for this item. It would be expressed in SQLf as:

select V.vid,V.cid,V.rid,V.snum,V.pid from SURVEY V, ITEM I where
V.rid=$X1 and V.cid=$X2 and V.vid=I.vid and I.inum=$X3 and

I.ival=excelente with calibration $X4;

Example 3: Given a period $X1, items number $X2, and a threshold $X3, find professors that
have worst result for this item than the previous period result. It would be expressed as:

select V1.vid,V1.cid,V1.rid,V1.snum,V1.pid from SURVEY V1, ITEM I1,
SURVEY V2, ITEM I2 where V1.rid = $X1 and V1.vid=I1.vid and I1.inum=$X2
and V2.rid = $X1-1 and V2.vid=I2.vid and I2.inum=$X2 and V2.pid=V1.pid

and I1.ival PeorQue I2.ival with calibration $X3;

Example 4: Given a period $X1, items number $X2, and a threshold $X3, find professors that
have result for this item much better than the result in most of previous periods. In SQLf:

select V1.vid,V1.cid,V1.rid,V1.snum,V1.pid from SURVEY V1, ITEM I1 where
V1.rid=$X1 and V1.vid=I1.vid and I1.inum=$X2 and I1.ival MuchoMejorQue

758 L. Borjas et al.

LaMayoria(select I2.ival from SURVEY V2, ITEM I2 where V2.rid<$X1 and
V2.vid=I2.vid and I2.inum=$X2 and V2.pid=V1.pid) with calibration $X3;

Example 5: Given a period $X1 and a threshold $X2, find professors that have deficient result
only for few items. It should be expressed in SQLf as:

select V.vid,V.cid,V.rid,V.snum,V.pid from SURVEY V, ITEM I where
V.rid=$X1 and V.vid=I.vid group by V.vid,V.cid,V.rid,V.snum,V.pid having

LaMinoria are I.ival=deficiente with calibration $X2;

5 User Interfaces

The system’s most remarkable feature is the variety of queries and results, which can
be used by career coordinators and department chiefs in evaluating professors’ per-
formance. This application allows ⎯ Queries by Academic Period: it allows observ-
ing professor performance during a specific period or in a single course throughout
different periods. ⎯ Queries by Course: Only one course might need to be consulted
and this is made possible with this interface. ⎯ Queries by Item: review of emitted
opinion on a certain item might be needed no matter periods or courses. All these
interfaces are similar and contain in an intuitive way the different clauses of the SQLf
statement (see Fig. 5).

Fig. 5. Screen for specifying a query by course for the review of survey results. First two bands
establish classic conditions for the where clause, third band is used for specifying a simple
fuzzy condition with a predicate, fourth band is intended for specifying query nesting or parti-
tioning using a fuzzy quantifier, and last band allows the specification of calibration.

In addition, it features a module where users can redefine their preferences. Inter-
face design of this application is rather simple but powerful to capture the meaning of
fuzzy terms and the structure of fuzzy queries. There is a screen for fuzzy predicates,
other for fuzzy comparators and other for fuzzy quantifiers (Fig. 6). Interfaces are in
Spanish, Venezuela’s official language.

 FDBMS Application for a Survey on Educational Performance 759

Fig. 6. Screen for modifying fuzzy predicates specification. Sliding bars allow the selection of
corresponding values for parameters according to previous section. Actual parameter values are
shown as a reference. There are also predefined values that user may load with a button.

6 Concluding Remarks

We presented here a real life application of SQLfi Fuzzy Database Management Sys-
tem (FDBMS). It concerns to the review of the student opinion survey about teaching
performance at Universidad Simón Bolívar, Venezuela. It would be very useful in
decision-making for contract renovation, promotion and stimulus program. It provides
intuitive interfaces, thus final user is not forced to deal with fuzzy sets theory and
SQLf details. We have used a little but representative subset of SQLf. it would be
interesting to explore all the power of SQLf in development of other real life applica-
tions. Relevance of this work is that at present time FDBMS is an open research field
without commercial products of wide diffusion and therefore there are too few real
applications implemented using FDBMS.

Acknowledgments. This work is supported in part by the Governmental Venezuelan
Foundation for Science, Innovation and Technology FONACIT Grant G-2005000278.
“Don't be deceived, my dear brothers. Every good and perfect gift is from above,
coming down from the Father of the heavenly lights, who does not change like shifting
shadows. He chose to give us birth through the word of truth, that we might be a kind
of firstfruits of all he created.” James 1:16-18 (New International Version).

References

1 Aranda, C., Galindo, J.: Gestión de una Agencia de Viajes usando Bases de Datos Difusas y
FSQL, http://www.turismo.uma.es/turitec/turitec99/pdf/bd1.pdf

2 Bosc, P., Pivert, O.: SQLf: A Relational Database Language for Fuzzy Querying. IEEE
Transactions on Fuzzy Systems 3(1) (1995)

760 L. Borjas et al.

3 Cox, E.: Relational Database Queries using Fuzzy Logic. Artificial Intelligent Expert, 23–
29 (1995)

4 Eduardo, J., Goncalves, M., Tineo, L.: A Fuzzy Querying System based on SQLf2 and
SQLf3. In: The XXX Latin-American Conference on Informatics (2004)

5 Galindo, J.: New Characteristics in FSQL, a Fuzzy SQL for Fuzzy Databases. WSEAS
Transactions on Information Science and Applications 2 2, 161–169 (2005)

6 Goncalves, M., León, G., Martínez, D., Tineo, L.: Una Herramienta Web para la Evalua-
ción de Desempeño Docente, sobre un Sistema de Consultas Difusas. In: Actas de InfoUy
CLEI 2002, Conferencia Latinoamericana de Informática, Uruguay (2002)

7 Goncalves, M., Tineo, L.: SQLf Flexible Querying Language Extension by means of the
norm SQL2. Proc. of The 10th IEEE Inter. Conf. on Fuzzy Systems 1 (2001)

8 Goncalves, M., Tineo, L.: SQLf3: An extension of SQLf with SQL3 features. In: Proc. Of
The 10th IEEE International Conference on Fuzzy Systems, December 2001, vol. 3 (2001)

9 Goncalves, M., Tineo, L.: A Web Tool for Web Document and Data Source Selection with
SQLfi. In: Proc of the 9th International Conference on Enterprise Information Systems,
ICEIS (2007)

10 Kacpryzyk, J., Zadrozny, S.: Fuzzy Queries in Microsoft AccessTM v.2. In: Proc. of Fuzzy
IEEE 1995 Workshop on Fuzzy Database Systems and Information Retrieval (1995)

11 Ma, Z.M., Yan, L.: Generalization of Strategies for Fuzzy Query Translation in Classical
Relational Databases. Information and Software Technology 49(2), 172–180 (2007)

12 Nakajima, H., Sogoh, T., Arao, M.: Fuzzy Database Language and Library-Fuzzy Exten-
sion to SQL. In: Proc. of Second IEEE International Conference on Fuzzy Systems, pp.
477–482 (1983)

13 Valdés, Y.: Propuesta del Modelo Conceptual EER Difuso en el Control de la Calidad del
Papel (CMPC-MAULE): Implementación en FSQL, Proyecto Especial de Grado, Universi-
dad Católica del Maule, Talca, Chile (2003)

Hierarchy Encoding with Multiple Genes�

Martin van Bommel and Ping Wang

Department of Mathematics, Statistics, and Computer Science
St. Francis Xavier University

Antigonish, Nova Scotia, B2G 2W5, Canada
{mvanbomm,pwang}@stfx.ca

Abstract. Efficient implementation of type inclusion testing is impor-
tant for data and knowledge base systems employing large hierarchies.
The bit vector encoding of a partially ordered set representing a type
hierarchy permits constant-time type inclusion testing. Current such
methods employ a simple encoding, associating a single gene for each
join-irreducible element. We present an algorithm using multiple genes
for those elements with many siblings. The new algorithm provides a
significant improvement on the encoding size for hierarchies with low
multiple inheritance factors.

1 Introduction

Inheritance hierarchies can appear in numerous applications, including object-
oriented programming languages, databases, knowledge bases, and conceptual
graphs. The organization of objects that are instances of classes into such a par-
tial order of nodes requires the efficient testing of type inclusion (subsumption)
to determine if a relationship exists between a pair of objects. To facilitate this
end, and to reduce the size of the storage structure, several encoding methods
have been proposed which model a hierarchy as a lattice, which is represented
using a bit-vector encoding [2,3,4,8,11].

Two variations of such encoding methods are static and dynamic encodings.
Given a pre-defined hierarchy, the goal of static encoding is to efficiently produce
the best possible encoding, with the assumption that the hierarchy will remain
unchanged. The encoding of an object-oriented compiler’s class hierarchy is one
possible application [8]. For the case of an evolving hierarchy, dynamic encoding
employs an efficient incremental algorithm to encode new nodes as they are
added. Persistent applications such as data and knowledge bases, where new
types or classes are added during execution, require such an encoding.

The usual approach to encoding is to associate a distinguishing bit, called a
gene, to select nodes, and have nodes inherit the genes of all of their ancestors.
Heuristics are employed since the encoding problem is NP-hard [4]. A major
limitation of these approaches is that they employ a simple encoding scheme; that
is, they use only one gene per node, despite the fact that the optimal encoding

� Supported by the Natural Sciences and Engineering Research Council of Canada.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 761–769, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

762 M. van Bommel and P. Wang

usually requires more. “Most authors have shied away from the complexity of
multiple gene encoding.” [4]

This paper presents an encoding algorithm which employs a heuristic in which
specific patterns of nodes are assigned multiple genes, thus reducing the overall
encoding size. The goal is to achieve a more compact encoding without sacrificing
the efficiency of the encoding method or the flexibility of dynamic encoding.

2 Background

An inheritance hierarchy can be represented as a partially ordered set, poset
(P,≤), with the binary relation ≤ reflexive, antisymmetric, and transitive. The
relation a ≤ b implies that either a and b are the same class, a is an immediate
child of b, or a is an immediate child of some class c, and c ≤ b. Two elements a
and b of a poset P are said to be comparable if either a ≤ b or b ≤ a.

Consider a poset (P,≤) and a subset A of P . An element b ∈ P is called an
upper bound of A if a ≤ b for all a ∈ A. Also, b is called a least upper bound
(LUB) of A if it is also the case that b ≤ a whenever a is an upper bound of A.
Conversely, element b ∈ P is called a lower bound of A if b ≤ a for all a ∈ A,
and a greatest lower bound (GLB) of A if it is also the case that a ≤ b whenever
a is a lower bound of A.

A lattice is a poset in which every pair of elements has a GLB and LUB. The
LUB of the set of two elements {a, b} is denoted a∨ b and is called the join of a
and b. Similarly, the GLB of {a, b} is denoted a ∧ b and is called the meet of a
and b. A lower semilattice is a poset in which every pair of elements has a GLB.
A more detailed discussion on posets and lattices can be found in standard texts
on discrete mathematics, such as [7].

Consider the poset (P,≤). Let Anc(x) = {y ∈ P | y < x} and Desc(x) = {y ∈
P | y > x}. An element j ∈ X is said to be join-irreducible if there exists x ∈ X
such that x /∈ Desc(j) and Anc(j) ⊂ Anc(x)∪{x}. Similarly, we can define meet-
irreducible. Let J(P) and M(P) denote the sets of all join-irreducible elements
and all meet-irreducible elements respectively. Markowsky [9] shows that the
only optimal encoding preserving join (meet) operations for a lattice are those
obtained by associating a different number or bit to each join-irreducible (meet-
irreducible) element.

Let (P,≤) be a poset, and χ : J(P) → S = {1, ..., k}. Habib, Nourine, and
Raynaud [6] provide the following definition. A simple encoding is the mapping
ϕ(x) : X → 2S with ϕ(x) = ∪j∈Anc(x)χ(j) such that ϕ is an embedding from P
onto 2S; that is, x ≤P y iff ϕ(x) ⊂ ϕ(y). The problem is to determine the most
compact such encoding. Unfortunately, Caseau, Habib, Nourine and Raynaud [4]
prove that the simple encoding is polynomially equivalent to graph coloring, and
in turn, it is an NP-hard problem. In fact, the general encoding problem (also
known as the 2-dimension problem) is to find the smallest k such that there exists
a mapping ϕ(x) : X → 2{1,...,k} such that ϕ(x) → 2S with ϕ(x) = ∪j∈Anc(x)χ(j)
is an embedding from P onto 2S; that is, x ≤P y iff ϕ(x) ⊂ ϕ(y). Clearly, this
is also an NP-hard problem.

Hierarchy Encoding with Multiple Genes 763

3 Previous Work

A number of papers have examined the encoding problem [1,3,4,5,8,10,11], but
this section focuses on those contributing directly to the results in this work.

Caseau [3] proposes a top-down encoding that reuses bit positions during the
incremental encoding of a lattice. The procedure is presented in an incremental
fashion; that is, it can handle the addition of new nodes as children of leaves,
“which is the case with most object-oriented class hierarchies.” [3] The algorithm
does require a preliminary lattice completion step. The variation of this encoding
proposed by van Bommel and Wang [11] does not require the preprocessing step.
Caseau [3] also proposes that, for nodes with a large number of children, splitting
the children into smaller groups by adding additional nodes to the hierarchy can
reduce the size of the encoding.

Krall, Vitek, and Horspool [8] present what they call a “near optimal” simple
encoding method which is claimed to be faster, simpler, and producing smaller
codes. Their algorithm is based on the coloring of a “conflict graph” built from
the join-irreducible elements. It also requires a preprocessing step that “splits”
and “balances” the hierarchy, introducing new nodes in an effort to reduce the
encoding size. The algorithm is based on a static hierarchy, and is not easily
adapted to a dynamic application. Caseau et al. [4] present an improved variation
of the “near optimal” encoding by computing a more accurate conflict graph.
They also discuss a way to compute the coloring of a dynamic conflict graph.

4 Multiple Genes

In order to maintain the concept of simple encoding where a single gene is
assigned to each join-irreducible element, both Caseau [3] and Krall et al. [8]
introduce new nodes to the middle of the hierarchy to which such genes can
be assigned. An equivalent encoding without the additional nodes requires the
assignment of multiple genes per node. This section examines two situations
where such an assignment is preferable.

4.1 An Alternative to Gene Redefinition

Caseau’s [3] top-down incremental encoding scheme ensures that at most one
gene is assigned to a node by redefining the gene for a node if it results in conflicts.
Consider the insertion of node g in Fig. 1. Since g inherits the genes of its
ancestors, it includes genes one through four, leading to an apparent relationship
with node e. Caseau’s gene redefinition reassigns c gene five, thus removing the
conflict, and have node g inherit genes one and three through five.

The modification of genes already defined for nodes can lead to difficulties in
implementation in persistent incremental applications where many nodes include
this gene. An alternative approach is to permit the introduction of more than

764 M. van Bommel and P. Wang

{ }

d

c

b

f

g

{4}{2}

{1}

{2}

{3}

e

a

c

Fig. 1. Resolving conflicts

one gene per node. In Fig. 1, node e can have gene five added to its current
assignment, thereby eliminating the conflict.

What follows is a variation of the algorithm of van Bommel and Wang [11].
The encoding γ being considered is a mapping from a hierarchy representing a
poset (P,≤) to a lattice (L,⊇), where L contains binary words. Two codes c1

and c2 are related by c1 ⊇ c2 if and only if for every 1-bit in the code of c2,
code c1 contains a 1-bit in the same position. The operations c1 ∩ c2 and c1 ∪ c2

are equivalent to bit-by-bit binary and and or . Nodes added to the hierarchy
are encoded by calling function Encode. The function assumes the existence of
function Parents, which returns the set of immediate parents of a node.

Encode(x : node) :: ResolveConflicts(x : node) ::
let {x1, . . . , xn} = Parents(x) in for each y ∈ IncSet(x) do

if n = 1 then if γ(x) = γ(y) then
γ(x) ← Add(xn,FreeBit(xn)) Propagate(x,FreeBit(x))

else Propagate(y,FreeBit(y))
γ(x) ←

⋃n
i=1 γ(xi) else if γ(x) ⊂ γ(y) then

ResolveConflicts(x). Propagate(x,FreeBit(x))
else if γ(x) ⊃ γ(y) then

FreeBit(x : node) : int :: Propagate(y,FreeBit(y)).
forbid ← γ(x)
for each y ∈ Nodes do

if γ(y) ⊃ γ(x) then
forbid ← forbid ∪ γ(y)

if not γ(x) ⊇ γ(y) then
forbid ← forbid ∪ BitDiff(γ(x), γ(y))

return FirstZero(forbid).

Add (not shown) simply returns the code of node xn with an extra 1-bit (gene)
in the position provided by the call. The first available bit position that to dis-
tinguishes a code from others without defining conflicts is found via FreeBit.
This function compares the code with all currently assigned codes of incom-
parable nodes to determine those bit positions that are unavailable, and picks
the first available one. BitDiff (not shown) returns a code containing only this bit

Hierarchy Encoding with Multiple Genes 765

for a pair of codes, or returns the empty code if none exists. FirstZero (also not
shown) returns the position of the lowest order zero of a code.

The variation which may result in multiple genes per node is in the detection
of conflicts and the changes that are applied to solve them. A conflict occurs if
the new code assigned to a node creates the same code as some other node or
the appearance of a relationship with an incomparable node. ResolveConflicts
compares the new code with that of all nodes in the incomparable set. The
incomparable set of a node, determined via IncSet (not shown), is made up of
classes that are neither subclasses nor superclasses of the class. If the new code
matches that of another node, both the new node and the other are assigned
another gene. If the new node’s code makes it appear as an ancestor of an
incomparable node, the incomparable node is assigned another gene, which is
added to its descendants’ codes. However, if the new node’s code makes it appear
to be a descendent, the new node is assigned another gene.

The effect of Propagate (not shown) is to add to the codes of the node, and its
descendants, the bit position returned by FreeBit. If any new conflicts are created
during this process, they are resolved in the same manner with a recursive call
to ResloveConflits.

The proof of correctness of this algorithm and its efficiency are similar to that
of the vBW algorithm [11]. The code size produced is similar to that of both the
vBW algorithm [11] and Caseau’s [3] without balancing.

4.2 An Alternative to Splitting

Both Caseau [3] and Krall et al. [8] reduce the size of the simple encoding by
splitting children lists. For those nodes with more than some limit of a number
of children, two new intermediate parent nodes are added to the hierarchy, with
each assigned some of the children. As illustrated in the left encoding in Fig. 2,
the effect of adding these nodes is the assignment of multiple genes per node,
which is essentially multiple gene encoding.

An alternative to the introduction of intermediate nodes is the assignment of
multiple bits for each of the children. The right encoding in Fig. 2 illustrates a
more efficient encoding of the hierarchy that cannot be achieved via splitting.
Krall et al. [8] claim that “using more bits to identify a type complicates the
algorithm and makes it difficult to find a near optimal solution.” While this may
be true for a static encoding, in a dynamic environment the use of multiple bits
can accommodate additions to the hierarchy more efficiently than splitting.

a

edcb f g h i

{ }

{1,2}

j
{4,5}

k

a{ }

ed f g h i
{1,7}

j k

 {2}

{1,6} {2,4}

b c
{1,5} {2,7} {2,5} {2,6} {1,5} {1,4} {1,3} {2,3} {3,5} {3,4} {2,5}{2,4}{2,3}{1,3} {1,4}

{1}

Fig. 2. Splitting vs multiple gene encoding of a tree

766 M. van Bommel and P. Wang

Caseau et al. [4] hint at a heuristic for assigning multiple genes, but details
are not provided. Also presented is a bounds on the size of such an encoding in
the case that the hierarchy is a tree, and a claim that the number of bits required
to encode the children of a node with n children is in the range [log n, 2 + log n]
using multiple bits per child.

A dynamic encoding method which incorporates multiple genes for the encod-
ing of the immediate children of nodes with many children assigns genes in an
incremental manner. When a node has only a few children, the children are as-
signed a single gene. Once more children are added, the genes already assigned
are combined to create multiple gene assignment for each of the nodes. The
number of distinct genes d used for c children is the minimal such d where there
exists some g such that

(
d

�d/2�

)
≥ c and

(
d

g

)
≥ c .

The number of genes assigned per child g is the minimal such g.

4.3 An Example

Consider the hierarchy illustrated in Fig. 3. Applying the multiple bit per child
strategy on the first eleven nodes leads to the encoding illustrated on the top
right. Adding the final two nodes to this encoding leads to node m inheriting
all five genes, thus leading to conflicts with nodes b through e. The resolution of
these conflicts results in gene six being added to nodes b through e, as illustrated
on the bottom left. Contrasting this to the best possible use of simple splitting
for the same hierarchy illustrated on the bottom right illustrates the inefficiencies
inherent in such an approach.

a

edcb f g h i j k

l m

a

edcb f g h i

{ }

{1,2} {2,3} {4,2} {1,5}{3,4} {2,5}{1,3}{4,1}

j

{3,5} {4,5}

k

a

edcb f g h i

{ }

{1,5} {2,5}

j

{3,5} {4,5}

k

{1,2,3,4,6}

l m

{1,2,3,4,5}

{1,2,6}{2,3,6}{3,4,6}{4,2,6} {4,1} {1,3}

{ }

edcb f g h i

{1,3,4,5,6,7}

{1,4} {1,5} {1,6} {1,7} {2,4} {2,5}{3,4}

j

{2,6} {2,7}

k

{1} {2}

{3,5}

{3}

l m

{2,3,4,5,6,7}

a

Fig. 3. Encoding another hierarchy

Hierarchy Encoding with Multiple Genes 767

5 Balancing

A significant factor in the efficiency of the encoding of Krall et al. [8] is from
the balancing that is used during the splitting phase. Balancing attempts to
minimize the maximum path length of the hierarchy. The path length is a count
of the number of children of the nodes along the longest path from the root to the
leaf that require a unique gene. As stated, Caseau et al. [4] note that developing
an incremental version of this balancing and splitting would be difficult.

Incorporating the idea of balancing into the multiple bit top-down encod-
ing method described above requires a complete analysis of the hierarchy. Un-
fortunately there is no guarantee that further additions to the hierarchy will
not counteract any measures taken in an attempt to balance. In a discussion
of a possible incremental version of their algorithm, Krall et al. [8] note that
incremental balancing could result in a large increase in the space and exe-
cution time required if the balancing changes, and thus state that“balancing
could be replaced by a simpler splitting process which ignores the depth of the
tree.”

5.1 An Alternative to Balancing

As shown, splitting children itself does not necessarily improve the encoding
size when used with multiple gene encoding. Rather, splitting children with few
descendants from those with many descendants can improve the encoding size.
An analysis on sample hierarchies revealed that the best heuristic to use for
such splitting involves determining a rough estimate of the encoding size for
children. Each leaf node requires a gene. For each parent node, the number of
genes required is calculated as the number of children plus the maximum of the
number of genes required by its children. For nodes with multiple children, if
there exists at least one child with an encoding size of ten or greater and children
with encoding size of less than ten, a new node is introduced as a parent of those
nodes with encoding size less than ten.

5.2 An Example

Consider the hierarchy illustrated using a regular encoding technique on the
top left of Fig. 4, which requires fifteen distinct genes. Applying the multiple
genes per child strategy on nodes with more than three siblings leads to the
encoding illustrated on the top right, which requires twelve distinct genes. Using
the encoding of Krall et al. [8] with balancing, as illustrated on the bottom left,
also requires twelve distinct genes. Contrasting this to the use of the alternative
approach to splitting used with multiple genes per child illustrated on the bottom
right, which requires only ten distinct genes, illustrates the effectiveness of the
approach.

768 M. van Bommel and P. Wang

a

edcb f

g h i

{ }

 {2}

j k

l m

{1}

n o p

{3} {4}

{5,6} {5,7}

 {5,8}

{5,9} {5,10}

{5,8,11} {5,8,13}{5,8,12} {5,8,14}{5,8,15}

 {5}

a

edcb f

g h i

{ }

{1,3}

j k

l m

 {1,2}

n o p

 {3,4} {1,4}

{5,6} {6,7}

 {7,8}

{5,8} {5,7}

{9,10} {11,12}{10,11} {9,12} {9,11}

 {2,3}

a

edcb

f

g h i

{ }

{2}

j k

l m n o p

{1,6} {2,3} {2,4} {2,6} {2,7}

{2,5,8} {2,5,9} {2,5,12}

{1}

 {1,3} {1,4} {1,5}

{2,5}

{2,5,11} {2,5,10}

a

edcb

f

g h i

{ }

{2}

j k

l m n o p

 {6} {3,4} {3,6} {3,5}

{1}

 {3} {4} {5} {4,5}

{5,6}

{8,9} {7,10}

 {7,8} {9,10} {7,9}

Fig. 4. Multiple gene encoding with splitting

6 Comparison and Conclusions

To compare the performance of the use of both of the multiple gene strate-
gies with other approaches, test data containing class libraries was obtained
from the collection of Andreas Krall [8]. Table 1 outlines the characteristics of
the data and illustrates the comparison with using the encoding of Caseau [3]
without splitting, Caseau [3] with splitting, the multiple gene encoding method
described in this paper, Krall et al. [8] using balancing, and the multiple gene

Table 1. Hierarchy characteristics and encoding results

parents childs Bit Counts
library classes depth max avg max Caseau Split Multi Krall Multi2

Visualwks2 1956 15 1 1 181 420 124 58 50 41
Digitalk3 1357 14 1 1 142 325 116 50 36 35
NextStep 311 8 1 1 142 177 92 27 23 21
ET++ 371 9 1 1 87 181 61 42 30 24

Unidraw 614 10 2 1.01 147 227 96 44 30 29
Self 1802 18 9 1.05 232 297 180 72 53 55
Ed 434 11 7 1.66 77 128 90 76 54 79
LOV 436 10 10 1.71 76 130 92 77 57 70
Laure 295 12 3 1.07 7 34 34 30 23 28
Java 225 7 3 1.04 73 97 50 23 19 19

Hierarchy Encoding with Multiple Genes 769

encoding method with simple splitting described in this paper. The balancing
method of Krall is shown to produce a compact encoding, but is only effective
for static encoding. For several of the hierarchies, the use of multiple genes is
almost as effective as balancing, and the multiple gene encoding method with
simple splitting can be better, especially for hierarchies with little or no multiple
inheritance. Only the Krall encoding is not performed in a top-down incremental
fashion, and thus could not be used for dynamic hierarchies.

Reducing the overall size of the encoding of type hierarchies improves the
efficiency of type inclusion testing. With static encoding, a thorough analysis of
the hierarchy can be used, but with dynamic hierarchies, such analysis is difficult.
Simple encoding can produce reasonable results, if employed in conjunction with
careful balancing and splitting approaches. The use of multiple genes in encoding
certain elements of large type hierarchies improves the overall encoding size for
those hierarchies with little multiple inheritance, and simple splitting helps to
further reduce it. This method is competitive to that involving simple encoding
with balancing, but can be used in applications involving dynamic hierarchies,
or combined with balancing in a static encoding scheme.

References

1. Agrawal, R., Borgida, A., Jagadish, J.V.: Efficient management of transitive relation-
ships in large data and knowledge bases. In: Proceedings of the ACM SIGMOD In-
ternational Conference on the Management of Data, June 1989, pp. 253–262 (1989)

2. Ait-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Transactions on Programming Languages and Systems 11(1),
115–146 (1989)

3. Caseau, Y.: Efficient handling of multiple inheritance hierarchies. In: Proceedings
of the International Conference on Object-Oriented Systems, Languages, and Ap-
plications, October 1993, pp. 271–287 (1993)

4. Caseau, Y., Habib, M., Nourine, L., Raynaud, O.: Encoding of multiple inheritance
hierarchies and partial orders. Computational Intelligence 15(1), 50–62 (1999)

5. Ganguly, D., Mohan, C., Ranka, S.: A space-and-time efficient coding algorithm for
lattice computations. IEEE Transactions on Knowledge and Data Engineering 6(5),
819–829 (1994)

6. Habib, M., Nourine, L., Raynaud, O.: A new lattice-based heuristic for taxonomy
encoding. In: International KRUSE Symposium on Knowledge Retrival, Use and
Storage for Efficiency, pp. 60–71 (1997)

7. Kolman, B., Busby, R., Ross, S.: Discrete Mathematical Structures, 3rd edn. Pren-
tice Hall, New Jersey (1996)

8. Krall, A., Vitek, J., Horspool, R.N.: Near optimal hierarchical encoding of types.
In: European Conference on Object-Oriented Programming, pp. 128–145 (1997)

9. Markowsky, G.: The representation of posets and lattices by sets. Algebra Univer-
salis 11, 173–192 (1980)

10. van Bommel, M.F., Beck, T.J.: Incremental encoding of multiple inheritance hier-
archies supporting lattice operations. Linkoping Electronic Articles in Computer
and Information Science 5(1) (December 2000)

11. van Bommel, M.F., Wang, P.: Encoding multiple inheritance hierarchies for lattice
operations. Data and Knowledge Engineering 50(2), 175–194 (2004)

Knowledge Mining for the Business Analyst

Themis Palpanas1 and Jakka Sairamesh2

1 University of Trento
2 IBM T.J. Watson Research Center

Abstract. There is an extensive literature on data mining techniques,
including several applications of these techniques in the e-commerce set-
ting. However, all previous approaches require that expert users interpret
the data mining results, making them cumbersome to use by business an-
alysts. In this work, we describe a framework that shows how data mining
technology can be effectively applied in an e-commerce environment, de-
livering significant benefits to the business analyst. Using a real-world
case study, we demonstrate the added benefit of the proposed method.
We also validate the claim that the produced results represent action-
able knowledge that can help the business analyst improve the business
performance, by significantly reducing the time needed for data analysis,
which results in substantial financial savings.

1 Introduction

Data mining has been extensively used in the past for analyzing huge collections
of data, and is currently being applied to a variety of domains [9]. More recently,
various data mining techniques have also been proposed and used in the more
specific context of e-commerce [19,10]. The downside of the previous discussion is
that, despite all the success stories related to data mining, the fact remains that
all these approaches require the presence of expert users, who have the ability to
interpret the data mining results. We argue that an important problem regarding
the use of data mining tools by business analysts is the gap that exists between
the information that is conveyed by the data mining results, and the information
that is necessary to the business analyst in order to make business decisions.

In this work, we describe a framework that aims at bridging the gap mentioned
above. We demonstrate how data mining technology can be effectively applied
in an e-commerce environment, in a way that delivers immediate benefits to
the business analyst. The framework we propose takes the results of the data
mining process as input, and converts these results into actionable knowledge, by
enriching them with information that can be readily interpreted by the business
analyst. By applying this methodology to the vehicle manufacturing industry, we
show that the business analyst can significantly reduce the time needed for data
analysis, which results in substantial financial savings. For example, shortening
the vehicle warranty resolution cycle by 10 days can save an Original Equipment

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 770–778, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Knowledge Mining for the Business Analyst 771

Manufacturer (OEM) around $300m and reduce the total number of warranty
claims by 5%.

In summary, we propose a method that allows the analyst to:

– quickly discover frequent, time-ordered, event-patterns,
– automate the process of event-pattern discovery using a feedback loop,
– enrich these event-patterns with demographics related to the processes that

generated them,
– identify the commonalities among these event-patterns,
– trace the events back to the process that generated them, and
– predict future events, based on the history of event-patterns.

Previous work has proposed algorithms for solving the problem in the first step
of the above process, and we leverage those algorithms. Yet, there is no work
that covers the entire process that we are proposing in this study.

1.1 Related Work

There exists a large body of work in knowledge extraction from huge datasets [8],
and many recent studies try to improve on the performance and functionality of
the various data mining algorithms. However, these algorithms are targeted to
expert users, and are very cumbersome to be used by business analysts. The same
is also true for commercial data mining solution packages [3,4,2]. The CRISP-DM
project [1] has proposed an end-to-end process for data mining. In this paper,
we present a specific framework that addresses some of the problems arising in
one steps of the above process, namely, the step of organising and presenting to
the user the new knowledge gained by applying some data mining techniques.

Several applications of data mining in the e-business environment [19,10] prove
the usefulness of this kind of techniques for improving the business operations.
Nevertheless, the proposed solutions are specific to the particular tasks for which
they were developed. Previous work has also studied the problem of applying
data mining techniques in the context of data warehouses [14,16,17,13], which
are used by business analysts during the decision-making process.

2 Knowledge Mining Framework

In this section, we describe in more detail the framework that we propose for
knowledge mining. Figure 1 depicts a high level view of our approach.

Pre-Processing. When the data first enter the system, there are a series of pre-
processing steps that aim at cleaning the data and bringing them in a format
suitable for our system. The purpose of the pre-processing steps is to make sure
that all the data conform to the same standard and are semantically comparable.
Examples of actions taken during this phase include converting all measures
to metric system, all codes to the same standard, and ensuring the semantic
equivalence of data.

772 T. Palpanas and J. Sairamesh

Fig. 1. Process overview

Discovering Patterns. In the next series of steps, we identify patterns of inter-
est in the data. The computed patterns should also conform to some user-defined
constraints. These constraints determine the form of the patterns that are going
to be computed. For example, the user may set the minimum and maximum
lengths for each of the reported patterns, in the case where we are interested in
mining for frequent sequences. The user may also define the maximum elapsed
time between the start and the end of a sequence, as well as between two con-
secutive items in the sequence. The proposed framework, allows the users to try
out the various parameter alternatives (a principle similar to exploratory mining
[12]).

Data Enrichment. The frequent sequences that have been produced during
the previous step only hold some minimal, vital information in order to identify
the items that participate in each one of the frequent sequences. The goal of data
enrichment is to take as input the computed frequent sequences, and correlate
them with all the relevant bits of information that are stored in the system. Data
originating from different parts of the business are gathered and integrated with
the data mining results. The data may refer to various phases of the lifecycle
of each specific item, and they enrich the discovered sequences with contextual
information pertaining to the processes that generated them.

Result Analysis. The enriched sequences that were produced during the pre-
vious phase can then be analyzed in a variety of ways. The diagram of Figure 1
depicts three different analysis modules that we are proposing.

– Ranking Sequences. This module uses various knowledge models and
utility functions in order to rank the event-patterns according to different
criteria. The results of this methodology capture a macro view of the business
performance issues based on a small but important fraction of the available
information (for details see [6]).

Knowledge Mining for the Business Analyst 773

– Clustering Sequences. The purpose of this module is to use the contextual
information associated with each event-pattern in order to identify clusters of
similar event-patterns. When a clustering algorithm (for example, [7]) is run
against the enriched event-patterns, it produces groupings of those patterns
that are semantically meaningful within the business context, and help the
analyst to gain insight on the root causes for each behavior.

– Predictive Analysis. This module aims at using the history of event-
patterns to predict future events. The identified patterns represent an ap-
proximation of the historical behavior of the items under examination. Given
these data, we can make projections for the future behavior [15].

Note that apart from the above three analysis modules that we have im-
plemented in our system, other modules can be incorporated in the proposed
framework as well.

Report Creation. In the final phase of the framework we propose, we produce a
series of reports that summarize the results of the previous data analysis phases.
In our framework we have developed a graphical user interface, through which
the analyst has access and can customize several different report types.

3 Case Study

In this section, we describe a case study with one of the two vehicle manufac-
turing companies we collaborated with. The manufacturer has data relevant to
the characteristics of each vehicle. The data refer to warranty claims made for
vehicles of particular models during the period of the year 2005. The first dataset
we examined includes almost 2, 000, 000 records of warranty claims, referring to
almost 1, 000 different failure reasons. These claims were referring to approxi-
mately 250, 000 unique vehicles, corresponding to more than 100 different vehicle
models.

3.1 Proposed Process

In this section, we elaborate on the process that we propose for extracting new
knowledge from the available data, for the vehicle manufacturing company. In
the following presentation, we focus on a single stream of knowledge extraction
and management, namely, that of frequent sequences.

Pre-Processing. The input to our system are the warranty claims of the vehi-
cles. Each warranty claim comes with the following pieces of information.

– The vehicle identification number (VIN).
– The date that the vehicle visited the mechanic.
– The mileage of the vehicle at the time of the visit to the mechanic.
– The ids for all the failed vehicle parts, as identified by the mechanic.
– The root cause for each one of the failures, as identified by the mechanic.
– The cost of the visit to the mechanic, broken down by part and labor cost.

774 T. Palpanas and J. Sairamesh

All these claims are gathered from different sources, normalized, and stored in
a database called warranty claims data store. The organization of these data in
a database helps in the subsequent steps of data analysis.

Frequent Sequence Mining. We define failure set f = (f1, f2, ..., fm) to be
a nonempty set of failures (i.e., a set describing all the known events in which
a particular vehicle failed), and failure sequence s =< s1, s2, ..., sn > to be an
ordered list of failure sets. A failure-sequence which contains all the failures of
a vehicle (identified by the VIN) ordered by the claim date, is called a vehicle-
failure sequence. We say that a vehicle supports a failure-sequence if this failure
sequence is contained in the vehicle-failure sequence of this particular vehicle.
The problem of mining failure patterns [18,11,5] is to find the failure sequences
that are supported by many vehicles.

Post-Processing Data Enrichment. The output of our frequent failure pat-
terns analysis is a long list of failure sequences, which we augment with statistics
relating to several of the attributes contained in the warranty claims database.
More specifically, with each failure pattern we associate the following information
(related to the vehicles that failed): Number of vehicles supporting the failure
pattern; l most common vehicle models; l most common engine types; l most
common manufacturing plants; l most common makers; l most common build-
years. In addition to the above information, which refers to the entire pattern,
we also associate with each particular failure of each failure pattern the following
information: l most common cause-codes for the failure; Minimum, maximum,
average, and standard deviation of the mileage at which the failure occurred;
Minimum, maximum, average, and standard deviation of the replacement part
cost for the failure; Minimum, maximum, average, and standard deviation of the
labor part cost for the failure.

Result Analysis - Report Creation. The wealth of this information makes
the use of a database imperative, in order to organize all the results and help in
their analysis. Even though the database can be used to produce a listing with
all the failure patterns along with the additional statistics outlined above, the
real power of this approach stems from the fact that the analyst can query the
database, and get results that are relevant to the particular aspects of the failure
patterns she is focusing on.

The failure pattern database can be used to answer any query that correlates
any combination of the attributes that the database captures (listed in the previ-
ous paragraphs). A small sample of the questions that this database can answer
is presented in the following sections.

3.2 Evaluation Results Using Aggregated Behavior Reports

We first present sample results on failure sequence statistics related to the ag-
gregated behavior of vehicles. This is a way to direct the analyst to examine
some problems that are considered more important than others. Our framework
can be useful in answering many other queries as well.

Knowledge Mining for the Business Analyst 775

Ranking by the difference of part and labor cost for a specific type of
failures
In this case, we are looking for failure sequences that involve engine failures, for
which the labor cost is more than the part cost. This query is interesting, because
it shows that for some repairs under warranty the part cost is very small, while
the labor cost is much higher (around $1, 200). When redesigning an engine, it
may be beneficial to take these cases into consideration so as to make sure that
that the labor cost for repairing this kind of failures is reduced (e.g., access to a
particular part is made easier).

Ranking by frequency of occurrence for a specific engine model
This query reports the most frequent failure sequences, for which the most com-
mon engine model is “A”. These sequences are interesting, because they inform
the analyst what are the most frequent recurring problems related to a specific
engine model. Our data show that more than 2, 300 vehicles that are mounted
with the specific engine model exhibit the same problems. These results can help
identify potential problems in the design or manufacturing of this engine model.

3.3 Evaluation Results Using Focused Reports

In the examples that follow, we isolate some frequent failure sequences of interest,
and analyze the detailed characteristics of the vehicles that exhibit these failure
sequences.

Once again, it is important to note that the following are just two examples
we used during our study. The approach we propose allows the user to focus on
any aspect that is important to the team of data analysts.

Failures in brakes and electrical components
This example focuses on vehicles that visited the mechanic two different times
within the same year, for problems related to the brakes and the electrical com-
ponents. Table 1 lists the most common causes for each failure in the sequence.
As we can see, in the majority of the cases the failure cause is the same. This
indicates that there may be a problem with the design or the manufacturing of
the failed parts.

Table 1. Example 1: Cause code break-down. (All the code ids and descriptions have
been replaced by dummy values for reasons of anonymity.)

failure X failure Y
cause code % cause code %

inoperative 72 leaking 64
shorted 13 rubs 9
leaking 7 broken 4

776 T. Palpanas and J. Sairamesh

Table 2. Example 2: Cause code break-down. (All the code ids and descriptions have
been replaced by dummy values for reasons of anonymity.)

failure X failure Y failure Z
cause code % cause code % cause code %

leaking 100 leaking 47 leaking 21
loose 5 broken 11

loose 11

Failures in driving axle, wheels, and brakes.
In this case, we examine vehicles that visited the mechanic three different times
during the same year, for problems related to the driving rear axle, the wheels,
and the brakes. Note that all these problems relate to the same sub-system of
the vehicles, and have occurred one after the other. When we look at the causes
of these failures (see Table 2), it is obvious that the main problem is leaking
parts. Furthermore, it turns out that all the vehicles that had those failures
were manufactured in year 2004, and the vast majority of them, almost 90%,
in the same factory (see Table 3). These data provide a clear indication to the
analyst as to where to direct the efforts necessary for resolving the problems in
the vehicles.

Table 3. Example 2: Demographics break-down. (All the code ids and descriptions
have been replaced by dummy values for reasons of anonymity.)

bld dte % model % plant % engine %

2004 100 M1 74 P1 89 E1 79
M2 21 P2 5 E2 16
M3 5 P3 5 E3 5

3.4 Discussion

By following the proposed process, the analyst (or in this particular case, the
engineer responsible for the design and manufacturing of engine type “E”) can
quickly focus on the most important problems that are relevant to her work.
Actually, the same analyst can view, prioritize, and evaluate the corresponding
information according to different criteria, such as cost, which relates to the
financial aspect of the business, or frequency of failures, which relates to customer
satisfaction and the marketing aspect.

These benefits of the presented method were also validated by different ana-
lysts from the two vehicle manufacturing companies that provided us with their
data. By using our framework, they were able to not only cut down the time
spent on data analysis and interpretation to a small fraction of the time they
used to spend (from more than 45 days down to a few days for specific types of

Knowledge Mining for the Business Analyst 777

analysis), but they were also able to perform more focused analysis and deliver
reports with a high impact factor.

4 Conclusions

In this work, we described a framework that enriches the results of the data min-
ing process with information necessary for the business analyst. This information
pertains to different aspects of the data mining results, and can help the analyst
manipulate and interpret these results in a more principled and systematic way.

As our case study with a real-world problem demonstrates, the proposed
framework has a great value in the e-commerce context. It converts the data
mining results into actionable knowledge, that the business analyst can use to
improve the business operations. In our case study, this meant changing the de-
sign and manufacturing processes in order to avoid expensive warranty claims
for specific failures.

References

[1] Cross Industry Standard Process for Data Mining, http://www.crisp-dm.org/
[2] DB2 Intelligent Miner, http://www-306.ibm.com/software/data/iminer/
[3] Microsoft SQL Server Business Intelligence,

http://www.microsoft.com/sql/solutions/bi/default.mspx
[4] Oracle Data Mining, http://www.oracle.com/technology/products/bi/odm/
[5] Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential Pattern Mining Using a

Bitmap Representation. In: International Conference on Knowledge Discovery and
Data Mining (2002)

[6] Chen, M., Sairamesh, J.: Ranking-Based Business Information Processing. In: E-
Commerce Technology (2005)

[7] Domeniconi, C., Papadopoulos, D., Gunopulos, D., Ma, S.: Subspace clustering of
high dimensional data. In: SDM (2004)

[8] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

[9] Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cam-
bridge (2000)

[10] Li, Y.-H., Sun, L.-Y.: Study and Applications of Data Mining to the Structure
Risk Analysis of Customs Declaration Cargo. In: ICEBE, pp. 761–764 (2005)

[11] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Technical Report C-1997-15, Department of Computer Science, Uni-
versity of Helsinki (1997)

[12] Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory Mining and Prun-
ing Optimizations of Constrained Associations Rules. In: ACM SIGMOD Inter-
national Conference, Seattle, WA, USA (June 1998)

[13] Palpanas, T.: Knowledge Discovery in Data Warehouses. ACM SIGMOD
Record 29(3), 88–100 (2000)

[14] Palpanas, T., Koudas, N., Mendelzon, A.O.: Using datacube aggregates for
approximate querying and deviation detection. IEEE Trans. Knowl. Data
Eng. 17(11), 1465–1477 (2005)

http://www.crisp-dm.org/
http://www-306.ibm.com/software/data/iminer/
http://www.microsoft.com/sql/solutions/bi/default.mspx
http://www.oracle.com/technology/products/bi/odm/

778 T. Palpanas and J. Sairamesh

[15] Pednault, E.: Transform Regression and the Kolmogorov Superposition Theorem.
Technical Report RC-23227, IBM Research (2004)

[16] Sarawagi, S.: User-Adaptive Exploration of Multidimensional Data. In: VLDB
International Conference, Cairo, Egypt, September 2000, pp. 307–316 (2000)

[17] Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven Exploration of OLAP
Data Cubes. In: International Conference on Extending Database Technology,
Valencia, Spain, March 1998, pp. 168–182 (1998)

[18] Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

[19] Yang, X., Weiying, W., Hairong, M., Qingwei, S.: Design and Implementation
of Commerce Data Mining System Based on Rough Set Theory. In: ICEBE, pp.
258–265 (2005)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 779 – 790, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Controlling the Behaviour of Database Servers with
2PAC and DiffServ

Luís Fernando Orleans1, Geraldo Zimbrão1, and Pedro Furtado2

1 COPPE/UFRJ - Computer Science Department - Graduate School and Research in
Engineering – Federal University of Rio de Janeiro

2 CISUC – Department of Informatics Engineering – University of Coimbra - Portugal
{lforleans,zimbrao}@cos.ufrj.br, pnf@dei.uc.pt

Abstract. In order to avoid stress conditions in information systems, the use of
a simple admission control (SAC) mechanism is widely adopted by systems'
administrators. Most of the SAC approaches limit the number of concurrent
work, redirecting to a waiting FCFS queue all transactions that exceed that
number. The introduction of such a policy can be very useful when the most
important metric for the system is the total throughput. But such a simple AC
approach may not be sufficient when transactions have deadlines to meet, since
in stressed scenarios a transaction may spend a lot of time only waiting for exe-
cution. This paper presents 2 enhancements that help keeping the number of
transactions executed within the deadline near to the throughput. The enhance-
ments are DiffServ, in which short transactions have priority, and a 2-Phase
Admission Control (2PAC) mechanism, which tries to avoid the previousmen-
tioned problem by limiting the queue size dynamically using informations pro-
vided by a feedback control. It also introduces the QoS-Broker – a tool which
implements both SAC and 2PAC – and uses it to compare their performances
when submitted to the TPC-C benchmark. Our results show that both total
throughput and throughput within deadline increase when the 2 enhancements
are used, although it becomes clear that 2PAC has a much bigger impact on per-
formance than DiffServ.

Keywords: QoS, DiffServ, Admission Control, 2PAC.

1 Introduction

Congested request processing systems lead to degraded performances and quality of
service. So far, a Simple Admission Control (SAC) was sufficient to avoid stress con-
ditions on database servers. All incoming transactions that would make the server
exceed the allowed multi-programming level (MPL) [17] would be directly forwarded
to a FCFS queue and wait there for future execution. Although this is a fair approach,
where all transactions are served in their arrival order, it is hard to be applied if trans-
actions have deadlines to meet. Intuitively, as the transactions arrival rate increases,
the number of transactions that will be redirect to the waiting queue will also increase,
hence the time each transaction will spend waiting for execution. The inclusion of

780 L.F. Orleans, G. Zimbrão, and P. Furtado

time-constraints in database transactions makes the traditional admission control
implementations unable to reach the QoS conditions that might be established be-
tween the service provider and the service contractor. This way, another admission
control layer is necessary: one that should try to avoid the uncontrolled growing of the
queue, creating what we called a 2-Phase admission control (2PAC). In this paper we
propose the 2PAC policy , which learn workloads patterns and adapts the queue size
to provide much better guarantees than SAC. Our proposal also handles efficiently
transaction heterogeneity: we also propose a DiffServ enhancement to the basic 2PAC
proposal, which prioritize short transactions by preventing them to pass through any
of the admission control layers when it makes sense, boosting the performance. Our
experimental work compares SAC, 2PAC and 2PAC plus DiffServ, using the TPC-C
benchmark. We do not cover a best-effort configuration, since it had been already
extensively studied. Two scenarios were created: a high load scenario and a medium
load scenario. Both will be explained in deeper details later. The 2PAC has better
throughput than its competitors in all cases, having a small fraction of accepted trans-
actions breaking their deadlines. The main reason is the second admission control
phase, which tries to optimize the queue size according to the transactions previous
durations. This way, all transactions that presents high response times that would
probably miss their deadlines are rejected by the middleware.

The remaining of the paper is organized as follows: section 2 lists the related work.
Section 3 gives the background in which this work stands for. Section 4 presents the 2
Phase Admission Control algorithm and section 5 explains how a DiffServ mecha-
nism can be used within a database context. Section 6 gives the experiment setup,
while section 7 lists the results obtained from those experiments. Finally, section 8
concludes the paper, also proposing some future works.

2 Related Work

In [6] the authors propose session-based Admission Control (SBAC), noting that
longer sessions may result in purchases and therefore should not be discriminated in
overloaded conditions. They propose self-tunable admission control based on hybrid
or predictive strategies. Reference [5] uses a rather complex analytical model to per-
form admission control. There are also approaches proposing some kind of service
differentiation: [3] proposes architecture for Web servers with differentiated services.
[16] proposes an approach for Web Servers to adapt automatically to changing work-
load characteristics and [9] proposes a strategy that improves the service to requests
using statistical characterization of those requests and services.

In [15], it is proposed a dynamic load-balancing algorithm, called ORBITA, that
tries to guarantee deadlines by applying some kind of DiffServ, where small tasks
have priorities and execute on a dedicated server. The big tasks have to pass through
the admission control mechanism and can be rejected, if the maximum MPL (calcu-
lated in runtime) had been reached.

Comparing to our own work, none of the previously mentioned intended to study
how to manage the growth of the waiting queue, which has its size dynamically

 Controlling the Behaviour of Database Servers with 2PAC and DiffServ 781

computed according to the workload characteristics, in order to accept only the tasks
that will be able to execute within the deadline.

3 Background

This section provides the necessary background for the complete understanding of
this work.

3.1 Simple Admission Control (SAC)

The SAC architecture is presented in figure 1: all incoming transactions that would
exceed the MPL wait for execution in a FCFS queue. Every time a transaction is
committed, it leaves the system and another one is picked up from the queue.

Reference [17] presents the architecture illustrated in figure 1, and proves that the
near-to-maximum throughput can be achieved with a relatively low MPL. The work
proposed by [15] shows an interesting mechanism that tries to avoid deadlines from
being broken. Although that study is about load-balancing, a theme that is out of the
scope of this paper, it guided our work as it dynamically compute the size of the re-
quest and calculate the appropriate MPL.

Fig. 1. Standard admission control components. A waiting queue and a fixed number of concur-
rent executing transactions, also known as multiprogramming level (MPL).

3.2 TPC-C Benchmark

The TPC-C benchmark (http://www.tpc.org/tpcc/) is a specification provided by the
Transaction Processing Performance Council that simulates a real-world database
application using a closed-model, where the number of clients is fixed and each trans-
action submission is followed by a “think time”, which is responsible for simulating
the time a user spends analyzing the last request before sending a new transaction.
When the think time assumes lower values, the load on the system increases, causing
a stress scenario.

782 L.F. Orleans, G. Zimbrão, and P. Furtado

3.3 QoS-Broker

The Qos-Broker middleware [10] is a tool that intercepts the conversation between an
application and a database server. It uses the Proxy Design Pattern to provide a trans-
parent admission control layer, without requiring deep source code modifications.

As all the SQL statements go through the Proxy, it is possible to calculate the
mean time each transaction type takes to execute. It is also possible to keep a list
with the used transactions as well as to classify the transactions in read-only and
update transactions (which comprise insert, update and delete SQL statements).
For each transaction, the QoS Broker is able to calculate the mean response time,
thus providing an accurate way to estimate the queue waiting time and try to avoid
the deadline misses.

The QoS-Broker can be configured to use both SAC and 2PAC, as well as Diff-
Serv. If SAC is used, then the transactions that would cause system overload are redi-
rected to FCFS queue. On the other hand, if the 2PAC flag is set, those transactions
are enqueued only if the QoS-Broker calculates that they would be able to execute
within the deadline – otherwise the transactions are not accepted. Finally, the Diff-
Serv flag gives priority to short transactions.

4 Two-Phase Admission Control (2PAC)

This type of admission control provides not one, but two layers of admission control.
It controls the number of concurrent transactions executing (by checking the MPL
constraint) and it also restricts the number of transactions on the queue. The 2PAC
mechanism needs to know an estimation about transactions durations and, this way, it
can calculate the time a transaction will have to wait on the queue and determine if it
will end its execution before the deadline. To determine the acceptance of a transac-
tion on the queue, the following constraint has to be satisfied:

Texec + Tqueue < Tdeadline (1)

Where Texec is the time a transaction will need to execute, Tqueue is the time a
transaction will have to wait for execution and Tdeadline is the deadline time.

The basic 2PAC algorithm is listed below:

Algorithm 1: 2PAC

1. When a transaction tx is submmited by a
client, calculate the estimated execution time for tx.

2. If the sum of estimated execution time of tx
with the estimated time tx will spend on the queue
is less than the deadline then tx is enqueued.
Otherwise, it is rejected.

 Controlling the Behaviour of Database Servers with 2PAC and DiffServ 783

In order to effectively calculate the estimated time a transaction spend executing,
the QoS Broker middleware was improved and was added a feature that saves a
pounded mean of past transactions for each type. The transaction´s mean duration is
calculated as:

E(N)=0.4*Tx(N-1)+0.3*Tx(N-2)+... +0.1*Tx(N-4) (2)

Where E(N) is the estimated duration of the Nth arrived transaction, and Tx clauses are
the real durations of the last transactions of the same type. Our formula uses the last 4
real measures to calculate the estimation, trying to obtain a mean time which reflects
the recent behaviour of the database server. This way, 2PAC tries to avoid executing
transactions that will possibly break their deadlines by rejecting them.

It´s worth to notice that the rejection of a transaction does not necessarily imply on
a real rejection: the transaction may be redirected to a lower priority waiting queue,
and only execute when the other one is empty, for example.

The last statement about the implementation of the 2PAC method on the QoS Bro-
ker tool concerns about the recognition of the transaction´s type in runtime. In order
to reduce complexity of the implementation, the client is obligated to inform the QoS
Broker which transaction he/she is about to execute.

5 DiffServ

DiffSev is an acronym for Differentiation of Services. It is a fundamental building
block for QoS networks in the sense that it gives some kind of priority to more
critical packets, e.g., video or audio streaming packets. This concept can be applied
also in information systems, where some transactions may be prioritized. According
to the related work [15], in a distributed or parallel environment, it is feasible to
give priority to short transactions without overwhelming the throughput of the big
transactions.

In this work, the short transactions can pass through the admission control mecha-
nisms if the DiffServ flag is properly set. Intuitively, this can be a reasonable choice
in a 1-server configuration only when the number of big transactions is much higher
than the number of small ones – otherwise it can degrade the performance by letting
lots of small tasks execute at the same time.

6 Experiment Setup

All experiments were executed using a Pentium 4 3.2GHz, with 2GB RAM DDR2
and a 200 GB SATA HD which was responsible for creating the threads that simulate
the clients. The server was a Pentium II MMX 350MHz, with 256MB RAM and a
60GB IDE HD. Both computers were running a Debian Linux, with Kernel version
2.6 and were connected by a full-duplex 100Mbps Ethernet link. A PostgreSQL 8.1
database server was running on the server machine and the database size was 1.11GB.

784 L.F. Orleans, G. Zimbrão, and P. Furtado

The client machine used a Sun Microsystems' Java Virtual Machine, version 1.5. The
database was created with 10 warehouses, which allows a maximum of 100 terminals
(emulated clients) by the TPC-C specification.

6.1 Workload Composition

In order to effectively test the performance of the QoS-Broker, we used 2 transaction
mixes and 2 load scenarios, leading up to 4 different workload compositions. The
details of each are given below. The default transaction mix is the TPC-C default mix,
while the heavy-tailed alternative depicts a typicall scenario where short transactions
represent 95% of the system load, similar to the observations contained in [13].

Table 1. Transaction mixes

Transaction Mix Transactions Occurrences

Heavy-Tailed (used for comparison purposes) • Delivery: 5%

• Stock-Level: 95%

• Other transactions: 0%

Default

• New Order: 45%

• Payment: 43 %

• Other transactions: 4%

Table 2. Think times

Load Type Think Time

Medium-Load Exponential distribution, with mean 8 seconds and a
maximum of 80 seconds

High-Load Exponential distribution, with mean 4 seconds and a
maximum of 40 seconds.

6.2 Other Considerations

Each experience was executed for a period 20 minutes, and during the first 5 minutes
no data was collected. Before each round, the database was dropped and then recre-
ated, which guarantees that all experiments encountered the same database state. Fi-
nally, all experiments were made using 100 emulated clients.

The TPC-C specification establishes 5 seconds as the maximum response time for
each transaction – except for the Stock Level transaction, which has to be completed
within 20 seconds. Our experiments showed that the Stock Level is the fastest trans-
action of the transaction mix, taking 70.35ms to execute in average, considering

 Controlling the Behaviour of Database Servers with 2PAC and DiffServ 785

standalone execution (transaction executing on an empty system). We considered a 5
seconds deadline for all transactions, including Stock Level.

7 Results

For the first round of experiences, a heavy-tailed scenario was used. The results are
displayed in figures 2 and 3. Since the number of short transactions is much greater
than the number of long transactions, no DiffServ was necessary. The first thing to be
noticed from the graphics is that the throughput within deadline (TWD – number of
transactions that ended within the deadline per minute) for the SAC case is much
smaller than the total throughput (TT – total number of transactions that ended per
minute) for the medium load case. For the high load scenario, the TWD is even
worse: no transaction ended within the deadline at all! So it turns out the necessity of
a new approach, one which tries to avoid deadline misses. The graphic in figure 2
shows the effectiveness of the 2PAC approach, since the TWD is always close to TT.

In figure 3, we can see that the maximum throughput is reached with only 2 MPL
by the system with 2PAC. This occurs because the workload is comprised mostly by
short transactions, which execute very fast. As the MPL increases, the TT keeps al-
most unaltered, while TWD decreases. Two conclusions can be taken from the last
statement: 1) 2PAC is more robust than SAC, since SAC has its performance deeply
degraded by higher MPL values; and 2) the workload variability is responsible for the
degradation of TWD of 2PAC in figure 3 for higher MPL values, since more long
transactions get to execute.

In the second round of experiments, we used the default transaction mix, estab-
lished by the TPC-C specification. In this transaction mix, the number of short trans-
actions is much smaller than the number of big transactions, so we used the DiffServ
engine as another enhancement to the system. Figures 4 and 5 show the graphics for
medium load and high load, respectively. Again, it turns out that 2PAC mechanism is

Fig. 2. Performance comparation in a heavy-tailed, medium-loaded scenario. SAC has a fewer
number of transactions within deadline (TWD) than 2PAC.

786 L.F. Orleans, G. Zimbrão, and P. Furtado

Fig. 3. Performance comparation in a heavy-tailed, high-loaded scenario. SAC has no transac-
tions ended within deadline (TWD) whereas 2PAC scales very well.

Fig. 4. Performance comparation in a medium-loaded scenario, using the standard transaction
mix. SAC performs poorly whereas its competitors are able to handle a reasonable number of
transactions without breaking their deadlines.

much more robust than SAC, which can be attested by the comparison of TWD of
both methods: 2PAC's TWD is almost the same as TT for all MPL values, in SAC
these values of TWD are very low (0 for the high load scenario). The use of DiffServ
also increased the performance, but its contribution is smaller than the isolated use of
2PAC.

Figure 4 shows that SAC has a very small TWD, due to the massive presence of
long transactions, achieving its highest value (58 transactions per minute) with MPL
6. On the other hand, the 2PAC approach has as maximum TWD 414 transactions per
minute, more than 7 times higher than SAC! When the DiffServ flag is set, then the
TWD goes to 447 transactions per minute.

The graphic 5 shows that no matter how the load on the system increases, the TT of all
techniques remains almost unaltered. But, in SAC case, the queue grows uncontrolled

 Controlling the Behaviour of Database Servers with 2PAC and DiffServ 787

Fig. 5. Performance comparation in a high-loaded scenario, using the standard transaction
mix. Again, SAC has no transaction ending before the deadline was reached. The 2PAC
approach has a better performance and the DiffServ enhancement represents a little per-
formance gain.

Fig. 6. Transactions rejection rate when 2PAC is used in a Heavy-Tailed scenario. As the MPL
increases, the number of rejected transactions decreases.

and the time a transaction spends waiting for execution makes it miss the deadline. In
fact, TWD is zero for all MPL values in SAC. Again, the 2PAC has a better perform-
ance, keeping TWD close to TT, reaching its maximum value at 14 MPL with 453
transactions per minute. With DiffServ enhancement, the maximum TWD is reached
with MPL values between 8 and 12, with 474 transactions per minute.

The graphics 6 and 7 compliment the last two providing informations about what
makes the system perform so well with 2PAC: the rejection of transactions that would
not be able to fully execute within the deadline. The rejection rate when DiffServ is

788 L.F. Orleans, G. Zimbrão, and P. Furtado

Fig. 7. Transactions rejection rate when 2PAC is used in a TPC-C's default transaction mix
scenario. Note that the use of the DiffServ enhancement is directly responsible for the fewer
number of transactions being rejected.

used is smaller since there are no small transactions being rejected: they all go di-
rectly to execution. This reinforce the idea that there is no silver bullet to solve this
deadline guarantees problem. If the system load is too high, then some of the transac-
tions should be discarded since the system will not be able to execute them within the
deadline.

8 Conclusions

Stressed database servers may use an admission control mechanism to achieve better
throughput. This becomes a problem when transactions have deadlines to meet as
traditional admission control (SAC) models (with a FCFS waiting queue) may not be
applied, since the queue time is a potential point for QoS failures. This paper pre-
sented the 2-Phase Admission Control (2PAC) model, which estimates the execution
time of a transaction according to a mathematical formula that takes into account the
last 4 execution times of the same transaction. Once the execution time is estimated, it
is possible to calculate how long the transaction will spend on the waiting queue and,
furthermore, if the transaction will be able to be completed before the deadline. If the
middleware calculates that the transaction would miss the deadline, it is rejected by
the system.

Then, we compared the performances of both models (SAC and 2PAC), under me-
dium and high loads and for both heavy-tailed and TPC-C's default workload. A last
enhancement, DiffServ, was included in the experiments for the default workload.
DiffServ gives priority for short transactions, letting them pass through the admission
control mechanism.

The results showed that, in order to reach a good rate of transactions ended within
deadline, it is necessary to limit the number of transactions on the waiting queue. This
way, all transactions that are supposed to miss their deadlines are rejected. Despite the

 Controlling the Behaviour of Database Servers with 2PAC and DiffServ 789

high number of transactions being rejected, the improvement on system's performance
is almost 8 times higher when both 2PAC and DiffServ enhancements are used.

As future works, we intend to investigate how a multi-server environment is af-
fected by admission control policies and try to establish a connection between them,
leading to a complete highly scalable, distributed database system.

References

1. Amza, C., Cox, A.L., Zwaenepoel, W.: A Comparative Evalution of TransparentScaling
Techniques for Dynamic Content Servers. In: International Conference On Data Engineer-
ing (2005)

2. Barker, K., Chernikov, A., Chrisochoides, N., Pingali, K.: A Load BalancingFramework
for Adaptive and Asynchronous Applications. IEEE Transactions on Parallel and Distrib-
uted Systems 15(2) (2004)

3. Bhatti, N., Friedrich, R.: Web server support for tiered services. IEEE Network 13(5), 64–
71 (1999)

4. Cardellini, V., Casalicchio, C.M., Yu, P.S.: The State of the Art in Locally Distributed
Web-Server Systems. ACM Computing Surveys 34, 263–311 (2002)

5. Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable server re-
sponse time for Web accesses. In: World Wide Web Conference, Hong Kong (2002)

6. Cherkasova, Phaal: Session-based admission control: A mechanism for peak load man-
agement of commercial Web sites. IEEE Req. on Computers 51(6) (2002)

7. Crovella, M., Bestavros, A.: Self-similarity in World Wide Web traffic: Evidence and pos-
sible causes. IEEE/ACM Transactions on Networking, 835–836 (1999)

8. Dyachuk, D., Deters, R.: Optimizing Performance of Web Service Providers. In: Interna-
tional Conference on Advanced Information Networking and Applications, Niagara Falls,
Ontario, Canada, pp. 46–53 (2007)

9. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A Method for Transparent Admis-
sion Control and Request Scheduling in E-Commerce Web Sites. In: World Wide Web
Conference, New York City, NY, USA (2004)

10. Furtado, P., Santos, C.: Extensible Contract Broker for Performance Differentiation. In: In-
ternational Workshop on Software Engineering for Adaptive and Self-Managing Systems,
Minneapolis, USA (2007)

11. Harchol-Balter, M.: Task assignment with unknown duration. Journal of the ACM, 49
(2002)

12. Harchol-Balter, M., Crovella, M., Murta, C.: On choosing a task assignment policy for a
distributed server system. Journal of Parallel and Distributed Computing, 59(2), 204–228
(1999)

13. Harchol-Balter, M., Downey, A.: Exploiting process lifetime distributions for dynamic
load-balancing. ACM Transactions on Computer Systems (1997)

14. Knightly, E., Shroff, N.: Admission Control for Statistical QoS: Theory and Practice.
IEEE Network 13(2), 20–29 (1999)

15. Orleans, L.F., Furtado, P.N.: Fair load-balance on parallel systems for QoS. In: Interna-
tional Conference on Parallel Programming, Xi-An, China (2007)

16. Pradhan, P., Tewari, R., Sahu, S., Chandra, A., Shenoy, P.: An observation-based ap-
proach towards self managing Web servers. In: International Workshop on Quality of Ser-
vice, Miami Beach, FL (2002)

790 L.F. Orleans, G. Zimbrão, and P. Furtado

17. Schroeder, B., Harchol-Balter, M.: Achieving class-based QoS for transactional work-
loads. In: International Conference on Data Engineering, p. 153 (2006)

18. Serra, A., Gaïti, D., Barroso, G., Boudy, J.: Assuring QoS Differentiation and Load- alanc-
ing on Web Servers Clusters. In: IEEE Conference on Control Applications, pp. 885–890
(2005)

19. TPC-C Benchmark Homepage, http://www.tpc.org/tpcc/

Compressing Very Large Database Workloads

for Continuous Online Index Selection�

Piotr Ko�laczkowski

Warsaw University of Technology, Institute of Computer Science
P.Kolaczkowski@ii.pw.edu.pl

Abstract. The paper presents a novel method for compressing large
database workloads for purpose of autonomic, continuous index selec-
tion. The compressed workload contains a small subset of representative
queries from the original workload. A single pass clustering algorithm
with a simple and elegant selectivity based query distance metric guar-
antees low memory and time complexity. Experiments on two real-world
database workloads show the method achieves high compression ratio
without decreasing the quality of the index selection problem solutions.

Keywords: database workload compression, automatic index selection.

1 Introduction

Efficient solution of the index selection problem (ISP) usually requires the calcu-
lation of a set of queries approximating the database workload. There are many
algorithms for solving the ISP [1,2,3,4,5,6,7,8]. The more queries are given at
their input, the more resources and time they need to find good results. As it is
inconvenient to create the input data by hand, database administrators usually
use query logs to get the approximation of the future workload. Unfortunately
the query logs can be very large. Millions of queries logged by a transactional
system during a day are not uncommon. Without compression, solving the ISP
for all the logged queries may take unreasonably large amounts of time. For the
purpose of practical usability of the automated physical database tuning tools,
it is crucial to reduce the number of the analyzed queries. The simplest solu-
tion would be to pick only a small random sample of the workload. However,
this method might skip some important queries by accident and in effect signifi-
cantly degrade the results given by the database tuning tool. A good method for
workload compression should not have such side effects. It should achieve high
compression ratio while keeping the quality of the results at the acceptable level.

For the purpose of the experimental analysis we define the quality ratio as the
ratio between the original workload costs after automatic selection of indexes
with and without using the workload compression. The quality loss is the differ-
ence between these two costs. The ideal workload compression algorithm would
� The work has been granted by Polish Ministry of Education (grant No 3T11C

002 29).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 791–799, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

792 P. Ko�laczkowski

have the quality ratio of 1 and quality loss of 0. The most known algorithms
cause some quality loss and their quality ratio is less than 1.

The online ISP is a more difficult variant of ISP, where indexes can be created
or dropped at any time and the workload is not known in advance, but should
be treated as a stream of continuously incoming queries. Solving this problem is
crucial for building self-managing, autonomic database systems [9,10]. Efficient
solving of the online ISP requires different workload compression algorithms that
can compress the workload incrementally,“on the fly”.

We present an algorithm that removes most of the queries from the workload
and leaves only those essential to solve the online ISP accurately and efficiently.
To achieve this, the algorithm employs single-pass clustering with a selectivity
based metric. Because each query is analyzed only once, the method can be
used to improve the performance of continuous online database tuning systems
[11,12,13]. To the best of our knowledge, our method is the first one that requires
only one pass to efficiently compress large SQL workloads while keeping high
quality of results of the ISP.

2 Previous Work

The problem of SQL workload compression was first stated by S. Chauduri et
al. [14]. They proposed three different algorithms for compressing SQL work-
loads: a variant of random sampling (WC-PARTSAMP), a variant of the well
known K-Medoids algorithm (WC-KMED) and a greedy algorithm removing
queries from the workload as long as the results quality constraint is satisfied
(WC-ALLPAIRS). Of these algorithms, only the WC-PARTSAMP requires no
more than one pass over the input data, but has several shortcomings typical
to random sampling methods. Both the compression ratio and the ISP solution
quality can vary significantly for different runs of the program. There is also no
way of reasonably setting the sampling rate without knowing the characteristics
of the workload in advance. For large workloads with lots of similar queries, the
sampling rate should be small, but for workloads with many different queries it
should be large enough not to miss the important queries. The WC-KMED and
WC-ALLPAIRS algorithms don’t have these shortcomings and achieve higher
compression ratio than the WC-PARTSAMP, but their time complexity is also
much higher. Moreover, they need to be given the whole workload in advance.
The WC-KMED algorithm invokes the standard k-Medoids (KMED) algorithm
several times to guess the best number of clusters. Each invocation of KMED
requires scanning the whole dataset many times, until the medoids stop chang-
ing. The WC-ALLPAIRS algorithm has even higher complexity because it must
calculate the distance between every pair of queries in the workload. This makes
these algorithms unsuitable for solving the continuous ISP.

The paper [14] also proposes an asymmetric query distance function used to
estimate the quality loss of the ISP results caused by replacing a given query in
the workload with another query. Although they put lot of effort into assuring
their metric does not underestimate the quality loss, there are several situations

Compressing Very Large Database Workloads 793

possible, where it actually does. This is caused by the simplified assumption
that the index selection tool would select indexes for the columns used in the
predicates with the lowest selectivity. As it is true in many cases, it is not true
in general. First, using a clustered index for a less selective predicate can be
cheaper than using a non-clustered index for a predicate with a higher selectivity,
because accessing the tuples pointed by the clustered index usually requires less
I/O operations than accessing the same number of tuples pointed by the non-
clustered index [15]. The decision what index should be clustered is usually
based on many queries in the workload and is not known at the time of the
workload compression. Second, automatic index selection tools evaluate not only
the benefits of indexes but also their maintenance costs. Thus, the index on the
columns of the most selective predicate may have higher maintenance costs and
be discarded. This problem applies also to covering indexes, where having a
smaller index beneficial to only one query may be a better solution than having
a larger index covering two queries but requiring much more maintenance. We
propose a different metric that addresses these shortcomings and additionally
has a symmetry property and satisfies the triangle inequality.

3 Workload Compression Algorithm

As shown in [14], the workload compression problem can be treated as a special
case of a clustering problem, where each data point is a query in the workload and
the distance between two points is a function of predicted ISP results quality loss if
replacing one query with the other one. The queries in the workload are clustered
and afterwards one query in each cluster is retained. The retained queries form the
compressed workload. The number of queries in the compressed workload equals
the number of the clusters, so the clustering algorithm should create as few clusters
as possible to achieve good compression ratio. On the other hand, the queries in
each cluster should be similar to each other. The more similar are the queries in
each cluster, the less degradation of the ISP results is expected.

The requirement for incremental compression makes classic clustering al-
gorithms k-Medoids, k-Means and hierarchical algorithms AGNES, DIANA,
BIRCH, Chameleon [16] unsuitable for the purpose of online ISP. The density
based algorithms like DBSCAN [16] are neither applicable, because they don’t
limit the maximum distance between the queries in each cluster. This could
result in a large degradation of the ISP results.

The architecture of our solution is shown in Fig. 1. The incoming workload W
is a stream of SQL queries. Each query q has a weight w(q) assigned to it. The
workload compression module supplies a compressed workload W ′ to the input
of the tool that selects indexes. The compressed workload contains a subset of
queries from W , but they can be assigned different weights w′ so that the total
estimated cost of W ′ is near the estimated cost of W .

The workload compression module uses internally a simple yet efficient algo-
rithm that groups incoming queries in clusters (Fig. 2). A seed query is the first
query added to the cluster. The first incoming query becomes the seed of the first

794 P. Ko�laczkowski

Automatic Index Selection ToolWorkload Compression Module
Workload

Compressed
Workload

Index
Configuration

Fig. 1. Automatic index selection improved by workload compression

cluster. For each subsequent incoming query from W , the nearest seed query s
is found. If the distance between these two queries exceeds a user-defined limit,
then the incoming query forms a new cluster and becomes its seed. Otherwise
the query is added to the cluster having seed s. The compressed workload is
formed from the cluster seeds. Each cluster seed is assigned a weight evaluated
as the sum of the weights of all queries in this cluster. Actually, to improve
performance, only the seeds with weights are stored in memory, and instead of
adding non-seed queries to the clusters, only the seed weights are updated.

Input: workload W , constraint δ, distance function d, query weights w
Output: compressed workload W ′, modified weights w′

1. W ′ := ∅
2. For each query q ∈ W do:
3. Set w′(q) := w(q)
4. If W ′ = ∅, add q to W ′ and continue
5. Find the nearest seed query: s := arg minq′∈W ′ d(q′, q)
6. If d(s, q) > δ, add q to W ′

7. Else w′(s) := w′(s) + w(q)

Fig. 2. Workload compression algorithm

Note that we do not use the distance function to adjust the weights of the
output queries, like it was done in [14]. We argue, this is not needed because of
the following reasons:

– Without actually running the index selection tool on both compressed and
uncompressed workloads, it is not possible to evaluate the quality loss caused
by removing a given query from the workload.

– It is not known in advance, which indexes would be created for the removed
query by the index selection tool, so the estimations of the result quality loss
may have large errors.

– If the δ constraint is small enough, the queries in each cluster would be very
similar to each other and the difference between the estimated costs of the
original and compressed workload would be also small.

4 Query Distance Function

The intuition behind the distance function is that the distance between query q1

and q2 should be small, if replacing the query q1 with q2 in the workload causes
small quality loss. For example the queries:

Compressing Very Large Database Workloads 795

SELECT * FROM person WHERE id = 12345
SELECT * FROM person WHERE id = 54321

are very similar to each other, assuming they select at most one tuple. Regardless
of the index configuration, they will have the same query plans. Leaving one of
them out of the compressed workload would cause no quality loss, as they both
deliver the same information on the usefulness of the index on the id column.
However, if the selectivities of the predicates in these queries were different, e.g:

SELECT * FROM person WHERE age = 30
SELECT * FROM person WHERE age > 30

The queries look similarly, but they contribute different information on the use-
fulness of the index on the age column. The first query would be probably
accelerated the most by the hash index on the age column. However, this index
would not be useful for the second query. Probably the best choice for the second
query would be some kind of clustered B-tree index, which could also serve the
first query, but the availability of such clustered index is strongly dependent on
the other queries in the workload. It is not possible to guess the solution, so it is
wise to leave both queries in the compressed workload and let the index selection
tool decide. The problem becomes even more complex if queries with more pred-
icates and tables are concerned. The number of useful index configurations for
such queries grows exponentially with the number of predicates. Thus, removing
any of two queries differing significantly with at least one predicate selectivity
may bias the workload against using some good index configurations.

The query distance d between queries q1 and q2 is evaluated as follows. If the
queries differ in structure, that is with anything except constant literals:

d(q1, q2) = +∞,

else

d(q1, q2) = max
p1∈Pred(q1),p2∈Pred(q2),p1∼p2

max{Sel(p1), Sel(p2)}
min{Sel(p1), Sel(p2)} − 1,

where:

– Pred(q) is the set of the selection predicates in the query q
– Sel(p) is the selectiveness of the predicate p in range from 0 to 1.
– p1 ∼ p2 denotes two corresponding predicates, that differ only with the

constant literals.

This metric has several advantages. It is symmetric, satisfies the triangle in-
equality and is very easy to implement. For most query pairs it is even not needed
to evaluate the selectivities of the predicates, because differences in the query
structure (set of tables, join predicates, number of selection predicates, column
set in the ORDER BY or GROUP BY clause, etc.) can be easily spotted by shallow
text analysis. This is very important, because for large workloads containing lots

796 P. Ko�laczkowski

of simple queries, the parsing and plan generation process can become a bottle-
neck. Another advantage is that the proposed metric can leverage the existing
support for prepared statements in most modern database systems. The com-
parison of the structure of queries can be performed at the time of statement
preparation, not their execution.

5 Experiments

For the experiments, we used two real-world server side transactional applica-
tions: a commercial multiplayer network game with 100,000 users further referred
as MG and a mobile web application of one of Polish telecom operators (WA).
The MG executed much more update statements than WA, which was mostly
read-only (Tab. 1). Besides, MG was a mature application being for over 3 years
in production and used 108 tables, while WA application was in its beta-stage
and used only 33 tables. Both applications sent EJB-QL queries and employed an
object-relational mapping tool to convert them into valid SQL statements. The
workloads did not contain any subqueries, however some of the queries required
joining up to 6 tables and contained up to 10 selection predicates.

The framework for the workload compression has been build as a standalone ap-
plication employing an ANTLR generated SQL parser and a histogram based pred-
icate selectivity estimator. The histograms were imported from the statistics gath-
ered by the database optimizer. For some of the queries, we manually compared
our predicate selectivity estimation with the estimations made by the database
optimizer in the EXPLAIN mode and noticed none or negligible differences.

As the automatic index selection tool we used a prototype tool developed
at our institute. The tool can select single and multicolumn B-tree indexes,
both clustered or unclustered, and takes index maintenance costs into account.
The selection tool uses the same selectivity estimates the workload compression
application does.

The measurement of the compression ratio for both workloads shows that the
compressed workload size grows very slowly with the size of the input workload
(Fig. 3). The index selection tool could not finish the computations in the given
1 hour period for the uncompressed workload of the MG application containing

Table 1. Characteristic of the workloads used in the experiments

Share [%]

Statement type MG WA

Single-table SELECT 66.95 78.73
Multi-table SELECT 18.93 16.14
Aggregate SELECT 2.84 3.30
INSERT 0.92 1.83
UPDATE 12.71 0.98
DELETE 0.49 2.31

Compressing Very Large Database Workloads 797

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000

co
m

pr
es

se
d

w
or

kl
oa

d
si

ze

uncompressed workload size

WA
MG

Fig. 3. Compressed workload size as a function of the input workload (δ = 0.66)

 10

 100

 1000

 10000

 100 1000 10000

w
or

kl
oa

d
si

ze

workload cost

no compression
proposed method
random sampling

partitioning + random sampling

Fig. 4. Compression-ratio vs. ISP results quality for various algorithms for workload
of 2000 queries executed by the application MG

25000 queries, but managed to finish the task in less than 2 minutes for the
compressed workload.

As stated in Introduction, the workload compression algorithm is useful if
both the compression ratio and quality ratio are high. We compared our method
with other algorithms that could compress workloads incrementally: the random
sampling method, and the random sampling method preceded with partition-
ing used in [14]. To be able to calculate the quality-loss in a reasonable time,
we had to limit the number of queries in the test workloads to 2000. Our com-
pression method resulted in both good compression-ratio and quality-ratio. The
results for the MG application are shown in Fig. 4, and the results for WA were
very similar. We noticed almost no quality loss (< 0.1%) for both workloads.
The other tested methods could achieve sometimes higher compression-ratio
than our algorithm but with significant quality-loss. Keeping small quality-loss

798 P. Ko�laczkowski

required to increase the sampling rate, but it decreased the compression-ratio. As
expected, the results of random sampling based methods varied from run to run.
In contrast, our method gave stable compression-ratio and quality. Changing the
order of queries in the workload did not affect the quality loss and compression
ratio by more than 5%.

6 Discussion

The experiments have shown that the presented compression method is useful
for compressing transactional workloads and provides acceptable compression
ratio and negligible quality loss of index selection results. This enables to deal
with orders of magnitude less queries at the input of the index selection tool
and to significantly reduce the database tuning time. Besides, the compression
ratio can be easily adjusted by the parameter δ. However, it is not the best
method when having the whole workload in advance. A k-Medoids variant like
the one presented in [14] or some other standard clustering methods [16] can
surely achieve better compression ratio within the same quality loss, because
they pick the seed queries more carefully. This can lead to either smaller clusters
or fewer of them. These algorithms are also usually not sensitive to the order of
queries in the workload, unlike our method is.

7 Conclusions

We presented a simple solution of workload compression problem for large trans-
actional database workloads. The main advantage of our method is the possibil-
ity to compress workloads incrementally, without storing all queries in memory,
which makes our method ideal for usage with online database tuning software.
The performed experiments have shown good compression ratio and low quality
loss of the method, as opposed to random sampling based approach.

In the future we plan to investigate how the proposed compression method
works for complex decision support workloads, e.g. TPC-H standard workload.
We predict the compression ratio on such workloads would be worse than for
the transactional workloads used in the presented experiments, because the de-
cision support queries usually contain more predicates. Thus, the chances for
two queries to differ significantly in at least one predicate selectivity are greater.
However, we cannot estimate how much this would affect the overall compres-
sion ratio and quality loss without actually measuring them. We are planning
to do that as soon as the framework we have built for the predicate selectivity
estimation supports subqueries and other structures usually used in the decision
support queries e.g. CASE WHEN.

Acknowledgements. We would like to thank Marzena Kryszkiewicz for im-
portant feedback on the method and experiments.

Compressing Very Large Database Workloads 799

References

1. Finkelstein, S., Schkolnick, M., Tiberio, P.: Physical database design for relational
databases. ACM Trans. Database Syst. 13, 91–128 (1988)

2. Ip, M.Y.L., Saxton, L.V., Raghavan, V.V.: On the selection of an optimal set of
indexes. IEEE Trans. Softw. Eng. 9(2), 135–143 (1983)

3. Whang, K.Y.: Index selection in relational databases. In: FODO, pp. 487–500
(1985)

4. Barcucci, E., Pinzani, R., Sprugnoli, R.: Optimal selection of secondary indexes.
IEEE Trans. Softw. Eng. 16, 32–38 (1990)

5. Choenni, S., Blanken, H.M., Chang, T.: Index selection in relational databases. In:
International Conference on Computing and Information, pp. 491–496 (1993)

6. Chaudhuri, S., Narasayya, V.R.: An efficient cost-driven index selection tool for
Microsoft SQL Server. In: VLDB 1997: Proceedings of the 23rd International Con-
ference on Very Large Data Bases, pp. 146–155. Morgan Kaufmann Publishers Inc.,
San Francisco (1997)

7. Valentin, G., Zulliani, M., Zilio, D.C., Lohman, G., Skelley, A.: DB2 advisor: An
optimizer smart enough to recommend its own indexes. In: ICDE 2000: Proceedings
of the 16th International Conference on Data Engineering, Washington, DC, USA,
p. 101. IEEE Computer Society, Los Alamitos (2000)

8. Zilio, D.C., Zuzarte, C., Lohman, G.M., Pirahesh, H., Gryz, J., Alton, E., Liang,
D., Valentin, G.: Recommending materialized views and indexes with IBM DB2
design advisor. In: ICAC 2004: Proceedings of the First International Conference
on Autonomic Computing, Washington, DC, USA, pp. 180–188. IEEE Computer
Society, Los Alamitos (2004)

9. Elnaffar, S., Powley, W., Benoit, D., Martin, P.: Today’s DBMSs: How autonomic
are they? In: DEXA 2003: Proceedings of the 14th International Workshop on
Database and Expert Systems Applications, Washington, DC, USA, p. 651. IEEE
Computer Society, Los Alamitos (2003)

10. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Syst. J. 42(1), 5–18 (2003)

11. Sattler, K.U., Schallehn, E., Geist, I.: Autonomous query-driven index tuning. In:
IDEAS 2004: Proceedings of the International Database Engineering and Appli-
cations Symposium (IDEAS 2004), Washington, DC, USA, pp. 439–448. IEEE
Computer Society, Los Alamitos (2004)

12. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: Colt: continuous on-line tun-
ing. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pp. 793–795. ACM Press, New York (2006)

13. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for
shifting workloads. In: ICDE Workshops, pp. 459–468. IEEE Computer Society,
Los Alamitos (2007)

14. Chaudhuri, S., Gupta, A.K., Narasayya, V.: Compressing sql workloads. In: SIG-
MOD 2002: Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pp. 488–499. ACM, New York (2002)

15. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1999)

16. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2000)

Escaping a Dominance Region at Minimum Cost

Youngdae Kim, Gae-won You, and Seung-won Hwang�

Pohang University of Science and Technology, Korea
{prayer,gwyou,swhwang}@postech.edu

Abstract. Skyline queries have gained attention as an effective way to
identify desirable objects that are “not dominated” by another object in
the dataset. From market perspective, such objects can be viewed as mar-
ketable, as each of such objects has at least one competitive edge against
all the other objects, or not dominated. In other words, non-skyline ob-
jects are not marketable, as there always exists another product excelling
in all the attributes. The goal of this paper is, for such non-skyline ob-
jects, to identify the cost-minimal enhancement to become a skyline point
to gain marketability. More specifically, we abstract this problem as a
mixed integer programming problem and develop a novel algorithm for
efficiently identifying the optimal solution. Through extensive experi-
ments using synthetic datasets, we show that our proposed framework is
both efficient and scalable over extensive experiment settings.

1 Introduction

As Web data extraction technologies evolve, more and more structured data are
becoming accessible from Web documents, such as product data automatically
extracted from a catalog document published on the Web by merchants. Due to
the near-infinite amount of such data, e.g., over 800 million products accessible
from products.live.com, there have been efforts to support an effective access to
relevant products, from customer’s perspective. To illustrate, Example 1 shows
how advanced query semantics such as skyline queries [3] can help customers in
such a scenario.

Example 1. Consider a shopping scenario where a customer is looking for a lap-
top with low price and weight. Considering her preference, one can say that
laptop A with lower price and weight than B is more desirable than B, or A
“dominates” B. Skyline queries, by identifying the products that are not domi-
nated by any other product (products p1, . . . , p4 in Fig. 1), identify marketable
products.

As illustrated in Example 1, from a customer’s perspective, each skyline product
returned from the query corresponds to a marketable choice, which outperforms
all the other objects in at least one dimension. In contrast, in this paper, we
abstract a marketability query from the merchant perspective. That is, in the
scenario in Example 1, we aim at providing marketability feedbacks, not to
customers, but to merchants publishing product catalogs.
� This work was supported by Microsoft Research Asia.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 800–807, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Escaping a Dominance Region at Minimum Cost 801

0 Price

Weight

P1

P2

P3

P4

Fig. 1. Skyline (Marketable) products

Morespecifically,ourgoal is toprovideautomatic feedbacksto“non-marketable”
merchants whether they are selling some product p that is dominated in the market
by some product p′, Such feedbacks are helpful to the provider as p does not have
marketability as long as there exists p′ in the market. Further, if the cost function
for enhancing the product in each attribute is known (e.g., cost of making it lighter
by replacing a part with an lighter alternative), feedbacks can be further specified
to suggest the cost-minimal enhancement to gain marketability. For example, for
the dominated product p to gain marketability, the merchant of p should adjust its
attribute values such that at least one of its attribute is better than that of p′.

In particular, we abstract this problem as a mixed integer programming
(MIP), which is a linear programming based technique. While there have been
off-the-shelf tools for such optimization problem, e.g., CPLEX, applying such
tool “as is” incurs a prohibitive cost for identifying the optimal solution, e.g.,
780 seconds in 4-dimensional data space from our experiments reported in [8]. In
a clear contrast, we devise supporting data structures and algorithms, enabling
to answer the same query in 0.2 seconds, without compromising optimality.

2 Related Work

Skylines have been actively studied, pioneered by block nested loop (BNL),
divide-and-conquer (D&C) and B-tree-based algorithms [3]. More recently, near-
est neighbor algorithm [4] followed to more effectively prune out dominated ob-
jects by partitioning the data with respect to the nearest neighbor objects. Simi-
larly, sort-filter-skyline (SFS) [5] algorithm exploits pre-sorting lists to improve
existing algorithms.

In a clear contrast to classic skyline queries, our work focuses on (1) how to en-
hance product objects (2) towards maximizing marketability. While this problem
has not been studied, the most relevant work is [6] studying queries exploiting
not only data attributes, e.g., hotel quality or price, but also spatial distance,
e.g., how near dominating hotels are. Our work tackles a clearly different problem
but shares a slight commonality, in a sense that this work, by adopting our cost
function as a distance function, can find a way to gain marketability, though not
nessarily the optimal way (as we will empirically show in [8]). In a clear contrast,
we aim at finding the cost-optimal way to gain marketability. Another relevant

802 Y. Kim, G.-w. You, and S.-w. Hwang

work [7] considers feature selection from the merchant point of view, while our
work clearly distinguishes itself by providing a per-object feedback and the cost-
optimal enhancement towards marketability. In particular, this work abstracts
the marketability query problem as a linear programming problem, in particular
a Mixed-Integer Programming (MIP) problem, which has been actively studied
in the area of operation research [9].

3 Preliminaries

Skyline is a set of objects which are not dominated by another object in the dataset.
More formally, an object o1 dominates another object o2 in d-dimensional space if
o1 is no worse than o2 with respect to every attribute ∀i : oi. That is, in scenarios
where smaller attribute values are more desirable, e.g., for attributes such as price
or weight, o1 dominates o2, if oi

1 ≤ oi
2, ∀i = 1, . . . , d, and there exists j, 1 ≤ j ≤ d,

such that oj
1 < oj

2.
We view this definition of dominance, when applied to microeconomic market

data, corresponds to skyline. That is, product o1 dominates o2 in the market, or
o2 does not have marketability as long as o1 exists, if o1 is no worse than o2 in all
d attributes. As a result, skyline products can be viewed as marketable choices
which outperform all the other products in at least one dimension. Meanwhile,
the rest, or non-skyline products, are non-marketable as there exists a competitor
no worse than such products in all the dimensions.

Our goal is to identify, for each non-marketable product p, a marketable coun-
terpart product p′, manufactured by improving p with cost C(p, p′). For instance,
for a non-marketable laptop p, one can choose to improve it into a marketable
product p′ by reducing its weight with the cost overhead of replacing a part
with its more expensive but lighter alternative with additional cost C(p, p′). We
formally state our goal as follows:

Definition 1 (Marketability Query). For a non-marketable product p, the
marketability query returns a marketable counterpart p̂ = arg minp′ C(p, p′).

In this paper, the cost function takes the form C(p, p′) =
∑d

j=1 cj(pj −p′j) where
cj is the cost enhancing a unit of j-th attribute.

With the problem formally defined, we now visualize this problem in a data
space. More specifically, our problem can be viewed as, for a non-skyline point,
finding the cost-optimal way to “escape” the region dominated by skyline prod-
ucts, or dominance region.

Fig. 2 illustrates the dominance region of skyline set S, abbreviated by DRS

and the anti-dominance region, abbreviated by ADRS , which is not dominated
by skyline products. Observe that the boundary line of DRS is included in the
dominance region except the skyline points themselves, as the points on the
boundary are dominated by some skyline point in S.

Now our problem can be restated as, for a non-skyline point x0 ∈ DRS ,
finding x̂ which satisfies the following. In Equation 1, H denotes the hyper-
rectangle with 0 and x0 as its lower-left and upper-right corners respectively.

Escaping a Dominance Region at Minimum Cost 803

S1(1,7)

x(3,4)

S2(2,5)

S3(6,2)

S4(7,1)

320 1 4 5 6 7 8

2

5

7

8

6

4

3

1

x

y

Dominance Region (DR S)

Anti−dominance
region (ADR S)

S1(1,7)

x0(8,8)

S2(2,5)

S3(6,2)

S4(7,1)

320 1 4 5 6 7 8

2

5

7

8

6

4

3

1

x

y

(a) DRS and ADRS (b) Feasible region (FRx0)

Fig. 2. Dominance/Anti-dominance region and feasible region

x̂ = arg minx∈FRx0
C(x0, x), where FRx0 = ADRS ∩ H (1)

As Equation 1 states, we find an optimal solution among the candidate points
in the set FRx0 . The region where candidates can be located for given non-
skyline point x0 is called the feasible region, denoted as FRx0 , which we will be
our search space. Fig. 2(b) illustrates the feasible region, represented by black
dots, for the given non-skyline point x0 in an integer data space. Note that (1)
the feasible region consists of finite number of points since the data space consists
of integers and (2) the optimal solution satisfying Equation 1 can be found in
this feasible region of a finite number of data points.

Hereinafter we assume that our data space consists of integers and we do
not consider continuous data space. If the data space is continuous, no optimal
solution satisfying Equation 1 can be found since the cost decreases as a point
gets closer to the boundary of DRS , while the boundary itself is not included in
our feasible region. Therefore, we need to redefine the optimality of our problem
and take different approaches in continuous data space. Due to space limitation,
we do not discuss such extension.

4 MIP Modeling

This section presents how we model the problem defined in Section 3. In partic-
ular, we divide the problem into the following two sub-problems.

1. Find an optimal point minimizing C(x0, x) in the region FRx0 − S.
2. Find an optimal point minimizing C(x0, x) in the region S ∩ H .

We then combine the two problems by comparing the costs of the optimal
point obtained from each sub-problem and report the one with a cheaper cost.
As the second sub-problem can be straightforwardly solved by a nearest neigh-
bor query using our cost function as a distance function, we hereby focus on
presenting how to solve the first sub-problem.

In particular, we present the sub-problem 1 as a mixed integer programming
(MIP) problem. To convey this idea, we start with presenting the conditions that

804 Y. Kim, G.-w. You, and S.-w. Hwang

hold for the points in FRx0−S. If S consists of a single skyline point s, the region
FRx0 −S can be expressed as the union of the sets {x : xj + 1 ≤ sj}, 1 ≤ j ≤ d.
Generalizing this for skyline set S consisting of n skyline points, the region
FRx0 − S can be represented as follows:

FRx0 − S =
n⋂

i=1

⎛
⎝ d⋃

j=1

{x : xj + 1 ≤ sj
i}

⎞
⎠ (2)

Equation 2 states that point x is in the region FRx0 − S if and only if there
exists at least one dimension, say j-th dimension, for each skyline point s ∈ S,
such that xj is less than sj . Building upon Equation 2, we can express the region
FRx0 − S and the objective mathematically as follows:

minimize:
∑d

j=1 cj(xj
0 − xj) (3)

subject to:
xj + 1 ≤ sj

i + Mpij (4)∑d
j=1 pij = d − 1 (5)

pij ∈ {0, 1}, x : integer, and 0 ≤ xj ≤ xj
0, ∀i, ∀j (6)

The objective 3 in this MIP model indicates that our objective of minimizing
the cost of moving the given non-skyline point x0 to the point x. Constraints
4, 5, and 6 represent the region in which x can be located, which is identical to
region FRx0 −S, i.e., this MIP model looks for point x minimizing the objective
among the points satisfying the constraints. Constraints 4 and 5 require that for
each skyline point s, x have at least one dimension in which the value of x is
less than the value of s in that dimension. The value of M is set to have the
maximum possible value in the given attribute domain– That is, if M remains
in the constraint (pij = 1 for some i and j), that constraint is automatically
satisfied regardless of the value of xj . Constraint 5 forces that for each skyline
point there exists only one pij with value of 0 so that the value of xj is less than
the value of sj

i in the jth dimension. Constraint 6 restricts x to be located in
the hyper-rectangle H with 0 and x0 as its lower-left and upper-right corners,
respectively. Since x should satisfy constraints 4, 5, and 6, our MIP model will
identify an optimal point minimizing the cost function C(x0, x) among the points
in the region FRx0 − S.

Summing up, we solve the first and second sub-problem using a MIP model
and a nearest neighbor query, respectively, then compare the cost of each solution
to report the one with a cheaper cost as our final solution.

A baseline approach to solve the model is to consider all the skyline points in
S ∩ H are used for constructing our MIP model, which we call Naive approach.
In a clear contrast, we devise a grid-based cell searching algorithm, which signif-
icantly outperforms the Naive approach (e.g., reducing the response time from
780 secs to 0.2 sec [8]).

Escaping a Dominance Region at Minimum Cost 805

5 Grid-Based Cell Searching Algorithm

As the number of constraints and binary variables in the MIP model in Sec-
tion 4 is proportional to the number of skyline objects and dimensions, solving
the model for a dataset with many skyline objects would incur a prohibitive
cost. Since skyline cardinality is exponential to the dimensionality d of dataset,
Θ((ln n)d−1/(d−1)![1], the performance of Naive approach deteriorates dramat-
ically as dimension increases. Emprical study shows that Naive approach incurs
a prohibitive cost e.g., 780 seconds in 4-dimensional space.

The main reason of performance degradation of Naive approach is that it con-
siders all the skyline points at once that dominate the given non-skyline point to
compute the cost-minimal way. However, it turns out that a little preprocessing
effort enables us to compute the same optimal solution by considering only a
small part of skyline points at once.

Specifically, we precompute the hyper-rectangles Hi’s, i=1, . . . , m, that en-
closes the boundary of dominance region as Fig. 3(a) depicts. Then it is easy to
see that the cost C(x0, uri) where uri is the upper-right corner of hyper-rectangle
Hi provides the lower bound cost for escaping through the hyper-rectanble Hi

from the non-skyline point x0.
We now present our approach, which is essentially a best-first search of bound-

ary rectangles, in the ascending order of cost bounds- This can be achieved
by considering the hyper-rectangle Hj with the lowest cost bound first, i.e.,
C(x0, urj) ≤ C(x0, uri), ∀i = 1, . . . , m and i = j. We then compute the opti-
mal solution x for escaping the dominance region from the point uri within
the selected rectangle using the MIP model. The total cost will be C(x0, urj) +
C(urj , x). At each iteration, we record the best solution found so far. We repeat
this procedure until the next rectangle with the cheapest cost bound C(x0, urk)
exceeds the cost of the best solution found thus far. We can prove that the
optimality of this solution is guaranteed [8].

This approach significantly reduces the computational overhead (1) by en-
abling early termination and (2) by considering only the skyline points that
dominate uri at each iteration, in contrast to Naive approach considering all the
skyline points, which can be exponential to d.

To implement this framework, we consider the two practical issues in the two
following sections respectively.

– Partitioning: how to partition the given data space into cells and discard
the cells that are guaranteed not to contain the optimal solution.

– Search: how to efficiently search for the optimal solution among the promis-
ing cells we keep.

Grid Partitioning and Skyline Cell. This section discusses how we divide
the given data space into grids. Each cell has side length l, hence the volume
of a cell will be ld. Then we keep only the cells which contain the boundary
of the dominance region, called the boundary cells, and the rest of cells can be
discarded without compromising the optimality of the results. A cell contains

806 Y. Kim, G.-w. You, and S.-w. Hwang

S1(1,7)

S2(2,5)

S3(6,2)

S4(7,1)

320 1 4 5 6 7 8

2

5

7

8

6

4

3

1

x

y

S1(1,7)

x(3,4)

S2(2,5)

S3(6,2)

S4(7,1)

320 1 4 5 6 7 8

2

5

7

8

6

4

3

1

x

y

(a) Boundary cells (b) Skyline cells

Fig. 3. Boundary and skyline cells

the boundary of the dominance region if and only if the upper-right corner is in
DRS and the lower-left corner is in ADRS as Fig. 3(a) illustrates.

Among the boundary cells we keep, we only store the skyline cells and discard
the rest. Skyline cells are the boundary cells whose upper-right corners are not
dominated by any other boundary cell’s upper-right corner.1 While calculating
the skyline cells, we extend the range of skyline cells to cover the cells it dominates,
i.e., to cover the boundary of DRS . Fig. 3(b) illustrates the skyline cells.

Finding the boundary cells and computing the skyline cells over them can be
efficiently implemented by hierarchical recursive partitioning method [8].

Best-first Search. Once the skyline cells are identified, we move on to discuss
how to efficiently search for the optimal solution among these cells.

We first discuss how to further prune out the skyline cells with respect to
the given non-skyline point x0 and the skyline cells SCs. Since we only search
toward the direction of reducing values of x0 in each dimension, i.e., into more
desirable products for min skyline operator, we need to consider only the skyline
cells intersected with the hyper-rectangle H with two corner points 0 and x0 and
can discard the rest. By intersecting SCs with H , we obtain the skyline cells
to be considered to find the optimal solution. Note that, during the intersection
operation, the skyline cells which partially overlap with the H can be chopped
to keep only the overlapped partial regions.

After this pruning phase, we now calculate the lower bound cost of each
interesting skyline cell, i.e., the cost to reach the upper-right corner of a skyline
cell from the non-skyline point x0, and store the skyline cell in a heap in the
ascending order of the lower bound cost. After that, we iteratively calculate the
exact cost for escaping through a specific region, i.e., the boundary of the skyline
cell, in an increasing order of its lower bound cost until the lower bound cost
of top element in a heap is more expensive than the cheapest cost calculated so
far. This procedure is described at line 9-19 in Algorithm 1.

Summing up, our algorithm operates in a best-first manner. We first discard
the regions we do not need to consider then visit the rest of the cells in the
1 Note that, when we compute skyline cells, we use the max operator because we use

non-skyline point x0 as the origin.

Escaping a Dominance Region at Minimum Cost 807

Algorithm 1. Skyline cell based MIP model solution
Require: non-skyline point x0; the skyline cells SCs
Ensure: the optimal solution x
1: x ← x0

2: Construct a hyper-rectangle H with two corner points 0 and x0

3: SC′s ← the result of intersecting H with SCs
4: for each skyline cell sc in SC′ do
5: sc.lb ← lower bound cost of sc from x0

6: h.push(sc)
7: end for
8: bestCost ← h.top().lb
9: while h.top().lb < bestCost do

10: sc ← h.pop()
11: Set up an MIP model with sc.skylines
12: x′ ← the optimal solution of the MIP model
13: c ← the cost of the optimal solution
14: totalCost ← sc.lb + c
15: if totalCost < bestCost then
16: bestCost ← totalCost
17: x ← x′

18: end if
19: end while
20: return x

ascending order of cost bounds. If there exists no further region cheaper than
the current cheapest region, we terminate early, or else, we examine the next
candidate region through which we may escape at the cheapest cost.

References

1. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the Average Num-
ber of Maxima in a Set of Vectors and Applications. Journal of ACM (1978)

2. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD
(1995)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE (2001)
4. Kossman, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm

for Skyline Queries. In: VLDB 2002 (2002)
5. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE

2003 (2003)
6. Li, C., Tung, A.K.H., Jin, W., Ester, M.: On Dominanting Your Neighborhood

Profitably. In: VLDB 2007 (2007)
7. Miah, M., Das, G., Hristidis, v., Mannila, H.: Standing Out in a Crowd: Selecting

Attributes for Maximum Visibility. In: ICDE 2008 (2008)
8. Kim, Y., You, G.-w., Hwang, S.-w.: Escaping a Dominance Region at Minimum

Cost. POSTECH TR, http://ids.postech.ac.kr
9. Hiller, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill,

New York (2005)
10. ILOG CPLEX 9.0 User’s Manual, http://www.ilog.com/products/cplex

http://ids.postech.ac.kr
http://www.ilog.com/products/cplex

Evolutionary Clustering in Description Logics:
Controlling Concept Formation and Drift in Ontologies

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

Dipartimento di Informatica – Università degli Studi di Bari
Campus Universitario, Via Orabona 4, 70125 Bari, Italy

{fanizzi,claudia.damato,esposito}@di.uniba.it

Abstract. We present a method based on clustering techniques to detect con-
cept drift or novelty in a knowledge base expressed in Description Logics. The
method exploits an effective and language-independent semi-distance measure
defined for the space of individuals, that is based on a finite number of dimen-
sions corresponding to a committee of discriminating features (represented by
concept descriptions). In the algorithm, the possible clusterings are represented
as strings of central elements (medoids, w.r.t. the given metric) of variable length.
The number of clusters is not required as a parameter; the method is able to
find an optimal choice by means of the evolutionary operators and of a fitness
function. An experimentation with some ontologies proves the feasibility of our
method and its effectiveness in terms of clustering validity indices. Then, with a
supervised learning phase, each cluster can be assigned with a refined or newly
constructed intensional definition expressed in the adopted language.

1 Introduction

In the context of the Semantic Web (henceforth SW) there is an extreme need of autom-
atizing those activities which are more burdensome for the knowledge engineer, such
as ontology construction, matching and evolution. These phases can be assisted by spe-
cific learning methods, such as instance-based learning (and analogical reasoning) [5],
case-based reasoning [7], inductive generalization [8, 21, 15] and unsupervised learn-
ing (clustering) [19, 12] crafted for knowledge bases (henceforth KBs) expressed in the
standard representations of the field and complying with their semantics.

In this work, we investigate on the problem of conceptual clustering of semanti-
cally annotated resources. The benefits of conceptual clustering [24] in the SW context
are manifold. Clustering annotated resources enables the definition of new emerging
concepts (concept formation) on the grounds of the concepts defined in a KB; super-
vised methods can exploit these clusters to induce new concept definitions or to refine
existing ones (ontology evolution); intensionally defined groupings may speed-up the
task of search and discovery [6]; a clustering may also suggest criteria for ranking the
retrieved resources based on the distance from the centers. Approaches based on incre-
mental learning [9] and clustering have also been proposed [23] to detect novelties or
track the phenomenon of concept drift [25] over time. Most of the clustering methods
are based on the application of similarity (or density) measures defined over a fixed
set of attributes of the domain objects [16]. Classes of objects are taken as collections

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 808–821, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evolutionary Clustering in Description Logics 809

that exhibit low interclass similarity (density) and high intraclass similarity (density).
These methods are rarely able to take into account some form of background knowledge
that could characterize object configurations by means of global concepts and seman-
tic relationships [24]. This hinders the interpretation of the outcomes of these methods
that is crucial in the SW perspective which enforces sharing and reusing the produced
knowledge to enable semantic interoperability across different KBs and applications.

Conceptual clustering methods can answer these requirements since they have been
specifically crafted for defining groups of objects through descriptions based on selected
attributes [24]. The expressiveness of the language adopted for describing objects and
clusters is extremely important. Related approaches, specifically designed for termi-
nological representations (Description Logics [1], henceforth DLs), have recently been
introduced [19, 12]. They pursue logic-based methods for attacking the problem of clus-
tering w.r.t. some specific DLs. The main drawback of these methods is that they are
language-dependent and cannot scale to standard SW representations that are mapped
on complex DLs. Moreover, purely logic methods can hardly handle noisy data.

These problems motivate the investigation on similarity-based clustering methods
which can be more noise-tolerant and language-independent. In this paper, an extension
of distance-based techniques is proposed. It can cope with the standard SW represen-
tations and profit by the benefits of a randomized search for optimal clusterings. The
method is intended for grouping similar resources w.r.t. a notion of similarity, coded in a
distance measure, which fully complies with the semantics KBs expressed in DLs. The
individuals are gathered around cluster centers according to their distance. The choice
of the best centers (and their number) is performed through an evolutionary approach
[13, 20]. From a technical viewpoint, upgrading existing distance-based algorithms to
work on multi-relational representations, like the concept languages used in the SW, re-
quires similarity measures that are suitable for such representations and their semantics.
A theoretical problem is posed by the Open World Assumption (OWA) that is generally
made on the language semantics, differently from the Closed World Assumption (CWA)
which is standard in other contexts. Moreover, as pointed out in a seminal paper on
similarity measures for DLs [3], most of the existing measures focus on the similar-
ity of atomic concepts within hierarchies or simple ontologies. Recently, dissimilarity
measures have been proposed for some specific DLs [5]. Although they turned out to be
quite effective for specific inductive tasks, they were still partly based on structural cri-
teria which makes them fail to fully grasp the underlying semantics and hardly scale to
more complex ontology languages. We have devised a family of dissimilarity measures
for semantically annotated resources, which can overcome the aforementioned limita-
tions [10]. Following the criterion of semantic discernibility of individuals, a family of
measures is derived that is suitable for a wide range of languages since it is merely based
on the discernibility of the input individuals w.r.t. a fixed committee of features repre-
sented by a set of concept definitions. In this setting, instead of the notion of centroid
that characterizes the distance-based algorithms descending from K-MEANS [16], origi-
nally developed for numeric or ordinal features, we recur to the notion of medoids [18].
The proposed clustering algorithm employs genetic programming as a search schema.
The evolutionary problem is modeled by considering populations made up of strings of
medoids with different lengths. The medoids are computed according to the semantic

810 N. Fanizzi, C. d’Amato, and F. Esposito

measure mentioned above. On each generation, the strings in the current population are
evolved by mutation and cross-over operators, which are also able to change the num-
ber of medoids. Thus, this algorithm is also able to suggest autonomously a promising
number of clusters. Accordingly, the fitness function is based both on the optimization
of a cluster cohesion index and on the penalization of lengthy medoid strings.

We propose the exploitation of the outcomes of the clustering algorithm for detecting
the phenomena of concept drift or novelty from the data in the KB. Indeed ontologies
evolve over the time (because new assertions are added or because new concepts are
defined). Specifically, the occurrence of new assertions can provoke the introduction of
new concepts (defined only by the extensions) or can transform existing concepts into
more general or more specific ones. We consider the set of new assertions as a candidate
cluster and we evaluate its nature w.r.t. the computed clustering model; namely we
assess if the candidate cluster is a normal cluster, a new concept or a drift concept.
Hence, new concepts could be induced and/or existing ones could be refined.

The remainder of the paper is organized as follows. Sect. 2 presents the basics of the
target representation and the semantic similarity measure adopted with the clustering
algorithm which is presented in Sect. 3. In Sect. 4 we report an experiment aimed at
assessing the validity of the method on some ontologies available in the Web. The utility
of clustering in the logic of ontology evolution is discussed in Sect. 5. Conclusions and
extensions of the work are examined in Sect. 6.

2 Semantic Distance Measures

In the following, we assume that resources, concepts and their relationship may be de-
fined in terms of a generic ontology language that may be mapped to some DL language
with the standard model-theoretic semantics (see the DLs handbook [1] for a thorough
reference). In the intended framework setting, a knowledge base K = 〈T ,A〉 con-
tains a TBox T and an ABox A. T is a set of concept definitions. The complexity of
such definitions depends on the specific DL language constructors. A contains asser-
tions (ground facts) on individuals (domain objects) concerning the current world state,
namely: class-membership C(a) which means that a is an instance of concept C; rela-
tions R(a, b) which means that a is R-related to b. The set of the individuals referenced
in the assertions ABox A will be denoted with Ind(A). The unique names assumption
can be made on the ABox individuals1 therein.

As regards the required inference services, the measure requires performing
instance-checking, which amounts to determine whether an individual, say a, belongs
to a concept extension, i.e. whether C(a) holds for a certain concept C. Note that, dif-
ferently from the standard DB settings, due to the OWA, the reasoner might be unable
to provide a definite answer. Hence one has to cope with this form of uncertainty.

Following some techniques for distance induction in clausal spaces developed in
ILP [22], we propose the definition of totally semantic distance measures for individuals
in the context of a KB which is also able to cope with the OWA. The rationale of the new
measure is to compare individuals on the grounds of their behavior w.r.t. a given set of

1 Each individual can be assumed to be identified by its own URI, however this is not bound to
be a one-to-one mapping.

Evolutionary Clustering in Description Logics 811

features, that is a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which
stands as a group of discriminating features expressed in the considered DL language. A
family of dissimilarity measures for individuals inspired to the Minkowski’s distances
(Lp) can be defined as follows [10]:

Definition 2.1 (family of dissimilarity measures). Let K = 〈T ,A〉 be a knowledge
base. Given set of concept descriptions F = {F1, F2, . . . , Fm}, a family of functions
{dF

p}p∈IN with dF
p : Ind(A) × Ind(A) �→ [0, 1] is defined as follows: ∀a, b ∈ Ind(A)

dF
p(a, b) :=

Lp(π(a), π(b))
m

=
1
m

(
m∑

i=1

| πi(a) − πi(b) |p
) 1

p

where p > 0 and ∀a ∈ Ind(A) the projection function πi is defined by:

πi(a) =

⎧⎨
⎩

1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The superscript F will be omitted when the set of features is fixed. The functions
{dF

p}p∈IN are semi-distance measures (see [10] for more details). The case πi(a) = 1/2
occurs when a reasoner cannot give the truth value for a certain membership query.
This is due to the OWA normally made in this context. Differently from other DLs
measures [4, 17], the presented measure is able to measure dissimilarity between indi-
viduals and moreover it does not depend on the constructors of a specific language. It
requires only the instance-checking service that is used for deciding whether an indi-
vidual that is asserted in the KB belongs to a concept extension. Such information can
be also pre-computed in order to speed-up the computation of the dissimilarity values
and consequently also the clustering process. The underlying idea in the measure defi-
nition is that similar individuals should exhibit the same behavior w.r.t. the concepts in
F. Here, we make the assumption that the feature-set F represents a sufficient number
of (possibly redundant) features that are able to discriminate really different individu-
als. Preliminary experiments, where the measure has been exploited for instance-based
classification (Nearest Neighbor algorithm) and similarity search [26], demonstrated
the effectiveness of the measure using the very set of both primitive and defined con-
cepts found in the KBs.

However, the choice of the concepts to be included in the committee F is crucial
and may be the object of a preliminary learning problem to be solved (feature selection
for metric learning). We have devised specific optimization algorithms [11] founded
in genetic programming and simulated annealing (whose presentation goes beyond the
scope of this work) which are able to find optimal choices of discriminating concept
committees. Differently from the goal of the this paper, in [11], the problem of man-
aging novelties and concept drift in an ontology has not been considered. Since the
measure is very dependent on the concepts included in the committee of features F,
two immediate heuristics can be derived: 1) control the number of concepts of the com-
mittee, including especially those that are endowed with a real discriminating power;
2) finding optimal sets of discriminating features, by allowing also their composition
employing the specific constructors made available by the DL of choice.

812 N. Fanizzi, C. d’Amato, and F. Esposito

3 Evolutionary Clustering Procedure

Many similarity-based clustering algorithms [16] can be applied to semantically anno-
tated resources stored in a KB, exploiting the measures discussed in the previous section
even if, for the best of our knowledge, very few (conceptual) clustering algorithms for
coping with DL representations have been proposed in the literature. We focussed on the
techniques based on evolutionary methods which are able to determine also an optimal
number of clusters, instead of requiring it as a parameter (although the algorithm can be
easily modified to exploit this information that greatly reduces the search-space). Con-
ceptual clustering requires also to provide a definition for the detected groups, which
may be the basis for the formation of new concepts inductively elicited from the KB.
Hence, the conceptual clustering procedure consists of two phases: one that detects the
clusters in the data and the other that finds an intensional definition for the groups of
individuals detected in the former phase. The first phase of the clustering process is
presented in this section. The concept formation process is presented in Sect. 5.2.

The first clustering phase implements a genetic programming learning scheme,
where the designed representation for the competing genomes is made up of strings
(lists) of individuals of different lengths, with each gene standing as prototypical for a
cluster. Specifically, each cluster will be represented by its prototype recurring to the
notion of medoid [18, 16] on a categorical feature-space w.r.t. the distance measure pre-
viously defined. Namely, the medoid of a group of individuals is the individual that has
the minimal distance w.r.t. the others. Formally. in this setting:

Definition 3.1 (medoid). Given a cluster of individuals C = {a1, a2, . . . , an}
⊆ Ind(A), the medoid of the cluster is defined:

medoid(C) := argmin
a∈C

n∑
j=1

d(a, aj)

In the proposed evolutionary algorithm, the population will be made up of genomes
represented by a list of medoids G = {m1, . . . , mk} of variable lengths. The algorithm
performs a search in the space of possible clusterings of the individuals, optimizing
a fitness measure that maximizes the discernibility of the individuals of the different
clusters (inter-cluster separation) and the intra-cluster similarity measured in terms of
the dF

p pseudo-metric. On each generation those strings that are considered as best w.r.t.
a fitness function are selected for passing to the next generation. Note that the algorithm
does not prescribe a fixed length of the genomes (as, for instance in K-MEANS and its
extensions [16]), hence it searches a larger space aiming at determining an optimal
number of clusters for the data at hand. In the following, a sketch of the algorithm,
named ECM, Evolutionary Clustering around Medoids is reported.

medoidVector ECM(maxGenerations)
input: maxGenerations: max number of iterations;
output: medoidVector: list of medoids
static: offsprings: vector of generated offsprings

fitnessVector: ordered vector of fitness values
generationNo: generation number

Evolutionary Clustering in Description Logics 813

INITIALIZE(currentPopulation,popLength)
generationNo = 0
while (generationNo < maxGenerations)

begin
offsprings = GENERATEOFFSPRINGS(currentPopulation)
fitnessVector = COMPUTEFITNESS(offsprings)
currentPopulation = SELECT(offsprings,fitnessVector)
++generationNo
end

return currentPopulation[0] // fittest genome

After the call to the INITIALIZE() function returning (to currentPopulation) a ran-
domly generated initial population of popLength medoid strings, the algorithm essen-
tially consists of the typical generation loop of genetic programming, where a new
population is computed and then evaluated for deciding on the best genomes to be se-
lected for survival to the next generation. On each iteration, new offsprings of current
best clusterings in currentPopulation are computed. This is performed by suitable ge-
netic operators explained in the following. The fitnessVector recording the quality of
the various offsprings (i.e. clusterings) is then updated, and then the best offsprings are
selected for the next generation. The fitness of a single genome G = {m1, . . . , mk} is
computed by distributing all individuals among the clusters ideally formed around the
medoids in that genome. For each medoid mi (i = 1, . . . , k), let Ci be such a cluster.
Then, the fitness is computed by the function:

FITNESS(G) =

(
λ(k)

k∑
i=1

∑
x∈Ci

dp(x, mi)

)−1

The factor λ(k) is introduced to penalize those clusterings made up of too many clusters
that could enforce the minimization in this way (e.g. by proliferating singletons). A
suggested value is λ(k) =

√
k + 1 which was used in the experiments (see Sect. 4).

The loop condition is controlled by the maximal number of generation (the max-
Generations parameter) ensuring that eventually it may end even with a suboptimal
solution to the problem. Besides other parameters can be introduced for controlling the
loop based on the best fitness value obtained so far or on the gap between the fitness
of best and of the worst selected genomes in currentPopulation. Eventually, the best
genome of the vector (supposed to be sorted by fitness in descending order) is returned.

It remains to specify the nature of the GENERATEOFFSPRINGS procedure and the
number of such offsprings, which may as well be another parameter of the ECM algo-
rithm. Three mutation and one crossover operators are implemented:

DELETION(G) drop a randomly selected medoid: G := G \ {m}, m ∈ G
INSERTION(G) select m ∈ Ind(A) \ G that is added to G: G := G ∪ {m}
REPLACEMENTWITHNEIGHBOR(G) randomly select m ∈ G and replace it with m′ ∈

Ind(A)\G s.t. ∀m′′ ∈ Ind(A)\G d(m, m′) ≤ d(m, m′′): G′ := (G\{m})∪{m′}
CROSSOVER(GA, GB) select subsets SA ⊂ GA and SB ⊂ GB and exchange them

between the genomes: GA := (GA \ SA) ∪ SB and GB := (GB \ SB) ∪ SA

814 N. Fanizzi, C. d’Amato, and F. Esposito

The representation of centers by means of medoids has two advantages. First, it
presents no limitations on attributes types, and, second, the choice of medoids is dictated
by the location of a predominant fraction of points inside a cluster and, therefore, it is
less sensitive to the presence of outliers. In K-MEANS case a cluster is represented by
its centroid, which is a mean (usually weighted average) of points within a cluster. This
works conveniently only with numerical attributes and can be negatively affected even
by a single outlier.

A (10+60) selection strategy has been implemented, with the numbers indicating,
resp., the number of parents selected for survival and the number of their offsprings
generated employing the mutation operators presented above.

4 Evaluation

The feasibility of the clustering algorithm has been evaluated with an experimentation
on KBs selected from standard repositories. For testing our algorithm we preferred
using populated ontologies (which may be more difficult to find) rather than randomly
generating assertions for artificial individuals, which might have biased the procedure.

4.1 Experimental Setup

A number of different OWL ontologies, selected from various sources2, have been con-
sidered for the experimentation: FSM, SURFACEWATERMODEL, TRANSPORTATION,
NEWTESTAMENTNAMES, and FINANCIAL. Table 1 summarizes details concerning
such ontologies. Of course, the number of individuals gives only a partial indication
of the number of assertions concerning them which affects both the complexity of rea-
soning and distance assessment.

Table 1. Ontologies employed in the experiments

Ontology DL lang. #concepts #obj.prop. #data prop. #individuals
FSM SOF(D) 20 10 7 37

SURFACEWATERMODEL ALCOF(D) 19 9 1 115
TRANSPORTATION ALC 44 7 0 331

NEWTESTAMENTNAMES SHIF(D) 47 27 8 676
FINANCIAL ALCIF 60 16 0 1000

In the computation of the distances between individuals all concepts in the KB
have been used for the committee of features, thus guaranteeing meaningful measures
with high redundancy. The PELLET reasoner3 was employed to perform the instance-
checking that were necessary to compute the projections.

2 See the Protégé library: http://protege.stanford.edu/plugins/owl/owl-library
and the website: http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

3 http://pellet.owldl.com

http://protege.stanford.edu/plugins/owl/owl-library
http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
http://pellet.owldl.com

Evolutionary Clustering in Description Logics 815

The experimentation consisted of 10 runs of the algorithm per knowledge base. The
indexes which were chosen for the experimental evaluation were: the generalized R-
Squared (modRS), the generalized Dunn’s index, the average Silhouette index, and the
number of clusters obtained. We will consider a generic partition P = {C1, . . . , Ck} of
n individuals in k clusters. The indexes are formally defined as follows.

The R-Squared index [14] is a measure of cluster separation, ranging in [0,1]. Instead
of the cluster means, we generalize the measure by computing it w.r.t. their medoids,
namely:

RS(P) :=
SSb(P)

SSb(P) + SSw(P)

where SSb is the between clusters Sum of Squares defined as SSb(P) :=∑k
i=1 d(m, mi)2 where m is the medoid of the whole dataset and SSt is the within

cluster Sum of Squares that is defined as SSw(P) :=
∑k

i=1

∑
a∈Ci

d(a, mi)2

The generalized Dunn’s index is a measure of both compactness (within clusters) and
separation (between clusters). The original measure is defined for numerical feature
vectors in terms of centroids and it is known to suffer from the presence of outliers.
To overcome these limitations, we adopt a generalization of Dunn’s index [2] that is
modified to deal with medoids. The new index can be defined:

VGD(P) := min
1≤i≤k

⎧⎪⎨
⎪⎩ min

1≤j≤k

i�=j

{
δp(Ci, Cj)

max1≤h≤k {Δp(Ch)}

}⎫⎪⎬
⎪⎭

where δp is the Hausdorff distance for clusters derived4 from dp, while the cluster di-
ameter measure Δp is defined as Δp(Ch) := 2

|Ch|
∑

c∈Ch
dp(c, mh). It is more noise-

tolerant w.r.t. the original measure. It ranges in [0, +∞[and has to be maximized.
The average Silhouette index [18] is a measure ranging in the interval [-1,1], thus

suggesting an absolute best value for the validity of a clustering. For each individual
xi, i ∈ {1, . . . , n}, the average distance to other individuals within the same cluster Cj ,
j ∈ {1, . . . , k}, is computed: ai := 1

|Cj|
∑

x∈Cj
dp(ai, x) Then the average distance to

the individuals in other clusters is also computed: bi := 1
|Cj|
∑h �=j

x∈Ch
dp(ai, x) Hence,

the Silhouette value for the considered individual is obtained as follows:

si :=
(bi − ai)

max(ai, bi)

The average Silhouette value s for the whole clustering is computed: s := 1
k

∑k
1=1 si

We also considered the average number of clusters resulting from the repetitions of
the experiments on each KB. A stable algorithm should return almost the same number
of clusters on each repetition. It is also interesting to compare this number to the one of
the primitive and defined concepts in each ontology (see Tab. 1), although this is not a
hierarchical clustering method.

4 δp is defined δp(Ci, Cj) := max{dp(Ci, Cj), dp(Cj , Ci)}, where dp(Ci, Cj) :=
maxa∈Ci{minb∈Cj {dp(a, b)}}.

816 N. Fanizzi, C. d’Amato, and F. Esposito

4.2 Results

The experiment consisted in 10 runs of the evolutionary clustering procedure with an
optimized feature set (computed in advance). Each run took from a few minutes to 41
mins on a 2.5GhZ (512Mb RAM) machine. These timings include the pre-processing
phase needed to compute the distance values between all couples of individuals. The
elapsed time for the core clustering algorithm is actually very short (max 3 minutes).
The outcomes of the experiments are reported in Tab. 2. For each KB and for each index,
the average values observed along the various repetitions is considered. The standard
deviation and the range of minimum and maximum values are also reported.

Table 2. Results of the experiments: for each index, average value (±standard deviation) and
[min,max] interval of values are reported

Ontology R-Squared Dunn’s Silhouette #clusters

FSM
.39 (±.07) .72 (±.10) .77 (±.01) 4 (±.00)
[.33,.52] [.69,1.0] [.74,.78] [4,4]

SURFACEWATERMODEL
.45 (±.15) .99 (±.03) .999 (±.000) 12.9 (±.32)
[.28,.66] [.9,1.0] [.999,.999] [12,13]

TRANSPORTATION
.33 (±.04) .67 (±.00) .975 (±.004) 3 (±.00)
[.26,.40] [.67,.67] [.963,.976] [3,3]

NEWTESTAMENTNAMES
.46 (±.08) .79 (±.17) .985 (±.008) 29.2 (±2.9)
[.35,.59] [.5,1.0] [.968,.996] [25,32]

FINANCIAL
.37 (±.06) .88 (±1.16) .91 (±.03) 8.7 (±.95)
[.29,.45] [.57,1.0] [.87,.94] [8,10]

The R-Squared index values denotes an acceptable degree of separation between
the various clusters. We may interpret the outcomes observing that clusters present a
higher degree of compactness (measured by the SSw component). It should also pointed
out that flat clustering penalizes separation as the concepts in the knowledge base are
not necessarily disjoint. Rather, they naturally tend to form subsumption hierarchies.
Observe also that the variation among the various runs is very limited.

Dunn’s index measures both compactness and separation; the rule in this case is the
larger the better. Results are good for the various bases. These outcomes may serve for
further comparisons to the performance of other clustering algorithms. Again, note that
the variation among the various runs is very limited, so the algorithm was quite stable,
despite its inherent randomized nature.

For the average Silhouette measure, that has a precise range of values, the perfor-
mance of our algorithm is generally very good, with a degradation with the increase
of individuals taken into account. Besides, the largest KB (in terms of its population)
is also the one with the maximal number of concepts which provided the features for
the metric. Thus in the resulting search space there is more freedom in the choice of
the ways to make one individual discernible from the others. Surprisingly, the number
of clusters is limited w.r.t. the number of concepts in the KB, suggesting that many
individuals gather around a restricted subset of the concepts, while the others are only

Evolutionary Clustering in Description Logics 817

complementary (they can be used to discern the various individuals). Such subgroups
may be detected extending our method to perform hierarchical clustering.

As regards the overall stability of the clustering procedure, we may observe that the
main indices (and the number of clusters) show very little variations along the repe-
titions (see the standard deviation values), which suggests that the algorithm tends to
converge towards clusterings of comparable quality with generally the same number of
clusters. As such, the optimization procedure does not seem to suffer from being caught
in local minima. However, the case needs a further investigation.

Other experiments (whose outcomes are not reported here) showed that sometimes
the initial genome length may have an impact to the resulting clustering, thus sug-
gesting the employment of different randomized search procedures (e.g. again simu-
lated annealing or tabu search) which may guarantee a better exploration of the search
space.

5 Automated Concept Evolution in Dynamic Ontologies

In this section we illustrate the utility of clustering in the process of the automated
evolution of dynamic ontologies. Namely, clustering may be employed to detect the
possible evolution of some concepts in the ontology as reflected by new incoming re-
sources as well as the emergence of novel concepts. These groups of individuals may
be successively employed by supervised learning algorithms to induce the intensional
description of revised or newly invented concepts.

5.1 Incrementality and Automated Drift and Novelty Detection

As mentioned in the introduction, conceptual clustering enables a series of further activ-
ities related to dynamic settings: 1) concept drift [25]: i.e. the change of known concepts
w.r.t. the evidence provided by new annotated individuals that may be made available
over time; 2) novelty detection [23]: isolated clusters in the search space that require to
be defined through new emerging concepts to be added to the knowledge base.

The algorithms presented above are suitable for an online unsupervised learning im-
plementation. Indeed as soon as new annotated individuals are made available these
may be assigned to the closest clusters (where closeness is measured as the distance to
the cluster medoids or to the minimal distance to its instances). Then, new runs of the
evolutionary algorithm may yield a modification of the original model (clustering) both
in the clusters composition and in their number.

Following [23], the model representing the starting concepts is built based on the
clustering algorithm. For each cluster, the maximum distance between its instances and
the medoid is computed. This establishes a decision boundary for each cluster. The
union of the boundaries of all clusters is the global decision boundary which defines
the current model. A new unseen example that falls inside this global boundary is con-
sistent with the model and therefore considered normal; otherwise, a further analysis
is needed. A single such individual should not be considered as novel, since it could
simply represent noise. Due to lack of evidence, these individuals are stored in a short-
term memory, which is monitored for the formation of new clusters that might indicate

818 N. Fanizzi, C. d’Amato, and F. Esposito

two conditions: novelty and concept drift. Using the clustering algorithm on individu-
als in the short-term memory generales candidate clusters. For a candidate cluster to be
considered valid, i.e. likely a concept in our approach, the following algorithm can be
applied.

(decision,NewClustering) DRIFT NOVELTY DETECTION(Model, CCluster)
input: Model: current clustering; CandCluster: candidate cluster;
output: (decision, NewClustering);

mCC := medoid(CandCluster);
for each Cj ∈ Model| do mj := medoid(Cj);

doverall := 1
|Model|

∑
Cj∈Model

(
1

|Cj|
∑

a∈Cj
d(a, mj)

)
;

dcandidate := 1
|CandCluster|

∑
a∈CCluster d(a, mCC);

if doverall ≥ dcandidate then // valid candidate cluster
begin
m := medoid({mj | Cj ∈ Model}); // global medoid
dmax := maxmj∈Model d(m, mj);
if d(m, mCC) ≤ dmax then

return (drift, replace(Model,CandCluster))
else return (novelty, Model ∪ CandCluster)

end
else return (normal, integrate(Model,CandCluster))

The candidate cluster CandCluster is considered valid5 for drift or novelty detec-
tion when the average mean distance between medoids and the respective instances
for all clusters of the current model is greater than the average distance of the new
instances to the medoid of the candidate cluster. Then a threshold for distinguishing
between concept drift and novelty is computed: the maximum distance between the
medoids of the model and the global one6. When the distance between overall medoid
and the medoid of the candidate cluster exceeds the maximum distance then the case is
of concept drift and the candidate cluster is merged with the current model. Otherwise
(novelty case) the clustering is simply extended. Finally, when the candidate cluster is
made up of normal instances these can be integrated by assigning them to the closest
clusters.

The main differences from the original method [23], lie in the different represen-
tational setting (simple numeric tuples were considered) which allows for the use of
off-the-shelf clustering methods such as k-MEANS [16] based on a notion of centroid
which depend on the number of clusters required as a parameter. In our categorical
setting, medoids substitute the role of medoids and, more importantly, our method is
able to detect an optimal number of clusters autonomously, hence the influence of this
parameter is reduced.

5 This aims at choosing clusters whose density is not lower than that of the model.
6 Clusters which are closer to the boundaries of the model are more likely to appear due to a

drift occurred in the normal concept. On the other hand, a validated cluster appearing far from
the normal concept may represent a novel concept.

Evolutionary Clustering in Description Logics 819

5.2 Conceptual Clustering for Concept Formation

The next step may regard the refinement of existing concepts as a consequence of con-
cept drift or the invention of new ones to account for emerging clusters of resources.
The various cluster can be considered as training examples for a supervised algorithm
aimed at finding an intensional DL definition for one cluster against the counterexam-
ples, represented by individuals in different clusters [19, 12].

Each cluster may be labeled with an intensional concept definition which charac-
terizes the individuals in the given cluster while discriminating those in other clusters
[19, 12]. Labeling clusters with concepts can be regarded as a number of supervised
learning problems in the specific multi-relational representation targeted in our set-
ting [15]. As such it deserves specific solutions that are suitable for the DL languages
employed. A straightforward solution may be found, for DLs that allow for the com-
putation of (an approximation of) the most specific concept (msc) and least common
subsumer (lcs) [1] (such as ALC). The first operator, given the current knowledge base
and an individual, provides (an approximation of) the most specific concept that has the
individual as one of its instances. This would allow for lifting individuals to the con-
cept level. The second operator computes minimal generalizations of the input concept
descriptions. Indeed, concept formation can be cast as a supervised learning problem:
once the two clusters at a certain level have been found, where the members of a cluster
are considered as positive examples and the members of the dual cluster as negative
ones. Then any concept learning method which can deal with this representation (and
semantics) may be utilized for this new task. Given these premises, the learning process
can be described through the following steps:

let Cj be a cluster of individuals

1. for each individual ai ∈ Cj

do compute Mi := msc(ai) w.r.t. A;
2. let mscsj := {Mi | ai ∈ Cj};
3. return lcs(mscsj)

As an alternative, more complex algorithms for learning concept descriptions ex-
pressed in DLs may be employed such as YINYANG [15] or other systems based on
refinement operators [21]. Their drawback is that they cannot deal with the most com-
plex DL languages. The concepts resulting from conceptual clustering can be used for
performing weak forms of abduction that may be used to update the ABox; namely, the
membership of an individual to a cluster assessed by means of the metric, may yield
new assertions that do not occur in the ABox may be added (or presented to the knowl-
edge engineer as candidates to addition). Induced assertions coming for newly available
individuals may trigger further supervised learning sessions where concepts are refined
by means of the aforementioned operators.

6 Conclusions and Extensions

This work has presented a framework for evolutionary conceptual clustering that can be
applied to standard relational representations for KBs in the SW context. Its intended

820 N. Fanizzi, C. d’Amato, and F. Esposito

usage is for discovering interesting groupings of semantically annotated resources and
can be applied to a wide range of concept languages. Besides, the induction of new
concepts may follow from such clusters, which allows for accounting for them from
an intensional viewpoint. The method exploits a dissimilarity measure that is based on
the undelying resource semantics w.r.t. a committee of features represented by a group
of concept descriptions in the chosen language. A preliminary learning phase, based
on randomized search, can be used to optimize the choice of the most discriminating
features. The evolutionary clustering algorithm is an extension of distance-based clus-
tering procedures employing medoids as cluster prototypes so to deal with complex
representations of the target context. Variable-length strings of medoids yielding differ-
ent partitions are searched guided by a fitness function based on cluster separation. The
algorithm can also determine the length of the list, i.e. an optimal number of clusters.

As for the metric induction part, a promising research line, for extensions to match-
making, retrieval and classification, is retrieval by analogy [5]: a search query may
be issued by means of prototypical resources; answers may be retrieved based on lo-
cal models (intensional concept descriptions) for the prototype constructed (on the fly)
based on the most similar resources. The presented algorithm may be the basis for the
model construction activity. The distance measure may also serve as a ranking criterion.
The natural extensions of the clustering algorithm that may be foreseen are towards
incrementality and hierarchical clustering. The former may be easily achieved by as-
signing new resources to their most similar clusters, and restarting the whole algorithm
when some validity measure crosses a given threshold. The latter may be performed by
wrapping the algorithm within a level-wise procedure starting with the whole dataset
and recursively applying the partitive method until a criterion based on quality indices
determines the stop. This may produce more meaningful concepts during the next su-
pervised phase. Better fitness functions may be also investigated for both distance opti-
mization and clustering. For instance, some clustering validity indices can be exploited
in the algorithm as measures of compactness and separation.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press, Cambridge (2003)

[2] Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Transactions on Sys-
tems, Man, and Cybernetics 28(3), 301–315 (1998)

[3] Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description logics. In:
Horrocks, I., Sattler, U., Wolter, F. (eds.) Working Notes of the International Description
Logics Workshop, Edinburgh, UK. CEUR Workshop Proc., vol. 147 (2005)

[4] d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for ALC concept de-
scriptions. In: Proceedings of the 21st Annual ACM Symposium of Applied Computing,
SAC2006, Dijon, France, vol. 2, pp. 1695–1699. ACM, New York (2006)

[5] d’Amato, C., Fanizzi, N., Esposito, F.: Reasoning by analogy in description logics through
instance-based learning. In: Tummarello, G., et al. (eds.) Proc. of Workshop on Semantic
Web Applications and Perspectives, SWAP 2006. CEUR, vol. 201 (2006)

[6] d’Amato, C., Staab, S., Fanizzi, N., Esposito, F.: Efficient discovery of services specified
in description logics languages. In: Proc. of the ISWC Workshop on Service Matchmaking
and Resource Retrieval in the Semantic Web (2007)

Evolutionary Clustering in Description Logics 821

[7] d’Aquin, M., Lieber, J., Napoli, A.: Decentralized case-based reasoning for the Semantic
Web. In: Gill, Y., et al. (eds.) Proc. of the 4th Int. Semantic Web Conf., ISWC 2005. LNCS,
vol. 3279, pp. 142–155. Springer, Heidelberg (2005)

[8] Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive
induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harme-
len, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

[9] Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental learning and
concept drift in INTHELEX. Jour. of Intelligent Data Analysis 8(1/2), 133–156 (2004)

[10] Fanizzi, N., d’Amato, C., Esposito, F.: Induction of optimal semi-distances for individuals
based on feature sets. In: Calvanese, D., et al. (eds.) Working Notes of the 20th International
Description Logics Workshop, DL 2007. CEUR, vol. 250 (2007)

[11] Fanizzi, N., d’Amato, C., Esposito, F.: Randomized metric induction and evolutionary con-
ceptual clustering for semantic knowledge bases. In: Silva, M.J., et al. (eds.) Proc. of the
16th ACM Conf. on Information and Knowledge Management, pp. 51–60. ACM, New
York (2007)

[12] Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive de-
scription logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML
2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)

[13] Ghozeil, A., Fogel, D.B.: Discovering patterns in spatial data using evolutionary program-
ming. In: Koza, J.R., et al. (eds.) Genetic Programming 1996: Proc. of the 1st Annual Conf.,
pp. 521–527. MIT Press, Cambridge (1996)

[14] Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal
of Intelligent Information Systems 17(2-3), 107–145 (2001)

[15] Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept
learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

[16] Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Sur-
veys 31(3), 264–323 (1999)

[17] Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the descrip-
tion logic ALCNR in geographic information retrieval. In: Meersman, R., Tari, Z., Her-
rero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidel-
berg (2006)

[18] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: an Introduction to Cluster Analysis.
John Wiley & Sons, Chichester (1990)

[19] Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural
knowledge. Machine Learning 14(2), 193–218 (1994)

[20] Lee, C.-Y., Antonsson, E.K.: Variable length genomes for evolutionary algorithms. In:
Whitley, L., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference,
GECCO 2000, p. 806. Morgan Kaufmann, San Francisco (2000)

[21] Lehmann, J.: Concept learning in description logics. Master’s thesis, Dresden University of
Technology (2006)

[22] Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) ILP
1997. LNCS, vol. 1297, pp. 264–272. Springer, Heidelberg (1997)

[23] Spinosa, E.J., de Leon, A.P., de Carvalho, F., Gama, J.: OLINDDA: A cluster-based ap-
proach for detecting novelty and concept drift in data streams. In: Proc. of the Annual
ACM Symposium of Applied Computing, vol. 1, pp. 448–452. ACM, New York (2007)

[24] Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: A goal-oriented
approach. Artificial Intelligence 28(1), 43–69 (1986)

[25] Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts.
Machine Learning 23(1), 69–101 (1996)

[26] Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric Space Ap-
proach. Advances in database Systems. Springer, Heidelberg (2007)

Model–Driven, View–Based Evolution of

Relational Databases�

Eladio Domı́nguez1, Jorge Lloret1, Ángel L. Rubio2,
and Maŕıa A. Zapata1

1 Dpto. de Informática e Ingenieŕıa de Sistemas.
Facultad de Ciencias. Edificio de Matemáticas.

Universidad de Zaragoza. 50009 Zaragoza. Spain
{noesis,jlloret,mazapata}@unizar.es

2 Dpto. de Matemáticas y Computación. Edificio Vives.
Universidad de La Rioja. 26004 Logroño. Spain

arubio@dmc.unirioja.es

Abstract. Among other issues, database evolution includes the neces-
sity of propagating the changes inside and between abstraction levels.
There exist several mechanisms in order to carry out propagations from
one level to another, that are distinguished on the basis of when and
how the changes are performed. The strict mechanism, which implies
the immediate realization of modifications, is a time–consuming process.
In this paper we propose a solution that is closer to the lazy and logical
mechanisms, in which changes are delayed or not finally realized, respec-
tively. This solution makes use of the notion of view. The use of views
allows the data not to be changed if it is not necessary and facilitates
carrying out changes when required.

1 Introduction

There are two main interrelated issues that are very frequently highlighted in
existing database evolution literature: information consistency and propagation
of modifications. For example, both issues are described in [10] and included
within a more general activity called managing core schema evolution. Informa-
tion consistency is concerned with the crucial point of ensuring the lossless of
any semantic information when an evolution task is carried out. Propagation
of modifications must be considered along two dimensions with regard to ab-
straction layers. On the one hand, within a horizontal dimension the changes in
some part of a schema can (and usually must) be conveyed to other parts of the
schema. On the other hand, within a vertical dimension the changes in a schema
situated in an abstraction layer must be propagated to the corresponding schema
in other abstraction layers (for instance, from the relational level downwards to
the extensional level).
� This work has been partially supported by DGI, project TIN2005-05534, by the

Ministry of Industry, Tourism and Commerce, project SPOCS (FIT-340001-2007-4),
by the Government of Aragon and by the European Social Fund.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 822–836, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model–Driven, View–Based Evolution of Relational Databases 823

In [2] we have presented a proposal in which information consistency is pre-
served by using a database evolution architecture, called MeDEA, framed in a
forward engineering context. This architecture has been developed from a model–
driven perspective, since it has been recognized that schema evolution is one of
the applications of model management [1]. With respect to propagation of mod-
ifications, different authors classify several ways of carrying out propagations.
For instance, Roddick in [8] distinguishes three kinds of data conversion mech-
anisms: strict, lazy and logical. In the strict mechanism changes in the schema
are propagated to the data immediately. In the lazy mechanism, routines that
can perform the changes in the data are assembled, but they are used only
when required. Lastly, a system of screens is created to translate the data to
the appropriate format at access time (without converting data) in the logical
mechanism. Another classification is proposed in [7] where screening, conver-
sion and filtering techniques are described. Although this second classification
is tied to object–based systems, a rather close parallel can be drawn between
the screening technique and the lazy data conversion mechanism, the conversion
technique and the strict mechanism, and the filtering technique and the logi-
cal mechanism. Our above–mentioned architecture, as presented in [2], uses the
strict data conversion mechanism.

In any case, there exists a ‘common line’ in the literature that states that
the best solution for the propagation of modifications implies making a balance
between avoiding the modification of data until it is indispensable and not in-
creasing excessively the complexity of the database. As a step to obtain such
a solution, in this paper we propose a new application of our architecture in
which views are used. The use of views allows the modification of data not to
be initially realized, and therefore, our approach fits into the logical procedure.
A noteworthy contribution of this idea is that when, for some reason, the modi-
fications have to be translated into the physical database, this task is facilitated
since views codify the changes undergone at the logical level. In this sense, our
adopted solution is closer to the lazy mechanism and the screening technique.

The structure of the paper is as follows. Section 2 first reviews the basic ideas
of our architecture for database evolution, and then presents the adaptation
of the architecture to the view–based approach. In Section 3 we discuss the
effect of the conceptual changes when a view-based approach is followed. We
devote Section 4 to detailing the technical aspects of the view based propagation
algorithm. Finally, related work, some conclusions and future work appear in
Sections 5 and 6.

2 View–Based Database Evolution

2.1 Brief Description of MeDEA

MeDEA is a MEtamodel–based Database Evolution Architecture we have pre-
sented in [2]. In this section, we describe briefly the meaning and purpose of the
components of MeDEA (see [2] for details).

824 E. Domı́nguez et al.

MeDEA has four components (see Figure 1): conceptual component, trans-
lation component, logical component and extensional component. The concep-
tual component captures machine–independent knowledge of the real world. In
this work, it deals with EER schemas. The logical component captures tool–
independent knowledge describing the data structures in an abstract way. In
this paper, it deals with schemas from the relational model by means of standard
SQL. The extensional component captures tool dependent knowledge using the
implementation language. Here, this component deals with the specific database
in question, populated with data, and expressed in the SQL of Oracle. One of
the main contributions of our architecture is the translation component, that not
only captures the existence of a transformation from elements of the conceptual
component to others of the logical one, but also stores explicit information about
the way in which specific conceptual elements are translated into logical ones.

External
events

Logical
Component

Extensional
ComponentTranslation

Component

extensional
 processor

database
extension

logical
database
 schema

logical
 processor

logical
meta-schema

translation
base

translation
 processor

translation
meta-schema

Conceptual
Component

conceptual
database
 schema

conceptual
 processor

conceptual
meta-schema

meta
model
layer

model
 layer

data
layer

Fig. 1. MeDEA Database Evolution Architecture

It must be noted that three different abstraction levels are involved in the
architecture. On the one hand, the (meta–)schemas of the three former compo-
nents are situated at the most abstract level (metamodel layer according to [14])
and, on the other hand, the information base which stores the population of the
database is situated at the least abstract level (user data layer [14]). All the
other elements are situated at the model layer [14].

In order to apply MeDEA to the specific situation of this paper (that is, to
EER and relational schemas) nine artifacts must be established: three metamod-
els (EER, translation and relational), a translation algorithm from EER schemas
to relational schemas, three sets of evolution transformations (one set for each
metamodel), one set of propagation rules and one set of correspondence rules.

Once these nine artifacts are given (see Section 2.2) the way of working of the
architecture is as follows: given an EER schema in the conceptual component,
the translation algorithm is applied to it and creates: (1) the logical database
schema, (2) a set of elementary translations in the translation component and
(3) the physical database schema.

Model–Driven, View–Based Evolution of Relational Databases 825

Conceptual Schema S0

employee
project

worksInN Nid
name

address
department

id

employee

name addressid department

worksIn

idProjectidEmployee

project

id

Logical Schema S0

is translated into

is translated into

is translated into

Fig. 2. Conceptual and logical schemas

For instance, as running example, we will consider an initial EER schema S0

(see Figure 2) with employees and projects. Each employee has an id, name,
address and department where (s)he works. Each project has an id and many
employees can work in many projects. The application of the translation algo-
rithm to this EER schema gives rise to: (1) the relational schema with three
relation schemas shown in Figure 2, (2) elementary translations storing which
EER elements are translated into relational elements (some of the generated el-
ementary translations are represented as dashed lines in Figure 2) and (3) the
SQL sentences of Oracle that create the relational schema.

Then, the physical database is populated with data. For various reasons, the
data structure may need to be changed. In this case, the data designer must
issue the appropriate evolution transformations to the EER schema. The propa-
gation algorithm propagates the changes to the other components. To be precise,
the EER schema changes are propagated to the translation and relational com-
ponents by means of the propagation rules. Afterwards, the relational schema
changes are propagated to the Oracle database by means of the correspondence
rules.

In Sections 3 and 4, an evolution example, using the EER schema S0 as
starting point, is shown. Four evolution transformations are issued which are
propagated to the relational schema, the physical schema and the data.

2.2 Application of MeDEA Using a View–Based Evolution
Approach

In [2] we applied MeDEA to EER and relational schemas following a strict data
conversion mechanism. The main contribution of this paper is the application
of this architecture using a lazy and logical data conversion mechanism, so that
the changes are delayed as far as possible. In order to reach this goal, views are
used for evolving relational databases whenever the conceptual changes allow
this to be done, avoiding the overhead of strict data conversion. However, if the
number of views is increased too much, query processing performance can be
downgraded.

826 E. Domı́nguez et al.

This change in the way of managing the evolution processes has led us to
change some of the artifacts proposed in [2]. To be precise, the EER meta-
model, the translation algorithm and the set of conceptual changes remain the
same. It should be noted that, during the execution of the translation algo-
rithm, the user may choose the translation rules which are applied to each
element of the EER schema giving place to relational structures. For exam-
ple, for relationship types the user can choose, among others, between the
relSchemaPerRelType translation rule (‘a relation schema for each relationship
type’) or relSchemaPerNNRelType translation rule (‘a relation schema for the
N-N relationship type and foreign key for other cardinalities of the relationship’).
Additional details about the unchanged artifacts can be found in [2].

The rest of the artifacts proposed in [2] have been changed in order to allow
us to perform a lazy and logical data conversion mechanism. In particular, the
relational metamodel has been modified including in it the concept of view and
distinguishing between base and derived attributes (see Figure 3). A view is
described by its name, a predicate and a checkOption. Let us notice that a
view can be based on relation schemas and views, and that its attributes can be
base or derived attributes. These changes in the logical metamodel oblige us to
include new logical transformations regarding the new concepts (see Table 1).

Attribute
name

EnhancedRelational_Element

RelationSchema
name

referred

1..*

0..*

0..*

Domain
name
dataType

1

Constraint
name

NullableConstraint
nullAllowed:boolean

CandidateKeyConstraint

PrimaryKeyConstraint

ForeignKeyConstraint

1..*

{disjoint, total}

{disjoint, total}

owner 1

1

CheckConstraint
predicate

View
name
predicate
checkOption

BaseAttribute
name

DerivedAttribute
expression

0..*

1

1..*

0..*

1

{disjoint, total}

1..*

0..*

0..* 0..*

0..*

0..*
using

Fig. 3. Graphical representation of the relational Metamodel

The modification of the logical metamodel also implies the inclusion in the
translation component of new types of elementary translations. In this way, the
EntityType2View type reflects the translation of an entity type into a view and
the Attribute2ViewAttribute type reflects the translation of a conceptual at-
tribute into an attribute of a view. Moreover, the RelType2View type reflects
the translation of a relationship type into a view. Here we have a constraint
according to which for each entity or relationship type there is only one rela-
tion schema or view in the logical schema. As a consequence, there is only one
elementary translation for each entity or relationship type.

The rest of the paper is devoted to studying the effects of the conceptual
changes, to explain the view based propagation algorithm and the propagation
rules, bringing to light the advantages of this new proposal.

Model–Driven, View–Based Evolution of Relational Databases 827

Table 1. New logical transformations

createView(N : name; [LR: listOfRelationSchemas]; [LV : listoFViews]; LA: listOfAt-
tributes; P : predicate; CO: checkOption)
createDerivedAttribute(N : name; LA: listOfAttributes; E:expression)
deleteView(V : view)
deleteDerivedAttribute(DA: derivedAttribute)
renameView(V : view; N : name)
renameDerivedAttribute(DA: derivedAttribute; N : name)
includeRelationSchemaInView(V : view; R: relationSchema)
includeViewInView(V : view; W : view)
includeAttributeInView(V : view; A: attribute)
includeAttributeInDerivedAttribute(DA: derivedAttribute; A: attribute)
removeRelationSchemaInView(V : view; R: relationSchema)
removeViewInView(V : view; W : view)
removeAttributeInView(V : view; A: attribute)
removeAttributeInDerivedAttribute(DA: derivedAttribute; A: attribute)
changePredicate(V : view; P : predicate)
changeCheckOption(V : view; CO: checkOption)
changeExpression(DA: derivedAttribute; E: expression)

3 Study of the Effects of the Conceptual Changes

For strict database conversion, we have proposed in [2] a propagation algorithm.
Its input is a set of conceptual transformations which change the conceptual
schema. Its output is a set of SQL sentences which add, drop or modify tables,
columns and constraints as well as a set of data load procedures. The SQL
sentences and data load procedures are executed against the physical database
so that the new physical database schema conforms with the new conceptual
schema.

With the aim of applying the idea of delaying as far as possible the strict
conversion of data, we have studied how the propagation algorithm should be
modified (giving place to the view based propagation algorithm). For this pur-
pose, we have considered the set of MeDEA conceptual transformations which
can be applied to a conceptual schema and we have determined how to change
the effect of these transformations in the components of the architecture when
the concept of view is used. The modifications we have found have been incorpo-
rated into the view based propagation algorithm which we describe in the next
section.

So as to illustrate our study, we will use the evolution example of Figure 4
in which, starting from the schema S0, the attribute address is deleted, the at-
tribute department is transformed into an entity type department, a new entity
type building and a new relationship type situatedIn between department
and building are set. Finally, the cardinality of the relationship type worksIn
is changed and an employee can work at most in one project.

828 E. Domı́nguez et al.

t1: deleteAttribute(employee.address)

Schema S0 Schema S1

t2: turnAttributeIntoEntityType(employee.department,department, true, 'isHiredBy')

Schema S2 Schema S3

t3: createEntityType('building', true)

employee
project

worksInN Nid
name

address
department

id

employee
project

worksInN Nid
name

department
id

department
employee

id
name

department

project

idworksIn

1isHiredBy

N

N

N

department

employee

id
name

department

project

idworksIn

1

isHiredBy

N

N

N

building

id

N

situatedIn

N

t4: changeCardinalityOfRole(rEmployeeWorksIn, (0,1))

project

idworksIn

1
(the rest of the schema S4

as schema S3)

 Part of Schema S4employee

id
name

N

t1 t2

t3

t4

createAttribute('building.id',INTEGER)

createKeyOfStrongEntityType(building,(id))
createRelationshipTypeAndRoles('situatedIn',(department, building), null,((0,N),(0,N)), true)

addAttributeToEntityType(building.id,building)

Fig. 4. Evolved schemas

Revision of the effects of the conceptual transformations. We briefly
describe the effects of some of the conceptual changes and we only describe in
depth the transformation for adding a relationship type and for changing the
cardinality of a role.

Add an attribute to an entity type. If the entity type is transformed into
a relation schema, add an attribute to the relation schema. If the entity type is
transformed into a view, add the corresponding attribute to the original relation
schema of the entity type as well as to the view.

Delete an attribute from an entity type. Mark as deleted the elementary
translations of the attribute. Add a new view or modify an existing one in such
a way that the corresponding attribute does not appear.

Add an entity type. Create a new relation schema for the entity type.

Drop an entity type. Marked as deleted the elementary translations of the
elements of the entity type as well as those of the relationship types in which
the entity type participates.

Add a relationship type. The transformation is createRelationshipType
AndRoles(n,le,ln,lc,ident?) and it creates a new relationship type with
name n, the list le of participants, the list ln of names of roles, the list lc of car-
dinalities and information about whether the relationship type is an identifying

Model–Driven, View–Based Evolution of Relational Databases 829

Table 2. Representations of relationship types

Case e f rt Example
has been is transformed into...
transformed into...

1 r1 r2 r3, new relation schema or relation transf. t3
schema from one of the participants

2 v1 r2 r3, new relation schema
3 v1 r2 v3, view based on v1 transf. t4
4 v1 r2 r3=r2
5 v1 v2 r3, new relation schema
6 v1 v2 v3, view based on v1 or v2 transf. t2

relationship type. Let us suppose that the participants are e and f. The different
representations of the relationship type are shown in Table 2 where vx stands for
view and rx stands for relation schema. Each one of these cases is contemplated
in at least one propagation rule.

The first case of Table 2 will be treated by a propagation rule of the initial
propagation algorithm because both of the participants have been transformed
into relation schemas and no views are involved. For the rest of the cases, new
propagation rules are defined, which contemplate the fact that at least one of the
participants is transformed into a view. These rules represent the relationship
types as a relation schema (case 2, 4 and 5) or as a view (cases 3, 6).

The first situation (relationship type as a relation schema) happens when
we need to augment the information capacity of the schema. For example, in
transformation t3, we add a new relationship type situatedIn for having the
information about the departments and buildings where they are located. As
the relationship type is N–N, we need a new relation schema to store these
relationships.

The second situation (relationship type as a view) appears when we can embed
the relationship type into the base relation schema of some of the participants.
For example, in tranformation t2, the relationships between the employees and
the projects can be seen through a view on relation schema employee. In this
respect, we have found two cases:

1. The view for the relationship type is the same as the view for one of the
participants, but adequately modified. For example, this happens in tranfor-
mation t4 where the view for the relationship type worksIn is the same as
the view for the entity type employee.

2. The view for the relationship type is based on the view for one of the par-
ticipants but does not modify this view. For example, this happens in tran-
formation t2 where the view for the entity type department is built on the
view for the entity type employee.

Drop a relationship type. Mark as deleted the elementary translations of the
elements of the relationship type.

830 E. Domı́nguez et al.

Change the cardinality of a relationship type. If we change the cardinality
of a relationship type from N–1 to N–N two situations can appear. If previously
there is a relation schema for the relationship type, no change must be made
other than modifying the elementary translation for the relationship type. The
new logical element for the relationship type is the previously existing relation
schema. Otherwise, the information capacity of the logical schema must be in-
creased and a new relation schema must be created. Views can not be used in
either of the two situations.

However, for changing the cardinality of a relationship type from N–N to N–1
when the data allow this to be done, we can create a view for the relationship
type and add a unique constraint in the base relation schema of the relationship
type to cope with the new cardinality constraint. Database operations continue
to be done on the original relation schema of the N–N relationship type. An
example can be seen in transformation t4.

Remarks. When a conceptual transformation drops a conceptual element, the
corresponding elementary translations are marked as deleted but the relational
structures are not dropped. The corresponding columns are no longer accessible
from the conceptual level, and the columns or tables will be dropped when
restructuring database tasks are performed.

The restructuring consists of changing the logical schema in such a way that
only tables are left and the consistency between levels is kept. The key point
here, and one of the most noteworthy contributions of this paper, is that the use
of view converts this task into an easy one. The reason is that the views keep a
memory of the changes undergone by the logical schema. Then, creating a new
table for an entity or relationship type will basically consist of transforming the
view into a table.

For example, the view vEmployee, after transformation t4, is gathering the
information of the entity type employee(attributes id, name), of the relation-
ship type isHiredBy (by means of the attributes id, department) and of the
relationship type worksIn (by means of the attributes id, idProject).

When this view has to be transformed into a table, two steps related with
employees must be made at the physical level:

1. The department column values are replaced by identifiers for the departments
2. The view vEmployee is easily transformed into a table with a SQL sentence

like CREATE TABLE employee2 AS SELECT * FROM vEmployee

The analysis we have just done is integrated into the existing propagation
rules or into new ones, giving place to the view based propagation algorithm
(see next section).

4 View Based Propagation Algorithm

In our new perspective of delaying the conversion of the data, the changes in
the EER schema are propagated to the physical database by means of the view

Model–Driven, View–Based Evolution of Relational Databases 831

elementary_translation
id conceptual_element

1

logical_item

worksIn worksIn

2 employee.id worksIn.idEmployee

3 project.id worksIn.idProject

4

RelType2RelSchema

Atrribute2Attribute

type

Atrribute2Attribute

worksIn vEmployeeRelType2View

marked as deleted

affected

added

Legend for
elementary translations

Fig. 5. Some elementary translations involved in the changeCardinalityOfRole ex-
ample

Table 3. Sketch of the subalgorithm for the logical level

INPUT: Set of changes in the translation component and information
about the conceptual changes
OUTPUT: Changes on the logical component
For each translation change c of the INPUT
Find the logical propagation rule r of the
view based logical propagation rules set (if there is one) such that:

- the event of r matches the translation change c AND
- the condition of r is met

Execute the action of r
end For
If such a rule not exists, repeat the same with the rules of the
original set of propagation rules
End For

based propagation algorithm. This is split into subalgorithms for the translation,
for the logical and for the extensional component.

Subalgorithm for the translation component. This receives as input a set
of changes in the conceptual component. Its output is a set of added, marked as
deleted and affected elementary translations.

The initial subalgorithm for the translation component has been modified in
order to give place to ‘marked as deleted’ elementary translations instead of
deleted elementary translations.

For instance, when the changeCardinalityOfRole transformation of Figure 4
is executed, the elementary translation 1(Figure 5) is marked as deleted, the
elementary translations 2 and 3 are affected, and the elementary translation 4
is added.

Subalgorithm for the logical component. The changes in the translation
component are the input for the propagation subalgorithm for the logical com-
ponent (see the sketch in Table 3).

It is based on the set of existing logical propagation rules together with the
new view based logical propagation rules. Both kinds of rules are ECA rules [4]
and the latter have the following meaning for its components:

832 E. Domı́nguez et al.

Table 4. An example of logical propagation rule

1. Name: modifyView
2. Event: newElementaryTranslation(e)
3. Condition: (the conceptual change is changeCardinalityOfRole(r,(0,1)))

AND (the type of e is RelType2View) AND (the conceptual element of e is the
relationship type from which r is a role)

4. Action:
et←getEntityType(r)
rt←getRelType(r)
source←getRelSchemaOrView(et)
target←getRelSchemaOrView(rt)
targetAttributes←getAttribs(rt,et)
sourceJoinAttributes←getEntityTypeID(et)
targetJoinAttributes←getRelTypeID(rt,et)
predicate←equality(sourceJoinAttributes,targetJoinAttributes)
includeRelationSchemaInView(source, target)
includeAttributeInView(source, targetAttributes)
changePredicate(source, predicate)

1. The event that triggers the rule. This is a transformation on the translation
component.

2. The condition that determines whether the rule action should be executed.
This is expressed in terms of the conceptual and logical elements involved in
the affected elementary translations and in terms of the conceptual change.

3. The actions. These include procedures which create, delete or modify logical
views.

An example of a view based logical propagation rule can be seen in Table 4.
The subalgorithm for the logical component has two sets of propagation rules.

One of them is the set of logical propagation rules coming from the initial prop-
agation algorithm. The second set is the set of newly created propagation rules
with the purpose of delaying as far as posible the strict conversion of data.

For each elementary translation (whether it is added, marked as deleted or
affected) the subalgorithm searches the only rule (if there is one) in the second
set whose event is the same as the event of the elementary translation and whose
condition evaluates to true. Then, the subalgorithm executes the actions of the
rule changing the logical component. If there is no rule in the second set satisfying
the above conditions, then a rule in the first set is searched for. If found and its
condition evaluates to true, the actions of the rule are applied. If there is no rule
in any of the sets, no rule is fired and the logical component is not changed for
this elementary translation.

Our algorithm at work. When the conceptual transformation t4 change
CardinalityOfRole(‘rEmployeeWorksIn’,(0,1)) is applied to the schema S3

of Figure 4, the subalgorithm for the translation component, among other things,
(1) adds a new elementary translation (number 4 in Figure 5) with type

Model–Driven, View–Based Evolution of Relational Databases 833

Table 5. Logical changes after applying the conceptual transformations

(a) createView('vEmployee', employee, null,(id,name,department),null,null);
(1) Logical changes for deleteAttribute(employee.address)

(b) createView('vDepartment',null,vEmployee,department,'department IS NOT NULL',null);
(2) Logical changes for turnAttributeIntoEntityType(employee.department,department, true, 'isHiredBy')

(d) createRelationSchema('situatedIn',('department', 'idBuilding'),
(VARCHAR(30),INTEGER),('department', 'idBuilding'))

(e) createConstraint('fk3','fk',situatedIn.idBuilding,building.id)

(4) Logical changes for createRelationshipTypeAndRoles('situatedIn',(department, building),
 null,((0,N),(0,N)), true)

(c) createRelationSchema('building','id',INTEGER,'id')

(3) Logical changes for createEntityType('building', true), createAttribute('building.id',INTEGER),
addAttributeToEntityType(building.id,building) and createKeyOfStrongEntityType(building,(id))

(f)includeRelationSchemaInView(vEmployee,worksIn)
(g)includeAttributeInView(vEmployee,worksIn.idProject)
(h)changePredicate(vEmployee,'employee.id=worksIn.idEmployee')

(5) Logical changes for changeCardinalityOfRole(rEmployeeWorksIn, (0,1))

Table 6. Generated SQL sentences which apply a view based evolution

a. CREATE OR REPLACE VIEW vEmployee AS SELECT id, name, department FROM
employee

b. CREATE OR REPLACE VIEW vDepartment AS SELECT DISTINCT department FROM
vEmployee WHERE department IS NOT NULL

c. CREATE TABLE building(id INTEGER, name VARCHAR2(30), CONSTRAINT pk4
PRIMARY KEY (id))

d. CREATE TABLE situatedIn(department VARCHAR2(20), idBuilding INTEGER,
CONSTRAINT pk5 PRIMARY KEY(department, idBuilding))

e. ALTER TABLE situatedIn ADD CONSTRAINT fk3 FOREIGN KEY (idBuilding)
REFERENCES building(id)

f. ALTER TABLE worksIn ADD CONSTRAINT uniq1 UNIQUE(idEmployee)
g. CREATE OR REPLACE VIEW vEmployee AS SELECT id, name, department,

idProject FROM employee, worksIn WHERE employee.id=worksIn.idEmployee

RelType2View to store the fact that the relationship type worksIn is now be-
ing converted into a view, (2) marks as deleted the elementary translation 1 in
Figure 5 and (3) detects the affected elementary translations numbers 2 and 3.
These elementary translations are the input for the subalgorithm for the logical
component. For each one of them, the subalgorithm searches the logical rule (if
any) in the second set with the same event as the event of the translation change
and for which the condition of the rule evaluates to true.

For the newly added elementary translation number 4, the logical propagation
rule modifyView is fired because its event is the same as the event of the added
elementary translation and its condition evaluates to true. As a consequence, the
view vEmployee is modified as can be seen in (f) to (h) of Table 5. With respect
to the affected and marked as deleted elementary translations no changes are
made at the logical level because no rule is fired.

834 E. Domı́nguez et al.

Finally, the extensional propagation subalgorithm (not shown here) takes as
input the changes in the logical component and changes the extensional com-
ponent by means of SQL sentences. For the complete running example, the
SQL sentences generated by this subalgorithm can be seen in Table 6. Sentence
(a) corresponds to the conceptual transformation deleteAttribute, sentence
(b) to transformation turnAttributeIntoEntityType, sentence (c) to transfor-
mations createEntityType, createAttribute, addAttributeToEntityType
createKeyOfStrongEntityType, sentences (d) and (e) to transformation
create RelationshipTypeAndRoles and sentences (f) and (g) to transformation
change CardinalityOfRole.

5 Related Work

The development of techniques that enable schema changes to be accommodated
as seamlessly and as painlessly as possible is an apparent theme in recent schema
evolution research [9]. This is the main aim that guides the proposal we present
in this paper. We started from a schema evolution proposal we presented in [2],
which follows a strict data conversion mechanism. The problem of the strict (or
eager, or early) conversion method is that it takes longer schema modification
time [8] causing a heavy load to the system [12]. With the goal of avoiding
this problem, in this paper we have modified our previous proposal by using a
lazy and logical data conversion mechanism. The lazy (or deferred) and logical
mechanism has the advantage that changes can be made more rapidly [8].

We propose to achieve the lazy and logical conversion mechanism by means of
views, so that a logical modification of data is performed whenever the conceptual
changes allow this to be done. Views have been proposed by several authors [10] as
a way of performing different schema evolution processes. The most common use
of views has been to simulate schema versioning [13]. View mechanism has also
been employed to create personal schemas when a database is shared by many
users [11]. However, these approaches lack the consideration of a conceptual level
which allows the designer to work at a higher level of abstraction.

The novelty of our approach is that the schema evolution is performed at a con-
ceptual level so that users interact with schema changes at a high level, such as is
demanded in [9]. To our knowledge the approaches that propose a conceptual level
(for example [5]) do not propose a lazy and logical conversion mechanism. In [6]
views are used within a framework with conceptual level, but they are involved dur-
ing the translation process instead of during the evolution process as in our case.
For this reason, as far as we are aware, this is the first time that views are used
for achieving a lazy and logical conversion mechanism within a framework where
different levels of abstraction are involved following a metamodel perspective [3].

6 Conclusions and Future Work

One of the main problems that arise when database evolution tasks must be re-
alized is that of propagation of modifications. In particular, the propagation in a

Model–Driven, View–Based Evolution of Relational Databases 835

vertical sense (from conceptual to logical, from logical to extensional levels) can
be carried out following different data conversion mechanisms. The strict mecha-
nism, in which changes are propagated immediately, is the most frequently used.
For instance, this is the method we used in [2] where we have presented MeDEA,
a database evolution architecture with traceability properties. However, it has
been recognized that the strict mechanism takes longer schema modification time
and causes a heavy workload to the system. As a step to solve this problem, in
the present paper we have proposed a new application of MeDEA, by making
use of the notion of view. The main advantage of using views is that it is not
necessary to use the strict mechanism. On the contrary, the changes in data do
not have to be initially realized, which sets a scenario closer to the logical data
conversion mechanism. Furthermore, views codify internally the changes, in such
a way that these changes can be realized explicitly, if required, in a similar way
to the lazy mechanism.

In the present paper we have used the MeDEA architecture by fixing EER
and Relational as techniques for the conceptual and logical levels, respectively.
This decision has allowed us to use views in a natural way. A possible future line
of work is the study of other kind of techniques where views or similar concepts
can be used to carry out evolution tasks.

References

1. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems.
In: First Biennial Conference on Innovative Data Systems Research- CIDR 2003,
Online Proceedings (2003)

2. Domı́nguez, E., Lloret, J., Rubio, A.L., Zapata, M.A.: MeDEA: A database evo-
lution architecture with traceability. Data & Knowledge Engineering 65, 419–441
(2008)

3. Domı́nguez, E., Zapata, M.A.: Noesis: Towards a Situational Method Engineering
Technique. Information Systems 32(2), 181–222 (2007)

4. Elmasri, R.A., Navathe, S.B.: Fundamentals of Database Systems, 4th edn.
Addison-Wesley, Reading (2003)

5. Hick, J.M., Hainaut, J.L.: Database application evolution: A transformational ap-
proach. Data and Knowledge Engineering 59(3), 534–558 (2006)

6. Mork, P., Bernstein, P.A., Melnik, S.: Teaching a Schema Translator to Produce
O/R Views. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER
2007. LNCS, vol. 4801, pp. 102–119. Springer, Heidelberg (2007)

7. Peters, R.J., Tamer Özsu, M.: An Axiomatic Model of Dynamic Schema Evolution
in Objectbase Systems. ACM Trans. on Database Systems 22(1), 75–114 (1997)

8. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation Software Technology 37(7), 383–393 (1995)

9. Roddick, J.F., de Vries, D.: Reduce, Reuse, Recycle: Practical Approaches to
Schema Integration, Evolution and Versioning. In: Roddick, J.F., Benjamins, V.R.,
Si-said Cherfi, S., Chiang, R., Claramunt, C., Elmasri, R.A., Grandi, F., Han, H.,
Hepp, M., Lytras, M., Mǐsić, V.B., Poels, G., Song, I.-Y., Trujillo, J., Vangenot,
C. (eds.) ER Workshops 2006. LNCS, vol. 4231, pp. 209–216. Springer, Heidelberg
(2006)

836 E. Domı́nguez et al.

10. Ram, S., Shankaranarayanan, G.: Research issues in database schema evolution:
the road not taken, working paper # 2003-15 (2003)

11. Ra, Y.G., Rundensteiner, E.A.: A Transparent Schema–Evolution system based
on object-oriented view technology. IEEE Transactions of Knowledge and Data
Engineering 9(4), 600–624 (1997)

12. Tan, L., Katayama, T.: Meta Operations for Type Management in Object-Oriented
Databases – A Lazy Mechanism for Schema Evolution. In: Kim, W., et al. (eds.)
Proceedings of the First International Conference on Deductive and Object–
Oriented Databases, pp. 241–258. North Holland, Amsterdam (1990)

13. Tresch, M., Scholl, M.H.: Schema Transformation without Database Reorganiza-
tion. ACM SIGMOD Record 22(1), 21–27 (1993)

14. OMG, UML 2.1.2 Superstructure Spec., formal/ 2007-11-02 (2007), www.omg.org

www.omg.org

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 837–850, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Inventing Less, Reusing More, and Adding Intelligence
to Business Process Modeling

Lucinéia H. Thom1, Manfred Reichert1, Carolina M. Chiao2,
Cirano Iochpe2, and Guillermo N. Hess2

1 Institute of Databases and Information Systems,
Ulm D-89069 – Ulm, Germany

{lucineia.thom,manfred.reichert}@uni-ulm.de
2 Institute of Informatics, Federal University of Rio Grande do Sul,

 Av. Bento Gonçalves, 9500, 91501-970 – Porto Alegre, RS, Brazil
{cchiao,ciochpe,hess}@inf.ufrgs.br

Abstract. Recently, a variety of workflow patterns has been proposed focusing
on specific aspects like control flow, data flow, and resource assignments.
Though these patterns are relevant for implementing Business Process Model-
ing (BPM) tools and for evaluating the expressiveness of BPM languages, they
do not contribute to reduce redundant specifications of recurrent business func-
tions when modeling business processes. Furthermore, contemporary BPM
tools do not support process designers in defining, querying, and reusing activ-
ity patterns as building blocks for process modeling. Related to these problems
this paper proposes a set of activity patterns, evidences their practical relevance,
and introduces a BPM tool for the modeling of business processes based on the
reuse of these activity patterns. Altogether our approach fosters reuse of busi-
ness function specifications and helps to improve the quality and comparability
of business process models.

Keywords: business function, activity pattern, business process modeling.

1 Introduction

Business processes help organizations to better align their business goals with the
needs of their customers; i.e., business processes constitute the glue between the stra-
tegic and the operational level of the organization [1]. To stay competitive in their
market, organizations and companies are increasingly interested in improving the
quality and the efficiency of their business processes as well as their interactions with
customers and business partners [2].

Process-aware information systems (PAISs) offer promising perspectives to realize
these goals, and a growing interest in aligning information systems (IS) in a process-
oriented way can be observed. To allow for more flexibility, PAISs introduce an addi-
tional layer when compared to traditional information systems, which provides an
explicit description of the process logic. In general, this logic is represented as a proc-
ess model which can be created using a business process modeling (BPM) tool.

838 L.H. Thom et al.

The introduction of PAISs and the adoption of BPM tools offer promising perspec-
tives: (a) companies obtain a precise and unambiguous description of their business
processes; (b) the definition of new business processes and new process models re-
spectively can be speed up significantly; (c) the work between different actors can be
coordinated more effectively; (d) real-time data about in-progress processes can be
gathered and visualized; and (e) business processes can be standardized. Through
Web Service technology, in addition, the benefits of BPM can be applied to cross-
organizational business processes as well [3], [4].

Business processes comprise different business functions with specific and well-
defined semantics, which can be considered as self-contained building blocks. Gener-
ally, a particular business function may occur several times within one or multiple
business process models [3]. As example consider the process for approving the con-
tents of a newsletter (cf. Fig 1). This simple business process includes three activities
with following order: (a) The author sends a request for approving the article to be
published to the editor of the current newsletter edition. (b) The editor reviews the
contents of the article; she either approves it or requests changes from the author. (c)
If the newsletter article is not sent to the editor after a certain period of time, the au-
thor will receive a respective notification. Obviously, this process comprises business
functions with generic semantics, which recur in numerous business processes: Task
Execution Request (a), Approval (b), and Notification (c). As we will discuss later
such recurrent business functions can be described in terms of activity patterns in
order to foster their reuse and to improve the quality and comparability of business
process models.

Author

a] Send newsletter
article to the editor

Editor

b] Review
the article

c] Increase activity priority
and notify delay in its execution

timeout

Changes request

Author

a] Send newsletter
article to the editor

Editor

b] Review
the article

c] Increase activity priority
and notify delay in its execution

timeout

Changes request

Fig. 1. Approval process for newsletter content

Recently a variety of workflow patterns has been proposed focusing on different
process aspects like control flow [5], resource assignments [6], data flow [7], excep-
tion handling [8], domain-specific ontologies [9], service interactions [10], process
change [11,30], and process compliance [12]. Though all these patterns are useful for
implementing BPM tools and for evaluating the expressiveness of BPM languages,
they do not contribute to avoid redundant specifications of recurrent business func-
tions when modeling business processes. Consequently, business process design be-
comes inefficient, complex and time-consuming when being confronted with a large
collection of business functions and business process models. To our best knowledge
there exists no comprehensive work evidencing the existence of activity patterns for
defining such recurrent business functions within business process models. Further-
more, no efforts have been spent on investigating the need, benefits and completeness

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 839

of activity patterns with respect to business process modeling. Finally, contemporary
BPM tools like Intalio, ARIS Toolset and WBI Modeler do not support process de-
signers in defining, querying and reusing activity patterns as building blocks for busi-
ness process modeling.

Related to these problems we proposed a set of seven workflow activity patterns
and corresponding design choices (i.e., pattern variants) in previous work [3], [13].
Each of these activity patterns captures a recurrent business function as we can find it
in numerous business processes like the one shown in Fig. 1. Combined with existing
control flow patterns (e.g., sequence, multi instance activity), these activity patterns
are suited to design a large variety of process models in different domains.

In this paper we briefly report on the results of an empirical study in which we
analyze the relative frequency of activity patterns in a collection of 214 real-world
process models from domains like quality management, software access control, and
electronic change management. For selected process categories, we further discuss
results of an additional analysis in which we investigate the frequency of co- occur-
ring activity patterns. The results of this second analysis are also utilized for develop-
ing a BPM tool, which shall foster the modeling of business processes based on the
reuse of activity patterns. Given some additional information about the kind of proc-
ess to be designed, the results of our analysis can be further used by this tool to sug-
gest a ranking of the activity patterns suited best to succeed the last pattern applied
during process modeling.

One of the basic pillars of this BPM tool constitutes an ontology to describe the ac-
tivity patterns. Particularly, this ontology allows to store and retrieve the patterns
(together with their properties and constraints) during process modeling. To obtain
machine-readable specifications, we suggest using a standard ontology language (e.g.,
OWL). Based on this, any BPM model based on the activity patterns can be easily and
automatically transformed to conventional process modeling notations (e.g., BPMN)
or languages (e.g., WS-BPEL, XPDL). Finally, using an ontology allows to make the
relationships between the different activity patterns more explicit, which provides
useful information for process designers.

The remainder of this paper is organized as follows: Section 2 gives an overview of
workflow activity patterns. Exemplarily, we discuss basic principles taking the Ap-
proval Pattern. Section 3 presents the results of our empirical study in which we in-
vestigate the occurrence and relevance of activity patterns in practice by analyzing
214 real-world process models. Section 4 sketches our process modeling tool and
discusses how the user interacts with it. In this context we also describe the ontology
representing the patterns in detail. Section 5 discusses related work and Section 6
concludes with a summary and outlook.

2 Workflow Activity Patterns

In this paper we use the term Workflow Activity Pattern (WAP or activity pattern for
short) to refer to the description of a recurrent business function as it frequently oc-
curs in business process models. Examples include notification, decision, and ap-
proval. Initially, we derived seven activity patterns based on an extensive literature
study [3], [13]. Table 1 gives an overview of these patterns. Generally, these activity

840 L.H. Thom et al.

patterns are close to the abstraction level or vocabulary used within an organization.
This, in turn, fosters their reuse when modeling business processes, and therefore
contributes to more standardized and better comparable business process models.

Each activity pattern is characterized by a short description, an example, a descrip-
tion of the problem context in which it can be applied, and relevant issues. Our
framework considers additional attributes as well like design choices (pattern vari-
ants), related patterns and pattern implementation. However, these attributes are
outside the scope of this paper and are omitted here. Fig. 2 gives a simple example of
the description for the APPROVAL activity pattern (here restricted to a particular pat-
tern variant, namely single approval; i.e., approval is required from exactly one role).

Table 1. Selected variants of activity patterns representing business functions

 WAP - Name Description
WAP I:
Approval

An object (e.g., a business document) has to be approved by one or more organiza-
tional roles.

WAP II:
Question-Response

A question which emerges during process enactment has to be answered. This pattern
allows to formulate the question, to identify the organizational role(s) who shall
answer it, to send the question to the respective role(s), and to wait for the response(s)
(single-question-response).

WAP III:
Unidirectional Performative

A sender requests the execution of a particular task from another process participant.
The sender continues process execution immediately after having sent the request for
performing the activity.

WAP IV:
Bi-directional Performative

A sender requests the execution of a particular task from another process actor. The
sender waits until this actor notifies him that the requested task has been performed.

WAP V:
Notification

The status or result of an activity execution is communicated to one or more process
participants.

WAP VI:
Informative

An actor requests certain information from a process participant. He continues process
execution after having received the requested information.

WAP VII:
Decision

This pattern can be used to represent a decision activity in the flow with different
connectors to subsequent execution branches. Those branches will be selected for
execution whose transition conditions evaluate to true.

WAP1: APPROVAL (SIMPLIFIED VARIANT)
Description: An object (e.g., a business document) has to be approved. Depending on the given context the approval is
requested from one or multiple organizational roles. In the latter case, approval is done either sequentially or in parallel.
Example: In an electronic change management process, a particular change request has to be approved concurrently by
all roles concerned by the change. If one of these roles rejects the requested change, it will be not approved.
Problem: During the execution of a business process, object approval by one or multiple organizational roles is re-
quired before proceeding with the flow of control.
Issues:

a) The approval activity is executed only once by a particular organizational role.
b) Approval by multiple roles is needed for processes running in flat and decentralized organizations.
c) Final decision can be made manually (i.e., by a user) or automatically according to some rules.

Solution: The below process fragment illustrates the activity pattern for single approval using BPMN notation; here an
organizational role reviewer performs a document review either resulting in approval or disapproval.

Start End

Activity

Message
Flow

Sequence
Flow

Partition

XOR-Split

BPMN notation

Send request for
document review

Receive result
of the revision

Record approval in
the database

Notify result of
review

Perform document
review

Send result of
the revision

W
or

kf
lo

w

ap
pl

ic
at

io
n

R
e

vi
ew

er

review request

Make final decision

approve

reprove

Start End

Activity

Message
Flow

Sequence
Flow

Partition

XOR-Split

BPMN notation

Start End

Activity

Message
Flow

Sequence
Flow

Partition

XOR-Split

BPMN notation

Send request for
document review

Receive result
of the revision

Record approval in
the database

Notify result of
review

Perform document
review

Send result of
the revision

W
or

kf
lo

w

ap
pl

ic
at

io
n

R
e

vi
ew

er

review request

Make final decision

approve

reprove

Send request for
document review
Send request for
document review

Receive result
of the revision
Receive result
of the revision

Record approval in
the database

Record approval in
the database

Notify result of
review

Notify result of
review

Perform document
review

Perform document
review

Send result of
the revision

Send result of
the revision

W
or

kf
lo

w

ap
pl

ic
at

io
n

R
e

vi
ew

er

review request

Make final decision

approve

reprove

Fig. 2. Approval pattern

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 841

3 Evidencing the Existence and Relevance of Activity Patterns in
Practice

To identify activity patterns in real workflow applications we analyzed 214 process
models. These process models have been modeled either with the Oracle Builder tool
or an UML modeler. Our analysis has been based on process models instead of event
logs, since we consider the semantics and the context of process activities as being
fundamental for identifying activity patterns. Altogether, the analyzed process models
stem from 13 different organizations – private as well as governmental ones – and are
related to different applications like Total Quality Management (TQM), software
access control, document management, help desk services, user feedback, document
approval, and electronic change management. In all organizations the respective proc-
ess models have been operationalized, i.e. they were supported by a PAIS. Table 2
summarizes information about involved organizations and analyzed process models.

Table 2. Characteristics of the analyzed process models

Size and Number of
Companies

Kind of Decision-
making

Examples of Analyzed Process Models Number of
Analyzed Models

1 x small Decentralized Management of Internal Activities 17
1 x large Decentralized TQM; Management of Activities 11
6 x large Centralized TQM; Control of Software Access;

Document Management
133

4 x large No information available Help Desk Services, User Feedback;
Document Approval

29

1 x large Centralized Electronic Change Management 24

3.1 Method Used to Analyze the Process Models

To our knowledge there exist no mining techniques to extract activity patterns from
real-world process models; i.e., contemporary process mining tools like ProM analyze
the event logs (e.g., execution or change logs) related to process execution and do not
extract information related to the semantics and the (internal) logic of process activi-
ties [14], [5], [15]. Therefore, we perform a manual analysis in order to identify rele-
vant activity patterns as well as their co-occurrences within the 214 process models.

For each workflow activity pattern WAP* we calculate its support value SWAP*,
which represents the relative frequency of the respective activity pattern within the set
of analyzed process models; i.e., SWAP*:= Freq(WAP*)/214 where Freq(WAP*) de-
notes the absolute frequency of WAP* within the collection of the analyzed 214 mod-
els; for each process model we count at most one occurrence of a particular pattern.

First, we manually identify and annotate activity patterns in all process models
analyzed. Following this, we determine the absolute frequency of each activity pattern
WAP* as described above. The obtained results are divided by the total number of
analyzed process models (i.e., 214 in our case).

3.2 Frequency of Activity Patterns in Real-World Process Models

Our analysis has shown that five out of the seven activity patterns (cf. Table 1) are not
dependent on a specific application domain or on a particular organizational structure

842 L.H. Thom et al.

(e.g., the degree of centralization in decision making or the standardization of work
abilities). More precisely, this applies to the following five patterns (cf. Table 1):
UNIDIRECTIONAL and BI-DIRECTIONAL PERFORMATIVE (WAP III+IV), DECISION

(WAP VII), NOTIFICATION (WAP V), and INFORMATIVE (WAP VI). We could identify
these five patterns with high frequency in almost all process models we had analyzed.
The latter also applies to the APPROVAL pattern, which can be explained by the high
degree of centralization regarding decision-making within the considered organiza-
tions (cf. Table 2). This high centralization implies the use of approval activities [16].
By contrast, most of the analyzed process models do not contain QUESTION-
RESPONSE activities. Figure 3 graphically illustrates the relative frequency of each
activity pattern with respect to the set of analyzed process models.

Fig. 3. Frequency of activity patterns in real process models

3.3 Identifying Co-occurrences of Activity Patterns

One of the use cases for the ontology of our BPM tool (cf. Section 4) is based on a
mechanism that gives design time recommendations with respect to the activity pat-
terns best suited to be combined with the last used pattern. This mechanism utilizes
statistical data we gathered during our empirical study. We summarize these statistical
findings in this section. To obtain the frequencies for pattern co-occurrences, we ana-
lyze the sequences of activity patterns in 1541 out of 214 studied process models.

Before performing the analysis we classified the business process models into
human–oriented models (i.e., processes with human interventions during their execu-
tion) and fully automated models (i.e., processes without any human intervention).
We verified that certain activity patterns can be find more often in one of the two
categories [17]. This analysis has been inspired by a classification provided by Le
Chair who distinguishes between system-intensive and human-intensive business
processes [18]. System-intensive processes are characterized by being handled on a
straight-through basis, i.e., there is minimal or no human intervention during process
execution and only few exceptions occur. Human-intensive processes (similar to
methods engineering [19]), in turn, require people to get work done by relying on

1 When performing this analysis we had access to only 154 out of the 214 studied process

models.

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 843

business applications, databases, documents, and other people as well as extensive
interactions with them. This type of process requires human intuition or judgment for
decision-making during individual process steps.

When classifying a subset of the studied process models, for which respective in-
formation is available, into these two categories, we obtain 123 human-intensive and
31 system-intensive process models respectively. Note that in this earlier analysis we
consider only 154 of the 214 process models studied in total. In a next step we evi-
dence the occurrence of the seven activity patterns with respect to the two categories
of process models. Figure 4 shows the support value (i.e., the relative frequency) of
the activity patterns in both the system-intensive and the human-intensive process
models. As can be seen, some of the patterns (i.e., APPROVAL (WAP I), INFORMATIVE

(WAP VI), and QUESTION-RESPONSE (WAP II)) do not appear in system-intensive
process models at all. Obviously, these patterns are usually related to human activi-
ties; i.e. they are executed by an organizational role.

75%

2%

73%

63%
71%

27%

73%

0% 0%

68% 68% 65%

0%

87%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WAPI WAPII WAPIII WAPIV WAPV WAPVI WAPVII

Human-Intensive System-Intensive

Fig. 4. Frequency of activity patterns in human- and system-intensive process models

In another analysis we have identified frequent and recurrent co-occurrences of ac-
tivity patterns within process models. Relying on the results of this analysis, our
knowledge base and BPM tool respectively display to the process designer a ranking
of the activity patterns which most frequently follow the pattern the user applied be-
fore during process design. For example, our analysis has shown that the pattern pair
DECISION NOTIFICATION occurs more often in system-intensiv than in human-
intensive business processes (cf. Fig. 5). Opposed to this, pattern pair DECISION

APPROVAL occurs more frequently in human-intensive process models.

31%

0%

16%
12%

21%

5%

15%

0% 0%
5%

15%

50%

0%

30%

0%

10%

20%

30%

40%

50%

60%

WAPI WAPII WAPIII WAPIV WAPV WAPVI WAPVII

Human-Intensive System-Intensive

Fig. 5. How often does an activity pattern directly follow the DECISION pattern (regarding both
system- and human-intensive processes)?

844 L.H. Thom et al.

4 Towards a Pattern-Based Process Modeling Tool

This section presents basic concepts of our BPM tool, which allows to design process
models based on the reuse of activity patterns. The latter are described by means of an
ontology. In principle, basic concepts behind this BPM tool can be added as extension
to existing BPM components as well (e.g., Intalio [20], Aris Toolset [21], or ADEPT
Process Composer [22]).

Core functionalities of our BPM tool are as follows:

Assisting users in designing process models. First, the process designer selects the
kind of business process (e.g., human intensive) to be modeled, which is then matched
to a set of business functions as maintained in the ontology; i.e., the BPM tool adapts
a set of business functions to be used for process modeling in the given context. Fol-
lowing this, the process designer chooses a business function and provides contextual
data (e.g., about the organization). This information is then matched to an activity
pattern as maintained in the aforementioned ontology. Furthermore, the BPM tool
recommends to use the respective activity pattern and to apply corresponding design
choices; i.e., to configure a concrete pattern variant. Afterwards, the tool recom-
mends the most suitable activity patterns to be used together with the activity pattern
applied before. In addition, it informs the user about how frequently each pair of ac-
tivity pattern (i.e., the previously applied activity pattern plus the recommended activ-
ity pattern) was used in earlier modeling. This module is developed based on the
analysis results presented in Section 3.3.

Construction of an ontology for activity patterns. The ontology for activity pat-
terns does not only maintain the patterns themselves, but also the frequency with
which each pattern has co-occurred with a previously used pattern. Through the
analyses of additional process models (e.g., from the automotive as well as the health-
care domain) we aim at increasing the support value of such pairs of activity patterns
(cf. Section 3.3). Thus, at design time the pattern pairs being recommended will help
to design a process model which is closer to the business process being manually
executed in the organization.

4.1 Architecture of the Process Modeling Tool

Core components of our BPM Tool are as follows (cf. Fig. 6):

• Query Component: It provides a query mechanism for matching the activity
patterns maintained by the ontology with the given kind of business process
(e.g., human intensive), business function (e.g., approval), organizational con-
text (e.g., level of centralization in decision-making), and corresponding de-
sign choice as chosen by the user (if not set automatically).

• Ontology Manager: It comprises an ontology and a query mechanism (Busi-
ness Function Query + WAP Query). The ontology describes the activity pat-
terns (cf. Fig. 6) and their properties (e.g., attributes and relationships with
other patterns). Our query as well as update mechanisms give design time rec-
ommendations with respect to the most suited activity patterns to be combined
with an already used one. An example of a query would be the selection of the

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 845

business functions which occur more frequently in system-intensive process
models. In addition, our update mechanism has to be used to adapt relative
frequency of each pattern pair (e.g., based on the analysis of new process
models) as identified in our process model analysis.

• Scheme Translation: This component is responsible for translating a process
model (based on translation algorithms) which uses activity patterns as build-
ing blocks (stored in XML code) to either a conventional notation (e.g.,
BPMN) or an existing process execution language (e.g., BPEL, XPDL). The
use of this translation component is optional, i.e., it will be only applicable if
the user wants the respective process model being translated to another nota-
tion and process execution language respectively.

Kind of
Process

WAP
Ontology

Query Component

Org.
Repository

KP

KP BF list

Business
Function

BF Query

BF list

BF

Org.
aspects

WAP
BF,
Org. aspects

Ontology Manager

WAP
configuration

OWL
(XML) Schema

Specification
in

BPEL/BPMN/XPDL

Translation
Algorithms

Scheme Translation

Legend
WAP Workflow Activity Patterns
BF Business Function
KP Kind of Process
OWL Web Ontology Language

WAP Query

WAP
Update

Kind of
Process
Kind of
Process

WAP
Ontology

Query Component

Org.
Repository

KP

KP BF list

Business
Function
Business
Function

BF Query

BF list

BF

Org.
aspects

WAP
BF,
Org. aspects

Ontology Manager

WAP
configuration

WAP
configuration

OWL
(XML) Schema

Specification
in

BPEL/BPMN/XPDL

Translation
Algorithms

Scheme Translation

Legend
WAP Workflow Activity Patterns
BF Business Function
KP Kind of Process
OWL Web Ontology Language

WAP QueryWAP Query

WAP
Update
WAP

Update

Fig. 6. Architecture of the ProWAP process modeling tool

4.2 Interacting with the Process Modeling Tool

We sketch basic steps of our pattern-based modeling approach: First, the user speci-
fies the kind of process to be designed (e.g., system- vs. human-intensive) (cf. Step 1
in Fig. 7). Taking this information, in Step 2 the BPM tool presents a set of business
functions relevant in the given context (cf. Section 3.2). In Step 3, the user selects a
business function (e.g., approval) and additionally specifies information about the
organizational context within which this function is executed (e.g., organizational unit
with centralized decision-making).

Based on this information and on the defined ontology, the best suited activity
pattern (incl. corresponding design choices) is queried (cf. Step 4 in Fig. 7). More
precisely, the query results in an instance of an activity pattern and a set of related
attributes (e.g., kind of approval, list of reviewers in case of concurrent or iterative
approvals, application-specific details about the approval like approval conditions,
etc.). In Step 5, the user then customizes the activity pattern to the given context (e.g.,
kind of approval (iterative approval by a hierarchy of organizational roles); list of re-
viewers (#id): 101, 106, 200; Approval activity description: paper review; conditions to
approve: at least 2 strong acceptances). In Step 6, the BPM tool creates an instance of
the corresponding pattern according to this customization. Afterwards, the BPM tool
recommends a list of activity patterns (with corresponding statistics regarding the use

846 L.H. Thom et al.

Start Customize WAP

Create an instance
of the corresponding

pattern according
to user’s customization

Sugest subsequent
WAP

End

Yes

Inform
kind of process

Choose BF

O

O

Kind of process
∈{system-intensive,

human-intensive} E.g.: Business Function
∈ {notification,

task request with answer,
task request without answer,
decision-make,
information request,
approval,
question-response }

Inform
org. aspects

E.g.: Org. Aspect
∈{centralization on
decision-make,
function, skill }

KP Query corresponding
pattern and respective

design choice(s)

Yes

No

No

Query the
corresponding

BF

Legend
WAP Workflow Activity Patterns
BF Business Function
KP Kind of Process

1

3

3

4 5
6

7
Accept

suggested
WAP?

9
Design
another
WAP?

8

2O
O

Start Customize WAP

Create an instance
of the corresponding

pattern according
to user’s customization

Sugest subsequent
WAP

End

Yes

Inform
kind of process

Choose BF

O

O

Kind of process
∈{system-intensive,

human-intensive}

Kind of process
∈{system-intensive,

human-intensive} E.g.: Business Function
∈ {notification,

task request with answer,
task request without answer,
decision-make,
information request,
approval,
question-response }

Inform
org. aspects

E.g.: Org. Aspect
∈{centralization on
decision-make,
function, skill }

E.g.: Org. Aspect
∈{centralization on
decision-make,
function, skill }

KP Query corresponding
pattern and respective

design choice(s)

Yes

No

No

Query the
corresponding

BF

Legend
WAP Workflow Activity Patterns
BF Business Function
KP Kind of Process

11

33

33

44 55
66

77
Accept

suggested
WAP?

9
Accept

suggested
WAP?

Accept
suggested

WAP?

99
Design
another
WAP?

8
Design
another
WAP?

Design
another
WAP?

88

22O
O

Fig. 7. Procedure showing how the user interacts with the BPM tool

of these patterns in other process models) to follow the previously modeled activity
(cf. Step 7 in Fig. 7). For example, APPROVAL is followed by NOTIFICATION in 24% of
the 154 process models we analyzed. The user must then state whether another activ-
ity pattern shall be designed and whether the pattern suggested by the BPM tool shall
be used (cf. Steps 8 and 9).

4.3 Ontology of Workflow Activity Patterns

We now introduce our ontology for workflow activity patterns (cf. Fig.8). Particu-
larly, this ontology has been used when implementing the recommendation mecha-
nism of our BPM Tool. The ontology represents the structure of the activity patterns,
related design choices (e.g., single and iterative approval), and their relationships.
Altogether, the main goal of this ontology is to better define the structure of activity
patterns, their attributes, and their relationships. In addition, the ontology maintains
the use statistics for each activity pattern (in the context of process modeling) as well
as the co-occurrences of pattern pairs based on the empirical study reported in Section
3.3. Our ontology also integrates information about the organizational context in
which the activity patterns are usually applied. Such information is matched with the
business function to identify the most suitable activity patterns to be used together
with the activity pattern designed before.

Approval Question-
Response

Organization
al Structure Single-

Question-
Response

Multi-
Question-
Response

Task Request with
Answer

Informative
Decision

Multi-
Decision

Single-
Decision

Workflow
Activity Pattern

Single-
Request-
Response

Multi-
Request-
Response

Bi-directional
Performative

Task Request
without Answer

part-ofpart-of

Notification Unidirectional
Performative

Single-
Notification

Multi-
Notification

Single-
Request

Multi-
Request

Single-
Informative

Multi-
Informative

is-a

Single
Approval

Iterative
Approval

Concurrent
Approval

is-a
is-a

is-a is-a

is-a
is-a

isInherent to

is-a

is-a

is-a

is-ais-a

is-a

is-a

part-of
ApprovalApproval Question-

Response
Question-
Response

Organization
al Structure

Organization
al Structure Single-

Question-
Response

Single-
Question-
Response

Multi-
Question-
Response

Multi-
Question-
Response

Task Request with
Answer

Task Request with
Answer

InformativeInformative
DecisionDecision

Multi-
Decision

Multi-
Decision

Single-
Decision
Single-

Decision

Workflow
Activity Pattern

Single-
Request-
Response

Single-
Request-
Response

Multi-
Request-
Response

Multi-
Request-
Response

Bi-directional
Performative
Bi-directional
Performative

Task Request
without Answer
Task Request

without Answer

part-ofpart-of

NotificationNotification Unidirectional
Performative
Unidirectional
Performative

Single-
Notification

Single-
Notification

Multi-
Notification

Multi-
Notification

Single-
Request
Single-

Request
Multi-

Request
Multi-

Request
Single-

Informative
Single-

Informative
Multi-

Informative
Multi-

Informative

is-a

Single
Approval

Single
Approval

Iterative
Approval
Iterative
Approval

Concurrent
Approval

Concurrent
Approval

is-a
is-a

is-a is-a

is-a
is-a

isInherent to

is-a

is-a

is-a

is-ais-a

is-a

is-a

part-of

Fig. 8. Ontology of Workflow Activity Patterns (simplified and partial views)

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 847

The diagram depicted in Fig. 8 represents the Workflow Activity Patterns ontology
(partial view). It describes the taxonomy of the activity patterns, i.e. a conceptual
hierarchical structure that relates classes and sub-classes to each other. The most gen-
eral class is WORKFLOW ACTIVITY PATTERN. This concept has two main components:
TASK REQUEST WITH ANSWER and TASK REQUEST WITHOUT ANSWER. The first
component is composed by the following concepts, which represent the Workflow
Activity Patterns: APPROVAL, QUESTION-RESPONSE, INFORMATIVE, DECISION and BI-
DIRECTIONAL PERFORMATIVE. The TASK REQUEST WITHOUT ANSWER concept is
composed by the two patterns NOTIFICATION and UNIDIRECTIONAL PERFORMATIVE.

The APPROVAL and QUESTION-RESPOND patterns are related to organizational
structure aspects. In the context of an APPROVAL pattern, an object approval is always
performed by specific roles inside an organization. The QUESTION-RESPONSE pattern
is applied when an actor might have a question in order to work on the process or on a
particular process activity. The question is forwarded to a specific organizational role
that has the appropriate expertise to answer it.

As aforementioned each workflow activity pattern has specific design choices. For
example, the design choices of task execution pattern allow expressing at design time
if the task execution is requested from a single actor or from multiple actors. In Fig. 8
such variants are represented as subclasses of the pattern concepts, i.e. as specializa-
tions. The Approval concept, for example, has three specializations: Single Approval,
Iterative Approval and Concurrent Approval. They represent the Approval pattern
design choices. Single Approval is associated with exactly one reviewer. Iterative
Approval is handled by a loop based on a list of reviewers. This list can be often re-
lated to vertical organizations where there is a hierarchical organizational structure.
Regarding Concurrent Approval, the approval request is sent to the whole group of
reviewers simultaneously. The final decision is then made after all reviewers have
performed their evaluation.

Our ontology (complete view) also considers system- and human-intensive proc-
esses. In addition, we have defined attributes for each class and sub-class of our on-
tology; e.g., way of notification (e.g., by e-mail or as work item in the participants’
worklists), organizational role, and activity status.

5 Related Work

Recently, numerous approaches on workflow patterns have been proposed to support
both the conceptual and the implementation level of business processes. One of the
first contributions in this respect was a set of process patterns to be used in the context
of software processes within an organization [23].

Russell proposes 43 workflow patterns for describing process behavior [24], [5].
Each pattern represents a routing element (e.g., sequential, parallel and conditional
routing) which can be used in process definitions. In the meantime these workflow
patterns have been additionally used for evaluating process specification languages
and process modeling tools [25], [26].

A set of data patterns is proposed by [7]. These patterns are based on data charac-
teristics that occur repeatedly in different workflow modeling paradigms. Examples
are data visibility and data interaction. In another work, Russell presents a set of

848 L.H. Thom et al.

resource patterns of which each one describes a way through which resources can be
represented and utilized in process models [6]. A resource is considered as an entity
capable of doing work. It can be either human (e.g., a worker) or non-human (e.g.,
equipment). Examples of resource patterns include Direct Allocation and Role-Based
Allocation. Finally, process change patterns and change support features have
emerged to effectively deal with (dynamic) process changes [11], [30].

Recently, Russell has presented a pattern-based classification framework for char-
acterizing exception handling in workflow management systems [8]. This framework
has been used to examine the capabilities of workflow management and BPM systems
and to evaluate process specification as well as process execution languages. As a
result, the authors emphasis the limited support for exception handling in existing
workflow management systems.

Barros proposes a set of service interaction patterns, which allow for service in-
teractions, pertaining to choreography and orchestration, to be benchmarked against
abstracted forms of representative scenarios [10]. As example consider the Send pat-
tern and the Send/Receive pattern. Altogether Russell and Barros provide a thorough
examination of the various perspectives that need to be supported by a workflow
language and BPM tool respectively. However, none of these approaches investigate
which are the most frequent patterns recurrently used during process modeling and in
which way the introduction of such activity patterns eases process modeling.

SAP has developed a cross-application engine called SAP Business Workflow
[27]. This tool enables the process-oriented integration of business objects and appli-
cations including a workflow wizard with workflow templates and process reference
models. Related to that is the Supply-Chain Operations Reference-model (SCOR)
which is based on best practices as well [28].

Finally, PICTURE proposes a set of 37 domain-specific process building blocks.
More precisely, these building blocks are used by end users in public administrations
to capture and model the process landscape. The building blocks have been evaluated
in practice [29].

6 Summary and Outlook

In this paper, we identified seven workflow activity patterns necessary and in many
cases also sufficient to model a large variety of process models. Moreover we dis-
cussed results of an empirical study where we had analyzed how often activity pat-
terns as well as co-occurrences of them (i.e. pairs of activity patterns) are present in a
large collection of real process models.

We additionally proposed an approach for process modeling based on workflow
activity patterns. Basic to this tool is the reuse of the presented activity patterns. Re-
spective functionality can be added as extension to existing process modeling compo-
nents as well. Our goal is to increase the reuse of recurrent business functions and to
better assist users in the design of high-quality process models; i.e., by providing
context-specific recommendations on which patterns to use for process modeling
next. It is important to mention that our patterns can be used together with other pat-
terns related to control flow [5] or process change [11], [30]. In this paper we have
given first insights into the architecture of our BPM tool as it is implemented in the
ProWAP project.

 Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling 849

The main advantages of our approach can be summarized as follows: (a) the com-
pleteness and necessity of the activity patterns for process design have been empiri-
cally evidenced; (b) a small set of parameterizable activity patterns is sufficient to
model a large variety of processes, which reduces the complexity with respect to
pattern usage; (c) the concepts realized in our process modeler are tool-independent
and can be adapted for any process modeling tool; and (d) the sketched recommenda-
tion mechanisms can be useful to reduce complexity in process design as well as to
improve semantical model correctness.

In future work, we intend to identify variants of each pattern concerning specific
application domains. For example, we want to figure out what kind of approvals occur
most frequently in the healthcare and in the automotive domain. Furthermore, we will
perform additional analyses considering process models from different application
domains (e.g., health insurance and automotive engineering). Our goal is to identify
more common occurrences of pairs of activity patterns. We also aim at extending the
tool with a mechanism to learn from designer actions. Last but not least, we intend to
investigate how to transform process models defined with our tool (and being based
on the activity patterns) into conventional notations and languages respectively.

Acknowledgements

The authors would like to acknowledge the Coordination for the Improvement of
Graduated students (CAPES), the Institute of Databases and Information Systems of
the University of Ulm (Germany), and the Informatics Institute of Federal University
of Rio Grande do Sul (Brazil).

References

1. Rummler, G., Brache, A.: Improving Performance: How to Manage the White Space on
Organizational Chart. Jossey-Bass, San Francisco (1990)

2. Lenz, R., Reichert, M.: IT Support for Healthcare Processes – Premises, Challenges, Per-
spectives. Data and Knowledge Engineering 61, 39–58 (2007)

3. Thom, L., Iochpe, C., Amaral, V., Viero, D.: Toward Block Activity Patterns for Reuse in
Workflow Design. In: Workflow Handbook 2006, pp. 249–260 (2006)

4. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Effectiveness of Process-oriented
Information Systems: Problem Analysis, Critical Success Factors and Implications. IEEE
Transactions on Systems, Man, and Cybernetics (Part C) 38(3), 280–291 (2008)

5. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.: Workflow
Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

6. Russel, N., Aalst, W., Hofstede, A., Edmond, D.: Workflow Resource Patterns: Identifica-
tion, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE
2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)

7. Russel, N., Hofstede, A., Edmond, D.: Workflow Data Patterns. In: Delcambre, L.M.L.,
Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp.
353–368. Springer, Heidelberg (2005)

8. Russel, N., Aalst, W., Hofstede, A.: Workflow Exception Patterns. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006)

9. Ohnmacht, A.: Development of a Collaborative Process Modeling Methodology for Do-
main Experts. Master Thesis, University of Ulm (2007)

850 L.H. Thom et al.

10. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: van der Aalst,
W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp.
302–318. Springer, Heidelberg (2005)

11. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in
Process-Aware Information Systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE
2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

12. Namiri, K., Stoganovic, N.: Pattern-Based Design and Validation of Business Process
Compliance. In: Proc. CoopIS 2007, pp. 59–76 (2007)

13. Thom, L.: Applying Block Activity Patterns in Workflow Modeling. In: Proc. 8th Int’l
Conf. on Enterprise Information Systems (ICEIS 2006), Paphos, Cyprus, pp. 457–460
(2006)

14. Ellis, C.: Workflow Mining: Definitions, Techniques, Future Directions. In: Fischer, L.
(ed.) Workflow Handbook 2006. Lighthouse Point: Future Strategies, pp. 213–228 (2006)

15. Günther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M.P., Recker, J.: Using
Process Mining to Learn from Process Changes in Evolutionary Systems. Int’l Journal of
Business Process Integration and Management (2008)

16. Davis, M.R., Weckler, D.A.: A Practical Guide to Organization Design. Crisp Publica-
tions, Boston (1996)

17. Chiao, C., Thom, L.H., Iochpe, C., Reichert, M.: Verifying Existence, Completeness and
Sequences of Workflow Activity Patterns in Real Process Models. In: IV Brazilian Sym-
posium of Information Systems (SBSI), Rio de Janeiro, Brazil (2008)

18. Le Clair, C., Teubner, C.: The Forrester Wave: Business Process Management for Docu-
ment Processes, Q3 (2007)

19. Wiley, J.: Methods Engineering, United States of America (1962)
20. Intalio. Creating Process Flows (2006), http://bpms.intalio.com
21. IDS Scheer: Aris Platform: Product Brochure (2007), http://www.ids-

scheer.com/set/82/PR_09-07_en.pdf
22. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management with

ADEPT2. In: Proc. Int’l Conf. on Data Engineering (ICDE 2005), Tokyo, Japan, pp.
1113–1114. IEEE Computer Society Press, Los Alamitos (2005)

23. Ambler, S.W.: An Introduction to Process Patterns (1998)
24. Russell, N., Hofstede, A.H.M., ter Aalst, W.M.P., van der Mulyar, N.: Workflow Control

Flow Patterns: A Revised View. BPM Center Report BPM-06-22, BPM center.org (2006)
25. van der Aalst, W.M.P.: Patterns and XPDL: A Critical Evaluation of the XML Process

Definition Language. QUT Technical report, FIT-TR-2003-06, Queensland University of
Technology, Brisbane (2003)

26. Wohed, P., Aalst, W.M.P., van der Dumas, M., ter Hofstede, A.H.M., Russell, N.: Pattern-
based Analysis of BPMN - An extensive evaluation of the Control-flow, the Data and the
Resource Perspectives. BPM Center Report BPM-06-17, BPMcenter.org (2006)

27. SAP. SAP Business Workflow (2008), http://www.sap.com
28. SCOR. Supply-Chain Operations Reference-model (2008)
29. Becker, J., Pfeiffer, D., Räckers, M.: Domain Specific Process Modelling in Public Ad-

ministrations – The PICTURE-Approach. In: Wimmer, M.A., Scholl, J., Grönlund, Å.
(eds.) EGOV. LNCS, vol. 4656, pp. 68–79. Springer, Heidelberg (2007)

30. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support Features -
Enhancing Flexibility in Process-Aware Information Systems. Data and Knowledge Engi-
neering (accepted for publication, 2008)

Author Index

Abdulsalam, Hanady 643
Ahn, Sungwoo 41
Ali, Akhtar 676
Alkobaisi, Shayma 33
An, Yoo Jung 73
Antonellis, Panagiotis 537
Appice, Annalisa 283, 701

Bae, Wan D. 33
Bakiras, Spiridon 158
Balke, Wolf-Tilo 610
Baltzer, Oliver 340
Banek, Marko 65
Belkhatir, Mohammed 465
Bertino, Elisa 390
Bertolotto, Michela 390
Bessho, Katsuji 124
Bique, Stephen 269
Borjas, Livia 753
Bosc, Patrick 652
Breddin, Tino 635
Brown, David 269

Camossi, Elena 390
Cavalieri, Federico 718
Ceci, Michelangelo 283, 701
Chakravarthy, Sharma 684
Chen, Arbee L.P. 225
Chen, Hanxiong 693
Chen, Lijun 241
Chen, Qiming 106
Chen, Yangjun 97
Chevalletinst, Jean-Pierre 142
Chiao, Carolina M. 837
Cho, Chung-Wen 225
Chun, Soon Ae 73
Crolotte, Alain 596
Cui, Bin 241
Cuzzocrea, Alfredo 348

d’Amato, Claudia 808
Dai, Bi-Ru 5
Decker, Hendrik 89
Dehne, Frank 340
Deng, Qiao 19

Domı́nguez, Eladio 822
du Mouza, Cédric 81
Dyreson, Curtis 479

Eder, Johann 668
Endo, Hiroki 186
Esposito, Floriana 808

Falquet, Gilles 142
Fanizzi, Nicola 808
Farré, Carles 660
Feng, Jianhua 19
Fernández, Alejandro 753
Florez, Omar U. 57
Furfaro, Filippo 348
Furtado, Pedro 779
Furuse, Kazutaka 693

Geller, James 73
Ghazal, Ahmad 596
Ghinita, Gabriel 158
Gkoulalas-Divanis, Aris 49
Groch, Matthias 635
Gruenwald, Le 172
Guerrini, Giovanna 718

Hambrusch, Susanne 340
He, Zhenying 566
Hess, Guillermo N. 837
Hong, Bonghee 41
Hou, Wen-Chi 376
Hsu, Meichun 106
Hsueh, Yu-Ling 419
Huang, Kuo-chuan 73
Hunter, Nick 172
Hwang, Seung-won 610, 800

Ichikawa, Toshikazu 210
Iochpe, Cirano 837
Ishida, Kozue 255
Iwaihara, Mizuho 552

Jiang, Zhewei 376
Jin, Hao 479
Jomier, Geneviève 581
Jouini, Khaled 581

852 Author Index

Kabore, Patrick 581
Kalnis, Panos 158
Kataoka, Ryoji 124
Kato, Yuka 186
Kim, Bum-Soo 362
Kim, Jinho 362
Kim, Seon Ho 33
Kim, Youngdae 800
Kitagawa, Hiroyuki 255
Kitsuregawa, Masaru 134, 196
Köhn, Dagmar 745
Ko�laczkowski, Piotr 791
Ku, Wei-Shinn 419
Kuo, Ya-Ping 5
Kurashima, Takeshi 124

Lammari, Nadira 81
Larriba-Pey, Josep-L. 625
Laurent, Anne 710
Lee, Jongwuk 610
Leutenegger, Scott T. 33
Li, Dong (Haoyuan) 710
Li, Jiang 523
Li, Lin 134
Liang, Jianyu 269
Liang, Wenxin 508
Lim, SeungJin 57
Lin, Pai-Yu 5
Liu, Chengfei 727
Liu, Yu 19
Lloret, Jorge 822
Lokoč, Jakub 312
Lu, Yang 241
Luo, Cheng 376
Lv, Dapeng 19

Ma, Z.M. 116
Maatuk, Abdelsalam 676
Madria, Sanjay Kumar 196
Makris, Christos 537
Malerba, Donato 283, 701
Manjarrez-Sanchez, Jorge 326
Marteau, Pierre-François 150
Martin, Patrick 643
Martinez, José 326
Mazzeo, Giuseppe M. 348
McKenna, Bill 596
Métais, Elisabeth 81
Meersman, Robert 434
Mesiti, Marco 718

Miki, Takeshi 508
Miranker, Daniel 450
Mondal, Anirban 196
Moon, Yang-Sae 362
Muhammad Fuad, Muhammad Marwan

150

Namnandorj, Sansarkhuu 693

Ohbo, Nobuo 693
Orleans, Lúıs Fernando 779
Ortiz, Jorge 753
Otsuka, Shingo 134

Palpanas, Themis 770
Papas, Marios 625
Pivert, Olivier 652
Poncelet, Pascal 710
Pradhan, Subhesh 684
Pramanik, Sakti 404

Qian, Gang 404
Qin, Yongrui 566

Radhouani, Säıd 142
Rau-Chaplin, Andrew 340
Reichert, Manfred 837
Roche, Mathieu 710
Rolland, Colette 1
Rossiter, Nick 676
Rubio, Ángel L. 822
Rull, Guillem 660
Rundensteiner, Elke 269

Sacco, Giovanni Maria 297
Sairamesh, Jakka 770
Sakr, Sherif 735
Sakurai, Yasushi 210
Sayre, Brian 269
Seid, Dawit 596
Selke, Joachim 610
Seok, Hyun-Jeong 404
Sequeda, Juan 450
Sheybani, Ehsan 269
Shibata, Hiroaki 186
Sisson, Richard 269
Skillicorn, David B. 643
Skopal, Tomáš 312
Strömbäck, Lena 745
Sun, Weiwei 566

Author Index 853

Tahamtan, Amirreza 668
Tang, Yan 434
Teniente, Ernest 660
Thom, Lucinéia H. 837
Tineo, Leonid 753
Tirmizi, Syed Hamid 450
Tjoa, A Min 65
Toda, Hiroyuki 124
Tomisawa, Satoshi 186
Toyoda, Machiko 210
Trancoso, Pedro 625
Turi, Antonio 701

Uchiyama, Toshio 124
Urṕı, Toni 660

Valduriez, Patrick 326
Vallur, Anita 172
van Bommel, Martin 761
Vanthienen, Jan 434
Varde, Aparna 269
Verykios, Vassilios S. 49
Vojtěchovský, Petr 33
Vrdoljak, Boris 65
Vyahhi, Nikolay 158

Walzer, Karen 635
Wang, Chi 19
Wang, Hailong 116
Wang, Junhu 493, 523, 727
Wang, Ping 761
Wu, Yi-Hung 225

Yan, Feng 376
Yang, Dongqing 241
Ye, Yang 19
Yokota, Haruo 508
Yonei, Yumi 552
Yoshikawa, Masatoshi 552
You, Gae-won 610, 800
Yu, Jeffrey Xu 493, 727
Yu, Ping 566

Zapata, Maŕıa A. 822
Zhang, Zhuoyao 566
Zhao, Jiakui 241
Zheng, Ying 225
Zhou, Rui 727
Zhu, Qiang 376, 404
Zimbrão, Geraldo 779
Zimmermann, Roger 419

	Title page
	Preface
	Organization
	Table of Contents
	Towards Engineering Purposeful Systems: A Requirements Engineering Perspective
	References

	Hiding Frequent Patterns under Multiple Sensitive Thresholds
	Introduction
	Motivations
	Contributions

	Preliminaries
	The Template-Based Sanitization Process
	The Sanitization Framework
	Sensitive Pattern Table
	Template Table
	Choosing Strategy and Updating Process
	Performance and Efficiency Improvement

	Related Works
	Experiments
	Metrics
	Performance
	Efficiency and Scalability

	Conclusions
	References

	$BSGI$: An Effective Algorithm towards Stronger l-Diversity
	Introduction
	Preliminary
	Basic Notations
	The Information Loss Metric
	l-diversity and Unique Distinct l-diversity

	The Implementation of the $Selecting$ Step
	The Property of Residual Tuples after $Selecting$ and $Grouping$
	The BSGI Algorithm
	The Algorithm
	Further Discussion about the Algorithm

	Experiments
	Experimental Data and Setup
	Efficiency
	Data Quality

	Related Work
	Conclusion and Future Work
	References

	The Truncated Tornado in TMBB: A Spatiotemporal Uncertainty Model for Moving Objects
	Introduction
	Related Work
	The Truncated Tornado
	The TMBB Approximation
	Experiments
	Conclusions
	References

	Reordering of Location Identifiers for Indexing an RFID Tag Object Database
	Introduction
	Proximity between Location Identifiers
	Reordering Scheme of Location Identifiers
	Experimental Evaluation
	Conclusions
	References

	A Free Terrain Model for Trajectory K–Anonymity
	Introduction
	Terminology
	The Free Terrain Model
	Phase I: Derivation of the Unsafe Routes
	Phase II: Trajectory K–Anonymity

	Experimental Evaluation
	Related Work
	Conclusions
	References

	HRG: A Graph Structure for Fast Similarity Search in Metric Spaces
	Introduction
	Hyperspherical Region Graph
	The Graph
	Similarity Search in HRG: Range Search

	Experimental Results
	Conclusions and Future Work
	References

	Word Sense Disambiguation as the Primary Step of Ontology Integration
	Introduction
	Related Work
	Disambiguating OWL Ontology Classes
	Ontology Class Neighborhood and Class Sense Disambiguation
	Word Sense Disambiguation Techniques

	Experiments
	Conclusion
	References

	Enriching Ontology for Deep Web Search
	Introduction
	Related Work
	Enriching a Domain Ontology for the Semantic Deep Web
	Web Search with Domain Ontology-Based Query Extension
	Conclusions, Future Work and Discussion
	References

	POEM: An Ontology Manager Based on Existence Constraints
	Introduction
	Existence Constraints and Associated Techniques
	Definitions of Existence Constraints
	Normalization Technique
	Translation Techniques

	Ontology Merging
	The Matching Step
	The Integration Step

	Implementation
	Conclusion
	References

	Extending Inconsistency-Tolerant Integrity Checking by Semantic Query Optimization
	Introduction
	Preliminaries
	Inconsistency-Tolerant Integrity Checking
	Semantic Query Optimization for Integrity Checking
	How to Use SQO for Integrity Checking
	SQO for Inconsistency-Tolerant Integrity Checking

	Conclusion
	References

	On the Evaluation of Large and Sparse Graph Reachability Queries
	Introduction
	Tree Labeling and Core of G
	Tree Labeling
	Core of G

	Graph Labeling
	Core Labeling
	Non-tree Labeling: Core-I and Core-II

	Conclusion
	References

	SQL TVF Controlling Forms - Express Structured Parallel Data Intensive Computing
	Introduction
	Introductory Example on Structured Parallel Computing
	The Proposed SQL-FCF Framework
	SQL Framework for User Defined Functions
	A SQL-FCF Example
	Core FCFs
	Derive New SQL-FCFs from Existing Ones

	Concluding Remarks
	References

	A Decidable Fuzzy Description Logic $F-ALC$(G)
	Introduction
	Syntax and Semantics of F-ALC(G)
	Reasoning for F-ALC(G)
	Tableau Algorithm for F-ALC(G)-Concepts
	A Flexible Reasoning Architecture
	Decidability of the F-ALC(G) Tableau Algorithm

	Conclusions
	References

	Ranking Entities Using Comparative Relations
	Introduction
	Related Work
	The Proposed Method for Ranking Entities
	The Definition
	Comparative Relation Extraction
	Generation Graph Based on the Potential Customer Model
	Computing Graph Centrality

	Evaluation
	Evaluation of Comparative Relation Extraction
	The Results of Movie Ranking and Visualization

	Conclusion
	References

	Query Recommendation Using Large-Scale Web Access Logs and Web Page Archive
	Introduction
	Query Recommendation Strategies
	Three Feature Spaces for Query Recommendation
	Relatedness Definition

	Experiment Methodology
	Our System Overview
	Data Sets
	Evaluation Method

	Evaluation Results and Discussions
	Comparisons of Query Recommendation Strategies
	Case Study with “Google Suggestion”

	Conclusions and Future Work
	References

	Description Logic to Model a Domain Specific Information Retrieval System
	Introduction
	External Resource Based Information Retrieval
	Formalism for Knowledge Representation
	Semantic Descriptors-Based Information Retrieval Model
	The Semantic Descriptor: A New Indexing Unit
	Document and Query Representation

	Conclusion
	References

	Extending the Edit Distance Using Frequencies of Common Characters
	Introduction
	EED
	Motivating Example
	Definition-The Extended Edit Distance
	Proposition (P1): EED Is a Distance Metric

	Empirical Evaluation
	The First Experiment
	The Second Experiment
	The Third Experiment
	The Fourth Experiment

	Discussion
	Conclusion and Perspectives
	References

	Tracking Moving Objects in Anonymized Trajectories
	Introduction
	Problem Formulation
	Related Work
	Tracking Algorithm
	Preliminaries
	Problem Transformation
	Improving the Running Time
	The MTT Algorithm
	Complexity

	Experimental Evaluation
	Conclusions
	References

	REALM: Replication of Data for a Logical Group Based MANET Database
	Introduction
	MANET Applications
	Literature Review
	Proposed Replication Technique (REALM)
	Transaction Management Architecture
	Data and Transaction Types
	MANET Partition Prediction Algorithm
	Replica Allocation Algorithm
	Replica Access Algorithm
	Replica Synchronization Algorithm

	Prototype Model
	Experimental Results
	Effects of Firm Transactions
	Effects of Accurate Value Transactions
	Effect of Data Access Frequency
	Effects of Network Partitioning Frequency
	Effects of Transaction Inter-arrival Time

	Conclusions and Future Work
	References

	A Cache Management Method for the Mobile Music Delivery System: JAMS
	Introduction
	OverviewofJAMS
	Localization of Contents
	System Architecture

	Cache Management Method
	Design Concept
	Features of the Method
	Procedure of the Method

	Performance Evaluation
	Experimental Conditions
	Experimental Results

	Conclusion
	References

	EcoRare: An Economic Incentive Scheme for Efficient Rare Data Accessibility in Mobile-P2P Networks
	Introduction
	Related Work
	EcoRare: An M-P2P Economic Scheme for Rare Data
	Data Selling Mechanism of EcoRare
	Performance Evaluation
	Conclusion
	References

	Identifying Similar Subsequences in Data Streams
	Introduction
	Related Work
	Problem Definition
	Dynamic Time Warping
	Cross-Similarity

	ProposedMethod
	Naive Solution
	Overview
	Algorithm
	Complexity

	Experiments
	Detecting Cross-Similarity
	Performance

	Conclusions
	References

	A Tree-Based Approach for Event Prediction Using Episode Rules over Event Streams
	Introduction
	Problem Formulation
	The CBS-Tree (Circular Binary Search Tree) Approach
	CBS-Tree
	CBS-Tree-Based Retrieval

	Experiment Results
	Conclusion and Future Work
	References

	Effective Skyline Cardinality Estimation on Data Streams
	Introduction
	Related Works
	Skyline Cardinality Estimation
	Estimation under Strong Assumptions
	Estimation over Uniformly Distributed Data
	Estimation over Arbitrarily Distributed Data
	Computing Skyline Cardinality

	An Experimental Study
	Effect of the Thresholds
	Performance over Different Datasets

	Conclusion
	References

	Detecting Current Outliers: Continuous Outlier Detection over Time-Series Data Streams
	Introduction
	Related Work
	Outlier Detection over Static Data
	Outlier Detection over Stream Data

	Definition of Outliers
	DB-Outlier
	CDB-Outlier

	Algorithms for DB-Outlier Detection
	Simple Algorithm
	Cell-Based Algorithm

	ProposedMethod
	Assumptions
	Differential Processing on an SC-Object
	Target Cells for Re-outlier Detection
	Algorithm

	Experiments and Results
	Comparative Approaches
	Datasets
	Results and Discussions

	Conclusions and Future Work
	References

	Component Selection to Optimize Distance Function Learning in Complex Scientific Data Sets
	Introduction
	Component Selection Approaches
	Maximal Path Traversal
	Minimal Path Traversal
	Maximal Path Traversal with Pruning
	Minimal Path Traversal with Pruning

	Computational Complexity
	Derivation of Complexity
	Comparative Discussion

	Experimental Evaluation
	Description of Real Scientific Data
	Learning Algorithms
	Experimental Details

	Analysis of Results in Applications
	Usefulness in Targeted Scientific Applications
	Development of Trademarked Software

	Related Work
	Conclusions
	References

	Emerging Pattern Based Classification in Relational Data Mining
	Introduction
	Related Works and Motivations
	Relational EPs Discovery
	Relational Classification
	Mr-CAEP
	Mr-PEPC

	Experimental Results
	Data Sets
	Mr-CAEP vs Mr-PEPC
	Associative Classification vs Emerging Patterns Based Classification

	Conclusions
	References

	Rosso Tiziano: A System for User-Centered Exploration and Discovery in Large Image Information Bases
	Introduction
	Dynamic Taxonomies Reviewed
	Information Access through Dynamic Taxonomies

	Combining Conceptual Access with Low-Level Multimedia Features
	Monodimensional vs. Multidimensional Clustering
	Representing Low-Level Features and Clusters
	Examples of Exploration
	Conclusions and Future Research
	References

	NM-Tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces
	Introduction
	Metric Search
	Nonmetric Similarity
	Related Work

	TriGen
	T-Bases
	Intrinsic Dimensionality
	The TriGen Algorithm

	M-Tree
	Query Processing

	NM-Tree
	Indexing
	Query Processing

	Experimental Results
	The TestBed
	Querying

	Conclusions
	References

	Efficient Processing of Nearest Neighbor Queries in Parallel Multimedia Databases
	Introduction
	Data Allocation Scheme
	Data Partitioning
	Data Placement

	Validation
	Experiments with Non Uniform Data Sets
	kNN Searching Process
	Performance Evaluation
	Effect of the Size of k
	Effect of Data Placement

	Related Work
	Conclusions
	References

	OLAP for Trajectories
	Introduction
	Related Work
	Computing Groups of Trajectories
	Group by Overlap
	Group by Intersection
	Group by Intersection and Overlap

	Interactive OLAP for Trajectories
	Experimental Evaluation
	References

	A Probabilistic Approach for Computing Approximate Iceberg Cubes
	Introduction
	Preliminaries
	The Bottom-Up Cubing Algorithm
	A New Efficient Probabilistic Approach
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	Noise Control Boundary Image Matching Using Time-Series Moving Average Transform
	Introduction
	Related Work
	Time-Series Matching
	Boundary Image Matching

	Motivation of the Research
	Boundary Image Matching Using Moving Average Transform
	The Concept
	Index-Building and k-Order Image Matching Algorithms

	Experimental Evaluation
	Experimental Data and Environment
	Experimental Results

	Conclusions
	References

	Approximate Range-Sum Queries a Cubes Using Cosine Transform
	Introduction
	Related Work
	Notations
	Attribute Value Normalization
	Range-Sum Queries
	Empiric Distribution

	Empirical Distribution Estimation Via Cosine Series
	Estimation of Range-Sum Queries
	Storage of the Estimator

	Dynamic Maintenance of the Estimator
	Experimental Results
	Experiment Setup
	Estimation Accuracy
	Update and Estimation Speeds

	Conclusions
	References

	Querying Multigranular Spatio-temporal Objects
	Introduction
	ST ODMG: A Multigranular Spatio-temporal Model
	Multigranular Spatio-temporal Queries
	Spatial and Temporal Elements and Expressions
	Spatio-temporal Access and Path Expressions

	Querying Multigranular Spatio-temporal Objects
	Conclusions
	References

	Space-Partitioning-Based Bulk-Loading for the NSP-Tree in Non-ordered Discrete Data Spaces
	Introduction
	Preliminaries
	Concepts and Notation
	NSP-Tree Structure

	Space-Partitioning-Based Bulk-Loading
	Key Idea of the Algorithm
	Main Procedure
	Splitting a Buffered Leaf Node
	Splitting a Non-leaf Node

	Experimental Results
	Effect of Adjustable Parameter
	Efficiency Evaluation
	Quality Evaluation

	Conclusions
	References

	Efficient Updates for Continuous Skyline Computations
	Introduction
	Related Work
	ESC Algorithm
	The Problem Definition of Continuous Skyline Queries
	Second Skyline Computation
	Description of the ESC Algorithm

	Experimental Evaluation
	Update Ratio
	Dimensionality
	Cardinality

	Conclusions
	References

	Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables
	Introduction
	Background
	SDT: Semantic Decision Table
	A Use Case of SDT and Motivation

	SOAR
	Constraints in Semantic Decision Tables
	SDT SOAR: A Tool to Support Self-organizing and Reorganizable Decision Tables

	Experimental Analysis
	Related Work and Discussion
	Conclusion and Future Work
	References

	Translating SQL Applications to the Semantic Web
	Introduction
	Related Work
	Extracting Knowledge from a Relational Schema
	Disparities between Relational Databases and Ontologies
	Inheritance Modeling
	Characteristics of Relationships
	The Effect of Open/Closed World Assumptions

	Translating SQL to Semantic Web
	Assumptions
	Predicates and Functions
	Transformation Rules and Examples
	Implementation

	Completeness of Transformation
	Discussion
	References

	An Agent Framework Based on Signal Concepts Highlighting the Image Semantic Content
	Introduction
	From Low-Level Signal Features to Conceptual Description
	Color Characterization
	Texture Characterization

	A Learning Framework Highlighting Multimedia Agents
	Formal Model
	Application

	A System Enforcing Interactions and Coordination between the Multimedia Agents
	Specifying the Agents
	Enabling Interaction and Coordination

	Experimental Instantiation
	Automatic Characterization of Concept-Based Signal Features
	Experimental Highlighting of Multimedia Agents
	Validation

	Conclusion
	References

	Supporting Proscriptive Metadata in an XML DBMS
	Introduction
	Motivation
	Review of MetaDOM
	Review of MetaXQuery
	Implementation Challenges

	The Metadata Tree Algebra
	TAX
	MetaTAX

	Plan for Extending a Native XML Database
	Implementation in eXist
	Storage
	Meta Axis
	Perspective

	Experiments
	Related Work
	Conclusion
	References

	XPath Rewriting Using Multiple Views
	Introduction
	Preliminaries
	XML Trees and Tree Patterns
	Intersection and Extension of TPs
	TP Containment

	TP Rewriting Using Intersections of Views
	Properties of Intersections
	Finding MCRs Using $V_1\cap V_2$
	Finding ERs Using $V_1\cap V_2$

	Rewriting Using Other Combinations of Views
	Relationship between Rewritings Using $\langle V_1, V_2\rangle$ and Rewritings Using $V_1\cap V_2$

	The Presence of Non-recursive dtds
	More Related Work
	Conclusion
	References

	Superimposed Code-Based Indexing Method for Extracting MCTs from XML Documents
	Introduction
	Related Work
	Notation and Definitions
	LCA Detection Method
	Keyword B$^+$tree with the Dewey-Order Label Method
	Superimposed Code-Based Method
	Combined Method

	Extracting Lowest GDMCTs
	KBDLM and KBSIM
	Query Cost Comparison

	Experimental Evaluation
	Evaluating False Drop Resolution
	Evaluating Query Performance

	Conclusion and Future Work
	References

	Fast Matching of Twig Patterns
	Introduction
	Background
	Terminology and Notations
	\tt TwigStack and \tt TwigList

	\tt TwigMix: Introducing Efficient Element Filtering into \tt TwigList
	Overview of \tt TwigMix
	TwigMix
	Analysis of TwigMix

	\tt TwigFast: Avoiding Manipulation of Elements in Stacks
	Limitations of \tt TwigMix
	\tt TwigFast

	Experiments
	Experiment Set-Up
	Experiment Results

	Conclusion
	References

	XML Filtering Using Dynamic Hierarchical Clustering of User Profiles
	Introduction
	Existing Approaches
	Motivation and Contribution

	Sequence Representation and Distance Metrics
	Sequence Representation of XML Trees
	Distance between User Profiles
	Distance between an XML Document and a User Profile

	Filtering System
	User Profile Clustering
	Filtering Algorithm

	Experiments
	Conclusions and Future Work
	References

	Person Retrieval on XML Documents by Coreference Analysis Utilizing Structural Features
	Introduction
	Related Work
	Linguistic and Structural Features of XML Documents
	Coreference
	Applying Coreference Analysis to Person Retrieval

	Experiments
	Experimental Conditions
	Evaluation Method
	Experiment Results and Discussions

	Conclusion
	References

	HFilter: Hybrid Finite Automaton Based Stream Filtering for Deep and Recursive XML Data
	Introduction
	Background
	NFA Based Filtering Engine
	Lazy DFA Based Filtering Engine

	HFilter: A Hybrid Finite Automaton (HFA) Based Filtering Approach
	The Structure of Two-Tier HFA
	The Execution of Two-Tier HFA
	Handling Memory Overflow

	HFilter with Three-Tier HFA
	Pre-expanding the Lazy DFA
	The Execution of HFA with Pre-expanded DFA
	Optimizing the Computing of New Lazy DFA States
	Handling Memory Overflow

	Experiments
	Results and Analysis

	Related Works
	Conclusions and Future Works
	References

	Read-Optimized, Cache-Conscious, Page Layouts for Temporal Relational Data
	Introduction
	Context and Problem Specification
	Conceptual Model of a Temporal Relation
	N-ary Storage Model
	Decomposition Storage Model

	Read=Optimized, Cache-Conscious, Page Layouts
	Temporal Decomposition Storage Model (TDSM)
	Per Surrogate Partitioning Model (PSP)
	Discussion

	Related Work
	Performance Evaluation
	Time Split B-Tree (TSB-Tree)
	Assumptions, Settings and Results

	Conclusion
	References

	Exploiting Interactions among Query Rewrite Rules in the Teradata DBMS
	Introduction and Problem Definition
	Previous Work
	Individual Rewrite Rules
	Interactions among Rewrites
	Projection Pushdown
	Outer to Inner Join Conversion
	View Folding
	Predicate Move-Around
	SAT-TC
	Join Elimination
	Set Operations Branch Elimination

	The Rewrite Driver
	Experiments
	Conclusions and Future Work
	References

	Optimal Preference Elicitation for Skyline Queries over Categorical Domains
	Introduction
	Preliminaries
	Qualitative Preferences
	Preference Elicitation
	Optimal Elicitation Method

	Optimal Elicitation Framework
	Problem Setting
	Framework $MaxPrune$

	Experimental Evaluation
	Data and Preference Generation
	Experimental Results

	Related Work
	Future Work
	References

	Categorized Sliding Window in Streaming Data Management Systems
	Introduction
	Categorized Sliding Window
	Experimental Setup
	Experimental Results
	Memory Space
	Query Selectivity
	Window Size
	Number of False Positives
	Number of Categories

	Related Work
	Conclusions
	References

	Time to the Rescue - Supporting Temporal Reasoning in the Rete Algorithm for Complex Event Processing
	Introduction
	Related Work
	Temporal Support in Rete
	Definitions
	The Rete Algorithm

	ProposedSolution
	Preliminaries
	Event Aggregation Using Time-Based Windows

	Conclusion
	References

	Classifying Evolving Data Streams Using Dynamic Streaming Random Forests
	Introduction
	Background
	The Streaming Random Forests Algorithm
	The Dynamic Streaming Random Forests Algorithm
	Experimental Settings and Results
	Related Work
	Conclusion
	References

	On a Parameterized Antidivision Operator for Database Flexible Querying
	Introduction
	Antidivision of Regular Relations
	Antidivision of Fuzzy Relations
	About Fuzzy Relations and Fuzzy Queries
	Principle and Formulation of the Antidivision of Fuzzy Relations

	Conclusion
	References

	Providing Explanations for Database Schema Validation
	Introduction
	Base Concepts
	The Approach
	Example
	Formalization

	Conclusions
	References

	Temporal Conformance of Federated Choreographies
	Introduction
	Federated Choreographies
	Temporal Conformance
	Prerequisites
	The Proposed Approach
	Methods
	Proof of Termination

	Conclusions
	References

	Relational Database Migration: A Perspective
	Introduction
	Approaches and Techniques
	Conversion Approaches
	Translation Techniques

	Migrating RBD into OODB/ORDB/XML
	Discussion
	References

	DB-FSG: An SQL-Based Approach for Frequent Subgraph Mining
	Introduction
	Related Work
	OverviewofDB-FSG
	Details Of DB-FSG Approach
	Canonical Ordering
	Frequency Counting and Substructure Pruning

	Experimental Analysis
	Conclusions
	References

	Efficient Bounds in Finding Aggregate Nearest Neighbors
	Introduction
	Efficient sum and $maximum$ ANN Algorithms
	Experiments
	Conclusion
	References

	A Grid-Based Multi-relational Approach to Process Mining
	Introduction
	Multi-level Relational Frequent Pattern Discovery
	G-SPADA
	Relational Data Partitioning
	Distributing Computation on Grid
	Computing Approximate Global Frequent Patterns

	Experimental Results
	Data Description
	Local and Global Multi-level Relational Patterns Discovery

	Conclusions
	References

	Extraction of Opposite Sentiments in Classified Free Format Text Reviews
	Introduction
	Related Work
	Extracting Contextual Opposite Sentiments
	Data Model
	Contextual Models of Sentiment Polarity
	Extracting Contextual Opposite Sentiments

	Experiments
	Conclusion
	References

	Navigational Path Expressions on XML Schemas
	Introduction
	Schema Representation
	XSPath Specification
	Steps
	Abbreviated Syntax
	Examples of Navigational Expressions

	Conclusions
	References

	Transforming Tree Patterns with DTDs for Query Containment Test
	Introduction
	Preliminaries
	Tree Patter Transformation under DTDs
	Relabeling $*$-Nodes
	Expanding $*$-Paths
	The Completeness of the Transformation

	Conclusion
	References

	XSelMark: A Micro-benchmark for Selectivity Estimation Approaches of XML Queries
	Introduction
	Related Work
	Main Aspects of Selectivity Estimation in the XML Domain
	XSelMark Benchmark Queries
	Group 1: Path Expressions
	Group 2: Twig Expressions
	Group 3: Predicates
	Group 4: Value-Based Joins (Theta Joins)
	Group 5: Arithmetic and Comparison Operations over Data Value Statistics
	Group 6: Nested Expressions
	Group 7: Data Dependent Estimations

	XML Selectivity Estimation: An Assessment of the State-of-the-Art
	Features Assessment

	Conclusion
	References

	A Method for Semi-automatic Standard Integration in Systems Biology
	Motivation
	Standards and Standard Definition Formalisms
	Integration of XML-Based and OWL-Based Standards
	Evaluations
	Conclusions and Future Directions
	References

	FDBMS Application for a Survey on Educational Performance
	Introduction
	Exposition of the Problem
	Fuzzy Querying Background
	Fuzzy Queries Design
	User Interfaces
	Concluding Remarks
	References

	Hierarchy Encoding with Multiple Genes
	Introduction
	Background
	Previous Work
	Multiple Genes
	An Alternative to Gene Redefinition
	An Alternative to Splitting
	An Example

	Balancing
	An Alternative to Balancing
	An Example

	Comparison and Conclusions
	References

	Knowledge Mining for the Business Analyst
	Introduction
	Related Work

	Knowledge Mining Framework
	Case Study
	Proposed Process
	Evaluation Results Using Aggregated Behavior Reports
	Evaluation Results Using Focused Reports
	Discussion

	Conclusions
	References

	Controlling the Behaviour of Database Servers with 2PAC and DiffServ
	Introduction
	Related Work
	Background
	Simple Admission Control (SAC)
	TPC-C Benchmark
	QoS-Broker

	Two-Phase Admission Control (2PAC)
	DiffServ
	Experiment Setup
	Workload Composition
	Other Considerations

	Results
	Conclusions
	References

	Compressing Very Large Database Workloads for Continuous Online Index Selection
	Introduction
	Previous Work
	Workload Compression Algorithm
	Query Distance Function
	Experiments
	Discussion
	Conclusions
	References

	Escaping a Dominance Region at Minimum Cost
	Introduction
	Related Work
	Preliminaries
	MIP Modeling
	Grid-Based Cell Searching Algorithm
	References

	Evolutionary Clustering in Description Logics: Controlling Concept Formation and Drift in Ontologies
	Introduction
	Semantic Distance Measures
	Evolutionary Clustering Procedure
	Evaluation
	Experimental Setup
	Results

	Automated Concept Evolution in Dynamic Ontologies
	Incrementality and Automated Drift and Novelty Detection
	Conceptual Clustering for Concept Formation

	Conclusions and Extensions
	References

	Model–Driven, View–Based Evolution of Relational Databases
	Introduction
	View–Based Database Evolution
	Brief Description of MeDEA
	Application of MeDEA Using a View–Based Evolution Approach

	Study of the Effects of the Conceptual Changes
	View Based Propagation Algorithm
	Related Work
	Conclusions and Future Work
	References

	Inventing Less, Reusing More, and Adding Intelligence to Business Process Modeling
	Introduction
	Workflow Activity Patterns
	Evidencing the Existence and Relevance of Activity Patterns in Practice
	Method Used to Analyze the Process Models
	Frequency of Activity Patterns in Real-World Process Models
	Identifying Co-occurrences of Activity Patterns

	Towards a Pattern-Based Process Modeling Tool
	Architecture of the Process Modeling Tool
	Interacting with the Process Modeling Tool
	Ontology of Workflow Activity Patterns

	Related Work
	Summary and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

