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Abstract. In this paper we suggest an off-line/on-line path planner for 
cooperating unmanned vehicles that takes into account the mission objectives 
and constraints through an optimization procedure. The cooperating vehicles 
can be either Unmanned Aerial Vehicles (UAVs) or Autonomous Underwater 
Vehicles (AUVs); these two categories of vehicles share common features as 
far as path planning is concerned and these features are used in this work for the 
development of a unified approach to the path planning problem over 3-D 
terrains. A number of unmanned vehicles of the same category are launched 
from the same or different known initial locations. The main issue is to produce 
3-D trajectories (represented by 3-D B-Spline curves) that ensure a collision 
free path, respect the mission objectives and constraints, and guide the vehicles 
to a common final destination. The off-line planner is designed for known 
environments. The on-line one generates paths in unknown static environments, 
by exchanging acquired information from the cooperating vehicles’ on-board 
sensors. For each vehicle a near optimum path is generated that guides it safely 
to an intermediate position within the already scanned area. The process is 
repeated for each vehicle until the final destination is reached by one or more 
members of the team. Then, each one of the remaining vehicles can either turn 
into the off-line mode to reach the target, moving through the already scanned 
area, or continue with the on-line mode. Both off-line and on-line path planning 
problems are formulated as optimization problems, and a Differential Evolution 
algorithm is used as the optimizer. 

Keywords. 3-D Path Planning, Navigation, Vehicles Cooperation, UAVs, 
AUVs, Evolutionary Algorithms, Differential Evolution, B-Splines. 

1 Introduction 

Path planning is the generation of a space path between an initial location and the 
desired destination that has an optimal or near-optimal performance under specific 
constraints [1]. The main concerns during the comparison of various candidate 
solutions are feasibility and optimality [2]. Searching for optimality is not a trivial 
task and in most cases results in non-affordable computation time, even in simple 
problems. Therefore, in most cases we search for suboptimal or just feasible solutions. 

In this work the path planning for cooperating unmanned vehicles moving over a 
3-D terrain is considered; the vehicles can be either Unmanned Aerial Vehicles 



(UAVs) or Autonomous Underwater Vehicles (AUVs). UAVs and AUVs share the 
common feature of performing inside a 3-D environment and having six degrees of 
freedom, although their kinematic characteristics are not the same. The upper ceiling 
for AUVs is the sea surface, while a similar upper ceiling exists for UAVs due to 
stealth considerations or flight envelop restrictions.  

Path planning for UAVs and AUVs imply special characteristics that have to be 
considered [3], [4], [5], such as: (a) physical feasibility, (b) performance related to 
mission, (c) real-time implementation, (d) cooperation between the vehicles, (e) 
stealth (low observability due to the selected path). Besides their common features, 
differences also exist between the two categories, as far as coordination and path 
planning is concerned, which are mainly related with the different sensors and 
electronic equipment that are needed in order to cooperate and perform their mission.  

Cooperation between robotic vehicles has gained recently an increased interest as 
systems of multiple vehicles engaged in cooperative behavior show specific benefits 
compared to a single one [6] [7]. 

Path planning problems are computationally demanding multi-objective multi-
constraint optimization problems [8]. The problem complexity increases when 
multiple vehicles should be used. Various approaches have been reported for UAVs 
coordinated route planning, such as Voronoi diagrams [9], mixed integer linear 
programming [10], [11] and dynamic programming [12] formulations. 

In Beard et al. [9] the motion-planning problem was decomposed into a waypoint 
path planner and a dynamic trajectory generator. The path-planning problem was 
solved via a Voronoi diagram and Eppstein’s k-best paths algorithm, while the 
trajectory generator problem was solved via a real-time nonlinear filter. 

In [13] the motion-planning problem for a limited resource of Mobile Sensor 
Agents (MSAs) is investigated, in an environment with a number of targets larger 
than the available MSAs. The problem is formulated as an optimization one, whose 
objective is to minimize the average time duration between two consecutive 
observations of each target. 

Computational intelligence methods, such as Neural Networks [14], Fuzzy Logic 
[15] and Evolutionary Algorithms (EAs) [5], [16] have been successfully used to 
produce trajectories for guiding mobile robots in known, unknown or partially known 
environments. Besides their computational cost, EAs are considered as a viable 
candidate to solve path planning problems effectively; the reasons are their high 
robustness, their ease of implementation, and their high adaptability to different 
optimization problems, with or without constraints [16]. 

EAs have been successfully used in the past for the solution of the path-finding 
problem in ground based or sea surface navigation [17], [18], [19], or for solving the 
path-finding problem in a 3-D environment for underwater vehicles [20], [21]. 

Changwen Zheng et al. [5] proposed a route planner for UAVs, based on 
evolutionary computation. The generated routes enable the vehicles to arrive at their 
destination simultaneously by taking into account the exposure of UAVs to potential 
threats. The flight route consists of straight-line segments, connecting the way points 
from the starting to the goal points. The cost function penalizes the route length the 
high altitude flights or routes that come dangerously close to known ground threats. 

In [22] a multi-task assignment problem for cooperating UAVs is formulated as a 
combinatorial optimization problem; a Genetic Algorithm is utilized for assigning the 
multiple agents to perform various tasks on multiple targets.  

154      I. K. Nikolos and N.C. Tsourveloudis 



Path Planning for Cooperating Unmanned Vehicles over 3-D Terrain      155 

In [16] an EA based framework was utilized to design an off-line / on-line path 
planner for UAVs autonomous navigation. The path planner calculates a curved path 
line, represented using B-Spline curves in a 3-D terrain environment. The on-line 
planner gradually produces a smooth 3-D trajectory aiming at reaching a 
predetermined target in an unknown environment; the produced trajectory consists of 
smaller B-Spline curves smoothly connected to each other. 

In this work the following scenario was considered: having a number of 
autonomous vehicles (either UAVs or AUVs), at the same or different known initial 
locations with predefined initial directions, we calculate 3-D smooth trajectories, 
which connect the initial locations with a single destination location, ensuring a 
collision free operation with respect to mission constraints. Each vehicle is assumed 
to be a point and its actual size is taken into account by equivalent obstacle growing.  

 

 

Fig. 1. A representation of the proposed concept: three vehicles are moving along curved path 
lines over a 3-D terrain; an upper ceiling is enforced (either sea surface or the maximum 
allowed flying height); on-board sensors are scanning the environment within a certain range in 
front of each vehicle. 

Initially the off-line planner will be presented; it generates collision free paths in 
environments with known characteristics and flight restrictions. The on-line planner, 
being an extension of the off-line one, was developed to generate collision free paths 
in unknown environments. As each vehicle moves towards its destination, its on-
board sensors are scanning the environment within a certain range and certain angles; 
this information is exchanged between the members of the team, resulting in a gradual 
mapping of the environment (Fig. 1). The on-line planner uses the acquired 
knowledge of the environment to generate a near optimum path for each vehicle that 
will guide it safely to an intermediate position within the known territory. The process 
is repeated until the corresponding final position is reached by one or more members 
of the team. Then, each one of the remaining members of the team either uses the off-
line planner to compute a path that connects its current position and the final 
destination, or continues in the on-line mode until it reaches the common destination. 
Both path planning problems are formulated as minimization problems, where 



specially constructed functions take into account mission and cooperation objectives 
and constraints, with a Differential Evolution algorithm to serve as the optimizer. 

The rest of the paper is organized as follows: in section 2 the off-line path planner 
for a single vehicle will be briefly discussed. Section 3 deals with the concept of on-
line path planning for cooperating vehicles. The problem formulation is described, 
including assumptions, objectives, constraints, cost function definition and path 
modeling. Simulations results are presented in section 4, followed by discussion in 
section 5. 

2 Off-Line Path Planner 

The off-line planner generates collision free paths in environments with known 
characteristics and flight restrictions, where the solid boundaries are interpreted as 3-
D surfaces. The derived path line for each vehicle is a single continuous 3-D B-Spline 
curve with fixed starting and ending control points. A third point, placed in a pre-
specified distance from the starting one, is also fixed, determining the initial flight 
direction for the corresponding vehicle. Between the fixed control points, free-to-
move control points determine the shape of the curve. For each path, the number of 
the free-to-move control points is user-defined. 

Straight line segments that connect a number of way points have been used in the 
past to model UAV paths in 2D or 3D space [23], [5]. However, these simplified 
paths cannot be used for an accurate simulation of UAV’s flight, unless a large 
number of way points is used. In [9], paths from the initial vehicle location to the 
target location are derived from a graph search of a Voronoi diagram that is 
constructed from the known threat locations. The resulting paths, consisting of line 
segments, are subsequently smoothed around each way point. Dubins [24] car 
formulation has been proposed as an alternative approach to the modeling of UAV 
dynamics [25]. This approach seems inefficient to model scenarios including 3D 
terrain avoidance and following of stealthy routes. However, this approach seems to 
be sufficient enough for task assignment purposes to cooperating UAVs flying at safe 
altitudes [13], [22], [25]. 

B-Spline curves have been used in the past for trajectory representation in 2-D [26] 
or in 3-D environments [16], [27]. They are well fitted in an optimization procedure 
as they need a few variables (the coordinates of their control points) to define 
complicated curved paths [28], [29]. The use of B-Spline curves for the determination 
of a path-line provides the advantage of describing complicated non-monotonic 3-
dimensional curves with controlled smoothness with a small number of design 
parameters, i.e. the coordinates of the control points. Another valuable characteristic 
of the adopted B-Spline curves is that the curve is tangential to the control polygon at 
the starting and ending points. This characteristic can be used in order to define the 
starting or ending direction of the curve, by inserting an extra fixed point after the 
starting one, or before the ending control point. 
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Fig. 2. Schematic representation of the B-Spline control polygon (top) and its projection on the 
horizontal plane (bottom). 

In this work each path is constructed using a 3-D B-Spline curve; each B-Spline 
control point is defined by its three Cartesian coordinates xk,j, yk,j, zk,j (k=0,…,n, 
j=1,…,N, N being the number of vehicles, while n+1 is the number of control points 
in each B-Spline curve, the same for all curves). The first (k=0) and last (k=n) control 
points of the control polygon are the initial and target points of the jth UAV, which are 
predefined by the user. The second (k=1) control point is positioned in a pre-specified 
distance from the first one, in a given altitude, and in a given direction, in order to 
define the initial direction of the corresponding path. 

The control polygon of each B-Spline curve is defined by successive straight line 
segments (Fig. 2). Each segment of the control polygon is defined using its projection 
on the horizontal plane (Fig. 2); the length seg_lengthk,j, and the direction seg_anglek,j 
of this projection are used as design variables (k=2,…,n-1, j=1,…,N). Design 
variables seg_anglek,j  are defined as the difference between the direction (in deg) of 
the current segment’s projection and the projection of the previous one. For the first 
segment (k=1) of each control polygon seg_angle1,j is measured with respect to the x-
axis (Fig. 2). Additionally, the control points’ altitudes zk,j are used as design 
variables, except for the three fixed points (k=0, k=1, and k=n), which are predefined. 
For the first segment (k=1), seg_length1,j, and seg_angle1,j are pre-specified in order to 
define the initial direction of the path, and they are not included in the design 
variables of the optimization procedure. 

The horizontal coordinates of each B-Spline control point xk,j and yk,j can be easily 
calculated by using seg_lengthk,j and seg_anglek,j along with the coordinates of the 
previous control point  xk-1,j and yk-1,j. The use of seg_lengthk,j and seg_anglek,j as design 
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variables instead of xk,j and yk,j was adopted for three reasons. The first reason is the 
fact that abrupt turns of each flight path can be easily avoided by explicitly imposing 
short lower and upper bounds for the seg_anglek,j design variables. The second reason 
is that by using the proposed design variables a better convergence rate was achieved 
compared to the case with the B-Spline control points’ coordinates (xk,j, yk,j, zk,j) as 
design variables. The latter observation is a consequence of the shortening of the 
search space, using the proposed formulation. The third reason is that by using 
seg_lengthk,j as design variables, an easier determination of the upper bound for each 
curve’s length is achieved, along with a smoother variation of the lengths of each 
curve’s segments. The lower and upper boundaries of each independent design 
variable are predefined by the user. 

For the case of a single vehicle the optimization problem to be solved minimizes a 
set of five terms, connected to various objectives and constraints; they are associated 
with the feasibility of the curve, its length and a safety distance from the ground. The 
cost function to be minimized is defined as: 

5

1
i i

i

f w f
=

=∑  (1) 

Term f1 penalizes the non-feasible curves that pass through the solid boundary. In 
order to compute this term, discrete points along each curve are computed, using B-
Spline theory [28] [29] and a pre-specified step for B-Spline parameter u. The value 
of f1 is proportional to the number of discrete curve points located inside the solid 
boundary. Term f2 is the length of the curve (non-dimensional with the distance 
between the starting and destination points) and is used to provide shorter paths. Term 
f3 is designed to provide flight paths with a safety distance from solid boundaries. For 
each discrete point i (i=1,…,nline, where nline is the number of discrete curve points) 
of the B-Spline curve its distance from the ground is calculated (the ground is 
described by a mesh of nground discrete points). Then the minimum distance of the 
curve and the ground dmin is computed. Term f3 is then defined as: 

( )2
3 minsafef d d= , (2) 

while dsafe is a safety distance from the solid boundary. 
Term f4 is designed to provide B-Spline curves with control points inside the pre-

specified space. If a control point results with an x or y coordinate outside the pre-
specified limits, a penalty is added to term f4 which is proportional to the violation of 
the following constraints: 
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where C1 is a constant, and xmin, xmax, ymin, ymax define the borders of the working space. 
An additional penalty is added to f4 in case that its value is greater than zero, in order 
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to ensure that curves inside the pre-specified space have a smaller cost function than 
those having control points outside of it. This can be formally written as 

4 4 4 20if f f f C> ⇒ = + , (4) 

where C2 is a constant. 
Term f5 was designed to provide path lines within the already scanned terrain. Each 

control point of the B-Spline curve is checked for whether it is placed over a known 
territory. The ground is modeled as a mesh of discrete points and the algorithm 
computes the mesh shell (on the x-y plane) that includes each B-Spline control point. 
If the corresponding mesh shell is characterized as unknown then a constant penalty is 
added to f5. A mesh shell is characterized as unknown if all its 4 nodes are unknown 
(have not been detected by a sensor). 

Weights wi are experimentally determined, using as criterion the almost uniform 
effect of the last four terms in the objective function. Term w1 f1 has a dominant role in 
Eq. 1 providing feasible curves in few generations, since path feasibility is the main 
concern. The minimization of Eq. 1 results in a set of B-Spline control points, which 
actually represent the desired path.  

For the solution of the minimization problem a Differential Evolution (DE) [30] 
algorithm is used. The classic DE algorithm evolves a fixed size population, which is 
randomly initialized. After initializing the population, an iterative process is started 
and at each generation G, a new population is produced until a stopping condition is 
satisfied. At each generation, each element of the population can be replaced with a 
new generated one. The new element is a linear combination between a randomly 
selected element and the difference between two other randomly selected elements. A 
detailed description of the DE algorithm used in this work can be found in [31]. 

3 On-Line Path Planning for Cooperating Vehicles 

The on-line path planner was designed for navigation and collision avoidance of a 
small team of autonomous vehicles moving over a completely unknown static 3-D 
terrain. The general constraint of the problem is the collision avoidance between the 
vehicles and the ground. The route constraints are: (a) predefined initial and target 
coordinates for all vehicles, (b) predefined initial directions for all vehicles, (c) 
predefined minimum and maximum limits of allowed-to-move space. The first two 
route constraints are explicitly taken into account by the optimization algorithm. The 
third route constraint is implicitly handled by the algorithm, through the cost function. 
The cooperation objective is that all members of the team should reach the same 
target point. 

The on-line planner is based on the ideas developed in [16] for a single UAV. The 
on-line planner rapidly generates a near optimum path, modeled as a 3-D B-Spline 
curve that will guide each vehicle safely to an intermediate position within the already 
scanned area. The information about the already scanned area by each vehicle is 
passed to the rest cooperating vehicles, in order to maximize the knowledge of the 
environment. The process is repeated until the final position is reached by one or 
more members of the team (it is possible some members of the team to reach 
simultaneously the target – in the same number of on-line steps). Then the rest 
members of the team turn into the off-line mode and a single B-Spline path for each 
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vehicle is computed to guide it from its current position, through the already scanned 
territory to the common final destination. An alternative approach, which was also 
tested, is to keep the remaining vehicles in the on-line mode, and not to turn into the 
off-line mode after a vehicle has reached the target.   

In the on-line problem only four control points define each B-Spline curve, the first 
two of which are fixed and determine the direction of the path of the current vehicle. 
The remaining two control points are allowed to take any position within the already 
scanned space, taking into consideration given constraints. The second control is used 
to make sure that at least first derivative continuity of the two connected curves is 
provided at their common point. Hence, the second control point of the next curve 
should lie on the line defined by the last two control points of the previous curve (Fig. 
3). The design variables that define each B-Spline segment are the same as in the off-
line case, i.e. seg_lengthk,j , seg_anglek,j, and zk,j (k=2, 3, and  j=1,…,N).  

The path-planning algorithm considers the scanned surface as a group of quadratic 
mesh nodes. All ground nodes are initially considered unknown. An algorithm is used 
to distinguish between nodes visible by the on-board sensors and nodes not visible. 
The algorithm uses a predefined range RS for each sensor as well as two angles, one 
for the horizontal aH and one for the vertical scanning aV (Fig. 4). The range and the 
two angles are predefined by the user and depend on the type of the sensors used. A 
node is not visible by a sensor if it is not within the sensor’s range and angles of sight, 
or if it is within the sensor’s range and angles of sight but is hidden by a ground 
section that lies between it and the vehicle. The corresponding algorithm, simulates 
the sensor and checks whether the ground nodes within the sensor’s range are 
“visible” or not and consequently “known” or not. If a newly scanned node is 
characterized as “visible”, it is added to the set of scanned ground nodes, which is 
common for all cooperating vehicles. 

The information from its sensors is used to produce the first path line segment for 
the corresponding vehicle. As the vehicle is moving along its first segment and until it 
has traveled about 3/4 of its length, its sensor scans the surrounding area, returning a 
new set of visible nodes, which are subsequently added to the common set of scanned 
nodes. This (simulated) scanning is performed for 11 intermediate positions along 
each path segment. The on-line planner, then, produces a new segment for each 
vehicle, whose first point is the last point of the previous segment and whose last 
point lies somewhere in the already scanned area, its position being determined by the 
on-line procedure. The on-line process is repeated until the ending point of the current 
path line segment of one vehicle lies close to the final destination. Then the rest 
members of the team either can turn into the off-line process, in order to reach the 
target using B-Spline curves that pass through the scanned terrain, or may remain in 
the on-line mode. 

160      I. K. Nikolos and N.C. Tsourveloudis 



 

Fig. 3. Schematic representation of the formation of the complete path by successive B-Spline 
segments (projected on the horizontal plane). 

 
Fig. 4. Schematic representation of the scanned area in front of each vehicle; a

H
 and a

V
 are the 

solid angles in the horizontal and vertical directions that define the scanned sector. 

The position at which the algorithm starts to generate the next path line segment 
for each vehicle (here taken as the 3/4 of the segment length) depends on the range of 
the sensors, vehicle’s velocity and the computational demands of the algorithm. The 
computation of intermediate path segments for each vehicle is formulated as a 
minimization problem. The cost function to be minimized is formulated as the 
weighted sum of seven different terms 

7

1
i i

i

f w f
=

=∑ , (5) 

where wi are the weights and fi are the corresponding terms described below. 
Terms f1, f2, and f3 are similar to terms f1, f3, and f4 respectively of the off-line 

procedure. Term f1 penalizes the non-feasible curves that pass through the solid 
boundary. Term f2 is designed to provide flight paths with a safety distance from solid 
boundaries. Only already scanned ground points are considered for this calculation. 
Additionally, the points that are lower than a pre-specified (small) vertical distance 
from the current level of flight are not considered for this calculation. Term f3 is 
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designed to provide B-Spline curves with control points inside the pre-specified 
working space. 

Term f4 is designed to provide flight segments with their last control point having a 
safety distance from solid boundaries. This term was introduced to ensure that the 
next path segment will not start very close to a solid boundary (which may lead to 
infeasible paths or paths with abrupt turns). The minimum distance Dmin from the 
ground is calculated for the last control point of the current path segment. Only 
already scanned ground points are considered for this calculation. As in term f2 the 
points that are lower than a pre-specified (small) vertical distance from the current 
level of flight are not considered for this calculation. Term f4 is then defined as 

( )2
4 minsafef d D= , (6) 

while dsafe is a safety distance from the solid boundary. 
The value of term f5 depends on the potential field strength between the current 

starting point (of the corresponding path segment) and the final target. This potential 
field between the two points is the main driving force for the gradual development of 
each path line in the on-line procedure. The potential is similar to the one between a 
source and a sink, defined as 

01

02ln
rcr
rcr

Φ
⋅+
⋅+

=  , (7) 

where r1 is the distance between the last point of the current curve and the initial point 
for the current curve segment, r2 is the distance between the last point of the current 
curve and the final destination, r0 is the distance between the initial point of the 
current curve and the final destination and c is a constant. This potential allows for 
selecting curved paths that bypass obstacles lying between the starting and ending 
point of each B-Spline curve [16].  

Term f6 is designed to prevent the vehicles from being trapped in small regions and 
to force them move towards unexplored areas. Term f6 repels it from the points of the 
already computed path lines (of all vehicles). This term has the form 

6
1

1 1poN

po kk

f
N r=

= ∑  , (8) 

where Npo is the number of the discrete curve points produced so far by all vehicles 
and rk is their distance from the last point of the current curve segment. 

Term f7 represents another potential field, which is developed around the final 
target and has the form 

2
7 2f r=  , (9) 

where r2 is the distance between the last point of the current curve and the final 
destination. Thus, when the vehicle is near its target, the value of this term is quite 
small and prevents the vehicle from moving away. 

Weights wi in Eq. 5 are experimentally determined, using as criterion the almost 
uniform effect of all the terms, except the first one. Term w1 f1 has a dominant role, in 
order to provide feasible curve segments in a few generations, since path feasibility is 
the main concern. 
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Fig. 5. Test Case 1: On-line path planning for a single UAV. The maximum allowed height for 
the vehicle is shown using a cutting plane.  

4 Simulation Results 

The same artificial environment was used for all the test cases considered, with 
different starting and target points. The artificial environment is constructed within a 
rectangle of 20x20 (non-dimensional distances). The (non-dimensional) range of the 
sensors (Rs) that scan the environment was set equal to 4 for all vehicles. The safety 
distance from the ground was set equal to dsafe=0.25. The (experimentally optimized) 
settings of the Differential Evolution algorithm during the on-line procedure were as 
follows: population size = 20, F = 0.6, Cr = 0.45, number of generations = 70. For the 
on-line procedure we have two free-to-move control points, resulting in 6 design 
variables. The corresponding settings during the off-line procedure were as follows: 
population size = 30, F = 0.6, Cr = 0.45, number of generations = 70. For the off-line 
procedure eight control points were used to construct each B-Spline curve (including 
the initial (k=0) and the final one (k=7). These correspond to five free-to-move control 
points, resulting in 15 design variables. All B-Spline curves have a degree equal to 3. 

All experiments have been designed in order to search for path lines between 
“mountains”. For this reason, an upper ceiling has been enforced in the optimization 
procedure, by explicitly providing an upper boundary for the z coordinates of all B-
Spline control points. Test Case 1 corresponds to the on-line path planning for a 
single vehicle over an unknown environment (Fig. 5). The horizontal and vertical 
angles aH and aV, used for the sensor’s simulation, were set equal to 45 degrees. The 
complete path consists of 6 B-Spline segments; the final curve is smooth enough to be 
followed by a vehicle. The first turn in the path line is due to the presence of an 
obstacle (solid ground) in front of the vehicle (Fig. 5); the second turn forces the 
vehicle towards its final destination. 

Path Planning for Cooperating Unmanned Vehicles over 3-D Terrain      163 



 

Fig. 6. Test Case 2 corresponds to the on-line path planning for 3 vehicles. The picture shows 
the status of the path lines when the first vehicle (near the upper corner) reaches the target. 

 

Fig. 7. The final status of the path lines of Test Case 2. The off-line path planner was used by 
the remaining vehicles to drive them, from their current position to the final destination, 
through already scanned area. 

Test Case 2 corresponds to the on-line path planning for 3 unmanned vehicles (Fig. 
1, 6, and 7). The horizontal and vertical angles aH and aV, used for the sensor’s 
simulation were set equal to 45 and 30 degrees respectively. Figure 1 shows the status 
of the three path lines when the first line segment has been computed for all three 
vehicles. Figure 6 shows the status of the three path lines when the first vehicle 
reaches the target, after two steps in the on-line procedure. The final status is 
demonstrated in Fig. 7; the remaining two vehicles turn into off-line mode to reach 
the target. A curved path is computed for each one of the remaining vehicles, which 
drives the vehicle from its current position to the target, through the already scanned 
area. 
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Fig. 8. Test Case 3: Successive snapshots of the path-line for three vehicles, computed using 
only the on-line planner. Two of the vehicles are reaching the target using 3 segments. 

An alternative strategy was considered in Test Case 3. Instead of turning into off-
line mode when a vehicle (or more) is reaching the target, the on-line path planner is 
always used to guide all vehicles to the target. In this case three vehicles are 
considered. The horizontal and vertical angles aH and aV, used for the sensor’s 
simulation were set equal to 45 degrees for both angles. Figure 8 contains successive 
snapshots of the path lines produced using the on-line path planner. As it can be 
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observed the two vehicles arrive to the target after the same number of steps (Fig. 8). 
Two more steps of the procedure are needed for the third vehicle to reach the target 
(Fig. 9).  
 

 

Fig. 9. Test Case 3: Two more steps are needed for the third vehicle to reach the target using 
the on-line path planner. 

5 Discussion 

The proposed methodology is applicable to cooperating UAVs but also to cooperating 
AUVs; in the later case the enforced upper ceiling of the searching space will be the 
sea surface. Actually, in the case of AUVs the application of the proposed 
methodology might be easier, due to the lower speed of an AUV compared to an 
UAV and due to the dynamics of such vehicles. However, in the case of AUVs the 
suit of the on board sensors will be completely different and the knowledge of the 
environment will be based on sonar-type sensors. Concerning the application of the 
proposed methodology to cooperating UAVs, the VTOL type of UAVs seems to be 
the best choice. The main reason is that the hovering capability of a helicopter may 
provide the necessary additional time to overcome a computational intensive problem 
during the calculation of successive curve segments. Additionally, a helicopter has a 
higher capability to handle abrupt turns, compared to a fixed-wing UAV. 

Two issues have to be considered for the application of the proposed methodology 
to real world scenarios. The first one is the lack of lightweight radar sensors, capable 
to fit into small UAVs (like small helicopters). Although radar sensors for indoor 
applications have been already presented (with an effective range of some meters), 
there is a need for lightweight radar sensors with a range of hundreds of meters, with 
a weight suitable for small UAVs. The second issue is the communication between 
the cooperating vehicles. The communication devices should be capable to securely 
transfer an amount of data (related to the scanned territory by each vehicle), between 
all cooperating vehicles. Available RF connections for UAV applications are adequate 
enough for the problem at hand. Acoustic communication links should be used for the 
communication between AUVs. 

166      I. K. Nikolos and N.C. Tsourveloudis 



References 

1. Gilmore, J.F.: Autonomous Vehicle Planning Analysis Methodology. In: Association of 
Unmanned Vehicles Systems Conference. Washington, DC, pp. 503–509 (1991) 

2. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006) 
3. Bortoff, S.: Path Planning for UAVs. In: Amer. Control Conf., Chicago, IL, pp. 364–368 

(2000) 
4. Szczerba, R.J., Galkowski, P., Glickstein, I.S., and Ternullo, N.: Robust Algorithm for 

Real-Time Route Planning. IEEE Trans. on Aerosp. Electr. Syst. 36, 869–878 (2000) 
5. Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary Route Planner for Unmanned Air 

Vehicles. IEEE Trans. on Rob. 21, 609–620 (2005) 
6. Uny Cao, Y., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics: Antecedents and 

Directions. Autonomous Robots, 4, 7–27(1997) 
7. Schumacher, C.: Ground Moving Target Engagement by Cooperative UAVs. In: 2005 

American Control Conference, June 8-10, Portland, OR, USA (2005) 
8. Mettler, B., Schouwenaars, T., How, J., Paunicka, J., and Feron E.: Autonomous UAV 

Guidance Build-up: Flight-Test Demonstration and Evaluation Plan. In: AIAA Guidance, 
Navigation, and Control Conference, AIAA-2003-5744 (2003) 

9. Beard, R.W., McLain, T.W., Goodrich, M.A., Anderson, E.P.: Coordinated Target 
Assignment and Intercept for Unmanned Air Vehicles. IEEE Trans. on Rob. and Autom. 18 
911–922 (2002) 

10. Richards, A., Bellingham, J., Tillerson, M., and How., J.: Coordination and Control of 
UAVs. In: AIAA Guidance, Navigation and Control Conference, Monterey, CA, (2002) 

11. Schouwenaars, T., How, J., and Feron, E.: Decentralized Cooperative Trajectory Planning 
of Multiple Aircraft with Hard Safety Guarantees. In: AIAA Guidance, Navigation, and 
Control Conference and Exhibit, AIAA-2004-5141 (2004) 

12. Flint, M., Polycarpou, M., and Fernandez-Gaucherand, E.: Cooperative Control for 
Multiple Autonomous UAV’s Searching for Targets. In: 41st IEEE Conference on Decision 
and Control (2002) 

13. Tang, Z., and Ozguner, U.: Motion Planning for Multi-Target Surveillance with Mobile 
Sensor Agents. IEEE Trans. on Rob. 21, 898–908 (2005) 

14. Gomez Ortega, J., and Camacho, E.F.: Mobile Robot Navigation in a Partially Structured 
Static Environment, using Neural Predictive Control. Control Eng. Practice, 4, 1669–1679 
(1996) 

15. Kwon, Y.D., and Lee, J.S.: On-Line Evolutionary Optimization of Fuzzy Control System 
based on Decentralized Population. Intelligent Automation and Soft Computing, 6,  
135–146 (2000) 

16. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.: Evolutionary Algorithm 
Based Offline / Online Path Planner for UAV Navigation. IEEE Trans. on Systems, Man, 
and Cybernetics – Part B: Cybernetics, 33, 898-912 (2003) 

17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer 
(1999) 

18. Smierzchalski, R.: Evolutionary Trajectory Planning of Ships in Navigation Traffic Areas. 
Journal of Marine Science and Technology, 4, 1–6 (1999) 

19. Smierzchalski, R., and Michalewicz Z.: Modeling of Ship Trajectory in Collision Situations 
by an Evolutionary Algorithm. IEEE Trans. on Evol. Comp. 4, 227–241 (2000) 

20. Sugihara, K., and Smith, J.: Genetic Algorithms for Adaptive Motion Planning of an 
Autonomous Mobile Robot. In: 1997 IEEE International Symposium on Computational 
Intelligence in Robotics and Automation, Monterey, California, 138–143 (1997) 

21. Sugihara, K., and Yuh, J.: GA-Based Motion Planning for Underwater Robotic Vehicles. 
UUST-10, Durham, NH (1997) 

Path Planning for Cooperating Unmanned Vehicles over 3-D Terrain      167 



22. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Cooperative Multiple Task Assignments 
using Genetic Algorithms. In: 2005 American Control Conference, June 8-10, Portland, 
OR, USA (2005) 

23. Moitra, A., Mattheyses, R.M., Hoebel, L.J., Szczerba, R.J., Yamrom, B.: Multivehicle 
Reconnaissance Route and Sensor Planning. IEEE Trans. on Aerospace and Electronic 
Syst. 37, 799–812 (2003) 

24. Dubins, L.: On Curves of Minimal Length with a Constraint on Average Curvature, and 
with Prescribed Initial and Terminal Position. Amer. J. of Math. 79, 497–516 (1957) 

25. Shima, T., Schumacher, C.: Assignment of Cooperating UAVs to Simultaneous Tasks 
Using Genetic Algorithms. In: AIAA Guidance, Navigation, and Control Conference and 
Exhibit, San Francisco (2005) 

26. Martinez-Alfaro H., and Gomez-Garcia, S.: Mobile Robot Path Planning and Tracking 
using Simulated Annealing and Fuzzy Logic Control. Expert Systems with Applications, 
15, 421–429 (1988) 

27. Nikolos, I.K., Tsourveloudis, N., and Valavanis, K.P.: Evolutionary Algorithm Based 3-D 
Path Planner for UAV Navigation. In: 9th Mediterranean Conference on Control and 
Automation, Dubrovnik, Croatia (2001) 

28. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997) 
29. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, a Practical Guide. 

Academic Press (1988) 
30. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, a Practical Approach to 

Global Optimization. Springer-Verlag, Berlin Heidelberg (2005) 
31. Nikolos, I.K., Tsourveloudis, N., Valavanis, K.: Evolutionary Algorithm Based Path 

Planning for Multiple UAV Cooperation. In: Valavanis, K. (ed.), Advances in Unmanned 
Aerial Vehicles, State of the Art and the Road to Autonomy, pp. 309–340. Springer (2007) 

168      I. K. Nikolos and N.C. Tsourveloudis 


