
Combining Formal Verification and Testing
for Correct Legacy Component Integration

in Mechatronic UML�

Holger Giese1, Stefan Henkler2, and Martin Hirsch2

1 Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam , Germany
2 Software Engineering Group, University of Paderborn,

Warburger Str. 100, D-33098 Paderborn, Germany
holger.giese@hpi.uni-potsdam.de,

{shenkler-mahirsch}@uni-paderborn.de

Abstract. One of the main benefits of component-based architectures is their
support for reuse. The port and interface definitions of architectural components
facilitate the construction of complex functionality by composition of existing
components. For such a composition means for a sufficient verification either by
testing or formal verification are necessary. However, the overwhelming com-
plexity of the interaction of distributed real-time components usually excludes
that testing alone can provide the required coverage when integrating a legacy
component. In this paper we present a scheme on how embedded legacy com-
ponents can be tackled. For the embedded legacy components initially a behav-
ioral model is derived from the interface description of the architectural model.
This is in the subsequent steps enriched by an incremental synthesis using for-
mal verification techniques for the systematic generation of component tests. The
proposed scheme results in an effective combination of testing and formal verifi-
cation. While verification is employed to tackle the inherently subtle interaction
of the distributed real-time components which could not be covered by testing,
local testing of the components guided by the verification results is employed
to derive refined behavioral models. The approach further has two outstanding
benefits. It can pin-point real failures without false negatives right from the be-
ginning. It can also prove the correctness of the integration without learning the
whole legacy component (using the restrictions of the integration context).

1 Introduction

The main benefits of the component-based architectures are their support for informa-
tion hiding and reuse. The interface of a component is well defined by structural ele-
ments and collaboration protocols (cf. [7]). The dependencies between components are
reduced to the knowledge of the known interfaces or ports. Thereby, a component can
be exchanged if the specified port remains fulfilled. The port and interface definitions of

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 248–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combining Formal Verification and Testing 249

architectural components therefore facilitate the construction of complex functionality
by composition of existing components.

Especially in domains like automotive software where the development of new func-
tions is an exception rather than the regular case (cf. [48]) component-based develop-
ment can result in dramatic improvements. However, as long as an open and flexible
software architecture which facilitate reuse is missing, many functions are nearly built
from scratch for each new version (cf. [25]). Today, initiatives such as AUTOSAR1 are
a first step towards open and flexible software architectures for automotive systems.
The definition of standard interfaces and an infrastructure for the software components
ensures that components from different suppliers and vendors can technically interop-
erate. However, also a correct integration at the application level is needed.

In general, the proper composition of independently developed components in the
software architecture of embedded real-time systems requires means for a sufficient
verification of the integration step either by testing or formal verification. However,
the overwhelming complexity of the interaction of distributed real-time components
usually excludes that testing alone can provide the required coverage when integrating
a legacy component.

Today, often a model-based development approach is employed to plan the decompo-
sition of complex systems into components which are developed by different suppliers.
The MECHATRONIC UML approach is one approach which permits to plan the decom-
position of complex real-time systems upfront. It supports the description and compo-
sitional verification of the real-time coordination by means of components and patterns
[24] and the integrated description and modular verification of discrete behavior and
continuous control with components [9,21]. While it also supports for the generation
of code for hard real-time processing [8,10] from further refined models in practice,
seldom the whole system will be generated from the models. Besides the automatically
derived components also either manually programmed or already existing components
which fit more or less to the MECHATRONIC UML models will be employed. Thus
an approach is required which permits to integrate these legacy components not only
syntactically but also provide the required verification guarantees.

The overwhelming complexity of the interaction of distributed real-time components
usually excludes that testing alone can provide the required coverage when integrat-
ing a legacy component. Thus formal verification techniques seem to be a valuable
alternative. However, the required verification of the resulting system often becomes
intractable as no abstract model of the reused components which can serve the verifi-
cation purpose is available. A number of techniques which either use a black-box ap-
proach and automata learning [32] or a white-box approach which extracts the models
from the code [39,15,31] exists. However none of them exploits the knowledge about
the context and a component-based view to provide an approach which could in princi-
ple scale even for larger systems and which can help excluding besides false positives
also false negatives after a feasible number of learning steps.

In this paper we present a scheme how embedded legacy components in a MECHA-
TRONIC UML architecture can be tackled based on our approach presented in [29].
For the embedded legacy components initially a behavioral model is derived from the

1 www.autosar.org

250 H. Giese, S. Henkler, and M. Hirsch

existing interface description which is a safe abstraction. This abstraction is then in sub-
sequent steps enriched by an incremental synthesis procedure. This procedure uses the
counterexample of a formal verification step to improve the accuracy of the behavioral
model of the legacy component. We extend our previous work by supporting a (safe)
over approximation and a rigorous formalization of the approach.

The formal verification step based on [21,24] is employed to cover the inherently
subtle interaction of the distributed real-time components completely which could not
be achieved by testing. Local testing of the legacy components using our model-based
testing approach [23] and our approach for deterministic replay [22] guided by the veri-
fication results in the form of counterexamples is employed to derive refined behavioral
models for the legacy component.

The approach therefore extends our former work [21,22,23,24,29] and has the bene-
fit that it could pin-point real failures in the test step which are no false negatives right
from the beginning. In addition, it can also prove the correctness of the integration for
an abstract behavioral model of the legacy component without learning the whole legacy
component by only checking possible integration problems for the explicit given context.

Application Example
As a concrete example for a complex mechatronic product, we use a simplified version
of the software for the RailCab research project2. The vision of the RailCab project is a
mechatronic rail system where autonomous shuttles apply the linear drive technology,
used in the Transrapid, but travel on the existing passive track system of the standard
railway. One particular problem, which has been previously described in [24], is to re-
duce the energy consumption due to air resistance by coordinating the autonomously
operating shuttles in such a way that they form convoys whenever possible. Such con-
voys are created on-demand and require small distances between the shuttles in order to
achieve significant energy savings. Coordination between the speed control units of the
shuttles becomes a safety-critical aspect and results in a number of hard real-time con-
straints, which have to be addressed when building the control software of the shuttles.
In [24] it has been solved for a simplified version of this shuttle coordination problem.
In this example convoys consist of at most 2 shuttles.

The main requirement of the shuttle controller software is to ensure that no rear-
end collision happens when the first shuttle has to brake suddenly e.g., in case of an
emergency. If the shuttle is the head of a convoy it may brake only with reduced force,
because another shuttle drives behind it with a reduced, minimal distance and therefore
reacts with delay. Therefore the controlling software needs to ensure that the following
situation will never occur: The rear shuttle is in convoy mode and therefore reduces the
distance and the front shuttle is in mode no-convoy and brake with full strength in case
of an emergency.

Modeling
Within our modeling and verification approach for the software of complex real-time
systems [24], modeling is divided into modeling the interaction between components
of the system by reusable coordination patterns and modeling the detailed behavior of
the components by relating to the behavior of the applied patterns.

2 http://www-nbp.upb.de/en/index.html

Combining Formal Verification and Testing 251

A pattern describes communication and therefore consists of multiple communica-
tion partners, called roles. Roles interact through ports which are linked by a connector.
The communication behavior of a role is specified by a real-time statechart (RTSC)
and is restricted by an invariant. The behavior of the connector is described by another
real-time statechart that is used to model channel delay and reliability, which are of
crucial importance for real-time systems. The overall behavior of a pattern is restricted
by a pattern constraint, whereas the behavior of a role can be restricted by a role invari-
ant. Altogether, we call the constraints, invariants, and known communication partners
context information

Within the shuttle example, distance coordination between two shuttles is modeled
as a pattern. This DistanceCoordination pattern consists of two roles, the frontRole and
the rearRole and one connector that models the wireless radio link between the two
shuttles. The pattern specifies the behavior needed to coordinate two successive shut-
tles. The main requirement of the pattern is to ensure that no rear-end collision happens
when the first shuttle has to brake suddenly, e.g. in case of an emergency. If the shuttle
is the head of a convoy, it is allowed to brake only with reduced force, to ensure that
it cannot collide with the shuttle which drives behind it with a reduced, minimal dis-
tance. Otherwise, as the follower shuttle will react with a certain delay, a collision might
happen. We thus require that the front shuttle must not brake with full power if it is in
convoy mode. For the rear shuttle, we require that it does brake with full power. These
two requirements are called role invariants. On the other hand, the overall pattern con-
straint forbids the rear role to be in mode convoy while frontRole is in mode noConvoy.
The pattern constraint and role invariants can be annotated to the pattern respectively
its roles using timed ACTL3 formulas. The pattern with its annotated constraint and
invariants is depicted in Figure 1.

DistanceCoordination

<<Component>>

Shuttle3

frontRole rearRole

<<Component>>

Shuttle2

A[] not (myRearRole.convoy and myFrontRole.convoy)
A[] not deadlock

A[] not (rearRole.convoy and frontRole.noConvoy)
A[] not deadlock

unsafe

true

Fig. 1. The DistanceCoordination pattern

After the patterns have been specified, the concrete software components can be
built. Components are designed by coordinating and refining each role RTSC of the
involved patterns. The refinement has to respect the role RTSC (i.e. not add additional
behavior or block guaranteed behavior) and additionally has to respect the guaranteed
behavior of the roles in the form of their invariants. An additional internal RTSC for co-
ordination is used to describe the required coordination of the refined roles. We further
refer to the refined roles as component ports or ports in short.

3 Timed ACTL is the subset of timed computation tree logic [13] which only contains always
path operators.

252 H. Giese, S. Henkler, and M. Hirsch

In our example, the shuttle component must conform to the DistanceCoordination
pattern and has to operate as both a rearRole and a frontRole as it may be follow, or be
followed by, another shuttle as well as itself can follow another shuttle.

To complete the presented approach the outlined modeling capabilities are further
extended by model checking and code generation. We prove that the given constraints
hold for the system by using a model checker. Code generation on the other hand en-
sures that the constraints still hold for the code. However, in practice frequently not
the whole system will be generated from the models. Instead several independent de-
veloped or already existing components that have been not automatically derived from
MECHATRONIC UML models have to be integrated (cf. Figure 2).

Approach
Given a MECHATRONIC UML architecture which embeds a legacy component and
behavioral models for all other components building the context of the legacy com-
ponent, the basic question of correct legacy component integration is whether for the
composition of the legacy component and its context all anomalies such as deadlocks
are excluded or all additionally required properties hold. However, it is usually very
expensive and risky to reverse-engineer an abstract model of the legacy component to
verify whether the integration will work.

To overcome this problem we suggest employing some learning strategy via test-
ing to derive a series of more detailed abstract models for the legacy component. The
specific feature of our approach will be that we exploit the present abstract model of
the context to only test relevant parts of the legacy component behavior. The approach
depends only to a minimal extent on reverse engineering results.

We start with synthesizing a model of the legacy component behavior based on
known structural interface description and a reverse engineered upper bound on the
state size. Then, we check whether the context plus the model of legacy behavior ex-
hibit any undesired behavior taking generic correctness criteria or additional required
properties into account. If not, we use the resulting counterexample trace to test the
legacy component. If the trace can be realized with the legacy component, a real er-
ror has been found. If not, we first enrich the trace with additional information using
deterministic replay and then merge the enriched trace into the model of the legacy
component behavior. We repeat the checks until either a real error has been found or all
relevant cases have been covered.

Figure 2 illustrates our process with a summary of the overall approach. 1) Initially,
we synthesize an initial behavior model for the legacy component based on known
structural interface description and derive a behavioral model of the context from the
existing MECHATRONIC UML models. 2) We check the combination of the two be-
havioral models and either get a) a counterexample or b) the checked properties are
guaranteed. In the latter case we are done. 3) If we have a counterexample, we use this
as test input for the legacy component. Deterministic replay enables us to enrich the
observable behavior with state information by monitoring. If the tested faulty run is
confirmed, we have found a real counterexample. If not, we can use the new observed
behavior to refine the previously employed behavior model of the legacy component.
We repeat steps 2) to 4) until one of the described exits occurs.

Combining Formal Verification and Testing 253

Execute legacy

component

Produce

output

Synthesize

behavior

Extract behavioral

model of context

1

(Input vector)

Counterxample

[Counterexample confirmed]

[Properties satisfied]

Observed behavior

2

3

4

Check combination

Mlegacy Mcontext

Mcontext Mlegacy

Fig. 2. Sketch of the approach

Overview
We first define in the next Section the prerequisite of our approach. We will introduce
incomplete automata and chaotic automata which are required for learning the behavior.
In Section 3 we describe the initial behavior synthesis and in Section 4 we describe the
iterative process for behavioral synthesis. Based on the counterexamples from Section
4, we describe in Section 5 our testing approach. Section 6 compares our work to similar
approaches and Section 7 presents the conclusion and future work.

2 Prerequisites

To provide a formal ground for our later employed MECHATRONIC UML concepts, we
present a formal definition for the employed notion of automata, parallel composition,
and refinement as well as the employed compositionality results for this formal model.
The RTSC employed in MECHATRONIC UML are mapped to a finite state transition
system in the form of extended Kripke structures (called I/O-interval structures [44]).
We present here only a rather simplified version of this finite state transition model
where discrete time is mapped to single states and transitions. This automata model is
sufficient to permit the understanding of the underlying behavior model and to prove
that the compositional verification combined with the testing and monitoring is correct.
The simplification is justified by the following assumption which are valid for the con-
sidered domain: (1) the usual clock synchronization assumption which is common to
many systems and means that time is progressing equally fast in any system compo-
nent, and (2) a discrete time model suffices to model all time depending constraints,
because the underlying infrastructure (hardware and possibly a real-time operating sys-
tems) does not react infinitely fast.

The simplified real-time automaton model and its real-time processing which corre-
sponds to our employed notion of RTSC are defined as follows:

Definition 1. An automaton is a 5-tuple M = (S, I, O, T, Q) with a finite set S of
states, input signals I , output signals O, a set of transitions T ⊆ S × ℘(I)× ℘(O)× S
where ℘(X) denotes the power-set of X , and the initial state set Q.

The behavior is characterized by execution sequences called runs.

254 H. Giese, S. Henkler, and M. Hirsch

Definition 2. A regular run is a sequence of states and I/O π = s1, A1/B1, s2, . . . ,
where for each i ≥ 1 exists (si, Ai, Bi, si+1) ∈ T . We in addition have deadlock runs
which are a sequence of states and I/O π = s1, A1/B1, s2, . . . sn, An/Bn, where for
each 1 ≤ i ≤ n exists (si, Ai, Bi, si+1) ∈ T and � ∃sn+1(sn, An, Bn, sn+1) ∈ T . We
write [M] for the set of all regular and deadlock runs and use π|I/O to restrict a run to
an observable trace and π|S to denote the related state sequence.4

The time semantics of an automaton is simply that each transition takes exactly one
time unit.

For convenience we use in the following Si, Ii, Oi, Ti, and Qi to denote the corre-
sponding elements of Mi. Two automata M and M ′ with distinct input and output sets
(I ∩ I ′ = ∅ and O ∩ O′ = ∅) are further called composable. If also I ∩ O′ = ∅ and
O ∩ I ′ = ∅ holds, they are even orthogonal to each other.

2.1 Property Specification

Properties which should hold for a specific model are specified by using clocked CTL
(CCTL) constraints (φ) and invariants (ψ). These formulas will be build using a shared
set of atomic propositions P . An automaton Mi and any of its states s ∈ Si is annotated
with all propositions in Pi ⊆ P which they fulfill using a labeling function Li : S →
℘(Pi). Thus an automaton Mi = (Si, Ii, Oi, Ti, Qi) is accordingly extended to a 6-
tuple Mi = (Si, Ii, Oi, Ti, Li, Qi). The label set L(Mi) denotes the set of all by the
labeling considered propositions Pi. L(φ) and L(ψ) denote the subsets of the basic
proposition set P that is employed within the formulas.

Finally, for sake of simplification of the following formal definitions, we omit any
syntactical details of CTL and CCTL and write M |= φ when an automaton M fulfills
a constraint or invariant φ. The special symbol δ is used to denote that a deadlock (a
state without any outgoing transition) can be reached. M |= ¬δ thus denotes that M
does not contain any deadlocks.

2.2 Parallel Composition

In our application domain the composition of multiple components requires their paral-
lel execution. As we model time explicitly and in a discrete manner, the required notion
of parallel composition must result in the synchronous execution [13] of all systems
running in parallel.

The communication is formalized by synchronous communication such that send-
ing and receiving happens within the same time step. Consequently, the asynchronous
event semantics of statecharts is modeled by explicitly defined event queues (channels)
given in the form of additional automata. These explicit models of the event queues are
required anyway to take the QoS characteristics of each connection into account.

To combine two composed automata we simply connect their input and output sig-
nals and consider their parallel execution.

4 The concepts outlined here have some similarities with process algebra concepts. While reg-
ular runs reduced to the observable events are traces in CSP [30] or other process algebras,
deadlock runs are related to ideas of failures in CSP or refusals. In contrast to the presented
proposal, process algebra approaches abstract from states.

Combining Formal Verification and Testing 255

Definition 3. For two automata M = (S, I, O, T, L, Q) and M ′ =
(S′, I ′, O′, T ′, L′, Q′) which are composable to each other (I ∩ I ′ = ∅ and
O ∩ O′ = ∅), we define their parallel composition denoted by M‖M ′ as the automaton
(S′′, I ′′, O′′, T ′′, L′′, Q′′) with S′′ = S ×S′, I ′′ = I ∪I ′, O′′ = O∪O′, Q′′ = Q×Q′,
and ((s1, s

′
1), A

′′, B′′, (s2, s
′
2)) ∈ T ′′ iff (s1, A, B, s2) ∈ T and (s′1, A

′, B′, s′2) ∈ T ′

exist with A′′ = A ∪ A′ and B′′ = B ∪ B′. Additionally, (A ∩ O′) = B′ and
(A′ ∩ O) = B must hold. S′′ and T ′′ are further adjusted to exclude all non reachable
state combinations and transitions. The labelling L′′ for (s, s′) ∈ S′′ is easily derived
as L′′((s, s′)) = L(s) ∪ L′(s′).

Informally, a transition in T ′′ is a combination of two transitions in each automaton iff
all required local inputs by the other side are matching ((A∩O′) = B′ and (A′ ∩O) =
B) and the non local input and output signals are simply the union of both automata.

2.3 Automata Refinement

Our restricted notion of components means that they are derived by refining the role
protocols from all the patterns they are participating in. Thus, we require an appropriate
notion for refinement which is essentially a restricted version of simulation which ad-
ditionally preserves reactivity. For two given automata we can define whether the first
is a refinement of the second as follows.

Definition 4. An automaton M = (S, I, O, T, L, Q) is a refinement of automaton
M ′ = (S′, I ′, O′, T ′, L′, Q′) (M M ′) iff hold:

∀π = . . . s ∈ [M]∃π′ = . . . s′ ∈ [M ′] : π|I/O = π′|I′/O′ ∧ L(s) = L′(s′) (1)

∀π = . . . s, A/B ∈ [M]∃π = . . . s′, A/B ∈ [M ′] : π|I/O = π′|I′/O′ (2)

For each path in the refinement M equation 1 further ensures that a related path in
M ′ exists. Equation 2 further ensures that every deadlock path of M is also a possible
deadlock path for M ′. Therefore, implies simulation (�).

2.4 Compositional Constraints

For our approach the interesting class of constraints is the constraints, which are pre-
served under refinement and composition with disjoint labeling.

Definition 5. A constraint φ is compositional iff for any automaton M1, M ′
1, and M2

with L(M2) ∩ L(φ) = ∅ holds

(M1 |= φ) ⇒ ((M1‖M2 |= φ) ∨ (M1‖M2 |= δ)) and (3)
((M1 M ′

1) ∧ (M ′
1 |= φ)) ⇒ (M1 |= φ) (4)

CTL formulas are preserved by the bisimulation equivalence relation, while ACTL for-
mulas are preserved by the simulation preorder (�) [13]. The presented refinement im-
plies simulation and thus preserves ACTL formulas also, but in contrast it additionally
preserves deadlock freedom:

256 H. Giese, S. Henkler, and M. Hirsch

Lemma 1. For automaton M and M ′ with M M ′ holds M ′ |= ¬δ ⇒ M |= ¬δ.

Proof. (sketch) Condition 1 ensures that for any s ∈ S at least one related s′ ∈ S′

exists with (s, s′) ∈ Ω. From M ′ deadlock free follows that s′ will have at least one
outgoing transition and due to condition 2 s also. Therefore, M is also deadlock free.

Invariants, upper and lower time-bounds, and ACTL formulas in general are constraints
which refer only to all possible paths. Thus using the fact that a refinement or com-
position with disjoint labeling sets only reduces the possible sequences of states with
identical labeling, they are compositional. That deadlock freedom is also compositional
follows by construction for condition 3 and Lemma 1 for condition 4.

Compositionality can thus be established for the properties required so far during
our studies such as deadlock freedom, upper bounds for the maximal delays of message
transports, lower bounds for the minimal delays of message transports, and invariants.
For example, the according CCTL formula with only A path quantifiers for a maximal
delay is for d the maximal delay, p1 the trigger condition, and p2 the required condition:
AG(¬p1 ∨ (AF [1,d] p2)). In contrast, temporal logic formulas that demand explicitly
that a specific state is eventually reached (abstracting from possible effects of non-
determinism) are not preserved.

2.5 Parallel Composition and Refinement

We also require that parallel composition preserves refinement.

Lemma 2. For any automaton M1 and an automaton M2 refining automaton M ′
2

(M2 M ′
2) holds M2 M ′

2 ⇒ (M1‖M2 M1‖M ′
2).

Proof. (sketch) For M1‖M ′
2 we can form the construction of the parallel composition

conclude that only path and deadlock path result which are also present in M1‖M2.
Therefore condition 1 and 2 must be fulfilled for M1‖M2 and M1‖M ′

2.

For a substitution of a restricted refinement that only adds disjoint I/O signals we further
have to prove that compositional constraints and deadlock freedom are preserved.

Lemma 3. For automaton M1, M2, and M ′
2 with M2

I/O
M ′

2, I1 ∩ (O2 − O′
2) = ∅,

O1 ∩ (I2 − I ′2) = ∅, and L(M1) ∩ (L(M2) − L(M ′
2)) = ∅ and any compositional

constraint φ holds

(M1‖M ′
2 |= φ ∧ ¬δ) ⇒ (M1‖M2 |= φ ∧ ¬δ) (5)

Proof. Due to φ and ¬δ being compositional and Definition 5 we can for M ′′
2 =

M2|I′
2/O′

2/L(M ′
2) conclude that M1‖M ′′

2 |= φ ∧ ¬δ or M1‖M ′′
2 |= δ. Due to Lemma 1

and 2 we even have M1‖M ′′
2 |= φ∧¬δ. From I1∩(O2−O′

2) = ∅ and O1∩(I2−I ′2) = ∅
follows that M2 adds to M ′′

2 only I/O that does not interfere with M1 and thus M1‖M2
has the same reachable state set and transitions and thus M1‖M2 |= ¬δ. As φ is only
interpreted over states and the labeling is identical for L(φ) ⊆ L(M ′

2), φ must also
hold and thus condition 5 is proven.

Combining Formal Verification and Testing 257

2.6 Incomplete Automata

When incrementally improving the accuracy of a behavioral model with respect to some
original, we can use the concept of a incomplete automaton.

Definition 6. An incomplete automaton is a 6-tuple M = (S, I, O, T, T , Q) with M =
(S, I, O, T, Q) an automaton and T ⊆ S × ℘(I) × ℘(O) denoting the known not
supported interactions. To ensure that T and T are consistent we require that

¬(∃s, A, B, s′ : (s, A, B, s′) ∈ T ∧ (s, A, B) ∈ T).

The behavior is characterized by execution sequences called runs.

Definition 7. A regular run of an incomplete automaton is a sequence of states and
I/O π = s1, A1/B1, s2, . . . , where for each i ≥ 1 exists (si, Ai, Bi, si+1) ∈ T .
We in addition have deadlock runs which are a sequence of states and I/O π =
s1, A1/B1, s2, . . . sn, An/Bn, where for each 1 ≤ i ≤ n exists (si, Ai, Bi, si+1) ∈ T
and (sn, An, Bn) ∈ T . We write [M] for the set of all regular and deadlock runs and
use π|I/O to restrict a run to an observable trace and π|S to denote the related state
sequence.

The definition of the runs highlights the fact that in an incomplete automaton deadlock
runs are only assumed when explicitly defined by T and not implicitly if no transition
is present in T .

A concrete automaton is deterministic if for any s, A, and B holds that
|{(s, A, B, s′) ∈ T }| ≤ 1. An incomplete automaton is deterministic if for any s,
A, and B holds that |{(s, A, B, s′) ∈ T } ∪ {(s, A, B) ∈ T}| ≤ 1.

Given an incomplete automaton, we can then describe a completion step as any ex-
tension of S, T or T which again results in an incomplete automaton. In a final step
an incomplete automata becomes complete, when for each possible interaction is either
forbidden by T or present in T :

∀s ∈ S, A ∈ ℘(I), B ∈ ℘(O) : (∃s′ ∈ S : (s, A, B, s′) ∈ T xor (s, A, B) ∈ T).

2.7 Chaotic Automata and Closure

Taking the refinement notion of Definition 4, we can identify a maximal behavior (named
chaotic automaton) which is an abstraction of every possible behavior as it might accept
any sequence of inputs but may also deadlock for every possible interaction.

Definition 8. For given input and output sets I and O, the chaotic automaton Mc =
(Sc, I, O, Tc, Qc) is build as follows: The state set Sc = {sδ, s∀} contains two
distinct state, the transition set Tc = {(s∀, A, B, s∀)|A ∈ ℘(I), B ∈ ℘(O)} ∪
{(s∀, A, B, sδ)|A ∈ ℘(I), B ∈ ℘(O)}, and Qc = {sδ, s∀}.

The chaotic automaton specified in Definition 8 is depicted in Figure 35. We can see
that both state s∀ and sδ are possible initial states and that while sδ will block any

5 Note, we write in all figures and listings s all and s delta and not s∀ and sδ as the mathematical
notation is not supported by the used tool.

258 H. Giese, S. Henkler, and M. Hirsch

s_delta

s_all *
*

Fig. 3. Maximal chaotic behavior: the chaotic automaton

interaction, s∀ will support any possible interaction (all possible input and output com-
binations are referred to here by ’*’).

If also a number of properties are relevant, we have to further have states s∀ and sδ

for every possible proposition subset P ′ of P . However, it is much more efficient to
instead label s∀ and sδ with a new proposition p′ and replace for all propositions p ∈ P
all occurrences of p by (p ∨ p′) as well as occurrences of ¬p by (¬p ∨ p′).

If we are interested in a safe abstraction, a special kind of completion is the chaotic
completion where all defined behavior result in arbitrary chaotic behavior.

Definition 9. Given an incomplete automaton M = (S, I, O, T, T , Q) we derive the
related chaotic closure automaton M ′ = (S′, I, O, T ′, Q′) as follows:

1. double the state set and include the chaotic automaton (S′ = (S × {0}) � (S ×
{1}) � Sc) and

2. adjust the transition set to the doubling such that all not spec-
ified interactions either are not supported or lead to the added
chaotic automaton (T ′ = {((s, 0), A, B, (s′, 0)|(s, A, B, s′) ∈ T } �
{((s, 0), A, B, (s′, 1)|(s, A, B, s′) ∈ T } � {((s, 1), A, B, (s′, 0)|(s, A, B, s′) ∈
T } � {((s, 1), A, B, (s′, 1)|(s, A, B, s′) ∈ T } � {((s, 1), A, B, s∀)|s ∈ S, a ∈
℘(I), B ∈ ℘(O), (s, A, B) �∈ T} � {((s, 1), A, B, sδ)|s ∈ S, a ∈ ℘(I), B ∈
℘(O), (s, A, B) �∈ T} � Tc.

We denote the chaotic closure of M as chaos(M).

In this construction Q′ = {(s, 0)|s ∈ Q} � {(s, 1) ∈ Q}. The states (s, 0) are those
representing the case that no further extension is assumed which might thus result in a
deadlock, while the states (s, 1) are those representing the case that all possible further
extensions are assumed which therefore lead to chaos (which is represent by sδ and s∀).

Note that this chaotic behavior is highly non-deterministic while the real legacy com-
ponent behavior is required to be deterministic.

2.8 Observation Conformance and Refinement

Definition 10. The incomplete automaton M is observation conforming concerning an
automaton Mr iff [M] ⊆ [Mr].

Note that the defined notion of observation includes states in our case, while in a stan-
dard setting we would only consider the path.

Theorem 1. If M is an observation conforming incomplete automaton concerning a
concrete deterministic component implementation Mr, it holds that Mr chaos(M).

Combining Formal Verification and Testing 259

Proof. Condition 1 for refinement follows directly from [M] ⊆ [Mr] as we let sδ and
s∀ fulfil all positive and negative propositions (by modifying the formulas accordingly).
Condition 2 is fulfilled as the chaotic closure guarantees by construction only additional
behavior which can always also result in a deadlock. �

3 Initial Behavior Synthesis

Given a concrete context M c
r with abstract model M c

a that refines the concrete context
(M c

r M c
a) and a concrete component implementation Mr with hidden internal details

(legacy component), the basic question we want to check is whether a given property φ
as well as deadlock freedom (¬δ) holds. We are in particular interested in a guarantee
that both properties hold or a counterexample witnessing that they do not hold. How-
ever, usually Mr cannot be employed to traverse the whole state space as the state space
of the system M c

a‖Mr is too large to directly address this question.
To overcome this problem we suggest to build a series M i

a of abstractions of Mr

which are all safe when it comes to verification but become more and more accurate
such that finally we can use them to conclude either that the integration works correctly
or not.

Mr M i
a (∀i ≥ 0). (6)

We thus start with synthesizing a model of the legacy component behavior based on
the known structural interface description. While the interface description can be taken
from the context or reverse-engineered straightforwardly from the legacy component,
deriving an upper bound on the relevant legacy component states can become more
complicated. The crucial criterion for a valid state abstraction is that for all possible
inputs/outputs the state reached must be the same.

In a first step we simply build M0
a using the available information about the interface

of Mr. We simply build an M0
l by determining the initial state s0 of Mr and derive an

automaton M0
l = ({s0, I, I, ∅, {so}). We can then use the chaotic closure to derive our

first safe approximation: M0
a = chaos(M0

l). Due to Theorem 1 we then know that M0
a

is a safe abstraction from Mr (Mr M0
a).

Lemma 4. For the initial model M0
a = chaos(M0

l) for M0
l build for the initial state

s0 of Mr as the automaton M0
l = ({s0, I, I, ∅, {so}) holds Mr M0

a .

Proof. Due to Theorem 1 we can conclude that M0
a is a safe abstraction from Mr as

M0
l is observation conforming to Mr. �

In Figure 4(a) the initial trival automaton is depicted. The automaton consists of an
initial state (depicted as a double circle) and the first state noConvoy::default which is
connected via a transition with the initial state.

The automaton which results when the chaotic closure is applied to the trivial in-
complete automaton depicted in Figure 4(a) which only captures the known initial state
noConvoy::default is depicted in Figure 4(b). We can see how this initial state has been
doubled and that one of these two states is connected via any possible interaction with
both chaotic states s∀ and sδ (all possible input and output combinations are referred to
here by ’*’).

260 H. Giese, S. Henkler, and M. Hirsch

(a)
noConvoy::default

(b)

noConvoy:default s_delta

s_allnoConvoy::default *

*

*

Fig. 4. Trivial initial implicit automaton encoding the known initial state (4(a)) and Initial behav-
ior of a legacy component (4(b))

convoy::break convoy::default

noConvoy::answer
noConvoy::default

breakConvoyRejected!

breakConvoy!
breakConvoyProposal?

startConvoy!

convoyProposalRejected!

convoyProposal?

Fig. 5. Known behavior of context

In Figure 5 the known behavior of the context, the frontrole, is depicted. The automa-
ton starts in the noConvoy state. The automaton remains in the state until the frontRole
receives the convoyProposal message. Thereafter the automaton switches to the answer
state. In this state, the automaton non-deterministically decides to reject the convoy
(convoyProposalRejected) or to start the convoy (startConvoy). In the latter case the
automaton switches to the convoy state and remains there until a breakConvoyProposal
message is received. The automaton decides to reject or accept this message.

4 Iterative Behavior Synthesis

On the basis of the initial behavior synthesis, we describe in this section our approach
of iterative behavior synthesis. First, we start with checking if the given properties hold
for the initial synthesized behavior. If a counterexample exists, we proceed with testing
based on that counterexample. While testing we monitor the legacy system. The moni-
tored trace is used for learning the behavior. The new synthesized behavior is then the
start point for the next iteration.

4.1 Formal Verification Step

The iterative behavior synthesis starts with checking for the abstraction derived from
initial behavior synthesis (cf. Section 3), whether a counterexample for the required
property φ exists. We therefore check for i ≥ 0

M c
a‖M i

a |= φ ∧ ¬δ. (7)

If the check succeeded, we have indeed proven that the property must also hold for
M c

a‖Mr and M c
r ‖Mr.

Combining Formal Verification and Testing 261

Lemma 5. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r M c
a) and that the abstraction is valid (Mr M i

a) it
holds for any compositional property φ:

M c
a‖M i

a |= φ ⇒ M c
r‖Mr |= φ. (8)

Proof. As refinement () is a precongruence for parallel composition (‖) and M c
r

M c
a, we can conclude that M c

r ‖M i
a M c

a‖M i
a must hold. Similarly, having Mr M i

a

we thus have M c
r‖Mr M c

a‖M i
a. As refinement preserves property φ, we thus can

starting with M c
a‖M i

a |= φ conclude that M c
r‖Mr |= φ must hold. �

If, however, the check did no succeed, we will have a counterexample in the form of
a path π for M c

a‖M i
a which is a witness that φ is not true for the abstraction. This

counterexample restricted to M i
a is then used to test the legacy component.

Listing 1.1. Initial counterexample

shuttle1.noConvoy, shuttle2.s_all,
shuttle2.convoyProposal!, shuttle1.convoyProposal?
shuttle1.answer, shuttle2.wait,
shuttle1.convoyProposalRejected!, shuttle2.convoyProposalRejected?
shuttle1.noConvoy, shuttle2.s_all
shuttle2.convoyProposal!, shuttle1.convoyProposal?
shuttle1.answer, shuttle2.wait
shuttle1.startConvoy!, shuttle2.startConvoy?
shuttle1.convoy, shuttle2.s_all
shuttle2.breakConvoyProposal!, shuttle1.breakConvoyProposal?
shuttle1.break, shuttle2.s_delta

In Listing 1.1 the counterexample of the first check is shown. The counterexample
is a relatively long run. First, the closure sends a convoyProposal to the context. After-
wards, the context sends a convoyProposalReject. Then, the closure sends once again
a convoyProposal and the context decides to build a convoy by sending a startConvoy.
After building the convoy, the context tries to break the convoy but the closure goes in
sδ state and a deadlock is manifested.

4.2 Testing Step

If the test reveals that the path π is also possible in the concrete system, we can conclude
that we have found a real integration problem.

Lemma 6. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r M c
a) and that the abstraction is valid (Mr M0

a)
it holds:

(
M c

a‖M i
a, π �|= φ ∧ π ∈ M c

r ‖Mr

)
⇒ M c

r‖Mr �|= φ (9)

Proof. As π is a witness of ¬φ and φ is a run of M c
r ‖Mr we can conclude that

M c
r‖Mr �|= φ must hold. �

262 H. Giese, S. Henkler, and M. Hirsch

If we use our trick to weaken the properties rather than using a chaotic closure which
distinguishes all possible subsets of the atomic properties P , it seems that we have
to evaluate φ on M c

r ‖Mr, π to check that the counterexample is a real one. As this
could only happen when π visits states in the chaotic closure (s∀ or sδ) it is guaranteed
that in these cases π is not really a possible run of M c

r ‖Mr as the concrete state will
never include states of the chaotic closure. It is to be noted we assume that for runs
the encoding (s, i) with i ∈ {0, 1} is considered equivalent to s and therefore runs
which are only visiting these states can be mapped to runs in the legacy component and
therefore result in uncover real counterexamples.

If the run cannot be found when testing the legacy component, we can use the ob-
served difference between π and the really observed behavior π′ to derive an improved
M i+1

a .
In our example, if we test the legacy component based on the counterexample shown

in the last Section with the techniques described in Section 5, we monitor the trace
shown in Listing 1.2. As described in the next Section when testing the legacy com-
ponent, we only monitor relevant events for deterministic replay. Hence, we monitor
only the outgoing message convoyProposal at port rearRole and the incoming message
convoyProposalRejected at the same port. If we look in more detail at the behavior
while deterministically replay the legacy component with all relevant instrumentation
for monitoring additionally the states and timing, the trace shows a conflict with ex-
pected behavior based on the initial counterexample (cf. Listing 1.3). In the next Sec-
tion, we will shown, how conflict is manifested while checking the synthesized behavior
based on the monitored traces.

Listing 1.2. Monitored relevant events for deterministic replay: blocking state

[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming

Listing 1.3. Monitoring all relevant events: blocking state

[CurrentState] name="noConvoy"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=1
[CurrentState] name="convoy",
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming

4.3 Learning Step

In this learning step we employ the observed difference between π and the really
observed behavior π′ to derive an improved M i+1

l . Then we derive M i+1
a again as

chaos(M i+1
l) and have due to Theorem 1 by construction:

Mr M i+1
a , (10)

as π′ is an observable behavior of Mr and all other behavior still present in M i+1
l is

already present in M i
l .

Combining Formal Verification and Testing 263

For learning we have to distinguish two cases. First, a previously unobserved behav-
ior π′ has been recorded. We can then do the learning as follows:

Definition 11. Given a deterministic incomplete automaton M = (S, I, O, T, T , Q)
and a regular run π, we derive the deterministic incomplete automaton M ′ =
(S′, I, O, T ′, T , Q′) which results from learning π (denoted by learn(M, π)) as fol-
lows: S′ = S ∪ {s �∈ S|π = . . . s . . . }, T ′ = T ∪ {(s, A, B, s′) �∈ T |π =
. . . s(A, B)s′ . . . }, and Q′ = Q ∪ {s �∈ Q|π = s . . . }.

A second case is present, when the test was blocked. In this case we have a deadlock
run π of the form . . . s(A, B) where (A, B) has been blocked in state s. Learning will
then work as follows.

Definition 12. Given a deterministic incomplete automaton M = (S, I, O, T, T , Q)
and a deadlock run π = . . . s(A, B) where the last interaction was blocked, we derive
the deterministic incomplete automaton M ′ = (S, I, O, T, T

′
, Q) which results from

learning π (denoted by learn(M, π)) as follows: T
′
= T ∪ {(s, A, B)}.

In both cases a learned behavior results in a safe abstraction, as shown in the following
lemmata.

Lemma 7. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r M c
a) and that the behavior learned so far is valid

(M0
a is observation conforming to Mr) holds for any possible run π of M c

r‖Mr:

Mr M i+1
a for M i+1

a = chaos(learn(M i
l , π)). (11)

Proof. It follows form the construction that learn(M i
l , π) is like M i

l observation con-
forming to Mr. Due to Theorem 1 refinement for chaos(learn(M i

l , π
′)) follows. �

In order to be able to employ a trace to improve our abstraction, we only require that the
implementation Mr is deterministic while M i

a might include non-determinism. This is,
however, no real limitation, as in the domain of safety-critical systems we will build
components such that any non-determinism or pseudo non-determinism is excluded.

In our example, we have synthesized the automaton shown in Figure 6. First, the
legacy component is in a noConvoy state. When sending the covnoyProposal message,
the legacy component switches in state convoy.

4.4 Multiple Iterations

With the outlined procedure we can systematically derive a series of abstraction M0
a ,

M1
a , . . . , Mn

a such that we stepwise improve our knowledge about the legacy compo-
nent Mr. In contrast to other approaches for learning this series guarantees always re-
finement such that we can stop our efforts if a first n has been found with M c

a‖Mn
a |= φ

noConvoy

convoy

convoyProposal!

Fig. 6. Synthesized behavior: conflict with environment

264 H. Giese, S. Henkler, and M. Hirsch

as this implies that φ also holds for the real system (M c
r‖Mr |= φ). If in contrast we

reach an n where the related counterexample πn can also be detected in the real imple-
mentation M c

r‖Mr and thus the counterexample is also one for the implementation.

Theorem 2. Given a concrete context M c
r with abstract model M c

a such that the con-
crete context refines the concrete context (M c

r M c
a) and a concrete component im-

plementation Mr with derived series of abstractions {M i
a|0 ≤ i ≤ n} constructed as

outlined in Lemma 7, we can decide whether a property φ holds for M c
r ‖Mr or continue

the series.

Proof. (sketch)
We can show that M i

l is observation conforming to Mr∀0 ≤ i ≤ n via induction. The
first step of the induction is: Lemma 4 provides the guarantee that we will always at
least have one first element M0

l in the series. Thus we can assume the condition for
n = 0. In the induction step we show that if the series can be continued for i, Lemma 7
guarantees the condition also holds for i + 1.

If we cannot continue the series, we either have proven φ for M c
a‖Mn

a or the coun-
terexample πn is also present for M c

r‖Mr. In the former case du to Lemma 5 we have
proven the property φ for M c

r ‖Mr. In the latter, Lemma 6 allows us to conclude that
the property φ is also violated by M c

r‖Mr.
Thus, we can either continue the series or prove respectively disprove the

property φ. �

For finite state legacy components, we can even guarantee termination of this process.
Assuming a finite number of states and transitions as well as deterministic behavior
of the legacy component, every time where the counterexample could not be observed
during testing, we will replace chaotic behavior by previously unknown states or tran-
sitions. Therefore, the number of not already captured states and transitions is strict
monotonically decreasing with each iteration round. As it cannot fall below zero, the
iterative process will thus terminate.

Based on the synthesized behavior shown in Figure 6, we build a closure and check
it with the context. Listing 1.4 shows the counterexample. The property A[] not (rear-
Role.Convoy and frontRole.noConvoy) is violated. The trace shows, that the violation is
only in the synthesized part of the model and therefore, we have a proof that the legacy
component is in conflict with context! This example shows, that our approach supports
a fast conflict detection.

Listing 1.4. Counterexample with conflict in synthesized behavior

shuttle1.noConvoy, shuttle2.noConvoy
shuttle2.convoyProposal!), shuttle1.convoyProposal?
shuttle1.answer, shuttle2.convoy

The approach supports besides possible fast conflict detection a systematic/automatic
way of testing all relevant input combination of the context with respect to the specifica-
tion (properties). The input for testing is the same as shown in the conflicting example

Combining Formal Verification and Testing 265

(cf. Listing 1.1). The monitoring trace shows, that all interactions are performed by the
legacy component with respect to the test input. The synthesized behavior, shown in
Figure 7 confirm this observation. When checking the synthesized behavior containing
the closure, a deadlock is manifested in the closure and not only in the synthesized part
of the behavior. Hence, we will get a counterexample, which we can use as test input
for the next step.

Listing 1.5. Succesful learning step: monitoring all relevant events

[CurrentState] name="noConvoy::default"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=1
[CurrentState] name="noConvoy::wait"
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming
[Timing] count=2
[CurrentState] name="noConvoy"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=3
[CurrentState] name="noConvoy::wait"
[Message] name="startConvoy", portName="rearRole", type=incoming
[Timing] count=4
[CurrentState] name="convoy"

convoy

noConvoy

wait

convoyProposalRejected?

startConvoy?

convoyProposal!

Fig. 7. Correct synthesized behavior w.r.t. context

5 Counterexample Based Testing

As shown in the previous sections, we can check via testing whether π is also a possible
path for M c

r‖Mr. If this is the case we have indeed found a witness that M c
r ‖Mr |= φ

does not hold on the one hand and on the other hand we can use the π for extending our
knowledge of the legacy component.

As proposed in [23], we can use a set of counterexamples of a model checker to
generate test traces for our model. In general this is achieved by passing a constraint
in the form of a temporal logic formula to the model checker that is known not to be
satisfied by the model. The model checker returns an error trace leading to the part of the
model that violates the constraint. This trace π is used to compute initial and final values
for a test case. In our special case here, a specific counterexample is generated if the
synthesized behavior is in conflict with the environment with respect to the properties
of the environment or the interaction between the environment and the legacy system.
Hence, we can take this counterexample to check whether π is also a possible path for
M c

r‖Mr.

266 H. Giese, S. Henkler, and M. Hirsch

The test case is directly derived from the counterexample. While executing the sys-
tem with the test cases, we need to observe relevant events of the system to synthesize
the behavior. Relevant information are the state, messages, and the time when a mes-
sage is received/send or a state is changed (see Definition 1 and [34]). To observe these
events, we need some white box information of the system.

In the case of software monitoring, instrumentation of the source code is needed to
observe the relevant events. For safety critical systems, a hugh amount data is needed.
This includes all timing, all external events (messages), and all scheduling events like
thread switches. During the early development phases, where the software is executed
on a host system, this is typically not a problem. During the later development phases,
however, the lack of resources on a target system can result in severe problems. Due to
this limitation probes for monitoring relevant events must often be removed or strictly
limited for the later development phases. These different probes can then result in dif-
ferent operation times and timing and thus in different behavior. This effect is called the
probe effect [42].

Because monitoring is often relevant during the whole life cycle of embedded sys-
tems, a popular technique is minimizing the relevant events and keeping the probes up
during development and operation (cf. [16] and [19]).

We will use our platform independent deterministic replay approach [22] which min-
imizes the relevant events. In a first step, we (can) execute the system in the real environ-
ment and monitor only the relevant information for deterministic replay e.g, the incom-
ing/outgoing messages and the period number when the messages were received/send
(see Listing 1.2). In a second step, we reproduce the execution deterministically by the
recorded data of the first step. We (can) add further instrumentation, which have no
effects on the execution, to get the information of the relevant events for the behavior
synthesize. These are especially the required state information (see Listing 1.3).

6 Related Work

Related to our approach are on the one hand side regular inference approaches and on
the other hand model abstraction approaches for formal verification purposes. We first
discuss the regular inference approaches.

Regular Inference
In regular inference systems are viewed as black boxes. It is assumed that the consid-
ered black box system can be modeled by a deterministic finite automaton (DFA). The
problem is than, to identify the regular language L(M) of the black system M. Learn-
ing algorithms are used to identify the regular language. A Learner, who initially knows
only the alphabet Σ∗ about M, is trying to learn L(M) by asking queries to a Teacher
and an Oracle. L(M) is learned by membership queries which asks the Teacher whether
a string w ∈ Σ∗ is in L(M). Further, an equivalence query is required to ask the Oracle
whether the hypothesized (learned) DFA A is correct (L(A) = L(M)). The Oracle an-
swers yes if A is correct, or else supply an counterexample. Typically, the Learner asks
a sequence of membership queries and build a hypothesized automaton using the ob-
served answers. When the Learner determines that the hypothesized behavior is stable
an equivalence query is used to find out whether the behavior is correct. If the query is

Combining Formal Verification and Testing 267

successful the Learner has succeeded, otherwise the returned counterexample is used to
revise A and perform further membership queries until deriving the next hypothesized
automaton, and so forth.

Angluin’s Algorithm. The most widely recognized regular inference algorithm is L∗ de-
veloped by Angluin [1]. The algorithm organizes the information obtained from queries
and answers in a so called observation table. The observation table regards each string
as consisting of a prefix and a suffix. The prefixes are indices of rows and the suffixes
indices of columns in the table. A prefix is a string which leads to a state in the system,
and a suffix is used to distinguish prefixes that lead to different states from another. The
complexity of the L∗ algorithm is as follows. The upper bound on the number of equiv-
alence queries is n (n is the number of states of M). The upper bound on the number of
membership queries is O(|Σ|n2m).

Domain Specific Approaches. A number of approaches exist, which are based on
Angluin’s [1] learning algorithm. Some approaches, like [5], extend the algorithm of
Angluin to get better runtime behavior in specific applications or domains. Other ap-
proaches use Angluin’s algorithm and add technologies like testing or verification.

Hungar et al. [33,32,46,40,41] optimizes Angluin’s algorithm by domain specific
information, like the utilization of a deterministic system. They reduce the number of
membership queries.

Li and Shahbaz et al. presents in [37,36,45] an approach which use testing to learn
parameterized state machines. This approach is based on Angluin’s algorithm. First a
unit test for each component is executed. Then, the components are integrated. Based
on the synthesized models tests are generated.

Berg et al. presents in [6] an approach which also tries to regular inference state
machines with parameters. They have adopted Angluin’s L∗ algorithm to work more
efficiently on a particular class of systems. They optimizes the approach in that they
infer, for each state, a partitioning of input symbols into equivalence classes, under the
hypothesis that all input symbols in an equivalence class have the same effect on the
state machine.

The presented approaches in [2,14,20] are based on an automaton model of the sys-
tem/component. Based on that model and a specification, they learn the required as-
sumption to guarantee the specification.

A technique to model check a black box is presented by Peled et al. in [43] by com-
bining regular inference and model checking. The idea of combining the two techniques
is further elaborated to a method called adaptive model checking [27,28]. In [18] this
approach is further extended to grey box checking. The authors assume that some parts
of the system are known. These approaches have the possibility to find an error with
respect to given properties while learning the model.

Grinchtein et al. presents in [26] an approach which extends the inference algorithm
of Angluin and others to the setting of timed systems. More precisely they consider
systems which can be described by a timed automaton.

Equivalence Check. In regular inference an equivalence oracle is required as introduced
in this section. The oracle confirm that the suggested conjecture is correct or provide

268 H. Giese, S. Henkler, and M. Hirsch

a counterexample. Two techniques provide an automatic approach for getting an coun-
terexample, monitoring and conformance testing. The approaches based on monitoring
affect the complexity of the regular inference algorithm negatively. As conformance
testing provides a systematic way of achieving an answer to an equivalence query, it is
mostly used [3]. Like [27] most conformance test approaches are based on Vasilevski
and Chow [47,11]. According to Vasilevski, an upper bound for the total length of a
test sequences suite is O(k2l|Σ|l−k+1). Hence, it is exponential in the difference be-
tween the number of states of the system and the hypothesis. A common assumption
for conformance testing is that A has at most as many states as M [4].

Conclusion. In principle, all approaches based on Angluin require an equivalence check
and the synthesized behavior is an under approximation of the legacy component. Also
other learning approaches like [17] use an under approximation. Despite [27], most ap-
proaches rather try to synthesize the whole behavior and than finding conflicting situa-
tions. However, our approach considers especially the collaboration (context) between
the environment and the legacy component. Thus, the whole behavior of the legacy
system is not required but only the relevant part for the collaboration. As we have as
starting point an over approximation, we did not require an equivalence check. Further,
we check at every learning step the correctness of the model.

Abstraction
Abstraction is an important technique for handling the state explosion problem of model
checking. Counterexamples are often used to refine an abstract model. The upper ap-
proximation is refined, if some behavior in the approximation which is not present in the
original model is the cause of a counterexample. When this happens, it is necessary to
refine the abstraction so that the behavior which caused the erroneous counterexample
is eliminated. Based on white box knowledge like the program variables, the approach
is to find a model of the system with a good abstraction to reduce verification efforts.
First, it is started with an over-approximation of states (states are reduced to one). Then,
the model is refined as long as erroneous counterexamples are eliminated. A number of
approaches are investigating this problem, like [35,38,12].

These approaches are based on white box information. Hence, no tests are required
and these approaches requires not to consider the possible alphabet of the system, which
is the basis for an black box approach. An interaction to the environment of the system,
e.g. in the form of a context, is not considered, too.

7 Conclusion and Future Work

In this paper we presented a scheme on how the correct embedding of legacy compo-
nents can be tackled by a combination of compositional formal verification and test-
ing. An initial behavioral model is derived from the existing interface description and
minimal additional information about the possible states of a legacy component using
reverse engineering. This behavioral model is subsequently improved using formal ver-
ification techniques to systematically generate test for the legacy component. The tests
are then enriched using our deterministic replay capabilities for components such that
they can be exploited to improve the behavioral model. While verification permits to

Combining Formal Verification and Testing 269

completely cover the inherently subtle interaction of the distributed real-time compo-
nents, local testing of the components guided by the verification results is employed to
derive the refined behavioral models.

A serious limitation of the presented results is the limitation to a single legacy com-
ponent. The approach can, however, be extended to multiple legacy components, by
using the parallel combination of multiple behavioral models. The iterative synthesis
will then improve all these models in parallel. While theoretically possible, we can cur-
rently provide no experience whether such a parallel learning is beneficial and useful for
multiple legacy components. Our expectation that it depends on the degree in which the
known context restricts their interaction which determines which benefits our approach
may show also for this more advanced integration problems.

We also have to admit that the approach has currently been evaluated only for a very
small example. We therefore plan to apply it at a larger scale. The employed learning
strategy still provides several options for optimization. At first, the interplay between the
formal verification and the test could be improved when a number of counterexample
instead only single one could be derived from the model checker. Another improvement
seems possible when specific strategies in model checkers to derive counterexamples
(e.g., the shortest one) are considered.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

2. Barringer, H., Pasareanu, C.S., Giannakopolou, D.: Proof rules for automated compositional
verification through learning. In: International Workshop on Specification and Verification of
Component Based Systems, Finland, pp. 14–21 (September 2003)

3. Berg, T.: Regular Inference for Reactive Systems. Licentiate thesis, it (April 2006)
4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspon-

dence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

5. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning. In: Proceed-
ings of the International Workshop on Software Verification and Validation (SVV 2003).
Electronic Notes in Theoretical Computer Science, vol. 118, pp. 3–18 (December 2003)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidel-
berg (2006)

7. Bosch, J., Szyperski, C.A., Weck, W.: Component-oriented programming. In: Malenfant, J.,
Moisan, S., Moreira, A.M.D. (eds.) ECOOP 2000 Workshops. LNCS, vol. 1964, pp. 55–64.
Springer, Heidelberg (2000)

8. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Modular Code
Synthesis for Reconfigurable Mechatronic Software Components. In: Bobeanu, C. (ed.) Proc.
of European Simulation and Modelling Conference (ESMc 2004), Paris, France, pp. 66–73.
EOROSIS Publications (October 2004)

9. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design of
Complex Self-optimizing Mechatronic Systems. In: Informatics in Control, Automation and
Robotics. Springer, Heidelberg (2006)

270 H. Giese, S. Henkler, and M. Hirsch

10. Burmester, S., Giese, H., Schäfer, W.: Model-Driven Architecture for Hard Real-Time Sys-
tems: From Platform Independent Models to Code. In: Hartman, A., Kreische, D. (eds.)
ECMDA-FA 2005. LNCS, vol. 3748, pp. 1–15. Springer, Heidelberg (2005)

11. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

13. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
14. Cobleigh, J.M., Giannakopoulou, D., Psreanu, C.S.: Learning assumptions for compositional

verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346.
Springer, Heidelberg (2003)

15. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby, Zheng, H.:
Bandera: extracting finite-state models from java source code. In: International Conference
on Software Engineering, pp. 439–448 (2000)

16. Dodd, P.S., Ravishankar, C.V.: Monitoring and debugging distributed real-time programs.
Softw. Pract. Exper. 22(10), 863–877 (1992)

17. Duarte, L.M., Kramer, J., Uchitel, S.: Model extraction using context information. In: Nier-
strasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
380–394. Springer, Heidelberg (2006)

18. Elkind, E., Genest, B., Peled, D., H.Q.: Grey-box checking. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, Heidel-
berg (2006)

19. Fidge, C.: Fundamentals of distributed system observation. IEEE Softw. 13(6), 77–83 (1996)
20. Giannakopoulou, D., Pasareanu, C.S.: Learning-based assume-guarantee verification (tool

paper). In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 282–287. Springer, Heidel-
berg (2005)

21. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Verification of
Component-Based Mechatronic Systems with Online-Reconfiguration. In: FSE 2004, pp.
179–188. ACM Press, New York (2004)

22. Giese, H., Henkler, S.: Architecture-driven platform independent deterministic replay for
distributed hard real-time systems. In: Proceedings of the 2nd International Workshop on
The Role of Software Architecture for Testing and Analysis (ROSATEA 2006), pp. 28–38.
ACM Press, New York (2006)

23. Giese, H., Henkler, S., Hirsch, M., Priesterjahn, C.: Model-based testing of mechatronic
systems. In: Geiger, L., Giese, H., Zündorf, A. (eds.) Proc. of the fifth International Fujaba
Days 2007, Kassel, Germany. Technical Report, vol. tr-ri-07-285, pp. 51–55. University of
Kassel (September 2007)

24. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional Ver-
ification of Real-Time UML Designs. In: Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foundations
of software engineering (ESEC/FSE-11), pp. 38–47. ACM Press, New York (2003)

25. Grimm, K.: Software technology in an automotive company: major challenges. In: ICSE 03:
Proceedings of the 25th International Conference on Software Engineering, Washington, DC,
USA, pp. 498–503. IEEE Computer Society, Los Alamitos (2003)

26. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed
decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–
449. Springer, Heidelberg (2006)

27. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 269–301. Springer, Heidelberg (2002)

28. Groce, A., Peled, D., Yannakakis, M.: Amc: An adaptive model checker. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 521–525. Springer, Heidelberg (2002)

Combining Formal Verification and Testing 271

29. Henkler, S., Hirsch, M.: Compositional Validation of Distributed Real Time Systems. In:
Preliminary Proc. of the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER 4), Paderborn, Germany (October 2007)

30. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science. Prentice-
Hall International, Englewood Cliffs (1985)

31. Holzmann, G.J., Smith, M.H.: A practical method for verifying event-driven software. In:
ICSE 1999: Proceedings of the 21st international conference on Software engineering, pp.
597–607. IEEE Computer Society Press, Los Alamitos (1999)

32. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In:
Proc. 15 Int. Conf. on Computer Aided Verification (2003)

33. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer,
Heidelberg (2003)

34. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004)

35. Kurshan, R.P.: Computer-aided verification of coordinating processes: the automata-theoretic
approach. Princeton University Press, Princeton (1994)

36. Li, K., Groz, R., Shahbaz, M.: Integration testing of components guided by incremental state
machine learning. In: TAIC-PART 2006: Proceedings of the Testing: Academic & Industrial
Conference on Practice And Research Techniques, Washington, DC, USA, pp. 59–70. IEEE
Computer Society, Los Alamitos (2006)

37. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learn-
ing parameterized i/o models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006)

38. Lind-Nielsen, J., Andersen, H.R.: Stepwise ctl model checking of state/event systems. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 316–327. Springer,
Heidelberg (1999)

39. Lucio, D., Kramer, J., Uchitel, S.: Model extraction based on context information. In:
ACM/IEEE 9th International Conference on Model Driven Engineering Languages and Sys-
tems. LNCS. Springer, Heidelberg (2006)

40. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for
legacy reactive systems. In: HLDVT 2004: Proceedings of the High-Level Design Validation
and Test Workshop, 2004. Ninth IEEE International, Washington, DC, USA, pp. 95–100.
IEEE Computer Society Press, Los Alamitos (2004)

41. Margaria, T., Raffelt, H., Steffen, B., Leucker, M.: The learnlib in fmics-jeti. In: 2th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS 2007), pp.
340–352. IEEE Computer Society, Los Alamitos (2007)

42. McDowell, C.E., Helmbold, D.P.: Debugging concurrent programs. ACM Comput.
Surv. 21(4), 593–622 (1989)

43. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE XII / PSTV XIX
’99: Proceedings of the IFIP TC6 WG6.1 Joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols (FORTE XII) and
Protocol Specification, Testing and Verification (PSTV XIX), Deventer, The Netherlands,
The Netherlands, pp. 225–240. Kluwer, Dordrecht (1999)

44. Ruf, J.: RAVEN: Real-Time Analyzing and Verification Environment. Journal on Universal
Computer Science (J.UCS) 7(1), 89–104 (2001)

45. Shahbaz, M., Li, K., Groz, R.: Learning parameterized state machine model for integration
testing. In: COMPSAC 2007: Proceedings of the 31st Annual International Computer Soft-
ware and Applications Conference, Washington, DC, USA, vol. 2- (COMPSAC 2007), pp.
755–760. IEEE Computer Society Press, Los Alamitos (2007)

272 H. Giese, S. Henkler, and M. Hirsch

46. Steffen, B., Hungar, H.: Behavior-based model construction. In: Zuck, L.D., Attie, P.C.,
Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 5–19. Springer,
Heidelberg (2002)

47. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics and Systems Analysis 9(4),
653–665 (1973)

48. Weber, M., Weisbrod, J.: Requirements engineering in automotive development: Experiences
and challenges. IEEE Software 20(1), 16–24 (2003)

	Combining Formal Verification and Testing for Correct Legacy Component Integration in Mechatronic UML
	Introduction
	Prerequisites
	Property Specification
	Parallel Composition
	Automata Refinement
	Compositional Constraints
	Parallel Composition and Refinement
	Incomplete Automata
	Chaotic Automata and Closure
	Observation Conformance and Refinement

	Initial Behavior Synthesis
	Iterative Behavior Synthesis
	Formal Verification Step
	Testing Step
	Learning Step
	Multiple Iterations

	Counterexample Based Testing
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

