
Lecture Notes in Computer Science 5135
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rogério de Lemos Felicita Di Giandomenico
Cristina Gacek Henry Muccini
Marlon Vieira (Eds.)

Architecting
Dependable
Systems V

13

Volume Editors

Rogério de Lemos
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK
E-mail: r.delemos@kent.ac.uk

Felicita Di Giandomenico
ISTI-CNR, Area della Ricerca CNR
Via G. Moruzzi 1, 56124 Pisa, Italy
E-mail: felicita.digiandomenico@isti.cnr.it

Cristina Gacek
Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: cristina.gacek@ncl.ac.uk

Henry Muccini
Università dell’Aquila, Dipartimento di Informatica
Via Vetoio, 1, 67010 L’Aquila, Italy
E-mail: muccini@di.univaq.it

Marlon Vieira
Siemens Corporate Research
755 College Road East, Princeton, NJ 08540, USA
E-mail: marlon.vieira@siemens.com

Library of Congress Control Number: 2008933382

CR Subject Classification (1998): D.2, D.4, B.8, E.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-85570-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85570-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446032 06/3180 5 4 3 2 1 0

Preface

This is the fifth book in a series on Architecting Dependable Systems we started six
years ago that brings together issues related to software architectures and the depend-
ability of systems. This book includes expanded and peer-reviewed papers based on
the selected contributions to two workshops, and a number of invited papers written
by recognized experts in the area. The two workshops were: the Workshop on Archi-
tecting Dependable Systems (WADS) organized at the 2007 International Conference
on Dependable Systems and Networks (DSN 2007), and the Third Workshop on the
Role of Software Architecture for Testing and Analysis organized as part of a feder-
ated conference on Component-Based Software Engineering and Software Architec-
ture (CompArch 2007).

Identification of the system structure (i.e., architecture) early in its development
process makes it easier for the developers to make crucial decisions about system
properties and to justify them before moving to the design or implementation stages.
Moreover, the architectural level views support abstracting away from details of the
system, thus facilitating the understanding of broader system concerns. One of the
benefits of a well-structured system is the reduction of its overall complexity, which in
turn leads to a more dependable system. System dependability is defined as the reli-
ance that can be justifiably placed on the service delivered by the system. It has be-
come an essential aspect of computer systems as everyday life increasingly depends
on software. It is therefore a matter for concern that dependability issues are usually
left until too late in the process of system development.

Making decisions and reasoning about structure happen at different levels of ab-
straction throughout the software development cycle. Reasoning about dependability
at the architectural level has recently been in the focus of researchers and practitioners
because of the complexity of emerging applications. From the perspective of software
engineering, traditionally striving to build software systems that are fault-free, archi-
tectural consideration of dependability requires the acceptance of the fact that system
models need to reflect that it is impossible to avoid or foresee all faults. This requires
novel notations, methods and techniques providing the necessary support for reason-
ing about faults (including fault avoidance, fault tolerance, fault removal and fault
forecasting) at the architectural level.

This book comes as a result of bringing together research communities of software
architectures and dependability, and addresses issues that are currently relevant to
improving the state of the art in architecting dependable systems. The book consists of
three parts: “Critical Infrastructures,” “Rigorous Design and Fault Tolerance,” and
“Verification and Validation.”

The first part entitled “Critical Infrastructures” includes six papers focusing on
various aspects of architecting critical infrastructures. The structuring of software
systems at the architectural level is especially fundamental for the development of
critical infrastructures. Nowadays, public health, economy, security and quality of life

VIII Preface

heavily depend on the resiliency of a number of critical infrastructures, including
energy, telecommunications, transportation, emergency services and many others. The
technological advances and the necessity for improved efficiency resulted in increas-
ingly automated and interlinked infrastructures, with consequences on increased vul-
nerabilities to accidental and human-made faults. Addressing the development of such
systems with rigorous methodologies and evolutionary approaches at an architectural
level has high potential to enhance dependability and resiliency in these critical sec-
tors. In recognition of this emerging necessity, this book includes a specific part on
architecting critical infrastructures. The six contributions grouped in this section focus
on architecting critical infrastructures at both the system design level, where intrusion
tolerant architectures, virtualization, improved middleware technologies and efficient
communication infrastructures are addressed, and at the verification and validation
level, where the problem of modeling and understanding interdependencies among
interlinked critical infrastructures is tackled.

The first paper in this part, “The CRUTIAL Architecture for Critical Information
Infrastructures,” is by P. Verissimo, N. Neves, M. Correia, Y. Deswarte, A. Abou El
Kalam, A. Bondavalli and A. Daidone. In this paper the authors highlight the suscep-
tibility of critical information infrastructures to computer-borne attacks and faults.
They discuss how to overcome these problems and propose a generic architecture as
well as a set of techniques and algorithms aiming at achieving resilience of critical
information infrastructures to faults and attacks in an automatic way.

The paper “A Middleware Improved Technology (MIT) to Mitigate Interdepend-
encies Between Critical Infrastructures” by C. Balducelli, A. Di Pietro, L. Lavalle and
G. Vicoli deals with new middleware technologies (MIT) to support co-ordination
among different large complex critical infrastructures (LCCI). The objective is to
mitigate interdependency effects so as to enhance the resilience and survivability of
LCCIs. The features provided by the MIT technology, as well as the adopted reference
architecture and an experimental environment for testing purposes, are overviewed.
The paper is developed in the framework of the EU IRRIIS project, which aims at
protecting critical infrastructures in the energy and telecommunication domains.

S. Chiaradonna, F. Di Giandomenico and P. Lollini contribute to the book with the
paper “Evaluation of Critical Infrastructures: Challenges and Viable Approaches.”
This paper introduces critical infrastructures with a focus on the challenges for evalua-
tion. Furthermore, it provides initial results from a Moebius modeling framework to
evaluate failures in the ICT infrastructure of an electric power system. The experience
gained by the authors in a European project is reported and discussed.

The fourth paper, written by A. Daidone, S. Chiaradonna, A. Bondavalli and P.
Verissimo is entitled “Analysis of a Redundant Architecture for Critical Infrastructure
Protection.” In the CRUTIAL reference architecture each LAN is connected to the
WAN through a special interconnection and filtering device. Replica rejuvenation
strategy applied to these devices is based on both periodic (proactive) recoveries and
on event-triggered (reactive) recoveries, seeking perpetual unattended correct opera-
tion. This paper analyzes the redundant architecture of these devices by evaluating
how effective the trade-off between proactive and reactive recoveries is, identifying
the relevant parameters of the architecture and finding the best parameter setup.

 Preface IX

The fifth paper in this part, “A Robust Semantic Overlay Network for Microgrid
Control Applications,” is by G. Deconinck, T. Rigole, H. Beitollahi, R. Duan, B.
Nauwelaers, E. Van Lil, J. Driesen, R. Belmans and G. Dondossola. In this paper the
authors present Agora, which is a semantic overlay network that allows one to effi-
ciently route queries in overlay networks. The routing is related to microgrid control,
and the semantics is based on an XML description of the static and dynamic character-
istics of the intelligent electronic devices. It is robust against changes, and provides
graceful degradation in case of unrecovered failures.

The paper “Architecting Dependable and Secure Systems Using Virtualization” by
B. Jansen, H. V. Ramasamy, M. Schunter and A. Tanner explores the emerging virtu-
alzation approach, through which the real hardware system configuration is abstracted
from, to enhance systems dependability and security. A practical realization of a sub-
set of the proposed enhancements, namely, intrusion detection and protection, using
the Xen open-source virtual machine monitor (VMM) is detailed. In such a context,
the impact of virtualization on node reliability is quantified using combinatorial mod-
eling. The results of these analyses constitute useful guidelines on design options to
effective leveraging of virtualization to system dependability purposes. They also
triggered further improvements by the authors on the VMM design.

The second part of this book is entitled “Rigorous Design and Fault Tolerance” and
contains three papers.

The paper “Model-Based Approaches for Dependability in Ad-Hoc Mobile Net-
works and Services” by G. Pinter, Z. Micskei, A. Kovi, Z. Egel, I. Kocsis, G. Huszerl
and A. Pataricza reports the authors’ research activity to architect dependable, distrib-
uted systems through a model-driven design approach. The ad-hoc mobile networks
context adopted by the EU Hidenets project is specifically addressed. Contributions
include the construction of the UML model of the Hidenets platform, the construction
of a metamodel of the applications running on the platform, the UML profile for the
metamodel as well as the definition of a set of design patterns to support the imple-
mentation of applications built for the Hidenets platform using the defined profile.

In the paper “Design, Implementation and Deployment of State Machines Using a
Generative Approach”, G. N.C. Kirby, A. Dearle and S.J. Norcross present an ap-
proach to designing and implementing a distributed system as a family of related finite
state machines, generated from a single abstract model. The state machine family
formalizes the interactions between the components of the distributed system, allow-
ing increased confidence in correctness. The feasibility of the proposed approach was
demonstrated in the context of a Byzantine fault-tolerant commit protocol used in a
distributed storage system.

The third paper in this part, “Handling Emergent Nondeterminism in Replicated
Services,” is written by J. Slember and P. Narasimhan. This paper presents Midas, an
approach to identifying and addressing multiple sources of nondeterminism in a
multi-service replicated distributed architecture. Midas involves a combination of
compile-time dependency, concurrency and nondeterminism analyses, followed by the
performance-sensitive compensation of nondeterminism at runtime.

Part three of the book is on “Verification and Validation” and includes five papers
focusing on approaches to architecture level verification, validation, analysis and
evaluation.

X Preface

This part starts with a paper by M. H. Diallo, L. Naslavsky, T. A. Alspaugh, H. Ziv
and D. J. Richardson that is entitled “Toward Architecture Evaluation Through Ontol-
ogy-Based Requirements-Level Scenario.” The paper describes an approach for evalu-
ating whether a candidate architecture dependably satisfies stakeholder requirements
expressed in requirements-level scenarios. The approach maps scenarios expressing
both functional requirements and quality attributes of the system, to architectural ele-
ments through an ontology of requirements-level event classes and domain entities.
This in turn provides a clear connection between stakeholder requirements and archi-
tectural solutions to address them.

In their paper entitled “Combining Formal Verification and Testing for Correct
Legacy Component Integration in Mechatronic UML,” H. Giese, S. Henkler and
M. Hirsch present a combined use of testing and formal verification for verifying
complex real-time component-based systems that include legacy components. The
approach is motivated by the need of sufficiently validating the integration of real-
time, embedded, and legacy components, and by the claim that a testing phase alone,
when applied to such a domain, cannot provide enough guarantees. Thus, the ap-
proach proposed here is composed of many steps: a behavioral model of embedded
legacy components is derived from the existing interface description; then, such an
initial model is submitted to formal verification; if the verification step identifies a
failure, the produced counterexample is used to test the legacy component; the execu-
tion information is used for refining the behavioral model of the legacy components;
the new synthesized behavior is then the starting point for the next iteration. In sum-
mary, while formal verification is used for verifying components interactions, local
testing of the legacy components is used to refine the behavioral model.

S. Wang, G. S. Avrunin and L. A. Clarke, in their paper “Plug-and-Play Architectural
Design and Verification,” focus on software plug-and-play architectural design. They
propose an approach that allows designers to experiment with alternative design choices
of component interactions in a plug-and-play manner. The paper describes how to design
and present plug-in-play components using a set of notations to show classified compo-
nent interactions; furthermore it provides details of how reusable formal models can be
created for the connector building blocks. This approach is particularly useful to specify
and present different component connection relationships.

In the fourth paper, entitled “Data Flow-based Validation of Web Services Compo-
sitions: Perspectives and Examples,” C. Bartolini, A. Bertolino, E. Marchetti and
I. Parissis describe the use of data flow modeling for testing composite Web services
(WSs). The central problem on testing WSs is that the dynamic binding of services
makes it impractical to test in advance all the concrete service combinations that can
be involved in a workflow. By considering in an explicit way a model of how data are
expected to be exchanged between the combined services, it is possible to check
whether desired properties are satisfied or also to test whether the implemented Web
services composition (WSCs) complies with that model. The authors discuss ways in
which, depending on the information available, the flow of data in WSCs can be use-
fully referred to for verification and validation purposes.

The fifth paper, by T. Kettu, E. Kruse, M. Larsson and G. Mustapic, is entitled “Using
Architecture Analysis to Evolve Complex Industrial Systems.” This paper from industry
provides practical advice on how to reconstruct the architecture of existing software

 Preface XI

systems by combining the use of tools and the existing knowledge within the organiza-
tion. The authors claim that to obtain an up-to-date view of the system and prevent
expensive mistakes during system evolution, it is fundamental to obtain an up-to-date
view of the architecture of the system. The paper is based on experiences from two cases
related to industrial automation.

Architecting dependable systems is now a well-recognized area, attracting interest
and contributions from many researchers. We are certain that this book will prove
valuable for both developers designing complex applications and researchers building
techniques supporting this. We are grateful to many people that made this book possi-
ble. Our thanks go to the authors of the contributions for their excellent work, the
DSN 2007 WADS and CompArch 2007 ROSATEA participants for their active par-
ticipation in the discussions, and Alfred Hofmann from Springer for believing in the
idea of a book series on this important topic and for helping us to get it published.
Last but not least, we appreciate very much the efforts of our reviewers who helped us
in ensuring the high quality of the contributions. They are Sascha Konrad, Tao Xie,
Graham Kirby, Rick Kazman, Simona Bernardi, Istvan Majzik, Bedir Tekinerdogan,
Miguel Correia, Gergely Pinter, Silvano Chiaradonna, Stephan Storck, Sandro Bolo-
gna, Santosh Shrivastava, Paolo Lollini, Alan Hartman, Giovanna Dondossola, Nuno
Neves, Sasikumar Punnekkat, Mauro Gaspari, Holger Giese, Eda Marchetti, Kristina
Lundqvist, Paris Avgeriou, Luciano Baresi, Andrea Polini, Joseph Slember, Andreas
Ulrich, Andrea Bondavalli, Suzanne Embury, Jerry Gao, Roberto Baldoni, Daniel
Paulish, Stephan Storck, and several anonymous reviewers.

June 2008 Rogério de Lemos

Felicita Di Giandomenico
Cristina Gacek
Henry Muccini
Marlon Vieira

Foreword

Innovative, high-impact research results in the sciences and engineering may seem to
an outsider to have sprung forth from a vacuum, but in truth, they are the result of
novel combinations of known ideas. The right conditions to produce such results are
often created through the intentional mixing of different communities, each with its
own point of view.

For six years now, the Workshop on Architecting Dependable Systems (WADS)
has brought together two distinct and very different communities, the software archi-
tecture and dependability communities, in order to provide a seedbed for the growth
of new ideas concerning the design, construction, and validation of large-scale soft-
ware-based systems that must be dependable. The importance of bringing together
these communities has steadily grown during this period, as our society’s dependence
on information-technology-based systems continues to grow and as the amount of
software in such systems increases.

This volume in the series focuses on methods for designing and validating critical
infrastructures, both from an application-driven, top-down perspective and from a
bottom-up, technology-driven perspective. In both cases, the authors include people
from both the dependability and security community and the software architecture
community. The discussion at the associated workshop at the IEEE/IFIP Dependable
Systems and Networks meeting was lively, and the revised and expanded papers pre-
sented in this volume capture the results of those discussions, and some of the excite-
ment of the exchanges that day.

I applaud Rogério de Lemos, Felicita Di Giandomenico, Cristina Gacek, Henry
Muccini, and Marlon Vieira for their work in putting together this volume, and in their
long-standing organization of the WADS series. In bringing together people from both
the software architecture and dependability communities in a sustained way each year,
they are engaging in a community-building effort that could have a significant payoff:
the creation of the ability to architect software-based systems that are dependable by
design, and remain dependable when configured in different ways throughout their
range of use and lifecycle.

Such community-building is hard work, but its value is immense. I look forward
to seeing the ongoing efforts that are reflected in this volume bear fruit for many years
to come.

June 2008 William H. Sanders

Table of Contents

Part 1. Critical Infrastructures

The CRUTIAL Architecture for Critical Information Infrastructures 1
Paulo Veŕıssimo, Nuno F. Neves, Miguel P. Correia, Yves Deswarte,
A. Abou El Kalam, Andrea Bondavalli, and Alessandro Daidone

A Middleware Improved Technology (MIT) to Mitigate
Interdependencies between Critical Infrastructures 28

Claudio Balducelli, Antonio Di Pietro, Luisa Lavalle, and
Giordano Vicoli

Evaluation of Critical Infrastructures: Challenges and Viable
Approaches . 52

Silvano Chiaradonna, Felicita Di Giandomenico, and Paolo Lollini

Analysis of a Redundant Architecture for Critical Infrastructure
Protection . 78

Alessandro Daidone, Silvano Chiaradonna, Andrea Bondavalli, and
Paulo Veŕıssimo

A Robust Semantic Overlay Network for Microgrid Control
Applications . 101

Geert Deconinck, Koen Vanthournout, Hakem Beitollahi,
Zhifeng Qui, Rui Duan, Bart Nauwelaers, Emmanuel Van Lil,
Johan Driesen, and Ronnie Belmans

Architecting Dependable and Secure Systems Using
Virtualization . 124

Bernhard Jansen, HariGovind V. Ramasamy,
Matthias Schunter, and Axel Tanner

Part 2. Rigorous Design/Fault Tolerance

Model-Based Approaches for Dependability in Ad-Hoc Mobile Networks
and Services . 150

Gergely Pintér, Zoltán Micskei, András Kövi, Zoltán Égel,
Imre Kocsis, Gábor Huszerl, and András Pataricza

Design, Implementation and Deployment of State Machines Using a
Generative Approach . 175

Graham N.C. Kirby, Alan Dearle, and Stuart J. Norcross

Handling Emergent Nondeterminism in Replicated Services 199
Joseph Slember and Priya Narasimhan

XIV Table of Contents

Part 3. Verification and Validation

Toward Architecture Evaluation through Ontology-Based
Requirements-Level Scenarios . 225

Mamadou H. Diallo, Leila Naslavsky, Thomas A. Alspaugh,
Hadar Ziv, and Debra J. Richardson

Combining Formal Verification and Testing for Correct Legacy
Component Integrationin Mechatronic UML . 248

Holger Giese, Stefan Henkler, and Martin Hirsch

Plug-and-Play Architectural Design and Verification 273
Shangzhu Wang, George S. Avrunin, and Lori A. Clarke

Data Flow-Based Validation of Web Services Compositions:
Perspectives and Examples . 298

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and
Ioannis Parissis

Using Architecture Analysis to Evolve Complex Industrial Systems 326
Tommy Kettu, Eckhard Kruse, Magnus Larsson, and
Goran Mustapic

Author Index . 343

The CRUTIAL Architecture
for Critical Information Infrastructures�

Paulo Verı́ssimo1, Nuno F. Neves1, Miguel Correia1, Yves Deswarte2,
A. Abou El Kalam3, Andrea Bondavalli4, and Alessandro Daidone4

1Universidade de Lisboa, FCUL
Lisboa, Portugal

2LAAS-CNRS 3IRIT, ENSEEIHT-INPT, Université de Toulouse
4University of Florence

Florence, Italy
{pjv,nuno,mpc}@di.fc.ul.pt, yves.deswarte@laas.fr,
anas.abouelkalam@enseeiht.fr, bondavalli@unifi.it,

daidone@dsi.unifi.it

Abstract. In this chapter we discuss the susceptibility of critical information in-
frastructures to computer-borne attacks and faults, mainly due to their largely
computerized nature, and to the pervasive interconnection of systems all over
the world. We discuss how to overcome these problems and achieve resilience
of critical information infrastructures, through adequate architectural constructs.
The architecture we propose is generic and may come to be useful as a reference
for modern critical information infrastructures. We discuss four main aspects:
trusted components which induce prevention; middleware devices that achieve
runtime automatic tolerance and protection; trustworthiness monitoring mecha-
nisms detecting and adapting to non-predicted situations; organization-level se-
curity policies and access control models capable of securing global information
flows.

1 Introduction

The largely computerized nature of critical infrastructures on the one hand, and the per-
vasive interconnection of systems all over the world, on the other hand, have generated
one of the most fascinating current problems of computer science and control engineer-
ing: how to achieve resilience of critical information infrastructures. In this chapter, we
are concerned with the susceptibility of the latter to computer-borne attacks and faults,
i.e., with the protection of these infrastructures.

We propose an architecture and a set of techniques and algorithms aiming at achiev-
ing resilience to faults and attacks in an automatic way. Although we focus on the
computer systems behind electrical utility infrastructures as an example, the architec-
ture we propose is generic and may come to be useful as a reference for modern critical
information infrastructures.
� This work was mainly supported by the EC, through project IST-FP6-STREP 027513 (CRU-

TIAL) and NoE IST-4-026764-NOE (ReSIST), by the FCT through the Large-Scale Informatic
Systems Laboratory (LaSIGE) and the CMU-Portugal partnership.

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 1–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 P. Verı́ssimo et al.

It is worthwhile recapitulating some of the reasoning behind the blueprint of this archi-
tecture, recently published [23]. Although inspired by previous intrusion-tolerant system
architectures, the CRUTIAL architecture was largely influenced by two facts. Firstly, the
fact that Critical Information Infrastructures (CII) feature a lot of legacy subsystems (con-
trollers, sensors, actuators, etc.). Secondly, the fact that conventional security and pro-
tection techniques can bring serious problems, when directly applied to CII controlling
devices, by preventing their effective operation. Although they are very practical prob-
lems, we will show ahead that they yielded in fact very interesting research challenges.

Another relevant fact was that our belief that the crucial problems in critical infor-
mation infrastructures lie with the forest, not the trees, has been confirmed everyday
as new incidents have occurred. That is, the problem is mostly created by the generic
and non-structured network interconnection of CIIs, which bring several facets of expo-
sure impossible to address at individual level. Whilst it seems today non-controversial
that such a status quo brings a considerable level of threat, to our knowledge there had
been no previous attempt at addressing the problem through the definition of a ref-
erence model of a critical information infrastructure distributed systems architecture.
One which, by construction, would lay the basic foundations for the necessary global
resilience against abnormal situations. Our conjecture was that such a model would
be highly constructive, for it would form a structured framework for (1) conceiving the
right balance between prevention and removal of vulnerabilities and attacks; (2) achiev-
ing tolerance of remaining potential intrusions and designed-in faults; and (3) enabling
adaptation and self-awareness mechanisms to overcome unforeseen situations. In this
chapter, we will report some advances in this area.

Finally, and in a related manner, we conjectured that any solution, to be effective, has
to involve automatic control of macroscopic command and information flows, occurring
essentially between the several realms composing the critical information infrastructure
architecture (both intra- and inter-organizations), with the purpose of securing appro-
priate system-level properties, at organizational level. This has to be addressed, in an
automatic way, through innovative access control models that understand the organiza-
tional reality, and are thus capable of translating the related high-level security policies
into the adequate technical mechanisms such as access control matrices and firewall
filter rule-sets.

The chapter is organized as follows: Section 2 does the Architecture Description.
Then, the Protection Strategies and Services are introduced in Section 3, followed by
the Trustworthiness Monitoring Services in Section 4. The chapter concludes with a
discussion on Access Control for Critical Information Infrastructures, in Section 5.

2 Architecture Description

The CRUTIAL architecture encompasses four aspects. (i) Architectural configurations
featuring trusted components in key places, which a priori induce prevention of some
faults, and of certain attack and vulnerability combinations. (ii) Middleware devices
that achieve runtime automatic tolerance of remaining faults and intrusions, supply-
ing trusted services out of non-trustworthy components. (iii) Trustworthiness monitor-
ing mechanisms detecting situations not predicted and/or beyond assumptions made,

The CRUTIAL Architecture for Critical Information Infrastructures 3

and adaptation mechanisms to survive those situations. (iv) organization-level security
policies and access control models capable of securing information flows with different
criticality within/in/out of a CII. It is important to point out that the notion of CII is hard
to formalize. The generic idea is that the CII is the computer systems (or ICT) part of a
critical infrastructure, which is the working definition that we use in this chapter.

Intrusion tolerance mechanisms are selectively used in the CRUTIAL architecture,
to build layers of progressively more trusted components and middleware subsystems,
from baseline untrusted components (nodes, networks). This leads to an automation
of the process of building trust: for example, at lower layers, basic intrusion tolerance
mechanisms are used to construct a trustworthy communication subsystem, which can
then be trusted by upper layers to securely communicate amongst participants with-
out bothering about network intrusion threats. Middleware services and protocols in
the architecture use distinct techniques that address different levels of criticality of the
architecture, such as randomization and wormholes, software or hardware implemen-
tations, and support a diverse set of requirements from the applications: dynamic and
static groups; synchronous, partially-synchronous, and asynchronous execution; toler-
ance from benign accidental faults to malicious coordinated attacks.

CRUTIAL Information Switches (CIS) route the information to and from LANs with
different criticality levels, wherever they are in the infrastructure: intranet, SCADA, In-
ternet gateway. In fact, a lot of the protection and intrusion resilience reside in this class
of components that interconnect the several LANs comprising a CRUTIAL architecture.
But they are more than mere TCP/IP routers: in a simplistic way they could be seen as
sophisticated circuit or application level firewalls combined with equally sophisticated
intrusion detectors, connected by distributed protocols. Collectively they act as a set of
servers providing distributed services relevant to solving our problem: achieving control
of the command and information flow, and securing a set of system-level properties.

Monitoring and diagnosis can be performed at several levels, through diverse mech-
anisms: CIS self-diagnosis, the diagnosis inside the CIS as part of the fault tolerance
policy of the CIS itself; diagnosis on other components in the system (making assump-
tions on the security policy applied inside the CIS); diagnosis on the LANs and their
nodes; diagnostic information gained by processing the security policy decisions, inter-
preting them as error detections. The collected information may be used in order both
to take local decisions and to coordinate CIS activities.

Access control is a key issue. Although several organizations are normally involved and
have to cooperate in the operation of a CII, from the access control point of view, each
organization in a CII should keep its independence and responsibility on its assets and
personnel. We propose that: each organization defines its own security policy (accord-
ing to the OrBAC model), and enforce it with its own authentication and authorization
means; the organizations cooperate through web services, and for each web service, a
contract is signed between the provider and the client; this contract is translated in secu-
rity rules (expressed within the Poly-OrBAC model), these rules being implemented with
the involved CIS, and enforced at each step of web service interaction; the interactions
are recorded into logs by each involved CIS, and these logs can serve as evidence in case
of dispute: each organization stay liable of all actions initiated by its own personnel.

4 P. Verı́ssimo et al.

2.1 Key Architecture Aspects

The CRUTIAL architecture, despite inspired by previous intrusion-tolerant reference
architectures like MAFTIA [22], extends them significantly to attend the specific chal-
lenges of the critical information infrastructure problem, for example, legacy, global
access control, and above all non-stop operation and resilience.

Given the severity of threats expected, some key components are built using archi-
tectural hybridization methods in order to achieve extremely high robustness:

– Trusted-trustworthy operation [22] is an architectural paradigm whereby compo-
nents prevent the occurrence of some failure modes by construction, so that their
resistance to faults and hackers can justifiably be trusted. In other words, some
special-purpose components are constructed in such a way that we can argue that
they are always secure, so that they can provide a small set of services useful to
support intrusion tolerance in the rest of the system. This concept is in line with,
but richer than, recent technological concepts like trusted computing or trusted plat-
form modules.

Another interesting aspect of this work is related with the mechanisms that we had
to develop, to preserve the large legacy composition of CII and keep changes to a min-
imum:

– Fully-transparent intrusion tolerance aims at preserving the complete illusion of
a standard system to legacy components. It is implemented by innovative replica
control and communication algorithms. Any SCADA and corporate network tech-
nologies stay unchanged, the only modification foreseen being the requirement of
IPsec at communication level, but this is considered a trend anyway [4].

Another innovative aspect of this work is our approach to achieve resilience. This
goes further to mere intrusion tolerance, and can be seen as a specialization of this
kind of architecture to critical infrastructures. The problem is addressed through two
paradigms:

– Proactive-resilience to achieve exhaustion-safety [20], and ensure perpetual, non-
stop operation despite the continuous production of faults and intrusions. This is not
a requirement of many intrusion-tolerant systems, but it is definitely of importance
for unattended operation, as is desired of the control part of CII.

– Trustworthiness monitoring to perform surveillance of the coverage stability of the
system, that is, of whether it is still performing inside the assumed fault envelope
or beyond assumptions made [2]. In the latter case, dependable adaptation mecha-
nisms are triggered to stabilize coverage and thus, the operational guarantees. This
is of extreme importance for situations of instability, either caused by accidental
events or malicious attacks, and we believe it can be a key to lower the risk of
cascading and/or escalating failures.

Finally, the desired control of the information flows is partly performed through ad-
vanced protection mechanisms:

The CRUTIAL Architecture for Critical Information Infrastructures 5

– the OrBAC firewall is an adaptation of the classical firewall rule-set operation to en-
force an organization-based access control model (OrBAC) [11] for implementing
global-level security policies. OrBAC allows the expression of security policy rules
as high level abstractions, and it is of importance for homogenizing the diverse se-
curity policies of organizations involved in a CII into one policy that controls the
global information flow.

In summary, the mechanisms and algorithms in place achieve system-level properties
of the following classes: trustworthiness or resistance to faults and intrusions (i.e., se-
curity and dependability); timeliness, in the sense of meeting timing constraints raised
by real world control and supervision; coverage stability, to ensure that variation or
degradation of assumptions remains within a bounded envelope; dependable adaptabil-
ity, to achieve predictability in uncertain conditions; resilience, read as correctness and
continuity of service even beyond assumptions made.

2.2 Main Building Blocks

The overall picture of a CRUTIAL system, shown in Figure 1, was detailed in [23].

� � �

� � �

� � 	
 � 	 � �

� � � � � � 	 �

� � � � � � � � � � � � � �

� � �

� � �

� � � � � � � �

� � � � � 	 �

�

�

� � �

� � �

� � �

� � �

� �

� � �

� � �

� � �

� � �

� � � � 	 � �

� � � � 	 �

� � � 	 � �

� � �

� � �

� �

� � � � � 	 � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � 	 � � � � � � � � 	 �

� 	 � � � � � � � � � 	 �

� � � � � � � � � � � � 	 �

Fig. 1. CRUTIAL overall architecture (WAN-of-LANs connected by CIS)

We view the system as a WAN-of-LANs. There is a global interconnection network,
the WAN, that switches packets through generic devices that we call CRUTIAL Infor-
mation Switches (CIS), which in a simplistic way could be seen as sophisticated circuit
or application level firewalls combined with equally sophisticated intrusion detectors,
connected by distributed protocols. The WAN is a logical entity operated by the CII
operator companies, which may or may not use parts of public network as physical
support. A LAN is a logical unit that may or may not have physical reality (e.g., LAN
segments vs. Virtual LANs (VLANs)). More than one LAN can be connected by the

6 P. Verı́ssimo et al.

same CIS. All traffic originates from and goes to a LAN. As example LANs, the reader
can envision: the administrative clients and the servers LANs; the operational (SCADA)
clients and servers LANs; the engineering clients and servers LANs; the PSTN modem
access LANs; the Internet and extranet access LANs; an historian network (to store
monitoring data); etc.

CIS collectively act as a set of servers providing distributed services relevant to solv-
ing our problem: achieving control of the command and information flow, and secur-
ing a set of necessary system-level properties. In consequence, no traffic set to enjoy
CRUTIAL-level protection can go from one LAN to another without crossing a CIS.

3 Protection Strategies and Services

We now discuss the failure assumptions underpinning the architecture design, concern-
ing the main architectural devices: WAN, LAN, CIS. Shadowing in the figure symbol-
izes untrusted areas:

– The WAN interconnect (heavily shadowed) is assumed to have arbitrary behavior,
which is akin to saying it can be totally compromised.

– The CII facilities (lightly shadowed) are assumed to have varying faulty behavior,
from arbitrary to crash failure.

– Inside the facilities, the LAN is the unit of failure. This is akin to assuming that
some LANs will be completely trusted (e.g., by construction, or by recursive use
of intrusion tolerance), whereas other LANs may even be arbitrary (e.g., in conse-
quence of insider threats).

– Overall, we assume that faults (accidental, attacks, intrusions) continuously occur
during the life-time of the system, the only limit being that a maximum number of
f malicious (or arbitrary) faults can occur within a given interval. Note that this is
weaker than assuming that only f faults may occur during the whole life-time of
the system.

– CIS components are trusted to securely switch information flows as a service to
edge LANs as clients.

– LANs trust the services provided by the CIS, but are not necessarily trusted by the
latter.

The assumptions described above have a few implications on the protection strategies
chosen. Let us start by the CIS construction:

– The CIS is a main target to any hacker having understood the CRUTIAL architec-
ture, since the CIS is supposed to be a trusted component. We recognize this threat
by assuming that a number of CIS or components thereof can be corrupted.

– In order to be trusted, the CIS must be trustworthy. As such, the CIS itself must
be made intrusion-tolerant, prevent resource exhaustion providing perpetual oper-
ation (i.e., can not stop), and be resilient against assumption coverage uncertainty,
providing survivability.

– The CIS is thus implemented as a set of redundant units (multiple-box physically
replicated hardware units, or single-box logically replicated software units), de-
pending on the level of resilience to attain.

The CRUTIAL Architecture for Critical Information Infrastructures 7

– Given the nature of malicious faults, which can be made common-mode, CIS con-
struction and or reconfiguration may be based on diversity techniques (ex. n-version
programming, obfuscation, etc.).

– The CIS also has proactive recovery mechanisms, so that each component is peri-
odically rejuvenated in such a way that if it suffered an intrusion, then the intrusion
is no longer present after the rejuvenation process.

– The CIS is further monitored by special run-time trustworthiness monitoring mech-
anisms, which make sophisticated sanity checks. Reactive recovery may for exam-
ple be triggered immediately an successful attack or failure is detected. Adaptation
mechanisms may also be parameterized by these monitors.

� � � � � � � 	
 � � � �

� � � � � � � �

� � � � � � � � � 	 � �
 �

� � � � � ! � � � � � �

� � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � � � �

� � � � � � �
 � � � �

� � � � � � � � � � � � �

	
 � 	 � � � � � � �

� � � � � � � � � � �

	
 � 	 � � � � � � �

� � � � � � � � � � � � �

� � � � � � � 	
 � � � �

� � � � � � � � � 	 � �
 �

� � � � � � � � 	 � � � � � ! � � 	 � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �
 � � � � � � �
 � � � �

� � � � � � � � � � � � �

� � 	 " � �

� 	 � # # � �

	
 � 	 � � � � � � �

� � � � � � � � � � �

� � � � � � � �

Fig. 2. Building trust in CRUTIAL (CIS level)

As exemplified in Figure 2a, a simplex (i.e., non intrusion-tolerant) CIS, once at-
tacked, becomes under the control of the attacker and can fail. In the figure, attack
traffic will go through the compromised CIS and hit the station computer and control
networks in the CII. On the other hand, an intrusion-tolerant CIS (Figure 2b) despite
corruption of one or more components, will continue providing correct service, as long
as not more than a quorum f of component failures occur. CIS can be physically or log-
ically replicated, examples of this incremental intrusion tolerance strategy are discussed
in [1]. The figure shows a triple with a corrupted replica (f = 1): despite attacked by
unauthorized traffic, voting between all replicas discards these messages, only letting
normal traffic through to the station computer.

Let us look at the services running in or among CIS:

– The local services implemented on the CIS servers enjoy the CIS intrusion tol-
erance to secure the desired properties in the presence of malicious traffic and/or
commands.

– The distributed services implemented on sets of CIS servers are subject to possibly
Byzantine attacks. In consequence, cooperating CIS must be interconnected with
intrusion-tolerant protocols, in order to correctly implement the desired services.

Consider that the CIS boxes in the next figures represent intrusion-tolerant logical
CIS. That is, to any services running locally on top of a logical CIS, the latter appears as
being fail-controlled, in a good example of recursive use of intrusion-tolerance featured
by this architecture. As exemplified in Figure 3a, services running on an intrusion-
tolerant CIS are trusted to run correctly, despite faults or attacks. As such, these services
are trusted-trustworthy, that is, trusted because they are trustworthy.

8 P. Verı́ssimo et al.

� � � � � � � � �
 � � � � � � � � � � � �
 � � �
 �

� � �

� � �

� � � � � � � � �
 � � ! � � � � � � � � � �
 � � �
 �

" � � � � � �
 � � " � � � � � #

�
 � � � �

� � �
� � � � � � � 	
 � � � �

$ � � � � �
 �

� � � � � � � � � 	 � �
 �

� � � � �

� � 	 � � � � � � � 	 � � � � � � �

� � � � � � � �

� � � � � � �
 � � � �

� � � � � � � � � � � � �

� � � � � % � � &
 �

� � � � � � � � � � � �

� � � � �

� � � � � � � �

' � � � � � � #

� � � � � 	 � � � �

� � 	 � � � � � � � 	 � � � � � � � �

� � � � � � �

! 	 � � � $

! 	 � � � � � 	 � % �

� � �

Fig. 3. Building trust in CRUTIAL (WAN level): a) Trusted Local CIS Services; b) Trusted Global
CIS Services

On the other hand, some services may need to be run cooperatively amongst CIS,
and thus be subject to attacks at the WAN interconnect level. If one generalizes the
distributed intrusion tolerance concept to CIS interconnection, one will run specialized
intrusion-tolerant algorithms amongst CIS, which end-up achieving what is portrayed
in Figure 3b: a trusted-trustworthy communication fabric amongst CIS, overcoming the
initial untrusted basic WAN interconnect.

4 Trustworthiness Monitoring Services

The main diagnostic problems that can be found in a modern power grid distributed
infrastructure as CRUTIAL are the following:

– The use of SCADA sub-systems which were not designed to be widely distributed
and remotely accessed, and that do not cover security issues (they grew-up as stand-
alone systems). SCADA systems are not going to be redesigned or rebuilt, so they
cannot be modified in order to comply with the information infrastructure needs.

– Some of the components/sub-systems used within the infrastructure already imple-
ment monitoring and/or recovery techniques that could in some way work “against”
the needs of the infrastructure itself. It is hence necessary to coordinate all the mon-
itoring and/or recovery activities in order to favor the infrastructure needs (some-
times despite of component/sub-system needs).

– The use of large grained components: there are many interactions among sub-
components, so it is difficult to link a single error with a well focused fault. Two
kind of actions may follow: i) if the detected error is severe enough to require
immediate action, then determine the set of all components that could harbor the
originating fault, as well as the specific commands able to bring each component
to a correct, consistent state; ii) otherwise, if it is not beneficial, as soon as an er-
ror (or deviation) is observed, to immediately declare an entire component “failed”
and to proceed to repairing or replacing it; it is thus better to collect streams of data
about error symptoms and deviation detection, and proceed to fault assessment by
observing component behavior over time.

The CRUTIAL Architecture for Critical Information Infrastructures 9

– The heterogeneity of the environment where diagnosis is performed: many differ-
ent entities will coexist in the system, so each component needs specific diagnos-
tic solutions (station sub-systems need to exchange values in order to perform the
secondary power control, whilst the substation web service provides visibility of
selected information over internet).

– The goodness of a component could be related to the quality of the service provided,
rather than on the absence of faults.

– The infrastructure has to be distributed by its very nature, so it is exposed to com-
munication and coordination problems, as well as to those caused by hardware or
operating system ones; it is not possible to manage these problems at the compo-
nent level, but it is necessary to do that at middleware level (or at least at application
level). In order to provide fault tolerance to distributed component based applica-
tions, it is necessary to implement mechanisms which take into account the fault
tolerance policies implemented by the different components within the system, and
to add the necessary coordination support for the management of fault tolerance at
application level.

4.1 The Diagnosis Framework

The diagnosis framework adopted to tackle these challenges involves the following ac-
tors (see Figure 4):

Component
Monitored

Detection
Deviation

behavior
"observable" external
"hidden" internal state

observation of external behavior

Diagnosis
State MC internal state based

on imperfect information

judgement about the

Imperfect accuracy
Incomplete coverage

symbols describing the
perceived MC external behavior

MC

SD

DD

Fig. 4. The diagnosis framework

Monitored Component (MC). It is the system component under diagnosis. The mon-
itored component, when first introduced in the system, works properly; during sys-
tem lifetime, the monitored component could be affected by some faults that might
compromise its functional behavior. The internal healthy state1 of the component

1 The “internal state” is something related to the component situation with respect to faults; there
is no relationship between the above “internal state” and the possible component states related
with the work performed by the component itself.

10 P. Verı́ssimo et al.

is therefore “hidden”, whilst the external behavior is “observable”. Since the same
observed incorrect behavior could be caused by different faults, it is an ambiguous
indicator of the healthy internal health state of the component itself.

Deviation Detection (DD). It is the entity introduced in the system in order to observe
the monitored component external behavior and to judge whether it is suitable or
not. Unsuitable component behavior could be the result of the manifestation of an
internal or external fault affecting the monitored component or it could be deter-
mined by a change in the requirements of the application that is using the compo-
nent monitored services. In the literature on fault tolerance, a wide variety of error
detection mechanisms are available, which are classified in different categories ac-
cording to several criteria, among which the type of checks they perform, the im-
plementation support (hw or sw), the system components they are tailored to, the
applicability time (on-line or off-line) [19]. The deviation detection mechanism has
indeed incomplete coverage and imperfect accuracy, so it can raise false positives
(when it detects an inexistent deviation) and false negatives (when it does not detect
an existent deviation). In critical systems both false positives and false negatives are
undesired: false positives led to an early depletion of system resources, while false
negatives drastically decrease the system dependability.

State Diagnosis (SD). Basing on information coming from the deviation detection me-
chanism, the state diagnosis mechanism has to guess the internal state of the com-
ponent. Deviation detection information is an imperfect judgment describing the
instantaneous external behavior of the monitored component; the state diagnosis
mechanism has to trace the monitored component deviations over time in order to
decide whether the monitored component services continue to be beneficial or not
for the rest of the system, deviations notwithstanding.

The diagnosis framework requires two information flows:

– MC↔DD: the deviation detection mechanism has to observe the monitored com-
ponent.

– DD↔SD: the state diagnosis mechanism has to collect deviation detections per-
formed by the deviation detection mechanism.

Each of the above information flows could be managed following a proactive or a re-
active schema: in the proactive schema, the entity interested in fresh information has to
ask for it, whilst in the reactive schema the entity that generates information has to send
it to the entity interested in it. More interaction patterns can be found in [17].

The above solutions have different balances in terms of QoS vs. cost of the data fed
to the SD mechanism: continuous monitoring is very costly and probably too aggressive
in terms of the overhead it induces on the system; buffered asynchronous monitoring
is cheaper then the continuous monitoring for the interaction cost, but requires storing
capabilities in the DD mechanism and negatively affect the promptness of the SD; the
failure triggered synchronous monitoring combines the advantages of the continuous
monitoring (timeliness of the input data and no need for storage) and of the buffered
asynchronous monitoring (reduction in communication cost), but can be impaired by
omission faults in the DD.

The CRUTIAL Architecture for Critical Information Infrastructures 11

The traditional diagnostic problem is the identification of failed components in a
usually large set of homogeneous ones; fine grained components are the target of diag-
nosis, therefore, one-shot diagnosis of a collected syndrome2 is performed. Literature
shows that many over-time diagnostic mechanisms are available; each approach can be
mapped on the schema presented earlier and described involving only one component
and its deviation detection mechanisms. Two approaches are relevant:

Heuristic diagnosis. Heuristics are typically simple mechanisms suggested by intu-
itive reasoning and then validated by experiments or models. Most heuristic diag-
nosis solution are based on a count-and-threshold approach [14], as exemplified
by alpha-count [3] a heuristic designed to discriminate whether a monitored com-
ponent is affected by a transient fault (the component is healthy but is temporally
behaving bad) or by a permanent fault (the component is physically damaged and
need maintenance). The idea behind the alpha-count heuristic consists in counting
error signals collected over time, raising an alarm when the counter passes a prede-
fine threshold. When non-error signals are collected, the counter is decreased using
a decreasing factor. Suppose J(t) is a Boolean error signal coming from the devia-
tion detection mechanism at time t (“0” means no-error detected, “1” means error
detected) and suppose that K is the internal parameter that decreases the counter
value when a “no-error” signal is collected; the alpha counter α(t) is formally de-
fined as follow:

α(0) = 0

α(t) =
{

α(t − 1) ·K if J(t) = 0
α(t − 1)+ 1 if J(t) = 1

(0 ≤ K ≤ 1)

Every time the counter is evaluated, it is also compared with a predefined threshold
value αt in order to discriminate if an alarm has to be raised (α(t) ≥ αt) or not
(α(t) < αt). Extended analyzes about parameter tuning are available in [3] while
applications and variants are described in [2] [18].

Probabilistic diagnosis. Probabilistic diagnosis mechanisms (e.g. [6] based on HMM
- Hidden Markov Models and [16] based on Bayesian inference) are tailored to
evaluate the probabilities of the monitored component being in each of the “inter-
nal” state envisioned in the fault model, based on symbols coming from the devi-
ation detection mechanism. Probabilistic diagnostic mechanisms compute a state
occupancy probability vector f (t) at time t, using the symbols coming from the
deviation detection mechanism at time t and the state occupancy probability vector
f (t −1) at time t −1. The idea behind probabilistic diagnosis is to use the Bayesian
inference. Suppose to have a conjecture x on which we are uncertain (we believe
in x being true with probability p(x)); we aim to update our belief in x when some
new, relevant evidence is observed. Both evidence and conjecture are described as
events, that is, subsets of the set of all the possible outcomes of some experiment.
Using the Bayes’ theorem we can write that in general:

p(x |evidence) · p(evidence) = p(evidence |x) · p(x)

2 A syndrome is a vector of Boolean deviation detection results.

12 P. Verı́ssimo et al.

Interpreting the left-most probability in the above equation as the “posterior” proba-
bility of conjecture x (taking into account the observed evidence) and the right-most
probability as the “prior” probability of conjecture x, we can write

pposterior(x |evidence) =
pprior(x) · p(evidence |x)

p(evidence)

Given a set C of mutually exclusive conjectures such that their union has proba-
bility 1 (e.g. healthy states of a monitored component), the above formula allows
us to update the posterior probability of conjecture x given some evidence (e.g. the
outcome of deviation detection) using the following formula:

pposterior(x |evidence) =
pprior(x) · p(evidence |x)

∑cong∈C pprior(cong) · p(evidence |cong)

Both approaches solve the problem with the same computational cost, but diagnosis
based on HMM accounts for higher modularity and relies on a richer framework to
solve diagnostic problems (e.g., helps in case of incomplete information on the involved
parameters).

Diagnosis activity has to be performed at different granularity levels (Fault Replace-
ment Unit), depending on the controllability of control on the monitored component
(e.g., when dealing with COTS and legacy subsystems) and on the cost/efficacy ratio
of the detection/diagnosis/reconfiguration operations. On one side, fine grained diagno-
sis is very helpful since it allows replacement of smaller parts of the system, avoiding
wasting still useful subparts of the components under diagnosis. However, fine grained
diagnosis incurs in higher costs from the point of view of setting up diagnosis activities.
Opposite trends are instead shown by a coarse grained approach.

When diagnosis needs to be performed in a large system it is not practical to have a
centralized SD entity that has to gather and analyze all the deviation detections in order
to diagnose the system; this kind of centralized state diagnosis should be ultra-reliable
and communication links to all the parts of the system should be guaranteed. Therefore,
methods for distributed diagnosis are mandatory in which every system node decides
independently about the system (e.g. which are the healthy nodes and which the faulty
ones).

Considering a distributed system comprised by completely connected nodes, the Hy-
brid Fault-Effect Model [28] can be assumed, so that all fault classification is based on
a local classification of fault-effects (to the extent permitted by the deviation detection
mechanism of the sub-system itself) and on a global classification, thus developing a
global opinion on the fault-effect. Diagnosis is thus performed using a two-phase ap-
proach on a concurrent, on-line and continual basis:

1. Local detection and diagnosis, aiming to diagnose the sub-system itself.
2. Global information collection and global diagnosis, obtained through exchange of

local diagnosis. Since each sub-system may have a different perception of the errors
observed on the remote sub-systems, each node has some private values (the results
of private diagnosis on remote sub-systems) and the goal is to ensure consistent
information exchange and agreement against Byzantine behavior. An agreement
(or consensus) algorithm is thus needed in order to solve the problem.

The CRUTIAL Architecture for Critical Information Infrastructures 13

In the general case, the necessary conditions to achieve consensus in spite of up to f
arbitrarily faulty nodes are:

– at least 3 f + 1 nodes in the system.
– at least f + 1 rounds of message exchange.

Under the assumption of authenticated messages [8], which can be copied and for-
warded but not altered without detection, the condition on the minimal number of nodes
can be relaxed to f + 2.

4.2 Diagnosis in CRUTIAL

The CRUTIAL infrastructure is organized as a WAN-of-LANs (see Section 2.2), where
each LAN is connected to the WAN by a CIS. Given that the computers inside the
LANs cannot be modified/updated, all the diagnosis activity has to be performed inside
the CIS. The following diagnosis scenarios arise:

– CIS self-diagnosis (local view): CIS monitors both itself (e.g. to diagnose hardware
or software faults) and its LAN (e.g. to “measure” its level of trustworthiness).

– CIS distributed diagnosis (global view): CISes construct a common view about
the “state” of a certain CIS in the infrastructure (e.g. related to the liveness and
trustworthiness of a specific CIS)

CIS Self-Diagnosis. From a local viewpoint the CIS is a sophisticated application level
firewall (combined with equally sophisticated intrusion detectors) which is required to:

– be intrusion-tolerant;
– prevent resource exhaustion providing perpetual operation;
– be resilient against fault assumption coverage uncertainty providing survivability.

In order to comply with the above requirements, the CIS has a hybrid architecture and
is replicated (with diversity) in n replicas. Each CIS replica is built using a synchronous
and secure local wormhole and an asynchronous and insecure payload.

Two monitoring/failure detection scenarios arise:

1. internal monitoring: monitoring performed inside a single replica, trying to detect
local failures;

2. external monitoring: monitoring performed on the perceived behavior of the other
replicas.

The internal monitoring has to be performed on the following components/services (so
far, components/services that need to be monitored were not definitely identified):

– Hardware components (e.g. network interfaces, processing units, memory mod-
ules. . .) which are supporting the replica. The monitoring activity on these com-
ponents makes sense only when physical replication is used; in case of logical
replication, these components need to be monitored in the host system running
the replicas.

14 P. Verı́ssimo et al.

– Software components belonging to several architectural levels in the payload or in
the operating system.

Several signals coming from many architectural levels are collected and processed over
time: an example of signal coming from low architectural levels (O.S.) is related to a
CPU fan that is working too slow or a temperature sensor that is signaling the CPU is too
warm. An example of signal coming from a higher architectural level is an application-
generated exceptions or error return code.

The internal monitoring activity has hence to identify compound system conditions
which could require diverse corrective actions; for example, repeated application errors
could be interpreted as manifestation of software aging requiring rejuvenation, or could
be correlated with lower level signals (the CPU is too warm because the CPU fan is
working too slow), requiring another kind of reconfiguration (e.g. replacing the CPU
fan). The rationale behind internal monitoring and failure detection is to try to stop the
replica before it starts to behave incorrectly.

The external monitoring is performed by each replica on the perceived behavior of
the other replicas, given that a replica is not guaranteed to always behave correctly.
The monitoring activity is performed at service level, so that each service is in charge
of detecting whether its peers running in the other replicas seem correct or not. An
example of middleware service monitoring its peers on other replicas is the Protection
Service.

CIS LAN Diagnosis. The CIS monitors over time the nodes in its protected LAN
to evaluate their trustworthiness. The evaluated trustworthiness level is used to request
maintenance actions on the protected node (e.g. replacing hardware, refreshing the soft-
ware, changing passwords. . .).

A trustworthiness indicator for each protected node N is defined (it could be multi-
dimensional) and modified based on the following events:

– the instance of the security policy applied within the CIS itself to the outgoing
traffic detects that N is trying to violate the security policy (e.g. trying to send
something without being allowed to do it);

– the instance of the security policy running on a remote CIS detects that a message
sent by N to one of its protected nodes was rejected. The CIS distinguishes whether
an incoming packet really comes from a station computer (instead from an hacker
in the WAN) using the LAN Traffic Labeling service (the CIS protecting the source
node signs the label). The signed label is hence a proof of the source of the packet.

The LAN Diagnosis service collects over time the above detections in order to evaluate
the trustworthiness indicator of each protected node. If protected trustworthiness indi-
cator of node N goes over a given threshold, the LAN Diagnosis service alerts its peers
about N being un-trustable (so that they can possibly take adequate countermeasures).

CIS Distributed Diagnosis. The several replicas that made up a single CIS are re-
quired to perform the same operations; this simplifies somewhat the task of checking
their correctness on the run. Each single CIS, as seen from the WAN, is a different logi-
cal entity, in terms of actions, services and requests toward other CISes. In the ordinary

The CRUTIAL Architecture for Critical Information Infrastructures 15

information flow there is no simple comparison rule check that can be performed, to
catch on the fly a mischievous partner. On the other hand, if a CIS becomes compro-
mised, internal redundancy and resilient architecture notwithstanding, then necessarily
the basic hypothesis on the fault occurrence has been broken: more than f replicas are
out of order together. Of course, this is the catastrophic case, whose probability has to
be lowered down to a target level by choosing proper redundancy figures. However, a
local catastrophe (regarding a single LAN controlled by a compromised CIS) not nec-
essarily should imply the downing of the entire system. In fact, on the WAN side, all
CISes attempt to maintain a common view of two parametric descriptors its partners’
health: Liveness and Trustworthiness.

Liveness is checked in two ways: i) passively, by monitoring normal network traffic
from the target; ii) if the former is not frequent enough, exert a form of resilient ping, by
means of a simple challenge/response protocol. Trustworthiness is built up by checking
the formal correctness of the messages coming from the target, as well from any access
violation detected by the Protection Service.

5 Access Control for Critical Information Infrastructures

Because Critical Information Infrastructures (CII) become more and more complex and
accessible via the Internet, they are more and more vulnerable to security threats. More-
over, due to the interdependencies between CIIs, simple failures can have dramatic
consequences. In this context, security issues in CIIs become obvious and serious. Sev-
eral works was dedicated to study the causes; the results have shown that one of the
most common problems is the lack of specific security policies, in particular in modern
SCADA environments [12].

Basically, a security policy is defined by the Common Criteria as the set of laws,
rules, and practices that regulate how an organization manages, protects, and dis-
tributes sensitive information [15]. In this respect, a security policy is specified through:
the security objectives that must be satisfied, e.g., “classified information must not be
disclosed to a competing organization”; and the rules expressing how the system may
evolve in a secure way, e.g., “the owner of an information is allowed to grant a read
access right on its data to other organizations”.

Nevertheless, by itself, the security policy does not guarantee a secure and correct
functioning of the system. The security policy can indeed be badly designed or in-
tentionally / accidentally violated. Consequently, it is important to express the policy
according to a security model; a model helps to: abstract the policy and handle its com-
plexity; represent the secure states of a system (i.e., states that satisfies the security
objectives) as well as the way in which the system may evolve; verify the consistency
of the security policy and detect the possible conflicting situations; etc.

Addressing these issues, this work progressively derives an access control model, a
secure architecture and applies our approach to secure CIIs. To do so, we first identify
the security requirements of a CII and we confront them to existing access control
models. Note that even if we take our examples from electric power grid, the same
approach and results can be applied to any kind of CII.

16 P. Verı́ssimo et al.

Globally, a CII can be seen as a WAN connecting several organizations involving
different actors and stakeholders (e.g., power generation companies, substations, en-
ergy authorities, maintenance service providers, transmission and distribution system
operators) and various LANs. LANs are composed of one or more logical and phys-
ical systems and are interconnected through specific Switches, called CIS (CRUTIAL
Information Switches). The general architecture is presented in Section 2.

In this respect, we can identify some security-related requirements such as:

1. Secure cooperation between different organizations, possibly mutually suspicious,
with different features, functioning rules and policies.

2. Loosely coupled organizations: each organization controls its own security policy,
applications, etc., while respecting the global functioning of the whole system. In
other words, we need a global security policy that manages the communication
between partner organizations while keeping each CII responsible for its own assets
and users.

3. Coherence and consistency: as no SCADA system operates in isolation, the global
as well as local security policies should be compatible.

4. Decentralization: it is desirable that the enforcement and administration of the se-
curity policies be decentralized. Actually, a centralized approach is not interesting
since CIIs involve the cooperation between independent organizations. Inversely,
handling the collaboration between the organization subsystems while keeping
some local self-determination seems more interesting.

5. Heterogeneity: the different CII organizations have their own structure, services,
OS, and local objects. These entities’ structures may be different from an organiza-
tion to another.

6. Granularity vs. scalability: on the one hand, security rules must be extensible in
size, structure, and number of organizations; on the other hand, internal authen-
tication as well as local access controls should be managed by each organization
separately.

7. Fine-grained access control: access decisions should take the context (e.g., specific
situations, time and location constraints) into account. Moreover, as the context
may change often and as certain reactivity is required in these systems, organiza-
tions should support dynamic access rights.

8. Users-friendliness and easiness of rules administration: as the global system links
several organizations geographically distributed and as it handles a large amount
of information and a big number of user, the access right management should be
sufficiently user-friendly to manage this complexity without introducing errors.

9. Remote accesses: as organizations control large installations, the security policy
should define if and how outsiders and users from a partner organization can con-
nect to the automation system and to resources belonging to each organization. For
example, it is important to define how vendors can access the system remotely for
off-site maintenance and product upgrades, but also how other organizations par-
ticipating in the CII can access local resources.

10. Compliance with the specific regulation: for example, in the United-States, NERC
1200 [5] specifies requirements for cyber-security related to electric utilities.

11. Confidentiality, integrity and availability: contrarily to other systems where mostly
confidentiality (military systems), integrity (financial systems) or availability is

The CRUTIAL Architecture for Critical Information Infrastructures 17

needed, in the organization we often need these three properties (confidentiality
of each organization’s data, e.g., invitation of tenders, but also integrity and avail-
ability of data such as the voltage/frequency measurements).

12. Enforcement of permissions, explicit interdictions as well as obligation rules. In
fact, explicit prohibitions can be particularly useful as we have decentralized poli-
cies where each administrator does not have details about the other parts of the
system. Moreover, explicit prohibitions can also specify exceptions or limits the
propagation of permissions in case of hierarchies. Similarly, obligations can be
useful to impose some internal / external, manual / automatic actions that should be
carried out by users or automatically by the system itself.

13. The security policy must be vendor- and manufacturer-independent. As technolo-
gies change and new acquisitions occur, the policy must remain effective. When
vendor- or technology-specific statements are used, the maintenance burden for the
policy increases. Then, the policy would be changed any time there is a new pur-
chase or an advance in technology. If the security policy is not updated, it becomes
obsolete, which would not be acceptable in such systems.

14. Audit and assessment: the security policy will define the logging requirements such
as what will be logged, when, where, etc. In particular, an audit will determine if
the protections which are detailed in the policy are being correctly put in practice
on the system; it also checks if the contracts / agreements established by the partner
organizations are well-respected.

To satisfy these requirements, we propose a secure architecture where each orga-
nization defines its own security policy and enforces it into its CISs (see Section 2).
CISs are thus responsible for checking if local actions are in accordance with internal
security policies, but also if inter-organization flows are done according to the global
policy and to the contracts established by partner organization. Finally, CISs keep log
files as evidence in case of abuse or conflict. In this respect, the first question that arises
is how the security policies will be specified and what security model will be adapted
to organizations?

An analysis of classical access control policies and models shows that unfortunately,
none of these policies and models satisfies the CIIs security-related requirements. For
instance, HRU represents the relationships between the subjects, the objects and the ac-
tions by a matrix M [9]. M(s,o) represents the action that s is allowed to carry out on o.
It is thus necessary to enumerate all the triples (s,o,a) that correspond to permissions
defined by the policy, which is very complex in large systems. Moreover, when new en-
tities are added to or removed from the system, it is necessary to update the policy, still
adding to the complexity. Consequently, models associated to discretionary access con-
trol policies (including HRU) are not capable of managing huge, multi-organizational
and decentralized systems such as CIIs.

Role Based-Access Control (RBAC) is more flexible: roles are assigned to users,
permissions are assigned to roles and users acquire permissions by playing roles [7].
Even if RBAC is suitable for a large range of organizations, it does not cover all the
requirements of a CII, in particular it does not define how users of an organization can
play roles in another organization.

18 P. Verı́ssimo et al.

5.1 OrBAC

In [11] we have defined the OrBAC (Organization-based Access Control) model as an
extension of RBAC that details permissions while remaining implementation indepen-
dent. Our first goal was to express the security policy with abstract entities only, and
thus to separate the representation of the security policy from its implementation. In-
deed, OrBAC is based on roles as the abstraction of users (like in RBAC [7]), views
as the abstraction of objects (like in VBAC [24]), and activities as the abstraction of
actions (like in TBAC [21]).

Actually, in OrBAC, an organization is a structured group of active entities, in which
subjects play specific roles; an activity is a group of one or more actions; a view is a
group of one or more objects; and a context is a specific situation that conditions the
validity of a rule.

As a user can play several roles in several organizations, the Role entity is used
to structure the link between the subjects and the organizations. In fact, contrarily to
RBAC that considers a binary relation between roles and subjects, OrBAC consider the
ternary relationship Empower (org, r, s): it means that org employs subject s in role r. In
the same way, the objects that satisfy a common property in a certain organization are
specified through views (the Use(org, view, object) relationship), and activities are used
to abstract actions in organizations (the Consider (org, activity, action) relationship)
(Figure 5).

Now, once the relationships between the different system’ entities are defined, we can
specify the security rules. Actually, an OrBAC security rules have the Permission (org,
r, v, a, c) form: in the context c, organization org grants role r the permission to perform
activity a on view v. Obligation and Prohibition are defined similarly (Obligation (org;
r; v; a; c) and Prohibition (org, r, v, a, c)).

Actually, two security levels can be distinguished in OrBAC (Figure 5):

– Abstract level: the security administrator defines security rules through abstract en-
tities (roles, activities, views) without worrying about how each organization im-
plements these entities.

– Concrete level: when a user requests an access, concrete authorizations are granted
(or not) to him according to the concerned rules, the organization, the played role,
the instantiated view / activity, and the current parameters (e.g., the context).

The derivation of permissions (i.e., runtime instantiation of security rules) can be
formally expressed as indicated in (Figure 5):

∀org ∈ Organization,∀s ∈ Subject,∀α ∈ Action,∀o ∈ Object, ∀r ∈ Role, ∀a ∈ Activity,
∀v ∈ View, ∀c ∈ Context
Permission(org, r, v, a, c) ∧ // a security rule in its abstract form
Empower(org, s, r) ∧ // in org, the role r is played by a subject s
Consider(org, α , a) ∧ // in org, the activity a correspond to an action α
Use(org, o, v) ∧ // in org, the view w corresponds to an object o
Hold(org, s, α , o, c) // in org, the context c is true for s, α and o
→ is-permitted(s, α , o) // runtime decision allowing s carrying out α on o

This rule means: if in a certain organization, a security rule specifies that “role r can
carry out the activity a on the v when the context c is True”; if “r is assigned to subject

The CRUTIAL Architecture for Critical Information Infrastructures 19

Fig. 5. The ORBAC model

s”; if “action α is a part of a”; if “object o is part of v” and, if “the context c is True;
Then s is allowed to carry out α on o.

As rules are expressed only through abstract entities, OrBAC is able to specify the
security policies of several collaborating and heterogeneous organizations (e.g., in a
CII), if they are considered as “sub-organizations” of a “global organization” with a
single OrBAC policy. In fact, the same role, e.g., “operator”, can be played by several
users belonging to different sub-organizations; the same view, e.g., “TechnicalFile”,
can designate a TF-Table or a TF1.xml; and the same activity “read” could correspond
in a particular sub-organization to a “SELECT” action (if the sub-organization has a
database system) while in another sub-organization it may specify an OpenXMLfile()
action.

In our context, OrBAC present several benefits and satisfies several security require-
ments of CIIs:

– Rules expressiveness: OrBAC defines permissions, interdictions, obligations, and
constraints (by means of contextual conditions).

– Abstraction of the security policy: OrBAC has a structured expression of the policy;
it separates the specification of the policy from its implementation. Consequently,
OrBAC greatly reduces the cost of administering security policies as well as making
the process less error-prone.

– Scalability: thanks to its abstraction levels, OrBAC has no limitation in size or
capacity. It can define an extensible and huge policy. It is then easily applicable to
large-scale environments.

– Loose coupling: each sub-system can manage its own local OrBAC security policy,
as far as it respects the global policy.

– Evolvable: a local policy in OrBAC is evolvable. It easily handles changes in orga-
nizations.

– User-friendly: the specification and update of a local OrBAC security policy is
easily managed at the local organization level.

– Standardized: OrBAC has a growing community. Many research tracks are being
conducted (see www.orbac.org).

20 P. Verı́ssimo et al.

However, OrBAC is centralized and does not handle collaborations between orga-
nizations, while these aspects are very important in CIIs. In fact, as OrBAC security
rules have the Permission(org, r, v, a, c) form, it is not possible to represent rules that
involve several independent organizations, or even, autonomous sub-organizations of
a particular collaborative system. Moreover, it is impossible (for the same reason) to
associate permissions to users belonging to other partner-organizations. As a result, if
we can assume that OrBAC provides a framework for expressing the security policies
of several organizations, it is unfortunately only adapted to centralized structures and
does not cover the distribution, collaboration and interoperability needs of current CIIs.

Moreover, the enforcement of the policy to access control mechanisms is not treated
in OrBAC. It is thus necessary to describe suitable architecture and implementation of
the studied system’s security.

To cover these limitations, we suggest enhancing OrBAC with new concepts and
calling on some mechanisms of the Web Services (WS) technology [10]. In fact, WS
is a set of technologies that provide platform-independent protocols and standards used
for exchanging heterogeneous interoperable data services. Software applications writ-
ten in various programming languages and running on various platforms can use WS to
exchange data over computer networks in a manner similar to inter-process communica-
tion on a single computer. WS also provide a common infrastructure and services (e.g.,
middleware) for data access, integration, provisioning, cataloging and security. These
functionalities are made possible through the use of open standards, such as: XML for
exchanging heterogeneous data in a common information format [26]; SOAP acts as a
data transport mechanism to send data between applications in one or several operating
systems [25]; WSDL is used to describe the services that an organization (e.g., a CII)
offers and to provide a way for individuals and other organizations to access those ser-
vices [27]; UDDI is an XML-based registry/directory for businesses worldwide, which
enables businesses to list themselves and their services on the Internet and discover
each other [13].

Web services (WS) have several benefits that could be interesting in our context:

– Interoperability and heterogeneity: WS support data exchanges between different
platforms.

– Resources sharing: WS are adapted to applications where organizations share their
resources.

– Standardized mechanisms: WS use open protocols and standards (e.g., HTTP,
XML).

– Easiness: a small amount of code and resources is necessary to develop and carry
out a WS.

– Compatibility with OrBAC: it is easy to couple web services with OrBAC.

5.2 PolyOrBAC

At this stage, we have demonstrated that OrBAC as well as WS could be suitable for
CIIs. The question that takes place is: how adapting OrBAC as well as WS mechanisms
to specify and enforce secure collaboration between CIIs. To answer this question,

The CRUTIAL Architecture for Critical Information Infrastructures 21

we have defined the PolyOrBAC [10], a global access control model that can be per-
fectly applied to CIIs.

Actually, PolyOrBAC distinguishes two phases:

First phase publication and negotiation of collaboration rules as well as the corre-
sponding access control rules. First, each organization determines which resources it
will offer to external partners. Web services are then developed on application servers,
and referenced on the Web Interface to be accessible to external users.

Second, when an organization publishes its WS at the UDDI registry, the other or-
ganizations can contact it to express their wish to use the WS. To highlight the Poly-
OrBAC concepts, let us take a simple example where organization B offers WS1, and
organization A is interested in using WS1 (Figure 6).

Third, A and B negotiate and come to an agreement concerning the use of WS1. Then,
A and B establish a contract and jointly define security rules concerning the access
to WS1. These security rules are registered – according to an OrBAC format – in a
database (connected to the A and B’s CIS) containing the Security policy. For instance,
if the agreement between A and B is “users from A have the permission to consult B’s
measurements in the emergency context”, B should:

– have (or create) a rule that grants the permission to a certain role (e.g., Operator)
to consult its measurements: Permission(B, Operator, Measurements, Consulting,
Emergency); note that every user playing the Operator role will have this permission

– create a “virtual user” PartnerA that represents A for its use of WS1
– add the Empower(B, PartnerA, Operator) association to its rule base.

In parallel, A creates locally a “virtual object” WS1 image which represents WS1, and
adds a rule in its OrBAC base to define which of A’s roles can invoke WS1 image to use
WS1.

Second phase: runtime access to remote services.
Let us first precise that we use an AAA (Authentication, Authorization and Account-

ing) architecture: we separate authentication from authorization; we distinguish access
control decision from permissions enforcement; and we keep access logs in CISs. Ba-
sically, if a user from A (let us note it Alice) wants to carry out an activity, she is first
authenticated by A. Then, protection mechanisms of A check if the OrBAC security
policy (of A) allows this activity. We suppose that this activity contains local as well
as external accesses (e.g., invocation of B’s WS1). Local accesses should be controlled
according to A’s policy, while the WS1’s invocation is both controlled by A’s policy (Al-
ice must play a role that is permitted to invoke WS1 image), and by B’s CIS, according
to the contract established between A and B. If both controls grant the invocation, the
execution of WS1 is executed under the control of B’s OrBAC policy (in B, PartnerA
plays role Operator that is permitted to consult measurements).

More precisely, when Alice is authenticated and authorized (by A’s policy) to in-
voke WS1, an XML-based authorization ticket “T 1” is generated (based on the positive
decision) and granted to Alice.

T 1 contains the access-related information such as: the virtual user played by Alice:
“PartnerA”; Alice’s organization: “A”; the contract ID; the requested service: “WS1”;
the invoked method, e.g., “Select”; and a timestamp to prevent replay attacks.

22 P. Verı́ssimo et al.

Note that T 1 is delivered to any user (from A) allowed to access to WS1 (e.g., Jean,
Alice). When Alice presents its request as well as T1 (as a proof) to B, B’s CIS ex-
tracts the T 1’s parameters, and processes the request. By consulting its security rules,
B associates the Operator role to the virtual user “PartnerA” according to Empower(B,
PartnerA, Operator)3. Finally, the access decision is done according to Permission(B,
Operator, Measurements, Consulting, Emergency) ∧gmpower(B, PartnerA, Operator).

PolyOrBAC offers several benefits:

– Peer to peer approach: we use a decentralized architecture where organizations mu-
tually negotiate their common rules; each organization is responsible for its users
authentication and is liable for their use of other organizations’ services; it also
controls the access to its own resources and services.

– Independence: all security rules are specified in OrBAC independently by each
organization, and the organizations remain loosely coupled (through jointly agreed
rules, expressed by contracts).

– Information non-disclosure: the WS technology allows communications between
organizations without intimate knowledge of each other’s IT systems; moreover,
even if remote accesses are possible, it is not necessary to know the internal struc-
ture of the other organizations.

– Extensible structure: the OrBAC extensibility and the WS standards facilitate the
management and the integration of new organizations (with their users, data, ser-
vices, policy, etc.).

5.3 A Scenario

Let us now apply PolyOrBAC to a real electric power grid scenario: in emergency con-
ditions, the TS CC (Transmission System Control Center) can trigger load shedding
on the DS (Distribution System) to activate defense plan actions (e.g., load shedding
activities) on the Distribution Grid. More precisely, the TS CC (Transmission System
Control Center) monitors the Electric Power System and elaborates some potentially
emergency conditions that could be remedied with opportune load shedding commands
applied to particular areas of the Grid.

Actually, as indicated in Figure 6, during normal operation, the Distribution Sub-
stations (DSS) send signals and measurements (voltage, Frequency, etc.) to the Trans-
mission System Control Center TS CC (via the Distribution System Control Center DS
CC); in the same way, the Transmission Substations (TSS) send signals and measure-
ments (voltage, frequency, etc.) to the TS CC (steps 1, 2 and 3 in Figure 6).

At the TS CC level, when the TSO (Transmission System Operator) detects that
a load shedding may be needed in the near future, it sends an arming request to the
Distribution System CC (step 4 in Figure 6).

Consequently, the DSO (Distribution System Operator) selects which distribution
substations (DSS) must be armed (these substations are those on which the load shed-
ding will apply if a load shedding is necessary), and then sends arming commands to

3 Let us recall that Empower(B, PartnerA, Operator) has been added after the negotiation phase
(phase 1).

The CRUTIAL Architecture for Critical Information Infrastructures 23

Fig. 6. The exchanged commands and signals

Fig. 7. The different WS invocations

those DSS. The DSO has naturally the permission to arm or disarm any DSS in the
depending area of the DS CC.

If a Transmission SS (TSS) detects an emergency, it triggers (sends) a load shedding
command to all the distribution substations (DSS) of its area. Of course, only the DSS
already armed will execute the load shedding command.

In this scenario, we distinguish four organizations (TS CC, a TSS, DS CC and a
DSS), two roles (TSO and DSO) and four web services (Figure 7): Arming Request,
Arming Activation, Confirmed Arming and Load Shedding Activation.

Basically, when negotiating the provision/use of WS1 between TS CC and DS CC,
on the one hand, TS CC locally stores the WSDL description file and creates a new
object as a local image of WS1 (whose actions correspond to WS1 invocations), and on
the other hand, DS CC creates a virtual user (playing a role authorized to invoke WS1)
to represent TS CC.

24 P. Verı́ssimo et al.

Table 1. The different WS of our scenario

WS1-Arming Request Provider: DS CC
Client: a user (TSO) or a process at TS CC

WS2-Arming Activation Provider: DSS
Client: DSO or a virtual user at DS CC

WS3-Confirmed Arming Provider: TSS
Client: a virtual user at TS CC

WS4-Load Shedding Activation Provider: DSS
Client: a user (automatic controller) at TSS

Moreover, TS CC adds local rules allowing Alice, a user playing the role TSO, to in-
voke WS1 image: Empower(TS CC, Alice, TSO), and Permission(TS CC, TSO, Access,
TSO Distribution Circuits, Emergency). In this respect, when Alice requests the access
to WS1, the access decision is done according to the following rule:

Permission(TS CC, TSO, Access, TSO Distribution Circuits, Emergency) ∧
Empower(TS CC, Alice, TSO) ∧
Consider(TS CC, rwx, Access) ∧
Use(TS CC, WS1-Image, TSO Distribution Circuits) ∧
Hold(TS CC, Alice, rwx, WS1 Image, emergency) ∧
→ is-permitted(Alice, rwx, WS1 Image)

Besides, at the DS CC side, two rules are added: Empower(DS CC, Virtual User1,
Operator) and Permission(DS CC, Operator, Access, DSO Distribution Circuits, emer-
gency). Consequently, when Alice invokes WS1 Image, this invocation is transmitted
to the DS CC by activating a process (running for Virtual User1) which invokes WS1.
This access is checked according to DS CC’s policy and is granted according to the
rule:

Permission(DS CC, Operator, Access, DSO Distribution Circuits, Emergency) ∧
Empower(DS CC, Virtual User1, Operator) ∧
Consider(DS CC, rwx, Access) ∧
Use(DS CC, WS1, TSO Distribution Circuits) ∧
Hold(DS CC, Virtual User1, rwx, WS1, emergency) ∧
→ is-permitted(Alice, Virtual User1, WS1)

The other Web Services are negotiated and activated in the same way. This example
shows that PolyOrBAC is a convenient framework for the security of Critical Informa-
tion Infrastructures.

6 Conclusion

The chapter presented a distributed systems architecture for resilient critical informa-
tion infrastructures, with respect to both accidental faults and malicious attacks and in-
trusions. Several aspects, such as design decisions and innovative mechanisms, were

The CRUTIAL Architecture for Critical Information Infrastructures 25

discussed and explained, in order to guide the reader through the making of such
architectures.

The rationale for this work was based on three fundamental propositions: classical
security and/or safety techniques alone will not be enough to solve the problem; any
effective solution has to involve automatic control of macroscopic command and infor-
mation flows between the LANs composing the CII; and, the unifying paradigm should
be a reference architecture of “resilient critical information infrastructures” performing
the integration of the different realms of a CII system.

The proposed solution encompasses a range of mechanisms of incremental effective-
ness, to address from the lower to the highest criticality operations in a CII. Architec-
tural configurations with trusted components in key places induce prevention of some
attacks. Middleware software attains automatic tolerance of the remaining faults and
intrusions. Trustworthiness enforcing and monitoring mechanisms allow unforeseen
adaptation to extremely critical, not predicted situations, beyond the initial assumptions
made.

Functionally, the information flow is controlled by basic mechanisms of the firewall
and intrusion detection type, complemented and parameterized by organization-level
security policies and access control models, capable of securing information flows with
different criticality within a CII and in/out of it.

Some of the services running in CIS may require some degree of timeliness, given
that SCADA implies synchrony, and this is a hard problem with malicious faults, so we
plan to do research in this issue. We also take into account that these systems should
operate non-stop, a hard problem with resource exhaustion, since the continued produc-
tion of faults during the life-time of a perpetual execution system leads to the inevitable
exhaustion of the quorum of nodes needed for correct operation.

Acknowledgements

CRUTIAL is a project of the IST programme of the European Commission. Several
institutions participate to the project: CESI RICERCA (Italy), FCUL (Portugal), CNR-
ISTI (Italy), LAAS-CNRS (France), K.U.Leuven-ELECTA (Belgium), CNIT (Italy).
Details about the project can be found at: http://crutial.cesiricerca.it/.
We warmly thank our partners at the project for many discussions on the topics of the
chapter. We also thank our colleagues and students in our research groups for their
collaboration and feedback on this work.

References

1. Bessani, A.N., Sousa, P., Correia, M., Neves, N.F., Verissimo, P.: Intrusion-tolerant protection
for critical infrastructures. DI/FCUL TR 07–8, Department of Informatics, University of
Lisbon (April 2007)

2. Bondavalli, A., Chiaradonna, S., Cotroneo, D., Romano, L.: Effective fault treatment for
improving the dependability of COTS- and legacy-based applications. IEEE Transactions on
Dependable and Secure Computing 1(4), 223–237 (2004)

26 P. Verı́ssimo et al.

3. Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., Grandoni, F.: Threshold-based mech-
anisms to discriminate transient from intermittent faults. IEEE Transactions on Comput-
ers 49(3), 230–245 (2000)

4. Byres, E., Karsch, J., Carter, J.: NISCC good practice guide on firewall deployment for
SCADA and process control networks. Technical report, NISCC, Revision 1.4 (February
2005)

5. North American Electric Reliability Council. Urgent action standard 1200 (2003)
6. Daidone, A., Di Giandomenico, F., Bondavalli, A., Chiaradonna, S.: Hidden Markov models

as a support for diagnosis: Formalization of the problem and synthesis of the solution. In:
25th IEEE Symposium on Reliable Distributed Systems (SRDS 2006), pp. 245–256 (October
2006)

7. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: A proposed standard
for role-based access control. ACM Transactions on Information and System Security 4(3)
(2001)

8. Gong, L., Lincoln, P., Rushby, J.: Byzantine agreement with authentication: Observations
and applications in tolerating hybrid and link faults. Dependable Computing for Critical Ap-
plications, IFIP WG 10.4, preliminary proceedings 5, 79–90 (1995)

9. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-
tions of the ACM 19(8), 461–471 (1976)

10. El Kalam, A.A., Deswarte, Y., Baina, A., Kaaniche, M.: Access control for collaborative sys-
tems: A web services based approach. In: Proceedings of the IEEE International Conference
on Web Services, pp. 1064–1071 (2007)

11. El Kalam, A.A., Elbaida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y., Miége,
A., Saurel, C., Trouessin, G.: Organization-based access control. In: IEEE 4th International
Workshop on Policies for Distributed Systems and Networks, pp. 277–288 (June 2003)

12. Kilman, D., Stamp, J.: Framework for SCADA security policy. Technical report, Sandia Cor-
poration (2005)

13. Lala, J.H. (ed.): Foundations of Intrusion Tolerant Systems. IEEE Computer Society Press,
Los Alamitos (2003)

14. Mongardi, G.: Dependable computing for railway control systems. In: Proceedings of the
International Conference on Dependable Computing for Critical Applications, pp. 255–277
(1993)

15. International Standards Organization. ISO/IEC Standard 15408-1, Common Criteria for In-
formation Technology Security Evaluation, Part 1: Introduction and general model 3 (July
2005)

16. Pizza, M., Strigini, L., Bondavalli, A., Di Giandomenico, F.: Optimal discrimination between
transient and permanent faults. In: Proceedings of the 3rd IEEE High Assurance System
Engineering Symposium, pp. 214–223 (1998)

17. Romano, L., Bondavalli, A., Chiaradonna, S., Cotroneo, D.: Implementation of threshold-
based diagnostic mechanisms for COTS-based applications. In: Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems, pp. 296–303, October 13-16 (2002)

18. Serafini, M., Bondavalli, A., Suri, N.: Online diagnosis and recovery: On the choice and
impact of tuning parameters. IEEE Transactions on Dependable and Secure Computing 4(4),
295–312 (2007)

19. Siewiorek, D.P., Swartz, R.S.: Reliable Computer Systems: Design and Evaluation. A.K.
Peters (1998)

20. Sousa, P., Neves, N.F., Verissimo, P.: How resilient are distributed f fault/intrusion-tolerant
systems? In: Proceedings of the IEEE International Conference on Dependable Systems and
Networks (June 2005)

21. Thomas, R., Sandhu, R.: Task-based authorization controls. In: Proceedings of the 11th IFIP
Working Conference on Database Security, pp. 166–181 (1997)

The CRUTIAL Architecture for Critical Information Infrastructures 27

22. Verissimo, P., Neves, N.F., Cachin, C., Poritz, J., Powell, D., Deswarte, Y., Stroud, R., Welch,
I.: Intrusion-tolerant middleware: The road to automatic security. IEEE Security & Pri-
vacy 4(4), 54–62 (2006)

23. Verissimo, P., Neves, N.F., Correia, M.: The CRUTIAL reference critical information infras-
tructure architecture: A blueprint. International Journal of System of Systems Engineering
(to appear, 2008)

24. Vitek, J., Jensen, C.: A view-based access control model for CORBA. In: Vitek, J. (ed.)
Secure Internet Programming. LNCS, vol. 1603. Springer, Heidelberg (1999)

25. W3C. SOAP, version 1.2. W3C Recommendation (June 2003)
26. W3C. Extensible markup language (XML). W3C Recommendation (February 2004)
27. W3C. WSDL, version 2.0. W3C Candidate Recommendation (March 2006)
28. Walter, C.J., Lincoln, P., Suri, N.: Formally verified on-line diagnosis. IEEE Transactions

Software Engineering 23(11), 684–721 (1997)

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 28 – 51, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Middleware Improved Technology (MIT) to Mitigate
Interdependencies between Critical Infrastructures

Claudio Balducelli, Antonio Di Pietro, Luisa Lavalle,
 and Giordano Vicoli

ENEA (Italian National Agency for New Technologies, Energy and the Environment)
Via Anguillarese 301, 00060 Rome, Italy

Abstract. Public life, economy and society as a whole depend to a very large
extend on the proper functioning of critical infrastructures (CIs) like energy
supply or telecommunication. The extensive use of information and
communication technologies (ICT) has pervaded the critical infrastructures,
rendering them more intelligent but even increasingly interconnected, complex,
interdependent, and therefore more vulnerable. In this paper a new technology
(MIT - Middleware Improvement Technology) is proposed: it is based on a col-
lection of software components aiming at enhancing the dependability, the sur-
vivability and the resilience of LCCIs (Large Complex Critical Infrastructures)
by mitigating dependency and interdependency effects. It should prevent and
limit cascading effects and/or support automated (if possible) recovery and ser-
vice continuity in critical situations. The research activities and results
described in the paper have been developed inside EU/FP6 Integrated Project
IRRIIS - Integrated Risk Reduction of Information-based Infrastructure
Systems.

Keywords: interdependencies, critical infrastructure, information sharing,
middleware technology, situation awareness, risk assessment, soap, ejb, jms,
java, application server.

1 Introduction

Every artificial system is composed by a set of interconnected elementary compo-
nents, every one with a certain role inside the system; the complete functionality of
the whole system depends on the proper functioning of the single components.

If a system is simple (it is formed by a small amount of elementary components),
the failure of a single component may generate a general failure of the whole system.

If a system is complex (it is formed by a large amount of elementary components),
it can in general survive in presence the failure of a single component, because its
functionality may be replaced by some other components. This is the so called “N-1”
property of a complex system: it normally contains N components working, but it can
also survive with N-1 components working when a single component fails.

In general, more a system is complex, more such self-healing capacity is strong.
But this intrinsic self-healing capacity could decrease when the system has the neces-
sity to be interfaced by some other external systems from which it receive some

 A MIT to Mitigate Interdependencies between Critical Infrastructures 29

critical services. In this case the survivability of the system is not preserved only by
its internal components but also by the resources received by other external systems;
this resources cannot be furnished by the internal system components.

In the last years it was recognized that Large Complex Critical Infrastructures
(LCCIs) [1], are complex systems that suffer of major instability problem today re-
spect to the past. This problem is increasing today because the degree of connectivity
between LCCIs is also increasing.

2 The Interdependency Problem

The interdependency problem is considered by the emergency management institu-
tions and communities, and its significance has increased since governments and
citizens became aware that services furnished by power distribution networks, tele-
communication networks, transport infrastructures and other key resources are actu-
ally more critical, and these LCCIs are today more interconnected respect than in the
past. To maintain their style of living, modern societies are more dependent on their
critical infrastructures; but, ironically, the actual ICT advances do not reduce the
critical infrastructures instability problem. Some new types of emerging vulnerabili-
ties are producing a strong impact in the future emergency management practices and
in the social security strategies.

The need for protecting critical infrastructures becomes more important also as a
consequence of the so-called ‘cascading effect’, caused by mutual interdependencies
[1] of the networks. There are different causes and external conditions that contribute
to augment such type of interdependency. When we consider critical infrastructures,
we have to take into account that they are not simply ‘physical’ plants and networks.
In fact, they contain not only a physical layer, but are also made of ‘cyber’ compo-
nents and systems, and include human organisations that manage and supervise the
daily operations of the infrastructure.

2.1 Interdependencies in the Physical Layer

If we look at physical layer only, as the example of fig 1 for an electricity network, it
is possible to understand some “intrinsic” instability problems.

Fig. 1 shows a simple electrical transport network, as it is described in the IEEE
Transaction paper [2]. The basic elements in the network are:

o the “generators”, that are different types of power production plants
(Oil/Steam, Coal/Steam, Hydro, Nuclear etc.) and represent the points in
which energy is produced,

o the “loads” that represent the points in which power is consumed (by a city
distribution network, by an industry or by a railway energy substation),

o the “nodes” that represent the points where power flow coming from the
generators is dispatched to the loads,

o the “lines” that represent the electrical cables used to transport energy be-
tween different nodes .

30 C. Balducelli et al.

Fig. 1. A simple electrical transport network

Different portions of the network generally work at different voltage levels, and are
interfaced with “transformers”.

The stable working condition of such system may be easily explained in the same
way as the stability of a tandem bike on which more cyclists are pedalling[3].

Every cyclists on the bike have to pedal at the same frequency since all sprockets
are connected with same chain. Also in the electrical network all generators (turbines)
have to rotate at the same frequency to maintain constant (50 hertz) the electrical
power frequency.

If some cyclists are simply sitting on the bike and do not pedal they could be com-
pared to the loads of the electrical network; in fact they are points in which the energy
produced by the other cyclists is consumed. To keep constant the speed of the bike the
total force of the active cyclists (total generation) has to be the same as the total
power absorbed by the passive cyclists (total loads).

It could be noted that the chain between the cyclists may be slightly elastic; it
means that an angle difference may exist between the pedals positions of the different
cyclists. The same phenomena happens in the electrical network when a phase angle
exists between active and reactive generated power, and all the generators have to
work in such way to reduce as much as possible these phase angles differences. For
the bike system a great angle difference indicates that some cyclist pedals too slowly
and some other too fast. In the electrical transmission network the angle difference
indicates an insufficient power production in some part of the network and a surplus
of production in some other parts. In such situation, for the bike and for the network
system as well, some instability conditions could arise.

It is interesting to note that, in the previous condition, the instability level of the
tandem bike system increases much if the bike speed is low (bike oscillations can
arise), and, on the contrary, decreases when the speed of the bike increases.

In the same way, also the electrical network system results more vulnerable, due to
such instability problem, when the electrical production and consumption is low. The
Italian electrical black-out of September 2003, mainly determined by the too high

 A MIT to Mitigate Interdependencies between Critical Infrastructures 31

power imported flow from foreign countries, happened during the night, the period in
which the internal energy production (and consumption) is low; in such occasion the
Italian energy operator (GRTN) said that the same black out may be avoided during
the day, when the production and consumption are higher.

From the above considerations we can learn the following lesson: to work in a safe
condition, whatever the considered system is, the system operator have to maintain its
parameters near the nominal working states.

But the electrical networks are not managed by a single operator; the electrical sys-
tem operators have no possibility to control in a single place the complete working
status of the network, because more portions of such network are distributed on dif-
ferent countries that could have different management strategies. In addition, the
recent globalisation of the energy markets makes more complex the management of
such type of interconnected networks.

Generally the electrical system operator of a certain nation have to decides or plan
the day before what generators (production plants) will be used the day after to satisfy
the internal energy consumption and the external requests. This is imposed by the fact
that it is not possible to execute rapid start-ups or shut-downs of the production plants.
Depending on the plant typologies these procedures may require long times (hours)
for the execution.

In the energy field new possibilities were recently introduced for distributed gen-
eration of renewable energy like solar energy or wind. But the power transmission
networks and their control and supervisory systems are not ready to manage these
new autonomous energy producers that introduce additional instability inside the
electrical system. In fact is not always possible to forecast with sufficient accuracy
where and when the weather conditions requested by the renewable energy production
plants will be available. This types of plants have a “degree of autonomy” that is not
always compatible with the need to maintain the whole system in a safe condition (far
from the instability zones).

The consequence of the serious incident, which originated in the North German
electrical grid during the night of 6 November 2006 was simply the European grid
separation in three large islands; but, during this contingency, Europe risked a very
large blackout, involving a lot of countries. One of the reasons of this incident was
attributed to voltage instabilities caused by the wind energy production plants, in-
stalled in the North of Germany by autonomous energy providers.

The free energy market imposes today also the necessity to sell and acquire energy
from different countries during some time periods that are determined by economical
reasons, but that do not take in account the systems instability constraints.

2.2 Interdependencies in the Cyber Layer

When we speak about Critical Infrastructure instabilities we have consider not only
faults that arise in the physical layer of the infrastructure but also anomalies that could
happen on the cyber and the organisational layers [4].

In the fig. 2 is illustrated a situation in which an interdependency problem occurs
between an electrical and a telecom infrastructure, caused by some loss of the services
that this two infrastructures exchange each other. Some substations of the electrical
infrastructure furnish the power (services 1 and 2) necessary for some telecom

32 C. Balducelli et al.

gateway switching devices that control the voice and data traffic in a regional area.
Failures or anomalies of these devices may have some consequences, as a decreasing
of data transport services (service 3) of switching devices of an urban area that are
utilised by the Control Centres of the electrical company.

Also if this may not cause immediate consequences on the electrical network, due
to the impossibility for the electrical operator to supervise and tele-control the net-
work, any other fault event on the electrical grid will not detected and properly man-
aged, so that a general cascading failure of the grid will be possible.

Fig. 2. Interdependencies caused by mutual services exchange

The above example describes as the control and supervisory system functionalities,
designed to allow the operators to maintain the physical network far from well known
instability zones, can be indirectly attacked by the effects of interdependencies be-
tween LCCIs.

New instabilities appear today also in the human organisations managing infra-
structures. In the global world this is generated by the necessity to reduce the organ-
isational and industrial costs, that for a company are determined by the competition
with other companies.

The globalisation of the markets and the competition make both computer systems
and human organisations more vulnerable and exposed to external threats.

Sources of instabilities in the cyber layers of LCCIs are also caused by loss of em-
ployers or industry operators with critical skills. The introduction of a new generation
of information/control systems often requires more knowledge/expertise about these
new technologies. But frequently, the companies are afraid about the introduction of
new technologies, and at the same time, the oldest ones are not competitive anymore.

To reduce personnel cost, many energy distribution companies promote the utilisa-
tion of ‘remote’ maintenance of devices and cyber components utilising the internet
connectivity. But this new type of connectivity can be used also by malicious users or
cyber-terrorists to damage the network functionality.

 A MIT to Mitigate Interdependencies between Critical Infrastructures 33

2.3 How to Solve the Interdependency Problem

For these reasons the LCCIs SCADA1 systems have been improved with additional
components able to reduce/mitigate the interdependency effects caused by failures at
physical, cyber or organisational level, generated also by external attacks.

In this paper we propose to reduce such systems instabilities with additional tools
aimed to improve the coordination between the different organisations that manage
critical networks and infrastructures.

It is well known that inside every infrastructure many procedures, tools and re-
sources are available for the operators to prevent and manage crisis or instability
events. But every infrastructure operator normally looks only inside his own infra-
structure and has the primary goal to protect it against failures and disruptions.
Anyway actually the infrastructures are more and more interconnected; they produce
services and materials that are utilised by other infrastructures; as illustrated in the
above section the lack of a certain service inside a local infrastructure may produce
failure inside remote one that, if consequently fails, could produce additional damage
inside the local one. While for the instability problems encountered inside single
plants, the local operators are generally trained to maintain the system inside the op-
erative zones, far from well known instability regions, interdependency is a new in-
stability phenomena, affecting sets of coupled infrastructure, for which the operators
have not sufficient information and knowledge.

To front this new type of instability is necessary to improve the co-operation and
the information sharing between different infrastructure owners about the status of
critical services that are essential for the survival of the coupled infrastructures.

There are two main types of information that have to be exchanged to mitigate the
possible instabilities arising from interdependency problems:

1. Info about quality and continuity of services: the infrastructure that acts as service
provider informs the service consumer about the quality and the continuity of the
service delivery. Information can not only be related to actual service delivery but
also to “future service delivery”. Information related to future service delivery
may be accompanied with a probability of occurrence. One purpose is that the
service provider can inform the service consumer of possible future problems to
give the service consumer sufficient time to take mitigation measures.

2. Negotiation info: in this case the service provider and the service consumer nego-
tiate the terms of possible service degradations. One party sends a proposal to the
other one. Proposals contain suggestions concerning the minimum quality of ser-
vice levels for certain services, time spans and locations. The other partner can
then accept or reject each proposal. Negotiation messages are always exchanged
in both ways. There are different possibilities how negotiation can start. For ex-
ample, an electricity distributor has to disconnect a certain area for some time but
he is flexible with the exact time. He can suggest possible times for the discon-
nection and a telecommunication provider can choose one of the options. Another
possibility is that a service consumer sends, as a reaction to an information about
quality of certain services for the next future, a preference list with the most im-
portant services. These preferences can be considered during recovery crisis and
recovery phases.

34 C. Balducelli et al.

3 The MIT Technology

3.1 General Overview

The MIT Technology, we are going to present in this paragraph, has been proposed
inside the EU Integrated Project IRRIIS [5] which aims at protecting of critical
infrastructures (CIs) like energy supply or telecommunication system.

This project will provide a technological system named MIT (Middleware Im-
proved Technology) which is composed of a collection of software components that
facilitates IT-based communication between different infrastructures and different
infrastructure providers. By supporting recovery actions and increasing service
stability in case of critical situations, MIT components will substantially enhance the
security of large complex critical infrastructures. MIT system will be able to:

• Reduce the chance that failures spread (prevention),
• Limit cascading effect (mitigation),
• Improve situational awareness (prevention and response and recovery).

Prevention, by detecting and mitigating threats, is without any doubt the first and
the best way to avoid disasters or minimise their impact by accelerated reaction capa-
bilities. Mitigation will try to reduce the impact and extend of failures as soon as they
occur. Response after critical situation should be both automatic and manual.

Recovery is a very important topic to reduce failure/outage time and thus increase
security. Recovery actions shall be done as fast as possible and using an effective
order. This requires situational awareness of the availability of other infrastructure
capabilities and the status of one’s own. The Recovery functions of the MIT system
should give an estimation of time to return in stable phase.

There are a lot of dependencies and interdependencies also within some LCCIs.
For example, within Electricity LCCI, data transmission to and from control centre
needs communication and this, as it has been said, will be even more crucial in dis-
tributed generation. Anyway, prevention of failures caused by (inter)dependency
effects would benefit also from improved resilience of each LCCIs, i.e., reducing risk
of failures within an LCCI. To some extent, cross-sector technology and tools which
clearly provide other CI sectors with better resilience are subject for MIT as well,
while focus will be set on dependencies and interdependencies between different
infrastructures.

Moreover, MIT aims at providing a valuable solution; thus all existing tools and
processes which are implemented within an LCCI to reduce risk will be at the base for
further MIT to improve resilience.

3.2 MIT Architecture

The starting point to define an architecture for MIT System is the following picture:
The small box in the picture represents the MIT System installed in each LCCI.

Each MIT System is composed by the following components:

o Communication Components (light circles in Figure 3)
o Add-On Components (black circles in Figure 3)

 A MIT to Mitigate Interdependencies between Critical Infrastructures 35

Fig. 3. Interdependencies caused by mutual services exchange

o Database, files (log files, configuration files), GUI (not represented in
Figure 3)

o Other resources as Run-Time Environments, Servers (not represented in
Figure 3)

The communications in the above MIT general architecture should be implemented
making use of a client-server paradigm without a centralized server. This means that
each MIT System will communicate with other MIT Systems sending and/or receiv-
ing information through the client server paradigm. A MIT System that start the
communication sending an information or a request assumes the role of Client. The
MIT System that receives an information or a request assumes the role of Server.
Each MIT System can assume Client or Server role depending on the operation it has
to execute.

The above picture shows an example of six LCCIs. Each LCCI has its own MIT
System (small box). Each MIT System is composed by Add-On Components and by
Communications Components. The black bidirectional arrows means that the com-
munications can happen in both directions: for example MIT 1 of LCCI 1 can send an
information to MIT 2 of LCCI 2 or MIT 2 of LCCI 2 can send information to MIT 1
of LCCI 1. Following the previous example, in the first case MIT 1 has a Client role
and MIT 2 has a Server role while in the second case MIT 2 has a Client role and MIT
1 has a Server role.

The advantages of this solution are: there is not a central server so there is not a
node of this network to maintain in terms of software/hardware maintenance and in
terms of authority. The central solution introduces a new node in the network so it
potentially introduces an additional vulnerability.

The drawbacks of these solutions are: introducing and removing MIT Systems in
this network is not simple and each MIT System should be updated and re-configured.
Since each MIT System contains all the logic of MIT Communication System, each
MIT software upgrade will cause the upgrade of each MIT System.

After the description of the general architecture of MIT, the following paragraph
will focus on a brief introduction of each MIT Add-On Component.

36 C. Balducelli et al.

3.3 MIT Add-On Components

It has been already stated that MIT aims at reducing the risk of failures due to de-
pendency and interdependency, by preventing or at least by mitigating them and sup-
porting the recovery process. But what are the threats to be prevented or mitigated?
And what actions have to be taken to cope with them?

According to earlier studies [6][7], the most likely reasons for severe incidents are
extraordinary natural conditions (for example, earthquakes, floods or hurricanes),
malicious attacks, and human errors.

In effective mitigation against natural disasters, very often, the keyword is “col-
laboration”. Incidents of this kind lead very often to quite complex situations, where
most likely a failure storm, instead of one single failure, happens. Despite how good
recovery and continuity plans in place be, mutual support between critical infrastruc-
tures is always needed to take care of people’s safety and homeland security. So,
helpful add-on components should support consultation and co-ordinated actions
between neighbouring infrastructure systems for the establishment of effective mitiga-
tion measures, as well as early warning notification of coming threat, whenever
possible.

Against malicious attacks, which include both cyber attacks and malicious opera-
tion, add-on MIT components shall improve security by preventing or at least detect-
ing them as early as possible. Security weaknesses in one infrastructure decrease
security of all the dependent LCCIs, so it is both a dependability and dependency
issue. Of course, basic cyber security administration (like closing open ports) is not
task of MIT.

Against human errors, there is a need for supporting the operator with situational
awareness and emergency handling, especially about the state of neighbouring sys-
tems his own LCCI is dependent on and about consequences of these dependencies.

To sum up, the following general actions are needed to prevent or mitigate disrupt
of operation in home LCCI and neighbouring ones:

- PREVENT, if possible, the incident to avoid its impact on dependent infrastruc-
tures;

- PROVIDE EARLY WARNING of deteriorating system conditions to the opera-
tor, so that he can take corrective actions;

- DETECT AS EARLY AS POSSIBLE the incident and NOTIFY it to the de-
pendent infrastructures so that neighbouring operators can take pre-emptive ac-
tion to limit the cascading effect of disturbances;

- ESTIMATE the probability of disrupt of his own LCCI operation due to internal
causes and NOTIFY, if requested, to the dependent infrastructures;

- ASSESS THE own infrastructure RISK due to information about neighbouring
status so that operator can take pre-emptive action to limit the cascading effect
of disturbances;

- HANDLE THE EMERGENCY, if needed by negotiating co-ordinated actions;
- RECOVERY support/awareness.

The mentioned functionalities have been developed into particular components.
Figure 3 shows MIT Communication Components and MIT Add-On Components.

 A MIT to Mitigate Interdependencies between Critical Infrastructures 37

The following general classes of functions (Figure 4) have been identified for MIT
Add-On Components:

• Internal assessment (situation awareness about home LCCI) to build situ-
ational information based on internal LCCI.

• Risk assessment (situation awareness about home LCCI and neighbouring
LCCIs) to correlate the internal status of the LCCI with the statuses of the
neighbouring LCCIs to estimate the probability of occurrence of undesirable
event based on both internal and neighbouring status.

• Emergency management (computer supported systems to manage the con-
tingencies) to support the operator while handling the emergency, both by
decision support and by recovery support; to support the local LCCI operator
in the negotiation process with operators or the neighbouring LCCIs during
an emergency.

• Information sharing to ensure that information will be efficiently shared,
and that LCCIs authorized procedures are considered to filter information, to
be shared, to publish filtered information and to subscribe and read the pub-
lished information.

• Risk Management (additional off-line tools to improve risk management
situations).

Fig. 4. MIT Add-On Components functional architecture

For each class of functions the following Add-On Components have been identi-
fied in Table 1:

Information Publisher (IPU) and Information Subscriber and Reader (ISR) just
support communication among neighbouring LCCIs. As they use commercial tech-
nologies, their description is out of the scope of this paper.

38 C. Balducelli et al.

Table 1. List of the Add-on components

Tools to Extract LCCI Functional Status – TEFS (Internal Assessment)

Risk Estimator – RE (Risk Assessment)

Incident Knoledge Database –IKA (Risk Assessment)

Assessment of Cascading/Escalating Effects – ACEE (Emergency Management)

Display of Emergency Management Procedures – DEMP (Emergency Management)

NEGotiator – NEG (Emergency Management)

Information PUblisher – IPU (Information Sharing)

Information Filtering – IFI (Information Sharing)

Information Subscriber and Reader – ISR (Information Sharing)

The following sections go into detail of the other add-on components rationale and

requirements.

Tool to Extract LCCI Functional Status (TEFS)
LCCIs are interested in being informed about some parameters of the neighbouring
LCCIs status, actually both known status and foreseen one in a reasonable lapse of
time. On the other side, operators often claim to be overwhelmed by a large amount of
information and disable most of the features of the tools they have in order to have
manageable information, but in this way they underutilise them. Moreover, this is
extremely true in case of emergency, when a lot of alarms are raised by tools in place
and it gets challenging to extract/correlate/filter relevant information. In that case, an
operator has to confirm simultaneously more than 100 different alarms. As there is no
filter on the importance of the information, it can happen that the operator also con-
firms “the” important information without realising it and taking appropriate coun-
termeasures.

In many sectors, most of the required information is already available as it is pro-
vided by existing tools (often more than one, each of them carrying out a different
analysis to cover a different aspect of the global picture). However, it needs to be
collected and aggregated to obtain state and status information, as well as planned
maintenance work, required by neighbouring LCCI(s).

A tool able to interface with existing tools and merge their output in order to have a
clear and complete picture taking into account various functional statuses is needed.
This add-on component is mandatory to provide information to dependent LCCIs
after being filtered to fulfil privacy and security requirements as well as bi-lateral
agreements and run-time requests.

This tool will carry out data fusion of cross-sector/multi-analysis already available
data in order to identify relevant current functional statuses (in service/out of service
and/or quality of service if relevant) and expected ones in the near future. Depending
on the requested reaction time of the operator, data of different time ranges may be
required. Functional status should also take into account scheduled and on-going
maintenance, as well as expected restoration time, as dependent LCCIs could make
proper arrangement to cope with the loss of service, if any.

 A MIT to Mitigate Interdependencies between Critical Infrastructures 39

Information to be provided may include:

o LCCI part (line etc) details: Name and Location
o Confidence about information: this field states if information provided is

Known / Estimated
o Severity: Warning/Alert/Alarm
o Functional Status: InService/OutOfService/QoS (if relevant, to say that

agreed service level is not fully available)
o Risk of service reduction
o Cause of the declared Functional Status (in case of OutOfService or QoS less

than expected/agreed) and expected time needed for it
o Expected Restoration Time

Information from different sources will be correlated and filtered, if needed, in or-
der to have just one picture.

For the electrical power sector and whenever else it applies, the CIM (Common In-
formation Model) IEC 61970 standard shall be used as output format.

It’s worth noting that as it can contain sensitive information, the output of this tool
must be filtered according to bilateral agreements before being notified to legitimate
LCCIs. Moreover, it must be not accessible by unauthorised people.

Two versions of this tool, one for electrical power sector and one for telecommuni-
cation sector, shall be provided, as different LCCIs have different parameters to be
monitored to get the global picture and different tools available.

Risk Estimator (RE)
The key assumption in the rationale of this add-on component is that sometimes a
specific condition itself is not critical, but it becomes critical if some coincidences
happen. For example, SCADA requires some network traffic for tele-monitoring and
supervisory telecontrol, which grows significantly in case of failures as a lot amount
of alarms will be sent by the remote control units. If a Telco operator, for maintenance
reasons, halves the available bandwidth for a power grid SCADA, power operation
will not be impacted in case of normal operation, but that reduction may be a big issue
in case of a failure situation, especially for communication with IPP in distribution

This add-on component will estimate immediate risk and potential cascading
and/or escalating effects. Estimation could take into account:

o real-time info (internal assessment)
o status information from other LCCI(s)
o planning information
o scheduled maintenance
o information from the web (weather forecast, strikes, events…)
o other information resources.

To provide an added value, it may need to query/interface to existing tools. To ac-
complish its job, estimation could be based on:

o correlation rules - for example, it could check if some values (or trends) com-
ing from neighbouring LCCIs are higher than threshold or if an outage is
possible and backup batteries are not available

40 C. Balducelli et al.

o findings or algorithms aimed at identifying, for example, the arcs who dis-
connect the network

o co-ordinating inputs/output of existing tools, if possible - for example, it
could feed the state estimator with trends/projections of coming situation or
it could start any simulation tool running an extended model, i.e, taking val-
ues).

Moreover, it will subscribe for needed frequency/threshold sensitivity to other
LCCIs Internal Assessment MIT Add-on components. The required sensitivity may
vary according to operating conditions and on-going risk assessment analysis.

As some progress can be made in risk assessment understanding, especially about
dependency, new correlation rules have to be fast implemented and/or modified.

It’s worth noting that risk of screwing down must be avoided, so usually risk iden-
tified by Risk Estimator will not be notified to neighbouring. A clear state expectation
and state status should be derived from internal data, not from internal expectation…
as one will mitigate the problem (first).

Incident Knowledge Analyser (IKA)
Based on public incidents, some incidents databases have been built to store knowl-
edge and experience, to trace common trends among similar classes of failures and to
get clues about dependencies and interdependencies and failure propagation patterns.
The database on Critical Infrastructure outages established by the IRRIIS consortium
and the one built by British Columbia University of Technology about SCADA fail-
ures are examples of those. Moreover, most LCCIs have also their own incident data-
base.

It could be useful to exploit stored experience and identify whether the current
situation has some similarity with one of the preconditions which led to a disruption
of operations in the past.

This tool has the following added values:

o As a LCCI incident database contains sensitive information and it therefore
would not be available at large, a public database can be useful. Of course, if
interested, LCCI stakeholders can apply the same approach to their own in-
cident database.

o Not all the LCCIs must have experienced the same failures (and then the re-
lated disruptions) but it could be useful to warn the operator if an on-going
failure already happened in the past and led to disruption of operation (so
LCCIs can exploit the knowledge about all the known disruptions)

o This tool could be very useful if in the future all the LCCIs will be forced to
report incidents by an independent regulatory authority. Such a process is
already on-going in the USA for the power and telecom industry, and for the
power industry in several European nations.

This tool shall check in real-time if an on-going identified failure is contained in
the incident database as leading (or symptom) to a major disruption of operations in
the past. For electricity, failure of equipment such as line, substation, transformer,
switchgear etc is detected very fast by probes in place.

As an optional feature, this tool shall be able store new occurred incidents in the
database, at least the starting failure and the sequence of occurred events. Anyway, a

 A MIT to Mitigate Interdependencies between Critical Infrastructures 41

database administrator must validate them. Not validated incidents must be clearly
identifiable and if this tool uses them for future reference, it shall show a lower confi-
dence of result.

However, as an additional module, a tracer for failures could be useful and could
also give a clue for self-awareness. In fact, after a good test phase, the internal
assessment should be reliable as it relies on the existing tool. Therefore, if the risk
estimator gives a wrong forecast for a while or if it is not working properly (may be
because the situation is not manageable with given algorithms) it shall be disabled.

Display of Tailored to the Situation Emergency Management Procedures (DEMP)
Emergency management plans are already in place at each utility as pre-planned deci-
sions. Some of them are legally binding, some others are not. They should be fol-
lowed if the on-going contingency is provided in one of them, but sometimes the
operator fails to recognise the right procedure, especially if abnormal conditions ap-
pear such as outage of several lines and if he/she needs to take into account, for ex-
ample, financial decision. Existing emergency management plans do not cover new
threats, for example the ones related to dependency. If no pre-planned decisions exist
for the on-going contingency, decision options should be suggested.

This tool shall identify if the on-going identified contingency has any match in the
preconditions of any procedure. If so, it shall prompt the relevant procedure and check
the progress. Any deviation and the reason thereof shall be logged. If no match is found
this tool shall work out emergency management plans by intelligent adaptation of pro-
cedures from all the available and relevant sources (for example, mitigation policies for
single failures, existing “Incident and Crisis Centre” DB, topology analysis).

The tool shall provide the operator one or more solutions to resolve an abnormal
event with all the consequences of these solutions. This tool could benefit from the
Negotiator (see later in this section) to take into account non-technical constraints
(financial issues, political issues etc).

Tracking of decisions taken (with reason - especially when neglecting best pro-
posal) with time tracking alarms on issued actions to third parties / people shall be
implemented. As a guideline is to relieve the operator from duties unrelated to pre-
serving his/hers LCCI, reasons for actions shall be stored, but are not mandatory to be
filled in during the emergency. If the adapted emergency plan succeeds, it shall be
stored for future reference.

Assess Cascading/Escalating Effects of Decision Options (ACEE)
Even if the primary goal of LCCI is to maintain proper “own” state, actions for emer-
gency handling can impact dependent LCCIs and then even turn on his own LCCI by
interdependency. Support to decision-making taking into account dependency struc-
tures shall be implemented.

This tool shall:

o Show the direct and indirect effects (cascading effects) of actions taken.
o Evaluate cascading/escalating effects in own and dependent LCCI(s). To be

useful, assessment of cascading/escalating effects shall be performed in near
real-time and predictive way.

Action can be extracted by official policies, for example, if emergency involves
two neighbouring TSOs, by UCTE Policy 5 Procedure P2.6 or similar.

42 C. Balducelli et al.

As this tool requires system knowledge of infrastructure and consequences, the
Negotiator (see later on this section) or an interdependency simulator may be of help.

Negotiate Emergency Management Plans with Dependent LCCIs (NEG)
Sometimes it is possible or convenient to agree or negotiate contingency plans. This is
specially true in normal conditions, when healthy LCCIs can support the ones in dan-
ger. It has been verified, for example, that in many conditions the operator has to
solve a N-1 situation and he usually has several ways to proceed, allowing room for
negotiation. For example, in order to negotiate, if possible, power outage to impact
the delivery of telecommunication services as less as possible, the following informa-
tion could be shared:

o off-line list of critical sites on power delivery point of view,
o on-line (real time during a power supply failure) list of sites on which it is

recommended a faster re-establish of power supply, due for example to re-
maining battery-life or available gasoline for auxiliary power supply, or air
conditioning, heating, or humidity problems.

Negotiation should be used to agree remedial actions when required (for example
by UCTE Policy 5 Procedure P2.6).

Negotiation should also be used to verify some assumptions about neighbouring
LCCI status.

In the electrical power sector, decisions to manage some outages are taken by
simulating all the possible disconnection options, and then by choosing amongst the
set of best solutions. If more than one solution exists, neighbouring LCCIs could ask
to take into account additional constraints (for example, Telco LCCI will ask to not
disconnect a particular site) in order to limit the impact on their own LCCI. The same
function can be useful for Telco operators, because in case of failure in one node they
are in charge to choose an additional path and they usually have more than one op-
tion. Negotiation shall also take into account which action could benefit more the
whole system (because of interdependency, all the LCCIs are interconnected as part
of one system).

This tool shall inquire neighbouring LCCIs for additional ongoing activities, con-
straints-like general needs (some sites are more important than others) and authorita-
tive contingency information (for example, Rome is as important as Milan, but in
Milan snowing is expected, so do not disconnect Milan). Constraints must be
prioritised.

This tool shall also provide a feedback to neighbouring LCCIs to make them in-
formed if their request will be satisfied or not.

Request format should be based on the ISO/IEC 61970 standard “CIM”, in order to
be easily fed in proper simulation tools.

During incident, a 1-1 link with Negotiation of other LCCIs shall be established for
clarification of state and expectation of recovery.

Like all the other add-on components, if relevant, decision-support MIT add-on
components shall interface to DSS tools already in place.

Information Filtering (IFI)
Internal assessment information are relevant both for internal use and for neighbour-
ing LCCIs. Similar information could be shared with different neighbours. A tool in

 A MIT to Mitigate Interdependencies between Critical Infrastructures 43

charge of filtering relevant internal assessment output to be shared with interested
LCCIs according to established agreements and privacy policies is needed.

Information to be shared by LCCIs will be a subset of the internal assessment data.
For example, to mitigate problems on telecommunication networks due to its depend-
ency of the power grid, the following information is needed:

o When a planned power outage will happen (time and date)
o When a potential power outage may happen (time and date)
o When an power outage occurred (time and date)
o Expected power outage duration
o Where the power interruption will happen, in order to detect both main

Telco’s objects (exchanges; NOC, masts, gateways, ..) involved and service
area involved.

In case of unplanned outage, it could be important, in order to plan countermea-
sures, to be notified about conditions and restoration plans.

Each LCCI will be responsible for filtering his own information.

3.4 Implemented Technology

In order to describe the technology used to implement the MIT we need to consider
the problem of communications between MIT Systems. Receiving and sending infor-
mation can be done considering an Application Server (AS). Such technology pro-
vides all the infrastructure to receive and send information through a network. This
means that we don’t have to worry about multiple request and don’t have to manage
server and client processes. We only have to develop the right components which
define the “business logic” of the problem. Such components (Application Server
components) must be deployed into the Application Server in order to work. Another
consideration is that Application Server technology is strictly related to Java technol-
ogy, more in detail to Java Enterprise technology. This means that Java will be the
main language for MIT but it could not be the only language.

Now it is clear that some MIT Components we have discussed in the previous
paragraphs such as IPU, ISR, NEG and IFI, can be developed and deployed as Appli-
cation Server Components (for example making use of EJB technology).

Fig. 5 shows an UML Component Diagram representing a single MIT System where
each box represents a MIT Component; the grey box is the Application Server. The
meaning of this figure is that some MIT Components are deployed in the Application
Server and other ones are external to the Application Server. MIT Components de-
ployed in the Application Server are also managed by the Application Server so they
access all the services provided by the Application Server. The figure also shows that
some external MIT Components must communicate with MIT Components in the AS.

About the communication process among different MIT systems, each Application
Server with its MIT Communication Components represents the front-end side in
regard to other MIT Systems. Two different MIT systems are connected through the
network using TCP/IP as communication protocol at transport level.

A different approach should be used to exchange information at application level:
usually inside an organization (a LCCI in our case) there is only a limited number of
open ports (often only port 80) in order to allow http traffic; this must be taken in

44 C. Balducelli et al.

Fig. 5. UML Component Diagram of MIT

account for the design of MIT. For that reason, we have chosen SOAP as protocol at
application level which is a protocol that makes use of XML to serialize the data to
transfer and of HTTP as transport protocol. XML is a textual format, http is a protocol
to transfer textual contents, the web protocol that, by default, makes use of port 80.
This way, two applications residing on different sites can communicate each other
without opening further ports.

Communication between external components and internal components can be
bidirectional. This means that an external component can send an information to in-
ternal components or an internal component can send an information to external com-
ponents. In the first case the communication can be synchronous or asynchronous.
Synchronous communication means that the external component first must obtain a
reference to the component inside the AS (remote component), then it can send the
information to the remote component (executing the method of remote component).
Asynchronous communication means that the external component sends information
(as a message) to an internal service (Java Message Service – JMS), in particular to a
Queue or a Topic. This message will be delivered to the right MIT Component by the
AS. In both cases the utilized protocol is AS proprietary (RMI – IIOP).

In the second case (the internal component send the information to external com-
ponent) the communication can only be asynchronous because the components de-
ployed in the AS can’t obtain a reference to external components.

4 An Experimentation Environment to Test MIT Technology

The architecture of a complex hardware and/or software system, like a car or like the
above described MIT system, is generally formed by a set of interconnected compo-
nents, every one having a specific role inside the whole system. As illustrated in fig
5, a development and a stand-alone testing phase of every component must be fol-
lowed by the “experimentation” phase of the whole system.

To produce a good experimentation is necessary the presence of the “environment”
in which the system have to realise the designed functionalities.

The environment in which MIT system works are very complex infrastructures
composed by hardware, software and human organisations. These infrastructures offer
their critical services to citizens, industries and other infrastructures. The production
of these services cannot be stopped or reduced during the time necessary for

 A MIT to Mitigate Interdependencies between Critical Infrastructures 45

Fig. 6. Development, testing and experimentation of a complex system

experimentation. Interfacing a not experimented MIT system to such infrastructures
may be not acceptable for safety and security reasons.

To address the experimentation problem properly, the infrastructures behaviour
must be simulated in an “artificial” environment suitable for an exhaustive test of
MIT. In the field of Critical Infrastructures protection, and more in particular for
SCADA and control systems security, some scientific Institutions already developed
complex test beds for experimentation able to produce real and simulated test data
[4][8][9].

In such test beds the role of simulators for experimentation consists mainly in the
“on demand” production of the data and information, normally produced by the
LCCIs during normal and in anomaly conditions; such data are the necessary inputs to
analyse the interdependency problems and to test the candidate solutions.

Depending on the types of considered scenarios, more simulators may be necessary
to model and generate operative data relative to different physical and cyber layers of
a same LCCI.

As evidenced in fig 7 a single interdependency scenario between two or more
LCCIs is produced by a certain set of exchanged services. To reproduce the dynamic

Fig. 7. Scenario/simulators relations schema

46 C. Balducelli et al.

behaviour of such services some subsets of LCCI components have to be considered
and modelled; these models could be used by a set of simulators to reproduce the
considered scenario and all its possible variations.

Looking, for example, at the telecom and electricity distribution infrastructures the
following set of simulators may be necessary to have a complete coverage of the
various situations.

A data packets exchange simulator is needed to emulate the congestion of data
transfer across the Telecom communication network due to the loss of some Telco
critical component.

An event based simulator is also necessary to emulate the (event-based) behaviour
of the power backup systems supporting the telecom devices in case of electrical
power blackouts.

It is also necessary to consider a power-flow simulator to produce load-flow and
other electrical data generated in the substations and in the electricity lines.

Finally, also an emulator of the SCADA system is necessary. SCADA systems, in
fact, support operators for remote control operations and at the same time collect
electrical data from the remote substations and send them through the communication
network to the Control Centres operators to make them aware about the status of the
power network. This simulator has to simulate the data collection and transfer process
from the peripheral components of the electricity network and the electrical system
operators activities like the management of remote tele-operations. It may be consid-
ered as a special interface between the previous electrical simulator and the telecom
network simulator.

4.1 Relationship and Dependencies between the Various Simulators

Taking in account characteristics of the considered scenario it is possible to define
the relationships between the different simulators.

Consider for example the scenario illustrated in the fig 7:

Fig. 8. Characteristics of the considered scenario

 A MIT to Mitigate Interdependencies between Critical Infrastructures 47

A Telecom building contains routers and servers belonging to the back bone of the
national telecommunication network (PoP BBN in the figure). In the figure if two
components are linked by the a normal line they have a direct dependency (a failure
of on a component has an immediate physical effect on the second). It they are linked
by a dotted line they have an indirect dependency (a failure in the first one generates
only an increasing risk of producing some effects on the second).

A flooding event, caused by a leakage in the water transport network that serves
the air conditioning system of the building, is one of the first causes of this emergency
scenario. The flooding produced some failures in the components (diesel generator,
UPS system, batteries) belonging to the power backup systems of the building. For
such reason, in presence of loss of the main power supply from the electrical network,
the data fluxes A and B could be interrupted; if such event occours the main Control
Centres of the electrical distribution network losses the data visibility and the remote
operability of all the substations connected through a backup Control Centre. As one
of these substations (substation 2 in the figure), furnishes the electricity service to the
same telecom building affected by the flooding, it produces an “interdependency
effect” that augments the emergency problem on the telecom side.

The figure evidences how many other events, on the telecom or on the electrical
LCCI could produce consequent cascading effects between LCCIs. The components
are grouped into different (grey) zones; every zone evidences a sets of components
that may be simulated by a certain type of simulator.

The electrical load flow simulator has to produce (cyclically) data that will be col-
lected by the SCADA emulator of the control centres. The same route, in the opposite
direction, is used for sending commands, asked by the control centres operators. Com-
mands produce a change in the network status that will be considered by the load flow
simulator that executes a new calculation and updates the electrical data sets. The data
flow between two control centres is managed by a Telecom message flow simulator.

The status of the electricity services is considered by the TELCO power backup
simulator; in case of lack of electrical service it actuates the available backup strate-
gies and, if some of such strategies fails, it communicates to the Telecom message
flow simulator the eventual degradation level of the telecom services.

Fig. 9. Simulators relationship for mini-Telco scenario case

48 C. Balducelli et al.

The degradation level may be determined not only by an immediate failure but also
by a more slow changing in the resources status, until that the continuity of the ser-
vice is no more guaranteed. The residual charge of a backup battery is an example of
such resources; other examples may be the availability of fuel for the diesel backup
generators or the availability of the water pressure necessary for the air conditioning
systems of the Telecom building.

The data relationships between the considered simulators are shown in fig. 9.

4.2 The Architecture of Experimentation Environment

The general architecture visualized in fig. 10 is adopted as experimentation environ-
ment of the MIT components:

Here follow the main characteristics of the experimentation environment compo-
nents:

The Simulators: in the left part of the figure are evidenced the set of simulators that
are interfaced to the SimCIP (Simulation for Critical Infrastructure Protection) envi-
ronment by a set of dedicated interfaces. In the figure is also evidenced with different
colors the classes of layers (physical, cyber and service) containing the simulated
components. In this case the electrical load flow simulator and the TELCO power
back-up simulator are dedicated to simulate the status of physical components, while
the SCADA emulator and the telecom simulator emulate the cyber functionalities
necessary for messages exchanging and remote network controlling. The inner parts
of SimCIP, utilize data and information coming from the simulator, to emulate the
service exchanging between LCCIs.

Fig. 10. Generic architecture of the experimentation environment

 A MIT to Mitigate Interdependencies between Critical Infrastructures 49

Simulator management agents: SimCIP is a discrete event simulation system which
is built upon an agent-based modelling paradigm called LAMPS which combines
various concepts, such as agent-based modelling, iteration of differential equations,
rescaling of models in time, function and space, service oriented realisation and mod-
elling. Each simulated agent is dedicated to the management of a certain simulator
using the previous dedicated interface. These agents are in charge of “operating” the
simulator, requesting the operations that are normally requested by the simulator users
(load models into the simulator, start simulation, stop simulation, execute commands,
read produced data etc.).

Services management agents: from all data produced by each simulators the Ser-
vice management agents are in charge to extract only those that are related to the
“services” that the LCCI produce for the other LCCIs and that must be made available
for the current experimentation scenario. Examples of such services may be the en-
ergy supplied by a certain substation to the power backup system of a telecom device
or the availability of a certain communication link furnished by that a telecom router
device for data exchanging between two critical nodes (like two control centres) of
the SCADA system. Service agents have to produce not only the “current” status of
such services but also the trends of the services during a certain period of time. In fact
the current status of the services may be acquired also from the scenario Data Base
where all the on line data are stored; but for the experimentation of MIT components
(like TEFS) may be necessary to consider also the trends of the critical LCCIs pa-
rameters, that generally are stored inside the “archive systems” of the EMS (Energy
Management Systems).

Resources management agents: The necessity to consider the “trends” is required
also by the “Resources management agents” that works as a support of the Service
agents. Resources agents store the information relative to the resources necessary to
produce a certain service. An examples of resources are the “water” resource that is
needed to support the functioning of air conditioning systems inside the telecom node
(SGT) or inside substations and Control Centres; it support the services produced by
such nodes; a “degradation” in the availability of such resource generates an higher
risk level of the relative service. Another example is the availability of fuel for diesel
generators of electrical charge for backup batteries. It is obvious the availability of
“trends” about resources statuses is very important to make the service risk level es-
timation. Resource agents have to maintain the history of such trends during the ex-
perimentation phases.

SimCIP interfaces: depending on the type of simulators and on their roles SimCIP in-
terfaces may be more or less sophisticate; some simulators may be interfaced simply
through some tables of Scenario Data Base or XML files; some other simulators may
utilise API (Application Processes Interfaces) libraries to realise a more “interactive”
interface. Some simulators could be used as a single entity but other ones may also be
interfaced together by a dedicated data channel. For example in the figure the SCADA
emulator receive and send data to and from the electrical Load Flow Simulator so that
these two simulator must be used together as they are dependent each other.

Scenario Data Base: as it is shown in the figure, a scenario Data Base contains all
the current LCCIs data at components or at service/resource level. Some parts of this
Data Base will contain the actual variables state, other parts may contain also the
trends of such variable during the time. Different technologies may be used for this

50 C. Balducelli et al.

Data Base. SQL or Access technologies may be more useful for these sets of data on
which queries may be executed by external applications. The XML format may be
more useful to build a Data Base structure based on files that may by utilised for
communication and information sharing between different machines. A mixed utilisa-
tion of SQL and XML formats may be also considered.

MIT interface: MIT interface have to realise an interface with MIT add-on compo-
nents more similar as possible with the interfaces that are available in the real LCCIs.
From the Scenario Data Base TEFS add-on components could retrieve the trends of
the most critical LCCIs parameters, normally stored into the EMS archive systems of
the (electrical) LCCIs. Service management agents use the MIT interface to inform
add-on components when some operative alarms (network change of status or values
out of limits) or some diagnostic alarms (tele-operations problems) occurs.

MIT components: different instances of some add-on components, like TEFS and
RE, are installed for every LCCIs considered in the exercise. Other add-on compo-
nents, like IKA, have the same instance for every LCCIs. As in the figure only two
infrastructures are considered (Telco and Electricity), only two instances of a single
add-on component are considered. On the contrary, the same instances of communi-
cation components will be present on every LCCIs, but the process of subscribing and
reading information could be different for the two LCCIs.

Attack/fault tool: an attack/fault tool utilises the scenario Data Base to retrieve and
store sets of attack or fault sequences defined by the experts. These sequences must
be executed into the experimentation environment, are sent to the SimCIP interface.
The same sequences are also communicated to the log experimentation console where
the experimenter may visualise and archive the time-log of attack and fault actions as
they are sent to the simulation environment.

Log interface:a log interface is the component that can be used by the experi-
menter, to select the data and information he like to monitor and log on the log ex-
perimentation console. Every data present inside the Scenario data base may be se-
lected for log and on the experimentation console trends and graphics about such data
could be visualised during and after an experimentation phase. Data about the current
status of services availability can be also acquired by the log interface from the ser-
vices management agents. On the Log Experimentation Interface such data logs may
be put in correlation with the logs of the (eventual) sequence of faults and the attacks,
so that a comparison may be executed about the case in which a certain faults se-
quence is introduced respect to the same case if no faults sequence is introduced.

5 Conclusions

Actually complex networked systems are the core of many critical infrastructures, that
are coupled together and that exchange critical services each other. Instabilities of a
specific physical system are often well known by the systems operators and they have
sufficient knowledge to avoid intra-system cascading failures.

But, when the risk of cascading failure involves components and systems belong-
ing to different infrastructures, the operators are not sufficiently prepared to manage
the situation, in which a not usual co-ordination strategy is needed.

 A MIT to Mitigate Interdependencies between Critical Infrastructures 51

We hope that the experimentation of MIT technology, that is undertaken inside the
EU IRRIIS integrated project, could confirm that this system may be used as mutual
co-ordination support for the different infrastructures operators.

Also if these first sets of tests will take under consideration incident scenarios in-
volving only a distribution electrical LCCI and a telecom LCCI, the developed ex-
perimentation environment could be reconfigured for the additional inclusion of other
LCCIs like transportation, health care, water distribution and other types of LCCIs

We hope also that the results of such experimentation, that will be available in the
first months of 2009 could address and solve, almost in part, the increasing instability
of coupled critical infrastructures.

References

1. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identify Understanding and Analysing Criti-
cal Infrastructures Interdependencies. IEEE Control System Magazine, 11–25 (December
2001)

2. The IEEE Reliability Test System – 1996. IEEE Transaction on Power Systems, 14(3) (Au-
gust 1999)

3. Soder, L.: Explaining Power System Operation to Nonengineers. IEEE Power Engineering
Review, 25–27 (April 2002)

4. Balducelli, C., Bologna, S., Lavalle, L., Vicoli, L.G.: Safeguarding information intensive
critical infrastructures against novel types of emerging failures. Reliability Engineering and
System Safety 92(9), 1218–1229 (2007)

5. IRRIIS - Integrated Risk Reduction of Information-based Infrastructure Systems – EU FP6
project (2006), http://www.irriis.org

6. http://www.cert.org/insider_threat/
7. http://ww3.psepc-sppcc.gc.ca/opsprods/other/TA03-001_e.asp
8. Dondossola, G., Szanto, J., Masera, M., Fovino, I.N.: Evaluation of the Effects of Inten-

tional Threats to Power Substation Control System. In: Proceedings of CNIP 2006 – Com-
plex Network & Infrastructure Protection, Rome, Italy, March 28-29 (2006)

9. Kuipers, D.G.: US CERT Control System Centers Input/Ourput I/O conceptual Design.,
Idaho National Laboratory, INL/EXT-05-00810 (February 2005),
http://www.inl.gov/technicalpublications/Documents/
3562864.pdf

Evaluation of Critical Infrastructures:

Challenges and Viable Approaches

Silvano Chiaradonna1, Felicita Di Giandomenico1, and Paolo Lollini2

1 Italian National Research Council, ISTI Dept., via Moruzzi 1, I-56124, Italy
{chiaradonna,digiandomenico}@isti.cnr.it

2 University of Firenze, Dip. Sistemi e Informatica,
Viale Morgagni, 65, I-50134, Italy

lollini@dsi.unifi.it

Abstract. Critical Infrastructures (CI) are complex and highly inter-
dependent systems, networks and assets that provide essential services
in our daily life. Given the increasing dependence upon such critical
infrastructures, research and investments in identifying their vulnerabil-
ities and devising survivability enhancements are recognized paramount
by many countries. Understanding and analyzing interdependencies and
interoperabilities between different critical infrastructures and between
the several heterogeneous subsystems each infrastructure is composed
of, are among the most challenging aspects faced today by designers,
developers and operators in these critical sectors. Assessing the impact
of interdependencies on the ability of the system to provide resilient and
secure services is of primarily importance; following this analysis, steps
can be taken to mitigate vulnerabilities revealed in critical assets. This
paper addresses the analysis of CI, with focus on interdependencies be-
tween the involved subsystems. In particular, the experience gained by
the authors in an on-going European project is reported and discussed,
both in terms of identified challenges and in viable approaches under
investigation.

ACRONYMS

ATC Area Tele-control Center
CI Critical Infrastructure
DG Distribution Grid
DTOS Tele-Operation System for the Distribution grid
EI Electric Infrastructure
EPS Electric Power System
ITCS Information-Technology based Control System
LCC Local Control Center
LCS Local Control System
NTS National Tele-control System
RTS Regional Tele-control System
TG Transmission Grid
TTOS Tele-Operation System for the Transmission grid

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 52–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 53

1 Introduction

Critical Infrastructures (CI) are complex and highly interdependent systems,
networks and assets that provide essential services in our daily life. They span
a number of key sectors, including energy, finance, authorities, hazardous ma-
terials, telecommunications, information technology, supply services and many
others. With our increasing dependence upon such critical infrastructures, an
unavoidable expansion in complexity is observed since these sectors are contin-
uously called to provide new services and products to a growing population.
Moreover, the framework conditions under which these infrastructures operate
are continuously evolving. In fact, while in the past they were used to provide
services mostly in isolation, with very limited interconnections with each other,
so they could only be impaired locally, nowadays several infrastructures cooper-
ate in the provision of services. This implies that strong networking within and
between sectors mainly trough information technology means is in place, whose
dimension may also go beyond the national borders. The future trend is even
more alarming since, among the others: i) disturbance phenomena will more and
more affect large portions of critical infrastructures, ii) the variety and sophisti-
cation of threats is increasing, iii) incidents abroad are increasingly becoming a
problem for the availability/security of the services provided by internal critical
infrastructures.

Critical infrastructure protection is therefore a priority for most of the coun-
tries and several initiatives are in place to identify open issues and research
viable solutions in this highly challenging area, especially to identify vulner-
abilities and devise survivability enhancements on critical areas. This paper
addresses the evaluation of CI, focusing on interdependencies in presence of
malfunctions/attacks and assessing the impact of such interdependencies on de-
pendability and security related measures. The offered contribution is twofold.
First, the difficulties in carrying on this crucial task are pointed out and an
overview of major approaches to accomplish is presented. Then, the evaluation
framework set up in the ongoing European project CRUTIAL is discussed, as a
concrete research direction tailored to the electric power systems.

The paper is organized as follows. Section 2 discusses the threats undermining
the critical infrastructures, namely the interdependencies and types of failures,
and overviews some international programs to CI protection. The challenges
when approaching the evaluation of critical infrastructures and the major ap-
proaches to accomplish this evaluation task are presented in Sect. 3, with ref-
erence to ongoing initiatives. The experience of the authors in understanding
and evaluating the effects of interdependencies in electric power systems, among
the major representative of critical infrastructures, is outlined in Sect. 4. This
activity is currently on-going in the context of the European project CRUTIAL.
Final conclusions are drawn in Sect. 5.

54 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

2 Critical Infrastructures: Peculiarities and Related
Activities

The systems that support our daily activities are clearly complex and vulner-
able; therefore it is paramount that they be reliable and resilient to continue
providing their essential services. Hence, there is the need to: i) build such crit-
ical infrastructures following sound engineering design principles; ii) to protect
them against both accidental and malicious faults, and iii) to evaluate them to
assess their degree of resilience/trustworthiness.

These needs, and the difficulties in their accomplishment, have triggered a
number of research initiatives. An overview of major peculiarities of CI and
research efforts dealing with them is provided in the rest of this section.

2.1 Interdependencies and Types of Failures

There is a consensus in the literature on critical infrastructures that interdepen-
dency analyses are of primarily importance to improve the resilience, survivabil-
ity and security of these vital systems. An interdependency is a bidirectional
relationship between two infrastructures through which the state of each infras-
tructure influences or is correlated to the state of the other [1]. Infrastructure
interdependencies can be categorized according to various dimensions in order to
facilitate their identification, understanding and analysis. Six dimensions have
been identified in [1], which include: a) the couplings among the infrastructures
and their effects on their response behavior (loose or tight, inflexible or adaptive),
b) the state of operation (normal, stressed, emergency, repair), and c) the type
of failure affecting the infrastructures (common-cause, cascading, escalating).

Interdependencies increase the vulnerability of the corresponding infrastruc-
tures as they give rise to multiple error propagation channels from one infrastruc-
ture to another that increase their exposure to accidental as well as to malicious
threats. Consequently, the impact of infrastructure components failures and their
severity can be exacerbated and are generally much higher and more difficult to
foresee, compared to failures confined to single infrastructures. As reported in
[2], typically blackouts can be caused by the outage of a single transmission
(or generation) element, which is not properly managed by automatic control
actions or operator intervention, so gradually leading to cascading outages and
eventually to the collapse of the entire system. Three types of failures are of
particular interest when analyzing interdependent infrastructures: 1) cascading
failures, 2) escalating failures, and 3) common cause failures. Cascading failures
occur when a failure in one infrastructure causes the failure of one or more com-
ponent(s) in a second infrastructure. Escalating failures occur when an existing
failure in one infrastructure exacerbates an independent failure in another infras-
tructure, increasing its severity or the time for recovery and restoration from this
failure. Finally, common cause failures occur when two or more infrastructures
are affected simultaneously because of some common cause. Of course, besides
analyzing the types of failures, it is important to understand the different causes
that might lead to the occurrence of such failures. As discussed in [3], faults

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 55

and their sources are very diverse. They can be classified according to different
criteria: the phase of creation (development vs. operational faults), the system
boundaries (internal vs. external faults), their phenomenological cause (natu-
ral vs. human-made faults), the dimension (hardware vs. software faults), the
persistence (permanent vs. transient faults), the objective of the developer or
the humans interacting with the system (malicious vs. accidental faults), their
intent (deliberate vs. non-deliberate faults), or their capability (accidental vs.
incompetence faults). Knowing the cause of the failure, proper measures could
be taken at level of the system controlling the infrastructure so as to prevent
future occurrence of the same fault or at least mitigate its effects on the system.

In previous decades, accidental threats were basically the only real threats
facing infrastructure, especially natural disasters, which tend to be localized
to one region and have a fixed and, at times, predictable duration. Until the
bombing of the Murrah Federal Building in Oklahoma City in 1994, low attention
was devoted to malicious acts targeting these critical components. In more recent
years, preparation for Y2K (2000), fall-out from post-9/11 events, and a series
of blackouts of the power systems experienced both in US and Europe have all
reinforced the evidence of how vulnerable these systems are or can become. This
awareness has promoted many initiatives, on both national and international
scales, to protect critical infrastructures from all hazards, both natural and man-
made disasters and cyber-attacks.

2.2 Related Activities

The two volumes of the International CIIP Handbook 2006 [4,5] are a compre-
hensive collection of information about the various initiatives undertaken by the
different countries on the theme of Critical Information Infrastructure Protection
(CIIP), mainly at governmental level. The CIIP Handbook underlies the need of
developing methodologies for analyzing interdependencies and guiding the pro-
tection of critical information infrastructures. In the Unites States many research
initiatives and activities related to the protection of critical infrastructures have
been undertaken since nineties. Just to mention a few, the North American Elec-
tric Reliability Corporation (NERC) has promoted standards and initiatives that
are deemed essential for cybersecurity, ranging from security management con-
trols, to the identification and definition of critical assets, controls, personnel and
functions such as training, systems security management, incident response and
recovery plans. NERC also works closely with the U.S. Department of Homeland
Security and Public Safety Canada to ensure that the critical infrastructure pro-
tection functions are fully integrated and coordinated with the governments of
the United States and Canada. In the specific field of the electric power sector,
the Electric Power Research Institute (EPRI) started the Infrastructure Security
Initiative addressing power system security at both electrical and cyber levels.
The Department of Energy (DOE) published the 21 Steps to Improve Cyber Se-
curity of SCADA Networks, whilst the Sandia National Laboratories developed a
research program on SCADA electronic security. The Critical Infrastructure Pro-
tection Modeling and Analysis Program (CIPMA), launched by the Australian

56 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

Government in 2006, examines the relationships and dependencies between criti-
cal infrastructure systems and shows how a failure in one sector can greatly affect
the operations of other critical infrastructure sectors.

Also in Europe the need of setting up research programs on critical infrastruc-
tures has been recognized since several years,both atnational andat cross-national
levels. The ACIP (Analysis & Assessment for Critical Infrastructure Protection)
and the AMSD (A Dependability Roadmap for the Information Society in Eu-
rope) projects were accompanying measures in the FP5-IST program that pro-
duced a roadmapaboutR&D activities to be performed on the CI and in the area of
information system dependability, respectively. The FP5-IST research project
SAFEGUARD (Intelligent Agents Organization to Enhance Dependability and
Survivability of Large Complex Critical Infrastructure) proposed an agent-based
architecture for the supervision and decision support systems in critical infrastruc-
tural domains. The recently concluded FP6-IST co-ordination project CI2RCO
on Critical Information Infrastructure Research Co-ordination has developed a re-
search agenda that provides important insights in research and development topics
that need to be funded to build resilient, self-diagnostic and self-healing Critical
Information Infrastructures [6].

More recently, projects involving international efforts have been promoted,
including the on-going european projects IRRIIS [7], CRUTIAL [8], GRID [9],
and the NSF project TCIP [10]. Some details on these projects with reference
to the specific topic of CI evaluation addressed in this paper will be given in
Sect. 3.4.

Among other initiatives, the CRIS Institute1, with presence in Europe, North
America and Asia, was constituted in January 2001 as an international associa-
tion to promote, encourage and develop awareness and knowledge to increase the
dependability of the critical infrastructures in society, mainly the power system,
communication system and the computer network. The IFIP Working Group
11.10 on Critical Infrastructure Protection2 is an active international commu-
nity of scientists, engineers and practitioners dedicated to advancing the state
of the art of research and practice in the emerging field of critical infrastruc-
ture protection. The Institute for Information Infrastructure Protection I3P3

is a Consortium that includes academic institutions, federally-funded labs and
non-profit organizations. With a nationwide membership that continues to grow,
the I3P brings experts together to identify and help mitigate threats aimed at
the U.S. information infrastructure. Of course, the above mentioned programs
are a relevant but partial subset of the initiatives undertaken in the entire world;
a comprehensive review is outside the scope of this paper.

2.3 Role of CI Analysis and Evaluation

Not all infrastructures are critical and not all critical infrastructures have the
same level of criticality. An analysis and evaluation process is required to
1 http://www.cris-inst.com/
2 http://www.cis.utulsa.edu/ifip1110/
3 http://www.thei3p.org/

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 57

identify vulnerabilities, interdependencies and interoperabilities between sys-
tems, to understand what specific assets of the addressed CI are utmost critical
and need to be protected the most. Following this analysis, steps can be taken
to mitigate the identified vulnerabilities, in an order that reflects the assessed
level of criticality.

Specifically, analyzing infrastructure and various interdependencies allows a
greater understanding of the cascading effects caused by damage to a particular
asset and protect that asset accordingly. Evaluating that an asset may be more
critical than another, due to its effects on other infrastructure and essential ser-
vices, plays a very important role when looking at CI. For example, if an electric
substation is damaged leading to a blackout, complications are experienced by
a number of other systems/infrastructures and by the services they provide, like
railroad operations causing a decreased movement of commodities and poten-
tial complications for emergency services. Thus, that electric substation must
be protected not only for the Energy Sector, but also for the safeguarding of
other sectors infrastructure. Advances in technology and SCADA systems have
increased these interdependencies, enhancing sector operations but creating ad-
ditional vulnerabilities. Such vulnerabilities must be addressed to adequately
protect critical infrastructure.

3 Approaches to CI Evaluation

Addressing the analysis and evaluation of CI poses a number of challenging
issues, among which:

– complexity and scalability, because of the characteristics of CI in terms
of largeness, multiplicity of interactions and types of interdependencies in-
volved. Abstraction layers and modular, hierarchical and compositional ap-
proaches are viable directions to cope with these aspects;

– ability to integrate in the evaluation framework the effects of both accidental
and malicious threats;

– ability to reproduce both structural aspects and temporal behaviors in a
context where the studied infrastructures are assembled from many hetero-
geneous subsystems having different nature, operation phases and regimes
with different configurations and behaviors;

– potential need of combining different formalisms to describe the various com-
ponents of a system and their dependencies, due to their inherent hetero-
geneity;

– potential need of combining discrete and continuous variable into a hybrid
modeling, e.g. in the case of electric systems encompassing physical electrical
infrastructure and the cyber control one (see Sect. 4).

Major pursued approaches in this crucial and difficult task span both model-
based evaluation and experimental techniques. Most of the initiatives mentioned
in the previous section are dedicating significant effort to this purpose. In the

58 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

following we briefly overview the major characteristics of these evaluation ap-
proaches, trying to point out their strength and weakness with respect to the
above listed challenges.

3.1 Model-Based Evaluation

Model-based evaluation is commonly used to support the analysis of dependable
computer systems in all the phases of the system life cycle [11,12,13]. During
the design phase, models allow to evaluate various alternatives. In assessing
an already built system, they constitute a means for providing insights into
specific aspects and for suggesting solutions for future releases. The modeling
also allows to analyze the effects of system maintenance options and of possible
changes or upgrades of the system configuration. Moreover, sensitivity analysis
of the models is very useful in performing bottleneck analysis and optimizations.
Various methods and tools for evaluations have been developed which provide
support to the analyst, during the phases of definition and evaluation of the
models. Combinatorial methods, model checking, state-based stochastic methods
and discrete-event simulation are major representative approaches in this area;
an overview is provided in [11,12].

Model-based evaluation is generally cheap for manufacturers and has proven
to be useful and versatile in all the phases of the system life cycle [13]. A model is
an abstraction of a system “that highlights the important features of the system
organization and provides ways of quantifying its properties neglecting all those
details that are relevant for the actual implementation, but that are marginal
for the objective of the study” [14]. Several types of models are currently used in
practice. The most appropriate type of model depends upon the complexity of
the system, the specific aspects to be studied, the attributes to be evaluated, the
accuracy required and the resources available for the study. Simple combinatorial
techniques are not adequate to deal with the complex interdependencies of CI,
therefore they have limited applicability in this context. State-based stochastic
methods are instead adequate to deal with complexity and interdependencies;
the main disadvantage of this category is the well-known state-space explosion
problem since the dimension of the state space grows exponentially with the
number of parts. This problem has triggered many studies and significant re-
sults have been achieved in the last 15 years. The two general approaches for
dealing with the state explosion problem are largeness avoidance and largeness
tolerance [12]. Largeness avoidance techniques try to circumvent the generation
of large models using, for example, state truncation methods, state lumping
techniques, hierarchical model solution methods, model decomposition and ap-
proximate solution techniques. However, these techniques may not be sufficient
as the resulting model may still be large. Thus, largeness tolerance techniques
are needed to provide practical modeling support to facilitate the generation of
large state-space models through the use of structured model composition ap-
proaches. The basic idea is to build the system model from the composition of
submodels describing system components and their interactions. Generic rules
are defined for the elaboration of the submodels and their interconnection. It

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 59

is worth noting that the two categories of techniques (largeness avoidance and
largeness tolerance) are complementary and, most of the time, both of them are
used when detailed and large dependability models need to be generated and
processed, putting more emphasis on one or the other. A number of modeling
approaches based on largeness avoidance and largeness tolerance have appeared
in the literature. They span: i) compositional modeling approaches, both at level
of defining suitable composition operators to build models from a set of building
blocks (particularly helpful when the modeled system exhibits symmetries), as
well as defining composition rules that allow structuring the modeled system
into different abstraction layers with a model associated to each level; ii) decom-
position/aggregation modeling approaches, where the overall model is decoupled
in simpler and more tractable sub-models, and the measures obtained from the
solution of the sub-models are then aggregated to compute those concerning
the overall model; iii) derivation of dependability models from high-level speci-
fication, e.g. from UML design. A quite detailed survey of major approaches to
modeling based on largeness avoidance and largeness tolerance is in [15].

Rather than generate and analyze the entire state space, the simulation tech-
nique samples many paths, independently of each other, through the state space
and analyzes and evaluates the system only through them. The problem in simu-
lation is how to ensure the statistical quality of the estimates. Especially, assur-
ing that the estimator be unbiased and have low variance are the major issues
especially when the measure under analysis is a small probability, as it is for
typical dependability indicators (e.g., unreliability or unavailability). In fact, in
case of analysis of rare events, applying standard simulation techniques may
pose the problem that the statistical significance in the estimation of the target
measures becomes very poor. As for the analytical approach, the accuracy of
the obtained evaluation depends on the assumptions of the analyzed system, as
well as on the behavior of the environment, and on the simulation parameters.
Anyway, discrete-event simulation is one of the most commonly used modeling
techniques in practice, especially for highly complex systems, for which analyti-
cal solution is generally precluded (e.g., to overcome the exponential distribution
for events occurrences, which is usually implied by the analytical solution).

3.2 Experimental Evaluation

Experimental measurement is an attractive option for assessing an existing sys-
tem or prototype and constitutes a very effective way to assess the efficiency
of fault tolerance mechanisms and to obtain the detailed characterization of
the behavior of the whole system (or parts of it) in presence of faults. An
overview on the experimental approaches for the evaluation of computer sys-
tems dependability is in [16]. These techniques include both evaluation based on
measurements performed on real-life systems, known as field measurements, and
evaluation based on controlled experiments, either based on ad hoc approaches
or following well-specified dependability benchmarking approaches, known as
fault injection and robustness testing. Major issues with the acceptability of the
experimental evaluation consist in a) the ability to reproduce the observations

60 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

and measurements, either on a deterministic or on a statistical base; b) the ca-
pability of selecting meaningful system conditions (e.g., failure events) so as to
have high representativeness of the evaluated results with respect to the real
operation profile of the system under evaluation (especially when based on con-
trolled experiments); c) the ability of generalizing the results through some form
of formal reasoning. The first two aspects enhance the confidence in the ex-
perimental results, while the third one allows to use the results beyond the
restricted experimental set-up. Also, avoiding/minimizing intrusiveness of mon-
itoring systems employed to perform evaluation of the target system is another
relevant issue. Recently, the approach on dependability benchmarking has been
proposed, aiming at quantitative dependability evaluation through standardiz-
ing the experimental procedure, in order to provide generic ways to characterize
the behavior of systems/components in the presence of faults [16].

With respect to model-based approaches, experimental methods are very ac-
curate, especially when applied to real-life systems, since they exercise the real
system rather than building an abstraction of the system behavior, as the for-
mer do. As a drawback, they are costly and not always applicable, e.g., when the
interest is in very rare events. So, what is usually done is to construct a proof-
of-concept prototype, to test and validate design assumptions, to gain experience
with the system, and to provide a vehicle for advanced development. Experimental
techniques are well employed in the evaluation of CI. Typically, testbed platforms
representing major functionalities/aspects of the studied CI are set-up, on which
experiments are conducted to assess specific measures of interest.

3.3 Composite Evaluation Approaches

Model-based methods, as well as experimental approaches show different char-
acteristics, which determine the suitability of the method for the analysis of a
specific system aspect. The most appropriate method for quantitative assess-
ment depends upon the complexity of the system, its development stage, the
specific aspects to be studied, the attributes to be evaluated, the accuracy re-
quired and the resources available for the study. The largeness and complexity
of dependability-critical infrastructures, together with the necessity of continu-
ous verification and validation activities during all the design and development
stages in order to promptly identify deviations from the requirements and crit-
ical bottleneck points, call for a composite (i.e., holistic) evaluation framework,
where the synergies and complementarities among several evaluation methods
can be fruitfully exploited.

The idea underlying the holistic approach follows a divide and conquer phi-
losophy, where the original problem is decomposed into simpler sub-problems
that can be solved using appropriate evaluation techniques. Then the solution of
the original problem is obtained from the partial solutions of the sub-problems,
exploiting their interactions. Examples of possible interactions are: i) compar-
ison of results for a certain indicator obtained through the application of two
alternative methods allows cross-validation of both; ii) feeding a system model
with parameter values derived through experimental measurement is a central

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 61

example of cross-fertilization among different methods; iii) applying higher level
analysis may reveal which parts/behaviors of a system have major impact on
the evaluated measure and therefore require deeper analysis (typically through
different techniques).

3.4 On-Going Studies

Understanding the reciprocal effects of interdependencies among interacting crit-
ical infrastructures (both inside the same application domain and among several
ones), as well as quantifying resiliency, security and robustness related indicators
are tackled by a number of research initiatives/organizations. Pointers to a few
relevant on-going studies in this challenging sector are provided in the following,
although they are far from being a complete overview.

In the USA panorama, the Department of Homeland Security DHS4 is heavily
involved in programs for critical infrastructure protection with significant sup-
port from many other sectors of the government. The National Infrastructure
Simulation and Analysis center (NISAC), a program under the Department of
Homeland Security’s Infrastructure Protection/Risk Management Division, pro-
vides advanced modeling and simulation capabilities for the analysis of critical
infrastructures, their interdependencies, vulnerabilities and complexities. NISAC
is a partnership between Sandia National Laboratories and Los Alamos National
Laboratory. They adopt a dynamic simulation modeling approach to quantify
and evaluate the effects of infrastructures and their interdependencies on sup-
ply and demand under different conditions (e.g., time of the day, time of the
year, unusual event, new regulations, incentives, market structures). A recent
survey of U.S. and international research on Critical Infrastructure Interdepen-
dency modeling methodologies and tools is provided in [17], mainly obtained by
collecting data from open source material and, partially, through direct contact
with the individuals leading the research.

TCIP’s [10] research plan is focused on securing the low-level devices,
communications and data systems that make up the power grid, to ensure
trustworthy operation during normal conditions, cyber-attacks and/or power
emergencies. One of the focus areas of the TCIP project is quantitative and
qualitative validation, which explores means to model, simulate, emulate and
experiment with the various subsystems in the power grid to allow for adequate
quantitative and qualitative validation of the investigated solutions. A number of
existing tools (namely PowerWorld, RINSE - Real-time Immersive Network Sim-
ulation Environment, formal logics, PowerWeb and APT - Access Policy Tool)
are being extended/integrated to be profitably used to investigate/analyze sev-
eral challenging aspects in the power sector, including: i) the impact of security
and of emergency solutions on performance and power generation capability, ii)
the wide-area-network communication availability, iii) the performance of a dis-
tributed control system under cyber-attack scenarios and the impact on power
grid behavior, just to mention a few. Some initial results are in [18,19].

4 http://www.dhs.gov/index.shtm

62 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

Two major European projects are currently in progress in the critical infras-
tructures sector: IRRIIS and CRUTIAL. Both devote significant effort to inter-
dependencies analysis and modeling, to understand and quantify their effects on
cascading, escalating and common-mode failures.

IRRIIS [7] is developing SimCIP (Simulation for Critical Infrastructure Pro-
tection), an agent-based simulation environment for controlled experimentation
with a special focus on CIs interdependencies. The simulator is intended to be
used to deepen the understanding of critical infrastructures and their interdepen-
dencies, to identify possible problems and to develop. It also intended to be used
to validate and test appropriate architectural solutions aiming to enhance the
dependability of large critical information infrastructures. The network model
for SimCIP is based on a multi-layer simulation approach (technical, cyber,
management). Among the others, the Leontief input-output economical model
dedicated to the market dynamics representation is exploited and adapted to
model critical infrastructures dependencies. The infrastructures addressed by
IRRIIS are electricity and telecommunications; their behaviors under both nor-
mal and faulty conditions are simulated by SimCIP. Some initial results are in
[20,21].

The CRUTIAL project [8] addresses new networked systems based on Infor-
mation and Communication Technology (ICT) for the management of the elec-
tric power grid, in which artifacts controlling the physical process of electricity
transportation need to be connected with information infrastructures, through
corporate networks (intra-nets), which are in turn connected to the Internet.
A major research line of the project focuses on the development of a model-
based methodology for the dependability and security analysis of the power grid
information infrastructures. The modeling framework, accounting for both qual-
itative and quantitative analysis and evaluation methods, is aimed at building
generic models of interdependencies, taking into account the various forms of
interactions and coupling the different systems and infrastructures to be con-
sidered in the models. Specifically, the conceptual modeling framework under
development is well suited: i) to characterize and analyze the interdependencies
between the information infrastructure and the controlled power infrastructure,
especially the various types of failures that can occur in the presence of acciden-
tal and malicious faults, and ii) to assess their impact on the resilience of these
infrastructures with respect to the occurrence of critical outages. Some initial
results are in [22,23,24]. In addition, two testbeds are under development which
integrate the electric power system and the information infrastructure. A first
testbed consists of several power electronic converters, which are interconnected
via off-the-shelf communication protocols (TCP/IP); this platform is used to ex-
ecute different hierarchical and distributed control algorithms. A second testbed
builds on environments that are used in industrial automation (SCADA-based)
and it is based on a platform for supporting the simulation of attack scenarios.
The testbeds and the modeling activities are intended to complement each other
and to provide ways of cross validation and fertilization.

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 63

These initiatives are still in progress and the developments under study are not
yet at a mature stage; so it is premature to attempt a comparison of the different
pursued approaches in terms of methodologies and technologies developed so far.

In the next section, a more detailed overview of the work in progress in CRU-
TIAL on a quantitative approach to model and analyze the interdependencies
is provided. An overview on the qualitative modeling approach can be found in
[15,23].

4 A Modeling Framework for the Quantitative EPS
Analysis under Development in the CRUTIAL Project

As already sketched in Sect. 3.4, one of the main objectives of CRUTIAL [8]
is the definition of modeling approaches for understanding and mastering the
various interdependencies between the information control system and the con-
trolled electrical infrastructure, thus providing both qualitative and quantitative
support for the identification, analysis and evaluation of the identified critical
scenarios.

The goal of this section is to provide an overview of the quantitative modeling
framework that the authors of this paper are currently developing inside CRU-
TIAL. The body of the modeling framework has been already introduced in [22]
and a part of it is outlined here to provide a complete context overview and for
better understanding the new developments presented in this paper. For this pur-
pose, in Sects. 4.1 and 4.2 we focus on the identification of the main logical com-
ponents of the two infrastructures composing the Electric Power System (EPS):
the Electric Infrastructure (EI) and the information infrastructure (ITCS). The
interdependencies between ITCS and EI are then discussed in Sect. 4.3, while
Sect. 4.4 summarizes the main features characterizing the modeling framework.

In [22], the authors also discussed the feasibility of the proposed framework
using Möbius [25], a powerful multi-formalism/multi-solution tool, and presented
the implementation of a few basic modeling mechanisms adopting the Stochas-
tic Activity Network (SAN) formalism [26], which is a generalization of the
Stochastic Petri Nets formalism. The goal was not to provide a complete model
representing a concrete instance of an EPS system, but just to show how some
basic frameworks characteristics can be actually obtained.

The last part of this paper starts attacking this pending aspect; in particular
Sect. 4.5 presents the concrete EPS system under analysis, the corresponding
overall model and it provides a high-level functional description of the system’s
aspects captured by each submodel.

4.1 Logical Scheme of EI

EI represents the electric infrastructure necessary to produce and to transport
the electric power towards the final users. It can be logically structured in dif-
ferent components: the transmission grid (TG, operating in very high voltage
levels), the distribution grid (DG, operating in medium/low voltage levels), the

64 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

high, medium and low voltage generation plants, and the high, medium and low
voltage loads.

The main elements that constitute the power grid are generators, loads, sub-
stations and power lines. One or more generators can be situated inside the
power plants. The energy produced by the generators is then adapted by trans-
formers, to be conveyed with minimal dispersion, to the different types of end
users (loads), through different power grids. The power lines are components that
physically connect the substations with the power plants and the final users, and
the substations are structured components in which the electric power is trans-
formed and split over several lines. In the substations there are transformers and
several kinds of connection components (bus-bars, protections and breakers). In
particular, each substation is logically divided into different sections, which are
characterized by certain voltage levels and are connected each other through
transformers. Each section consists of a single or double bus-bar.

Voltage, frequency, current, angle, active and reactive power are some of the
main (not independent) physical parameters associated to the electric equip-
ments constituting EI (generators, substations, power lines and loads); their
specific values are of primary importance in determining the current status of
the overall EI. In fact, they affect the behavior of the electric equipments they are
referred to (e.g., in terms of availability and reliability of the electric equipment),
thus also influencing the evolution of the overall power grid.

Figure 1 depicts an example of high-level logical scheme corresponding to
a typical physical scheme of a substation with the connected power lines. The
main electric equipments (bus-bars BB, transformers TR, protections PR, break-
ers BR, power lines PL) have been grouped following an approach which has the
advantage to simplify the logical representation. The component NS represents
the parts common to all substations (e.g., the bus-bars, the transformers, the
breakers and associated protections), while breakers and protections connected
to the power lines are now included in the scheme of the new logical component
AL. In Fig. 2 the corresponding high-level logical scheme for a dummy trans-
mission grid is presented, where the components NG and NL represent a gener-
ation plant and a load, respectively, and the arcs connecting the different logical
components have no physical meaning, but only define the current grid topol-
ogy. The grid topology may dynamically change during time by opening/closing
breakers.

PL

BB

PR

BR

PR

BR

BR

PR

BR

PR

BR TR

PR

BR TR

PR

BR

BR

BB

BB

PR

PRPR

BR

BR

PR

PR

BR

PR

BR

PL

PL

PL

AL

AL

NSAL

AL

Fig. 1. Example of logical scheme for substation and connected power lines

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 65

GENS LOADS
GRID

AL

AL

AL

AL

AL

NS

AL

NS

NS AL

AL

NS

NS

AL

NG

NG

NG

NG

NL

NL

AL

AL

AL

AL

AL

AL NS

AL

AL NS AL

AL

NS

NS NSAL

AL

NL

AL

Fig. 2. Example of logical scheme for a dummy transmission grid

4.2 Logical Scheme of ITCS

ITCS (Information-Technology based Control System) implements the informa-
tion control system and its main purposes are: i) reducing out of service time
of generators, power lines and substations (availability); ii) enhance quality of
service (through frequency and voltage regulation); iii) optimizing generators
and substations management. To these aims, ITCS performs the following activ-
ities: a) remote control of the electric infrastructure (it receives data and sends
commands); b) coordination of the maintenance (it plans the reconfiguration
actions that can affect generators, substations, loads and lines); c) collection of
the system statistics. Among the several logical components composing ITCS,
we focus the attention on the tele-operation systems for the distribution grid
(named DTOS) and for the transmission grid (named TTOS), since a failure of
these logical components can affect a large portion of the grid, also leading to
black-out phenomena.

In Fig. 3 we depict a possible logical structure of TTOS and DTOS. The
components LCS (Local Control System), RTS (Regional Tele-control System)
and NTS (National Tele-control System) of TTOS, and the components LCC
(Local Control Center), and ATC (Area Tele-control Center) of DTOS differ
for their criticality and for the locality of their decisions.

Different actors (like Power Exchange PE, Energy Authority EA, Network
Management System NMS) are involved in the electric system management
and there can be a necessity to exchange grid status information and control
data over public or private networks (e.g., TSOcomNet and DSOcomNet).
The transmission and distribution grids are divided in homogeneous regions and
areas, respectively. LCS and LCC guarantee the correct operation of substation
equipment and reconfigure the substation in case of breakdown of some appara-
tus. They include the acquisition and control equipment (sensors and actuators).
RTS and ATC monitor their region and area, respectively, in order to diagnose
faults on the power lines. In case of breakdowns, they choose the more suitable
corrective actions to restore the functionality of the grid. Since RTS and ATC
are not directly connected to the substations, the corrective actions to adopt are
communicated to the LCS or ATC of reference. NTS has the main function of
supervising the entire grid and handling the planning of medium and long term
operations. NTS also assists RTS (and ATC) to localize breakdowns on the

66 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

Fig. 3. Logical scheme of TTOS and DTOS

power lines situated between two regions (two areas). LCS and LCC, such as
RTS and ATC, cooperate to decide operation of load shedding.

4.3 Interdependencies

As defined in Sect. 2.1, an interdependency is a bidirectional relationship between
two infrastructures through which the state of each infrastructure influences or is
correlated to the state of the other. Among the possible types of interdependen-
cies, here the focus is on the cyber and physical interdependencies. EI requires
information transmitted and delivered by ITCS, for example when ITCS trig-
gers a grid reconfiguration for economic optimization; therefore the state of EI
depends on the outputs of ITCS (cyber interdependency). Vice versa, the state
of ITCS could be affected by failures in EI (e.g. in case of blackout that leads to
a failure or service degradation of the information infrastructure), thus revealing
a physical interdependency.

Failures in ITCS impact on the state of EI, i.e. on the topology T and on
the values of the physical parameters associated to each electric equipment,
depending on the logical components affected by the failures and obviously by
the type of the failures (cyber interdependency). For example, consequences of
a failure of the component LCS associated to a component NS , NG or NL (see
also Fig. 3) can be:

– Omission failure of LCS, fail silent LCS. No (reconfiguration) actions are
performed on NS or AL.

– Time failure of LCS. The above (reconfiguration) actions on NS or AL

are performed after a certain delay (or before the instant of time they are
required).

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 67

– Value failure of LCS. Incorrect closing or opening of the power lines AL

directly connected to the failed component is performed.

The failure of the component RTS (or NTS) corresponds to an erroneous (re-
quest of) reconfiguration of the state of EI (including an unneeded reconfigura-
tion) affecting one or more components of the controlled region. The effect of
the failure of RTS (or NTS) on a component N is the same as the failure of the
component LCS associated to the component N. In the case of Byzantine failure
these effects can be different for each component N. In general, the failure of the
components LCS, RTS and NTS may depend on the failures of the components
connected to them through a network.

On the other direction (physical interdependency), failures of the EI infras-
tructure impact on (parts of) the ITCS system by lessening its functionalities
(till complete failure in the extreme case the failure is a total blackout of the
power grid).

4.4 Major Characteristics of the EPS Modeling Framework

To represent and model the behavior of EI and ITCS and their interactions,
the modeling and evaluation framework should possess a number of features
encompassing the following aspects : i) modeling power, i.e., the basic modeling
mechanisms required to build the EPS model; ii) modeling efficiency , i.e. the
advanced modeling mechanisms required to build the EPS model more efficiently;
and iii) solution power, i.e., the ability to provide efficient solution methods
adequate for the EPS modeling complexity and for the assessment of the specific
measures of interest. These requirements are fully in line with the challenges
pointed out in Sect. 3. With specific reference to the structural and behavioral
aspects of EPS systems, major requirements on a suitable modeling framework
include:

1. The system has a natural hierarchical structure, as shown in the examples of
logical schemes of Fig. 3. Therefore, the modeling framework should support
hierarchical composition of different sub-models. The model for the over-
all EPS could be facilitated considering replication of (anonymous and not
anonymous5) sub-models, and the replicated and composed models should
share part of the state (common state).

2. The state of EI is completely described through the physical parameters
associated to each electric equipment (voltage, current, etc.) and through the
topology (T) of the grid: the first set of parameters defines the current status
of each EI component, while the topology defines how such components
are connected together to form the overall EI. Therefore, it is crucial that
the modeling framework should support the representation of a hybrid-state
composed by a discrete part (the topology) and a continuous one (the electric
parameters).

5 Not anonymous replicas can be identified by an index.

68 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

3. The time to failures of the components NS , NG, NL and AL depends also
on the value of the electric parameters associated to the components. This
means that the framework should support time and probability distribu-
tions, as well as conditions enabling the time consuming events (e.g., for the
activation of a local protection) that can depend both on the discrete and
on the continuous state.

4. We need to consider the reconfiguration actions triggered by the ITCS com-
ponents, e.g., by LCS and RTS. Moreover, the automatic evolution (auto-
evolution) of the electric parameters in case of instability events, e.g. in
correspondence of a power line failure, should also be considered. Therefore,
the framework should support the call to the functions implementing the
reconfiguration algorithms, as well as the autoevolution algorithm.

5. To manage complexity at solution level, ability to perform separate evalua-
tion of different sub-models and combination of the obtained results should
be supported.

6. Risk analysis of EPS based on a stochastic approach requires the defini-
tion of measures of performability, which is a unified measure proposed to
deal simultaneously with performance and dependability. To this purpose,
a reward structure should be set-up by associating proper costs/benefits to
generators/loads and interruption of service supply.

4.5 The Analyzed EPS Instance

In [22] the authors demonstrated the feasibility of the depicted modeling frame-
work showing how its major characteristics (some of those detailed in Sect. 4.4)
can be concretely implemented using a specific modeling and solution tool
(Möbius) and a specific modeling formalism (SAN). Here we perform a further
step: with reference to the concrete instance of the EPS that is currently under
study, we identify the corresponding basic models and we describe their behavior
from a functional point of view, that is detailing which system’s aspects they
capture without showing their actual implementation. Models implementation
has been performed and can be found in [27]. For the sake of simplicity, the
proposed instance is limited to a homogeneous region of the transmission grid
of EPS. Thus, the Local Control System (LCS) and the Regional Tele-control
System (RTS) are only considered for ITCS. Some simplifying assumptions have
been made to represent the power flow through the transmission grid, following
the same approach used in [24,28,29,30]. Therefore, the state and the evolution
of the transmission grid are described by the active power flow F on the lines
and the active power P at the nodes (generators, loads or substations) which
satisfy linear equations for a direct current (DC) load flow approximation of the
AC system. The initial setting of the distribution of the power produced by each
generator is obtained by distributing the overall power demand to each generator
proportionally to the maximum power that the generator can produce.

The operations performed by ITCS on EI, to control its correct functioning
and activate proper reconfiguration in case of failure of, or integration of re-
paired/new, EI components are not considered in detail but they are abstracted

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 69

at two levels, on the basis of the locality of the EI state considered by ITCS to
decide on proper reactions to disruptions [24]. Each level is characterized by an
activation condition (that specifies the events that enable the ITCS reaction), a
reaction delay (representing the overall computation and application time needed
by ITCS to apply a reconfiguration) and a reconfiguration strategy (RS), based
on generation re-dispatch and/or load shedding. The reconfiguration strategy
RS defines how the configuration of EI changes when ITCS reacts to a failure.
For each level, a different reconfiguration function is considered:

– RS1(), to represent the effect on the complete transmission grid of the reac-
tions of ITCS to an event that has compromised the electrical equilibrium6

of EI when only the state local to the affected EI components is considered.
Given the limited information necessary to issue its output, RS1() is deemed
to be local and fast in providing its reaction. RS1() is performed by LCS (or
LCC) components when they locally detect a non (electrical) equilibrium.

– RS2(), to represent the effect on the complete transmission grid of the re-
actions of ITCS to an event that has compromised the electrical equilibrium
in EI when the state global to all the EI system under the control of ITCS is
considered. Therefore, differently from RS1(), RS2() is deemed to be global
and slower in providing its reaction. RS2() is performed by RTS.

The activation condition, the reaction delay and the definition of the functions
RS1() and RS2() depend on the policies and algorithms adopted by TTOS.

An autoevolution function AS() is also considered to represent automatic evo-
lution of EI when an event modifying the grid topology occurs. In this case, EI
tries to find a new electrical equilibrium for the new grid topology, by changing
the values of the power flow through the lines but leaving the generated and con-
sumed power unchanged (only redirection of current flows). The autoevolution
is triggered each time an event that modifies the grid topology occurs (typically,
a disruption of an EI component or the integration of a repaired/new EI com-
ponent in the electric grid). The new equilibrium is reached instantaneously (if
any) and no ITCS actions are performed. Otherwise, LCS and RTS operations
are triggered to generate the new values for P and F , modeled through evalu-
ating reconfiguration strategy function RS1() and RS2(). The reconfiguration
strategy RS1() is applied immediately, RS2() is applied after a time needed to
RTS to evaluate it. In the considered instance, the output values of AS() for
active power flow F on the power lines are derived by solving a linear power
flow equation system for fixed values of P . The output values of RS1() and
RS2() for P and F are derived considering that for a given power demand, the
power flow equations do not have a unique solution. The adopted definition for
the function RS1() is given by the solution (values for P and F) of power flow
equations while minimizing a simple cost function, indicating the cost incurred
in having loads not satisfied and having the generators producing more power.
6 Events that impact on the electrical equilibrium are typically an EI component’s fail-

ure or the insertion of a new/repaired EI component; for simplicity, in the following
we will mainly refer to failures.

70 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

The output values of RS2() for P and F are derived by solving an optimiza-
tion problem to minimize the change in generation or load shedding, considering
more sophisticated system constraints, as described in [24]. All these functions
are based on the state of EI at the time immediately before the occurrence of the
failure. When new events occur changing the status of EI during the evaluation
of RS2(), then the evaluation of RS2() is restarted based on the new topol-
ogy generated by such events. As far as the measures of interest are concerned,
we are interested in performability measures on the basis of a reward structure
where costs and rewards are considered with respect to the point of the view of
the power producers and distributors. Among them: i) the expected reward at a
given instant of time or in a given time interval; ii) the expected percentages of
blackouts at a given instant of time or in a given time interval; iii) the expected
numbers of EI components affected by a failure at a given instant of time or in
a given time interval.

4.6 The Submodels Composing the Overall EPS Model

In modeling the considered EPS, we followed a modular and compositional ap-
proach. The following atomic models (the leaves in Fig. 3) have been identified
as building blocks to generate the overall EPS model.

– PL SAN, which represents the generic power line with the connected trans-
formers.

– PR1 SAN and PR2 SAN, which represent the generic protections and the break-
ers connected to the two extremities of the power line (see Fig. 1).

– N SAN and LCS SAN, which represent, respectively, a node of the grid (a gen-
erator, a load or a substation) and the associated Local Control System LCS
(see Fig. 2).

– AUTOEV SAN and RS SAN, which represent, respectively, the automatic evolu-
tion of EI when an event modifying its state occurs, and the local reconfig-
uration strategy applied by LCS (function RS1()).

– RTS SAN and COMNET SAN, which represent, respectively the Regional Tele-
control System RTS, where the regional reconfiguration strategy RS2() is
modeled, and the public or private networks (e.g., TSOcomNet and
DSOcomNet of Fig. 3).

In Fig. 4, it is shown how the atomic models are composed and replicated to
obtain the composed model representing the EPS region.

The model AL represents a power line with the associated protections and it
corresponds to AL logical components of Fig. 2. This model is then replicated to
obtain all the necessary non anonymous AL components of the grid. The model
N LCS is obtained by composing the atomic models N SAN and LCS SAN. Then the
model is replicated to obtain all the necessary non anonymous NG, NS and NL

components of the grid, with the associated LCS. The model Auto Control
is obtained by composing the atomic models AUTOEV SAN and RS SAN, so it

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 71

Fig. 4. Composed model for an EPS region

represents both the autoevolution function and the reconfiguration strategy lo-
cally applied by the LCS components. The overall EPSREG model is finally ob-
tained through composition of the different models and it represents the EPS
instance under study.

The different atomic models interact with each other sharing some places
(common and extended) that represent the parameters or part of the states of
the EPS, like the topology of the grid, the susceptance of each line, the initial
and the current power of each node of the grid, the initial and the current power
flow through each line of the grid, the status of the propagation of a failure or a
lightning, the disrupted/failed components, the open lines, etc.

These models populate our modeling framework as template models, which
are used to represent a large variety of specific scenarios in the EPS sector.
Theoretically, all the possible EPS configurations involving (a subset of) the
addressed components are representable through proper combination of the pro-
posed models, unless some aspects have been currently not yet captured. Exer-
cising the developed framework on several different scenarios will be useful to
reveal possible aspects not included and then proceed with a refinement.

In the following we provide some more details on the system’s aspects captured
by each atomic model. The focus is especially on failure events and on how they
propagate among interacting components/subsystems.

The Atomic Model PL SAN
PL SAN represents the generic power line. In particular, it models the power flow
through the power line, the temperature associated to the line and the state of the
power line (working correctly or affected by a permanent or transient failure).

The considered failures are: i) external failure caused by a lightning, ii) exter-
nal failure not caused by a lightning, iii) internal failure caused by an overload,
and iv) internal failure not caused by an overload. The rate of the internal failures
are set with a function depending on the power flow of the line. In particular,
the rate for the overload failure also depends on the temperature of the line,
following the same approach proposed in [30] for modeling the heating.

72 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

The value of the power of the lightning is also represented and is generated
randomly from an uniform distribution, when the lightning occurs. The proba-
bility that a lightning produces a permanent failure (the break down of the line)
depends on the power of the lightning. If the failure is transient (the line does
not break down) and the breakers do not open, the lightning can propagate to
the ending nodes i and j of the power line (e.g., half power of lightning moves
toward node i and half power moves toward node j). When the lightning passes
through a line or a node of the grid it reduces its power. The lines, the nodes or
the breakers passed through by a lightning can fail (break down) depending on
the power of the lightning and on the power flow through them. The propagation
ends when the protections stop the propagation, or the lightning reaches a failed
line/node or an open breaker, or when the lightning exhausts its power. If the
lightning produces a permanent failure of a line or a node, it exhausts and does
not propagate anymore.

The failure propagation is instantaneous; it starts from the failed line or node
and stops: i) when the propagation reaches an open breaker, ii) when a protection
fires (thus opening a breaker), iii) when the propagation reaches a node already
touched by the propagation process, or iv) when the propagation reaches a failed
line or node. The effect of the propagation of a lightning or a failure is to isolate
the failed component from the rest of the grid. If the propagation reaches a
generator or a load (because the protections did not fire), these components are
considered failed.

The Atomic Models PR1 SAN and PR2 SAN
PR1 SAN and PR2 SAN represent the states and the behavior of the generic pro-
tections and the breakers connected to the two extremes of the power line, re-
spectively (see Fig. 1); they are similar. The following states of the breaker
connecting a line and a node are modeled: i) closed (when the line and the node
are connected), ii) stuck closed (when the line and the node are connected but,
due to a failure, the breaker cannot open), iii) opened (when the line and the
node are not connected and the power cannot flow), iv) stuck opened (when the
line and the node are not connected but, due to a failure, the breaker cannot
close), and v) open to repair (when the breaker is open during the repair).

When the connected line is overloaded, i.e., the power flow through the line
is greater than a threshold (depending on the line), after a deterministic time,
the protection fires and the breaker opens, if it is not stuck closed. When, after
a failure, the variation of power required from the generator connected to the
protection is greater than a threshold or the associated LCS is affected by an
omission failure, after a deterministic time the protection fires and the generator
is disconnected from the grid.

Propagation of a failure and of a lightning can move in input toward the
model PR1 SAN from the connected line or node, i.e., from the models PL SAN or
N SAN, respectively, and can cause the opening of the breaker, if it is not failed
(stuck closed). Depending on the power of the lightning, the propagation can
also probabilistically cause the stuck closed failure of the breaker, if it is closed
and not already failed. If the breaker is stuck closed, the lightning continues the

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 73

propagation in output toward the model N SAN, if it comes from PL SAN, or vice
versa. The lightning propagation stops if the breaker is already opened or if it
is closed but the protection fires.

The Atomic Model N SAN
N SAN represents the states and the behavior of the generic node of the grid
(generator, substation or load). In particular, it models the states where the
node works correctly or is affected by a permanent or transient failure. The
considered failures are the same of PL SAN, except for the failure caused by an
overload.

The propagation of a failure and of a lightning can move in input toward
the model N SAN from a connected line; the lightning propagation can proba-
bilistically cause the failure of the node if it is not already failed. In this case,
the lightning exhausts its power, otherwise the lightning moves with a reduced
power toward the models of all the connected lines (passing through the pro-
tection models PR1 SAN or PR2 SAN, depending on the logical direction of the
line). The lightning propagates toward the output lines if it did not exhaust
its power passing through the node. The lightning power propagated in output
towards each line is proportional to the value of the susceptance of the output
lines.

For the instance of the model representing a generator, when, after a failure,
the variation of power required by the generator is greater than a threshold, or
the associated LCS is affected by an omission failure, the protection is triggered
to fire after a deterministic time and the generator fails after a deterministic time,
if the protection did not fire. If the variation of power required by the generator is
below a threshold, the protection is probabilistically triggered depending on the
value of the variation. In this way, it is probabilistically modeled the probability
that variations of the power required to a generator can cause the disconnection
from the grid or the failure of the generator.

The Atomic Model LCS SAN
LCS SAN represents the states and the behavior of the Local Control System
inside TTOS associated to a node. In particular, it models the states where LCS
works correctly and the states where omission failure occurs (the only kind of
failures considered at the moment for ITCS).

When LCS is affected by an omission failure, the generator or load controlled
by it cannot be reconfigured by assigning proper power values. Failures can be
transient or permanent. The duration of the permanent failure is equal to the
deterministic time to repair the component LCS.

The Atomic Models AUTOEV SAN and RS SAN
AUTOEV SAN and RS SAN do not represent the behavior of a single component of
EPS. They model, in terms of generation, re-dispatch and load shedding, the
effect on the complete transmission grid of the autoevolution and of the RS1()
reconfiguration strategy applied by LCS components.

74 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

The Atomic Model RTS SAN
RTS SAN represents the states and the behavior of the Regional Tele-control
System RTS, that is triggered to generate the new EI state (i.e., the new values
for P and F , as described in Sect. 4.5). In particular, it models states where RTS
works correctly, the states where omission failure occurs, the reconfiguration
strategy RS2() and the list of the LCS that are failed during the evaluation of
the reconfiguration strategy RS2().

When RTS is affected by an omission failure, the reconfiguration strategy
RS2() cannot be applied. Failures can be transient or permanent and are mod-
eled like in LCS SAN.

The Atomic Model COMNET SAN
COMNET SAN represents, in a simplified way, the states and the behavior of the
public or private networks TSOcomNet and DSOcomNet of Fig. 3. In par-
ticular, it models states where TSOcomNet and DSOcomNet work correctly,
the states where transient or permanent omission failure occur. The considered
failures are modeled like in LCS SAN.

The time to failures can depend on the status of the transmission grid (e.g.,
the failure rate could increase in case of blackout). The duration of a transient
failure is exponentially distributed. The duration of the permanent failure is the
deterministic time to repair the components TSOcomNet and DSOcomNet,
which can depend on the status of the transmission grid (e.g., the time to repair
could depend on the blackout size).

4.7 Current Status and Next Steps

Currently, the solution of the overall model of the addressed EPS instance is in
progress using the tool Möbius, adopting some simple artificial scenarios, but
well representative to show the impact of interdependencies on measures related
with system blackouts. These results are expected to be highly useful to better
understand the dynamics of the two interacting EI and ITCS infrastructures,
and to help identifying appropriate architectural mechanisms to mitigate the
impact of the revealed vulnerabilities.

We plan to exercise the developed framework on a wide variety of scenarios,
including realistic control scenarios offered by the CRUTIAL consortium. This
way, it will be possible to understand whether and where refinements/extensions
of the proposed models are necessary, to cope with missing aspects or to make
them more efficient from the solution point of view. The final goal is to pursue
a truly general and composable modeling framework, adequate for the inter-
dependencies evaluation in general EPS scenarios, and possibly extendible to
interdependencies analysis in other critical infrastructure systems.

5 Conclusions

This paper has addressed the evaluation of critical infrastructures with focus on
the interdependencies that strongly characterize these systems. First, a general

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 75

discussion on vulnerabilities of CI and necessity to analyze them to take ap-
propriate protection actions is presented. Then, major challenges posed by the
evaluation process targeted to CI have been sketched; pointers to relevant inter-
national research initiatives in this area have been also identified. In addition,
major approaches to evaluating CI from the dependability and security per-
spective have been discussed. The second part of the paper has introduced a
concrete approach to the definition of an evaluation framework tailored to elec-
tric power system, which is currently under development in the context of the
European project CRUTIAL. Specifically, the identification of the logical com-
ponents composing the EPS infrastructures as well as their interdependencies
have been outlined, mainly reporting from a previous work by the authors. On
the basis of the characteristics of the involved components and of the challenges
in evaluating CI, major features to be possessed by a model-based evaluation
framework for quantitative analysis of the interdependencies and their impact
on the correct operation of EPS systems have been pointed out. Then, a specific
instance of the EPS system has been more concretely tackled, by providing the
abstract view of the models representing the several involved components and
the mechanisms through which they interact. For space reasons, this description
is kept at functional/behavioral level only, without detailing the implementation,
which has been already performed through the SAN formalism inside the Möbius
tool. Actually, the developed models are reusable template models, which can
be assembled to represent a number of specific scenarios in the EPS sectors (the-
oretically, the proposed building block models should allow representing all the
possible EPS configurations involving (a subset of) the addressed components).

An evaluation campaign is currently in progress to derive quantitative as-
sessment of the impact of interdependencies on blackouts related indicators.
The results are expected to be very useful, first to guide the possible refine-
ment/extension of the proposed modeling framework, so as to have a solid base
for a better understanding of EPS vulnerabilities, thus leading to enhanced
design choices for EPS protection at architectural level. Comparison with the
results obtained through the EPS simulator [24], under development by the re-
search group the authors belong to, will be a valuable source for cross validation
of the two assessment methods.

Acknowledgments. This work has been partially supported by the European
Community through the IST Projects CRUTIAL [8] (Contract n. 027513).

References

1. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and ana-
lyzing critical infrastructure interdependencies. IEEE Control Systems Magazine,
11–25 (2001)

2. Pourbeik, P., Kundur, P.S., Taylor, C.W.: The anatomy of a power grid blackout.
IEEE Power and Energy Magazine, 22–29 (2006)

76 S. Chiaradonna, F. Di Giandomenico, and P. Lollini

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1, 11–33 (2004)

4. Dunn, M., Abele-Wigert, I.: International CIIP Handbook 2006 (Vol. I). An Inven-
tory of 20 National and 6 International Critical Information Infrastructure Protec-
tion Policies. Center for Security Studies, ETH Zurich (2006)

5. Dunn, M., Mauer, V. (eds.): International CIIP Handbook 2006 (Vol. II) - Ana-
lyzing Issues, Challenges, and Prospects. Center for Security Studies, ETH Zurich
(2006)

6. CI2RCO: European Project CI2RCO - Critical information infrastructure research
co-ordination, http://www.ci2rco.org

7. IRRIIS: European Project IRRIIS - Integrated risk reduction of information-based
infrastructure systems, http://irriis.org

8. CRUTIAL: European Project CRUTIAL - Critical utility infrastructural resilience,
http://crutial.cesiricerca.it

9. GRID: European Project GRID - A coordination action on ict vulnerabilities of
power systems and the relevant defence methodologies, http://grid.jrc.it

10. TCIP: Nsf Project TCIP - Trustworthy cyber infrastructure for the power grid,
http://www.iti.uiuc.edu/tcip/

11. Bondavalli, A., Chiaradonna, S., Di Giandomenico, F.: Model-based evaluation
as a support to the design of dependable systems. In: Diab, H.B., Zomaya, A.Y.
(eds.) Dependable Computing Systems: Paradigms, Performance Issues, and Ap-
plications, pp. 57–86. Wiley, Chichester (2005)

12. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: From depend-
ability to security. IEEE Transactions on Dependable and Secure Computing 1,
48–65 (2004)

13. Trivedi, K.S., Ciardo, G., Malhotra, M., Sahner, R.: Dependability and performa-
bility analysis. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Per-
formance 1993. LNCS, vol. 729, pp. 587–612. Springer, Heidelberg (1993)

14. Balbo, G.: Introduction to stochastic Petri nets. In: Brinksma, E., Hermanns, H.,
Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 84–
155. Springer, Heidelberg (2001)

15. CRUTIAL Consortium: Methodologies synthesis. Technical report (2007), http://
crutial.cesiricerca.it/Dissemination/DELIVERABLES-OF-THE-PROJECT

16. Silva, G.J., Madeira, H.: Experimental dependability evaluation. In: Diab, H.B.,
Zomaya, A.Y. (eds.) Dependable Computing Systems: Paradigms, Performance
Issues, and Applications, pp. 319–347. Wiley, Chichester (2005)

17. Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical infrastructure
interdependency modeling: A survey of U.S. and international research. Technical
Report INL/EXT-06-11464 (2006), http://www.pcsforum.org/library/files/
1159904563-TSWG INL CIP Tool Survey final.pdf

18. Davis, C.M., Tate, J.E., Okhravi, H., Grier, C., Overbye, T.J., Nicol, D.: Scada
cyber security testbed development. In: 38th North American Power Symposium,
Carbondale, IL, pp. 613–618 (2006)

19. Nicol, D.M.: Tradeoffs between model abstraction, execution speed, and accuracy.
In: 2nd European Modeling and Simulation Symposium, Barcelona, Spain, pp.
13–20 (2006)

20. Schmitz, W.: Simulation and test: Instruments for Critical Infrastructure Protec-
tion (CIP). Information Security Technical Report 12, 2–15 (2007)

http://www.ci2rco.org
http://irriis.org
http://crutial.cesiricerca.it
http://grid.jrc.it
http://www.iti.uiuc.edu/tcip/
http://crutial.cesiricerca.it/Dissemination/DELIVERABLES-OF-THE-PROJECT
http://crutial.cesiricerca.it/Dissemination/DELIVERABLES-OF-THE-PROJECT
http://www.pcsforum.org/library/files/1159904563-TSWG_INL_CIP_Tool_Survey_final.pdf
http://www.pcsforum.org/library/files/1159904563-TSWG_INL_CIP_Tool_Survey_final.pdf

Evaluation of Critical Infrastructures: Challenges and Viable Approaches 77

21. Le Grand, G., Hecker, A.: A framework for critical information infrastructure pro-
tection simulation. In: Skanata, D., Byrd, D. (eds.) Computational Models of Risks
to Infrastructure. NATO Science for Peace and Security - Series D: Information
and Communication Security, vol. 13, pp. 56–64. IOS Press, Amsterdam (2007)

22. Chiaradonna, S., Lollini, P., Di Giandomenico, F.: On a modeling framework for
the analysis of interdependencies in electric power systems. In: IEEE/IFIP 37th
Int. Conference on Dependable Systems and Networks (DSN 2007), Edinburgh,
UK, pp. 185–195 (2007)

23. Laprie, J.C., Kanoun, K., Kaniche, M.: Modeling interdependencies between the
electricity and information infrastructures. In: Saglietti, F., Oster, N. (eds.) SAFE-
COMP 2007. LNCS, vol. 4680, pp. 54–67. Springer, Heidelberg (2007)

24. Romani, F., Chiaradonna, S., Di Giandomenico, F., Simoncini, L.: Simulation mod-
els and implementation of a simulator for the performability analysis of electric
power systems considering interdependencies. In: 10th IEEE High Assurance Sys-
tems Engineering Symposium (HASE 2007), pp. 305–312 (2007)

25. Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius: An
extensible tool for performance and dependability modeling. In: Haverkort, B.R.,
Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 332–
336. Springer, Heidelberg (2000)

26. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000
and FMPA 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

27. Chiaradonna, S., Lollini, P., Di Giandomenico, F.: Modelling framework of an
instance of the electric power system: Functional description and implementation.
Technical Report RCL071202, University of Florence, Dip. Sistemi Informatica,
RCL group (2007),
http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html

28. Dobson, I., Carreras, B.A., Lynch, V., Newman, D.E.: An initial model for complex
dynamics in electric power system blackouts. In: 34th Hawaii Int. Conference on
System Sciences (CD-ROM), Maui, Hawaii. IEEE, Los Alamitos (2001)

29. Chen, J., Thorp, J.S., Dobson, I.: Cascading dynamics and mitigation assessment
in power system disturbances via a hidden failure model. Electrical Power and
Energy Systems 27, 318–326 (2005)

30. Anghel, M., Werley, K.A., Motter, A.E.: Stochastic model for power grid dynamics.
In: 40th Hawaii Int. Conference on System Sciences (CD-ROM), Waikoloa, Big
Island, Hawaii. IEEE, Los Alamitos (2007)

http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html

Analysis of a Redundant Architecture

for Critical Infrastructure Protection

Alessandro Daidone1, Silvano Chiaradonna2,
Andrea Bondavalli1, and Paulo Veŕıssimo3

1 University of Florence, viale Morgagni 65, I-50134, Italy
daidone@dsi.unifi.it, bondavalli@unifi.it

2 ISTI-CNR, via Moruzzi 1, I-56124, Italy
silvano.chiaradonna@isti.cnr.it

3 University of Lisbon, Campo Grande 1749-016, Lisbon, Portugal
pjv@di.fc.ul.pt

Abstract. Critical infrastructures like the power grid are emerging as
collection of existing separated systems of different nature which are in-
terconnected together. Their criticality becomes more and more evident
as the damage and the risks deriving from wrong behaviors (both acci-
dental and intentionally caused) are increasing. It is becoming evident
that existing (legacy) subsystem must be interconnected together fol-
lowing some disciplined and controlled way. This is one of the challenges
taken by the European Project CRUTIAL, where an infrastructure archi-
tecture seen as a WAN of LANs is being proposed, where LANs confine
existing sub-systems, protected by special interconnection and filtering
devices (CIS - CRUTIAL Information Switches). Previous work led to
the definition of the CIS internal and interconnection architecture, so
that a set of CIS can collectively ensure that the computers controlling
the physical process correctly exchange information despite accidents
and malicious attacks. CIS resilience is achieved thanks to replication
for intrusion tolerance and replica recovery for self-healing.

This chapter analyzes the redundant architecture of the CIS, with a
set of objectives: identifying the relevant parameters of the architecture;
evaluating how effective is the trade-off between proactive and reactive
recoveries; and finding the best parameter setup. Two measures of in-
terest were identified, a model of the recovery strategy was constructed
and the quantitative behavior of the recovery strategy was analyzed. The
impact of the detection coverage, of the intrusions and of the number of
CIS replicas was analyzed and discussed. The directions for refining and
improving the recovery strategy were proposed.

1 Introduction

Critical infrastructures (e.g., the power grid) are basically physical processes
controlled by computers interconnected by networks [1]. Some years ago those
systems were highly isolated and hence secure against most security threats. Dur-
ing the last years the Information and Communications Technology (ICT) part

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 78–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analysis of a Redundant Architecture for Critical Infrastructure Protection 79

of those critical infrastructures evolved in several aspects: i) hardware and soft-
ware devices (station computers, networks, protocols,...) are no longer ad-hoc
and proprietary, instead standard components (COTS1) are used; ii) most of
the station computers are connected to corporate networks and to the Internet.
Therefore these infrastructures are nowadays greatly exposed to cyber-attacks
coming from the Internet [2,3], so they have a level of vulnerability similar to
other systems connected to the Internet, but the socio-economic impact of their
failure can be huge. This scenario, reinforced by several recent incidents, is gen-
erating a great concern about the security of these infrastructures, especially at
government level [4].

A reference architecture [5] was recently proposed to protect the power grid
in the context of the CRUTIAL2 EU-IST project. Since the power grid is formed
by facilities (power transformation substations, corporate offices, etc.) intercon-
nected by a wider-area network (WAN), [5] proposes to represent facilities using
protected LANs interconnected by a WAN, leading to the WAN-of-LANs archi-
tecture. Using such an architecture, the problem of protecting the power grid
(and similar critical infrastructures) is reduced to the problem of protecting
LANs from the WAN or other LANs.

In the CRUTIAL reference architecture each LAN is connected to the WAN
through a special interconnection and filtering device, the CIS (CRUTIAL In-
formation Switch), which ensures that both the incoming and outgoing traffic
satisfies the security policy defined to protect the infrastructure (the so called
CIS Protection Service). A CIS is hence a kind of improved firewall that works
at the application layer and that is intrusion tolerant. CIS resilience is achieved
thanks to replication for intrusion tolerance and replica recovery for self-healing
[6,7]. Replication is used in order to guarantee system correct operation when
some replicas are compromised. Rejuvenation is instead used to remove the ef-
fects of malicious attacks aiming to compromise some replicas and to break the
system. The replica rejuvenation strategy, PRRW (Proactive-Reactive Recov-
ery Wormhole), is based both on periodic (proactive) recoveries and on event
triggered (reactive) recoveries, seeking perpetual unattended correct operation.

The proactive-reactive recovery strategy aims to both increase CIS depend-
ability and guarantee CIS availability, despite of faults, intrusions and recoveries.
In particular, recoveries have beneficial effects (e.g., reactive recoveries rejuve-
nate replicas detected as incorrect), but also negative effects (e.g., the proactive
recovery of a correct replica makes the replica unavailable for the whole dura-
tion of the recovery). The key property of the PRRW strategy is that, as long as
the fault exhibited by the replica is detectable, this replica will be recovered as
soon as possible, ensuring that there is always an amount of replicas available
to sustain correct operation [7].

This chapter analyzes the redundant architecture of the CIS, with a set of ob-
jectives: evaluating how effective is the trade-off between proactive and reactive
recoveries, identifying the relevant parameters of the architecture and finding the

1 Commercial Off-The-Shelf components.
2 CRitical UTility InfrastructurAL resilience: http://crutial.cesiricerca.it

http://crutial.cesiricerca.it

80 A. Daidone et al.

best parameter setup. Two dependability and availability measures of interest
were identified. A model of the recovery strategy was constructed in order to
analyze the quantitative behavior of the recovery strategy. The impact of the
detection coverage, of the intrusions and of the number of CIS replicas on the
measures of interest was analyzed and discussed. The directions for refining and
improving the recovery strategy were proposed.

The rest of the chapter is organized as follows. Section 2 gives an overview of
the reference architecture used in CRUTIAL; Section 3 gives an overview both of
the CIS and the PRRW recovery strategy; Section 4 presents the models and the
quantitative analysis of the PRRW strategy; Section 5 identifies the directions
for improvements and refinements on the recovery strategy. Finally, concluding
remarks are presented in Sect. 6.

2 CRUTIAL Reference Architecture Overview

The infrastructure architecture in CRUTIAL is modeled as a WAN-of-LANs
[5]. All the Information and Communications Technology (ICT) parts necessary
for the control of the whole power grid3 are logically grouped in substations
and finally in local area networks (LANs). LANs are interconnected by a global
interconnection network, called WAN. The WAN is a logical entity owned and
operated by the critical information infrastructure operator companies, which
may or not use parts of public network as physical support. All traffic originates
from and goes to a LAN, so packets are switched by the WAN through substation
gateways called CRUTIAL Information Switches (CIS).

CIS collectively act as a set of servers providing distributed services aimed
to control both the command and information flow among the ICT parts of the
critical infrastructure, securing a set of necessary system-level properties. This
set of servers must be intrusion-tolerant, prevent resource exhaustion providing
perpetual operation, and be resilient against assumption coverage uncertainty,
providing graceful degradation or survivability. An assumed number of CIS can
be corrupted; in consequence, a logical CIS is implemented as a set of replicated
physical units (CIS replicas) according to fault and intrusion tolerance needs.
Likewise, CIS are interconnected with intrusion-tolerant protocols, in order to
cooperate to implement the desired services.

3 CIS Overview

CIS is the substation gateway interfacing a protected LAN with the WAN, as
shown in Fig. 1. In order to be intrusion-tolerant, the CIS is replicated (with
diversity) in n machines and follows its specification as long as at most f of

3 Some examples are the administrative clients and the servers LANs, the operational
(SCADA) clients and servers LANs, the engineering clients and servers LANs, the
Public Switched Telephone Network (PSTN) modem access LANs, the Internet and
extranet access LANs, etc.

Analysis of a Redundant Architecture for Critical Infrastructure Protection 81

these machines are attacked and behave maliciously, both toward other replicas
and toward the station computers in the protected LAN. Both the incoming and
outgoing traffic is managed by “Traffic Replication Devices” that behave like
Ethernet hubs: when they receive a packet from a port, they broadcast it to
all the other ports. This way, the traffic received by the CIS from the WAN is
spread to all the replicas, and the traffic generated by each replica is spread to
all the other replicas and to the protected LAN.

The CIS is implemented using an hybrid architecture, so it is composed by two
parts: the payload and the wormhole [8]. The payload is an asynchronous system
where applications and protocols are executed; the wormhole is a secure and
synchronous system providing services to the payload part through a well-defined
interface. The wormhole part of each replica (local wormhole) is connected to
the other local wormholes through a synchronous and secure control channel,
isolated from other networks.

CIS intrusion tolerance is enhanced by rejuvenating CIS replicas through re-
coveries. In order to guarantee system availability despite the unavailability of
recovering replicas, the number of replicas in the system is set to n ≥ 2f+ 1 + k,
where k is the maximum number of replicas allowed to recover in parallel. This
way, the system is able to tolerate at most f Byzantine replicas and recover k
replicas simultaneously.

Fig. 1. CIS intrusion tolerant hybrid architecture

The CIS protection service, executed in each payload replica, verifies whether
the incoming messages comply with the security policy (OrBAC4 [9]), notifying
their (positive) approval to its local wormhole. The wormhole collects message
approvals coming from the local wormholes; an incoming message m is signed by
4 OrBAC (Organization Based Access Control).

82 A. Daidone et al.

the wormhole if and only if the wormhole collects at least f+1 different approvals
for m. Messages signed by the wormhole are considered valid messages and they
are forwarded to their destination only by a distinguished payload replica, the
leader (so there is no unnecessary traffic multiplication inside the LAN).

Each payload replica has to verify whether the leader forwards all the signed
messages and has to check whether invalid messages are sent toward the LAN.
The wormhole is in charge of both triggering the recoveries when necessary,
ensuring that there is an amount of replicas to sustain system’s correct operation,
and managing the election of the new leader.

3.1 Fault Model and Assumptions

This Section describes [7] the fault model and the assumptions on which the fault
model is based on. Station computers are assumed to only accept messages signed
by the wormhole (a symmetric key K is shared between the station computer(s)
and the CIS wormhole). The following faults are considered:

f1) The faults related to communication involve both the traffic replication de-
vices and the communication channels among them and the replicas (except
the control channel connecting local wormholes). Traffic replication devices
can lose messages coming from a port or sometimes delay the traffic forward-
ing on some ports (for an unbounded time); traffic replication devices cannot
generate spurious messages or alter messages. Communication channels can
lose messages or unpredictably delay the traffic forwarding.

f2) A payload replica can be intruded, and hence can be affected by Byzantine
faults.

f3) A local wormhole can only fail by crash; at most fc ≤ f local wormholes are
assumed to fail by crash. The crash of a local wormhole is detected by a
perfect failure detector. When a local wormhole crashes, the corresponding
payload is forced to crash together.

f4) Fault-independence is assumed for payload replicas, i.e., the probability of a
replica being faulty is independent of the occurrence of faults in other replicas
(this assumption can be substantiated in practice through the extensive use
of several kinds of diversity [10]).

f5) The same attack on the same replica has always the same probability of
success (this is a working assumption that could be relaxed in future work).

f6) Station computers cannot be compromised (it is the trusted network that we
aim to protect, exactly in the sense of preventing it from being compromised).

f7) Replicas are correct after their recovery.
f8) The security policy verified by the CIS is assumed to be perfect; this means

that a correct replica applies perfectly the policy verification and there are
no policy inconsistencies between replicas (i.e. all correct replicas verify the
same policy).

Given the set of faults just described, the corresponding failure modes for a
payload replica are:

Analysis of a Redundant Architecture for Critical Infrastructure Protection 83

– Crash. The payload replica crashes because of the crash of the corresponding
local wormhole (f3) or as the effect of an intrusion (f2).

– Omission. The payload replica is subjected to a transient omission because of
communication problems (f1) or as the effect of an intrusion (f2). For example,
a transient omission occurs when the leader payload is not forwarding a signed
message because it never received it from the traffic replication device (f1).

– Invalid. The payload replica is failing by value as the effect of an intrusion
(f2), e.g., it is sending illegal messages toward the LAN or it is flooding the
WAN and the LAN aiming to delay the forwarding of legal messages.

For ease of modeling, we assume that a replica, as soon as it is successfully
intruded, explicitly manifest failures (of any kind) and that a failure caused by
an intrusion is permanent.

The system is unavailable if the number of correct working replicas is less
than f+1 (so quorums cannot be reached) or if there are more than f+1 correct
replicas, but the leader is omitting (so legal messages are not forwarded). The
system fails if the number of invalid replicas is greater than f (the correctness of
the system cannot be guaranteed) or if the necessary resources are unavailable
for a fixed duration (CIS seeks perpetual operation).

3.2 The PRRW Strategy

We now explain the PRRW (Proactive-Reactive Recovery Wormhole) strategy
that we are going to evaluate, laid down in [7]. The PRRW strategy manages
the CIS replica recoveries using a mix of proactive and reactive recoveries, and
it is characterized by the following parameters:

– The maximum time interval TP (cycle or recovery period) between consec-
utive recoveries on the same replica (each replica is hence recovered at most
after TP).

– The worst case execution time TD of a recovery.
– The maximum number k of replicas that may recover simultaneously.
– The maximum number f of simultaneously corrupted replicas that the sys-

tem can tolerate.

The PRRW strategy is organized as shown in Fig. 2: time is divided in 	n/k

different time slots that are cyclically repeated. Each slot is divided in two tasks:
task A and task Ri , with i = 1, . . . , 	n/k
.

Proactive (periodic) recoveries are executed during task Ri only; up to k
replicas recover simultaneously in each task Ri , according to the replica index.
Replica i, with i = 1, . . . , k, are recovered in task R1, replica i, with i = k +
1, . . . , 2k, are recovered in task R2 and so on. Task Ri lasts for (at most) TD

and it is executed again after a period TP.
Two types of reactive (a-periodic) recoveries can be triggered on replica i :

1. “Immediate” reactive recovery, triggered if a quorum of f + 1 accusations
exists about i sending illegal messages; in this scenario replica i is “detected”
of being compromised, because at least one correct replica detected that
replica i is failed.

84 A. Daidone et al.

Fig. 2. The PRRW scheduling

2. “Delayed” reactive recovery, triggered if a quorum of at least f+1 accusations
exists about the current leader i, some about i sending illegal messages,
other about i not forwarding a signed message (the signed messages was
not forwarded for more then O t times). In this scenario the leader replica
i is “suspected” of being compromised, because at least one correct replica
raised an accusation about leader replica i, but the wormhole is not able to
identify which accuser replica is correct, so it is not able to identify which
kind of accusation is correct about leader replica i.

“Immediate” reactive recoveries are immediately triggered on replica i as soon
as the replica is detected of being compromised.

“Delayed” reactive recoveries are only triggered on the leader replica, are ex-
ecuted during task A and are coordinated with proactive recoveries. If no “im-
mediate” reactive recovery is already triggered for replica i, the PRRW strategy
finds the closest recovery sub-slot where the recovery of replica i does not en-
danger the availability of the CIS. If the found sub-slot is located in the slot
where replica i will be proactively recovered, the “delayed” reactive recovery is
not performed. Task A is divided into 	f/k
 recovery sub-slots identified as Sij ;
up to k replicas can be recovered simultaneously in each sub-slot. Task A lasts
for (at most) 	f/k
TD.

Each slot lasts hence for up to (f/k
 + 1)TD with period TP. After each Ri
task has been executed once, each replica has been proactively recovered once.

A new leader is elected by the wormhole if the current leader is recovering or
if the local wormhole of the current leader is detected to be crashed. The new
leader is chosen as the (currently not crashed) replica more recently recovered
by a proactive recovery.

4 PRRW Quantitative Analysis

This Section presents a quantitative analysis of the PRRW strategy. The relevant
measures of interest are identified and the relevant parameters are described. The
model representing the PRRW strategy is described and finally the results of the
performed simulations are presented and discussed.

The quantitative analysis of the PRRW strategy aims to evaluate how effective
is the trade-off between proactive and reactive recoveries. Proactive recoveries

Analysis of a Redundant Architecture for Critical Infrastructure Protection 85

rejuvenate the replicas in predefined instants of time, without being based on
any fault detection. This means that proactive recoveries treat all the faults,
including also the latent and hidden ones, which cannot be treated in other way,
but they recover also correct replicas, weakening the availability of the system.
On the other side, reactive recoveries are triggered only on replicas detected or
suspected of being faulty; replicas not detected or suspected of being faulty are
never recovered, even if they are actually faulty, weakening the dependability of
the system.

Recoveries determine a discontinuity in the CIS configuration caused by the
temporary unavailability of the replicas subjected to a recovery. Therefore it
is possible to represent the entire operational life split into different periods
of deterministic duration called “phases”. This feature allows a reconfiguration
strategy belonging to the Multiple Phased System (MPS) class for which a mod-
eling and evaluation methodology exist [11], supported by the DEEM tool [12].
Using DEEM, the model is split into two logically distinct sub-nets: the Phase
Net (PhN) representing the schedule of the various phases, each one of deter-
ministic duration, and the System Net (SN) representing the behavior of the
system. Each net is made dependent on the other by marking-dependent predi-
cates that modify transition rates, enabling conditions, reward rates etc. Reward
measures are defined as Boolean expressions, functions of the net marking. Both
the analytic [11] and simulation solutions [13] can be used in order to exercise
the models; the measures of interest defined in our quantitative analysis were
evaluated by simulation.

Different studies were performed on the modeled system varying several pa-
rameters; the relevant parameters are the following:

1. Mission time t.
2. Probability pI of intrusion within a replica manifesting as a permanent in-

valid behavior; intrusions can manifest themselves as permanent omissions
with probability 1−pI. Parameter pI impacts on the PRRW strategy because
invalid and omission failures are treated in different ways.

3. Detection coverage cM of malicious behavior of a replica. Parameter cM

impacts on the PRRW strategy because only detectable faults can trigger
reactive recoveries.

4. Number n of replicas in the system.

The quantitative analysis aims to evaluate how these parameters impact on the
measures of interest.

4.1 Measures of Interest

We are interested in measuring both the system failure probability PF(t) and
the system unavailability PU(0, t) at time t.

The system fails at time t if one of the following conditions holds:

1. the number of invalid replicas gets over f ;
2. the system is unavailable for an interval of time greater then TO.

86 A. Daidone et al.

Let PFI(t) be the probability of the system being failed at time t because of
condition 1, given that it was correctly functioning at time t = 0. Let PFO(t)
be the probability of the system being failed at time t because of condition 2,
given that it was correctly functioning at time t = 0. PF(t) is defined as the
probability of the system being failed at time t, given that it was not failed at
time t = 0, and it is obtained as

PF(t) = PFI(t) + PFO(t).

The system is unavailable at time t if one of the following conditions holds:

1. the number of correct replicas is less than f+1 (quorums cannot be reached);
2. there are more than f + 1 correct replicas, but the leader is omitting (legal

messages are not forwarded).

Let TU(0, t) be the total time the system is not failed but unavailable within
[0, t] because of one of the above conditions. Let TA(0, t) be the total time the
system is not failed within [0, t]. System unavailability, denoted by PU(0, t), is
defined as the probability of the system being unavailable within TA(0, t), given
that it was correctly working at time t = 0; system unavailability is obtained as

PU(0, t) =
TU(0, t)
TA(0, t)

.

4.2 The PRRW Model

The Phase Net (PhN). The phase net (Fig. 3) models the PRRW scheduling
shown in Fig. 2. The deterministic transitions TsubSlot and TRi model the
times to perform the tasks A and Ri , respectively. Place Sij contains a token
during the task A (a-periodic recovery phase) and Ri contains a token during
the task Ri (periodic recovery phase). The marking of CountSubSlot counts the
number of the current recovery sub-slot (Sij) within the current recovery slot.
The marking of CountSlot counts the number of the current recovery slot within
the current cycle. The marking of CountWin counts the number of the current
cycle. The immediate transition tNextSlot fires when a periodic recovery slot
ends, resetting the marking of CountSubSlot to 1. The immediate transition
tNextWin fires when a new cycle is started, resetting the marking of CountSlot
to 1. The immediate transitions of the phase net have priority less than the
priorities of the immediate transitions of the system net.

The System Net (SN). The system net of the PRRW model is composed by
n ≤ 6 similar subnets (one subnet for each replica), a subnet to keep track of
system failures and a subnet to model the initialization (the description of this
last subnet is omitted without affecting the comprehension of the model).

Figure 4 shows the subnet modeling replica 1. The left part of the subnet
models the replica failures, while the right part of the subnet models the replica
recovery and leader election. Places which name ends with digit “1” model replica
1, while the other places (Leader and kRec) are shared by all the replicas.

Analysis of a Redundant Architecture for Critical Infrastructure Protection 87

RiEndSubSlot

1

CountSlot
1

EndSlot

CountWin
1

NextRi

TsubSlot

tNextSubSlot

tToRi TRi

tNextSlot

tNextWin

tRitSij

Sij
1

NextSij

CountSubSlot

Fig. 3. The phase net of the PRRW model

SetOK1

1

Tcrashb1

Crash1

TtempOmission1

TomissionD1

Tcrash1

tEmptyCr1

tLeaderC1

tLeaderO1

Omission1

OmissionI1OmissionIU1

tEmptyOU1

Tintrusion1

tSetOK1
tEmptyOKO1

tEmptyOKI1 tOmissionIU1 tOmissionI1

InvalidIU1 InvalidI1

Malicious1

tInvalidIU1 tInvalidI1

tEmptyII1tEmptyIU1

tEmptyOI1

OK_I1 1

OK_O1

tDRecovered1

RRecoverySuspect1

PRec1

kRec

NewL1

tNoNewLeader1 tNewLeader1

Leader1

1

DRecovering1
Recovering1

tRecovered1

tRRecoverySuspect1

tRRecoveryDetect1

tPRecovery1

tLeaderOI1tEmptyOm1

Fig. 4. The subnet of SN modeling replica 1

Replica failures are modeled as follows. As long as both OK O1 and OK I1
contain one token each, replica 1 is correctly working. One token in places Crash1
or Omission1 represents the crash of the replica or an omissive behavior as a
consequence of a transient omission, respectively. The exponential transitions
Tcrash1 and Tcrashb1 represent the time to the crash with rate λc

1; when the
replica crashes, place OK I1 is emptied (the replica cannot be no more intruded).
TtempOmission1 represents the time to a transient omission exponentially dis-
tributed with rate λo

1. A transient omission disappears after a time modeled by
the exponential transition TomissionD1 with rate λeo.

The exponential transition Tintrusion1 represents the time to intrusion with
rate λa

1; the effect of the intrusion is modeled by the following immediate tran-
sitions (enabled in the same marking) and the associated places:

88 A. Daidone et al.

– TomissionIU1 for an undetectable omission failure, with probability (1 −
cM)(1 − pI),

– TomissionI1 for a detectable omission failure, with probability cM(1 − pI),
– TinvalidIU1 for an undetectable invalid failure, with probability (1 − cM)pI,
– TinvalidI1 for a detectable invalid failure, with probability cMpI,

where pI and cM are the probability of an intrusion manifesting as a permanent
invalid behavior and the detection coverage of malicious behavior, respectively.

The replica recovery is modeled as follows. Place PRec1 contains a token as
long as replica 1 is not recovering, while place Recovering1 contains one token as
long as the replica is recovering. Place DRecovering1 contains a token during a
reactive recovery triggered by detections. Place kRec is used to count the number
of replicas currently recovering. Place RRecoverySuspect1 contains a token if a
crash, an omission or a malicious omission occurs.

Recoveries are triggered by one of the following immediate transitions (or-
dered by increasing priorities): tRRecoverySuspect1 (reactive recovery triggered
by suspects), tRRecoveryDetect1 (reactive recovery triggered by detections) or
tPRecovery1 (proactive recovery). The immediate transition tRRecoverySus-
pect1 fires if a new a-periodic recovery sub-slot is starting (NextSij contains a
token) and less than k replicas are recovering (kRec contains less than k tokens)
and the replica is not going to be proactively recovered in the next periodic
slot (the index of the replica is not in the interval [(Mark(CountSlot) − 1)k +
1, Mark(CountSlot)k]). The immediate transition tRRecoveryDetect1 fires if a
new recovery sub-slot is starting (NextSij contains a token or NextRi contains
a token). The immediate transition tPRecovery1 fires if a periodic recovery slot
is starting (NextRi contains a token) and less than k replicas are recovering
(kRec contains less than k tokens) and the index of the replica is in the interval
[(Mark(CountSlot) − 1)k + 1, Mark(CountSlot)k].

After the starting of a recovery of the replica, all the immediate transitions
which name starts with tEmpty fire, emptying the following places: OK O1,
OK I1, Crash1, Omission1, InvalidIU1, InvalidI1, OmissionIU1 and OmissionI1.
Immediate transitions tRecovered1 or tDRecovered1 fire when the current re-
covery ends, resetting the replica subnet.

The election of the leader replica is managed as follows. The marking of place
Leader corresponds to the index of the current leader; when replica 1 either
is going to be recovered or is crashed, one token is added in place NewL1.
tNewLeader1 fires if replica 1 is the current leader, triggering the mechanism
of election of a new leader, otherwise tNoNewLeader fires. The arc from place
Leader to place tNewLeader1 has multiplicity equal to Mark(Leader), while the
arc from place tNewLeader1 to place Leader has multiplicity equal to the index
of the replica that will be elected as the new leader. The new leader should be
the last (not crashed) replica proactively recovered, that is replica with index
j = ((n + (Mark(CountSlot) − 2)k)modn) + k. If replica j is currently crashed,
the next attempt is made on replica j − 1, until a not crashed replica is found.

The subnet shown in Fig. 5 models the system failure. Place OKSysN contains
a token as long as the system is not failed and it is not omitting (there are

Analysis of a Redundant Architecture for Critical Infrastructure Protection 89

SysFailureI

OKSysN

1

OKSysO SysFailureO

tSysFailureI

tSysFailureIb

tSysOmission

tOKSysN

TSysO

Fig. 5. The subnet of SN modeling the system failure

more than f correct replicas and the leader is not crashed or omitting). Place
OKSysO contains a token when the system is not failed but it is omitting.
Place SysFailureI contains a token when the system is failed because of invalid
behavior (there are at least f + 1 invalid replicas). Place SysFailureO contains
a token when the system is failed because the resource unavailability lasted for
an unacceptable period of time represented by the exponential transition TSysO
with rate 1/TO.

Different priorities are associated to the immediate transitions of SN, when
no probabilistic choices are required. For example, all the immediate transitions
of a replica i have priorities lower than those of replica j, if i < j.

Reward Structures. The evaluation of the measures of interest PF(t) and
PU(0, t) involves specifying a performance (reward) variable and determining
a reward structure for the performance variable, i.e., a reward structure which
associates reward rates with state occupancies and reward impulses with state
transitions [14]. System failure probability PF(t) was evaluated in terms of an
“instant of time” performance variable which is based on the following reward
structure:

if (Mark(OKSysO)=0 and Mark(OKSysN)=0) then (1) else (0)

System unavailability PU(0, t) was evaluated as PU(0, t) = TU(0, t)
TA(0, t) .

TU(0, t) was evaluated defining an “interval of time” performance variable
which reward structure is the following:

if (Mark(OKSysO)=1) then (1) else (0)

TA(0, t) was evaluated defining an “interval of time” performance variable
which reward structure is the following:

if (Mark(OKSysO)=1 or Mark(OKSysN)=1) then (1) else (0)

90 A. Daidone et al.

4.3 Model Evaluation and System Analysis

In this Section the results of the evaluation of the measures of interest are shown.
The measures of interest were evaluated by simulation [13] with a confidence level
of 95% and a half-length confidence interval of 1%.

All the model parameters and the default values used for the evaluations are
shown in Table 1; the value for TD was taken from [7]. The relevant parameters
are:

1. Mission time t. This is the time during which the system is exercised since
it starts to work. t varies in [2628, 42048] sec.

2. Probability pI of intrusion within a replica manifesting as a permanent in-
valid behavior. pI varies in [0, 1]. If pI = 0 then all intrusions manifest as a
permanent omissive behavior; in this case, only “delayed” reactive recoveries
(on the leader replica) can be triggered. If pI = 1 then all intrusions manifest
as a permanent invalid behavior; in this case, intrusions on each replica can
only trigger “immediate” reactive recoveries.

3. Detection coverage cM of malicious behavior of a replica. cM is the probabil-
ity of detecting an intruded replica, and hence the probability of reactively
recovering an intruded replica. cM varies in [0, 1]. If cM = 0 then no in-
trusions are detected; in this case, all intrusions are treated by proactive
recoveries and reactive recoveries are only triggered by crash or communi-
cation omissions. If cM = 1 then all intrusions are detected and treated by
reactive recoveries.

4. Number n of system replicas in the system, maximum number f of corrupted
replicas tolerated by the system itself and maximum number k of system
replicas recovering simultaneously, with n = 2f + 1 + k.

Afirst studywas performed observing both system failure probabilityPF(t) and
system unavailability PU(0, t) over mission time t for three different values of pI.

Figure 6(a) shows how PFI(t) and PFO(t) change over mission time t, with
PF(t) = PFI(t) + PFO(t). PF(t) increases exponentially over time for all the
values of pI. PF(t) behaves in fact like a geometric random variable for the
following reasons. System failure probability during each recovery period (cycle)
is not null; after each cycle the system is rejuvenated, so we can assume that
the system failure probability during the next cycle is the same as the previous
one. So system failure probability PF(t) cumulates over the recovery periods
as a geometric random variable. The values of PF(t) are over 0.01 because of
the values assigned to the system parameters. As pI varies from 0 to 1, PF(t)
increases of about 30% for low values of t and increases of about 17% for high
values of t. For pI = 0, pI = 0.5 and pI = 1 the value of PFI(t) is about 0%, 17%
and 50% of the value of PF(t), respectively, independently on the values of t.

If pI = 0 then PFI(t) = 0, because there is no invalid behavior, and hence
PF(t) = PFO(t). As pI varies from 0 to 1, PFO(t) changes from 100% of PF(t)
to 50% of PF(t); the number of intrusions does not change, but the effect of
intrusions changes. In fact, the value of PFO(t) depends on the time during

Analysis of a Redundant Architecture for Critical Infrastructure Protection 91

Table 1. Parameters and their default values

Name Default Value Meaning

t 2628 Mission time (sec)
n 4 Number of replicas in the system
k 1 Max number of replicas recovering simultaneously
f 1 Max number of corrupted replicas tolerated by the system

TD 146 Time duration of a recovery operation (sec)
TO 60 Duration of system omission before considering the system

failed (sec)
λc
i [1.9E-7, 3.8E-7] Crash rate of replica i. Each replica has a diverse crash rate

(from 1 per 60 days to 1 per 30 days)
λo
i [1.9E-6, 3.8E-6] Transient omission rate of replica i. Each replica has a diverse

rate (from 1 per 6 days to 1 per 3 days)
λeo 3.3E-2 Omission duration rate of a replica. A transient omission

lasts for 30 seconds (on average)
λa
i [5.8E-5, 1.2E-5] Successful attack (intrusion) rate of replica i. Each replica

has a diverse rate (from 5 per day to 1 per day)
pI 0.5 Probability of intrusion within a replica manifesting as a

permanent invalid behavior (if pI = 0 all intrusions manifest
as permanent omissions)

cM 0.7 Probability of detecting malicious behavior of a replica

which replicas are unavailable, which for pI = 0 is given by the sum of the
following durations:

– the time spent waiting for a “delayed” reactive recovery of the omissive
leader;

– the time spent during the recovery on the omissive leader;
– the time spent waiting for proactive recoveries of (not leader) omissive repli-

cas;
– the time spent for proactive recoveries (not varying for the different values

of pI).

If pI = 1 then the time during which replicas are unavailable is given by the sum
of the following durations:

– the time spent during “immediate” reactive recoveries on replicas detected
as intruded; the number of these recoveries is about n times the number of
“delayed” reactive recoveries performed for pI = 0;

– the time spent for proactive recoveries.

Therefore, the value of PFO(t) for pI = 1 mainly represents the impact of re-
coveries (both proactive and reactive) on PF(t) (crashes and transient omissions
are still present, but have lower rates than intrusions). The value of PFO(t) for
pI = 1 shows that the impact of recoveries on PF(t) is high (about 50%).

Figure 6(b) shows how PU(0, t) changes over mission time t. PU(0, t) in-
creases over time for all the values of pI. For pI = 0.5 and pI = 1 the value of

92 A. Daidone et al.

2.5E-01

2.0E-01

1.5E-01

1.0E-01

5.0E-02

1.0E-02

42048210241051252562628

S
ys

te
m

 fa
ilu

re
 p

ro
ba

bi
lit

y
P

F
(t

)

t (sec)

p I
=

0
p I

=
0.

5
p I

=
1

p I
=

0
p I

=
0.

5
p I

=
1 p I
=

0
p I

=
0.

5
p I

=
1

p I
=

0
p I

=
0.

5
p I

=
1

p I
=

0
p I

=
0.

5
p I

=
1PFO(t)

PFI(t)

(a) System failure probability PF(t)

1.4E-04

1.6E-04

1.8E-04

2.0E-04

2.2E-04

2.4E-04

2.6E-04

2.8E-04

3.0E-04

42048210241051252562628

S
ys

te
m

 u
na

va
ila

bi
lit

y
P

U
(0

,t)

t (sec)

pI=0
pI=0.5

pI=1

(b) System unavailability PU(0, t)

Fig. 6. System failure probability PF(t) and system unavailability PU(0, t) over mis-
sion time t for different values of pI

PU(0, t) is about 87% and 60% of the value of PU(0, t) for pI = 0, respectively,
independently on the values of t.

The trend of PU(0, t) for varying pI is similar to the trend of PFO(t) shown
in Fig. 6(a); for pI = 1 the value of PU(0, t) is mainly due to the recoveries,
for pI = 1 and pI = 0.5 the value of PU(0, t) is influenced by the fact that the
number of recoveries decreases but the number of omission increases.

Another study was devoted to evaluate both system failure probability PF(t)
and system unavailability PU(0, t), varying both the detection coverage cM and
the probability pI of intrusions manifesting as invalid behavior. This study shows
how reactive recoveries improve the measures of interest with regard to treating
intrusions with proactive recoveries only.

Figures 7(a) and 7(b) show how PFI(t) and PFO(t), respectively, change over
detection coverage cM for different values of pI; in order to make easier their
comparison, the same scale for the y-axis is used. PFI(t) decreases as cM increases
from 0 to 1 for all the values of pI. PFI(t) takes the largest values for pI = 1
and the lowest values for pI = 0. If pI = 0 then the values of PFI(t) for different
values of cM are 0 and are not shown in Fig. 7(a). PFI(t) takes the smallest
values for pI = 0.2 and is almost constant. The curve corresponding to pI = 1
decreases quicker than the other curves (it decreases for about one order of
magnitude) as cM increases. PFO(t) shows an opposite behavior with respect to
PFI(t): it increases as cM increases from 0 to 1. PFO(t) takes the largest values
for pI = 0 and the lowest values for pI = 1. The curve corresponding to pI = 1
increases quicker than the other curves (it increases for about 2.5 times); the
curve corresponding to pI = 0 is almost constant. The largest variations in the
values of PFI(t) and PFO(t) for varying cM occur for pI = 1.

The values of PFI(t) and PFO(t) for cM = 0 correspond to the system config-
uration in which all the intrusions are treated only by proactive recoveries. The
difference between the values of PFI(t) (and PFO(t)) for cM = 0 and cM = 1 is
due to the effect of treating all the intrusions by reactive recoveries. Increasing
cM there are two opposite effects with respect to PFI(t) and PFO(t): PFI(t)

Analysis of a Redundant Architecture for Critical Infrastructure Protection 93

1.6E-02

1.4E-02

1.2E-02

1.0E-02

8.0E-03

6.0E-03

4.0E-03

2.0E-03

1.0E-04
 0 0.2 0.4 0.6 0.8 1

In
va

lid
 fa

ilu
re

 p
ro

ba
bi

lit
y

P
F

I(t
)

cM

pI=1
pI=0.8
pI=0.6
pI=0.5
pI=0.4
pI=0.2

pI=0

(a) Invalid failure probability PFI(t)

1.6E-02

1.4E-02

1.2E-02

1.0E-02

8.0E-03

6.0E-03

4.0E-03

2.0E-03

1.0E-04
 0 0.2 0.4 0.6 0.8 1

O
m

is
si

ve
 fa

ilu
re

 p
ro

ba
bi

lit
y

P
F

O
(t

)

cM

(b) Omissive failure probability PFO(t)

Fig. 7. Impact of detection coverage cM on both PFI(t) and PFO(t) for different values
of pI

decreases, because invalid replicas reactively recovered are no longer weakening
the system; PFO(t) increases, because replicas, while recovering, do not con-
tribute to system operation. The overall effect, shown in Fig. 8(a), is that, when
most of the intrusions behave as invalid (pI ≥ 0.4), system failure probability
PF(t) decreases as detection coverage cM increases. On the contrary, when most
of the intrusions behave as omissions (pI < 0.4), the impact of cM on PF(t) is
negligible. This stresses that, in order to improve the value of PF(t), it is use-
ful to trigger reactive recoveries and hence to set the value for cM as higher as
possible.

Figure 8(b) shows how system unavailability PU(0, t) changes over detection
coverage cM for different values of pI. The trend of PU(0, t) for varying cM

is similar to the trend of PFO(t) shown in Fig. 7(b). PU(0, t) increases as cM

increases from 0 to 1 for all values of pI. PU(0,t) takes the largest values for
pI = 0 and the lowest values for pI = 1. If pI = 0, PU(0, t) is almost not

2.0E-02

1.8E-02

1.6E-02

1.4E-02

1.2E-02

1.0E-02

8.0E-03
 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 fa
ilu

re
 p

ro
ba

bi
lit

y
P

F
(t

)

cM

pI=1
pI=0.8
pI=0.6
pI=0.5
pI=0.4
pI=0.2

pI=0

(a) System failure probability PF(t)

3.0e-04

2.0e-04

1.0e-04

3.0e-05
 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 u
na

va
ila

bi
lit

y
P

U
(0

,t)

cM

(b) System unavailability PU(0, t)

Fig. 8. Impact of detection coverage cM on system failure probability PF(t) and system
unavailability PU(0, t) for different values of pI

94 A. Daidone et al.

influenced by changing the detection coverage, while increasing pI the influence
of cM becomes more evident (almost an order of magnitude for pI = 1).

It turns out that PU(0, t) is negatively affected by a larger value for cM,
because the larger is the detection coverage, the more reactive recoveries are
triggered; the above trend is more evident as the probability pI increases, because
recoveries triggered by invalid behavior involve all replicas, not only the leader.

The results of this study show that increasing the detection coverage of intru-
sions has conflicting effects on system failure probability PF(t) and system un-
availability PU(0, t): as cM increases, PF(t) improves and PU(0, t) gets worsen;
the impact of this effect depends on the behavior of the (invalid or omissive)
intrusions, i.e. on the value of the parameter pI. Since a low PF(t) and a low
PU(0, t) are conflicting goals, the proper tuning of cM entails defining their rel-
ative importance. Thus, if PF(t) has to be optimized, high values of cM are
required, while low values of cM optimize PU(0, t). More generally, parameters
for the CIS system can be tuned once the system designer has given constraints
on the desired behavior of the system, e.g., PF(t) must be optimized while
PU(0, t) must take values lower than a given threshold.

The last study performed aimed to evaluate the impact of the number of repli-
cas on both system failure probability PF(t) and system unavailability PU(0, t).
When dealing with the number of replicas in the system, three parameters are
relevant: n, the overall number of replicas in the system, f, the maximum num-
ber of corrupted replicas tolerated by the system and k, the maximum num-
ber of replicas simultaneously recovering without endangering the availability
of the system, with n = 2f + 1 + k. The following system configurations were
evaluated:

1. n = 4, f = 1, k = 1
2. n = 5, f = 1, k = 2
3. n = 6, f = 1, k = 3
4. n = 6, f = 2, k = 1

Figures 9(a) and 9(b) show system failure probability PF(t) (decomposed in
PFI(t) and PFO(t)) and system unavailability PU(0, t) for the system configu-
rations described above. PFI(t) decreases as n (and k) increases. The trend of
PF(t) is mainly due to the trend of PFO(t). For the same value of n = 6, the
higher is f and the lower is PF(t) (both PFI(t) and PFO(t)), although k is lower.
PFI(t) is lower because of the intrusion tolerance scheme is more robust (f = 2);
PFO(t) is lower because the frequency of proactive recoveries is lower (k = 1).
The trend of PU(0, t) is the same of PF(t).

We suppose that the increment of the value of PFO(t) varying from configu-
ration 2 to 3 is due to the combined effect of a larger number of failures (n varies
from 5 to 6, but f = 1) and a higher frequency for proactive recoveries (k varies
from 2 to 3). It turns out that for the setting used (as shown in Table 1) the
lower values for PF(t) and PU(0, t) are obtained for the system configuration 4,
i.e., for higher values of f, independently of k.

Analysis of a Redundant Architecture for Critical Infrastructure Protection 95

1.2E-02

1.0E-02

8.0E-03

6.0E-03

4.0E-03

2.0E-03

5.0E-05
n=6
f=2
k=1

n=6
f=1
k=3

n=5
f=1
k=2

n=4
f=1
k=1

S
ys

te
m

 fa
ilu

re
 p

ro
ba

bi
lit

y
P

F
(t

)

System Configuration

PFO(t)
PFI(t)

(a) System failure probability PF(t)

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

2.0E-04

2.2E-04

n=6
f=2
k=1

n=6
f=1
k=3

n=5
f=1
k=2

n=4
f=1
k=1

S
ys

te
m

 u
na

va
ila

bi
lit

y
P

U
(0

,t)

System Configuration

(b) System unavailability PU(0, t)

Fig. 9. System failure probability PF(t) and system unavailability PU(0, t) for different
system configurations at mission time t = 2628 sec

4.4 Discussion about the PRRW Strategy

The CIS intrusion tolerance is currently obtained through a recovery strategy
(PRRW) based on a combination of proactive and reactive recoveries. The use
of both proactive and reactive recoveries shows to be effective since the two
techniques possess complementary characteristics.

Proactive recoveries periodically rejuvenate all the replicas, without any need
of fault detection mechanisms (also latent/hidden faults are treated). The period
of the proactive recoveries defines a bounded temporal window (between two
recoveries of the same replica) which represents a time limit for an attack attempt
to be successful. In fact, this is the time an attacker has for conquering a majority
of the replicas and thus for taking the control of the entire CIS. On the other
side, being an “unconditional” recovery, the proactive recovery is applied also to
correct replicas which become unavailable for the time necessary to perform the
recovery. Moreover, if only proactive recovery is used in a system, a replica hit
by a fault will be unavailable until the end of its next proactive recovery.

On the contrary, a reactive recovery is triggered only when a fault of a replica
is detected, so its effectiveness depends on the assumed fault model and on the
coverage of the detection mechanism used (latent/hidden faults are not treated).
As shown in Fig. 8(a), reactive recoveries of the faulty replicas contribute to de-
crease system failure probability; they are in fact performed as soon as possible,
however within the duration of 	f/k
TD, without waiting the next periodic re-
covery on the same replica. In this way, the recovery and the rejuvenation of a
faulty replica is anticipated with respect to its next proactive recovery, so the
(faulty) replica becomes active and correct earlier.

This behavior apparently suggests that the more reactive recoveries are per-
formed, the worse is system availability, as it appears evidently in Fig. 8(b) for
pI = 1. In this case, all the intrusions manifest as invalid behavior and all the
detected intrusions trigger a reactive recovery. In reality, what happens is that

96 A. Daidone et al.

the system ability to survive gets increased, whereas for low values of the coverage
(thus less reactive recoveries) the system fails as soon as replicas get affected by
faults.

The PRRW strategy, as our analysis reveals, makes a significant difference
in the way omission and invalid behaviors are treated. This is made evident
by observing all the curves at varying values for pI. Actually, invalid behaviors
are detected with coverage cM and trigger a reactive recovery, whereas omissive
behaviors are essentially not detected: only the omission of the leader is detected
and triggers some action, the omissions of the followers are removed only with
the proactive recovery. Increasing the capability to detect (and quickly react) to
omissive behaviors is a way to improve the overall fault tolerance strategy.

5 Direction for Improvements/Refinements

This Section identifies the directions for refining and improving the recovery
strategy. An extended fault model is introduced and some modifications to the
recovery schemes are presented.

5.1 New Extended Fault Model

The reactive recovery of the PRRW strategy is based on distinguishing and
detecting a limited set of faults in replicas, amongst those possible to occur.
Obviously, the remainder faults are treated, thanks to the strategy of proac-
tive recoveries. We analyze this situation, under the light of the evaluation just
performed, and enumerate a possible set of additional faults to be taken into
account, in the sense of improving both system dependability and availability.

In the PRRW strategy, the correct replicas detect the following faults:

– Leader Benign Fault (LBF): The faulty leader omits to send a signed message
to the LAN. A correct replica will suspect the leader to be “silent” after O t

consecutive leader omissions on the same signed message.
– Replica Malicious Fault (RMF): The faulty replica (being it either the leader

or a follower) sends an unsigned message to the LAN; a correct replica will
immediately detect the faulty replica to be a “malicious sender”.

It comes out that the PRRW schema takes into account both omissive and
malicious faults in the leader replica, but only malicious faults in the follower
replicas. The idea is that if a follower is going to have an omissive behavior,
the problem will be eventually treated either by the proactive recovery or by
the election of the replica as a leader (the replica will be extensively monitored
in this case). In both cases, the negative effects of the faults will be eventually
eliminated.

An additional set of faults might be considered by the current reactive recovery
mechanisms, since detecting such faults and treating them using reactive recov-
eries would improve both dependability and availability of the system. These
faults are listed below:

Analysis of a Redundant Architecture for Critical Infrastructure Protection 97

– Malicious Approval (MA): A faulty replica approves an illegal message; the
faulty replica is intruded, because all correct replicas verify the same security
policy.

– Omitted Approval (OA): A faulty replica omits to approve a legal message;
the omission could be caused by communication problems (the replica never
received the legal message), but it could be also the effect of an intrusion.

– Malicious Suspect (MS): A faulty replica signals the wormhole an accusation
about a correct replica; the faulty replica is intruded, because a correct
replica does not show any incorrect behavior.

– Omitted Suspect (OS): A faulty replica does not signal the wormhole any
accusation about a faulty replica; the omission could be caused by commu-
nication problems (the replica never received the legal message), but it could
also be the effect of an intrusion.

In the MA and MS cases, the faulty replica is intruded, so it needs to be recov-
ered as soon as possible; if the faulty replica is not detected as such, it is still
considered correct. In the OA and OS cases, faults could be caused either by
communication omissions (no recovery is useful to solve the problem) or as an
effect of intrusions manifesting as omissive behavior (a recovery could solve the
problem). Devising the adequate mechanisms for faithful detection is a subject
of further study, but we underline possible avenues in the next section.

5.2 Architectural Modifications for the Detection of the Extended
Set of Faults

This Section describes the architecture modifications necessary to detect the
faults described in Sect. 5.1 and trigger the reactive recoveries. In order to per-
form the detection of the above faults it is necessary to allow each payload replica
to be informed about all the approval results and manifested suspects taken by
all the other payload replicas.

A shared virtual memory (SVM) mechanism [15,16] can be implemented as a
reliable repository where each replica posts all its approval results and suspects;
a majority of correct replicas is thus able to identify which replicas took the
wrong approval decisions (if any) or manifested the wrong suspect (if any).

Approval results are stored for each incoming message as a data structure
containing i) an identification for the incoming message m, ii) the approval de-
cisions collected from all the replicas about m, iii) the final vote given by the
wormhole about m. Suspects are stored as a data structure containing the sus-
pecter(s), the suspected and the kind of suspect. Information is stored in the
shared virtual memory, using it as a circular buffer in order to make room for
newer information; therefore the SVM is used as a queue of dimension q. If the
information to be broadcasted should be too heavy to be managed through the
wormhole, some form of “compression” can be found.

Each message is identified using its MAC. Each approval decision is stored
in an array of n elements, where the i-th element represents approval result of
replica i about message m:

98 A. Daidone et al.

– “ACCEPT”: replica i approves m;
– “REJECT”: replica i does not approve m;
– “null”: no approval information still received from replica i about m;
– “recovering”: replica i is currently recovering.

The final vote can be one of the following: “LEGAL”, “ILLEGAL” and “VOT-
ING”.

The follower payload behavior is monitored as follows. When message m comes
from the WAN, each replica decides whether approving it or not, posting the
final decision in the SVM. Not all the replicas will receive m in the same instant,
and each replica will need some time in order to take the approval decision and
post it in the repository, but a certain number of approval results about m will be
available in the SVM at worst within T vote time after the first post. Replicas that
did not take any approval result till that moment and that were not recovering
(those corresponding to the “null” array elements) will be suspected of omission
(they could not have received m because of communication faults or they could
have omit maliciously). Given the final vote about m, all the correct replicas (i.e.
all the replicas which approval result is in agreement with the final vote) will be
able to identify all the faulty ones (i.e. all the replicas which approval result is in
disagreement with the final vote) and suspect them as malicious faulty replicas.

6 Concluding Remarks

This chapter analyzed the basic components of the CIS (CRUTIAL Informa-
tion Switch) architecture proposed in the framework of the European Project
CRUTIAL, where an infrastructure architecture seen as a WAN of LANs has
been proposed. LANs confine existing sub-systems, protected by special inter-
connection and filtering devices (CIS); a set of CIS can collectively ensure that
the computers controlling the physical process correctly exchange information
despite accidents and malicious attacks.

We identified two dependability and availability measures of interest. We con-
structed a model of the the CIS recovery scheme, called PRRW, and we per-
formed a preliminary analysis of the quantitative behavior of the PRRW. We
analyzed and discussed the impact of some relevant parameters as the detection
coverage, the intrusions and the number of CIS replicas, on the measures of in-
terest, aiming to evaluate how effective is the trade-off between proactive and
reactive recoveries. In particular, we have shown that increasing the detection
coverage of intrusions has conflicting effects on both dependability and avail-
ability measures, and that these effects depend also on the behavior of invalid
or omissive intrusions. The directions for refining and improving the recovery
strategy were proposed.

Further studies are envisioned mainly in the following directions. We will
deeply analyze the impact on the measures of interest of some PRRW parameters
not yet investigated, like, for example, the false positive in intrusion detection,
the threshold of duration of system omission before considering the system failed.
We will deeply analyze the impact of the number of replicas (parameters n, f

Analysis of a Redundant Architecture for Critical Infrastructure Protection 99

and k) and the duration of the recovery period (i.e. the frequency of proactive
recoveries). We will analyze alternative recovery policies, for example a recovery
strategy where proactive recoveries are anticipated to the first available slot
(slots where reactive recoveries are not requested).

Acknowledgments

This work has been partially supported by the European Community through
the IST Projects CRUTIAL (Contract n. 027513).

References

1. Madani, V., Novosel, D.: Getting a grip on the grid. Spectrum, IEEE 42, 42–47
(2005)

2. Dawson, R., Boyd, C., Dawson, E., González Nieto, J.: SKMA: a key manage-
ment architecture for SCADA systems. In: ACSW Frontiers 2006: Proceedings of
the 2006 Australasian workshops on Grid computing and e-research, pp. 183–192.
Australian Computer Society, Inc., Darlinghurst (2006)

3. Wilson, C.: Terrorist capabilities for cyber-attack. In: Dunn,, Mauer, V. (eds.) Int.
CIIP Handbook, CSS, ETH Zurich, vol. II, pp. 69–88 (2006)

4. Gordon, L., Loeb, M., Lucyshyn, W., Richardson, R.: 2006 CSI/FBI computer
crime and security survey (2006)

5. Veŕıssimo, P., Neves, N., Correia, M.: CRUTIAL: The blueprint of a reference
critical information infrastructure architecture. In: 1st International Workshop on
Critical Information Infrastructures @ ISC 2006 (2006)

6. Sousa, P., Neves, N., Lopes, A., Veŕıssimo, P.: On the resilience of intrusion-tolerant
distributed systems. DI/FCUL TR 6–14, Department of Informatics, University of
Lisbon (2006)

7. Sousa, P., Bessani, A., Correia, M., Neves, N., Veŕıssimo, P.: Resilient intrusion
tolerance through proactive and reactive recovery. In: 13th IEEE Pacific Rim De-
pendable Computing conference (2007)

8. Veŕıssimo, P.: Travelling through wormholes: a new look at distributed systems
models. SIGACT News 37, 66–81 (2006)

9. El Kalam, A.A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access control. In: 4th
IEEE Int. Workshop on Policies for Distributed Systems and Networks (2003)

10. Obelheiro, R., Bessani, A., Lung, L., Correia, M.: How practical are intrusion-
tolerant distributed systems? DI/FCUL TR 06–15, Department of Informatics,
University of Lisbon (2006)

11. Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and
evaluate the dependability of phased missions. IEEE Transactions on Comput-
ers 50, 1337–1351 (2001)

12. Bondavalli, A., Mura, I., Chiaradonna, S., Filippini, R., Poli, S., Sandrini, F.:
DEEM: a tool for the dependability modeling and evaluation of multiple phased
systems. In: DSN-2000 IEEE Int. Conference on Dependable Systems and Networks
(FTCS-30 and DCCA-8), pp. 231–236 (2000)

13. Moretto, M.: Progettazione, realizzazione ed utilizzo di un generatore di simulatori
per sistemi a fasi multiple. Master’s thesis, Università degli Studi di Pisa (2004)

100 A. Daidone et al.

14. Sanders, W., Meyer, J.: A unified approach for specifying measures of performance,
dependability and performability. In: Avizienis, A., Laprie, J. (eds.) Dependable
Computing for Critical Applications. Dependable Computing and Fault-Tolerant
Systems, vol. 4, pp. 215–237. Springer, Heidelberg (1991)

15. Nitzberg, B., Lo, V.: Distributed shared memory: a survey of issues and algorithms.
Computer 24, 52–60 (1991)

16. Morin, C., Puaut, I.: A survey of recoverable distributed shared virtual memory
systems. IEEE Transactions on Parallel and Distributed Systems 8, 959–969 (1997)

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 101–123, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Robust Semantic Overlay Network
for Microgrid Control Applications

Geert Deconinck, Koen Vanthournout, Hakem Beitollahi, Zhifeng Qui, Rui Duan,
Bart Nauwelaers, Emmanuel Van Lil, Johan Driesen, and Ronnie Belmans

K.U. Leuven – ESAT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
geert.deconinck@esat.kuleuven.be

Abstract. Control systems for electrical microgrids rely ever more on heteroge-
neous off-the-shelf technology for hardware, software and networking among
the intelligent electronic devices that are associated with dispersed energy re-
sources. For distributed microgrid applications in a dynamic environment,
overlay networks provide an opportunity for a flexible and robust logical com-
munication infrastructure among these intelligent electronic devices. Agora is a
semantic overlay network that allows to efficiently route queries -related to mi-
crogrid control- in the overlay network, based on an XML description of the
static and dynamic characteristics of the intelligent electronic devices. It is ro-
bust against changes in the microgrid and ICT infrastructure, and provides
graceful degradation in case of unrecovered failures.

1 Motivating a Flexible, Dependable Information Infrastructure

More and more small-scale dispersed energy resources (DERs) (e.g. wind turbines,
photovoltaic panels, coupled heat-power units) are being deployed in the electrical
distribution grid. This puts extra stress on the power grid in an era where electricity is
one of the most important commodities for economical, industrial and everyday ac-
tivities. Main factors causing this shift from centralised electricity production to a
decentralised power generation with DERs are the availability of small-scale units,
which offer an increased flexibility in the liberalized energy market, and the growing
trend towards sustainable development which favours energy efficient and low CO2-
emitting plants [1, 2]. Regarding power system reliability, integrating DER units can
bring benefits, as well as deteriorated grid performance. Therefore new control strate-
gies are being proposed to maintain the desired degree of dependability for the elec-
tricity supply [3-5]. As such, many of these distributed control algorithms rely on
distributed computer and communication systems, running on several computing
nodes with an off-the-shelf ICT infrastructure for communication. Many DERs and
loads become intelligent electronic devices (IEDs) that are interconnected over this
information infrastructure, as indicated in Fig. 1. This trend can also be found in many
other critical infrastructures (gas, water, transport, telecommunication, etc.).

Over this information infrastructure, new services can be delivered by exploiting
both the power and ICT infrastructure simultaneously. For instance, external informa-
tion such as the instantaneous electricity price from real-time market places, can be

102 G. Deconinck et al.

electricity
grid

IED+DER

information
infrastructure

Fig. 1. Microgrids, consisting of DER interconnected via the electricity grid (thick lines) and
corresponding IEDs interconnected via the information infrastructure (dotted lines)

incorporated into the control strategies in order to optimise economic benefits; intelli-
gent loads can be switched on or off in order to implement demand side management
and avoid costly electricity peak costs, etc. [1, 6].

Dispersed electricity generation is proliferating rapidly; this requires an equally
proliferating -dependable- information infrastructure to support it. If sufficient gen-
eration (and storage) facilities are available in a part of the electrical grid, such part
can become an energy island (or microgrid) which functions independently from the
major grid (e.g. during a blackout or for economic reasons). In such islanding mode,
the control algorithms are different from non-islanding mode, which requires several
fundamental issues regarding system protection and control that need to be solved by
power engineers [5]. Many of these proposed solutions require an appropriate com-
munication and control infrastructure that continues to function in both modes (as an
islanded microgrid or connected to the main grid) [7]. It is indispensable that this
information infrastructure is dependable. Such information infrastructure is the scope
of this paper.

Control algorithms in microgrids can be separated according to two axes: whether
or not communication is involved (local vs. distributed) and whether or not real-time
requirements need to be fulfilled. Table 1 provides examples of representative micro-
grid control applications algorithms. The distributed algorithms can be implemented
in a centralised (hierarchical) or decentralised way.

However, the information infrastructure for microgrid control is not there yet.
Generally speaking, communication and control systems that underpin electric power
systems did not change significantly over the last 40 years; in spite of SCADA sys-
tems that became much more powerful and computation power that has increased

 A Robust Semantic Overlay Network for Microgrid Control Applications 103

Table 1. Microgrid control applications

 Non real-time Real-time
Local Data aggregation, logging Primary control (droop control)
Distributed Smart metering, system moni-

toring, demand side manage-
ment, peak shaving, secondary
control, tertiary control, power
quality analysis,
market & trading

Load shedding (if generated
power < demand), power quality
mitigation, resynchronisation
after islanding

significantly, control remains largely centralised and several control loops contain
human interference communicating via telephone, fax and email [8, 9]. Even more,
humans can only process a limited amount of information, as a result of which more
than 99 % of the captured data is not used directly, but only in an aggregated way.

For cost reasons, this information infrastructure follows the trend of deploying het-
erogeneous off-the-shelf information and communication technology for hardware,
software and networking [10]. This also allows new ICT paradigms to be integrated,
such as peer-to-peer networking, resource discovery, distributed control, etc.

In general, off-the-shelf ICT components provide application flexibility, but imply
vulnerabilities as the electrical energy infrastructure depends on the correct function-
ing of the information infrastructure in spite of accidental and malicious faults. Ex-
amples of accidental faults include the random physical faults that affect computation
or communication components; typical examples of malicious faults to the ICT infra-
structure of power systems include [11]:

• Denial-of-service (DoS) attacks on control systems via their communication back-
bone.

• Intrusions into communication flow among IEDs and subsequent execution of
faked commands (spoofing, man-in-the-middle attacks).

• Exploiting vulnerabilities in standardised application layer protocols.
• Accidental or malicious infections by worms or viruses in the IED network caused

by maintenance or not-allowed activities of control personnel.

Hence – in order to provide robust behaviour for energy applications – such infor-
mation infrastructure needs to be fault-tolerant to both accidental and malicious faults,
as well as be able to deal with a dynamic environment (such adapting to unforeseen
changes in generation or load consumption, as well as coping with the addition or
removal of DERs); middleware can provide the required graceful degradation in case
of unrecovered failures, rather than resulting in a complete breakdown [12-15].

This paper shows a design of a dependable information infrastructure in the context
of decentralised microgrid control applications where IEDs interact over a peer-to-
peer overlay network, called Agora. Section 2 explains the approach to using overlay
networks for microgrid control applications. Section 3 evaluates the resilience of
overlay networks to accidental and malicious faults via simulation, while Section 4
provides experimental results of a microgrid control implementation.

104 G. Deconinck et al.

2 Overlay Networks for Microgrid Control

Many distributed microgrid control applications can be considered as unbounded
systems for which it is not possible to establish a global view at run-time. This is
especially the case in a DER-context where not all energy producers (wind, photo-
voltaic panels) or loads are available all the time; neither is it known beforehand
which electrical loads, storages and generators will work together in a particular
microgrid control application. In this context, it is relevant that the information infra-
structure autonomously determines the neighbours of an IED, and establishes com-
munication links among them, i.e. it has to create an overlay network which is a set of
logical set interconnections on top of the physical communication links. In such over-
lay network, interacting IEDs are located logically close to each other (e.g. DERs and
loads that need to be balanced shall be connected over a short communication dis-
tance, even if they are physically located away from each other).

The microgrid control applications on top of the overlay network rely not only on a
static configuration of IEDs, but this configuration will be modified during the appli-
cation’s execution. For instance, due to switching of generators and loads in a dis-
persed generation application, the IEDs that need to communicate vary over time, and
hence, the logical communication topology (and overlay network) has to follow ac-
cordingly.

Besides, many IEDs in the microgrid control network change their parameters dy-
namically, which means that the overlay network has to be updated accordingly (e.g.
the amount of power produced by a photovoltaic system or windmill).

Such overlay networks that interconnect dynamically changing IEDs are different
from classical overlay networks that are used e.g. to download files (audio or video)
which are static resources that can be replicated and do not change over time [16].

Because of these dynamic changes, resource discovery is important, as to be able
to quickly find appropriate IEDs for the microgrid application at hand among the
multitude of available IEDs.

Several architectural configurations are possible for this resource discovery, such
as a centralized or hierarchical indexing system, or a decentralized system in the form
of a peer-to-peer network. For a distributed microgrid control application, a peer-to-
peer overlay approach is preferred, due to its inherent fault tolerance (no single-point-
of-failure – see below), scalability, and automatic adaptation to changes.

Agora is such a peer-to-peer network, specifically designed for microgrid control
applications [17, 18]. The dynamically varying (and static) characteristics of the IEDs
are semantically represented in XML, so to enable to build the most suited overlay
network for a particular microgrid control applications, i.e. a network that logically
interconnects interacting IEDs. As such, Agora is a semantic overlay network that
allows IEDs to query specific resources of other IEDs based on their (dynamically
varying) attributes.

2.1 Semantic Distance

Key to the construction of semantic overlays is the ability to quantitatively describe se-
mantic similarities between IEDs, which represents the way probability that they will

 A Robust Semantic Overlay Network for Microgrid Control Applications 105

interact for a giving microgrid control application. As such, a semantic distance metric
yields a number proportional to the difference between the functionality of two IEDs.

The functionality of an IED, which will become a node of the overlay network, is
defined by the combination of the node’s resources, its mission targets and the exter-
nal resources it requires to fulfil those targets. By describing this functionality via
attributes, querying these attributes should be straightforward. The most widely used
attribute-based language is the Extensible Mark-up Language (XML), which hence is
a logical choice for constructing functionality descriptions, and to calculate semantic
distances to build the overlay network.

<?xml version="1.0"?>
<entityDescription>
 <description>
 <IntelligentDevice>
 <static>
 <deviceOwner>ELECTA</deviceOwner>
 <deviceSegment>Arenberg-ESAT</deviceSegment>
 ...
 <intelligentDeviceType>
 <electricalDeviceType>
 <generator> <windTurbine/> </generator>
 </electricalDeviceType>
 </intelligentDeviceType>
 </static>
 <dynamic>
 <workingStatus>1</workingStatus>
 <IPAddress>10.33.135.149</IPAddress>
 <TCPport>20001</TCPport>
 </dynamic>
 <ElectricalDevice>
 <static>
 <maximumPowerInW>500</maximumPowerInW>
 <minimumPowerInW>0</minimumPowerInW>
 </static>
 <dynamic>
 <activePowerInW>164</activePowerInW>
 <reactivePowerInW>65</reactivePowerInW>
 <frequencyInHz>50</frequencyInHz>
 <lineVoltageInV>300</lineVoltageInV>
 <gossipingPeriodInms>3000</gossipingPeriodInms>
 </dynamic>
 </ElectricalDevice>
 </IntelligentDevice>
 </description>
 <interests/>
</entityDescription>

Fig. 2. XML fragment of the IED of a wind turbine, for use in a microgrid control application

106 G. Deconinck et al.

A node functionality description is a XML file composed of two parts: the descrip-
tion of the node itself and a list of expressions of interest, which describes the re-
sources and services needed by that IED during the operation of the microgrid control
application. These expressions of interest are XML queries which syntactically take
the same form as the description of the target device itself, expanded with search
masks and tags. Furthermore, all data is marked as either static or dynamic, with the
latter comprising all runtime parameters.

An example XML description file can be found in Fig. 2 for the IED of a wind tur-
bine. The static parameters include location (segment) of the wind turbine and its
power, frequency and voltage ratings; the dynamic parameters include its IP address
as well as its actual power generation, voltage levels and actual frequency.

Having an XML description for each IED in the microgrid, it is possible to deter-
mine a suited overlay network in which interacting IEDs are logically close to each
other – based on the semantic differences between two IEDs.

The generic form of the formula to calculate the semantic distance δ(u, v) between
node u with description file XMLu and node v with description file XMLv, both con-

form the same XML schema, is: 1−size(Ncommon) / [size(Ncommon)+size(Nnc,xmlu)+

size(Nnc,xmlv)] with Ncommon the set of common XML nodes, where an XML node is
defined as common if and only if the node and all its ancestors exist in both files.

Text and values can only be contained by leaf nodes and count as a separate node
for the purpose of the distance metric. Attributes are ignored. *, which yields an
automatic match, is allowed for text fields in expressions of interest that are used to
set up the overlay network for a particular microgrid control application. Nnc,xmli is the
set of non-matching nodes in XML file i.

This semantic distance metric is the novelty, but also the weakness of the proposed
semantic overlay system. It allows the construction of a semantic overlay, but ill-
constructed XML deteriorates that very construction. Well-designed schemas respect
the rule that the depth of the data in the XML is inversely proportional to the impor-
tance of that data.

2.2 Node Links

To enter an Agora overlay network, a node only requires the address of one active
node in that network. Using that entry point, this node will establish four types of
node links.

1) Companion links. Every Agora node forms a pre-defined number of companion
links, i.e., every node u, member of the Agora overlay network composed of the set of
nodes V (|V| = n) has a set of companions Cu which is of fixed size T|C| (provided n is at
least T|C| + 1 and u has converged – see below). Companions are those nodes are seman-
tically closest to u: δ δ∀ ∈ ∀ ∈ ≠ ∀ ∈ ≠ ≤u u c cu V, v C , v u, w V\C ,w u : (u, v) (u,w) , with

δc the companion distance, i.e., the semantic distance calculated after all expression of
interest fields are dropped, together with the dynamic data. The latter is to ensure a
stable network structure, as taking into account dynamic data, i.e., run-time variable
data, would result in continuous overlay structure changes. The formation of compan-
ion links ensures that group-locality emerges. In the microgrid control application,
these companion links will cluster IEDs of similar DERs.

 A Robust Semantic Overlay Network for Microgrid Control Applications 107

2) Pupil links. The second set of neighbours is the pupil set P, which composes of
nodes semantically closest to the expressions of interest in the XML functionality de-
scription. δ δ∀ ∈ ∀ ∈ ≠ ∀ ∈ ≠ ≤u u p pu V, v P , v u, w V\P ,w u : (u, v) (u,w) with δp(u,v)

the pupil distance, i.e., the smallest distance obtained by applying the semantic dis-
tance formula on the sets of XML files acquired by taking the description field of node
v and comparing it to the different expression of interest fields of node u. Additionally,
as for δc, all dynamic data is excluded. The target size of P (T|P|) is predefined sepa-
rately for each node, as it relates strongly to the microgrid control application running
on the node. Pupil links realise the support of time-locality, as they pre-link IEDs to the
resources they require. In a particular microgrid control application, these pupil links
will connect IEDs of generators to these of loads and storage elements in order to e.g.
provide balancing between electricity generation and consumption.

3) Far links. If nodes only form companion and pupil links, the resulting clustering by
functionality also brings along a high probability of network partitioning. To ensure a
connected graph, far links are introduced (set F). All nodes within an Agora semantic
overlay network have a probability Pfl of constructing a far link (T|F| = 0 or 1) in addition
to the above links: δ δ∀ ∈ ∀ ∈ ≠ ∀ ∈ ≠ ≥u u fl flu V, v F , v u, w V\F ,w u : (u, v) (u,w) , with

δfl(u,v) the far link distance, i.e., the average distance obtained by applying the seman-
tic distance formula on the sets of XML files acquired by taking the description field
of node v and comparing it to the description field and the different expression of
interest fields of node u. As for δc and δp, dynamic data is excluded.

Far links are the equivalent of the rewired links in the small-world construction
method [19], which takes a regular graph and transforms this to a small-world graph
by randomly reconnecting a small percentage of links. These links provide shortcuts
in the network which significantly reduce its diameter, with only a small distortion of
the regular structure. Consequently, the combination of companion/pupil links (func-
tional clustering) with far links (low diameter) result in a small-world topology. Ex-
periments show that Pfl=0.5 is sufficient to prevent partitioning, while low enough to
avoid strong distortion of the clustered topology. For the microgrid control applica-
tions, these far links result in efficient routing through the overlay network.

4) Orphans & orphan links. Orphan nodes are nodes with indegree zero, i.e., nodes
which can reach other nodes, yet cannot be reached themselves, as they have no in-
coming links. These can emerge, e.g., if a node refers to functionally similar nodes,
yet is too different of those companions for them to refer to the orphan and no far
links, nor pupil links lead to it. Solution is to have each node refer to the T|O| last
nodes that announced a link (see below) and to which no link is active: the orphan
links (set O, which operates as a first-in-first-out buffer). Experiments show that,
depending on the used XML schema, T|O| equal to one or two eliminates the orphan
phenomenon. For the microgrid control applications, these orphan links results that
IEDs are reachable for bidirectional communication.

2.3 Convergence

When a newly entered node has established a link to its initial entry point node, it
starts to converge, i.e., the node progressively searches for the semantically closest
nodes using δc, δp and δfl, by periodically transmitting a request message for each of

108 G. Deconinck et al.

these metrics. A request message is composed of the requesting node v’s XML func-
tionality description, a request threshold Θ, a hoplimit Λ, the node’s current associ-
ated neighbour set C, P or F and a list of visited nodes V. After transmitting the re-
quest messages, the converging node waits for a fixed period of time (Tcycle) in which
it listens for and evaluates replies with the addresses of potentially better neighbours.
If that candidate neighbour is semantically closer than one of the current members of
the associated set, a new link is established.

In case of a companion request message δΘ ∀ ∈ v c=max(i C : (v,i)) , unless if

|C|<T|C|, then Θ=δmax. For pupil requests δΘ ∀ ∈ v p=max(i P : (v,i)) (Θ=δmax if

|P|<T|P|) and for far link requests δΘ ∀ ∈ v fl=min(i F : (v,i)) (Θ=δfl,min if |F|<T|F|).

Reason for Θ not being 1 (for companion and pupil requests) or 0 (for far link re-
quests) if the respective set target sizes are not yet reached, is to limit the initial burst
of traffic that is the result of a converging node with (few) unfit neighbours making
requests with high, respective low thresholds, which results in a high number of nodes
qualifying for neighbourhood membership. Instead δmax or δfl,min are employed, which
are system parameters that have to be determined in function of the used XML de-
scription set and the microgrid control applications.

After expiration of the waiting interval Tcycle, the node checks if convergence is
reached, i.e. if the neighbour sets are optimal, in which case it stops. Convergence is
detected if no node replied to the latest request messages. If no convergence is de-
tected, another convergence cycle is started and new request messages are sent into
the overlay network. This procedure is visualised in Fig. 3, which shows a node enter-
ing an Agora overlay network and its subsequent hopping through the overlay to its
optimal position. Periodically, all nodes re-converge (period Tconv), as to allow adapta-
tion to changing network compositions. Fig. 4 and Fig. 5 contain, respectively, the
convergence and reply processing algorithms.
Every request message is sent with a prefixed hoplimit Λ. Each time a node u receives

a request M and its hoplimit ΛM (ΛM ≤ Λ) is >0, then it will forward the message

using the request forward strategy (see below), after decrementing ΛM and complet-

ing the visited node set. Additionally, upon receipt of a request, each node checks if
any members of its neighbour set N are semantically closer to the requester than the
attached request threshold, using the semantic distance metric associated with the
request. If so, a reply is sent to that requester with the address of the candidate
neighbour and the metric result.

All messages contain a unique id, which is composed of the requester’s network
address, combined with a message sequence number, which is calculated using the
TCP packet sequence number mechanism. All nodes have a first-in-first-out buffer
containing the last processed messages, which allows detection and blocking of dupli-
cate messages, e.g., to limit the overhead caused if flooding is used as forward strat-
egy. Fig. 6 provides the request processing algorithm.

Several request forwarding algorithms can be used, e.g., traditional blind search
strategies such as flooding or random forwarding. However, it is better to use seman-
tic distances to realise a heuristic search as it can be used to estimate the distance to

 A Robust Semantic Overlay Network for Microgrid Control Applications 109

Fig. 3. Graphs of a 15-node Agora network while a new node (diamond shaped) enters the
overlay network (upper left). It forms a link to its entry point and starts converging. The three
black nodes are the nodes semantically closest to the new node (and should eventually become
companion nodes). The upper right and lower left figures show how the node progressively
’walks’ through the network towards its companions, which are reached in the lower right
figure, after which the new node detects convergence and stops sending request messages. Also
the companions (and other nodes in the network) in turn adapt to the newcomer and, if suited,
form links to it.

the resource that is searched for. More specifically, node u forwards requests to the
neighbour i, unvisited by the request, semantically closest to the requester v (using the
semantic distance metric associated with the request) and not yet member of Nv. Or:

i: i∈Nu\VM \RM , ∀j∈Nu\VM \RM ,j≠ i: δ(v,i)<δ(v, j)1. This results in heuristic

depth-first search with cycle-checking and without backtracking [20].

1 In case of a far link request, the expression δfl(v,i)>δfl(v,j) is used.

110 G. Deconinck et al.

Fig. 4. Convergence algorithm for node v. M symbolises a message and Nv=Cv∪Pv∪Fv∪Ov is
the neighbour set of node v.

Fig. 5. Algorithm used to process reply message M , containing candidate node w. δM is the

semantic distance metric associated with M .

 A Robust Semantic Overlay Network for Microgrid Control Applications 111

Fig. 6. The algorithm to process a request from node u by node v

The successive convergences of all nodes result in a self-organising system, in
which nodes continuously adapt to changes and, as a result of those local interactions,
the network as a whole converges to a state in which nodes are clustered by function-
ality via the companion links and linked to the clusters of their interest via the pupil
links, while the far links ensure small world properties. A converging self-organising
system always evolves towards an attractor. However, such an attractor can be a local
minimum. For a system to jump out of such a local minimum, enough energy or noise
must be added. In Agora, this energy is added by having requesters perform the first
hop randomly (see Fig. 4), which prevents requests of a converged node from con-
stantly following the same path. A second method is to increase the hoplimit, which
speeds convergence and allows nodes to sense beyond the borders of a local attractor,
at the cost of more network traffic.

2.4 Link Announcements and Dynamism

The formation of a link consists of the node locally storing a copy of its new
neighbour’s description (XML) file and announcing the new link to the new
neighbour. When a node receives such a link announcement, it evaluates if the origi-
nator qualifies for neighbourhood membership. Reason for this is twofold: First, it
speeds up adaptation of the overlay network to a changed situation (see, e.g., Fig. 3),
since otherwise a node will only adapt to a new situation during the convergence
cycles. Second, without announcements a new node becomes an orphan permanently
as it has no incoming links; indeed, a new node establishes only outgoing links and an
indegree of at least one is required for requests to be able to reach a node. If no re-
quests reach the node, no incoming links will be established. To limit the size of an

112 G. Deconinck et al.

announcement message from node u to node v, δc(v,u), δp(v,u) and δfl(v,u), calculated
using the locally stored XML description file of v at u, are attached, rather than the
entire XML description file of u. These metrics can also be buffered at u to reduce the
processing requirements.

Link announcements are periodically repeated (period Tann), as they also implement
the orphan prevention mechanisms and deal with dynamism. Attached to a link an-
nouncement is the checksum of the currently stored copy of the neighbour’s XML
description file. Upon receiving an announcement, nodes match this checksum to their
(up-to-date) XML file. If this match fails, the latest version is replied to the announc-
ing node. Note that this is a pull system and that hence a delay may grow between
description changes and description updates. However, the alternative to a pull sys-
tem, a push system, would require all nodes to know all nodes of which they are a
neighbour, ergo, a bidirectional graph, which is difficult and costly to maintain.

The periodic announcement algorithm can be found in Fig. 7, the algorithm exe-
cuted when a node receives a link announcement in Fig. 8.

Fig. 7. The link announcement algorithm executed by every node u∈V

Fig. 8. The algorithm a node u executes upon the receipt of an announcement message from
node v. The evaluatePeer(v) algorithm checks if the announcing node qualifies for companion,
pupil and/or far link membership.

 A Robust Semantic Overlay Network for Microgrid Control Applications 113

2.5 Semantic Routing Support

A converging node searching for semantically close nodes is a process highly similar
to semantic routing of queries for IEDs with which a microgrid control application
has to be jointly executed. Analogously to the convergence mechanisms, the group-
and time-locality based structure of a semantic overlay network allows the use of the
semantic distance as a heuristic to realise semantic routing more efficiently than with
e.g. flooding or random walkers. Fig. 9 illustrates the gain of using heuristic search in
Agora networks to realise semantic routing, compared to random forwarding. Note
that also random walkers gain from time-locality based structures, as the change for
early hits increases when routing to announced nodes.

2.6 Agora Summary

The overlay network Agora allows applications to query specific resources based on
attributes defining the resources; hence a semantic overlay network. The topology of
these semantic networks is based on XML descriptions of resources, where
neighbours of a single node are chosen based on a distance metric between its own
XML description and the other node’s XML description. This topology allows to
route attribute-queries based on these XML distances. As such, the logical topology
of the semantic overlay network clusters IEDs with similar functionality (electricity
meters, manageable loads, storage elements and generators, etc.), ensuring group
locality via companion links. It interconnects IEDs to cooperate in a control applica-
tion via the pupil links via the interest descriptions in the XML file. Although this
topology provides no deterministic query results, the overall efficiency is higher than
unstructured overlay networks. Its query efficiency is lower than for deterministic
overlay networks; but its added value is the broader range of supported applications,
thanks to the functionality based organization and the resulting support of attribute-
based semantic routing.

Such peer-to-peer network needs to periodically check for modifications: entities
or links may appear, disappear or re-appear due to functional behaviour (no wind),
due to electrical faults (short-circuits), or due to physical faults in the information
infrastructure (controller or network breakdown). Indeed as parameters and functional-
ity of entities change dynamically, so does the XML description describing these enti-
ties; hence, the overlay network needs to be adapted accordingly over time, to both
retain its logical topology and to recover from errors. This ensures the time locality.

These semantic overlay networks fill the gap among existing decentralized re-
source discovery algorithms typically used in peer-to-peer systems, that is, the lack to
search resources based on (a certain range of) values of several attributes [16].

Simulations show that a semantic overlay network such as Agora has a small-world
property, meaning the average number of hops to reach any node from any other node
is small (e.g. 4 to 5 hops), in spite of the size of the networks (some hundreds of
nodes) [18].

114 G. Deconinck et al.

Fig. 9. (top) The average number of hops required for semantic routing messages to locate a
matching node for Agora networks of increasing sizes, comparing random forwarding (“rand”)
to heuristic search (no label). Two XML description file sets are used: HA indicates use of a set
of XML description files for a microgrid control application based on home automation de-
vices, while EC displays the results for a set based on a combination of IEDs and regular file
sharing resources. Data points are averages for messages issued from and composed for each
node and consist for 50% of messages to devices in which an interest was announced. (bottom)
Average number of hops in identical circumstances, but for messages to announced nodes only.

 A Robust Semantic Overlay Network for Microgrid Control Applications 115

3 Microgrid Control on Top of Agora

The main functionality the Agora overlay network offers is automatic resource dis-
covery and the related semantic routing service with attribute-based addressing. As
such, a structure is created for data and information aggregation, and for distributed
cooperation and control among the IEDs. Many of the microgrid control applications
of Table 1 are based on some basic distributed control primitives, such as gossiping.

3.1 Gossiping for Overlay Communication

Gossiping is a scalable distributed primitive for data dissemination and aggregation,
based on the periodic exchange of status data by all devices with a randomly selected
neighbour in the peer-to-peer network [21]. A low characteristic path length of the
overlay network is required for efficient gossiping; this is obtained in Agora thanks to
the small-world property.

Within Agora, every IED exchanges information at fixed time intervals with one of
its neighbours (chosen randomly). If that neighbour exchanges this new information
with one of its neighbours (and so forth), the news spreads in the network.

Using this basic communication paradigm, some control functions can be imple-
mented in overlay networks. One of the basic functions using gossiping based com-
munication is distributed averaging: every node has a certain value (any real number)
and using only gossiping, an overlay-network-wide average can be calculated. Such
distributed averaging algorithm can be used in microgrid applications for secondary
control (to maintain voltage and frequency within normal range). During gossiping
the following steps happens:

IED C1 IED C2
send current average Average1→C2 send current average Average2 → C1
receive average Average2 receive average Average1
calculate new average
Ave.1→(Ave.1+Ave.2)/2

calculate new average
Ave.2→(Ave.2+Ave.1)/2

Eventually, all IEDs will have the same value, equal to the average of all values.

3.2 Agora Resilience against Accidental Faults

Small-world overlay networks are known to be quite resilient to crash failures [22].
They can tolerate a large number (10+%) of failures affecting arbitrary nodes without
significant influence on the overlay’s regularity and small diameter or before breaking
down into several partitions. Additionally, small-world systems have proven to be
capable of automatic and swift adaptation to errors. This is due to the fact that in a
decentralised architecture no single node is crucial for overlay network construction
and maintenance; hence, no single-point-of-failure exists. Secondly, overlay networks
are built to deal with dynamic environments: new and/or leaving nodes, changing
functionality or resource availability, etc. In fact, also accidental faults represent a
change to which the network must adapt. Since overlay networks incorporate the
former, usually by means of self-organisation, they are well capable of the latter.

116 G. Deconinck et al.

Within Agora, this self-organisation can be tracked down to two algorithms; one
providing error detection, the other providing error handling, which together result in
graceful degradation in the advent of errors [18].

• An announcement mechanism (Fig. 7) ensures that each node attempts to contact
all its neighbours periodically, as to update its internal data structures to runtime
description changes. Since every communication serves a secondary function as er-
ror detection mechanism, this puts an upper-bound on the error detection latency.

• Every node periodically also reconsiders its links in the overlay and reconverges as
to adapt to topological changes elsewhere in the overlay (Fig. 4). This same
mechanism allows recovery from failed or unreachable nodes, posterior to their de-
tection. The result is that Agora overlay networks establish smaller, yet internally
optimised networks in the advent of errors.

A dedicated environment (implemented in the C language on a monoprocessor work-
station) has been set up that is able to simulate the Agora algorithms with a varying
number of nodes (10-1000) in the overlay network. It allows to represent the topology
of the overlay networks, and to see the effects of the Agora algorithms on different
performance indices (network diameter, convergence speed, etc.).

Fig. 10 shows this effect of self-organisation. The simulations start from a con-
verged overlay network with all nodes operational and tests the resilience of Agora
networks to node failures: a percentage of the nodes is selected, which is then forced
to fail simultaneously. At this point the failed nodes become ghost nodes, which must
be removed as quickly as possible from the overlay (no more links lead to the failed
node). At time 1.5xTann the failed nodes recover, yet with loss of all internal memory;
they become drifting nodes (worst case situation), which are consecutively absorbed
by the overlay. Two different tests are performed: one in which the failing nodes are
selected randomly, a second with a dedicated attack to the nodes with the highest
indegree (number of incoming links). The simulation results show that when nodes
fail, the overlay network is updated within a single period Tann, and the recovery is
completed within a few periods.

This graceful degradation may however result in the permanent splitting of the over-
lay into separate partitions. If all links from one partition to another are lost, it renders
this partitioning irreversible, even after repair of the errors that caused it. This is a prob-
lem all overlay networks suffer and, without extra measures, can only be solved by
means of manually inserted cross-partition links. However, this process can also be
made automatic, by ensuring that pointers from one partition to the other endure. As
such, every Agora node maintains a small FIFO buffer of fixed size which contains the
n addresses of the n last nodes that were detected as having failed (deceased list). The
result is that cross-partition pointers emerge, but also that pointers to failed nodes en-
dure. In order to detect the recovery of previously failed nodes, each Agora node peri-
odically attempts to contact the members of this deceased list again. If this succeeds, a
connection attempt is made to that recovered node, which consists of the transmission of
a link request and a link announcement to the recovered node. Together, this constitutes
the network merge detection algorithm. How often this algorithm must be invoked is a
trade-off between reaction speed and network load. For Agora, a network merge detec-
tion is performed at the beginning of each periodic convergence cycle, as this is the

 A Robust Semantic Overlay Network for Microgrid Control Applications 117

Fig. 10. Effect of a failure of 5% (top) or 30 % (bottom) of the overlay nodes (random and
dedicated attack), i.e., ghost nodes removal time and time required to reinsert recovered drifting
nodes

118 G. Deconinck et al.

Fig. 11. Partition sizes of a split overlay network with 200 nodes in 9 partitions, after recovery
of the communication network. The last remaining partition -composed of a single node- is
only merged with the remainder of the overlay after time 2.24xTann (not shown).

point where the node already attempts to adapt to any changed network compositions
with network merge detection being merely a different aspect of this. This periodic
cycle is identical for all Agora nodes. Simulations with several hundreds of nodes con-
firmed the validity of this partition recovery (Fig. 11) [18].

4 Experimental Evaluation

In order to evaluate performance and dependability characteristics, a test bed has been
developed which integrates the electric power system and the information infrastruc-
ture. It consists of several power electronic converters [23]. These converters are
electrically interconnected via a microgrid and their IEDs are logically interconnected
a communication network, as was depicted in Fig. 1. (This information infrastructure
can be deployed on top of off-the-shelf communication protocols, such as TCP/IP, or
on more secure implementations, such as SSL/TLS, VPN or IPsec. For the experi-
ments, a TCP/IP based intranet was used, because the objective of the experiment was
functionality and not security aspects). Each converter can be used to emulate genera-
tors or loads in a dispersed electricity generation environment. This platform allows
different control algorithms (see Table 1) to be developed in a high level program-
ming tool such as Matlab, after which they can be prototyped on a 4-quadrant power
electronic converter (allowing to emulate electricity consumer as well as generators),

 A Robust Semantic Overlay Network for Microgrid Control Applications 119

whereby the control algorithms are downloaded on high performance hardware which
manages the power electronics. As these converters are connected to PCs, they can be
interconnected via TCP/IP modules in order to extend the control scope from local
towards hierarchical and decentralized control algorithms. To improve information
security of TCP/IP, it can be complemented by SSL/TLS mechanisms or by imple-
menting secure channels via VPN or IPSEC; this is however outside the scope of this
paper that aims at showing that accidental faults and targeted attacks to the overlay
network can be coped with, due to the dynamic adaptation properties of Agora.

As a case study, decentralised secondary and tertiary control in a microgrid has
been evaluated. Besides the electrical connection between all DERs -generators, load
and storage units- in a grid segment, the associated IEDs are connected via the self-
organizing semantic peer-to-peer network Agora. At start-up, all entities broadcast
some identification information (type, static and dynamic information) which results
in the setup of a peer-to-peer network. On top of this communication overlay network
control applications are run. Primary control is realized by means of an enhanced
droop control [5, 24], which requires no communication, thus guaranteeing a stable
system, even when all communication fails. Secondary and tertiary control is per-
formed by exploiting the peer-to-peer network. Secondary control consists of a gos-
siping-based distributed PI-controller (proportional-integral controller), which keeps
voltage and frequency into the correct range. The economic optimization or tertiary
control is based on a variation of the averaging gossiping algorithm, using local gen-
eration cost-curves at each generator to re-dispatch the generated power, such that all
operate at the same marginal cost.

The experimental results for these microgrid control applications with four IEDs (a
photovoltaic (PV) unit, a coupled heat power (CHP) unit, a battery and an intelligent
load) interconnected by an Agora overlay network, subject to a mix of load and sup-
ply variations, are shown in Fig. 12, assuming specific cost functions for each of the
four IEDs.

From t = 0 to 100 s, demand is very low, while the battery is nearly full and the PV
unit provides few electricity, because it is cloudy. The intelligent load is fully acti-
vated, and the small excess power is absorbed by the battery. The marginal cost is
about 40 €€ /MWh, determined by the most expensive activated unit, being the battery.

At t = 100 s, the load increases to 1.3 kW. Due to the primary control algorithm,
both battery and CHP unit generate power, the former at full, the latter at partial out-
put. Tertiary control equalises marginal costs which increase to 100 €€ /MWh.

Between t = 200 and 300 s, the load increases further to 2.3 kW. The battery gets
emptied, changing its marginal cost. While the battery lowers its generation some-
what, the CHP unit compensates by increasing output and the intelligent load reduces
demand, as to compensate both the load increase and the battery generation output
decrease. The marginal cost increases to approximately 165 €€ /MWh.

At t = 300 s, the battery is empty, and its cost increase furthers, halting its genera-
tion. The power is taken over partly by the CHP increasing its power output some-
what, and especially by the intelligent load further decreasing its power demand. The
marginal cost increases further to about 167 €€ /MWh.

At t = 500 s, concurrently the load decreases back to 1.3 kW and the sun breaks
through, allowing to increase the power output of the PV unit to potentially 3 kW

120 G. Deconinck et al.

Fig. 12. Experimental validation with microgrid control applications in four IEDs intercon-
nected by an Agora overlay network, subject to a mix of load and supply variations

 A Robust Semantic Overlay Network for Microgrid Control Applications 121

(lowering its marginal costs), more than sufficient to cover the entire demand. As a
result, the CHP stops generating, the battery starts recharging and the intelligent load
again consumes at full power. However, the high output of the PV unit disturbs the
voltage profile and it is no longer possible to keep the voltage between the
230 V ± 1 % tight margins and the secondary control comes in to correct the situation
by curtailing both the power production of the PV unit (from 3 to 2.7 kW), the charg-
ing rate of the battery (from -0.7 to -0.5 kW) and the consumption of the intelligent
load (from -1 to -0.9 kW). Disregarding the secondary control actions, the marginal
cost would be determined by the CHP unit producing at partial load at 100 €€ /MWh.
However, due to the local voltage quality constraints, the battery operates at a mar-
ginal cost of 115 €€ /MWh and the intelligent load reduces demand at a marginal cost
of even 155 €€ /MWh, whereas the PV unit on the other hand, having a zero marginal
cost, needs to curtail its power output.

At t = 600 s, the battery is sufficiently recharged, allowing it to lower its marginal
cost, reflecting its willingness of further charge only at much lower marginal cost. As
a result the CHP unit becomes uneconomic to operate, causing the marginal cost to
fall dramatically to about 10 €€ /MWh, resulting in the battery still recharging almost as
much as before. However, again the voltage quality constraints disturb the picture,
causing secondary control to come in and the battery to recharge more slowly at
slightly higher marginal cost and the PV unit still being curtailed, be it marginally less
than before. Of course, the tight voltage constraints result in uneconomic operation as
supply from the PV unit at zero marginal cost is replaced by other units increasing
supply or curtailing demand at much higher marginal costs. The difference reflects the
cost of maintaining the voltage quality. The situation here is aggravated by the very
tight voltage quality constraints combined with a power line with a rather large resis-
tance value. In practical setups, if such situations would often occur, alternative solu-
tions like increasing the line cross sections or relocating the generators closer to the
demand should be considered to prevent the costs associated with the uneconomic
operation of the DER units due to voltage constraints.

Finally, at t = 700 s, the load decreases to 0.3 kW, while the battery is now fully
charged (lowest costs). The capacity of the PV unit is larger than remaining demand
of the intelligent load. As a result, the marginal cost falls to zero and the power gen-
eration of the PV unit is further curtailed, initially due to the primary control action,
gradually replaced by the secondary.

Other experimental results (not shown here) confirm that the temporary or
permanent unavailability of the communication links does not affect the control
applications, as they are handled at middleware level by an adaptation of the overlay
network, only resulting in a negligible delay for the secondary and tertiary control
algorithms that are not time-critical [15]. Malicious faults however, are more danger-
ous as they can lead to overvoltages which trigger the protection mechanisms in the
platforms. Future work will hence focus on integrating intrusion prevention and intru-
sion tolerance mechanisms in the overlay network [25].

Acknowledgements. This work was supported by the K.U.Leuven Research Council
(GOA2007/09) and the European Union (IST 4-27513 CRUTIAL).

122 G. Deconinck et al.

References

1. Kueck, J.D., Kirby, B.J.: The Distribution Grid of the Future. The Electricity Journal (El-
sevier Science), 78–87 (June 2003)

2. Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., D’Haeseleer, W.: Distributed
generation: definition, benefits and issues. Energy Policy 33, 787–798 (2005)

3. Chandorkar, M.C., Divan, D.M., Adapa., R.: Control of parallel connected converters in
standalone ac supply systems. IEEE Trans. on Industry Applications 29, 136–143 (1993)

4. Marwali, M.N., Jung, J.-W., Keyhani, A.: Control of Distributed Generation Systems —
Part II: Load Sharing Control. IEEE Trans. on Power Electronics 19, 1551–1561 (2004)

5. De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., Belmans, R.:
A Voltage and Frequency Droop Control Method for Parallel Inverters. IEEE Trans. on
Power Electronics, 1107–1115 (2007)

6. Rigole, T., Vanthournout, K., Brabandere, K.D., Deconinck, G.: Agents Controlling the
Electric Power Infrastructure. Int. Journal of Critical Infrastructures IJCIS (Inder-
science) 4, 96–109 (2008)

7. Mak, S., Radford, D.: Communication system requirements for implementation of a large
scale demand side management and distribution automation. IEEE Trans. on Power Deliv-
ery 11, 683–689 (1996)

8. Hauser, C.H., Bakken, D.E., Bose, A.: A Failure to Communicate. IEEE Power & Energy
Magazine 3, 47–55 (2005)

9. Stefanini, A., Servida, A.: The future of ICT for power systems: emerging security chal-
lenges. Joint DG INFSO, DG RTD and JRC workshop on R&D challenge. European
Commission, Brussels, Belgium (2005)

10. Adamiak, M., Premerlani, W.: Data communications in a deregulated environment. IEEE
Computer Applications in Power 12, 36–39 (1999)

11. Dondossola, G., Szanto, J., Masera, M., Fovino, I.N.: Evaluation of the effects of inten-
tional threats to power substation control systems. In: Proc. Int. Workshop on Complex
Network and Infrastructure Protection (CNIP 2006), Rome, Italy, pp. 309–320 (2006)

12. Amin, M.: Towards self-healing energy infrastructure systems. IEEE Computer Applica-
tions in Power 14, 20–28 (2001)

13. Deconinck, G., De Florio, V., Botti, O.: Software-implemented fault-tolerance and sepa-
rate recovery strategies enhance maintainability. IEEE Trans. on Reliability 51, 158–165
(2002)

14. Deconinck, G., Rigole, T., Beitollahi, H., Duan, R., Nauwelaers, B., Van Lil, E., Driesen,
J., Belmans, R., Dondossola, G.: Robust Overlay Networks for Microgrid Control Sys-
tems. In: Proc. Workshop on Architecting Dependable Systems (WADS 2007), co-located
with 37th Ann. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN 2007),
Edinburgh, Scotland (UK), pp. 148–153 (2007)

15. Rigole, T., Vanthournout, K., Deconinck, G.: Resilience of Distributed Microgrid Control
Systems to ICT Faults. In: 19th Int. Conf. and Exhibition on Electricity Distribution (CI-
RED-2007), Vienna, Austria, p. 4 (2007)

16. Vanthournout, K., Deconinck, G., Belmans, R.: A Taxonomy for Resource Discovery.
Personal and Ubiquitous Computing Journal (Springer) 9, 81–89 (2005)

17. Vanthournout, K., De Brabandere, K., Haesen, E., Van Den Keybus, J., Deconinck, G.,
Belmans, R.: Agora: Distributed tertiary control of distributed resources. In: Proc. 15th
Power Systems Computation Conf (PSCC-15), Liège, Belgium, p. 7 (2005)

18. Vanthournout, K.: A semantic overlay network based robust data-infrastructure, applied to
the electric power grid. Vol. PhD. K.U.Leuven, ESAT-ELECTA, p. 263 (2006)

 A Robust Semantic Overlay Network for Microgrid Control Applications 123

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393,
409–410 (1998)

20. Poole, D.L., Mackworth, A.K., Goebel, R.: Computational Intelligence: A Logical Ap-
proach. Oxford University Press, Oxford (1998)

21. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic
networks. ACM Transactions on Computer Systems 23, 219–252 (2005)

22. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Na-
ture 406, 378–382 (2000)

23. Van den Keybus, J., Bolsens, B., De Brabandere, K., Driesen, J.: Using a fully digital
rapid prototype platform in grid-coupled power electronics applications. In: Proc. 9th
IEEE Conf. on Computers and Power Electronics (COMPEL), Urbana-Champaign, USA,
p. 10 (2004)

24. De Brabandere, K., Vanthournout, K., Driesen, J., Deconinck, G., Belmans, R.: Control of
Microgrids. In: Proc. IEEE Power Engineering Society General Meeting, Tampa, Florida
USA, p. 7 (2007)

25. Dondossola, G., Deconinck, G., Giandomenico, F.D., Donatelli, S., Kaaniche, M., Veris-
simo, P.: Critical Utility InfrastructurAL Resilience. In: Proc. Int. Workshop on Complex
Network and Infrastructure Protection (CNIP 2006), Rome, Italy, p. 4 (2006)

Architecting Dependable and Secure Systems
Using Virtualization

Bernhard Jansen1, HariGovind V. Ramasamy2,
Matthias Schunter1, and Axel Tanner1

1 IBM Zurich Research Laboratory, Rüschlikon, Switzerland
{bja,mts,axs}@zurich.ibm.com

2 IBM T.J. Watson Research Center, Hawthorne, New York, USA
hvramasa@us.ibm.com

Abstract. We outline ways of leveraging virtualization for enhancing system de-
pendability and security, and describe the practical realization of some of these
enhancements using the Xen open-source virtual machine monitor (VMM). Us-
ing combinatorial modeling, we perform reliability analysis of multiple design
choices when a single physical server is used to host multiple virtual servers. The
analysis shows that unless certain conditions (e.g., regarding the number of vir-
tual servers) are met, virtualization could decrease the reliability of a single phys-
ical server. The analysis also shows that improving the reliability of the VMM is
crucial to improving the reliability of a virtualized physical node. Motivated by
this observation, we show how the enhancements we have implemented can be
combined to produce a more reliable Xen VMM architecture, called R-Xen. The
Xen VMM consists of a hypervisor core and a privileged virtual machine (VM)
called Dom0. Dom0, being much bulkier than the hypervisor core, is the weak
link for Xen reliability. Consequently, R-Xen focuses on improving the reliabil-
ity of Dom0 through replication in which Dom0 replicas mutually monitor each
other for intrusion and faults. R-Xen converts more severe Dom0 replica faults
into fail-stop behavior, and rejuvenates a failed replica. The approach is transpar-
ent and does not require any modifications to regular Xen VMs (user domains).

1 Introduction

Introduced in the 1960s, virtualization has lately enjoyed a great surge of attention.
Virtualization allows one to abstract away the real hardware configuration of a system.
One method of virtualizing the hardware resources of a computer involves using a layer
of software called the Virtual Machine Monitor (VMM) to provide the illusion of real
hardware for multiple virtual machines (VMs). Inside each VM, the operating system
(often called the guest OS) and applications run on the VM’s own virtual resources,
such as virtual CPU, virtual network card, virtual RAM, and virtual disks. A VMM
can be hosted directly on the computer hardware (e.g., Xen [1]) or in a host operating
system (e.g., VMware Workstation).

In this paper, we explore opportunities for dependability and security made available
by virtualization, and provide detailed information on how virtualization affects system
reliability. We make four contributions: (1) a survey of dependability and security en-
hancements enabled by virtualization, (2) a prototype demonstrating the effectiveness

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 124–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architecting Dependable and Secure Systems Using Virtualization 125

of hypervisor-based intrusion detection, (3) reliability models and analysis of the ef-
fects of virtualization, and (4) an architecture for a reliability-enhanced Xen VMM that
leverages a subset of the enhancements.

We describe ways of leveraging virtualization for dependability and security en-
hancements, such as response to load-induced failures, administration of patches in an
availability-preserving manner, enforcement of fail-safe behavior, proactive software
rejuvenation, and intrusion detection and protection. We describe in detail a Xen-based
implementation of a subset of these enhancements, particularly, intrusion detection and
protection. The intrusion detector, called X-Spy, uses a privileged Xen VM to monitor
and analyze the complete state of other VMs co-located on the same physical platform.
X-Spy is close enough to the target monitored to have a high degree of visibility into the
innards of the target (like host-based intrusion detection schemes). At the same time,
thanks to the isolation provided by the VMM, X-Spy is far enough from the target to be
unaffected even if the target becomes compromised (like network-based intrusion de-
tection schemes). A key challenge in implementing X-Spy was the semantic gap, i.e.,
the proper interpretation of process information gathered from the VMs monitored in a
completely different VM.

We provide detailed information on how virtualization affects an important depend-
ability attribute, namely reliability. The VMM is increasingly seen as a convenient layer
for implementing many services such as networking and security [2] that were tradition-
ally provided by the operating system. We show why such designs should be viewed
with more caution. We use combinatorial modeling to analyze multiple design choices
when a single physical server is used to host multiple virtual servers and to quantify the
reliability impact of virtualization. In light of the prevailing trend to shift services out of
the guest OS into the virtualization layer, we show that this shift, if not done carefully,
could adversely affect system reliability.

We describe a reliability-enhanced Xen VMM architecture, called R-Xen, that com-
bines replication, intrusion detection, and rejuvenation. Normally, the Xen VMM con-
sists of a relatively small hypervisor core and a full-fledged privileged VM called Dom0
that runs a guest OS (Linux). Regular VMs running on the Xen VMM are called user
domains or DomUs. Because of its size and complexity, Dom0 is the weak point in
the reliability of the Xen VMM. R-Xen focuses on improving Dom0 reliability (and
thereby improving the Xen VMM reliability) through three-fold replication. The three
Dom0 replicas each contain X-Spy implementations to mutually monitor each other
and thus detect the presence of faults and/or intrusions in the other two. If two replicas
report to the hypervisor that the third is corrupted, the hypervisor terminates and rejuve-
nates the corrupt replica. If the replica terminated happens to be the primary replica that
provides device virtualization for user domains, then one of the two backups becomes
the new primary.

The remainder of the paper is organized as follows. Section 2 describes related work
in the area of virtualization-based dependability and virtualization-based intrusion de-
tection. In Section 3, we describe at a high-level several dependability and security
enhancements (including intrusion detection and protection) that are made possible
by virtualization. Section 4 describes X-Spy, our Xen-based prototype implementa-
tion of intrusion detection and protection. Section 5 analysis the reliability impact

126 B. Jansen et al.

of virtualization and highlights the importance of VMM reliability to the overall re-
liability of a virtualized physical node. Motivated by the conclusions of our reliability
analysis and leveraging our X-Spy implementation, Section 6 describes an architecture
for a more reliable Xen VMM. Finally, in Section 7, we present our conclusions.

2 Related Work

We now provide a sampling of related work in the area of using VMs for improving de-
pendability. We also compare our X-Spy intrusion detection framework with previous
hypervisor-based intrusion detection systems. Many of these works, including ours, im-
plicitly trust the virtualization layer to function properly, to isolate the VMs from each
other, and to control the privileged access of certain VMs to other VMs. Such a trust can
be justified by the observation that a typical hypervisor consists of some tens of thou-
sands lines-of-code (LOC), whereas a typical operating system today is on the order of
millions LOC [3]. This allows a much higher assurance for the code of a hypervisor.

Bressoud and Schneider [4] implemented a primary-backup replication protocol tol-
erant to benign faults at the VMM level. The protocol resolves non-determinism by
logging the results of all non-deterministic actions taken by the primary and then ap-
plying the same results at the backups to maintain state consistency.

Double-Take [5] uses hardware-based real-time synchronous replication to replicate
application data from multiple VMs to a single physical machine so that the application
can automatically fail over to a spare machine by importing the replicated data in case
of an outage. As the replication is done at the file system level below the VM, the
technique is guest-OS-agnostic. Such a design could provide the basis for a business
model in which multiple client companies outsource their disaster recovery capability
to a disaster recovery hot-site that houses multiple physical backup machines, one for
each client.

Douceur and Howell [6] describe how VMMs can be used to ensure that VMs sat-
isfy determinism and thereby enable state machine replication at the VM level rather
than the application level. Specifically, they describe how a VM’s virtual disk and clock
can be made deterministic with respect to the VM’s execution. The design relieves
the application programmer of the burden of structuring the application as a determin-
istic state machine. Their work is similar to Bressoud and Schneider’s approach [4]
of using a VMM to resolve non-determinism. However, the difference lies in the fact
that whereas Bressoud and Schneider’s approach resolves non-determinism using the
results of the primary machine’s computation, Douceur and Howell’s design resolves
non-determinism a priori by constraining the behavior of the computation.

Dunlap et al. describe ReVirt [7] for VM logging and replay. ReVirt encapsulates the
OS as a VM, logs non-deterministic events that affect the VM’s execution, and uses the
logged data to replay the VM’s execution later. Such a capability is useful to recreate the
effects of non-deterministic attacks, as they show later in [8]. Their replay technique is
to start from a checkpoint state and then roll forward using the log to reach the desired
state.

Joshi et al. [8] combine VM introspection with VM replay to analyze whether a
vulnerability was activated in a VM before a patch was applied. The analysis is based

Architecting Dependable and Secure Systems Using Virtualization 127

on vulnerability-specific predicates provided by the patch writer. After the patch has
been applied, the same predicates can be used during the VM’s normal execution to
detect and respond to attacks.

Backtracker [9] can be used to identify which application running inside a VM was
exploited on a given host. Backtracker consists of an online component that records OS
objects (such as processes and files) and events (such as read, write, and fork), and an
offline component that generates graphs depicting the possible chain of events between
the point at which the exploit occurred and the point at which the exploit was detected.

An extension of Backtracker [10] has been used to track attacks from a single host
at which an infection has been detected to the originator of the attack and to other hosts
that were compromised from that host. The extension is based on identifying causal
relationships, and has also been used for correlating alerts from multiple intrusion de-
tection systems.

King et al. [11] describe the concept of time-traveling virtual machines (TTVMs), in
which VM replay is used for low-overhead reverse debugging of operating systems and
for providing debugging operations such as reverse break point, reverse watch point, and
reverse single step. Combining efficient checkpointing techniques with ReVirt, TTVMs
can be used by programmers to go to a particular point in the execution history of a
given run of the OS. To recreate all relevant state for that point, TTVMs log all sources
of non-determinism.

Garfinkel and Rosenblum [3] introduced the idea of hypervisor-based intrusion de-
tection, and pointed out the advantages of this approach and its applicability not only
for detection, but also for protection. Their Livewire system uses a modified VMware
workstation as hypervisor and implements various polling-based and event-driven sen-
sors. Compared with Livewire, our X-Spy system employs more extensive detection
techniques (e.g., by checking not only processes, but also kernel modules and file sys-
tems) and protection techniques (such as pre-checking and white-listing of binaries, and
kernel sealing) with an explicit focus on rootkit detection. In addition, X-Spy enables
easy forensic analysis.

Zhang et al. [12] and Petroni et al. [13] use a secure coprocessor as the basis for
checking the integrity of the OS kernel running on the main processor. However, as the
coprocessor can only read the memory of the machine monitored, only polling-based
intrusion detection is possible. In contrast, X-Spy can perform both polling-based and
event-driven intrusion detection. Specifically, it can intercept and deny certain requested
actions (such as suspicious system calls), and therefore has the capability to not only
detect but also protect.

Laureano et al. [14] employ behavior-based detection of anomalous system call se-
quences after a learning phase in which “normal” system calls are identified. Processes
with anomalous system call sequences are labeled suspicious. For these processes, cer-
tain dangerous system calls will in turn be blocked. The authors describe a prototype
based on a type-II hypervisor, namely, User-Mode Linux (UML) [15].

The ISIS system of Litty [16] is also based on UML. ISIS runs as a process in the
host operating system and detects intrusions in the guest operating system by using
the ptrace system call for instrumenting the guest UML kernel. Unlike X-Spy, ISIS
focuses mostly on intrusion detection and not protection.

128 B. Jansen et al.

Jiang et al. [17] describe the VMwatcher system, in which host-based anti-malware
software is used to monitor a VM from within a different VM. X-Spy and VMwatcher
are similar in that both use the hypervisor as a bridge for cross-VM inspection, and both
tackle the semantic gap problem. While their work focuses on bridging the semantic gap
on a multitude of platforms (hypervisors and operating systems), our work focuses on
employing more extensive detection mechanisms (such as checking not only processes,
but also kernel modules, network connections, and file systems) on a single hypervisor.
In contrast to X-Spy, VMwatcher does not include event-driven detection methods or
protection techniques.

The Strider GhostBuster system by Beck et al. [18] is similar to X-Spy in that both
use a differential view of system resources. Strider GhostBuster compares high-level
information (such as information obtained by an OS command) with low-level infor-
mation (e.g., kernel information) to detect malicious software trying to hide system
resources from the user and administrator. However, such a comparison has limited
effectiveness as detection takes place in the same (potentially compromised) OS envi-
ronment. Beck et al. also compare the file system view obtained from a potentially
compromised OS with the view obtained from an OS booted from a clean media. The
disadvantage of such an approach is that it requires multiple reboots and is limited to
checking only persistent data (such as file system) and not run-time data.

3 Using Virtualization for Dependability and Security

Commodity operating systems provide a level of dependability and security that is much
lower than what is desired. This situation has not changed much in the past decade.
Hence, the focus has shifted to designing dependable and secure systems around the
OS problems. Thanks to the flexible manner in which VM state can be manipulated,
virtualization can enable such designs. In particular, VM state, much like files, can be
read, copied, modified, saved, migrated, and restored [2]. In this section, we give several
examples of dependability and security enhancements made possible by virtualization.

Coping with Load-Induced Failures: Deploying services on VMs instead of physical
machines enables a higher and more flexible resilience to load-induced failures with-
out requiring additional hardware. Under load conditions, the VMs can be seamlessly
migrated (using live migration [19]) to a lightly loaded or a more powerful physical
machine. VM creation is simple and cheap, much like copying a file. In response to
high-load conditions, it is much easier to dynamically provision additional VMs on
under-utilized physical machines than to provision additional physical machines. This
flexibility usually compensates for the additional resources (mainly memory) needed
by the hypervisor.

Patch Application for High-Availability Services: Typically, patch application in-
volves a system restart, and thus negatively affects service availability. Consider a
service running inside a VM. Virtualization provides a way of removing faults and vul-
nerabilities at run-time without affecting system availability. For this purpose, a copy of
the VM is instantiated, and the patch (be it OS-level or service-level) is applied on the
copy rather than on the original VM. Then, the copy is restarted for the patch to take

Architecting Dependable and Secure Systems Using Virtualization 129

effect, after which the original VM is gracefully shut down and future service requests
are directed to the copy VM. To ensure that there are no undesirable side effects due to
the patch application, the copy VM may be placed under special watch for a sufficiently
long time while its post-patch behavior is being observed before the original VM is shut
down. If the service running inside the VM is stateful, then additional techniques based
on a combination of VM checkpointing (e.g., [20]) and VM live migration [19] may be
used to retain network connections of the original VM and to bring the copy up-to-date
with the last correct checkpoint.

Enforcing Fail-Safe Behavior and Virtual Patches: The average time between the
point in time when a vulnerability is made public and a patch is available is still mea-
sured in months. In 2005, Microsoft took an average time of 134.5 days for issuing
critical patches for Windows security problems reported to the company [21]. Devel-
oping patches for a software component is a time-consuming process because of the
need to ensure that the patch does not introduce new flaws or affect the dependencies
between the component involved and other components in the system. In many cases,
a service administrator simply does not have the luxury of suspending a service imme-
diately after a critical flaw (in the OS running the service or the service itself) becomes
publicized until the patch becomes available.

Virtualization can be used to prolong the availability of the service as much as pos-
sible while at the same time ensuring that the service is fail-safe. We leverage the ob-
servation that publicizing a flaw is usually accompanied by details of possible attacks
exploiting the flaw and/or symptoms of an exploited flaw. Developing an external mon-
itor to identify attack signatures or symptoms of an exploited flaw may be done inde-
pendently of patch development. The monitor may also be developed much faster than
the patch itself, because the monitor may not be subject to the same stringent testing
and validation requirements.

Consider a service running inside a VM rather than directly on a physical machine.
Then, a VM-external monitor, running in parallel to the VM, can be used to watch
for these attack signatures or detect the symptoms of exploitation of the flaw. If attack
signatures are known, the VM-external monitor can be used to block the attack, e.g. by
filtering the incoming network stream, to terminate interaction with the attack source, or
to protect targeted structures inside the VM, e.g. the system call table. If only symptoms
of exploitation are known, detection of a compromise can be used to immediately halt
the VM. The monitor could be implemented at the VMM level or in a privileged VM
(such as Dom0 in Xen [1]). If it is important to revert the service to its last correct
state when a patch becomes available, then the above technique can be augmented with
a checkpointing mechanism that periodically checkpoints the state of the service with
respect to the VM (e.g., [20]).

Proactive Software Rejuvenation: Rebooting a machine is an easy way of rejuvenat-
ing software. The downside of machine reboot is that the service is unavailable during
the reboot process. The VMM is a convenient layer for introducing hooks to proac-
tively rejuvenate the guest OS and services running inside a VM in a performance- and
availability-preserving way [22]. Periodically, the VMM can be made to instantiate a
reincarnation VM from a clean VM image. The booting of the reincarnation VM is

130 B. Jansen et al.

done while the original VM continues regular operation, thereby maintaining service
availability. One can view this technique as a generalization of the proactive recovery
technique for fault-tolerant replication proposed by Reiser and Kapitza [22].

As mentioned above in the context of patch application, techniques based on VM
checkpointing and live migration may be used to seamlessly transfer network connec-
tions and the service state of the original VM to the reincarnation VM. It is possible to
adjust the performance impact of the rejuvenation procedure on the original VM’s per-
formance. To lower the impact, the VMM can restrict the amount of resources devoted
to the booting of a reincarnation VM and compensate for the restriction in resources by
allowing more time for the reboot to complete.

One can view the above type of rejuvenation as a memory-scrubbing technique for
reclaiming leaked memory and recovering from memory errors of the original VM.
More importantly, such a periodic rejuvenation offers a way to proactively recover from
errors without requiring failure detection mechanisms (which are often unreliable) to
trigger the recovery.

Intrusion Detection and Response: Based on the location of the intrusion detection
sensors, intrusion detection system (IDS) implementations are broadly classified into
host-based IDS (HIDS) and network-based IDS (NIDS) [23]. A NIDS monitors network
traffic from and to the target, and analyzes the individual packets for signs of intrusion.
Because of its isolation from the target monitored, a NIDS decreases its susceptibility to
attacks and is largely unaffected by a compromised target. However, as network traffic
becomes increasingly encrypted and as the NIDS has no direct knowledge of the effects
or properties of the attack targets, the usefulness of NIDS is decreased. The fact that
not all intrusions may manifest their effects in the form of malicious traffic also lowers
the utility of NIDS. The sensors of a HIDS are placed on the target machine itself,
giving them a high degree of visibility into the internals of the target, enabling closer
monitoring and analysis of the target than NIDS does. However, the location of HIDS
on the same “trust compartment” as the target is also a disadvantage: after an intrusion
into the target, the HIDS may no longer be trusted.

Virtualization provides a way of removing the disadvantages of HIDS and NIDS, while
retaining their advantages. In our approach, the sensors are placed in a special privileged
VM (called the secure service VM or SSVM) used for monitoring other VMs hosting reg-
ular production services (called production VMs or PVMs). The placement of the sensors
on the same physical machine but in a different VM allows monitoring and analysis of
the complete state of other VMs via the VMM, and at the same time, keeps the sensor
out of reach of a potentially compromised VM and in a secure vantage position.

The twin characteristics of proximity to the target and isolation from the target also
make the SSVM a convenient location for implementing intrusion response mecha-
nisms. The secure vantage point of the SSVM allows one to implement otherwise diffi-
cult responses, e.g., even a simple response like ‘shutdown a compromised system’ may
not be effectively triggered from inside the compromised system. On the other hand, it
is easy and effective to suspend the operations of a compromised PVM from the SSVM.
In addition, the SSVM can instruct the VMM to provision a healthy replacement PVM
or block suspicious system calls that may potentially tamper with the integrity of the
kernel.

Architecting Dependable and Secure Systems Using Virtualization 131

For effective rejuvenation of a compromised PVM by re-provisioning a new PVM, it
is not sufficient to merely boot the new PVM from a clean state. The new PVM might still
possess all the vulnerabilities of the compromised one. Hence, it is important to perform
a forensic analysis of the compromised PVM’s state to remove as many vulnerabilities
as possible. Such an analysis is facilitated by the virtualized environment hosting the
SSVM. The SSVM can obtain not only modified files of a suspended PVM, but also its
complete run-time state from the memory dump created at the time of suspension. The
memory dump can be examined using the same techniques as the one used to observe
the state of a running PVM from the SSVM for the purpose of intrusion detection.

4 Xen-Based Implementation of Intrusion Detection and
Protection

In this section, we describe the prototype implementation of a subset of the security
enhancements mentioned above, namely, intrusion detection and protection for VMs.
Later, in Section 6, we leverage the implementation for enforcing fail-safe behavior and
for triggering software rejuvenation in our construction of R-Xen.

4.1 Intrusion Detection and Protection for Xen Virtual Machines

We have implemented an intrusion detection and protection framework called X-Spy.
The core idea is to use a secure service VM (SSVM) that monitors one or more produc-
tion VMs (PVM). The SSVM performs the following functions:

Lie Detection. The SSVM accesses the memory of the PVM and compares actual criti-
cal system data (processes, mounts, etc.) against data obtained by executing normal
Unix commands inside the PVM. If the comparison yields discrepancies, then that
is indicative of a compromised PVM. In contrast to earlier hypervisor-based intru-
sion detection work, X-Spy’s detection mechanisms are more comprehensive and
include lie detection at the level of processes, network connections, modules, and
file system mounts.

Protection. We have added a system call inspector to Xen that allows the monitoring of
the system calls within the PVM for the purpose of protecting relevant forensic in-
formation (like log files) and the integrity of the kernel (kernel structures, modules,
and memory).

X-Spy uses the Xen [1] VMM developed by Cambridge University and guest VMs
running the Linux 2.6 operating system. Nevertheless, the concepts such as system call
analysis and lie detection can be applied to other operating systems such as Microsoft
Windows. All X-Spy components are implemented either in the Xen hypervisor or in
the SSVM. While their implementation logic depends on the guest OS, X-Spy does not
require any modification to the guest OS of the PVM.

Limitations. To overcome the semantic gap, we assume some knowledge of the kernel
structures of the guest operating system (specifically, Linux kernel 2.6) so that X-Spy
components can be appropriately coded. If the guest operating system is upgraded to

132 B. Jansen et al.

a newer version in which kernel structures are different, then the X-Spy components
need to be re-coded appropriately. That fact may be an impediment to commercializing
X-Spy, as it implies an ongoing commitment to develop and patch X-Spy components
to keep pace with upgrades to the guest operating system.

For detecting hidden processes, X-Spy requires that the scheduler of the PVM’s guest
OS keep a list of processes that need to be scheduled in a standard place within a known
memory structure. If an attacker is able to replace the scheduler with her own one having
a different list of processes, the detection approach would be subverted. That is why it
is important to protect the integrity of the kernel code (for example, using mechanisms
that we describe in Section 4.4).

The SSVM needs read access to the memory of the PVMs for the purpose of mon-
itoring them. In addition, it must be possible to do an SSH login to the PVM from the
SSVM and execute normal Unix commands. These requirements are contrary to the
isolation guarantees of the hypervisor. The SSVM itself could become a high-value at-
tack target, and accordingly, needs stronger protection. Several measures can be taken
to strongly reduce the potential of the SSVM getting compromised. For example, as the
SSVM is a special-purpose VM (in contrast to PVMs), it can be hardened, its function-
ality reduced solely to that of monitoring the PVMs, and its access restricted through a
specific administrative interface.

4.2 Architecture of X-Spy

The architecture of the X-Spy intrusion detection framework is shown in Figure 1 and
that of the X-Spy intrusion protection framework is shown in Figure 2. Our architecture
consists of a PVM and a SSVM running on top of the same hardware and Xen hyper-
visor. In our implementation, both the SSVM and the PVM run Linux kernel 2.6. The
SSVM obtains the run-time state of the PVM through the Xen hypervisor, which is at
a lower level of abstraction than both the SSVM and the PVM. The SSVM has access
to the raw devices of the PVMs (memory, disk, network); however, the difficulty lies in
the SSVM properly interpreting the data because of a semantic gap [24]. For example,
the physical memory of the host system will be made available in chunks as pseudo-
physical memory to the VMs. In addition, the (possibly different) operating systems
of the VMs use a virtual address space on top of the physical memory, leading to the
problem of properly interpreting raw memory locations in a different context.

4.3 Intrusion Detection by Means of a Lie-Detector

The basic idea of the Lie-Detector is to compare the insider and outsider views of the
system to identify objects (processes, files etc.) that try to hide themselves from the
operating system [18]. Such behavior is typical of rootkits, which are then used to hide
other (typically malicious) software, but is also sometimes characteristic of DRM func-
tionality (e.g. the XCP content protection technology by Sony BMG in 2005). The
Lie-Detector (Figure 1) consists of three major functionalities:

1. PVM Information Collection: The Lie-Detector collects information about the
PVM by two different means: the native interface and the frontDoor interface.

Architecting Dependable and Secure Systems Using Virtualization 133

SSVM PVM

N
C

R
L

P
LL

M
LL

M
oLL

PMTGDMAL

netstat
ps lsm

od
m

ount

sshssh

Lie - Detector

MTI

TCP/IPTCP/IP TCP/IPTCP/IP

Normalizer

Kernel

Xen

User Space

Hardware

Event Handling

Fig. 1. Architecture of the X-Spy Lie-Detector components

2. PVM Information Normalization: The PVM information collected via the native in-
terface is normalized to a format equivalent to that of commands executed through
the frontDoor interface.

3. Analyze-and-Compare: The normalized information from the native and frontDoor
interfaces is then compared to identify differences that are indicative of maliciously
hidden system resources and to minimize false positives. Any findings will be re-
ported through the Event Handling component.

We describe the above functionalities in detail below.

Memory Translation Interface (MTI) One of the main components of X-Spy is a Mem-
ory Translation Interface (MTI) that allows the SSVM full access to a PVM’s pseudo-
physical and virtual memory in a convenient fashion. The MTI has two parts:

1. An extension to the Xen hypervisor, which performs address translation and traver-
sal of the page tables.

2. A Linux kernel device driver that runs in the SSVM kernel and provides two in-
terfaces, namely, /dev/mem domX and /dev/kmem domX. These interfaces are
functionally equivalent to the /dev/mem and the /dev/kmem device files, re-
spectively, and allow the root user in the SSVM kernel access to the PVM’s physical
memory and kernel memory contents, respectively.

One challenge to overcome when implementing the MTI was that the SSVM cannot
access a PVM’s foreign memory as it corresponds to a different context. Therefore, the
MTI has to emulate the memory management unit by translating the address to the right
format and re-mapping it from the PVM memory space onto the memory space of the
Lie-Detector process running in the SSVM. For this purpose, we have developed two
user-space libraries that the MTI uses: the Guest Domain Memory Access Library or
GDMAL and the Process Memory Translator or PMT. The GDMAL provides read-
write access to the PVM’s memory. Within the PVM’s memory, the PMT allows access
to the virtual address space of PVM processes. In addition, the PMT provides some
helper functions to facilitate the use of the /dev/mem domX and /dev/kmem domX

134 B. Jansen et al.

interfaces. The PMT performs the process address translation by extracting the memory
management information for the process from the OS-specific task (process) descrip-
tion data structure. When the guest OS is Linux, as in our case, the PMT extracts the
mm struct data structure from the task struct data structure.

The native interface is used to collect PVM information “from the outside” through
the raw access made available by the Xen hypervisor, e.g. by accessing the PVM’s
memory via the MTI, and to collect host-specific data via special user-space libraries
that we have developed, namely the process list library (PLL), the network connection
and routing library (NCRL), and the module list library (MLL).

The second interface, called the frontDoor interface, is used to obtain PVM infor-
mation by doing an SSH login to the PVM and executing normal Unix commands. The
Lie-Detector normalizes the information collected from both interfaces, and then com-
pares them. If the comparison yields discrepancies in the information collected from
those two sources, this is strongly indicative of an intrusion. Obviously, it is not pos-
sible to obtain information through the frontDoor interface and the native interface at
exactly the same time. This timing difference may lead to false positives, and we ex-
plain below how to overcome this problem. We implement comparison methods for
processes, network connections, kernel modules, file system mounts and files.

The MTI provides access to the PVM’s raw kernel virtual memory but lacks any
semantic context. To fix this shortcoming, we manually created a memory offset file
for each library1. Based on these files, the libraries such as PLL, NCRL, and MLL,
implement the logic to extract all data values of interest from the raw kernel virtual
memory. Each offset file stores the offset values of the start of each data item of interest
from the beginning of the containing structure.

Process List. The PLL acts on information provided by the MTI to generate output
similar to that of the ps command. This is done by accessing and then traversing the
doubly-linked circular task list via the MTI.

Our comparison is based on the multitude of information extractable from this
task struct data structure, such as PID, state, parent, open files, registers, prior-
ities, locks, and memory management information. However, not all fields in the data
structure are used. For example, the running time of a process as seen by the native
interface query and the frontDoor interface query are bound to slightly differ, owing to
the difference in the time of query.

This comparison will detect processes in the PVM that actively try to hide their
presence or change their appearance (e.g. the owner) from queries made from within the
PVM. This will identify rootkit-like behavior, as non-hiding processes can be identified
by more conventional (non-hypervisor-based) malware detection tools.

Note that simply comparing the process information from the native and frontDoor
interfaces results in false positives because of frequent changes to the process table.
We fix this by executing a native access (outsider view) before and after the frontDoor
query (insider view). If a given process disappeared in the second query but is again
visible in the third, we consider it to be an intrusion. If it does not reappear, we assume
that the process merely terminated.

1 With some effort, it is possible to generate the offset files automatically at kernel compilation
time.

Architecting Dependable and Secure Systems Using Virtualization 135

Network Connections and Routing. We obtain information about IPv4 connections,
Unix socket connections, and IPv4 routing through the native and frontDoor inter-
faces. For the native interface queries, we have developed the NCRL library, which
uses the MTI to collect information equivalent to that obtained from three commands:
‘netstat -an -inet’ for IPv4 connections, ‘netstat -an -unix’ for Unix
Socket connections, and ‘netstat -rn’ for IPv4 routing. This information can then
be used to discover hidden network connections.

Similar to the timing problem in the Lie-Detector comparison of process information,
we face a timing problem in the comparison of network connection information because
of network connections that were terminated or started in the time interval between the
native interface query and the frontDoor interface query. The solution here is again to
reduce false positives by using three queries2.

Module List. To obtain information about the PVM’s kernel modules we have devel-
oped another user-space library called the MLL for collecting information from the
native interface query. The frontDoor interface query uses the lsmod command, which
outputs the contents of /proc/modules displaying the kernel modules currently
loaded. In addition to the native interface and frontDoor interface queries, the MLL
also queries a third Xen interface for detecting hidden Linux loadable kernel modules
(LKMs). LKMs are a way to link object code without interruption to the Linux kernel
while it is running. Such LKMs are automatically registered at loading time, but it is
possible for an LKM to un-register itself after loading. In such a case, the LKM can hide
even from a native interface query (as the adore-ng rootkit indeed does; see Section 4.5).
To address this issue, we established a shadow module list in the hypervisor. The hy-
pervisor traps the init module system call and analyzes the ELF header section of
the object file to get the module name and stores the name in the shadow module list.
The hypervisor also traps the delete module system call to remove entries from the
shadow module list. As the hypervisor address space cannot be accessed by the PVM,
the shadow module list cannot be altered by an intruder. The Xen interface query shows
the contents of the shadow module list and is taken as reference for comparison with
the results of the native interface and frontDoor interface queries. If the results from
the native interface and/or the frontDoor interface queries do not list an entry from the
shadow module list, we conclude that the module in question is hidden.

Mounts. The frontDoor interface uses the cat /proc/mounts command, which
provides a list of all mounted file systems in the PVM. An obvious alternative would
have been to use the output of the mount command; however that alternative is less use-
ful and secure because the command merely outputs the contents of the /etc/mtab
file, and it is easy to mount a file system without an entry showing up in the
/etc/mtab file by using the mount -n command.

The mount list library (MoLL3) operates on the PVM information about mounted file
systems collected via the native interface query. The starting symbol for obtaining the
information is the task struct structure of the idle task (however, the entry for any

2 Note that the frontDoor query is made through an SSH connection, which will show up only
in the frontDoor query but in neither of the interface queries.

3 The MoLL should not be confused with MLL, the module list library.

136 B. Jansen et al.

task would be adequate), from where the MoLL gains access to the vfsmnt circular
list. The list provides complete information about all file systems currently mounted.

The mount information gathered from the native interface query is used as the refer-
ence against which the information from the frontDoor interface is compared. If there
are mounted file systems that appear in the former but not in the latter, we take this as an
indication of a hidden malicious process because mount information is relatively static,
and hence false positives are not a big concern.

File System. In the case of the file system, bridging the semantic gap in general implies
the use of raw access to the physical disk and the related traffic to rebuild the file system
structures of the guest operating system of the PVM in the context of the SSVM. Ac-
cessing file systems mounted by another operating system is feasible even for disparate
operating systems, e.g. Microsoft Windows and Linux, as for example shown in [17].
Xen can use a Linux file system existing on the Xen/Dom0 level to boot and launch
guest domains. This same file system can then be mounted read-only by the SSVM. We
then retrieve the file information via the frontDoor and compare it with the information
of the file system mounted by the SSVM.

For efficiency and simplified forensic recording, we use a basic read-only file system
and add the CoWNFS copy-on-write file system [25, 26]. This allows us to store the
changes for multiple runs for later forensic analysis and protects the original state of
the system from any (potentially malicious) changes. This combined file system was
then used as an NFS mountable file system for booting the PVM.

4.4 Protection of System Integrity and Forensic Information by Means of
System Call Inspection

We now outline how X-Spy’s System Call Inspection component (Figure 2) is used to
protect the system against intrusions.

Protection of Forensic Information. In case of a successful intrusion it is highly desir-
able to protect as much forensic information as possible. A smart intruder would want

SSVM PVM

EHKMKernel

Xen

User Space

Hardware

Event Handling

Rules

Application

CPU

SCIRules

PIT system
calls

Fig. 2. Architecture of the X-Spy event-driven protection components

Architecting Dependable and Secure Systems Using Virtualization 137

to hide all traces of the intrusion, e.g., by altering log-files4 such as the wtmp/utmp
and the /var/log/messages files. While these files cannot be modified by normal
users, intruders with root access can. One way to address this issue would be to use
a hardened system (e.g., SELinux). However, this protects only if the superuser is not
allowed to change the SELinux rules in a running System.

In a virtualized environment as considered here, we have the possibility to protect
important files by intercepting the system call sequence in the PVM through the Xen
hypervisor (see Figure 2). For this purpose, we added a module to the Xen hypervi-
sor, the System Call Inspector (SCI), which can inspect all5 system calls occurring
in the PVM and either block or accept calls depending on a set of rules. These rules
are stored and edited in the SSVM (and therefore out of reach of any activity in the
PVM), and can be loaded into the SCI (in binary form) via the Policy Installation Tool
(PIT).

X-Spy implements a functionality for checking and fine-tuning system calls by in-
strumenting the system call handling chain. An int 0x80 instruction is intercepted
by an interrupt handler located in the Xen context where checks against the previously
introduced rule set are done. Only after passing the checks is the call redirected to the
PVM Kernel, where the normal system call handler is invoked; otherwise, the call re-
turns without any action being taken. In certain cases, the system call is allowed after
some fine-tuning, e.g., a modification of the parameters so that the call conforms to the
rule set specified. The amount of performance overhead depends on the type of checks
and fine-tuning being done for a particular system call.

As the interception of the system call happens in the Xen context, the problem of
semantic gap has to be overcome to determine which system calls actually merit addi-
tional checks. For our aim of protecting forensic information, system calls performing
file operations are essential. We protect forensic information by preventing calls that
rename, link, unlink, or delete log files. Furthermore, we limit access to log files by per-
mitting only the append operation on them. To ensure that a malicious process cannot
bypass the checking, we normalized the paths.

If the SCI finds that an application in the PVM tries to initiate a system call that
is not allowed according to the rule set, it will block or modify it and send a corre-
sponding event through an event handling kernel module (EHKM) in the SSVM to the
high-level event handling component with information about the violated rule and the
corresponding process in the PVM.

Protection of Binaries Against User-Space Rootkits. The mechanism used for pro-
tecting forensic information can also be used to protect binaries from being altered by
an intruder. Many user-space rootkits try to alter ps or netstat to hide their presence
or to install a back door by modifying the openssh binary. While earlier tools, such
as Tripwire, can detect the alteration of a binary or a library, our event-driven approach
to check system calls and their arguments can actually prevent their alteration.

4 Note that the above protection scheme for log files can easily be extended to protect other
important files, such as Xen VM configuration files, through additional rules in the rule set.

5 Note that Xen implements a “fast trap” mechanism to enhance performance. If Xen calls are
to be monitored as well, then this mechanism need to be disabled.

138 B. Jansen et al.

In addition, it is possible to restrict read/write access to an executable, but still allow
its execution. Based on the corresponding rule set, the module we have implemented
in the Xen hypervisor checks whether a system call is trying to change, delete, link,
or rename a binary, and if so, the call is denied. As execution of a binary normally
happens through the execve system call without actually opening the binary file, it
is even possible to add a rule that forbids the opening of certain binaries completely
without disallowing their execution.

Kernel Sealing. X-Spy also implements kernel sealing, a well-known method to pro-
tect a system or prevent intrusions. The kernel memory can be accessed directly by
reading or, more dangerously, by writing to the /dev/mem or /dev/kmem device
files. The rule set of the X-Spy event-driven module in the Xen hypervisor was updated
to restrict access to those files, so that only read requests are allowed and write requests
return an error result without performing the write operation.

Accessing the kernel memory by loading a kernel module or writing directly to
/dev/(k)mem is potentially dangerous because it allows an intruder to establish its own
interface to the kernel; thereafter, the intruder can easily place malicious code in the
kernel and have full access to the file system and other kernel internals. X-Spy uses
a technique called white-listing by which all kernel modules allowed to be loaded are
explicitly specified along with their respective SHA-1 hash values. If the module to be
loaded at run-time is not specified in the white-list or if it has an incorrect hash value, X-
Spy prevents the module from being loaded by preventing the system call from reaching
the PVM kernel space. Note that our X-Spy implementation does not offer protection
against buffer overflows on systems calls.

Pre-Checking of Binaries. An effective way of protecting a PVM from user-space
rootkits or other malicious software is to check the hash of every binary, prior to its
execution, against a white-list of pre-calculated hashes and to allow its execution only
if there is a match. Computing the hash of the binary has to be done out of the reach of
a potential intruder in the PVM and should also not require modification of the PVM’s
OS. To meet these conditions, X-Spy computes the hash of the binary in the SSVM. To
enable such a computation, it is necessary that the SSVM has all partitions of the PVM
mounted; furthermore, the binary should not be on a RAM disk, on network file system,
or on an encrypted file system that the SSVM cannot access. An alternative would be
to do the computation in the hypervisor, which would require overcoming the semantic
gap problem.

For computing the hash of the binary in the SSVM, we use a technique called mem-
ory scanning, which involves loading the complete .text and .data sections of an
ELF binary into memory by setting the program counter to the next page, asking the
PVM kernel to load the page, and then hashing it while handling the page fault.

If the hash cannot be verified the hypervisor invalidates all of the memory and returns
the control back to the guest domain. Because of the invalid .text section to which the
PC points, the process will crash. Note that relying on support from the PVM’s guest OS
does not necessarily constitute a security gap, because a non-cooperative PVM kernel
would lead to a wrong hash value and in this case, as seen above, the process will be
forced to quit.

Architecting Dependable and Secure Systems Using Virtualization 139

4.5 Evaluation

While the conceptual limitations have been discussed in Section 4.1, we will now eval-
uate the effectiveness and efficiency of our implementation.

Functional Evaluation. The goal of the Lie-Detector is to expose malicious code.
Once all information is visible, we no longer focus on whether a particular LKM or
process is hostile.

We first evaluated our implementation using a set of functional tests that implement
typical rootkit functionality, such as hiding processes, kernel modules, mounts, or net-
work connections. Our Lie-Detector correctly exposed all attempts to hide such critical
information.

We then tested the system using the adore-ng rootkit [27]. Adore-ng is an LKM-
based rootkit for Linux kernels which allows one to hide files and directories, processes,
and network connections. The basic rootkit consists of the kernel module and a user-
space control program. While currently this is the only widely available rootkit for the
Linux kernel 2.6, other similar rootkits exist for earlier kernel versions and may be
ported to the 2.6 kernel.

In a fully protected X-Spy system, the rootkit cannot even be installed as the inser-
tion of modules is restricted through the SCI interception of the respective system calls
and the white-listing of allowed modules. After explicitly allowing the rootkit to insert
itself into the kernel, we used its control program to hide processes, files, and network
connections. The X-Spy Lie-Detector component reported these hidden resources faith-
fully by comparing the responses from the native and frontDoor interfaces as described
in Section 4.3. Although the adore-ng kernel module will remove itself from the list of
modules visible with lsmod, detection of the module by the Lie-Detector is possible
with the help of the shadow module list (see discussion in Section 4.4).

The rule set used in X-Spy’s event-driven protection mechanism contained about
110 rules, e.g. to protect forensically relevant files (e.g. /var/log/messages and
/var/log/wtmp) and to prevent access to raw memory (/dev/(k)mem), secu-
rity relevant configuration files (/etc/ssh.config), and operating system tools
(/bin/ls). In addition, we specified an explicit list of allowed kernel modules (mod-
ule white-listing). Once the rule set was active, it either generated security events with
information about the offending processes in the PVM or successfully prevented the
deletion or truncation of log-files and the modification of configuration and utility files.

Performance Impact. To measure the performance impact of the Lie-Detector and the
event-driven approach, we used a single machine implementing a web server scenario.
The PVM hosted an Apache web server, and multiple clients were simulated using
the ab performance benchmarking tool (see http://httpd.apache.org/docs/
2.0/programs/ab.html). The networks were virtual and internal to this machine.

Figure 3(a) shows that the performance impact of the Lie-Detector depends on how
often it is run. The overhead is roughly 31% when it is running continuously, 20% when
it is run every 10 sec, and 4% when it is run every 30 sec. Most practical applications
will run infrequent scans. In this case, the performance impact of X-Spy is negligible,
particularly when compared with the performance reduction of moving Linux into a VM.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html

140 B. Jansen et al.

0

100

200

300

400

500

600

700

800

900

No Lie Detection Lie Detection
every 30s

Lie Detection
every 10s

Lie Detection
continously

R
eq

u
es

ts
/s

(a) Impact of Lie-Detector

0

100

200

300

400

500

600

700

800

Linux Native Linux Xen Unmodified Linux Xen w ith
Event-Driven

Detection

R
eq

u
es

ts
/s

(b) Impact of protective measures

Fig. 3. Performance impact of X-Spy components: number of fulfilled requests per second in the
HTTP benchmark

In a real-world setting, the frequency of “Lie Detection” should be chosen based on
the expected time until an intrusion occurs and the expected time until such an intrusion
is detected. The latter is an important factor because it denotes the critical time window
between the intrusion and its detection when the PVM is at the mercy of the intruder,
who can take arbitrary actions (such as installing a fake website or copying private infor-
mation onto a different system). If the PVM runs a critical service in which the critical
time window should be minimized, then the Lie-Detector should be run continuously.

As seen in Figure 3(b), the event-driven method results in a performance loss of about
4%. Compared with the 34% overhead incurred by changing from a service running on
a non-virtualized platform to that running on a Xen-based PVM, the loss incurred by
the event-driven approach is minor.

5 Quantifying the Impact of Virtualization on Node Reliability

In this section, we use combinatorial modeling to perform a reliability analysis of re-
dundant fault-tolerant designs involving virtualization on a single physical node and
compare them with the non-virtualized case. The results of the analysis highlight the
importance of improving the reliability of the hypervisor.

We consider a model in which multiple VMs run concurrently on the same node and
offer identical service. We derive lower bounds on the VMM reliability and the number
of VMs required for the virtualized node in order to have better reliability than in the
non-virtualized case. We also analyze the reliability impact of moving a functionality
common to all VMs out of the VMs and into the VMM. In addition, we analyze the
reliability of a redundant execution scheme that can tolerate the corruption of one out of
three VMs running on the same physical host, and compare it with the non-virtualized
case. Our results point to the need for careful modeling and analysis before a design
based on virtualization is used.

Combinatorial modeling and Markov modeling are the two main methods used for
reliability assessment of fault-tolerant designs [28]. We chose combinatorial modeling
because its simplicity enables easy elimination of “hopeless” choices in the early stage

Architecting Dependable and Secure Systems Using Virtualization 141

of the design process. In combinatorial modeling, a system consists of series and paral-
lel combinations of modules. The assumption is that module failures are independent.
In a real-world setting, where module failures may not be independent, the reliability
value obtained using combinatorial modeling should be taken as an upper bound on the
system reliability.

Non-Virtualized (NV) Node: For our reliability assessment, we consider a non-
virtualized single physical node as the base case. We model the node using two mod-
ules: hardware (H) and the software machine (M) consisting of the operating system,
middleware, and applications (Figure 4(a)) . Thus, the node is a simple serial system
consisting of H and M , whose reliability is given by RNV

sys = RHRM , where RX

denotes the reliability of module X (Figure 4(b)).

Hardware H

OS + Application

M

(a) Architecture

H M

(b) Combinatorial Model

Fig. 4. Non-virtualized node

. . .

Hardware H

Virtual

Machine

Mn

Virtual

Machine

M1

Virtual Machine
Monitor V

(a) Architecture

nM

M
.
.
.H V

1

(b) Combinatorial Model

Fig. 5. Node with n VMs

Virtualized Node with n Independent, Identical VMs: Figure 5(a) shows a physi-
cal node consisting of H , a type-1 VMM (V) that runs directly on the hardware (such
a VMM is referred to as a hypervisor), and one or more VMs ({Mi}, i ≥ 1). The
VMs provide identical service concurrently and independently (i.e., without the need
for strong synchronization). For example, each VM could be a virtual server answering
client requests for static web content. Thus, the node is a series-parallel system (Fig-
ure 5(b)) whose overall reliability is given by Rn

sys = RHRV [1 −
∏n

i=0(1 − RMi)].
Here, we consider the reliability of the hardware to be the same as that in the non-
virtualized case because the underlying hardware is the same in both cases. An obvious
concern is whether the hardware in the virtualized node will register a significant drop
in reliability due to load/stress compared with the non-virtualized node. However, this
concern does not apply to our context of application servers in a data center, in which
typical hardware utilization in a non-virtualized node is abysmally low (less than 5%)
and n is typically in the low tens of VMs.

The condition for the n-replicated service to be more reliable than the non-virtualized
service is given by Rn

sys > RNV
sys . i.e., RHRV [1 −

∏n
i=0(1 − RMi)] > RHRM . For

simplicity, let RMi = RM for all 1 ≤ i ≤ n. This is a reasonable assumption, as each
VM has the same functionality as the software machine M in the non-virtualized case.
Then, the above condition becomes

RV [1 − (1 − RM)n] > RM . (1)

142 B. Jansen et al.

Inequality (1) immediately yields two conclusions. First, if n = 1, then again the
above condition does not hold (RV < 1). What this means is that it is necessary to have
some additional coordination mechanism or protocol built into the system to compen-
sate for the reliability lost by the introduction of the hypervisor. In the absence of such
a mechanism/protocol, simply adding a hypervisor layer to a node will only decrease
node reliability. Second, if RV = RM , then it is obvious that above condition does not
hold.

It is clear that the hypervisor has to be more reliable than the individual VMs. The
interesting question is how much more reliable. Figure 6 shows that for a fixed RM

value, the hypervisor has to be more reliable when deploying fewer VMs. The graph
also shows that, for fixed values of RM and RV , there exists a lower bound on n be-
low which the virtualized node reliability will definitely be lower than that of a non-
virtualized node. For example, when RM = 0.1 and RV = 0.3, deploying fewer than
4 VMs would only lower the node reliability. This is a useful result, as in many prac-
tical settings, RM and RV values may be fixed, e.g., when the hypervisor, guest OS,
and application are commercial off-the-shelf (COTS) components with no source-code
access.

The equation for Rn
sys also suggests that by increasing the number of VMs, the node

reliability can be made as close to the hypervisor reliability as desired. Suppose we
desire the node reliability to be R, where R < RV . Then, R = RHRV [1−(1−RM)n].
Assume that the hardware is highly reliable, i.e., RH � 1. Then, the above equation
becomes the inequality,

R < RV [1 − (1 − RM)n]
=⇒ (1 − RM)n < 1 − R

RV

=⇒ n. log(1 − RM) < log(1 − R
RV

)
Dividing by log(1 − RM), a negative number, we obtain,

n >
log(1 − R

RV
)

log(1 − RM)
. (2)

Inequality (2) gives a lower bound on the number of VMs required for a virtualized
physical node to meet a given reliability requirement. In practice, the number of VMs
that can be hosted on a physical node is ultimately limited by the resources available
on that node. Comparing the lower bound with the number of VMs that can possibly
be co-hosted provides an easy way of eliminating certain choices early in the design
process.

Figure 7 shows the lower bound for n for two different R values (0.98 and 0.998)
as the VM reliability (RM) is increased from roughly 0.1 to 1.0, with the hypervisor
reliability fixed at 0.999. The figure shows that for fixed RV and RM values, a higher
system reliability (up to RV) can be obtained by increasing the number of VMs hosted.
However, when n is large, one is faced with the practical difficulty of obtaining suffi-
cient diversity to ensure that VM failures are independent.

Moving Functionality out of the VMs into the Hypervisor: We now analyze the
reliability impact of moving a functionality out of the VMs and into the hypervisor.
As before, our system model is one in which a physical node has n ≥ 1 independent
and concurrently operating VMs providing identical service. Consider a functionality f

Architecting Dependable and Secure Systems Using Virtualization 143

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
w

er
 B

ou
nd

 o
n

R
el

ia
bi

lit
y

 o
f H

yp
er

vi
so

r
(R

V
)

Reliability of Virtual Machine (RM)

n=2
n=3
n=4
n=8

n=16
n=32

Fig. 6. Lower bound on the hypervisor reli-
ability for a physical node with n indepen-
dent and concurrently operating VMs pro-
viding identical service

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
w

er
 B

ou
nd

 o
n

N
um

be
r

of
 V

M
s

(n
)

Reliability of Virtual Machine (RM)

R = 0.98
R = 0.998

Fig. 7. Lower bound on the number of VMs
to achieve desired reliability R for a phys-
ical node with n independent and concur-
rently operating VMs providing identical
service when RV = 0.999

’M1

...H V

f

f

Mn
’

(a) Configuration C1: Functionality f im-
plemented within each VM

’M1

...H V

Mn

F

’

(b) Configuration C2: Functionality F
implemented as part of Hypervisor

Fig. 8. Moving functionality out of the VMs into the hypervisor

implemented inside each VM. Then, each VM Mi can be divided into two components,
f and M

′

i , the latter representing the rest of Mi. Figure 8(a) shows the reliability model
for a node containing n such VMs. Let us call this node configuration C1. Further,
suppose that the functionality f is moved out of the VMs and substituted by component
F implemented as part of the hypervisor. Now, the new hypervisor consists of two
components F and the old hypervisor V . Figure 8(b) shows the reliability model for a
node with the modified hypervisor. Let us call this node configuration C2.

We now derive the condition for C2 to be at least as reliable as C1. For simplicity, let
us assume that RM

′
i

= RM ′ for all 1 ≤ i ≤ n. Then, the desired condition is

RC2
sys ≥ RC1

sys

=⇒ RHRV RF [1 − (1 − RM ′)n] ≥ RHRV [1 − (1 − RfRM ′)n]

=⇒ RF ≥ [1 − (1 − RfRM ′)n]
[1 − (1 − RM ′)n]

. (3)

It is easy to see from Figure 8 that if there is only one VM, it does not matter whether
the functionality is implemented in the hypervisor or in the VM. We can also confirm
this observation by substituting n = 1 in inequality (3).

144 B. Jansen et al.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
w

er
 B

ou
nd

 o
n

R
el

ia
bi

lit
y

 o
f F

un
ct

io
na

lit
y

w
he

n
 M

ov
ed

 to
 H

yp
er

vi
so

r
(R

F
)

Reliability of Functionality Implemented in VM (Rf)

RM’ = 0.75, n = 3
RM’ = 0.90, n = 3
RM’ = 0.95, n = 3
RM’ = 0.99, n = 3

(a) Fixed n, varying RM′

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
w

er
 B

ou
nd

 o
n

R
el

ia
bi

lit
y

 o
f F

un
ct

io
na

lit
y

w
he

n
 M

ov
ed

 to
 H

yp
er

vi
so

r
(R

F
)

Reliability of Functionality Implemented in VM (Rf)

RM’ = 0.75, n = 3
RM’ = 0.75, n = 6
RM’ = 0.75, n = 9

(b) Fixed RM′ , varying n

Fig. 9. Plot of RF ≥ [1 − (1 − RfRM′)n]

[1 − (1 − RM′)n]

Figures 9(a) and (b) illustrate how RF varies as Rf is increased from 0.1 to 1. The
graphs show that for configuration C2 to be more reliable than C1, F has to be more
reliable than f . Figure 9(a) shows that as RM ′ increases, the degree by which F should
be more reliable than f also increases. Figure 9(b) shows that the degree is also consid-
erably higher when more VMs are co-hosted on the same physical host. For example,
even with modest RM ′ and Rf values of 0.75, F has to be ultra-reliable: RF has to be
more than 0.9932 and 0.9994 if n = 6 and n = 9, respectively. Thus, when more than a
handful of VMs are co-hosted on the same physical node, a better system reliability is
more likely to be obtained by retaining a poorly reliable functionality in the VM rather
than by moving the functionality into the hypervisor.

Virtualized Node with VMM-level Voting: Consider a fault-tolerant 2-out-of-3 repli-
cation scheme in which three VMs providing identical service are co-hosted on a single
physical node. The VMM layer receives client requests and forwards them to all three
VMs in the same order. Assume that the service is a deterministic state machine; thus,
the VM replicas yield the same result for the same request. The VMM receives the re-
sults from the VM replicas. Once the VMM has obtained replies from two replicas with
identical result values for a given client request, it forwards the result value to the cor-
responding client. Such a scheme can tolerate the arbitrary failure of one VM replica,
and is similar to the one suggested in the RESH architecture for fault-tolerant replica-
tion using virtualization [29]. Assuming that the VMs fail independently, the system
reliability is given by

R2−of−3
sys = RHRV [R3

M +
(

3
2

)
R2

M (1 − RM)].

Then, R2−of−3
sys > RNV

sys gives the condition for the 2-out-of-3 replication scheme to be
more reliable than the non-virtualized service. Thus, we obtain

RHRV [R3
M +

(
3
2

)
R2

M (1 − RM)] > RHRM

=⇒ RV >
1

3RM − 2R2
M

. (4)

Architecting Dependable and Secure Systems Using Virtualization 145

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
w

er
 B

ou
nd

 o
n

R
el

ia
bi

lit
y

 o
f H

yp
er

vi
so

r
(R

V
)

Reliability of Virtual Machine (RM)

Fig. 10. Plot of (3RM − 2R2
M)−1 < RV < 1

Inequality (4) gives a lower bound on the hypervisor reliability for the 2-out-of-3
replication scheme to have better reliability than the non-virtualized case. Figure 10
shows a plot of 1

3RM−2R2
M

< RV < 1. It is clear from the graph that there exists no

RV value that satisfies inequality (4) and is less than 1 when RM ≤ 0.5. In other words,
if the VM reliability (i.e., the operating system and service reliability) is poor to begin
with, then the 2-out-of-3 replication scheme will only make the node reliability worse
even if the hypervisor is ultra-reliable. This result concurs with the well-known fact that
any form of redundancy with majority voting is not helpful for improving overall system
reliability when the overall system is composed of modules with individual reliabilities
of less than 0.5 [28]. The graph also shows that the higher the hypervisor reliability, the
larger the range of VM reliability values for which the 2-out-of-3 replication scheme
has better reliability than the non-virtualized case. For example, when RV = 0.98, the
range of VM reliability values that can be accommodated is greater than the range when
RV = 0.9.

6 An Architecture for a More Reliable Xen VMM

As shown by the model-based analysis in Section 5, it is highly desirable to make the
VMM as reliable as possible to improve the overall reliability of a virtualized node. In
this section, we leverage our X-Spy implementation to propose a reliability-enhanced
design of the popular Xen open-source VMM [1].

The Xen VMM (Figure 11(a)) consists of a hypervisor core and a privileged domain
(or VM) called Dom0 or domain zero. The hypervisor core is small in size and con-
cerned with virtualizing the memory and CPU. Dom0 is a full-fledged VM running a
guest OS (Linux) and virtualizes other hardware devices (such as disks and network
interfaces). Dom0 is the first domain that is created, and controls all other domains,
called user domains or DomUs. For any given physical device in Xen, the native device
driver is part of at most one VM. If the device is to be shared with other VMs, then
the VM with the native device driver makes the device available through a back-end
driver. Any VM that wants to share the device exports a virtual device driver called the
front-end driver to the back-end driver. Every front-end virtual device has to be con-
nected to a corresponding back-end virtual device; only then does the front-end device

146 B. Jansen et al.

Physical Hardware

Management
of VMs,

Virt. Devices,
and security

Dom0

Xen Hypervisor

User domains

(a) Normal Xen Architecture

Physical Hardware

R-Dom0 User domains

Xen Core

Dom0.A Dom0.B Dom0.C

mutual intrusion
monitoring

periodic intrusion reports

Leader Selection, Trust Vote,
Termination, and Rejuvenation

(b) R-Xen Architecture

Fig. 11. Enhancing the Reliability of the Xen VMM

become active. The mapping is one-to-one, i.e., each front-end virtual device from each
user domain is mapped to a corresponding back-end virtual device. The communication
between the back-end and front-end drivers takes places through shared memory and
event channels. The event channel is used for sending simple lightweight notifications
and the shared memory is used for sending requests and data.

As Dom0 is relatively large, we expect its reliability to be lower than that of the
hypervisor core. Thus, improving the reliability of Dom0 is crucial to improving the re-
liability of the Xen VMM as a whole. We combine some of the technologies described
in Section 3, namely, intrusion detection, enforcing fail-stop behavior, and intrusion re-
sponse in form of software rejuvenation, to architect a more reliable Xen VMM, which
we call R-Xen.

In R-Xen, we enhance the reliability of Dom0 by replication (Figure 11(b)). Dom0
is a single logical entity that actually consists of three privileged domains, Dom0.A,
Dom0.B, and Dom0.C, with identical privilege levels. The three replicas mutually mon-
itor each other using the techniques we described above in our X-Spy implementation.
Specifically, each Dom0 replica is simultaneously the PVM and the SSVM for the other
two Dom0s. Periodically, the Dom0 replicas submit a fault detection vote to the hyper-
visor core that indicates whether one of its two peers is thought to be compromised.
If any given Dom0 replica is labeled as being faulty by its two peer SSVMs, then the
replica will be terminated and rejuvenated by the hypervisor. In this way, we enforce
fail-stop behavior of the replica despite the presence of a more severe kind of fault in
the replica. The hypervisor core then starts a new Dom0 replica as a replacement of the
terminated one.

One of the Dom0 replicas is designated as active by the hypervisor core, and it is this
active replica that provides the back-end drivers for the devices of the user domains. The
other two replicas are designated as passive, and do not provide any back-end devices.
As mentioned above, each of the three Dom0 replicas monitors and is being monitored
by the other two. If the hypervisor gets reports from two independent replicas labeling
the third replica as faulty, then the hypervisor terminates that replica and replaces it
with a new Dom0 replica. If the terminated replica is a primary, then the hypervisor
designates one of the backups as the new primary replica by re-connecting the front-end
devices of the user domain(s) to the replica’s back-end devices. The disconnection and
reconnection of the user domain(s) to a different Dom0 has already been implemented

Architecting Dependable and Secure Systems Using Virtualization 147

in Xen and is used for live migration of domains. Therefore, the code can be reused.
The hypervisor itself has to actively give permissions for doing the reconnection and
re-routing the data from the old Dom0 to the new one. It also has to shutdown the old
Dom0 after the reconnection process has been completed. Using a previously started
backup as the new primary results in less interruption to the user domain than using
the replacement replica (which has to be booted from scratch) as the new primary. It
also enables the booting of the replacement replica to occur concurrently to the re-
connection of the front-end devices. Like other fault-detection-based techniques, there
is the drawback of detection latency, i.e., a time delay between the actual occurrence of
the fault and its detection. I/O requests sent by the user domain(s) during this latency
period may have to be re-issued. On the positive side, our technique can be implemented
in a manner that is completely transparent to the user domain(s). In other words, a
DomU running on normal Xen should be able to run without modification on this type
of R-Xen as well.

7 Conclusion

Virtualization offers enormous opportunities for flexible and cost-efficient management
and deployment of systems. It is clear that the scope of virtualization will expand in the
future. Hence, it is important to gain a better understanding of the impact of virtualiza-
tion on non-functional system properties such as dependability and the opportunities it
creates for improving them.

We have described methods of leveraging virtualization for improving system de-
pendability and security, and described a Xen-based implementation of a subset of
them. We used combinatorial modeling to analyze the reliability impact of introduc-
ing virtualization. Our results provide useful information on the type of conditions that
need to be satisfied to uphold overall system reliability in the presence of virtualization.
In light of the general trend to move services out of the guest OS into the virtualization
layer, our results indicate the need for a more cautious approach. Future work includes
more rigorous modeling and analysis of dependability attributes in the context of virtu-
alization, particularly in dynamic situations such as VM migration.

Our analysis also highlighted the importance of the VMM’s reliability in a virtualized
system for overall system reliability. That motivated our work on R-Xen, a variant of
the Xen open-source VMM designed for improved reliability. R-Xen employs three-
fold replication of the privileged Dom0, transparent and mutual monitoring of the Dom0
replicas based on our X-Spy intrusion detection and protection framework, enforcement
of fail-safe behavior in a replica believed to be faulty, and rejuvenation of that replica.

References

1. Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the Art of Virtualization. In: Proc. 19th ACM Symposium on Op-
erating Systems Principles (SOSP 2003), October 2003, pp. 164–177 (2003)

2. Garfinkel, T., Rosenblum, M.: When Virtual is Harder than Real: Security Challenges in
Virtual Machine Based Computing Environments. In: Proc. 10th Workshop on Hot Topics in
Operating Systems (HotOS-X) (May 2005)

148 B. Jansen et al.

3. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proc. Network and Distributed Systems Security Symposium (NDSS
2003) (February 2003)

4. Bressoud, T.C., Schneider, F.B.: Hypervisor-Based Fault Tolerance. ACM Trans. Comput.
Syst. 14(1), 80–107 (1996)

5. VMware: VMware Double-Take,
http://www.vmware.com/pdf/vmware doubletake.pdf

6. Douceur, J.R., Howell, J.: Replicated Virtual Machines. Technical Report MSR TR-2005-
119, Microsoft Research (September 2005)

7. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: Enabling Intrusion
Analysis through Virtual-Machine Logging and Replay. SIGOPS Operating System Re-
view 36(SI), 211–224 (2002)

8. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting Past and Present Intrusions
through Vulnerability-Specific Predicates. In: Proc. 20th ACM Symposium on Operating
Systems Principles (SOSP 2005), pp. 91–104 (2005)

9. King, S.T., Chen, P.M.: Backtracking Intrusions. In: Proc. 19th ACM Symposium on Oper-
ating Systems Principles (SOSP 2003), October 2003, pp. 223–236 (2003)

10. King, S.T., Mao, Z.M., Lucchetti, D.G., Chen, P.M.: Enriching Intrusion Alerts through
Multi-Host Causality. In: Proc. Network and Distributed System Security Symposium
(NDSS 2005) (2005)

11. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging Operating Systems with Time-Traveling
Virtual Machines. In: Proc. 2005 Annual USENIX Technical Conference, April 2005, pp.
1–15 (2005)

12. Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure coprocessor-based intrusion
detection. In: Proc. 10th ACM SIGOPS European workshop, pp. 239–242 (2002)

13. Nick, L., Petroni, J., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - A Coprocessor-based
Kernel Runtime Integrity Monitor. In: Proc. 13th USENIX Security Symposium, p. 13 (2004)

14. Laureano, M., Maziero, C., Jamhour, E.: Intrusion Detection in Virtual Machine Environ-
ments. In: Proc. 30th EUROMICRO Conference (EUROMICRO 2004), pp. 520–525 (2004)

15. Dike, J.: A User-Mode Port of the Linux Kernel. In: Proc. 4th Annual Linux Showcase &
Conference, p. 7 (2000)

16. Litty, L.: Hypervisor-Based Intrusion Detection. Master’s thesis, University of Toronto
(2005)

17. Jiang, X., X.W., Xu, D.: Stealthy Malware Detection through VMM-based Out-of-the-Box
Semantic View Reconstruction. In: Proc. 14th ACM conference on Computer and Commu-
nications Security (CCS 2007), pp. 128–138 (2007)

18. Beck, D., Vo, B., Verbowski, C.: Detecting Stealth Software with Strider GhostBuster. In:
Proc. International Conference on Dependable Systems and Networks (DSN 2005), pp. 368–
377 (2005)

19. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live
Migration of Virtual Machines. In: Proc. 2nd Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2005, pp. 273–286 (2005)

20. Agbaria, A., Friedman, R.: Virtual Machine Based Heterogeneous Checkpointing. Software:
Practice and Experience 32(1), 1–19 (2002)

21. Washington Post: A Time to Patch (2006), http://blog.washingtonpost.com/
securityfix/2006/01/a time to patch.html

22. Reiser, H.P., Kapitza, R.: Hypervisor-Based Efficient Proactive Recovery. In: Proc. 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007), pp. 83–92
(2007)

23. Debar, H., Davei, M., Wespi, A.: A Revised Taxonomy of Intrusion-Detection Systems. An-
nales des Telecommunications 55(7-8), 83–100 (2000)

http://www.vmware.com/pdf/vmware_doubletake.pdf
http://blog.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html
http://blog.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html

Architecting Dependable and Secure Systems Using Virtualization 149

24. Chen, P.M., Noble, B.D.: When Virtual is Better than Real. In: Proc. 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIII), May 2001, pp. 133–138 (2001)

25. Kotsovinos, E., Moreton, T., Pratt, I., Ross, R., Fraser, K., Hand, S., Harris, T.: Global-scale
Service Deployment in the XenoServer Platform. In: Proc. 1st USENIX Workshop on Real,
Large Distributed Systems (WORLDS 2004) (December 2004)

26. Ross, R.: CoWNFS, http://www.russross.com/CoWNFS.html
27. stealth: Adore-ng v0.42, http://packetstormsecurity.org/
28. Johnson, B.W.: Design and Analysis of Fault-Tolerant Digital Systems. Addison-Wesley,

Reading (1989)
29. Reiser, H.P., Hauck, F.J., Kapitza, R., Schröder-Preikschat, W.: Hypervisor-Based Redun-

dant Execution on a Single Physical Host. In: Proc. 6th European Dependable Computing
Conference (EDCC 2006), p. S.2 (2006)

http://www.russross.com/CoWNFS.html
http://packetstormsecurity.org/

Model-Based Approaches for Dependability in

Ad-Hoc Mobile Networks and Services�

Gergely Pintér, Zoltán Micskei, András Kövi, Zoltán Égel,
Imre Kocsis, Gábor Huszerl, and András Pataricza

Budapest University of Technology and Economics
Department of Measurement and Information Systems

{pinterg,micskeiz,kovi,zegel,ikocsis,huszerl,pataric}@mit.bme.hu

Abstract. This paper presents our results in the field of Model Driven
Design (MDD) gained in dependable, distributed application develop-
ment communicating over ad-hoc mobile networks. The context of the
discussion is the Highly Dependable IP-based Networks and Services
(Hidenets) research project. Our efforts involve (i) construction of the
platform’s UML model, (ii) construction of a metamodel illustrating the
intended organization of applications running on the platform, (iii) defin-
ing a UML profile on the basis of the metamodel facilitating the integra-
tion of the basic services provided by the Hidenets platform to support
high availability of the application and (iv) providing a set of depend-
ability enforcing design patterns to support the implementation of ap-
plications built for the Hidenets platform using our profile. The paper
highlights the benefits of applying model-based approaches in the context
of complex dependability frameworks.

1 Introduction

The aim of Hidenets is to develop and analyze end-to-end resilience solutions
for distributed applications and mobility-aware services in ubiquitous commu-
nication scenarios. Technical solutions will be developed for applications with
high dependability requirements in the context of ad-hoc communication with
infrastructure support. These solutions are essential for the deployment of fu-
ture mission-critical applications as the use of off-the-shelf components (COTS)
and wireless communication links will dramatically decrease the costs of mar-
ket entry, making such ubiquitous scenarios both technically and commercially
feasible. However, COTS components and wireless links in an ad-hoc network
in which neither the participation nor any QoS of members is guaranteed leads
necessarily to an inherently unreliable system, and therefore end-to-end system-
level resilience solutions addressing both accidental and malicious faults are to
be developed. Hidenets solutions are expected to contribute to users’ perception
of trustworthiness of future wireless services strongly impacted by availability
and resilience aspects. Our efforts in the framework of the Hidenets project can
be grouped into two main categories:
� This work was partially supported by IST-FP6-STREP-26979 (HIDENETS).

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 150–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model-Based Approaches for Dependability 151

Modeling the platform including:
– Construction of the use-case model of key HA services, which organizes

use-cases into a straightforward package hierarchy indicating explicitly
the dependency relations between services. This model answers the ques-
tion: “What are the key services provided by the platform and what are
the interdependency relations amongst them?”.

– Definition of a component model of services, which specifies their inter-
faces and reflects the interdependency relations of required and provided
interfaces. This model answers the question: “What are the interfaces of
services exposed by the platform to application developers and how are
these interfaces used within the platform for interconnecting services?”.

Application modeling support involving:
– Construction of a metamodel illustrating the intended organization of

applications running on the platform. This metamodel identifies the key
concepts from an application developer’s point of view with respect to
various services, introduces the corresponding metaclasses and connects
these newly introduced metaclasses to core UML concepts. This step
answers the question: “What is the intended organization of applications
running on the platform and how do the platform-related parts correspond
to fundamental UML concepts?”.

– Defining a UML profile for the metamodel; stereotypes and tagged values
enable the annotation of models with dependability and platform-related
information. This step answers the question: “How to add platform-
related information to ordinary UML models of dependable applications
that are intended to take advantage of the platform?”.

– Providing a set of design patterns to support the implementation of ap-
plications built for the platform using our profile. These patterns can be
seen as detailed examples for implementing various dependability-related
parts of applications. This step answers the question: “What are the best
practices for organization and implementation of various dependability-
related parts of application intended to be executed on the platform?”.

Conformance to the existing standards was a main objective thus emphasis was
put on building the metamodel on such widely known and industrially accepted
conceptual frameworks such as OMG’s UML Profile for Schedulability, Perfor-
mance and Time (SPT) [1] for modeling application–platform interaction or SA
Forum’s Application Interface Specification [2] integrating the most important
means for HA assurance into a unifying framework.

The key part of the paper is organized according to the structure outlined
above: Sec. 2 discusses the UML model of the platform involving the use-case
model and the definition of components and their interfaces, Sec. 3 outlines
our efforts concerning application development support involving the metamodel
construction, profile definition and the set of design patterns. Sec. 4 introduces
a case study illustrating the application of the profile and the design patterns.
Finally, Sec. 5 presents methods for the verification of the developed application
using testing and fault modeling.

152 G. Pintér et al.

Network Related ServicesResilience Kernel

High-Level Middleware Services

Applications

Fundamental highly reliable
services (e.g., timing failure
detection, authentication, reliable
clocks, etc.).

Network HW
related services
(e.g., neighbor
discovery, radio
management, etc.).

High-level functions not
belonging to the resilience
kernel due to their complexity
(e.g., cooperative backup,
proximity map, etc.).

Applications
running on the
Hidenets platform.

Fig. 1. The Hidenets Platform

2 Platform Model

This section provides an overview on the first group of modeling efforts: con-
struction of the platform’s UML model. The model consists of two key parts:
(i) the use-case model indicating the services as use cases and outlining their
interdependency relations and (ii) the component model specifying the interfaces
of these services. Sec. 2.1 introduces the use-case model and Sec. 2.2 outlines
interfaces and the organization of services into components.

2.1 Use-Case Model of Services

This subsection outlines the process of constructing a use-case view of services
required by dependable mobile applications. The goal of this step was similar to
the usual use case-modeling at the beginning of model-based software develop-
ment process: (i) identification of the system boundaries i.e., a clear distinction
of which are the services to be developed and which are the ones expected from
the underlying HW/SW platform, (ii) discover the dependency relations amongst
various services and (iii) ensuring that all the dependencies will be resolved i.e.,
all feature required by a service will be implemented or explicitly indicated as a
requirement against the underlying platform.

In use-case modeling the modeler would like to get answers to the following
questions: “Who/what will use the system to be developed and who/what will
be used by the system?” (i.e., identification of actors), “How is an actor using the
system or used by the system?” (i.e., identification of use-cases) and “From the
entire structure of the problem, which are those parts that are to be developed?”
(i.e., identification of system boundaries). By definition [3] an actor is an entity
outside of the system; an actor can be a person, a hardware device or another
system. A use-case is a set of activities to be performed by the system that
is of value for one or more actors (systems are obviously developed to provide
such valuable services). The indication of system boundaries enables us to clearly
highlight which are those use cases that are to be developed by us.

The UML notation for actors is a stick man icon, use-cases are graphically
represented by ellipses, while system boundaries are shown as a rectangle con-
taining the use cases to be implemented; actors are connected to use-cases by
solid lines. Various dependency relations (including, extension, etc.) can be in-
dicated amongst use-cases by connecting the use cases by dashed arrows.

Model-Based Approaches for Dependability 153

Fig. 2. Organization of Use-Case Packages

In case of a usual software development process it is relatively easy to identify
actors since they are typically the users of the system; in case of a middleware
the notion of actor usually represents those applications that rely on services of
the platform thus explicit emphasis was not put on detailed modeling of actors:
the single actor in the use-case model of the Hidenets platform represents those
applications that use platform-specific services and this single actor was not
indicated in the diagrams.

The Hidenets platform organizes resiliency-related services into three groups
(Fig. 1): (i) fundamental, highly reliable core services, called Resilience Ker-
nel, (ii) complex thus less trusted middleware services and (iii) closely network
hardware-related components.

Use-cases obviously correspond to groups of services provided by the platform.
In case of Hidenets over 30 services were identified thus their detailed discussion
is out of the dimensions of this paper; after a brief summary the rest of the
paper will be focused on two easy to understand services (authentication and
timing failure detection) as examples. Use-cases are organized into packages in
correspondence to the classification above (Fig. 2):

Resiliency Kernel Services are those relatively simple core services that are
considered to be highly reliable parts of the platform: (i) authentication aims
at identification of peers and securing their communication by providing
various encryption, key negotiation, digital signature etc. functions; (ii) local
and distributed measurement provides support for distributed measuring of
some duration in time; (iii) reliable clocks are used for obtaining the actual
local time on a node also taking into consideration the possible deviation
from the global time estimation; (iv) timing failure detection checks whether
a timed action appears (finishes, etc.) in time and (v) trust and cooperation
service is able to evaluate locally the level of trust of neighboring entities
and to manage cooperative operations.

High-Level Resiliency Services are those complex functionalities that do
not belong the resiliency kernel due to their inherent complex nature: (i)
cooperative backup aims at the discovery of storage resources in the vicinity

154 G. Pintér et al.

of a node and negotiating a contract for using these resources for data backup
purposes; (ii) diagnostic management judges whether various parts of the
system are working properly or not; (iii) network context repository is a
database for network and communication related information; (iv) proxim-
ity map maintains a local view in a node about its vicinity; (v) QoS coverage
management evaluates whether the QoS requirements of an application are
satisfied, or re-negotiation is needed; (vi) reconfiguration management rec-
ognizes if a reconfiguration is needed in the system and decides which policy
has to be applied and (vii) replication management takes care of state sharing
between replicated stateful services.

Network Hardware-Related Services involve (i) multi-channel, multi-radio
management (coordinating multiple radio devices attached to a single node),
(ii) multi-channel, multi-radio routing (advanced routing algorithms using
the redundant radio devices), (iii) neighbor discovery (detecting the pres-
ence of other nodes in the vicinity), (iv) ad-hoc topology control (exchang-
ing routing-related topology information amongst nodes), (v) IP routing
(adapted to specialties of the ad-hoc domain), (vi) IP forwarding and route
resilience (policing, marking and remarking of packets according to QoS clas-
sification and traffic contracts), (vii) broadcast, multicast and geocast (reduc-
ing the amount of traffic at the sender side and in the network due to multiple
deliveries of the same content), (viii) gateway agent (connectivity between
ad-hoc and infrastructure networks), (ix) link failure detection (detection of
broken links), (x) in-stack and (xi) performance monitoring (various moni-
toring activities within the protocol stack), (xii) communication adaptation
(improving the system level communication performance and user experi-
ence), (xiii) QoS differentiation (end-to-end QoS management), (xiv) gate-
way network selection (selection of network technologies or base stations),
and (xv) profile management (describing the capabilities of nodes).

Obviously there are various use dependency relations amongst services, e.g.,
the local and distributed measurement service (see above) uses reliable clocks for
performing local measurements and the authentication service for secure commu-
nication. These dependency relations were discovered by carefully investigating
the initial verbal functional specification of services [4] to be developed and
explicitly asking the corresponding project partners to collect what are those
services that are used by the service developed by them. Since at the initial
phase of the project exact interfaces of services were not available, the discovery
of these dependencies aimed only at ensuring that there are no such services that
are expected by a part of the platform but are actually not provided by anyone.

As shown in Fig. 2 use-cases are organized into four packages corresponding to
the classification above; contents of the resiliency kernel package are explicitly
shown: note that dependencies amongst services that were textually outlined
above appear as UML dependency relations amongst use-cases.

In this step the services provided by the platform were identified, discovered
the dependencies amongst services and organized this information into a UML
use-case model. The benefits of this activity are not specific to the Hidenets

Model-Based Approaches for Dependability 155

Table 1. Functionalities of the Authentication and Timing Failure Detection Services

Function Arguments Return value
Authentication Establish connection peer identifier session identifier

Decrypt data encryption key, data block data block
Decrypt message session identifier, message message
Encrypt data encryption key, data block data block
Encrypt message session identifier, message message
Sign data encryption key, data block digital signature
Sign message session identifier, message digital signature
Verify data data block, signature Boolean (y/n)
Verify message message, signature Boolean (y/n)

Timing failure Initiate detection deadline, call-back detection identifier
detection Shutdown detection detection identifier

project by any means: for any non-trivial system it is highly recommended to
clearly identify the services to be implemented at the beginning of the project
and by the clear indication of service dependencies to prevent the introduction
of dependencies that can not be met.

2.2 Component Model and Interface Definitions

This subsection outlines the process of defining the interfaces of the various
services. The key goal of this step was similar to the identification of top-level
components of a complex software system, with the clear indication of required
and provided interfaces – this clear separation of concerns enables concurrent
team development of the individual components, without having to worry about
integration difficulties at the end of the project. This section can be seen as
an answer to the question: “What are the interfaces of services exposed by the
platform to application developers and how are these interfaces used within the
platform for interconnecting services withing the framework?”.

In order to facilitate re-use of previously published field expertise, emphasis
was put on the integration of our work to corresponding standards e.g., timing
related data types (deadlines, intervals, etc.) were derived from the corresponding
concepts of the SPT Profile [1], while QoS related data types (e.g., service level
agreements of the QoS coverage management and QoS differentiation services)
were derived from the corresponding concepts of the QoS and FT Profile [5].

This step consisted of walking through all the services to be provided by
the platform (i.e., use-cases identified above) and defining the interface of the
services i.e., for each functionality of each service the following information was
collected (i) the name, (ii) the argument list, (iii) the return type and (iv) the terse
textual description of the function. This step is illustrated with two examples:
the authentication and the timing failure detection services.

The authentication service provides the following key functionalities (Tab. 1):
(i) establishing a secure communication session with another peer, (ii) encrypt-
ing arbitrary data using a symmetric key, (iii) encrypting a message within the

156 G. Pintér et al.

context of a session, (iv) decrypting arbitrary data using a symmetric key, (v)
decrypting a message within the context of a session, (vi) digitally signing arbi-
trary data using a private key, (vii) digitally signing a message using a private
key, (viii) verifying if given signature on arbitrary data is valid and (ix) verifying
if a given message signature is valid.

The timing failure detection service is similar to a watchdog processor: in case
of a distributed real-time application a client component that would like to use
a real-time functionality sets up a detection activity to ensure that the called
real-time function returns in time or a timing failure notification is received
from the timing failure detection service. When initiating the detection activity
the client specifies the deadline within the operation called should be finished
and a call-back function: this call-back function of the client will be invoked by
the timing failure detection service if the detection activity is not shut down
before the expiration of the deadline – obviously upon receiving the answer from
the real-time service within the deadline, the client explicitly shuts down the
detection activity. Having outlined the operation, it is easy to see that the timing
failure detection service provides two functions: (i) initiating and (ii) shutting
down a detection activity (Tab. 1). With respect to the application of previous
standards, it is easy to see that SPT’s time interval concepts seamlessly fits to
the deadline attribute to be specified at the initiation of a detection activity.

The functionalities provided by the services were organized into coherent in-
terfaces, where individual functions appear as operations of the corresponding
interface; e.g., for the authentication service (Fig. 3, left side) we introduced
the IAuthentication interface (following the convention of prefixing the names of
interfaces by the I letter) and added operations corresponding to the function-
alities outlined above (writing function names according to the usual Java and
UML style). For the unambiguous definition of operations on interfaces some data
types had to defined, e.g., in case of the IAuthentication::establishConnection op-
eration, the identifier of the peer is represented by the PeerID data type, while
the session identifier is represented by the SessionID data type. UML’s usual
notation for interfaces is a rectangle with the keyword interface�, the name
of the interface and indication of operations in the compartment below.

For each service a UML component was introduced and indicated the inter-
faces provided by the corresponding service; UML’s notation for components
is a rectangle with two smaller rectangles in its upper left part, the keyword
component� and the name of the component; provided interfaces are indi-
cated by small circles attached to the component and indicating the name of the
provided interface. Based on the dependency information stored in the use-case
model the interfaces required by services was also indicated using UML’s nota-
tion: a socket attached to the component with the name of the required interface;
required and provided interfaces are attached to one-another by solid lines. In
case of the timing failure detection service it is easy to see (Fig. 3, right side)
that the TimingFailureDetectionService component provides the ITimingFailure-
Detection interface according to the naming convention above and requires the

Model-Based Approaches for Dependability 157

«interface»
IAuthentication

establishConnection(peer: PeerID):
 SessionID
decryptData(key: EncryptionKey,
 data: DataBlock): DataBlock
decryptMessage(session: SessionID,
 message: Message): Message
...

«interface»
ITimingFailureDetection

initiateDetection(
 deadline: TimeInterval,
 callback: RTFailureCallback):
 DetectionID
shutdownDetection(id: DetectionID)

«component»
AuthenticationService

«component»
TimingFailureDetectionService

«component»
ReliableClockService

«component»
LocalAndDistributedMeasurementService

«component»
TrustAndCooperationService

IReliableClock IAuthentication

IAuthentication

IAuthentication

IAuthentication

IReliableClock

IReliableClock

Functionalities
belonging to the
notion of
authentication...

ILocalAndDistributedMeasurement

ITrustAndCooperationITimingFailureDetection

...this interface is required by the
timing failure detection service and...

...provided by the authentication
service component.

Fig. 3. Components with Required and Provided Interfaces

IReliableClock and IAuthentication interfaces, these interfaces are provided by
components ReliableClockService and AuthenticationService respectively.

As mentioned in the introduction, emphasis was put on the integration of
our model to previously published standards. General dependability concepts
of the models are derived from relevant OMG specifications, e.g., this clearly
appears in the definition of time-related data types: the notions of time instances,
intervals etc. were derived from the corresponding concepts of the SPT Profile
e.g., in case of the timing failure detection service the deadline for finishing a
real-time operation was derived from the time interval concept of SPT. It may
be beneficial to mention that the SPT profile is currently being replaced by
OMG’s novel proposal, MARTE (UML Profile for Modeling and Analysis of
Real-Time and Embedded Systems) [6]; as fundamental time-related concepts
are similar in SPT and MARTE, our data types can be easily fitted to the
new profile once MARTE will be officially released. Second, the middleware
service interfaces offered to the applications are aligned wherever possible with
SA Forum’s Application Interface Specification [2]. For example, the replication
manager uses replicas similarly as the components are used in the Availability
Management Framework. Re-using these concepts in our work offers the following
benefits: (i) reduction of time needed for building the model, (ii) reduction of
possibilities for introducing conceptual errors in the model and (iii) using the
well-known fundamental concepts, the model is also easier to understand.

To put together: this step (i) clearly defined interfaces, (ii) introduced com-
ponents for services, (iii) indicated provided and required interfaces of these
components and (iv) introduced data types on the basis of previously published
standards. The benefits and lessons learned in this step are not Hidenets-specific:
the clear identification of interfaces enables project partners to work indepen-
dently without having to worry about future interface incompatibilities while
the integration to well-known standards enables the knowledge re-use.

158 G. Pintér et al.

2.3 Summary

This section has outlined the UML model of the Hidenets platform: (i) we pre-
sented a use-case model enumerating the services, organizing them into packages
and indicating the dependency relations amongst them and (ii) we outlined the
component model with the unambiguous definition of service interfaces. Obvi-
ously full models could not be presented here: rather two easy to understand
services were selected to be used as examples throughout the entire paper; the
detailed documentation of the platform model was published in the correspond-
ing deliverable of the project [7] and research papers [8,9,10,11,12].

3 Modeling Applications

This section provides an overview on the second group of the modeling efforts:
providing practical support for the development of applications for the Hidenets
platform. Key parts of our corresponding work are as follows: (i) introducing a
metamodel for some dependability-related features provided by the platform, (ii)
definition of a UML profile on the basis of the metamodel and (iii) the specifica-
tion of a set of design patterns providing support for application development.
The main objective of these models, notations and supporting tools is the sup-
port of the best-practice exploitation of the high availability related services
offered by the Hidenets platform.

Below Sec. 3.1 presents an introduction to fundamental concepts of the Model
Driven Architecture, meta-modeling and UML profiles, then Sec. 3.2 introduces
the metamodel, Sec. 3.3 defines the profile, finally Sec. 3.4 outlines some parts
of the design pattern library.

3.1 An Overview on Model Driven Development

Our approach is organized according to OMG’s Model Driven Architecture ini-
tiative (MDA) [13]. This subsection provides a short overview on MDA concepts.

MDA consists of three key steps: (i) platform independent modeling (PIM),
(ii) platform specific modeling (PSM) and (iii) implementation. The platform
independent model of the application is prepared focusing barely on the services
to be delivered, organization of the internal structure etc. without taking into
consideration the features or weaknesses of the target platform, e.g., in case of
graphical user interfaces, a PIM model uses abstract concepts like window, but-
ton etc. without bounding itself to implementations of these concepts in Java
Swing, Microsoft Windows, UNIX X-Window environment etc. The typical out-
comes of PIM step are UML models, i.e., ordinary class, activity, etc. diagrams
without using target-specific features. In the platform specific modeling step the
PIM model is modified such way that features and weaknesses of the target plat-
form are taken into consideration; according to our previous example, abstract
GUI elements are mapped to concepts of the target windowing environment, e.g.,
the button class will be derived from Java Swing’s JButton, etc. Clear separa-
tion of platform independent modeling and mapping the structure to specialties

Model-Based Approaches for Dependability 159

of the target environment results in straightforward re-usability of models since
PIM models are not bound to the target platform. Thus porting the application
to a new platform only requires the modification of the mapping between PIM
and platform specific concepts. In the final implementation step the platform
specific model is implemented in the target language e.g., Java in our example.

The abstract syntax of models built in subsequent steps is defined by so called
metamodels. The metamodel of a modeling language defines key concepts of the
modeling language (e.g., in case of UML class diagrams, classes, interfaces, at-
tributes, associations, inheritance, etc.) as metaclasses and various relations of
these metaclasses – this way one can imagine the metamodel of UML as a class
model of UML itself. According to this observation, a UML model (containing
the modeler-defined classes, packages, behavior etc.) can be seen as an instance
of the UML metamodel. Metamodeling is a fundamental concept in MDA: the
mapping between PIM and PSM actually means the introduction of such new
metaclasses in the basic toolkit of UML that enable the developer to keep using
the well-known syntax of UML while exploiting platform-specific features that
may not have been known at all by designers of UML. For example in case of
development of a software requiring dependable communication facilities, one
can (i) initially design the application using plain UML class and interaction
diagrams focusing only on the services to be delivered by the application (PIM)
then (ii) decide which platform to use as the underlying dependable commu-
nication middleware, (iii) introduce platform specific metaclasses e.g., derive a
dependable communication link metaclass from the UML built-in communication
link metaclass and finally (iv) indicate in her/his model that the link between
two endpoints must be highly dependable.

An important question however is how to introduce new metaclasses into UML
since theoretically this would require the modification of the internal model
representation format of the modeling environment. In order to overcome this
difficulty, OMG has introduced the concept of UML profiles. A UML profile
is a light-weight incremental modification of the metamodel: a profile does not
aim at defining an entire metamodel just the difference between the original
and the desired one. New metaclasses are to be derived from already existing
ones and these new metaclasses will appear as stereotypes attached to their
built-in ancestors, e.g., according to the example above, the newly introduced
DependableLink metaclass is derived from the Link metaclass, thus the profile
declares the DependableLink� stereotype; if this stereotype is applied to a
link in the model, that link is considered to be a DependableLink instance.

3.2 A Metamodel for Dependable Ad-Hoc Mobile Services

This subsection presents a more in-depth investigation of some services provided
by the Hidenets platform to answer the question: “What is the intended organi-
zation of applications running on the platform and how do the platform-related
parts correspond to fundamental UML concepts?”. This investigation is neces-
sitated by the easy to see fact that a set of interfaces barely carries enough
information for properly using any nontrivial services. This subsection will

160 G. Pintér et al.

(i) identify those parts of applications that are relevant for some Hidenets ser-
vices, (ii) describe these application-level concepts at the abstraction level of
the UML metamodel and (iii) provide design patterns that illustrate how to
use Hidenets services from well-organized applications. It will focus again on
authentication and timing failure detection services also discussed above.

First the textual description of how to use services from an application devel-
oper’s point of view is presented:

Authenticated communication is a communication of two peers in a dis-
tributed application. In a software model these peers appear as classes of
the application, the fact that they are in some communicating relation is
indicated by the association between them. From an application developer’s
point of view it would be beneficial to explicitly indicate those classes that
have to be authenticated and those associations through which authenti-
cated communication is performed. Once having marked peers and channels
of authenticated communication, the actual authenticated communication
should be implemented using the authentication service; this involves (i)
initialization of the authenticated channel by calling the IAuthentica-
tion::establishConnection function of the authentication service components
on both nodes, (ii) sending messages by first letting them signed (encrypted,
etc.) by calling IAuthentication::signMessage and (iii) upon the reception
of a message verifying the digital signature on the message by calling IAu-
thentication::verifyMessage – detailed description of this scenario would be
beneficial for developers actually learning the usage of the platform.

Timing failure detection aims at detecting that a real-time operation has
violated the deadline of service delivery; this communication involves two
entities: the provider of the service and the client of the service. Upon the vi-
olation of a deadline, the timing failure detection service calls a call-back op-
eration of the client. The deadline of the operation is indicated in a real-time
service agreement between the two entities. From an application developer’s
point of view, real-time service providers and clients are classes or compo-
nents; the communication of entities is indicated by the association between
them; as the real-time service agreement does not directly belong to any of
entities, this information is best stored in an association class attached to the
association between them; finally a straightforward model of real-time ser-
vices and call-back function is to add them as operations to the corresponding
classes. The usage of timing failure detection feature of the platform is as
follows: (i) the client first initiates a detection activity by calling ITiming-
FailureDetection::initiateDetection (specifying the deadline and the call-back
function to be called upon deadline violation), (ii) calls the real-time service
operation and starts waiting for the answer, if the answer is delivered within
the deadline (iii-a) the client shuts down the timing failure detection activ-
ity by calling ITimingFailureDetection::shutdownDetection, otherwise upon
violation of the real-time contract (iii-b) the timing failure detection service
notifies the client by invoking its call-back function.

Model-Based Approaches for Dependability 161

ClassA class contains
any number of
properties...

Property

Association

AuthenticatedClass

AuthenticatedProperty

AuthenticatedAssociation

ownedAttribute

class

memberEnd

association

1

*

2..*

0,1

ownedAuthenticatedAttribute

class1

*

memberEnd

association

2..*

1

...a property
may represent an
association.

An association
has at least two
ends; these ends
are represented by
properties.

An authenticated class is
such a class that can have any
number of authentication-
related properties...

...an authentication-related
property is such a property
that refers to an authenticated
association.

An authentication-related
association has at least two
ends represented by
authenticated properties.

UML Metamodel Hidenets Metamodel

Fig. 4. Metaclasses Corresponding to the Authentication Service

The definitions above carry information about both the intended organiza-
tion of the application (classes, associations, operations, etc.) and the intended
usage pattern of services. This information will be formally defined by providing
a metamodel of applications running on the Hidenets platform and presenting
design patterns as guidelines for application developers.

In correspondence to the definition of metamodels and profiles above, those
relevant concepts of ad-hoc mobile applications will be captured that are non-
standard UML features. In case of the authentication service three metaclasses
are introduced (Fig. 4): (i) AuthenticatedClass (corresponding to peers of an
authenticated communication, derived from the core UML Class concept), (ii)
AuthenticatedAssociation (corresponding to the association through which the
authenticated communication is performed, derived from UML’s Association
metaclass) and (iii) as association are connected to classes through properties
the AuthenticatedProperty was derived from the Property UML concept.

In case of the timing failure detection service the following metaclasses were
introduced (Fig. 5): (i) RTServiceProvider and (ii) RTServiceClient (correspond-
ing to providers and clients of real-time services respectively, both derived from
the core UML Class concept), (iii) RTService (representing a real-time operation
of the provider, derived from UML’s Operation metaclass), (iv) RTFailureCall-
back (representing call-back functions to be called by the timing failure detection
service upon detecting the violation of a real-time service agreement, obviously
derived from Operation), (v) RTServiceProvision and RTServiceAccess proper-
ties (see above remark about properties above), finally RTServiceAgreement (rep-
resenting real-time service contracts between the provider and the client, derived
from UML’s AssociationClass metaclass).

In order to avoid confusion, the relations between metaclasses introduced
above are shown in the separate diagram of Fig. 6; the organization reflects
UML’s relations between the corresponding ancestor metaclasses (Fig. 5, top
part): the real-time service provider class contains real-time services, while
the client class contains the call-back operation. The two classes are con-
nected through the corresponding properties by the real-time service agreement

162 G. Pintér et al.

RTService RTFailureCallback

RTServiceProvider RTServiceClient RTServiceProvision RTServiceAccess

RTServiceAgreement

Class

Property

Association

ownedAttributeclass

memberEnd
association

AssociationClass
Operation

ownedOperation

1
*

2..* 0,1

*class1

UML Metamodel

Hidenets Metamodel

Fig. 5. Metaclasses Corresponding to the Timing Failure Detection Service

association class; note that a time interval attribute to this metaclass was added
representing the deadline of operation.

3.3 UML Profile for Hidenets Applications

This subsection defines a UML profile in correspondence to the metamodel dis-
cussed above. The profile answers the question: “How to add platform-related
information to ordinary UML models of dependable applications that are in-
tended to take advantage of the platform?” Note that since Hidenets hides most
of mobility-related issues, these concepts do not appear in the profile either,
rather the profile focuses on general dependability concepts.

Translation of a metamodel whose elements were directly derived from UML
concepts as shown above is relatively straightforward: stereotypes have to be
introduced to be attached to built-in concepts and tagged values have to be
created in correspondence to attributes of newly introduced metaclasses. For
example if a new metaclass DerivedMC is derived from the core UML metaclass
CoreMC a stereotype has to introduced to be attached to those instances of
CoreMC that are actually instances of DerivedMC; let this stereotype be called
derived; this way CoreMC model elements can be tagged with the stereotype
derived� to indicate that they are actually instances of DerivedMC. If Derived
has an attribute attr, it has to be indicated that for classes with stereotype
derived� the value of attribute attr can be specified in the model.

In case of the metamodel outlined above for all the metaclasses stereo-
types were introduced by prefixing the name of the represented metaclass
with hi; Tab. 2 shows the stereotypes corresponding to metaclasses defined

Model-Based Approaches for Dependability 163

RTService

RTFailureCallback

RTServiceProvider

RTServiceClient

RTServiceProvision

RTServiceAccess

RTServiceAgreement

deadline: TimeInterval

ownedRTServiceProvisionProperty

*
ownedRTService

*

ownedRTServiceAccessProperty
*

ownedRTFailureCallback

*

agreement

agreement

*

*

provision

access

*

*

Fig. 6. Relation of Metaclasses Corresponding to the Timing Failure Detection Service

Table 2. Stereotypes, Represented Metaclasses and Tagged Values

Stereotype Represented metaclass Attached to. . . Tags
hiAuthenticatedClass AuthenticatedClass Class –
hiAuthenticatedProperty AuthenticatedProperty Property –
hiAuthenticatedAssociation AuthenticatedAssociation Association –
hiRTServiceProvider RTServiceProvider Class –
hiRTServiceClient RTServiceClient Class –
hiRTService RTService Operation –
hiRTFailureCallback RTFailureCallback Operation –
hiRTServiceProvision RTServiceProvision Property –
hiRTServiceAccess RTServiceAccess Property –
hiRTServiceAgreement RTServiceAgreement AssociationClass deadline

in the context of authentication and timing failure detection services, e.g., the
hiRTServiceAgreement� stereotype can be attached to association classes in-
dicating that the model element is actually a real-time service agreement (i.e.,
instance of RTServiceAgreement); classes marked with this stereotype may spec-
ify the value of the deadline attribute.

An example for the usage of the profile is shown in Fig. 7: the designer in-
troduced a class SomeRTServiceProvider to provide some real-time service by
its single member function called someOperation and stereotyped these entities
according to the profile, another class using this service was called SomeRT-
ServiceClient with the call-back function someCallback; the real-time agreement
between the two classes is represented by the association class SomeRTSer-
viceAgreement marked with the proper stereotype; the deadline is indicated by
specifying the value of the deadline tagged value within braces.

3.4 A Design Pattern Library for Hidenets Applications

This subsection presents some design patterns that provide straightforward ex-
amples for the implementation of dependability-related application parts built on

164 G. Pintér et al.

«hiRTServiceProvider»
SomeRTServiceProvider

«hiRTService»someOperation()

«hiRTServiceClient»
SomeRTServiceClient

«hiRTFailureCallback» someCallback()

«hiRTServiceAgreement»
SomeRTServiceAgreement

{deadline=…}
someOtherAttribute: ...

«hiRTServiceProvision» provider
«hiRTServiceAccess» client

A real-time service provider
is indicated by the stereotype
hiRTServiceProvider, its
operation that implements the
service is marked with
hiRTService...

...the client class of the service is
indicated by hiRTServiceClient, its call-back
is stereotyped by hiRTFailureCallback, the
association class connecting them is marked
by hiRTServiceAgreement; the deadline is
specified as a tagged value.

Fig. 7. Example for the Application of the Profile

the platform. The discussion can be seen as an answer to the question: “What are
the best practices for organization and implementation of various dependability-
related parts of application intended to be executed on the platform?”. Note that
we did not aim at proposing novel dependability solutions, but indicating the
way of application of well-known patterns [14] in the context of Hidenets by
explicitly connecting the concepts of our profile to design pattern elements.

The design pattern for authenticated communication (Fig. 8) illustrates the
model organization and implementation in case of two communicating classes
(PeerA and PeerB respectively). The top part of the figure presents the static
organization: the communicating peers are stereotyped classes, the association
between them (called channel in the figure) is also stereotyped according to the
profile introduced above. Both classes are associated to authentication service
components (in case of a distributed application the two classes may be running
on different nodes thus the platform service components used by them may also
be running on different nodes; for simplicity reasons both service components
were called AuthenticationService in the example). The lower part of the figure
presents the interaction model for setting up a secure communication channel
and sending a digitally signed message whose signature is verified upon reception.

The design pattern for detecting violations of real-time service agreements
(Fig. 9) illustrates the model organization and the implementation in case of
a class providing a real-time service and its client (called Provider and Client
respectively. The top part of the figure presents the static organization: both the
provider and client are stereotyped classes, there is an association class between
them representing the real-time service agreement stereotyped again according
to the profile introduced above. The client class is associated to a timing failure
service component. The lower part of the figure presents the interaction model for
initiating a detection, calling the service and depending on whether the provider
provides the response within the deadline shutting down the detection activity
by the client or notifying the client by the timing failure detection service.

3.5 Observations on the Support of Standard Profiles

During the development of the Hidenets metamodel several standardized UML
profiles were used, like the SPT or the QoS profiles. With the help of these
specifications basic concepts did not have to be redefined, e.g., time or quality

Model-Based Approaches for Dependability 165

«hiAuthenticatedClass»
PeerA «hiAuthenticatedProperty» a «hiAuthenticatedProperty» b

«component»
AuthenticationService

IAuthentication

peerA: PeerA

«component»
AuthenticationService

aAS:
AuthenticationService

bAS:
AuthenticationService

Authenticated communication

«hiAuthenticatedClass»
PeerB

«hiAuthenticatedAssociation» channel

peerB: PeerB

establishConnection(peerB)

establishConnection(peerA)

signMessage(…)

verifyMessage(…)

Both peers establish a
secure connection to their
partners using the
authentication services
running on corresponding
nodes (communication of
authentication services is not
discussed here)

Whenever having to send
a message the sender first
lets the message digitally
signed by the authentication
service,...

...transmits the signed
message and...

...upon reception the
receiver checks the digital
signature on the message.

IAuthentication

Fig. 8. Design Pattern for Authenticated Communication

of service, which saved a huge amount of effort and allowed us to focus on
domain-specific issues. However, the following issues were found during the im-
plementation of the profile, which may hinder the everyday use of UML profiles.

Although most of the UML CASE tools offer a way to create and share profiles,
no downloadable versions even for these popular profiles were found for any UML
versions. Creating a profile from OMG’s document is usually a straightforward
task, but probably more people would use them if the profiles could simply
be imported to a UML tool. The other key problem faced was that there are
few examples for the standard profiles. The SPT profile is referenced in several
academic paper, however for the UML 2.0 testing profiles [15] there are only two
examples available so far. The specifications mostly just list the concepts of the
profiles, without examples showing how to use them making them hard to apply.

In order to overcome these practical weaknesses, our profile will be released
not only in textual format of project reports but also in downloadable modules
that are easy to import into such popular modeling environments as the IBM
Rational Software Architect, etc.

3.6 Summary

This section has outlined our modeling efforts in the context of application de-
velopment support: (i) introduced a metamodel for some dependability-related

166 G. Pintér et al.

«hiRTServiceProvider»
Provider

«hiRTService» operation()

«hiRTServiceClient»
Client

«hiRTFailureCallback» callback()
«hiRTServiceAgreement»

Agreement
{deadline=…}

«hiRTServiceProvision» provider
«hiRTServiceAccess» client

The client
initiates a detection
activity specifying
the deadline and its
callback...

«component»
TimingFailureDetectionService

ITimingFailureDetection

provider: Providerclient: Client tfds:
TimingFailureDetectionService

initiateDetection(deadline, callback)

operation()

alt [answer with the deadline]

shutdownDetection()

[deadline violation]
callback()

...then invokes
the real-time
operation.

If the provider
sends the result
within the deadline
the detection activity
is shut down...

...otherwise the
timing failure
detection service
notifies the client by
invoking its callback.

Detecting violations of real-time agreements

Fig. 9. Design Pattern for Detecting Violations of Real-Time Agreements

features provided by the Hidenets platform, (ii) defined the corresponding UML
profile and (iii) specified a set of design patterns as straightforward examples
for implementing dependability-related parts of applications intended to run on
the Hidnets platform. Obviously full discussions could not be presented here: the
focus was again rather on the same services used as examples in the previous key
part of the paper; the detailed documentation of the metamodel and the profile
was published in the corresponding deliverable of the project [7].

4 A Case Study for the Application of the Profile

This section presents an example for using our profile in the context of the
demonstrator application developed by us in the sixth work package of the Hi-
denets project. The software developed is a simplified version of an intelligent
cruise control application (mentioned in the context of the “platooning use-
case” in [4]); it will be refered as the Platoon Driver Support Software (PDSS).
Below the key concepts of PDSS are briefly defined and the functional and non-
functional requirements enumerated.

The platoon consists of vehicles, which are driven by human drivers. The first
vehicle in the platoon is called the head vehicle, other vehicles are called slave
vehicles. Slave vehicles should adjust their speed according to the head vehicle
– this speed adjustment is supported by the PDSS software. The functional
requirements against the PDSS application can be summarized as below:

Model-Based Approaches for Dependability 167

– The software periodically collects various parameters of vehicles (speed, ac-
celeration, etc.) and using the head vehicle as reference calculates the actu-
ations to be applied to slave vehicles.

– The software presents the map of the current area to the driver of the head
vehicle similarly to a usual GPS device with additional annotations indicat-
ing various traffic circumstances; the database of traffic conditions is stored
on the infrastructure and managed by (human) operators of the company.

– The software periodically reports the actual position of the platoon to the
infrastructure. On the infrastructure side the operators can follow the move-
ment of platoons on a display.

The non-functional requirements against PDSS are as follows:

– Controlling slave vehicles requires up-to-date information about the actual
state of vehicles and the actuations calculated by the software should be
applied to the slaves within short deadlines.

– The data channel between vehicles should be temper proof i.e., communica-
tion should be encrypted, and peers should be authenticated.

– The decisions of platoon drivers are taken according to up-to-date traffic
conditions thus the information provided by the infrastructure should be
trusted thus peers of this communication should be authenticated.

This section focuses on the application of the UML profile introduced above; it
will show how to model the real-time requirements for collecting sensor informa-
tion from slave vehicles and the authentication requirement for the communication
between vehicles. The context of the introduction is the control loop between ve-
hicles, i.e., the activity in which the software collects reference sensor values from
the head vehicle, obtains sensor information from slaves, calculates the actuation
to be applied to slaves and transmits this information. The key control logic is run-
ning on the head vehicle, slaves only provide information upon request and apply
the actuation data sent to them. (Note that some design decisions were drawn in
order to be able to demonstrate some platform-specific features instead of directly
focusing on the most straightforward implementation of the application itself.)

The high-level organization of the software is shown in the deployment dia-
gram of Fig. 10: (i) there are two computer node types, one for the head vehicle
(HVComputer) and another for slaves (SVComputer); obviously this organization
does not require actually different hardware, the distinction was made purely for
modeling purposes; (ii) the two key software artifacts deployed to the computers
are the Hidenets platform (HidenetsPlatform, deployed to both computers) and
head and slave parts of the control loop (HVSoftwareImage and SVSoftwareIm-
age deployed to the head and slave vehicle computers respectively); (iii) the
software image deployed to the head vehicle contains (according to UML’s ter-
minology manifests) the code for sensors of the head vehicle (component HVSen-
sors) and the head part of the control loop (component HVControl); (iv) the
software image deployed to slave vehicles contains the code for sensors of slave
vehicles (component SVSensors) and the slave part of the control loop (compo-
nent SVControl). Sensor components (HVSensors and SVSensors) provide the

168 G. Pintér et al.

«component»
SVControl

IVehicleSesors

«component»
SVSensors

«component»
HVControl

«component»
HVSensors

«artifact»
SVSoftwareImage

«artifact»
HVSoftwareImage

«node»
HVComputer

«node»
SVComputer

«artifact»
HidenetsPlatform

«artifact»
HidenetsPlatform

IVehicleSesors ISlaveVehicle

We distinguish two computer types for
head and slave vehicles (with not
necessarily different HW); the Hidenets
platform is deployed to both of them.

«deploy»«deploy» «deploy» «deploy»

«manifest»«manifest»«manifest»«manifest»

The application-specific software
image on the head vehicle contains
the control component and the code of
sensors.

The application-specific software
image on the slave vehicle contains
the slave-part of the control
functionality and the code of sensors.

Fig. 10. Deployment Model of the Platoon Driver Support Software

IVehicleSensors interface, this interface is required by the corresponding control
components; the component implementing the slave part of the control loops
provides the ISlaveVehicle interface to the head part of the control loop (these
interfaces are specified in Fig. 11).

The internal structure of the component implementing the head part of the
control loop (HVControl) is shown in Fig. 11: (i) the interfaces required by the
component are accessed through two ports: (a) the local sensor port (LocalSen-
sorPort) uses the IVehicleSensors interface of the head vehicle while (b) the slave
vehicle port (SlaveVehiclePort) uses the ISlaveVehicle interface of the slave parts’
control component; (ii) the core intelligence is implemented in the runControl-
Cycle member operation of the control algorithm class (ControlAlgorithm); (iii)
the control cycle is periodically invoked by a timer class (Timer).

It is easy to see that (i) according to the real-time requirements above there is
a real-time service agreement between the control algorithm class and the port
providing the necessary sensor data (subtleties of the inter-vehicle communica-
tion is hidden within the port class thus it is more straightforward to model
the real-time service relation between the algorithm and the port than model-
ing the real-time requirements between the algorithm and the slave part of the
control loop); furthermore (ii) due to the authentication requirements the port
communicating with slave vehicles should be authenticated:

– The real-time service relation is indicated by labeling ControlAlgorithm with
the stereotype hiRTServiceClient� (being the client of a real-time service)
and labeling SlaveVehiclePort with the stereotype hiRTServiceProvider�
(being the provider of a real-time service). The association class attached to
the association between them (SensorFreshnessAgreement) is labeled with
the stereotype hiRTServiceAgreement�. Note that the deadline to deliver
sensor data is indicated as a tagged value in SensorFreshnessAgreement.

Model-Based Approaches for Dependability 169

«interface»
IVehicleSensors

measureSpeed()
measureAcceleration()

«interface»
ISlaveVehicle

getSpeed()
getAcceleration()
setAcceleration()

«hiRTServiceProvider, hiAuthenticatedClass»
SlaveVehiclePort

«hiRTService» obtainSpeed()
«hiRTService» obtainAcceleration()
provideAcceleration()

LocalSensorPort

obtainSpeed()
obtainAcceleration()

Timer «hiRTServiceClient»
ControlAlgorithm

runControlCycle()
«hiRTFailureCallback» slaveTimeoutCallback()

«component»
HVControl

LocalSensorPort SlaveVehiclePort

Timer ControlAlgorithm

IVehicleSesors ISlaveVehicle

«use»«use»

Internal Structure of the Head Vehicle Control Component

«hiRTServiceAgreement»
SensorFreshnessAgreement

{deadline=…}
«hiRTServiceProvision» slavePort

«hiRTServiceAccess» algorithm

The control algorithm
accesses its required
interfaces through two
ports: the local sensor port
and the slave vehicle port.

The local sensor port is attached to a
component implementing vehicle
sensors (in this case the HVSensors)...

...the slave vehicle port is attached to a
component implementing the slave vehicle
interface (in this case the SVControl)...

As the control algorithm requires
fresh sensor information from slave
vehicles, there is a real-time service
agreement between the algorithm
(client) and the port that is hiding
away the subtleties of
communication with slave vehicles
(provider).

Fig. 11. Internal Structure of the Head Vehicle Control Component

– The authentication requirement is indicated by attaching the
hiAuthenticatedClass� stereotype to SlaveVehiclePort; although not
indicated in the figure, the slave counterpart of the communication should
also be marked by this stereotype.

A control cycle is shown in the interaction diagram of Fig. 12. Heads of life lines
indicate cooperating entities: (i) the timer that invokes the control loop, (ii) the
control algorithm, (iii) the authentication service deployed to the head vehicle,
(iv) the local sensor port of the head vehicle, (v) the slave vehicle port, (vi) the
timing failure detection service deployed to the head vehicle and (vii) interface
of the component implementing the slave part of the control loop. The key steps
in the interaction are highlighted by the comments of the diagram.

The example has demonstrated two key benefits of having applied a model-
driven approach in the project: (i) application of our UML profile enabled the de-
velopers to clearly and declaratively indicate requirements that naturally emerge
in applications running on mobile ad-hoc platforms and (ii) the implementation
was greatly simplified by organizing the behavior of the application according
to the design patterns outlined above. The joint application of a fully elaborated
profile and a detailed set of design patterns can also build the foundations of
code generation approaches that are capable of automatically transforming the
UML model of the application into source code. For more detailed discussion of
the demonstrator application see [16].

170 G. Pintér et al.

:ControlAlgorithm:Timer :LocalSensorPort

:AuthenticationService :TimingFailureDetectionService

:SlaveVehiclePort

«interface»
ISlaveVehicle

initiateDetection(deadline, slaveTimeoutCallback)

obtainAcceleration()

obtainAcceleration()

signMessage(…)

verifyMessage(…)

provideAcceleration()

signMessage(…)

shutdownDetection(...)

(1) The
timer invokes
the control
cycle.

runControlCycle
(2) Obtaining
reference acceleration
from the head vehicle.

(3) Initiating a timing
failure detection activity
with respect to obtaining
the acceleration of the
slave vehicle.

(4) The communication
between vehicles is
authenticated thus the
port lets the message
signed before sending...
getAcceleration()

(6) ...finally verifies the
signature upon reception.

(5) ...sends
the message...

(7) Since the sensor
data of the slave vehicle
have arrived within the
deadline, the detection
activity is shut down.

(9) The actuation
message is obviously
signed before
transmission.

(8) Having
collected the
necessary
data the
component
runs the
control
algorithm and
provides the
actuation
value to be
applied.

setAcceleration()

Fig. 12. A Control Cycle of the PDSS Software

5 Testing and Fault Modeling

Following a rigorous application development method and relying on a well-
defined metamodel greatly enhances the dependability of the developed system,
however cannot guarantee that it will satisfy all requirements. Being aware of
this issue, in Hidenets (i) a testing framework is developed, fitted to specialties
of the ad-hoc mobile domain and (ii) an error propagation and static analysis
solution is elaborated; this section presents a brief overview on these areas.

5.1 Testing Ad-Hoc Mobile Applications

Testing is one of the most popular V&V activities. Testing of distributed systems
offers several challenges, e.g., the behavior of the system is highly asynchronous
or the final verdict has to be assigned using the partial verdicts returned by
the different testing components. However, ad-hoc mobile networks (MANET)
introduce further issues to test development and execution. Ad-hoc networks are
by nature very dynamic, which implies that (i) test cases have to be created which

Model-Based Approaches for Dependability 171

cover scenarios where nodes are appearing or disappearing, (ii) test platforms
should be able to simulate the specialties of mobile networks (e.g., frequent
disconnects or high latencies).

To better understand the new testing related challenges a case study [17] was
performed, the analysis of a mobile Group Membership Protocol was carried out.
The insights gained from this case study can be summarized as follows. Standard
UML was appropriate to model the structure and behavior of one node (by static
structure diagrams, statecharts, activity diagrams etc.), but it was inconvenient
for modeling a complex scenario which included several nodes, due to the lack
of formal semantics assigned to sequence diagrams, lack of an unambiguous no-
tation for broadcast messages etc. Moreover, services and applications in mobile
settings rely heavily not just on user input but also on context information, like
current location data. A test execution engine should be able to feed the System
Under Test (SUT) not only with the messages coming outside from the SUT but
also these contextual data.

Taking into account these experiences a testing framework is elaborated based
on scenario languages. Work is focused on (i) defining a testing language for test
requirements and test purposes, (ii) identifying the extensions needed for the
mobile setting, and (iii) creating a test platform. The current and recommended
semantics for UML Sequence Diagrams is not precise enough to describe test
cases, thus, after investigating the semantics issues, a subset of the elements was
selected, which can be used to specify testing artifacts. The stereotypes in the
profile presented in the previous Section mark the dependability requirements
of an application, these are the exact behaviors that should be the starting
points for test planning. Finally, it will be investigated how existing network
simulators and context controllers developed for MANETs could be integrated
into test platforms to execute test cases.

5.2 Error Propagation Modeling and Static Analysis

Even carefully designed and tested components may fail to deliver their services,
thus if an application has strict dependability requirements, it is important to
analyze what combination of these failures could lead to a violation of the require-
ments. Treating the platform’s services and parts of the application as separate
components with defined fault modes and using the information about the re-
lations between the services contained in the platform model, error propagation
modeling could answer the above question.

In the classic taxonomy of dependability [18], components of a system may
fail to show the behavior expected from them, a phenomenon called component
service failure. As components have internal states as well as observable ones
(input and output, essentially), deviation in state from the reference behavior is
called error, what may lead to component service failure. Specifically, erroneous
input and output states are called data errors. By definition, the adjudged or
hypothesized cause of an error is called a fault, that can be internal or external
by origin. The phenomenon of erroneous states propagating in a system along
data and resource dependencies is called error propagation.

172 G. Pintér et al.

ComponentCComponentB

Fault Mode: FB/2

Fault Mode: FB/1

Component B has N fault modes; the actual fault mode (also including the correct operation) is
selected by the Fault ModeB variable. Faults of component B result in an erroneous output manifesting
in SyndromeB. The (erroneous) output of B is fed to the input of component C. The relation between fault
modes, input and output syndromes is expressed by Component Propagation Constraints.

Fault Mode: OK

Fault Mode: FB/N

...
Fault Mode: FC/2

Fault Mode: FC/1

Fault Mode: OK

Fault Mode: FC/M

...

SyndromeA

Fault ModeB

SyndromeB

Fault ModeC

SyndromeC

......

Component Propagation
ConstraintB

Component Propagation
ConstraintB

Fault ModeD

Fig. 13. Error Propagation Modeling

Analyzing error propagation in a system of numerous components thus relies on
(i) capturing the behavior of components (under faults as well as during normal
operation) and (ii) capturing the dependencies between the components. Although
the taxonomy implies a state-based, dynamic modeling approach, its general ap-
plicability is questionable. Formal analysis approaches dealing with state space
representations (as for example model checking) are usually constrained by the
maximal number of states, which can be quite early exhausted due to state space
explosionby composing components into a system. Also, state space based analysis
is inapplicable for on-line diagnosis or impact analysis due to run time reasons.

These problems can be managed in our approach [19] by using qualitative
modeling and abstraction, leading to a stateless error propagation description.
First, partitioning the deviations on input and output into a qualitative set
of data error classes (a spatial abstraction) transforms input and output data
sequences into input and output error sequences. Second, establishing a total
ordering on each resulting input and output error language (in the simplest
form, an ’error seriousness’ ordering) allows for characterizing any error run
on an input or output with one single error, what is effectively a qualitative
partitioning of the error runs (temporal abstraction). The characteristic error of
a run is called syndrome. Note that resource dependencies and failures can also
be modeled via errors and syndromes. Additionally, the internal fault mode of a
component has to be represented, as error propagation characteristics drastically
differ under different internal faults (or in case there is no fault). Internal faults
are also partitioned into a qualitative set of component fault modes.

This way, error propagation of components can be characterized by input-
output syndrome tuples plus a fault mode value, resulting in a relation in the
mathematical sense over inputs, outputs and component fault mode. The mod-
eling granularity depends on the available expert knowledge, empirical data and
the analysis needs and as such needs human effort to set up; however, this can
be done on a per component type basis.

Model-Based Approaches for Dependability 173

This model naturally translates to finite domain constraint satisfaction prob-
lems (CSP) [20], with propagation relations and connectivity as constraints and
syndromes and fault modes as variables. Diagnosis and impact analysis in this
setting are search for consistent variable binding with an initially partially bound
variable set (fault activation assumption/knowledge and syndrome value as-
sumption/knowledge).

With pure CSP supported problem solving, the analysis pattern is an iter-
ated model – execute – evaluate loop. Constraint logic programming (CLP) [21]
over finite domains is an amalgamation of logic programming and finite domain
CSP: the state of a program is the current goal and a so-called constraint store,
that stores the currently possible domains of select variables. Special predicates
allow for posting new constraints to the store and searching for store-consistent
variable bindings; CSP failure (inconsistent store) and backtracking are reflected
back to the logic program via the CSP predicates. Accordingly, a CLP search
tree is the logic programming search tree with current goals as nodes, the nodes
also attributed with the current constraint store of that node.

Finally we have to highlight some aspects regarding performance issues and
implementation possibilities. Finite domain CSP solving, the heart of the ap-
proach, is in general an NP-complete problem – however in our case this issue
does not apply due to the (relatively) high level of modeling abstraction. The
application of state of the art logic programming environments featuring sup-
port for dynamic predicates and meta calls even enables the on-line operation of
propagation analysis.

6 Conclusions

This paper presented a model-based approach to develop resilient solutions. Al-
though the work was focused on the setting of ad-hoc mobile networks, the
methods used and the experience gained can be used to architect any depend-
able system. The following steps contributed to the dependability of the overall
solution (i) creating the platform’s UML model helped to identify the boundaries
of the system and design the architecture of the services, (ii) elaborating a UML
profile and design pattern library supports the application development by offer-
ing the key concepts and structures of the target domain as built-in modeling
elements, (iii) presenting a case study showed how the above profile and design
patterns could be applied to a complex application, and finally (iv) developing
testing and error propagation modeling methods contributed to the verification
of the system’s dependability requirements.

References

1. Object Management Group: UML Profile for Schedulability, Performance and Time
(January 2005)

2. Service Availability Forum: Application Interface Specification (2007),
http://www.saforum.org

3. Object Management Group: Unified Modeling Language: Superstructure (2007)

http://www.saforum.org

174 G. Pintér et al.

4. Radimirsch, M., Matthiesen, E.V., Huszerl, G., Reitenspiess, M., Kaâniche, M.,
Svinnset, I.E., Casimiro, A., Falai, L.: Use Case Scenarios and Preliminary Refer-
ence Model (Deliverable of the Hidenets Project – D-1.1) (2006)

5. Object Management Group: UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics (2006)

6. Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) (2007)

7. Kövi, A., Pataricza, A., Rákosi, B., Pintér, G., Micskei, Z.: UML Profile and Design
Patterns Library (Deliverable of the Hidenets Project – D-5.1)

8. Moniz, H., Neves, N.F., Correia, M., Casimiro, A., Verissimo, P.: Intrusion Tol-
erance in Wireless Environments: An Experimental Evaluation. In: PRDC 2007:
13th IEEE Pacific Rim International Symposium on Dependable Computing, Mel-
bourne, Australia (2007)

9. Courtes, L., Killijian, M.O., Powell, D.: Security Rationale for a Cooperative
Backup Service for Mobile Devices. In: 3rd Latin-American Symposium on De-
pendable Computing (LADC), Morelia, Mexico (2007)

10. Matthiesen, E.V., Schwefel, H.P., Renier, T.J.: A Selection Metric for Backup
Group Creation in Inter-Vehicular Networks. In: IST Mobile and Wireless Com-
munications Summit, Budapest, Hungary (2007)

11. Bondavalli, A., Ceccarelli, A., Falai, L.: A Self-Aware Clock for Pervasive Comput-
ing Systems. In: 15th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP 2007) (2007)

12. Hansen, A.F., Lysne, O., Cicic, T., Gjessing, S.: Fast Proactive Recovery from
Concurrent Failures. In: IEEE International Conference on Communications (ICC
2007) (2007)

13. Object Management Group: MDA Guide. OMG (June 2003)
14. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-

Time Systems. Addison-Wesley, Boston (2002)
15. Object Management Group: UML Testing Profile (2005)
16. de Bruin, I.: Specification of the HIDENETS Laboratory Set-up Scenario and Com-

ponents (Deliverable of the Hidenets Project – D-6.1)
17. Waeselynck, H., Micskei, Z., Nguyen, M.D., Riviere, N.: Mobile Systems from a

Validation Perspective: a Case Study. In: ISPDC 2007: Proc. of the Sixth Int.
Symp. on Parallel and Distributed Computing, Hagenberg, Austria, July 5–8, 2007,
IEEE, Los Alamitos (2007)

18. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy
of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

19. Pataricza, A.: Model Based Design of Dependability. Dissertation for the Degree
of Doctor of Sciences from the Hungarian Academy of Sciences (2006)

20. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, San Diego
(1993)

21. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of Logic
Programming 19/20, 503–581 (1994)

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 175–198, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design, Implementation and Deployment of State
Machines Using a Generative Approach

Graham N.C. Kirby, Alan Dearle, and Stuart J. Norcross

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SX, Scotland

{graham,al,stuart}@cs.st-andrews.ac.uk

Abstract. We describe an approach to designing and implementing a distrib-
uted system as a family of related finite state machines, generated from a single
abstract model. Various artefacts are generated from each state machine, in-
cluding diagrams, source-level protocol implementations and documentation.
The state machine family formalises the interactions between the components
of the distributed system, allowing increased confidence in correctness. Our
methodology facilitates the application of state machines to problems for which
they would not otherwise be suitable.

We illustrate the technique with the example of a Byzantine-fault-tolerant
commit protocol used in a distributed storage system, showing how an abstract
model can be defined in terms of an abstract state space and various categories
of state transitions. We describe how such an abstract model can be deployed in
a concrete system, and propose a general methodology for developing systems
in this style.

1 Introduction

The finite state machine (FSM) is a widely used abstraction for describing and rea-
soning about distributed algorithms [1]. Here we address the problem of developing a
FSM formulation for an algorithm whose generality precludes its expression as a
single FSM. Instead, the algorithm may be characterised as a family of related FSMs,
each corresponding to a particular value of some parameter to the general algorithm.
Although family members differ in their individual states and transitions, they share a
common structure dictated by the general algorithm.

Our approach is to develop an abstract model that captures the common architecture
of the family of FSMs. This can be executed with chosen parameter values to generate
any particular member of the FSM family. The output of the abstract model is a FSM
representation, from which various concrete artefacts may be generated. These include
textual FSM descriptions, FSM diagrams and source-level algorithm implementations.

This approach can also be applied to the generation of a single extended finite state
machine [2,3] from the abstract model.

We describe the approach via the motivating example of a Byzantine-fault-tolerant
(BFT) commit algorithm. We think that the technique could also be applied to devel-
opment of other fault-tolerant protocols, making it directly relevant to the area of
architecting critical infrastructures.

176 G.N.C. Kirby, A. Dearle, and S.J. Norcross

2 Background

The motivation for this work arose during development of a particular algorithm
within a distributed storage system [4]. The aim of the ASA project is to develop a
resilient, logically ubiquitous storage infrastructure with the following attributes:

• ease of use
• operation on non-trusted platforms
• flexibility allowing users to trade-off resilience of data, performance and ca-

pacity
• scalability
• provision of an historical record of data

Several aspects of our approach follow directly from these goals. From the scalability
requirement, we avoid a physically centralised architecture. From the requirement for
operation on non-trusted infrastructure (i.e. Byzantine fault-tolerance), we avoid reli-
ance on any single node behaving correctly. Thus all operations invoked by a user
must be either intrinsically verifiable, or involve the agreement of multiple independ-
ent nodes.

The high-level ASA architecture is shown in Fig. 1. File system adapters connect
individual user operating systems to a single distributed abstract file system, which is
in turn built on a generic distributed storage layer. This storage layer is itself imple-
mented on a peer-to-peer (P2P) key-based routing infrastructure [5], which dynami-
cally maps a given key to a unique live node, even though nodes may join and leave
the network at arbitrary times.

We have developed a P2P application framework, the purpose of which is to pro-
vide functionality useful in implementing various P2P style applications, and to ab-
stract over the details of particular P2P protocols. This allows the P2P layer to be
varied without affecting the layers above. Currently we use a Java implementation of

Fig. 1. Architecture of motivating distributed storage infrastructure

 Design, Implementation and Deployment of State Machines 177

the Chord protocol [6]. In Chord, all participating nodes are organised into a logical
circle, and messages routed around the circle. The protocol takes its name from the
chords across the circle, which are additional ‘short-cut’ links maintained by each
node, yielding routing performance that scales logarithmically with the size of the
network.

The generic key-based storage layer provides resilience by replicating data and
meta-data on multiple P2P nodes, and actively maintaining those replicas as nodes
fail, misbehave or leave the P2P overlay.

The API presented to users by the generic storage layer does not include any de-
structive update operation; data can only be appended. Internal processes manage
‘cleaning’ of the historical record, guided by user policies controlling the trade-off
between completeness of the record and consumption of resources.

The generic storage layer provides a ubiquitous resilient mutable storage facility
for unstructured data, with an historical record. To support the historical record, up-
dates are appended rather than being destructive. The main entities supported are data
blocks, PIDs, and GUIDs:

• A data block contains unstructured data. Blocks have arbitrary size and are
immutable.

• A PID (Persistent Identifier) is used to denote a particular data block. This
might correspond to a particular version of a file, a fragment of a file, or some
other object.

• A GUID (Globally Unique Identifier) is used to denote something with iden-
tity, such as a file or object.

Fig. 2. Logical entities in the generic storage layer

The main algorithms operating in the generic storage layer maintain two distrib-
uted services: the data storage service (mapping a PID to an immutable data block)
and the version history service (mapping a GUID to a sequence of PIDs). In each
case, the service is structured as a service endpoint communicating with a set of col-
laborating servers. Both services are required to be Byzantine-fault-tolerant [7].

2.1 Data Storage

To store a new data block, the service endpoint calculates a unique PID for the data
using a secure hashing algorithm (SHA1 [8]). It then determines which participating
nodes should store replicas of the data, by applying a globally known function that
deterministically generates a set of keys from a single PID. The service endpoint then
uses the P2P routing layer to locate the nodes managing those keys. In the current
prototype, the key generation function returns a set of keys that are evenly distributed
in key space. The number of keys is determined by the data replication factor. Having

178 G.N.C. Kirby, A. Dearle, and S.J. Norcross

located the replication nodes, referred to as the peer set for the data key, the service
endpoint sends a copy of the data to each of the hosts. To achieve Byzantine fault
tolerance, the storage operation completes once (r-f) nodes have replied indicating
that they have successfully stored the data, where r is the replication factor and f is the
maximum number of faulty nodes that can be tolerated. In common with all Byzan-
tine fault tolerance schemes, r must be greater than 3f. This ensures that even if the
(r-f) replies include f misleading ones from faulty nodes, at least (f+1) correctly func-
tioning nodes have stored replicas of the data.

To retrieve a data block for a given PID, the replica nodes are located as above. It
is then sufficient to pick a single replica node (at random, or guided by some ‘close-
ness’ metric) and request the data block from it. The secure hash function can then be
used to verify that the block received does indeed correspond to the requested PID. If
this check fails, another node can be tried.

2.2 Version History

The motivating example for this paper is provided by the commit protocol used to
record a new GUID-PID mapping in the version history. The algorithm is executed by
all members of the current peer set for the specified GUID; these are the nodes on
which that GUID’s version history is replicated.

Peer set members are located in a similar manner to that already described for the
data storage service. Since the addition of a new version to the version history is an
update operation, it is necessary to operate a serialisation algorithm to ensure that a
globally consistent view emerges in the face of concurrent updates. Otherwise, it
would be possible for different members of the peer set for a given GUID to record
different orderings in the version history. This means that it is necessary for the mem-
bers of each peer set to maintain contact with one another, and to adjust their views of
the set membership as the topology of the P2P network changes. When a request to
store a new version is received by the members of a peer set they execute a commit
protocol amongst themselves, only completing once all have agreed which is the next
version to be recorded in the global history. Again, this protocol is tolerant of Byzan-
tine nodes in the peer set.

On retrieval of a particular version, it is not possible for the service endpoint to
verify the integrity of the result from any individual member of the peer set, since
there are no constraints on what PID may be mapped to by a given GUID. It is thus
necessary to compare the results as they arrive from the peer set members, and to
select the (only possible) one that is returned consistently by at least f+1 nodes.

We now sketch the operation of the commit protocol1. To simplify peer set mainte-
nance, all members of a peer set have equal status, so that there is no need for a leader
election process when membership changes. The protocol is essentially a majority
voting consensus algorithm, in which peer set members vote among potentially com-
peting update requests for the GUID. The result is an agreed ordering of the requests
among all peer set members. This agreed ordering is achieved as follows:

The protocol proceeds in two phases, involving the counting of vote and commit
messages among peer set members respectively. When a client issues an update for a

1 Further details are available at http://asa.cs.st-andrews.ac.uk/abstractmodel/.

 Design, Implementation and Deployment of State Machines 179

particular GUID, a request is sent to all members of the peer set for that GUID. Each
peer set member votes for particular updates in the order in which it receives the re-
quests. Voting involves sending a vote message to all of the other members. Once a
particular candidate update receives 2f+1 votes, all members agree that the update
should be the next to be appended to the global history. This agreement is established
by the exchange of commit messages. Consistent ordering arises since each commit-
ted update has been approved by a majority of the non-faulty members (of which
there are between 2f+1 and 3f+1), and by allowing an update voted for by a suffi-
ciently high number of other peer set members to proceed ahead of a previous locally
selected update. Since there is no guarantee that any one of a set of concurrent up-
dates will gain enough votes to reach this threshold, the algorithm may deadlock. It is
thus necessary for the service endpoint to operate a timeout/retry scheme. Various
schemes such as random or exponential back-off, or fixed or random server ordering,
could be used to attempt to reduce the probability of repeated deadlocks.

The protocol is tolerant to Byzantine-faulty behaviour by members of the peer set,
to the extent that at least 3f+1 members are needed to give tolerance to f failures.
Hence for a replication factor r, yielding r replicas of each version history, the proto-
col tolerates at most floor((r-1)/3) faulty participants. Some examples of practical
values for r and f are given in section 4.4.

Background processes regenerate missing replicas and replace faulty nodes, thus
here the limit of f tolerable failures applies to the duration of a particular execution of
the commit protocol, rather than to the lifetime of the system. Additional replicas need
to be generated whenever the set of nodes storing replicas of a given data item is
temporarily reduced. This may occur due to fail-stop faults, which are straightfor-
wardly detected through timeouts, or due to the detection of malicious nodes. Such
nodes are eventually detected, with high probability, using periodic cross-checks
between replica nodes.

3 General Approach to State Machine Generation

3.1 Mapping Algorithm to State Machine

Initially, we designed a single generic algorithm that appeared to meet the require-
ments outlined in the previous section, parameterised by the replication factor. In an
effort to gain greater insight into its operation, we then developed a FSM model for a
selected replication factor—four, being the simplest scheme to yield a BFT algorithm.
Although neither the algorithm (about 500 lines of pseudo-code) nor the FSM (33
states with 3-4 transitions from each) is especially complex, they are non-trivial.

The original algorithm maintains the following variables for every ongoing commit
operation:

• update_received: a flag recording whether an update request for the given up-
date has been received

• votes_received: a count of vote messages received
• vote_sent: a flag recording whether a vote message has been sent
• commits_received: a count of commit messages received
• commit_sent: a flag recording whether a commit message has been sent

180 G.N.C. Kirby, A. Dearle, and S.J. Norcross

• could_choose: a flag recording whether a future update could be voted for: this
is false if another update is currently in progress

• has_chosen: a flag recording whether the update currently in progress was
voted for locally.

The upper bound on both votes_received and commits_received is one less than the
number of participants, which itself is given by the replication factor. Thus in total
there are five boolean variables and two integer variables that range from 0 to r-1 for
replication factor r.

In the FSM model, each peer set member maintains a separate FSM instance for
every ongoing update. Each instance encodes the possible values of the variables
listed above in its states. For a replication factor of 4, there are 512 possible states,
comprising all combinations of 5 boolean variables and 2 integer variables ranging
from 0 to 3. Of these 512 states, only 33 are actually reachable in practice. Fig. 3
shows three states and some state transitions from our original state diagram2. The
names of the states encode the number of votes received, votes sent, commits received
and commits sent. In the diagram, a transition from state 1/0/1/0 to 2/1/1/1 is triggered
by the receipt of a vote message (labeled <-vote), since the threshold for committing
has been reached (in this case 2 votes and 1 commit received); the node sends a com-
mit message and moves into the state 2/1/1/1.

Fig. 3. Excerpt from FSM for replication factor 4

Even though we are satisfied (informally) that the FSM is correct, there is no
strong correlation between the code and the FSM—thus its creation achieves little in
terms of building confidence in the algorithm.

The main reason for the disparity between the FSM and the algorithm is that the
former is specific to a fixed replication factor, while the algorithm is generic. The
individual states in the FSM correspond to the counts of messages that have been sent
and received at particular points during the algorithm’s execution. The maximum
values of these counts are dependent on the replication factor, thus the number of
states in the FSM is also dependent on the replication factor. This implies that it is not
possible to construct a single FSM that is equivalent to the generic algorithm.

2 The diagram was constructed at an early stage in the design process, at which point it ap-

peared that only four variables were necessary.

 Design, Implementation and Deployment of State Machines 181

3.2 A Spectrum of Possible State Machines

In this approach, the process of transforming an algorithm to a FSM involves identify-
ing particular ranges of values for the algorithm’s internal variables, and mapping
them to states. A given range corresponds to an equivalence class, in the sense that
the algorithm must behave identically for all values within that range, since it maps to
a single state in the FSM.

In the commit algorithm described, each state in the FSM corresponds to a single
value for each of the discrete (boolean and integer) variables. Thus the FSM encodes
in its states all possible variable values. The original algorithm and the resulting FSM
may be viewed as extremes on a spectrum trading off number of states against num-
ber of variables. The original algorithm has, effectively, one state and many variables,
while the FSM has many states and no variables.

Intermediate points on this spectrum are also possible. For example, extended fi-
nite state machines (EFSMs) allow transitions and actions to depend on internal vari-
ables as well as states [2,3]. In an EFSM formulation of an algorithm, the original
variable values that map to a given state are not restricted to an equivalence class,
since the transitions and actions from that state may depend on the internal variables.
This means that an EFSM typically has fewer states than a corresponding FSM.

For a given algorithm, a FSM is likely to be simpler in structure than an EFSM, but
is more likely to suffer from state space explosion. The other significant difference is
that a single EFSM may be used in place of a family of related FSMs. In the main part
of this paper we focus on the use of FSMs; section 5.3 compares this with the use of
EFSMs, and argues that the generative approach is also beneficial for EFSMs.

3.3 Generation Process

To unify the FSM model and the generic algorithm, the FSM must be generalised in
some way. The key insight is to identify how both the state space and the state transitions
are determined by the replication factor. The state space is defined straightforwardly by
the various combinations of the possible message counts, themselves bounded by the
replication factor. For transitions, the important point is that some denote simple incre-
ments in message counts, whereas others denote actions to be performed—such as the
sending of messages to other participants in the distributed algorithm. We term the latter
category of transitions phase transitions. By identifying where in the state diagram phase
transitions occur, and relating these to the replication factor, it is possible to produce a
generic description defining a family of related FSMs.

For our commit algorithm, we proceeded as follows:

• We developed an abstract model that captured the common structure among
the members of the FSM family.

• We executed the abstract model with a replication factor of 4 to generate an
abstract representation of a specific FSM, which we then checked for consis-
tency with the original FSM.

• Once satisfied with the correctness of the abstract model, we developed tools
to generate various FSM artefacts, including diagrams and source-level im-
plementations.

The overall generation process is illustrated in Fig. 4.

182 G.N.C. Kirby, A. Dearle, and S.J. Norcross

Fig. 4. State machine generation scheme

The abstract model describes the components of the states, the rules for state up-
date on message receipt, and the actions to be carried out when particular state transi-
tions occur. The abstract model is implemented in Java by a class AbstractModel. The
method generateStateMachine() takes the replication factor as a parameter, and gen-
erates a representation of the corresponding FSM in the form of an instance of class
StateMachine. The FSM contains a collection of states linked by transitions. Both
states and transitions may be annotated for documentation purposes. Transitions also
refer to associated actions to be performed by the FSM. These classes are outlined in
Fig. 5.

class AbstractModel {
 StateMachine generateStateMachine(int replication_factor);
}
class StateMachine {
 String[] messages;
 State[] states;
 State start_state;
 State finish_state;
}
class State {
 String state_name;
 Transition[] transitions;
 String[] annotations;
}
class Transition {
 State resultant_state;
 String[] actions;
 String[] annotations;
}

Fig. 5. Corresponding Java classes

Fig. 6 shows an example of the use of these classes; the code fragment generates a
particular FSM with replication factor 4, and uses another class, TextRenderer, to
render it in a textual format.

 Design, Implementation and Deployment of State Machines 183

AbstractModel abstract_model = new AbstractModel();
StateMachine machine_4 = abstract_model.generateStateMachine(4);

println(new TextRenderer().render(machine_4));

Fig. 6. Generating a FSM

3.4 Defining the Abstract Model

The abstract model is a model of the structure common to all members of the FSM
family. The steps involved in the generation of a particular member of the family—an
instance of StateMachine—are as follows:

1. generate a data structure containing representations of all possible states
2. for each state, generate the transitions resulting from all possible messages, and

record in the data structure
3. prune any unreachable states
4. combine any sets of equivalent states

The final data structure forms the resulting StateMachine instance. Of these steps, 1, 3
and 4 can be performed fairly mechanically, whereas step 2 embodies the core logic
of the algorithm.

Generating possible states. To generate all possible states, the state space must be
defined in terms of the problem parameters—in our case, the replication factor. The
state comprises the union of the 5 boolean and 2 integer variables listed in section 3.1.
Hence the space of possible states, containing all combinations of values, has the size
25r2. This gives 512 states for the smallest sensible value of r=4. The
generateStateMachine() operation iterates through all of these combinations,
generating a list of State objects. A simplified example of the data structure at this
stage is shown in Fig. 7.

Fig. 7. Data structure after step 1

184 G.N.C. Kirby, A. Dearle, and S.J. Norcross

Generating transitions. The core of the abstract model defines the transitions
between states. For any given state, it determines the effects of each of the possible
messages, in terms of actions performed and the resulting state. Given that a state
transition represents a change in the variables tracking the messages sent and
received, a transition can be categorised as either a simple state transition or a phase
transition.

On a simple state transition, the sole effect is to increment one of the received mes-
sage counts; no action is performed. A phase transition occurs when the receipt of a
message causes some threshold to be reached, triggering an action. For example, in
the commit algorithm, when the total number of votes sent and received reaches the
number of non-faulty nodes, a commit message is sent to all the nodes. Fig. 8 illus-
trates this distinction for an abstract state space: thin arrows show simple transitions,
whereas thick arrows show phase transitions.

Fig. 8. Simple transitions and phase transitions

The second step in the generation of a FSM is to iterate over each of the state rep-
resentations in the data structure generated during the first step. For each state, the
abstract model determines which transitions would result from each of the possible
messages, if received by the running FSM in that state. Each transition, along with
any corresponding actions, is recorded in the FSM data structure.

Fig. 9 shows an abstract representation of the entire abstract model, which defines
how the FSM should react on receipt of each of the possible messages, depending on
its current state. In each case the reaction is defined in terms of reads and writes to the
state variables, and outgoing messages to be sent.

 Design, Implementation and Deployment of State Machines 185

update message
 set update_received
 if could_choose and !has_chosen and vote_sent:
 send vote message, set vote_sent, unset could_choose
 if total votes sent and received reaches threshold:
 if commit_sent:
 send commit message, set commit_sent
 set has_chosen
 send not free message

vote message
 increment corresponding count
 if total votes sent and received reaches threshold:
 if !vote_sent:
 if could_choose:
 set has_chosen, send not free message
 send vote message, set vote_sent, unset could_choose
 if commit_sent:
 send commit message, increment count

commit message
 increment corresponding count
 if total commits received reaches threshold:
 if !vote_sent:
 send vote message, set vote_sent, unset could_choose
 if commit_sent:
 send commit message, set commit_sent
 if has_chosen:
 send free
 finished

free message
 if !vote_sent and !has_chosen:
 set could_choose
 if update_received:
 send vote message, set vote_sent, unset could_choose
 if total votes sent and received reaches threshold:
 if !commit_sent:
 send commit message, set commit_sent
 set has_chosen
 send not free message

not free message
 if !vote_sent and !has_chosen:
 unset could_choose

Fig. 9. Abstract model pseudo-code

The abstract model pseudo-code is now used as a guide to implementation. Fig. 10
shows the implementation of the operation generateTransitionOnVote(), defined
within the abstract model, determining the transitions from a given state on receipt of
a vote message3. The control decisions that would be taken dynamically in a generic
algorithm are here being taken at generation time.

The list actions is used to accumulate representations of any outgoing messages to
be sent as the full consequences of receiving the vote message are elaborated. Utility
methods such as targetOnVoteReceived() and targetOnVoteSent() simply calculate the
state reached as a result of the corresponding state variable change. A series of

3 Similar logic in the abstract model generates documentation describing the states and the

rationale for each transition.

186 G.N.C. Kirby, A. Dearle, and S.J. Norcross

void generateTransitionOnVote(State s) {
 List<String> actions = new ArrayList<String>();
 try {
 State s1 = targetOnVoteReceived(s, actions);
 if (reachedNonFaultyThreshold(s1.getTotalVotes())) {
 // Phase transition: vote threshold exceeded.
 if (!s1.getVoteSent()) {
 if (s1.getCouldChoose()) {
 s1 = targetOnHasChosenSet(s1, actions);
 s1 = targetOnNotFreeSent(s1, actions);
 }
 s1 = targetOnVoteSent(s1, actions);
 }
 if (!s1.getCommitSent()) {
 s1 = targetOnCommitSent(s1, actions);
 }
 }
 s.recordTransition(Message.VOTE, actions, s1);
 }
 catch (InvalidStateException e) {
 // Ignore - message not applicable in this state.
 }
}

Fig. 10. Implementation of part of abstract model

updates to the state variable s1 generate all the required state variable changes follow-
ing receipt of the vote message. Finally, the resulting state transition is recorded in the
FSM representation of the current state, together with any necessary actions.

Fig. 11 shows the data structure after representations of the state transitions have
been generated.

Fig. 11. Data structure after step 2

Pruning unreachable states. Once the complete transition graph has been generated, a
reachability analysis is performed. Depending on the application, there may exist states
that could never be reached via transitions from the start state. For example, the commit
algorithm completes as soon as f+1 commit messages have been received, thus there are
no reachable states where the commit count exceeds f. For simplicity, such states are
removed from the generated model. With a replication factor of 4, this step reduces the
state space from its initial size of 512 to 48. Fig. 12 illustrates the result of pruning.

 Design, Implementation and Deployment of State Machines 187

Fig. 12. Data structures before and after step 3

Combining equivalent states. The generated FSM may be further simplified by
identifying and combining sets of states that are equivalent, in the sense that the
outgoing transitions from each perform the same actions and lead to the same
destination state. With a replication factor of 4, this process results in 33 states. Fig. 13
illustrates the result of this step.

Fig. 13. Data structure before and after step 4

3.5 FSM Artefacts

The abstract representation of a FSM generated by the abstract model can be rendered
to yield various concrete artefacts, including:

• a simple textual representation
• a state transition diagram
• source code for an implementation of the corresponding protocol

188 G.N.C. Kirby, A. Dearle, and S.J. Norcross

state: T/2/F/0/F/F/F

Description:

Have received initial update from client.
Have not voted since another update has already been voted for.
Have received 2 votes and no commits.
Have not sent a commit since neither the vote threshold (3) nor the external
commit threshold (2) has been reached.
May not choose since another ongoing update has been voted for.
Have not chosen this update since another ongoing update has been chosen.
Waiting for 1 further vote (including local vote if any) before sending commit.
Waiting for 2 further external commits to finish.

Transitions:

 message: VOTE
 action: ->vote
 action: ->commit
 transition to: T/3/T/0/T/F/F

 message: COMMIT
 transition to: T/2/F/1/F/F/F

 message: FREE
 action: ->vote
 action: ->commit
 action: ->not free
 transition to: T/2/T/0/T/T/T

Fig. 14. Example generated state description

Fig. 14 shows the textual representation of an example state and its outgoing transitions.
The name of the state encodes the variable values (update_received, votes_sent etc) in
that state. The commentary describing the state in terms of the generic algorithm is
entirely automatically generated, derived from annotations specified within the abstract
model implementation. These annotations were omitted from Fig. 10 for brevity; in the
full code, each successive assignment to the state variable s1 is accompanied by a call to
a method that records a textual annotation describing the reason for the change. A FSM
may be rendered as a state diagram by generating an XML diagram representation
that can be imported into a diagramming tool (in this case, Together [9]). Fig. 15
shows an example, with a small part of the diagram magnified.

A FSM can also be rendered, automatically, as a source code implementation. Fig.
16 shows a fragment of generated code, comprising part of the handler method for
incoming vote messages. Whenever a vote message for a particular GUID/PID update
is received by a peer set member, the receiveVote() method of the corresponding FSM
instance is invoked.

The body of the handler message consists of a large case switch on the current ma-
chine state, with a branch for each possible state. Each state is represented by a gener-
ated variable of the form F-0-F-0-F-F-F, encoding the corresponding values of the
state variables. Although the structure embodied in the generated code is equivalent to

 Design, Implementation and Deployment of State Machines 189

Fig. 15. Automatically rendered diagram of generated FSM

that shown in Fig. 14, its organisation differs in that all possible states are grouped
under each message, rather than vice-versa.

As illustrated in all of the branches shown, the result of executing a particular
branch is to move the FSM into the appropriate new state. In some branches, as illus-
trated in the third branch, a number of external actions are also performed—in this
case, the sending of a commit message to the other members of the peer set. This
corresponds to a phase transition.

Commentary on states and transitions, as illustrated in Fig. 14, is also included in
the generated code.

190 G.N.C. Kirby, A. Dearle, and S.J. Norcross

void receiveVote() {

 switch (getState()) {

 case (F-0-F-0-F-F-F) : {
 setState(F-1-F-0-F-F-F);
 break;
 }
 case (F-0-F-0-F-F-T) : {
 setState(F-1-F-0-F-F-F);
 break;
 }
 ...
 case (T-1-T-1-F-T-T) : {
 sendCommit();
 setState(T-2-T-1-T-T-T);
 break;
 }
 ...
 }
}

Fig. 16. Example generated source code

4 Use in Practice

Having outlined our general approach to designing and implementing a distributed
algorithm as a family of FSMs, we now discuss several practical issues:

• how to write a source code generator to produce an implementation from a
FSM representation

• when to perform source code generation
• how to incorporate generated code into an application
• the execution cost of generation.

4.1 Writing Generative Code

Generative code, which produces a representation of new source code when executed,
is often difficult to write and to understand. Typically, generative code involves either
much hard-to-read string manipulation, or operations on an abstract syntax tree. In
either case, discerning the intended structure of the generated code from the generator
can be challenging.

Fig. 17 illustrates the most straightforward approach, using a string buffer to ac-
cumulate the code being generated. The code fragment shown here contains most of
the logic involved in rendering a FSM as a source code implementation. It iterates
through each of the message types defined for the FSM, and generates a handler
method for each one. Within each handler, a case switch over all states is generated—
Fig. 16 illustrates one such handler.

Such generative code is undoubtedly unwieldy. We have previously experimented
with the development of GUI tools to assist with the construction of generative code
[10]. Here we take a simpler approach, restricting ourselves to string manipulation,

 Design, Implementation and Deployment of State Machines 191

for (String m : machine.getMessages()) {

 buffer.append("void receive" + m + "() {\n");
 buffer.append(" switch (getState()) {\n");

 for (State state : machine.getStates()) {

 Transition t = state.getTransition(m);

 buffer.append(" case (" +
 state.getStateName() + ") : {\n");
 buffer.append(" setState(" +
 t.getResultantState().getStateName() + ");\n");
 buffer.append(" break;\n");
 buffer.append(" }\n");
 }

 buffer.append(" }\n");
 buffer.append("}\n");
}

Fig. 17. Generative code for state machine implementation

// Adds the specified items to the output buffer.
void add(StringBuffer buffer, String... items);

// Adds the specified items to the output buffer, with newline.
void addLn(StringBuffer buffer, String... items);

// Opens a new block and increases indent level.
void enterBlock(StringBuffer buffer);

// Exits current block and decreases indent level.
void exitBlock(StringBuffer buffer);

// Increases the indent level.
void increaseIndent();

// Decreases the indent level.
void decreaseIndent();

// Resets indentation.
void resetIndent();

Fig. 18. Generation utility methods

with a small set of utility methods to assist with legibility of both generative and gen-
erated code, as outlined in Fig. 18.

While apparently trivial, the use of such methods makes a significant difference to
legibility, by reducing the amount of explicit string concatenation code, and by avoid-
ing the need to control indentation of the generated code via white space defined
explicitly in the generative code. Without such simple abstractions, there is a direct
trade-off between readability of generative and generated code. Fig. 19 illustrates the
same generative code as Fig. 17, using these abstractions.

It would also be possible for generative code to manipulate an abstract syntax rep-
resentation. In practice, we have found that this yields less intelligible generative
code.

192 G.N.C. Kirby, A. Dearle, and S.J. Norcross

for (String m : machine.getMessages()) {

 addLn(buffer, "void receive" + m + "()");
 enterBlock(buffer);
 addLn(buffer, "switch (getState())");
 enterBlock(buffer);

 for (State state : machine.getStates()) {

 Transition t = state.getTransition(m);

 addLn(buffer, "case (" + state.getStateName() + ") :");
 enterBlock(buffer);
 addLn(buffer, "setState(" +
 t.getResultantState().getStateName() + ");");
 addLn(buffer, "break;");
 exitBlock(buffer);
 }

 exitBlock(buffer);
 exitBlock(buffer);
}

Fig. 19. Generative code using simple abstractions

4.2 When to Perform Generation

Given the ability to generate on demand an implementation of a FSM solution to a
distributed algorithm, for a given parameter value, there are several options as to
when such generation could be performed:

• once, during the initial development of the overall application of which the so-
lution forms part

• every time the algorithm needs to be executed
• whenever a new value of the parameter is encountered

Clearly, the appropriate point on this spectrum depends largely on the degree to which
the required parameter value varies. We have incorporated a generated FSM solution
for the distributed commit algorithm into the ASA infrastructure. Since the replication
factor is expected to change only rarely, we executed the abstract model with the
default replication factor, generated source code from the resulting FSM, and copied
that into the code-base.

Should we wish in future to support dynamic change to the replication factor, this
may be achieved by dynamically generating implementations on the fly. Since such
changes are not expected to be frequent in the distributed storage application, the
amortised cost of such regeneration should not be significant.

Other variants on generation policy include generating an implementation each
time the application is initialised, and caching generated implementations to avoid the
need for regeneration of versions that have been encountered previously [11].

4.3 Incorporation of Generated Code

For one-off generation followed by copying and pasting into an existing code base,
there is no real issue regarding incorporation of generated code into the surrounding

 Design, Implementation and Deployment of State Machines 193

application. Once added, the generated code is treated in exactly the same way as
previously existing code during the build process.

For code generated on the fly, however, it is necessary to compile, load and bind to
the resulting executable code dynamically. Various approaches have been used [11-13];
more recently, Java 6 has provided explicit run-time access to the compiler [14].

4.4 Execution Cost

As indicated above, given the expected styles of use, the execution cost of generation
is unlikely to be particularly important. Nonetheless, we performed a short series of
measurements, for FSMs supporting various replication factors in our distributed
storage application. The results are shown in Table 1, which lists the characteristics of
FSMs of various complexities. The columns f and r show the degree of Byzantine-
fault-tolerance and replication factor respectively. The next two columns show the
numbers of states before and after pruning. The final column shows the approximate
wall-clock times taken to generate the FSMs on an Apple MacBook Pro (3GB,
2.33GHz Intel Core 2 Duo).

Table 1. Times to generate state machines of various complexities

f r initial states final states generation time (s)
1 4 512 33 0.10
2 7 1568 85 0.12
4 13 5408 261 0.38
8 25 20000 901 2.2

15 46 67712 2945 19.1

The size of the initial state space, before pruning, is proportional to the square of r,
the replication factor, since the state space encodes two independent variables with r
legal values. The size of the final pruned state space appears to grow slightly slower
than r2. The relationship between state space size and generation time cannot be
asserted with any confidence from this small sample. The pragmatic conclusion, how-
ever, is that generation time does not appear likely to be a limiting factor in the appli-
cation of this technique.

We have not yet compared the execution efficiency of a running FSM implementa-
tion with that of a non-FSM solution. However, we do not expect any significant
difference, given that very little computation is required to respond to an incoming
message in an algorithm of the style suitable for the FSM treatment.

5 Methodology

We conclude our discussion of this approach by summarising the key features,
identifying a general methodology that could be applied to problems other than the
original motivating distributed storage system, and speculating on the scope of such
applicability.

194 G.N.C. Kirby, A. Dearle, and S.J. Norcross

5.1 A General Methodology

To recap, the main steps involved in the approach, which we have illustrated in the
context of the commit algorithm, are:

• identify the core variables used in the algorithm, which in combination define
the state space

• identify the messages that can be received by a FSM
• identify the phases intrinsic to the algorithm, and the actions that should result

from phase transitions
• define an abstract model that captures the state transition logic
• encode the above in the form of an abstract model implementation that can be

used to generate FSMs for various parameter values
• define renderers to produce various concrete artefacts from an FSM represen-

tation, the most important of which is a source code renderer that can generate
specific FSM implementations

The resulting abstract model can then be used to produce implementations as re-
quired.

Since completing the abstract modelling process for the ASA distributed commit
algorithm, as illustrated throughout the paper, we have refined the infrastructure to
make it more generic, and thus applicable to other problems. Since much of the ma-
nipulation of FSM representations is independent of the details of the algorithm being
modelled, the implementation of these steps was extracted into an abstract super-
class. Problem-specific abstract models can be derived from this.

Rather than containing hard-wired definitions of the state components and mes-
sages, these are now represented by a data structure with which the generic abstract
model is initialised. Fig. 20 shows how the abstract model for the commit algorithm is
now configured. Each instance of IntComponent defines the maximum value of the
corresponding state component.

The source code renderer is now completely generic with respect to the algorithm
being modelled, so it is possible to apply the methodology to new algorithms without
writing any new generative code. The rendering code is parameterised with a class
defining appropriate action methods, such as sendCommit() in Fig. 16. The generated
class inherits from this specified class, allowing it to access the action methods.

StateComponent[] state_components = {
 new IntComponent("votes_received",
 replication_factor - 1),
 new IntComponent("commits_received",
 replication_factor - 1),
 new BooleanComponent("update_received"),
 new BooleanComponent("vote_sent"),
 new BooleanComponent("commit_sent"),
 new BooleanComponent("could_choose"),
 new BooleanComponent("has_chosen")};

String[] messages = {"update", "vote",
 "commit", "free", "not_free"};

initAbstractModel(state_components, messages);

Fig. 20. Initialising generic abstract model

 Design, Implementation and Deployment of State Machines 195

5.2 Applicability of the Methodology

We believe that the technique of generating FSM families is applicable to a range of
distributed applications that can be broadly characterised as message counting algo-
rithms. There are a number of different algorithms that may be characterised in this
manner including consensus algorithms, distributed termination algorithms, distrib-
uted garbage collection algorithms, and threshold signature algorithms.

The algorithm with which we demonstrated the technique in this paper is essen-
tially a consensus algorithm. Perhaps the best known consensus algorithm is that
proposed by Chandra and Toueg [15]. In that algorithm, each of n processes counts
rounds with a rotating coordinator. In each round, the participants and the coordinator
exchange beliefs upon which they are trying to agree. Each process maintains three
pieces of state: the actual decision, a counter storing the round number, a belief con-
taining an estimate of the decision and the round number in which the decision was
made. Like the algorithm described in this paper, the state held at each node and the
messages themselves are relatively simple and amenable to being processed by a
FSM.

A distributed computation may be defined as being terminated when each process
in it has locally terminated and no messages are in transit. Alternately this may be
defined as when the number of messages sent is equal to the number of messages
received [16]. Consequently, most distributed termination algorithms are based upon
message counting. Furthermore, the state carried in both the messages and held by the
processes is relatively simple. We therefore believe that the techniques described in
this paper may be applied to such algorithms.

Tel and Mattern [17] have shown that at least one distributed termination algorithm
can be automatically derived from a distributed garbage collection algorithm. In [18],
Blackburn et al demonstrate the reverse mapping, that is the combination of any
known distributed termination algorithm with a centralised garbage collector to pro-
duce a distributed garbage collector. It is therefore unsurprising that we believe that
the technique described here can also be applied to distributed garbage collection.
However, the problems of doing so may outweigh the benefits. In [18] an algorithm
called task balancing is described, in which each site counts (a) the number of tasks
of each job sent by each site to each other site, and (b) the number of tasks received
by and completed at each site. The encoding of such data structures in a FSM, even
one that has been mechanically derived, may prove overly complex due to an explo-
sion in the state space. In such cases, EFSMs may be useful, as discussed in the next
section.

5.3 Generating Extended Finite State Machines

As mentioned briefly earlier, the process of mapping an algorithm to a state machine
formulation can be thought of as involving a spectrum of target state machines. At
one end of the spectrum lies the original algorithm, viewed as a state machine with a
single state and multiple internal variables. At the other end lies the FSM or family of
FSMs, with multiple states and no internal variables. At intermediate points lie vari-
ous EFSMs, with a number of internal variables and fewer states than the FSMs. The

196 G.N.C. Kirby, A. Dearle, and S.J. Norcross

designer selects an appropriate point on this spectrum through decisions on which
variables in the original algorithm should be mapped to variables in the state machine,
and which should be encoded in the state space.

The commit protocol can be implemented as an EFSM in which the message count-
ing variables are mapped to EFSM variables. The effect is to coalesce the states
within each state phase of the original FSM, so that all state transitions in the EFSM
correspond to phase transitions in the FSM. For example, all of the FSM states that
differ only in the number of vote messages below the threshold become a single
EFSM state. The resulting EFSM contains 9 states.

Besides the reduction in state space size, the other benefit of the EFSM formula-
tion in this example is that the EFSM is generic with respect to the replication factor.
Its states do not encode the values of the message counts, the possible values of which
depend on the replication factor, but simply whether or not they have reached their
respective thresholds. The state space of the EFSM is thus not dependent on the repli-
cation factor.

Nonetheless, it is not straightforward to construct the EFSM in this example. It ap-
pears that it may still be beneficial to use a similar approach to that outlined for
FSMs, defining an abstract model and then generating an EFSM from it.

6 Related Work

This work is obviously strongly related to the extensive literature on FSMs, for exam-
ple [1,19]. Traditional FSMs are used to model computations with fixed numbers of
states. EFSMs [2] permit greater flexibility, by allowing transitions to depend on
internal variables.

[3] describes the generation of FSMs from abstract state machines, in which the
states of an abstract state machine are grouped into hyperstates, corresponding to
FSM states. The algorithm is approximate in that some links or states may be missing;
since the method is targeted at very large state spaces this is an acceptable trade-off
for tractability.

Architectural style languages [20,21] allow families of related systems to be char-
acterised in terms of their shared high level system structure, and specialised to pro-
duce particular instances. The work described here is less general since it focuses
explicitly on the FSM paradigm; the generic abstract model could be thought of as
one particular architectural style.

We have previously used generative techniques to build generic object browsers
[11] and to support highly generic strongly typed code [12].

An alternative strategy is to apply formal specification and verification techniques
to fault-tolerant algorithms. For example, in [22] a protocol is specified as logical
assertions and verified using an interactive proof checker. In [23] an extended actor
algebra is used to specify fault-tolerant software architectures. These approaches offer
the possibility of formal proofs, whereas here we intend to provide a less formal aid to
understanding, at significantly lower cost.

 Design, Implementation and Deployment of State Machines 197

7 Conclusions

We have outlined an approach to generating an EFSM, or a family of related FSMs,
and corresponding protocol implementations from a unifying abstract model. In the
ASA project this has allowed us to produce a FSM style description of our original
BFT distributed commit algorithm. This has increased our confidence in the correct-
ness of the algorithm; indeed several errors in the original version were identified
during the process.

We have applied this approach to a specific BFT distributed algorithm, and believe
the approach to be applicable to other critical infrastructure problems involving
message-counting protocols where the number of states is dependent on a set of
parameters.

Acknowledgments

This work was supported by EPSRC grant GR/S44501/01 and by a Royal Society of
Edinburgh / Scottish Executive Support Research Fellowship. Markus Tauber and
Rob MacInnis contributed to the development of the distributed commit algorithm.

References

1. Minsky, L.M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs (1967)

2. Cheng, K.T., Krishnakumar, A.S.: Automatic Functional Test Generation using the Ex-
tended Finite State Machine Model. In: 30th Design Automation Conference, Dallas,
Texas, pp. 86–91. ACM, New York (1993)

3. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating Finite State Machines
from Abstract State Machines. ACM SIGSOFT Software Engineering Notes 27(4), 112–
122 (2002)

4. Kirby, G.N.C., Dearle, A., Norcross, S.J., Tauber, M., Morrison, R.: Secure Location-
Independent Storage Architectures (ASA) (2004),
http://asa.cs.standrews.ac.uk/

5. Dabek, F., Zhao, B.Y., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a Common API
for Structured Peer-to-Peer Overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003.
LNCS, vol. 2735. Springer, Heidelberg (2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM 2001, San Diego,
CA, USA, pp. 149–160 (2001)

7. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems 4(3), 382–401 (1982)

8. Eastlake, D., Jones, P.: RFC 3174 - US Secure Hash Algorithm 1 (SHA1) (2001),
http://www.faqs.org/rfcs/rfc3174.html

9. Borland: Borland Together (2007),
http://www.borland.com/us/products/together/

198 G.N.C. Kirby, A. Dearle, and S.J. Norcross

10. Kirby, G.N.C., Connor, R.C.H., Morrison, R.: START: A Linguistic Reflection Tool using
Hyper-Program Technology. In: Persistent Object Systems: 6th International Workshop on
Persistent Object Systems (POS6), Tarascon, France. Workshops in Computing, pp. 355–
373. Springer, Heidelberg (1994)

11. Dearle, A., Brown, A.L.: Safe Browsing in a Strongly Typed Persistent Environment.
Computer Journal 31(6), 540–544 (1988)

12. Kirby, G.N.C., Morrison, R., Stemple, D.W.: Linguistic Reflection in Java. Software -
Practice & Experience 28(10), 1045–1077 (1998)

13. Kirby, G.N.C.: Dynamic Java Compiler (2005),
http://www-systems.cs.st-andrews.ac.uk/wiki/
Dynamic_Java_Compiler

14. Sun Microsystems: JavaCompiler Interface (2007),
http://java.sun.com/javase/6/docs/api/javax/tools/
JavaCompiler.html

15. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM 43(1), 225–267 (1996)

16. Mattern, F.: Algorithms for Distributed Termination Detection. Distributed Comput-
ing 2(3), 161–175 (1987)

17. Tel, G., Mattern, F.: The Derivation of Distributed Termination Detection Algorithms
from Garbage Collection Schemes. ACM Transactions on Programming Languages and
Systems 15(1), 1–35 (1993)

18. Blackburn, S.M., Hudson, R.L., Morrison, R., Moss, J.E.B., Munro, D.S., Zigman, J.N.:
Starting with Termination: A Methodology for Building Distributed Garbage Collection
Algorithms. In: 24th Australasian Computer Science Conference (ACSC 2001), Gold
Coast, Queensland, pp. 20–28 (2001)

19. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of the
ACM 30(2), 323–342 (1983)

20. Garlan, D., Allen, R.J., Ockerbloom, J.: Exploiting Style in Architectural Design Envi-
ronments. In: 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering,
New Orleans, Louisiana, USA, pp. 175–188 (1994)

21. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering 26(1),
70–93 (2000)

22. Hooman, J.: Verification of Distributed Real-Time and Fault-Tolerant Protocols. In: John-
son, M. (ed.) AMAST 1997. LNCS, vol. 1349. Springer, Heidelberg (1997)

23. Dragoni, N., Gaspari, M.: An Object Based Algebra for Specifying a Fault Tolerant Soft-
ware Architecture. Journal of Logic and Algebraic Programming 63, 271–297 (2005)

Handling Emergent Nondeterminism in

Replicated Services

Joseph Slember and Priya Narasimhan

Carnegie Mellon University, Pittsburgh PA 15213, USA
jslember@ece.cmu.edu, priya@cs.cmu.edu

Abstract. When distributed applications are replicated for fault tol-
erance, the presence of even a single nondeterministic service can lead
to emergent system-wide nondeterminism that compromises replica con-
sistency. Our approach, Midas identifies and addresses multiple sources
of nondeterminism (including system calls, multithreading, etc.) in a
multi-service replicated distributed architecture. Midas involves a syner-
gistic combination of compile-time dependency, concurrency and nonde-
terminism analyses, followed by the performance-sensitive compensation
of nondeterminism at runtime. This approach upholds existing applica-
tion semantics and allows services to continue to be nondeterministic,
while yet maintaining their replicas consistent. We demonstrate Midas’
scalability through a microbenchmark that shows the underlying trade-
offs under different kinds of dependencies between clients, services and
invocations in a distributed system. We also validate our claims by mod-
eling a representative multi-service application using Java Pathfinder.

1 Introduction

Distributed applications are moving from the realm of simple, client-server ap-
plications to larger, more complex, multi-service applications. Most enterprise
applications are of this multi-service nature, often composed of a series of inter-
connected services (e.g., web servers, file servers, name servers, storage servers,
auction services, database servers) that together process a client’s request. Even
in peer-to-peer applications, a request can traverse multiple distributed entities,
each of which can be regarded as a service, before a response is returned to the
requestor.

Each constituent service is typically developed independently, but is com-
bined with other services to form larger, more complex, and often more useful,
distributed applications. When invoked, a service can, in turn, dispatch a request
to another service, which can invoke yet another service, and so on, leading to
a variety of inter-service dependencies and communication patterns. Additional
emergent interactions and configurations of the distributed application can arise
when multiple (seemingly independent) clients (entities in their own right, but
that never proffer any services within the system) are thrown into the mix.

A common way to provide fault-tolerance for these kinds of applications is to
replicate the critical components, i.e., the services, in the system. When replica-
tion is superimposed on a multi-service, distributed application, the complexity

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 199–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 J. Slember and P. Narasimhan

of the system increases further. One of the major challenges in dealing with repli-
cation is ensuring that the replicas of each service remain consistent in state and
behavior during that service’s execution.

1.1 Nondeterminism: The Bane of Consistent Replication

A service can be considered to be deterministic (from a replication-centric view-
point) if different replicas of the service, when starting from the same initial state
and fed the same set of input messages, reach the same final state and produce
the same output. Clearly, determinism is essential to consistent replication, and
lack of determinism (or nondeterminism) can lead to replica divergence, thereby
compromising fault-tolerance. Common nondeterministic features include mul-
tithreading, local timers, system calls, etc.

Most practical systems deal with the requirement of determinism through one
of three possible strategies: (i) eliminating all nondeterminism within each ser-
vice prior to replication, thereby altering the original intent of the application
programmer by producing a new version of each service with altered semantics,
(ii) using special replication styles, like primary-backup replication [9], effec-
tively eliminating state-machine replication [16] as a choice for nondeterministic
services; we argue why even a primary-backup replication strategy is not proof
against nondeterministic side-effects in a multi-service setting, or (iii) transpar-
ently forcing synchronization between replicas on every system call, requiring
them to coordinate effects on their respective states and their outputs; while
this is effective, it can be overkill, if potential sources of nondeterminism do not
actually manifest into replica divergence.

1.2 Midas in a Nutshell

Our approach, Midas, focuses on handling nondeterminism of all forms (mul-
tithreading, system calls, etc.) for multi-service distributed applications that
employ replication for fault tolerance. These applications can cause emergent
nondeterminism due to the possibility of just a single service’s nondeterminism
percolating to other (perhaps otherwise deterministic) services, simply due to
the dependencies and communication among the services.

If a service employs state-machine replication, each replica actively processes
the same ordered set of incoming requests and updates its local state identically,
without needing to consult with its fellow replicas. This continuous, automatic
maintenance of consistency across replicas is advantageous because it provides for
rapid failover and also masks single-replica failures from clients. However, state-
machine replication obviously requires the service to be deterministic so that its
replicas are all identical in behavior and state and can, therefore, collectively
provide a fault-tolerant version of the service. Thus, state-machine replication
and nondeterminism are often considered to be mutually exclusive design choices.

We postulate that consistent replication can be achieved for distributed appli-
cations consisting of multiple, interconnected, nondeterministic services, where
each service can employ state-machine replication for fault tolerance. Midas’

Handling Emergent Nondeterminism in Replicated Services 201

inter-disciplinary approach exploits program analysis to address the problems
of distributed fault tolerance. We leverage the compile-time static analysis of
multi-service applications to reveal insights that enable the subsequent runtime
compensation of any nondeterminism within the application. The inherent value
of Midas lies not only in its ability to identify, and prepare for, any nondeter-
minism ahead of deployment, but also in its ability to handle nondeterminism,
without compromising fault tolerance, regardless of the number of services or
clients within the application.

1.3 Contributions

Cross-service dependency analysis: Our analysis extracts the dependencies
that can arise between services, clients and requests. While this analysis helps to
handle nondeterminism, a side-benefit is that it produces a concurrency model
of the application’s architecture that can be useful in other situations (e.g.,
orchestrating application upgrades). This model allows us to understand how
dependencies affect concurrency (and, therefore, multithreading-induced nonde-
terminism) at different levels of the system.

Forward and backward nondeterminism: We address the “contamination”,
or propagation, of nondeterminism across services, distinguishing between for-
ward and backward nondeterminism. In a service, forward nondeterminism can
occur prior to the service issuing a request (thereby potentially contaminating
the request), and backward nondeterminism can occur prior to the service re-
turning a reply (thereby potentially contaminating the reply). Identifying the
two types of nondeterminism, as well as their co-dependencies, allows us to min-
imize the amount of work that needs to be performed to handle the ensuing
nondeterminism.

Formal model: We formally model our approach for a relatively simple multi-
service application using Java Pathfinder. We demonstrate that our compile-time
modifications do not alter the programmer’s semantics and that our runtime
compensation does indeed address nondeterminism without compromising fault
tolerance.

Experimental evaluation: We design and implement a variety of performance-
sensitive techniques for the runtime compensation of nondeterminism: these
range from the transfer of the entire checkpoint of a service’s replica to its fellow
replicas at strategic points in execution, to the selective re-execution of code at
the fellow replicas. Through a multi-service microbenchmark, we evaluate the
overheads, the scalability, and underlying trade-offs of compensation in the face
of different amounts/types of nondeterminism, and dependencies among clients
and services.

2 Problem Description

Figure 1 illustrates the progressive complexity that can arise when multiple
services, clients and replication are added to a distributed application. Consider

202 J. Slember and P. Narasimhan

two-tier architecture
(1 client, 1 service)

adding services

adding clients replicating services

one-to-many
communication

C1 C1

C1

C2 C2

C1

Fig. 1. Increasing application-level complexity with services, clients and replication
added

a single client in a multi-service, non-replicated application. Suppose that the
client invokes the first service, which then invokes a second service, and so on,
until all of the services in the system are utilized in some fashion. Thus, the
client’s original request is fulfilled by the entire collection of services, with each
service performing some amount of processing before issuing its own request to
the next needed service.

We can view this as an end-to-end operation originating at the client and
spanning all of the services, and that can be decomposed into individual requests
between pairs of services. We call this the forward, or downstream, request-path
(client → service 1 → service 2 → ...). The operation unfolds in the reverse
direction: the final service to receive a request sends a reply to its invoking
service, which then replies, in turn, to its invoking service, and so on, until
the client ultimately receives a reply to its original request. There is, thus, a
corresponding backward, or upstream reply-path (client ← service 1 ← service
2 ← ...).

Neither the client nor any of the services is required to be synchronous, i.e.,
blocked while waiting for a response. Also, there can be any number of dis-
tinct requests between a pair of services due to the overall end-to-end operation.
For instance, a service receiving an incoming request can make several requests
of, and receive/process the corresponding replies from, another service before
responding, in its turn, to its invoking service.

Contamination can occur if a service’s nondeterminism somehow propagates,
through service-level or request-level interactions, potentially rendering some
other service nondeterministic. Multiple clients serve to aggravate this situation
because each client likely issues its end-to-end operations concurrently with and
independent of other clients; however, the mixture of requests and replies from
different clients in progress at a service can lead to increased multi-threading,
and an increase in the number of possible scenarios to consider for handling

Handling Emergent Nondeterminism in Replicated Services 203

nondeterminism. Effectively, the emergent leakage of a service’s nondeterminism
into other services, requests and replies can make it difficult to handle nonde-
terminism in a scalable way. A secondary effect of contamination is that, even if
with only one nondeterministic service in the system, we cannot completely rule
out the possibility of other (otherwise deterministic) services becoming nonde-
terministic, without sufficient analysis of the application.

Superimposing service replication on this picture, as shown in Figure 1, only
serves to render it all the more complex. With the state-machine replication of a
service X , more communication ensues because every replica processes, responds
and issues every request. If X has 3 replicas (say, X1, X2, X3), then, each time
that X issues a request, there will be 3 distinct copies of the same request,
one from each replica. Add to this the fact that each replica’s request can be
nondeterministic and differ from those of its fellow replicas, i.e., the content of the
same request from the 3 replicas can be different because each replica’s respective
nondeterminism might impact the outgoing request. Any other service, Y , that
now communicates with replicated service X will typically select and process the
first-received request from X ’s replicas, and discard the corresponding requests
from the other replicas of X . Thus, Y ’s nondeterminism past this point can
be influenced by that replica of X whose request was selected by Y . The same
replica might not be selected the next time around that Y hears again from X ;
the selected replica is always the one whose request makes it to Y ahead of all of
its fellow replicas’ corresponding requests. Now, if Y is also replicated, it is easy
to see how a third service, Z, that communicates with Y might be influenced by
X ’s nondeterminism.

Primary-backup replication [9] is often considered to alleviate the difficul-
ties posed by nondeterminism in the case of state-machine replication. With
primary-backup replication, a designated primary replica processes all of the
requests and replies, and synchronizes itself with its backup replicas by periodi-
cally transferring checkpoints of its state to them. One advantage is only a single
replica of a service is processing all requests/replies and we do not need to worry
about inconsistencies across replicas in the fault-free case. However, given the
possible propagation of nondeterminism through service-level dependencies, to
ensure consistency, great care must be exercised in checkpointing. For instance,
checkpoints cannot necessarily be taken independently at the primary replica
of any service without sufficient consideration of the remaining services in the
system. Another concern arises when faults occur that require the election of a
new primary replica of a service – in these cases, nondeterminism can leak to
communicating services.

In this paper, we focus specifically on the consistent state-machine replication
of services where emergent nondeterministic behavior arises when services inter-
act. The challenges of consistent primary-backup replication and Midas’ support
for consistent coordinated checkpoints without system-wide blocking, even un-
der failures, is outside the scope of this paper. That work is likely the subject of
a future submission.

204 J. Slember and P. Narasimhan

2.1 Objectives

We expect our approach to exhibit certain properties. The required properties
of our solution include:

– Dependency tracking: Because of the nature of the dependencies across ser-
vices and requests in the kinds of applications that we target, we require
our solution to extract dependency and concurrency information from the
application.

– Independence of replication style: We require our solution to be equally ap-
plicable to both state-machine and primary-backup replication, although we
refrain from a detailed discussion of the latter due to lack of space.

– Unmodified application semantics: We require our solution to retain the ap-
plication’s intended semantics, i.e., the handling of nondeterminism should
not affect the expected semantic behavior of the application. Nondetermin-
ism should be allowed to continue to exist within the application. We note
that our approach might affect the timing, but not the logical, behavior of
the application.

– Generic: We require our solution to handle all known forms of nondetermin-
ism, including multithreading and system calls.

The desired properties of our solution include:

– Scalability: Increasing the number of services and clients increases the amount
of nondeterminism and the dependencies that need to be considered. We desire
our solution to be scalable with respect to the number of services and clients,
i.e., our solution should ideally display a linear behavior in compensation per-
formance with increasing number of clients or services.

– Sustain concurrency: Although concurrency can lead to nondeterminism,
we desire our solution to permit as much concurrency as the application
programmer wishes.

2.2 Assumptions and Limitations

We assume that we have access to all of the source code of the distributed applica-
tion. This is required for us to determine all of the cross-service and cross-request
dependencies, as well as the nondeterminism and state at the application level.
We assume that all of these dependencies and state can be identified through
static analysis. This implies that dynamic functionality (such as dynamic mem-
ory allocation, pointers to functions, pointer aliasing, etc.) that might affect
nondeterministic state or dependencies cannot be handled in our current im-
plementation of Midas. We have, however, begun to incorporate some support
for dynamic functionality into our framework and can currently perform basic
pointer aliasing analysis as well as dynamic memory allocation. These restric-
tions or limitations typically do not affect Java applications as much as C++
applications. It is important to note that Midas is inherently pessimistic. It
marks all state and execution as nondeterministic and works to ascertain that

Handling Emergent Nondeterminism in Replicated Services 205

which is deterministic. Reflection is one of the one features of a Java applica-
tion that causes Midas problems with efficiency. However, the use of reflection
is typically rare. Additionally, we require the ability to modify the application’s
source code to track and compensate for the nondeterminism.

While we target application/service-level nondeterminism in this paper, we
can just as well extend our compile-time analyses to include other architectural
layers as well (as in our recent work on identifying middleware-level nondeter-
minism [17]). We note that our approach currently covers all of the operating-
system libraries loaded by the application at compile-time. Additionally, since
we do consider nondeterminism due to thread scheduling, our approach also
compensates for this source of nondeterminism due to the operating system.

We assume that all of the services within the application are replicated. Our
fault hypothesis is restricted to process- and node-crashes, and message-loss
faults. We assume that replicas and nodes fail independently. Malicious, or ar-
bitrary, faults are outside our current scope.

3 Application-Level Insights for Scalability

We define two new abstractions, slivers and compensation service-pairs, that al-
low us to handle nondeterminism between immediately communicating services,
rather than across the entire set of services in the system. This allows our approach
to scale and also ensures that nondeterminism does not spread rampant through-
out the system, but rather, is contained between communicating services.

3.1 Slivers

As described in Section 2, a service’s nondeterminism can leak due to its emer-
gent interactions with other services. To regain some level of leakage containment
in order to handle nondeterminism scalably, we propose splitting up the work
done at any service into sequential blocks of execution that we call slivers. A
service will typically execute the following sequence multiple different times: (1)
receiving an incoming request from an upstream service, (2) some post-request
processing that might lead to execution and local state changes, (3) dispatching
an outgoing (nested) request to some downstream service, (4) receiving incoming
replies for requests sent in the previous step, (5) some post-reply processing that
might lead to additional execution and local state changes, and (6) dispatching
an outgoing reply to the upstream service that issued the request in step 1.

Steps 3, 4 and 5 might repeat several times before step 6 is finally executed.
For simplicity, assume that only one downstream request is made (i.e., steps 3,
4 and 5 occur only once, followed by step 6). We propose decomposing these ex-
ecution blocks and state into multiple sequences that make intuitive sense from
the viewpoint of handling nondeterminism. The sequence {1, 2, 3} represents
forward state/execution or a forward sliver, while the sequence {4, 5, 6} repre-
sents backward/execution or a backward sliver. The associated nondeterminism
due to the forward and backward sliver is labeled, respectively, as forward or
backward nondeterminism.

206 J. Slember and P. Narasimhan

Now, assume that steps 3, 4 and 5 execute twice back-to-back because of
two nested requests from the service to yet another service. We denote the two
corresponding sub-sequences as {3a, 4a, 5a} and {3b, 4b, 5b}, giving us an overall
sequence of {1, 2, 3a, 4a, 5a, 3b, 4b, 5b, 6} at the service. Thus, there will exist
two forward slivers in this case, {1, 2, 3a} and {4a, 5a, 3b}, and one backward
sliver, {4b, 5b, 6}.

The sliver abstraction affords us advantages that will be made apparent in
Section 4.5. The sliver can be regarded as a basic unit of encapsulation of nonde-
terminism – leveraging this abstraction, we can compensate for nondeterminism
on a local, sliver-wise basis rather than on a global scale.

3.2 Compensation Service-Pairs

For the purpose of compensation, we also propose to group a service with its
communicating services. The idea is to have the basic unit of compensation
span a pair of communicating services so that the nondeterminism compensation
becomes tractable. This proves far less complex then allowing nondeterminism
to leak, unchecked, from one service to the next, and then trying to unravel the
dependencies and inconsistencies on a global scale.

Assume that we have a four-service application, C � S1 � S2 � S3 � S4,
where the client C1 first invokes service S1; the end-to-end operation travels
downstream through S2, S3 and finally to S4. The corresponding replies make
their way back to the client, from one service to the next, in the reverse/upstream
direction. In this case, the compensation service-pairs are (S1, S2), (S2, S3), and
(S3, S4). S2 is a member of two different compensation service-pairs because it
dispatches downstream requests and upstream replies. If S2 also made a direct
downstream request to S4, there would be an additional compensation service-
pair, (S2, S4). We distinguish between forward-compensation service-pairs and
backward-compensation service-pairs depending on whether the compensation
action is due to the execution of a forward or a backward sliver, respectively.
Thus, for downstream requests, we consider forward-compensation service-pairs,
while for upstream replies, we consider backward-compensation service-pairs.

Thus, for an end-to-end operation in a distributed multi-service setting, if n
individual requests are made between services to fulfill the overall end-to-end op-
eration, there will exist n compensation service-pairs. Note that this definition
is indifferent to the number of actual distinct requests between the services that
form a pair.

4 Midas’ Implementation

The handling of nondeterminism occurs in two phases. The first phase involves
identifying the various sources of nondeterminism and the slivers at each service.
This is done through Midas’ compile-time analysis framework described in Sec-
tion 4.1. The subsequent phase involves using Midas’ runtime technique to com-
pensate for any state divergence across a service’s replicas. Section 4.5 describes
how our performance-sensitive compensation techniques accomplish this phase.

Handling Emergent Nondeterminism in Replicated Services 207

4.1 Compile-Time Analysis Framework

Midas supports consistent fault-tolerance for any C++ or Java distributed appli-
cation; our only additional piece of infrastructure, described in Section 4.3, is an
underlying reliable, totally ordered group communication protocol to convey the
application’s messages. Our initial work involved converting C++ applications to
C-based equivalents to render them amenable to static analysis; the limitations
of converting from C++ to C, and then reannotating the information lost in the
conversion was time-consuming, extensive and possibly incomplete, depending
on the complexity of the C++ application.

Recognizing these drawbacks, we have redesigned our current Midas frame-
work so that it no longer needs to convert applications from C++ to C in order
to perform its analysis. The entire analytical framework centers around a cus-
tom handwritten C++ compiler front-end that converts C++ source code into a
variation of an abstract syntax tree (AST). More specifically, we perform parsing
on the source code. Our lexical analysis breaks the source code up into tokens
that are then fed into our syntax analysis to ensure that the token stream forms
a correct sequence according to our grammar. We do not generate code from the
extracted AST. The output of the syntax analysis is a parse tree.

More specifically, we built an LALR(1) parser with little shift/reduce or re-
duce/reduce error. The grammar that we used is an updated version of the ANSI
C++-compliant grammar ([10]) that was proposed as a standard and we did not
encounter any issues with the applications that we ran through our parser. We
could use a more complex GNU C++ front-end for this process. The parse-tree
generation is fairly straight forward and the details are omitted here for lack of
space.

The parse-tree is stripped of all non-semantic information for ease of use,
effectively rendering it an AST. We now perform semantic analysis and anno-
tate the tree heavily with this information. Several passes are made over the
tree in order to gain information for identifying/handling nondeterminism (see
Section 4.2) and for dependency/concurrency analysis (see Section 4.6).

4.2 Identifying Nondeterminism

We regard pure nondeterminism as any execution or state that is the direct,
or root, source of nondeterminism, e.g., system calls like gettimeofday and
shared state among threads. Contaminated nondeterminism covers any execu-
tion or state that is “touched” by pure nondeterminism or other contaminated
nondeterminism. We need to identify the various sources of nondeterminism, as
well as the extent to which nondeterminism has pervaded the application. Given
our extracted parse-tree, we perform control-flow analysis over the entire tree
to determine all of the possible control paths. We perform data-flow analysis to
determine which variables are dependent on each other. The data- and control-
flow analyses are combined to form dependency annotations that are control-flow
dependent.

208 J. Slember and P. Narasimhan

The first analysis pass over each end-to-end invocation is special. It actually
splits up the application source-code into different segments that directly cor-
respond to the forward and backward slivers described in Section 3.1. For each
service, all of the external invocations are first identified, followed by the identi-
fication of forward and backward slivers. Recall that, in response to an incoming
downstream request I, a service can issue one or more outgoing (nested) requests
O1, O2, to other services, and receive replies R1, R2,, respectively, from
them. Forward slivers at a service can encapsulate the following: (i) the execution
and state between {I,, O1}, i.e., between the incoming downstream request I
and the first ensuing nested request O1, or (ii) execution and state between {R1,
...., O2}, {R2,, O3}, etc., i.e., between the reply from a service and the next
nested request that immediately follows. The concept of forward slivers does not
distinguish whether a service makes requests O1, O2, etc. to a downstream or
an upstream service.

This analysis pass, in essence, builds a call-path for the distributed applica-
tion, mapping out all of the potential paths involved in an end-to-end operation.
Note that there does not exist a one-to-one mapping between slivers and re-
quests. It is possible for a single sliver to lead to multiple requests, e.g., through
the repeated execution of a loop. At the same time, because our analysis ex-
amines all of the possible control paths that are possible at a service, we might
identify multiple possible slivers for a downstream request. Ultimately, only one
of these slivers will ever execute at runtime based on the control path chosen
then. However, to account for all of the possibilities, our analysis will identify
all of the possible resulting slivers.

The next pass over the parse tree discovers all of the sources of pure nonde-
terminism within each sliver. These include system calls involving local timers,
hostname or anything that is node-specific, and all of the shared state between
threads at a service. We treat inter-thread shared state in a special way – each
access to a shared state-variable by a thread is considered to be a separate source
of nondeterminism. For example, consider a single shared variable between two
threads; if each thread accesses this variable four times, then, there exist eight
separate instances of pure nondeterministic state. It is immaterial that these
eight instances happen to revolve around the same variable. This view of inter-
thread shared state frees us from having to worry about thread interleaving or
when the thread actually executes. This would apply also to system calls that
might be used repeatedly in a loop.

Once all of the pure nondeterminism within each sliver has been identified,
we perform several recursive passes to find all of the state “touched” by the pure
nondeterministic sources, and consider these to be contaminated nondetermin-
ism. Any state that is then touched by that contaminated state is also marked as
contaminated. Once all of the contaminated and pure nondeterminism have been
identified and marked, dynamic data structures are built to store just the pure
nondeterminism or both the pure+contaminated nondeterminism, depending on
the specific compensation technique (of those described in Section 4.5) that we
elect to use. We instrument the source code to track this nondeterministic state

Handling Emergent Nondeterminism in Replicated Services 209

and execution, and copy it to the data structures at runtime. We employ dynamic
data structures because different control-flow paths can be taken depending on
the request.

We also add code to enable the runtime decision of whether or not a service
requires either the compensation of nondeterminism or the application of a sup-
plied checkpoint. The trickiest part of handling nondeterminism is the creation
of the code-snippets that recreate nondeterministic state at run-time. This is
discussed in later chapters.

4.3 Runtime Replication Infrastructure

Our approach handles the issues of nondeterminism for consistent replication in
fault-tolerant applications. However, there are other requirements for consistent
replication – reliable, totally ordered delivery of messages to replicas, duplicate
detection and suppression, etc.

Total order guarantees that all of the replicas of a service will see the same
set of messages in the same order. Reliable delivery guarantees that messages
sent by a service will not be lost. We leverage the open-source Spread group
communication protocol [3] to obtain the total ordering and reliable delivery
guarantees. The additional overhead of Spread can be quite significant and is
typically dependent on the number of replicas in a Spread group. Spread has
a very simple interface and wrappers can be used to make it transparent to
the application above. It is quite common to demand totally ordered, reliable
delivery of messages. In any fault-tolerant distributed system, that is not using
a cold-passive technique, it is required.

Because we focus on state-machine replication, a replicated service will lead
to multiple duplicate requests and replies, one from each of its replicas. For
example, when a three-way replicated service X invokes a two-way replicated
service Y , each of Y ’s replicas will receive three requests, one from each of X ’s
replicas; on the return path, each of X ’s replicas will receive two replies, one
from each of Y ’s replicas. Clearly, we cannot allow X ’s/Y ’s replicas to process
the duplicate messages, or their states will be wrong (unless the operations are
idempotent).

At every receiving replica, we dispatch the first-received unique message (re-
quest or reply) to the replica, and drop any duplicates of the dispatched message
using identification information that we embed in the messages. This identifica-
tion takes the form of four pieces of information, {service-id, request-id, callback-
id, client-id}. If these four numbers are identical for any two received messages,
they are duplicates of each other in a semantic sense.

The duplicate detection-suppression process introduces other considerations
for nondeterminism. Given that every replica can differ from its fellow repli-
cas (due to the nondeterminism that we allow to exist at the application), ev-
ery replica’s outgoing request/reply will differ from that of its fellow replicas’
counterparts. In the example above, X ’s replicas (X1, X2 and X3) might each
send a different request to Y ; similarly, Y ’s replicas (Y1 and Y2) might each
send a different reply to X . This is how nondeterminism can propagate between

210 J. Slember and P. Narasimhan

Fig. 2. Normal interactions and compensation actions across multiple clients and mul-
tiple replicated services

communicating services, based on which sending replica’s message was selected
at the receiving service. Because of total order, all of Y ’s replicas will make the
identical decision about which X-replica’s request was selected; if X1’s request
is chosen by Y1, the same decision will occur at Y2 as well.

4.4 Multiple Clients, Multiple Replicated Services

We demonstrate the superimposition of the various interaction patterns due
to multiple clients and multiple, replicated services in Figure 2. Here, we have
a four-service, two-client architecture with three replicas each of services S2
through S4. To show how we can handle any propagation/combination of non-
determinism, we assume that nondeterminism exists in both the forward and
backward direction at each of the services. Additionally, the backward non-
deterministic state is dependent on its forward counterpart at every service.
Figure 2(a) represents the flow of forward/downstream requests, Figure 2(c)
represents the flow of the corresponding backward/upstream replies.

Handling Emergent Nondeterminism in Replicated Services 211

The terms forward-compensation and backward-compensation callbacks rep-
resent the additional communication that we use to compensate for the nonde-
terminism across the replicas of every service. For the purpose of this section,
we assume that the forward and backward callbacks effect the required compen-
sation actions and render the replicas consistent in their forward and backward
states, respectively, after they are processed. We describe the actual, behind-
the-scenes processing actions of these callbacks in Section 4.5.

Before introducing the interactions of the second client, C2, we explain what
would happen if there was only one client, C1, in Figure 2(a). C1 issues a request,
C1R1, to service S2. The arrival of C1R1 at each replica of S2 leads to the local
creation of forward state at that replica, respectively denoted by C1FS1, C1FS2
and C1FS3 at the three distinct replicas. Note that the forward state is client-
associated (therefore, the prefix C1), while there is only one piece of backward
state across all clients; however, as with forward state, the backward state can
also vary across replicas, i.e., BS1, BS2 and BS3 for the three replicas of S2.
The S2 replicas invoke service S3, leading to the downstream request, C1R2. In
the figure, the three-pronged arrows arising from each replica denote the reliable
ordered multicast of the associated message, one prong for each replica of the
receiving service. All of the communication in this figure is assumed to occur
over totally ordered reliable multicast. The transmission of C1R2 creates the
C1-associated forward states C1FS(4,5,6) across the three respective replicas
of service S3. C1R3, the ensuing downstream request, similarly results in the
creation of C1-associated forward states C1FS(7,8,9) at the three respective
replicas of service T4.

Assume, now, that client C2 is also present in Figure 2, and concurrently
invokes service S2 along with C1. If C1 arrives at service S2 earlier, C1R1 leads
to the creation of forward states C1FS(1,2,3) before C1R2 is dispatched. Ser-
vice S2’s replicas will await the forward-compensation callback, C1FCC1, from
service S3 in order to compensate for any nondeterminism across the forward
states of S2’s replicas. Once S2’s replicas have their forward states compensated,
they can be considered consistent once more, and can be ready to process a new
client’s request. Service S2 does not need to wait for a reply to its pending
request, C1R2, if it can process a new incoming request without violating ap-
plication semantics/dependencies. This concurrent processing of both C1’s and
C2’s requests at a service is possible only if the C1-associated forward state,
C1FSx, at each of the service’s replicas is not dependent on the local backward
state, BSx (as we assume in this figure); otherwise, there is no clean separa-
tion between the service’s local forward and backward state, and the backward
state would “touch” the forward state in the reply phase. If the forward state
is dependent on the backward state, end-to-end locking semantics must be lo-
cally enforced at the service for consistency reasons, and concurrent processing
of multiple clients by that service (and at its other communicating services, as
a consequence) is effectively forbidden.

When C2’s request comes into the picture at service S2, we might need to
make a local copy of the forward state at S2’s replicas for the purpose of C2.

212 J. Slember and P. Narasimhan

This creation of a forward-state copy only needs to occur if the backward state
BSx is dependent on the forward state C1FSx at the service (as we assume
in this figure). In this case, we make a local copy of C1FSx and denote it as
C2FSx; note that C2FSx starts out being identical to C1FSx, but changes as
C2’s requests get processed by the service. This process is repeated for every
incoming request at a service.

Figure 2(b) represents all of the forward-compensation communication re-
quired to compensate for the nondeterminism across a service’s replicas due to
the execution of a forward sliver. For every downstream outgoing request from
service Si to service Sj, there is a corresponding forward-compensation callback,
Sj → Si, between the associated forward-compensation service-pair (Si, Sj) if
nondeterminism is present at the service, Si, issuing the downstream request. In
the figure, an example is service S2 issuing request C1R2 to service S3, forming
the forward-compensation service-pair (S2, S3). Service S3 immediately responds
with a forward-compensation callback, C1FCC1, to service S2.

Figure 2(c) and Figure 2(d) are the same as Figure 2(a) and Figure 2(b),
respectively, except that they represent the upstream replies and backward-
compensation callbacks. We consider communicating services to form backward-
compensation service-pairs in this case. For every outgoing reply from service
Sj to service Si, there immediately follows a matching backward-compensation
callback, Si → Tj, if the backward state at service Si that was used to process
the reply was nondeterministic.

Without the application-level knowledge extracted through Midas’ analytical
framework, we could not derive these key insights about forward state, back-
ward state and the need for compensation callbacks. We could also not support
concurrent clients without significant concerns about compromising consistent
replication and fault tolerance. More details of the concurrency and dependency
analyses are in Section 4.6.

4.5 Runtime Compensation

This section describes what the callbacks actually accomplish, for four
performance-sensitive compensation techniques that we have developed. In this
section, we assume that compensation is required across the replicas of service
Si and that service Sj issues the callback to effect this. Thus, (Si, Sj) consti-
tute a compensation service-pair. After processing the callback, each Si replica
is consistent and is ready to process a new request. We discuss the techniques
for a typical backward-compensation callback, i.e., the compensation occurs as
a consequence of service Si sending a reply to service Sj. A similar discussion
applies to forward-compensation callbacks.

Full-Checkpoint Transfer (transfer-ckpt): During our compile-time anal-
ysis, we instrument the code of every service to allow for the extraction and
assignment of its entire state (checkpoint). At runtime, every replica of Si re-
trieves and multicasts its checkpoint, along with its reply, to service Sj. The
replicas of Sj accept the first response, store the identifier of the corresponding

Handling Emergent Nondeterminism in Replicated Services 213

(selected) Si replica and that replica’s state. Because all of the requests and
replies are totally ordered, all of service Sj’s replicas will always select the same
Si replica. Service Sj’s replicas immediately multicast a callback to service Si
containing this saved information (including the checkpoint of the selected Si
replica). Each receiving Si replica examines this information to see if it was the
selected replica, at the Sj side, for the reply. The selected Si replica does not
need to do any compensation work, but the remaining Si replicas apply the
callback’s contents (basically, the checkpoint).
Differential-Checkpoint Transfer (transfer-diff-ckpt): During our
compile-time analysis, we instrument the code of every service to allow for the
extraction and assignment of state at all of the places where the processing of a
reply might modify state. At runtime, only the actually executed change-points
in Si’s replicas are captured and the associated state (called a differential check-
point) is multicast to service Sj as a callback. The remainder of the technique
is the same as transfer-ckpt.
Transfer Contaminated-Nondeterminism (transfer-contam): Each Si
replica piggybacks its actual nondeterministic state (both pure and contami-
nated) to its reply to Sj. During our compile-time analysis, we create within
Si’s code a struct that encapsulates the pure and contaminated nondetermin-
ism within each Si replica. At runtime, all of the nondeterministic changes to
the data are stored in this struct and dispatched in a callback from Si to Sj.
The remainder of the algorithm is the same as the transfer-ckpt technique.
Reexecute Contaminated-Nondeterminism (reexec-contam): Each Si
replica tracks only its pure nondeterministic state and piggybacks this state
to its reply to Sj. During our compile-time analysis, we insert prepared portions
of code that Si can execute at runtime to regenerate the contaminated nonde-
terminism if given the pure nondeterministic state as input. In reexec-contam,
every receiving Sj replica extracts the piggybacked nondeterministic struct, as
in transfer-contam. This nondeterministic struct is then multicast from Sj
to Si in the compensation callback. Each Si replica that needs to compensate
first assigns the pure nondeterministic part of its state to the received nondeter-
ministic struct, and then executes the compile-time-inserted code to regenerate
the corresponding contaminated nondeterminism.

4.6 Dependency and Concurrency Analyses

An alternative way to handle the nondeterminism in Figure 2 would have been
to track all of the nondeterministic information at each service on the forward
request-path of the call chain all the way up to service S4. On the backward
reply-path, we would then compensate one service at a time, all the way back
to the client. After a service is compensated and its replicas rendered consis-
tent, the service can start processing its next incoming request. The point of
the immediate callbacks is the gain in concurrency, and the savings in time by
issuing a callback and attaining compensation/consistency while the end-to-end
operation is still in progress elsewhere in the system.

214 J. Slember and P. Narasimhan

Concurrency analysis plays a big role in implementing the callback-based com-
pensation. There are two kinds of dependencies to determine during our analysis
of the abstract syntax tree. The first kind is whether the forward state is de-
pendent on the backward state, i.e., if the forward state at a service is modified
based on the backward reply received from a downstream service. This scenario
does not allow for concurrency, and would necessitate blocking at all services
until the end-to-end operation completes.

Our analysis also determines a second kind of dependency, namely, whether
the backward state depends on the forward state. In this case, the backward state
at a service is affected by the service’s forward state on the return reply-path.
This form of dependency permits concurrency across multiple client requests
at the service, through our forward-state copy mechanism. This concurrency
also implies that a service can have multiple outstanding requests that it has
dispatched to different downstream services.

The caveat here is that the incoming replies on the return path must be
processed by a receiving service in the order in which that service previously
dispatched the corresponding downstream requests. However, this is the case
only when the service’s backward slivers are co-dependent, i.e., there exists some
overlap in the state accessed by backward slivers at the service. If the backward
slivers at a service are independent, then, incoming replies can be processed out
of order. The number of clients is irrelevant to this analysis.

The four-service example in Figure 2 assumes that nondeterminism existed in
all of the forward and backward slivers at all of the services. Clearly, this might
not be the case in some applications. If no forward nondeterminism exists, no
forward-compensation callbacks would be needed; a similar argument applies
to backward nondeterminism. Our analysis can determine just to what extent
nondeterminism exists in the forward and backward paths so that we compensate
only for nondeterminism that actually manifests.

Apart from the concurrency benefits of the callback-based compensation strat-
egy, the other advantage is that the compensation does not need to be conducted
on a global scale, but can be performed at the scale of compensation service-
pairs. This also allows us the flexibility of selecting the appropriate strategy (of
the four listed in Section 4.5) for various pairs of services. For instance, one com-
pensation service-pair might elect to use transfer-ckpt because the service to
be compensated has a small amount of state; another service-pair might employ
reexec-contam because the service to be compensated has a large amount of
state but small processing time.

4.7 Inadvertently Introduced Nondeterminism?

Since Midas’ approach instruments the application to capture and compensate
for the nondeterminism, we need to consider the possibility that our instrumen-
tation inadvertently introduces further nondeterminism. We argue that this is
not the case by examining our two kinds of instrumentation.

The first kind simply collects a service’s nondeterministic information into a
data structure and dispatches this structure between replicas. This kind of

Handling Emergent Nondeterminism in Replicated Services 215

instrumentation is read-only and does not introduce any nondeterminism of its
own. The second kind of instrumentation is the compensation code that we insert.
Given that the replication infrastructure in the system is based on a reliable mul-
ticast transport layer, we know that all of a service’s replicas will act on the same
nondeterministic information for the purposes of compensation. Thus, the com-
pensation will be applied identically across all of a service’s replicas. There should
be no inadvertent nondeterminism introduced through Midas’ instrumentation.

5 Substantiating Midas’ Claims

In our approach, we make two claims that we substantiate through formal mod-
eling. The first claim is that Midas itself does not violate application semantics
by modifying the source-code or changing the application’s state at runtime. The
second claim is that Midas maintains consistency in the face of nondeterminism
in a multi-service architecture.

For our modeling, we chose to use Java PathFinder [24], a runtime analysis
tool that verifies executable Java bytecode. It can be used as a software model-
checker to examine all of the possible execution paths of a program in order
to look for violations of specific properties. Java PathFinder provides particular
support for examining multi-threaded programs.

We created a simple, but sufficiently representative, multi-service distributed
application that could actually be modeled by Java PathFinder (JPF). This ap-
plication is composed of two communicating services, as shown in Figure 3. Each
service has two replicas. The intermediate service is state-machine replicated and
contains nondeterminism in the form of multithreading. We vary the number of
threads from two to eight, with the threads sharing some state (an array of 100
integers). Half of the threads add numbers to the shared array, while the other
half of the threads multiply numbers with the shared state. We intentionally do
not use any locking mechanisms to protect the shared state.

The interleaving of the threads will determine the state of the intermediate
service. The client sends a request to the intermediate service, which invokes an
interleaved-thread operation that sums up the numbers in the array and sends
the result to the end service. The end service, also state-machine replicated, adds
a random integer to the received value and returns the result to the intermediate
service. The intermediate service resumes thread interleaving using the value in
the reply from the end service; after some processing, the intermediate service
sends its reply to the client. While there might be no useful semantic meaning
to the application’s functionality, there exist dependencies between the interme-
diate and end services in terms of both forward and backward state. We note
that, given the initial state of the intermediate service’s shared array, there are
only a finite number of possible outcomes depending on the size of the shared
array. This observation is important because it helps in the determination of
correctness and consistency. JPF is able to traverse the space completely given
the limited number of outcomes. However, with all model-checkers, this would
not scale well.

216 J. Slember and P. Narasimhan

JPF supports three ways of enforcing properties in a model on an executing
application. The first is through assertions that are checked at specific points in
time. This is the most straightforward way of checking whether or not something
is true at a given point in time. However, assertions are not necessarily the
easiest to use in the face of multithreading. The second JPF mechanism is to
write a search property function. This function will be executed after every
state transition in the bytecode. The search function allows for more complex
and long running analysis compared to using assertions. A third way is to employ
search listeners and virtual-machine (VM) listeners that can be used to gain more
detailed information about VM-level state transitions. This is more complex than
we need for the purposes of checking our model. Unfortunately, JPF is not built
for distributed systems, but for single processes running in a VM environment.
Therefore, we model our multi-service distributed application in Figure 3 as a
single process, with each node modeled as a thread. We use five threads: one for
the client, one for each intermediate-service replica, and one for each end-service
replica. We select one of our compensation techniques, namely, reexec-contam,
to substantiate our claims.

We inserted several different assertions and checks using JPF. When the client
sends a request to service S1, both S1 replicas receive the request and process it.
Their state will change but will be divergent due to nondeterminism in the inter-
mediate service, as demonstrated in Figure 3. At this point an assertion is made
that the output state of both replicas is valid. This is checked by determining all of
the possible resultant states. After each S1 replica finishes processing the forward
request, they each invoke service S2. S1’s replicas each piggyback their nonde-
terminism to this request. Just prior to this downstream request, another asser-
tion/check is made. Within this assertion, each replica’s nondeterministic state
(prior to the issue of the downstream request) is copied over to some temporary
state. We then invoke the reexecution snippet that has already been generated.

The assertion then checks that the resultant temporary state is equivalent
to the replica’s state just prior to the downstream call. This validates the cap-
tured state, as well as the reexecution snippet. Next, S2’s replicas choose one
of the incoming S1 requests and drop the other. They strip off the piggybacked
nondeterministic information from the request. They then attach this state to a
forward callback which is immediately returned to S1. Both S1 replicas receive
this callback, but only one of them needs to process it because it was not chosen
by S2. At this point, another assertion/check is performed by JPF.

At every stage that a replica’s state might change, an assertion is made to
verify the validity of the state. At the end of the callback’s execution, consistent
replication should be exhibited by S1. Similarly, on the S2 end, assertions serve
to track the updates to S2’s state, as well as the effect of any compensation call-
backs or piggybacked nondeterminism. The various assertion checks are shown
in Figure 3.

We ran this simple JPF-supported application repeatedly while varying the
workload on the machines, in order to force the threads to interleave in different
ways. It is important to note that we were not running this for performance.

Handling Emergent Nondeterminism in Replicated Services 217

Client

S1

S2

S2

S3

Reply

Forward Callback

Forward Request

Backward Callback

3reiT2reiT

S3

S4

Pathfinder Assertion
Check Consistency Assertion

Check Consistency Assertion

Check Consistency Assertion

Check Possible State Assertion

Check Possible State Assertion Check Possible State Assertion

Check Possible State Assertion

Check Possible State Assertion

Fig. 3. Java Pathfinder-based model-checking architecture with assertions

We continuously ran the experiments until the majority of interleavings were
exhibited. Depending on the thread scheduling, we observed emergent nonde-
terminism occur. However, the assertion checks continued to demonstrate that
we do not inadvertently introduce nondeterminism with our approach, and that
our compensation does indeed result in consistent replication.

6 Empirical Evaluation

6.1 Microbenchmark Application

We evaluated our implementation and compensation techniques using variations
of a basic multi-service, multi-client, micro-benchmark application on Emulab
[21]. Each service performs the same amount of processing, and each client has
identical functionality. Every server replica and every client is located on a dif-
ferent Pentium III, 850MHz machine with 256MB RAM running TimeSys Linux
2.4 over a 100 Mbps LAN. The application is multithreaded with shared state
across threads. Additionally, nondeterministic system calls (e.g. random()) are
used by the application. Our goal in using this microbenchmark is to show the
scalability of our approach with respect to the number of clients, the number of
services, and the number of replicas/service. Additionally, we vary the amount
of forward and backward nondeterminism. We varied our experimental configu-
rations to change (i) the number of clients to 2 and 4, (ii) the number of services
to 2 and 4, (iii) the number of replicas/service to 2 and 4, (iv) the forward
nondeterminism to 0%, 5% and 60% of the total state within the service, (v)
the backward nondeterminism to 0%, 5% and 60% of the total state within the

218 J. Slember and P. Narasimhan

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

700000

A
v

e
r
a

g
e
 R

o
u

n
d

-T
r
ip

 T
im

e
 (

m
ic

r
o

se
c
o

n
d

s)

Compensation Technique

2 Replicas

4 Replicas

2-Tier Case

4-Tier Case

(a) 60% forward & backward nondeter-
minism

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

A
v
e
r
a
g
e
 R

o
u

n
d

-T
r
ip

 T
im

e
 (

m
ic

r
o
se

c
o
n

d
s)

Compensation Technique

2 Replicas

4 Replicas

2-Tier Case

4-Tier Case

(b) 5% forward & backward nondeter-
minism

Fig. 4. Overhead for compensation techniques for varying number of services and ser-
vice replicas

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

700000

A
v
e
r
a
g
e
 R

o
u

n
d

-T
r
ip

 T
im

e
 (

m
ic

r
o
se

c
o
n

d
s)

Compensation Technique

2 Clients

4 Clients

2-Tier Case

4-Tier Case

(a) 60% forward & backward nondeter-
minism

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

700000

A
v
e
r
a
g
e
 R

o
u

n
d

-T
r
ip

 T
im

e
 (

m
ic

r
o
se

c
o
n

d
s)

Compensation Technique

2 Clients

4 Clients

2-Tier Case

4-Tier Case

(b) 5% forward & backward nondeter-
minism

Fig. 5. Overhead for compensation techniques for varying number of clients

service, and (vi) the compensation techniques, ranging from transfer-ckpt,
reexec-contam, transfer-contam. The vanilla case simply serves as a base-
line for performance comparison, and allows replicas to remain nondeterministic
and does not involve any compensation. The vanilla case does also include the
underlying reliability layer. This is important because we are comparing the rel-
ative overheads of the techniques, regardless of the underlying layer. If vanilla
did not include the reliability layer, then the comparison of techniques would be
dependent on the overheads introduced by Spread, which would not be a fair
comparison since any group communication protocol could be used. The metric
that we use for evaluation is round-trip time as measured at a client. For each
configuration, we compute the average round-trip time across all the clients for
300 end-to-end invocations/client.

The “total state” of a service is represented by two arrays (one forward and
one backward) of 10,000 longs each. In our microbenchmark, each time a forward

Handling Emergent Nondeterminism in Replicated Services 219

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

50000

100000

150000

200000

250000

300000

350000

A
v

e
r
a

g
e
 R

o
u

n
d

-T
r
ip

 T
im

e
 (

m
ic

r
o

se
c
o

n
d

s)

Compensation Technique

0%Fwd/60%Bwd

60%Fwd/0%Bwd

2-Tier Case

4-Tier Case

Fig. 6. Overheads of having all forward vs. all backward nondeterminism. There are
4 clients and 4 replicas/service with either 60 % forward or 60 % backward nondeter-
minism.

sliver is executed, all of the forward array is touched; similarly, all of the backward
array is touched when a backward sliver executes. Therefore, x% forward nonde-
terminism and y% backward nondeterminism mean that x% of the forward array
is nondeterministic on the forward request-path and y% of the backward array is
nondeterministic on the backward reply-path. The backward state depends on the
forward state if the latter is accessed by the incoming/backward reply.

We have two major sources of nondeterminism: multithreading with shared
state and nondeterministic system calls. By changing the amount of overlapping
state across threads, the amount of pure nondeterminism can be varied. Chang-
ing the amount of state modified by a purely nondeterministic system call can
vary the amount of contaminated nondeterminism. These two sources of nonde-
terminism are split equally for the purposes of introducing varying amounts of
nondeterminism in our micro-benchmark’s experimental configurations. There-
fore, if 60% of the total state is nondeterministic, 30% of state is shared across
the threads, and 30% of state is due to contaminated nondeterminism.

6.2 Observations from Results

Scalability w.r.t. degree of replication. Figure 4(a) keeps the amount of for-
ward and backward nondeterminism constant at 60% each and the number of
clients at four. It is apparent that transfer-ckpt has the highest overhead,
with round-trip time almost 30 times that of vanilla. This technique transfers
all of the checkpoint of each service across each request, reply, and callback,
thereby adding significant overhead. transfer-contam performs better than
transfer-ckpt because only 60% of the state has to be transferred between

220 J. Slember and P. Narasimhan

and within services. reexec-contam performs the best of the three techniques
because in our micro-benchmark, half of the nondeterministic state is due to pure
nondeterminism and the other half is due to contamination. The reexec-contam
technique passes only the pure nondeterminism in the compensation callback,
and reexecutes the part of the application that incorporates the contaminated
nondeterminism. It is apparent that the communication overhead dominates the
processing time because removing half of the state transfer reduces the round-trip
by a little less than half. However, for an application with significant processing
time, reexec-contam might be costlier that transfer-contam.

The overhead of going from 2 to 4 replicas is significant, with the round-trip
time almost doubling in most cases; with each additional replica, the communi-
cation overhead and the duplicate-detection costs increase linearly. This is more
noticeable in the 4-service case than in the 2-service case. The 2-service case
does not show as dramatic an increase because the client makes a backward-
compensation callback to its neighboring service, and is effectively done and can
proceed with its work. Thus, the actual compensation callback’s overhead does
not affect the round-trip time significantly. However, the 4-service case shows
more significant increase in round-trip time due to the added compensation-
related communication and the associated callbacks.

Figure 4(a) also serves to demonstrate that our techniques can handle a rather
extreme amount of nondeterminism (even 60% forward nondeterminism and
60% backward nondeterminism), albeit with significant overhead. The graph
also shows that transfer-ckpt is not ideal in this case because it represents the
highest possible overhead that could occur.

Figure 4(b) is the same as Figure 4(a), except that the amount of forward and
backward nondeterminism is only 5% each. The overheads of transfer-contam
and reexec-contam are more reasonable, even in the 4-service, 4-replica case.
Note that transfer-ckpt is more or less identical across Figure 4(a) and Fig-
ure 4(b) because this technique transfers the entire state, and the amount of state
does not change across the two graphs. Basically, the amount of nondetermin-
ism does not impact transfer-ckpt. At such lower amounts of nondeterminism,
the overheads of reexec-contam and transfer-contamwith varying number of
replicas and the number of services are low; thus, these techniques scale well in
this case. Unlike Figure 4(a), reexec-contam does not incur half the latency of
transfer-contam. The amount of state being transferred is small, and the num-
ber of compensation messages is the dominant factor, and not the amount of state.
In the 2-service case, there is little difference across vanilla, reexec-contam,and
reexec-contam because only a single compensation callback is required.

Scalability w.r.t. number of clients. Figures 5(a) and 5(b) are similar to 4(a)
and 4(b), respectively, but with a fixed 4 replicas/service and a varying number
of clients. The workload across the services doubles when the number of clients
doubles. This is demonstrated by the linear increase in round-trip times for the
4-service case in Figure 5(a). However, the 2-service case in Figure 5(a), as well
as the 2-service and 4-service cases in Figure 5(b), show that reexec-contam
scales well.

Handling Emergent Nondeterminism in Replicated Services 221

Varying forward and backward nondeterminism. Figure 6 compares the cases
where the amounts of forward and backward nondeterminism differ widely, for a
fixed number of clients and services. The 4-service case is the most interesting as
the amount of forward and backward nondeterminism affects each of our tech-
niques differently. The transfer-contam technique actually fares better with
more backward nondeterminism while the reexec-contam incurs significantly
lower overheads with more forward nondeterminism. This comparison is signif-
icant from an application developer’s viewpoint. When an application is being
developed, if nondeterministic execution can be relocated between a server’s for-
ward and backward slivers, this can influence the compensation technique chosen.
This can also me done by using compiler techniques that understand dependen-
cies and are able to perform code-motion. If most of the nondeterminism can be
placed in the backward sliver, transfer-contam would be preferable, but if the
nondeterminism could be entirely relocated to the forward sliver, reexec-contam
might be better. Note that reexec-contam’s latencies will increase with server-
side processing time. Therefore, these scalability of each technique in its own
right is more relevant for a given application than its comparison to the other
techniques. The 2-service 0% forward-nondeterminism results are fairly constant
because there is nothing to compensate for.

7 Related Work

Considerable research efforts have been expended to handling nondeterminism
in distributed fault-tolerant systems.

Gaifman [12] targets nondeterminism that arises in concurrent programs due
to environmental interaction. This technique involves backup replicas lagging
behind the primary to ensure consistency. The Multithreaded Deterministic
Scheduling Algorithm [13] aims to handle multithreading transparently by pro-
viding for internal and external queues that together enforce consistency. The
external queue contains a sequence of ordered messages received via multicast,
while each internal queue focuses on thread dispatching, with an internal queue
for each process that spawns threads. Basile [5] addresses multithreading using
a preemptive deterministic scheduler for active replication. The approach uses
mutexes between threads and the execution is split into several rounds. Because
the mutexes are known at each round, a deterministic schedule can be created.

The fault-tolerant real-time MARS system requires deterministic behavior [15]
in highly responsive automotive applications that are nondeterministic due to
time-triggered event activation and preemptive scheduling. Determinism is en-
forced using a combination of timed messages and a communication protocol for
agreement on external events. Delta-4 XPA’s semi-active replication [4] addresses
nondeterminism through a hybrid replication style that employs primary-backup
replication for all nondeterministic operations and active replication for all other
operations. In SCEPTRE 2 [6], nondeterminism arises from preemptive schedul-
ing. Semi-active replication is used, with deterministic behavior enforced through
the transmission of messages from a coordination entity to backup replicas for

222 J. Slember and P. Narasimhan

every nondeterministic decision of the primary’s. Similarly, Wolf’s piecewise de-
terministic approach [22] handle nondeterminism by having a primary replica
that actually executes all nondeterministic events, with the results being prop-
agated to the backups at an observable, deterministic event.

X-Ability [11] is based predominantly on the execution history resulting from
previous invocation. The approach is not necessarily transparent to the program-
mer because the proposed correctness criterion must be followed for consistency.
The advantage is that it is independent of the replication style. Slye et al. [19]
track and record the nondeterminism due to asynchronous events and multi-
threading. While nondeterminism is not eliminated, the nondeterministic execu-
tions are recorded so that they can be replayed to restore replica consistency in
the event of rollback.

The Transparent Fault Tolerance (TFT) system [7] enforces deterministic
computation on replicas at the level of the operating system interface. The ob-
ject code of the application binaries is edited to insert code that redirects all
nondeterministic system calls to a software layer that returns identical results
at all replicas. Hypervisor-based fault tolerance [8] involves a virtual machine
that ensures that all nondeterministic data is consistent across replicas. This is
accomplished by using a simulator to execute all environmental instructions, and
then requiring system-wide lock-step synchronization on this execution.

Zagorodnov et al. [23] target nondeterminism that is inherent to service pro-
tocols used by network servers. The solution involves the interception of I/O
streams of replicas, and the appropriate handling of input and output streams.

Taiani et al. [20] propose adding fault-tolerance to complex architectures.
Their technique handles nondeterminism transparently by introducing a meta-
level object protocol. The technique is demonstrated by handling multithreading-
induced nondeterminism at the middleware layer; however, the approach might
be expanded to handle application-level nondeterminism. This approach does
permit some semantic analysis to determine what possible sources of nondeter-
minism need to be controlled.

Napper and Alvisi set out to make a JVM fault-tolerant in [1]. Thread syn-
chronization, clock-driven scheduling and timers were some of the sources of
nondeterminism that they had to handle inside the JVM. They targeted nonde-
terminism due to multithreading in the JVM and were able to achieve success
with under 100 percent overhead for the majority of the applications tested.

Alvisi et al. [2]performeda survey of different rollback-recovery techniques,both
checkpoint and log-based. The techniques they discussed target only those that did
not rely on special language features. Asynchronous signals and systemcalls are the
two sources of nondeterminism that they discuss with respect to these techniques.

8 Conclusion

We presented a non-transparent approach that allows nondeterminism to exist
in multi-service, multi-client distributed fault-tolerant systems. The approach

Handling Emergent Nondeterminism in Replicated Services 223

involves a synergistic combination of compile-time dependency, concurrency and
nondeterminism analyses, followed by the performance-sensitive compensation
of nondeterminism at runtime. Due to the possibility of nondeterminism propa-
gating in multi-service, multi-client architectures, we introduce the concepts of
forward/backward slivers as well as forward/backward nondeterminism. These
abstractions allow for finer granularity and scalability in the handling of non-
determinism. Through a formal model, we also demonstrate that our approach
itself does not inadvertently introduce nondeterminism of its own. We believe it
is sufficient to show that Midas does not violate application semantics or intro-
duce nondeterminism in a simple example since the vast majority of modeling
tools do not scale to allow for true testing on a large application.

We evaluate our approach with a microbenchmark that compares our compen-
sation techniques for varying number of clients, number of replicas/service, and
number of services. Our approach appears to scale well with reasonable levels
of nondeterminism, and can also handle increased amounts of nondeterminism,
albeit with significant overheads.

References

1. Alvisi, L., Napper, J.: Transparent Fault Tolerant Java Virtual Machine. In: DSN,
San Francisco, CA, pp. 425–434 (June 2003)

2. Alvisi, L., Elnozahy, E., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys 34(3),
375–408 (2002)

3. Amir, Y., et al.: A low latency, loss tolerant architecture and protocol for wide area
group communication. In: DSN, New York, pp. 327–336 (June 2000)

4. Barrett, P., et al.: The Delta-4 extra performance architecture (XPA). In: FTCS,
pp. 481–488 (1990)

5. Basile, C., et al.: A preemptive deterministic scheduling algorithm for multi-
threaded replicas. In: DSN, San Francisco, CA, pp. 149–158 (June 2003)

6. Bestaoui, S.: One solution for the nondeterminism problem in the SCEPTRE 2
fault tolerance technique. In: Euromicro Workshop on Real-Time Systems, Odense,
Denmark, pp. 352–358 (June 1995)

7. Bressoud, T.C.: TFT: A software system for application-transparent fault toler-
ance. In: FTCS, Munich, Germany, pp. 128–137 (June 1998)

8. Bressoud, T.C., et al.: Hypervisor-based fault-tolerance. ACM Transactions on
Computer Systems 14(1), 90–107 (1996)

9. Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: Distributed Systems. In: The
Primary-Backup Approach, ch.8, 2nd edn., pp. 199–216 (1993)

10. http://www.csci.csusb.edu/dick/c++std/cd2/gram.html
11. Frolund, S., et al.: X-ability: A theory of replication. In: PODC, Portland, OR, pp.

229–237 (2000)
12. Gaifman, H., et al.: Replay, recovery, replication, and snapshots of nondeterministic

concurrent programs. In: PODC, Montreal, Canada, pp. 241–255 (August 1991)
13. Jimenez-Peris, R., et al.: Deterministic scheduling for transactional multithreaded

replicas. In: SRDS, pp. 164–173 (2000)
14. Orgiyan, M., et al.: Tapping TCP streams. In: IEEE International Symposium

on Network Computing and Applications, Cambridge, MA, pp. 278–289 (October
2001)

http://www.csci.csusb.edu/dick/c++std/cd2/gram.html

224 J. Slember and P. Narasimhan

15. Poledna, S.: Replica Determinism in Fault-Tolerant Real-Time Systems. PhD the-
sis, Technical University of Vienna, Vienna, Austria (April 1994)

16. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

17. Slember, J.G., et al.: Nondeterminism in ORBs: The perception and the reality. In:
Workshop on High Availability in Distributed Systems, Krakow, Poland (Septem-
ber 2006)

18. Slember, J.G., et al.: Living with nondeterminism in replicated middleware sys-
tems. In: Middleware, Melbourne, Australia, pp. 81–100 (November 2006)

19. Slye, J.H., et al.: Supporting nondeterministic execution in fault-tolerant systems.
In: FTCS, Sendai, Japan, pp. 250–259 (June 1996)

20. Taiani, F., et al.: A multi-level meta-object protocol for fault-tolerance in complex
architectures. In: DSN, Yokohama, Japan, pp. 270–279 (June 2005)

21. White, B., et al.: An integrated experimental environment for distributed systems
and networks. In: OSDI, Boston, MA, pp. 255–270 (December 2002)

22. Wolf, T.: Replication of Non-Deterministic Objects. PhD thesis, Ecole Polytech-
nique Federale de Lausanne, Switzerland (November 1988)

23. Zagorodnov, D., et al.: Managing self-inflicted nondeterminism. In: HotDep, Yoko-
hama, Japan (June 2005)

24. Visser, W., et al.: Model Checking Programs. Automated Software Engineering
Journal 10(2) (2003)

Toward Architecture Evaluation through

Ontology-Based Requirements-Level Scenarios

Mamadou H. Diallo, Leila Naslavsky,
Thomas A. Alspaugh, Hadar Ziv, and Debra J. Richardson

Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{mamadoud,lnaslavs,alspaugh,ziv,djr}@ics.uci.edu

Abstract. We describe an approach for evaluating whether a candidate
architecture dependably satisfies stakeholder requirements expressed in
requirements-level scenarios. We map scenarios to architectural elements
through an ontology of requirements-level event classes and domain en-
tities. The scenarios express both functional requirements and quality
attributes of the system; for quality attributes, the scenarios either op-
erationalize the quality or show how the quality can be verified. Our
approach provides a connection between requirements a stakeholder can
understand directly, and architectures developed to satisfy those require-
ments. The requirements-level ontology simplifies the mapping, acts as
the focus for maintaining the mapping as both scenarios and architecture
evolve, and provides a foundation for evaluating scenarios and architec-
ture individually and jointly. In this paper, we focus on the mapping
through event classes and demonstrate our approach with two examples.

1 Introduction

Designing architectures that are consistent with their requirements is crucial
in the development of large software systems. Software architecture evalua-
tion methods have been proposed as a way of determining the fitness of an
architecture with respect to its functional requirements as well as its quality
attributes such as availability, reliability, performance, maintainability, and secu-
rity [4,7,15,18,23,31]. These quality attributes are in general expressed by stake-
holders in natural language sentences, which are difficult to use in the evaluation
methods. Scenarios have been used as an alternative (and sometimes complemen-
tary) way to express requirements and system behavior throughout the phases
of software development. Scenarios have been used by the evaluation methods to
relate requirements and architectures [3]. However, in most methods this rela-
tionship is not conserved for later use. For evaluation methods to be more useful
and effective, the relationship between requirements and architectures needs to
be maintained to support the evolving nature of these two processes.

Scenarios are used with different representations and semantics across software
phases. They can describe a system at different levels of abstraction [1], can be

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 225–247, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 M.H. Diallo et al.

linked to software architecture, and be used for testing [9,14]. At the requirements
level, scenarios can be expressed in many forms, including prose. We use the
ScenarioML language [1,2]. It provides a scenario syntax with a well-defined
structure for events, and user-defined ontologies defining domain concepts.

This paper describes a four-step approach to architecture evaluation that
aids software architecture designers. First, user requirements are specified using
a structured scenario language; second, the architecture is described using an
architectural description language; third, requirements scenarios are mapped
into architectures using elements from the structured scenario and components
in the architecture; and fourth, the resulting architectures are evaluated against
original requirements scenarios.

An architectural description comprises structural and behavioral specifica-
tions. Our proposed approach is not dependent on a particular Architectural
Description Language (ADL). It does require, however, that each component in
the architecture description have precisely defined responsibilities and services,
which are provided through their interfaces. In this paper, we use structural
descriptions written in xADL [12], an XML-based ADL. In addition, we adopt
an extension of xADL for behavioral description that uses statecharts, proposed
in [25].

We propose an approach that maps domain events, classes, and individuals
used in requirements scenarios (described using ScenarioML) to architectural
components (described using xADL). This approach supports evaluation of con-
sistency between architecture and requirements. Our approach’s main contri-
bution is leveraging ScenarioML to establish the relation from requirements to
architecture more effectively and evolvably. This is possible because ScenarioML
supports an ontology of domain events and entities, which enables a straightfor-
ward and compact mapping from events in the requirements to the components
responsible for those events in the architecture.

We use a domain ontology as the basis for the mapping between requirements
and architectures because it facilitates the mapping. In this work, an ontology is a
collection of domain class, individual, and event type definitions that are typically
interrelated. ScenarioML supports and encourages reuse of event types as tem-
plates for specific events in scenarios, and unambiguous links to domain classes
and individuals wherever these are referred to. The ontology not only improves
the clarity of the scenarios [2], but also effectively reduces the complexity of links
between the requirements and architecture elements. Without the ontology, each
appearance of a scenario element is linked individually to all relevant architecture
elements; with the ontology, the appearances are linked to its definition in the on-
tology, and only that definition is linked to the architecture elements. The more
extensive the reuse of the ontology definitions in the scenarios, the greater is the
reduction in complexity. ScenarioML supports reuse of event types that appear as
equivalent events in the same or several scenarios; specialization and generaliza-
tion of events through their event types; explicit relationships among a parame-
terized event type’s instances with different arguments; and domain classes and

Toward Architecture Evaluation 227

individuals referred to in events. In the initial work presented here, we focus on
reuse of equivalent events.

To illustrate how our approach supports evaluation of software architectures
against requirements-level scenarios, we apply it to two examples. The first ex-
ample shows how our approach identifies inconsistencies between functional re-
quirements and architecture. The second example shows that our approach can
be applied to distributed systems and can also evaluate the architecture against
non-functional requirements (e.g. availability, and reliability).

The remainder of the paper is organized as follows. Section 2 briefly discusses
the portion of ScenarioML used by our approach. We present our approach to
architecture evaluation in Section 3, and illustrate its application to two example
systems in Section 4. Section 5 discusses some of our findings. We place the
research in the context of related work in Section 6, and summarize in Section 7.
Section 8 outlines our future work.

2 ScenarioML

ScenarioML is a language for expressing scenarios that provides structures to
represent the aspects of textual scenarios that people treat and interpret con-
sistently [1,2]. It makes use of the division of scenarios into events; natural lan-
guage simple events whose meaning is understood by humans; compound events
consisting of subevents in a temporal pattern; event schemas for alternation,
iteration, and the like; episodes that reuse an entire scenario as a single event of
another; ontologies defining domain concepts; and a number of other features. It
is designed to support being read and written by all stakeholders (using software
tools), and to accommodate machine processing. Here we discuss only the parts
of ScenarioML most significant for our approach.

A ScenarioML ontology consists of a collection of domain class, individual,
and event type definitions. The definitions typically refer to each other and are
interrelated. A domain class (an instanceType) defines a class of entities in the
domain that are in some sense equivalent. A domain individual (an instance)
in the ontology defines a specific entity of a class whose existence is assumed
or guaranteed; ScenarioML also provides structures for referring to individuals
that are newly created or identified during the course of a scenario. An event
type (eventType in ScenarioML) acts as a template for reusing the same event
in several scenarios or several times in the same scenario. A domain class may
be specified to be subsumed by another in a subclass/superclass relationship, as
can an event type. Both domain classes and event types may be parameterized,
in which case their instances are as well and must be given an argument for each
parameter.

3 Approach

In this section, we describe our approach for evaluating a software architecture
against requirements-level scenarios. The requirements-level scenarios need to

228 M.H. Diallo et al.

describe not only functional requirements, but also non-functional requirements
as discussed below. With these scenarios one can evaluate whether the architec-
ture meets the functional requirements. They also enable one to assess how well a
selected architecture style can support the dependability qualities of the system
such as availability, reliability, maintainability, and safety. The software archi-
tecture needs to be expressed in an ADL, with precisely defined responsibilities
and services for each component.

The requirements-level scenarios are modeled with ScenarioML. The Scenar-
ioML ontology models the actions performed by different actors in the scenarios
using eventType and associated elements such as super and parameter. The sce-
narios are expressed by instantiating the eventType. Indeed, ScenarioML is the
foundation of our approach.

We use xADL for describing the architecture in the examples presented in
Section 4. However, any other ADL with similar features could be used. xADL
is an XML-based architectural description language that is highly extensible.
It supports structural [12] description of architectures and also behavioral [25]
description of architectures using statecharts. Additionally, it has tool support
for runtime and design time modeling, architecture configuration management,
and model-based system instantiation.

3.1 Overview of Approach

Our approach takes requirements-level scenarios described in ScenarioML and
evaluates them against the architecture of the system described with compo-
nents and connectors. The scenarios describe the functional and non-functional
requirements that are important to the stakeholders. The approach is based on
explicit mappings between eventTypes in the ontology and components in the
architecture. The mapping is created by examining in conjunction the meaning
of the event in the scenarios and the roles played by different components in the
architecture.

The approach comprises four main steps: (1) description of the important
scenarios of the system in ScenarioML, (2) description of the architecture using
an architectural description language, (3) mapping the ontology event types
to the architectural components, and (4) walkthroughs of the scenarios in the
architecture. Figure 1 shows an overview of the approach.

3.2 Scenarios Description in ScenarioML

Description of scenarios with ScenarioML can be accomplished through the fol-
lowing three steps:

1. Identify actors of the scenarios and actions they perform. Then, generalize
the actions where possible to reduce the eventual number of event types.
The fewer the event types, the simpler it is in the approach’s later steps.

2. Define the event types based on the identified actions in the first step using
the eventType. This includes sub-typing and parameterizing events where
appropriate. For example, a group of related events can be grouped under a

Toward Architecture Evaluation 229

Scenarios Described Using
TypedEvents and InstanceTypes

ScenarioML

Architecture with Components,
Connectors, and Interfaces

xADL

Ontology with EventTypes and
InstanceTypes
ScenarioML

Mapping

References W
alk
th
ro
ug
h

Fig. 1. Overview of the approach

super-event, or a general event can include parameters to allow specialization
to particular contexts.

3. Write scenarios using the previously defined event types. The element used
for this purpose is the typedEvent element, which references and reuses a
defined eventType.

The requirements scenarios for a system are often quite numerous. Our ap-
proach does not propose a method for ranking scenarios by importance, so that
limited evaluation time can be focused on the most important ones. In gen-
eral, we expect that the importance of a scenario is determined by the system’s
designers.

3.3 Architecture Description

We assume the architecture is described with an ADL that supports both struc-
tural and behavioral descriptions. The structural description provides the infras-
tructure for mapping, while the behavioral description allows dynamic checking
of the architecture against scenarios. The architecture description should in-
clude components, connections, and constraints on the communication between
the components. The role of each component must be specified unambiguously
to facilitate the mapping of event types and components. If the architecture
decomposes the components into subcomponents, the responsibilities of each
subcomponent should be identified precisely. It this case, the mapping can be
done at the subcomponent-level, which can give more detailed information about
the fitness of the architecture in regard to requirements.

3.4 Mapping Ontology Elements to Architectural Components

The mapping is performed between event types in the ontology and components
in the architecture’s structural description. It is based on the meaning of the

230 M.H. Diallo et al.

events of the scenarios and the responsibilities of the components. For example,
in the PIMS (Personal Investment Management System) system [21] described
later in Section 4, the event “The user enters the portfolio’s name” is matched
to the component “Master Controller”, which manages the user interface; the
event “The system authenticates the user” is matched to the component “Au-
thentication”, which is responsible for the authentication task. A table can be
used to capture the mapping, with row headings representing the events and
column headings the components (such as Table 1).

The mapping is many-to-many. One event type from the requirements-level
scenario describes a high level action that can be decomposed into several of
a component’s low level actions. Therefore, to execute an event type from the
requirements-level scenario, multiple low level actions may be executed. In ad-
dition, each component supports many low level actions, where each action can
result from the decomposition of different event types from the requirements-
level scenario.

3.5 Architecture Evaluation against Scenarios

The task of evaluating an architecture against a set of scenarios consists of
going through the sequence of the events in the scenarios, using the established
mapping to match events to components, while simulating the behavior of the
matched components. The resulting architecture behavior is then evaluated for
inconsistencies with the scenario.

The architecture can be inconsistent with the requirements in a number of
ways. The inconsistency can take the form of a missing link between two com-
ponents that is required by the scenarios. If two successive events match two
components, where the first event in the sequence matches the first component
and the second event matches the second component, then the two components
may need to be able to communicate. In this case, the structural description of
the architecture should allow such communication, else the architecture may be
inconsistent with the requirements. The architecture satisfies the requirements-
level scenario if the second component provides an interface to the first compo-
nent to allow it to request the necessary services, for example.

Another possible inconsistency occurs when the structural description of the
architecture violates constraints imposed by the requirements. For instance, a
requirement for a distributed system could be “Clients need to communicate
through a central server.” This constraint can be violated if the architecture
allows two clients to communicate directly, bypassing the central server.

Some quality attributes can be more effectively described using negative sce-
narios. A negative scenario describes an undesirable behavior of a system. In
this case, the inconsistency is identified by a successful execution of the negative
scenarios. For instance, for security reasons a requirement for a distributed sys-
tem could be “Users need to be authorized to access the network.” A scenario
could describe a user with inadequate authentication information accessing the
system. The successful execution of such a scenario implies the system is not
secure.

Toward Architecture Evaluation 231

4 Two Applications

In this section, we illustrate our approach by applying it to two example appli-
cations. The first example is a single-process textbook system, which we used to
show how our approach detects inconsistencies between functional requirements
of a system and its architecture. The second example is a realistic distributed
and decentralized system, which we used to demonstrate how our approach can
be used to analyze the fitness of an architecture with regard to non-functional
requirements (quality attributes). Both the functional and non-functional re-
quirements of this system are described using scenarios.

We chose these applications rather than real-world industrial systems because
they have relatively complete requirements and architectures. Our earlier study
found that few if any publicly available industrial systems have both [13].

For this study, we selected xADL to describe the architecture of the systems.
We used Archipelago, a user-friendly graphical editor for xADL included in Arch-
Studio 4 to describe the PIMS’s architecture [12]. ArchStudio 4 is an open-source
software and systems architecture development environment. It is an environment
of integrated tools for modeling, visualizing, analyzing and implementing software
and systems architectures, based on the Eclipse open development platform.

4.1 PIMS

The first example we selected for this study is PIMS (Personal Investment Man-
agement System), included in Jalote’s book [21] and presented in detail on the
book’s website as an extended case study. PIMS is used by customers to keep
track of their invested money in institutions such as banks and in the stock mar-
ket. It includes all the development artifacts from the requirements documents
to the Java source code.

The PIMS functional requirements are presented in the form of use cases. In
total the system’s requirements comprise 22 uses cases. Each use case contains
a main scenario and some alternative scenarios. The system contains only few
non-functional requirements, which pertain to performance, security, and fault
tolerance. For the purpose of demonstrating our approach, we focus on two
functional scenarios, “Create portfolio” and “Get the current prices of shares.”
The scenario “Create portfolio” describes the steps required to create a new
portfolio and “Get the current prices of shares” lists the steps to be performed
to get the current prices of shares from the Internet (Figure 2).

The PIMS use cases in this example are:
“Create portfolio” main scenario: (1) User initiates the “create portfolio”

functionality. (2) System asks the user for the portfolio name. (3) User enters
the portfolio name. (4) An empty portfolio is created.

“Create portfolio” alternate scenario: (4.a) Portfolio with the same name ex-
ists. (4.a.1) System asks the user for a different name. (4.a.2) User enters a
different name. (4.a.3) Empty portfolio gets created.

“Get the current prices of shares” main scenario: (1) User initiates the “down-
load current share prices” functionality. (2) The system downloads the current

232 M.H. Diallo et al.

share prices from a particular website. (3) The system display the current share
prices. (4) The system save the current share prices.

“Get the current prices of shares” alternate scenario: (2.a.1) The system is
not able to download (due to network failure, site down, ...). (2.a.2) The system
gets current value saved from before. (2.a.3) The system display current value
saved from before; ask the user to change it.

The PIMS architecture (Figure 3) is designed using the Layered Architectural
Style. The architecture not only includes the main architecture diagram, but
also the different modules and their interfaces comprising in each component. It
comprises a data access layer separating the business logic and data repository.
Data retrieval and modification is done via this data access layer, while all the
processing of data or implementation of the business logic done in the business
logic layer. The fourth layer is the presentation layer (“Master controller”) which
is responsible for interacting with the user and invoking modules of the business
logic layer.

PIMS ScenarioML Scenarios. This first step of the approach comprises using
the ScenarioML language to develop an ontology for PIMS, and describing the
selected PIMS scenarios using the ontology elements. The two principal actors of
the system are “User” and “System”. Based on the various scenarios, the actions
performed by each actor were identified and described using the ScenarioML
ontology. This description included generalizing and parameterizing the actions
for simplicity and clarity, and identifying equivalent events that can be defined
once and shared. Figure 2 shows some actions performed by the actor “User”
expressed using the ontology element eventType. In addition to defining the
events for each actor, the general concepts of the system are also captured using
the elements term and instanceType of the ontology and included in the PIMS
ontology.

Based on the eventTypes defined in the ontology, the selected scenarios are
described. Figure 2 shows the description of the scenarios “Create portfolio” and
“Get the current prices of shares” respectively. The important events in these
scenarios are defined using typedEvents, which refer to the eventTypes in the
ontology.

PIMS Architectural Description in xADL. In this second step, we
described the PIMS architecture using xADL. Figure 3 shows the structure
description of the PIMS architecture. We used the Archipelago editor in the
ArchStudio 4 environment to draw the diagram and define all the elements of
the architecture.

Mapping PIMS Ontology Elements to PIMS Components. In this third
step, we created a mapping between PIMS ontology elements and the PIMS ar-
chitecture components. The description of the PIMS architecture is presented in
Figure 3. The architecture comprises the components with their interfaces and
connectors, that can be visualized graphically. Each component in this architec-
ture has a well defined role, which facilitated the mapping from event types to

Toward Architecture Evaluation 233

Ontology: Event Types

Get current share price scenario

Create portfolio scenario

Fig. 2. PIMS scenarios and part of mapping to PIMS ontology

components. Table 1 shows the mapping between some elements of the ontology
and some components of the architecture. Each ontology event type is mapped
at least to one component and each component is mapped to by at least by one
ontology event type.

PIMS Scenarios Walkthrough. In this final step, we performed a walk-
through of the scenarios in the architecture. Since the PIMS architecture was
carefully designed to be part of a book, we were not surprised to find it is
consistent with all the scenarios describing the system functional requirements.

234 M.H. Diallo et al.

Fig. 3. The architecture of PIMS described in xADL

In order to illustrate how our approach discovers inconsistencies between re-
quirements and architecture, we artificially introduced an error in the PIMS
architecture by excising the link between the “Data Access” and “Loader” com-
ponents. In introducing this error, our expectation was that the walkthrough of
the “Create portfolio” scenario would succeed while the “Get the current prices
of shares” scenario would fail.

We performed the walkthroughs of the two scenarios manually. The “Create
portfolio” main scenario contains four simple events in a chain and matches four
components in the architecture. As expected, the walkthrough was successful be-
cause the sequence of the events in the scenario matches an appropriate sequence
of the components.

The “Get the current prices of shares” main scenario is also composed of
four simple events in a chain and matches four components in the architecture.

Table 1. Mapping between ontology event types and architecture components

Toward Architecture Evaluation 235

??

1 2

3

4

Fig. 4. Failed walkthrough of “Get the current prices of shares” scenario

However, the sequence of the events in the scenario does not succeed in the
modified architecture due to the excised link between the “Data Access” and
“Loader” components. Figure 4 illustrates the walkthrough of this scenario. The
first event sends a request from the “Master Controller” component through
intervening connectors and components to the “Remote Share Price Database”.
The second event transfers data back to the “Master Controller”, and the third
event displays it there. The fourth event would transfer specific data from the
“Loader” through “Data Access” to the “Data Repository” to be saved. Since
the necessary first link along this path between the “Loader” and “Data Access”
was excised, and other paths do not support transfer of this data, the current
prices of shares cannot be sent to the “Data Repository” to be saved. Therefore,
the modified architecture does not cover this scenario.

4.2 CRASH System

The second system we chose to illustrate our approach is CRASH (Crisis Re-
sponse and Situation Handling), a decentralized and distributed system devel-
oped in our department for case studies [27]. CRASH models a collection of
governmental and non-governmental organizations cooperating in response to
emerging situations in order to make decisions. The system contains the follow-
ing decision-making organizations: Police Department, Fire Department, Search
and Rescue, Red Cross, St. Elsewhere Hospital, a Charitable Organization,
and the Department of Public Works. Each CRASH peer is divided into three
sub-system classes: Display, Information Gathering Sources, and Command and
Control. The Display sub-system is responsible for visualizing the information

236 M.H. Diallo et al.

currently known to the organization such as deployment of resources and other
vital information. Information Gathering Source sub-systems provide feedback
and information to the entity’s Command and Control sub-system, for example
by relaying reports from the public. These sub-systems are connected to the
entity’s Command and Control through internal ad hoc networks. Additionally,
each entity’s Command and Control center is also connected to the Command
and Control centers of other organizations, perhaps, again, through ad hoc net-
works. An entity’s Command and Control center is then responsible for aggre-
gating data received from its information sources as well as information from
other organizations. Ultimately, the Command and Control system is responsi-
ble for making decisions on behalf of the entity and conveying information and
instructions to its affiliated resources. A high-level architecture of the system is
illustrated with two peers in Figure 5.

For the CRASH system to be dependable, it needs to be available, reliable
and secure. Since the system is intended to be used to manage crisis in critical
times, its availability is crucial. The continuity of correct service of the system is
necessary to successfully coordinating the activities of the different organizations
during the execution of the operations. Secondly, the CRASH system needs to
be reliable so that all the services it delivers during the operations are correct.
Finally, the system also needs to be secure to ensure that malicious entities
cannot join the network and perform malicious behavior.

In this section, we focus on two scenarios that illustrate several dependability
issues of CRASH.

The first scenario in concerned about the availability of the system. In the
CRASH system, it is important to know what are the available entities at any
given time. The availability of a system can be compromised by hardware and
software failures. In this example scenario, we focus on the software failure. The
following scenario operationalizes the availability requirement by showing how
the system handles the failure of a component.

Entity Availability scenario: (1) The Police Department shuts down its Com-
mand and Control entity. (2) The Fire Department’s Command and Control
sends a request message to the Police Department’s Command and Control.
(3) The Network sends a failure message to the Fire Department. (4) The Fire
Department receives the failure message.

The second scenario focusses on the reliability of the system. In order for
the CRASH system to deliver reliable services, the communication between the
entities in the system need to be effective. One aspect of this is the sequence
in which messages are received; messages received out of order can create a
mistaken understanding of what has occurred. The following scenario shows how
the reliability requirement can be verified by testing whether the messages sent
by a peer are received by other peers in the same sequence they are sent.

Message Sequence scenario: (1) Fire Department’s Command and Control
sends a request message to the Police Department’s Command and Control. (2)
Fire Department’s Command and Control sends a second request message to
the Police Department’s Command and Control after 5 seconds. (3) The Police

Toward Architecture Evaluation 237

Fig. 5. CRASH High-Level Architecture

Department’s Command and Control receives the first message. (4) The Police
Department’s Command and Control receives the second message.

The architecture style used to design the CRASH system is C2 [28]. A C2
architecture is composed of components and connectors that are organized into
layers. Components in a layer are only aware of components in the layers above
and have no knowledge about components in layers below. Components commu-
nicate with each other using two types of asynchronous event-based messages,
requests and notifications. Request messages travel up the architecture while
notification messages move down the architecture.

CRASH ScenarioML Scenarios. In this step, an ontology and scenarios for
the non-functional requirements were developed for the CRASH system. The
principle actors of the system are “User”, “System”, “Entity”, and “Network”.
Based on the non-functional requirements scenarios, the actions performed by
each actor were identified and described using the ScenarioML ontology. This
description included generalizing and parameterizing the actions for simplicity
and clarity and for a minimal set of event types. The description in ScenarioML
of the “”Entity Availability” scenario is presented in Figure 6, and that of the
“”Message Sequence” is presented as part of Figure 8.

CRASH Architectural Description in xADL. In this step, we again used
Archipelago to define the CRASH architecture. The full architecture is too large

238 M.H. Diallo et al.

Fig. 6. “Entity Availability” scenario

Fig. 7. Architecture of each CRASH Entity

Toward Architecture Evaluation 239

Police Department 's Command and Control

Message Sequence Scenario

CRASH Ontology

Fig. 8. CRASH ontology, scenario, and architecture mapping

to show here; as an illustration, we show the internal architecture of the Police
Department’s Command and Control center in Figure 7.

Mapping CRASH Ontology Elements to CRASH Architecture Com-
ponents. Figure 8 gives a general overview of the relationships between on-
tology, scenarios, and architecture in our approach. It illustrates the mapping
between the event types in the CRASH ontology and the components in the
CRASH architecture. For example, the event type “sendMessage” is mapped to
three components: “User Interface”, “Sharing Info Manager”, and “Communi-
cation Manager”. It also shows how event types in the ontology are instantiated
as typed events in the scenarios.

240 M.H. Diallo et al.

CRASH Scenarios Walkthrough. The two selected scenarios, “Entity Avail-
ability” and “Message Sequence”, are concerned with availability and reliability
respectively. In general, static walkthroughs have limited effectiveness for eval-
uating satisfaction of quality attributes by an architecture. These two quality
attributes can be determined effectively only at run-time. Since we have not
implemented our tool for supporting the execution of the architecture with sce-
narios, we demonstrate the concept by describing what could have happened
when the execution of the scenarios on the architecture is simulated.

The “Entity Availability” main scenario contains four simple events in a chain
that match a number of components in the architecture. The result of the walk-
through of this scenario is as follow. If the architecture provides a mechanism for
detecting the availability of the entities, than the User Interface component of
the Fire Department’s Command and Control, which initiated the first event in
the scenario, will receive an error message alerting the unavailability of the Police
Department’s Command and Control. Otherwise, Fire Department’s Command
and Control will not receive any alert about the unavailability of Police Depart-
ment. This scenario is effective in determining if the an entity is available at any
given time.

The “Message Sequence” main scenario is also composed of four simple events
in a chain that match a number of components in the architecture. The main
concern in this scenario is the preservation of the messages order in the architec-
ture. The result of the walkthrough is as follow. If first message sent by the Fire
Department’s Command and Control arrives first in the Police Department’s
Command and Control, then the order is preserved; otherwise the order not
preserved.

5 Discussion

A challenge of using scenarios to evaluate architecture is finding the necessary
behavioral information in the architecture in order to exercise the architecture
convincingly with a requirements scenario. This difficulty is highlighted when
one tries to match events in scenarios to appropriate components and services in
architectures. One aspect of the challenge is that requirements events are typi-
cally described at a finer granularity than architectural components, with several
successive events often mapping to a single component. A requirements-level on-
tology can support generalization and specialization of the actions performed by
actors in the scenario events, giving more flexibility in the conceptual level of the
events. For instance, in the CRASH system, the message for saving, updating,
and deleting information, can be generalized under one more-abstract message
action, especially if the architecture handles all three similarly. Then the more-
abstract eventType for that action can be mapped more straightforwardly and
dependably to the architecture. The method by which it is specialized for the
three cases (by parameters, or by event subtypes, or a combination) then pro-
vides a specific direction from which to evaluate how the architecture supports
each of the cases.

Toward Architecture Evaluation 241

Another challenge for scenario-based architecture evaluation methods is se-
lecting the most important scenarios to evaluate the architecture. The number
of possible scenarios can be very large for even small systems, which makes it
impractical to check all scenarios. ScenarioML supports this task with its on-
tology that allows reuse of a single event type in several scenarios, or several
times in a single scenario, resulting in fewer distinct events that may need to be
covered.

A third challenge for scenario-based architectural evaluation methods is the
difficulty of determining and expressing the non-functional requirements. Ide-
ally, quality requirements are written completely and unambiguously in a re-
quirements document prior to architecture design. Too often, however, quality
requirements are not written or poorly written. Kazman et al. argue that quality
attribute requirements for both existing and planned systems are often missing,
vague, or incomplete [24]. Even if the quality attributes exist, they are lim-
ited to simple statements. For our approach, these quality attributes need to
be described using scenarios, as in our previous work [30]. The scenarios need
to describe specific examples (or counterexamples) of current and future uses
of the system. Since these quality attributes need to be gathered for the most
part from the stakeholders, designers need to work closely with stakeholders
during requirements elicitation, specification, and analysis. Once identified, our
approach facilitates their expression and management.

Traceability between requirements and architecture is a key condition for soft-
ware maintainability with a reduced negative impact on software quality. Soft-
ware evolves to meet users’ new requirements, to correct defects, and to cope
with changes to the environment in which it operates, among other reasons.
Management of maintenance tasks demands some effort on the part of the de-
velopers, depending on the nature of the change and on available tool support.
Tools that support requirements traceability (e.g. DOORS and Requisite Pro)
manage source code and/or architecture versions [19], and supporting effective
regression testing can alleviate the burden of software maintenance. When evolu-
tion of stakeholder requirements creates software maintenance tasks, traceability
assists developers in locating other artifacts that also need modifications. Hence,
traceability increases maintainability.

One benefit of our approach is the traceability links that are established be-
tween requirements and architecture, which ease maintenance involving these
artifacts. Our approach explores ontology-based requirements-level scenarios to
trace requirements to architecture. It explicitly maps event types in the ontology
to components in the structural architectural description, and uses the ontology
to simplify and minimize the mapping.

6 Related Work

Software architecture specifies the high-level structure, behavior, and character-
istics of a system intended to satisfy software product requirements. Evaluating
an architecture against requirements during architecture design is important

242 M.H. Diallo et al.

because it is faster and cheaper to fix defects early. However, evaluating an ar-
chitecture is also challenging because it is not possible to guarantee absolutely
that the architecture meets its requirements [16]. So, evaluating an architecture
can give only an estimate of the likelihood that it satisfies its requirements.

Scenarios have been proposed as a means for analyzing and evaluating ar-
chitectures by many researchers. Barber and Holt proposed using a scenario
space for evaluating architectures [5]. The scenario space is a directed graph
that represents possible threads of execution composed of services in the soft-
ware architecture, which provides a high level view of the architectural execution.
This visualization helps evaluate whether executing the architecture will support
the anticipated scenarios for the application domain. Kazman et al. also used
scenarios to analyze architectures with the focus on achieving quality attributes
in their method, Scenario-based Architecture Analysis Method (SAAM) [23]. A
number of other scenario-based architecture analysis methods are also geared
toward evaluating architectures against the desired quality attributes described
using scenarios. These include Software Architecture Level Modifiability Analy-
sis (ALMA) [7], Performance Assessment of Software Architecture (PASA) [15],
Architecture Level Usability Assessment (SALUTA) [15], ART-SCENE [31], and
Architecture Trade-off Analysis Method (ATAM) [4]. None of these methods use
an ontology to improve the clarity and efficiency of scenarios, and to provide an
effective mapping between requirements and architecture to facilitate architec-
ture evaluation. We build on their work in the ways we use scenarios to evaluate
an architecture.

Grunbacher et al. proposed the CBSP (Component-Bus-System-Property) ap-
proach for bridging requirements and architecture [18]. CBSP uses intermediate
models to systematically reconcile requirements and architecture. Unlike our ap-
proach, CBSP is not intended for the evaluation of architecture, but instead is
used in the design process. It helps designers develop architectures based di-
rectly on the requirements. Another method that aids the design of software
architectures is the integrated decision-making framework [20]. The framework
aids in systematically determining architecture alternatives from negotiated re-
quirements among stakeholders. It facilitates requirements elicitation, architec-
ture alternatives exploration, and reaching agreement. However, it does keep any
mapping between requirements and architectures.

Ontologies have been proposed as way of representing knowledge on the Se-
mantic Web [8]. An ontology is a data model representing a set of concepts within
a domain and the relationships between those concepts. On the Semantic Web,
ontologies facilitate interoperability and allow autonomous agent interaction.
The idea of ontologies for knowledge representation that facilitates the sharing
of information between agents has been used in traditional software develop-
ment, in particular, in requirements engineering. Kaiya and Saeki developed a
method for analyzing requirements based on ontologies [22]. In this method, an
ontology is used as a semantic domain for detecting defects in requirements such
as inconsistencies and incompleteness. The ontology is not used to express part of
the requirements, as is the case in ScenarioML. Breitman et al. use ontologies to

Toward Architecture Evaluation 243

formalized services specifications in multi-agent systems [10]. The role of the on-
tologies in this work is to enhance the communication protocol to allow software
agents to exchange meaningful information. Ontologies capture the semantics
of the operations and services provided by agents, allowing interoperability and
information exchange in a multi-agent systems. Again, the ontologies are not
used to express the requirements. Breitman and Leite considered an ontology of
a web application as a sub-product of the requirements engineering activity [11].
From this viewpoint, they proposed a requirements engineering based process
for the construction of ontologies. The process is based on language extended
lexicon (LEL) and provides a way to implement ontologies using the application
lexicon. Our research builds on this work.

7 Summary

In this paper, we proposed an approach for evaluating software architectures
against requirements-level scenarios. The approach comprises four steps: (1)
user requirements specification in the form of scenarios using ScenarioML [1],
(2) architectures design using an architectural description language, (3) map-
ping the requirements scenarios into the architecture components through an
ontology, and (4) architectures evaluation against the original requirements sce-
narios. While ScenarioML constitutes the basis for specifying the requirements,
any ADL that supports structural and behavioral specification of architectures
can be used to specify the architecture. In this paper, we focused on xADL [12].

As a proof of concept, we applied our approach to two example applications,
where we used xADL as the language for describing the architectures. We used
the first example, PIMS, to illustrate how our approach checks the consistency of
an architecture in regard to functional requirements. We used the second example
to show that our approach can be used to check the fitness of an architecture
in regard to non-functional requirements including dependability. Furthermore,
the second example demonstrates the applicability of our approach to distributed
and decentralized systems.

The next step in evaluating the effectiveness of our approach is to use our
tool supporting the approach, currently under development. With the tool, we
will be able to automatically check all the considered scenarios, which will lead
to better results.

This approach differs from other scenario-based architectural evaluation meth-
ods in that it uses an ontology for the underlying connection between the re-
quirements and the architecture. The ontology provides, among other benefits,
clarity and consistency in the scenarios and a base for efficient mapping between
requirements elements and architecture components. We believe these will allow
the development of effective automatic tool support.

Another benefit of our approach is the traceability between requirements and
architectures made possible by the mapping. By explicitly mapping event types
in the ontology to components in the architectural description, requirements
changes in the scenarios can be traced to the architecture and vice versa. As a

244 M.H. Diallo et al.

consequence, requirements can evolve while the pre-established mapping assists
developers in locating impacted components in the architecture.

8 Future Work

We are currently developing a tool called SOSAE (Scenario and Ontology-
based Software Architecture Evaluation) to support this approach. SOSAE is
an Eclipse plug-in tool that facilitates the mapping between the ontology el-
ements of the requirements and components of the architecture. Furthermore,
SOSAE provides the mechanism for automatically “executing” the scenarios on
the architecture. For the description of the scenarios, we plan to integrate SOSAE
with the Scenario Workbench, an Eclipse plug-in tool for editing and working
with ScenarioML scenarios. In this way, the scenarios will be described in the
Scenario Workbench and automatically loaded in SOSAE. For the description of
the architecture, we will provide a means for integrating SOSAE with an appro-
priate architectural description language. The description of the architecture will
be also automatically loaded in SOSAE. The first version of the tool is focusing
on xADL.

We plan to generalize SOSAE to work with a range of ADLs. Our choice for
supporting this is the generic ADL Acme [17], a simple ADL that can be used as a
common interchange format for architecture design tools and/or as a foundation
for developing new architectural design and analysis tools. Acme is also attractive
in this context because it incorporates both structure and behavior description
mechanisms. Our approach will then make use of AcmeStudio [26], an Eclipse
plug-in tool that facilitates editing and visualization of software architectural
designs based on the Acme architectural description language (ADL).

In Section 4 we applied our approach to two example systems as an illus-
tration and proof of concept. We are planning a more detailed and convincing
evaluation of our approach. An analogous evaluation using real-world systems
would also require subject systems with both detailed requirements and detailed
architectures. However, our earlier study [13] found that such real-world sys-
tems are hard to find, and in practice may not exist. After our SOSAE tool is
completed, we plan a study in which we observe the use of our approach by an
industrial partner in developing a real system.

We are strongly interested in connecting stakeholders into the architectural
phase of development. The present work describes using scenarios to evaluate
an architecture; we also envision using scenarios to communicate stakeholder
goals and needs forward to software architects, and also using stakeholder-level
scenarios from the architects to communicate the results of architectural analysis
and evolution back to the stakeholders. These in turn could be used to derive
implied scenarios from the combined stakeholder and architectural scenarios,
using the approach of Uchitel et al. [29], in order to identify possibly undesired
implied scenarios.

We will also explore the capability of an ontology to improve the efficiency
of the mapping between requirements and architecture. Currently, our approach

Toward Architecture Evaluation 245

uses the domain ontology to define equivalent event types that can be reused
when expressing the scenarios. The mapping is performed through event types to
the architectural components, which results in a simpler mapping if event types
are reused several times or in several scenarios. We hypothesize that the mapping
can be further simplified, facilitated, and made more evolvable through use of
other ontology features supported in ScenarioML: specialization/generalization
among events, relationships among instances of an event type with different
arguments, and references from events to domain classes and individuals. For
example, the events that map to a specific component can be determined by the
domain entities that appear in those events, rather than the actions the events
describes. In such cases, defining the mapping links in terms of finer-grained
elements such as domain classes shows promise to provide mappings that can
adapt under evolution more naturally and efficiently, and thus (among other
benefits) help the requirements and architecture to evolve coherently together.

Our future work also includes using the full potential of the domain ontology
to further reduce the complexity of requirements to architecture mapping. The
version of ScenarioML used here has it own domain ontology sublanguage. We
are moving toward the use of the OWL web ontology language [6] in order to
make use of existing OWL tools and reasoners.

Acknowledgments

The authors would like to thank the ROSATEA research group at the Donald
Bren School of Information and Computer Science of the University of California,
Irvine, and the anonymous reviewers of an earlier version of this paper, for their
valued suggestions and insights.

References

1. Alspaugh, T.A.: Relationships between scenarios. Technical Report UCI-ISR-06-7,
Institute for Software Research, University of California, Irvine (May 2006)

2. Alspaugh, T.A., Sim, S.E., Winbladh, K., Diallo, M., Ziv, H., Richardson, D.J.:
The importance of clarity in usable requirements specification formats. In: 5th
Intl. Wkp. on Comparative Evaluation in Requirements Engineering (CERE 2007)
(2007)

3. Babar, M.A., Gorton, I.: Comparison of scenario-based software architecture eval-
uation methods. In: APSEC, pp. 600–607. IEEE Computer Society, Los Alamitos
(2004)

4. Barbacci, M.R., Carriere, S.J., Feiler, P.H., Kazman, R., Klein, M.H., Lipson, H.F.,
Longstaff, T.A., Weinstock, C.B.: Steps in an architecture tradeoff analysis method:
Quality attribute models and analysis. Technical Report CMU/SEI-97-TR-029,
Software Eng. Inst. (1998)

5. Barber, K.S., Holt, J.: Software architecture correctness. IEEE Software 18(6),
64–65 (2001)

6. Bechhofer, S., Harmelen, F.v., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL web ontology language reference. Technical re-
port, W3C (2004), http://www.w3.org/TR/2004/REC-owl-ref-20040210/

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

246 M.H. Diallo et al.

7. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (ALMA). J. Syst. Softw. 69(1-2), 129–147 (2004)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5) (May 2001)

9. Bertolino, A.B.: A practical approach to UML-based derivation of integration tests.
In: 4th International Software Quality Week Europe and International Internet
Quality Week Europe (QWE 2000) (2000)

10. Breitman, K.K., Filho, A.H., Haeusler, E.H., von Staa, A.: Using ontologies to
formalize services specifications in multi-agent systems. In: Hinchey, M.G., Rash,
J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228,
pp. 92–110. Springer, Heidelberg (2004)

11. Breitman, K.K., Leite, J.C.S.d.P.: Ontology as a requirements engineering product.
In: 11th IEEE Joint International Conference on Requirements Engineering (RE
2003), pp. 309–319 (2003)

12. Dashofy, E.M., Hoek, A.v.d., Taylor, R.N.: A highly-extensible, XML-based ar-
chitecture description language. In: Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), p. 103 (2001)

13. Diallo, M.H., Sim, S.E., Alspaugh, T.A.: Case study, interrupted: The paucity
of subject systems that span the requirements-architecture gap. In: First Work-
shop on Empirical Assessment of Software Engineering Languages and Technolo-
gies (WEASELTech 2007) (2007)

14. Dick, J.: Rich traceability. In: International Workshop on Traceability in Emerging
Forms of Software Engineering, Edinburgh, UK (2002)

15. Folmer, E., Gurp, J.v., Bosch, J.: Scenario-based assessment of software architec-
ture usability. In: ICSE Workshop on Bridging the Gaps Between Software Engi-
neering and Human-Computer Interaction, pp. 61–68 (2003)

16. Fox, C.: Introduction to Software Engineering Design. Addison-Wesley, Reading
(2007)

17. Garlan, D., Monroe, R.T., Wile, D.: Acme: An architecture description interchange
language. In: CASCON 1997, pp. 169–183 (1997)

18. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and
architectures with intermediate models. Software and System Modeling 3(3), 235–
253 (2004)

19. Hoek, A.v.d., Rakic, M., Roshandel, R., Medvidovic, N.: Taming architectural evo-
lution. In: Joint 8th European Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE) (2001)

20. In, H., Kazman, R., Olson, D.: From requirements negotiation to software ar-
chitectural decisions. In: 1st Intl. Workshop on From Software Requirements to
Architectures (2001)

21. Jalote, P.: An Integrated Approach to Software Engineering. Springer, Heidelberg
(2006)

22. Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight semantic
processing approach. In: 5th Int. Conf. on Quality Software (QSIC), pp. 223–230
(2005)

23. Kazman, R., Abowd, G.D., Bass, L.J., Clements, P.C.: Scenario-based analysis of
software architecture. IEEE Software 13(6), 47–55 (1996)

24. Kazman, R., Klein, M., Clements, P.: ATAM: Method for architecture evaluation.
Technical Report CMU/SEI-2000-TR-004, Soft. Eng. Institute (2000)

25. Naslavsky, L., Xu, L., Dias, M., Ziv, H., Richardson, D.J.: Extending xADL with
statechart behavioral specification. In: Third Workshop on Architecting Depend-
able Systems (WADS), Edinburgh, Scotland, pp. 22–26 (May 2004)

Toward Architecture Evaluation 247

26. Schmerl, B., Garlan, D.: AcmeStudio: Supporting style-centered architecture de-
velopment. In: 26th Intl. Conf. on Softw. Eng (ICSE 2004), pp. 704–705 (2004)

27. Suryanarayana, G., Diallo, M.H., Erenkrantz, J.R., Taylor, R.N.: Architectural
support for trust models in decentralized applications. In: 28th Intl. Conf. on Softw.
Eng (ICSE 2006), pp. 52–61 (2006)

28. Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead Jr., E.J., Robbins, J.E.:
A component- and message-based architectural style for GUI software. In: 17th Intl.
Conf. on Softw. Eng (ICSE 1995), pp. 295–304 (1995)

29. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message se-
quence chart specifications. In: Joint 8th European Software Engineering Con-
ference (ESEC) and 9th ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), pp. 74–82 (September 2001)

30. Xu, L., Ziv, H., Alspaugh, T.A., Richardson, D.J.: An architectural pattern for non-
functional dependability requirements. Journal of Systems and Software 79(10),
1370–1378 (2006)

31. Zhu, X., Maiden, N., Pavan, P.: Scenarios: Bringing requirements and architec-
tures together. In: 2nd Intl. Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (2003)

Combining Formal Verification and Testing
for Correct Legacy Component Integration

in Mechatronic UML�

Holger Giese1, Stefan Henkler2, and Martin Hirsch2

1 Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam , Germany
2 Software Engineering Group, University of Paderborn,

Warburger Str. 100, D-33098 Paderborn, Germany
holger.giese@hpi.uni-potsdam.de,

{shenkler-mahirsch}@uni-paderborn.de

Abstract. One of the main benefits of component-based architectures is their
support for reuse. The port and interface definitions of architectural components
facilitate the construction of complex functionality by composition of existing
components. For such a composition means for a sufficient verification either by
testing or formal verification are necessary. However, the overwhelming com-
plexity of the interaction of distributed real-time components usually excludes
that testing alone can provide the required coverage when integrating a legacy
component. In this paper we present a scheme on how embedded legacy com-
ponents can be tackled. For the embedded legacy components initially a behav-
ioral model is derived from the interface description of the architectural model.
This is in the subsequent steps enriched by an incremental synthesis using for-
mal verification techniques for the systematic generation of component tests. The
proposed scheme results in an effective combination of testing and formal verifi-
cation. While verification is employed to tackle the inherently subtle interaction
of the distributed real-time components which could not be covered by testing,
local testing of the components guided by the verification results is employed
to derive refined behavioral models. The approach further has two outstanding
benefits. It can pin-point real failures without false negatives right from the be-
ginning. It can also prove the correctness of the integration without learning the
whole legacy component (using the restrictions of the integration context).

1 Introduction

The main benefits of the component-based architectures are their support for informa-
tion hiding and reuse. The interface of a component is well defined by structural ele-
ments and collaboration protocols (cf. [7]). The dependencies between components are
reduced to the knowledge of the known interfaces or ports. Thereby, a component can
be exchanged if the specified port remains fulfilled. The port and interface definitions of

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 248–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Combining Formal Verification and Testing 249

architectural components therefore facilitate the construction of complex functionality
by composition of existing components.

Especially in domains like automotive software where the development of new func-
tions is an exception rather than the regular case (cf. [48]) component-based develop-
ment can result in dramatic improvements. However, as long as an open and flexible
software architecture which facilitate reuse is missing, many functions are nearly built
from scratch for each new version (cf. [25]). Today, initiatives such as AUTOSAR1 are
a first step towards open and flexible software architectures for automotive systems.
The definition of standard interfaces and an infrastructure for the software components
ensures that components from different suppliers and vendors can technically interop-
erate. However, also a correct integration at the application level is needed.

In general, the proper composition of independently developed components in the
software architecture of embedded real-time systems requires means for a sufficient
verification of the integration step either by testing or formal verification. However,
the overwhelming complexity of the interaction of distributed real-time components
usually excludes that testing alone can provide the required coverage when integrating
a legacy component.

Today, often a model-based development approach is employed to plan the decompo-
sition of complex systems into components which are developed by different suppliers.
The MECHATRONIC UML approach is one approach which permits to plan the decom-
position of complex real-time systems upfront. It supports the description and compo-
sitional verification of the real-time coordination by means of components and patterns
[24] and the integrated description and modular verification of discrete behavior and
continuous control with components [9,21]. While it also supports for the generation
of code for hard real-time processing [8,10] from further refined models in practice,
seldom the whole system will be generated from the models. Besides the automatically
derived components also either manually programmed or already existing components
which fit more or less to the MECHATRONIC UML models will be employed. Thus
an approach is required which permits to integrate these legacy components not only
syntactically but also provide the required verification guarantees.

The overwhelming complexity of the interaction of distributed real-time components
usually excludes that testing alone can provide the required coverage when integrat-
ing a legacy component. Thus formal verification techniques seem to be a valuable
alternative. However, the required verification of the resulting system often becomes
intractable as no abstract model of the reused components which can serve the verifi-
cation purpose is available. A number of techniques which either use a black-box ap-
proach and automata learning [32] or a white-box approach which extracts the models
from the code [39,15,31] exists. However none of them exploits the knowledge about
the context and a component-based view to provide an approach which could in princi-
ple scale even for larger systems and which can help excluding besides false positives
also false negatives after a feasible number of learning steps.

In this paper we present a scheme how embedded legacy components in a MECHA-
TRONIC UML architecture can be tackled based on our approach presented in [29].
For the embedded legacy components initially a behavioral model is derived from the

1 www.autosar.org

250 H. Giese, S. Henkler, and M. Hirsch

existing interface description which is a safe abstraction. This abstraction is then in sub-
sequent steps enriched by an incremental synthesis procedure. This procedure uses the
counterexample of a formal verification step to improve the accuracy of the behavioral
model of the legacy component. We extend our previous work by supporting a (safe)
over approximation and a rigorous formalization of the approach.

The formal verification step based on [21,24] is employed to cover the inherently
subtle interaction of the distributed real-time components completely which could not
be achieved by testing. Local testing of the legacy components using our model-based
testing approach [23] and our approach for deterministic replay [22] guided by the veri-
fication results in the form of counterexamples is employed to derive refined behavioral
models for the legacy component.

The approach therefore extends our former work [21,22,23,24,29] and has the bene-
fit that it could pin-point real failures in the test step which are no false negatives right
from the beginning. In addition, it can also prove the correctness of the integration for
an abstract behavioral model of the legacy component without learning the whole legacy
component by only checking possible integration problems for the explicit given context.

Application Example
As a concrete example for a complex mechatronic product, we use a simplified version
of the software for the RailCab research project2. The vision of the RailCab project is a
mechatronic rail system where autonomous shuttles apply the linear drive technology,
used in the Transrapid, but travel on the existing passive track system of the standard
railway. One particular problem, which has been previously described in [24], is to re-
duce the energy consumption due to air resistance by coordinating the autonomously
operating shuttles in such a way that they form convoys whenever possible. Such con-
voys are created on-demand and require small distances between the shuttles in order to
achieve significant energy savings. Coordination between the speed control units of the
shuttles becomes a safety-critical aspect and results in a number of hard real-time con-
straints, which have to be addressed when building the control software of the shuttles.
In [24] it has been solved for a simplified version of this shuttle coordination problem.
In this example convoys consist of at most 2 shuttles.

The main requirement of the shuttle controller software is to ensure that no rear-
end collision happens when the first shuttle has to brake suddenly e.g., in case of an
emergency. If the shuttle is the head of a convoy it may brake only with reduced force,
because another shuttle drives behind it with a reduced, minimal distance and therefore
reacts with delay. Therefore the controlling software needs to ensure that the following
situation will never occur: The rear shuttle is in convoy mode and therefore reduces the
distance and the front shuttle is in mode no-convoy and brake with full strength in case
of an emergency.

Modeling
Within our modeling and verification approach for the software of complex real-time
systems [24], modeling is divided into modeling the interaction between components
of the system by reusable coordination patterns and modeling the detailed behavior of
the components by relating to the behavior of the applied patterns.

2 http://www-nbp.upb.de/en/index.html

Combining Formal Verification and Testing 251

A pattern describes communication and therefore consists of multiple communica-
tion partners, called roles. Roles interact through ports which are linked by a connector.
The communication behavior of a role is specified by a real-time statechart (RTSC)
and is restricted by an invariant. The behavior of the connector is described by another
real-time statechart that is used to model channel delay and reliability, which are of
crucial importance for real-time systems. The overall behavior of a pattern is restricted
by a pattern constraint, whereas the behavior of a role can be restricted by a role invari-
ant. Altogether, we call the constraints, invariants, and known communication partners
context information

Within the shuttle example, distance coordination between two shuttles is modeled
as a pattern. This DistanceCoordination pattern consists of two roles, the frontRole and
the rearRole and one connector that models the wireless radio link between the two
shuttles. The pattern specifies the behavior needed to coordinate two successive shut-
tles. The main requirement of the pattern is to ensure that no rear-end collision happens
when the first shuttle has to brake suddenly, e.g. in case of an emergency. If the shuttle
is the head of a convoy, it is allowed to brake only with reduced force, to ensure that
it cannot collide with the shuttle which drives behind it with a reduced, minimal dis-
tance. Otherwise, as the follower shuttle will react with a certain delay, a collision might
happen. We thus require that the front shuttle must not brake with full power if it is in
convoy mode. For the rear shuttle, we require that it does brake with full power. These
two requirements are called role invariants. On the other hand, the overall pattern con-
straint forbids the rear role to be in mode convoy while frontRole is in mode noConvoy.
The pattern constraint and role invariants can be annotated to the pattern respectively
its roles using timed ACTL3 formulas. The pattern with its annotated constraint and
invariants is depicted in Figure 1.

DistanceCoordination

<<Component>>

Shuttle3

frontRole rearRole

<<Component>>

Shuttle2

A[] not (myRearRole.convoy and myFrontRole.convoy)
A[] not deadlock

A[] not (rearRole.convoy and frontRole.noConvoy)
A[] not deadlock

unsafe

true

Fig. 1. The DistanceCoordination pattern

After the patterns have been specified, the concrete software components can be
built. Components are designed by coordinating and refining each role RTSC of the
involved patterns. The refinement has to respect the role RTSC (i.e. not add additional
behavior or block guaranteed behavior) and additionally has to respect the guaranteed
behavior of the roles in the form of their invariants. An additional internal RTSC for co-
ordination is used to describe the required coordination of the refined roles. We further
refer to the refined roles as component ports or ports in short.

3 Timed ACTL is the subset of timed computation tree logic [13] which only contains always
path operators.

252 H. Giese, S. Henkler, and M. Hirsch

In our example, the shuttle component must conform to the DistanceCoordination
pattern and has to operate as both a rearRole and a frontRole as it may be follow, or be
followed by, another shuttle as well as itself can follow another shuttle.

To complete the presented approach the outlined modeling capabilities are further
extended by model checking and code generation. We prove that the given constraints
hold for the system by using a model checker. Code generation on the other hand en-
sures that the constraints still hold for the code. However, in practice frequently not
the whole system will be generated from the models. Instead several independent de-
veloped or already existing components that have been not automatically derived from
MECHATRONIC UML models have to be integrated (cf. Figure 2).

Approach
Given a MECHATRONIC UML architecture which embeds a legacy component and
behavioral models for all other components building the context of the legacy com-
ponent, the basic question of correct legacy component integration is whether for the
composition of the legacy component and its context all anomalies such as deadlocks
are excluded or all additionally required properties hold. However, it is usually very
expensive and risky to reverse-engineer an abstract model of the legacy component to
verify whether the integration will work.

To overcome this problem we suggest employing some learning strategy via test-
ing to derive a series of more detailed abstract models for the legacy component. The
specific feature of our approach will be that we exploit the present abstract model of
the context to only test relevant parts of the legacy component behavior. The approach
depends only to a minimal extent on reverse engineering results.

We start with synthesizing a model of the legacy component behavior based on
known structural interface description and a reverse engineered upper bound on the
state size. Then, we check whether the context plus the model of legacy behavior ex-
hibit any undesired behavior taking generic correctness criteria or additional required
properties into account. If not, we use the resulting counterexample trace to test the
legacy component. If the trace can be realized with the legacy component, a real er-
ror has been found. If not, we first enrich the trace with additional information using
deterministic replay and then merge the enriched trace into the model of the legacy
component behavior. We repeat the checks until either a real error has been found or all
relevant cases have been covered.

Figure 2 illustrates our process with a summary of the overall approach. 1) Initially,
we synthesize an initial behavior model for the legacy component based on known
structural interface description and derive a behavioral model of the context from the
existing MECHATRONIC UML models. 2) We check the combination of the two be-
havioral models and either get a) a counterexample or b) the checked properties are
guaranteed. In the latter case we are done. 3) If we have a counterexample, we use this
as test input for the legacy component. Deterministic replay enables us to enrich the
observable behavior with state information by monitoring. If the tested faulty run is
confirmed, we have found a real counterexample. If not, we can use the new observed
behavior to refine the previously employed behavior model of the legacy component.
We repeat steps 2) to 4) until one of the described exits occurs.

Combining Formal Verification and Testing 253

Execute legacy

component

Produce

output

Synthesize

behavior

Extract behavioral

model of context

1

(Input vector)

Counterxample

[Counterexample confirmed]

[Properties satisfied]

Observed behavior

2

3

4

Check combination

Mlegacy Mcontext

Mcontext Mlegacy

Fig. 2. Sketch of the approach

Overview
We first define in the next Section the prerequisite of our approach. We will introduce
incomplete automata and chaotic automata which are required for learning the behavior.
In Section 3 we describe the initial behavior synthesis and in Section 4 we describe the
iterative process for behavioral synthesis. Based on the counterexamples from Section
4, we describe in Section 5 our testing approach. Section 6 compares our work to similar
approaches and Section 7 presents the conclusion and future work.

2 Prerequisites

To provide a formal ground for our later employed MECHATRONIC UML concepts, we
present a formal definition for the employed notion of automata, parallel composition,
and refinement as well as the employed compositionality results for this formal model.
The RTSC employed in MECHATRONIC UML are mapped to a finite state transition
system in the form of extended Kripke structures (called I/O-interval structures [44]).
We present here only a rather simplified version of this finite state transition model
where discrete time is mapped to single states and transitions. This automata model is
sufficient to permit the understanding of the underlying behavior model and to prove
that the compositional verification combined with the testing and monitoring is correct.
The simplification is justified by the following assumption which are valid for the con-
sidered domain: (1) the usual clock synchronization assumption which is common to
many systems and means that time is progressing equally fast in any system compo-
nent, and (2) a discrete time model suffices to model all time depending constraints,
because the underlying infrastructure (hardware and possibly a real-time operating sys-
tems) does not react infinitely fast.

The simplified real-time automaton model and its real-time processing which corre-
sponds to our employed notion of RTSC are defined as follows:

Definition 1. An automaton is a 5-tuple M = (S, I, O, T, Q) with a finite set S of
states, input signals I , output signals O, a set of transitions T ⊆ S × ℘(I)× ℘(O)× S
where ℘(X) denotes the power-set of X , and the initial state set Q.

The behavior is characterized by execution sequences called runs.

254 H. Giese, S. Henkler, and M. Hirsch

Definition 2. A regular run is a sequence of states and I/O π = s1, A1/B1, s2, . . . ,
where for each i ≥ 1 exists (si, Ai, Bi, si+1) ∈ T . We in addition have deadlock runs
which are a sequence of states and I/O π = s1, A1/B1, s2, . . . sn, An/Bn, where for
each 1 ≤ i ≤ n exists (si, Ai, Bi, si+1) ∈ T and � ∃sn+1(sn, An, Bn, sn+1) ∈ T . We
write [M] for the set of all regular and deadlock runs and use π|I/O to restrict a run to
an observable trace and π|S to denote the related state sequence.4

The time semantics of an automaton is simply that each transition takes exactly one
time unit.

For convenience we use in the following Si, Ii, Oi, Ti, and Qi to denote the corre-
sponding elements of Mi. Two automata M and M ′ with distinct input and output sets
(I ∩ I ′ = ∅ and O ∩ O′ = ∅) are further called composable. If also I ∩ O′ = ∅ and
O ∩ I ′ = ∅ holds, they are even orthogonal to each other.

2.1 Property Specification

Properties which should hold for a specific model are specified by using clocked CTL
(CCTL) constraints (φ) and invariants (ψ). These formulas will be build using a shared
set of atomic propositions P . An automaton Mi and any of its states s ∈ Si is annotated
with all propositions in Pi ⊆ P which they fulfill using a labeling function Li : S →
℘(Pi). Thus an automaton Mi = (Si, Ii, Oi, Ti, Qi) is accordingly extended to a 6-
tuple Mi = (Si, Ii, Oi, Ti, Li, Qi). The label set L(Mi) denotes the set of all by the
labeling considered propositions Pi. L(φ) and L(ψ) denote the subsets of the basic
proposition set P that is employed within the formulas.

Finally, for sake of simplification of the following formal definitions, we omit any
syntactical details of CTL and CCTL and write M |= φ when an automaton M fulfills
a constraint or invariant φ. The special symbol δ is used to denote that a deadlock (a
state without any outgoing transition) can be reached. M |= ¬δ thus denotes that M
does not contain any deadlocks.

2.2 Parallel Composition

In our application domain the composition of multiple components requires their paral-
lel execution. As we model time explicitly and in a discrete manner, the required notion
of parallel composition must result in the synchronous execution [13] of all systems
running in parallel.

The communication is formalized by synchronous communication such that send-
ing and receiving happens within the same time step. Consequently, the asynchronous
event semantics of statecharts is modeled by explicitly defined event queues (channels)
given in the form of additional automata. These explicit models of the event queues are
required anyway to take the QoS characteristics of each connection into account.

To combine two composed automata we simply connect their input and output sig-
nals and consider their parallel execution.

4 The concepts outlined here have some similarities with process algebra concepts. While reg-
ular runs reduced to the observable events are traces in CSP [30] or other process algebras,
deadlock runs are related to ideas of failures in CSP or refusals. In contrast to the presented
proposal, process algebra approaches abstract from states.

Combining Formal Verification and Testing 255

Definition 3. For two automata M = (S, I, O, T, L, Q) and M ′ =
(S′, I ′, O′, T ′, L′, Q′) which are composable to each other (I ∩ I ′ = ∅ and
O ∩ O′ = ∅), we define their parallel composition denoted by M‖M ′ as the automaton
(S′′, I ′′, O′′, T ′′, L′′, Q′′) with S′′ = S ×S′, I ′′ = I ∪I ′, O′′ = O∪O′, Q′′ = Q×Q′,
and ((s1, s

′
1), A

′′, B′′, (s2, s
′
2)) ∈ T ′′ iff (s1, A, B, s2) ∈ T and (s′1, A

′, B′, s′2) ∈ T ′

exist with A′′ = A ∪ A′ and B′′ = B ∪ B′. Additionally, (A ∩ O′) = B′ and
(A′ ∩ O) = B must hold. S′′ and T ′′ are further adjusted to exclude all non reachable
state combinations and transitions. The labelling L′′ for (s, s′) ∈ S′′ is easily derived
as L′′((s, s′)) = L(s) ∪ L′(s′).

Informally, a transition in T ′′ is a combination of two transitions in each automaton iff
all required local inputs by the other side are matching ((A∩O′) = B′ and (A′ ∩O) =
B) and the non local input and output signals are simply the union of both automata.

2.3 Automata Refinement

Our restricted notion of components means that they are derived by refining the role
protocols from all the patterns they are participating in. Thus, we require an appropriate
notion for refinement which is essentially a restricted version of simulation which ad-
ditionally preserves reactivity. For two given automata we can define whether the first
is a refinement of the second as follows.

Definition 4. An automaton M = (S, I, O, T, L, Q) is a refinement of automaton
M ′ = (S′, I ′, O′, T ′, L′, Q′) (M � M ′) iff hold:

∀π = . . . s ∈ [M]∃π′ = . . . s′ ∈ [M ′] : π|I/O = π′|I′/O′ ∧ L(s) = L′(s′) (1)

∀π = . . . s, A/B ∈ [M]∃π = . . . s′, A/B ∈ [M ′] : π|I/O = π′|I′/O′ (2)

For each path in the refinement M equation 1 further ensures that a related path in
M ′ exists. Equation 2 further ensures that every deadlock path of M is also a possible
deadlock path for M ′. Therefore, � implies simulation (�).

2.4 Compositional Constraints

For our approach the interesting class of constraints is the constraints, which are pre-
served under refinement and composition with disjoint labeling.

Definition 5. A constraint φ is compositional iff for any automaton M1, M ′
1, and M2

with L(M2) ∩ L(φ) = ∅ holds

(M1 |= φ) ⇒ ((M1‖M2 |= φ) ∨ (M1‖M2 |= δ)) and (3)
((M1 � M ′

1) ∧ (M ′
1 |= φ)) ⇒ (M1 |= φ) (4)

CTL formulas are preserved by the bisimulation equivalence relation, while ACTL for-
mulas are preserved by the simulation preorder (�) [13]. The presented refinement im-
plies simulation and thus preserves ACTL formulas also, but in contrast it additionally
preserves deadlock freedom:

256 H. Giese, S. Henkler, and M. Hirsch

Lemma 1. For automaton M and M ′ with M � M ′ holds M ′ |= ¬δ ⇒ M |= ¬δ.

Proof. (sketch) Condition 1 ensures that for any s ∈ S at least one related s′ ∈ S′

exists with (s, s′) ∈ Ω. From M ′ deadlock free follows that s′ will have at least one
outgoing transition and due to condition 2 s also. Therefore, M is also deadlock free.

Invariants, upper and lower time-bounds, and ACTL formulas in general are constraints
which refer only to all possible paths. Thus using the fact that a refinement or com-
position with disjoint labeling sets only reduces the possible sequences of states with
identical labeling, they are compositional. That deadlock freedom is also compositional
follows by construction for condition 3 and Lemma 1 for condition 4.

Compositionality can thus be established for the properties required so far during
our studies such as deadlock freedom, upper bounds for the maximal delays of message
transports, lower bounds for the minimal delays of message transports, and invariants.
For example, the according CCTL formula with only A path quantifiers for a maximal
delay is for d the maximal delay, p1 the trigger condition, and p2 the required condition:
AG(¬p1 ∨ (AF [1,d] p2)). In contrast, temporal logic formulas that demand explicitly
that a specific state is eventually reached (abstracting from possible effects of non-
determinism) are not preserved.

2.5 Parallel Composition and Refinement

We also require that parallel composition preserves refinement.

Lemma 2. For any automaton M1 and an automaton M2 refining automaton M ′
2

(M2 � M ′
2) holds M2 � M ′

2 ⇒ (M1‖M2 � M1‖M ′
2).

Proof. (sketch) For M1‖M ′
2 we can form the construction of the parallel composition

conclude that only path and deadlock path result which are also present in M1‖M2.
Therefore condition 1 and 2 must be fulfilled for M1‖M2 and M1‖M ′

2.

For a substitution of a restricted refinement that only adds disjoint I/O signals we further
have to prove that compositional constraints and deadlock freedom are preserved.

Lemma 3. For automaton M1, M2, and M ′
2 with M2 �

I/O
M ′

2, I1 ∩ (O2 − O′
2) = ∅,

O1 ∩ (I2 − I ′2) = ∅, and L(M1) ∩ (L(M2) − L(M ′
2)) = ∅ and any compositional

constraint φ holds

(M1‖M ′
2 |= φ ∧ ¬δ) ⇒ (M1‖M2 |= φ ∧ ¬δ) (5)

Proof. Due to φ and ¬δ being compositional and Definition 5 we can for M ′′
2 =

M2|I′
2/O′

2/L(M ′
2) conclude that M1‖M ′′

2 |= φ ∧ ¬δ or M1‖M ′′
2 |= δ. Due to Lemma 1

and 2 we even have M1‖M ′′
2 |= φ∧¬δ. From I1∩(O2−O′

2) = ∅ and O1∩(I2−I ′2) = ∅
follows that M2 adds to M ′′

2 only I/O that does not interfere with M1 and thus M1‖M2

has the same reachable state set and transitions and thus M1‖M2 |= ¬δ. As φ is only
interpreted over states and the labeling is identical for L(φ) ⊆ L(M ′

2), φ must also
hold and thus condition 5 is proven.

Combining Formal Verification and Testing 257

2.6 Incomplete Automata

When incrementally improving the accuracy of a behavioral model with respect to some
original, we can use the concept of a incomplete automaton.

Definition 6. An incomplete automaton is a 6-tuple M = (S, I, O, T, T , Q) with M =
(S, I, O, T, Q) an automaton and T ⊆ S × ℘(I) × ℘(O) denoting the known not
supported interactions. To ensure that T and T are consistent we require that

¬(∃s, A, B, s′ : (s, A, B, s′) ∈ T ∧ (s, A, B) ∈ T).

The behavior is characterized by execution sequences called runs.

Definition 7. A regular run of an incomplete automaton is a sequence of states and
I/O π = s1, A1/B1, s2, . . . , where for each i ≥ 1 exists (si, Ai, Bi, si+1) ∈ T .
We in addition have deadlock runs which are a sequence of states and I/O π =
s1, A1/B1, s2, . . . sn, An/Bn, where for each 1 ≤ i ≤ n exists (si, Ai, Bi, si+1) ∈ T
and (sn, An, Bn) ∈ T . We write [M] for the set of all regular and deadlock runs and
use π|I/O to restrict a run to an observable trace and π|S to denote the related state
sequence.

The definition of the runs highlights the fact that in an incomplete automaton deadlock
runs are only assumed when explicitly defined by T and not implicitly if no transition
is present in T .

A concrete automaton is deterministic if for any s, A, and B holds that
|{(s, A, B, s′) ∈ T }| ≤ 1. An incomplete automaton is deterministic if for any s,
A, and B holds that |{(s, A, B, s′) ∈ T } ∪ {(s, A, B) ∈ T}| ≤ 1.

Given an incomplete automaton, we can then describe a completion step as any ex-
tension of S, T or T which again results in an incomplete automaton. In a final step
an incomplete automata becomes complete, when for each possible interaction is either
forbidden by T or present in T :

∀s ∈ S, A ∈ ℘(I), B ∈ ℘(O) : (∃s′ ∈ S : (s, A, B, s′) ∈ T xor (s, A, B) ∈ T).

2.7 Chaotic Automata and Closure

Taking the refinement notion of Definition 4, we can identify a maximal behavior (named
chaotic automaton) which is an abstraction of every possible behavior as it might accept
any sequence of inputs but may also deadlock for every possible interaction.

Definition 8. For given input and output sets I and O, the chaotic automaton Mc =
(Sc, I, O, Tc, Qc) is build as follows: The state set Sc = {sδ, s∀} contains two
distinct state, the transition set Tc = {(s∀, A, B, s∀)|A ∈ ℘(I), B ∈ ℘(O)} ∪
{(s∀, A, B, sδ)|A ∈ ℘(I), B ∈ ℘(O)}, and Qc = {sδ, s∀}.

The chaotic automaton specified in Definition 8 is depicted in Figure 35. We can see
that both state s∀ and sδ are possible initial states and that while sδ will block any

5 Note, we write in all figures and listings s all and s delta and not s∀ and sδ as the mathematical
notation is not supported by the used tool.

258 H. Giese, S. Henkler, and M. Hirsch

s_delta

s_all *
*

Fig. 3. Maximal chaotic behavior: the chaotic automaton

interaction, s∀ will support any possible interaction (all possible input and output com-
binations are referred to here by ’*’).

If also a number of properties are relevant, we have to further have states s∀ and sδ

for every possible proposition subset P ′ of P . However, it is much more efficient to
instead label s∀ and sδ with a new proposition p′ and replace for all propositions p ∈ P
all occurrences of p by (p ∨ p′) as well as occurrences of ¬p by (¬p ∨ p′).

If we are interested in a safe abstraction, a special kind of completion is the chaotic
completion where all defined behavior result in arbitrary chaotic behavior.

Definition 9. Given an incomplete automaton M = (S, I, O, T, T , Q) we derive the
related chaotic closure automaton M ′ = (S′, I, O, T ′, Q′) as follows:

1. double the state set and include the chaotic automaton (S′ = (S × {0}) � (S ×
{1}) � Sc) and

2. adjust the transition set to the doubling such that all not spec-
ified interactions either are not supported or lead to the added
chaotic automaton (T ′ = {((s, 0), A, B, (s′, 0)|(s, A, B, s′) ∈ T } �
{((s, 0), A, B, (s′, 1)|(s, A, B, s′) ∈ T } � {((s, 1), A, B, (s′, 0)|(s, A, B, s′) ∈
T } � {((s, 1), A, B, (s′, 1)|(s, A, B, s′) ∈ T } � {((s, 1), A, B, s∀)|s ∈ S, a ∈
℘(I), B ∈ ℘(O), (s, A, B) �∈ T} � {((s, 1), A, B, sδ)|s ∈ S, a ∈ ℘(I), B ∈
℘(O), (s, A, B) �∈ T} � Tc.

We denote the chaotic closure of M as chaos(M).

In this construction Q′ = {(s, 0)|s ∈ Q} � {(s, 1) ∈ Q}. The states (s, 0) are those
representing the case that no further extension is assumed which might thus result in a
deadlock, while the states (s, 1) are those representing the case that all possible further
extensions are assumed which therefore lead to chaos (which is represent by sδ and s∀).

Note that this chaotic behavior is highly non-deterministic while the real legacy com-
ponent behavior is required to be deterministic.

2.8 Observation Conformance and Refinement

Definition 10. The incomplete automaton M is observation conforming concerning an
automaton Mr iff [M] ⊆ [Mr].

Note that the defined notion of observation includes states in our case, while in a stan-
dard setting we would only consider the path.

Theorem 1. If M is an observation conforming incomplete automaton concerning a
concrete deterministic component implementation Mr, it holds that Mr � chaos(M).

Combining Formal Verification and Testing 259

Proof. Condition 1 for refinement follows directly from [M] ⊆ [Mr] as we let sδ and
s∀ fulfil all positive and negative propositions (by modifying the formulas accordingly).
Condition 2 is fulfilled as the chaotic closure guarantees by construction only additional
behavior which can always also result in a deadlock. �

3 Initial Behavior Synthesis

Given a concrete context M c
r with abstract model M c

a that refines the concrete context
(M c

r � M c
a) and a concrete component implementation Mr with hidden internal details

(legacy component), the basic question we want to check is whether a given property φ
as well as deadlock freedom (¬δ) holds. We are in particular interested in a guarantee
that both properties hold or a counterexample witnessing that they do not hold. How-
ever, usually Mr cannot be employed to traverse the whole state space as the state space
of the system M c

a‖Mr is too large to directly address this question.
To overcome this problem we suggest to build a series M i

a of abstractions of Mr

which are all safe when it comes to verification but become more and more accurate
such that finally we can use them to conclude either that the integration works correctly
or not.

Mr � M i
a (∀i ≥ 0). (6)

We thus start with synthesizing a model of the legacy component behavior based on
the known structural interface description. While the interface description can be taken
from the context or reverse-engineered straightforwardly from the legacy component,
deriving an upper bound on the relevant legacy component states can become more
complicated. The crucial criterion for a valid state abstraction is that for all possible
inputs/outputs the state reached must be the same.

In a first step we simply build M0
a using the available information about the interface

of Mr. We simply build an M0
l by determining the initial state s0 of Mr and derive an

automaton M0
l = ({s0, I, I, ∅, {so}). We can then use the chaotic closure to derive our

first safe approximation: M0
a = chaos(M0

l). Due to Theorem 1 we then know that M0
a

is a safe abstraction from Mr (Mr � M0
a).

Lemma 4. For the initial model M0
a = chaos(M0

l) for M0
l build for the initial state

s0 of Mr as the automaton M0
l = ({s0, I, I, ∅, {so}) holds Mr � M0

a .

Proof. Due to Theorem 1 we can conclude that M0
a is a safe abstraction from Mr as

M0
l is observation conforming to Mr. �

In Figure 4(a) the initial trival automaton is depicted. The automaton consists of an
initial state (depicted as a double circle) and the first state noConvoy::default which is
connected via a transition with the initial state.

The automaton which results when the chaotic closure is applied to the trivial in-
complete automaton depicted in Figure 4(a) which only captures the known initial state
noConvoy::default is depicted in Figure 4(b). We can see how this initial state has been
doubled and that one of these two states is connected via any possible interaction with
both chaotic states s∀ and sδ (all possible input and output combinations are referred to
here by ’*’).

260 H. Giese, S. Henkler, and M. Hirsch

(a)
noConvoy::default

(b)

noConvoy:default s_delta

s_allnoConvoy::default *

*

*

Fig. 4. Trivial initial implicit automaton encoding the known initial state (4(a)) and Initial behav-
ior of a legacy component (4(b))

convoy::break convoy::default

noConvoy::answer
noConvoy::default

breakConvoyRejected!

breakConvoy!
breakConvoyProposal?

startConvoy!

convoyProposalRejected!

convoyProposal?

Fig. 5. Known behavior of context

In Figure 5 the known behavior of the context, the frontrole, is depicted. The automa-
ton starts in the noConvoy state. The automaton remains in the state until the frontRole
receives the convoyProposal message. Thereafter the automaton switches to the answer
state. In this state, the automaton non-deterministically decides to reject the convoy
(convoyProposalRejected) or to start the convoy (startConvoy). In the latter case the
automaton switches to the convoy state and remains there until a breakConvoyProposal
message is received. The automaton decides to reject or accept this message.

4 Iterative Behavior Synthesis

On the basis of the initial behavior synthesis, we describe in this section our approach
of iterative behavior synthesis. First, we start with checking if the given properties hold
for the initial synthesized behavior. If a counterexample exists, we proceed with testing
based on that counterexample. While testing we monitor the legacy system. The moni-
tored trace is used for learning the behavior. The new synthesized behavior is then the
start point for the next iteration.

4.1 Formal Verification Step

The iterative behavior synthesis starts with checking for the abstraction derived from
initial behavior synthesis (cf. Section 3), whether a counterexample for the required
property φ exists. We therefore check for i ≥ 0

M c
a‖M i

a |= φ ∧ ¬δ. (7)

If the check succeeded, we have indeed proven that the property must also hold for
M c

a‖Mr and M c
r ‖Mr.

Combining Formal Verification and Testing 261

Lemma 5. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r � M c
a) and that the abstraction is valid (Mr � M i

a) it
holds for any compositional property φ:

M c
a‖M i

a |= φ ⇒ M c
r‖Mr |= φ. (8)

Proof. As refinement (�) is a precongruence for parallel composition (‖) and M c
r �

M c
a, we can conclude that M c

r ‖M i
a � M c

a‖M i
a must hold. Similarly, having Mr � M i

a

we thus have M c
r‖Mr � M c

a‖M i
a. As refinement preserves property φ, we thus can

starting with M c
a‖M i

a |= φ conclude that M c
r‖Mr |= φ must hold. �

If, however, the check did no succeed, we will have a counterexample in the form of
a path π for M c

a‖M i
a which is a witness that φ is not true for the abstraction. This

counterexample restricted to M i
a is then used to test the legacy component.

Listing 1.1. Initial counterexample

shuttle1.noConvoy, shuttle2.s_all,
shuttle2.convoyProposal!, shuttle1.convoyProposal?
shuttle1.answer, shuttle2.wait,
shuttle1.convoyProposalRejected!, shuttle2.convoyProposalRejected?
shuttle1.noConvoy, shuttle2.s_all
shuttle2.convoyProposal!, shuttle1.convoyProposal?
shuttle1.answer, shuttle2.wait
shuttle1.startConvoy!, shuttle2.startConvoy?
shuttle1.convoy, shuttle2.s_all
shuttle2.breakConvoyProposal!, shuttle1.breakConvoyProposal?
shuttle1.break, shuttle2.s_delta

In Listing 1.1 the counterexample of the first check is shown. The counterexample
is a relatively long run. First, the closure sends a convoyProposal to the context. After-
wards, the context sends a convoyProposalReject. Then, the closure sends once again
a convoyProposal and the context decides to build a convoy by sending a startConvoy.
After building the convoy, the context tries to break the convoy but the closure goes in
sδ state and a deadlock is manifested.

4.2 Testing Step

If the test reveals that the path π is also possible in the concrete system, we can conclude
that we have found a real integration problem.

Lemma 6. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r � M c
a) and that the abstraction is valid (Mr � M0

a)
it holds:

(
M c

a‖M i
a, π �|= φ ∧ π ∈ M c

r ‖Mr

)
⇒ M c

r‖Mr �|= φ (9)

Proof. As π is a witness of ¬φ and φ is a run of M c
r ‖Mr we can conclude that

M c
r‖Mr �|= φ must hold. �

262 H. Giese, S. Henkler, and M. Hirsch

If we use our trick to weaken the properties rather than using a chaotic closure which
distinguishes all possible subsets of the atomic properties P , it seems that we have
to evaluate φ on M c

r ‖Mr, π to check that the counterexample is a real one. As this
could only happen when π visits states in the chaotic closure (s∀ or sδ) it is guaranteed
that in these cases π is not really a possible run of M c

r ‖Mr as the concrete state will
never include states of the chaotic closure. It is to be noted we assume that for runs
the encoding (s, i) with i ∈ {0, 1} is considered equivalent to s and therefore runs
which are only visiting these states can be mapped to runs in the legacy component and
therefore result in uncover real counterexamples.

If the run cannot be found when testing the legacy component, we can use the ob-
served difference between π and the really observed behavior π′ to derive an improved
M i+1

a .
In our example, if we test the legacy component based on the counterexample shown

in the last Section with the techniques described in Section 5, we monitor the trace
shown in Listing 1.2. As described in the next Section when testing the legacy com-
ponent, we only monitor relevant events for deterministic replay. Hence, we monitor
only the outgoing message convoyProposal at port rearRole and the incoming message
convoyProposalRejected at the same port. If we look in more detail at the behavior
while deterministically replay the legacy component with all relevant instrumentation
for monitoring additionally the states and timing, the trace shows a conflict with ex-
pected behavior based on the initial counterexample (cf. Listing 1.3). In the next Sec-
tion, we will shown, how conflict is manifested while checking the synthesized behavior
based on the monitored traces.

Listing 1.2. Monitored relevant events for deterministic replay: blocking state

[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming

Listing 1.3. Monitoring all relevant events: blocking state

[CurrentState] name="noConvoy"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=1
[CurrentState] name="convoy",
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming

4.3 Learning Step

In this learning step we employ the observed difference between π and the really
observed behavior π′ to derive an improved M i+1

l . Then we derive M i+1
a again as

chaos(M i+1
l) and have due to Theorem 1 by construction:

Mr � M i+1
a , (10)

as π′ is an observable behavior of Mr and all other behavior still present in M i+1
l is

already present in M i
l .

Combining Formal Verification and Testing 263

For learning we have to distinguish two cases. First, a previously unobserved behav-
ior π′ has been recorded. We can then do the learning as follows:

Definition 11. Given a deterministic incomplete automaton M = (S, I, O, T, T , Q)
and a regular run π, we derive the deterministic incomplete automaton M ′ =
(S′, I, O, T ′, T , Q′) which results from learning π (denoted by learn(M, π)) as fol-
lows: S′ = S ∪ {s �∈ S|π = . . . s . . . }, T ′ = T ∪ {(s, A, B, s′) �∈ T |π =
. . . s(A, B)s′ . . . }, and Q′ = Q ∪ {s �∈ Q|π = s . . . }.

A second case is present, when the test was blocked. In this case we have a deadlock
run π of the form . . . s(A, B) where (A, B) has been blocked in state s. Learning will
then work as follows.

Definition 12. Given a deterministic incomplete automaton M = (S, I, O, T, T , Q)
and a deadlock run π = . . . s(A, B) where the last interaction was blocked, we derive
the deterministic incomplete automaton M ′ = (S, I, O, T, T

′
, Q) which results from

learning π (denoted by learn(M, π)) as follows: T
′
= T ∪ {(s, A, B)}.

In both cases a learned behavior results in a safe abstraction, as shown in the following
lemmata.

Lemma 7. Given a concrete context M c
r with abstract model M c

a and a concrete com-
ponent implementation Mr with derived abstraction M i

a such that the concrete context
refines the abstract context (M c

r � M c
a) and that the behavior learned so far is valid

(M0
a is observation conforming to Mr) holds for any possible run π of M c

r‖Mr:

Mr � M i+1
a for M i+1

a = chaos(learn(M i
l , π)). (11)

Proof. It follows form the construction that learn(M i
l , π) is like M i

l observation con-
forming to Mr. Due to Theorem 1 refinement for chaos(learn(M i

l , π
′)) follows. �

In order to be able to employ a trace to improve our abstraction, we only require that the
implementation Mr is deterministic while M i

a might include non-determinism. This is,
however, no real limitation, as in the domain of safety-critical systems we will build
components such that any non-determinism or pseudo non-determinism is excluded.

In our example, we have synthesized the automaton shown in Figure 6. First, the
legacy component is in a noConvoy state. When sending the covnoyProposal message,
the legacy component switches in state convoy.

4.4 Multiple Iterations

With the outlined procedure we can systematically derive a series of abstraction M0
a ,

M1
a , . . . , Mn

a such that we stepwise improve our knowledge about the legacy compo-
nent Mr. In contrast to other approaches for learning this series guarantees always re-
finement such that we can stop our efforts if a first n has been found with M c

a‖Mn
a |= φ

noConvoy

convoy

convoyProposal!

Fig. 6. Synthesized behavior: conflict with environment

264 H. Giese, S. Henkler, and M. Hirsch

as this implies that φ also holds for the real system (M c
r‖Mr |= φ). If in contrast we

reach an n where the related counterexample πn can also be detected in the real imple-
mentation M c

r‖Mr and thus the counterexample is also one for the implementation.

Theorem 2. Given a concrete context M c
r with abstract model M c

a such that the con-
crete context refines the concrete context (M c

r � M c
a) and a concrete component im-

plementation Mr with derived series of abstractions {M i
a|0 ≤ i ≤ n} constructed as

outlined in Lemma 7, we can decide whether a property φ holds for M c
r ‖Mr or continue

the series.

Proof. (sketch)
We can show that M i

l is observation conforming to Mr∀0 ≤ i ≤ n via induction. The
first step of the induction is: Lemma 4 provides the guarantee that we will always at
least have one first element M0

l in the series. Thus we can assume the condition for
n = 0. In the induction step we show that if the series can be continued for i, Lemma 7
guarantees the condition also holds for i + 1.

If we cannot continue the series, we either have proven φ for M c
a‖Mn

a or the coun-
terexample πn is also present for M c

r‖Mr. In the former case du to Lemma 5 we have
proven the property φ for M c

r ‖Mr. In the latter, Lemma 6 allows us to conclude that
the property φ is also violated by M c

r‖Mr.
Thus, we can either continue the series or prove respectively disprove the

property φ. �

For finite state legacy components, we can even guarantee termination of this process.
Assuming a finite number of states and transitions as well as deterministic behavior
of the legacy component, every time where the counterexample could not be observed
during testing, we will replace chaotic behavior by previously unknown states or tran-
sitions. Therefore, the number of not already captured states and transitions is strict
monotonically decreasing with each iteration round. As it cannot fall below zero, the
iterative process will thus terminate.

Based on the synthesized behavior shown in Figure 6, we build a closure and check
it with the context. Listing 1.4 shows the counterexample. The property A[] not (rear-
Role.Convoy and frontRole.noConvoy) is violated. The trace shows, that the violation is
only in the synthesized part of the model and therefore, we have a proof that the legacy
component is in conflict with context! This example shows, that our approach supports
a fast conflict detection.

Listing 1.4. Counterexample with conflict in synthesized behavior

shuttle1.noConvoy, shuttle2.noConvoy
shuttle2.convoyProposal!), shuttle1.convoyProposal?
shuttle1.answer, shuttle2.convoy

The approach supports besides possible fast conflict detection a systematic/automatic
way of testing all relevant input combination of the context with respect to the specifica-
tion (properties). The input for testing is the same as shown in the conflicting example

Combining Formal Verification and Testing 265

(cf. Listing 1.1). The monitoring trace shows, that all interactions are performed by the
legacy component with respect to the test input. The synthesized behavior, shown in
Figure 7 confirm this observation. When checking the synthesized behavior containing
the closure, a deadlock is manifested in the closure and not only in the synthesized part
of the behavior. Hence, we will get a counterexample, which we can use as test input
for the next step.

Listing 1.5. Succesful learning step: monitoring all relevant events

[CurrentState] name="noConvoy::default"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=1
[CurrentState] name="noConvoy::wait"
[Message] name="convoyProposalRejected", portName="rearRole", type=incoming
[Timing] count=2
[CurrentState] name="noConvoy"
[Message] name="convoyProposal", portName="rearRole", type="outgoing"
[Timing] count=3
[CurrentState] name="noConvoy::wait"
[Message] name="startConvoy", portName="rearRole", type=incoming
[Timing] count=4
[CurrentState] name="convoy"

convoy

noConvoy

wait

convoyProposalRejected?

startConvoy?

convoyProposal!

Fig. 7. Correct synthesized behavior w.r.t. context

5 Counterexample Based Testing

As shown in the previous sections, we can check via testing whether π is also a possible
path for M c

r‖Mr. If this is the case we have indeed found a witness that M c
r ‖Mr |= φ

does not hold on the one hand and on the other hand we can use the π for extending our
knowledge of the legacy component.

As proposed in [23], we can use a set of counterexamples of a model checker to
generate test traces for our model. In general this is achieved by passing a constraint
in the form of a temporal logic formula to the model checker that is known not to be
satisfied by the model. The model checker returns an error trace leading to the part of the
model that violates the constraint. This trace π is used to compute initial and final values
for a test case. In our special case here, a specific counterexample is generated if the
synthesized behavior is in conflict with the environment with respect to the properties
of the environment or the interaction between the environment and the legacy system.
Hence, we can take this counterexample to check whether π is also a possible path for
M c

r‖Mr.

266 H. Giese, S. Henkler, and M. Hirsch

The test case is directly derived from the counterexample. While executing the sys-
tem with the test cases, we need to observe relevant events of the system to synthesize
the behavior. Relevant information are the state, messages, and the time when a mes-
sage is received/send or a state is changed (see Definition 1 and [34]). To observe these
events, we need some white box information of the system.

In the case of software monitoring, instrumentation of the source code is needed to
observe the relevant events. For safety critical systems, a hugh amount data is needed.
This includes all timing, all external events (messages), and all scheduling events like
thread switches. During the early development phases, where the software is executed
on a host system, this is typically not a problem. During the later development phases,
however, the lack of resources on a target system can result in severe problems. Due to
this limitation probes for monitoring relevant events must often be removed or strictly
limited for the later development phases. These different probes can then result in dif-
ferent operation times and timing and thus in different behavior. This effect is called the
probe effect [42].

Because monitoring is often relevant during the whole life cycle of embedded sys-
tems, a popular technique is minimizing the relevant events and keeping the probes up
during development and operation (cf. [16] and [19]).

We will use our platform independent deterministic replay approach [22] which min-
imizes the relevant events. In a first step, we (can) execute the system in the real environ-
ment and monitor only the relevant information for deterministic replay e.g, the incom-
ing/outgoing messages and the period number when the messages were received/send
(see Listing 1.2). In a second step, we reproduce the execution deterministically by the
recorded data of the first step. We (can) add further instrumentation, which have no
effects on the execution, to get the information of the relevant events for the behavior
synthesize. These are especially the required state information (see Listing 1.3).

6 Related Work

Related to our approach are on the one hand side regular inference approaches and on
the other hand model abstraction approaches for formal verification purposes. We first
discuss the regular inference approaches.

Regular Inference
In regular inference systems are viewed as black boxes. It is assumed that the consid-
ered black box system can be modeled by a deterministic finite automaton (DFA). The
problem is than, to identify the regular language L(M) of the black system M. Learn-
ing algorithms are used to identify the regular language. A Learner, who initially knows
only the alphabet Σ∗ about M, is trying to learn L(M) by asking queries to a Teacher
and an Oracle. L(M) is learned by membership queries which asks the Teacher whether
a string w ∈ Σ∗ is in L(M). Further, an equivalence query is required to ask the Oracle
whether the hypothesized (learned) DFA A is correct (L(A) = L(M)). The Oracle an-
swers yes if A is correct, or else supply an counterexample. Typically, the Learner asks
a sequence of membership queries and build a hypothesized automaton using the ob-
served answers. When the Learner determines that the hypothesized behavior is stable
an equivalence query is used to find out whether the behavior is correct. If the query is

Combining Formal Verification and Testing 267

successful the Learner has succeeded, otherwise the returned counterexample is used to
revise A and perform further membership queries until deriving the next hypothesized
automaton, and so forth.

Angluin’s Algorithm. The most widely recognized regular inference algorithm is L∗ de-
veloped by Angluin [1]. The algorithm organizes the information obtained from queries
and answers in a so called observation table. The observation table regards each string
as consisting of a prefix and a suffix. The prefixes are indices of rows and the suffixes
indices of columns in the table. A prefix is a string which leads to a state in the system,
and a suffix is used to distinguish prefixes that lead to different states from another. The
complexity of the L∗ algorithm is as follows. The upper bound on the number of equiv-
alence queries is n (n is the number of states of M). The upper bound on the number of
membership queries is O(|Σ|n2m).

Domain Specific Approaches. A number of approaches exist, which are based on
Angluin’s [1] learning algorithm. Some approaches, like [5], extend the algorithm of
Angluin to get better runtime behavior in specific applications or domains. Other ap-
proaches use Angluin’s algorithm and add technologies like testing or verification.

Hungar et al. [33,32,46,40,41] optimizes Angluin’s algorithm by domain specific
information, like the utilization of a deterministic system. They reduce the number of
membership queries.

Li and Shahbaz et al. presents in [37,36,45] an approach which use testing to learn
parameterized state machines. This approach is based on Angluin’s algorithm. First a
unit test for each component is executed. Then, the components are integrated. Based
on the synthesized models tests are generated.

Berg et al. presents in [6] an approach which also tries to regular inference state
machines with parameters. They have adopted Angluin’s L∗ algorithm to work more
efficiently on a particular class of systems. They optimizes the approach in that they
infer, for each state, a partitioning of input symbols into equivalence classes, under the
hypothesis that all input symbols in an equivalence class have the same effect on the
state machine.

The presented approaches in [2,14,20] are based on an automaton model of the sys-
tem/component. Based on that model and a specification, they learn the required as-
sumption to guarantee the specification.

A technique to model check a black box is presented by Peled et al. in [43] by com-
bining regular inference and model checking. The idea of combining the two techniques
is further elaborated to a method called adaptive model checking [27,28]. In [18] this
approach is further extended to grey box checking. The authors assume that some parts
of the system are known. These approaches have the possibility to find an error with
respect to given properties while learning the model.

Grinchtein et al. presents in [26] an approach which extends the inference algorithm
of Angluin and others to the setting of timed systems. More precisely they consider
systems which can be described by a timed automaton.

Equivalence Check. In regular inference an equivalence oracle is required as introduced
in this section. The oracle confirm that the suggested conjecture is correct or provide

268 H. Giese, S. Henkler, and M. Hirsch

a counterexample. Two techniques provide an automatic approach for getting an coun-
terexample, monitoring and conformance testing. The approaches based on monitoring
affect the complexity of the regular inference algorithm negatively. As conformance
testing provides a systematic way of achieving an answer to an equivalence query, it is
mostly used [3]. Like [27] most conformance test approaches are based on Vasilevski
and Chow [47,11]. According to Vasilevski, an upper bound for the total length of a
test sequences suite is O(k2l|Σ|l−k+1). Hence, it is exponential in the difference be-
tween the number of states of the system and the hypothesis. A common assumption
for conformance testing is that A has at most as many states as M [4].

Conclusion. In principle, all approaches based on Angluin require an equivalence check
and the synthesized behavior is an under approximation of the legacy component. Also
other learning approaches like [17] use an under approximation. Despite [27], most ap-
proaches rather try to synthesize the whole behavior and than finding conflicting situa-
tions. However, our approach considers especially the collaboration (context) between
the environment and the legacy component. Thus, the whole behavior of the legacy
system is not required but only the relevant part for the collaboration. As we have as
starting point an over approximation, we did not require an equivalence check. Further,
we check at every learning step the correctness of the model.

Abstraction
Abstraction is an important technique for handling the state explosion problem of model
checking. Counterexamples are often used to refine an abstract model. The upper ap-
proximation is refined, if some behavior in the approximation which is not present in the
original model is the cause of a counterexample. When this happens, it is necessary to
refine the abstraction so that the behavior which caused the erroneous counterexample
is eliminated. Based on white box knowledge like the program variables, the approach
is to find a model of the system with a good abstraction to reduce verification efforts.
First, it is started with an over-approximation of states (states are reduced to one). Then,
the model is refined as long as erroneous counterexamples are eliminated. A number of
approaches are investigating this problem, like [35,38,12].

These approaches are based on white box information. Hence, no tests are required
and these approaches requires not to consider the possible alphabet of the system, which
is the basis for an black box approach. An interaction to the environment of the system,
e.g. in the form of a context, is not considered, too.

7 Conclusion and Future Work

In this paper we presented a scheme on how the correct embedding of legacy compo-
nents can be tackled by a combination of compositional formal verification and test-
ing. An initial behavioral model is derived from the existing interface description and
minimal additional information about the possible states of a legacy component using
reverse engineering. This behavioral model is subsequently improved using formal ver-
ification techniques to systematically generate test for the legacy component. The tests
are then enriched using our deterministic replay capabilities for components such that
they can be exploited to improve the behavioral model. While verification permits to

Combining Formal Verification and Testing 269

completely cover the inherently subtle interaction of the distributed real-time compo-
nents, local testing of the components guided by the verification results is employed to
derive the refined behavioral models.

A serious limitation of the presented results is the limitation to a single legacy com-
ponent. The approach can, however, be extended to multiple legacy components, by
using the parallel combination of multiple behavioral models. The iterative synthesis
will then improve all these models in parallel. While theoretically possible, we can cur-
rently provide no experience whether such a parallel learning is beneficial and useful for
multiple legacy components. Our expectation that it depends on the degree in which the
known context restricts their interaction which determines which benefits our approach
may show also for this more advanced integration problems.

We also have to admit that the approach has currently been evaluated only for a very
small example. We therefore plan to apply it at a larger scale. The employed learning
strategy still provides several options for optimization. At first, the interplay between the
formal verification and the test could be improved when a number of counterexample
instead only single one could be derived from the model checker. Another improvement
seems possible when specific strategies in model checkers to derive counterexamples
(e.g., the shortest one) are considered.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

2. Barringer, H., Pasareanu, C.S., Giannakopolou, D.: Proof rules for automated compositional
verification through learning. In: International Workshop on Specification and Verification of
Component Based Systems, Finland, pp. 14–21 (September 2003)

3. Berg, T.: Regular Inference for Reactive Systems. Licentiate thesis, it (April 2006)
4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspon-

dence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

5. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning. In: Proceed-
ings of the International Workshop on Software Verification and Validation (SVV 2003).
Electronic Notes in Theoretical Computer Science, vol. 118, pp. 3–18 (December 2003)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidel-
berg (2006)

7. Bosch, J., Szyperski, C.A., Weck, W.: Component-oriented programming. In: Malenfant, J.,
Moisan, S., Moreira, A.M.D. (eds.) ECOOP 2000 Workshops. LNCS, vol. 1964, pp. 55–64.
Springer, Heidelberg (2000)

8. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Modular Code
Synthesis for Reconfigurable Mechatronic Software Components. In: Bobeanu, C. (ed.) Proc.
of European Simulation and Modelling Conference (ESMc 2004), Paris, France, pp. 66–73.
EOROSIS Publications (October 2004)

9. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design of
Complex Self-optimizing Mechatronic Systems. In: Informatics in Control, Automation and
Robotics. Springer, Heidelberg (2006)

270 H. Giese, S. Henkler, and M. Hirsch

10. Burmester, S., Giese, H., Schäfer, W.: Model-Driven Architecture for Hard Real-Time Sys-
tems: From Platform Independent Models to Code. In: Hartman, A., Kreische, D. (eds.)
ECMDA-FA 2005. LNCS, vol. 3748, pp. 1–15. Springer, Heidelberg (2005)

11. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw.
Eng. 4(3), 178–187 (1978)

12. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-
finement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

13. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
14. Cobleigh, J.M., Giannakopoulou, D., Psreanu, C.S.: Learning assumptions for compositional

verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346.
Springer, Heidelberg (2003)

15. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby, Zheng, H.:
Bandera: extracting finite-state models from java source code. In: International Conference
on Software Engineering, pp. 439–448 (2000)

16. Dodd, P.S., Ravishankar, C.V.: Monitoring and debugging distributed real-time programs.
Softw. Pract. Exper. 22(10), 863–877 (1992)

17. Duarte, L.M., Kramer, J., Uchitel, S.: Model extraction using context information. In: Nier-
strasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
380–394. Springer, Heidelberg (2006)

18. Elkind, E., Genest, B., Peled, D., H.Q.: Grey-box checking. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, Heidel-
berg (2006)

19. Fidge, C.: Fundamentals of distributed system observation. IEEE Softw. 13(6), 77–83 (1996)
20. Giannakopoulou, D., Pasareanu, C.S.: Learning-based assume-guarantee verification (tool

paper). In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 282–287. Springer, Heidel-
berg (2005)

21. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Verification of
Component-Based Mechatronic Systems with Online-Reconfiguration. In: FSE 2004, pp.
179–188. ACM Press, New York (2004)

22. Giese, H., Henkler, S.: Architecture-driven platform independent deterministic replay for
distributed hard real-time systems. In: Proceedings of the 2nd International Workshop on
The Role of Software Architecture for Testing and Analysis (ROSATEA 2006), pp. 28–38.
ACM Press, New York (2006)

23. Giese, H., Henkler, S., Hirsch, M., Priesterjahn, C.: Model-based testing of mechatronic
systems. In: Geiger, L., Giese, H., Zündorf, A. (eds.) Proc. of the fifth International Fujaba
Days 2007, Kassel, Germany. Technical Report, vol. tr-ri-07-285, pp. 51–55. University of
Kassel (September 2007)

24. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional Ver-
ification of Real-Time UML Designs. In: Proc. of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international symposium on Foundations
of software engineering (ESEC/FSE-11), pp. 38–47. ACM Press, New York (2003)

25. Grimm, K.: Software technology in an automotive company: major challenges. In: ICSE 03:
Proceedings of the 25th International Conference on Software Engineering, Washington, DC,
USA, pp. 498–503. IEEE Computer Society, Los Alamitos (2003)

26. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed
decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–
449. Springer, Heidelberg (2006)

27. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 269–301. Springer, Heidelberg (2002)

28. Groce, A., Peled, D., Yannakakis, M.: Amc: An adaptive model checker. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 521–525. Springer, Heidelberg (2002)

Combining Formal Verification and Testing 271

29. Henkler, S., Hirsch, M.: Compositional Validation of Distributed Real Time Systems. In:
Preliminary Proc. of the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER 4), Paderborn, Germany (October 2007)

30. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science. Prentice-
Hall International, Englewood Cliffs (1985)

31. Holzmann, G.J., Smith, M.H.: A practical method for verifying event-driven software. In:
ICSE 1999: Proceedings of the 21st international conference on Software engineering, pp.
597–607. IEEE Computer Society Press, Los Alamitos (1999)

32. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In:
Proc. 15 Int. Conf. on Computer Aided Verification (2003)

33. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer,
Heidelberg (2003)

34. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004)

35. Kurshan, R.P.: Computer-aided verification of coordinating processes: the automata-theoretic
approach. Princeton University Press, Princeton (1994)

36. Li, K., Groz, R., Shahbaz, M.: Integration testing of components guided by incremental state
machine learning. In: TAIC-PART 2006: Proceedings of the Testing: Academic & Industrial
Conference on Practice And Research Techniques, Washington, DC, USA, pp. 59–70. IEEE
Computer Society, Los Alamitos (2006)

37. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based on learn-
ing parameterized i/o models. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.)
FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer, Heidelberg (2006)

38. Lind-Nielsen, J., Andersen, H.R.: Stepwise ctl model checking of state/event systems. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 316–327. Springer,
Heidelberg (1999)

39. Lucio, D., Kramer, J., Uchitel, S.: Model extraction based on context information. In:
ACM/IEEE 9th International Conference on Model Driven Engineering Languages and Sys-
tems. LNCS. Springer, Heidelberg (2006)

40. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for
legacy reactive systems. In: HLDVT 2004: Proceedings of the High-Level Design Validation
and Test Workshop, 2004. Ninth IEEE International, Washington, DC, USA, pp. 95–100.
IEEE Computer Society Press, Los Alamitos (2004)

41. Margaria, T., Raffelt, H., Steffen, B., Leucker, M.: The learnlib in fmics-jeti. In: 2th Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS 2007), pp.
340–352. IEEE Computer Society, Los Alamitos (2007)

42. McDowell, C.E., Helmbold, D.P.: Debugging concurrent programs. ACM Comput.
Surv. 21(4), 593–622 (1989)

43. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE XII / PSTV XIX
’99: Proceedings of the IFIP TC6 WG6.1 Joint International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols (FORTE XII) and
Protocol Specification, Testing and Verification (PSTV XIX), Deventer, The Netherlands,
The Netherlands, pp. 225–240. Kluwer, Dordrecht (1999)

44. Ruf, J.: RAVEN: Real-Time Analyzing and Verification Environment. Journal on Universal
Computer Science (J.UCS) 7(1), 89–104 (2001)

45. Shahbaz, M., Li, K., Groz, R.: Learning parameterized state machine model for integration
testing. In: COMPSAC 2007: Proceedings of the 31st Annual International Computer Soft-
ware and Applications Conference, Washington, DC, USA, vol. 2- (COMPSAC 2007), pp.
755–760. IEEE Computer Society Press, Los Alamitos (2007)

272 H. Giese, S. Henkler, and M. Hirsch

46. Steffen, B., Hungar, H.: Behavior-based model construction. In: Zuck, L.D., Attie, P.C.,
Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 5–19. Springer,
Heidelberg (2002)

47. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics and Systems Analysis 9(4),
653–665 (1973)

48. Weber, M., Weisbrod, J.: Requirements engineering in automotive development: Experiences
and challenges. IEEE Software 20(1), 16–24 (2003)

Plug-and-Play Architectural Design and

Verification

Shangzhu Wang, George S. Avrunin, and Lori A. Clarke

Department of Computer Science
University of Massachusetts Amherst, MA 01003, USA

{shangzhu,avrunin,clarke}@cs.umass.edu

Abstract. In software architecture, components represent the computa-
tional units of a system and connectors represent the interactions among
those units. Making decisions about the semantics of these interactions
is a key part of the design process. It is often difficult, however, to choose
the appropriate interaction semantics due to the wide range of alterna-
tives and the complexity of the system behavior affected by those choices.
Techniques such as finite-state verification can be used to evaluate the
impact of these design choices on the overall system behavior.

This paper presents the Plug-and-Play approach that allows
designers to experiment with alternative design choices of component
interactions in a plug-and-play manner. With this approach, connectors
representing specific interaction semantics are composed from a library of
predefined, reusable building blocks. In addition, standard interfaces for
components are defined that reduce the impact of interaction changes on
the components’ computations. This approach facilitates design-time ver-
ification by improving the reusability of component models and by pro-
viding reusable formal models for the connector building blocks, thereby
reducing model-construction time for finite-state verification.

1 Introduction

One of the distinguishing features of concurrent and distributed systems is the
importance of defining how sequential components interact with each other. Con-
sequently, software architecture description languages typically separate compo-
nents that represent computations from connectors that represent interactions
among these components [2,21,25,27]. Connectors are considered first-class de-
sign entities since they often capture some of the most important yet subtle
aspects of a system, such as non-determinism, interleavings of computations,
synchronization, and so on. These are concerns that can be particularly difficult
to fully comprehend in terms of their impact on the overall system behavior.

Adding to this difficulty is the wide variety of alternative choices for the inter-
action semantics. Choosing the appropriate interaction semantics for a connector
often involves not only a choice from commonly used interaction paradigms, such
as remote procedure call, message passing, and publish/subscribe, but also de-
cisions about such details as the particular type and size of a message buffer

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 273–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 S. Wang, G.S. Avrunin, and L.A. Clarke

or whether a communication should be synchronous or asynchronous. As a re-
sult, it is often necessary to make frequent changes to the design of connectors
in the course of experimenting with alternative interaction semantics. Design-
time verification can be useful in helping designers evaluate their design choices.
Typically, design-time verification uses finite-state verification techniques (e.g.,
SPIN [17], SMV [19], LTSA [22], FLAVERS [10]) to check whether certain prop-
erties of a system are satisfied. With design-time verification, designers can make
sure that desirable properties of a system still hold when a connector or a com-
ponent is modified. Usually several iterations involving proposing a design and
then verifying that design are needed.

Although it is often necessary to make frequent changes to the semantics
of the connectors while designing a system, in practice it can be difficult and
costly to make these changes. Changing the specific semantics of a connector
often requires nontrivial changes to the components as well. For example, a
change from an asynchronous communication to a synchronous one may require
changing the components so that a callback can be placed to explicitly notify
the sender of the receipt of messages. This intertwined semantics of components
and connectors also complicates design-time verification. When using finite-state
verification techniques, for instance, it is necessary to build a formal model of the
system that represents the computation of each component and the interactions
between them. With the semantics of interactions intertwined with the semantics
of computations, changes made to the interactions will often result in not only
the re-construction of the connector models but also the component models.
Although there are automated approaches for building these models, they still
frequently require human intervention and insight. When the process of changing
and re-verifying a design needs to be repeated frequently, the lack of reusability
of the component and connector models could significantly increase the cost of
design-time verification.

This paper describes the PnP (Plug-and-Play) approach that allows design-
ers to experiment with alternative design choices of interaction semantics in a
plug-and-play manner. This approach provides a library of pre-defined, reusable
building blocks that can be composed in a number of different ways to provide
a wide range of connectors with different interaction semantics. Modifying the
specification of a connector can be easily achieved by adding, removing or replac-
ing one or more of its building blocks. To minimize the impact on components of
changes to connectors, the PnP approach also proposes a set of standard inter-
faces that allow components to communicate with each other through different
connectors. The PnP approach not only improves the reusability of the designs of
components and connectors, it also provides savings in model construction time
during design-time verification. Specifically, pre-defined models are constructed
for the library of building blocks, which can then be reused in the modeling of
any system that uses these building blocks. In addition, since changes in the con-
nectors often do not require changes in the components, the component models
can often be reused, reducing the modeling cost when verification needs to be
re-applied.

Plug-and-Play Architectural Design and Verification 275

Section 2 describes how the PnP approach is supported at the design level.
Section 3 shows how it could be supported for design-time verification. Section 4
illustrates the design and verification of a small system using the PnP approach.
Section 5 describes related work, and Section 6 discusses the current status and
future directions of our work.

2 The Plug-and-Play Design Approach

This section describes defines the standard component interfaces and describes
the semantics of the building blocks. It also shows the protocols that are used
between components and building blocks, and thus demonstrates how connectors
can often be modified without requiring changes to the components.

From the implementation perspective, a component may correspond to a class,
a thread, a process, or a composition of several threads or processes. In the PnP
design approach, components are considered to be abstract units of computation
that may have interfaces that define points of interactions to other components in
the system. During design, it is up to the user to define the boundaries of com-
ponents and their exposed interaction points (i.e., interfaces). Similarly, from
the design perspective, connectors are abstract units representing the specified
interaction semantics. The PnP approach currently provides two kinds of pre-
defined building blocks for the construction of connectors: ports and channels.
These building blocks are also considered abstract design units. For an imple-
mentation, one building block may correspond to a class, a component, or a
function. Connectors may be implemented by composing the implementations
of the building blocks that comprise the connector or, for efficiency reasons,
could be implemented directly, depending on the services provided by the the
target programming language or operating system.

In the PnP approach, ports are responsible for hiding the semantic difference
of the connectors from those components. Ports capture the synchronization as-
pects of interactions such as the conditions under which a component should be
blocked or needs to wait for an acknowledgement after sending a message to an-
other component. While such semantics can be easily embedded in a component’s
computation, with the PnP approach those aspects of the interaction semantics
are captured in the ports, as part of the connector. Consequently, changes in the
interaction semantics can often be made completely in the connector and, thus,
independently of the components’ computation. Channels are used to represent
behavior of the storage medium associated with a connector. For example, a
channel may represent a message buffer for message passing communication or
an event service used in publish/subscribe systems.

The rest of this section presents the details of the PnP approach by showing
how it could be supported for message passing, one of the most commonly used
interaction mechanisms. Section 2.1 presents a set of example building blocks and
illustrates how they could be used to construct connectors with different message
passing semantics. Section 2.2 defines the standard interfaces that components
may use to interact with each other through different connectors. It also shows

276 S. Wang, G.S. Avrunin, and L.A. Clarke

Waits for a message from the sender and sends a confirmation
back immediately; the message may or may not be accepted

Waits for a message from the sender and sends a confirmation
back AFTER the message has been accepted by the channel.

Waits for a message from the sender and forwards it to the
channel. If the message cannot be accepted by the channel,
it returns and sends a notification to the sender. Otherwise,
it blocks until the message is accepted and sends a
confirmation back to the sender.

Waits for a message from the sender and sends a confirmation
back AFTER it is notified by the channel that the message
has been received by the receiver.

Similar to "asynchronous checking send" except that when
the message can be accepted by the channel, it blocks until
the message is received by the receiver and then sends a
confirmation back to the sender.
Waits for a "receive request" from the receiver and forwards
it to the channel. It blocks until a desired message is retrieved
from the channel and sends a confirmation to the receiver.

and handled by the channel.

Similar to "blocking receive" except that it returns immediately

a notification along with an empty message to the receiver.
if no desired message can be retrieved currently. It then sends

Asynchronous
Nonblocking

Asynchronous
Blocking

Asynchronous
Checking

Synchronous
Blocking

Synchronous
Checking

Port
Send

1−slot buffer A buffer of size 1.

FIFO queue A FIFO queue of size N.

Priority queue A priority queue of size N.

Receive
Port

Channel

Blocking
(copy/remove)

Nonblocking
(copy/remove)

Fig. 1. A set of message passing building blocks

how building blocks may be composed to yield specific interaction semantics by
describing the protocols used between building blocks.

2.1 Message Passing Building Blocks

Many languages, such as CSP [16], Occam [9], and Linda [7] incorporate message
passing facilities. There are also message passing libraries such as MPI [28] and
PVM [14]. Although the fundamental message passing semantics come from two
basic operations, send and receive, there are a surprising number of variations
in their semantics. For example, a message may be sent synchronously or asyn-
chronously and a component that receives messages may block or continue when
a requested message is not available. Other aspects of message passing semantics
also vary, such as how messages are stored in a buffer, how they are delivered, and
what kinds of information regarding the status of message delivery are relayed
to the sender or receiver components. Based on a study of the most commonly
used message passing semantics, we have defined a set of building blocks for the
construction of message passing connectors. This set of building blocks consists
of different kinds of send ports, receive ports, and channels that together can be
used to express a wide variety of message passing semantics. Figure 1 gives a
few examples of these message passing building blocks.

Figure 2(a) shows an example of how one may specify an asynchronous mes-
sage passing communication between a pair of sender and receiver components
using these building blocks. The connector is composed of an asynchronous block-
ing send port, a blocking receive port, and a channel that buffers one message.
Through this connector, the sender component sends a message without waiting

Plug-and-Play Architectural Design and Verification 277

Sender Receiver

Sender Receiver

Sender Receiver
BlockingReceiveAsynBlockingSend

Single−slot buffer

Receive portConnector Component Send portChannel

A library of ports and channels

BlockingReceiveSynBlockingSend

Single−slot buffer

BlockingReceiveAsynBlockingSend

FIFO queue (size 5)

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

(b)

(c)

��
��
��

��
��
��

���
���
���
���

(a)

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
�����

���
���
���

��
��
��

��
��
��

Fig. 2. Constructing message passing connectors

for an acknowledgement from the receiver but is blocked until the message is
stored in the channel. The receiver component blocks until a message can be
received. By replacing the asynchronous send port with a synchronous one from
the library, the new connector in Figure 2(b) allows the sender to block not only
until the message is stored in the channel but also until it has been delivered
to the receiver. Similarly, channels can also be easily replaced. For example, the
single-slot buffer can be replaced by a FIFO queue channel that holds up to
five messages, when at most five messages need to be buffered (as shown in Fig-
ure 2(c)). Moreover, the replacement of channels can be done independently of
the replacement of ports. This kind of “plug-and-play” development facilitates
experimentation with alternative interaction semantics.

As we can see from the description of the building blocks in the figure above,
channels are essentially message buffers that capture semantics such as the storage
and delivery of messages. A send port is a mediator between a sender component
and a channel. Different send ports provide different semantics by forwarding and
interleaving the messages between the sender component and the channel in differ-
ent ways. A similar notion applies to receive ports. To construct a message passing
connector with specific semantics, one simply selects the appropriate channel to
store and deliver messages and selects the appropriate ports from which compo-
nents may send and receive messages. Section 3 gives a more formal definition of
these building blocks inPromela, themodeling language of theSpinmodel checker.
While many other notations maybe used for defining these building blocks (such as
finite-state machines and labeled transition systems), in this paper, we have chosen
Promela for its easy-to-understand, programming-language-like syntax and direct
support for finite-state verification.

278 S. Wang, G.S. Avrunin, and L.A. Clarke

.

..

}
.
..

.

..

.

..
}

m;send
receive

SendStatus;m,

SendStatus;

(a) Component−send port protocol (b) Component−receive port protocol

Message

send
receive

Message m, RecvRequest,

RecvRequest;
RecvStatus;

receive m;

RecvStatus;

Component{ Component{

Fig. 3. Standard component interfaces

2.2 Component Interfaces and Protocols among Building Blocks

The PnP approach supports a set of standard interfaces that components may
use to interact with each other through different connectors. Such interfaces allow
components to remain intact while the semantics of the connectors are changed
through replacing ports and channels. In particular, the interfaces define how a
component communicates to the port that is directly connected to the compo-
nent. Figure 3 shows the standard interfaces for components to send and receive
messages. In Figure 3(a), immediately after sending a message m a component
blocks and waits for a SendStatus message from the connector. The content of the
SendStatus message is a signal that indicates the status of the sent message. This
interface is designed to work with connectors that implement different semantics
for sending messages. For example, in the case of asynchronous message passing,
the connector should immediately return the SendStatus message to the sender
component, allowing the component to continue its execution. For synchronous
message passing, however, the connector returns the SendStatus message after
the sender’s message has been delivered, thereby blocking the component until
a message is received. This difference is supported via the appropriate choice for
the send port between the component and the channel.

Similarly, in Figure 3(b), a component that wishes to receive a message first
sends a receive request to the port and waits for feedback (the RecvStatus mes-
sage) about whether the requested message has been successfully retrieved. It
then waits for a message from the receive port, either a real message (when the
receive is successful) or a null message (when the receive has failed). By always
having the receive port send back an explicit status message to the receiver
component, the same interface can be used for both blocking and nonblocking
semantics. A blocking receive port does not send the status back to the compo-
nent until a message has been successfully received from the channel and can be
delivered to the component. A nonblocking receive port sends a failure status
message immediately to the component when there is no message currently avail-
able in the channel, allowing the receiver component to continue its execution.

Using a notation similar to Message Sequence Charts, Figure 4 illustrates
how a send port controls the interleaving of the messages between the com-
ponent and the channel to support different interaction semantics. Figure 4(a)
shows part of a scenario for an asynchronous blocking send. In this scenario, the

Plug-and-Play Architectural Design and Verification 279

time

sender channel sender channel

time

Asynchronous Blocking Send(a) Synchronous Blocking Send(b)

m
m

IN_OK

sendport sendport

 m
m

SEND_SUCC

RECV_OK
SEND_SUCC

IN_OK

SendStatus=
SendStatus=

Fig. 4. Example scenarios of message passing interactions: asynchronous blocking send
versus synchronous blocking send

SendStatus message SEND SUCC is delivered to the component immediately
after the message m is stored in the channel, indicated by the message IN OK
from the channel. In contrast, Figure 4(b) shows part of a scenario for a syn-
chronous blocking send. In this scenario, the SendStatus message SEND SUCC
is not delivered to the component until after the message m has been stored in
the channel and has been received by the receiver (indicated by the RECV OK
message from the channel). Notice that the same protocol is used between the
sender component and the send port, and between the send port and the chan-
nel, for both synchronous and asynchronous message passing. Switching between
asynchronous message passing and synchronous message passing can be achieved
simply by substituting one kind of send port for the other kind.

With the standard interfaces described here, changes in such design decisions
as the specific semantics for sending and receiving messages or the behavior
of the message buffers can be accomplished by simply replacing the send or
receive ports or the channels that are employed in the connector. So if veri-
fication reveals a problem in the behavior of the system due to inappropriate
interactions between components, the designer can often modify the connec-
tors without needing to change the components. Of course, certain kinds of
changes in the connectors may require changes in the components. For exam-
ple, a designer might replace an asynchronous blocking send port by an asyn-
chronous checking send port that informs the sender when the channel is full.
This change will only lead to more efficient execution if the sending component
is redesigned to take advantage of the communication status information sent
by the port.

Note that although the standard interfaces described here are with respect
to message passing, they are actually more generally applicable. These inter-
faces can be used for other kinds of interactions such as RPC and publish/
subscribe [34].

280 S. Wang, G.S. Avrunin, and L.A. Clarke

3 Verification Support for the Plug-and-Play Design
Approach

In addition to providing a convenient and efficient way to specify and experiment
with various interaction semantics, the PnP approach also supports design-time
verification for checking behavioral properties of a system. For finite-state ver-
ification techniques such as model checking, formal models of the system need
to be constructed before verification can be applied. In the PnP approach, we
provide predefined and reusable formal models for the building blocks. Formal
models for a particular connector are composed from the pre-defined models
of the building blocks used to construct the connector. Connector models are
composed at verification time with component models to form a system model
that is then checked against the specified properties. Note that the designer is
still responsible for providing the models of the components and specifying the
properties.

Through verification, designers may find unexpected behaviors or errors in
their system design. If the problems are caused by the interaction mechanisms,
changes can be made by simply adjusting the building blocks of the connectors,
perhaps without having to modify the components. In such cases, there is no
need to recreate the component models. Moreover, predefined models for the
building blocks can be used in most cases to represent the modified interaction
mechanisms, also reducing the cost of model construction. This section describes
how reusable models for the message passing building blocks can be defined, how
they can be composed to form different connectors, and how the connector mod-
els are composed with component models using standard component interfaces.

For an initial evaluation of the PnP approach, we have chosen the widely used
Spin model checker as the verifier along with its input language Promela as the
modeling language. We now give a short introduction to Promela describing
some of its most important syntax and semantics that we will be using in our
models. In Promela, communicating components are defined as processes using
the keyword proctype. Communications between processes take place through
channels that provide either buffered or synchronous message passing. A Promela
channel can be declared using the keyword chan, the size of the buffer, and the
data type for each field of the messages that can be accepted by the channel.
The following Promela code shows an example of a typical channel declaration
and the basic operations for sending and receiving messages.

With the send operation “!”, the message is appended at the end of the channel
when the channel is not full; otherwise, the sending process is blocked. With
the receive operation “?”, the first message in the channel is retrieved. When
constants are used in one of the fields after “?”, only messages with values that
match the constants can be retrieved. The receiving process is blocked if the
value of the first message in the channel does not match the constant specified.
There are a number of variations for the send and receive operations supported
by Promela. For example, with the receive operation “??”, the first matching
message in the channel will be retrieved, and thus the receiving process does not
block as long as there is at least one matching message in the channel.

Plug-and-Play Architectural Design and Verification 281

/* internal communication signals */
mtype = {SEND_SUCC, SEND_FAIL, IN_OK, IN_FAIL, OUT_OK,

OUT_FAIL, RECV_OK, RECV_SUCC, RECV_FAIL};
typedef InternalMsg{

mtype signal;
byte port_pid;

}
typedef DataMsg{

byte data;
}
typedef SynChan{

chan signal = [0] of {InternalMsg};
chan data = [0] of {DataMsg}

}
proctype SynBlSendPort(SynChan componentChan;

SynChan channelChan){
DataMsg m;
do
:: componentChan.data?m; /* receives m from the sending component */

m.sender_id = _pid;
do
:: channelChan.data!m; /* forwards m to the channel */

if
:: channelChan.signal?IN_OK,eval(_pid);/* receives IN_OK from the channel */

/* indicating that m is stored */
break;

:: channelChan.signal?IN_FAIL,eval(_pid);/* receives IN_FAIL from the channel */
/* this happens when the buffer is full */

fi;
od;
channelChan.signal?RECV_OK,eval(_pid);/* waits for RECV_OK from the channel */

/* indicating the receiving of m by a component*/
componentChan.signal!SEND_SUCC,-1; /* sends SEND_SUCC to the sending component */

od;
}

Fig. 5. Example definitions of Promela channels

It is important to notice the difference between the Promela channels and
the channels used as connector building blocks in our approach. Promela chan-
nels are used for sending and receiving messages between Promela processes.
Promela channels can support only a limited number of simple message buffers,
such as FIFO queues. On the other hand, our channels are architecture-level
building blocks for connectors that can capture essentially arbitrary interaction
semantics among components and are not necessarily message buffers. For ex-
ample, a channel in a publish/subscribe connector may represent an event pool
where delivery of events is based on subscription. Even when our channels are
used as building blocks for message passing connectors, they can be much more
complicated than simple message buffers. Such a channel may be able to han-
dle messages based on their priorities, notify components of the current buffer
status, or deliver messages to a group of interested components. In the follow-
ing discussion, we always refer to the native channels in Promela as Promela
channels to distinguish them from the architecture-level channels in the PnP
approach. Here we model all the ports, channels, and components in a design
as communicating processes in Promela. We use Promela channels to model the
internal communications between components and ports and between ports and
channels.

282 S. Wang, G.S. Avrunin, and L.A. Clarke

Note that the Promela models we create for the message passing building
blocks are not necessarily the most efficient ones and there may be a number
of different ways to model them in Promela. Instead of aiming for elegance or
efficiency, our models are coded to clearly reflect the protocols that are used by
the building blocks. These models can often be simplified and optimized for ver-
ification in a number of ways. We briefly discuss some possible optimizations in
Section 6. Also note that the PnP approach is not tied to any particular model
checker or modeling language. By using Promela and Spin, we are only show-
ing one possible way of modeling our building blocks and applying design-time
verification. In fact, we have defined the same set of building blocks in the pro-
cess algebra FSP and used LTSA (the Labeled Transition System Analyzer) [22]
to verify the system designs. Somewhat different strategies may be appropriate
when modeling the building blocks in a different modeling language.

3.1 Modeling Ports

Figure 6 shows the Promela model for a synchronous blocking send port. First
a set of signals that are used to represent the status of sending and receiving
a message are defined as the enumerated type mtype in Promela. The type
SynChan defines two Promela channels that are used for communications between
components and ports, and between ports and channels. The Promela channel
signal is used to communicate message delivery status signals, and the Promela
channel data is used to communicate application-specific data messages. The
port is modeled as a Promela process (proctype) that takes two parameters
of type SynChan, one of which represents the set of Promela channels for the
communication with the component (component), and the other set of Promela
channels for the communication with (channelChan).

The main part of the Promela code for the port is a loop in which the port
accepts a message from the component and forwards it to the channel, and then,
when the message has been accepted by the channel, forwards the appropriate
status message back to the component. As we can see from the model in Figure 6,
in Promela, a block of repeating statements is enclosed in a pair of do and od
keywords. A number of statement blocks can be selectively executed when the
loop is entered. The symbol :: is used to identify the beginning of a selective
block. A block is executable when the first statement in the block is enabled.
When more than one block is executable, one of them is selected arbitrarily. In
our model for the send port, we only need one selective block, since the send port
only has one thing to do, that is, to wait for a message m to be sent from the
component and then deliver it to the channel. When the component is ready to
send a message, the statement componentChan.data?m is enabled and therefore
the rest of the statements can be executed.

As we can see from the model, after receiving a message from the component,
the send port attaches its own process ID pid to the message. Since one channel
may be connected to multiple send ports, this pid is sent along with the data
message to the channel so that the channel can use it to notify the appropriate

Plug-and-Play Architectural Design and Verification 283

/* internal communication signals */
mtype = {SEND_SUCC, SEND_FAIL, IN_OK, IN_FAIL, OUT_OK,

OUT_FAIL, RECV_OK, RECV_SUCC, RECV_FAIL};
typedef InternalMsg{

mtype signal;
byte port_pid;

}
typedef DataMsg{

byte data;
}
typedef SynChan{

chan signal = [0] of {InternalMsg};
chan data = [0] of {DataMsg}

}
proctype SynBlSendPort(SynChan componentChan;

SynChan channelChan){
DataMsg m;
do
:: componentChan.data?m; /* receives m from the sending component */

m.sender_id = _pid;
do
:: channelChan.data!m; /* forwards m to the channel */

if
:: channelChan.signal?IN_OK,eval(_pid);/* receives IN_OK from the channel */

/* indicating that m is stored */
break;

:: channelChan.signal?IN_FAIL,eval(_pid);/* receives IN_FAIL from the channel */
/* this happens when the buffer is full */

fi;
od;
channelChan.signal?RECV_OK,eval(_pid);/* waits for RECV_OK from the channel */

/* indicating the receiving of m by a component*/
componentChan.signal!SEND_SUCC,-1; /* sends SEND_SUCC to the sending component */

od;
}

Fig. 6. Promela model for a synchronous blocking send port

port of the delivery status of the message. Each status signal that is addressed
to this port will be tagged with its process ID number.

The send port then tries to forward the message m to the channel
(channelChan.data!m). After that, it waits for a signal back from the channel
that indicates whether the message can be properly stored in its buffer. Such a
signal could either be IN OK or IN FAIL. To model this nondeterministic choice,
we use the selective statement if...fi in Promela that allows a selective execu-
tion of one of its blocks. The semantics of how blocks are selected are the same as
for the do...od statement described above. The send port makes sure that the
signals from the channel are indeed addressed to it by matching its own process
ID with the tag attached to the signal that is sent back. This is done by speci-
fying its process ID as a constant that must match in a receive statement. For
example, the receive statement channelChan.signal?IN_OK,eval(_pid) will
only be executed when both constants IN_OK (an enumerated type in Promela)
and eval(_pid) (eval(_pid) gives the constant value of _pid) match the values
in a message that can be retrieved from the channel.

Since this is a synchronous blocking send, if the channel sends back an IN FAIL
signal, the port has to send the message to the channel again and keep trying
until an IN OK signal is received indicating that the message has been

284 S. Wang, G.S. Avrunin, and L.A. Clarke

proctype AsynNbSendPort(SynChan componentChan;
SynChan channelChan){

DataMsg m;
do
:: channelChan.signal?_,eval(_pid);
:: componentChan.data?m; /* receives m from the sending component */

componentChan.signal!SEND_SUCC,-1;/* sends SEND_SUCC to the sending component */
m.sender_id = _pid;
channelChan.data!m /* forwards m to the channel */

od
}

Fig. 7. Promela model for an asynchronous nonblocking send port

successfully stored in the channel. It then can break out of the loop and wait
for a RECV OK signal from the channel which indicates that a receiver has suc-
cessful received the message. Finally, after receiving both IN_OK and RECV_OK
signals from the channel, the synchronous blocking send port sends the send
status message (SEND_SUCC) back to the sender component. If for some reason
the message cannot be successfully delivered to the receiver, the channel will
issue a RECV_FAIL signal instead of a RECV_OK signal. In this case, the statement
channelChan.signal?RECV_OK,eval(_pid) will not be able to execute and the
port process is blocked. Since the port cannot send a SEND_SUCC signal to the
component, the component is also blocked. This is consistent with the semantics
of synchronous message passing where the component is blocked until the mes-
sage is successfully delivered to the receiver. Notice that since the component
process does not care about the ID of the port, we simply send an invalid process
ID number -1 along with the SEND_SUCC signal.

As one may have guessed, the definition of an asynchronous blocking send
port is similar to its synchronous counterpart except that an asynchronous send
port immediately sends SEND_SUCC to the component after receiving IN_OK from
the channel. Similarly, for a nonblocking send port, SEND_SUCC may be sent to
the component before the message has been stored in the buffer by the channel.
Figure 7 shows the Promela model for an asynchronous nonblocking send port.
This port receives a message m from the component and immediately returns a
SEND SUCC status signal to the sender component, regardless of whether message
m will be successfully stored in the channel or eventually received by the a
receiver component. In fact, the port ignores any signals sent from the channel
using a wildcard receive channelChan.signal?_,eval(_pid) (in Promela, _
can be matched with any value).

Figure 8 shows the Promela model for a blocking receive port. The receive port
starts by waiting for a recvRequest message from the component. When it ar-
rives, it tries to send the request to the channel until the request is confirmed
by the channel (indicated by the OUT_OK signal). After the port successfully re-
trieves a message m from the channel (channelChan.data?m), it then sends a
RECV_SUCC confirmation to the receiver component followed by the message m de-
livered by the channel. A nonblocking receive port would send a RECV_FAIL signal
immediately to the component when the receive request is rejected by the channel
(indicated by signal OUT_FAIL). It then sends an empty message to the receiver

Plug-and-Play Architectural Design and Verification 285

proctype BlRecvPort(SynChan componentChan;
SynChan channelChan){

DataMsg recvRequest,m;
do
:: componentChan.data?recvRequest; /* receies a receive request from the component */

do
:: channelChan.data!recvRequest; /* forwards the receive request to the channel */

if
:: channelChan.signal?OUT_OK,_; /* receives an OUT_OK signal from the channel */

channelChan.data?m; /* receives the message from the channel */
break;

:: channelChan.signal?OUT_FAIL,_; /* receives OUT_FAIL from the channel */
fi;

od;
componentChan.signal!RECV_SUCC,-1;/* sends a REC_SUCC signal to the component */
componentChan.data!m; /* sends the requested message to the component */

od;
}

Fig. 8. Promela model for a blocking receive port

typedef StatusMsg{
mtype status;

}
proctype aSendComponent(SynChan sendPortChan){

DataMsg myMsg;
StatusMsg sendStatus;

...

sendPortChan.data!myMsg; /* sends a message to the port */
sendPortChan.signal?sendStatus,_; /* receives the sendStatus message */

/* with the value of SEND_SUCC or SEND_FAIL */
...

}

Fig. 9. A sending component

component as a stub to accommodate the standard interface of the receiver com-
ponent. Note that other variations of receive ports can be defined similarly. For
example, a receive port (whether blocking or nonblocking) may ask the channel to
keep the message (copy receive) that has been received in the buffer or to remove
it (remove receive). A receive port may also support selective receive where a tag
is used as the matching criteria to retrieve messages from a channel.

3.2 Modeling Component Interfaces

Figure 9 shows the component interface for sending messages through a send
port. The component sends its message to the send port and immediately waits
for a status signal back. Depending on the specific semantics of the send port the
component is sending messages through, the status signal may be returned at
different stages of message delivery and may indicate either a failure (SEND FAIL)
or success (SEND SUCC). But no matter what kind of send ports the component
is communicating with, the same interface can be used. As noted previously, this
often allows the model of the port to be changed or replaced without having to
change the model of the component.

286 S. Wang, G.S. Avrunin, and L.A. Clarke

proctype aRecvComponent(SynChan recvPortChan){
DataMsg myMsg,recvRequest;
StatusMsg recvStatus;

...

recvPortChan.data!recvRequest; /* sends a receive request to the port */
recvPortChan.signal?recvStatus,_; /* waits for a recvStatus message */

/* with value RECV_SUCC or RECV_FAIL */
recvPortChan.data?myMsg; /* receives a data message myMsg which */

/* contains a valid message when recvStatus is RECV_SUCC */
/* or contains data that should not be used */
/* when recvStatus is RECV_FAIL */

...
}

Fig. 10. A receiving component

Similarly, Figure 10 shows the interface for receiving a message. In this model,
a receiver component sends a receive request to the receive port and then tries
to receive a status signal from the port, followed by a data message delivered by
the channel. If recvStatus indicates RECV SUCC, the message myMsg is the actual
requested message delivered by the channel. If recvStatus indicates RECV FAIL,
the message myMsg is an empty message sent by the receive port as a stub and
therefore, should not be used by the component. Such an interface for receiving
messages makes it possible to support both blocking and nonblocking semantics.

3.3 Modeling Channels

For message passing, channels are essentially buffers that store and deliver mes-
sages. There are a number of different properties of a message buffer that may
affect the overall correctness of the system. For example, some channels may
notify the sender component when the buffer is full so that the component may
choose to send at a different moment; other channels block the sender until space
is available in the buffer; a third kind of channel may simply drop messages that
are sent after its buffer becomes full without notifying the sender. Of course,
channels may have buffers with different sizes and may implement different mes-
sage delivery policies. We have defined the Promela models for a number of
message passing channels that implement a variety of such semantics.

Figure 11 shows the model for a single-slot-buffer that only holds one message.
The process model of a message passing channel takes two parameters of type
SynChan. senderChan is used for the communication with the send ports that
components are using to send messages to the channel. receiverChan is used for
the communication with the receive ports that components are using to receive
messages from the channel. The channel accepts a receive request from a receive
port or a message forwarded by a send port, and handles them according to
the current status of its buffer. In this particular implementation, the channel
notifies the send port with an IN FAIL signal when its message buffer is full, and
notifies the receive port with an OUT FAIL signal when no requested message
is currently available in the buffer. This channel model can be easily composed

Plug-and-Play Architectural Design and Verification 287

proctype single_slot_buffer (SynChan senderChan;
SynChan receiverChan){

DataMsg recvRequest, m, buffer;
bool buffer_empty = 1;
do
:: receiverChan.data?recvRequest; /* receivs a recvRequest from a receive port */

if
:: (!buffer_empty && !recvRequest.selective)

/* if buffer is non-empty; it’s not a selective receive */
|| (!buffer_empty && recvRequest.selective /* or buffer is not empty */

&& buffer.selectiveData /* and the selective criteria matches */
== recvRequest.selectiveData) ->

receiverChan.signal!OUT_OK,-1; /* sends an OUT_OK signal to the receive port */
receiverChan.data!buffer; /* stores the data message in the buffer */
senderChan.signal!RECV_OK,buffer.sender_id;/* sends a RECV_OK signal to the send port */
if /* flushes the buffer if needed */
:: recvRequest.remove ->

buffer_empty = 1
:: else
fi

:: else ->
receiverChan.signal!OUT_FAIL,-1 /* sends OUT_FAIL to the receive port */

fi
:: senderChan.data?m; /* receives a message m from a send port */

if
:: buffer_empty ->

senderChan.signal!IN_OK,-1; /* sends an IN_OK signal to the send channel */
buffer.data = m.data; /* stores the message */
buffer.sender_id = m.sender_id;
buffer.selectiveData = m.selectiveData;
buffer.selective = m.selective;
buffer.remove = m.remove;
buffer_empty = 0

:: else ->
senderChan.signal!IN_FAIL,-1 /* sends an IN_FAIL signal to the send channel */

fi
od

}

Fig. 11. Promela model for a single-slot buffer channel

with a number of send and receive ports by matching the Promela channels
channelChan used by the send ports and the channelChan used by the receive
ports with the senderChan and receiverChan used by the channel, respectively.

In addition to the single-slot buffer, we have defined the Promela models
for a variety of other types of channels, including one that stores and delivers
messages in a FIFO order and one that handles messages based on their priorities.
It is also possible to create a model for a channel that has a message buffer of
an arbitrary size. In this case, the Promela process of the channel takes an
additional parameter that specifies the size of the buffer. The models for these
channels can be instantiated with the size of the message buffer used in the
channel. This allows a range of similar message passing channels to be defined
by parameterizing the model.

3.4 Model Composition

As we have described above, ports and channels are modeled as communicating
Promela processes and they can be connected through specific Promela channels
that handle the communications between them. To construct the model for a
connector, we can simply compose the pre-defined Promela processes for its
building blocks by matching the specific Promela channels associated with them.

288 S. Wang, G.S. Avrunin, and L.A. Clarke

��
��
��
��

���
���
���
���

ControllerController
RedBlue

Blue Car

Red Car

Red Car

Blue Car

Fig. 12. A single-lane bridge with two controllers

Component models and connector models can be composed in a similar way.
When design decisions about the semantics of a connector are changed and
the system design needs to be re-verified, formal models of the system can be
modified by replacing the Promela processes of the existing building blocks of
the connector with those of the new ones. For example, when different semantics
for sending messages are needed for a component, we can substitute a different
send port for the existing one, and pass in the same Promela channels that allow
the new send port process to communicate properly with the Promela process
for the component. In Section 4, we give an example illustrating how system
models can be constructed from the building block models and how they can be
re-constructed when changes are made in the design of connectors.

4 The Single-Lane Bridge Example

This section presents an example to illustrate how designers may use the building
blocks and the techniques we have described above in the design and verification
of a small message passing system. In particular, we show how design-time verifi-
cation may benefit from the PnP approach by saving on model construction time
when repeated changes are made to the connectors in a software architecture.

As an example, consider a bridge that is only wide enough to let through a
single lane of traffic at a time. An appropriate traffic control mechanism is neces-
sary to prevent crashes on the bridge. For this example, we assume traffic control
is managed by two controllers, one at each end of the bridge. Communication
is allowed between two controllers as well as between cars and controllers. To
make the discussion easier to follow, we refer to cars entering the bridge from
one end as the blue cars and refer to that end’s controller as the blue controller;
similarly the cars and controller on the other end are referred to as the red cars
and the red controller, respectively, as shown in Figure 12. Blue cars send enter
requests to the blue controller when they try to enter the bridge and notify the
red controller when they exit the bridge. A similar situation applies to red cars.

There are a number of possible ways to control the traffic on the bridge. For
a simple version of the bridge example, which we refer to as “exactly-N -cars-
per-turn”, controllers may take turns to allow some fixed number (N) of cars
from their side to enter the bridge. A more efficient single-lane bridge system,
which we refer to as “at-most-N -cars-per-turn”, may allow turns to be yielded
immediately by one controller to the other if there are no cars waiting to cross

Plug-and-Play Architectural Design and Verification 289

the bridge from its side. No matter what traffic control mechanism is used, we
want to make sure the bridge is safe, that is, no cars traveling in the opposite
directions can be allowed on the bridge at the same time. Designing a bridge
system that ensures this safety property requires a careful design of not only the
components (cars and controllers) in the system, but also the specific semantics
of the connectors used for the interactions between the components.

In particular, a designer may have to decide whether it is more appropriate to
use message passing or event-based notification for the communication between
components; whether the communication between cars and controllers needs
to be synchronous or can be asynchronous; if message passing is chosen, what
types of buffers should be used to store messages; what happens if a message gets
dropped by a buffer, and so on. It is very easy to make mistakes on such matters
when choosing the appropriate interaction semantics. Design-time verification
can be very useful in evaluating the appropriateness of these design decisions.

For this example, message passing seems to be a natural choice for the commu-
nications between components, but we still have to make sure the appropriate
message passing semantics are chosen for each connector. With our PnP ap-
proach, this can be achieved by selecting and composing a subset of the message
passing building blocks from the library to define each connector, incorporating
the component designs provided by the designer, and then using design-time veri-
fication to make sure that the resulting system design does not violate the safety
properties of the bridge. Figure 13 shows an initial design of the “exactly-N -
cars-per-turn” single-lane bridge example. In this design, asynchronous message
passing is chosen for both the communication between the car and the controller
on its entering side and the communication between the car and the controller
on the other side. In this case, asynchronous blocking send ports are used for
sending enter and exit request messages from the cars to the controllers. A FIFO
queue channel is selected for buffering the enter request messages that are sent
from different car components to the same controller, so that the requests are
processed by the controller in a first-in-first-out order. A single-slot buffer chan-
nel may be used for exit request messages. Finally, blocking receive ports are
used by each controller component to process enter and exit request messages.
Notice that with this version of the bridge example, no communication is neces-
sary between the two controllers.

To apply design-time verification using Spin, the Promela model of the overall
system design needs to be constructed. With the PnP approach, the system
design is composed of components and various message passing building blocks.
Therefore, a system model is simply a composition of all the Promela models for
the message passing building blocks and components in the system. Specifically,
models of the selected message passing building blocks are pre-defined and can
be simply included in the system model at verification time. In general, the PnP
approach expects designers to provide formal models for the components that
employ the standard interfaces.

In principle, models of the components can be automatically derived from
their designs if they are encoded in some suitable language. For the purpose of

290 S. Wang, G.S. Avrunin, and L.A. Clarke

RedController

BlRecv

Single−slot buffer

BlRecv

AsynBlSend

Single−slot buffer

BlueController

FIFO queue

BlRecv

ComponentMultiple Components Send port Receive portChannel Multiple send ports

FIFO queue

BlRecv

AsynBlSend

AsynBlSend

RedEnterBlueEnter RedExit BlueExit

AsynBlSend

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

BlueCars RedCars

Fig. 13. An initial design of the “exactly-N-cars-per-turn” single-lane bridge example

this example, however, we constructed Promela models of the car and controller
components manually. To allow the component models to be composed properly
with the building block models, appropriate Promela channels are used to set up
the connections between component processes and building block processes at
the start of the Promela system. Due to space limitations, the complete Promela
model for this version of the bridge example is presented in [34]. The safety
property of the bridge example is described in LTL (Linear Temporal Logic),
which can then be checked by Spin against the Promela model of the system.

To make sure that our bridge system does not cause cars traveling from op-
posite directions to crash, we use finite-state verification to check our design. In
this case, not surprisingly, verification reports a violation of the property. The
cause of this violation is obviously that we have selected a wrong type of send
port for sending enter request messages. Instead of using an asynchronous block-
ing send port, we should have used a synchronous blocking send port so that the
car component waits for an acknowledgement from the controller before it tries
to enter the bridge. With the PnP approach, the erroneous design can be easily
corrected by replacing the asynchronous blocking send ports for sending enter
requests with synchronous ones; no changes in the components are necessary.
Verification needs to be applied again to confirm that the system now satisfies
the property. With this approach, re-applying verification does not require the
complete re-computation of the system model.

As we can see from this example, the pre-defined building block models can
be easily composed with component models to create a system model. These
pluggable models also make it easier to make changes in the model, especially

Plug-and-Play Architectural Design and Verification 291

BlueController

Multiple Components Component

SynBlSendNbRecv

NbRecvSynBlSend

Single−slot buffer

Single−slot buffer

BlueToRed

RedToBlue

Single−slot buffer Single−slot buffer

RedExit BlueExit

FIFO queueFIFO queue

RedController

Channel Send port Receive port Multiple send ports

BlueEnter RedEnter

NbRecv
NbRecvNbRecv

NbRecv

AsynBlSend
SynBlSend

AsynBlSend
SynBlSend

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����
���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

BlueCars RedCars

Fig. 14. The architecture design of the “at-most-N-cars-if-¿ waiting” single-lane bridge
example

when such changes only involve the semantics of the connectors. Suppose that,
in order to improve traffic flow, the designer wishes to change the “exactly-
N -cars-per-turn” version of the bridge system into the “at-most-N -cars-per-
turn” version. This requires the addition of new communication between the
controllers and the modification of the controller components. Since this version
of the system has additional functionality, it is not unreasonable to have to
change the components to support this functionality. Still, however, we would
like to limit the impact of these changes and reuse models of the components
and connectors as much as possible. Figure 14 shows a possible design for the
modified system, with two new connectors between the controllers, one for the
blue controller to notify the red controller that no blue cars are waiting and one
for the red controller to notify the blue controller that no red cars are waiting.
In this case the designer chose synchronous blocking send, nonblocking receive,
and a reliable single-slot buffer. Since the controllers poll for messages from cars
and from the other controller, we must also change the connectors between the
cars and controller to have nonblocking receive semantics. To verify that this new
system still prevents crashes of cars traveling in opposite directions on the bridge,
the component models need to be modified to reflect the new communications.
Models of the new connectors, however, can be constructed from the library
models of the building blocks.

From this single-lane bridge example illustrated above, we can see that the ver-
ification works in the same plug-and-play manner as the associated design ap-
proach. Having reusable models for building blocks of connectors and having the

292 S. Wang, G.S. Avrunin, and L.A. Clarke

models of components stay relatively stable when only interactions are changed
reduces the cost of repeated verification in an iterative design process. It therefore
makes it easier and more efficient to experiment with alternative design choices for
interaction semantics.

5 Related Work

The limitations and frustrations of component-based software development are
well known (e.g., [11, 18]). Previous work, such as [2, 4, 15, 21, 25, 27], has pro-
posed treating connectors as first-class entities in component-based development,
although [15] in particular, has put the focus at a lower level of abstraction (pro-
gramming level) than what we are interested in here.

There are a number of approaches that provide support for connectors and
component composition. The Wright architecture description language [2], for
example, uses the CSP process algebra to describe arbitrary connectors. The Ar-
chitectural Interaction Diagrams (AIDs) approach [26] models connectors using
process algebra. Constraint automata based approaches have also been proposed
to specify and analyze the semantics of connectors composed from a set of prim-
itive channels [3,24]. In approaches like these, the burden is on the designer to
construct a model of a connector with the right semantics from powerful, but
low-level, primitives. Our PnP approach is aimed at providing a library of build-
ing blocks from which connectors representing a variety of interaction semantics
can be easily constructed, offering “ready-to-use” pieces that hide from the user
most of the details of how these pieces are actually constructed and modeled.
As we noted above, however, the actual formal models of our building blocks
used for verification could be built using any suitable formalisms with verifica-
tion support, including CSP or AIDs. Another approach to support component
composition is the mediator approach [31,32] which defines mediators as special
components that are used to modularize how other components interact with
each other in terms of their behavioral relationship. While providing a way of
reasoning about the connections, the mediator approach does not support the
compositional specification of connectors as our approach does.

While our approach facilitates creating connectors from existing building
blocks, the connector wrapper approach [29, 30] focuses on creating new con-
nectors by incrementally transforming existing ones. The connector wrappers
can be useful in reusing connector parts and supporting easy modification to
connectors. Because of its restricted internal representation of operational se-
mantics, however, this approach can only support connectors with limited kinds
of interaction semantics. In contrast, our approach allows designers to explore
a wide range of interaction semantics by providing a set of building blocks that
can be expanded and that are not restricted to a specific formalism.

Although a similar notion of ports has been proposed in architectural descrip-
tion languages such as ACME [13] and ArchJava [1], in our approach, ports are
used to explicitly capture some of the most important aspects of interaction se-
mantics such as synchronization, and therefore are treated as parts of connectors.

Plug-and-Play Architectural Design and Verification 293

Our definition of ports makes it possible to support standard component interfaces
that allow connectors to be modified or replaced with minimal impact on the com-
ponents. The term building blocks has been used in many different contexts. For
example, in [33], building blocks are referred to as parts of software used to build
a system. The building blocks in our approach are design-level elements used to
construct connectors representing interactions.

There has been extensive work on applying verification to systems employing
a specific type of component interactions. Our approach, however, is intended to
provide a general framework that can support many kinds of mechanisms, rather
than being restricted to a single type. Specific techniques have been used to
model and reason about message passing systems. For example, in [5,23] message
passing systems are specified in sets of adapted message sequence charts (MSCs),
and message channels are modeled as a finite-state automaton with inputs and
outputs. A single automaton is constructed that accepts all linearizations of
the MSCs that meet the specification of the channels. This automaton is then
checked by standard techniques for emptiness to decide whether the system
satisfies the specification of the channel.

Work has been done on verifying implicit invocation or publish/subscribe sys-
tems (e.g., [6, 12, 35]). In this work, the semantics of publish/subscribe systems
are defined along several dimensions, which is very similar to what we have done
for message passing. One of the limitations of the approach is its restriction to
publish/subscribe systems: the user specifies choices on the dimensions, and a
formal model, suitable for finite-state verification, is automatically constructed.
In order to apply that approach to other interaction mechanisms, a suitable spec-
ification formalism and a model generation tool would have to be constructed.
Our approach, on the other hand allows the verification of systems with differ-
ent interaction mechanisms by supporting small, reusable formal models that
can be used as building blocks to construct formal models representing different
kinds of interactions. One advantage of their approach, however, is that both
the formal models and the verifier may be optimized and refined specifically for
publish/subscribe systems.

6 Conclusion and Future Work

Choosing appropriate interaction semantics for the connectors in a software archi-
tecture is often very difficult. In this paper, we present an approach that allows
designers to easily experiment with alternative design choices of interaction se-
mantics and to use design-time verification to evaluate their decisions based on
the correctness of the overall system design. With this approach, components can
interact with each other through different connectors using only a small set of
standard interfaces. Because the interfaces usually do not need to change when
changes are made to the connectors, the impact of such changes on the compo-
nents is minimized. Our approach also provides a library of pre-defined building
blocks to support the construction of a wide variety of different types of connec-
tors. This plug-and-play approach provides savings in model construction time

294 S. Wang, G.S. Avrunin, and L.A. Clarke

during design-time verification. With this approach, pre-defined models can be
constructed for the library of building blocks, which can then be reused in the
modeling of any system that uses these building blocks. In addition, since changes
in the connectors do not often require changes in the components, the component
models can often be reused, reducing the modeling cost when verification needs
to be re-applied.

We are currently developing a prototype tool that supports plug-and-play de-
sign and verification. This tool is implemented as an extension of the ArchStu-
dio architecture design environment [8]. With ArchStudio, designers can model,
visualize and analyze system architectures. Our extension provides additional
functionalities that allow designers to select specific interaction paradigms for
component interactions, to specify connectors from pre-defined building blocks,
and to use finite-state verification to evaluate the design. In addition to the pro-
totype tool, we are also working on extending the current approach to support
other kinds of interaction mechanisms such as publish/subscribe and remote
procedure call. For evaluation, we are undertaking a case study to evaluate how
well this approach supports the design and verification of microkernel-based em-
bedded systems that are based on the CAmkES component model [20]. Specif-
ically, we plan to show how the set of building blocks can represent a rich set
of interaction semantics and how this approach can be useful in practice to help
produce high-quality designs and implementation. As another collaboration with
CAmkES, we are planning to investigate how the plug-and-play approach could
be extended to the implementation level. Specifically, we want to explore the
possibility of capturing implementation-specific information at the architecture
level and mapping building blocks to implementation constructs such as classes,
threads, processes, or functions. We would like to have our design approach com-
bined with code generation so that code generation could also benefit from the
plug-and-play of reusable building blocks.

We also plan to explore several important issues that are specific to the model-
ing and verification aspect of our approach. One of these is optimizing techniques
to reduce the models created using our PnP approach to allow finite-state ver-
ification to be applied more efficiently. As we have mentioned previously, our
current models for the library of building blocks are only intended for proof of
concept and may not be the most efficient. These models often have unneces-
sary blocking statements or redundant data structures, which may unnecessar-
ily increase the state space of the model. As an extreme example, consider our
Promela model of a FIFO queue channel. Instead of implementing explicit data
structures for buffering messages in FIFO order, we could simply use the native
FIFO channel in Promela to handle the ordering of the messages.

We expect optimization to be extremely important since decomposing connec-
tors into ports and channels that are modeled as separate processes introduces
additional concurrency into the model, exacerbating the state explosion that lim-
its finite-state verification. Without effective optimizations, our approach may be
restricted to only small systems. Therefore, techniques that can reduce the size of
the system model will be necessary to provide effective verification support. As an

Plug-and-Play Architectural Design and Verification 295

example of such a technique, commonly used connectors could be recognized and
specially optimized models could be made available instead of directly composing
from the building block models. Note that the techniques that are used for opti-
mization may largely depend on the specific modeling language and verification
tool that are used.

Another concern with our approach is the ability to provide meaningful coun-
terexample traces when the verification fails. In finite-state verification, when a
property violation is found, a counterexample trace is usually provided to give
an example trace through the model that leads to the violation of the property.
With our approach, tracing an error may require delving into the details of the
models of the building blocks, which requires a low-level understanding of their
semantics. It would be helpful if our approach could provide a more meaningful
representation of the cause of a property violation. For example, it would be
useful to indicate that a deadlock in a system may be due to the use of a mes-
sage buffer that drops new messages when it is full. In this way, designers can
focus on the building blocks that appear to be problematic in the system and
experiment with alternative choices using the plug-and-play approach.

Acknowledgements

We are grateful to Prashant Shenoy for helpful conversations about this work.
This material is based upon work supported by the National Science Founda-

tion under awards CCF-0427071, CCR-0205575, CCF-0541035, CCF-0733035,
and by the U.S. Department of Defense/Army Research Office under award
DAA-D19-01-1-0564 and award DAAD19-03-1-0133. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National Science Foun-
dation or the U. S. Department of Defense/Army Research Office.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture
to implementation. In: Proc. 26th Intl. Conf. on Softw. Eng., Orlando, FL, USA,
May 2002, pp. 187–197. ACM Press, New York (2002)

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. on
Softw. Eng. and Methodol., 140–165 (1997)

3. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component con-
nectors in reo by constraint automata (extended abstract). Electr. Notes Theor.
Comput. Sci. 97, 25–46 (2004)

4. Bálek, D., Plášil, F.: Software connectors and their role in component deployment.
In: Proc. Third Intl. Working Conf. on New Developments in Distributed Applica-
tions and Interoperable Systems, Deventer, The Netherlands, pp. 69–84 (2001)

5. Bollig, B., Leucker, M.: Modeling, specifying, and verifying message passing sys-
tems. In: Proceedings of the Symposium on Temporal Representation and Reason-
ing (TIME 2001), pp. 240–248 (2001)

296 S. Wang, G.S. Avrunin, and L.A. Clarke

6. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: Proc. 11th ACM Symp. on Found. of Softw. Eng.,
pp. 78–87 (September 2003)

7. Carriero, N., Gelernter, D.: Linda in context. Comm. ACM 32(4), 444–458 (1989)
8. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the

development of modular software architecture description languages. ACM Trans.
Softw. Eng. Meth. 14(2), 199–245 (2005)

9. Day, M.: Occam. SIGPLAN Notices 18(4), 69–79 (1983)
10. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for ver-

ifying properties of concurrent software systems. ACM Trans. on Softw. Eng. and
Methodol. 13(4), 359–430 (2004)

11. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch, or, why it’s hard
to build systems out of existing parts. In: Proc. 17th Intl. Conf. on Softw. Eng.,
Seattle, Washington, pp. 179–185 (April 1995)

12. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 166–180.
Springer, Heidelberg (2003)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press, Cambridge (2000)

14. Geist, A., Beguelin, A., Dongarra, J., Wiang, W., Manchek, R., Sunderam, V.:
PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge (1994)

15. Gensler, T., Lowe, W.: Correct composition of distributed systems. In: Tech. of
Object-Oriented Languages and Systems, pp. 296–305 (1999)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Intl., Engle-
wood Cliffs (1985)

17. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
18. Inverardi, P., Wolf, A.L.: Uncovering architectural mismatch in component behav-

ior. Science of Computer Programming 33(2), 101–131 (1999)
19. McMillan, K.L.: Symbolic Model Checking: An approach to the State Explosion

Problem. Kluwer Academic, Dordrecht (1993)
20. Kuz, I., Liu, Y., Gorton, I., Heiser, G.: CAmkES: A component model for secure

microkernel-based embedded systems. The Journal of Systems and Software (2006)
21. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software

architectures. In: Proc. 5th European Softw. Eng. Conf., Sitges, Spain, pp. 137–
153 (September 1995)

22. Magee, J., Kramer, J.: Concurrency State Models and Java Programs. John Wiley
and Sons, Chichester (1999)

23. Meenakshi, B., Ramanujam, R.: Reasoning about message passing in finite state
environments. In: Welzl, E., Montanari, U., Rolim, J. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 487–498. Springer, Heidelberg (2000)

24. Mehta, N.R., Medvidovic, N., Sirjani, M., Arbab, F.: Modeling behavior in compo-
sitions of software architectural primitives. In: 19th IEEE Intl. Conf. on Automated
Softw. Eng., pp. 371–374 (2004)

25. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

26. Ray, A., Cleaveland, R.: Architectural interaction diagrams: AIDs for system mod-
eling. In: Proc. 25th Intl. Conf. on Softw. Eng., pp. 396–406 (2003)

27. Shaw, M., Garlan, D.: Softw. Architecture:Perspectives on an Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

Plug-and-Play Architectural Design and Verification 297

28. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge (1996)

29. Spitznagel, B., Garlan, D.: A compositional approach for construct connector.
In: Proc. Working IEEE/IFIP Conf. on Soft. Architecture (WICSA 2001), Royal
Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands, pp. 148–
157 (August 2001)

30. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proc. 2003 Intl. Conf. on Softw. Eng., Portland, Oregon, pp. 374–384 (2003)

31. Sullivan, I.K., K.J., Notkin, D.: Evaluating the mediator method: Prism as a case
study. In: IEEE Transactions on Software Engineering, vol. 22, pp. 563–579 (August
1996)

32. Sullivan, K.J., Notkin, D.: Reconciling environment integration and software evo-
lution. ACM Trans. Softw. Eng. Methodol. 1(3), 229–268 (1992)

33. van der Linden, F.J., Müller, J.K.: Creating architectures with building blocks.
IEEE Softw. 12(6), 51–60 (1995)

34. Wang, S., Avrunin, G.S., Clarke, L.A.: Architectural building blocks for plug-and-
play system design. Technical Report UM-CS-2005-16, Dept. of Comp. Sci., Univ.
of Massachusetts (2005)

35. Zhang, H., Bradbury, J.S., Cordy, J.R., Dingel, J.: Implementation and verification
of implicit-invocation systems using source transformation. In: Proceedings of the
Fifth International Workshop on Source Code Analysis and Manipulation. IEEE
Computer Society, Los Alamitos (2005)

Data Flow-Based Validation of Web Services

Compositions: Perspectives and Examples�

Cesare Bartolini1, Antonia Bertolino1, Eda Marchetti1, and Ioannis Parissis1,2

1 ISTI - CNR
Via Moruzzi 1 - 56124 Pisa

2 Laboratoire d’Informatique de Grenoble
BP 53 - 38041 Grenoble Cedex 9

{cesare.bartolini,antonia.bertolino,eda.marchetti}@isti.cnr.it,
ioannis.parissis@imag.fr

Abstract. Composition of Web Services (WSs) is anticipated as the
future standard way to dynamically build distributed applications, and
hence their verification and validation is attracting great attention. The
standardization of BPEL as a composition language and of WSDL as a
WS interface definition language has led researchers to investigate ver-
ification and validation techniques mainly focusing on the sequence of
events in the composition, while minor attention has been paid to the
validation of the data flow exchange. In this chapter we study the po-
tential of using data flow modelling for testing composite WSs. After
an exhaustive exploration of the issues on testing based on data-related
models, we schematically settle future research issues on the perspectives
opened by data flow-based validation and present examples for some of
them, illustrated on the case study of a composite WS that we have
developed, the Virtual Scientific Book Store.

1 Introduction

The Service Oriented Architecture (SOA) is the emerging approach to develop
and execute distributed applications. The SOA provides a flexible and cost-
effective paradigm for complex system development, that facilitates the
interaction among components developed by independent organizations. SOA
applications can be built by integrating existing services into services compo-
sitions (or composite services). The reuse of existing software components is
enabled by the adoption of standard interfaces and protocols, that also allow for
the interaction between heterogeneous systems and technologies.

Compositionality is on the one side a highly promising feature of the SOA
and on the other a tough challenge for developers. Unlike traditional component-
based integration, which is carried on at assembly time, service composition can
� This research has been partially supported by ART DECO (Adaptive infRasTructure

for DECentralized Organizations), an Italian FIRB (Fondo per gli Investimenti della
Ricerca di Base) 2005 Project, and by TAROT (Training And Research On Testing),
a Marie Curie Research Training Network.

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 298–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Data Flow-Based Validation of Web Services Compositions 299

be performed at run time. Dynamic discovery and run-time integration hence
form essential concepts of the SOA paradigm.

A concrete instantiation of the SOA are Web Services (WSs), which are imple-
mented and composed by using established Web-based open standards, namely
WSDL [36], UDDI [30], and SOAP [35]. We are concerned in this chapter with
dependability insurance in the architecting of WS Compositions (WSCs). In par-
ticular our research addresses verification and validation (V&V) approaches in
this new architectural standard, that raise several issues [6].

V&V of WSCs would correspond to the integration stage of the conventional
testing process. The central problem is that the dynamic binding of services
makes it impractical to test in advance all the concrete service combinations that
can be involved in a workflow. Heuristics must be used to reduce the amount
of test executions. A compelling research problem is then how to ensure the
compliance of the composite services with the (functional and non-functional)
requirements. One major issue is that the implementation of the WSs involved
in the composition is generally unknown. Their interfaces are specified by the
WSDL standard description language, but availability of behavioral specification
cannot be assumed. Testing in the laboratory (off-line testing) can only be done
under assumptions on this behavior, and to achieve more realistic verification,
testing is often deferred to execution-time (on-line testing). Furthermore, testing
a WSC might increase the workload of the involved services (that may be used
at the same time in other compositions) and also the cost of testing (using the
services may not be free of charges). The same kind of problems occurs for testing
non-functional attributes of an architecture.

In recent years, several attempts have been made to adapt existing validation
approaches to the validation of WSs and WSCs. In these, behavioral specifica-
tions have been mainly used that describe the foreseen sequences of events, as
an input to formal verification. However, proving the behavioral correctness of
the system may not be sufficient to guarantee that specific data properties are
satisfied [23].

So far little attention has been paid to data validation or even data modelling
for WSCs. Notwithstanding WSCs always entail operating and transforming
persistent data, most of the times data flow requirements and data properties
are expressed informally (in natural language), and consequently the application
of rigorous data-flow based verification approaches is hardly feasible. We believe
that data modeling represents an important aspect, which should be taken in
consideration during both the implementation and the testing phase.

Of course the usage of data information for validation purposes is not a nov-
elty. Several data flow oriented test adequacy criteria have been proposed in the
past [8] for application to conventional software. The purpose of this chapter is
to study how data flow-based test techniques should be adapted for validation
of WSCs.

The chapter is structured in two main parts (corresponding to the “Perspec-
tives” and “Examples” terms in the title): i) in Section 4 we overview all the
ways in which data flow modelling and analysis may be used for the validation

300 C. Bartolini et al.

of WSCs: the contribution of this section stays in hinting future research di-
rections; ii) in Section 5 we dig in a couple of outlined approaches, providing
examples of application to a developed WSC case study: the Virtual Scientific
Book Store (described in Section 3). Before that, in Section 2 we overview recent
research work on validation of WSs and WSCs. Conclusions are finally drawn in
Section 6.

2 Related Work

This section is a brief overview on recent investigations on WSs validation, first
regardless of composition issues, then addressing specifically WSCs, and, finally,
focusing on fault models for WSCs.

Validation of WSs. Validation of WSs has been mainly addressed by means of
testing. Test data are selected either in order to show the conformance to a user-
provided specification or according to their fault detection ability, assessed on
fault models. For instance, the Coyote framework [29] requires the user to build
test cases as MSCs [28]. A contract specification of the services under test is also
necessary. The fault detection ability of the test data is assessed using mutation
on contracts [16]. A simpler approach is proposed in [25] where mutations are
defined on the WSDL language. But the mutation operations adopted in both
approaches do not correspond to any widely accepted fault-model.

The approach proposed in [4, 3] focuses on testing the conformance of a WS
instance to an access protocol described with a UML2.0 Protocol State Machine
(PSM). This protocol defines how the service provided by a component can be
accessed by a client through its ports and interfaces. The PSM is translated into
a Symbolic Transition System (STS), on which existing formal testing theory
and tools can be applied for conformance evaluation. For instance, in [13], STSs
are used to specify the behavior of communicating WS ports and test data are
generated to check the conformity of the effective implementation to such a
specification. The advantage of this approach is that it uses a standard notation
(UML 2.0 PSM) for the protocol specification.

The above approaches are summarized in Table 1.

Validation of WSCs. Validation of WSCs has been addressed by few authors
suggesting to perform structural coverage testing of a WSC specification. For

Table 1. WSs validation techniques

Used models V&V type Ref.
WSDL Mutation testing [25]
WSDL + Protocol State Machines Conformance testing [4, 3]
WSDL + Symbolic Transition Systems Conformance testing [13]
WSDL + MSC Conformance testing [29]

Data Flow-Based Validation of Web Services Compositions 301

instance, in [37, 40] it is considered that the WSC is provided in BPEL [21],
the Business Process Execution Language, a de facto standard for programming
WSCs. The BPEL description is abstracted as an extended control flow diagram;
paths over this diagram can be used to guide test generation or to assess test cov-
erage. An important issue in this approach comes from the parallelism in BPEL
which results in a much more complex control flow and a very high number of
paths. To cope with this problem, the above approaches make several simplify-
ing assumptions on BPEL and apply only to a subset of the language. In [14],
a transformation is proposed from BPEL to PROMELA (similarly to [7]). The
resulting abstract model is used to generate tests guided by structural coverage
criteria (e.g. transition coverage). Similar complexity explosion problems may
be encountered in such methods, since the amount of states and transitions of
the target model can be very high.

When a formal model of the WSC and of the required properties is provided,
a formal proof can be carried out. For instance, Petri Nets can be built from
workflows [20] or from BPEL processes [38] to verify properties such as reach-
ability. In [12], the workflow is specified in BPEL and an additional functional
specification is provided as a set of MSCs. These specifications are translated
in the Finite State Processes (FSP) notation. Model-checking is performed to
detect execution scenarios allowed in the MSC description and that are not exe-
cutable in the workflow, and conversely. The complexity of the involved models
and model-checking algorithms is the main concern making these approaches
hardly applicable in real-world WSCs. Table 2 provides a classification of the
above presented approaches.

Fault Models. The above investigations use models of the composition behav-
ior and of properties or scenarios expressing the user expectations (MSCs or state
based properties such as the absence of deadlock): faults manifest themselves as

Table 2. WSCs validation techniques

Original models Transf. to
Other
models

V&V type Ref.

BPEL None Structural
coverage [37, 40]

BPEL PROMELA None Structural
coverage [14]

Petri-nets Properties Formal
verification [20]

BPEL Colored
Petri-Nets [38]

BPEL FSP MSC Formal
verification [12]

BPEL to UML Activity
Diag. PROMELA Properties Formal

verification [7]

302 C. Bartolini et al.

discrepancies between the system behavior and these expectations. An interest-
ing characterization is proposed in [33,34] where failures of WSCs are considered
as interactions between WSs, similarly to feature interactions in telecommunica-
tion services. Interactions are classified for instance as goal conflict or as resource
contention.

The above fault models mainly focus on control. The verification of the data
transformations involved in the WSC execution does not seem to have been ex-
plored so far. From the modeling point of view, this lack has been outlined in [18]
where it is suggested to build a model representing the data transformations per-
formed during the execution of a WSC. This model can be used together with
behavioral specifications to automate the WSC process.

There is no literature on fault models based on data for WSCs. However, the
proposition of data fault model for workflows by Sadiq and coauthors [23] could
be applicable in the WS context. According to it, data can be redundant if they
are not used by any activity. They can be lost, if the outputs of two concurrently
executed activities are assigned to a single variable in a non deterministic order.
Similarly, they can be missing, mismatched, misdirected or insufficient.

Although the above data fault model has not been designed specifically for
WSCs, it can be of some interest in defining a data oriented validation strategy
(see Section 4).

3 Case Study: The Virtual Scientific Book Store

We illustrate the concepts expressed in this chapter by means of an example of
WSC implementing a Virtual Scientific Book (VSB) Store. VSB is a compos-
ite service which offers various functionalities related to scientific publications,
including search of the ACM repository and visualization of the articles.

VSB has been realized from the composition of the three WSs described below:
Pico, Google Citations, and ACM Search.

The Pico Service. Pico implements a database of scientific publications. Reg-
istered users can add, edit and remove the publications in the database, however
its information is publicly available, therefore search results can be viewed by
non-registered users. Moreover, to allow web developers to integrate information
regarding their publications into their own pages, a SOAP-based web service
(and its relative WSDL file) has been integrated in VSB. For sake of simplic-
ity, although the service is composed of a high number of functions for different
purposes, only three functions are presented here:

searchByAuthor performs a search of all the publications in the Pico database
including a given name in their list of authors.
– Inputs: author’s name (type: string); research sector. If not specified,

then all research sectors will be included in the search (type: string);
year (type: string); publication type (journal, conference proceedings...).
If not specified, then all publications from this author will be returned
(type: string).

Data Flow-Based Validation of Web Services Compositions 303

– Outputs: a list of references. If no publication relative to the requested
author were found a null element is returned (type: sequence of record
elements, from a custom XML Schema Definition).

searchByTitle performs the search according to the requested title.
– Inputs: publication title (type: string).
– Outputs: a list of references identical to the previous function.

pdfGetter recovers the file containing the printable form of the publication and
returns its URL. It is important to note that this function does not actually
return a PDF file, but a publicly accessible URL, so the requestor has a
greater flexibility in choosing how to recover the actual file.
– Inputs: the name of the file (type: string).
– Outputs: the full URL where the file can be retrieved, or a null value if

it is not available (type: string).

TheGoogleCitationService. GoogleScholar (http://scholar.google.com)
is a freely-accessible website useful for publications search. One of its most inter-
esting features is that it displays the (supposed) number of citations that a given
publication has received (according to the Google database).

As Scholar does not provide any web service support, we have implemented a
web service performing a research on Google Scholar and receiving a web page
in return. It contains a single function:

citations retrieves a web page from Google Scholar and searches for the number
of citations of the given publication.
– Inputs: publication title (type: string).
– Outputs: number of citations, 0 if there were no results from Google

Scholar, or no results correctly matching the title were found (type: inte-
ger); URL of the page where the information was retrieved (type:string).

The ACM Search Service. Since the ACM scientific library does not provide
any web service support, we have implemented a web service offering such a
functionality. This service is composed of a single function:

pdfGetter queries the ACM repository with a search and receives a web page,
which is then scanned to check whether the publication corresponding to the
requested title is available on the repository. If so, this function returns a
direct link to the PDF file, which can be used by the requestor. Note that this
operation is not directly related to the operation of the Pico service with the
same name; they are simply two operations which perform a similar function,
but they are related to different WSDLs.
– Inputs: the title of the publication to search (type: string); login creden-

tials (type: sequence of two strings, username and password).
– Outputs: the URL containing a direct link to the PDF file. It is a null

value if the no results were returned by the ACM search, or if none of
the results matches the requested title (type: string).

http://scholar.google.com

304 C. Bartolini et al.

The Service Composition: VSB. The final VSB service provides a set of
functionalities to easily access the aforementioned WSs. Its execution is divided
into two distinct steps. In the first step, upon a user request, a search in the
Pico database is executed and the list of publications corresponding to the search
criteria is presented to the user; then, the user must select a publication reference
and an operation to perform on it, and the service will execute the requested
operation and return the resulting value to the user.

Initially, the service composition expects two possible inputs: an author’s last
name and/or a publication title. If none is provided, then an exception is raised.
If either one is provided, then the composition will accordingly invoke the Pico
searchByAuthor or searchByTitle function, and will return the resulting reference
list. If both inputs are provided, then the composition will call both functions
in parallel, and the result will be the merging of the reference lists returned by
searchByAuthor and searchByTitle. The merging is obtained by means of an XSL
stylesheet, which can be used thanks to a function (doXslTransform) provided
by WS-BPEL as an XPath extension. The resulting reference list is then shown
to the user in an easily-readable form.

In the second phase of the service composition, the user must select one ref-
erence from the reference list. The function provided by the service composition
for this purpose is called selection. Last, the user requests one of two operations,
namely “google”and “acm”. The requested operation is then invoked. The for-
mer invokes the Google Citations service, allowing the user to know the number
of citations. The latter first determines whether the document is contained in
the Pico repository (information available in the reference). If so, the pdfGetter
function of the Pico service is invoked; otherwise, the ACM Search service must
be called. However, since the ACM repository requires authentication, the user’s
credentials are sent along with the request.

However, in the current implementation of the case study, credentials are not
actually used (in a real working environment, their absence should throw a fault,
but fault management is covered in another part of the example).

After the request and the credentials are sent to the ACM service, the result
will be the same as the invocation of the Pico pdfGetter function, that is a direct
link to the document. Therefore, the composition will retrieve the document and
present it to the user as the final output.

4 Perspectives on Using Data Flow in Validating WSCs

A WSC implements a business process, i.e. a coordinated set of tasks, performed
by humans or software, aimed at accomplishing a specific organizational goal [9].
Such a goal may be of the most varied nature, involving for example a supply-
chain process, or a virtual travel agency, or an e-commerce transaction, and
so on. Whichever its goal, a business process always entails the processing of
persistent data, along a sequence of steps described into the process workflow
specification. Clearly, a correct manipulation of the data is one crucial ingredient
to guaranteeing the quality of the WSC. This is why we claim in this work that

Data Flow-Based Validation of Web Services Compositions 305

data flow based analysis can provide useful insights in V&V of WSCs and should
complement currently proposed approaches, which are mostly centered around
the process behavioral specification.

In this section we investigate data-based validation in a broad-wise perspective,
attempting to identify the possible various usages of data-related information for
validation purposes. In particular, in Section 4.1 we enumerate the data-based
models of concern and their role in the development of the application, while in
Section 4.2 we discuss issues on using these models for validation purposes.

4.1 Modelling WSCs Data

Data related information useful for testing purposes can be introduced at various
stages during development of a WSC and can be of different nature. Depending
on what information is available different kinds of models can be built and used,
giving rise to a spectrum of opportunities for data-based validation. For instance,
during the requirements specification stage, requirements might be expressed on
the composition data flow, as suggested in [18]. Or, conversely, data flow related
specifications can be extracted from the implementation of the composition. On
the other hand, relations between input and output data can be expressed when
the composition is specified and later on checked during testing. Finally, fault
models focusing on data can be used and can be of general purpose or specific
to some application domain.

The most basic and common descriptions for WS manipulated data are WSDL
definitions, which provide the variables and operations used. WSCs are described
on top of the WSDL definitions, by behavioral models provided as state or activ-
ity diagrams. They can be either built during the early stages of the development
process or extracted from the implementation (typically, from BPEL [21] pro-
grams). There does not exist a standardized notation for a WSC model, and
existing tools provide different visualizations.

Behavioral models focus mainly on the control flow. By modelling how the
actions performed during the execution of the application can interleave, though,
these models constitute an important source of information for data flow anal-
ysis as well, as they permit to analyse how data are passed between different
invocations. These models could be augmented with data flow annotations. In
Section 5.2 we discuss in detail how the BPEL process for the VSB case study
can be annotated with definitions and uses of variables (see Table 5).

Annotated BPEL processes come however at a mature stage of development,
when the WSC is implemented. As already said, data flow models could also be
defined early in the life cycle, during the requirements specification of WSs. One
already cited proposal of a notation for modeling data flow requirements comes
from Marconi and coauthors [18]. Their notation provides a precise formal model
which can be used for verification purposes. On the other hand, in many cases the
derivation of technically sophisticated models already at the stage of requirement
elicitation might be impractical. At early development stages developers might
prefer the usage of abstract and more intuitive models, such as the Data Flow
Diagrams (DFDs).

306 C. Bartolini et al.

Fig. 1. DFD elements (D: data transformer; df: data flow; ds: data store; ep: external
process)

DFDs were introduced in the 70’s as part of structured analysis and de-
sign [39]. In this approach, a DFD represents a flow of data through a network
of transforming processes (data transformers). The latter can also access data-
stores. The quite intuitive nature of this formalism is made further attractive for
practitioners by a simple graphical notation. Commonly adopted symbols for the
elements of DFD are shown in Figure 1. Although this kind of model is less used
in the current state of the practice, we believe it can be useful since it highlights
the goals of the composition from a data related point of view. Building a DFD
forces developers to explicitly model their implicit knowledge on data handling,
avoiding loss of information or misdirection of data flow, and helping to highlight
the most critical data flow paths.

We draw a sketch of a DFD for the VSB case study in Figure 2. With reference
to the DFD elements in Figure 1, the web services involved in the composition
are represented as external processes (for the VSB these are RefFinder, Citation,
PdfGet), whereas internal operations of the composition correspond to data
transformers (e.g., ChooseRef).

Data fault models constitute another possible piece of information that could
be useful for WSC validation purposes. One such model is supplied for instance
by the already mentioned classification in [23]. We re-interpret that model in the
context of WSCs as shown in Table 3. Fortunately, some of the problems identi-
fied in this classification do not apply when the standard languages BPEL and
WSDL are used, since these languages ensure that the data exchanged between
services conform to a mutual accepted specification.

Finally, in addition to the above mentioned models, the requirements speci-
fication may include properties focusing on data. Such properties may restrict
the domain of the computed values (for instance if a year is specified in the
searchByAuthor request, then all references returned by Pico must conform to
that year) or express relations between them (for instance, the output references
returned by searchByTitle must match the title provided in input). The set of
these properties provide another model that could be used for validation (e.g.
through applying model-checking techniques).

4.2 Model-Based Testing Issues

The models presented in the previous section can be used for testing purposes
either individually or in a combined way. In this section we discuss how validation
could be performed in presence of one or more of these models. A summary
reference is provided in Table 4.

Data Flow-Based Validation of Web Services Compositions 307

Fig. 2. DFD of the virtual bookstore

Using a Data Flow Model Built from the Requirements. The first row
in Table 4 considers the case where a high level data flow model is built during
the requirements specification, independently from any other specification of the
composition or from the implementation. One example of DFD derived from the
VSB service requirements is presented in Figure 2.

We hypothesize three situations, corresponding to the three columns of the
table:

1. Using a data flow model alone. Even in the case the only available
specification for the composition is an abstract data flow model (Table 4
Cell 1.1), this can be useful in two different ways for testing purposes:
– Measuring structural coverage. Coverage criteria adapted to a data

flow model can be defined. For instance, considering Figure 2, any path
starting from the User input and returning back to him/her correspond
to different data flows that should be covered. One path covers the op-
eration of RefFinder, and passing through ChooseRef goes to PdfGet ;
another goes to Citation and returns directly to the User, and so on.

– Test data design. Once established a coverage criterion, black-box
testing strategies can be adopted to derive the appropriate test cases,
i.e. demonstrating concrete executions involving the data flow model
elements to cover.

2. Using a data flow model together with a BPEL description: We
consider that both a data flow model and a specification of the WSC (BPEL)
are available (Cell 1.2 in Table 4), although no formal relation between them
is assumed. This information can be exploited for statically checking both
if the defined BPEL composition conforms to the data flow requirements
specified in the data flow model and if it properly implements all the data
dependencies. In the VSB example, it could be checked that the citation score
provided by the Google Citation service correctly refers the title provided
by Pico.

308 C. Bartolini et al.

Table 3. Data validation problems for WSs

Data validation problem Relevance for WSC

Redundant data
Can occur when partners send messages (or parts)
which are not used. Statically detected conformance
between invocation of services and WSDL descriptions.

Lost data
Can occur when two data flows involving the same
variable definition merge in a single flow: one of the
values can be lost.

Missing data
Can occur when variables are used without having been
instantiated, either manually or by a message. Can be
statically detected by parsing the BPEL code.

Mismatched data
Cannot occur in BPEL. Type checking is enforced in
the specification.

Inconsistent data

Can occur when a data flow involving a call to WS
merges, after this call, with a data flow updating a
variable containing a value coming from the WS; in
other words, the BPEL program may incorrectly
update this variable.

Misdirected data No reinterpretation required for web services.

Insufficient data Specification problem, not addressed in this work.

3. Using a data flow model and a data fault model: A data fault model
could be defined mainly focusing on lost or inconsistent data. Once estab-
lished, the data fault model can be used together with the data flow model
(Cell 1.3 in Table 4) to seed faults into the latter (for instance, in search-
ByAuthor, a future year reference could be provided). Fault coverage criteria
can then be established on the data flow model and test data can be selected
to detect the possible presence of these faults in the implementation.

Using a Data Flow Model Extracted from the BPEL Description of
the Composition. We now assume that a BPEL description of the composition
is available together with a WSDL definition for the involved services (Row 2 in
Table 4). In this case, a more detailed data flow model could be (automatically)
extracted from the process specification. The peculiarity of such a data flow
model is that it provides another point of view of the composition, focusing on
data interaction. The data flow model can be of course exploited as described
above for the DFM alone (Row 1 in Table 4), but in this case the criteria, and
consequently the derived test cases, can be applied at a more concrete level and
could be aimed at checking the implementation (Cells 2.1, 2.3 in Table 4).

A more interesting possibility consists in exploiting the data flow model in-
formation to define coverage criteria for the BPEL process description (this case
is studied in more depth in Section 5.2). In that case, data flow information
can be combined with the control flow information to apply common data flow-
based test coverage criteria, such as for instance all-defs or all-uses [8], either for
measuring test adequacy or to guide test data generation (Cell 2.2 in Table 4).

Data Flow-Based Validation of Web Services Compositions 309

Table 4. Data flow based validation issues

Other available models

Reference
model

1 None 2 BPEL
3 Data fault

model

1 DFM from
Reqs

– Structural
coverage of DFM

– Black-box test
generation

– Static verification
(BPEL vs. DFM)

– Coverage of
DFM/fault
model

– Black-box test
generation

1.1 1.2 1.3

2 DFM from
BPEL

– Structural
coverage of DFM

– Black-box test
generation

– Define coverage
criteria for BPEL

– Guide test generation
(to achieve BPEL
coverage)

– Coverage of
DFM/fault
model

– Black-box test
generation

2.1 2.2 2.3

3 Data
properties

– Common black
box testing
(category
partition)

– Common data flow
testing

– Coverage: Guide
test generation

3.1 3.2 3.3

Using Data Property Specifications. Overall data properties differ from
data flow modelling in the sense that they can express developer expectations
on the composition results regardless of the data dependencies or the process
execution flow. Such properties could state that the result of a query must be-
long in a given interval (for instance the publication years of the citation record),
obey some formatting rules (for instance concerning the format of the string cor-
responding to a URL), or establish a relation between the computed data (e.g.,
the authors in the returned references must include the author name provided
in input by the User).

As shown in Row 3 of Table 4, such properties could be used in several ways:

Black-box testing. If there is no information available on the WSC (Cell 3.1
in Table 4), black-box testing techniques, such as Category Partition [22],
can be used taking into account the properties to select relevant test data.

310 C. Bartolini et al.

Data flow testing. The specified set of properties can be used together with
the BPEL specification (if available) to apply common data flow based test-
ing techniques focusing on the data involved in the property expression (Cell
3.2 in Table 4).

Coverage criteria. The set of formal properties can be used in association
with a data flow model or with a data fault model to define test criteria
and related test strategies ensuring that any fault in the data flow model
that has an impact on the property satisfaction can be detected with good
probability (Cell 3.3 in Table 4).

5 Examples of Using Data Flow-Based Validation in the
BPEL Process

In this section we discuss in more detail two possible approaches based on data
flow modeling and analysis for the validation of WSCs. More precisely, Sec-
tion 5.1 is concerned with using a data flow model derived from the requirement
specifications (referring to Cell 1.1 in Table 4), while Section 5.2 focuses on a
data flow model extracted from the BPEL description of the composition (Cell
2.2 in Table 4). The two examples are not necessarily related. The first relies on a
high level data flow model derived from the specification, and can be completely
independent from the subsequent WSC implementation. The second uses a data
flow model derived from the BPEL code and is referred to for coverage testing.

5.1 Using a Data Flow Model Built from Requirements

A data flow model built from the requirements should include information on
the expected dependencies between the data handled in the WSC.

Paths in a DFD correspond to dependencies between inputs and outputs of
the WSC. For instance, the path (title, refList, ref, citRate) in Figure 2 means
that citRate depends on the title provided by the user through the intermediate
data refList and ref. Such dependencies make it possible to define test adequacy
criteria based on the diagram structure, similarly to data flow adequacy criteria
defined on control flow graphs (e.g. [8]).

Although the detailed design of such criteria is not in the scope of this chapter,
we identify some issues that could help in their definition:

– Every path in the DFD starting at a WSC input A and ending at a WSC
output B should be checked with at least one execution of the WSC resulting
in the production of a new value of B corresponding to the actual value of
A. In the example of Figure 2, this means, for instance, that VSB must be
invoked with a publication title as input parameter; another invocation must
be made with the author name, sector, year, type.

– A more thorough testing should require using different values for input to
a given path, in order to check whether the path output value changes ac-
cordingly (for instance, if the citRate changes when title changes). So, an
adequacy criterion could be defined, requiring every path to be exercised
twice, with different input values.

Data Flow-Based Validation of Web Services Compositions 311

– The above idea can be extended to all the successive pairs of edges in a path.
For the path (title, refList, ref, citRate):

• (title, refList) should be checked with different values of title;
• (refList, ref) should be checked with different reference lists ;
• (ref, citRate) should be checked with different values of ref.

So, for an example, another criterion could be based on requiring to execute
every path with a test set such that every arrow of the path takes at least
two different values.

Other criteria could be defined to cover different combinations of events in
the test paths. On the example of Figure 2, it is useful to check, for instance,
that when the user provides a valid value for userId and a title corresponding
to at least a valid reference, then a valid link to a pdf file is returned.

Another important issue in the definition of such data flow based adequacy cri-
teria is related to states. Indeed, a difficult problem of WSCs validation arises
when the involved Web services are stateful. Also in such cases the usage of data
models is helpful, as a DFD may contain data stores modelling the internal state
of the composition and that internal state could be exploited for the test path
definition.

The interest of such adequacy criteria defined on a DFD is that they help test
planning (and assessing the effort needed for testing) early in the development
process, before the actual integration of the WSs involved in the composition. The
assessment of these criteria could be automated, if they are formally defined on a
DFD, even if this model is a quite abstract view of the effective implementation.

5.2 Extracting Data Flow Information from the BPEL

In this section we assume that the WSC is described in BPEL [21] and we
study how common data flow based testing criteria [8] apply to this description
(i.e., this section is concerned with Cell 2.2 of Table 4). To make the chapter
self-contained, we present the main elements of the BPEL language, useful for
understanding the testing methodology (we refer to [21] for a detailed descrip-
tion). A BPEL composition schema is a XML document conforming to a specific
XML Schema format, which describes different aspects of a business process,
such as:

– the roles involved in a message exchange;
– the port types to which the roles refer;
– the orchestration and specific aspects of the process organization;
– the correlation information which relates the messages with the correct com-

position instances.

A BPEL process is made of activities, which can be separated into basic ac-
tivities, such as receive, reply, invoke, assign, exit and structured ac-
tivities, such as sequence, if, while, flow, pick.

312 C. Bartolini et al.

Various graphical representations are available for business processes, both
involving BPEL [17] and other models. Such representations can either be gen-
eral (UML2 Activity Diagrams [31], Business Process Modeling Notation [5],
Event-Driven Process chain [24]) or specific to BPEL. Although the specification
of WS-BPEL is standard, its integration with execution platforms is prevalently
dependent on the development environment. Therefore, BPEL-specific notations
are usually bound to some tool such as IBM WebSphere Business Model [15],
Eclipse BPEL Project [11] or Active Endpoints’ design tool ActiveBPEL De-
signer [1]. Without any loss of generality, we adopt the last one in the rest of
the section.

Speaking in general, the BPEL process can be visualized by a directed graph
G(N , E), in which N is the set of nodes, and E the set of edges. Nodes can be
associated with the individual activities, while edges represent the control flow
between activity invocations. Data flow-based test adequacy criteria are conven-
tionally defined on the control flow graph of a program, which is annotated with
variable definitions and uses. In the case of BPEL this standard process of anno-
tation needs to be adapted and made more effective by taking in consideration
the specific features of this language.

Beyond the generic and idealistic scenario depicted above, we are aware that
defining a suitable representation of BPEL control flow is a complex problem.
BPEL includes activities allowing for parallel execution as well as for syn-
chronous and asynchronous communication, which require to extend the con-
ventional control flow graph. Different proposals have been presented (e.g., [37,
40,19]) and a general agreement has not been reached yet. The attitude we took
in this work is to rely as much as possible on the well established ActiveBPEL
graphical representation, extending it only for some activities of the BPEL pro-
cess which are peculiar with respect to other common programming languages.
Specifically, this means that: apart from invoke, each basic BPEL activity is
represented as a node. A part from flow and pick, each structured BPEL activ-
ity is represented by branches and joins. Moreover special consideration is also
taken for the constructs correlation and scope which are peculiar of BPEL
language. More details are provided in the following.

Invoke Activity. The invoke basic activity is used to call the WSs offered
by a service provider. It may include other activities ruled by a fault handler
or a compensation handler, which can be executed in alternative to the main
flow in case of invocation problems. When one of these handlers is invoked,
an alternative flow is activated, canceling the previous request. If problems are
encountered during the main invoke activity, the condition becomes true and
the alternative invoke flow is executed.

Flow Activity and Parallel Processing. The flow construct groups a set of
activities to be executed in parallel. It is considered completed only when all the
included activities are completed. The Link construct allows for synchronization
of parallel activities. A Link connects a source activity with a target activ-
ity. The source activity must be completed before the target activity starts.

Data Flow-Based Validation of Web Services Compositions 313

source and target activities can be arbitrarily nested within a flow activity.
Considering the control flow diagram derived by the ActiveBPEL, parallel ac-
tivities are delimited by a rectangle, while synchronization links are represented
by arrows. Figure 3) is an example of flow activity representation. In it, once
the user has established the search keywords if both an author and a title have
been requested, a flow activity is executed and two invoke activities start in
parallel. This means that the searching by author and by title are executed in
concurrency and their output values assigned to two different variables. When
both invoke activities are completed the flow is completed as well and the
assign is executed which will merge the two results into a single variable.

Another BPEL activity that introduces parallel processing is the construct
foreach - it is similar to flow and not detailed here for simplicity. Moreover,
event handlers can be executed in parallel with any other activity in their scope,
when the associated event occurs.

Fig. 3. flow derived graph

Pick Activity. The pick activity is associated with a set of events (messages or
message part) and a set of activities. In particular, when it is executed, it blocks
until one of its messages is received or one of its alarm goes off. Only a single mes-
sage or alarm is executed and this causes all the other branches to go dead path.
The subsequent flow of the BPEL process is therefore only conditioned by the type
of message received and not by its content as in the standard if condition. From a
testing point view, pick involves a set of variables each one different for the type of
message associated. The selection of the variable to which a value will be assigned
is established accordingly to the type of message received or to which timed event
which has gone off. In other terms, pick represents a mutually exclusive condi-
tional assignment of variables that influences the subsequent data flow. Figure 4
shows an example for the VSB: once the user has selected a record from the list
of available publications the BPEL process awaits for an operation request. De-
pending on the message received either the variable representing the number of
citations or that associated to the the URL of the pdf article will be assigned and
successively queried for. Once defined the variable of interest, the left or the mid-
dle branches of Figure 4 will be executed. If no message is sent within 30 seconds,
the alarm will expire and the right branch of Figure 4 will be executed.

314 C. Bartolini et al.

Fig. 4. pick derived graph

Correlation. Messages sent and received during a BPEL process need to be
delivered not only to the correct destination server (port), but also to the proper
instance of the business process provided by the server. For this, correlation
tokens can be used, which provide the instance routing automatically [21]. This
creates a dependence between received and sent messages inside a specific process
and avoids mixing-up of data between concurrent instances of the same process.
From a testing point of view, this means that different allocations of the same
variable can coexist at the same time that have to be checked properly.

Scope. The last construct of relevance for data flow analysis is scope which
is not properly an activity but rather a container. Its purpose is to restrict
the execution of a certain part of the process to a self-contained environment. In
particular a fault caught within a scope can be handled without affecting the rest
of the process. A scope can define its own variables or handles. Thus, referring
to the VSB, a scope has been introduced when the users select a specific record
within the list of publications (see Figure 5). The assign activity in the left
branch can issue a standard BPEL fault (selection fault) when the requested
index is outside the range of publication in the list. The right branch can catch
the selection fault and execute the activity contained in the handler; specifically
an error message is created and sent to the user and the process is terminated.
Alternatively, it is possible to resolve the faulty operation within the scope and
continue the process execution.

From a testing point of view each alternative flows within a scope may al-
locate and manipulate different variables and influence the successive activities
execution. However the management of exceptions and faults in BPEL is quite
complex and would require a dedicated study. Here we only consider an example

Data Flow-Based Validation of Web Services Compositions 315

Fig. 5. scope derived graph

Fig. 6. Global control flow graph of the VSB example

of a fault handler as representative of possible alternate flows to be considered
for testing purposes.

Definitions and Usages of Variables Inside BPEL. The control flow graph
of the BPEL description relative to the VSB is shown in the Figures 6, 7, and 8
(the diagram has been split across more pages for readability). It includes a flow
activity, while there are no correlations or synchronization points.

Following the conventional data flow testing process [8], we annotate the con-
trol flow graph with the definitions and uses of each variable: the point in the
program where a value is produced is a definition, while the point where the
value may be accessed is a use. A use of a variable v in a node u and a definition

316 C. Bartolini et al.

Table 5. Definitions and uses of the BPEL variables in the VSB case study

Node number Var. defined Var. used
1.1 pubSearchRequest -

1.2
searchByAuthorRequest

pubSearchRequestsearchByTitleRequest
pubSearchResponse

1.3 - pubSearchRequest
1.5 searchByAuthorResponse searchByAuthorRequest
1.6 searchByTitleResponse searchByTitleRequest

1.7 pubSearchResponse searchByAuthorResponse
searchByTitleResponse

1.8 searchByAuthorResponse searchByAuthorRequest
1.9 pubSearchResponse searchByAuthorResponse
1.10 searchByTitleResponse searchByTitleRequest
1.11 pubSearchResponse searchByTitleResponse
1.12 pubSearch faultMsg -
1.13 - pubSearch faultMsg
1.14 - pubSearchResponse
2 - selectionRequest

3.1 selectionResponse pubSearchResponse
selectionRequest

3.2 selection faultMsg -
3.3 - selection faultMsg
4 - selectionResponse

5 googleCitationsRequest selectionResponseacmPdfRequest

6
getCitationsRequest getCitationsRequest
or or
getPdfRequest getPdfRequest

6.2 googleCitationsResponse googleCitationsRequest
6.3 getCitationsResponse googleCitationsResponse
6.4 - getCitationsResponse
6.5 - selectionResponse
6.6 pdfGetterResponse pdfGetterRequest
6.7 getPdfResponse pdfGetterResponse
6.8 acmPdfResponse acmPdfRequest
6.9 getPdfResponse acmPdfResponse
6.10 - getPdfResponse

of v in a node d form a definition-use pair (or du pair), denoted (d, u), if and
only if, the value of v defined in d can potentially be used in u.

The following examples illustrate definitions and uses for BPEL processes:

Data Flow-Based Validation of Web Services Compositions 317

– for the elementary operation from with syntax
1 <from variable="BPELVariableName" part="NCName"?>
2 <query queryLanguage="anyURI"?>?
3 queryContent
4 </query>
5 </from>

the variables used are BPELVariableName and all the variables used in the
queryContent. The latter is usually an XPath expression [32] that may
involve other BPEL variables.

– for the elementary operation to with syntax
1 <to variable="BPELVariableName" part="NCName"?>
2 <query queryLanguage="anyURI"?>?
3 queryContent
4 </query>
5 </to>

the variable defined is BPELVariableName, while the variables used are all
the other variables accessed in the queryContent.

Table 6. Du-pairs of BPEL variables in the VSB case study

Variable name DU pairs
pubSearchRequest (1.1, 1.2), (1.1, 1.3)

pubSearchResponse

(1.2, 1.14), (1.2, 2),
(1.7, 1.14), (1.7, 2),
(1.9, 1.14), (1.9, 2),

(1.11, 1.14), (1.11, 2)
searchByAuthorRequest (1.2, 1.5), (1.2, 1.8)
searchByAuthorResponse (1.5, 1.7), (1.8, 1.9)
searchByTitleRequest (1.2, 1.6), (1.2, 1.10)
searchByTitleResponse (1.6, 1.7), (1.10, 1.11)
pubSearch faultMsg (1.12, 1.13)
selectionRequest (2, 3.1)
selectionResponse (3.1, 4), (3.1, 5)
selection faultMsg (3.2, 3.3)
getCitationsRequest (6, 6)
getCitationsResponse (6.3, 6.4)
googleCitationsRequest (5, 6.2)
googleCitationsResponse (6.2, 6.3)
getPdfRequest (6, 6)
getPdfResponse (6.7, 6.10), (6.9, 6.10)
pdfGetterRequest (5, 6.6)
pdfGetterResponse (6.6, 6.7)
acmPdfRequest (5, 6.8)
acmPdfResponse (6.8, 6.9)

318 C. Bartolini et al.

F
ig

.7
.
C

o
n
tr

o
l
fl
ow

g
ra

p
h

o
f
ex

p
a
n
d
ed

S
e
q
u
e
n
c
e
:

S
1

o
f
F
ig

.
6

Data Flow-Based Validation of Web Services Compositions 319

Fig. 8. Control flow graphs of expanded S 3 and P 6 of Fig. 6

Table 5 provides the variable definitions and uses of the VSB BPEL process
(the numbers refer to the node numbers as reported in Figures 6, 7 and 8). With
respect to node 6 an alternative between a variable definition or use is provided.
This is due to the usage of pick activity. Depending on the type of data received
by the user either the variable getCitationsRequest or getPdfRequest is first
defined, and then used for deciding which flow must be successively executed
among those provided by the pick activity.

320 C. Bartolini et al.

In Table 6 we finally show the corresponding du pairs. Note that there are
several du pairs for the variable pubSearchResponse, because it foresees various
alternative actions depending on the condition satisfied in the if. Thus one
definition is in node 1.2 and the others in one of 1.7, 1.9 or 1.11. Moreover
due to the pick activity in node 6, the du pairs for getCitationsRequest and
getPdfRequest involve only node 6. This is not a general case, but is specific to
the pick implemented in the VSB.

Testing Purposes and Criteria. The results of the above data flow analysis
can be used for static analysis or for coverage testing.

Typical suspicious situations that can be statically identified could be dd (two
successive definitions without any use between them) or -u (data used without
being previously defined) [27].

For instance, considering Table 5, it is possible to verify that each variable
definition, a part from pubSearchResponse, is followed by at least a definition
in a node of the BPEL specification and none of the above mentioned anomalies
is detected. pubSearchResponse has two consecutive definitions, as explained in
the previous section, but this is not a fault.

Concerning testing, classical data flow-based coverage criteria can be used
such as all-uses, c-uses and p-uses, or all-du-pairs [8].

But specific criteria should be defined to deal with the BPEL structure, es-
pecially with parallelism and inter-process communication features. Indeed, to
the du pairs formed between a variable definition and use on a same control flow
path, du pairs defined on parallel paths should be added, as suggested in [19].
Possible testing criteria can be inherited for the data-flow testing of concurrent
programs [26, 10], but the peculiarity of the BPEL language makes this task a
new research challenge and few proposal are currently available [37, 40, 19].

Experimental Feedback. Two different testing experiments have been carried
out on the VSB implementation, reflecting the two approaches presented in this
section: using data flow model built from the requirements and using data flow
graph extracted from the BPEL specification. In the former, we used the DFD
for the VSB (Figure 2) defined exploiting only the requirements specification.
Thus, applying the path coverage as structural criterion of DFD, we identified all
the paths representing dependencies between inputs and outputs and we required
each of them to be exercised at least once. A black-box testing approach has been
adopted for deriving the appropriate test cases. These have been finally executed
on the available VSB BPEL implementation demonstrating that the concrete
execution effectively satisfy the input/output requirements specification.

The second experimentation focused on the application of the all-du-pairs
criterion on the data flow model extracted from the BPEL representation. Test
cases have been derived for each du pair in VSB (see Table 6) and successfully
executed (no failure).

In an additional experimentation, the composition has been exercised for ex-
perimenting its robustness in case of malicious data entry. Input data corre-
sponding to such situations are derived from the requirements and from the
associated DFD. Possible invalid data include:

Data Flow-Based Validation of Web Services Compositions 321

– after the initial search has been carried out, a list of publications (pos-
sibly empty) is returned. The service then expects the user to send an
index to select a publication. An index which is not numeric or out of the
boundaries of the list is invalid and produces a fault (standard BPEL fault:
selectionFault);

– in addition to the above-mentioned index, another required input after the
search is the requested operation, which is expected in the form of an
operation-specific message. A message which does not match any of the pos-
sible operations is considered an invalid input, but in this case does not
produce any fault, since the pick activity simply ignores any message which
does not match the expected ones;

– further, an invalid username in the ACM service invocation should not make
possible to get a valid pdf file.

For each of the above categories of invalid inputs, we have derived a test case
exercising it.

The execution of such derived invalid test cases resulted in a single failure,
relative to du-pair (username (42,45)). In this case, although the username was
not valid, the invocation of the ACM Search service returned a link to the pdf
document. This problem was due to the fact that the machine executing VSB
had an IP address within the IP ACM authenticated network, so each request
provided by VSB to ACM Search service was considered as valid regardless of
the username.

6 Conclusions

WSs are the most prominent example of the emerging SOA. In this chapter, we
have discussed several ways in which, depending on the information available, the
flow of data in WSCs could be usefully referred to for Verification and Validation
purposes. Although the verification of WSCs assumes strategic value, from a
survey of related work we realize that data centered models have not yet been
exploited for their potential.

In a WSC several services are combined to obtain, from their interaction, a
more complex functionality. By considering in explicit way a model of how data
are expected to be exchanged between the combined services, we can then check
whether desired properties are satisfied or also test whether the implemented
WSC (which could also be dynamically bound) complies with that model.

In this chapter we have started with a first classification of perspectives in
using data flow-based V&V approaches. The objective of this overview in Sec-
tion 4 has been to lay down possible interesting research avenues in data-based
analysis and testing of SOA. The emerging set of approaches has been classified
in Table 4.

We have also outlined in Section 5 some examples of possible realizations of
the outlined approaches. In particular, we have discussed in Section 5.1 how a
DFD could provide guidance in data based validation, even in absence of other

322 C. Bartolini et al.

WSC specifications. As we discuss, this is a high-level informal approach that
can provide an early interesting feedback. We then also provided in Section 5.2
guidelines for the usage of a data flow model extracted from the BPEL code for
testing purposes. In particular, we discussed in detail the BPEL peculiarities,
such as parallel executions and specific BPEL constructs, which require to revise
the conventional flowgraph representation.

The approach has been demonstrated on the VSB case study, which imple-
ments and composes several services. The case study has been used also to derive
the data flow from the BPEL specification and based on it for checking the va-
lidity of the input/ouput interaction among VSB components. First results have
been obtained and analyzed.

With this work, we have just started to scratch the surface of the great po-
tential offered by data flow modelling and analysis for WSC validation. Our
purpose was presenting an exhaustive exploration of the perspectives opened
by data flow-based validation and present examples for some of them. There
remains of course much to do in future work.

Strangely enough, there does not exist a commonly agreed notation for mod-
elling the BPEL flowgraph. As explained in the chapter, there exist various
graphical notations that are bound to this or that tool. While we have adopted
here ActiveBPEL Designer [1] for illustration purposes, we are currently study-
ing a suitable graphical representation of BPEL that can take in consideration
all the peculiarities of this specific language, relative to both control and data
flow. We are also in parallel formalizing the process of data flow annotation of
ActiveBPEL flowgraphs, which has been here sketched.

In this chapter we have adapted the notions of a definition and of a use of
a variable from conventional programs to the specific constructs of BPEL. To
realize data-flow based testing of BPEL programs, we need also to formulate and
evaluate suitable adequacy criteria to measure coverage over BPEL executions.
In the experimentation reported here we have plainly adopted the standard all-
du-pairs criterion. However, we believe that more peculiar and effective criteria
could be devised. For instance, one could focus the coverage measure on spec-
ified categories of client-server interactions. The definition of novel data flow
based criteria is an important future work direction that requires serious and
effort-prone empirical analyses. Thus, we intend to continue experimentation to
identify more useful test criteria for WSCs.

A crucial issue in testing of WSs is how to deal with side effects, in those cases
in which a system that is being tested invokes at run-time some already deployed
services. If the invoked services are stateless, the invocation can be done without
great problems. This is for instance the case of the services invoked in VSB, that
consists of accessing a data base and recovering information and data. However,
if the invoked services are stateful, appropriate measures must be considered.
In our group, we are developing a framework to automatically generate mock
services that can substitute the real stateful services for testing purposes [2]. Such
a framework could be fruitfully combined with the research presented here.

Data Flow-Based Validation of Web Services Compositions 323

Finally, as a future task we also intend to investigate the combined use data
flow based testing with behavioural techniques, such as in [13], to gain the highest
effectiveness from the combination of the two complementary types of approach.

References

1. ActiveBPEL Community. ActiveBPEL community edition engine (2008), accessed
2008-03-12, http://www.activevos.com/community-open-source.php

2. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Symbolic execution tech-
niques for test purpose definition. In: Suzuki, K., Higashino, T., Hasegawa, T.,
Ulrich, A. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer,
Heidelberg (2008)

3. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of web services for
testing conformance to open specified protocols. In: Reussner, R., Stafford, J.,
Szyperski, C. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 1–25. Springer, Heidelberg (2006)

4. Bertolino, A., Polini, A.: The audition framework for testing web services interop-
erability. In: 31st EUROMICRO International Conference on Software Engineering
and Advanced Applications, pp. 134–142 (2005)

5. BPMN. Business process modeling notation specification, Version 1.0 dtc/06-02-01
(2006)

6. Canfora, G., Penta, M.D.: Testing services and service-centric systems: challenges
and opportunities. IEEE IT Professionnal 8(2), 10–17 (2006)

7. Cao, H., Ying, S., Du, D.: Towards model-based verification of BPEL with model
checking. In: Sixth International Conference on Computer and Information Tech-
nology (CIT 2006), Seoul, Korea, September 20-22, 2006, pp. 190–194 (2006)

8. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

9. Davenport, T.H., Short, J.E.: The new industrial engineering: Information tech-
nology and business process redesign. Sloan Management Review, 11–27 (1990)

10. Dwyer, M.B., Clarke, L.A.: Data flow analysis for verifying properties of concurrent
programs. In: SIGSOFT FSE, pp. 62–75 (1994)

11. Eclipse Foundation. BPEL project, http://www.eclipse.org/bpel/
12. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web

service compositions. In: ASE, pp. 152–163. IEEE Computer Society, Los Alamitos
(2003)

13. Frantzen, L., Tretmans, J., Vries, R.d.: Towards model-based testing of web ser-
vices. In: Polini, A. (ed.) International Workshop on Web Services - Modeling and
Testing (WS-MaTe 2006), Palermo, Italy, June 9, 2006, pp. 67–82 (2006)

14. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for
BPEL compositions of web services using SPIN. In: International Workshop on
Web Services Modeling and Testing (WS-MaTe 2006) (2006)

15. IBM. IBM websphere business modeler,
http://www-306.ibm.com/software/integration/wbimodeler/

16. Jiang, Y., Hou, S.-S., Shan, J.-H., Zhang, L., Xie, B.: Contract-based mutation for
testing components. In: IEEE International Conference on Software Maintenance
(2005)

http://www.activevos.com/community-open-source.php
http://www.eclipse.org/bpel/
http://www-306.ibm.com/software/integration/wbimodeler/

324 C. Bartolini et al.

17. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps
of business process modeling. Research Report RZ-3678 (May 2007),
http://www.zurich.ibm.com/∼koe/papiere/rz3678.pdf

18. Marconi, A., Pistore, M., Traverso, P.: Specifying data-flow requirements for the
automated composition of web services. In: Fourth IEEE International Conference
on Software Engineering and Formal Methods (SEFM 2006), Pune, India, Septem-
ber 11-15, 2006, pp. 147–156 (2006)

19. Moser, S., Martens, A., Gorlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed ws-bpel business processes incorporating cssa-based data flow
analysis. In: IEEE SCC, pp. 98–105. IEEE Computer Society, Los Alamitos (2007)

20. Narayanan, S., McIlraith, S.: Analysis and simulation of web services. Computer
Networks 42(5), 675–693 (2003)

21. OASIS WSBPEL Technical Committee. Web services business process execution
language version 2.0 (2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf

22. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and gen-
erating fuctional tests. Commun. ACM 31(6), 676–686 (1988)

23. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data flow and validation in
workflow modelling. In: Database Technologies 2004, Proceedings of the Fifteenth
Australasian Database Conference, ADC 2004, Dunedin, New Zealand, January
18-22, 2004, pp. 207–214 (2004)

24. Scheer, A.W., Abolhassan, F., Jost, W., Kirchner, M. (eds.): Business Process
Excellence - ARIS in Practice. Springer, Heidelberg (2002)

25. Siblini, R., Mansour, N.: Testing web services. In: ACS/IEEE International Con-
ference on Computer Systems and Applications (2005)

26. Taylor, R., Levine, D., Kelly, C.: Structural testing of concurrent programs. IEEE
Transactions on Software Engineering 18(3), 206–215 (1992)

27. Tsai, B.-Y., Stobart, S., Parrington, N.: Employing data flow testing on object-
oriented classes. Software, IEE Proceedings 148(2), 56–64 (2001)

28. Tsai, W.T., Bai, X., Paul, R., Feng, K., Yu, L.: Scenario-Based Modeling and Its
Applications. In: IEEE WORDS (2002)

29. Tsai, W.T., Paul, R., Song, W., Cao, Z.: Coyote: an XML-based framework for
web services testing. In: 7th IEEE International Symp. High Assurance Systems
Eng (HASE 2002) (2002)

30. UDDI Spec Technical Committee. UDDI OASIS standard version 3.0.2 (2004),
http://www.oasisopen.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.
220041019.htm

31. UML2.0. Object management group (OMG). Unified Modeling Language: Super-
structure, Version 2.0 formal/05-07-04 (2005)

32. W3C. XML path language (XPath) version 1.0, http://www.w3.org/TR/xpath
33. Weiss, M., Esfandiari, B.: On feature interactions among web services. In: Pro-

ceedings of the IEEE International Conference on Web Services (ICWS 2004), San
Diego, California, USA, June 6-9, 2004, pp. 88–95 (2004)

34. Weiss, M., Esfandiari, B., Luo, Y.: Towards a classification of web service feature
interactions. Computer Networks 51(2), 359–381 (2007)

35. World Wide Web Consortium. SOAP version 1.2 (2007),
http://www.w3.org/TR/soap/

36. World Wide Web Consortium. Web services description language (WSDL) version
2.0 (2007), http://www.w3.org/TR/wsdl20/

http://www.zurich.ibm.com/~koe/papiere/rz3678.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.oasisopen.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.220041019.htm
http://www.oasisopen.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.220041019.htm
http://www.w3.org/TR/xpath
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20/

Data Flow-Based Validation of Web Services Compositions 325

37. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: Test case gen-
eration using a concurrent path analysis approach. In: 17th International Sympo-
sium on Software Reliability Engineering (ISSRE 2006), Raleigh, North Carolina,
USA, November 7-10, 2006, pp. 75–84 (2006)

38. Yang, Y., Tan, Q., Xiao, Y., Liu, F., Yu, J.: Transform BPEL workflow into hierar-
chical CP-Nets to make tool support for verification. In: APWeb 2006, pp. 275–284
(2006)

39. Yourdon, E., Constantine, L.: Structured Design. Yourdon Press (1975)
40. Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to BPEL4WS test gen-

eration. In: Proceedings of the International Conference on Software Engineering
Advances (ICSEA 2006), Papeete, Tahiti, French Polynesia, October 28 - Novem-
ber 2 (2006)

R. de Lemos et al. (Eds.): Architecting Dependable Systems V, LNCS 5135, pp. 326–341, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Architecture Analysis to Evolve Complex
Industrial Systems

Tommy Kettu1, Eckhard Kruse2, Magnus Larsson1,3, and Goran Mustapic1

Industrial Software Systems
1ABB, Corporate Research, Forskargränd 7, 72178 Västerås, Sweden

2ABB, Corporate Research, Wallstadter Str 59, 68526 Ladenburg, Germany
3Mälardalen University, Box 883, 72123 Västerås Sweden

{Tommy.Kettu,Magnus.Larsson,Goran.Mustapic}@se.abb.com,
Eckhard.Kruse@de.abb.com

Abstract. ABB is a large industrial company with a broad product portfolio that
contains products that can be categorized as highly complex industrial systems.
Software embedded in complex industrial systems must support rigid system
dependability requirements. It is not only a challenge to design and implement
these systems as dependable, but it is also difficult to maintain this important
property over time. There are several factors that make software evolution a
challenging task, such as: size of the software base is measured in order of
MLOC, products are long-lived and extended to support new requirements over
time longer than 10 years. Because of personnel turnover important knowledge
is lost from time to time, and the only artifact that is really up-to-date is the im-
plementation itself. Therefore, to obtain an up-to-date view of the system and
prevent expensive mistakes during system evolution, it is beneficial to find
practical ways to obtain an up-to-date view on an architectural level without
having to read thousands of lines of source code. These activities should be
seen as an important contribution for preventing the introduction of faults into
software systems since they contribute to improve and maintain the overall sys-
tem dependability. This experience paper provides practical advices on how to
reconstruct the architecture of existing systems by combining the use of tools
and the existing knowledge within the organization. The paper is based on ex-
periences from two cases in different sub domains within industrial automation.

Keywords: D.2.11 Software Architectures; D.2.7.m Restructuring, reverse en-
gineering, and reengineering.

1 Introduction

Once deployed in the field at customer sites, many industrial systems have a lifetime
of ten years or more. To build a software intensive system that lasts for that time pe-
riod is clearly a challenge, and to get it right from the beginning is even harder. Even
if the software is flawlessly written the hardware will decay over time, leading to
replacements and reinstallations of the software. One huge problem with replacing old
outdated hardware with new hardware is that the software might not run on it. That

 Using Architecture Analysis to Evolve Complex Industrial Systems 327

is,. the lack of hardware drivers in the old software will prevent execution of the old
software on the new hardware. Furthermore: new development tools get introduced,
some software components become obsolete over time [1], new versions of operating
systems are used because the old ones are not supported any more, requirements on
new functionality are added to the system, etc. To adhere to these requirements of
change, the software system must be modified. Because the changes in the system
environment over time are inevitable, regardless of how well the system is prepared
and designed for evolution, it will have to be modified, which in some cases involves
redesign of the whole system, or some of its parts.

One of the keys to supporting evolution of legacy software is the understanding of
the software system in general and its software architecture in particular. Making a
change to the legacy software should be based on rational decisions and with a clear
understanding of the impact on most important properties of the system. Even for
systems that are referred to as “dependable systems”, it is recognized that many other
properties are relevant, such as: functionality, usability, performance and cost [11].
Analysis of tradeoffs between all important system properties are first made on archi-
tectural level, which is one of the reasons why the software architecture should be
well understood as a means to be able to reason about the impact of change. But, as
the authors in [2] argue, even if architectural documentation for a system exists, we
do not know if what was designed is what was actually built! This is especially true
when we add the time aspect of 10 or 15 years. Therefore, to do the reasoning about
the impact of change, an important task is first to rediscover the architectural informa-
tion. With architecture reconstruction we mean: analyzing existing artifacts, such as
code, to obtain a high-level view (architectural view) of the SW system and updating
the documentation. In an industrial setting, a particularly interesting question that
needs to be answered by architectural analysis is: what is the impact/risk of changing
the system? This provides input to another analysis - costs vs. benefits of implement-
ing certain change in the system. Architectural reconstruction for academic purposes
may have rather different goals that do not involve economic aspects.

Our focus area is: how to reconstruct cost-effectively the architecture and how to
follow up on architectural rules to prevent architectural degradation during system
evolution?

To do a cost-effective, reliable and quick architecture reconstruction, it would be
beneficial to automate the process and use software tools as much as possible. The
particular question that we are interested within the scope of this paper is how these
tools can be cost-effectively applied in a real industrial context, on millions of lines of
code. The goal is also to find tools that could become an integral part of the develop-
ment process and support the enforcement of architectural rules on system implemen-
tation during system evolution.

Related work has been done in the field of architecture reconstruction and reverse
engineering of software. Binkley presents a thorough study of source code analysis
and a road map of future challenges in the area [3]. This study is mainly focused on
static source code analysis. The shortcomings of having only static analysis is pointed
out by Riva and Rodriquez [4] with the following quote “In both the approaches (dy-
namic and static), multiple views obtained from different perspectives are necessary
for describing and understanding software architectures”. State of the art on software
architecture reconstruction approaches is presented in [14].

328 T. Kettu et al.

The Corporate Research unit within ABB has been involved in software architec-
ture reconstruction and evaluation in many different ABB business units. In this paper
we present two such cases. For each case, we describe our experiences in architecture
reconstruction for purpose of system evolution, assisted by using software tools.

The contributions of this paper are the experiences and lessons we have learned
from using architecture analysis as a mean to evolve complex software systems. In
particular, we show that:

• It is likely that off-the-shelf tools will not fit out of the box in the context of the
system investigated and they will need to be customized.

• The quality of system analysis can be improved by combining the use of tools and
the existing knowledge within the organization.

• Rather than static analysis of source code, in certain cases a more promising ap-
proach can be to base the analysis on binaries.

The rest of this paper is organized in the following way. Section two describes related
approaches to architecture analysis and reconstruction and tools that we have used in
our analysis. Section three and four describe two cases from the industry, approaching
the topic from different angles. The first case study shows how architecture analysis
interacts with ongoing development activities and how it can trigger actions even by
using quite simple analysis methods. The second case study highlights some intrica-
cies and solutions in real-life analysis work and thus shows that there is no simple
‘standard approach’ for doing architecture analysis in complex systems. The last sec-
tion of this paper, section five, contains conclusions and recommendations on future
work.

2 Approaches and Tools for Architecture Analysis and
Reconstruction

Based on literature search and our experience we found that different approaches can
be taken for analyzing software architecture. Three approaches that are well known
are ATAM [5], Bosch [6] and CBAM [7]. The SEI's Architecture Tradeoff Analysis
Method (ATAM) is probably the leading method in the area of software architecture
evaluation. The, method is based on analysis of scenarios and architecture decisions
with stakeholders, resulting in identification of risks, non-risks, sensitivity points, and
tradeoff points in the architecture. Another approach is the one taken by Jan Bosch.
He mentions the following four different types of architecture assessment: scenario
based, simulation based, mathematical model based and experience based. These
approaches do not consider economical issues. If this is a major concern then the Cost
Benefit Analysis Method (CBAM) can be utilized. The CBAM analyzes architectural
decisions from the perspectives of cost, benefit, schedule and risk.

A part of the architectural analysis in system evolution is the process of recon-
structing the actual current architecture. Which architecture reconstruction approach
should be taken depends on the context of the analysis. The analysis is performed
with a task in mind, which we refer to as the target question. In most approaches the
software itself, and in isolation from its development environment, is the subject of
investigation. For this kind of analysis there are static and dynamic approaches. This

 Using Architecture Analysis to Evolve Complex Industrial Systems 329

is also the main line of most research in the area. However, working on the software
alone is not always sufficient. A more general approach to software architecture
analysis, which we refer to as holistic, involves other sources of information, as for
example, documentation, developers, product managers or users. One such semi-
automatic analysis method for reconstructing architectures based on the recognition of
architectural patterns is presented in [13]. An interactive system called Dali that aids
user in interpreting architectural information is presented in [2]. A state of the art on
software architecture reconstruction approaches is presented in [14]. In summary, we
see the following main lines of approaching the analysis and reconstruction, namely,
static, dynamic and holistic.

Legend

Source of
information

Type of analysis

Source code

Binaries

People

Documents

Users

Static

Dynamic

Traces and
logs

Communication
dependencies

Holistic

Late binding

Fig. 1. The figure presents three types of software architecture analysis: static, dynamic and
holistic. For each type some possible sources of information that is used to perform the analysis
are shown.

These types of architectural analysis are also hierarchical to a certain degree (see
figure 1). The basic type is the static approach where only code (compiled or not) is
used as base of information. Another type is the dynamic approach, where for in-
stance dynamic calls and late binding are monitored to draw conclusions. The top
level type of approach is the holistic, where everything that can bring answers to the
target question, not just software, is considered.

2.1 Static Analysis

The starting point for static analysis is the source code as base of information. Source
code is well structured data, and can be parsed and analyzed by tools fairly easy.

330 T. Kettu et al.

Many vendors and researchers have realized that and build many tools for this analyz-
ing purpose. Several of these tools target to create a dependency graph of all compo-
nents in the software system. As this is useful information, such tools have been used
in our case studies and the tools are described briefly below.

LXR – the Linux Cross Referencer. LXR is a versatile cross-referencing tool for rela-
tively large code repositories, which LXR can index and hyperlink and give access to
via a web-browser. It supports a number of programming languages out of the box,
such as C/C++, Perl, Ruby, PHP, Pascal, and others. One main advantage of this tool
is that it is an open source tool, allowing customization, which is a feature that we
exploited in one of the case studies.

Understand C. This is a commercial tool that is very good at assisting developers when
analyzing for example call chains and doing other tasks that are developer centric.

Hierarchical graph analyzer tool (HGAT). HGAT is a tool developed internally at
ABB Corporate Research. It is mainly intended for visualization of components and
their dependencies, in a hierarchical way. For example, a software system can be
structured into subsystems, modules and components, and each layer is visualized,
enriched with additional information such as size of the component in LOC repre-
sented with according bubble size. This tool does not do the code analysis itself, i.e.,
the raw data needs to be provided to it, e.g., in a database.

Lattix LDM [8]. It is a commercial tool based on design structured matrixes (DSM). It
has a plug-in concept for language parsers, with a number of available plug-ins sup-
porting various programming languages such as C/C++, Ada, C# and Java. The tool
can parse and visualize dependencies spanning several programming languages and
even relational databases.

In addition to architectural tools there are metrics tools that can be used to get a
better understanding of the software. For example, lines of code (LOC), coupling and
cohesion can be metrics of interest answering the target question.

2.2 Dynamic Analysis

Data from the execution of the analyzed software is considered during dynamic
analysis. It is not possible to discover references between components or sub systems
that are set up with late binding until the software executes. Examples of late binding
are references that are resolved with names of components or dependencies through
socket communication. The fact that communication between subsystems is often
established at runtime points to the shortcomings of static analysis. As pointed out in
[9] the problem of static analysis is that many false positives (connections that do not
exist) are reported due to conservative over-approximations.

To utilize and extract dynamic data during execution tool support is needed, and it
is important that as many dynamic dependencies as possible are discovered. A chal-
lenge doing the extraction is to have the right input data to the software to make the
software execute all dependencies. As the case often is that not all execution paths can
be exercised from test suites alone, dynamic analysis of this kind can not give 100%
of all dependencies, however, those that are found can be trusted to be true, i.e., there
are no false positives. When source code is available, typical tools used for dynamic

 Using Architecture Analysis to Evolve Complex Industrial Systems 331

analysis are well known debugging tools like the Microsoft Visual Studio debugger
and the GNU debugger GDB.

Dynamic analysis should be seen as a complement to static analysis. The target
question should be considered carefully before dynamic analysis is deployed, since
setting up appropriate test suits and exercising the code can be time consuming. Natu-
rally, already existing test suites or execution paths should be reused for the analysis
to minimize the effort of getting dynamic dependency data.

Of course, dynamic analysis can be used for many other purposes beyond detection
of component dependencies. Examples are the identification of dead code or fre-
quently executed code, analysis of resource usage, such as, memory, execution times,
etc. From an architectural reconstruction perspective as targeted in this paper, how-
ever, the component dependencies are of special interest.

2.3 Holistic Analysis

Many questions about the software can be answered by using static and dynamic
analysis approach. However there are questions that require a broader approach.
Typical questions of this kind that are relevant for evolution of the software are: Are
there any organizational reasons why the software is structured to fit development on
single site location? What is the reason why only developer Joe can maintain the
software? Or what is the background and history of subsystem X and why can’t it be
substituted with COTS component Y? A broader approach to analyze the software
system can then be taken and that is what we refer to as the holistic approach.

Holistic can be defined as looking at the whole system rather than just concentrat-
ing on individual components (software). The holistic approach of analyzing a soft-
ware system includes more than just the software itself. For this kind of analysis it is
appropriate to use any source of information that can help answering the target ques-
tion, e.g., documentation, interviews and configuration management data.

Documentation that is up-to-date with the current implementation is a very valu-
able source of information during a holistic analysis of the software. However, some-
times the documentation is not aligned with the current implementation and in this
case it has less value but can still be used. Even old or original documentation is valu-
able to get a view of the planned/designed architecture and can serve as a hypothesis
of how the software was supposed to be implemented at the time of documentation.
Such a planned view is often the architect’s perception of the software architecture
and is not always the same as the actual implementation. That is, the architect’s per-
ception of the overall architecture can be the same even if the implementation changes
over time. The architect has the ambition to control the evolution of the software but
it is the developers that do the implementation, and in cases of unclear communica-
tion of the architectural rules the developers might deviate from the rules, implicit or
not. Thus, deviations between the planned view and the actual view should carefully
be investigated. An example is the approach taken by Lindvall et al. who have used a
planned view as a comparison with the discoveries from dynamic analysis [9].

Another source of information is interviews with the people knowing the code,
such as developers, testers, designers and architects. People in these groups often
know the reasons to why the software has evolved to the current state and interviews
can be used to discover this. Dynamic and static analysis can be used to find out what

332 T. Kettu et al.

the current state of the software is and a combination with knowing the reasons why
the software is in a particular state can be very valuable information. Interviews can
also be carried out after dynamic and static analysis has been performed to discuss the
findings from the analysis to point out and catch anomalies in the software. Section 3
further elaborates on this topic.

Analyzing configuration management data and looking at what parts of the code
that are most frequently changed can give valuable input. Parts that are often changed
tend to be complex to understand and with high probability of mismatching the design
documentation. These parts can have many dependencies and often play a central role
in the software. Such components need to have special attention to prevent breaking
the code during evolution of the software. In addition to discover vital components,
configuration management data can be used to understand who of the developers is
changing/modifying the different software components. This information can be used
when planning who to talk to during the interviews, as described above.

3 Experiences from Analyzing a Large Client-Server System

In this case we accompanied the development and evolution of a very large (MLOC)
distributed client-server software system in the area of industrial automation. The
system has evolved significantly throughout various release cycles in a number of
years. It is based on C/C++/Microsoft COM technology and has started to move to-
wards C#/.NET technology, with still the major and core parts of the codebase
remaining in old technologies. The system is hierarchically structured into several
layers (subsystems, components, modules) with COM being used as communication
infrastructure between the components.

The requirements on the system in terms of reliability, availability and overall per-
formance/data throughput are very challenging, while at the same time the continuing
further development of the system always poses the risk of breaking existing, well-
running functionality.

The goal of the research project was to analyze the system architecture and to pro-
pose improvement measures, which can be fed into the ongoing development taking
into account risk-benefit assessment for each activity.

3.1 Approach and Tools Used

This case study exemplifies the holistic approach mentioned above. The whole envi-
ronment was considered, or, in business terms, the goal of efficiently developing a
high quality, dependable product. Thus, before starting technical investigations, the
current situation was analyzed and looked upon from different perspectives, such as:

• Status of the software: architecture, core design principles (and deviations), used
technologies, implementation metrics etc.

• Challenges: known problem areas? What is stable/evolving? Specific dependability
issues? What new requirements call for design/architecture change? External fac-
tors: new technologies/standards/regulations?

 Using Architecture Analysis to Evolve Complex Industrial Systems 333

• Business and organization: product strategy, where is it in its lifecycle? Ongoing
development activities, areas of focus, where is the money flowing? Who are the
experts/architects and what do they think?

The answers helped to focus the static analysis and to avoid spending too much time
on subsystems that were going to be substituted soon or which the development or-
ganization definitely did not want to touch anyhow.

The next step was to dig into the software architecture. There were different
sources of information to get an overview such as design documentation, interviews
with developers, and bug tracker databases. But then, the only un-biased, always up-
to-date reality was of course the source code. Doing tool-based analysis of the code
and reflecting the results with the other sources of information and discussing them
with the developers resulted in some eye-openers – which in turn were the best way to
stimulate subsequent measures.

The first source of information automatically collected from the system implemen-
tation was code metrics. Fig. 2. shows a histogram of modules with different sizes.
The modules at the borders of the histogram deserve a more detailed look. The right-
hand side outlier might be a module which originally was appropriately designed, but
then was growing and growing as more functionality was added, without ever doing
an appropriate refactoring or redesign. In our case, the most right-hand side outlier
turned out to be very critical regarding the overall system dependability (and also
regarding the performance).

The left-hand side outliers might be an indication that some minor new functional-
ity had to be added and the developers did not know where to put it, so they just cre-
ated more and more new small modules – so again, candidates for refactoring.

To find out in what areas the code was changed or growing most, we used LOC-
metrics in combination with source code comparison tools. We applied them to the
different versions of the product code base in the configuration management system.

0

5

10

15

20

25

30

20
00

60
00

10
00

0

14
00

0

18
00

0

22
00

0

26
00

0

30
00

0

34
00

0

38
00

0

42
00

0

46
00

0

50
00

0

54
00

0

58
00

0

62
00

0

Lines of Code

N
u

m
b

er
 o

f
M

o
d

u
le

s

Is there a ‘tumor’ in the software?
or is this just a minor structural issue?

‘homeless clutter’?
or well-structured base modules?

Fig. 2. Module size (LOC) histogram showing possible anomalies in the software

334 T. Kettu et al.

The next step was to understand dependencies between components. In this case
COM-dependencies were analyzed by parsing the IDL-files. The extracted interface
information was stored in a database, where it was enriched by further information,
such as: the ‘owning’ component (which is not always the same as the components
implementing an interface), number of functions per interface, internal/public tags,
.NET compatibility issues, etc. Some manual work was needed, e.g., to explicitly
specify callback interfaces. From a semantic perspective the component depend-
ency/ownership is reversed in the case of callback interfaces because the definition is
not ‘owned’ by the one or more components which have to implement it, but by the
caller. Using the interface database it was easy to dig for further information:

• General statistics such as number of interfaces per subsystem/module/
component.

• Coupling, cohesion, complexity of software dependencies.
• Number of interfaces vs. functional coverage (e.g. some small modules had

amazingly complex interfaces).
• Unexpected dependencies between ‘independent’ system parts.
• Prohibited usage of internal or obsolete interfaces.

To visualize the extracted information the Hierarchical Graphical Analysis Tool
(HGAT) tool was used. The HGAT tool is, as its name suggests, a hierarchical analy-
sis tool. It builds a hierarchical internal model of the code which is then shown in a
graphical view. Its automated layout mechanisms helped to analyze the dependencies
and the layering of the software. The tool assists in running what-if scenarios, e.g.,: if
certain dependencies can be removed, is it possible to move system components be-
tween layers etc.? Fig. 3. shows how HGAT visualizes components (circles), depend-
encies (arrows start from the depending module) and potential layering (dashed hori-
zontal lines). The sizes of the circles represent the components’ LOC; components
with the same shade of grey belong to the same subsystem.

Regarding the system’s dependability, the middle layer is the most interesting one,
because critical/unstable components in this layer may have system-wide impact. In
contrast, the UI/application layer is nicely isolated as it has no incoming dependen-
cies. The base layer is the foundation of the whole system, but its components are
independent of the system on top, were typically very stable and could also be tested
more easily. As the block arrows indicate, it is thus one goal to move code from the
big middle layer where ‘everything depends on everything’ to the base layer or to the
UI/application layer. It turned out, that some components resided in the middle layer
even though there was no good architectural reason for that, but just because some
dependencies were built into them, which should not be there.

The tool-assisted analysis has shown that already technically quite simple analysis
approaches brought a lot of insight and stimulus for discussion. However, whether a
finding from the analysis was really a problem to be tackled always required some
judgment by the developers. And this judgment must not be limited to whether the
design can be improved. It has to predict the actual benefits, e.g., in terms of main-
tainability and extensibility of the code and the required efforts/costs of the change
and the risk of breaking something.

 Using Architecture Analysis to Evolve Complex Industrial Systems 335

base

layer

middle

layer

UI/appl.

layer

r
e
f
a
c
t
o
r
in
g

r
e
f
a
c
t
o
r
in
g

Fig. 3. Layering analysis with HGAT: Circles/colors/sizes represent components/subsystems/LOC,
thin arrows represent dependencies

We sorted the proposed improvement measures into different categories:

• Implementation: remove dead code, refactor redundant code, etc., structure and
naming of code in the file system.

• Design/architecture: improve layering, reduce component dependencies, break
up or re-design components.

• Technology: .NET/COM interoperability.

In a second step, we categorized the improvement measures according to different
criteria to evaluate and prioritize them. This was necessary to translate them into input
for the required management decisions, which are about when to invest money and
allocate people for what expected savings/added customer value and how this fits into
the overall product development roadmap:

• Targeted software quality: maintainability, extensibility, reliability, understand-
ability, etc.

• Size of change: from ‘cosmetic’ to ‘rather rewrite from scratch’.
• Cost of fixing the problem vs. expected benefit.
• Timing: is there a hard deadline when it has to be fixed (e.g., .NET-COM migra-

tion)? When would be a good point in time? For example, module has to be re-
worked anyhow; the right developers are available, etc.

As final outcome a report of analysis results and the proposed improvement measures
with an assessment of the above criteria was delivered to the development organiza-
tion. In a joint discussion a subset of the measures has been identified as candidates
for realization in the course of future development activities.

3.2 Lessons Learned

In this case we have shown that tool-based analysis can be very useful to gain insight
into the software architecture and to get a fresh view on a system which has evolved

336 T. Kettu et al.

over time, and to trigger discussions about improvement measures. However, the
tools can only do part of the work. Some information had to be added (or corrected)
manually based on an understanding of the system. Tool based analysis does not nec-
essarily have to be very complex and sophisticated. The results are valuable as soon
as they provide new information to the development team. Once the results of an
analysis were derived and visualized the interpretation was discussed with the devel-
opers and resulted in deeper follow-up investigations. Finally, we came up with a set
of improvement measures which also made economical sense, and could be taken into
account when planning the further product development roadmap.

For the system in this case study, we came to the conclusion that this type of soft-
ware architecture analysis should be performed as a regular activity accompanying the
normal development work. As it is tool-based, especially the repetition of analyses
can be done with quite low efforts but still requires some manual work. By doing that,
unexpected deviations from the intended architecture can be detected early and
counter-measures can be planned for.

From a cost-benefit perspective, the overall investigation was a small fraction
compared to the yearly efforts of the regular development and maintenance of the
product. Thus, by improving the development efficiency within a subsystem or by
avoiding some later costly architectural restructuring, the efforts on the analysis are
already very well spent.

4 Experiences from Analyzing a Large Real-Time system

The system analyzed in this case is a complex industrial control system. It is a real-
time system with application logic implemented in C, C++ and script code. The appli-
cation code consists of more than 2 MLOC. The system architecture is a layered ar-
chitecture with object oriented design within the layers. The product line architecture
approach is used in the control system design, so the common code base is reused
across the product line. The common code base is used in a multi-OS and multi-node
context. One of the challenges in implementation of product line architecture is the
selection of techniques for implementing software variability [10]. In this case several
variability implementation techniques are used, such as:

• Conditional defines in C/C++ code.
• Separate files for different configurations.
• Separate link-lists for different configurations, to exclude particular component

that are not relevant for certain configurations.
• Separate scripts for different products in the product line.

Given this existing code base, we evaluated several tools for static analysis of
code; searching for tools that can help system architects in analyzing dependencies in
the system and helping them maintain the architectural integrity during the system
evolution, ideally as an integrated part of the regular system integration builds. The
tools should also be useful to software developers working with different subsystems
of the system, to get accurate and up-to-date information about users/clients of the
services that they provide. The main goal of doing the analysis in this case study
was to increase the system modularity. The system dependability is also expected to

 Using Architecture Analysis to Evolve Complex Industrial Systems 337

increase as a consequence of this work, as the number and quality of the internal in-
terfaces within the system will be scrutinized; the number of available interfaces will
be decreased, and their quality improved as part of the expected refactoring work
resulting from such an analysis.

4.1 Approach and Tools Used

The analysis started with a study of some basic metrics, like LOC, number of compo-
nents and functions in the software, as well as, cyclomatic complexity, in order to get
a first feeling of the size and complexity of the software. Some informal interviews
were conducted with the software architect and key developers, and the available
documentation on architectural level was retrieved and read before proceeding with
the technical analysis. These initial steps gave a good insight of the main architectural
decisions, e.g., the adoption of the product line concept and the variability techniques
used.

Based on the positive feedback on the tool chain used in the previous case study a
static analysis using the Linux cross-referencing software, LXR, and the HGAT tool
was attempted as a first test also in this case. Several discoveries were made, mainly
related to the fact that in this case we tried to analyze complex C code. The most
important discovery was that LXR does not resolve dependencies correctly when the
symbol names are not unique, but some of the problems were also related to the im-
plementation of variability needed for a product line approach, namely, the usage of
conditional defines. In a very large code base it is very likely that people use non-
unique symbol names. The behavior of LXR with non-unique symbol names results in
a high possibility for false positives, i.e., dependencies that are not true. This makes
LXR less suitable for continuous, tool based, monitoring of architectural violations in
the code base of this case.

Even though HGAT is very powerful one limitation of the tool is that it can only
show one hierarchical level in a view, i.e., you only see a certain level of granularity
at a time. Due to this a second analysis iteration was performed based on the combi-
nation of LXR and Lattix LDM. This proved to be partly successful, especially as
Lattix includes a feature for defining dependency rules, but the basic problem with
false positives remained.

One possible approach to overcome these difficulties is to analyze only one of the
configurations at time. For a selected configuration, analysis is then performed on
binaries rather than the source code. Some advantages of using binaries rather than
source-level analysis are reported in [12]. Much of the information that is present in
the source code is not present in the binaries, but the information essential for our
purpose - dependency analysis - is still present. We simply let the compiler do the
“hard work” of removing code that is not of interest for the particular configuration.
For each of the binaries (partial results of product build process), it is possible to
obtain a list of the symbols that it exports (defined by the module) and that it imports
(unresolved references).

Based on this approach, a program named DependencyTool was developed that
analyzes the dependencies between the binary object files. For each binary object file
processed by the tool, it is possible to get a list of symbols (defined and undefined), as

338 T. Kettu et al.

well as, symbol types (data, common data, functions) and scope (local, global). Bina-
ries can be linked recursively, which means that one globally defined symbol can be
found in more than one place. If a global symbol is defined in more than one binary,
we assume that the binary with more global symbols includes the one with fewer
global symbols. Otherwise, multiple definitions of the same symbols would cause a
link error when the final system image is built. After the tool generates a hierarchy, it
is possible to determine the architectural visibility scope for each binary. If all de-
pendents are found within the same branch in the hierarchy the binary is “local” to the
branch, otherwise it is global. A snapshot of the tool GUI is shown in Fig. 4.

Fig. 4. A screen dump from the DependencyTool. A selected module is the dark grey box in the
middle. The user interface shows which modules that use the selected module, and which sym-
bols in that selected module that are used. The UI also shows which symbols in which modules
are used by the selected module.

There is an additional advantage when working with binaries, rather than the
source code. By doing simple regrouping of symbols defined by the tool configuration
files, it is possible to separate a subset of API exposed by a module, from the rest of
the symbols exposed by the same module. For example, it is possible to separate
POSIX networking API from the VxWorks module to get a better overview of de-
pendencies to this particular API.

Our analysis showed that the system architect’s intentions had been honored, in the
sense that the layered architecture was almost perfect, with only a very limited num-
ber of violations. Some erosion was however discovered, exposed as occasional usage

 Using Architecture Analysis to Evolve Complex Industrial Systems 339

of API functions that weren’t public. These findings were conveyed to the develop-
ment team subject to further analysis.

Besides the “interactive” use of the tool, it is also possible to use it “offline” as an
integrated part of the daily build process. Using a simple configuration file that de-
scribes the layers of the layered architecture and the rules about allowed and disal-
lowed dependencies, it is possible to monitor violations of the dependency rules.

4.2 Lessons Learned

Our experiences from C code analysis tests using tools like Understand C, that can
analyze the source code, show that it is very easy to be dragged into low level code
details and that an overview on architectural level is seldom achieved using such
tools.

When using C source code as basis for the analysis we came to the conclusion that
it is very difficult to get a full picture of the dependencies that is 100% correct, with-
out any false dependencies due to e.g. duplicate symbol names, leading to time con-
suming validity checks, making this approach less suitable for regular, automated,
monitoring of architectural violations in the software.

The analysis of the binaries provided a path for investigation. Such analysis could
be integrated into the regular integration builds. This analysis is then fully automated,
but must be implemented separately for each build configuration. Combined with a
set of rules for allowed and disallowed dependencies, violations of the architectural
rules in the software system implementation can continuously be monitored and kept
under control.

The overviews these tools give of the software system are also very valuable for
discussions within the organization about system evolution, as they give excellent, up-
to-date information of the status of the implementation. Without continuous monitor-
ing, ideally integrated into the integration builds, the architecture will slowly erode.
The erosion will mainly affect the system modularity, but will also have impact on the
system dependability.

5 Conclusion

Even though there are many tools and approaches for architecture analysis, when
addressing the evolution of complex real-life software systems, there is no standard,
‘out-of-the-shelf’ solution. This is highlighted by the two case studies we present in
this paper.

From the holistic perspective of architecture analysis, it is important to take the or-
ganizational environment into account. Thus, the investigations are guided by the
business goals and cost-benefit considerations. Even technically simple analysis ap-
proaches can then be very valuable to provide new information and to trigger archi-
tecture refactoring activities.

On the other hand, also the selection of tools and technical approaches is not
straightforward and depends very much on the specific software system and the prob-
lems to be addressed. Many of the existing tools are limited to static analysis, i.e.,
they work on the source code. This approach is limited since hidden dependencies, for

340 T. Kettu et al.

instance, via sockets or other types of late binding, are not detected, even though they
may be relevant for understanding the dependencies between software components in
the system. Also for certain languages like C, ambiguities can appear in the resulting
analysis since duplicate symbol names can be used at different places, referring to
different functions or data. We have taken the approach in one of our cases to work on
compiled code to eliminate the ambiguities of multiple symbols. The advantage is that
we let the compiler and linker resolve the real dependencies in the code.

To prevent architectural degradation, static and dynamic analysis of the software
can be performed as regular activities in the development process providing quick and
possibly automatic feedback on the architectural issues. If degradation can be mini-
mized, evolution of the software to meet new requirements in the future can be easier.

Performing holistic analysis of software requires buy-in from the organization -
management should be willing to accept surprising or negative findings and provide
the resources to act in time if required. Developers should see the tools as companion
and help rather than as threat that they are blamed for design mistakes. To address
these challenges, the development team has to be involved early in the analysis and be
prepared that the outcome might give rise to some additional, unforeseen work – but
also to the chance to improve the overall quality and dependability of their system!

Applying a reverse engineering tool is just a starting point - it gets more interest-
ing when the output of the tool is discussed with the people involved in developing
the system. We have seen in both our case studies that the discussions following ar-
chitecture reconstruction have proven very useful when planning software evolution.
The discussions also led to more questions and served as a base for further investiga-
tions with appropriate tools, and continued interaction with people knowing about the
system.

In summary, analyzing a software system is more than just looking at the software
itself, all sources of information available should be utilized to make the best possible
plan for evolution of the software system.

References

1. Merola, L.: The COTS software obsolescence threat. In: Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems, 2006, p. 7 (2006)

2. Kazman, R., Carriere, S.J.: Playing detective: reconstructing software architecture from
available evidence. Automated Software Engineering 6, 107–138 (1999)

3. Binkley, D.: Source Code Analysis: A Road Map. In: Future of Software Engineering,
2007. FOSE 2007, pp. 104–119 (2007)

4. Riva, C., Rodriguez, J.V.: Combining static and dynamic views for architecture recon-
struction. In: Proceedings Sixth European Conference on Software Maintenance and Re-
engineering, 2002, pp. 47–55 (2002)

5. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley Professional, Reading (2001)

6. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley Professional, Reading (2000)

7. Kazman, R., Asundi, J., Klein, M.: Making Architecture Design Decisions: An Economic
Approach. Pittsburgh (2002)

 Using Architecture Analysis to Evolve Complex Industrial Systems 341

8. Sangal, N.: Lightweight Dependency Models for Product Lines. In: Software Product Line
Conference, 2006 10th International, p. 228 (2006)

9. Lindvall, M., Ackermann, A., Stratton, W.C., Sibol, D.E., Ray, A., Yonkwa, L., Kresser,
J., Godfrey, S., Knodel, J.: Using Sequence Diagrams to Detect Communication Problems
between Systems. Fraunhofer Center for Experimental Software Engineering (2007)

10. Svahnberg, M.: A study on agreement between participants in an architecture assessment.
In: 2003 International Symposium on Empirical Software Engineering, 2003. ISESE 2003,
pp. 61–70 (2003)

11. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Com-
puting 1(1), 11–33 (2004)

12. Balakrishnan, G., Reps, T., Melski, D., Teitelbaum, T.: WYSINWYX: What You See Is
Not What You eXecute, IFIP Working Conference on Verified Software: Theories, Tools,
Experiments, Zurich, Switzerland (2005)

13. Guo, G.Y., Atlee, J.M., Kazman, R.: A Software Architecture Reconstruction Method,
WICSA1, San Antonio, Texas, USA (1999)

14. Damien, P., et al.: Towards A Process-Oriented Software Architecture Reconstruction
Taxonomy. In: Proceedings of the 11th European Conference on Software Maintenance
and Reengineering (2007)

Author Index

Abou El Kalam, A. 1
Alspaugh, Thomas A. 225
Avrunin, George S. 273

Balducelli, Claudio 28
Bartolini, Cesare 298
Beitollahi, Hakem 101
Belmans, Ronnie 101
Bertolino, Antonia 298
Bondavalli, Andrea 1, 78

Chiaradonna, Silvano 52, 78
Clarke, Lori A. 273
Correia, Miguel P. 1

Daidone, Alessandro 1, 78
Dearle, Alan 175
Deconinck, Geert 101
Deswarte, Yves 1
Diallo, Mamadou H. 225
Di Giandomenico, Felicita 52
Di Pietro, Antonio 28
Driesen, Johan 101
Duan, Rui 101

Égel, Zoltán 150

Giese, Holger 248

Henkler, Stefan 248
Hirsch, Martin 248
Huszerl, Gábor 150

Jansen, Bernhard 124

Kettu, Tommy 326
Kirby, Graham N.C. 175
Kocsis, Imre 150

Kövi, András 150
Kruse, Eckhard 326

Larsson, Magnus 326
Lavalle, Luisa 28
Lollini, Paolo 52

Marchetti, Eda 298
Micskei, Zoltán 150
Mustapic, Goran 326

Narasimhan, Priya 199
Naslavsky, Leila 225
Nauwelaers, Bart 101
Neves, Nuno F. 1
Norcross, Stuart J. 175

Parissis, Ioannis 298
Pataricza, András 150
Pintér, Gergely 150

Qui, Zhifeng 101

Ramasamy, HariGovind V. 124
Richardson, Debra J. 225

Schunter, Matthias 124
Slember, Joseph 199

Tanner, Axel 124

Van Lil, Emmanuel 101
Vanthournout, Koen 101
Veŕıssimo, Paulo 1, 78
Vicoli, Giordano 28

Wang, Shangzhu 273

Ziv, Hadar 225

	Title Page
	Preface
	Foreword
	Table of Contents
	The CRUTIAL Architecture for Critical Information Infrastructures
	Introduction
	Architecture Description
	Key Architecture Aspects
	Main Building Blocks

	Protection Strategies and Services
	Trustworthiness Monitoring Services
	The Diagnosis Framework
	Diagnosis in CRUTIAL

	Access Control for Critical Information Infrastructures
	OrBAC
	PolyOrBAC
	A Scenario

	Conclusion
	References

	A Middleware Improved Technology (MIT) to Mitigate Interdependencies between Critical Infrastructures
	Introduction
	The Interdependency Problem
	Interdependencies in the Physical Layer
	Interdependencies in the Cyber Layer
	How to Solve the Interdependency Problem

	The MIT Technology
	General Overview
	MIT Architecture
	MIT Add-On Components
	Implemented Technology

	An Experimentation Environment to Test MIT Technology
	Relationship and Dependencies between the Various Simulators
	The Architecture of Experimentation Environment

	Conclusions
	References

	Evaluation of Critical Infrastructures: Challenges and Viable Approaches
	Introduction
	Critical Infrastructures: Peculiarities and Related Activities
	Interdependencies and Types of Failures
	Related Activities
	Role of CI Analysis and Evaluation

	Approaches to CI Evaluation
	Model-Based Evaluation
	Experimental Evaluation
	Composite Evaluation Approaches
	On-Going Studies

	A Modeling Framework for the Quantitative EPS Analysis under Development in the CRUTIAL Project
	Logical Scheme of EI
	Logical Scheme of ITCS
	Interdependencies
	Major Characteristics of the EPS Modeling Framework
	The Analyzed EPS Instance
	The Submodels Composing the Overall EPS Model
	Current Status and Next Steps

	Conclusions
	References

	Analysis of a Redundant Architecture for Critical Infrastructure Protection
	Introduction
	CRUTIAL Reference Architecture Overview
	CIS Overview
	Fault Model and Assumptions
	The PRRW Strategy

	PRRW Quantitative Analysis
	Measures of Interest
	The PRRW Model
	Model Evaluation and System Analysis
	Discussion about the PRRW Strategy

	Direction for Improvements/Refinements
	New Extended Fault Model
	Architectural Modifications for the Detection of the Extended Set of Faults

	Concluding Remarks
	References

	A Robust Semantic Overlay Networkf or Microgrid Control Applications
	Motivating a Flexible, Dependable Information Infrastructure
	Overlay Networks for Microgrid Control
	Semantic Distance
	Node Links
	Convergence
	Link Announcements and Dynamism
	Semantic Routing Support
	Agora Summary

	Microgrid Control on Top of Agora
	Gossiping for Overlay Communication
	Agora Resilience against Accidental Faults

	Experimental Evaluation
	References

	Architecting Dependable and Secure Systems Using Virtualization
	Introduction
	Related Work
	Using Virtualization for Dependability and Security
	Xen-Based Implementation of Intrusion Detection and Protection
	Intrusion Detection and Protection for Xen Virtual Machines
	Architecture of X-Spy
	Intrusion Detection by Means of a Lie-Detector
	Protection of System Integrity and Forensic Information by Means of System Call Inspection
	Evaluation

	Quantifying the Impact of Virtualization on Node Reliability
	An Architecture for a More Reliable Xen VMM
	Conclusion
	References

	Model-Based Approaches for Dependability in Ad-Hoc Mobile Networks and Services
	Introduction
	PlatformModel
	Use-Case Model of Services
	Component Model and Interface Definitions
	Summary

	Modeling Applications
	An Overview on Model Driven Development
	A Metamodel for Dependable Ad-Hoc Mobile Services
	UML Profile for Hidenets Applications
	A Design Pattern Library for Hidenets Applications
	Observations on the Support of Standard Profiles
	Summary

	A Case Study for the Application of the Profile
	Testing and Fault Modeling
	Testing Ad-Hoc Mobile Applications
	Error Propagation Modeling and Static Analysis

	Conclusions
	References

	Design, Implementation and Deployment of State Machines Using a Generative Approach
	Introduction
	Background
	Data Storage
	Version History

	General Approach to State Machine Generation
	Mapping Algorithm to State Machine
	A Spectrum of Possible State Machines
	Generation Process
	Defining the Abstract Model
	FSM Artefacts

	Use in Practice
	Writing Generative Code
	When to Perform Generation
	Incorporation of Generated Code
	Execution Cost

	Methodology
	A General Methodology
	Applicability of the Methodology
	Generating Extended Finite State Machines

	Related Work
	Conclusions
	References

	Handling Emergent Nondeterminism in Replicated Services
	Introduction
	Nondeterminism: The Bane of Consistent Replication
	Midas in a Nutshell
	Contributions

	Problem Description
	Objectives
	Assumptions and Limitations

	Application-Level Insights for Scalability
	Slivers
	Compensation Service-Pairs

	Midas’ Implementation
	Compile-Time Analysis Framework
	Identifying Nondeterminism
	Runtime Replication Infrastructure
	Multiple Clients, Multiple Replicated Services
	Runtime Compensation
	Dependency and Concurrency Analyses
	Inadvertently Introduced Nondeterminism?

	Substantiating Midas’ Claims
	Empirical Evaluation
	Microbenchmark Application
	Observations from Results

	Related Work
	Conclusion
	References

	Toward Architecture Evaluation through Ontology-Based Requirements-Level Scenarios
	Introduction
	ScenarioML
	Approach
	Overview of Approach
	Scenarios Description in ScenarioML
	Architecture Description
	Mapping Ontology Elements to Architectural Components
	Architecture Evaluation against Scenarios

	Two Applications
	PIMS
	CRASH System
	Discussion
	Related Work
	Summary
	Future Work
	References

	Combining Formal Verification and Testing for Correct Legacy Component Integration in Mechatronic UML
	Introduction
	Prerequisites
	Property Specification
	Parallel Composition
	Automata Refinement
	Compositional Constraints
	Parallel Composition and Refinement
	Incomplete Automata
	Chaotic Automata and Closure
	Observation Conformance and Refinement

	Initial Behavior Synthesis
	Iterative Behavior Synthesis
	Formal Verification Step
	Testing Step
	Learning Step
	Multiple Iterations

	Counterexample Based Testing
	Related Work
	Conclusion and Future Work
	References

	Plug-and-Play Architectural Design and Verification
	Introduction
	The Plug-and-Play Design Approach
	Message Passing Building Blocks
	Component Interfaces and Protocols among Building Blocks

	Verification Support for the Plug-and-Play Design Approach
	Modeling Ports
	Modeling Component Interfaces
	Modeling Channels
	Model Composition

	The Single-Lane Bridge Example
	Related Work
	Conclusion and Future Work
	References

	Data Flow-Based Validation of Web Services Compositions: Perspectives and Examples
	Introduction
	Related Work
	Case Study: The Virtual Scientific Book Store
	Perspectives on Using Data Flow in Validating WSCs
	Modelling WSCs Data
	Model-Based Testing Issues

	Examples of Using Data Flow-Based Validation in the BPEL Process
	Using a Data Flow Model Built from Requirements
	Extracting Data Flow Information from the BPEL

	Conclusions
	References

	Using Architecture Analysis to Evolve Complex Industrial Systems
	Introduction
	Approaches and Tools for Architecture Analysis and Reconstruction
	Static Analysis
	Dynamic Analysis
	Holistic Analysis

	Experiences from Analyzing a Large Client-Server System
	Approach and Tools Used
	Lessons Learned

	Experiences from Analyzing a Large Real-Time system
	Approach and Tools Used
	Lessons Learned

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

