
P. Casanovas et al. (Eds.): Computable Models of the Law, LNAI 4884, pp. 42–55, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MetaVex: Regulation Drafting Meets the Semantic Web

Saskia van de Ven, Rinke Hoekstra, Radboud Winkels, Emile de Maat,
 and Ádám Kollár

Leibniz Center for Law, Faculty of Law, University of Amsterdam
PO Box 1030, 1000 BA, Amsterdam

{s.vandeven,hoekstra,winkels,e.demaat,a.i.kollar}@uva.nl

Abstract. Currently almost all legislative bodies throughout Europe use general
purpose word-processing software for the drafting of legal documents. These
regular word processors do not provide specific support for legislative drafters
and parliamentarians to facilitate the legislative process. Furthermore, they do
not natively support metadata on regulations. This paper describes how the
MetaLex regulation-drafting environment (MetaVex) aims to meet such re-
quirements.

Keywords: XML, RDF(S), OWL, metadata, regulation, drafting, semantic web.

1 Introduction

Legislative drafting and designing amendments to existing or new legislation are
important parts of the work done by national parliaments, regional assemblies, city
councils and ministries in Europe. Currently almost all of these legislative bodies use
general purpose word-processing software to create legal documents.

However, these regular word processors generally do not provide users with tar-
geted support to facilitate the legislative process. They are often badly integrated with
legacy systems that support storage, search and publishing facilities, and provide no
streamlined environment for drafting and discussing legislation and other kinds of
regulations. Such an environment would integrate workflow, search facilities, tools to
support group dynamics (including versioning and distribution) and features that
facilitate publication. It should provide access to other legal sources through intra- or
Internet for direct referencing (see below), but also for background information. A
legal drafter changing a particular law might for instance be interested in certain cases
or commentaries that point out weaknesses in the current version. These cases and
commentaries will be published and maintained by other organisations than the one
that employs the legal drafter. In other words, the drafting environment should be able
to cope with distributed sources.

Legislative drafting is a complex process that takes place in a political and dy-
namic environment, which involves many stake-holders. Since a new or adapted regu-
lation is often connected to existing laws, the drafters and other stake-holders should
be aware of relationships between the law under construction and those existing legal
sources. Legal drafting practice has learned that legal quality can benefit from the use
of specific legal drafting patterns.

 MetaVex: Regulation Drafting Meets the Semantic Web 43

The SEAL project (Smart Environment for Assisting the drafting and debating of
Legislation)1 develops a supportive environment that enables easy construction of
legal drafts using drafting patterns and creation of connections from and to existing
legal sources. The infrastructure will provide access to a repository with existing
laws, draft versions and amendments and will offer easy to use access methods. Col-
laboration between stake-holders will be supported by groupware facilities such as
automated signalling functions and routing of drafts and amendments.

This environment will be developed for three European parliaments. An initial work-
ing environment is foreseen in the end of 2007. This will be tested, refined and imple-
mented in co-operation with the parliaments and legislation drafters during the project.

The MetaLex regulation-drafting environment (MetaVex) is developed at the Leib-
niz Center for Law and is one of the three environments being evaluated in SEAL.
The other two environments are the xmLegesEditor: owned/provided and maintained
by CNR-ITTIG [1] and The Norma Editor: owned under licence and maintained by
CIRSFID University of Bologna [8]. In the following sections we identify the re-
quirements, introduce the XML document standard underlying the system, and de-
scribe its current status.

2 Requirements

MetaVex aims to streamline the legislative process by addressing the problems dis-
cussed in the introduction. In this section we describe the requirements against which
the environment is evaluated. These criteria can be summarized as follows:

Look and Feel. The editing environment should provide a look and feel similar to
normal word processors. Document editing should be done in a WYSIWYG2 inter-
face; this way legal drafters can create document structure and content without
knowledge of specific commands or technical notations.

Drafting Patterns. Legislative drafters should be supported by the editor in comply-
ing to prescribed legal drafting patterns. Offering users suggestions and predefined
phrases in the form of templates improves and speeds up the process of generating
document structure and content.

Referencing. The use of references to other legal sources is an important way in
which drafters add structure and meaning to a document. The editor should facili-
tate the frequent use of these references and offer ways to validate the legal sources
they cite. References should be detailed, i.e. point to the smallest relevant element
of a regulation.

Metadata. A way to store extra information about a document e.g. author, version,
modification, should be provided. Possibilities to add information concerning
document structure as well as content is regarded as an advantage.

Version Management. The environment should offer support to manage document
versions, starting from the first draft until and beyond the time at which the docu-
ment is published. This allows users to always be able to identify the latest version
of a document.

1 SEAL is a project in the e-Participation initiative of the European Commission.
2 What You See Is What You Get

44 S. van de Ven et al.

Groupware. By using groupware facilities, drafters can collaborate on the same pro-
ject. These facilities will not only consist of sharing comments or amending exist-
ing legislation, but will allow for elaborate authorisation and accountability
management.

Workflow. Workflow support should be an integral part of the environment to be
able to divide tasks into sub-tasks, assigning them to people and keeping track of
progress.

Storage. Users should be able to store documents in a local data repository, provid-
ing them with advanced search mechanisms. It should also be possible to connect
to a server with various types of clients over the internet, e.g. by using a browser.

Publishing. The environment should allow straightforward publishing of texts in
legacy formats. This allows publishing of legal drafts in an early stage, which
makes it possible to interact with the public (businesses, citizens and interest
groups) during the drafting process.

3 Syntax and Semantics: MetaLex

MetaVex is a regulation-drafting environment for MetaLex documents: texts are
saved as XML documents that comply with the MetaLex format for legal sources.
This standard provides a generic and easily extensible framework for the XML encod-
ing of the structure and content of legal documents. It addresses many of the require-
ments introduced in the previous section, as is described in e.g. [3]. In this section the
advantages of MetaLex will be explained. Section 4 will address how users of
MetaVex can benefit from these advantages, unless stated otherwise.

MetaLex is currently undergoing a CEN standardisation process. It is input to the
CEN workshop on an Open XML interchange format for legal and legislative re-
sources3. The MetaLex/CEN schema is based on best practices from amongst others
the previous versions of the MetaLex schema, the Akoma Ntoso schema [11], and the
Norme in Rete4 DTD. A first version of this schema was adopted as part of a CEN
workshop agreement on 6 December 20065.

The use of a standard interchange format enables public administrations to link le-
gal information from various levels of authority and different countries and lan-
guages. Moreover, the standard will enable companies that are active in the field of
legal knowledge systems to connect to and use legal content in their applications,
which allows them to support a much larger market. An open interchange format will
also protect customers of such companies from vendor lock in. Finally, the standard
will help to improve transparency and accessibility of legal content for both citizens
and businesses.

MetaLex provides extensive mechanisms to add metadata both to specific parts of
a document and to the document as a whole. Every element of a legal text can be
uniquely identified through a URI, and annotated with information regarding e.g. its
version, publication date, validity interval, efficacy, language, jurisdiction, and au-
thority. Furthermore, the standard introduces the possibility for marking references,

3 http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/activity/ws/_metalex.asp
4 http://www.nir.it
5 http://www.metalex.eu/wiki/

 MetaVex: Regulation Drafting Meets the Semantic Web 45

both to elements of (other) regulations and to individual entities not part of a regula-
tion, such as institutions or concepts defined by the regulation.

As the standard is primarily intended as an interchange format, annotating legal
texts with metadata allows a single MetaLex document to contain several versions of
a text. MetaLex not only includes an event-based model for managing multiple ver-
sions of legal documents through time [4], but multiple language versions of the same
text can be included in just one MetaLex document as well.

All metadata statements in MetaLex conform to the triple model of RDF6. This
means that any MetaLex metadata can be used to generate an RDF triple: statements
about entities are interpreted as subject, predicate, object triples. And conversely,
because every MetaLex element has a unique identifier, it is possible to make external
statements in RDF referring to any element of a legal text.

MetaLex provides a strong connection to other semantic web standards as well,
such as RDF Schema and OWL7 as both have RDF/XML syntax. A MetaLex XML
document can be translated into OWL by means of XSL transformations (XSLT’s).
An XSLT provides a mapping between an XML source document and a desired desti-
nation format. For instance, we can translate any MetaLex XML document into
HTML, XSL:FO and RDF/OWL using such stylesheets. Consider the following piece
of MetaLex XML which denotes an article:

<Article id="a1">
<IndexDesignation>

<Category>
<TextVersion xml:lang="en">Article</TextVersion>

</Category>
<Index>

 <TextVersion xml:lang="en">1</TextVersion>
</Index>

</IndexDesignation>
</Article>

Using the standard metalex2owl.xsl transformation, we can produce the following
RDF/XML code:

<metalexrdf:Article rdf:about="http://www.metalex.nl/ec/2002/58#a1">
<metalexrdf:properStructuralSuccessor
rdf:resource="http://www.metalex.nl/ec/2002/58#a2"/>
 <metalexrdf:properStructuralMember>

<metalexrdf:IndexDesignation>
…

 </metalexrdf:IndexDesignation>
</metalexrdf:properStructuralMember>

</metalexrdf:Article>

As RDF is order-independent this kind of transformation would contain the risk of
messing up the original document order. Document order is important when legislative
documents are concerned, therefore the XSLT should address the order of all document
elements explicitly. To achieve this goal the successor for each element in the
original document is identified and passed through to the destination document in
RDF. As a result the MetaLex RDF encoding will contain explicit sequences to

6 The Resource Description Framework. See http://www.w3.org/RDF/
7 The Web Ontology Language. See http://www.w3.org/2004/OWL

46 S. van de Ven et al.

represent the sequences of articles, parts, sentences etc., preserving the order of the
document elements present in the original XML file. The container membership prop-
erty “structuralMember” and the sequence property “structuralSuccessor” are used to
represent these kind of sequences. More information about transforming MetaLex XML
into RDF/OWL and issues regarding this subject can be found on the MetaLex website8.

By integrating MetaLex with the semantic web standards RDF, RDFS and OWL,
metadata both on the elements of legal texts themselves, as on the contents of those texts
can be described. OWL and RDFS can be used to describe the contents of legal texts:
the concepts that occur in them, but also their normative content. These formal represen-
tations of the semantics of legal texts can be used to perform elaborate legal reasoning,
such as consistency checking, legal assessment etc. and for building knowledge-based
applications which can be used by citizens to gain advice on complex legal issues. OWL
provides additional expressive power, which can be used to describe not only the con-
tent or domain of a regulation, but also the authority through which a regulation is en-
forced, and the history and background of modifications of the regulation, as is de-
scribed in [12]. The MetaLex CEN schema defines a general framework for describing
events and actions in OWL. More information about this framework can be found at the
MetaLex CEN Wiki9. At this moment MetaVex does not support the use of the men-
tioned semantic web standards yet, as is discussed in section 5.

The MetaLex CEN workshop furthermore adopted the RDFa10 standard for em-
bedded metadata. RDFa does not have its own namespace: the significance of XML
elements and attributes to RDFa processors is determined entirely by names. An
RDFa element is defined as any XML element that contains one or more RDFa attrib-
utes: about, property, rel, href, instanceof or content. The following example show an
article in MetaLex XML:

<Article id="a1">
<IndexDesignation>

<Category>
<TextVersion xml:lang="en">Article</TextVersion>

</Category>
<Index>

<TextVersion xml:lang="en">1</TextVersion>
</Index>

</IndexDesignation>
</Article>

This article could be augmented with RDFa in the following way:

<metalex:Article id="a1" about="http://www.metalex.nl/ec/2002/58#a1">
instanceof="metalexrdf:Article"
property="metalexrdf:properStructuralMember"

<IndexDesignation instanceof="metalexrdf:IndexDesignation"
property="metalexrdf:properStructuralMember">

<Category instanceof="metalexrdf:Category"
property="metalexrdf:textversion">

<metalex:TextVersion
instanceof="metalexrdf:TextVersion"
xml:lang="en">Article
</metalex:TextVersion>

8 http://www.metalex.eu/information/guidelines
9 http://www.metalex.eu/wiki/
10 http://www.w3.org/2006/07/SWD/RDFa/

 MetaVex: Regulation Drafting Meets the Semantic Web 47

</metalex:Category>
<metalex:Index instanceof="metalexrdf:Index"
property="metalexrdf:textversion">

<metalex:TextVersion
instanceof="metalexrdf:TextVersion"
xml:lang="en">1
</metalex:TextVersion>

</metalex:Index>
 </metalex:IndexDesignation>

</metalex:Article>

An RDFa processor can be used to generate RDF triples from the RDFa elements.
The real power of RDFa is that it enables you to add semantic values to XHTML
documents. This starts with adding some simple statements, but can develop to using
full RDF power inside of an XHTML document. At this moment the use of RDFa is
not yet beneficial when used within MetaVex, as is mentioned in section 5.

More importantly, MetaLex allows formal representations of legislation to refer to
and be grounded in the documents containing the official texts. An example is LKIF,
the Legal Knowledge Interchange Format [2], currently being developed in the
ESTRELLA project11, a vendor neutral representation format for legal knowledge.
Existing Semantic Web initiatives are aimed at modelling concepts (OWL “ontol-
ogy”) and rules (RuleML, RIF). The LKIF builds on but goes beyond this generic
work to allow further kinds of legal knowledge to be modelled, including: meta-level
rules for reasoning about rule priorities and exceptions, legal arguments, cases and
case factors, values and principles, and legal procedures. It is based on a layered ap-
proach, providing a method of using OWL and RIF and contains two sublanguages,
for defeasible rules and for subjunctive betterness. Furthermore, the LKIF is grounded
in a core ontology of basic legal concepts: LKIF Core [6]. The ontology covers a base
level of components required for explaining epistemological, situational, and
mereological patterns as they occur in legal reasoning.12

An example of the flexibility of the MetaLex schema is the combination of regula-
tions, maps and spatial planning adopted in the Legal Atlas tool [13]13. The MetaLex
region attribute can be used to refer to the geographical region to which rules in a
regulation can be applied: i.e. it specifies geographical jurisdiction. In Legal Atlas,
this is used in combination with RDF and GML14 to show spatial planning regulations
both as maps and as texts.

4 MetaVex

MetaVex is a platform independent open source editor, and shares a large part of its
codebase with the Visual Editor for XML (Vex)15. It is developed within the Java
Eclipse16 development platform, which allows future development of plug-ins and
add-on functionality.

11 ESTRELLA: European project for Standardized Transparent Representations in order to

Extend Legal Accessibility, IST-2004-027655, http://www.estrellaproject.org
12 http://www.estrellaproject.org/lkif-core
13 http://www.leibnizcenter.org/projects/current/legal-atlas
14 Geography Markup Language.
15 Vex is currently no longer under active development. See http://vex.sourceforge.net/
16 http://www.eclipse.org

48 S. van de Ven et al.

MetaVex is specifically intended to support the creation of documents complying
with the MetaLex standard for legal sources, but flexible enough to be easily adapted
to different XML schemas.

Target users of MetaVex will be drafters and members of parliament. These users
cannot be expected to be familiar with editing an XML-structure directly. For this
reason, the editor offers a WYSIWYG interface, which does not require any knowl-
edge of or experience in creating XML-code. In fact, the editor shows close resem-
blance to a conventional word processor, and at the same time allows a user to alter or
create content while keeping the integrity of the underlying structure intact.

Since XML documents themselves do not carry information about how to display
the document MetaVex uses CSS17 to determine formatting. A user will be able to
choose from different types of predefined formatting, but cannot change the format-
ting in line.

The use of XML as an underlying document structure makes it easy to validate the
structure of documents created with MetaVex against the rules defined in the
MetaLex schema file. This schema file restricts element and attribute names and al-
lowed combinations. MetaVex uses this schema file to check which elements can be
inserted at a certain position in a document, while sustaining a well-formed and valid
XML structure.

To enforce this structure during the composing or editing of a document, the editor
provides a context sensitive menu of the elements valid at a particular position within
the document. Users can only insert elements available in this menu, or elements to
which the content model of the current element is agnostic. This procedure ensures
schema compliance at every stage of document creation using the editor.

This functionality is one of the major differences between MetaVex and normal
word processors. When using a normal word processor, a user can just start typing
and does not have to bother about adding specific text elements. The use of templates
strongly reduces this difference by offering users a way to add new elements or whole
blocks of elements at once: creating e.g. an article is similar to form-filling. MetaVex
contains a pane offering the user specific templates to choose from. Furthermore the
new document wizard offers a user the possibility to start a new document, based on a
predefined template. This way the user does not have to start from scratch.

In the Netherlands, legislative documents are required to be composed according to
what is prescribed in the Dutch Guidelines for Legal Drafting [5]. These guidelines do
not only apply to technical aspects of writing legislation, but emphasise content too.
MetaVex provides a set of templates that are structured according to these guidelines.
These templates can provide not only structure, but standard content as well. Cur-
rently, the templates included in MetaVex follow Dutch guidelines and cannot be
used to support drafting in other countries. However, other templates can be easily
imported and used in MetaVex as well. This extensive use of templates not only of-
fers guidance, but can also save users a lot of work.

The MetaVex user interface (see Figure 1) offers an “Insert Templates” panel that
shows a list of the mentioned templates. Users can choose and click on one of the
templates to insert a prebuilt collection of elements into the document. These ele-
ments together form for example a whole chapter or article. Not all templates are

17 Cascading Style Sheets, see http://www.w3.org/Style/CSS

 MetaVex: Regulation Drafting Meets the Semantic Web 49

Fig. 1. Editing the statute of Rome in MetaVex

shown in the list, only the ones that can be inserted at the current cursor position,
maintaining a valid and well-formed XML-structure underneath.

There is also an “Insert Elements” panel that shows a list of all single elements that
can be validly inserted at the current cursor position. The same list is accessible
through a context sensitive right-mouse menu. The left part of the screenshot in
Figure 1 shows an “Outline” pane that displays the overall document structure as a
hierarchy. This structure can be collapsed or expanded and allows a user to easily
navigate through parts of the text. Conversely, the cursor position within the XML
structure is reflected both in the selected element in this outline pane and in an XPath
expression in the status bar. Furthermore, as mentioned in the previous section,
MetaLex supports an extensive set of meta-data attributes which allow users to link
many different kind s of extra information to a document. The user interface of
MetaVex allows the user to edit the values of these attributes through the “Properties”
panel. This panel displays a table of all attributes and their values available on the
currently selected XML element. Finally, the “Navigator” panel shows a list of the
files available in the current project. Each of these panels can be moved, closed or
enlarged to suit a users' preference.

Most prominent in MetaVex is the editing panel. Multiple versions of the same text
can be simultaneously edited in a single MetaLex document. The screenshot in Figure 2
illustrates this, showing the Statute of Rome (which introduces the International Criminal
Court) in Dutch, English, Chinese and Russian language versions. As this can be confus-
ing to users, MetaVex can hide irrelevant information: users can select a desired
time interval or language version and hide other versions available in the

50 S. van de Ven et al.

Fig. 2. Editing multiple language versions of the Rome Statute in MetaVex

Fig. 3. Selecting a text version

document (see Figure 3). After the selection of for example the English text version,
only the English version of the statute of Rome will be shown, as was shown in Fig-
ure 1. The selection of text versions is also used by the export functions of MetaVex.
Any valid document can be exported to various common formats such as PDF and
HTML using export wizards, which apply XSLT18 transformations to the XML source
to produce the desired output format.

Recently functionality is added to MetaVex to support the creation of amendments
and the generation of a consolidated version from the original document and the ac-
cepted amendment. After a piece of legislation is drafted, there is the possibility to
bring in proposals or amendments. Normally such an amendment is created separately

18 eXtensible Stylesheet Language Transformations, http://www.w3.org/Style/XSL/

 MetaVex: Regulation Drafting Meets the Semantic Web 51

Fig. 4. MetaVex Architecture

from the original document that is being amended. The actual amendment consists of
a list of proposed changes that will be applied to the draft bill once the amendment is
accepted. Using the editor, amendments can be created just by adjusting the original
text and the amendment will be generated automatically. At this moment this amend-
ment support is not fully operational yet, but will be in the future. The next step will
be to provide a function to automatically generate consolidated versions of legislation
including the modifications resulting from the amending provisions.

Although MetaVex is an editor to alter or produce legislative documents, this does
not mean that MetaVex is limited to cope with documents being addressed as “legal”
only. In general, for all documents containing rules for a certain domain, a structured
way of creating and filing those documents can certainly be useful. MetaVex can be
used to suit the needs of many kinds of domains by providing structuring or format-
ting. For example, companies can develop their own general representation of data in
the form of an XML schema file, according to which the intended documents will be
composed and validated.

Figure 4 shows the MetaVex architecture and the way in which the various com-
ponents will be integrated. In short, an XML document is constructed against an XML
schema, and can be translated to RDF/OWL using XSLT transformations. MetaLex
XML documents are stored in an XML storage facility (to be developed by one of the
partners in the SEAL consortium) through a WebDAV interface. The RDF/OWL
representation of the MetaLex document uses the vocabulary specified in the
MetaLex OWL schema. It is stored using a Jena database backend. Currently, not all
of the components shown in the picture have been developed. Future development
issues are described in the discussion section, but first this section will end with pro-
viding some examples of the useful extras RDF offers in the context of MetaVex.

As mentioned before, links can be made from every element in a MetaLex docu-
ment to a concept or identity in RDF. This is especially useful because of the frequent
use of two kinds of references in legislative documents. First there are citations point-
ing to other structural elements of a document or another document as a whole, e.g.

52 S. van de Ven et al.

Data Store RDF Store

L1MetaLexMetaLex

PDF
Word

XML

P1 P1

A1A1

L2

<….>

</…>

Identity/concept

Manifestation

Reference

Typed reference

Fig. 5. From data to models

“Chapter 1, Article 2, second sentence” or “The Dutch traffic law”. Second there are
references to a concept, like ‘civil servant’ or ‘boat’. When trying to validate the latter
kind of reference an RDF model proves to be very useful. RDF can for example pro-
vide the intermediary concept ‘boat’ to temporarily resolve such a reference.

All documents containing information about the concept ‘boat’, can be linked to
the concept ‘boat’ as well. Although resolving references might seem the most diffi-
cult, citations can be difficult to resolve as well. When a document contains a citation
to a specific law and a new version of this law becomes enacted, the citation might
need to be adjusted as well. Furthermore if a cited piece of legislation is not enacted
yet, there is no actual document to link to. The RDF model can in this case contain a
general concept of the cited law, containing all the versions that exist. These versions
can be represented as subconcepts of the general one. This way it is possible to cite a
document and all existing or even future versions. Not only different versions can be
linked, different manifestations can be added as well, as is shown by the arrows in
Figure 5 pointing from the RDF store to the Data store. Because RDF allows for
typed references between concepts, relations between the different concepts can be
expressed as well.

The advantage of storing such links is obvious: it makes it easier to find the correct
version of a document. This is an important advantage for organisations that often
have to deal with multiple versions of legislation, such as the Dutch Tax and Customs
Administration, as is described in [12]. The new MetaLex/Cen standard will use a
same sort of mechanism for storing various versions of a single document.

The use of RDF can also be advantageous in the context of search mechanisms and
cataloguing. Ordinary search engines and catalogue systems make use of textual

 MetaVex: Regulation Drafting Meets the Semantic Web 53

occurrences of a keyword. But when RDF comes in place, it is possible to search for
all relevant pieces of legislation that are applicable on a certain subject, just following
all of the provided links from the RDF concept to the XML sources and potential
other sources. Linking to current handbooks, guides and regulations on legislative
drafting can be considered as well.

5 Discussion and Future Work

As mentioned in the introduction, MetaVex is one of three environments being evalu-
ated in SEAL. The other two environments are the xmLegesEditor and The Norma
editor. The Norma editor and the xmLegesEditor are developed in Italy, in the context
of the Norme-in-rete project. The Norma editor is designed as an add-on to Microsoft
Word. This gives it the advantage that users can create and edit documents in a famil-
iar environment. A disadvantage, however, is that it means that the Norma editor is
not yet fully open source. This will change in the future, as the makers of the Norma
editor aim to switch from MS Word to Open Office. Another disadvantage is that
being dependable on another product in general has some risks. Whenever a new
version of the other product is released, the editor has to adapt to this new version,
which can be a time consuming process. The Norma editor already offers advanced
support to automatic consolidation of documents and to the creation and validation of
references. Users do not edit the XML structure directly, but the conversion to XML
takes place after the editing has been done. A validation tool is used to parse the
document structure and generate a valid and well-formed XML document. The user is
notified when the validation tool detects inconsistencies.

In contrast, the xmLegesEditor is a native XML editor. It is rule-driven: it only al-
lows operations that are valid with respect to the underlying document structure. The
xmLegesEditor already contains functionality to extract and validate normative refer-
ences and a parser to read and convert document into XML. It directly produces XML
documents, compliant to the NIR DTD, but in the future it will also support XML
schema.

Similar to the xmLegesEditor, the MetaVex editor is open source, rule-driven, and
a native XML editor. Besides the functionality it already offers, there are quite some
items on the requirement list that are currently not supported and will be discussed in
the following part of this section.

MetaVex should enable intuitive construction and maintenance of references in le-
gal documents, by functions for adding, editing and validating. [7] and [9] describe
ways to automatically detect references in legislation with high accuracy. Embedding
such functionality into MetaVex certainly would be a useful extension.

The use of MetaLex means a strong focus on semantic web technologies such as
RDF(S) and OWL. For now it suffices to support these formats and edit OWL docu-
ments in a separate, already existing OWL-editor, such as Protégé19 or TopBraid20. In
the future, MetaVex will offer means to view and edit OWL-documents using an
OWL-editor embedded inside MetaVex. The idea is to develop a separate view show-
ing the RDF triples corresponding to a selected MetaLex element. The view should

19 http://protege.stanford.edu
20 http://www.topbraidcomposer.com

54 S. van de Ven et al.

also enable users to edit the RDF triples directly. Admittedly, concurrent editing of
the RDF and XML version requires relatively complex synchronisation.

As mentioned in Section 3, the MetaLex CEN workshop has adopted the RDFa
standard for embedding metadata in MetaLex XML. Once MetaLex CEN is finalised,
the MetaVex editor should offer functionality that supports the annotation of XML
documents with the RDFa attribute set. Of course, this is closely related to a possibil-
ity for browsing an RDF graph. A recent development is GRDDL21, a W3C recom-
mendation, which specifies an even more flexible method for embedding RDF in
arbitrary XML. GRDDL can be used to specify 1) per document, an XSL stylesheet
for automatic extraction of RDF triples, or 2) a namespace-related stylesheet at XML
Schema level. The advantage of GRDDL is that is more general, i.e. it is suited for
any XML, and not just XHTML, and allows more flexible embedding of metadata,
not restricted to the RDFa attribute set.

The MetaVex architecture (Figure 4) shows a connection to geodata. At this mo-
ment, MetaVex does not provide this connection yet, but it will provide one in the
future. The connection will be similar to the approach of Legal Atlas.

So far nothing has been mentioned yet about MetaVex' storage mechanism and
how certain features like versioning, security, groupware facilities etc. will be inte-
grated. Although an implicit way of maintaining version information using MetaLex'
attributes already exists, the ability to cope with several versions of a document in an
explicit matter should also be taken into account. A content management system satis-
fying the requirements of section 2, will be developed within SEAL. However,
MetaVex will commit to standards-based interfaces to open source RDF repositories
such as Sesame22 and Jena/Joseki23.

MetaVex is still under construction and there is a lot of work that needs to be done.
Nevertheless a solid, easy extendable and highly adaptable solution for editing XML-
structured documents in a user-friendly environment already exists. As soon as all
proposed features are fully present, MetaVex will lift the editing of legal documents
to a whole new level by its unique combination of syntax and semantics.

References

[1] Agnoloni, T., Francesconi, E., Spinosa, P.: Xmlegeseditor, an OpenSource visual XML
editor for supporting Legal National Standards. In: Biagioli, C., Francesconi, E., Sartor,
G. (eds.) Proc. of V Legislative XML Workshop, pp. 239–252. European Press Academic
Publishing (2007)

[2] Boer, A., Gordon, T., van den Berg, K., Di Bello, M., Förhécz, A., Vas, R.: Specification
of the Legal Knowledge Interchange Format (LKIF). Deliverable 1.1, Estrella (2007)

[3] Boer, A., Hoekstra, R., Winkels, R., van Engers, T., Willaert, F.: METALex: Legislation
in XML. In: Bench-Capon, T., Daskalopulu, A., Winkels, R. (eds.) Legal Knowledge and
Information Systems, Jurix 2002, pp. 1–10. IOS Press, Amsterdam (2002)

21

 Gleaning Resource Descriptions from Dialects of Languages, see http://www.w3.org/
TR/grddl/

22 http://www.openrdf.org
23 http://jena.sourceforge.net

 MetaVex: Regulation Drafting Meets the Semantic Web 55

[4] Boer, A., Winkels, R., van Engers, T., de Maat, E.: A Content Management System based
on an Event-based Model of Version Management Information in Legislation. In:
Gordon, T. (ed.) Legal Knowledge and Information Systems, Jurix 2004, pp. 19–28. IOS
Press, Amsterdam (2004)

[5] Aanwijzingen voor de regelgeving (Directives for regulations), regulations for legislative
drafting issued by the Prime-Minister, November 26, Stcrt (1992)

[6] Breuker, J., Hoekstra, R., Boer, A., van den Berg, K., Rubino, R., Sartor, G., Palmirani,
M., Wyner, A., Bench-Capon, T.: OWL ontology of basic legal concepts (LKIF-Core).
Deliverable 1.4, Estrella (2007)

[7] de Maat, E., Winkels, R., van Engers, T.: Automated detection of reference structures in
law. In: van Engers, T. (ed.) Legal Knowledge and Information Systems. Jurix 2006: The
Nineteenth Annual Conference. Frontiers in Artificial Intelligence and Applications,
vol. 152, pp. 41–50. IOS Press, Amsterdam (2006)

[8] Palmirani, M., Brighi, R.: An XML Editor for Legal Information Management. In:
Traunmüller, R. (ed.) EGOV 2003. LNCS, vol. 2739, pp. 421–429. Springer, Heidelberg
(2003)

[9] Palmirani, M., Brighi, R., Massini, M.: Automated Extraction of Normative References in
Legal Texts. In: Sartor, G. (ed.) Proceedings of the 9th International Conference on Arti-
ficial Intelligence and Law (ICAIL 2003), pp. 105–106. ACM Press, New York (2003)

[10] Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE Intelligent
Systems 21(3), 96–101 (2006)

[11] Vitali, F., Zeni, F.: Towards a country-independent data format: the Akoma Ntoso experi-
ence. In: Biagioli, C., Francesconi, E., Sartor, G. (eds.) Proc. of V Legislative XML
Workshop, pp. 239–252. European Press Academic Publishing (2007)

[12] Winkels, R., Boer, A., de Maat, E., van Engers, T., Breebaart, M., Melger, H.: Construct-
ing a semantic network for legal content. In: Gardner, A. (ed.) Proceedings of the Tenth
International Conference on Artificial Intelligence and Law (ICAIL), June 2005, pp. 125–
140. IAAIL, ACM Press, New York (2005)

[13] Winkels, R., Boer, A., Hupkes, E.: Legal Atlas: Access to Legal Sources through Maps.
In: Winkels, R. (ed.) Proceedings of the 11th International Conference on Artificial Intel-
ligence and Law (ICAIL 2007), pp. 27–36. ACM Press, New York (2007)

	MetaVex: Regulation Drafting Meets the Semantic Web
	Introduction
	Requirements
	Syntax and Semantics: MetaLex
	MetaVex
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

