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Abstract. When dealing with multiple clustering solutions, the prob-
lem of extrapolating a small number of good different solutions becomes
crucial. This problem is faced by the so called Meta Clustering [12],
that produces clusters of clustering solutions. Often such groups, called
meta-clusters, represent alternative ways of grouping the original data.
The next step is to construct a clustering which represents a chosen
meta-cluster. In this work, starting from a population of solutions, we
build meta-clusters by hierarchical agglomerative approach with respect
to an entropy-based similarity measure. The selection of the threshold
value is controlled by the user through interactive visualizations. When
the meta-cluster is selected, the representative clustering is constructed
following two different consensus approaches. The process is illustrated
through a synthetic dataset.

Keywords: consensus clustering, meta clustering, mds visualization,
dendrogram visualization.

1 Introduction

In the last years many papers have been published in literature regarding the
use of clustering techniques in the Knowledge Discovery and Data Mining field,
for data analysis in many applications and scientific areas [3,4,5].

The main idea of cluster analysis is to group together similar patterns depend-
ing on the chosen features. The most used algorithms start from a random or
arbitrary initial configuration and then evolve to a local minimum of the objec-
tive function. In complex problems (in many real cases) there are several minima
and more than one can explain in a convincing manner the data distribution. In
this case, we need, at least, to run many times the algorithms to choose more
reasonable solutions. This is due to the intrinsic ill-posedness of clustering where
the existence of a global solution cannot be assured and small perturbations of
data due to noise can lead to very different solutions. Some discussions about
this point can be found in [6,7,8].

As a consequence of these facts, in some cases researchers try to assess the
stability and reliability of the obtained clusterings [11,10,9]. Stability means that
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Fig. 1. Multiple minima example. The shown dataset has two equivalent and symmetric
2-clusters solutions.

slight perturbations on the inputs does not influence the obtained clusters too
much. Reliability, instead is the tendency of a pattern to belong always to the
same cluster with high probability or possibility.

Stability implies the concept of uniqueness of solution. For example, when
using k-means the main problem is finding the parameter k assuring the best
stability value. But k indicates also the zoom level we choose to analyze data.
In some cases, once fixed k, we can have more than one stable solution. For
example, suppose to have a mixture of four well separated Gaussians with the
same number of patterns but different means and variance. It is obvious that
in this case the best stability is obtained by solutions with four clusters. Let us
suppose, instead, that we seek for a more rough grouping of data, for example
with only two clusters. In this case there are two obvious different best solutions
with respect to the distortion function that are equivalently reasonable. The two
solutions cannot be merged together in a good way if we want to maintain k=2
or the complete dataset (Fig.1). The process of merging clustering solutions is
called consensus and two approaches to this problem, one of which is introduced
in this paper, are illustrated in Section 2. The other one was chosen for its ability
to exclude points from the consensus, which is also a feature of our method. Meta
clustering [12] is the process of clustering multiple solutions and is introduced in
Section 1. Section 3 shows the application of such ideas to a synthetic dataset.

2 Meta Clustering

When dealing with multiple clustering solutions, the problem of extrapolating
a small number of good different solutions becomes crucial. Grouping similar
clustering solutions together is in turn a clustering problem. This process is
called Meta Clustering [12]. Partly following the approach of [12], we divide the
meta clustering process into 4 steps: 1) Generate many good different base-level
clusterings (in our case local minima of the objective function generated by global
optimization techniques [13]). 2) Measure the similarity between each couple of
base clusterings. 3) Exploit the computed similarities to build a dendrogram
and an MDS Euclidean embedding of the clustering solutions. 4) Use consensus
algorithms to obtain a single solution from each meta-cluster.
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Quality measures for the aggregations (such as accuracy, compactness etc.[12])
are used to decide the threshold of ”mergeability” of the clusterings: a high
decrease of quality for an aggregated solution suggests that the base solutions
should not be merged.

The use of interactive tools derived from our previous work ([15,14]) permits to
give the user information he needs to make decisions on the best meta clustering
solutions.

3 Consensus Clustering

Consensus clustering, also known in literature as clustering ensembles and clus-
tering aggregation, is the process of extrapolating a single clustering solution
from a collection, in such a way to maximize a measure of agreement. This prob-
lem is NP complete [16]. In [17] some methods are introduced for consensus
proving a 3-approximation algorithm. On the other hand, [18] suggests that the
complexity of approximation algorithms can be unjustified, given the compara-
ble performances of heuristic approaches. They also indicate the combined use of
unsampling techniques and approximation algorithms as the best compromise.
In [19] three EM-like methods are illustrated showing comparable performance
with other 11 algorithms. EM approach is also exploited in [20], but combining
weak clusterings. In [21] consensus clustering was improved by adaptive weighted
subsampling of data. In the following we shall consider two kinds of approach:
the consensus method of [17], and a novel method that obtains a subpartition
of data using the intersection between corresponding clusters belonging to all
solutions that are included in a metacluster.

3.1 Clustering Aggregation

The first algorithm we use in this paper is the consensus ”Balls Algorithm”
proposed in [17] for the correlation clustering problem. It first computes the
matrix of pairwise distances between patterns. Then, it builds a graph whose
vertices are the tuples of the dataset, and the edges are weighted by the distances.
Aim of the algorithm is to find a set of vertices that are close to each other and
far from other vertices. Given such a set, it can be considered a cluster and
removed from the graph. The algorithm proceeds with the rest of the vertices.
The algorithm is defined with an input parameter α that guarantees a constant
approximation ratio.

3.2 Intersection Method

Let be X = {x1, ..., xN}, xi ∈ R
n a set of N data points and C = {C1, ..., Cm} a

set of partitions (clustering) of such data, we want to infer from these a new solu-
tion (clustering) in agreement with all the collected information. To achieve this
we must first state a model for comparing different partitions. This problem is de-
fined as m-partition clustering in [1] as follows: let Δ(A, B) = |(A\B)∪ (B \A)|
for two sets (partitions) A and B and let Σ be a collection of m partitions
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C1, C2, . . . , Cm of Σ with each partition Ci = {Ci
1, C

i
2, ..., C

i
k} containing exactly

the same number k of subsets. Let a valid solution be a sequence of m per-
mutations σ = (σ1, σ2, ..., σm) of {1, 2, ..., k} that aligns the partitions. For any
permutation ρ of {1, 2, ..., k}, ρ(i) is the i − th element of ρ for 1 � i � k, we
want to find σ that minimize :

f(σ) =
k∑

i=1

∑

1≤j<r≤m

Δ(Cσj(i)
j , Cσr(i)

r ) (1)

this is an NP-hard problem for m > 2 [2], so we have developed a heuristic
approach based on a greedy strategy for it. The main steps performed by the
procedure to achieve this objective are:

1. Clustering population ordering
2. Similarity matrix for cluster computation
3. Cluster ordering
4. Intersection of solutions

Clustering population ordering. Let Σ be a collection of m partitions
{C1, C2, . . . , Cm} with each partition Ci = {Ci

1, C
i
2, ..., C

i
k} containing exactly the

same number k of subsets. The idea behind the developed algorithm is to view
the sequencing problem of such collection as a graph optimization one. Consider
a complete graph on which each node correspond to a clustering. The distance
matrix has elements di,j = 1 − S(i, j) where similarities S are computed by a
symmetric version of the measure defined in [14]. In such terms finding a chain
of neighbors can be viewed as finding a ’minimum path’ connecting all nodes (a
slight variation of the TSP problem). To approximately solve such last problem
we use the following greedy strategy: at the first step the procedure selects from
the initial set the clustering pair having the maximum similarity value and we
define it (Left,Right). Then, at each iteration, it is selected the nearest (from
a similarity point of view) to Left and the nearest to Right and are added to
the left and to the right of the current ’best clustering pair’ and so on, until no
clustering can be added to the solution.

Compute similarity matrix for cluster. Let be C = {C1, ..., Cm}, a sorted
clustering set, and Ci

j = {Ci
1, ..., C

i
k} for i = 1, ..., m, the k clusters of i − th

clustering. A similarity measure between clusters of a sorted clustering pair can
be defined as follow:

sim(Ci
j , C

i+1
l ) =

|Ci
j

⋂
Ci+1

l |
|Ci

j |
j, l = 1, ..., k (2)

which summarizes the amount of common data between two clusters of lined up
clustering solutions. This is a ’forward’ measure because it takes into account
only the similarity between clusters of successive clustering (Ci, Ci+1) for i =
1, ..., m − 1.
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Fig. 2. Synthetic dataset with random noise

Cluster ordering. Let C = {C1, ..., Cm} the set of clusterings sorted as de-
scribed in the previous subsection, where each Ci = {Ci

1, ..., C
i
k} = {set of k

clusters}, and sim is a similarity matrix between clusters defined by (2). We
can compute a greedy approximation for the cluster ordering problem as follows:

Step 1. Sort the clusters C1 such that1:
|C1

1 | ≥ |C1
2 | ≥ ... ≥ |C1

k |
Step 2. Set Ĉ1

j = C1
j for j = 1, ..., k

Step 3. For each cluster in the current clustering and for each clustering in the
solution set compute:

Ĉi+1
j = argmax

Ci+1
s

{sim(Ĉi
j , C

i+1
s )} Ci+1

s �= Ĉi+1
r | r < j (3)

note that the max value in (3) is computed taking into account only
clusters not previously chosen.

Step 4. output the sequence of clusterings {Ĉ1, ..., Ĉm}

Intersection of solutions. The final step of our procedure attempts to com-
pute a consensus clustering among a set of ordered clusters by (3) as follows:

C̃intersect
j = {Ĉ1

j

⋂
Ĉ2

j

⋂
....

⋂
Ĉm

j } j = 1, ..., k (4)

4 Experimental Results

In order to test the proposed procedures we applied them to a synthetic dataset
composed by a mixture of four Gaussians with different variances and additive
noise (see Fig.2). We start by running the Optimization Algorithm (see [13]) to
find local minima obtaining 36 different solutions. We build the hierarchical tree
on the 36 solutions as shown in Fig.3, left, where leaves are labeled by numerals
in ascending order of distortion value. The tree is built using the complete linkage
method based on the similarity matrix as defined in [14]. We exploited interactive
1 |X| is the number of elements in set X.
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Fig. 3. Meta Clustering Dendrogram and MDS Clustering Map. Two subtrees have
been chosen on the dendrogram and the solutions corresponding to their leaves are
reported on the right map. They correspond to the two regions of minimum distorsion
on the map.
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Fig. 4. Results of the two consensus approach performed on the two selected subtrees.
First row, left to right: Ballclust on the blue subtrees (5 big clusters plus 2 singleton
clusters), intersection method on the blue subtree (5 big clusters and 15 points dis-
carded). Second row, left to right: Ballclust on the green subtree (4 big clusters plus
10 singleton clusters), intersection method on the green subtree (4 big clusters and 92
points discarded). It can be seen that the points discarded by intersection are mainly
noise.
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visualizations such as the hierarchical tree (see Fig.3, left), where the user can
select any subtree; the MDS Clustering Map (see Fig.3, right), that put into
evidence the solutions currently selected on the tree; the consensus solution
performed on the leaves of the selected subtree (see Fig.4). Finally, some quality
indicators are shown to the user, such as distortion values, number of clusters,
number of points per cluster, number of points eliminated by the intersection
method, mean dissimilarity between the solution and the leaves of the subtree,
etc. Looking at figure 4 it is evident that both meta-clusters lead, using consensus
techniques, to a final clustering that well explains the real data structure. The
intersection method excludes more data from the final clustering, but results in
a more robust solution.

5 Conclusions

In this paper we showed how Meta Clustering can be exploited to extract a
small number of different and representative solutions, together with consen-
sus algorithms. We used two different approaches to consensus clustering: the
first method, known in literature, builds a new clustering by minimizing a dis-
agreement function, while the second one, introduced in this paper, produces a
subpartition by cluster intersection. All our tools are implemented in an inter-
active environment that simplifies the analysis of the results. Our future plans
are to include the application of the most cited consensus algorithms in liter-
ature and the criteria to evaluate the quality of the proposed solutions in our
interactive visualization tool.
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