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Abstract. We present a novel Fuzzy Description Logic (DL) based approach to
automate matchmaking in e-marketplaces. We model traders’ preferences with
the aid of Fuzzy DLs and, given a request, use utility values computed w.r.t.
Pareto agreements to rank a set of offers. In particular, we introduce an expressive
Fuzzy DL, extended with concrete domains in order to handle numerical, as well
as non numerical features, and to deal with vagueness in buyer/seller preferences.
Hence, agents can express preferences as e.g., I am searching for a passenger car
costing about 22000e yet if the car has a GPS system and more than two-year
warranty I can spend up to 25000e. Noteworthy our matchmaking approach,
among all the possible matches, chooses the mutually beneficial ones.

1 Introduction

In an e-marketplace, a transaction can be organized in three different stages [21]: dis-
covery, negotiation and execution. During the discovery phase, the marketplace helps
the buyer to look for promising offers best matching her request. The result of this
matchmaking phase is a ranked list of offers (usually ranked with respect to buyer’s
preferences). In the eventual negotiation phase, the marketplace guides the buyer and
the seller to reach an agreement. With the execution of the transaction, the buyer and
the seller exchange the good. Usually negotiation and matchmaking are two distinct
processes executed sequentially. First, the marketplace ranks offers for the buyer tak-
ing into account her request, i.e., her preferences expressed w.r.t. some utility function,
then, usually, a negotiation starts with the seller having the best ranked supply, in order
to reach an agreement that satisfies both traders. That is, the marketplace tries to find
an agreement which is Pareto efficient 1, as well as mutually beneficial for both traders.
In other word, the marketplace, among all the actual Pareto solutions, looks for the
ones maximizing the traders’ utility value w.r.t. some criteria, e.g., the Nash bargaining

1 An agreement is Pareto efficient when it is not possible to improve the utility of one trader,
without lowering the utility of the opponent’s one.
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solution, 2 [14]. A typical marketplace uses only buyer’s preferences for discovery and
both traders’ preferences for negotiation. In a few words we can say that discovery is
“unilateral”, while negotiation is “bilateral”. Due to this difference, it might occur of-
ten that an offer resulting promising for the buyer i.e., with a good satisfaction degree
for her preferences, does not lead to an agreement because, on the other side, seller’s
preferences are not adequately satisfied. The idea behind the approach we propose in
this paper is to merge the discovery and negotiation phase in a bilateral matchmak-
ing. In our bilateral matchmaking scenario given a buyer’s request and a set of supplies,
the matchmaker computes for each supply a Pareto-efficient agreement maximazing the
degree of satisfaction of the traders (see Section 3), and then ranks all these agreements
w.r.t. the utility of the buyer.

We propose here a fuzzy Description Logic (see, [3] for an overview) endowed with
concrete domains to model relations among issues and as a communication language
between traders. In our proposal, concrete domains allow to deal with numerical fea-
tures, which are mixed, in preferences, with non numerical ones.

In our framework it is possible to model positive and negative preferences (I would
like a car black or gray, but not red), as well as conditional preferences (I would like
leather seats if the car is black) involving both numerical features and non numerical
ones (If you want a car with GPS system you have to wait at least one month) or only
numerical ones (I accept to pay more than 25000e only if there is more than a two-year
warranty).

The rest of the paper is structured as follows: next section discusses the fuzzy lan-
guage we adopt in order to express traders’ preferences. In Section 3 we set the stage
of the the bilateral matchmaking problem in fuzzy DL and then we illustrate how to
compute Pareto agreements. In Section 3.1 the whole process is highlighted with the
aid of a simple example. Related Work and discussion close the paper.

2 A Fuzzy DL to Express Preferences

In a bilateral matchmaking scenario traders express preferences involving numerical as
well as non numerical issues, in some way interrelated. The variables representing nu-
merical features are either involved in hard constraints or soft constraints. In hard con-
straints, the variables are always constrained by comparing them to some constant, like
(� price 20.000), or (� month warranty 60), and such constraints can be combined
into complex requirements, e.g., Sedan � (� price 25.000) � (� deliverytime 30), or
AlarmSystem � (� price 26.000). Vice-versa when numerical features are involved
in soft constraints, also called fuzzy constraints, the variables representing numerical
features are constrained by so-called fuzzy membership functions, as shown below.
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2 We recall that the Nash bargaining solution is the one that maximizes the product of the traders’
utilities.
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For instance, (∃price .ls(18000, 22000)) dictates that given a price it returns the de-
gree of truth to which the constraint is satisfied. Essentially, (∃price .ls(18000, 22000))
states that if the price is no higher than 18000 then the constraint is definitely satisfied,
while if the price is higher than 22000 then the constraint is definitely not satisfied. In
between 18000 and 22000, we use linear interpolation, given a price, to evaluate the
satisfaction degree of the constraint.

Fuzzy DL Now, we specify the syntax of our fuzzy DL for matchmaking. The fuzzy
DL considers the salient features of the fuzzyDL reasoner fuzzyDL 3 (see [3]). The
basic fuzzy DL we consider is the fuzzy DL SHIF(D) [3], i.e., SHIF with concrete
data types. But, for our purpose, we do not need individuals and assertions. So, let us
consider an alphabet for concepts names (denoted A), abstract roles names (denoted R),
i.e., binary predicates concrete roles names (denoted T ), and modifiers (denoted m).
Ra also contains a non-empty subset Fa of abstract feature names (denoted r), while
Rc contains a non-empty subset Fc of concrete feature names (denoted t). Features
are functional roles. Concepts in fuzzy SHIF (denoted C, D) are build as usual from
atomic concepts A and roles R: �, ⊥, A, C � D, C � D, ¬C, ∀R.C and ∃R.C. Now,
Fuzzy SHIF(D) extends SHIF with concrete data types [1], i.e., it has the additional
concept constructs ∀T.d, ∃T.d and DR, where

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)
DR → (� t val) | (� t val) | (= t val)

and val is an integer or a real depending on the range of the concrete feature t. Finally,
we further extend SHIF(D) as follows:

C, D → (w1C1 + w2C2 + . . . + wkCk) | C[� n] | C[� n]

where n ∈ [0, 1], wi ∈ [0, 1],
∑k

i=1 wi = 1. The expression (w1C1 + w2C2 + . . . +
wkCk) denotes a weighted sum, while C[� n] and C[� n] are threshold concepts.

A fuzzy DL ontology (also Knowledge Base, KB) K = 〈T , R〉 consists of a fuzzy
TBox T and a fuzzy RBox R. A fuzzy TBox T is a finite set of fuzzy General Concept
Inclusion axioms (GCIs) 〈C � D, n〉, where n ∈ (0, 1] and C, D are concepts. If the
truth value n is omitted then the value 1 is assumed. Informally, 〈C � D, n〉 states that
all instances of concept C are instances of concept D to degree n, that is, the subsump-
tion degree between C and D is at least n. For instance, 〈Sedan � PassengerCar, 1〉
states that a sedan is a passenger car. We write C = D as a shorthand of the two axioms
〈C � D, 1〉 and 〈D � C, 1〉. Axioms of the form A = D are called concept definitions
(e.g., , InsurancePlus = DriverInsurance � TheftInsurance). A fuzzy RBox R is a
finite set of role axioms of the form: (i) (fun R), stating that a role R is functional,
i.e., R is a feature; (ii) (trans R), stating that a role R is transitive; (iii) R1 � R2,
meaning that role R2 subsumes role R1; and (iii) (inv R1 R2), stating that role R2 is
the inverse of R1 (and vice versa). A simple role is a role which is neither transitive nor
has a transitive subroles. An important restriction is that functional needs to be simple.

3 http://gaia.isti.cnr.it/∼straccia/software/fuzzyDL/fuzzyDL.
html

http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.
html
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The main idea is that concepts and roles are interpreted as fuzzy subsets of an interpre-
tation’s domain. Therefore, axioms, rather than being “classical” evaluated (being either
true or false), they are “many-valued” evaluated, i.e., their evaluation takes a degree of
truth in [0, 1].

A fuzzy interpretation I = (ΔI , ·I) relative to a concrete domain D = 〈ΔD, C(D)〉
consists of a nonempty set ΔI (the domain), disjoint from ΔD, and of a fuzzy interpreta-
tion function ·I that assigns: (i) to each abstract concept C a function CI : ΔI → [0, 1];
(ii) to each abstract role R a function RI : ΔI × ΔI → [0, 1]; (iii) to each abstract
feature r a partial function rI : ΔI × ΔI → [0, 1] such that for all x ∈ ΔI there
is an unique y ∈ ΔI on which rI(x, y) is defined; (iv) to each concrete role T a
function RI : ΔI × ΔD → [0, 1]; (v) to each concrete feature t a partial function
tI : ΔI × ΔD → [0, 1] such that for all x ∈ ΔI there is an unique v ∈ ΔD on which
tI(x, v) is defined. In order to extend the mapping, the interpretation function ·I is
extended to roles and complex concepts, we need functions to define the negation, con-
junction, disjunction (called norms), etc of values in [0, 1]. The choice of them is not
arbitrary. Some well-known specific choices are described in the table below.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh

�x 1 − x
if x = 0 then 1

else 0
if x = 0 then 1

else 0 1 − x

x ⊗ y max(x + y − 1, 0) min(x, y) x · y min(x, y)
x ⊕ y min(x + y, 1) max(x, y) x + y − x · y max(x, y)

x ⇒ y
if x � y then 1

else 1 − x + y
if x � y then 1

else y
if x � y then 1

else y/x
max(1 − x, y)

For the sake of space we do not report the formal semantics of the logic we adopt.
The interested reader may refer to [3].

Proposition 1. If the maxima of x ⊗Ł y, with 〈x, y〉 ∈ S ⊆ [0, 1] × [0, 1], where ⊗Ł is
Łukasiewicz t-norm, is positive then the maxima is also Pareto optimal.

As we will see later on, relying on Łukasiewicz logic will guarantee that the solutions
of the bilateral matchmaking process are then Pareto optimal ones. Note also that the
maxima of x ⊗G y, with 〈x, y〉 ∈ S, is not Pareto optimal.

3 Multi Issue Bilateral Matchmaking in Fuzzy DLs

Marketplaces are typical scenarios where the notion of fuzziness appears frequently.
The concept of Cheap or Expensive are quite usual. In a similar way it is common to
have a fuzzy interpretation of numerical constraints. If a buyer looks for a car with a
price lesser than 15,000 eand a supplier selling his car for 15,500 e, we can not say
they do not match at all. Actually, they match with a certain degree. Hence, a fuzzy
language, as the one we presented in the previous sections, would be very useful to
model demands and supplies in matchmaking scenarios.

In bilateral matchmaking scenarios, both buyer’s request and seller’s offer can be
split into hard constraints and soft constraints. Hard constraints represent what has
to be (necessarily) satisfied in the final agreement; soft constraints represent traders’
preferences.
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Example 1. Consider the example where buyer’s request is: “I am searching for a Pas-
senger Car equipped with Diesel engine. I need the car as soon as possible, and I can
not wait more than one month. Preferably I would like to pay less than 22,000 e fur-
thermore I am willing to pay up to 24,000 e if warranty is greater than 160000 km. I
won’t pay more than 27,000 e”.

hard constraints: I want a Passenger Car provided with a Diesel engine. I can not wait
more than one month. I won’t pay more than 27,000 e.
soft constraints: I would like to pay less than 22,000 e furthermore I am willing to
pay up to 24,000 e if warranty is greater than 160000 km.

Definition 1 (Demand, Supply, Agreement). Given an ontology K = 〈T , R〉 repre-
senting the knowledge on a marketplace domain

– a demand is a concept definition β of the form B = C[� 1.0] (for Buyer) such that
〈T ∪ {β}, R〉 is satisfiable.

– a seller’s supply is a concept definition σ S = D[� 1.0] (for Seller) such that
〈T ∪ {σ}, R〉 is satisfiable.

– I is a possible deal between β and σ iff I |= 〈T ∪ {σ, β}, R〉. We also call I an
agreement.

σ and β represent the minimal requirements needed in the final agreement. As they
are mandatory the threshold value is set to 1.0, meaning that they have to be in the
agreement. In a bilateral matchmaking process, besides hard constraints, both traders
can express preferences on some (bundle of) issues. In our fuzzy DL framework pref-
erences can be represented as weighted formulae (see Section 2). More formally:

Definition 2 (Preferences). The buyer’s preference B is a weighted concept of the form
n1 ·β1 + . . .+nk ·βk, where each βi represents the subject of a buyer’s preference, and
ni is the weight associated to it. Analogously, the seller’s preference S is a weighted
concept of the form m1 · σ1 + . . . + mh · σh, where each σi represents the subject of a
seller’s preference, and mi is the weight associated to it.

For instance, the Buyer’s request in Example 1 is formalized as:

β is B = (PassengerCar � Diesel � (price � 27, 000) � (deliverytime � 30))[� 1.0]

β1 = (∃price.ls(22000 , 25000 ))

β2 = (∃km warranty .rs(140000 , 160000 )) → (∃price , ls(24000 , 27000 ))

where price and km warranty are concrete features. We normalize the sum of the
weights of both agents’ to 1 to eliminate outliers, and make the set of preferences com-
parable. The utility function, that we call preference utility, is then a weighted sum of
the preferences satisfied in the agreement. Dealing with concrete features, we always
have to set a reservation value [18] represented as a hard constraint. Reservation value
is the maximum (or minimum) value in the range of possible feature values to reach an
agreement, e.g., the maximum price the buyer wants to pay for a car or the minimum
warranty required, as well as, from the seller’s perspective the minimum price he will
accept to sell the car or the minimum delivery time. Usually, each participant knows its
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own reservation value and ignores the opponent’s one. In the following, given a con-
crete feature f we refer to reservation values of buyer and seller on f with rβ,f and
rσ,f respectively. Since reservation values represent hard constraints then buyer’s ones
are added to β and seller’s ones to σ (see Example 1). The last elements we have to
introduced in order to formally define an agreement in a bilateral matchmaking process
are disagreement thresholds, also called disagreement payoffs, tβ , tσ . They represent
the minimum utility that the agent need to reach to accept the agreement. Minimum
utilities may incorporate an agent’s attitude toward concluding the transaction, but also
overhead costs involved in the transaction itself, e.g., fixed taxes.

Definition 3. Given an ontology K = 〈T , R〉, a demand β, a set of buyer’s preferences
B and a disagreement threshold tβ , a supply σ and a set of seller’s preferences S and a
disagreement threshold tσ , an agreement in a bilateral matchmaking process is a model
I of

K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[� tβ ]), Sell = (S[� tσ])}, R〉 .

Clearly, not every agreement I is beneficial both for the buyer and for the seller. We
need a criterion to find the optimal mutual agreement. Given a demand and a set of
supplies, for each of them we will compute the optimal agreement with the demand
and we will rank them with respect to the buyer’s utility value in the optimal agreement
itself.

To compute an optimal agreement we rely on the notion of Pareto agreement. Given
an ontology K representing a set of constraints, we are interested in agreements that are
Pareto-efficient, in order to make traders as much as possible satisfied. In our fuzzy DL
based framework, in order to compute a Pareto agreement we procede as follows. Let K
be a fuzzy DL ontology, let β be the buyer’s demand, let σ be the seller’s supply, let B
and S be respectively the buyer’s and seller’s preferences. We define K̄ as the ontology

K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[� tβ ]), Sell = (S[� tσ])}, R〉 .

In K̄, the concept Buy collects all the buyer’s preferences. Hence, the higher is the
maximal degree of satisfiability of Buy (i.e., bsb(K̄, Buy)), the more the buyer is
satisfied. Similarly, the concept Sell collects all the seller’s preferences in such a way
that the higher is the maximal degree of satisfiability of Sell (i.e., bsb(K̄, Sell)), the
more the seller is satisfied. Now, it is clear that the best agreement among the buyer and
the seller is the one assigning the maximal degree of satisfiability to the conjunction
Buy�Sell (remember we use Łukasiewicz semantics). In formulae, once we determine

vP = bsb(K̄, Buy � Sell) ,

we can say that a Pareto agreement is a model Ī of K̄ such that

vP = sup
x∈ΔI

(Buy � Sell)I(x) > 0 ,

that is the Pareto agreement value is attained at Ī and has to be positive.

3.1 The Matchmaking Process

Summing up, given a demand and a set of supplies, the bilateral matchmaking process
is executed covering the following steps:
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Initial Setting. The buyer defines hard constraints β and preferences (soft constraints)
B with corresponding weights for each preference n1, n2, ..., nk , as well as the thresh-
old tβ . The same the sellers did when they posted the description of their supply within
the marketplace4. Notice that for numerical features involved in the negotiation process,
both in β and σ their respective reservation values are set either in the form (� f rf )
or in the form (� f rf ).

Find and Rank Agreements. For each supply in the marketplace, the matchmaker
computes the corresponding Pareto agreement (see Section 3). Given a supply σi and
the corresponding optimal agreement Īi, we rank σi w.r.t. the value of BuyĪi , i.e., w.r.t.
the buyer’s degree of satisfiability.

Let us present a tiny example in order to better clarify the approach. For the sake of
simplicity, we will consider only one seller, clearly, in a real case scenario, the whole
process will be repeated for each seller’s supply posted in the e-marketplace. Given the
toy ontology K = 〈T , ∅〉, with

T =

������
�����

Sedan � PassengerCar
ExternalColorBlack � ¬ExternalColorGray
SatelliteAlarm � AlarmSystem
InsurancePlus = DriverInsurance � TheftInsurance
NavigatorPack = SatelliteAlarm � GPS system

The buyer and the seller specify their hard and soft constraints. For each numerical
feature involved in soft constraints we associate a fuzzy function. If the bargainer has
stated a reservation value on that feature, it will be used in the definition of the fuzzy
function, otherwise a default value will be used.

β is B = PassengerCar � (� price 26000)[� 1.0]
β1 = ((∃HasAlarmSystem.AlarmSystem) → (∃Has Price.L(22300, 22750)))
β2 = ((∃HasInsurance.DriverInsurance)�

�((∃HasInsurance.TheftInsurance) � (∃HasInsurance.F ireInsurance)))
β3 = ((∃HasAirConditioning.Airconditioning) � (∃HasExColor.(ExColorBlack �

ExColorGray)))
β4 = (∃price.ls(22000 , 24000 ))
β5 = (∃km warranty .rs(150000 , 175000 ))
B = (0.1 · β1 + 0.2 · β2 + 0.1 · β3 + 0.2 · β4 + 0.4 · β5)[� 0.7]
σ is S = Sedan � (� price 22000)[� 1.0]
σ1 = ((∃HasNavigator.NavigatorPack) → (∃Has Price.R(22500, 22750))))
σ2 = (∃HasInsurance.InsuranceP lus)
σ3 = (∃km warranty .ls(100000 , 125000 ))
σ4 = (∃HasMWarranty.L(60,72))
σ5 = ((∃HasExColor.ExColorBlack) → (∃Has AirConditioning.AirConditioning))
S = (0.3 · σ1 + 0.1 · σ2 + 0.3 · σ3 + 0.1 · σ4 + 0.2 · σ5)[� 0.6]

4 An investigation on how to compute tβ ,tσ,ni and mi is out of the scope of this paper. We
can assume they are determined in advance by means of either direct assignment methods
(Ordering, Simple Assessing or Ratio Comparison) or pairwise comparison methods (like AHP
and Geometric Mean).
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Let K̄ = 〈T ∪ {σ, β} ∪ {Buy = (B[� tβ ]), Sell = (S[� tσ])}, R〉, it can be verified
that the Pareto optimal agreement value is

vP = bsb(K, Buy � Sell) = 0.7625 ,

with a Pareto agreement Ī that maximally satisfies

(= HasPrice 22500.0)�(= HasKMWarranty 100000.0)�(= HasMWarranty 60.0) .

4 Related Work and Discussion

Automated bilateral negotiation has been widely investigated, both in artificial intelli-
gence and in microeconomics research communities. AI-oriented research has usually
focused on automated negotiation among agents, and on designing high-level protocols
for agent interaction [6,11]. As stated in [13], negotiation mechanisms often involve the
presence of a mediator, which collects information from bargainers and exploits them
in order to propose an efficient negotiation outcome. Various recent proposals adopt a
mediator, including [10,7]. However in these approaches no semantic relations among
issues are investigated. Several recent logic-based approaches to negotiation are based
on propositional logic. In [4], Weighted Propositional Formulas (WPF) are used to ex-
press agents preferences in the allocation of indivisible goods, but no common knowl-
edge (as our ontology) is present. The work presented here builds on [17], where a basic
propositional logic framework endowed of a logical theory was proposed. In [16] the
approach was extended and generalized and complexity issues were discussed. We are
currently investigating other negotiation protocols, without the presence of a mediator,
allowing to reach an agreement in a reasonable amount of communication rounds. The
use of aggregate operators is also under investigation.

Acknowledgement. We wish to thank Francesco M. Donini for fruitful suggestions
and discussions.
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