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Abstract. Prognostic modelling involves grouping patients by risk of adverse 
outcome, typically by stratifying a severity of illness index obtained from a 
classifier or survival model.  The assignment of thresholds on the risk index de-
pends of pairwise statistical significance tests, notably the log-rank test. This 
paper proposes a new methodology to substantially improve the robustness of 
the stratification algorithm, by reference to a statistical and neural network 
prognostic study of longitudinal data from patients with operable breast cancer. 
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1   Introduction 

Stratification of patients by risk of adverse outcome is central to clinical practice. This 
begins with modelling empirical data either with a classifier or a failure time model, 
depending on whether the data represent a snapshot in time of the patient’s condition 
at diagnosis, or evolution of the disease over time in a longitudinal cohort study.  
Either way, the equivalent of the linear argument β.x in a Generalised Linear Model 
defines a prognostic index that ranks patient data by severity of the illness. In the case 
of breast cancer, typically a piecewise linear model is used [1] from which the prog-
nostic index can be derived.  A good example of this is the Nottingham Prognostic 
Index (NPI) which is widely used in clinical practice [2] and takes the form: NPI 
score = 0.2*Tumour size (cm) + Node Stage (1...3) + Histological Grade (1…3). 

The same principles apply when flexible models are used, such as generic non-
linear algorithms including artificial neural networks.   

In the case of discrete time models of longitudinal data, the main variable is the 
event rate, also called the hazard rate 

1( , ) ( | , )p k k k ih x t P t t t t x−= ≤ >  (1) 

which is the probability that patient p with characteristics xp survives to the end of 
time interval tk  given that the patient is known to have entered that interval without 
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experiencing the event of interest.  This is the output of the Partial Logistic Artificial 
Neural Network (PLANN) model [3]. This index is usually averaged over time to 
define a time-independent risk score over a predefined time interval. 

The equivalent index to the NPI score is now the log-odds ratio 
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where the conditional probability of class membership is directly estimated by the 
neural network output.  

Once the risk score is defined, the population of patients at risk needs to be strati-
fied for the purpose of tailoring adjuvant therapy and to enable comparisons between 
to be made between patient cohorts from different clinical centres, or subject to dif-
ferent clinical interventions, to be made between patients at similar risk by outcome. 
In survival analysis the most widely used statistic to test significant differences is the 
log-rank statistic.  

The next section reviews current practice in the application of the log-rank test to 
stratification of patient data.  This is followed by a case study of prognostic model-
ling of data from patients with operable breast cancer, comparing a statistical meth-
odology (Cox regression) with PLANN-ARD [4] that uses the ARD framework to 
regularise the PLANN model and performed well in comparison with alternatives in 
a recent double blind benchmark of linear and generic non-linear survival models 
[5]. In section 4 the prognostic scores obtained on the same data by these two meth-
ods are stratified, comparing the standard application of the log-rank test with a 
novel methodology proposed in this paper, to resolve significant issues of robustness 
in the allocation of patients into risk groups.  

2   Application of the Log-Rank Test to Stratification of Patient 
Data 

In the literature the approach to splitting risk indices into risk groups is not always 
stated clearly, sometimes stating the cut-off points of the respective risk scores with-
out a clear indication of how these were obtained [6-7]. Where the split of the indices 
is at all explained, expert knowledge has been a factor as in the case for the widely 
used NPI. This index is designed for ease of use and is derived by rounding a more 
cumbersome Cox regression calculation, the cut-off points being chosen to best match 
the risk groups from the original model which, in turn, was split on the basis of best 
match with known clinical groups. 

In another approach the indices are split into equal sized groups as suggested by 
Harrell et al [8]. This tutorial in biostatistics suggests using deciles as a starting choice 
and in a prognostic model for ovarian cancer Clark et al [9] used quartiles to partition 
the risk score. 

A suggestion for an automated method is to use successive top-down splits by 
maximising the log-rank test statistic [10]. 
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3   Prognostic Modelling of Breast Cancer Patients 

The reference data set for this case study consists of routinely acquired clinical re-
cords for patients recruited by Christie Hospital, Manchester, during 1983-89. The 
specific cohort of interest is patients with early, or operable breast cancer, defined 
using the standard TNM (Tumour, Nodes Metastasis) staging system as tumour size 
less than 5 cm, node stage less than 2 and without clinical symptoms of metastatic 
spread. This defines a case series (n=917) for a longitudinal cohort study with 5-year 
follow-up. The date of recruitment is the date of surgery and the event of interest is 
cancer specific mortality. 

Earlier studies identified the following six predictive variables: age at diagnosis, 
node stage, histological type (lobular, ductal or in situ), ratio of axillary nodes af-
fected to axilar nodes removed, pathological size (i.e. tumour size in cm) and oestro-
gen receptor count. All of these variables are banded and binary coded as 1-from-N. 
For details of the attribute assignment see [4]. 

Two analytical models were fitted to the data, starting with a piecewise linear 
model Cox regression, also known as proportional hazards. This model factorises 
dependence on time and the covariates, modelling the hazard rate for patient with 
clinical characteristics xp at time tk as follows: 
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where h0 denotes the empirical hazard for a reference population with covariate attrib-
utes all equal to zero and xi is the static covariate vector. This was taken to be the 
standard used by the software that implemented the piecewise linear model Cox re-
gression (SAS), which is the last attribute for each covariate. It was found that the risk 
group allocation is not sensitive to the choice of reference population. In contrast, the 
PLANN model is semi-parametric and with the following model for the hazard.  
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where the indices i and h denote the input and hidden node layers and the non linear 
function ( )g ⋅  is a sigmoid. 

Both models optimise the same objective function, namely the log-likelihood 
summed over the observed status of the patient sampled over of 60 months, with an 
indicator variable that is 1 for death attributed to breast cancer and 0 if the patient is 
observed alive. Using target values τpk as indicator labels and tl as the time index 
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Data for patients who are lost to follow-up are said to be right-censored and the pa-
tients no longer counts as part of the set of patients at risk. 
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In addition, over-fitting is avoided by regularisation, in the case of Cox regression 
using Akaike’s Information Criterion (AIC) and in the neural network model with 
Automatic Relevance Determination (ARD) [11].  

The prognostic index is defined in both cases as the covariate dependent term in 
eq. (2) and they are compared for the two models in fig. 1.   
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Fig. 1. Correlation between the prognostic derived with Cox regression and PLANN-ARD for a 
5-year study of a patient cohort with early breast cancer.  The proportionality of the hazards is 
borne out by the high correlation between the methods. In general, higher risk cohorts, longer 
follow-up times, studies of recurrence and models for other diseases will only be suitable for 
piecewise linear modelling if the proportionality of the hazards is observed. 

The next stage in the modelling process is to use the prognostic index as the basis 
to partition the patient cohort into groups at similar risk of adverse outcome. This is 
the subject of the next section.  

4   Robust Methodology for Stratification of Severity of Risk 

The most widely used method for stratification of an empirical distribution of prog-
nostic indices is to apply the log-rank test statistic from which the statistical signifi-
cance for pairwise data partitions can be measured. Given that the test only applies in 
a pairwise manner, that is to say, for separating two cohorts at a time, this requires a 
search for the most appropriate threshold to divide the distribution of prognostic index 
scores.  

An accepted strategy was implemented in SAS. It starts by sorting all the records 
by the value of the prognostic index. Next, the total data are divided into two groups 
at a threshold value that sweeps the full range of prognostic indices from minimum to  
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Fig. 2. The significance of data partitions in the top-down approach that is generally applied to 
stratify patient data in medical statistics detects the global maximum in (a), but this does not 
take into account that the statistical significance is high for a wider range of possible cut-off 
thresholds as shown in (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Results from the proposed methodology for allocating risk groups from a risk index for 
severity of illness. Note that the group allocation frequencies vary smoothly, in contrast with 
the spot values of the log-rank test statistic in fig. 2. 

maximum. For each threshold, the log-rank statistic is calculated and hence a p-value 
results. The maximum of the log-rank statistic determines the first cut-off point.  
The same method is then repeated in each of the separated cohorts until no further  
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Fig. 4. Actuarial estimates of survival obtained with the Kaplan-Meier method, for the same 
cases (n=917), stratified using the log-rank test over a 60 month period. The top row uses  
the standard method and the bottom row uses the proposed method for increasing robustness in 
the risk stratification. The left column uses Cox regression modelling and the right column the 
PLANN-ARD neural network. The two modelling algorithms should be consistent, shown in 
fig. 1 but this is only apparent when the bootstrap method was applied. 

partitioning exceeds a pre-set confidence level which, for this study, is as p-value of 
0.01 (99% of confidence), corresponding to a test statistic value of around seven. 

In practice, the test statistic very much exceeds this value across a wide range of 
thresholds with the associated p-values forming a plateau indicating that there are a 
wide range of candidate cutpoints in addition to the maximum log rank statistic that 
has been selected as can be seen in fig. 2. 

A new methodology is proposed to make the stratification of risk indices more ro-
bust. The new approach is bottom-up according to the following procedure which 
involves two nested loops: 

 

Inner loop 
 

i. Bin the risk indices into discrete intervals each containing a minimum number 
of cases (e.g. nmin=10). 

ii. Calculate the log-rank statistic for each pair of adjacent cells and aggregate 
together the two cells with the smallest value of this test statistic. 
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iii. Repeat the process until the long-rank statistic is significant for all remaining 
cell pairs. Outer loop 

 

i. Draw a sample of the risk indices, with replacement, of size equal to the origi-
nal data size – this is a bootstrap re-sample of the data. 

ii. Apply the inner loop to convergence using the re-sampled data. 
iii. Allocate each value in the full range of the risk index to a risk group, from 

1..Ngroups 
iv. Repeat from i. a given number of times (e.g. nresamples =3000) 
v. Identify the distribution of values of Ngroups and discard all group assignments 

different from the mode of this distribution. 
vi. For each value in the full range of the risk index, build a distribution of risk 

group allocations – this clearly indicates the cases that fit firmly into a risk 
group and those that are near the boundary between adjacent groups. 

vii. Allocate each case in the original sample to the mode of the distribution of 
risk groups. 

In the current case study, the risk group distributions obtained by this method are 
plotted in fig. 3. 

The robustness of this approach to risk group identification is illustrated in fig. 4. 
The small size sample causing the unexpected outcome profiles in the solution with 6 
risk groups may be an indication that this methodology is over-fitted to the training 
data. 

5   Conclusions 

The application of the log-rank test statistic to stratify patients by risk of adverse 
outcome is subject to variability due to the high prevalence of similar scores for many 
different risk thresholds. This results in unstable boundaries between strata, causing 
unwanted variability in allocation of patients into risk groups. 

This paper proposes a robust methodology for risk group allocation which exploits 
bootstrap re-sampling in order to stabilise the distribution of risk groups predicted for 
each value of the risk score index. The effectiveness and robustness of this methodol-
ogy are shown by reference to a case study for operable breast cancer, using data from 
a longitudinal cohort study with 5-year follow-up. 

In addition, the generic applicability of the proposed methodology is illustrated us-
ing both piecewise linear and neural network models of survival.  While the results 
are consistent with earlier studies of the same data, the current findings are regarded 
as definitive on account of the robustness that has been added to the stratification 
process. 
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