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Abstract. Organizing the publicly available Web content into highly systema-
tized domain ontologies is a necessary step in the evolvement of the Semantic 
Web. A large portion of that content called the deep Web is stored in relational 
databases and it is not accessible to Web search engines. Incorporation of the 
deep Web data results in domain ontologies richer both in content and in se-
mantic relations. In this paper we introduce a framework for an automatic map-
ping of relational database metadata and content to domain ontologies written in 
OWL. Relational constructs: relations, attributes and primary-foreign key asso-
ciations are translated to OWL classes, datatype properties and object proper-
ties. Database tuples become ontology instances. In order to define reference 
points for integration with other ontologies the constructed ontologies are fur-
ther enriched with additional semantics from the WordNet lexical database us-
ing word sense disambiguation mechanisms. A software implementation of the 
approach has been developed and evaluated on case study examples. 

Keywords: ontology, OWL, relational database, deep Web, WordNet, word 
sense disambiguation. 

1   Introduction 

The scientific community has universally recognized the Semantic Web [1] as the 
prospective evolvement direction of the current Web. The core of the Semantic Web 
are ontologies written in OWL [2], which formalize the domains by defining classes 
and their properties and by assigning individuals to the classes. 

Web search engines can access only the HTML pages, the “surface” of the Web, 
while much larger quantity of data, the deep Web [3], remains hidden: the data is 
available to the users but the pages do not exist until they are created dynamically as 
the result of a specific search.  

The extraction of deep Web data (i.e. the content and the metadata of databases used 
to generate the pages) is a twofold contribution to creating the circumstances that will 
lead to the evolvement of the Semantic Web. First, domain ontologies that incorporate 
the database content are much richer than those including only the HTML page content. 
Second, relational database metadata provide additional semantic knowledge that can 
successfully be transferred to ontologies. This knowledge is lost once the Web pages are 
created and can thus be obtained only by accessing the databases directly. Uncovering 
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the deep Web causes no security or privacy risks to organizations willing to participate 
in Semantic Web projects, either by disclosing relational schema metadata or by expos-
ing the already publicly available database content as a whole (i.e. as an ontology), 
instead in small portions (dynamically created HTML pages). 

In this paper we introduce a framework for automatically creating OWL ontologies 
from extracted relational database metadata and content. We first describe a set of 
transformations that translate the relational database schema into ontology classes, 
properties and constraints and then add the database content as ontology instances. 
One contribution of our work is to apply word sense disambiguation mechanisms to 
acquire additional semantics from the large spectrum of semantic relations in the 
WordNet lexical database [4]. Java-based prototype software that evaluates the pre-
sented approach on case study examples is another major contribution of the paper. 

The paper is structured as follows. Section 2 gives an overview of the related work. 
Rules for mapping relational metadata to OWL structures are explained in Section 3. 
Section 4 presents the process of adding additional semantics to the constructed on-
tologies and gives its evaluation. The architecture of the prototype software tool is 
illustrated in Section 5. Conclusions are drawn in Section 6. 

2   Related Work 

While many existing works focus on creating entity-relationship or object-based 
models from relational databases, only few solutions deal with automatic extraction of 
database semantics. However, none of them uses a standard ontology language. In [5] 
ontologies are generated semi-automatically from relational databases using Frame-
Logics. The main drawback is the fact that a continuous interaction with the user is 
required. Similarly, in [6] the primary focus is kept on analyzing key, data and attrib-
ute correlations, as well as their combinations. Basic concepts of automatic reverse 
engineering are considered in [7]. Relations are mapped as classes, their attributes as 
class attributes and tuples as ontology instances. The primary-foreign key mechanism 
and specialization are not considered. In [8] we sketched the principles for transform-
ing relational database metadata into OWL structures, but without discussing attribute 
constrains. Besides, neither a solution for acquiring additional semantics for ontology 
integration was proposed, nor a software implementation developed. A different ap-
proach is presented in [9], where OWL ontologies are created semi-automatically, 
corresponding to the content of the relational database and based on analyzing the 
resulting HTML forms. 

A detailed overview of the most up-to-date approaches to ontology integration is 
given in [10]. Providing an unambiguous meaning of ontology components (particu-
larly classes) is regarded as a necessary step to eliminate false matches caused by 
homonymy of terms. Annotation of the ontology components to be matched with 
entries from a background ontology with a comprehensive coverage of the domain of 
interest of the match target ontologies (such as WordNet) is considered necessary for 
the disambiguation of multiple possible meanings of terms. However, in most of the 
works annotations are either created manually or supposed to be provided earlier [11, 
12]. The ontology matching approach described in [13] provides disambiguation of 
terms to a certain extent. Disambiguation i.e. choosing the right sense for a word in its 
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occurring context is based on statistical analysis of ontology instances. On the con-
trary, we apply disambiguation techniques based exclusively on dictionary data. 

3   Rules for Mapping Relational Database Schema Components 

The process of generating an ontology from a relational database consists of two 
phases. In the first phase a relational database is translated to an OWL ontology, 
while in the second phase WordNet is used to enrich the ontology with additional 
semantics. The first phase is explained in the remainder of this section. The COM-
PANY database [8] is used as an example to illustrate the mapping procedure (Fig. 1). 
Primary key attributes are underlined. 

Mapping a relational database to an ontology is based on analyzing both the 
schema metadata (keys and attributes) and the content. The process of mapping a 
relational schema to OWL consists of several actions performed in the following 
order: (1) mapping relations, (2) mapping attributes, (3) mapping primary keys, (4) 
mapping 1:1 and N:1 binary relationships. 

 
 

    EMPLOYEE (Fname, Minit, Lname, Ssn, Bdate, Address, Sex, 
              Salary, Super_snn, Dnumber) 
    DEPARTMENT (Dname, Dnumber, Mgr_ssn, Mgr_start_date) 
    DEPT_LOCATIONS (Dnumber, Dlocation) 
    PROJECT (Pname, Pnumber, Plocation, Dnumber) 
    WORKS_ON (Ssn, Pnumber, Hours) 
    DEPENDENT (Ssn, Dependent_name, Sex, Bdate, Relationship) 

Fig. 1. Relational schema of the COMPANY database (adopted from [8]) 

Mapping relations. All entities from an initial entity-relationship diagram exist as 
relations in the corresponding relational database schema. Relations express a concept 
similar to ontology classes. Thus, mapping relations into OWL classes is a straight-
forward process. OWL classes are defined within the owl:Class tag. 

Mapping attributes. All attributes Aj in a relation R are mapped to corresponding 
OWL datatype properties Pj. Their domains and ranges are defined within the 
owl:DatatypeProperty tags (the left part of Fig. 2). The domain (rdfs:domain) of all 
those properties is a class C, which corresponds to the relation R. Each property is 
given the name of the corresponding attribute in addition with the prefix has (e.g. the 
attribute Lname, meaning last name, is translated into the datatype property hasL-
name). The range (rdfs:range) of each property is the OWL datatype that conforms to 
the attribute datatype. The database constraint UNIQUE on an attribute results in 
creating the OWL constraint maxCardinality=1 on the corresponding property, while 
NOT NULL implies the cardinality constraint minCardinality=1. 

Mapping primary keys. A primary key of a relation is an attribute (or a set of attrib-
utes) whose value is distinct for each individual tuple. A property created from a pri-
mary key attribute should be declared inverse functional. A property P is inverse 
functional if P(domainX, rangeZ) = P(domainY, rangeZ) implies domainX = domainY 
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i.e. the same range value always denotes a unique instance of the domain [2]. Relation 
EMPLOYEE has a primary key attribute Ssn. The corresponding OWL structure is 
the inverse functional property hasSsn (the right part of Fig. 2). We also state that 
minCardinality for this property is 1 when referring to class Employee (the value of a 
primary key cannot be NULL). 

 

Fig. 2. Mapping attributes and primary keys to an OWL ontology 

Mapping binary relationships. Database relations are connected by the mechanism 
of primary and foreign keys. Hence, if a foreign key attribute in a relation A points to 
the primary key of some other relation B, a semantic association exists between them. 
In the original ER diagram of the database those associations are specified explicitly 
as bidirectional binary relationships, their names and cardinality constraints being 
declared explicitly as well. The fact that no such information exists in a relational 
database causes a problem of naming the ontological structures created as the result of 
the mapping process. The unidirectional primary-foreign key association between 
relations A and B is translated into two OWL object properties (owl:ObjectProperty) 
between the corresponding OWL classes A and B. We introduce a generic naming 
mechanism, which adds the haveRelationTo prefix to the range class of each property. 

When a relation A points to a relation B with its foreign key, the related binary re-
lationship can either have the cardinality 1:1 or N:1. The cardinality is determined by 
analyzing the database content. The cardinality to-one corresponds to a functional 
property in OWL (owl:FunctionalProperty). The same instance of such a property’s 
domain class must always be joined to the same instance of the range class. 

The association between DEPARTMENT.mgr_ssn and EMPLOYEE.ssn has car-
dinality 1:1. The resulting object properties are presented in Fig. 3. Two functional 
properties are created, each of them representing one direction of the relationship: 
haveRelationToDepartment and haveRelationToEmployee. The domain and range 
tags inside the object property tag denote the direction of that part of the relationship. 
The functional property haveRelationToDepartment connects each instance of Em-
ployee (the domain class) to a single instance of Department (the range class). 

The only difference between mapping 1:1 binary relationships and N:1 relation-
ships to OWL ontologies is the fact that in the latter case only one of the two created 
object properties is functional: the one that represents the cardinality to-one. The 
primary-foreign key association between DEPARTMENT.dnumber and EM-
PLOYEE.dnumber states that an employee works in a single department (the resulting  
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Fig. 3. Mapping a 1:1 binary relationship to an OWL ontology 

 

Fig. 4. Mapping a N:1 binary relationship to an OWL ontology 

functional object property haveRelationToDepartment2, see Fig. 4), but more than 
one employee can work in a department (the non-functional property haveRelation-
ToEmployee2). 

4   Acquiring Additional Semantics from WordNet 

The primary goal of exporting a database into an ontology is to achieve a reliable 
knowledge source for a particular narrow domain, able to be easily integrated with 
other ontologies. The integration is impossible without defining a standard reference 
ontology or dictionary, whose entries have a determined, unambiguous meaning [10]. 
Thus, we try to associate every class in the target ontology to a WordNet sense. 

WordNet [4] is a large taxonomy of the English language, whose searchable lexi-
con is divided into four categories: nouns, verbs, adjectives and adverbs. Each input 
word can have more than one meaning (also called word sense). Each word sense can 
be described by one or more synonyms and is called a synset. A synset is given a 
description sentence called gloss and may have antonyms.  

WordNet includes a set of semantic relations for each word category. The largest 
spectrum of relations exists for nouns, which comprise about 80% of all WordNet 
entries [4]. Hyponymy/hypernymy is a transitive relation between nouns that repre-
sents subordination/superordination and exactly conforms to the concept of subclasses 
in ontologies. The part-whole relation is called meronymy/holonymy. Mero-
nymy/holonymy is only occasionally transitive. 

The created OWL classes that stem from a database are given some target URI (the 
value of the xml:base attribute, see Fig. 5), while all the associated WordNet-based 
classes are assigned to the same global URI (http://www.fer.hr/dbonto/wordnet#). 
WordNet class names contain all the synonym words of a synset as well as numbers 
determining the particular word sense of each word (e.g. Hall3 in Fig. 5). Classes 
originating from a database are not declared equivalent to the corresponding WordNet 
classes (equivalence assumes that two classes are subclasses of each other and share 
the same set of instances) but only their subclasses (Fig. 5: the database class Hall is 
associated to the third sense of hall in WordNet i.e. class Hall3). Such a definition 
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enables equally named classes from other databases (having different properties and 
thus not equivalent to their namesakes) to be associated to the same WordNet synset. 
In the ontology integration process those classes will possibly be merged into a single 
new class whose property set is the union of the two original sets. 

 

Fig. 5. Associating a class resulting from a database to a WordNet synset 

Recent word sense disambiguation approaches are based exclusively on dictionary 
data. They analyze either the semantic similarity between the synsets or their glosses 
and hyponyms. We use both the similarity calculation technique developed in [14] 
and the gloss-based technique outlined in [15]. Each table name (future ontology class 
name) is disambiguated using (1) names of all the table’s attributes, (2) names of all 
tables referenced by the foreign keys in the target table, (3) names of all tables that 
reference the target table. The disambiguated table names must be WordNet entries 
(either single-word or multiple-word ones): we can disambiguate table names such as 
hall or academic_year, but not student_course. On the other hand, names of attributes 
and other tables may be any combinations of words (in that case the contribution of 
each word is calculated separately) or abbreviations (the software connects to the 
Abbreviations.com Web page, www.abbreviations.com, and obtains the meaning). 

In [14] WordNet synsets (i.e. word senses) are interpreted as graph vertices, con-
nected by edges representing hyponymy/hypernymy and meronymy/holonymy (each 
edge is given a weight according to the relation type). All possible paths between the 
target vertex (corresponding to one sense of the target table name) and all vertices 
corresponding to different senses of the other word (attribute name, related table name 
or name particle) are constructed. Weights are multiplied across paths and the highest 
product becomes the semantic similarity between the target synsets. Since the calcu-
lated similarities for different attribute and related table names may point to different 
word senses, we take the arithmetic mean across all attributes and related tables as the 
final similarity score. We consider the disambiguation process successful if the high-
est score is at least 1.2 times bigger than the second highest (the ratio of 1.2 has been 
obtained by experiments on case study examples). 

In [15] word senses are disambiguated by finding the overlap among their sense 
definitions. For each of the two target synsets the following four sets are extracted: (1) 
all synonyms, (2) all words of the gloss, (3) synonyms in all hyponyms, (4) all words 
of all the hyponyms’ glosses. The existence of an overlap between any of those four 
sets belonging to the senses s and s’ of words w and w’, respectively, suggests a corre-
lation between the senses (i.e. synsets). If no overlap exists for other pairs of senses of 
w and w’ or if the size of that overlap is smaller (in our case at least 1.2 times), the 
disambiguation is successful. For example, w’=computer disambiguates w=terminal 
since it appears only in the gloss of its third sense. 

Experiments are performed for the case study example in Fig. 1 (company data-
base) as well as our real-world faculty database, which maintains the data about the 
students and the courses they attend. Disambiguation is needed for about 30% of table 
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names, which conform to multiple-sense WordNet entries; other 40% of names match 
single-sense entries. The disambiguation technique presented in [15] shows higher 
recall, precision and F-measure for both databases than the technique presented in 
[14] or when both techniques are applied in parallel and only unanimous results con-
sidered (Table 1). 

Table 1. Comparison of word sense disambiguation techniques 

 # of 
tables 

Yang &Powers Liu, Yu & Meng both in parallel 
Rec. Prec. F-m. Rec. Prec. F-m. Rec. Prec. F-m. 

Company 2 1.000 0.500 0.667 1.000 1.000 1.000 0.500 1.000 0.667 
Faculty 8 0.250 0.000 0.000 0.875 0.857 0.867 0.625 0.800 0.702  

5   Prototype Software Tool 

A Java prototype tool (Fig. 6) has been developed in order to test our approach on 
different relational databases as well as to determine which of the presented word 
sense disambiguation techniques is more suitable for our purpose. The software was 
encoded in Java 1.5. The JDBC API v3.0 [16] provides access to the input relational 
databases. The JWNL API v1.3 [17] is used as an interface to WordNet files (we use 
WordNet v2.1 downloadable from the Princeton website [4]). Jena v2.4 [18] is ap-
plied to produce the output OWL ontologies. 

 

Fig. 6. The architecture of the Java prototype tool 

6   Conclusion 

This paper presents a framework for an automatic transfer of semantics from rela-
tional databases to OWL ontologies in order to exploit the large potential of the “hid-
den” deep Web relational data in the implementation of the Semantic Web. We use 
OWL as the target ontology language due to its expressivity and standardization.  

In the first phase of the process relational constructs: relations, attributes and pri-
mary-foreign key associations between relations, are translated into OWL classes, 
datatype properties and object properties. The constructed ontologies are enriched in 
the second phase by acquiring additional semantics from the WordNet lexical data-
base, which defines reference points for integration with other ontologies.  

A software implementation of the approach has been developed and tested on two 
case study examples. The word sense disambiguation mechanism based on analyzing 
word glosses emerges as the best solution for the second phase of the process. 
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