
Tracing Malicious Proxies in Proxy
Re-encryption

Benôıt Libert1 and Damien Vergnaud2

1 Université Catholique de Louvain, Crypto Group
Place du Levant, 3 – 1348 Louvain-la-Neuve – Belgium

2 École normale supérieure – C.N.R.S. – I.N.R.I.A.
45, Rue d’Ulm – 75230 Paris CEDEX 05 – France

Abstract. In 1998, Blaze, Bleumer and Strauss put forth a crypto-
graphic primitive, termed proxy re-encryption, where a semi-trusted
proxy is given some piece of information that enables the re-encryption of
ciphertexts from one key to another. Unidirectional schemes only allow
translating from the delegator to the delegatee and not in the opposite
direction. In all constructions described so far, although colluding proxies
and delegatees cannot expose the delegator’s long term secret, they can
derive and disclose sub-keys that suffice to open all translatable cipher-
texts sent to the delegator. They can also generate new re-encryption
keys for receivers that are not trusted by the delegator. In this paper, we
propose traceable proxy re-encryption systems, where proxies that leak
their re-encryption key can be identified by the delegator. The primi-
tive does not preclude illegal transfers of delegation but rather strives
to deter them. We give security definitions for this new primitive and a
construction meeting the formalized requirements. This construction is
fairly efficient, with ciphertexts that have logarithmic size in the number
of delegations, but uses a non-black-box tracing algorithm. We discuss
how to provide the scheme with a black box tracing mechanism at the
expense of longer ciphertexts.

Keywords: unidirectional proxy re-encryption, transferability issues,
collusion detection and traceability.

1 Introduction

Ten years ago, Blaze, Bleumer and Strauss proposed a cryptographic primitive
called proxy re-encryption (PRE), in which a proxy transforms – without being
able to infer any information on the corresponding plaintext – a ciphertext com-
puted under Alice’s public key into one that can be opened using Bob’s secret
key. In all known constructions, if Bob and a malicious proxy cooperate, they
can derive new re-encryption keys without Alice’s consent. The purpose of this
paper is to coin a new notion, that we call traceable proxy re-encryption (TPRE)
in which such misbehaving proxies can be identified by the delegator. We for-
malize security notions for this new primitive and give a reasonably efficient
construction fitting this model under appropriate complexity assumptions.

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 332–353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tracing Malicious Proxies in Proxy Re-encryption 333

Related work. Blaze et al. [8] proposed the first PRE scheme, where plaintexts
and secret keys remain hidden from the proxy. Unfortunately, their scheme has
inherent limitations: the proxy key also allows translating ciphertexts from Bob
to Alice, which may be undesirable, and the proxy and the delegatee can collude
to expose the delegator’s private key.

In 2005, Ateniese, Fu, Green and Hohenberger [4,5] showed how to construct
unidirectional schemes using bilinear maps and simultaneously prevent proxies
from colluding with delegatees in order to expose the delegator’s long term se-
cret. Their schemes involve two distinct encryption algorithms: first-level encryp-
tions are not translatable whilst second-level encryptions can be re-encrypted by
proxies into ciphertexts that are openable by delegatees. Let (G1, G2, GT , e, ψ)
be a cryptographic bilinear structure (denoted multiplicatively) of prime order
p and let g be a generator of G1 (see § 2.2 for a definition). Alice and Bob
publish the public keys yA = ga and yB = gb (respectively) and keep secret
their discrete logarithms a and b. To encrypt a message m ∈ GT to Alice at
the second level, a sender picks a random r ∈ Z∗

p and transmits the pair (c1, c2)
where c1 = yr

A and c2 = m · e(g, h)r where h = ψ(g). The proxy is given
the re-encryption key hb/a and can translate ciphertexts from Alice to Bob by
computing (e(c1, h

b/a), c2) = (e(g, h)br, m · e(g, h)r). The decryption operations
are somewhat similar to those of the Elgamal [18] cryptosystem. This strategy
does not completely withstand collusions since, if Bob and the proxy cooperates,
they obtain the element h1/a which suffices to decrypt any second-level cipher-
text intended to Alice. Even if the last few years saw a renewed interest in proxy
re-encryption [4,5,25,16,19,24], all known constructions entail to trust proxies
not to collude with certain participants. Otherwise, sub-keys such as h1/a or
new re-encryption keys can be derived and disclosed over the Internet.

Transferability issues in proxy re-encryption. Following [21], a PRE
scheme is said non-transferable if the proxy and a set of colluding delegatees
cannot re-delegate their decryption rights. The first question that comes to mind
is whether transferability is really preventable since the delegatee can always de-
crypt and forward the plaintext. However, the difficulty in retransmitting data
restricts this behavior. The security goal is therefore to prevent the delegatee
and the proxy to provide another party with a secret value that can be used of-
fline to decrypt the delegator’s ciphertexts. Obviously, the delegatee can always
send its secret key to this party, but in doing so, it assumes a security risk that
is potentially injurious to itself. In the simple aforementioned unidirectional sys-
tem, colluders can unfortunately disclose h1/a which is clearly harmless to the
cheating delegatee and allows for the offline opening of second level ciphertexts
encrypted for the delegator. All other existing unidirectional [5] schemes are ac-
tually vulnerable to this kind of attack.

A desirable security goal is therefore to prevent a malicious proxy (or a col-
lusion of several rogue proxies) interacting with users to take such actions. To
the best of our knowledge, this non-transferability property has been elusive in
the literature. This is not surprising since, given that proxies and delegatees can
always decrypt level 2 ciphertexts by combining their secrets, they must be able

334 B. Libert and D. Vergnaud

to jointly compute data that allows decrypting and, once revealed to a malicious
third party, ends up with a transfer of delegation. Therefore, discouraging such
behaviors seems much easier than preventing them.

Our contributions. We introduce a new notion, that we call traceable proxy
re-encryption (TPRE), where proxies that reveal their re-encryption key to third
parties can be identified by the delegator. The primitive does not preclude il-
legal transfers of delegation but provides a disincentive to them. Unlike prior
unidirectional PRE systems, when delegators come across an illegally formed
re-encryption key, they can determine its source among potentially malicious
proxies. It also allows tracing delegatees and proxies that pool their secrets to
disclose a pirate decryption sub-key which suffices to decipher ciphertexts orig-
inally intended for the delegator. Identifying dishonest delegatees is useful in
applications such as PRE-based file storage systems [4,5] where there is a single
proxy (i.e. the access control server) and many delegatees (i.e. end users). When
a pirate decryption sub-key is disclosed in such a situation, we can find out which
client broke into the access control server to generate it.

Deterring potentially harmful actions from parties that are a priori trustwor-
thy may seem overburden: no one would elect a delegatee without having high
confidence in his honesty. In these regards, the present work is somehow related
to ideas from Goyal [20] that aim at avoiding to place too much trust in en-
tities (i.e. trusted authorities in identity-based encryption schemes) that must
be trusted anyway. Arguably, users are less reluctant to grant their trust when
abuses of delegated power are detectable and discouraged.

We formalize security notions for TPRE and give efficient implementations
meeting these requirements under different pairing-related assumptions. Our
constructions borrow techniques from traitor tracing schemes [17]. We also make
use of a special kind of identity-based encryption (IBE) system (where arbitrary
strings such as email addresses [27,11] can act as a public keys so as to avoid
costly digital certificates), introduced in 2006 by Abdalla et al. and called wild-
card identity-based encryption (WIBE) [1].

Our main scheme is fairly efficient, with ciphertexts of logarithmic size in the
number of delegations, but the tracing system is non-black-box. Its security relies
on (formerly used) mild pairing-related assumptions and the security analysis
takes place in the standard model (without the random oracle heuristic [7]).

We also discuss how the scheme can be equipped with a black-box tracing
mechanism at the expense of longer ciphertexts. The design principle is to asso-
ciate re-encryption keys with codewords from a collusion-secure code [14]. This
scheme is inspired from a WIBE-based identity-based traitor tracing scheme
[2] and inherits its disadvantages: its computational overhead and the size of
ciphertexts are linear in the length of the underlying code.

Roadmap. In the upcoming sections, we first define the concept of TPRE
scheme and its security model. Then, we describe the intractability assumption
that our scheme relies on. In section 3, we detail our scheme and first provide

Tracing Malicious Proxies in Proxy Re-encryption 335

some intuition of the underlying idea. We finally give security results. Section 4
briefly explains how to obtain a black-box tracing mechanism.

2 Preliminaries

2.1 Model and Security Notions

Definition 1. A (single hop) unidirectional PRE scheme is a tuple of algorithms
(Global-setup, Keygen, ReKeygen, CheckKey, Enc1, Enc2, ReEnc, Dec1, Dec2):

- Global-setup(λ) → par: on input of a security parameter λ, this algorithm
produces public parameters par to be used by all parties.

- Keygen(λ, par) → (sk, pk): on input of common public parameters par and a
security parameter λ, all parties use this randomized algorithm to generate
a private/public key pair (sk, pk).

- ReKeygen(par, ski, pkj) → Rij : given public parameters par, user i’s private
key ski and user j’s public key pkj, this (possibly randomized) algorithm
outputs a key Rij that allows re-encrypting second level ciphertexts intended
to i into first level ciphertexts encrypted for j.

- CheckKey(par, ski, pkj , Rij) → b ∈ {0, 1}: is a deterministic algorithm check-
ing the well-formedness of Rij as a proxy key for re-encrypting messages
from user i to user j.

- Enc1(par, pk, m) → C: on input of public parameters par, a receiver’s public
key pk and a plaintext m, this probabilistic algorithm outputs a first level
ciphertext that cannot be re-encrypted for another party.

- Enc2(par, pk, m) → C: given public parameters par, a receiver’s public key
pk and a plaintext m, this randomized algorithm outputs a second level ci-
phertext that can be re-encrypted into a first level ciphertext (intended to a
possibly different receiver) using the appropriate re-encryption key.

- ReEnc(par, Rij , C) → C′: this (possibly randomized) algorithm takes as input
public parameters par, a re-encryption key Rij and a second level ciphertext
C encrypted for user i. The output is a first level ciphertext C′ re-encrypted
for user j. In single hop schemes, C′ cannot be re-encrypted any further.

- Dec1(par, sk, C) → m: given a private key sk, a first level ciphertext C and
system-wide parameters par, this algorithm outputs a plaintext m ∈ {0, 1}∗.

- Dec2(par, sk, C) → m: given a private key sk, a second level ciphertext C
and public parameters par, this algorithm returns a plaintext m ∈ {0, 1}∗.

For any common public parameters par, any message m ∈ {0, 1}∗ and any couple
of private/public key pair (ski, pki), (skj , pkj) these algorithms should satisfy the
following correctness conditions:

Dec1(par, ski, Enc1(par, pki, m)) = m;
Dec2(par, ski, Enc2(par, pki, m)) = m;

Dec1(par, skj , ReEnc(par, ReKeygen(par, ski, pkj), Enc2(par, pki, m))) = m;
CheckKey(par, ski, pkj , ReEnc(par, ReKeygen(par, ski, pkj))) = 1.

336 B. Libert and D. Vergnaud

In a traceable PRE scheme, there is an additional procedure Trace which, given
user i’s private key ski as well as a pirate proxy key Rbad

ij allowing for illegal
translations from i to another user j, outputs the identity of at least one of the
malicious proxies that made up Rbad

ij . Algorithm Trace can also take as input a
pirate decryption key Rbad

i� that, instead of re-encrypting second level ciphertexts
intended for user i, simply directly recovers the underlying plaintext. In this
case, the tracing algorithm should also determine which malicious delegatee has
colluded with the incriminated proxy to generate of Rbad

i� .

Semantic security. As in [4,5,16], we require that users publicize public keys only
if they hold the corresponding private keys. This amounts to adopt a trusted key
generation model or a model where all parties have to prove knowledge of their
secret keys when registering their public keys upon certification.

Like [4,5,16], we also assume a static model where adversaries do not choose
whom to corrupt depending on the information gathered so far.

Definition 2. A (single-hop) unidirectional PRE scheme is semantically secure
at level 2 if the probability

Pr[(pk�, sk�)←Keygen(λ), {(pkx, skx) ← Keygen(λ)}, {(pkh, skh) ← Keygen(λ)},

{Rx� ← ReKeygen(skx, pk�)},

{R�h ← ReKeygen(sk�, pkh)}, {Rh� ← ReKeygen(skh, pk�)},

{Rhx ← ReKeygen(skh, pkx)}, {Rxh ← ReKeygen(skx, pkh)},

{Rhh′ ← ReKeygen(skh, pkh′)}, {Rxx′ ← ReKeygen(skx, pkx′)},

(m0, m1, St) ← A
(
pk�, {(pkx, skx)}, {pkh}, {Rx�}, {Rh�},

{R�h}, {Rxh}, {Rhx}, {Rhh′}, {Rxx′}
)
,

d� R← {0, 1}, C� = Enc2(md� , pk�), d′ ← A(C�, St) :
d′ = d�]

is negligibly (as a function of the security parameter λ) close to 1/2 for any
PPT adversary A. In our notation, St is a state information maintained by A
while (pk�, sk�) is the target user’s key pair generated by the challenger that also
chooses other keys for corrupt and honest parties. For other honest parties, keys
are subscripted by h or h′ and we subscript corrupt keys by x or x′. The adversary
is granted access to all re-encryption keys but those for re-encrypting from the
target user to a corrupt one. A is said to have advantage ε if this probability,
taken over all coin tosses, is at least 1/2 + ε.

Security of first level ciphertexts. Definition 2 provides adversaries with a second
level challenge ciphertext. An orthogonal definition captures A’s inability to
distinguish first level ciphertexts as well. For single-hop schemes, the adversary
is allowed to see all re-encryption keys in this definition. As first level ciphertexts
cannot be re-encrypted any further, there is no reason to hold specific honest-
to-corrupt re-encryption keys back from the adversary. A unidirectional scheme
fitting this definition is said semantically secure at the first level.

Tracing Malicious Proxies in Proxy Re-encryption 337

Digital-identity security in PRE. In [4], Ateniese et al. define an important
security requirement for unidirectional PRE schemes. This notion, termed master
secret security or digital-identity security, demands that no coalition of dishonest
delegatees and proxies be able to pool their keys in order to expose the private key
of their delegator. More formally, the following probability should be negligible
as a function of the security parameter λ. In our notations, we superscript pk
and sk with � to denote the keys of the target honest user whereas adversarial
users’ keys are subscripted by x.

Pr[(pk�, sk�) ← Keygen(λ), {(pkx, skx) ← Keygen(λ)},

{R�x ← ReKeygen(sk�, pkx)}, {Rx� ← ReKeygen(skx, pk�)},

γ ← A(pk�, {(pkx, skx)}, {R�x}, {Rx�}) : γ = sk�]

While reasonable in many applications, this definition does not consider colluding
delegatees and proxies who attempt to produce a new re-encryption key R�x′

that was not originally given and allows re-encrypting from the target user to
another malicious party x′. As already stressed, all known unidirectional PRE
schemes fail to resist such attacks. Although colluders are unable to expose the
delegator’s long term secret sk�, they can still compute a sub-key skbad that
allows decrypting ciphertexts at level 2. To address this issue, our model asks
that the cheated delegator be able to determine – at least partially and with
high probability – where the illegal transfer of delegation stems from or who
crafted the pirate sub-key skbad. In our scheme, this unfortunately comes at the
expense of sacrificing the key and ciphertext optimality properties met in [4,5].

Traceability. Consider a set of proxies P1, P2, . . . , PN that receive re-encryption
keys allowing for the translation of ciphertexts from user A to his delegatees
B1, B2, . . . , BN . We say that a PRE scheme is traceable if any subset of these
proxies colluding with delegatees B1, B2, . . . , BN is unable to generate a new
re-encryption key that cannot be traced back to one of them.

Definition 3. A unidirectional PRE scheme is traceable if no PPT adversary
A has non-negligible probability of success in the following game:

1. The challenger provides A with the target user’s public key pk0, public keys
pki for other honest parties and key pairs (ski, pki) for corrupt users.

2. On multiple occasions, A may invoke a re-encryption key generation oracle
Orkey. When queried on input of public keys (pki, pkj) that were both ob-
tained from the challenger, this oracle returns the re-encryption key Rij =
ReKeygen(ski, pkj). Let T be the set of proxy keys obtained by A.

3. A outputs a pirate re-encryption key R�
0t together with a public key pkt that

belongs to the public key space of the scheme (i.e. for which an associated
private key exists) and differs from public keys of the target user’s delegatees.
The adversary is declared successful if the following two conditions hold:

338 B. Libert and D. Vergnaud

a. CheckKey(sk0, pkt, R
�
0t) = 1 (i.e. R�

0t is a valid re-encryption key).
b. The tracing procedure (run by the challenger on R�

0t using the target
user’s secret sk0) fails to identify a correct proxy key Rbad

0j ∈ T . That is,
if Rbad

0j = Trace(sk0, R
�
0t, pkt), we have either Rbad

0j = ⊥ or if Rbad
0j �∈ T .

The pirate key R�
0t should re-encrypt from user 0 to a user having public key pkt.

For simplicity, we assume that the latter is supplied by A at the end of the game.
When the target user finds a suspicious re-encryption key R� in practice, he does
not a priori know to whom ciphertexts can be re-encrypted using R�. However,
he can determine it by simply testing whether CheckKey(sk0, p̃kj , R

�) = 1, for
j = 1, . . . , η, given a set of suspicious public keys {p̃k1, . . . , p̃kη}.

We insist that pkt may differ from public keys that are generated by the
challenger at step 1 of the game. Besides, the definition does not force A to
reveal the matching private key skt to the challenger: the only requirement is
that such a private key exists.

At first glance, one may wonder why A should be allowed to come up with
an arbitrary pkt of her choosing whilst delegation queries to Orkey are only
permitted for delegatees’ public keys that were chosen by the challenger.

We actually find it natural to assume that honest users only delegate to parties
whose public key has been properly certified and for which knowledge of the
underlying secret key has been demonstrated to the CA at key registration. In
contrast, pkt is not meant to have a legal use and simply provides a way to
covertly translate the target user’s communications. Hence, there is no reason
to assume that the challenger learns skt whatsoever. Finally, when the proxy is
compromised but the delegatee j remains honest, the adversary obtains R0j such
that CheckKey(sk0, pkj, R0j) = 1. Then, she might be able to compute R�

0t and
pkt (as a function of pkj) such that CheckKey(sk0, pkt, R

�
0t) = 1. In this case, the

adversary clearly does not know skt. The property that we require is that R�
0t

can be traced back to the proxy involved in its creation. Then, if pkt happens
to be a registered public key (for which a proof of knowledge of the underlying
private key was provided), the delegator figures out that the original delegatee
was also part of the collusion, as well as the user holding skt.

Bounded Traceability. Similarly to common situations in traitor tracing schemes,
it may happen that traceability is guaranteed only if the adversary makes at most
k re-encryption key queries involving the secret sk0 of the target user acting as a
delegator (regardless of whether the delegatee is honest). On the other hand, she
is granted as many re-encryption key queries involving other honest delegators
as she likes. Schemes that are secure in this scenario are said k-traceable.

Black Box Traceability. A new analogy with traitor tracing primitives suggests
to strengthen the definition by assuming that the adversary only outputs a re-
encryption device P that translates ciphertexts with non-negligible probability
but cannot be reverse-engineered so as to extract the built-in key. Indeed, it has
been reported [22] that proxy re-encryption systems can be safely obfuscated.
It would thus be desirable to have a black-box tracing procedure to recover the
identity of colluding parties using P as a re-encryption oracle. A variant of our

Tracing Malicious Proxies in Proxy Re-encryption 339

scheme can be equipped with a limited black-box tracing mechanism. Due to the
use of collusion-secure codes [14], this variant unfortunately features unreason-
ably large ciphertexts and cannot be considered as being practical. Moreover,
it only tolerates a bounded number of traitors k. Lastly, it does not allow to
determine who the dishonest delegatees are when running a pirate decryption
device D in tracing mode: only colluding proxies can be traced.

2.2 Bilinear Maps and Complexity Assumptions

We consider a configuration of bilinear map groups (G1, G2, GT) of prime order
p with a mapping e : G1×G2 → GT and an isomorphism ψ : G2 → G1 satisfying
the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G1 × G2 and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) �= 1GT whenever g �= 1G1 and h �= 1G2 .

We will need an extension of the Decision Bilinear Diffie-Hellman (DBDH) as-
sumption which is the intractability of distinguishing e(g, h)abc given (ha, hb, hc).

Definition 4. In bilinear map groups (G1, G2, GT), The Augmented Deci-
sion Bilinear Diffie-Hellman Problem (ADBDH) is to distinguish e(g, h)abc

from random elements of GT given (g, h, ha, hb, hc, ha2b) ∈ G1 × G5
2. A distin-

guisher D (τ, ε)-breaks the assumption if it has running time τ and

Adv(D) = |Pr[D(ha, hb, hc, ha2b, e(g, h)abc) = 1|a, b, c R← Z
∗
p]

− Pr[D(ha, hb, hc, ha2b, e(g, h)z) = 1|a, b, c, z R← Z
∗
p]| ≥ ε

This problem is not easier than breaking the 	-Bilinear Diffie-Hellman Expo-
nent (-BDHE) assumption of [12] that implies the infeasibility of recognizing
e(ψ(h′), h)(a

�+1) given (h′, h, ha, h(a2), . . . , h(a�), h(a�+2)) ∈ G
�+4
2 . When a = b,

ADBDH boils down to a special case1 of 	-BDHE with 	 = 1. The generic hard-
ness ADBDH is thus implied by that of 	-BDHE, which was shown in [10].

Our proof of traceability relies on a problem named 2-out-of-3 Diffie-Hellman
in [23], where its generic intractability was shown in prime order groups. A not
harder version of this problem was previously considered in [3].

Definition 5. The 2-out-of-3 Diffie-Hellman problem (2-3-CDH) is, given
(h, ha, hb) ∈ G3, to find a pair (C, Cab) ∈ G × G with C �= 1G.

3 A Scheme with Logarithmic Complexity

This section presents our main scheme providing non-black-box traceability. It
borrows ideas from the identity-based traitor tracing described in [2].
1 It is actually the hardness of deciding if T

?= e(g, h)a2c given (h′ = hc, ha, h(a3)).

340 B. Libert and D. Vergnaud

3.1 Intuition

To provide a better intuition of the scheme, we need the recall the Waters IBE
[29] and the notion of wildcard IBE [1]. The former involves a trusted party that
publishes a master public key mpk = (Z = e(g, h)z, V0, V1, . . . , Vn) ∈ GT ×G

n+1
2

where z R← Z
∗
p and n is the length of identity strings. The trusted authority

keeps a master secret msk = hz to itself. This secret is used to derive private
keys from user’s identities id = i1 . . . in ∈ {0, 1}n by computing

did = (d1, d2) =
(
msk · (V0 ·

n∏

�=1

V i�

�)r , hr
)

for a randomly chosen exponent r R← Z∗
p. Such a private key always satisfies

e(g, d1) = Z · e(U0 ·
n∏

�=1

U�, d2) (1)

where U� = ψ(V�) for 	 = 0, . . . , n. Therefore, a ciphertext encrypted as

C0 = m · Zs C1 = gs C2 =
(
U0 ·

n∏

�=1

U i�

�

)s
,

for a random s R← Z∗
p, can be deciphered by computing m = C0 · e(C2, d2)/e

(C1, d1) (this is easily observed by raising both members of (1) to the power s).
Wildcard IBE schemes [1] (or WIBE for short) are hierarchical IBE systems

where certain levels of the hierarchy can be left unspecified by a sender will-
ing to allow decryption by any hierarchy member whose identity fits a certain
pattern. These WIBE systems were notably used to construct multi-receiver en-
cryption systems. In the case of Waters’ IBE, the unique level of the hierarchy
can be left unspecified by replacing the ciphertext component C2 with a vector
(Us

0 , Us
1 , . . . Us

n) so that C2 =
(
U0 ·

∏n
�=1 U i�

�

)s can be reconstructed at decryption
for any identity id ∈ {0, 1}n. Placing such a “wildcard” at the unique level of
the hierarchy permits decryption by anyone holding a decryption key for some
identity. The same underlying idea was used in [2] to devise an identity-based
traitor tracing scheme from a 2-level WIBE built on [29].

At high level, our scheme can be seen as using a multi-receiver encryption
scheme derived from the single level Wa-WIBE of [1]. Instead of assigning a
unique identifier to decryption keys as in [2], we embed it in re-encryption keys.

These re-encryption keys are generated by binding decryption keys of the
multi-receiver scheme to delegatees’ public keys. Identity-based private keys are
associated with serial numbers (seen as identities) and tied up to the public keys
of entities to whom messages must be re-encrypted. More precisely, we let each
party j generate an additional public key component Yj = hyj and a delegation
from user i to user j is made effective by the re-encryption key

Rij = (id, Aij , Bij) =
(
id, Y zi

j · (Vi,0 ·
n∏

�=1

V i�

i,�)
r, hr

)

Tracing Malicious Proxies in Proxy Re-encryption 341

where pki = (Zi = e(g, h)zi, Yi = hyi , Ui,0, . . . , Ui,n) is user i’s public key and
Ui,� = ψ(Vi,�) for 	 = 0, . . . , n. The re-encryption algorithm can actually be
thought of as translating WIBE ciphertexts into regular public key encryptions
under the delegatee’s public key.

The tracing system is non-black-box. It takes as input a pirate re-encryption
key and merely extracts the built-in serial number from it. With a non-black-
box tracing algorithm, we do not need collusion-secure codes [14]. The proof of
traceability takes advantage of the collusion-resistance of the underlying WIBE
and we have logarithmic-size ciphertexts in the number of delegations.

3.2 The Scheme

For simplicity, we assume that all users have at most N delegatees. Public keys
and second level ciphertexts consist of O(n) = O(log N) group elements.

Global-setup(λ): on input of a security parameter λ, choose bilinear map groups
(G1, G2, GT , e, ψ) of prime order p > 2λ with generators h R← G2, g = ψ(h).

Keygen(λ): user i sets his public key as

pki =
(
Zi = e(g, h)zi , Yi = hyi , Ui,0 = gui,0 , Ui,1 = gui,1 , . . . , Ui,n = gui,n

)

for random values (zi, yi, ui,0, ui,1, . . . , ui,n) R← (Z∗
p)

n+3. For 	 = 0, . . . , n,
group elements Vi,� = hui,� ∈ G2 (that satisfy Ui,� = ψ(Vi,�)) are also
computed and included in the private key ski = (zi, yi, Vi,0, . . . , Vi,n). Let
wi,j ∈ {0, 1}n be a unique identifier to be assigned by user i to the re-
encryption key Rij translating to user j. Elements Ui,�, Vi,� define functions

FVi : {0, 1}n → G2 : FVi(wi,j) = Vi,0 ·
n∏

�=1

V
wi,j,�

i,�

and FUi : {0, 1}n → G1 : FUi(wi,j) = ψ
(
FVi(wi,j)

)
.

ReKeygen(ski, pkj): given user i’s private key ski = (zi, yi, Vi,0, . . . , Vi,n) and
user j’s public key pkj = (Zj , Yj , Uj,0, Uj,1, . . . , Uj,n), choose2 a previously
unemployed string wi,j = wi,j,1 . . . wi,j,n ∈ {0, 1}n and a random exponent
r R← Z

∗
p to generate the unidirectional key

Rij = (wi,j , Aij , Bij) = (wi,j , Y
zi

j · FVi(wi,j)r, hr).

CheckKey(ski, pkj, Rij): given ski = (zi, yi, Vi,0, . . . , Vi,n), parse user j’s public
key pkj as (Zj , Yj , Uj,0, Uj,1, . . . , Uj,n) and Rij as (wi,j , Aij , Bij). Return 1 if

e(g, Aij) = e(g, Yj)zi · e(FUi(wi,j), Bij) (2)

and 0 otherwise.

2 In order to avoid to store wij and r, the delegator can compute them as a pseudo-
random function of a short secret key and the public key pkj .

342 B. Libert and D. Vergnaud

Enc1(m, pki, par): to encrypt a message m ∈ GT under the public key pki =
(Zi, Yi, Ui,0, Ui,1, . . . , Ui,n) at the first level, choose s R← Z∗

p and output

C = (C0, C1) =
(
m · e(g, h)s, e(g, Yi)s

)

Enc2(m, pki, par): to encrypt a message m ∈ GT under the public key pki at
level 2, the sender picks a random exponent s R← Z

∗
p and computes

C = (C0, C1, C2,0, C2,1, . . . , C2,n) =
(
m · Zs

i , gs, Us
i,0, U

s
i,1, . . . , U

s
i,n

)

ReEnc(Rij ,Ci): given the translation key Rij = (wi,j , Aij , Bij) ∈ {0, 1}n × G2
2

and a ciphertext Ci = (C0, C1, C2,0, . . . , C2,n) ∈ GT × G
n+2
1 , compute

FUi(wi,j)s = C2,0 ·
n∏

�=1

C
wi,j,�

2,� =
(
Ui,0 ·

n∏

�=1

U
wi,j,�

i,�

)s

and output

C′
j = (C′

0, C
′
1) =

(
C0,

e(C1, Aij)
e(FUi(wi,j)s, Bij)

)
(3)

=
(
m · e(g, h)zis, e(g, Yj)zis

)
=

(
m · e(g, h)s̃, e(g, Yj)s̃

)
(4)

with s̃ = szi.

Dec1(Cj , skj): given skj = (zj , yj , Vj,0, . . . , Vj,n), parse the ciphertext Cj as
(C0, C1) ∈ G2

T . Return m = C0/C
1/yj

1 .

Dec2(Ci, ski): parse Ci as C = (C0, C1, C2,0, . . . , C2,n) ∈ GT × G
n+2
1 and ski

as (zi, yi, Vi,0, . . . , Vi,n). Return m = C0/e(C1, h)zi .

Trace(ski, Rit, pkt): on input of a public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) and
a re-encryption key Rit = (w, Ait, Bit) ∈ {0, 1}n × G2 × G2 such that
CheckKey(ski, pkt, Rit) = 1, this algorithm incriminates the proxy that has
been provided with a re-encryption key including w as identifier.

The correctness of the re-encryption algorithm is easily checked by observing
that re-encryption keys Rij = (wi,j , Aij , Bij) always satisfy relation (2). Raising
both members of the latter to the power s ∈ Z∗

p gives

e(gs, Aij) = e(g, Yj)zis · e(FUi(wi,j)s, Bij)

which explains the transition between relations (3) and (4).
As in prior unidirectional schemes, the proxy and the delegator can collude to

compute and disclose a quantity that allows opening all second level ciphertexts:
given Rij = (wi,j , Aij , Bij) and yj s.t. Yj = hyj , they can obtain

Rbad
i� = (wi,j , A

1/yj

ij , B
1/yj

ij) =
(
wi,j , h

zi · FVi(wi,j)r′
, hr′)

,

with r′ = r/yj , that allows for the off-line decryption of level 2 ciphertexts. How-
ever, when presented with Rbad

i� = (wi,j , A
′
ij , B

′
ij), the tracing algorithm runs the

Tracing Malicious Proxies in Proxy Re-encryption 343

validity check e(g, A′
ij)

?= Zi ·e(FUi(wi,j), B′
ij). If the latter test is successful, the

the proxy identified by wi,j and its associated delegatee are both found guilty for
having conspired to produce Rbad

i� . The serial number wi,j makes the source of
the collusion evident and provides a deterrent for abuses of trust.

When the tracing system takes as input a pair (Rit = (w, Ait, Bit), pkt), the
original delegatee j associated the serial number w = wij cannot be incrimi-
nated as the corrupt proxy may have maliciously chosen pkt as a function of pkj

(possibly in an attempt to trick user i into believing that j is not trustworthy).

3.3 Security

Theorem 1. The scheme is semantically secure at the second level under the
Augmented DBDH assumption.

Proof. Let (A = ha, B = hb, C = hc, D = ha2b, T) ∈ G
4
2 × GT be an Augmented

DBDH instance. We construct an algorithm B that decides if T = e(g, h)abc

using its interaction with a chosen-plaintext adversary A.
All public keys that A gets to see are indexed by an integer i ∈ {0, . . . , Nmax},

where Nmax + 1 denotes the maximal number of users in the system. Let us call
HU ⊂ {0, . . . , Nmax} the set of honest players, including the target receiver
whose public key has index 0. Let also CU ⊂ {1, . . . , Nmax} denote the set of
corrupt receivers. The attack environment is emulated as follows.

• Key generation:

- The public key pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) of the target user is
chosen as Z0 = e(ψ(A), B) = e(g, h)ab and Y0 = hy0 , U0,� = gu0,� with
y0, u0,�

R← Z∗
p for 	 = 0, . . . , n.

- For users i ∈ HU\{0}, public keys are defined by randomly choosing
zi, yi, ui,0, . . . , ui,n

R← Z∗
p and setting Zi = e(g, h)zi, Yi = Ayi = hayi and

Ui,� = gui,� for 	 = 0, . . . , n.
- For corrupt users i ∈ CU , B generates pki according to the specification

of the scheme and discloses private elements zi, yi, ui,0, . . . , ui,n ∈ Z∗
p.

• Re-encryption key generation: to generate re-encryption keys Rij from player
i to player j, B has to distinguish several situations.

- If i ∈ CU or i ∈ HU\{0}, B knows user i’s private key component zi

such that Zi = e(g, h)zi and generates a re-encryption key as specified
by the re-encryption algorithm.

- If i = 0 and j ∈ HU\{0}, B picks a new string w0,j ∈ {0, 1}n and a
random exponent r R← Z∗

p to return

R0j =
(
w0,j , D

yj · FV0(w0,j)r, hr
)
,

for a random r R← Z∗
p. Observe that R0j has the correct shape since

Z0 = e(g, h)ab, Yj = Ayj = hayj and Dyj = (ha2byj) = (hayj)ab.

344 B. Libert and D. Vergnaud

• Challenge: when A comes up with messages m0, m1 ∈ GT , B flips a fair coin
d� R← {0, 1} and sets the challenge ciphertext as

C0 = md� · T C1 = ψ(C) C2,� = ψ(C)u0,� for 	 = 0, . . . , n.

Since C = hc and Z0 = e(g, h)ab, C = (C0, C1, C2,0, . . . , C2,n) is a valid
encryption of md� under pk0 with the encryption exponent s = c whenever
T = e(g, h)abc. When T is random in GT , C leaks no information on d� and
A can only guess it with probability 1/2. Therefore, B outputs 1 (meaning
that T = e(g, h)abc) if A successfully guesses d� and 0 otherwise. 	

Theorem 2. The scheme is semantically secure at the first level under the
DBDH assumption.

Proof. Given in appendix A. 	

Theorem 3. The scheme is traceable under the 2-3-CDH assumption in G2.

Proof. For the sake of contradiction, assume that an adversary A defeats the
non-black-box tracing algorithm (in the sense of definition 3) with probability
ε. We build an algorithm B′′ solving a 2-3-CDH instance (A = ha, B = hb) with
probability O(ε/qrk), where qrk is the number of re-encryption key queries.

• Key generation: a set of public keys is prepared by B′′. For the target user
0, it first defines Z0 = e(ψ(A), B) = e(g, h)ab and Y0 = hy0 for a random
y0

R← Z∗
p. The vector (V0,0, V0,1, . . . , V0,n) is defined as V0,0 = Aα0−κτ · hβ0 ,

V0,� = Aα� · hβ� for 	 ∈ {1, . . . , n} using random vectors (α0, α1, . . . , αn) R←
Zn+1

τ , (β0, β1, . . . , βn) R← Zn+1
p , where κ R← {0, . . . , n} is chosen at random

and τ = 2qrk. For any string w0,j = w0,j,1 . . . w0,j,n ∈ {0, 1}n, we have

FV0(w0,j) = V ′ ·
n∏

�=1

V
w0,j,�

0,� = AJ(w0,j)hK(w0,j)

for functions J : {0, 1}n → Z, K : {0, 1}n → Zp respectively defined as
J(w0,j) = α0 +

∑n
�=1 α�w0,j,� − κτ and K(w0,j) = β0 +

∑n
�=1 β�w0,j,�. For

	 = 0, . . . , n, B′′ also sets U0,� = ψ(V0,�). As in [29], the simulator will be suc-
cessful if J(w0,j) �= 0 for all strings w0,j �= w� involved in delegation queries
whereas J(w�) = 0 for the identifier w� of the re-encryption key produced
by A at the tracing stage. Since |J(.)| ≤ τ(n + 1) � p, we have J(w�) = 0
with non-negligible probability O(1/τ(n + 1)). For all other (honest or cor-
rupt) users i ∈ {1, . . . , Nmax}, public keys are honestly generated by B′′ that
chooses the private keys (zi, yi, ui,0, . . . , ui,n) ∈ Zn+3

p . The latter secrets are
given to A for indices i ∈ CU ⊂ {1, . . . , Nmax} of corrupt users.

• Re-encryption key queries: at any time, A may ask for re-encryption keys
Rij of her choosing. When i �= 0, B′′ knows user i’s private key and can
normally handle the delegation query. Otherwise, following the technique of

Tracing Malicious Proxies in Proxy Re-encryption 345

[9,29], it constructs a re-encryption key by sampling a fresh random string
w0,j

R← {0, 1}n and a random exponent r R← Zp to compute

R0j = (w0,j , A0j , B0j) =
(

w0,j , B
−yj

K(w0,j)
J(w0,j) · FV0(w0,j)r, B

− yj
J(w0,j) · hr

)
,

where yj ∈ Z∗
p is part of user j’s private key, which is returned to A. If we

define r̃ = r − (byj)/J(w0,j), R0j has the correct distribution since

A0j = B
−yj

K(w0,j)
J(w0,j) · F (w0,j)r

= B
−yj

K(w0,j)
J(w0,j) · F (w0,j)r̃ · (AJ(w0,j) · hK(w0,j))

byj
J(w0,j) = (hyj)ab · F (w0,j)r̃

and B0j = hr̃. If J(w0,j) = 0, B′′ aborts as it cannot answer the query.

• Tracing stage: a successful attacker must output a pair (R�
0t, pkt) such that

CheckKey(sk0, R
�
0t, pkt) = 1 and R�

0t = (w�, A�
0t, B

�
0t) cannot be traced to a

member of the coalition T . This implies that w� must differ from all the serial
numbers w0j that were associated with user 0’s delegatees. At this point, B′′

declares failure if J(w�) �= 0. With probability at least 1/4qrk(n + 1) (see
[29] for a detailed analysis of this probability) such a failure state is avoided.
In this case, B′′ parses pkt as (Zt, Yt, Ut,0, . . . , Ut,n) and outputs

(
Yt, A

�
0t/B�

0t
K(w�)) = (Yt, Y

ab
t)

which solves the 2-3-CDH problem in G2. 	

4 A Variant with Black Box k-Traceability

The scheme can be endowed with a black-box tracing mechanism which is sim-
ilar to the one described in [2]. The idea is to associate identity-based private
keys with the codewords (seen as identities) of a collusion-secure code [14] in-
stead of serial numbers. These keys are bound to delegatees’ public keys to form
fingerprinted re-encryption keys. Assuming the hardness of the Decision Diffie-
Hellman problem in G1 for configurations where G1 �= G2 (and no isomorphism
from G1 to G2 is computable), well-formed ciphertexts are not publicly recogniz-
able. Then, pirate re-encryption devices P can be probed with invalid ciphertexts
so as to determine the codeword of one of the pirate re-encryption keys.

As in [2], this comes at the expense of prohibitively large ciphertexts, the size
of which becomes proportional to the length of the collusion-secure code. We
need a binary (k, N, ε)-collusion-secure code (as defined in appendix B), where
N is the the maximal number of delegatees per user, k is the maximal number of
colluding proxies against a delegator and ε is the maximal probability that a col-
luder avoids being traced. Such a code can be obtained with codewords of length
n = O

(
k2(log N +log(ε−1))

)
[28], which is also the number of group elements in

a ciphertext. If users have at most N = 100 delegatees, in the case k ≈ 10, we
end up with ciphertexts made of about 700 group elements (which amounts to

346 B. Libert and D. Vergnaud

13 Kb using curves [6] where elements of G1 have a 161-bit representation). We
leave open the problem of constructing an efficient black-box traceable scheme.

The tracing system, borrowed from [2], probes re-encryption devices with sec-
ond level ciphertexts wherein certain components have been altered and eventu-
ally retrieves bits at all positions where words in the feasible set of the coalition
(see appendices B and C for details) are identical. More precisely, the tracing
algorithm checks whether the pirate device successfully re-encrypts ciphertexts
where components C2,� (for all 	 ∈ {1, . . . , n}), have been tampered with. If
it does, the tracer deduces that C2,� was not used by the pirate device, which
means that the associated bit is 0 in all codewords that were assigned to re-
encryption keys available to the coalition. Once a n-bit word in the feasible set
of the coalition has been found, the tracing procedure of the collusion-secure
code allows recovering the fingerprint of one of the involved re-encryption keys,
which identifies a misbehaving proxy.

5 Conclusion

In all PRE schemes proposed so far, proxies and delegatees can derive new re-
encryption keys for receivers that are not trusted by the delegator. In this paper,
we proposed traceable proxy re-encryption systems, in which proxies that leak
their re-encryption key can be identified by the delegator and we presented an
efficient realization of this concept. An interesting open issue is to design a more
efficient TPRE scheme with black-box traceability.

Acknowledgements. We thank Duong Hieu Phan for his comments. The first
author is supported by the Belgian National Fund for Scientific Research (F.R.S.-
F.N.R.S.). The second author is supported by the European Commission through
the IST Program under Contract IST-2002-507932 ECRYPT and by the French
Agence Nationale de la Recherche through the PACE project.

References

1. Abdalla, M., Catalano, D., Dent, A., Malone-Lee, J., Neven, G., Smart, N.:
Identity-Based Encryption Gone Wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006)

2. Abdalla, M., Dent, A., Malone-Lee, J., Neven, G., Phan, D., Smart, N.: Identity-
Based Traitor Tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

3. Al-Riyami, S., Paterson, K.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. In: NDSS (2005)

5. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption
Schemes with Applications to Secure Distributed Storage. ACM TISSEC 9(1), 1–30
(2006)

Tracing Malicious Proxies in Proxy Re-encryption 347

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press, New York (1993)

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

12. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

13. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

14. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. In: Copper-
smith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg
(1995)

15. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

16. Canetti, R., Hohenberger, S.: Chosen-Ciphertext Secure Proxy Re-Encryption. In:
ACM CCS 2007, pp. 185–194. ACM Press, New York (2007)

17. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

19. Green, M., Ateniese, G.: Identity-Based Proxy Re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

20. Goyal, V.: Reducing Trust in the PKG in Identity Based Cryptosystems. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidel-
berg (2007)

21. Hohenberger, S.: Advances in Signatures, Encryption, and E-Cash from Bilinear
Groups. Ph.D. Thesis, MIT (May 2006)

22. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely Ob-
fuscating Re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (2007)

23. Kunz-Jacques, S., Pointcheval, D.: About the Security of MTI/C0 and MQV. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 156–172. Springer,
Heidelberg (2006)

348 B. Libert and D. Vergnaud

24. Libert, B., Vergnaud, D.: Unidirectional Chosen-Ciphertext Secure Proxy Re-
Encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008)

25. Matsuo, T.: Proxy Re-encryption Systems for Identity-based Encryption. In: Tak-
agi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247–267. Springer, Heidelberg (2007)

26. Scott, M.: Authenticated ID-based Key Exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive: Report 2002/164 (2002)

27. Shamir, A.: Identity based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

28. Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003, pp. 116–125.
ACM Press, New York (2003)

29. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

A Proof of Theorem 2

Let (A = ha, B = hb, C = hc, T
?= e(g, h)abc) be a DBDH instance. We show

a simple distinguisher B′ built from an adversary A against first level challenge
ciphertexts. For the target user, the public key pk0 is made of Z0 = e(g, h)z0 ,
Y0 = C = hc, U0,� = gu0,� for 	 = 0, . . . , n with z0, u0,0, . . . , u0,n

R← Z∗
p. All other

users’ public keys are honestly generated and B′ knows the corresponding secret
key ski = (zi, yi, ui,0, . . . , ui,n). Recall that all re-encryption keys must be given
to the adversary. Since B′ knows zi ∈ Zp such that Zi = e(g, h)zi for all users
(including user 0), it can handle all delegation queries on behalf of all parties
acting as delegators.

At the challenge step, A outputs messages m0, m1 ∈ GT and expects to receive
a challenge ciphertext encrypted for user 0. To generate it, B′ flips a fair coin
d� R← {0, 1} and sets

C0 = md� · e(ψ(A), B) C1 = T.

Since Y0 = hc, it can be readily observed that C = (C0, C1) is a proper encryp-
tion of md� with the encryption exponent s = ab if T = e(g, h)abc. If T is random,
the bit d� is perfectly hidden from A. As usual, B′ decides that T = e(g, h)abc if
and only if A’s guess is correct. 	

B Binary Collusion-Secure (Fingerprinting) Codes

In order to make the description of the scheme with black-box traceability self-
contained, we review in this appendix the definition of collusion-secure (finger-
printing) codes from [14]. We only consider binary codes (i.e. codes defined over
{0, 1}) and for more details on collusion-secure codes, we refer the reader to
[14,28] and references therein.

Tracing Malicious Proxies in Proxy Re-encryption 349

We begin by defining some notation:

– x ∈ {0, 1}n is called a binary word of length n. For such a word, we write
x = x1 . . . xn where xi ∈ {0, 1} is the ith bit of x (for i ∈ {1, . . . , n}).

– Let I = {1 ≤ i1 < . . . < ij ≤ n} be a set of indices. For a word x ∈ {0, 1}n,
x|I denotes the subword xi1 . . . xij ∈ {0, 1}n made of bits at positions in I.

– Let W = {w1, . . . , wj ∈ {0, 1}n} be a set of words, and let I be the set of
all positions where all strings in W are equal, i.e. I is the maximal set such
that w1|I = · · · = wk|I . The feasible set FS(W) of W is defined as the set
of all strings that are equal to w1, . . . , wk at positions in I, i.e.

FS(W) = {x ∈ {0, 1}n : x|I = w1|I = · · · = wk|I}.

The formal definition of collusion-secure codes proposed by Boneh and Shaw in
[14] is the following:

Definition 6. Let 0 < k ≤ N be positive integers and ε ∈ (0, 1]. A binary
(k, N, ε) collusion-secure code of length n consists of a tracing algorithm T , a
set C called the codebook, of indexed codeswords wi for 1 ≤ i ≤ N and a
trapdoor τ . These are such that for all collusions C ⊂ {1, . . . , N} of size at most
k, W = {wi : i ∈ C}, and for all (unbounded) algorithms A it holds that

Pr [T (x, τ) ∈ C|x ∈ FS(W); x ← A(W)] > 1 − ε,

where the probability is taken over the random coins of T and A.

C Details of the Scheme with Black-Box Tracing

The variant with black-box traceability is very close to the scheme of section 3
and we just outline the simple modifications that are required.

As in [2], we assume that pirate devices do not retain state information from
prior re-encryptions when run in tracing mode.

Unlike what occurs in the scheme of section 3, the black-box tracing algorithm
does not allow to incriminate delegatees when we run it on input of a pirate sub-
key that decrypts at level 2. The reason is that the reconstructed word eventually
lies in the feasible set of codewords assigned to all re-encryption keys (i.e. those
assigned to dishonest delegatees as well as those corresponding to honest ones)
that were made available to the coalition.

Global-setup(λ): is the same as in section 3.2.

Keygen(λ): is as in section 3.2 with the difference that user i also selects a
set Ci of N binary words wi,1, . . . , wi,N of length n that form a (k, N, ε)
collusion-secure code. The latter is generated with an underlying trapdoor
τi to be used by its tracing procedure and that is also part of user i’s private
key. For codewords, elements Ui,�, Vi,� define functions FVi : {0, 1}n → G2
and FUi : {0, 1}n → G1 as in section 3.2.

350 B. Libert and D. Vergnaud

ReKeygen, Enc2, Enc1, ReEnc, Dec2 and Dec1 also remain unchanged.

Trace(ski, P): given oracle access to a pirate proxy P that correctly re-encrypts
with probability δ, the tracing algorithm conducts the following steps.

Let pkt = (Zt, Yt, Ut,0, . . . , Ut,n) be the public key under which P re-
encrypts ciphertexts. For 	 = 1, . . . , n, initialize a counter ctr� ← 0 and
run the following test L = 16λ/δ times:

1. Choose a random message m ∈ GT and encrypt it using a random ex-
ponent s R← Z∗

p to get a ciphertext C = (C0, C1, C2,0, C2,1, . . . , C2,n).
2. Replace element C2,� with a random element from G1.
3. Query the pirate proxy P on the altered ciphertext.
4. If P actually re-encrypts C as a first level ciphertext C′ = (C0, C

′
1)

with C′
1 = e(gs, Yt)zi , increase ctr�.

After these L iterations, set wP

� ← 1 if ctr� < 4λ and wP

� ← 0 otherwise.
The decoded n-bit word wP is finally taken as input by the tracing procedure
of the collusion-secure code that uses the trapdoor τi to uncover the identity
of a rogue proxy with probability ε.

If I denotes the set of positions where all codewords of the coalition are identical,
bits of wP outside I can be arbitrarily chosen by the pirate device (that can notice
the ill-formedness of the ciphertext when its altered component is C2,� for 	 �∈ I).
But it does not matter since, as in [2], the tracing system of the code only needs
a word wP ∈ {0, 1}n inside the feasible set.

It is essentially routine to prove the black-box traceability property using ideas
from [2] but a slightly different assumption is needed. As in [2], we first have to
count on the difficulty of DDH in G1 within asymmetric pairing configuration.
This assumption obviously requires the infeasibility of inverting ψ : G2 → G1
and found several applications (see [26,15,2] for instance).

Definition 7. The eXternal Diffie-Hellman assumption (XDH) in asym-
metric bilinear groups (G1, G2) posits the hardness of the Decisional Diffie-
Hellman problem in G1: given (ga, gb) ∈ G1

2, distinguishing gab from random
should be hard. A distinguisher’s advantage can be defined as in definition 4.

The second assumption that we make is a generalization – introduced in [3] – of
the computational BDH assumption (CBDH).

Definition 8. The Generalized Bilinear Diffie-Hellman Problem
(GBDH) is, given (ha, hb, hc) ∈ G3

2, to come up with a pair (g′, e(g′, h)abc) ∈
G1 × GT .

The GBDH assumption is non-standard but it is worth mentioning that any
algorithm breaking it would also be able to solve the Decision Tripartite Diffie-
Hellman problem in G2 which is to distinguish habc from random given
(ha, hb, hc) and that has been more widely used (see [13] for instance).

Theorem 4. The modified scheme is black-box k-traceable assuming that the
code is a (k, N, ε)-collusion-secure code of length n, that the XDH assumption

Tracing Malicious Proxies in Proxy Re-encryption 351

holds in G1 and that the GBDH problem is hard. More concretely, the advantage
of any PPT adversary A in constructing an untraceable re-encryption device that
translates ciphertexts with probability δ after having obtained k re-encryption
keys is at most

Adv(A)TPRE ≤ ε + n · (AdvGDBH(B′′) + exp(−λ))

if δ > 2 · Adv(B′)XDH where B′, B′′ are PPT algorithm that are built on A.

Proof. Given an adversary A that outputs a pirate device P translating cipher-
texts with probability δ, we construct an attacker A′ against the collusion-secure
code. The latter adversary takes a set of k codewords and outputs a new one
w′. As in [2], we show that, with all but negligible probability, A′ avoids being
traced whenever A does. Algorithm A′ takes as input a set of random codewords
W = {w1, . . . , wk} and generates public keys on behalf of all honest and corrupt
users i ∈ HU ∪ CU . Codewords of W are used to define the target user’s code-
book while A′ generates itself the codebooks that are part of other users’ private
keys. At the jth re-encryption key of the shape (pk0, pkj) (i.e. involving user 0
as a delegator and pkj as a delegatee’s public key), A′ fetches a fresh codeword
from W and assigns it to the re-encryption key R0j which is returned to A.

Eventually, A outputs a pirate translation device P which is run in tracing
mode so as to finally reconstruct a n-bit word w′. As in [2], it can be shown that
w′ falls outside FS(W) with probability smaller than

n · (AdvGDBH(B′′) + exp(−λ)). (5)

Let I be the set of positions that are identical in all words of W . For indices 	� ∈ I
such that w�� = 0, lemma 1 first shows that P re-encrypts ciphertexts where C2,��

is random with probability negligibly close to δ unless the XDH assumption is
false. For indices 	� ∈ I where w�� = 1, lemma 2 gives an upper bound on
P’s chance to succeed in translating ciphertexts where C2,�� is perturbed. The
claimed bound (5) is obtained through a similar analysis to [2]. 	

Lemma 1. For any 	� ∈ {1, . . . , n}, if w0,j,�� = 0 in all codewords w0,j associ-
ated with re-encryption keys available to the coalition, P has probability at least
p0 ≥ δ − AdvXDH(λ) to re-encrypt ciphertexts where C2,�� was tampered with.

Proof. Towards a contradiction, assume that an adversary A comes up with a
pirate device P, where w0,j,�� = 0 in all underlying codewords w0,j , that re-
encrypts ciphertexts with probability p0 ≤ δ − γ for some γ > 0. Then, there
exists an algorithm B′ breaking the XDH assumption with advantage γ.

On input of an XDH instance (A = ga, B = gb, η
?= gab), this algorithm

B′ first prepares a set of public keys by defining the target user’s public key
pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) as Z0 = e(g, h)z0 , Y0 = hy0 , with z0, y0

R← Z∗
p,

U0,�� = A = ga and U0,� = gu0,� with u0,�
R← Z∗

p for 	 ∈ {0, . . . , n}\{	�}.
Note that pre-images V0,� = hu0,� so that ψ(V0,�) = U0,� are also available for all

352 B. Libert and D. Vergnaud

	 ∈ {0, . . . , n}\{	�}. For other public keys pki with i ∈ {1, . . . , N}, B′ simply
runs the key generation algorithm according to its specification.

As w0,j,�� = 0 for all codewords w0,j assigned to re-encryption keys R0j

queried by A, B′ is able to compute such keys R0j = (w0,j , Y
z0
j · FV0(w0,j)r, hr)

by running ReKeygen (although it does not know V0,�� = ψ−1(ga)). When A
outputs a pirate ciphertext translator P, B′ feeds it with a ciphertext

C0 = m · e(B, h)z0 C1 = B C2,�� = η C2,� = Bu0,� for 	 ∈ {0, . . . , n}\{	�}

for a random message m R← GT . The device P then generates a re-encryption
C′ = (C0, C

′
1). Given the public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) of the user

receiving re-encryptions from P, B′ can check whether C′ was successfully trans-
lated by testing if C′

1 = e(B, Yt)z0 . If yes, B′ outputs 1 (meaning that η = gab).
Otherwise, it returns 0 and bets that η is random. 	

Lemma 2. For any 	� ∈ {1, . . . , n}, if w0,j,�� = 1 in all codewords w0,j em-
bedded in re-encryption keys of colluding proxies, then P has probability at most
p1 ≤ AdvGBDH(λ) to re-encrypt ciphertexts where C2,�� was tampered with.

Proof. Assume that A is an adversary producing a re-encryption box P that has
non-negligible probability p1 of re-encrypting ciphertexts where C2,�� has been
replaced by a random element of G1. We construct a distinguisher B′′ solving a
computational GBDH instance (A = ha, B = hb, C = hc).

B′′ first generates a set of public keys. The target user’s public key is set as
pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) where Z0 = e(ψ(A), B) = e(g, h)ab, Y0 = hy0

and U0,� = gu0,� with y0, u0,�
R← Z

∗
p for 	 ∈ {0, . . . , n}\{	�}. The remaining

public key component is chosen as U0,�� = gα0,�� · ψ(A)β0,�� for random in-
tegers α0,�� , β0,��

R← Z
∗
p. Note that V0,�� = hα0,�� · Aβ0,�� is also computable

as well as V0,� = hu0,� for 	 �= 	�. For other users i ∈ {1, . . . , n}, public keys
pki = (Zi, Yi, Ui,0, Ui,1, . . . , Ui,n) are calculated as specified by the key genera-
tion algorithm and private elements (zi, yi, ui,0, . . . , ui,n) are known to B′′.

Given that w0,j,�� = 1 for all of the k codewords w0,j contained in re-
encryption keys R0j that A must be provided with, these keys can be generated
by choosing r R← Z∗

p and setting

A0j = V r
0,�� · B− yj α0,��

β0,�� ·
n∏

�=0,� �=��

(
V r

0,� · B− yj u0,�
β0,��

)w0,j,� , B0j = hr · B− yj
β0,��

which provides a valid re-encryption key R0j = (w0,j , A0j , B0j) since Xj = hxj

and, if we define r̃ = r − byj/β0,��, we have B0j = hr̃ and

A0j =V r̃
0,�� · (hα0,�� ·Aβ0,��)

byj
β0,�� · B

yjα0,��

β0,�� ·
n∏

�=0,� �=��

(
V r̃

0,� · h
u0,�

byj
β0,�� ·B− yju0,�

β0,��
)w0,j,�

= (hyj)ab · V r̃
0,�� ·

n∏

�=0,� �=��

(
V r̃

0,�

)w0,j,� .

Tracing Malicious Proxies in Proxy Re-encryption 353

When B′′ obtains a pirate device P from A, it probes it with a ciphertext

C0
R← GT C1 = ψ(C) C2,��

R← G1 C2,� = ψ(C)u0,� for 	 ∈ {0, . . . , n}\{	�}

which is a valid ciphertext (with the encryption exponent s = c) where C2,�� has
been replaced by a random element. By assumption, P is assumed to re-encrypt
it under some public key pkt = (Xt, Yt, Ut,0, Ut,1, . . . , Ut,n) that was not involved
in a re-encryption key query with user 0 acting as a delegator. When obtaining
a re-encryption C′

t = (C0, C
′
1) =

(
C0, e(g, Yt)abc

)
=

(
C0, e(ψ(Yt), h)abc

)
, B′′

outputs a pair (ψ(Yt), C′
1) which violates the GBDH assumption. 	

	Tracing Malicious Proxies in Proxy Re-encryption
	Introduction
	Preliminaries
	Model and Security Notions
	Bilinear Maps and Complexity Assumptions

	A Scheme with Logarithmic Complexity
	Intuition
	The Scheme
	Security

	A Variant with Black Box k-Traceability
	Conclusion
	Proof of Theorem 2
	Binary Collusion-Secure (Fingerprinting) Codes
	Details of the Scheme with Black-Box Tracing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

