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Abstract. A new form of elliptic curve was recently discovered by Ed-
wards and their application to cryptography was developed by Bernstein
and Lange. The form was later extended to the twisted Edwards form.
For cryptographic applications, Bernstein and Lange pointed out several
advantages of the Edwards form in comparison to the more well known
Weierstraß form. We consider the problem of pairing computation over
Edwards form curves. Using a birational equivalence between twisted
Edwards and Weierstraß forms, we obtain a closed form expression for
the Miller function computation.

Simplification of this computation is considered for a class of super-
singular curves. As part of this simplification, we obtain a distortion map
similar to that obtained for Weierstraß form curves by Barreto et al and
Galbraith et al. Finally, we present explicit formulae for combined dou-
bling and Miller iteration and combined addition and Miller iteration
using both inverted Edwards and projective Edwards coordinates. For
the class of supersingular curves considered here, our pairing algorithm
can be implemented without using any inversion.

Keywords: elliptic curve, pairings, Edwards form, Miller function, su-
persingular curves.

1 Introduction

Background. Pairings on curves find many applications in cryptographic pro-
tocols. These have been used to give one-round three-party key exchange [1],
identity-based encryption [2] and many other schemes. For implementing such
protocols, it is essential to have curves which are pairing friendly and an efficient
pairing algorithm. Construction of pairing friendly curves is itself an active area
of research. See [3] for a survey.

This work concerns computing (Tate) pairing on an elliptic curve. Tate pairing
was introduced in cryptology in [4]. An algorithm for finding Tate pairing on
elliptic curves was first given by Miller, which was subsequently published in [5].
Tate pairing over supersingular curves was studied in [6,7]. Several techniques
were described to improve the efficiency of computing the pairing.
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Edwards [8] introduced a new form of elliptic curves and gave an elegant ad-
dition rule for such curves. The work [8] considered elliptic curves over number
fields. Bernstein and Lange [9] showed the usefulness of the Edwards form el-
liptic curves in cryptography. Among other things, they showed that, unlike the
more well known Weierstraß form, the Edwards form admits a complete (and
hence, unified) addition formula. This is very useful in providing resistance to
side-channel attacks. Further, in [9] and [10] they developed efficient explicit for-
mulae for doubling, addition and mixed-addition using projective and inverted
coordinates. These provided the fastest methods for scalar multiplication on
elliptic curves.

Motivation. Pairing based cryptographic protocols use both scalar multipli-
cations and pairing computations. In view of the advantages of Edwards form
curves, a designer may wish to implement a pairing based protocol using such
curves. The problem, however, is with the pairing computation. Till date, all
pairing algorithms use the more well known Weierstraß form of an elliptic
curve. Thus, to implement pairings, one will have to use an isomorphism to
map Edwards points to points on Weierstraß form and then compute pairing on
Weierstraß form curve.

This raises several questions. Is it possible to compute pairing directly on the
Edwards form? How does this compare to the cost of converting to Weierstraß
form and then computing the pairing? More generally, how does pairing on
Edwards form compare to the cost of computing pairing on the Weierstraß form?
Are there any advantages in computing pairing directly on Edwards form?

Motivated by these questions, we make a detailed investigation of pairing on
Edwards form. The basic question is of course, how to perform pairing directly
on Edwards form.

Contributions. The following question is central to computing the Tate pair-
ing on elliptic curves using Miller’s algorithm: given points P1 and P2 on an
elliptic curve, find a point P3 and a rational function h such that

div(h) = (P1) + (P2) − (P3) − O,

where O is a distinguished rational point. This fact is emphasized in [4]. For
Weierstraß form curve this is easy to do using the chord-and-tangent rule for
addition. In this case, P3 is taken to be the negative of the sum of P1 and P2
and one such step is called a Miller iteration.

The first contribution of this work is to work out a solution to the above prob-
lem for twisted Edwards form curve. Using the birational equivalence between
twisted Edwards and Weierstraß form curves, we obtain the form of the rational
function h over twisted Edwards form when P3 is the sum of P1 and P2. In other
words, we show how to perform Miller iteration directly on twisted Edwards
form curve. Since the Miller iteration forms the basis of all pairing algorithms,
including the Weil, Tate, Eta and Ate pairings, our work shows how to compute
such pairings directly over twisted Edwards form curves.

In its general form, the expression for h looks a bit complicated. We show
that for special curves, it is possible to simplify the computation. As examples,
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we consider supersingular curves over finite fields of characteristic greater than
3 (and hence having embedding degree 2). An important aspect in pairing com-
putation over supersingular curves is the utilization of the so-called distortion
map. For Weierstraß form, such a map was obtained in [6,7]. We obtain a similar
distortion map for a class of Edwards form supersingular curves. Using this map
and some further simplifications, we work out explicit formulae for combined
doubling and Miller iteration and combined addition and Miller iteration using
both inverted Edwards and projective Edwards coordinates.

The cost for doubling and Miller value computation is 9[M]+6[S] and for mixed
addition and Miller value computation is 17[M]+1[S] using inverted Edwards
coordinates. The corresponding values using projective Edwards coordinates are
9[M]+6[S] and 18[M]+1[S]. This is slower than the best known pairing algorithm
for Weierstraß form supersingular curve s2 = r3 + ar using Jacobian curves
obtained in [11]. The corresponding values for general a, small a and a = −3 are
(8[M]+6[S], 11[M]+3[S]), (7[M]+6[S], 11[M]+3[S]) and (8[M]+4[S], 11[M]+3[S])
respectively. (The Edwards form does not distinguish between different values
of a.)

Comparison to Pairing on Weierstraß. In general, it is expected that
pairing over Edwards form will be slower than pairing over Weierstraß form. To
see this, consider the two ways of performing pairing over Edwards.

1. Convert the points to Weierstraß form and then perform the pairing on
Weierstraß form. In this method, the total cost of pairing will also include
the cost of converting points from Edwards form to Weierstraß form.

2. Perform pairing directly on twisted Edwards form using the required Miller
function (obtained here). The form for this function is obtained by mapping
Edwards points to Weierstraß points, obtaining the expression for Miller
function on Weierstraß and then mapping back to obtain the Miller function
on Edwards. So, the form for the Miller function on Edwards implicitly
includes both the maps to and from Weierstraß. Consequently, it is unlikely
that a Miller iteration on Edwards will be faster than a Miller iteration on
Weierstraß.

The above seems to suggest that Edwards form should not be used for imple-
menting pairing based protocols. The answer, however, is not that straightfor-
ward. Each algorithm in a protocol involves some scalar multiplications and some
pairings. For the scalar multiplications, Edwards form is faster, especially if the
implementation has to guard against side channel attacks. The pairing will be
slower but, this may be compensated by the faster scalar multiplications. We
believe that there is no general answer and a designer would have to look at the
very specific details before making a proper selection of elliptic curve form.

Pairing on Edwards: Compute Pairing Directly or Via Weierstraß

Form? Suppose a designer chooses to implement a protocol using the Edwards
form. From Point 2 mentioned above, it seems that each Miller iteration on
Edwards will be slower than that on Weierstraß. The direct method is faster if
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the cost of conversion to Weierstraß amortized over all the Miller iterations is
more than the difference between the Miller iteration on Edwards and that of
Weierstraß.

Inversion Free Pairing on Edwards Form. On the other hand, there is one
advantange of the direct method. This arises in specific reference to the class of
supersingular curves considered here. Suppose, a designer wants an inversion-free
pairing algorithm, i.e., a pairing algorithm, which does not make any inversion.
Then the implementation will not require an inversion module. For resource
constrained devices this may be an important issue.

For the specific class of supersingular curves considered here, the pairing al-
gorithm that we obtain is free from inversion. Hence, the inversion module is not
required to implement this algorithm. In contrast, we show that if the pairing is
computed by converting to Weierstraß, then the conversion itself will require an
inversion (as otherwise the resulting algorithm will be inefficient).

2 Preliminaries and Notations

Throughout this paper p denotes a prime greater than 3 and q an odd prime
power. The finite field of cardinality q will be denoted by Fq.

An elliptic curve (over Fq) in Weierstraß form is given by an equation y2 =
x3 + a2x

2 + a4x + a6, where a2, a4 and a6 are from Fq. The addition rule and
other properties on this form of the curve are quite well known and hence we do
not repeat these here.

An elliptic curve (over Fq) in Edwards form is given by an equation x2 +
y2 = c2(1 + dx2y2), c, d �= 0. Edwards introduced this form for elliptic curves
over number fields and with d = 1. The curve parameter d was introduced
by Bernstein and Lange who also studied this equation over finite fields. The
additive identity is (0, c); (0, −c) has order 2; (±c, 0) have order 4. The addition
rule is given by the following formula.

(x1, y1) + (x2, y2) �→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1 − dx1x2y1y2)

)
.

If E is an elliptic curve defined by a bi-variate polynomial C(x, y), then the
set of Fq-rational points of E is denoted by E(Fq) and is defined to be the set of
pairs (α, β) ∈ Fq ×Fq such that C(α, β) = 0. The set E(Fq) forms a group under
a suitably defined addition law and an additive identity. For an Fq-rational point
P , the i fold sum of P is denoted by [i]P .

2.1 Birational Equivalence

Rational functions on a curve are important in studying the behavior of the
curve. These rational functions form a field and two (forms of) elliptic curve
are said to be birationally equivalent if their fields of rational functions are
isomorphic.
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Another form of elliptic curves which is also quite well known is the Mont-
gomery form and is given by an equation of the form Bv2 = u3 + Au2 + u, with
B �= 0. Birational equivalences between Weierstraß and Edwards form use the
Montgomery form as an intermediate stepping stone.

It has been observed in [9] that the form x2 + y2 = 1 + dx2y2 is as general as
the form X2 + Y 2 = C2(1 + DX2Y 2) in the sense that there is an isomorphism
between them. The change of variables X = Cx and Y = Cy transforms x2+y2 =
1 + dx2y2 into X2 + Y 2 = C2(1 + DX2Y 2) with the condition that C4D = d.

An extension, called the twisted Edwards form has been studied in [12]. The
curve equation in this case has the form ax2 + y2 = 1 + dx2y2 for distinct non-
zero elements a and d in a finite field F (of characteristic not equal to 2). It has
been proved in [12] that the set of twisted Edwards form curves over the field F

is birationally equivalent to the set of Montgomery form curves over F. Then

(x, y) �→ (u, v) = ((1 + y)/(1 − y), (1 + y)(x(1 − y))) (1)

transforms ax2+y2 = 1+dx2y2 to Bv2 = u3+Au2+u, where A = 2(a+d)/(a−d)
and B = 4/(a−d). Since a and d are distinct and non-zero, A is not 2 or −2 and
B is non-zero. The inverse map is given by (u, v) �→ (x, y) = (u/v, (u−1)/(u+1)).

The case a = 1 in twisted Edwards curve is the Edwards curve as considered
in [9]. Theorem 3.5 of [12] shows that an elliptic curve is birationally equivalent
to an Edwards form curve if and only if it has a point of order 4. Assuming the
curve to be in Weierstraß form s2 = r3 + a2r

2 + a4r and using a point (r1, s1) of
order 4 on this curve, it is possible to exhibit a birational equivalence between
the Weierstraß and Edwards forms. The map

(x, y) �→ (r, s) = ((r1(1 + y))/(1 − y), (s1(1 + y))/(x(1 − y))) (2)

transforms x2 + y2 = 1+ dx2y2 to s2 = r3 + a2r
2 + a4r, where a2 = s2

1/r2
1 − 2r1;

a4 = r2
1 and d = 1− 4r3

1/s2
1. This result was essentially contained in the proof of

Theorem 2.1 of [9]. The actual statement and the result were more complicated
because the proof missed the fact that r1/(1 − d) equals (s1/(2r1))2 and hence,
is always a square. Instead, it was required that d is a non-square (equivalently,
there is a unique point of order 2), which caused some complications.

The following observation from [9] shows how to convert from S2 = R3 +
A4R + A6 to s2 = r3 + a2r

2 + a4r.

Observation 1. Let E be an elliptic curve over F given in the Weierstraß form
S2 = R3 + A4R + A6 such that the group E(F) has an element Q = (R1, S1) of
order 4. Then E can be transformed into the curve E′: s2 = r3+a2r

2+a4r by the
change of variables r = R−R2, and s = S. Then a2 = 3R2, a4 = 3R2

2+A4 and R2
is the x-coordinate of 2Q. The point Q is transformed into a point P = (r1, s1),
where r1 = R1 − R2 and s1 = S1 leading to 2P = (0, 0).

2.2 Background on Pairing

In this section, we discuss basics of Tate pairing. We first recall some funda-
mentals on divisors on elliptic curves. Let E be an elliptic curve over Fq, with
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identity O. Points are denoted by P, Q, etcetera, while the corresponding places
are denoted by (P ), (Q), etcetera. The function field of E is the quotient field
of the coordinate ring of E. Elements of this field are called functions over E.
Places correspond to valuation rings of the function field.

Divisors of E are formal Z-linear combinations of places. Any non-constant
function has finitely many zeros and poles at places, of some finite positive
order. The collection of zeros and poles of a function, expressed as a divisor is
called its principal divisor. For a function z, its principal divisor is denoted by
div(z) = (z)0 − (z)∞. The divisor (z)0 is called the zero divisor of z and (z)∞
its pole divisor.

The computation of Tate pairing depends on the addition rule on the elliptic
curve group. Following [4], the following task forms the backbone for pairing
computation:

Task 1. Given P1 = (x1, y1) and P2 = (x2, y2), points on an elliptic curve X,
find a point P3 and a function h such that div(h) = (P1) + (P2) − (P3) − (O).

Weierstraß form is the most well-studied form of elliptic curve. The task above
can be easily performed using the chord-tangent rule.

Tate pairing was first introduced in cryptography in [4]. We recall the defini-
tion of Tate pairing from [7]. Let E be an elliptic curve defined over Fq and r
be coprime to q and r | #E(Fq). Let k be a positive integer such that the field
Fqk contains all the rth roots of unity (that is, r | (qk − 1)).

Definition 1. With r as above, the smallest extension field of Fq which contains
all the rth roots of unity is denoted by L. The extension degree [L : Fq] is known
as embedding degree.

Following [7], the Tate pairing is defined as follows.

Definition 2. The choices for parameters are made as discussed above. Let
G := E(Fqk). The Tate pairing is defined as

er(·, ·) : G[r] × G/rG −→ F
∗
qk/F

∗r
qk

with er(P, Q) := fP (Q)
qk−1

r . The function fP is such that div(fP ) = r(P )−r(O).

The quotient group on the right hand side is the set of equivalence classes modulo
the relation “a ≡ b if and only if there exists c ∈ F

∗
qk such that a = bcr”. For

more properties of Tate pairing refer [4]. The pairing thus defined is well-defined,
non-degenerate and bilinear.

Let hP,Q denote the rational function corresponding to the addition of P
and Q. Let r = (rl−1 · · · r0) the binary representation of r. With this setup, an
algorithm for computing the Tate pairing er(P, Q) on an elliptic curve may be
given. The rational function appearing in the algorithm depends on the form of
the elliptic curve. See Table 1.

The algorithm in Table 1 computes in the ith iteration a function fi,P having
divisor div(fi,P ) = i(P ) − ([i]P ) − (i − 1)(O), called Miller’s functions. At each
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Table 1. Miller’s algorithm for computing Tate pairing

Input : Points P and Q
Output : Tate pairing of P and Q

1. Set f = 1 and P1 = P .
2. For i = l − 2 downto 0

Set f = f2 · hP,P and P1 = 2P .
If ri = 1 then set f = f · hP1,P and P1 = P1 + P .

3. Set f = f
qk−1

r .
4. Return f.

step, the Miller’s functions are evaluated at the second argument. After l − 1
iterations, the evaluation at Q of the function f having divisor r(P ) − r(O) is
obtained.

3 Pairing over Twisted Edwards Form Curve

Pairing algorithms have been extensively studied. All such studies have used the
Weierstraß form. Let us first consider how to implement pairings on Edwards
form using pairings on Weierstraß form.

3.1 Pairing Via Weierstraß Form

Suppose we have a pairing friendly curve C in Weierstraß form having a point of
order 4 and let E be the corresponding Edwards form. The birational equivalence
between E and C is a group isomorphism between the corresponding group
of points. Using this isomorphism, we can map points on Edwards form into
Weierstraß form and compute the pairing on Weierstraß form. (Note that the
output of the pairing is an element of an extension field and there is no issue of
“going back” to Edwards form.) The cost of this procedure is the cost of applying
the isomorphism from Edwards to Weierstraß form plus the cost of computing
the pairing on Weierstraß form.

Suppose the input to the pairing are the points P = (xP , yP ) and Q =
(xQ, yQ) in Edwards form. Using (2), and recalling that (r1, s1) is a point of
order four on Weierstraß form, we have

(xP , yP ) �→
(

r1 × 1 + yP

1 − yP
, s1 × 1 + yP

xP (1 − yP )

)
,

(xQ, yQ) �→
(

r1 × 1 + yQ

1 − yQ
, s1 × 1 + yQ

xQ(1 − yQ)

)
.

(3)

The coordinates xP , yP of the point P are from Fq. However, the coordinates
xQ, yQ of the point Q are from Fqk , where k is the embedding degree. The inverses
of (1 − yQ) and xQ are required as also the inverses of (1 − yP ) and xP . While
the later is easier to obtain, depending on the embedding degree, obtaining the
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former inverses may be rather expensive. As example, consider the value k = 10
which is the focus of current research on obtaining pairing friendly curves [3]. In
this case, the two inversions on Fq10 can be computed using one Fq10 -inversion
and three Fq10 -multiplications. The total cost will be equivalent to a few hundred
multiplications over Fq.

The above transforms an affine representation of a Edwards point into an
affine representation of a Weierstraß point. In many situations, one works with
other representations such as projective or Jacobian coordinates. It is possible
to convert to the desired coordinate system using a few multiplications. Suppose
that the Edwards form point is given in affine coordinates as (x, y) and we
want the Weistraß form point in projective coordinates. The output of (3) is
equal to (r, s), where r = a/b and s = c/d with a = r1(1 + y), b = (1 − y),
c = s1(1 + y) and d = x(1 − y). Then, the projective representation (R, S, T )
with r = R/T and s = S/T is obtained by setting R = ad, S = cb and T = bd.
After obtaining a, b, c and d, three extra multiplications convert the point to
projective coordinates. Further, the representation (RT, ST 2, T ) is in Jacobian
coordinates and two extra multiplications and one squaring are required for this.

The point in Edwards may not be given in affine. Projective and inverted
Edwards representations have been suggested in [9,10]. The representation is
(X, Y, Z), where in the former case, x = X/Z and y = Y/Z and in the latter
case, x = Z/X and y = Z/Y . With both coordinate systems it is possible to
convert to projective (and Jacobian) Weierstraß forms. We show this for the
inverted Edwards coordinates, the case for projective Edwards being similar. In
this case, the affine Weierstraß form is (r = a/b, s = c/d) where a = r1(Y + Z),
b = Y − Z, c = s1X(Y + Z) and d = Z(Y − Z). From this affine representation
the conversion to projective or Jacobian Weierstraß is as described above.

If we use (3) to convert to affine Weierstraß then an inversion is required.
Converting to projective or Jacobian can avoid inversion at the cost of several
extra multiplications. There are two additional issues to consider for inversion
free conversion.

1. Obtaining the point P in affine Weierstraß allows mixed addition formula to
be used during Miller iteration. Obtaining P in projective and Jacobian will
increase the cost of mixed addition.

2. The cost of converting the point Q will require extension field multiplications.
Further, most pairing algorithms on Weierstraß form require Q in affine. If Q
is given in projective, this will imply extra (extension field) multiplications
when the Miller function is evaluated at Q. The last point is significant,
since, even one extra extension field multiplication per Miller iteration can
prove to be costly.

Thus, avoiding inversions in the conversion from Edwards to Weierstraß in
general pushes up the cost for pairing computation on Weierstraß form itself.
On the other hand, avoiding inversions may be required for other reasons in
addition to that of computational efficiency. In resource constrained devices, it
is desirable to implement the algorithm in as small hardware area or software
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code as possible. The ability to avoid implementing the inversion routine will be
useful for such scenarios.

Based on the above discussion, we consider the problem of developing a pairing
algorithm which works directly over the twisted Edwards form. The main task
is to compute the Miller function at each iteration.

3.2 Miller Function for Twisted Edwards Form Curve

This section deals with efficiently performing Task 1 (of Section 2.2) on twisted
Edwards form elliptic curve. As already seen, the Miller function computation
forms the backbone for computing Tate pairing. The result of this section gives
the Miller function corresponding to addition of P1 and P2.

Theorem 1. Let Fq be a field of characteristic not equal to 2 and ax2 + y2 =
1 + dx2y2 be a twisted Edwards form curve where a and d are distinct non-zero
elements of Fq. Let P0 = (0, 1). Let P1 = (x1, y1) and P2 = (x2, y2) be two points
on it. Let P3 = (x3, y3) be the sum of P1 and P2. Then the Miller function h(x, y)
such that

div(h) = (P1) + (P2) − (P3) − (P0) (4)

is given by

h(x, y) =
(1 − y3)
x(y − y3)

((1 + y) − x(λ(1 + y) + θ(1 − y))). (5)

where A = (2(a + d))/(a − d), B = 4/(a − d) and

λ =

{
x1(A(y2

1−1)−2(1+y1+y2
1))

B(y2
1−1) if P1 = P2;

x1(y1−1)(y2+1)−x2(y1+1)(y2−1)
2x1x2(y1−y2)

if P1 �= P2.
(6)

and θ = 2(1 + y1)/(x(1 − y1)) − λ(1 + y1)/(1 − y1) is given by

θ =

{
(y2

1−1)(Ax2
1−B)−2x2

1(1+y1+y2
1)

Bx1(y2
1−1) if P1 = P2;

(x1−x2)(1+y1)(1+y2)
2x1x2(y1−y2)

if P1 �= P2.
(7)

[Note. There is no assumption on the embedding degree.]

Proof. The idea of the proof is simple. In the Weierstraß form it is easy to obtain
a rational function g(x, y) such that a relation similar to that of Equation 4 holds.
Basically g(x, y) is the ratio of two lines – the line passing through P1 and P2
and the line passing through P3 and −P3.

Let Φ be the transformation given in (1).

Φ(x, y) = (u, v) Δ=
(

1 + y

1 − y
,

(1 + y)
x(1 − y)

)
. (8)
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Then x = u/v and y = (u − 1)/(u + 1). This transforms the curve ax2 + y2 =
1 + dx2y2 into the curve Av2 = u3 + Bu2 + u, where A = 2(a + d)/(a − d) and
B = 4/(a − d). The later curve is in Montgomery form. But, the Miller function
g(x, y) for Montgomery form is still the ratio of two lines as in the case of the
Weierstraß form.

The idea is to first transform points Pi on Edwards form into corresponding
points Qi on Montgomery form using Φ; compute g(x, y) on Montgomery form
and then use the inverse of Φ to transform g(x, y) into the desired rational
function h(x, y). For this to work we need to note that the transformation Φ
extends to several isomorphisms.

1. The map
∑

ni(Pi) �→
∑

ni(Φ(Pi)) is an isomorphism of the set of divisors
on Edwards and Montgomery form curves.

2. The map h(x, y) �→ h(Φ(x, y)) is an isomorphism of the function fields of the
Edwards and Montgomery form curves.

Let O be the identity on Montgomery form curve. Then Φ((P1) + (P2) − (P3) −
(P0)) = (Q1) + (Q2) − (Q3)− (O). We use (x, y) to denote Edwards coordinates
and (u, v) to denote Montgomery coordinates. Let l1(u, v) be the line through Q1
and Q2 and l2(u, v) be the line through Q3 and −Q3. Then l1(u, v) = v −λu− θ
and l2(u, v) = u − u3 where the slope λ and the constant θ are obtained later.

Define g(u, v) = l1(u, v)/l2(u, v) and so g(u, v) = (v − λu − θ)/(u − u3). The
desired function h(x, y) is g(Φ−1(u, v)) = g((1 + y)/(1 − y), 2(1 + y)/(x(1 − y))).
We have

h(x, y) =
1+y

x(1−y) − λ1+y
1−y − θ

1+y
1−y − 1+y3

1−y3

=
(1 − y3)((1 + y) − λx(1 + y) − θx(1 − y))

x((1 + y)(1 − y3) − (1 + y3)(1 − y))

=
(1 − y3)

2x(y − y3)
((1 + y) − x(λ(1 + y) + θ(1 − y))).

It remains to obtain the expressions for λ and θ in terms of x1, y1, x2 and y2.
Recall that ui = 1+yi

1−yi
and vi = (1+yi)

xi(1−yi)
. Also, θ = v1 − λu1. The value of λ is

obtained as the slope of the line through P1 and P2, if they are distinct; or as
the slope of the tangent through P1, if the points are equal. In the former case,
λ = (v2 − v1)/(u2 −u1). In the later case, we have to refer to the equation of the
curve. The curve in question is the Montgomery form curve Bv2 = u3 +Au2 +u.
Differentiating with respect to u we have λ = (3u2

1 + 2Au1 + 1)/(2Bv1). The
expressions for λ and θ in the two cases can now be obtained by substituting
the values of ui, vi and simplifying the resulting expressions. ��

4 Supersingular Curves in Edwards Form

For p > 3, two supersingular curves in Weierstraß form are quite well known.
We provide the corresponding Edwards form. For the map given by (2) to exist,
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the curve must have a point of order 4. The number of Fp-rational points on
supersingular curves of characteristics greater than 3 is known to be p + 1. So,
we require p ≡ 3 mod 4 as a necessary condition for a point of order 4 to exist.

s2 = r3 + a4r. The condition p ≡ 3 mod 4 ensures that this curve is supersin-
gular which is compatible with the condition for a point of order 4 to exist. Let
P = (r1, s1) be a hypothesized point of order 4 on this curve. Then a4 = r2

1 and

s2
1 = r1(r2

1 + a4) = 2a4r1. The possible values of (r1, s1) are
(

√
a4, ±

√
2a

3/2
4

)

and
(

−√
a4, ±

√
−2a

3/2
4

)
. Since p ≡ 3 mod 4, a4 must be a square modulo p

which is a necessary and sufficient condition for transforming to Edwards form.
Since p ≡ 3 mod 4, −1 is a non-square modulo p and hence exactly one of

2a
3/2
4 and −2a

3/2
4 is a square modulo p. This shows that there are exactly two

points of order 4.

1. If a4 = 1, then (1, ±
√

2) are the points of order 4 if (p2 − 1)/8 is even; and
(−1, ±

√
−2) are the points of order 4 if (p2 − 1)/8 is odd. Later we will

consider pairing over this curve.
2. If a4 = −3, then the curve has a point of order 4 only if 3 is a non-square

modulo p, i.e., if p ≡ ±5 mod 12. Determining the two actual points of order
4 requires obtaining the square root of either

√
2 × 33/2 or

√
−2 × 33/2. We

know that one of them is a square, but the exact value of the square root
depends on p.

The value of d in the Edwards form curve is determined from the relation a2 =
0 = s2

1/r2
1 − 2r1. Then 2r3

1 = s2
1 and so, d = 1 − (4r3

1/s2
1) = −1. Thus, if a4 is a

square modulo p, then the corresponding Edwards form is

x2 + y2 = 1 − x2y2. (9)

Note that d is equal to −1 irrespective of the value of a4. Also, in (9) a4 = 1 so
that A = 0 and B = 2 in the Montgomery form obtained by applying (1).

Interestingly, the curve x2 + y2 = 1 − x2y2 was studied by Euler [13] and
Edwards [8] reports that the curve was also of “great interest” to Gauss [14].

S2 = R3 + α. The condition p ≡ 2 mod 3 ensures that this curve is supersin-
gular. This, along with the condition p ≡ 3 mod 4 for the point of order 4 to
exist, implies that p ≡ −1 mod 12.

Here A4 = 0 and A6 = α. Let P = (R1, S1) be a point of order 4 on this curve
and R2 is the x-coordinate of 2P . Since 2P has order 2, the y-coordinate of 2P
must be zero and so R3

2 = −α. Using 2P = (R2, 0), it can be shown that R1 and
S1 are obtained by first solving R3

1 − 3R2R1 − 2α = 0 for R1 and then solving
S2

1 = R3
1 + α for S1. So, for P to exist, first −α must be a cube modulo p and

then these two equations should be solvable modulo p.
Once R2 and (R1, S1) have been obtained, we can first apply Observation 1

followed by (2) to obtain the corresponding Edwards form.
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Concrete Examples. Consider E : y2 = x3 + x over Fp, p ≥ 5. In [15, Table
1], suitable values of p and r for various levels of security are given. We consider
some particular values given in [15, Section 7.2]. In both cases below p ≡ 3 mod 4
and hence the curve x2+y2 = 1−x2y2 is supersingular over Fp. The group E(Fp)
has a unique element of order 2 and the points (1, ±

√
2) are of order 4.

For 80-bit security level, with k = 2, recommended sizes of p and r are 512
and 160, respectively. A suitable set of parameters is given there as p = 2520 +
2363 − 2360 − 1, r = 2160 + 23 − 1.

For 128-bit security level, with k = 2, recommended sizes of p and r are
1536 and 256 bits respectively. A suitable set of parameters is given there as
p = 21582 + 21551 − 21326 − 1, r = 2256 + 2225 − 1.

5 Pairing Computation on x2 + y2 = 1 − x2y2 over Fp,
p > 3 and p ≡ 3 mod 4

In Section 4, we have seen that the supersingular curve E : s2 = r3 + ar over
Fp, with p ≡ 3 mod 4 transforms to x2 + y2 = 1 − x2y2 over Fp, provided a is
a square modulo p. Let E(Fp)[r] be the set of all Fp-rational r-torsion points of
this curve. Let r be a prime greater than 3 and then 〈R〉 = E(Fp)[r]. Then for
any (α, β) ∈ 〈R〉, β �= 0. (If β = 0, then α = ±1 and the points (±1, 0) are of
order 4 and hence cannot be in 〈R〉; if they are, then 4|r which contradicts r is
a prime greater than 3.)

The domain of pairing is E(Fp)[r] × E(Fp2)/rE(Fp2 ). By using a so-called
“distortion map”, the domain can be changed to E(Fp)[r] × E(Fp)[r]. For the
corresponding Weierstraß form this has been done in [6,7].

Definition 1. [16, Section 4.2] A distortion map φ with respect to a cyclic group
〈P 〉 of order r is an endomorphism of the curve that maps any non-zero point
Q in 〈P 〉 to a point φ(Q) which is independent of Q.

The curve s2 = r3 + r over Fp with p > 3 is supersingular for p ≡ 3 mod 4,
with embedding degree k = 2. The map φ(r, s) = (−r, is) where i2 = −1 is a
distortion map for this curve. (For more details see [6].)

We obtain a distortion map for the Edwards form curve. The following result
can be proved by mapping (x, y) on Edwards form curve to (r, s) on Weierstraß
form; mapping (r, s) to (−r, is) using the distortion map on Weierstraß form;
and then mapping the resulting point back to Edwards form. The proof that we
provide is more direct.

Theorem 2. The function φ : E(Fp)[r] → E [Fp2 ] given by

φ(x, y) =
(

ix,
1
y

)
, (10)

is a distortion map on the Edwards form curve x2 + y2 = 1 − x2y2.
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Proof. First we notice that the image of φ is not contained in E(Fp)[r]. Next, we
verify that φ is an endomorphism. Let Pi = (xi, yi), for i = 1, 2. Let (x3, y3) be
the sum P1 + P2. Thus, we have

φ(P1 + P2) =
(

i
x1y2 + x2y1

1 − x1x2y1y2
,
1 + x1x2y1y2

y1y2 − x1x2

)
.

On the other hand,

φ(P1) + φ(P2) =
(

ix1,
1
y1

)
+

(
ix2,

1
y2

)
=

(
i
x1y1 + x2y2

x1x2 + y1y2
,
1 + x1y1x2y2

y1y2 − x1x2

)
.

We now verify that (x1y2 + x2y1)(x1x2 + y1y2) = (x1y1 + x2y2)(1 − x1x2y1y2).
Indeed, expanding the left hand side, we obtain,

(x1y2 + x2y1)(x1x2 + y1y2) = x2
1x2y2 + x1x

2
2y1 + x1y1y

2
2 + x2y

2
1y2

= x1y1(x2
2 + y2

2) + x2y2(x2
1 + y2

1)
= x1y1(1 − x2

2y
2
2) + x2y2(1 − x2

1y
2
1)

= (x1y1 + x2y2)(1 − x1x2y1y2)

which proves the theorem. ��

Under this distortion map, the output of e(P, Q) is defined to be e(P, φ(Q)).
Each Miller iteration takes two points P1 and P2 and obtains P3 to be the sum
of P1 and P2 and evaluates h(φ(Q)), where h is the rational function h given in
Theorem 1. In other words, we have to evaluate

h

(
ixQ,

1
yQ

)
=

(1 − y3)
((

1 + 1
yQ

)
− ixQ

(
λ

(
1 + 1

yQ

)
+ θ

(
1 − 1

yQ

)))
ixQ( 1

yQ
− y3)

=
i(y3 − 1)

xQ(1 − yQy3)
((yQ + 1) − ixQ(λ(yQ + 1) + θ(yQ − 1)))

=
(yQ + 1)(y3 − 1)
xQ(1 − yQy3)

(xQλ + αQθ + i)

(11)

where αQ = xQ(yQ − 1)/(yQ + 1) and λ and θ are given by Equation 6 and
Equation 7 respectively. Note that the expression for αQ is the same as that of
1/v obtained in transforming from Edwards to Montgomery (see (1)). The value
of αQ depends only on Q and can be computed before starting the actual pairing
computation.

Inversion Free Pairing. Computing αQ, however, requires an inversion over
Fp per pairing computation. While this cost is not severe, as discussed earlier,
in resource constrained situations, it might be desirable to altogether avoid im-
plementing the inversion module. For this, we express h(ixQ, 1/yQ) as

h

(
ixQ,

1
yQ

)
=

(y3 − 1)
xQ(1 − yQy3)

(βQλ + γQθ + iδQ) (12)
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where βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1. The quantities βQ,
γQ and δQ do not vary with Miller iteration and can be computed using two
multiplications at the beginning of the pairing computation.

Observation 2. An important observation is that in Tate pairing computation,
the final output of Miller loop is raised to the power (p2 − 1)/r, where r does
not divide (p − 1). So, (p − 1) divides (p2 − 1)/r and hence, in the computation
of h(Q) we can freely divide or multiply by a non-zero element of Fp. This is
because for any non-zero α ∈ Fp, αp−1 = 1. This technique has been used in [6]
to speed up computation on Weierstraß form curve.

Since we can multiply and divide by non-zero elements of Fp, we see that it
is sufficient to evaluate

g(xQ, αQ) = βQλ + γQθ + iδQ. (13)

In the following, we simplify this expression after substituting the values of λ
and θ and using appropriate coordinates and then obtain explicit formulae for
jointly computing P3 and g.

Converting to Weierstraß and Computing the Pairing. The Weierstraß
form of the supersingular curve that we are considering is s2 = r3 + ar. Explicit
formulae for doubling-and-Miller and addition-and-Miller for this curve have
been given in [11]. The coordinate system used was Jacobian and the pairing did
not require any Fp-inversion and still used mixed addition.

In contrast, ifwe use (3) to convert fromEdwards toWeierstraß then an inversion
is required. Due to the availability of the distortion map (for the Weierstraß form),
we may assume that the coordinates of both P and Q in (3) are from Fp. Then the
four inversions can be done using 9[M] and 1[I] using Montgomery’s trick (s1 = x1;
si = si−1xi−1, 1 ≤ i ≤ 4; y4 = s−1

4 ; x−1
i+1 = yi+1si, yi = xi+1yi+1, 3 ≥ i ≥ 1; this

procedure generalizes to arbitrary number of xis). The total operation (including
multiplications by r1 and s1) count is 19[M]+1[I] for the conversion.

If we choose not to perform any inversion, then as discussed in Section 3,
at the cost of some extra multiplications, we can put P in Jacobian and Q in
either Jacobian or projective. As a result, the mixed addition on Weierstraß will
be slower and the evaluation of each Miller function at Q will also be slower.
The exact amount of slowdown for the Weierstraß form pairing due to these two
factors is not clear and the entire pairing formulae for Weierstraß needs to be
worked out to determine this. We do not do this; instead we work out the explicit
formulae for performing inversion-free pairing directly on Edwards form. It does
not appear that performing inversion-free pairing after converting to Weierstraß
is likely to be faster.

In the following, by [M] we will denote one Fp multiplication and by [S] we
will denote one Fp squaring.

5.1 Pairing Using Inverted Edwards Coordinates

The point (x, y) is said to be in affine representation. There are several other co-
ordinate systems for representing a point. In [10], the inverted Edwards
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representation is used to represent the point (x, y) by (X, Y, Z), where x = Z/X
and y = Z/Y . The curve then transforms into Z4 = X2Y 2 − Z2(X2 + Y 2). The
addition and doubling formulae for the inverted Edwards representation have
been given in [10].

Let P1 = (X1, Y1, Z1), P2(X2, Y2, Z2) and P3 = (X3, Y3, Z3) such that P3 is
the sum of P1 and P2. It is possible to obtain unified formulae for X3, Y3 and Z3,
i.e., one which does not distinguish between P1 = P2 and P1 �= P2. While this is
useful for side channel resistance, a dedicated doubling formula is faster. We use
the dedicated doubling formula, since in the current context the value of r (the
order of the subgroup of E(Fp)[r]) is not a secret and the pairing computation
will be computing rP for some point P .

Suppose that we want to compute the pairing value for P and Q. We assume
that P is given as (X1, Y1, Z1) with Z1 = 1 and Q is given in affine as (xQ, yQ)
so that φ(Q) = (ixQ, 1/yQ). As discussed above, for computing h, it is sufficient
to compute g given in (13) or a product of g and some element of Fp.

Doubling and Miller Iteration. Doubling a point and computing the Miller
value are done together so that some computations can be shared. In Theorem 1,
substituting the value of d to be −1 and using inverted Edwards coordinates, we
obtain

λ =
Z1(Y 2

1 + Y1Z1 + Z2
1 )

X1(Y1 − Z1)(Y1 + Z1)
; θ =

(X2
1 (Y 2

1 − Z2
1) − Z2

1 (Y 2
1 + Y1Z1 + Z2

1))
X1(Y1 − Z1)2Z1

.

At this point we need to substitute these values of λ and θ into (13) and sim-
plify the resulting expression. During the simplification, we are free to multiply
and divide by non-zero elements of Fp as done earlier. We have performed this
simplification with the help of Mathematica [17] and the final expression for the
Miller value turns out to be Ψ = βQF + γQG + 2iδQH, where

F = 4Z1(Y1 − Z1)(Y 2
1 + Y1Z1 + Z2

1)

G = −4Y1Z
2
1 (Y1 + Z1)

H = 2X1(Y1 + Z1)(Y1 − Z1)2.

(14)

Explicit formulae for doubling using inverted Edwards coordinates have been
given in [10] and requires 3[M]+4[S] operations over Fp. This is shown in the
column “doubling” in Table 2. Some of the expressions obtained during doubling
can be used in the computation of Ψ . With one squaring, the value of J =
2Y1Z1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 can be found. We also require I = 2X1Z1 =

(X1 + Z1)2 − X2
1 − Z2

1 , which can be computed with one squaring. It may be
easily seen that

F = (2Y1Z1 − 2Z2
1 )(2Y 2

1 + 2Y1Z1 + 2Z2
1) = (J − 2M)(2B + J + 2M),

can be computed with one multiplication. The computation of G = −J(J +2M)
and

H = (2X1Y1 + 2X1Z1)(Y 2
1 − 2Y1Z1 + Z2

1 ) = (E + I)(B − J + M)
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Table 2. Combined explicit formula for doubling and Miller value computation using
inverted Edwards coordinates. An alternative form for Ψ is xQF + αQG + 2iH . Here,
αQ = xQ(yQ − 1)/(yQ + 1), βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Doubling Miller value

A = X2
1 , B = Y 2

1 , C = A + B,
D = A − B, E = (X1 + Y1)2 − C = 2X1Y1,
M = Z2

1 , Z3 = D · E, X3 = C · D,
Y3 = (C + 2Z2

1 )

J = (Y1 + Z1)2 − B − M ,
I = (X1 + Z1)2 − A − M ,
F = (J − 2M)(2B + J + 2M),
G = −J(J + 2M),
H = (E + I)(B − J + M),
Ψ = βQF + γQG + 2iδQH .

require two multiplications. Finally, the computation of Ψ = βQF + γQG +
2iδQH requires three additional multiplications. Thus, computing the Miller
value requires an additional 6[M ] + 2[S] operations and the combined doubling
and Miller value computation require a total of 9[M ] + 6[S] operations. The
complete description is given in Table 2.

Mixed Addition and Miller Iteration. Explicit formula for computing the
mixed addition of a point P1 and a point P2 (whose Z coordinate is 1) has been
given in [9]. In the present case, the point P is taken to be P2. (Recall that
we are computing the pairing value of P and Q.) This is shown in the column
“Mixed Addition” of Table 3. Proceeding as in the case of doubling, we need to
compute Ψ = βQF + γQG + 2iδQH , where in this case,

F = −X2(1 + Y2)(Y1 − Z1)Z1 + X1(−1 + Y2)(Y1 + Z1)
G = (1 + Y2)(Y1 + Z1)(−X1 + X2Z1)
H = Z1(−Y1 + Y2Z1)

(15)

The sequence of operations is the following. First, J = Y2Z1 and K = X2Z1
need two multiplications. This gives J1 = Y1 − Y2Z1, J2 = (Y2 + 1)(Y1 + Z1),
J3 = (Y2 − 1)(Y1 + Z1), J4 = (Y2 + 1)(Y1 − Z1) and K1 = X2Z1 − X1 without
any other multiplications. Computation of F = −X2 · J4 + X1 · J3 requires two
multiplications. Computations of G = J2 · K1 and H = −Z1 · J1 require one

Table 3. Combined explicit formula for mixed addition and Miller value computation
using inverted Edwards coordinates. An alternative form for Ψ is xQF + αQG + 2iH .
Here, αQ = xQ(yQ −1)/(yQ +1), βQ = xQ(yQ +1), γQ = xQ(yQ −1) and δQ = yQ +1.

Mixed Addition Miller Value
B = −Z2

1 , C = X1X2, D = Y1Y2,
E = C · D, H = C − D,

I = (X1 + Y1) · (X2 + Y2) − C − D,
X3 = (E + B) · H,Y3 = (E − B) · I,
Z3 = A · H · I

D = Y1Y2, J = Y2Z1, K = X2Z1, J = Y1 − J ,
J2 = Y1 + Z1 + D + J , J3 = D + J − Y1 − Z1,
J4 = D − J + Y1 − Z1, K1 = K − X1,
F = −X2J4 + X1J3, G = J2K1, H = −Z1J1,
Ψ = βQF + γQG + 2iδQH .
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multiplication each. Thus, the value of Ψ can be computed with 9[M ]. Thus,
mixed addition plus rational function computation requires 17[M ] + 1[S] com-
putations. The complete formula is given in Table 3.

5.2 Pairing Using Projective Edwards Coordinates

The affine point (x, y) on a Edwards form curve can be represented in projective
coordinates as (X, Y, Z), where x = X/Z and y = Y/Z. The curve equation then
changes to X2 + Y 2 = Z2 − X2Y 2. Explicit formulae for doubling and mixed
addition using projective Edwards coordinates has been given in [9]. Equation 13
can be simplified using projective coordinates and formulae obtained for com-
bined computation of double-and-Miller value and add-and-Miller value. The
simplification process for doing this is similar to that done for inverted Edwards
coordinates. Hence, we do not provide the details. Instead, we provide the final
formulae in Tables 4 and 5. The total number of operations are 9[M]+6[S] and
18[M]+1[S] respectively.

Table 4. Doubling and computation of Miller value using projective Edwards coordi-
nates. An alternative form for Ψ is xQF +αQG+2iH . Here, αQ = xQ(yQ −1)/(yQ +1),
βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Doubling Miller Value

B = (X1 + Y1)2, C = X2
1 , D = Y 2

1 ,
E = C + D, M = Z2

1 , J = E − 2M,
X3 = (B − E)J, Y3 = E(C − D), Z3 = EJ

B = (X1 + Y1)2, C = X2
1 , D = Y 2

1 ,
L = 2X1Z1, K = 2Y1Z1, Z2

1 ,
F = (L − B + C + D)(2D + K + 2M),
G = −K · (L + B − C − D),
H = (2M + K)(M + D − K),
Ψ = βQF + γQG + 2iδQH .

Table 5. Mixed addition and computation of Miller value using projective Edwards
coordinates. An alternative form for Ψ is xQF + αQG + 2iH . Here, αQ = xQ(yQ −
1)/(yQ + 1), βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Mixed Addition Miller Value

B = Z2
1 , C = X1X2, D = Y1Y2, E = −CD,

I = B − E, J = B + E,
X3 = Z1I((X1 + Y1)(X2 + Y2) − C − D),
Y3 = Z1J(D − C), Z3 = IJ

C = X1X2, K = Y2Z1, L = X2Z1,
D = Y1Y2, L1 = X1 − L, K1 = K − Y1,
K2 = D + K + Y1 + Y2,
K3 = D + K − Y1 − Z1,
K4 = D − K + Y1 − Z1,
F = −X1K4 + LK3, G = −K2L1,
H = CK1, Ψ = βQF + γQG + 2iδQH .

6 Concluding Remarks

In this work, we have studied pairing algorithms on Edwards form elliptic curves.
A general form for the function required in a Miller iteration has been obtained.
For a class of supersingular curves over fields of characteristic greater than 3,
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the expression for the Miller function has been simplified and explicit formu-
lae obtained for combined doubling and Miller iteration and combined addi-
tion and Miller iteration using both inverted Edwards and projective Edwards
coordinates.

Acknowledgements

The authors wish to thank Prof. Tanja Lange for her extensive comments on an
earlier version of this work. The authors also wish to the thank the reviewers
for their comments. The fist author is supported by Ministry of Information
Technology, Govt. of India.

References

1. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptology 17(4),
263–276 (2004)

2. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

3. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/

4. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Mathematics of Computation 62, 865–874
(1994)

5. Miller, V.S.: The Weil pairing and its efficient calculation. J. Cryptology 17(4),
235–261 (2004)

6. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002)

7. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

8. Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Math-
ematical Society 44, 393–422 (2007)

9. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

10. Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztas, S., Lu, H.F.
(eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

11. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in
projective coordinate over general characteristic fields. In: Park, C.-s., Chee, S.
(eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)

12. Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Twisted Edwards curves. Cryp-
tology ePrint Archive, Report 2008/013 (2008) http://eprint.iacr.org/ (Ac-
cepted in AFRICACRYPT 2008)

13. Euler, L.: Observationes de comparatione arcuum curvarum irrectificabilium. Novi
Comm. Acad. Sci. Petropolitanae 6(1761), 58–84

http://eprint.iacr.org/
http://eprint.iacr.org/


210 M.P.L. Das and P. Sarkar

14. Gauss, C.F.: Werke 3, 404
15. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:

Smart, N. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

16. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. Journal of Cryptology 17, 277–296 (2004)

17. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003),
http://www.wolfram.com

http://www.wolfram.com

	Pairing Computation on Twisted Edwards Form Elliptic Curves
	Introduction
	Preliminaries and Notations
	Birational Equivalence
	Background on Pairing

	Pairing over Twisted Edwards Form Curve
	Pairing Via Weierstra{\ss} Form
	Miller Function for Twisted Edwards Form Curve

	Supersingular Curves in Edwards Form
	Pairing Computation on $x^2+y^2=1-x^2y^2$ over $\mathbb{F}_p$, $p>3$ and $p\equiv 3\bmod 4$
	Pairing Using Inverted Edwards Coordinates
	Pairing Using Projective Edwards Coordinates

	Concluding Remarks



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




