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Preface

The Pairing 2008 Conference was held at Royal Holloway, University of London
during September 1–3, 2008. This conference followed on from the Pairing in
Cryptography workshop (held in Dublin, Ireland on June 12–15, 2005) and the
Pairing 2007 conference (held in Tokyo, Japan on July 2–4, 2007, with proceed-
ings published in Springer’s LNCS 4575). The aim of this series of conferences
is to bring together leading researchers and practitioners from academia and
industry, all concerned with problems related to pairing-based cryptography.

The programme consisted of 3 invited talks and 20 contributed papers. The
invited speakers were Xavier Boyen (Voltage Security, USA), Florian Hess (Tech-
nical University Berlin, Germany) and Nigel Smart (University of Bristol, UK).
Special thanks are due to these speakers, all three of whom provided papers
which are included in these proceedings.

The contributed talks were selected from fifty submissions. The accepted
papers cover a range of topics in mathematics and computer science, including
hardware and software implementation of pairings, cryptographic protocols, and
mathematical aspects and applications of pairings.

We would like to thank all the people who helped with the conference pro-
gramme and organisation. First, we thank the Steering Committee for their
guidance and suggestions. We also heartily thank the Programme Committee
and the sub-reviewers listed on the following pages for their thoroughness dur-
ing the review process. Each paper was reviewed by at least three people and
there was significant online discussion about a number of papers.

The submission and review process was greatly simplified by the ichair soft-
ware developed by Thomas Baignères and Matthieu Finiasz. Thanks also to Jon
Hart for running the submissions webserver and Takeshi Okamoto for designing
and maintaining the conference webpage.

Thanks go to the authors of all submitted papers for supporting the con-
ference. Authors of accepted papers are thanked again for revising their papers
according to the suggestions by the referees and for returning their latex source
files in good time. The revised versions were not checked by the Programme
Committee, so authors bear full responsibility for their contents. We thank the
staff at Springer for their help with producing the proceedings.

Finally, we thank the London Mathematical Society, Microsoft Research and
Voltage Security for their generous sponsorship of this event.

June 2008 Steven Galbraith
Kenny Paterson
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Pairings in Trusted Computing�

Liqun Chen1, Paul Morrissey2, and Nigel P. Smart2

1 Hewlett-Packard Laboratories,
Filton Road,
Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom

liqun.chen@hp.com
2 Computer Science Department,

Woodland Road,
University of Bristol,
Bristol, BS8 1UB,
United Kingdom

{paulm,nigel}@cs.bris.ac.uk

Abstract. Pairings have now been used for constructive applications in
cryptography for around eight years. In that time the range of applica-
tions has grown from a relatively narrow one of identity based encryption
and signatures, through to more advanced protocols. In addition imple-
mentors have realised that pairing protocols once presented can often
be greatly simplified or expanded using the mathematical structures of
different types of pairings. In this paper we consider another advanced
application of pairings, namely to the Direct Anonymous Attestation
(DAA) schemes as found in the Trusted Computing Group standards.
We show that a recent DAA proposal can be further optimized by trans-
ferring the underlying pairing groups from the symmetric to the asym-
metric settings. This provides a more efficient and scalable solution than
the existing RSA and pairing based DAA schemes.

1 Introduction

The growth of pairing based cryptography and the growth of elliptic curve cryp-
tography from an implementation perspective closely follow the same path. Orig-
inally elliptic curve systems were defined over supersingular elliptic curves. This
was mainly due to the difficulty in constructing suitable curves with a known
group order of the required size, and also due to perceived performance advan-
tages which accrue from using supersingular curves. With the discovery of the
MOV attack [20], implementors moved over to using non-supersingular (or ordi-
nary) elliptic curves. This move was supported by the research conducted into
the Schoof algorithm and its variants, [2]. The Schoof algorithm enabled ordinary

� The second and third author would like to thank EPSRC for partially supporting
the work in this paper.

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 L. Chen, P. Morrissey, and N.P. Smart

elliptic curves to be constructed with a known number of group elements, thus
enabling standard elliptic curve cryptography to be performed using ordinary
elliptic curves.

Pairing based cryptography also started by using supersingular elliptic curves,
via the use of symmetric pairings. Again this was mainly because such curves
enabled one to compute the number of points very efficiently, and because it
appeared that symmetric pairings could be implemented much more efficiently
than standard pairings. However, a major drawback of symmetric pairings is that
their security properties scale badly. This poor scaling is due to the embedding
degree being bounded by six. Thus with the wider acceptance of AES style
security levels it has been necessary for pairing protocols to also move to the
setting of ordinary elliptic curves, where asymmetric pairings are required. This
security concern, which has prompted the move to asymmetric pairings, has been
supported by a large body of research into optimizing pairings in the ordinary
elliptic curve setting, and in generating the required parameters. Probably, at the
time of writing the best choice for parameters is to choose a Barreto-Naehrig
curve [1], implement the Ate-pairing [18], and use sextic twists to reduce the
complexity of the group operations.

However, whilst protocols in the standard elliptic curve cryptography setting
move seamlessly from the supersingular case to the ordinary case, this is not true
in the pairing based cryptography setting. For example, issues arise with respect
to hashing onto various groups, or from mappings between the two groups in
the domain, see [15]. Thus in pairing based cryptography various initial protocol
suggestions often needed to be revisited as asymmetric pairings became more
accepted as the default implementation choice. For example the original Boneh-
Franklin encryption scheme [6] was originally presented for symmetric pairings
and in this setting is highly efficient. However, at high security levels it is less
attractive than some of the more modern approaches such as the Boneh-Boyen
scheme [3] (which is preferred by those who worry about exact security) and the
SK-KEM scheme [13] (which has a better performance than the Boneh-Boyen
scheme, but worse exact security). Another example of the need to fully evaluate
pairings in the asymmetric setting can be found in ID-based key agreement, for
which [14] provides a good summary of the issues involved.

Over the years various more advanced protocols have been proposed which
use pairings; for example encryption with keyword search [5], group signatures
[4], traitor tracing [19]. In this paper we consider another advanced application
of pairings, namely to Direct Anonymous Attestation (DAA) schemes as found
in the Trusted Computing Group standards [21]. We show that a recent DAA
proposal [8] can be further optimized, and hence we provide a more efficient and
scalable solution than the existing RSA and pairing based DAA schemes.

The original DAA scheme [7] was based on a signature scheme of Camenisch
and Lysyanskaya [10] whose security was based on the strong-RSA assumption
and the decisional Diffie–Hellman assumption in a finite field. In [16] another
DAA scheme was presented, based on the Camenisch and Michels signature
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scheme [12], this again results in a DAA scheme which is secure under the strong-
RSA and the decisional Diffie–Hellman assumption in a finite field.

Recently, Brickell et. al. [8] have presented a DAA scheme based on symmetric
pairings. This DAA protocol is based on another signature scheme of Camenisch
and Lysyanskaya [11] which makes use of symmetric pairing groups. This results
in a scheme which is secure under the DBDH assumption and the LRSW as-
sumption. This latter assumption is a non-standard assumption which underlies
the Camenisch and Lysyanskaya signature scheme. The LRSW assumption was
introduced in [17], where it was shown that it holds in the generic group model.

As a starting point we take the pairing based DAA scheme of Brickell et. al.
and provide some efficiency improvements. In addition we present the scheme
in the asymmetric setting, which requires, as is usual in this situation, some
minor modifications to the original scheme. We show that the new scheme is
particularly suited to the environment in which the DAA scheme is meant to
run. This is because our new scheme places a smaller computational requirement
on the TPM, which is a small hardware device which sits on the motherboard
of the trusted platform. In fact the TPM has only to perform a single basic
elliptic curve point multiplication in the signing protocol, and in all parts of the
protocol the TPM requires no operation to be performed in large finite fields nor
any pairing calculations. In addition we reduce the number of pairings computed
by the Host during a signing operation from three to one.

In the full version of this paper we shall show that our optimized asymmetric
pairing based protocol is secure in a security model based on real/ideal world
simulations. This is closer to the original security model of [7], than the security
model used in [8]. Thus our protocol is not only more efficient than that in [8],
but it also enjoys enhanced security properties.

2 Introduction to Direct Anonymous Attestation

In order to give an intuitive explanation of what direct anonymous attestation
(DAA) is, its importance and its impact, we use the following scenario. Con-
sider a user, Alice, who owns a laptop computer. Alice uses this computer for
online shopping with a given retailer Charlie and to remotely log on to network
server Bob in order to work from home as part of her day job. Both Bob and
Charlie want some assurance that Alice is using a laptop which contains some
combination of hardware and software from some specific set. This is to pro-
tect themselves from malicious users who may try to compromise their systems.
In other words they want some assurance that Alice’s platform can be trusted.
On the other hand Alice does not want either Bob or Charlie to know exactly
which laptop she owns, what hardware it contains, or what software it runs: just
that it can in fact be trusted. Furthermore, Alice wants Bob to be able to link
transactions made with her laptop to each other (without giving Bob any more
information than that the transactions were made using the same platform), but
does not want any other transactions to be linked. Informally, a DAA scheme is
a mechanism for achieving each of these seemingly contradictory goals.
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We assume that each trusted platform has a certain module, known as a
trusted platform module (TPM), embedded into it at the time of manufacture.
Each TPM will have a unique endorsement key pair (EK) which is also chosen
at the time of manufacture and which is hidden inside the TPM. Usually the
TPM is a small chip embedded onto a computer’s motherboard and as a result
the TPM has only limited computational and storage resources. As such the
TPM is a potential bottleneck within a DAA scheme. To make a DAA scheme
as efficient as possible the main goal is to minimize the amount of computation
that a given TPM will have to perform. We refer to the platform into which the
TPM is embedded as the Host and the combination of TPM and Host as a user.

In order to convince a verifier that a platform contains such a TPM, and can
hence be trusted, the user has to first obtain a credential from some credential
issuer. It does this by having its TPM compute a commitment to a secret internal
value f that is unique for each issuer/TPM pair. This commitment is then used
as evidence to the issuer that the user does in fact have a valid TPM embedded
within it. Note that a given user can obtain many credentials from a given issuer.

In order to convince a given verifier that a user owns such a credential the
user computes a “signature of knowledge” of such a credential and the associated
value f corresponding to this credential. This signature of knowledge is then
sent to the verifier. Then, since the credential was issued by a specific issuer, the
verifier is convinced that a given user contains a valid TPM but does not know
which TPM this is. If a user wants a verifier to be able to link transactions then
that user simply computes the signature of knowledge in a certain specified way:
by using a given verifier basename.

One last consideration is what happens if a given TPM is compromised and its
secret internal values published? In this case we use rogue tagging. Each issuer
and verifier maintains their own list of rogue values. When a given value of f
is published they then decide whether to add it to their list or not. Then we
require, when a user computes a signature of knowledge of a given credential
this includes some information that allows for the signature to be recognised as
produced by a compromised TPM secret value.

Since the verifier is only given a signature of knowledge of a credential, and not
the credential itself, if the issuer and the verifier that computed the credential
collude, then they should not be able to identify transactions made by a specific
TPM. Yet a given verifier will be assured that any transaction that does take
place was made by a platform that contains such a TPM and that this TPM has
not been compromised.

2.1 The DAA Players

We refer to each of the entities in a DAA scheme as players. We first describe the
types of players we consider in our model. This set of players is the same set as in
[9] and is intended to represent a DAA scheme in which a given TPM wishes to
remotely and anonymously authenticate itself to a given verifier. Intuitively, the
set of players will consist of a set of users, each comprising a Host and a TPM, a
set of issuers, and a set of verifiers to which users want to authenticate their TPM.
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We now give a formal description of each of the DAA players. A general DAA
scheme has a set of players that consists of the following.

– A set of users U where each Ui ∈ U consists of
• A TPM mi from some set of TPMs M with an endorsement key eki and

seed DaaSeedi;
• A Host hi from some set of hosts H which will have a counter value cnti,

a set of commitments {comm}i and a set of credentials {cre}i.
– A set of issuers I where each Ik ∈ I has a public and private key pair

(ipkk, iskk) and long term value Kk (for example a long term public key of
the issuer). Each Ik ∈ I also maintains a list of rogue TPM internal values,
we denote this list by RogueList(Ik).

– A set of verifiers V . Each verifier Vj ∈ V maintains a set of base names
{bsn}j and a list of rogue TPM internal values RogueList(Vj). Each Vj may
optionally maintain a list of message and signature pairs received (this can
be used to trade memory for computation in linking).

We assume that initially the sets {comm}i, {cre}i are empty for all Ui ∈ U .
In addition we assume that the list RogueList(Ik) are empty for all Ik ∈ I, and
that the list RogueList(Vj) and the sets {bsn}j are empty for all Vj ∈ V .

It is worth describing the various player parameters and how they relate to
each other. Generally, at the time of manufacture, each TPM will have a sin-
gle endorsement key eki embedded into the TPM chip. In addition, each TPM
generates a TPM-specific secret DaaSeedi and stores it in nonvolatile memory,
this value will never be disclosed or changed by the TPM. We do not consider
choosing and assigning the values eki and DaaSeedi in the setup algorithm, since
the setup algorithm is run only by an issuer. The DaaSeedi is generally a 20–byte
constant that, together with a given issuer value Kk, allows for the generation
and regeneration of a given value of an internal secret key f . Each TPM can have
multiple possible values for f (at least one per issuer and possible more if a given
issuer has more than one value of Kk). We refer to the set of possible values of f
for a given user i as {f}i Since the TPM has limited storage requirements it does
not store the current value for f , it regenerates it as required from DaaSeedi.
For each value of f the TPM will be able to compute a single commitment on
f . The value cnti that a given Host maintains can be thought of as an index for
a particular f and commitment pair.

For each commitment, as we will see later, a given issuer could issue mul-
tiple credentials. We assume the Host only stores one credential for a given
f/commitment pair, and hence the value of cnti will also refer to the current
value of the corresponding credential.

The set {bsn}j is used to achieve user controlled linkability of signatures.

2.2 Formal Definition of a DAA Scheme

Informally a DAA scheme consists of a system setup algorithm, a protocol for
users to obtain credentials, a signing protocol, algorithms for verifying and link-
ing signatures and an algorithm for tagging rogue TPM values. Our definition



6 L. Chen, P. Morrissey, and N.P. Smart

is similar to that given in [8] but with some modifications. Specifically, we give
a single protocol for the joining functionality as opposed to multiple protocols,
and our signature functionality is given as a protocol as opposed to an algorithm.
Also we have an additional rogue tagging algorithm.

Definition 1 (Daa Scheme). Formally, we define a Daa scheme to be a tuple of
protocols and algorithms Daa = (Setup, Join, Sign,Verify, Link,RogueTag) where:

– Setup(1t) is a p.p.t. system setup algorithm. On input 1t, where t is a security
parameter, this outputs a set of system parameters par which contains all of
the issuer public keys ipkk and the various parameter spaces. This algorithm
also serves to setup and securely distribute each of the issuer secret keys iskk.

– Join(Ui, Ik) is a 3 party protocol run between a TPM, a Host and an issuer.
In a correct initial run of the protocol with honest players the Host should
obtain an additional valid commitment and an additional valid credential. In
correct subsequent runs one valid credential should be replaced with another.

– Sign(Ui,msg) is a 2 party protocol run between a TPM and a Host used
to generate a signature of knowledge on some message msg. In a correct
run of the protocol with honest players the signature of knowledge will be
constructed according to some basename for some specified verifier that may
or may not allow the signature to be linked to other signatures with this same
verifier.

– Verify(σ,msg) is a deterministic polynomial time (d.p.t.) verification algo-
rithm that allows a given verifier to verify a signature of knowledge σ of a
credential on a message msg intended for a given verifier with a specific base-
name. The verification process will involve checking the signature against the
list RogueList(Vj). This algorithm returns either accept or reject .

– Link(σ0, σ1) is a d.p.t. linking algorithm that returns either linked , unlinked
or ⊥. The algorithm should return ⊥ if either signature was produced with
a rogue key, return linked if both are valid signatures and the user who
produced them wanted these to be linkable to each other, and return unlinked
otherwise.

– RogueTag(f, σ) is a d.p.t. rogue tagging algorithm that returns true if σ is
a valid signature produced using the TPM secret value f and returns false
otherwise.

For correctness we require that if

– a user Ui ∈ U engages in a run of Join with Ik, resulting in Ui obtaining
a commitment comm on a TPM secret value f and a credential cre corre-
sponding to f ,

– the user Ui then creates two signatures σb on two messages msgb for b ∈ {0, 1}
intended for verifier Vj ∈ V with basename bsn (which could be ⊥),

– and the secret TPM value used to compute these f is not in RogueList.

Then
Verify(σ0,msg0) = Verify(σ1,msg1) = accept

and if bsn �=⊥ then Link(σ0, σ1) = linked .
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3 The Camensich-Lysyanskaya Signature Scheme

Before proceeding it is worth pausing to present the pairing based Camensich-
Lysyanskaya signature scheme which is at the heart of not only our DAA scheme,
but also the scheme of [8]. We let t̂ : G1 × G2 → GT denote a pairing between
three groups of prime order q. We let the generator of G1 (resp. G2) be denoted
by P1 (resp. P2).

– KeyGeneration: The private key is a pair (x, y) ∈ Zq ×Zq, the public key
is given by the pair (X,Y ) ∈ G2 × G2 where X = xP2 and Y = yP2.

– Signing: On input of a message m ∈ Zq the signer generates A ∈ G1 at
random and outputs the signature (A,B,C) ∈ G1×G1×G1, where B = yA
and C = [x+mxy]A.

– Verification: To verify a signature on a message the verifier checks whether
t̂(A, Y ) = t̂(B,P2) and t̂(A,X) · t̂(mB,X) = t̂(C,P2).

The original signature scheme is given in the symmetric pairing setting (i.e.
where G1 = G2), we have chosen the above asymmetric version to reduce the
size of the signatures and to have the fastest signing algorithm possible. The
key property of this signature scheme is that signatures are re-randomizable
without knowledge of the secret key: given (A,B,C) one can re-randomize it by
computing (rA, rB, rC) for a random element r ∈ Zq.

There is an interesting difference between this signature scheme in the sym-
metric and the asymmetric settings. In the symmetric setting the signer, on
being given two valid signatures (A,B,C) and (A′, B′, C′), is able to tell that
they correspond to a randomization of a previous signature, without knowing
what that message is. He can do this by verifying that A′ = rA,B′ = rB and
C′ = rC, for some value r, by performing the following steps:

t̂(A′, B) = t̂(A,B′) and t̂(A′, C) = t̂(A,C′).

This makes use of the fact that the DDH problem is easy in G1 in the symmetric
setting.

In the asymmetric setting a signer is unable to determine if two signatures
correspond to the same message, since in this setting the DDH problem is be-
lieved to be hard in G1. Indeed one can show that an adversary who can tell
whether (A′, B′, C′) is a randomization of (A,B,C), even if the adversary knows
x and y, is able to solve DDH in G1. This difference provides one of the main
optimizations of our scheme below.

4 Previous DAA Schemes

In this section we present prior work on DAA schemes, and we analyse their
performance.
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4.1 Factoring Based Schemes

The original DAA scheme from [7] makes use of the Camenisch-Lysyanskaya
signature scheme [10], and hence is based on the strong-RSA assumption. In
particular it makes use of a strong-RSA modulus N = p·q, i.e. where p = 2·p′+1
and q = 2 · q′ + 1 for primes p′ and q′. In addition it uses a finite field of prime
order Γ . The difficulty of discrete logarithms in FΓ and of factoring N should
be roughly equivalent, so Γ and N are chosen to be roughly the same size.

As in all systems the Setup procedure is rather involved. However, this is only
run once and the resulting parameters are only verified once by each party so
we ignore the cost of the Setup algorithm and its verification.

In Table 1 table we present the computational cost for all the other algorithms,
with respect to each player. An entry of the form

1 · GN + 2 · GΓ + 3 · G2
N

implies that the cost is about one exponentiation modulo N , two modulo Γ and
three multiexponentiations with two exponents modulo N , i.e. three operations
of the form ga·hb (mod N). Note, that a multiexponentiation withm exponents
can often be performed significantly faster than m separate exponentiations.

In the table we let Pc denote the cost of generating a prime number of the
required size and Pv the cost of verifying that a given number of the required
size is prime. We let n denote the number of keys in the verifier’s rogue secret
key list. We do not specify the time for the linking algorithm, as it is closely
related to that of the verification algorithm, and we give the additional time for
the RogueTag algorithm over and above the verification algorithm time (which
needs to be carried out).

Note that the exponents involved in many of the operations, especially the
verification operation, are not of full length. Hence, the above table grossly
overestimates the required computational resources. However, one can see that
the constrained computing device, namely the TPM is having to perform a
considerable number of RSA-length operations.

In [16] a different variant of the DAA protocol is given which tries to reduce
the computational cost of the Host, thus allowing trusted computing technologies
which use the DAA protocol to be deployed in small devices such as mobile

Table 1. Cost of the DAA protocol from [7]

Operation Party Cost

Join TPM 3 · GΓ + 2 · G3
N

Issuer n · GΓ + 2 · GN + 1 · G4
N + 1 · G2

Γ + Pc

Host 1 · GΓ + 1 · G2
N + Pv

Sign TPM 3 · GΓ + 1 · G3
N

Host 1 · GΓ + 1 · GN + 1 · G2
N + 2 · G3

N + 1 · G4
N

Verify Verifier 4 · G2
Γ + 2 · G4

N + 1 · G6
N + nGΓ

RogueTag Verifier 1 · G4
N
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phones. We do not analyse, for reasons of space, the performance of this protocol,
but it is also based on factoring assumptions and so all parties need to compute
with large integers.

4.2 Symmetric Pairing Based Schemes

Given the increase in RSA key lengths as required by moving to AES key levels,
since AES-128 is equivalent to roughly 3000 bits of RSA security, the above two
protocols are not going to be suitable in the long term. This led to Brickell et.
al. [8] to propose an elliptic curve variant, which reduced the load of the TPM
at the expense of requiring pairings to be computed by the other parties.

The Brickell et. al. protocol uses symmetric pairings t̂ : G1 × G1 −→ GT .
As above we let Gm

1 etc denote the cost of a multiexponentiation of m values
in the group G1. We also let P denote the cost of a pairing computation. The
associated costs are then given by Table 2.

Table 2. Cost of the DAA protocol from [8]

Operation Party Cost

Join TPM 3 · G1

Issuer (2 + n) · G1 + 2 · G2
1

Host 6 · P

Sign TPM 4 · GT

Host 3 · G1 + 2 · GT + 3 · P

Verify Verifier (n + 1) · GT + 1 · G2
T + 1 · G3

T + 5 · P

RogueTag Verifier 1 · GT

To get some idea of the comparison between the factoring based scheme and
the pairing based scheme, consider that the groups GT and GN (or GΓ ) are
represented by bit strings of roughly the same size. In addition operations in GT

can be made slightly more efficient than those in GN , as in GT we can make
use of various torus-like representations and tricks, which are not available in
standard RSA groups. Finally, the operations in G1 are about 1/4 the cost of
operations in GT

1.
In the next section we present a variant of the Brickell et. al. pairing based

protocol which uses asymmetric pairings. By using asymmetric pairings and
Barreto-Naehrig curves, we are able to obtain, for the same size of GT , operations
in G1 which are around 144/10 ≈ 14 times more efficient than those in GT , as
opposed to 4 times as above. This is because now GT is a subgroup of Fq12 .

1 This is a rough estimate derived as follows: GT is a subgroup of Fq6 and operations
in Fq will be 36 = 62 times more efficient generally than operations in GT , G1 is an
elliptic curve over Fq and so will have operations which take around 10 Fq operations,
and 10/36 ≈ 1/4.
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5 The Optimized Pairing Based DAA Scheme

We now give a detailed description of the our new DAA scheme based on asym-
metric bilinear maps, as opposed to symmetric ones.

5.1 The Setup Algorithm

To set the system up we need to select parameters for each protocol and algorithm
used within the DAA scheme well as the long term parameters for each Issuer. On
input of the security parameter 1t the algorithm executes the following:

1. Generate the Commitment Parameters parC. For this three groups, G1,G2

and GT , of sufficiently large prime order q are selected. Two random gener-
ators are selected such that G1 = 〈P1〉 and G2 = 〈P2〉 along with a pairing
t̂ : G1 × G2 	→ GT . Next a hash function H1 : {0, 1}∗ 	→ Zq is selected and
parC is set to be (G1,G2,GT , t̂, P1, P2, q,H1).

2. Generate the Rogue List Parameters parR. A hash functionH2 : {0, 1}∗ 	→ Zq

is selected. The rogue list parameters parR are then set to be (H2).
3. Generate Signature and Verification Parameters parS. Two additional hash

functions are selected: H3 : {0, 1}∗ 	→ Zq, and H4 : {0, 1}∗ 	→ Zq. We set
parS to be (H3, H4).

4. Generate the Issuer Parameters parI. For each Ik ∈ I the following is per-
formed. Two integers are selected x, y←Zq and the issuer secret key iskk is
assigned to be (x, y). Then the values X = x · P2 ∈ G2 and Y = y · P2 ∈ G2

are computed and the issuer public key ipkk is assigned to be (X,Y ).
Then an issuer value Kk is computed according to the issuer public values
in some predefined manner (we leave the specific details of how this is done
as an implementation detail).
Finally, parI is set to be ({ipkk,Kk}) for each issuer Ik ∈ I.

5. Publish Public Parameters. Finally, the system public parameters par are set
to be (parC, parR, parS, parI) and are published.

The grouping of system parameters is according to usage. For example the
set parC contains all system parameters necessary for computing commitments
and the set parR contains those for any rogue checking computations (and also
linking).

The group order q is selected so that solving the decisional Diffie–Hellman
problem in G1,G2 and GT takes time 2t, as does solving the appropriate bilinear
Diffie–Hellman problem with respect to the pairing t̂.

An additional optional check of issuer public key values can be added by
having each issuer compute X ′ = x · P1 and Y ′ = y · P1 and publishing these as
part of par. Then to check that both X and Y are correctly formed one simply
checks that t̂(P1, X) = t̂(X ′, P2) and t̂(P1, Y ) = t̂(Y ′, P2).

5.2 The Join Protocol

This is a protocol between a given TPMm ∈ M, the corresponding Host h ∈ H,
and an Issuer I ∈ I. We first give an overview of how a general Join protocol
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proceeds. There are 3 main stages to a Join protocol. First the TPMm generates
some secret message f using the value Kk provided by the issuer and its internal
seed DaaSeed. The TPM then computes a commitment on this value and passes
this to its Host who adds this to the list of commitments for that user and
forwards it to the Issuer. In the second stage the issuer performs some checks on
the commitment it receives and, if these correctly verify, computes a credential
such that the correctness of this credential can be check by the TPM and Host
working together. This credential is passed to the Host in an authenticated
manner (using ek). The final stage of a Join protocol involves the Host and TPM
working together to verify the correctness of the credential. In our case the Host
first performs some computations and stores some values related to these before
passing part of the credential on to the TPM prior to verifying the correctness
of the credential and then adding this to the list of credentials for that user.

Our protocol proceeds as shown in Figure 1. The following notes should be
born in mind when examining this protocol.

– If the pointsP1, P2, X, Y are not formed correctly then this could leak informa-
tion about the value of a given f , for example due to small subgroupattacks. To

TPM (m) Host (h) Initiator (I)

nI←{0, 1}t

commreq� commreq� commreq←nI

str←1‖X‖Y ‖nI str←1‖X‖Y ‖nI

f←H1(0‖DaaSeed‖Kk)

u←Zq

U←u · P1; F←f · P1

c←H1(str‖F‖U)

s←u + c · f (mod q)

comm←(F, c, s) comm� comm� U ′←sP1 − cF

If F = f · P1 for some

f on the rogue list, or

c �= H1(str‖F‖U ′)

then abort

r←Zq

A←r · P1; B←y · A

C←(x · A + rxy · F )

cre←(A, B, C)

E� E� E←Eek(cre)

cre←E−1
ek (E); E←f · B cre, E� ρa←t̂(A, X)

ρb←t̂(B, X)

ρc←t̂(C, P2)

If t̂(A, Y ) �= t̂(B, P2)

or t̂(A + E, X) �= ρc

then abort

Fig. 1. The Join Protocol
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prevent this from happening each TPM needs to verify that P1 generates G1,
P2 generates G2 and thatX,Y ∈ G2. This need be done once for each TPM so
we do not give this as part of the Joinprotocol.Algorithms for checkingwhether
points are elements of particular pairing groups are given in [14].

– The value of cre is not sent in the clear and hence only the intended user
can obtain the complete credential. This is done by encrypting the value cre
under a public key corresponding to the TPM endorsement key ek. Again, we
do not consider these calculations in the performance analysis of the scheme.

– In contrast with the RSA-based DAA schemes we do not require a relatively
complicated proof of knowledge of the correctness of a given commitment.
Instead, the proof of knowledge is provided by a very efficient Schnorr sig-
nature, on the value F computed using the secret key f .

– Once a credential is issued from I, the TPM and the Host verify that this
credential is correctly formed. This is to avoid performing computations
with a credential that is incorrectly formed since this could lead to leak-
ing information about the value f held by the TPM. The last part of the
protocol therefore performs the verification algorithm from the Camenisch-
Lysyanskaya signature scheme. In addition the TPM should check that the
value of B it receives in the credential is correctly formed. Since B ∈ G1 this
can be performed very efficiently and so we ignore its cost when computing
the cost of running the protocol.

– We note that the Host does not perform any verification on values that are
provided by the TPM. Since we assume that it is harder to compromise a
TPM than a Host, we do not model the case of a corrupt TPM inside an
honest Host and hence the Host will always trust the correctness of values
provided by its TPM.

– The values ρa, ρb, ρc and E are stored for later use by the Host in the sign-
ing algorithm. This improves the performance by avoiding recomputation of
various pairing values.

5.3 The Sign Protocol

This is a protocol run between a given TPM m ∈ M and Host h ∈ H. The
objective of the sign protocol is for m and h to work together to produce a
signature of knowledge on some message. The signature should prove knowledge
of a discrete logarithm f , knowledge of a valid credential and that this credential
was computed for the same value f . We note that the Host will know a lot of
the values needed in the computation and will be able to take on a lot of the
computational workload. However, if the TPM has not had its internal value of
f published (i.e. it is not a rogue module) then the Host will not know f and
will be unable to compute the whole signature without the aid of the TPM.

We again assume that we could have an adversarially controlled Host and
honest TPM and, as a result, the TPM will have to do a number of checks on
the data passed to it from its Host. We let msg denote the message to be signed
and bsn denote the base name of the verifier. The protocol then proceeds as in
Figure 2, so as to produce the signature σ.
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TPM (m) Host (h)

bsn�
If bsn =⊥ then r′←Zq

else r′←H2(f‖bsn)

v←Zq; D′←(vr′) · B r′, D′
� Either nV ←{0, 1}t or receive

nV ∈ {0, 1}t from the verifier

A′←r′ · A; C′←r′ · C

B′←r′ · B

ρ′
a←ρr′

a ; ρ′
b←ρr′

b ; ρ′
c←ρr′

c

τ←t̂(D′, X); E′←r′ · E

c′� c′←H3(ipk‖bsn‖A′‖B′‖C′‖D′‖E′‖ρ′
a‖ρ′

b‖ρ′
c‖τ‖nV )

nT ←{0, 1}t

c←H4(c
′‖nT ‖msg)

s←v + c · f (mod q) (c, s, nT )� σ←(A′, B′, C′, E′, c, s, nV , nT )

Fig. 2. The Sign Protocol

Again we provide some notes as to the rational behind some of the steps:

– In most applications of the Sign protocol, the signature is generated as a
request from the verifier, and the verifier supplies its own value of nV , to
protect against replays of previously requested signatures. If a signature is
produced in an offline manner we allow the Host to generate its own value
of nV .

– Prior to running the protocol the Host decides if it wants σ to be linkable
to other signatures produced for the same verifier. If it does not want the
signature to be linkable to any existing or future signatures then it chooses
bsn =⊥. If it decides that it wants the signature to be linked to some previ-
ously generated signatures with this verifier then it sets bsn to be the same
as that used for the signature it wants to link to. Otherwise, if the Host
decides it may want other signatures future signatures to be able to be link
to this one then it chooses a verifier bsn that it has not used before.

– The use of E′ allows the verifier to identify if the signature was produced
by a rogue TPM by computing fi ·B′ for all fi values on the rogue list and
comparing these to E′. This is performed during the verification algorithm.
Without E′ the rogue test algorithm can be performed by using elements in
GT , however in practice this is much less efficient than using E′.

– During the run of the signature protocol two nonces are used: one from
the verifier nV and one from the TPM nT . These are used to ensure each
signature is different from previous signatures and to ensure that no adver-
sarially controlled TPM and Host pair or no honest TPM and adversarially
controlled Host can predict or force the value of a given signature.

– The value r′ is used to mask the signature created from the other players
in the scheme including the issuer. Without using r′ the credential on which
the signature is computed would be sent in the clear and hence other parties
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would be able to link signatures. That the issuer cannot link the signatures
follows from the earlier mentioned property of the Camenisch-Lysyanskaya
signature scheme in the asymmetric setting. Thus it provides two types of
linking resistance: it stops any issuer from being able to link a given signature
to a given signer (since issuers know the values of r used to compute a
credential and without r′ the credential is sent in the clear), and it stops
any player in the system from being able to tell if any two signatures were
produced by the same signer (if different bsn are used).
Note, that the Host is trusted to keep anonymity because it is assumed that
the Host has the motivation to protect privacy and also because the host
can always disclose the platform identity anyway. However, the Host is not
trusted to be honest for not trying to forge a DAA signature without the aid
of the TPM.

5.4 The Verification Algorithm

This is an algorithm run by a verifier V . Intuitively the verifier checks that a
signature provided proves knowledge of a discrete logarithm f , checks that it
proves knowledge of a valid credential issued on the same value of f and that
this value of f is not on the list of rogue values.

We now describe the details of our Verify algorithm. On input a signature σ of
the form σ = (A′, B′, C′, E′, c, s, nV , nT ) this algorithm performs the following
steps:

1. Check Against Rogue List. If E′ = fi ·B′ for any fi in the set of rogue secret
keys then return reject.

2. Check Correctness of A′ and B′. If t̂(A′, Y ) �= t̂(B′, P2) then return reject.
3. Verify Correctness of Proofs. This is done by performing the following sets

of computations:
– ρ†a←t̂(A′, X), ρ†b←t̂(B′, X) and ρ†c←t̂(C′, P2).
– τ†←(ρ†b)

s · (ρ†c/ρ†a)−c

– D†←sB′ − cE′.
– c†←H3(ipk‖bsn‖A′‖B′‖C′‖D†‖E′‖ρ†a‖ρ

†
b‖ρ†c‖τ†‖nV ).

Finally if c �= H4

(
c†‖nT ‖msg

)
return reject and otherwise return accept.

5.5 The Linking Algorithm

This is an algorithm run by a given verifier Vj ∈ V which has a set of basenames
{bsn}j in order to determine if a pair of signatures were produced by the same
TPM. Signatures can only be linked if they were produced by the same TPM
and the user wanted them to be able to be linked together.

Formally, on input a pair of signatures σb for b ∈ {0, 1} each having the form
σb = (A′

b, B
′
b, C

′
b, E

′
b, cb, sb, nV,b, nT,b) the algorithm performs the following steps:

1. Verify Both Signatures. For each signature σb the verifier runs Verify(σb) and
if either of these returns reject then the value ⊥ is returned.
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2. Compare Signatures and Basenames. If the two basenames which verify the
signatures are equal, and if A′

0 = A′
1 then return linked , else return unlinked .

It may be the case that one or both signatures input to the the Link algorithm
have previously been received and verified by the verifier. Regardless of this we
insist that the verifier re-verify these as part of the Link algorithm since the list
of rogue TPM values may have been updated since the initial verification.

Note, our linking algorithm works due to the way that r′ is computed in
the signing algorithm. Also note that anyone who knows bsn can link the two
signatures, but they cannot link the signatures with the signers.

5.6 The Rogue Tagging Algorithm

The purpose of the rogue tagging algorithm is to ensure that an adversary is not
able to tag a given value of TPM internal secret as rogue if the TPM that owns
that particular value is not corrupted.

On input a value of f and a signature σ intended for a given verifier Vj the
algorithm then proceeds as follows:

1. Verify the Signature. If Verify(σ) = reject then the value ⊥ is returned.
2. Check Value of f . If E′ �= f ·B′ then return ⊥ and otherwise add an entry
f to RogueList(Vj).

We note that, since the credential computed for a given user is sent using a
secure channel, the only way that an adversary can produce a valid signature
would be if it knew the value of the credential and hence had corrupted that
user to some extent. This prevents the adversary from adding arbitrary values
of f to RogueList(Vj).

5.7 Efficiency Comparison

Table 3 presents the performance analysis of our optimized version of the pairing
based DAA protocol. We use a similar notation for computational cost as in our
previous tables. The main advantages of our version can be listed as follows:

– Due to DDH being hard in G1 we can remove a number of the checks and
masks in the original pairing based DAA protocol.

– In addition we move the computation of τ in the signature from the TPM to
the Host. This removes the need for the TPM to perform any GT operations
at all.

– The Host precomputes some pairing values at the Join stage so as to remove
the need to perform these at the signing stage. This comes at the expense of
a couple more GT operations. But an exponentiation in GT is cheaper than
a pairing.

The main point to note is that the TPM is only required to perform operations
in G1, which can be an elliptic curve over a relatively small finite field. Thus the
TPM does not have to perform any expensive operations at all.
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Table 3. Cost of our DAA protocol

Operation Party Cost

Join TPM 3 · G1

Issuer (2 + n) · G1 + 2 · G2
1

Host 6 · P

Sign TPM 1 · G1

Host 4 · G1 + 3 · GT + 1 · P

Verify Verifier nG1 + 1 · G2
1 + 1 · G2

T + 5 · P

RogueTag Verifier 1 · G1

In conclusion we have presented a DAA protocol based on pairings for which
the TPM, i.e. the constrained device in the system, needs very little compu-
tational resources in comparison to other variants of the DAA protocol. This
efficiency has been achieved by moving to the asymmetric pairings setting and
by various precomputations. Our protocol can be proved secure in the random
oracle model under the strongest of the two security notions in the literature for
DAA schemes. The security proof will be in the full version of the paper.
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Abstract. We provide a convenient mathematical framework that es-
sentially encompasses all known pairing functions based on the Tate pair-
ing and also applies to the Weil pairing. We prove non-degeneracy and
bounds on the lowest possible degree of these pairing functions and show
how endomorphisms can be used to achieve a further degree reduction.

1 Introduction

The cryptographic importance of efficiently computable, bilinear and non-
degenerate pairings that are hard to invert in various ways has been amply
demonstrated. The currently only known instantiations of pairings suitable for
cryptography are the Weil and Tate pairings on elliptic curves or on Jacobians
of more general algebraic curves. In view of the applications, efficient algorithms
for computing these pairings are of great importance.

Let us take a look at the problem of defining efficiently computable pairings
on elliptic curves starting from a general point of view.

Let E be an elliptic curve over Fq and let G1, G2 be two subgroups of E(Fq) of
prime order r satisfying r | (q− 1). Let μr be the subgroup of r-th roots of unity
of F×

q . We are interested in bilinear pairings e : G1 × G2 → μr. Such a pairing
can in principle be defined by taking any generator of μr as the pairing value of
a generator of G1 and a generator of G2 and by extending via linearity. Since
the computation of pairing values would then require taking discrete logarithms,
this is not a practical approach.

A different approach avoiding the problem with the discrete logarithms would
be to use an algebraic representation of e such that pairing values are obtained by
substituting the coordinates of the input points with respect to a short Weierstrass
form of E into an algebraic expression. This can in principle generally be achieved
by using polynomial interpolation and would for example lead to a representation

e(P,Q) = f(xP , yP , xQ, yQ)

where P = (xP , yP ) ∈ G1, Q = (xQ, yQ) ∈ G2 and f ∈ Fqk [x1, y1, x2, y2] is
a fixed polynomial of total degree about r2 (or r if viewed in x1, y1 and x2, y2
separately). However, this approach will also be impractical unless some efficient,
i.e. at least polynomial time in log(r), way of storing and evaluating f is found.

The approach currently employed is to use specific rational functions fP and
fQ on E depending on P and Q instead of interpolation polynomials such that
the pairing values are obtained by a function evaluation of the form

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 18–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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e(P,Q) = fP (Q)(q−1)/r (1)

or

e(P,Q) = fP (Q)/fQ(P ). (2)

The functions fP and fQ are defined by means of principal divisors with large
coefficients but small support. One then essentially applies the Riemann-Roch
theorem in form of Miller’s algorithm to find a polynomial-in-log(r)-sized rep-
resentation of fP and fQ, consisting of a short product of quotients of linear
polynomials in x and y with large exponents, which enables the efficient evalu-
ation of fP (Q) and fQ(P ).

The Tate pairing is based on (1) and the Weil pairing is based on (2). The
function (P,Q) 	→ fP (Q) alone is in general not bilinear and does not take values
in μr. The effect of raising fP (Q) to the power of (qk−1)/r or of dividing fP (Q)
by fQ(P ) is to force the resulting functions to be bilinear and to take values
in μr. We may refer to pairings of the form (1) as pairings defined by the Tate
pairing methodology and to pairings of the form (2) as pairings defined by the
Weil pairing methodology.

The Ate pairing of [2] and the pairings of [5,10] are pairings defined by the Tate
methodology whose pairing functions have reduced degree in comparison with the
Tate pairing. Products of the Tate pairing and these pairings with the goal of a
further degree reduction have been considered in [4]. This idea has been much
extended in [9]. In the case of the Weil pairing methodology considerably less work
has been done. In [11] the reduction idea of [2] is applied to the Weil pairing.

The objective of this paper is to present a unified and extended treatment of
the idea to find new pairing functions of small degree by using products of ex-
isting pairing functions. We provide a convenient mathematical framework that
allows to formulate a much clearer non-degeneracy condition and relation with
the Tate pairing in comparison to [2,5,10,4,9]. We also show that our framework
applies to the Weil pairing, based on an improvement and extension of [11], and
prove (or give heuristic arguments) for the optimality and exhaustiveness of our
results for ordinary elliptic curves.

While we strive to find suitable pairing functions of smallest degree, the objec-
tive of the paper is not to give the most efficiently evaluated pairing functions.
This is illustrated best with the following example. The polynomial f(x) =
(x − a)n ∈ Fq[t] can have very large degree but still has efficient representa-
tion and can be efficiently evaluated at elements of Fq. On the other hand,
g(x) =

∏m
i=1(x − ai) ∈ Fq[x] may have much smaller degree than f while the

cost of representing and evaluating g can be much higher. On the other hand, if
there are suitable relations between the ai, the cost might also be smaller. In this
paper we will go from pairing functions of a form analogous to f to pairing func-
tions of a form analogous to g, but with rather small m. It is open whether our
pairing functions will lead to more efficiently evaluated pairing functions. Some
positive examples are given in [9]. Our intention is to provide a good overview
over (all) possible pairing functions and we hope that this will prove useful for
finding new efficiently evaluated pairing functions.
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We give a brief guideline to the paper. The main results are Theorem 1,
Theorem 2, Theorem 3 and Theorem 5. Theorem 1 is just a special, but arguably
the most important case of Theorem 3. Theorem 3 is based on Theorem 2 , which
provides a direct generalisation (and improvement) of [2,5,10,11] that makes use
of endomorphisms. Theorem 5 is an independent add on to the other theorems
and shows how the pairings from these theorems can be used in parametric
families of elliptic curves. The reader who wants to get a quick overview of the
results of this paper is advised to read Section 2.1, Section 3 and Theorem 5,
then continue with Theorem 3 and the rest of the paper.

2 Preliminaries

2.1 Notation

In this paper we will consider ordinary elliptic curves only, although the general
logic behind the construction can be applied to supersingular curves and higher
genus curves as well. Let us first briefly define the standard notation and setting
for pairings on such elliptic curves.

Let E be an ordinary elliptic curve over a finite field Fq. Let r ≥ 5 be a
prime factor of #E(Fq) with embedding degree k ≥ 2 such that k | (r−1). Then
E(Fqk)[r] ∼= Z/rZ × Z/rZ and there exists a basis P,Q of E(Fqk)[r] satisfying
π(P ) = P and π(Q) = qQ, where π is the q-power Frobenius endomorphism on
E. We define G1 = 〈P 〉 and G2 = 〈Q〉. Note that G1 ∩G2 = {O}.

Let O be the point at infinity and z ∈ Fq(E) a fixed local uniformiser at O.
We say that f ∈ Fqk(E) is monic if (fz−v)(O) = 1 where v is the order of f at
O. In other words this says that the Laurent series expansion of f in terms of z
is of the form f = zv +O(zv+1). We will consider monic functions f throughout
the paper without further mentioning.

If f ∈ E(Fqk)× then the degree of f is defined as the sum of the positive coef-
ficients of the divisor (f) of f , which is equal to sum of the negative coefficients.

For s ∈ Z and R ∈ E(Fqk) we let fs,R ∈ Fqk(E) be the uniquely determined
monic function with divisor (fs,R) = ((sR) − (O)) − s((R) − (O)) where (R) is
the prime divisor corresponding to the point R (note that our definition is just
the inverse of the standard definition (fs,R) = s((R) − (O)) − ((sR) − (O))).
Miller’s algorithm expresses fs,R as a product of about log2(|s|) quotients of
monic linear functions with exponents of bitlength up to about log2(|s|). Note
that for R ∈ E(Fq) we have fs,R ∈ Fq(E).

The r-th roots of unity in Fqk are denoted by μr. The n-th cyclotomic poly-
nomial is denoted by Φn, and its degree by ϕ(n).

2.2 Tate, Ate and Weil Pairings

Recall that the reduced Tate pairing and ate pairings are bilinear pairings G2 ×
G1 → μr and are given as follows. The reduced Tate pairing is

t : G2 ×G1 → μr, (Q,P ) 	→ fr,Q(P )(q
k−1)/r.

It is in fact defined on all E(Fqk)[r]×E(Fqk )[r] and is non-degenerate on G2×G1.
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Let s be an arbitrary integer such that s ≡ q mod r. Let N = gcd(sk −1, qk−
1), L = (sk−1)/N and c =

∑k−1
j=0 s

k−1−jqj mod N . The ate pairing with respect
to s is given by

as : G2 ×G1 → μr, (Q,P ) 	→ fs,Q(P )c(qk−1)/N .

The relation with the Tate pairing is as(Q,P ) = t(Q,P )L. It is thus non-
degenerate if and only if r � L (see [5]).

For k |#Aut(E) the twisted ate pairing with respect to s is given by

atwist
s : G1 ×G2 → μr, (P,Q) 	→ fs,P (Q)c(qk−1)/N .

The relation with the Tate pairing is atwist
s (P,Q) = t(P,Q)L. It is thus non-

degenerate if and only if r � L (see [5]).
It is possible to have the same final exponent in the ate and twisted ate pairing

as in the Tate pairing. Consider the modified ate pairing

as : G2 ×G1 → μr, (Q,P ) 	→ fs,Q(P )(q
k−1)/r

and the modified twisted ate pairing

as : G1 ×G2 → μr, (P,Q) 	→ fs,P (Q)(q
k−1)/r.

Since r |N and r � c these are always bilinear, and using the relation with the
Tate pairing it is not difficult to show that they are non-degenerate if and only
if sk �≡ 1 mod r2 (see also Theorem 2 and its proof).

The Weil pairing (see [6]) is

e : G1 ×G2 → μr, (P,Q) 	→ (−1)rfr,P (Q)/fr,Q(P ).

It is in fact defined on all E(Fqk)[r]×E(Fqk )[r] and is non-degenerate on G1×G2.
Since r is an odd prime we always have (−1)r = −1. For k |#Aut(E) and
s ≡ q mod r the Weil pairing with ate reduction1 with respect to s is given by

es : G1 ×G2 → μr, (P,Q) 	→ −wfs,P (Q)/fs,Q(P )

for some suitable k-th root of unity w ∈ Fq. A variant of this pairing, but with
final exponentiation, is considered in [11]. For our version see Theorem 2.

It is in general not true that the ate pairing, twisted ate pairing or Weil
pairing with ate reduction can be extended to a bilinear pairing on the full r-
torsion E(Fqk)[r]. Moreover, the twisted ate pairing and the Weil pairing with
ate reduction will in general not be bilinear for k � #Aut(E).

1 Following the naming analogy of the Tate and ate pairing we might call this pairing
also the eil pairing. Note that eil is the german word for hurry. For a suitable choice
of s the eil pairing can indeed be computed faster than the Weil pairing.
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3 Pairing Functions of Lowest Degree

Let s be an integer. For h =
∑d

i=0 hix
i ∈ Z[x] with h(s) ≡ 0 mod r let fs,h,R ∈

Fqk(E) for R ∈ E(Fqk)[r] be the uniquely defined monic function satisfying

(fs,h,R) =
d∑

i=0

hi((siR) − (O)).

Furthermore, define

||h||1 =
d∑

i=0

|hi|.

A relation of ||h||1 with deg(fs,h,R) is given in Lemma 1 below.

Theorem 1. Assume that s is a primitive k-th root of unity modulo r2.
Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → μr, (Q,P ) 	→ fs,h,Q(P )(q
k−1)/r

defines a bilinear pairing. If k |#Aut(E) then

atwist
s,h : G1 ×G2 → μr, (P,Q) 	→ fs,h,P (Q)(q

k−1)/r

and

es : G1 ×G2 → μr,

(P,Q) 	→
(
(−1)h(1)fs,h,P (Q)/fs,h,Q(P )

)gcd(k,q−1)

define bilinear pairings. The pairings as,h, atwist
s,h and es,h are non-degenerate if

and only if h(s) �≡ 0 mod r2 holds.
The relation with the Tate and Weil pairing is

as,h(Q,P ) = t(Q,P )h(s)/r, atwist
s,h (P,Q) = t(P,Q)h(s)/r ,

es,h(P,Q) = e(P,Q)h(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r, deg(h) ≤
ϕ(k)− 1 and ||h||1 = O(r1/ϕ(k)) such that the above pairings are non-degenerate.
The O-constant depends only on k.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that the above pairings are non-
degenerate satisfies ||h||1 ≥ r1/ϕ(k).

Proof. Theorem 1 is a special case of Theorem 3 with s a primitive k-th root of
unity modulo r and d ≥ 0 such that s = qd mod r, thus e = 1. �

Some remarks on the theorem are in order.
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Choice of s. Suppose that s is an integer with sk ≡ 1 mod r. Since k is coprime
to r we can find i such that (s+ ir)k ≡ 1 mod r2. Replacing s by s+ ir we can
thus assume that sk ≡ 1 mod r2 without loss of generality.

The pairings as, atwist
s and es depend only on the value of s modulo r2, as

is directly seen from the relations with the Tate and Weil pairing. Since there
are no further congruence conditions on s, the value of s can be freely changed
modulo r2 without affecting as, atwist

s and es.

Computation of h. The polynomial h of Theorem 1 can be determined as follows.
Let m be an integer with φ(n) ≤ m ≤ n and consider the m×m integer matrix

M =

⎛

⎜⎜
⎜
⎜
⎜
⎝

r 0 . . . 0
−s 1 0 . . . 0
−s2 0 1 0 . . . 0

...
−sm−1 0 . . . 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠
.

Suppose m = φ(n) and w = (w0, w1, . . . , wm−1) is a shortest Z-linear combina-
tion of the rows ofM , then we can take h =

∑m−1
i=0 wix

i. An (approximation of)
w can be computed using the first LLL reduced basis element obtained by the
LLL algorithm when applied to the rows of M .

As a variation, it is also possible to choose m such that φ(n) < m ≤ n. We
apply the LLL algorithm in the same manner and take w as the smallest LLL
reduced basis element satisfying ||w||1 ≥ r1/ϕ(n).

Exponent. The final exponent satisfies gcd(k, q − 1) ∈ {1, 2, 3, 4, 6}. If it is one
or even (or q is even) then the term (−1)h(1) can of course be discarded.

Completeness. The construction of pairings of the form as,h and atwist
s,h of The-

orem 1 is complete in the following sense: Consider the case of as and let
fQ ∈ E(Fqk)× be any function supported on Z = {πi(Q) | 0 ≤ i ≤ k − 1}
such that S 	→ fQ(S)(q

k−1)/r defines a homomorphism G1 → μr. Then there
are w, hi ∈ Z such that (fQ) =

∑k−1
i=0 hi(πi(Q)) − w(O). Then

∑k−1
i=0 hiq

i ≡
0 mod r and

∑k−1
i=0 hi(πi(T )) − w(O) is a principal divisor for every T ∈ G2.

Let fT ∈ Fqk(E)× be monic such that (fT ) =
∑k−1

i=0 hi(πi(T ))−w(O) for every
T ∈ G2. Then (T, S) 	→ fT (S)(q

k−1)/r defines a bilinear pairing equal to as,h for
h =

∑k−1
i=0 hix

i ∈ I(1) by Theorem 1. Hence the homomorphism defined by fQ
is obtained by a pairing as,h from Theorem 1 with fixed first argument Q.

The promised relation of ||h||1 with deg(fs,h,R) is given by the following lemma.

Lemma 1. Assume that s �≡ 0 mod r, d is less than the order of s modulo r
and R �= O. We then have

||h||1/2 ≤ deg(fs,h,R) ≤ ||h||1.

Proof. Let (fs,h,R) =
∑n

j=−1 λj(Pj) with pairwise distinct Pj and P−1 = O.
We have

∑
j λj = 0 and hence deg(fs,h,R) =

∑
λi>0 |λi| =

∑
λi<0 |λi|. We may
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thus assume λ−1 ≤ 0. This implies
∑

λj>0 |λj | ≤
∑

j≥0 |λj |. If j ≥ 0, every
λj is a sum of some hi and every hi occurs in at most one of the λj , hence
∑

j≥0 |λj | ≤
∑d

i=0 |hi| = ||h||1, which proves the upper degree bound without
using the assumption on s, d,R.

For the proof of the lower degree bound observe that deg(fs,h,R) =
∑

j |λj |/2
since

∑
λj>0 |λj | =

∑
λj<0 |λj |, again using

∑
j λj = 0. Also note that the as-

sumption on s, d,R implies that the siR are pairwise distinct for 0 ≤ i ≤ d,
hence we can assume Pj = sjR, λj = hj for 0 ≤ j ≤ n and n = d. Then∑

j |λj |/2 ≥
∑

j≥0 |λj |/2 = ||h||1/2, which proves the lower degree bound. �

4 Extended Pairings

The next theorem extends the ate pairing, twisted ate pairing and Weil pairing
with ate reduction with respect to s to a possibly slightly larger set of admissible
values of s. We will then apply this to extend Theorem 1 in order to make use
of automorphisms of E. We let vr(m) denote the maximal exponent of r in m.

Theorem 2. Let s be any primitive n-th root of unity modulo r with n | lcm(k,
#Aut(E)). Let u = sq−d mod r be some primitive e-th root of unity modulo
r with e | gcd(n,#Aut(E)) and d ≥ 0. Define v = s−1qd = u−1 mod r. Let
α ∈ Aut(E) of order e with α(Q) = uQ.

Then

as : G2 ×G1 → μr, (Q,P ) 	→

⎛

⎝
e−1∏

j=0

fs,Q(α−j(P ))vj

⎞

⎠

(qk−1)/r

defines a bilinear pairing. If n |#Aut(E) then

atwist
s : G1 ×G2 → μr, (P,Q) 	→

⎛

⎝
e−1∏

j=0

fs,P (αj(Q))vj

⎞

⎠

(qk−1)/r

defines a bilinear pairing. The pairings as and atwist
s are non-degenerate if and

only if sn �≡ 1 mod r2 holds.
Suppose n |#Aut(E) and let ν = min(2, vr(qk − 1)) ≥ 1. With e, d as above

let v = s−1qd mod rν . Then there is an n-th root of unity w ∈ Fq such that

es : G1 ×G2 → μr,

(P,Q) 	→
e−1∏

j=0

(
−wfs,P (αj(Q))/fs,αj(Q)(P )

)vj

defines a bilinear pairing. The pairing es is non-degenerate if and only if sn �≡
1 mod r2 holds.

We refer to these pairings as extended ate, extended twisted ate pairing and
extended Weil pairing with ate reduction (or simply extended eil pairing).

Some remarks on the theorem are in order.
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Special inputs. If P = O or Q = O then the pairing values are defined to be
equal to 1.

Existence of primitive n-th roots modulo r. Let m = lcm(k,#Aut(E)). The
proof of Theorem 2 will show that m | (r−1) and that Fr contains all m-th roots
of unity.

Choice of d, e and s. An easy calculation with cyclic groups shows that it is
always possible to choose d ≥ 0 such that u = sq−d mod r has order e modulo r
for some e |#Aut(E). The value of s can be changed modulo r2 without changing
the pairings as, atwist

s and es.

Possible cases. Since the automorphism group of an ordinary elliptic curve can
only be cyclic of order 2, 4 or 6 there are only few new cases in which Theorem 2
can be applied. On the other hand, there is some freedom of choice regarding
the parameters e, d. If s = q then e = d = 1 is possible and we recover the
non-extended versions of the pairings.

Point multiples. The proof of Theorem 2 will show the existence of α, β ∈ Aut(E)
such that sQ = (απd)(Q) and sP = β(P ) (the latter only if n |#Aut(E)).

Computation of w. There is only very few possibilties for w ∈ μn ∩ Fq, and it is
probably easiest to try these cases in turn and check for which choice of w the
condition es(2P,Q) = es(P,Q)2 holds.

Another approach is as follows. Let eraws denote the function obtained from
the definition of es using w = −1. Then there is a 2n-th root of unity ws ∈
Fq such that es(S, T ) = wse

raw
s (S, T ) for all S ∈ G1 and T ∈ G2. The ele-

ment ws can be computed from the failing bilinearity of eraws : We have ws =
eraws (2P,Q)/eraws (P,Q)2.

Proof (of Theorem 2). We first show the general reduction equation (6). Suppose
that T, S ∈ E(Fqk)[r] and ψ is a purely inseparable Fq-rational isogeny of degree
qd with ψ(T ) = sT and ψ(S) = s−1qdS = vS, where the order of s modulo r is
equal to n and the order of s−1qd modulo r is equal to e. We compute

f
(sn−1)/r
r,T = fsn−1,T = fsn,T , (3)

where the second equality holds because sn ≡ 1 mod r. Lemma 2 of [1] yields

fsn,T = fsn−1

s,T fsn−2

s,sT · · · fs,sn−1T . (4)

Since ψ is purely inseparable of degree qd and Fq-rational, we obtain from Lemma
4 in [2]

fs,ψi(T ) ◦ ψi = ws,ψf
qid

s,T (5)

for some n-th root of unity ws,ψ ∈ Fq (recall that all functions are assumed to
be monic). We have ψi(T ) = siT and ψie(S) = S. Let k′ = n/e. Combining this
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with (3), (4), (5) and a short calculation collecting functions that are evaluated
at the same points gives

fr,T (S)(s
n−1)/r = w

n−1∏

m=0

fs,T (ψ−m(S))sn−1−mqdm

= w

⎛

⎝
e−1∏

j=0

fs,T (ψ−j(S))se−1−jqdj

⎞

⎠

∑k′−1
i=0 (se)k′−1−i(qed)i

(6)

for some n-th root of unity w ∈ Fq. Thus raising fr,T (S) to the power (sn−1)/r
yields a reduced expression. In the following we will choose T, S as Q,P or P,Q.
The choice of ψ requires a closer look at the automorphism group of E and its
operation on G1 and G2.

Automorphisms of additive cyclic groups operate by non-zero integer multi-
plication. We thus get isomorphisms Aut(G1) ∼= Aut(G2) ∼= F×

r . Because E is
ordinary, Aut(E) is a cyclic group (of order 2, 4 or 6) and operates faithfully
on G2 and G1. The Frobenius endomorphism π operates faithfully on G2 with
order k. Since Aut(G2) is cyclic, Aut(E) and π generate a cyclic subgroup H of
Aut(G2) of order n = lcm(k,#Aut(E)). The image of H in F×

r is the group of
n-th roots of unity, which shows that s can be written as s ≡ uqd mod r with u
of order e modulo r and e |#Aut(E).

In the ate pairing case, since ue ≡ 1 mod r and e |#Aut(E), there is α ∈
Aut(E) corresponding to the multiplication-by-u automorphism of G2 such that
(απd)(Q) = uqdQ = sQ. Define T = Q, S = P and ψα = απd. Then ψα(P ) =
α(P ) = (s−1qd)P = vP and (6) holds with these definitions, giving

fr,Q(P )(s
n−1)/r = w

⎛

⎝
e−1∏

j=0

fs,Q(α−j(P ))se−1−j qdj

⎞

⎠

∑k′−1
i=0 (se)k′−1−i(qed)i

(7)

for some n-th root of unity w ∈ Fq.
In the twisted ate pairing case, since s#Aut(E) ≡ 1 mod r, there is β ∈ Aut(E)

corresponding to the multiplication-by-s automorphism of G2 such that β(P ) =
sP . Define T = P , S = Q and ψβ = βπd. Then ψβ(Q) = (s−1qd)Q = vQ and (6)
holds with these definitions. Note that α(Q) = uQ and ψβ(Q) = vQ = α−1(Q),
so we obtain

fr,P (Q)(s
n−1)/r = w

⎛

⎝
e−1∏

j=0

fs,P (αj(Q))se−1−jqdj

⎞

⎠

∑k′−1
i=0 (se)k′−1−i(qed)i

(8)

for some n-th root of unity w ∈ Fq.
In order to conclude the proof for the ate and twisted ate pairing we raise (7)

and (8) to the power (qk−1)/r, observing w(qk−1)/r = 1. The left hand sides then
become t(Q,P )(s

n−1)/r and t(P,Q)(s
n−1)/r respectively, so the right hand sides
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define bilinear pairings that are non-degenerate if and only if sn �≡ 1 mod r2.
We then consider the exponents occuring in (7) and (8) modulo r. We have
se ≡ (uqd)e ≡ qed mod r, so c =

∑k′−1
i=0 (se)k′−1−i(qed)i ≡ k′qed(k′−1) �≡ 0 mod r.

Hence the outer exponent c can be omitted without affecting bilinearity or non-
degeneracy. Finally, se−1−jqdj = se−1(qds−1)j ≡ se−1vj mod r. By omitting
se−1 for the same reason we arrive at the pairings of the assertion.

For the Weil pairing we apply both cases simultaneously. By means of the
chinese remainder theorem we make some additional assumptions on s without
changing s mod r2. We assume ν = vr(qk − 1), s ≡ 0 mod (qk − 1)/rν and that
s is even. Also also assume that u = sq−d mod rν and v = u−1 mod rν for this
new ν. These new assumptions will be removed at the end of the proof. Dividing
(8) and (7) gives

e(P,Q)(s
n−1)/r = (−1)sn−1fr,P (Q)(s

n−1)/r/fr,Q(P )(s
n−1)/r

= −w′

⎛

⎝
e−1∏

j=0

(
fs,P (αj(Q))/fs,Q(α−j(P ))

)se−1−jqdj

⎞

⎠

c

= −w′′

⎛

⎝
e−1∏

j=0

(
fs,P (αj(Q))/fs,αj(Q)(P )

)se−1−jqdj

⎞

⎠

c

(9)

with c =
∑k′−1

i=0 (se)k′−1−i(qed)i �≡ 0 mod r as above, where the last equation
holds because α is an automorphism with α(O) = O. The elements w′, w′′ ∈ Fq

are again n-th roots of unity. Since s ≡ 0 mod (qk − 1)/rν we get s ≡ 0 mod r′

for all prime numbers r′ �= r dividing qk − 1. Then c ≡ qed(k′−1) �≡ 0 mod r′

and gcd(c, qk − 1) = 1, so c can be omitted from the final exponentiation. Let
c̄c ≡ 1 mod qk − 1. Since s is even we have that q is even or precisely one of the
exponents se−1−jqdj is odd. Also ws = 1 and wq = w for any n-th root of unity
w ∈ Fq. We can thus write

es,r(P,Q)c̄(sn−1)/r = −w
e−1∏

j=0

(
fs,P (αj(Q))/fs,αj(Q)(P )

)se−1−jqdj

=
e−1∏

j=0

(
−wfs,P (αj(Q))/fs,αj(Q)(P )

)se−1−jqdj

(10)

for some n-th root of unity w ∈ Fq. We know that (10) defines an element in
μr. Since s ≡ 0 mod (qk − 1)/rν the factors of the product in (10) are elements
in μrν for 0 ≤ j < e − 1. We obtain that the factor for j = e− 1 is an element
of μrν as well. Since its exponent q(e−1)d is coprime to rν and since αj(Q) runs
through all points of G2 we get that

−wfs,P (αj(Q))/fs,αj(Q)(P ) ∈ μrν (11)

for all 0 ≤ j ≤ e − 1. Now se−1−jqdj ≡ se−1vj mod rν by assumption. Let
s̄s ≡ 0 mod r. We replace the exponents se−1−jqdj by se−1vj and raise (10) to
the power s̄e−1. This gives
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es,r(P,Q)s̄c̄(sn−1)/r =
e−1∏

j=0

(
−wfs,P (αj(Q))/fs,αj(Q)(P )

)vj

, (12)

and the left hand side of this equation shows that the right hand side defines a
bilinear pairing that is non-degenerate if and only if the condition sn �≡ 1 mod r2

holds. Now

fr2,P (αj(Q))/fr2,αj(Q)(P ) = e(P, αj(Q))r = 1. (13)

Multiplying the right hand side of (12) with the left hand side of (13) to the
power λvj for 0 ≤ j ≤ e− 1 gives

es,r(P,Q)s̄c̄(sn−1)/r =
e−1∏

j=0

(
−wfs+λr2,P (αj(Q))/fs+λr2,αj(Q)(P )

)vj

. (14)

This finally shows that the right hand side of (12) depends only on the value
of s modulo r2 and thus also only on the value of v modulo r2. So we can
replace the additional assumptions on ν, s, u, v made in the proof before (9) by
ν = min(2, vr(qk − 1)) and v = s−1qd mod rν . This finishes the proof. �

5 Extended Pairing Functions of Lowest Degree

With the extended pairings we obtain an extended version of Theorem 1.

Theorem 3. We use the notation and assumptions from the beginning of sec-
tion 3 and from Theorem 2. We additionally assume sn ≡ 1 mod r2.

Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → μr, (Q,P ) 	→

⎛

⎝
e−1∏

j=0

fs,h,Q(α−j(P ))vj

⎞

⎠

(qk−1)/r

,

atwist
s,h : G1 ×G2 → μr, (P,Q) 	→

⎛

⎝
e−1∏

j=0

fs,h,P (αj(Q))vj

⎞

⎠

(qk−1)/r

,

es,h : G1 ×G2 → μr,

(P,Q) 	→

⎛

⎝
e−1∏

j=0

(
(−1)h(1)fs,h,P (αj(Q))/fs,h,αj(Q)(P )

)vj

⎞

⎠

gcd(n,q−1)

define bilinear pairings whenever the respective assumptions for as, atwist
s and es

of Theorem 2 are met.
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Each pairing as,h, atwist
s,h and es,h is non-degenerate if and only if h(s) �≡

0 mod r2. The relation with the Tate and Weil pairing is

as,h(Q,P ) = t(Q,P )eh(s)/r, atwist
s,h (P,Q) = t(P,Q)eh(s)/r ,

es,h(P,Q) = e(P,Q)eh(s)/r .

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r, deg(h) ≤
ϕ(n)−1 and ||h||1 = O(r1/ϕ(n)) such that the above pairings are non-degenerate.
The O-constant depends only on n.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that the above pairings are non-
degenerate satisfies ||h||1 ≥ r1/ϕ(n).

Proof. The theorem is an instantiation of the generic Theorem 6 for the three
different pairing functions. In the following proof we will thus use the notation
from Theorem 6.

Let h, g ∈ Z[x] and R ∈ E(Fqk)[r]. Since fs,g(x)(xn−1)+h(x),R = fs,h(x),R we
can consider fs,h,R also for h ∈ I(1) in a natural way. Note that fs,x−s,R is equal
to fs,R using the previous notation. Observing h(s) ≡ 0 mod r it is then clear
that we have three functions

as, a
twist
s , es : I(1) →W,

where h ∈ I(1) is mapped to as,h, a
twist
s,h and es,h respectively. Theorem 1 follows

directly from Theorem 6 if we prove the three properties of Theorem 6 for as,
atwist

s and es.
Property 1 is clear for as, atwist

s and es, since

fs,h+g,R = fs,h,Rfs,g,R and (−1)(h+g)(1) = (−1)h(1)(−1)g(1)

for any h, g ∈ I(1) and R ∈ E(Fqk)[r].
To show property 2 observe that

fs,hx,R = fs,h,sR and (−1)(hx)(1) = (−1)h(1)

for any h ∈ I(1) and R ∈ E(Fqk)[r]. Let b denote as or atwist
s . Let T, S be

admissible input points of bh and assume bh ∈W bilin. Then

bhx(T, S) = bh(sT, S) = bh(T, S)s,

as was to be shown. The case of es is a little more complicated. Consider β ∈
Aut(E) from the proof of Theorem 2 with β(P ) = sP . Then β(αj(sQ)) = αj(Q)
and fs,h,αj(sQ)(P ) = wfs,h,αj(Q)(sP ) for some n-th root of unity w ∈ Fq, where
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application of β to the left hand side of the equation yields the right hand side.
Assuming es,h ∈ W bilin we get

es,hx(P,Q) =

=

⎛

⎝
e−1∏

j=0

(
(−1)(hx)(1)fs,hx,P (αj(Q))/fs,hx,αj(Q)(P )

)vj

⎞

⎠

gcd(n,q−1)

=

⎛

⎝
e−1∏

j=0

(
(−1)h(1)fs,h,sP (αj(Q))/fs,h,αj(sQ)(P )

)vj

⎞

⎠

gcd(n,q−1)

=

⎛

⎝w
e−1∏

j=0

(
(−1)h(1)fs,h,sP (αj(Q))/fs,h,αj(Q)(sP )

)vj

⎞

⎠

gcd(n,q−1)

= es,h(sP,Q) = es,h(P,Q)s.

Finally we prove property 3. Consider α ∈ Aut(E) from Theorem 2 with
α(Q) = uQ and thus α−1(P ) = uP . Then

as,r(Q,P ) =

⎛

⎝
e−1∏

j=0

fs,r,Q(α−j(P ))vj

⎞

⎠

(qk−1)/r

=
e−1∏

j=0

t(Q,α−j(P ))vj

=
e−1∏

j=0

t(Q, uj(P ))vj

= t(Q,P )e

and similarly

atwist
s,r (P,Q) =

⎛

⎝
e−1∏

j=0

fs,r,P (αj(Q))vj

⎞

⎠

(qk−1)/r

=
e−1∏

j=0

t(P, αj(Q))vj

=
e−1∏

j=0

t(P, uj(Q))vj

= t(P,Q)e.

Furthermore,

es,r(P,Q) =
e−1∏

j=0

(
(−1)rfs,r,P (αj(Q))/fs,r,αj(Q)(P )

)vj

=
e−1∏

j=0

es(P, αj(Q))vj

=
e−1∏

j=0

es(P, uj(Q))vj

= es(P,Q)e.

The functions as,x−s, atwist
s,x−s and es,x−s are equal to the respective pairings as,

atwist
s and es from Theorem 2. Because sn ≡ 1 mod r2 they are all degenerate.

This concludes the proof of Theorem 3. �
We remark that the comments after Theorem 1 apply to Theorem 3 as well.
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The equation for es,hx in the proof shows that the exponent gcd(n, q − 1)
cannot be omitted in general. Otherwise es,hx(P,Q) = wes,h(sP,Q) should be
bilinear, which it is not, if es,h(P,Q) is bilinear.

Since the automorphism group of ordinary elliptic curves is rather small the
best improvement we can get in Theorem 3 is for ϕ(n) = 2ϕ(k). This happens
precisely when

1. k is odd and #Aut(E) = 4, or equivalently D = −4,
2. k is not divisible by 3 and #Aut(E) = 6, or equivalently D = −3,

where D denotes the discriminant of the endomorphism ring. In all other cases,
ϕ(n) = ϕ(k).

It is interesting to look for further extensions. The key point with the ate
pairing reduction is equation (5). But every purely inseparable function of degree
qi is of the form γπi with γ ∈ Aut(E). Thus we cannot do better than Theorem 3.

On the other hand, we could choose to not use (5). Based on solely (4) it is
indeed possible to define non-degenerate bilinear pairings. The following theorem
states this for the ate pairing case, the twisted ate pairing and Weil pairing cases
are left to the reader. We continue to use the notation from the beginning of
section 3.

Theorem 4. Let n be any divisor of r − 1 and s a primitive n-th root of unity
modulo r2.

Let h ∈ Z[x] with h(s) ≡ 0 mod r. Then

as,h : G2 ×G1 → μr, (Q,P ) 	→

⎛

⎝
n−1∏

j=0

fs,h,sjQ(P )sn−1−j

⎞

⎠

(qk−1)/r

is a bilinear pairing that is non-degenerate if and only if h(s) �≡ 0 mod r2. The
relation with the Tate pairing is

as,h(Q,P ) = t(Q,P )nsn−1h(s)/r.

There exists an efficiently computable h ∈ Z[x] with h(s) ≡ 0 mod r, deg(h) ≤
ϕ(n)−1 and ||h||1 = O(r1/ϕ(n)) such that as,h is non-degenerate. The O-constant
depends only on n.

Any h ∈ Z[x] with h(s) ≡ 0 mod r such that as,h is a non-degenerate bilinear
pairing satisfies ||h||1 ≥ r1/ϕ(n).

Proof. Using equation (4) with T = Q,S = P to the power of (qk − 1)/r we
find that as,x−s defines a bilinear pairing that is degenerate. Also as,r = tnsn−1

is quite directly seen. From here the proof is the same as that of Theorem 1 and
can be left to the reader. �

Note that the product in the definition of as,h runs over n function evaluations,
as opposed to e function evaluations in Theorem 3. This is precisely the effect of
the missing ate pairing reduction. While the product over n function evaluations
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is a big disadvantage it might be outweighed by using h with very small norm
and efficient endomorphisms γ such that γ(Q) = sQ. An example for a similar
construction, which does give a fast pairing, are the NSS curves from [8]. See
also [9], where these pairings are called superoptimal pairings.

Of course it would be nice to have n > k and still use a pairing as in Theorem 1,
that is only one function evaluation instead of more function evaluations. We
have tried some examples of elliptic curves with the computer and n with k |n
and determined all functions in Fqk(E) supported in Zs = {siQ | 0 ≤ i ≤ n− 1}
that would define a bilinear (non-degenerate) pairing. Except for the already
known functions supported on Z = {qiQ | 0 ≤ i ≤ k − 1} ⊆ Zs we did not find
any new functions. This suggests that on G1 and G2, at least generically, all
functions defining pairings are in fact of the form like in Theorem 1.

6 Parametric Families

For parametric families of pairing friendly elliptic curves we get the following
theorem. We continue to use the notation from the beginning of section 3. A
non-zero polynomial f ∈ Z[t] is called primitive if the greatest common divisor
of its coefficients is equal to 1.

Theorem 5. Assume that n, k ≥ 2 are integers and q, s, r are non-constant
polynomials in Z[t], such that s is a primitive n-th root of unity modulo r2 and
r is a primitive polynomial. Assume furthermore that for all t0 ∈ J with J a
suitable unbounded subset of Z there is an elliptic curve E over Fq(t0) with pa-
rameters n, r(t0), s(t0) as in Theorem 1 (here k = n), Theorem 3 or Theorem 4.

Then there is h ∈ Z[t][x] with deg(h) ≤ ϕ(n)−1 and degt(h) = 1/ϕ(n)deg(r)
such that

as(t0),h(t0,x) : G2 ×G1 → μr

from said theorem is a non-degenerate bilinear pairing for all sufficiently large
t0 ∈ J . The polynomial h can be efficiently computed.

Any h ∈ Z[t][x] such that as(t0),h(t0,x) is non-degenerate for all sufficiently
large t0 ∈ J satisfies degt(h) ≥ 1/ϕ(n)deg(r).

Proof. Follows immediately from Theorem 7.

A consequence of the Theorem is that in parametric families deg(r) must be
divisible by ϕ(n).

The polynomial h can be computed in the same way as the polynomial h from
Theorem 1, using the function field LLL (see e.g. [7] and the discussion before
Lemma 6) instead of the standard LLL algorithm.

We refer to [9] for examples of this construction.

7 Generic Results

This last section of the paper contains some technical lemmas dealing with the
ring A and its ideals I(i) that occured in the proofs of Theorems 1, 3, 4 and 5.
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In the following we will work with R = Z and R = Q[t]. It is hence convenient
to deal with these cases simultaneously for a moment. The following notation
and assumptions will however be in place for the rest of this section.

Let R be a (principal ideal) domain and let r, s ∈ R such that r �= 0 is not
a unit and s has order n ≥ 2 in (R/rR)×. In other words, s is a primitive n-th
root of unity modulo r. Define the R-algebra and its ideals

A = R[x]/(xn − 1)R[x],

I(i) = {h+ (xn − 1)R[x] |h(s) ≡ 0 mod riR},

for i ≥ 0 such that sn ≡ 1 mod riR. In the following we will identify elements
of A with their representing polynomials of degree ≤ n− 1. We also define the
R-modules

I(i),m = {h ∈ I(i) | deg(h) ≤ m− 1}.
Note I(i),m ⊆ I(j),w for m ≤ w and j ≤ i. Also I(i),n = I(i).

7.1 Ideal Structure

Lemma 2. The I(i) and I(i),m have the following properties:

1. I(i) = riA+ (x − s)A.
2. I(i),m is free of rank m and a basis is ri, x− s, x2 − s2, . . . , xm−1 − sm−1.

3. If m ≥ ϕ(n) then I(i),m = M ⊕ I(i),ϕ(n) with M = {h ∈ I(i),m |h ≡ 0 mod
Φn}.

Proof. From the definition of I(i) it is clear that riA+(x−s)A ⊆ I(i). Conversely,
let h ∈ I(i). Polynomial division by x−s with remainder shows h = g·(x−s)+h(s)
with g ∈ A and h(s) ∈ R. By definition of I(i) we have h(s) ∈ riR. Thus
h = h(s) + g · (x− s) ∈ riA+ (x− s)A. This proves the first assertion.

The second assertion follows easily from the first assertion and a short Hermite
normal form calculation applied to the basis ri, x− s, x(x− s), . . . , xm−2(x− s)
of I(i),m.

The third assertion follows using polynomial division by Φn with remain-
der: The projection I(i),m → I(i),ϕ(n), h 	→ h mod Φn is split by the inclusion
I(i),ϕ(n) → I(i),m. Here h mod Φn ∈ I(i),ϕ(n) since Φn(s) ≡ 0 mod ri. Note that
M is a free R-module with basis Φn, . . . , x

m−ϕ(n)−1Φn. �

We remark that in addition to Lemma 2 one can show I(i) = (I(1))i if R =
nR + rR (for example R = Z and r a prime). Since the ideals I(i) are closed
under multiplication by x we see that they are closed under rotation of the
coefficients of h ∈ I(i).

7.2 Lattice Arguments for R = Z

We keep the notation and assumptions from the beginning of Section 7 for R = Z
and r ≥ 2. For h =

∑d
i=0 hix

i ∈ Z[x] define
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||h||1 =
d∑

i=0

|hi| and ||h||2 =

(
d∑

i=0

|hi|2
)1/2

.

Extend this definition to A by using class representatives of degree ≤ n−1. This
makes I(i) into a lattice. We have || · ||1 = Θ(|| · ||2) on I(i) where the constants
depend only on n.

Lemma 3. Assume i ≥ 1 satisfies sn ≡ 1 mod ri and let h ∈ Z[x] such that
h(s) ≡ 0 mod ri. If h �≡ 0 mod Φn then

||h||1 ≥ ri/ϕ(n).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Z[ζ] the ring of
integers of the n-th cyclotomic number field K/Q. Let a = riB + (ζ − s)B.
Then a is an ideal of B of norm NK/Q(a) = ri, by assumption on s. We have
ζ ≡ s mod a. Thus h(ζ) ∈ a\{0} by assumption on h and therefore

|NK/Q(h(ζ))| ≥ NK/Q(a) = ri.

On the other hand, the ϕ(n) complex conjugates ζ(j) of ζ satisfy |ζ(j)| = 1.
Hence |h(ζ(j))| ≤ ||h||1 and

|NK/Q(h(ζ))| =
∣
∣
ϕ(n)∏

j=1

h(ζ(j))
∣
∣ ≤ ||h||ϕ(n)

1 .

Combining the two inequalities proves the first assertion. �

Lemma 4. Assume sn ≡ 1 mod r2. Let m ≥ ϕ(n) and w = m − ϕ(n). Any
length ordered LLL-reduced basis v1, . . . , vm of I(1),m satisfies

||vi||1 = O(1) and vi ∈ I(2) for 1 ≤ i ≤ w,
||vi||1 = Θ(r1/ϕ(n)) and vi �∈ I(2) for w < i ≤ m.

The O- and Θ-constants depend only on n and the element relations hold for r
sufficiently large in comparison to n.

Proof. By Lemma 2 the determinant of I(1),m is r and its dimension is m. We
also have I(1),m = M ⊕ I(1),ϕ(n) with M = {h ∈ I(1),m |h ≡ 0 mod Φn}. Thus
there are at least ϕ(n) basis vectors vi of I(1),m whose projection onto I(1),ϕ(n)

is not zero. By Lemma 3 these vi satisfy ||vi||2 = Ω(r1/ϕ(n)). On the other hand,
the LLL-property shows

∏m
i=1 ||vi||2 = O(r). Thus there are precisely ϕ(n) basis

vectors vi of size Θ(r1/ϕ(n)) whose projection onto I(1),ϕ(n) is not zero. The other
basis vectors vi are in M and satisfy ||vi||2 = O(1). Since the vi are assumed to
be ordered by length the assertion on the norms follows.

Now Φn(s) ≡ 0 mod r2 by assumption on s. Hence v ∈ I(2) for every v ∈ M .
This shows vi ∈ I(2) for 1 ≤ i ≤ w. On the other hand, if v ∈ I(1),m\M and
v ∈ I(2), then v �≡ 0 mod Φn and v(s) ≡ 0 mod r2. Then ||v||2 = Ω(r2/ϕ(n)) by
Lemma 3, which is a contradiction. This finally shows vi �∈ I(2) for w < i ≤ m. �
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The true constants of the O-terms and Θ-terms cannot easily be given, only
worst case bounds are available that are usually much too large. Since r will
in practice be much larger than n the contribution of these terms is small and
can essentially be neglected. In this case the element relations will hold. Note
that, unconditionally, any (LLL-reduced) basis of I(1),m must contain at least
one basis element that is not in I(2).

7.3 Lattice Arguments for R = Q[t]

The results of this section are needed for the proof of Theorem 5. We keep the
notation and assumptions from the beginning of Section 7 for R = Q[t] and
deg(r) ≥ 1. For h =

∑d
i=0 hix

i ∈ Q[t, x] with hi ∈ Q[t] define

degt h = max
0≤i≤d

deg(hi).

Extend this definition to A by using class representatives of degree ≤ n − 1 in
x. This makes I(i) into a lattice2 with respect to deg.

Lemma 5. Suppose i ≥ 1 satisfies sn ≡ 1 mod riQ[t] and let h ∈ Q[t, x] such
that h(s) ≡ 0 mod riQ[t]. If h �≡ 0 mod Φn(x)Q[t, x] then

degt(h) ≥ i/ϕ(n)deg(r).

Proof. Let ζ be a primitive n-th root of unity in Q̄ and B = Q[t, ζ] the integral
closure of Q[t] in the function field K = Q(t, ζ)/Q. Let a = riB + (ζ − s)B.
Then a is an ideal of B of norm NK/Q(t)(a) = ri, by assumption on s. We have
ζ ≡ s mod a. Thus h(ζ) ∈ a by assumption on h and

deg(NK/Q(t)(h(ζ))) ≥ deg(NK/Q(t)(a)) = i deg(r).

On the other hand, the ϕ(n) Puiseux series expansions of ζ with respect to the
degree valuation of Q(t) are just the constant (i.e. without non-zero powers of t)
complex conjugates ζ(j) of ζ and thus satisfy deg(ζ(j)) = 0. Hence deg(h(ζ(j))) ≤
degt(h) and

deg(NK/Q(t)(h(ζ))) = deg

⎛

⎝
ϕ(n)∏

j=1

h(ζ(j))

⎞

⎠

=
ϕ(n)∑

j=1

deg(h(ζ(j))) ≤ ϕ(n)degt(h).

Combining the two inequalities proves the assertion. �

2 This means that I(i) is a free Q[t]-module of finite rank such that subsets of bounded
deg-value are finite dimensional Q-vector spaces.
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The following lemma uses the function field LLL (e.g. [7]). On input of M ∈
Q[t]n×n with det(M) �= 0 the function field LLL outputs N,T ∈ Q[t]n×n such
that N =MT , det(T ) = 1 and the sum of the maximal degrees occuring in each
column equals the degree of det(M). The columns of N are then by definition
independent LLL-reduced elements of Q[t]n.

Lemma 6. Assume sn ≡ 1 mod r2Q[t]. Let m ≥ ϕ(n) and w = m− ϕ(n). Any
length ordered LLL-reduced basis v1, . . . , vm of I(1),m satisfies

degt vi = 0 and vi ∈ I(2) for 1 ≤ i ≤ w,
degt(vi) = 1/ϕ(n)deg(r) and vi �∈ I(2) for w < i ≤ m.

Proof. The assertion and proof are exactly analogous to Lemma 4 (using the
analogy degt = log(|| · ||2)). �

7.4 Pairing Lattices

Let W denote the multiplicative group of functions G1 ×G2 → μr on two cyclic
groups G1 and G2 of prime order r. Let W bilin denote the subgroup of bilinear
functions.

We can finally wrap up and state our main generic theorems.

Theorem 6. Assume that r is a prime number and s is a primitive n-th root
of unity modulo r2. Let

as : I(1) →W, h 	→ as,h

be a map with the following properties:

1. as,g+h = as,gas,h for all g, h ∈ I(1),
2. as,hx = as

s,h for all h ∈ I(1) with as,h ∈W bilin,

3. as,r ∈W bilin\{1} and as,t−s = 1.

Then im(as) =W bilin and ker(as) = I(2). More precisely,

as,h = ah(s)/r
s,r

for all h ∈ I(1).
There exists an efficiently computable h ∈ I(1),ϕ(n) with ||h||1 = O(r1/ϕ(n))

and as,h �= 1. The O-constant depends only on n.
Any h ∈ I(1) with as,h �= 1 satisfies ||h||1 ≥ r1/ϕ(n).

Proof. From properties 1 and 2 we see

as,hg = ag(s)
s,h
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for all h ∈ I(1) with as,h ∈ W bilin and g ∈ A. We have I(1) = rA + (x − s)A by
Lemma 2, so every h ∈ I(1) is of the form h = g1r + g2(x − s) with g1, g2 ∈ A.
Then, using property 3,

as,h = as,g1r+g2(x−s) = ag1(s)
s,r a

g2(s)
s,x−s = ag1(s)

s,r ∈Wbilin (15)

and thus im(as) ⊆Wbilin. Since as,r �= 1 and r is prime, we have im(as) =Wbilin.
The properties of as shown so far can be conveniently summarised as follows.

We makeWbilin into an A-module via fg = fg(s) for f ∈Wbilin and g ∈ A. Then
as is an epimorphism of the A-modules I(1) and Wbilin.

The kernel of as is an A-submodule of I(1) and hence an ideal of A contained
in I(1). Since as is surjective, the index satisfies

(I(1) : ker(as)) = #Wbilin = r.

But r2, x− s ∈ ker(as) so I(2) = r2A + (x − s)A ⊆ ker(as) by Lemma 2. Again
by Lemma 2 we have (I(1) : I(2)) = r, so ker(as) = I(2) follows.

Looking at (15) we see that g1(s) = h(s)/r mod r and thus

as,h = ah(s)/r
s,r ,

which shows the relation of as,h with the generator as,r of W bilin.
Using ker(as) = I(2), the rest of the theorem follows directly from Lemma 4

with m = φ(n), the LLL algorithm and Lemma 3. �

The ideal I(1) together with the map as : I(1) → W satisfying the properties
stated in Theorem 6 is called a pairing lattice with pairing lattice function as.

Theorem 7. Assume that n ≥ 2 and r, s are non-constant polynomials in Z[t]
such that s is a primitive n-th root of unity modulo r2 and r is a primitive
polynomial. Assume furthermore that there is a pairing lattice function

as(t0) : I(1)r(t0),s(t0)
→W bilin

r(t0)

for all t0 ∈ J with J a suitable unbounded subset of Z.
Then there is h ∈ Z[t][x] with deg(h) ≤ ϕ(n)−1 and degt(h) = 1/ϕ(n)deg(r)

such that
as(t0),h(t0,x) �= 1

for all sufficiently large t0 ∈ J . The polynomial h can be efficiently computed.
Any h ∈ Z[t][x] such that as(t0),h(t0,x) �= 1 for all sufficiently large t0 ∈ J

satisfies degt(h) ≥ 1/ϕ(n)deg(r).

Proof. There are only finitely many t0 ∈ J such that s(t0) has order less than n
modulo r2, because these t0 must be zeros of sm − 1 mod r for m < n. Since t0
is to be chosen large enough we may assume that s(t0) is a primitive n-th root
of unity modulo r2.

We define A, I(1), I(2) for r, s and R = Q[t] as at the beginning of section 7.
From Lemma 6 with m = φ(n) and the function field LLL we see that there
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is vi ∈ Q[t][x] with vi(s) ≡ 0 mod rQ[t], deg(vi) ≤ φ(n) − 1 and degt(vi) =
1/ϕ(n)deg(r) for 1 ≤ i ≤ φ(n). Let h ∈ Z[t][x] be the product of vi with
the least common multiple of all denominators of all Q-coefficients of vi. Then
h(s) ∈ Z[t] and h(s) ≡ 0 mod rZ[t] by the lemma of Gauss [3, p. 181], since r
was assumed to be primitive.

Substituting t0 for t in this congruence we get h(t0, s(t0)) ≡ 0 mod r(t0).
From degt(h) = 1/ϕ(n)deg(r) we see ||h(t0, x)||1 = O(r(t0)1/ϕ(n)). Lemma 3
implies h(t0, s(t0)) �≡ 0 mod r(t0)2. We conclude that as(t0),h(t0,x) defines a non-
degenerate pairing by Theorem 1.

The last statement on the degrees follows since ||h(t0, x)||1 ≥ r(t0)1/ϕ(n) by
Lemma 3 for t0 tending to infinity. �
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The Uber-Assumption Family

A Unified Complexity Framework for Bilinear Groups

Xavier Boyen
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Abstract. We offer an exposition of Boneh, Boyen, and Goh’s “uber-
assumption” family for analyzing the validity and strength of pairing
assumptions in the generic-group model, and augment the original BBG
framework with a few simple but useful extensions.

1 Introduction

It is no secret that the rapid development of pairing-based cryptography has of
late been supported, in no small part, by a dizzying array of tailor-made com-
plexity assumptions. These assumptions, known by acronyms or abbreviations
such as BDH or D-Linear, sometimes annotated with dimensional parameters
such as �-BDHI or (�,m)-PolySDH, always found their original motivation in
the same necessity for compromise: the impetus to strike a balance between the
operational objective of conjuring a new useful cryptographic scheme, and the
aesthetic appeal of resting the security of one’s contraption on the firmest pos-
sible grounds. Whereas weaker and established assumptions should always and
unequivocally be preferred whenever possible, there are times when, despite our
best efforts, we seem to require the power of a novel or stronger assumption to
reach an elusive goal.

The newcomer to this particular branch of cryptography will therefore most
likely be astonished by the sheer number, and sometimes creativity, of those
assumptions. The contrast with the more traditional branches of algebraic cryp-
tography is quite stark indeed. The two most venerable branches of public-key
cryptography, “Factoring” and “Discrete-Log”, used to rest on a handful of use-
ful assumptions at most: QR and RSA on one side, and DL and DH on the other.
Yet, the much younger “Pairing” branch, which strictly speaking is merely an
offshoot from discrete-log, is already teeming with dozens of plausible assump-
tions, whose distinctive features make them uniquely and narrowly suited to
specific types of constructions and security reductions.

Far from being a collective whim, this haphazard state of affair stems from
the very power of the bilinear pairing, and the tremendous complexity that
it brings, in comparison to the admittedly quite simpler algebraic structures
of twentieth-century public-key cryptography. Since the new “bilinear” groups
offer a much richer palette of cryptographically useful trapdoors than their “uni-
dimensional” counterparts, there are also many more ways to arrange and exploit
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those trapdoors and make assumptions on those arrangements. As desirable as
it might be, the notion of a one-size-fits-all pairing assumption — strong enough
to enable a large array of useful schemes, and weak enough to leave room for
insightful security reductions — appears to be wishful thinking. Accordingly, it
is no surprise that many of the innovative pairing-based cryptographic schemes
proposed in recent years were based on original, then-unseen assumptions.

This is not to say, however, that all pairing assumptions are created equal,
and that a hefty dose of skepticism and prudence is advisable when presented
with a new one. When faced with a new assumption, the key questions are thus:

Is the assumption natural? — per one’s subjective sense of plausibility
How strong is the assumption? — for a quantifiable measure of strength

Of course, no cryptographically useful assumption about an NP language can
be fully trusted without proving that its defining problem has no polynomial-
time solution — a famous problem whose solution is not within reach —, hence
the need to make assumptions in the first place. What we can do, however, is
vet our assumptions in an idealized model in which they can be evaluated, and
hope that the model realistically captures the limited powers of all foreseeable
attackers for the planned lifetime of the cryptographic designs that rely on them.

2 Generic Bilinear Groups

At the very least, any assumption one is willing to make about a particular
family of algebraic groups should be true in the most basic presentation of such
family. This is the idea behind Nechaev and Shoup’s notion of generic groups,
originally used in [29,31] to study the hardness of the Discrete Log (DL) and
Diffie-Hellman (DH) problems in prime-order cyclic groups devoid of any other
exploitable structural feature. The first recorded use of the generic-group model
to justify a pairing assumption was made by Boneh and Boyen, who in [7] extend
the generic-group model to capture the case of (pairs of) groups equipped with
a pairing in order to provide some justification for their new SDH assumption.
More recently, Maurer [26] considers an extension of the generic model that
allows random sampling in addition to the deterministic group operations.

A generic group is a fictitious idealized entity that precisely captures the
group structure and any additional feature such as a pairing needed for the task
at hand, but none of the extraneous structure that an actual presentation of
the group might display. Withholding the extraneous structure from an attacker
naturally reduces the possibilities of breaking a scheme or its supporting as-
sumptions; however the important point is that the generic-group model is just
powerful enough to support the nominal functionality, and that taking away
anything from it will render it useless. In that sense, bilinear generic groups
epitomize the bare minimal environment in which one can hope to implement
a scheme based on bilinear discrete-logarithm problems. Any scheme requiring
only a cyclic group structure and a bilinear pairing should be realizable in the
generic model; and conversely, if the scheme can be broken in the generic model,
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then there is no hope that it will be secure under any actual presentation of the
bilinear groups.

What makes generic groups very useful is that, in this model, it is relatively
easy to prove strong (exponential) lower bounds on the hardness of solving many
problems of cryptographic interest, which in turn can be used to justify or “gain
confidence in” a particular assumption. The first use of the generic model to lend
credence to a bilinear assumption was made by Boneh and Boyen in [7] to support
their new (and back then highly non-standard) SDH complexity assumption.
Without the support of a bilinear generic-group analysis, the authors of [7] would
have never dared make such an unusual assumption.

An important caveat is that the very act of placing oneself in the generic-
group model amounts to making an extremely strong assumption. Proving the
security of a cryptographic scheme directly in the generic-group model is there-
fore usually very easy (unless the scheme is, literally, inherently broken), and
brings little insight as to its real-world security. The generic-group model shares
many of the controversial attributes of the random-oracle model, but is in a sense
even stronger and less appealing. After all, random oracles are used to model
the destruction of any exploitable structure by “bit-mashing” hash contraptions
that are designed with this particular goal as the primary objective: make the
number of rounds large enough and you are almost guaranteed to fulfill that
requirement, whatever the design of the round function. Generic groups, on the
other hand, formalize the belief that the particular presentation of a group will
expose some aspects of its structure while hiding others: one’s choice of math-
ematical implement is thus much more constrained, as it has to fulfill the two
conflicting goals of structure removal and structure preservation. Once we have
chosen a particular type of presentation for our bilinear groups (e.g., supersin-
gular elliptic curves over prime finite fields), the structure-hiding properties are
mostly bound by this choice, with little room for subsequent adjustment.

Of course, both the random-oracle and generic-group models are objection-
able because they funnel a non-interactive functionality through an interactive
interface, thereby giving the simulator unfair “mind-reading” and “challenge-
concoction” capabilities in its interaction with the opponent. Such is the nature
of idealized models that enforce artificial restrictions on mathematical objects;
and we mention that, in some circumstances, the two models exhibit rather
similar weaknesses [18]. However, the point is that, whereas a broken random-
oracle implement might well be salvaged by increasing a complexity parameter,
mathematic weaknesses in generic-group implements are much more likely to be
terminal.

The generic-group model should thus be viewed as a meta-assumption, useful
not for proving the security of actual schemes, but to assess the plausibility of
specific, weaker assumptions on which actual schemes are shown to rest.

Even though the generic-group model itself involves interactive oracles, we
emphasize that we use it to analyze the non-interactive BBG uber-assumption
family and its members — and if there is one temptation that we shall vigorously
resist, it is to bring interactive assumptions into that family.
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3 Bilinear Pairings

We write Fp for the finite field of prime order p. We write Zn for the ring of
integers modulo a composite n = p1p2 . . ., whose prime factors are the pi.

We consider cyclic bilinear groups of prime order p or composite order n. For
a security parameter κ, we shall respectively suppose that �log2 p� = Θ(κ) or
that �log2 pi� = Θ(κ) for all prime factors pi | n.

In either case, let G, Ĝ, and Gt be three cyclic groups of order p or n, written
multiplicatively, and whose elements have polynomial-size representations in κ.
A bilinear map or pairing in 〈G, Ĝ〉 is an efficiently computable, non-degenerate
function e : G × Ĝ → Gt that satisfies the bilinearity property e(gr, ĝs) =
e(g, ĝ)r s for all elements g ∈ G and ĝ ∈ Ĝ and all exponents r, s ∈ Z.

We assume the existence of an efficient randomized generation procedure G
that, on input the security parameter κ represented in unary as 1κ, outputs
a randomly generated bilinear instance G = 〈(p or n),G, Ĝ,Gt, g, ĝ, e〉 $←G(κ),
such that �log2 p� or �log2 n� = Θ(κ) as the case may be — the groups’ primality
or lack thereof will always be clear from context.

In practice, bilinear instances may be realized on certain algebraic varieties
or curves over finite fields [4,3,19], by computing the Weil, Tate, or a related
pairing using Miller’s efficient algorithm [27] or variants thereof [2,25]. We refer
the reader to [5,17] for additional information.

It is convenient to typify the bilinear groups depending on whether the group
isomorphism ψ : Ĝ → G and its inverse ψ−1 : G → Ĝ are efficiently computable.
Using the terminology from [21], we say that 〈G, Ĝ〉 is of:

“type 1” — if both ψ and ψ−1 are efficiently computable (this includes the
case where G = Ĝ);

“type 2” — if ψ is efficiently computable, but not ψ−1 (if the converse holds,
we swap G and Ĝ);

“type 3” — if neither ψ nor ψ−1 is efficiently computable.

Remark that “not efficiently computable” does not necessarily mean “infeasible
to compute”. Since such infeasibility can have its usefulness too, several authors
have floated the idea of making it an explicit assumption, albeit with differing de-
grees of prudence [9,1]. The accepted moniker for such infeasibility assumptions
is eXtended Diffie-Hellman, leading to the (suffix) acronym XDH.

For clarity, in any bilinear context G = 〈p or n,G, Ĝ,Gt, g, ĝ, e〉, we use the
“hat-notation” (ĝ vs. g) to indicate that an element belongs to Ĝ rather than G.

4 Examples of Bilinear Assumptions

A hallmark of pairing-based cryptography, that some would qualify as unfortu-
nate, is the plethora of complexity assumptions that come with it. The reason for
this abundance is that the pairing is quite powerful and flexible in comparison
to earlier cryptographic tools, and accordingly there are many flexible ways in
which this power can be exploited.
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Rather than make a blanket assumption that the pairing will be “safe” in
all conceivable ways it could be used, the sensible approach is to make the
weakest assumption that one possibly can for the intended application. Indeed,
should even a minor cryptographic weakness be discovered down the road, it
would surely contradict a blanket assumption, but might just leave a tailored
assumption unscathed, if sufficiently weak.

This is the same as in a regular finite-field or elliptic-curve cryptographic
group G, where one may just make the minimal assumption that there is no
feasible discrete-logarithm extraction map dl : G × G → Fp s.t. gdl(g,h) = h; or
one may wish to assume something stronger, such as it is hard to compute the
Diffie-Hellman function cdh : G × G × G → G : 〈g, gx, gy〉 	→ gxy, or even to
decide the predicate ddh : G × G × G × G → {0, 1} : 〈g, gx, gy, gz〉 	→ [x y ?= z]
— where, by “hard”, we mean that for any polynomial growth function poly(·),
the cost increases as ω(poly(log2 p)) when the prime group order p→∞.

With the pairing, there are may more ways to arrange “givens” and “goals”
when stating a hardness assumption, whether computational or decisional. Each
arrangement yields a specific assumption, sometimes equivalent to others, some-
times weaker, stronger, or incomparable. Here are examples from the literature.

Gap Diffie-Hellman. Gap problems are computational problems stated relative
to a decisional oracle [30]. Gap-DH is perhaps the simplest possible assumption
related to pairing groups: it assumes the hardness of CDH given a pairing that
is used only as a DDH predicate “oracle”. (Notice that the implementation of
the predicate can only be done using symmetric or type-1 pairings in G, or with
type-2 pairings if Gap-DH is defined in Ĝ.) The assumption is:

Gap-DH — with an oracle implied by any (symmetric) pairing [23]
Instance: g0 = g, g1 = gα, g2 = gβ ∈ G

Oracle: ddh(X,Y, Z,W ) := [e(Y, Z) ?= e(X,W )]
Goal: cdh(g0, g1, g2) = gαβ ∈ G

Bilinear Diffie-Hellman. Now a classic, this assumption modifies CDH and DDH
to account for the pairing. Since a (symmetric) pairing can efficiently perform
“trans-group” Diffie-Hellman operations from G × G into Gt, the pairing as-
sumption shall posit that the same cannot be done from G × G × G into Gt.

The computational and decisional versions of BDH are as follows, as originally
stated for symmetric pairings [22], then as restated for all pairing groups in two
different ways (the last one being weaker in type-3 groups).

(D-)BDH — as originally stated for symmetric pairings [22,10]
Instance: g, gα, gβ, gγ ∈ G
Goal (Computational): e(g, g)αβ γ ∈ Gt

Goal (Decisional): e(g, g)αβ γ ?= v for a test value v ∈ Gt

(D-)BDH’ — as restated for all known pairing types [6]
Instance: g, gα, gγ ∈ G and ĝ, ĝα, ĝβ ∈ Ĝ
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Goal (Computational): e(g, ĝ)αβ γ ∈ Gt

Goal (Decisional): e(g, ĝ)αβ γ ?= v for a test value v ∈ Gt

(D-)BDH” — weaker statement for type-3 pairings [20]
Instance: gγ ∈ G and ĝ, ĝα, ĝβ ∈ Ĝ
Goal (Computational): e(g, ĝ)αβ γ ∈ Gt

Goal (Decisional): e(g, ĝ)αβ γ ?= v for a test value v ∈ Gt

Linear. The Linear assumption is another proposal to cope with the limitation
that DDH cannot possibly hold in (type-1) bilinear groups. The idea is to restore
the hardness of deciding a product equality “in the exponent”, by splitting each
of the two factors of the product using a linear combination. What makes Linear
more useful than BDH in some reductions, is that all the elements in the instance
and the goal live in the bilinear group(s) G and Ĝ; that is, “at the ground level”,
and not in the target group.

Again, we have a computational and a decisional version of the assumption,
as originally stated in symmetric groups, and twice restated in asymmetric ones.

(D-)Linear — as originally stated for a single group, optionally bilinear [9]
Instance: g, gα, gβ, gαγ , gβ δ ∈ G
Goal (Computational): gγ+δ ∈ G

Goal (Decisional): gγ+δ ?= v for a test value v ∈ G

(D-)Linear’ — as restated for all known pairing types [13]
Instance: g, gα, gβ, gαγ , gβ δ ∈ G and ĝ, ĝα, ĝβ ∈ Ĝ
Goal (Computational): gγ+δ ∈ G

Goal (Decisional): gγ+δ ?= v for a test value v ∈ G

(D-)Linear” — weaker statement for type-3 pairings [20]
Instance: g, gαγ , gβ δ ∈ G and ĝ, ĝα, ĝβ ∈ Ĝ
Goal (Computational): gγ+δ ∈ G

Goal (Decisional): gγ+δ ?= v for a test value v ∈ G

(Weak) (Bilinear) Diffie-Hellman Inversion. Whereas the instances in the previ-
ous assumptions had a small fixed number of elements, one may consider giving
the adversary a possibly much greater data set from which to proceed. Ac-
cordingly, this makes for stronger assumptions, but ones from which security
theorems of actual constructions may be easier to prove. The family of �-BDHI
assumptions falls in this category, where the parameter � indicates the size of
the problem instance.

A closely related assumption family is the �-“weak Diffie-Hellman” from [28],
later renamed �-DHI in [6] for it is significantly stronger than DH for large �.
DHI does not require bilinearity; and, like Decision DH, the decisional D-DHI is
generically false given a type-1 pairing (or just a DDH oracle).

The (bilinear) �-BDHI assumption itself was stated for the case of symmetric-
pairing groups in [6], and subsequently extended for the general case and slightly
weakened in [8], where it became known as �-wBDHI for “weak BDHI”.
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These three families of assumptions are as follows.

�-(D-)DHI — without pairing, a.k.a. “weak Diffie-Hellman” [28]
Instance: g, gα, gα2

, . . . , gα� ∈ G for a fixed parameter � ∈ N
Goal (Computational): g1/α ∈ G

Goal (Decisional): g
1/α ?= v for a test value v ∈ G

�-(D-)BDHI — as stated for symmetric pairings [7]
Instance: g, gα, gα2

, . . . , gα� ∈ G for a fixed parameter � ∈ N
Goal (Computational): e(g, g)1/α ∈ Gt

Goal (Decisional): e(g, g)1/α ?= v for a test value v ∈ Gt

�-(D-)wBDHI — weaker version for all pairing types [8]
Instance: g, gα, gα2

, . . . , gα� ∈ G and ĝ, ĝβ ∈ Ĝ for a fixed � ∈ N
Goal (Computational): e(g, ĝ)α�+1 β ∈ Gt

Goal (Decisional): e(g, g)α�+1 β ?= v for a test value v ∈ Gt

Bilinear Diffie-Hellman Exponent. Another parametric assumption very simi-
lar to �-wBDHI, this one �-BDHE asks to compute or decide a target-group
element whose exponent lies, not at the end of a supplied sequence of other
elements (such as α−1 or α�+1 in relation to α0, . . . , α�), but in the middle of
a sequence that contains a hole or missing element (such as α� in relation to
α0, . . . , α�−1, α�+1, . . . , α2�).

�-(D-)BDHE — stated here for all known pairing types [8]
Instance: g, gα, . . . , gα�−1

, gα�+1
, . . . , gα2 � ∈ G and ĝ, ĝβ ∈ Ĝ for � ∈ N

Goal (Computational): e(g, ĝ)α� β ∈ Gt

Goal (Decisional): e(g, ĝ)α� β ?= v for a test value v ∈ Gt

Strong Diffie-Hellman. Yet another �-parametric assumption, this one is special
in the sense that it has, not one, but exponentially many non-trivially different
solutions that are all equally acceptable and cannot feasibly turned into one
another. Hence, this assumption inherently computational and has no natural
decisional counterpart.

Though originally stated with type-2 groups in mind, where Ĝ can be mapped
to G at will, SDH has been later restated to accommodate type-3 pairings, by
giving the power sequence directly in the group G where the solution resides.
Incidentally, this makes the restated assumption weaker in type-2 bilinear groups,
but makes no difference in type-1 groups.

�-SDH — as originally stated for type-1 and type-2 pairings [7]
Instance: g ∈ G and ĝ, ĝα, ĝα2

, . . . , ĝα� ∈ Ĝ for a fixed parameter � ∈ N
Goal: any pair 〈w, g1/(α+w)〉 ∈ Fp × G

�-SDH’ — as restated for all pairings, weaker in type-2 groups [7, full article]
Instance: g, gα, gα2

, . . . , gα� ∈ G and ĝ, ĝα ∈ Ĝ for fixed parameter � ∈ N
Goal: any pair 〈w, g1/(α+w)〉 ∈ Fp × G
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Modified SDH and Hidden SDH. A less elegant but actually weaker statement
of the SDH assumption is to give in the instance, not g raised to a sequence
of � + 1 powers of α, but a list of � pairs 〈wj , g

1/(α+wj)〉 for randomly chosen
wj ∈ Fp. The resulting assumption is called, Modified SDH.

Another variation on this theme is not to give the wj in the clear, but hide
them in an exponent, as in gwj . To preclude trivial attacks, we need to hide wj in
two exponents, gwj and hwj . Problem instances with this hiding mechanism thus
consist of triples of the form 〈gwj , g1/(α+wj), hwj 〉. The resulting assumption is
called, Hidden SDH.

Modified SDH and Hidden SDH are formally stated as follows.

Modified �-SDH — as originally stated for type-1 pairings [14]
Instance: g, gα ∈ G and � − 1 pairs 〈wj , g

1/(α+wj)〉 ∈ Fp × G for a fixed
parameter � ∈ N

Goal: another pair 〈w, g1/(α+w)〉 ∈ Fp × G

�-HSDH — as originally stated for type-1 pairings [14]
Instance: g, gα, gβ ∈ G and �− 1 triples 〈gwj , g1/(α+wj), gβ wj 〉 ∈ G3 for

fixed parameter � ∈ N
Goal: another triple 〈gw, g1/(α+w), gβ w〉 ∈ G3

Poly-SDH. Yet another variation of SDH is the Poly-SDH assumption from [12].
It is based on the same notion as SDH, but, in a sense, makes much better use
of the pairing without strengthening the assumption “too much”.

Recall that valid SDH solutions can be verified just with a DDH (or cross-
group DDH) test, which can of course be realized using the pairing but does not
fully exploit it. Poly-SDH remedies this shortcoming by giving more leeway in
the form of the solutions, which now require an actual (product of) pairings for
their verification. This is fine, since the pairing is already available.

The technical idea behind Poly-SDH is to allow the solver to output not one
but m pairs 〈wi, g

ci/(αi+wi)〉, under the joint constraint that
∑m

i=1 ci = 1 ∈ Fp.
For m = 1, it is the same as (Modified) SDH; whereas for m > 1, it extends it
by allowing convex combinations of m independent ordinary SDH solutions.

(�,m)-Poly-SDH — as originally stated for all pairing types [12]
Instance: g, gα1 , . . . , gαm ∈ G and �m pairs 〈wi,j , g

1/(αi+wi,j)〉 such that
1 ≤ i ≤ m and 1 ≤ j ≤ � for fixed parameters �,m ∈ N

Goal: any m pairs 〈wi, g
ci/(αi+wi)〉 such that all wi �∈ {wi,j : 1 ≤ j ≤ �}

and
∑m

i=1 ci = 1 (mod p) for undisclosed ci.

5 The Classic Uber-Assumption

Since many of the useful pairing assumptions can be proven in the generic model
using a similar argument, it would be nice to express them all as particular
instances of a common template, and justify the template itself in the generic-
group model. This idea was originally studied by Boneh, Boyen, and Goh [8],
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whose provided a “master theorem” for such a template. The new name “uber-
assumption” 1 is intended to evoke both a notion of generality and one of power,
as a warning that the uber-assumption is in general way too strong to be used
by itself, and should thus be reserved as a convenient framework for the analysis
of weaker assumptions.

In one sentence, the BBG uber-assumption family from [8] is defined for prime-
order bilinear groups with a symmetric pairing e : G×G → Gt, and emcompasses
the decision problems whose instance elements and challenge are all polynomial
powers of the generators g ∈ G and e(g, g) ∈ Gt.

A precise statement is given next, adapted from [8] and restated for general
pairings e : G × Ĝ → Gt.

5.1 The BBG Problem Statement

Let p be some large prime, and let r, s, t, and c be four positive integers.
Consider R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s, and T ∈ Fp[X1, . . . , Xc]t,
three tuples of multivariate polynomials over the field Fp, and respectively con-
taining r, s, and t polynomials in the same d variables X1, . . . , Xc. We write
R = 〈r1, r2, . . . , rr〉, S = 〈s1, s2, . . . , ss〉 and T = 〈t1, t2, . . . , tt〉. In the classic
BBG template with polynomial exponents, the first components of R, S, and T
ought to be the constant polynomial 1; that is, r1 = s1 = t1 = 1.

For a set Ω, a function f : Fp → Ω, and a vector 〈x1, . . . , xc〉 ∈ Fd
p, we use

the notation f(R) to denote the application of f to each element of R, namely,

f(R(x1, . . . , xc)) = 〈f(r1(x1, . . . , xc)), . . . , f(rr(x1, . . . , xc))〉 ∈ Ωr ;

and use a similar notation for applying f to the s-tuple S and the t-tuple T .
Let then G, Ĝ, and Gt be groups of order p, and e : G × Ĝ → Gt be a non-

degenerate bilinear map. Suppose that g ∈ G and ĝ ∈ Ĝ respectively generate
the groups to which they belong, and set gt = e(g, ĝ) ∈ Gt thus generating Gt.
Together, these form the bilinear context G = 〈p,G, Ĝ,Gt, g, ĝ, e〉.

Boneh, Boyen, and Goh define the (R,S, T, f)-Diffie-Hellman problem in G
as follows. Given the input vector,

U(x1, . . . , xc) =
〈
gR(x1,...,xc), ĝS(x1,...,xc), g

T (x1,...,xc)
t

〉
∈ Gr × Ĝs × Gt

t ,

secretly created from random 〈x1, . . . , xc〉 ∈$ Fd
p, compute the output value,

V (x1, . . . , xc) = gf(x1,...,xc)
t ∈ Gt .

Decisional Problem (Strict). The corresponding decisional problem is then de-
fined in the obvious way: given a vector U(x1, . . . , xc) and a test value v that is

1 The spelling of “uber” without the umlaut is meant to indicate that its usage is less
that of the German word über, than the English-language colloquialism for “super”.
The first recorded use of the phrase “uber-assumption” is attributed to Dan Boneh.
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either V (x1, . . . , xc) or some V (x′1, . . . , x
′
c) for independent 〈x′1, . . . , x′c〉 ∈$ Fd

p,
decide which is the case. The advantage of an algorithmA that outputs b ∈ {0, 1}
in solving the Decision (R,S, T, f)-Diffie-Hellman problem in G is defined as,

AdvA =

∣
∣
∣
∣∣

Pr [A(U(x1, . . . , xc), V (x1, . . . , xc)) = 0]
−Pr [A(U(x1, . . . , xc), V (x′1, . . . , x

′
c)) = 0]

∣
∣
∣
∣∣
,

where the probability is over the random choice of generators g ∈ G and ĝ ∈ Ĝ,
the random choice of secret inputs 〈x1, . . . , xc〉 ∈ Fd

p and 〈x′1, . . . , x′c〉 ∈ Fd
p, and

the random bits consumed by A.

Decisional Problem (General). An alternative definition of the decisional prob-
lem substitutes for V (x′1, . . . , x

′
c) a uniformly sampled random element V ′ ∈ Gt

in the above equation. The alternate advantage definition is given by,

AdvA =

∣
∣
∣
∣
∣

Pr [A(U(x1, . . . , xc), V (x1, . . . , xc)) = 0]
−Pr [A(U(x1, . . . , xc), V ′) = 0]

∣
∣
∣
∣
∣
,

where the probability is over the random choice of generators g ∈ G and ĝ ∈ Ĝ,
the random choice of secret inputs 〈x1, . . . , xc〉 ∈ Fd

p, the uniform random choice
of V ′ ∈ Gt, and the random bits consumed by A.

Often, it makes no difference to use either definition, unless the function V (. . .)
does not have uniform cover, in which case the second definition will be more
demanding (it being easier for the adversary A to make the distinction). The
more general definition should be used if the range one’s function V is either not
uniform or does not cover the entire codomain, as is often the case in bilinear
groups of composite order, as we shall see in Section 6.3.

5.2 The BBG Generic Lower Bound

In order to state a generic lower bound on the complexity of the above problem,
we need one more definition.

Independence. Let R = 〈r1, . . . , rr〉 ∈ Fp[X1, . . . , Xc]r, S = 〈s1, . . . , ss〉 ∈
Fp[X1, . . . , Xc]s, and T = 〈t1, . . . , tt〉 ∈ Fp[X1, . . . , Xc]t as previously defined.

We say that a polynomial f ∈ Fp[X1, . . . , Xc] is dependent on the triple
〈R,S, T 〉 if there exist rs + t constants {ai,j} and {bk}, and possibly r2 + s2

additional constants {ci′,i′′} and {dj′,j′′}, for 1 ≤ i, i′, i′′ ≤ r, 1 ≤ j, j′, j′′ ≤ s,
and 1 ≤ k ≤ t, such that,

f =
r∑

i=1

s∑

j=1

ai,j ri sj +
r∑

i′=1

r∑

i′′=1

ci′,i′′ ri′ ri′′ +
s∑

j′=1

s∑

j′′=1

dj′,j′′ sj′ sj′′ +
t∑

k=1

bk tk .

The constants dj′,j′′ exist to model the computable isomorphism ψ : Ĝ → G,
while the constants cj′,j′′ exist to model the inverse isomorphism ψ−1 : G → Ĝ.
Failing this, the constants cj′,j′′ and/or dj′,j′′ must be set to zero.

We say that f is independent of 〈R,S, T 〉 if f is not dependent on 〈R,S, T 〉.
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Clearly, independence is easier to achieve without any computable isomor-
phism; and this observation can thus be exploited to express assumptions such
as XDH [1] that rely on the hardness of isomorphism(s), in the generic model.

Degrees. For a polynomial f ∈ Fp[X1, . . . , Xc], we let df denote the total degree
of f in all the indeterminate variables. For a set R ⊆ Fp[X1, . . . , Xc]r, we let
dR = maxri∈R{dri}, the maximum total degree of all polynomials in the set.

Generic-Group Model. In the generic-group model of [31], as extended to the
bilinear case in [7], elements are represented as arbitrary bit strings in {0, 1}∗,
and are manipulated by making oracle calls to the generic-group functions (one
for the group operation in each group, one for the pairing, and possibly one or
two for the isomorphism and its inverse). Beyond the initial supply of elements
given to A in the problem instance, A can obtain new elements only as the result
of such oracle calls.

The idea behind the generic-group argument, is that the simulator that in-
teracts with A will treat as uninstantiated symbolic random variables all the
secret scalars that A is not supposed to see, and simulate the oracle functions
by deriving symbolic indices for all the group elements shown to A. At the end,
one then argues that A was unable to answer its challenge, even though with
high probability it was given an accurate simulation. The probability that the
simulation is accurate is the probability that no two distinct representations end
up referring to the same in the group element upon a random assignment of the
secret exponents.

In order to reason about the string representation of generic-group elements
available to A, we make use of three abstract maps ξG, ξĜ, ξGt : Fp → {0, 1}∗
such that ξG(x), ξ

Ĝ
(y), ξGt(z) represent gx ∈ G, ĝy ∈ Ĝ, gz

t ∈ Gt, respectively.
The simulator internally maintains the indices x, y, z as symbolic expressions of
all the uninstantiated secret scalars (e.g., secret exponents α, etc.).

Complexity Bounds. We are now in a position to state the BBG generic lower
bound on the complexity of the Decision (R,S, T, f)-Diffie-Hellman problem in
an idealized bilinear context G. We emphasize, however, that the bound applies
only in generic-group idealizations of G, not in actual presentations of G.

Theorem 1 (“Master Theorem” [8])
Let R = 〈r1, . . . , rr〉 ∈ Fp[X1, . . . , Xc]r, S = 〈s1, . . . , ss〉 ∈ Fp[X1, . . . , Xc]s, and
T = 〈t1, . . . , tt〉 ∈ Fp[X1, . . . , Xc]t. Let also f ∈ Fp[X1, . . . , Xc]. Let then,

d =

⎧
⎪⎨

⎪⎩

max{2dR, 2dS , dR + dS , dT , df} for type-1 bilinear contexts
max{2dS, dR + dS , dT , df} for type-2 bilinear contexts
max{dR + dS , dT , df} for type-3 bilinear contexts .

Let ξG, ξĜ, ξGt : Fp → {0, 1}∗ be three arbitrary external string-encoding maps
for the three respective groups G, Ĝ, Gt, as previously defined.



50 X. Boyen

If f is independent of 〈R,S, T 〉, then, for any algorithm A that makes a total
of at most q queries to (1) the group operation oracles in G, Ĝ, and Gt, (2) the
bilinear pairing oracle e : G × Ĝ → Gt, and (3), if allowed, the homomorphism
oracle ψ : Ĝ → G and its inverse ψ−1, we have:

AdvA =

∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

A

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

p,

ξG(R(x1, . . . , xc)),
ξ

Ĝ
(S(x1, . . . , xc)),

ξGt(T (x1, . . . , xc)),
ξGt(v0),
ξGt(v1)

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

= b :

x1, . . . , xc, y ∈$ Fp,

b ∈$ {0, 1},
vb ← f(x1, . . . , xc),

v1−b ← y

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

≤ (q + 2c+ 2)2 · d
2p

.

Not only can this theorem serve to ascertain that a proposed assumption is not
tautologically false, it also provides a quantitative basis for comparing the con-
crete efficiency or tightness of multiple assumptions: Let the assumption that
minimizes AdvA for some standard number of oracle queries, win! Of course,
such benchmark this should be balanced with the usefulness of the contenders,
so perhaps Theorem 1 should be used to compare assumptions from which com-
parably functional cryptosystems can be constructed.

We leave all such other applications of Theorem 1 to the imagination of the
reader, and merely mention as an alternative the following corollary which can
provide a quick qualitative sanity check.

Corollary 1 (Asymptotic Lower Bound [8])
Let R ∈ Fp[X1, . . . , Xc]r, S ∈ Fp[X1, . . . , Xc]s, and T ∈ Fp[X1, . . . , Xc]t, be
tuples of c-variate polynomials over Fp. Let f ∈ Fp[X1, . . . , Xc] be one more
such polynomial. Let d be the sum-total degree defined as in Theorem 1, or d =
max{2dR, 2dS , dR + dS , dT , df} in the worst case.

If f is independent of 〈R,S, T 〉, then any randomized algorithm A that solves
the Decision (R,S, T, f)-Diffie-Hellman problem in the generic-group model with
constant advantage Ω(1), must take time at least Ω(

√
p/d − c), asymptotically

as the security parameter κ→∞.

5.3 The BBG Bound in Action

Theorem 1 and Corollary 1 are useful — not to assert the uber-assumption as a
reduction basis for proving the security of pairing-based cryptographic schemes
— it is way too strong to be used for that purpose, and furthermore it is inter-
active as it relies on the generic-group model — but as a template from which
the generic validity of specific weaker assumptions can be proved.

To show this, we briefly mention how many standard decisional assumptions
follow from the classic BBG uber-assumption, using Corollary 1.
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Decision DH in target group Gt :
Set R = S = 〈1〉, T = 〈1, α, β〉, f = αβ.

Decision BDH in symmetric bilinear group G :
Set R = S = 〈1, α, β, γ〉, T = 〈1〉, f = αβγ.

Decision BDH in asymmetric bilinear groups 〈G, Ĝ〉 :
Set R = 〈1, α, β〉, S = 〈1, α, γ〉, T = 〈1〉, f = αβγ.

Decision �-BDHI in G :
Set R = S = 〈1, α, α2, . . . , α�〉, T = 〈1〉, f = α�+1.

Decision �-BDHE in 〈G, Ĝ〉 :
Set R = 〈1, α, . . . , α�−1, α�+1, . . . , α2�〉, S = 〈1, β〉, T = 〈1〉, f = α�β.

5.4 The Computational Case

Although the theorem above was stated only for the decisional uber-assumption,
it is easy to obtain a similar result for computational instances. The decisional
bound gives us the strongest result, but it has a few limitations, e.g., one cannot
use it to prove CDH is hard in G, since DDH is easy in G for type-1 pairings.

In order to derive a generic bound for a computational uber-assumption, one
must bound the probability that an adversary A outputs some expected group
element ξGt(f(x1, . . . , xc)), after a total number q of oracle queries.

Since some computational assumptions are defined with respect to problems
whose expected answers are vectors of elements instead of single elements, in all
generality one should really consider not a single polynomial f ∈ Fp[X1, . . . , Xc]
but three vectors VG, V

Ĝ
, VGt of polynomials in Fp[X1, . . . , Xc] (one vector for

each of the three groups). The success condition for A will be that it outputs
the expected vector of group elements,

〈
ξG(VG(x1, . . . , xc)), ξĜ(V

Ĝ
(x1, . . . , xc)), ξGt(VGt(x1, . . . , xc))

〉
.

A (restricted) decisional vector version of the BBG framework is studied in [15].

6 Extending the Uber-Assumption

As universal as it attempts to be, the classic uber-assumption family still man-
ages to exclude several potentially important family members.

The prime counterexample is the SDH assumption [7], which, despite being the
first bilinear assumption justified in the generic-group model [7], is not covered
by the classic uber-assumption because each SDH problem instance admits not
one but exponentially many (and mutually irreducible) valid solutions.

Another counterexample is the HSDH assumption [14], which is a very simple
variation of SDH, in some respects stronger and weaker in others, but with the
additional twist that its problem instances contain powers of the generators not
only with polynomial exponents but also rational ones.

It turns out that it is almost trivial to extend the regular uber-assumption
framework to cover these cases, without compromising the tightness of the
generic lower bounds for any of the assumptions that were already covered.
The proposed extensions are:



52 X. Boyen

1. To let the solver choose one out of many possible distinct challenges;
2. To let instances and answers have not polynomial but rational exponents;
3. To support composite-order groups of known or unknown factorization.

We emphasize that, unlike in cryptographic constructions where we seek to
prove security from the weakest possible assumptions, here, we are are interested
in a theoretical framework to analyze, not actual schemes, but other assumptions.
Hence, our purpose is to devise the strongest and broadest class of assumptions
that subsumes all the others. Indeed, the stronger and more encompassing the
family, the more diverse the specific assumptions that we will be able to instan-
tiate from it. The only delicate point is that our quest for the broadest family
should not compromise the tightness of the concrete generic-group lower bounds
deduced from it for specific instantiations.

6.1 Flexible Challenges

The first observation we make is that the proof of Theorem 1 (see Appendix A
of [8]) only depends on the “target” polynomial f ∈ Fp[X1, . . . , Xc] through its
total degree df and not through its actual polynomial expansion. Thus, in order
to capture a computational assumption such as SDH that admits exponentially
many possible solutions, one could simply keep f undefined until the adversary
A is ready to produce its final answer (or, as the case may be, request its final
challenge), as long as the total degree df of f remains within certain boundaries.

Concretely, when applying our framework to study an assumption with multi-
ple good answers, such as SDH, one would simply let A specify which expression
of f it wishes to use from some pre-specified family F , and define the maximal
total degree of f as the maximum of df over the entire family: dF = maxf∈F{df}.

For SDH, we would take F = {fw|w ∈ Fp} where fw(X) = 1
w+X , and allow

A to choose any fw ∈ F . (Of course, in the particular example of SDH we still
have the problem that the fw are not polynomial but rational; we shall address
this next.)

As a last comment, observe that with SDH the adversary will announce the
choice of w as part of the answer; with HSDH on the contrary the adversary keeps
w computationally hidden, but still commits to it via gw (and gβ w). It makes
no difference for our purpose whether the choice of f is announced or merely
committed, because the generic-group analysis is an information-theoretic one.
The only requirement is that the choice of f be extractable from the adversary’s
answer (if valid); from there, the simulator can always recover it explicitly.

6.2 Rational Exponents

The second observation we make is that, to handle assumptions such as HSDH
or Poly-SDH that involve rational exponents in the instance elements and/or
the final answer, one can notionally replace all the rational exponents ρi by a
ratio πi/Δ, where the πi are polynomials and Δ is the least common multiple of
all the denominators.
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The preceding generic-group analysis will carry through using the πi, regard-
less of the numerical value of the denominator Δ, as long as Δ does not vanish.
If Δ vanishes, then at least one of the group elements given to A is undefined
(due to a division by zero), and it is thus a pathological case that the solver
A can use to recover secret data. Hence, Theorem 1 can still be used to derive
lower complexity bounds even in the case of rational exponents, but with some
caveats:

1. The definition of the maximum total degree d must refer to the notional
polynomials πi = ρiΔ and not the actual exponents ρi; therefore the value
of d will be affected by the total degree of the common denominator Δ.

2. When analyzing a particular complexity problem, such as the HSDH prob-
lem, one must show that the problem definition will not cause the denomina-
tor Δ to vanish identically (i.e., force Δ ≡ 0) for all values of the variables.
If it does, then the uber-assumption framework will not apply (and the pro-
posed problem may quite well have a generic easy solution).

3. Even if Δ �≡ 0 for the proposed problem, there is still a chance that Δ will
vanish for a random assignment of the variables X1, . . . , Xc in Fp. Since this
event may entail an easy victory for A, the upper bound on AdvA given
by Theorem 1 must be increased accordingly. This is straightforward: if the
total degree of Δ is dΔ, then we have Pr[Δ(X1, . . . , Xc) = 0] ≤ dΔ/p.

Again, to deal with computational problems such as HSDH and Poly-SDH
whose answers consist of more than one group element, one should substitute
for f three vectors VG, V

Ĝ
, VGt as discussed in Section 5.4.

6.3 Composite Group Orders

The last generalization of the uber-assumption we consider concerns bilinear
groups of composite order, i.e., bilinear contexts G = 〈n,G, Ĝ,Gt, g, ĝ, e〉 where
|G| = |Ĝ| = |Gt| = n = p1p2 is a product of two or more (safe-)prime factors.
Although those are typically constructed on supersingular curves which mandate
G = Ĝ, for maximum generality we ought to maintain the distinction G �= Ĝ.

The first and simplest assumption in composite-order bilinear groups is called
Decision Subgroup [11], and states that it infeasible to decide, given g ∈ G of
order n, and g1 ∈ G of order p1, whether some v ∈ G has order n or order p1.

More complex assumptions have also been made, that posit the hardness of
various types of Diffie-Hellman problems in the group G or some of its subgroups.
Sometimes, the factorization of the composite-order groups may be revealed:
such groups only serve as containers for prime-order subgroups of interest [16].
Sometimes, however, the factorization is supposed secret and is an inherent part,
but not the only part, of the challenge faced by the adversary [24].

The latter kind of assumption is particularly worrisome, for it combines many
intertwined and possibly compounding vulnerabilities within a single package:
the hardness of pairing-friendly Diffie-Hellman problems, subgroup hiding, and
factoring — not constructively put together from elementary assumptions —
but bundled non-separably into a single take-it-or-leave-it hypothesis.
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Nevertheless, the uber-assumption framework can let us “gain confidence” in
such composite-order assumptions, much as it did for prime-order ones, at least
in a relaxed notion of generic groups. To its credit, [24] offers such justification.

Coping with Unbounded Adversaries. The main difficulty is that the generic
model assumes a computationally unbounded adversary, but such an adversary
can of course factor the group order and thus break any assumption that relies
on the secrecy of the factors. Since we cannot prevent A from factoring n, our
only escape is to force A to expose a non-trivial factor of n in order to solve the
given instance with non-negligible advantage in the generic-group model.

Of course, we cannot simply ask A for the factorization of n; we must extract
it from the interactions of A with the generic-group simulator, or at least prove
that A must have had access to it. E.g., if, by interacting with the generic-group
oracles, A manages to obtain the representation ξG(p1) of gp1 , supposedly an
infeasible task, one must conclude that A must have necessarily leaked p1 to
the simulator, though perhaps unwittingly, in a way that is recoverable from the
oracle transcripts.

Factorizationless Generic Simulation. The implementation of this intuition is
quite simple. It is based on the fact that each one of the various group elements
given to A is an element of some order o | n in one of the groups, G, Ĝ, Gt;
and these properties will be preserved or modified by the generic-group oracles
according to simple rules that normally should not depend on the factors of n.
Should an anomaly occur, this will be the signal that A has managed to exploit
the factorization of n, and thus that a factor of n is recoverable from the oracle
transcripts.

To apply the rules without needing the factorization, our simulator internally
represents each element by its projection over all relevant subgroups, such as
h = gη1

1 g
η2
2 for fictitious generators g1 and g2 of orders p1 and p2. Hence, if the

problem instance called for A to receive an element h of order p1, the simulator
would construct it by fixing η2 = 0 and setting η2 ∈$ Zn.

Two elements will thus be deemed equal by the simulator if and only if all their
exponents are the same modulo n — not mod p1 or mod p2 as should be the
case in reality. This leads to the possibility of equality-test false negatives (and
no other errors), but only as a symptom of A’s factorization of n. Simulating
the generic oracles is done by performing arithmetic on matching exponents.

Error Handling and Reduction. As we just mentioned, since the simulator’s
exponent handling disregards the factorization of n, certain elements will be
deemed distinct when in fact they are the same (which the simulator will find out
at the end when it instantiates the variables): in this event, A will be considered
to have won, because the simulation was flawed.

However, by definition, such event can happen only when A has managed to
summon two distinct representations ξ and ξ′ of the same group element, and
whose respective simulator exponents are not all congruent mod n but are all
congruent either mod p1 or mod p2. From this, the simulator can factor n.
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7 Conclusion

To conclude, we shall reiterate that the framework described in this paper, just
like the original from [8], is not intended to be used directly as a basis on which to
prove the security of protocols, but merely as a convenient template, or shortcut,
to analyze specific pairing assumptions that fall under its umbrella.

As we have seen, the original framework from [8] can be further broadened in
many ways. These include the formal treatment of symmetric and asymmetric
pairings alike, the extension to computational instances with flexible challenges,
the support of polynomial and rational exponents, and the case of composite-
order groups with public or secret factorization.
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Abstract. This paper introduces a new concept, distortion eigenvector
space; it is a (higher dimensional) vector space in which bilinear pairings
and distortion maps are available. A distortion eigenvector space can
be efficiently realized on a supersingular hyperelliptic curve or a direct
product of supersingular elliptic curves. We also introduce an intractable
problem (with trapdoor) on distortion eigenvector spaces, the higher di-
mensional generalization of the vector decomposition problem (VDP). We
define several computational and decisional problems regarding VDP,
and clarify the relations among them. A trapdoor bijective function with
algebraically rich properties can be obtained from the VDP on distortion
eigenvector spaces. This paper presents two applications of this trapdoor
bijective function; one is multivariate homomorphic encryption as well
as a two-party protocol to securely evaluate 2DNF formulas in a higher
dimensional manner, and the other is various types of signatures such as
ordinary signatures, blind signatures, generically (selectively and univer-
sally) convertible undeniable signatures and their combination.

1 Introduction

Mathematically (or algebraically) rich structures should be useful to realize var-
ious types of cryptographic primitives and protocols. Up to now, fairly simple
and elementary mathematical structures have been used in cryptography such
as cyclic groups (genus 0) and pairings in genus 1 curves. Although higher genus
curves have been investigated for application to cryptography, only a cyclic group
and a doubly cyclic group with pairings have been applied. It was suggested in
a few papers [8,9] to utilize richer algebraic structures in cryptography, but
no concrete result has been reported except [6,7] where a higher dimensional
ElGamal-type signature scheme was studied.

This paper develops a new methodology to employ richer mathematical struc-
tures in cryptography.First, this paper introduces a new concept, distortion eigen-
vector space, a generalization of the two-dimensional case (genus 1 curve) studied
by Galbraith and Verheul [11]. A distortion eigenvector space is a (higher dimen-
sional) vector space in which bilinear pairings and distortion maps are available;
it can be efficiently constructed on a supersingular hyperelliptic curve by the the-
ory recently developed by Takashima [18] (as well as [10]) or on a direct product
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of supersingular elliptic curves. Thanks to the algebraically rich structures, this
concept should be useful for designing cryptographic primitives and protocols.

A promising candidate of computational problems on which distortion eigen-
vector spaces could be applied to cryptography is the higher dimensional gen-
eralization of the vector decomposition problem (VDP). VDP was originally
introduced by Yoshida, Mitsunari and Fujiwara [20,21] and recently analyzed
by Galbraith and Verheul [11]. The higher dimensional versions of VDP were
studied by Duursma et al. [6,7].

This paper extends the study on the relationships of higher dimensional VDP
with other problems such as the generalized (or higher dimensional) Diffie-Hellman
(gDH) problem. Since the higher dimensional VDP is a newly introduced prob-
lem, it is important to characterize its intractability through its relations with
(and equivalence to) well-studied problems such as the DH problems and the de-
cisional linear problem (DLN) over bilinear groups. We show that computational
VDP (CVDP) and computational gDH (gCDH) can be reduced to each other (un-
der some conditions), decisional VDP (DVDP) and decisional subspace problem
(DSP) can be reduced to each other, decisional gDH (gDDH) can be reduced to
DSP/DVDP, and that DLN can be reduced to gDDH (i.e., DLN can be reduced
to DSP/DVDP). Here, DSP is introduced to prove the semantic security of our
homomorphic encryption.

We then present a trapdoor of the higher dimensional VDP over the distortion
eigenvector space. That is, there is an efficient algorithm Deco that can solve
the VDP problem by using a trapdoor, but under the VDP assumption it is
intractable to solve the problem without the knowledge of the trapdoor.

This trapdoor leads to a trapdoor bijective function, which is, to the best of
our knowledge, the first trapdoor bijective function, except the RSA function
and its variants (the Rabin-Williams [19] and Paillier [16] functions) that are
based on the integer factoring trick. Here, we say that f is a trapdoor bijective
function if f is a trapdoor one-way function and bijection (one-to-one and onto,
i.e., its domain and range are isomorphic). (See Section 4 for more details.)

Using this trapdoor bijective function, this paper proposes multivariate ho-
momorphic encryption, which is semantically secure under the DSP (i.e., DVDP
and gDDH) assumption. The encryption scheme is multivariate homomorphic
in addition, i.e., multiple plaintexts, −→m ← (m0, . . . ,m�2−1) ∈ (Fr)�2 , can be
encrypted to a single ciphertext c ← Enc(−→m) and homomorphic transforma-
tion over ciphertexts on addition is available for each plaintext simultaneously.
For example, given c1 ← Enc(−→m1) and c2 ← Enc(−→m2), c1 + c2 = Enc(m1,0 +
m2,0 mod r, . . . ,m1,�2−1 +m2,�2−1 mod r). Note that our homomorphic encryp-
tion requires higher dimension than 2 (or higher genus than 1) to meet semantic
security, i.e., it cannot be realized on elliptic curves (genus 1).1

1 This is because: if a message, m (e.g., m ∈ Fr), is embeded to a (one dimensional)
subspace 〈b0〉 (as m, e.g., m ← mb0) in a two dimensional space 〈b0, b1〉, the correct
message, m, of ciphertext c can be publicly verifiable (i.e., not semantically secure)
by verifying m ∈ 〈b0〉 and c−m ∈ 〈b1〉 through pairing operations (c is a ciphertext
such that c ← m + r and m ∈ 〈b0〉 and r ∈ 〈b1〉).
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Based on our homomorphic encryption, we present a two-party protocol (be-
tween Alice and Bob) to securely evaluate a 2DNF formula ψ (over n variables)
for higher dimensional n variables (assignment), where Bob knows secret input
(assignment) (−→m1, . . . ,

−→mn) (to ψ), and Alice knows secret formula ψ. Here −→mi ←
(mi,0, . . . ,mi,�2−1) ∈ {0, 1}�2 (i = 1, . . . , n). The protocol outputsψ(−→m1, . . . ,

−→mn)
(← (ψ(m1,0, . . . ,mn,0), . . . , ψ(m1,�2−1, . . . ,mn,�2−1) ) while keeping the local se-
crets, i.e., Bob finally getsψ(−→m1, . . . ,

−→mn) but learns nothing ofψ, and Alice learns
nothing of (−→m1, . . . ,

−→mn).
The trapdoor bijective function also leads to various types of signatures. We

present some examples of such signatures; ordinary signatures, blind signatures,
generically (selectively and universally) convertible undeniable signatures. Note
that our construction of undeniable signatures essentially requires a higher di-
mensional space greater than 2, and cannot be realized over an elliptic curve
(two-dimensional space).2

The advantage of our approach is its flexibility in combining different types of
signatures; for example, blind signatures and convertible undeniable signatures
can be easily combined. To the best of our knowledge, the proposed scheme is
the first efficient scheme that simultaneously realizes blind and generically (selec-
tively and universally) convertible undeniable signatures where the confirmation
protocol of undeniable signatures can be executed without signer’s secret key.

Notations
When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. y ← A denotes that y is set, defined or
substituted by A. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x.

A vector symbol denotes a vector representation over a finite field Fr, e.g., −→m
denotes (m0, . . . ,m�2−1) ∈ (Fr)�2 . A bold face letter denotes an element of vector
space V, e.g., m ∈ V. When ψ is a (2DNF) formula over n variables and −→mi ←
(mi,0, . . . ,mi,�2−1) ∈ {0, 1}�2 (i = 1, . . . , n), ψ is abused as ψ(−→m1, . . . ,

−→mn), that
denotes (ψ(m1,0, . . . , mn,0), . . . , ψ(m1,�2−1, . . . ,mn,�2−1)).

When A is a machine, tA denotes the running time of A. When P and Q
are computational problems, P ≤p Q informally denotes that P is reduced to Q
by a probabilistic polynomial-time algorithm, and P =p Q denotes P ≤p Q and
Q ≤p P.

2 This is because: signature s in two dimensional space 〈b0, b1〉, where s is a decom-
posed value to a one-dimensional subspace 〈b0〉 from h determined by a hash value
of message m, is publicly verifiable (i.e., not undeniable signatures) by verifying
s ∈ 〈b0〉 and h − s ∈ 〈b1〉 through pairing operations, while signature s ∈ 〈b0〉,
in a three dimensional space 〈b0, b1, b2〉, can not be publicly verifiable (i.e., may be
undeniable signatures) since s0 ∈ 〈b0〉 can be verified by pairing but h−s0 ∈ 〈b1, b2〉
may not be verified efficiently.
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2 Distortion Eigenvector Spaces

We generalize the notion of distortion eigenvector basis introduced by [11] and
introduce the notion of the distortion eigenvector space.

2.1 Definition

Let Fr be a finite field of odd order r. A distortion eigenvector space is a (higher
dimensional) vector space over Fr that has efficiently computable distortion maps
and bilinear pairing operations; it is formally defined as follows:

Definition 1. “Distortion eigenvector space” V is a �-dimensional vector space
over Fr that satisfies the following conditions:

1. Let A ← (a0, . . . ,a�−1) be a basis of Fr-vector space V and F a polynomial-
time computable automorphism of V. The basis A is called a “distortion
eigenvector basis” with respect to F , if each ai is an eigenvector of F , their
eigenvalues are different from each other, and there exist polynomial-time
computable endomorphisms φi,j of V such that φi,j(aj) = ai. We call φi,j a
“distortion map”. There exist such A, F , and {φi,j}0≤i,j≤�−1.

2. There exists a skew-symmetric nondegenerate bilinear pairing e : V×V → μr

where μr is a multiplicative cyclic group of order r, i.e.,e(γu, δv) = e(u,v)γδ

and e(u,u) = 1 for all u,v ∈ V and all γ, δ ∈ Fr, and if e(u,v) = 1 for all
v ∈ V, then u = 0.

3. There exists a polynomial-time computable automorphism ρ on V such that
e(v, ρ(v)) �= 1 for any v except for v in a quadratic hypersurface of V ∼=
(Fr)�.

Lemma 1 (Projection Operators). Let A ← (a0, . . . ,a�−1) be a distortion
eigenvector basis of V, and ai has its eigenvalue νi of F . A polynomial of

F , Prj ←
(∏

i�=j(νj − νi)
)−1 ∏

i�=j(F − νi) gives the j-th projection operator
w.r.t. A, that is, Prj(aκ) = 0 for κ �= j and Prj(aj) = aj.

2.2 Constructions

We will show two concrete examples of a distortion eigenvector space.

Jacobian Variety of a Supersingular Curve of Genus g ≥ 1. We can
realize a distortion eigenvector space by the Jacobian variety of a supersingular
curve of genus g ≥ 1 where w ← 2g+1 is a prime as follows: Let (p, r) be a pair of
primes such that α← p mod w is a generator of F∗

w, and r | pg+1. We then use a
supersingular curve C/Fp : Y 2 = Xw +1, and we see that r | �JacC(Fp) = pg +1
for that curve C. We define Fr-vector space V as JacC [r], which is isomorphic
to (Fr)2g and contained in JacC(Fp2g ).

A distortion eigenvector basis is efficiently constructed on the above Jacobian
JacC [r]. When r > w as in typical cryptographic applications, such a basis on
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the Jacobian is given by Takashima [18]. The Jacobian has automorphism ρ that
is induced from that of the curve, (x, y) 	→ (ζx, y) where ζ is a primitive w-th
root of unity in Fp2g .

Let a∗ ∈ JacC(Fp)[r] be a nonzero point on the Jacobian, i.e., a∗ �= 0. We
use operators Gj ←

∑2g−1
i=0

(
pj
)i
ραi

on JacC [r] ∼= (Fr)2g where α ← p mod w
and j = 0, . . . , 2g − 1. Let aj ∈ JacC [r] be Gj(a∗) for j = 0, . . . , 2g − 1. We
then obtain a distortion eigenvector basis A ← (a0, . . . ,a2g−1) w.r.t. the p-power
Frobenius endomorphism F . aj ’s eigenvalue of F is p−j. A distortion map φi,j in
Definition 1 is given by (−1)jw−1GiG−j = (−1)jw−1Ji,−jGi−j where the index
of G is considered as in Z/2gZ and Ji,−j ∈ Fr is a constant indexed by the pair
(i,−j).

We use the Weil pairing e. Since Corollary 2 in [18] showed that e(a∗, ρ(a∗)) �=
1, we know that e(v, ρ(v)) �= 1 for any v except for v in a quadratic hypersurface
of V ∼= (Fr)�. For the calculation of the Weil pairing on hyperelliptic curves, see
[15], for example.

Given security parameter k and genus g, we can obtain such V by finding a
pair of primes, (p, r), that satisfies the above conditions and the security level
determined by k (e.g., �log2 r� = k).

Product of Supersingular Elliptic Curves. Among non-cyclic groups in
Section 5 of [11], we can use a product of supersingular elliptic curves E/Fp :
Y 2 = X3+1 where p ≡ 2 mod 3 for a distortion eigenvector space. Let (p, r) be a
pair of primes and d a positive integer such that p ≡ 2 mod 3, r | �E(Fp) = p+1,
2d < r, and r > 3. Then, V ←

∏d−1
κ=0Eκ[r] ∼= (Fr)2d is a distortion eigenvector

space where Eκ for each κ is (a copy of) E.
Automorphism F of V is defined as the diagonal action of

∏d−1
κ=0(κ + 1)Fκ

on
∏d−1

κ=0Eκ[r] where Fκ is the p-power Frobenius on Eκ. When (aκ,aκ+1) is a
distortion eigenvector basis of Eκ[r] for Fκ, (a0, . . . ,a2d−1) is a distortion eigen-
vector basis of V =

∏d−1
κ=0Eκ[r] for F . The distortion maps for V are constructed

from all the distortion maps for Eκ as follows: using projection operators on Eκ,
we can decompose any vector v ∈ V as v =

∑2d−1
i=0 v′

i such that v′
i ∈ 〈ai〉 (See

Lemma 1), and then we can efficiently calculate distortion maps φi,j in Definition
1 (i.e. changes of components v′

i’s). Automorphism ρ is the direct product of the
automorphism ρκ of Eκ (defined as above), and a pairing e can be defined com-
ponentwise. In other words, for two vectors u ← (uκ) ∈ V and v ← (vκ) ∈ V,
e(u,v) is defined by

∏d−1
κ=0 eκ(uκ,vκ) where eκ is the Weil pairing on Eκ.

3 Vector Decomposition Problems

This section introduces vector decomposition problems (VDPs) over a distortion
eigenvector space. The computational VDP (CVDP) in Definition 2 is a gen-
eralization of 2-dimensional VDP, which was introduced in [20,21] and studied
in [11]. We investigate relations between several problems regarding CVDP and
decisional VDP (DVDP) .
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3.1 Computational Vector Decomposition Problems

We now define CVDP and its assumption. The CVDP assumption is employed to
ensure the one-wayness of the trapdoor bijective function introduced in Section 4
and to prove the security (in the random oracle model) of the signature schemes
proposed in Section 6.

Definition 2 (CVDP(�1,�2): (�1, �2)-Computational Vector Decomposi-
tion Problem). Let k be a security parameter and GV be an algorithm that
outputs a description of a �1-dimensional Fr-vector space V with security pa-
rameter k, and �1 > �2.

Let A be a probabilistic polynomial-time machine. For all k ∈ N, we define
the CVDP(�1,�2) advantage of A as

Adv
CVDP(�1,�2)

A (k) ←

Pr
[
ω =

∑�2−1
i=0 xibi | V

R← GV(1k), (b0,. . . ,b�1−1)
U←V�1 ,

(x0,. . . ,x�1−1)
U← (Fr)�1 ,v ←

∑�1−1
i=0 xibi, ω ← A(1k,V, b0,. . . ,b�1−1,v)

]
.

The CVDP(�1,�2) assumption is: For any polynomial-time adversary A, the

advantage Adv
CVDP(�1,�2)

A (k) is negligible.

Remark: In the experiment of the definition of Adv
CVDP(�1,�2)

A (k), a linearly-
dependent tuple, (b0,. . . ,b�1−1), may be selected, but the case occurs with a
negligible probability in k. So, it does not affect whether the assumption holds
or not.

A specific class of the CVDP instances that are specified over distortion eigen-
vector basis A are tractable as follows:

Lemma 2. Let A be a distortion eigenvector basis of V, and CVDP A
(�1,�2)

be a
specific class of CVDP(�1,�2) in which (b0, . . . , b�1−1) is replaced by A. Then the
projection operators Prj (j = 0, . . . , �1 − 1) in Lemma 1 can solve CVDP A

(�1,�2)

in polynomial time.

3.2 Trapdoor

Although CVDP(�1,�2) is expected to be intractable in general, the efficient al-
gorithm, Deco given in Fig. 1, can solve it by using a trapdoor X .

The input is (v, 〈b0, . . . , b�2−1〉, X,B) such that v ←
∑�1−1

i=0 yibi is a target
vector for decomposition, 〈b0, . . . , b�2−1〉 is a subspace to be decomposed into, X
is a trapdoor (matrix), and B ← (b0, . . . , b�1−1) is a basis generated by using X .

Deco(v, 〈b0, . . . , b�2−1〉, X,B) :
(ti,j) ← X−1,u ←

∑�1−1
i=0

∑�2−1
j=0

∑�1−1
κ=0 ti,jxj,κφκ,i(Pri(v)).

return u.

Fig. 1. Decomposition Algorithm Deco
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Lemma 3 proves that Deco works correctly. Deco is the key tool to construct
a trapdoor function and cryptosystems in Sections 4, 5 and 6.

Lemma 3. Algorithm Deco solves CVDP(�1,�2) by using matrix X ← (xi,j) such
that bi =

∑�1−1
j=0 xi,jaj.

Proof. We show that output u is
∑�2−1

i=0 yibi for input vector v ←
∑�1−1

i=0 yibi

for Deco. Let a row vector (z0, . . . , z�1−1) be (y0, . . . , y�1−1)X . Then, yj =
∑�1−1

i=0 ziti,j and v =
∑�1−1

i=0 ziai. We then obtain

yjaj =
∑�1−1

i=0 ti,jzi(φj,i(ai))=
∑�1−1

i=0 ti,jφj,i(ziai)=
∑�1−1

i=0 ti,jφj,i(Pri(v)) (1)

where Pri are projection operators with basis A. Using φκ,j(yjaj) = yjaκ, bj =
∑�1−1

κ=0 xj,κaκ, and Eq.(1), we obtain

yjbj =
∑�1−1

κ=0 xj,κyjaκ =
∑�1−1

κ=0 xj,κφκ,j(
∑�1−1

i=0 ti,jφj,i(Pri(v)))

=
∑�1−1

κ=0

∑�1−1
i=0 xj,κti,jφκ,j(φj,i(Pri(v))) =

∑�1−1
κ=0

∑�1−1
i=0 ti,jxj,κφκ,i(Pri(v)).

Therefore, output u is
∑�2−1

j=0 yjbj . ��

3.3 Relations between CVDP and the Generalized DH Problem

We show that CVDP(�1,1) is reduced to CVDP(�1,�2) and vice versa if �2 = O(1).
Moreover, we introduce a new computational problem gCDH(�1,�2), which is
a generalization of CDH (computational Diffie-Hellman problem) to a higher
dimensional space (Definition 3), and show its relations with CVDP.

Definition 3 (gCDH(�1,�2): (�1, �2)-generalized Computational Diffie-
Hellman Problem). Let k be a security parameter and GV be an algorithm
that outputs description of �1-dimensional Fr-vector space V with security pa-
rameter k, and �1 > �2. Let A be a probabilistic polynomial-time machine. For
all k ∈ N, we define the gCDH(�1,�2) advantage of A as

Adv
gCDH(�1,�2)

A (k) ←

Pr
[
ω =

∑�1−1
i=�2

xib
′
i | V

R← GV(1k), (b�2 , . . . , b�1−1,b
′
�2
, . . . , b′�1−1)

U←V2(�1−�2),

(x�2 , . . . , x�1−1)
U← (Fr)�1−�2 , v ←

∑�1−1
i=�2

xibi,

ω ← A(1k,V, b�2 , . . . , b�1−1, b
′
�2
, . . . , b′�1−1,v)

]
.

The gCDH(�1,�2) assumption is: For any polynomial-time adversary A,

Adv
gCDH(�1,�2)

A (k) is negligible.

Theorem 1. (CVDP(�1,�2) =p CVDP(�1,1) for �2 = O(1), gCDH(�1,�2) ≤p

CVDP(�1,�2), for �1/�2 = O(1), and CVDP(�1,�2) ≤p gCDH(�1,0))
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– There is an adversary A with Adv
CVDP(�1,1)

A (k), if and only if there is an
adversary B with Adv

CVDP(�1,�2)

B (k) such that

• (if part:) Adv
CVDP(�1,1)

A (k) ≥
(
Adv

CVDP(�1,�2)

B (k)
/

2
)�2+1

and tA = (�2 +

1) · tB +O(�31 · �2 · k3),

• (only if part:) Adv
CVDP(�1,�2)

B (k) ≥
(
Adv

CVDP(�1,1)

A (k)
/

2
)�2

and tB = �2 ·
tA +O(�31 · �2 · k3).

– If there is an adversary A with Adv
CVDP(�1,�2)

A (k), then there is an adversary B
with Adv

gCDH(�1,�2)

B (k), such that Adv
gCDH(�1,�2)

B (k) ≥
(
Adv

CVDP(�1,�2)

A (k)
/

2
)c

and tB = c · tA +O(c · �31 · k3) where c is �log2(�1/�2)�.
– If there is an adversary B with Adv

gCDH(�1,0)

B (k), then there is an adversary A
with Adv

CVDP(�1,�2)

A (k), such that Adv
CVDP(�1,�2)

A (k) ≥
(
Adv

gCDH(�1,0)

B (k)
/

2
)2

and tA = 2 · tB +O(�31 · k3).

3.4 Decisional Problems

This section introduces several decisional problems regarding VDP(�1,�2) and
their relations. For example, our reduction result implies that the DSP(�1,�1−s)

assumption (Definition 5) is true if the DLNs assumption (Definition 7) is true,
where the DLN2 (decisional linear) assumption has been widely employed and
investigated recently. The DSP(�1,�2) assumption is employed to prove the se-
mantic security of the homomorphic encryption proposed in Section 5.

Definition 4 (DVDP(�1,�2): (�1, �2)-Decisional Vector Decomposition
Problem). Let k be a security parameter and GV be an algorithm that out-
puts a description of �1-dimensional Fr-vector space V with security parameter
k, and �1 > �2 + 1.

For all k ∈ N we define two distributions, D1 and R1, as follows:

D1(k) ← {(V, b0, . . . , b�1−1,v,u) | V
R← GV(1k), (b0, . . . , b�1−1)

U← V�1 ,

(x0, . . . , x�1−1)
U← (Fr)�1 , v ←

∑�1−1
i=0 xibi, u ←

∑�2−1
i=0 xibi},

R1(k) ← {(V, b0, . . . , b�1−1,v,u) | V
R← GV(1k), (b0, . . . , b�1−1)

U← V�1 ,

v
U← V,u

U← 〈b0, . . . , b�2−1〉}.

Let A be a probabilistic polynomial-time machine. For all k ∈ N, we define the
DVDP(�1,�2) advantage of A as

Adv
DVDP(�1,�2)

A (k)←
∣∣
∣Pr

[
A(1k, η)→1 |η R←D1(k)

]
−Pr

[
A(1k, η)→1 |η R←R1(k)

]∣∣
∣ .

The DVDP(�1,�2) assumption is: For any probabilistic polynomial-time adver-

sary A, Adv
DVDP(�1,�2)

A (k) is negligible in k.
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Definition 5 (DSP(�1,�2): (�1, �2)-Decisional Subspace Problem). Let k
be a security parameter and GV be an algorithm that outputs a description of
�1-dimensional Fr-vector space V with security parameter k, and �1 > �2 + 1.

For all k ∈ N, we define two distributions, D2 and R2, as follows:

D2(k) ← {(V, b0, . . . , b�1−1,v) | V
R← GV(1k), (b0, . . . , b�1−1)

U← V�1 ,

v
U← 〈b�2 , . . . , b�1−1〉},

R2(k) ← {(V, b0, . . . , b�1−1,v) | V
R← GV(1k), (b0, . . . , b�1−1)

U← V�1 ,v
U← V}.

The DSP(�1,�2) advantage, Adv
DSP(�1,�2)

A (k), of a probabilistic polynomial-time
machine A and the DSP(�1,�2) assumption are defined similarly as in Definition 4.

Definition 6 (gDDH(�1,�2): (�1, �2)-generalizedDecisionalDiffie-Hellman
Problem). Let k be a security parameter and GV be an algorithm that outputs a
description of �1-dimensional Fr-vector space V with security parameter k, and
�1 > �2 + 1.

For all k ∈ N we define two distributions, D3 and R3, as follows:

D3(k) ← {(V, b�2 , . . . , b�1−1, b
′
�2 , . . . , b

′
�1−1,v,u) | V

R← GV(1k),

(b�2 , . . . , b�1−1, b
′
�2 , . . . , b

′
�1−1)

U← V2(�1−�2),

(x�2 , . . . , x�1−1)
U← (Fr)�1−�2 ,v ←

∑�1−1
i=�2

xibi, u ←
∑�1−1

i=�2
xib

′
i},

R3(k) ← {(V, b�2 , . . . , b�1−1, b
′
�2 , . . . , b

′
�1−1,v,u) | V

R← GV(1k),

(b�2 , . . . , b�1−1, b
′
�2 , . . . , b

′
�1−1)

U← V2(�1−�2),v
U← 〈b�2 , . . . , b�1−1〉,u U← V}.

The gDDH(�1,�2) advantage, Adv
gDDH(�1,�2)

A (k), of a probabilistic polynomial-
time machine A and the gDDH(�1,�2) assumption are defined similarly as in
Definition 4.

We define the decisional linear problem as follows, where DLN1 corresponds to
DDH, DLN2 to the decisional linear problem in [3] and DLNs in general to the
problems in [13,17] (note that s is independent from dimension �1 of V):

Definition 7 (DLNs: s-Decisional Linear Problem). Let k be a security
parameter and GV be an algorithm that outputs a description of �1-dimensional
Fr-vector space V with security parameter k.

For all k ∈ N we define two distributions, D4 and R4, as follows:

D4(k)← {(V,u1,. . . ,us,u
∗,v1,. . . ,vs,v

∗) | V
R← GV(1k),u∗ U←V, (u1,. . . ,us)

U←〈u∗〉s,

(x1, . . . , xs)
U← (Fr)s,vi ← xiui (i = 1, . . . , s),v∗ ← (

∑s
i=1 xi)u∗},

R4(k)← {(V,u1, . . . ,us,u
∗,v1, . . . ,vs,v

∗) | V
R← GV(1k),u∗ U← V,

(u1, . . . ,us,v1, . . . ,vs,v
∗) U← 〈u∗〉2s+1}.

The DLNs advantage, AdvDLNs

A (k), of a probabilistic polynomial-time machine
A and the DLNs assumption are defined similarly as in Definition 4.
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Theorem 2.(DVDP(�1,�2)=p DSP(�1,�2),DSP(�1,�2)≥p gDDH(�1,�2), gDDH(�1,�1−s)

≥p DLNs)

– There is an adversary A with Adv
DVDP(�1,�2)

A (k), if and only if there is an ad-
versary B with Adv

DSP(�1,�2)

B (k), such that Adv
DVDP(�1,�2)

A (k) = Adv
DSP(�1,�2)

B (k)
and |tA − tB| = O(�1 · �2 · k3).

– If there is an adversary A with Adv
DSP(�1,�2)

A (k), then there is an adversary

B with Adv
gDDH(�1,�2)

B (k), such that Adv
gDDH(�1,�2)

B (k) = Adv
DSP(�1,�2)

A (k), and
tB = tA +O(�1 · �2 · k3).

– Assume that �1 ≥ s+ 1. If there is an adversary B with Adv
gDDH(�1,�1−s)

B (k),
then there is an adversary A with AdvDLNs

A (k), such that AdvDLNs

A (k) ≥
Adv

gDDH(�1,�1−s)

B (k)− ε(k), and tA = tB +O(s ·�21 ·k3), where ε(k) is negligible
in k.

4 Trapdoor Bijective Functions

The key technique to apply the VDP on distortion eigenvector spaces to cryptog-
raphy is a trapdoor bijective function from the VDP, where we call f a trapdoor
bijective function if f is a trapdoor one-way function and bijection (one-to-one
and onto, i.e., its domain and range are isomorphic). In general, the represen-
tation of the domain is not always the same as that of the range, and trapdoor
bijective function f is called a trapdoor permutation if the representation of the
domain is equivalent to that of the range.

We will show two major applications of our trapdoor bijective functions; one
is multivariate homomorphic encryption (in Section 5) and the other various
types of signatures (in Section 6).

In this section, we introduce a trapdoor bijective function f from the VDP
such that

f : 〈b0〉 × · · · × 〈b�−1〉 → V, f : (z0, . . . , z�−1) 	→
∑�−1

i=0 zi,

where zi ∈ 〈bi〉 for i = 0, . . . , �−1. Here note that 〈b0〉×· · ·×〈b�−1〉 ∼= V(∼= (Fr)�)
(i.e., the domain of f is isomorphic to the range), and that the representations
of the domain and range are not equivalent in general.

A typical representation of (z0, . . . , z�−1) ∈ 〈b0〉 × · · · × 〈b�−1〉 is to represent
each zi ∈ V (i = 0, . . . , �− 1) by some standard expression of an element of V.
(If V is a Jacobian, an expression of an element of V can be a standard reduced
form of an element of the Jacobian.) Another representation of (z0, . . . , z�−1) is
(x0, . . . , x�−1) ∈ (Fr)� such that zi = xibi for i = 0, . . . , �− 1.

There is an efficient algorithm to evaluate f (to compute
∑�−1

i=0 zi from (z0, . . . ,
z�−1)), but under the CVDP assumption, it is intractable to compute f−1 (to
compute (z0, . . . , z�−1) from v ∈ V such that v =

∑�−1
i=0 zi and zi ∈ 〈bi〉 for
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i = 0, . . . , �− 1) without the knowledge of trapdoor X . There is an efficient algo-
rithm Deco for computing f−1 if X (trapdoor) is available (see Section 3).

To the best of our knowledge, this function f is the first trapdoor bijective
function except the RSA function and its variants (the Rabin-Williams [19] and
Paillier [16] functions) that are based on the integer factoring trick (hereafter,
we call these functions the RSA family functions). Note that the RSA family
functions are not only trapdoor bijective functions but also permutations, while
our trapdoor bijective function is not a permutation.

In contrast to the RSA family functions, it is not so easy, in general, to
(decodably) embed a bit string in {0, 1}∗ to the domain, 〈b0〉 × · · · × 〈b�−1〉, of
f . That is, a value (or a bit string through binary expression) (x0, . . . , x�−1) in
(Fr)� can be easily embedded to an element (z0, . . . , z�−1) of the domain of f ,
such that zi = xibi for i = 0, . . . , �− 1, but, in general, xi cannot be efficiently
decoded from zi (unless the discrete logarithm problem is easy). If xi is selected
from a logarithmically small space, it is efficiently decodable.

On the other hand, in a manner similar to the RSA family functions, we
can construct both public-key encryption and digital signatures directly from
the trapdoor bijective function f . If plaintext m is (decodably) embedded to
the domain of f in some manner, we can realize a basic (OW-CPA) public-key
encryption scheme. If message m is embedded to the range, V, of f , we can
realize digital signatures (a way of embedding a bit string to an element of the
range, V, is shown in the footnote of Section 6.1).

Based on this strategy, multivariate homomorphic encryption is presented in
Section 5, where a message from a logarithmic space is embedded to a subspace
of the domain and the remaining subspace is used for randomization. Signatures
as well as blind signatures, convertible undeniable signatures are presented in
Section 6.

5 Multivariate Homomorphic Encryption

In this section, we propose a multivariate homomorphic encryption scheme that
is constructed on the trapdoor bijective function introduced in Section 4. The
scheme is a generalization of the Galbraith-Verheul scheme [11].

Our scheme is constructed on �1-dimensional distortion eigenvector space V,
and the message space is �2-dimensional, where (�1 − �2)-dimensional space is
used for randomness.

5.1 Proposed Homomorphic Encryption Scheme

We assume that plaintext (m0, . . . ,m�2−1) is bounded by some small integer τ
such that 0 ≤ mi < τ (i = 0, . . . , �2−1) and τ is the logarithmic order of k. Such
a small plaintext space is sufficient for many applications as shown in [4,12], See
Fig. 2 for the proposed multivariate homomorphic encryption scheme.

An advantage of our scheme is its homomorphic property for multiple plain-
texts (See Subsection 5.4).
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Gen(1k) :
V

R← GV(1k) with distortion eigenvector basis A → (a0, . . . ,a�1−1)
X ← (xi,j)

U← (Fr)�1×�1 , bi =
∑�1−1

j=0 xi,jaj, B ← (b0, . . . , b�1−1).
sk ← X , pk ← (V,A,B).
return sk, pk.

Enc(pk, (m0, . . . ,m�2−1) ∈ {0, . . . , τ − 1}�2) :
(r�2 , . . . , r�1−1)

U← (Fr)�1−�2 , c ←
∑�2−1

i=0 mibi +
∑�1−1

i=�2
ribi.

return ciphertext c.
Dec(sk, c) :

b′i ← Deco(c, 〈bi〉, X,B). m′
i ← Dlogbi

(b′i) for i = 0, . . . , �2 − 1.
return plaintext (m′

0, . . . ,m
′
�2−1).

Fig. 2. Proposed Multivariate Homomorphic Encryption Scheme

5.2 Security

Theorem 3. The public key encryption scheme in Fig. 2 is semantically secure
(IND-CPA secure) under the DSP(�1,�2) assumption.

5.3 Two-Party Protocol to Securely Evaluate a 2DNF Formula

As an application of our multivariate homomorphic encryption, we present a
two-party protocol to securely evaluate a 2DNF formula (over n variables) for
higher dimensional n variables (assignments). (See [4] for some application of a
protocol to securely evaluate a 2DNF formula.)

A 2DNF formula, ψ, over y1, . . . , yn is of the form
∨h

i=1(λi,1 ∧ λi,2) where
λi,1, λi,2 ∈ {y1, . . . , yn, ȳ1, . . . , ȳn}.

We consider a two-party protocol between Alice and Bob, where Bob knows
�2-dimensional secret input (−→m1, . . . ,

−→mn) (to formula ψ), and Alice knows secret
2DNF formula ψ. Here,−→mi ← (mi,0, . . . ,mi,�2−1) ∈ {0, 1}�2, for i = 1, . . . , n. The
protocol outputs ψ(−→m1, . . . ,

−→mn)(= (ψ(m1,0,. . . ,mn,0),. . . ,ψ(m1,�2−1,. . . ,mn,�2−1)
) while keeping the local secrets, (−→m1, . . . ,

−→mn) andψ (except for the number of dis-
junctive clauses of ψ). We will now describe a semi-honest protocol between Alice
and Bob to securely evaluate 2DNF formula ψ over �2-dimensional n inputs.

1. (Input:) Alice holds a 2DNF formula, ψ(y1, . . . , yn) ←
∨h

i=1(λi,1 ∧ λi,2)
where λi,1, λi,2 ∈ {y1, . . . , yn, ȳ1, . . . , ȳn}, and Bob holds an �2-dimensional
assignment to the formula, (−→m1, . . . ,

−→mn), where −→mi ← (mi,0, . . . ,mi,�2−1) ∈
{0, 1}�2, for i = 1, . . . , n.

2. Bob executes Gen(1k) to compute sk, pk, and sends pk to Alice. Bob also com-
putes Enc(pk, (m1,0, . . . ,m1,�2−1)), . . . ,Enc(pk, (mn,0, . . . ,mn,�2−1)), and
sends them to Alice.

3. Alice computes an arithmetization Ψ of ψ by replacing ∨ by +, ∧ by ·
and m̄i by (1 −mi). So, Ψ(y1, . . . , yn) =

∑h
i=1(λi,1 · λi,2), where λi,1, λi,2 ∈

{y1, . . . , yn, 1−y1, . . . , 1−yn}. For �2-dimensional assignment, Ψ(−→m1, . . . ,
−→mn)
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= (
∑h

i=1(λi,1,0 · λi,2,0), . . . ,
∑h

i=1(λi,1,�2−1 · λi,2,�2−1)), where λi,1,j , λi,2,j ∈
{m1,j, . . . ,mn,j, 1 −m1,j , . . . , 1 −mn,j}, j = 0, . . . , �2 − 1.

4. For each �2-dimensional disjunctive clause, ((λi,1,0 · λi,2,0), . . . , (λi,1,�2−1 ·
λi,2,�2−1)) (i = 1, . . . , h), Alice sets the corresponding ciphertexts, ci,1 ←
Enc(pk, (λi,1,0, . . . , λi,1,�2−1)) and ci,2 ← Enc(pk, (λi,2,0, . . . , λi,2,�2−1)). If
(λi,j,0, . . . , λi,j,�2−1) is (1−ms,0, . . . , 1−ms,�2−1), then ci,j is set by Enc(pk,
(1, . . . , 1)) − Enc(pk, (ms,0, . . . , ms,�2−1)).

5. Alice computes c∗i,1, c∗i,2 and Eκ as follows:

ti,j,κ
U← Fr (i = 1, . . . , h; j = 1, 2;κ = 0, . . . , �1 − 1),

uκ,μ
U← Fr (κ = 0, . . . , �2 − 1, μ = 0, . . . , �1 − 1),

c∗i,1 ← ci,1 +
∑�1−1

κ=0 ti,1,κbκ, c∗i,2 ← ci,2 +
∑�1−1

κ=0 ti,2,κbκ,

Eκ ←
∑h

i=1(ti,1,κci,2+ti,2,κci,1+ti,1,κti,2,κbκ) +
∑�1−1

μ�=κ,μ=0 uκ,μbμ,

for κ=0, . . . , �2 − 1.

6. Alice sends c∗i,1, c∗i,2 for i = 1, . . . , h and (E0, . . . , E�2−1) to Bob.
7. Bob computes

Zκ ←
∏h

i=1 e(Deco(c∗i,1, 〈bκ〉), ρ(Deco(c∗i,2, 〈bκ〉)))/e(Deco(Eκ, 〈bκ〉), ρ(bκ))

for κ = 0, . . . , �2 − 1, where Deco(·, 〈bκ〉) denotes Deco(·, 〈bκ〉, X,B).
Bob then computes wκ such that Zκ = e(bκ, ρ(bκ))wκ for κ = 0, . . . , �2 − 1.

8. Bob outputs (w0, . . . , w�2−1).

Lemma 4. The output of the protocol is correct, i.e., wj = Ψ(m1,j , . . . ,mn,j)
for j = 0, . . . , �2 − 1.

Proof.
∏h

i=1 e(Deco(c∗i,1, 〈bκ〉), ρ(Deco(c∗i,2, 〈bκ〉)))

= e(bκ, ρ(bκ))
∑h

i=1 λi,1,κλi,2,κ · e(bκ, ρ(bκ))
∑h

i=1 λi,1,κti,2,κ+λi,2,κti,1,κ+ti,1,κti,2,κ .

e(Deco(Eκ, 〈bκ〉), ρ(bκ))=e(
∑h

i=1((λi,1,κti,2,κ+λi,2,κti,1,κ+ti,1,κti,2,κ)bκ, ρ(bκ))

= e(bκ, ρ(bκ))
∑h

i=1 λi,1,κti,2,κ+λi,2,κti,1,κ+ti,1,κti,2,κ .

Therefore,
∏h

i=1 e(Deco(c∗i,1, 〈bκ〉), ρ(Deco(c∗i,2, 〈bκ〉)))/e(Deco(Eκ, 〈bκ〉), ρ(bκ))

= e(bκ, ρ(bκ))
∑h

i=1 λi,1,κλi,2,κ , and wκ =
∑h

i=1 λi,1,κλi,2,κ. ��

Lemma 5. The protocol is secure against semi-honest Alice and Bob under the
DSP(�1,�2) assumption, where the security definition follows that in [4] except
that the number of disjunctive clauses, h, of ψ can be revealed in our definition.

Remark: To prevent the disclosure of the exact number of disjunctive clauses,
h, of ψ, Alice can send Bob additional dummy poly(k) pairs of (c∗i,1, c

∗
i,2) (i =

h+ 1, . . . , h+ poly(k)) for ci,j ← Enc(pk, (0, . . . , 0)).
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5.4 Comparison with the BGN Encryption Scheme

The proposed homomorphic encryption shares some properties with Boneh-Goh-
Nissim (BGN) encryption [4]. An advantage of our scheme is: the ciphertext size
of our encryption scheme can be shorter than that of the BGN scheme, since the
BGN scheme requires a composite number order subgroup. A disadvantage is: the
homomorphic operation on a multiplication cannot be executed over ciphertexts
in our scheme, while the BGN can do this operation over ciphertexts. Therefore,
when we realize a secure two-party protocol for evaluating a 2DNF formula
on the BGN scheme or on our scheme, the communication complexity from
Bob to Alice on our scheme is shorter than that on the BGN scheme, but the
communication complexity from Alice to Bob on our scheme is much greater
than that on the BGN scheme. So, our scheme is not suitable for an application
where the communication complexity from Alice to Bob is more important (e.g.,
PIR), while our scheme is suitable for an application where that from Alice to
Bob is more important.

A major advantage of our scheme is that it has a richer algebraic structure
than the BGN scheme. For example, our encryption scheme is multivariate and
homomorphic encryption with distortion maps as well as bilinear pairings. Such
an algebraic structure may imply new applications to various cryptographic pro-
tocols using higher dimensional secrets along with the homomorphic property
and 2DNF formula protocol.

6 Signatures

In this section, we present ordinary, blind and convertible undeniable signatures,
and their combination, as another cryptographic application of the trapdoor
bijective function shown in Section 4.

6.1 Basic Signature Scheme

Public key: (V,A,B, h) such that V
R← GV(1k) is a �1-dimensional Fr-vector

space, X ← (xi,j)
U← (Fr)�1×�1 , bi =

∑�1−1
j=0 xi,jaj , B ← (b0, . . . , b�1−1),

and h is a hash function with h : {0, 1}∗ 	→ (Fr)�1 , where A is a distortion
eigenvector basis of V.

Secret key: X .
Signing: m ∈ {0, 1}∗ is a message to be signed. Hashed value h(m) is embedded

to V as h. 3

si ← Deco(h, 〈bi〉, X,B), for i = 0, . . . , �1 − 2.
(s0, . . . , s�1−2) is the signature of m.

3 When we use the Jacobian shown in Section 2.1, there is a subspace, 〈a0〉, to which
embedding a string is easy, and there are effectively computable distortion maps,
φi,0, from 〈a0〉 to other subspaces 〈ai〉 (i = 1, . . . , �1 − 1). In this case, m ←
(m0, . . . , m�1−1) ∈ (Fr)

�1 can be effectively embedded to V ∼= 〈a0〉×· · ·×〈a�1−1〉 by
embedding mi to 〈a0〉 first and then applying φi,0 to map to 〈ai〉 for i = 1, . . . , �1−1.
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Verification: Given (s0, . . . , s�1−2) and m, verifier V computes h ∈ V from
h(m) and checks whether e(si, bi) = 1 for i = 0, . . . , �1 − 2, and e(h −∑�1−2

i=0 si, b�1−1) = 1 hold.

Security in the Random Oracle Model. If a message m is embedded to V
through hashed value, h(m), and h is modeled as a random oracle, the security
(existential unforgeability against chosen message attacks) can be proven under
the CVDP assumption, in a manner similar to that of the full domain hash RSA
signatures [2,5].

6.2 Blind Signatures

The public key (V,A,B, h) and secret key X of a signer S are the same as those
of the basic signature scheme.

Blinding: m ∈ {0, 1}∗ is a message to be signed. Hashed value h(m) is embed-
ded to V as h. (See Section 6.1 for how to embed.)
User U selects γi

U← Fr (i = 0, . . . , �1 − 1) and computes a blinded message
d ← h +

∑�1−1
i=0 γibi.

Signing: U gives d to signer S. S computes ti ← Deco(d, 〈bi〉, X,B), for i =
0, . . . , �1 − 2, and returns (t0, . . . , t�1−2) to U .

Unblinding: U computes si ← ti − γibi for i = 0, . . . , �1 − 2.
(s0, . . . , s�1−2) is the signature of (m1,m2).

Verification: Given (s0, . . . , s�1−2) and m, verifier V computes h ∈ V from
h(m), and checks whether e(si, bi) = 1 for i = 0, . . . , �1 − 2, and e(h −∑�1−2

i=0 si, b�1−1) = 1 hold.

Here, si = Deco(h +
∑�1−1

i=0 γibi, 〈bi〉, X,B) − γibi = Deco(h, 〈bi〉, X,B).
The blind signature scheme is perfectly blind and unforgeable under a one-

more-CVDP assumption, which is defined in a manner similar to [1], in the
random oracle model.

6.3 Convertible Undeniable Signatures

This section presents generically (selectively and universally) convertible unde-
niable signatures (see [14] for the notion and security requirements.)

The public key (V,A,B, h) and secret key X are the same as those of the basic
signature scheme.

Signing: m ∈ {0, 1}∗ is a message to be signed. Hashed value h(m) is embedded
to V as h.
si ← Deco(h, 〈bi〉, X,B), for i = 0, . . . , �1 − 1.
(s0, . . . , s�2−1) is the signature of m, where �2 < �1 − 1. (The signer secretly
keeps (s�2 , . . . , s�1−1) for the confirmation protocol.)
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Confirmation: Given signature (s0, . . . , s�2−1) and message m, a verifier V
computes h ∈ V from h(m) and checks whether e(si, bi) = 1 for i =
0, . . . , �2−1 hold. If (s0, . . . , s�2−1) is a valid signature (i.e., h−(

∑�2−1
i=0 si) ∈

〈b�2 , . . . , b�1−1〉), signer S with (s�2 , . . . , s�1−1) can execute the confirmation
protocol with V as follows:

1. S generates γi
U← F∗

r and computes ui ← (1/γi)si, for i = �2, . . . , �1 − 1.
S gives (u�2 , . . . ,u�1−1) to V .

2. V checks whether e(ui, bi) = 1 holds for i = �2, . . . , �1 − 1.
3. S executes a zero-knowledge protocol (based on the standardΣ-protocol)

to prove to V that S knows (γ�2 , . . . , γ�1−1) such that h− (
∑�2−1

i=0 si) =
∑�1−1

i=�2
γiui.

Disavowal: Given signature (s0, . . . , s�2−1) and message m, a verifier V com-
putes h ∈ V from h(m) and checks whether e(si, bi) = 1 holds for i =
0, . . . , �2 − 1.
Signer S computes t ← h − (

∑�2−1
i=0 si) and vi ← Deco(t, 〈bi〉, X,B) for i =

0, . . . , �1−1. If there exists i ∈ {0, . . . , �2−1} such that vi �= 0, (s0, . . . , s�2−1)
is an invalid signature (i.e., t �∈ 〈b�2 , . . . , b�1−1〉). Then, signer S can execute
the disavowal protocol with V as follows:

1. S generates γi
U← F∗

r and computes ui ← (1/γi)vi, for i = 0, . . . , �1 − 1.

2. S selects δ U← Fr and computes w ←
∑�2−1

i=0 vi + δb�2 (=
∑�2−1

i=0 γiui +
δb�2 ).

3. S gives w and (u0, . . . ,u�1−1) to V .
4. V checks whether e(ui, bi) = 1 for i = 0, . . . , �1 − 1 and e(w, b�2) �= 1

hold.
5. S executes a zero-knowledge protocol (based on the standardΣ-protocol)

to prove to V that S knows (γ0, . . . , γ�2−1, δ) such that w =
∑�2−1

i=0 γiui+
δb�2 .

6. S also executes a zero-knowledge protocol to prove to V that S knows
(γ�2 , . . . , γ�1−1, δ) such that t −w =

∑�1−1
�2

γiui − δb�2 .

Selective Conversion: To selectively convert an undeniable signature, (s0,
. . . , s�2−1), to an ordinary signature, the signer additionally releases (s�2 , . . . ,
s�1−2). So, (s0, . . . , s�1−2) is the (ordinary) signature, which is equivalent to
the basic signature.

Universal Conversion: To universally convert undeniable signatures, (s0, . . . ,
s�2−1), to ordinary signatures, the signer additionally releases (xj,κ, ti,j) for
κ, i = 0, . . . , �2 − 1 and j = �2, . . . , �1 − 1 as follows:
– Remind that X ← (xi,j) (i, j = 0, . . . , �1 − 1).
– For i = �2, . . . , �1 − 1 and j = 0, . . . , �1 − 1, yij ← 1 if i = j, yij ← 0 if
i �= j.
For i = 0, . . . , �2 − 1 and j = 0, . . . , �1 − 1, yij ← 0 if j ≥ �2, yij U← Fr if
j < �2.

– Z ← Y X , (ti,j) ← Z−1,
– Output: (xj,κ, ti,j) for κ, i = 0, . . . , �2 − 1 and j = �2, . . . , �1 − 1.
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Let b∗j , h∗ and s∗
j be the projection of bj , h and sj to 〈a0, . . . ,a�2−1〉 (e.g.,

b∗j ←
∑�2−1

i=0 Pri(bj)). Obtaining (xj,κ, ti,j), anyone can compute (s∗
�2
, . . . ,

s∗
�1−1) by s∗

j =
∑�2−1

i=0

∑�2−1
κ=0 ti,jxj,κφκ,iPri(h∗) (j = �2, . . . , �1 − 1). So,

anyone can check the validity of (s0, . . . , s�2−1) by computing (s∗
�2
, . . . , s∗

�1−1)
and checking e(s∗

j , b
∗
j ) = 1 (j = 0, . . . , �1 − 1) and h∗ =

∑�1−1
j=0 s∗

j .

The convertible undeniable signature scheme is unforgeable under the CVDP
assumption in the random oracle model. It is invisible under a variant of the DVDP
assumption, in which it is hard to distinguish (V, b0, . . . , b�1−1,

∑�1−1
i=0 xibi,

(x0b0, . . . , x�2−1b�2−1)) from (V, b0, . . . , b�1−1,
∑�1−1

i=0 xibi, (y0b0, . . . , y�2−1

b�2−1)) where xi
U← Fr(i = 0, . . . , �1 − 1), and yi

U← Fr(i = 0, . . . , �2 − 1). The
confirmation protocol is perfectly zero-knowledge and the disavowal protocol is
computationally zero-knowledge under the DVDP assumption.

6.4 Combination

The above-mentioned signatures can be combined easily. To combine blind sig-
natures and undeniable signatures, a user who requests a blind signing on mes-
sage m to a signer obtains signature (s0, . . . , s�1−1) in a blinded manner. Then,
the user can use (s0, . . . , s�2−1) as an undeniable signature and secretly keep
(s�2 , . . . , s�1−1) for the confirmation protocol.

The confirmation protocol can be made in the same manner as the correct
protocol. Selective conversion is also the same as the protocol. Here note that no
secret key of the signer is needed for the user (prover) to execute the confirmation
protocol and selective conversion. As for the disavowal and universal conversion,
the user cannot make the procedures by himself, instead the signer (of the blind
signature) can do the protocols for the user.
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Abstract. Predicate encryption schemes are encryption schemes in
which each ciphertext Ct is associated with a binary attribute vector
x = (x1, . . . , xn) and keys K are associated with predicates. A key K
can decrypt a ciphertext Ct if and only if the attribute vector of the ci-
phertext satisfies the predicate of the key. Predicate encryption schemes
can be used to implement fine-grained access control on encrypted data
and to perform search on encrypted data.

Hidden vector encryption schemes [Boneh and Waters – TCC 2007]
are encryption schemes in which each ciphertext Ct is associated with a
binary vector x = (x1, . . . , xn) and each key K is associated with binary
vector y = (y1, · · · , yn) with “don’t care” entries (denoted with �). Key
K can decrypt ciphertext Ct if and only if x and y agree for all i for
which yi �= �.

Hidden vector encryption schemes are an important type of predicate
encryption schemes as they can be used to construct more sophisticated
predicate encryption schemes (supporting for example range and subset
queries).

We give a construction for hidden-vector encryption from standard
complexity assumptions on bilinear groups of prime order. Previous con-
structions were in bilinear groups of composite order and thus resulted
in less efficient schemes. Our construction is both payload-hiding and
attribute-hiding meaning that also the privacy of the attribute vector,
besides privacy of the cleartext, is guaranteed.

1 Introduction

Traditional public key encryption schemes are well tailored for point-to-point
security in which a sender wishes to send private messages to the owner of the
public key. Recently, there has been a trend for private user data to be stored over
the Internet by a third party server. It is then expected that user will encrypt
the data so to preserve the privacy of the data itself. If a traditional encryption
scheme is employed then user will not be able to search its data. Indeed, the user
has to download and the decrypt its data and then perform the search; which
can be very inconvenient.

This problem has been first studied by Boneh et al. [BDOP04] that introduced
the concept of an encryption scheme supporting test equality. Roughly speaking,
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in such an encryption scheme, the owner of the public key can compute, for any
message M , a trapdoor information KM that allows the server that physically
holds the data to check whether a given ciphertext encrypts messageM without
obtaining any additional information. Boneh et al. [BDOP04] suggested to use
this system for storing encrypted e-mail messages on a server so that the user
could decide to download only the e-mail messages with a given subject without
having to compromise his privacy (and without having to download and decrypt
all the messages).

Recently along this line of research, Goyal et al. [GPSW06] have introduced
the concept of an attribute-based encryption scheme (ABE scheme). In an ABE
scheme, a cyphertext is labeled with a set of attributes and private keys are
associated with a predicate. A private key can decrypt a ciphertext iff the at-
tributes of the ciphertext satisfy the predicate associated with the key. An ABE
schem can thus been seen as a special encryption scheme for which, given the
key associated with a predicate P , one can test whether a given ciphertext Ct
carries a message M that satisfies predicates P without having to decrypt and
without getting any additiocal information. The construction of [GPSW06] is
very general as it supports any predicate that can be expressed as a circuit with
threshold gates. On the other hand the construction only achieved what is called
payload security which consists in guaranteeing the security of the cleartext. In-
deed, in the construction of [GPSW06], the attribute vector associated with a
ciphertext appears in clear in the ciphertext.

In several applications instead one would like to be able to encrypt a cleart-
ext and label the ciphertext with attributes so that both the cleartext and the
attributes are secure. This extra property is called attribute hiding. Indeed, it is
an important research problem to design encryption schemes for large predicate
classes that enjoy both the payload and the attribute hiding property. In [BW07],
Boneh and Waters give construction for encryption schemes for several families
of predicates including conjuctions, and subset and range predicates. This has
been recently extended to disjunctions, polynomial equations and inner prod-
ucts [KSW08]. Both constructions are based on hardness assumptions regarding
bilinear groups on composite order. More efficient schemes for range queries over
encrypted data have been presented in [SBC+07].

Our results. In this paper we give a construction for hidden vector encryp-
tion schemes (HVE, in short). Roughly speaking, in a hidden vector encryption
scheme ciphertexts are associated with binary vectors and private keys are as-
sociated with with binary vectors with “don’t care” entries (denoted by �). A
private key can decipher a ciphertext if all entries of the key vector that are not �
agree with the corresponding entries of the ciphertext vector (see Definition 1).
The first construction for HVE has been given by [BW07] which also showed
that HVE gives efficient encryption schemes supporting conjunctions of equality
queries, range queries and subset queries. By applying the reductions of [BW07]
to our construction we obtain encryption schemes supporting the same classe of
predicates as [BW07].
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Both the payload and the attribute security of our construction rely on stan-
dard computational assumptions on bilinear groups of prime order; namely, the
Bilinear Decision Diffie-Hellman assumption and the Decision Linear assump-
tion (used also in [BW06, GPSW06]). As already noted above, the security
of the construction of [BW07] instead relies on the Composite Bilinear Deci-
sion Diffie-Hellman assumption and the Composite 3-Party Diffie-Hellman as-
sumption. Both assumptions imply that the order of the group is difficult to
factor and this results in larger group elements and thus more expensive opera-
tions.

2 The Symmetric Bilinear Setting

We have multiplicative groups G and GT of prime order p and a non-degenerate
bilinear pairing function e : G × G → GT . That is, for all g ∈ G, g �= 1, we have
e(g, g) �= 1 and e(ga, gb) = e(g, g)ab. We denote by g and e(g, g) the generators
of G and GT . We call a symmetric bilinear instance a tuple I = [p,G,GT , g, e]
and assume that there exists an efficient generation procedure that, on input
security parameter 1k, outputs an instance with |p| = Θ(k).

In our constructions we make the following hardness assumptions.

Decision BDH. Given a tuple [g, gz1, gz2 , gz3, Z] for random exponents z1, z2, z3 ∈
Zp it is hard to distinguish between Z = e(g, g)z1z2z3 and a random Z from GT .
More specifically, for an algorithmA we define experiment DBDHExpA as follows.

DBDHExpA(1k)
Choose instance I = [p,G,GT , g, e] with security parameter 1k;
Choose a, b, c ∈ Zp at random;
Choose η ∈ {0, 1} at random;
if η = 1 then choose z ∈ Zp at random

else set z = abc;
set A = ga, B = gb, C = gc and Z = e(g, g)z;
let η′ = A(I, A,B,C, Z);
if η = η′ then return 0 else return 1;

Assumption 1 (Decision Bilinear Diffie-Hellman). For all probabilistic
polynomial-time algorithms A,

∣
∣
∣Prob[DBDHExpA(1k) = 1]− 1/2

∣
∣
∣ = ν(k)

for some negligible function ν.

Decision Linear. Given a tuple [g, gz1, gz2 , gz1z3 , gu, Z] for random exponents
z1, z2, z3, u ∈ Zp it is hard to distinguish between Z = gz2(u−z3) and a random
Z from G. More specifically, for an algorithm A we define experiment DLExpA
as follows.
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DLExpA(1k)
Choose instance I = [p,G,GT , g, e] with security parameter 1k;
Choose z1, z2, z3, u ∈ Zp at random;
Choose η ∈ {0, 1} at random;
if η = 1 then choose z ∈ Zp at random

else set z = z2(u− z3);
set Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , U = gu, and Z = gz;
let η′ = A(I, Z1, Z2, Z13, U, Z);
if η = η′ then return 0 else return 1;

Assumption 2 (Decision Linear). For all probabilistic polynomial-time algo-
rithms A, ∣∣

∣Prob[DLExpA(1k) = 1]− 1/2
∣∣
∣ = ν(k)

for some negligible function ν.

Note that Decision Linear implies Decision Bilinear Diffie-Hellman and the Deci-
sion Linear assumption has been introduced in [BBS04] and used also in [BW06].

3 HVE Schemes

Let x be a string over the alphabet {0, 1} and y be a string over the alphabet
{0, 1, �}. Assume x and y have the same length n and define predicate Px(y)
to be true if and only if for each 1 ≤ i ≤ n we have xi = yi or yi = �. In other
words, for Px(y) to be true, the two strings must match in positions i where
yi �= � and, intuitively, � is the “don’t care” symbol.

Definition 1 (HVE). A Hidden Vector Encryption Scheme (a HVE scheme) is a
quadruple of probabilistic polynomial-time algorithms (Setup,Enc,KeyGeneration,
Dec) such that:

1. Setup takes as input the security parameter 1k and the attribute length n =
poly(k) and outputs the master public key Pk and the master secret key Msk.

2. KeyGeneration takes as input the master secret key Msk and string y ∈
{0, 1, �}n and outputs the decryption key Ky associated with y.

3. Enc takes as input the public key Pk, attribute string x ∈ {0, 1}n and message
M from the associated message space and returns ciphertext Ctx.

4. Dec takes as input a secret key Ky and a ciphertext Ctx and outputs a
message M .

We require that for all k and n = poly(k), and for all strings x ∈ {0, 1}n and
y ∈ {0, 1, �}n such that Px(y) = 1, it holds that:

Prob[(Pk,Msk) ← Setup(1k, n); Ky ← KeyGeneration(Msk,y);
Ctx ← Enc(Pk,x,M) : Dec(Ky,Ct) =M ] = 1.
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We define two notions of security for our HVE scheme: semantic security
that captures the payload-hiding property and the attribute hiding property
that guarantees security of the attribute string. Both notions are in the selective
models in which the adversary committs to the attribute vector at the beginning
of the game. We note that this is same notion of security used in [BW07, KSW08].

Definition 2 (Semantic Security). An HVE scheme (Setup,Enc,
KeyGeneration,Dec) is semantically secure if for all PPT adversaries A,

∣∣Prob[SemanticExpA(1k) = 1]− 1/2
∣∣ = ν(k)

for some negligible function ν, where SemanticExpA(1k) is the following experi-
ment.

Init. The adversary A announces the vector x it wishes be challenged upon.
Setup. The public and the secret key (Msk,Pk) are generated using the Setup

procedure and A receives Pk.
Query Phase I. A requests and gets private keys Ky relative to vectors y such

that Px(y) = 0. Key Ky is computed using the KeyGeneration procedure.
Challenge. A returns two different messages M0,M1 of the same length in the

message space. η is chosen at random from {0, 1}. A is given ciphertext
Ctx ← Enc(Pk,x,Mη).

Query Phase II. Identical to Query Phase I.
Output. A returns η′. If η = η′ then return 1 else return 0.

We are now ready to define the notion of attribute hiding.

Definition 3. An HVE scheme (Setup,Enc,KeyGeneration,Dec) is attribute hid-
ing if for all PPT adversaries A,

∣∣Prob[AttributeHidingExpA(1k) = 1]− 1/2
∣∣ = ν(k)

for some negligible function ν, where AttributeHidingExpA(1k) is the following
experiment.

Init. The adversary A announces two attribute strings x0 �= x1 it wishes be
challenged upon.

Setup. The public and the secret key (Msk,Pk) are generated using the Setup
procedure and A receives Pk.

Query Phase I. A requests and gets private keys Ky relative to vectors y such
that Px1(y) = Px2(y) = 0. Key Ky is computed using the KeyGeneration
procedure.

Challenge. A returns two different messages M0,M1 of the same length. η is
chosen at random from {0, 1}. A is given ciphertext Ctx ← Enc(Pk,xη,Mη).

Query Phase II. Identical to Query Phase I.
Output. A returns η′. If η = η′ then return 1 else return 0.

If in the previous experiment we let x0 = x1 we have the definition of Semantic
Security.
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4 Our Construction

In this section we describe our construction for an HVE scheme.
Setup. Procedure Setup, on input security parameter 1k and attribute length
n = poly(k), computes the public key Pk and the master secret key Msk in the
following way.

Choose a random instance I = [p,G,GT , g, e].
Choose y at random in Zp and set Y = e(g, g)y.
For 1 ≤ i ≤ n, choose ti, vi, ri,mi at random in Zp and set Ti = gti , Vi = gvi

and Ri = gri ,Mi = gmi .
Then, Setup(1k, n) returns [Pk,Msk] where

Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1] and Msk = [y, (ti, vi, ri,mi)n

i=1].

Encryption. Procedure Enc takes as input cleartext M ∈ GT , attribute string
x and public key Pk and computes ciphertext as follows.

Choose s at random in Zp, and, for 1 ≤ i ≤ n, choose si at random in Zp and
compute ciphertext

Enc(Pk,x,M) = [Ω,C0, (Xi,Wi)n
i=1],

where Ω =M · Y −s, C0 = gs and

Xi =

{
T s−si

i , if xi = 1;
Rs−si

i , if xi = 0.
and Wi =

{
V si

i , if xi = 1;
M si

i , if xi = 0.

Key Generation. Procedure KeyGeneration on input Msk and y ∈ {0, 1, �}n

derives private key Ky relative to attribute string y in the following way.
If y = (�, �, . . . , �) then Ky = gy. Else, denote by S1

y and S0
y the set of indices

i for which yi = 1 and yi = 0, respectively and let Sy = S1
y ∪ S0

y be the set
of indices for yi �= �. Then, for i ∈ Sy, choose ai at random in Zp under the
constraint that

∑
i∈Sy

ai = y and let Ky = (Yi, Li)n
i=1, where

Yi =

⎧
⎪⎨

⎪⎩

g
ai
ti , if yi = 1;

g
ai
ri , if yi = 0;

∅, if yi = �.

and Li =

⎧
⎪⎨

⎪⎩

g
ai
vi , if yi = 1;

g
ai
mi , if yi = 0;

∅, if yi = �.

Decryption. Procedure Dec decrypts cyphertext Ctx using secret key Ky such
that Px(y) = 1.

Dec(Pk,Ctx,Ky) = Ω ·
∏

i∈Sy

e(Xi, Yi)e(Wi, Li)

where Sy is the set of indices i such that yi �= �. If Sy = ∅ then Ky = gy and

Dec(Pk,Ctx,Ky) = Ω · e(C0,Ky).
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This ends the description of our construction. We remark that our construc-
tion can be extended to attribute vectors taken from a larger alphabet Σ (and
not simply {0, 1}) without increasing the length of the ciphertexts and of the
secret keys but only the length of the public key Pk. We omit further details.

We next prove that the quadruple is indeed an HVE.

Theorem 1. The quadruple of algorithms (Setup,Enc,KeyGeneration,Dec) spec-
ified above is an HVE.

Proof. It is sufficient to verify that this procedure computes M correctly when
Px(y) = 1. The case in which y = (�, �, · · · , �) is obvious.

We remind the reader that S1
y (respectively, S0

y) denotes the (possibly empty)
set of indices i such that yi = 1 (respectively, yi = 0) and that Sy = S1

y ∪ S0
y.

Then we have

Dec(Pk, Ctx, Ky) = Ω
∏

i∈Sy

e(Xi, Yi)e(Wi, Li)

= Me(g, g)−ys ·
∏

i∈S1
y

e(gti(s−si), g
ai
ti )e(gwisi , g

ai
wi )

·
∏

i∈S0
y

e(gri(s−si), g
ai
ri )e(gmisi , g

ai
mi )

= Me(g, g)−ys
∏

i∈S1
y

e(g, g)(s−si)aie(g, g)siai

∏

i∈S0
y

e(g, g)(s−si)aie(g, g)siai

= Me(g, g)−ys
∏

i∈Sy

e(g, g)(s−si)aie(g, g)siai

= Me(g, g)−ys
∏

i∈Sy

e(g, g)sai

= Me(g, g)−yse(g, g)ys = M.

Efficiency. In our construction we have that, for an attribute string of length n,
the ciphertext contains 1 element from GT and O(n) elements from G. The secret
key corresponding to vector y instead contains O(weight(y)) elements from G,
where weight(y) is the number of entries of y that are either 0 or 1. Thus our
scheme has the same ciphertext and key-length as the constructions presented
in [KSW08, BW07].

5 Proofs

In this section we prove that our construction is semantically secure and attribute
hiding.

Theorem 2 (Semantic Security). Assume BDDH holds. Then HVE scheme
(Setup,Enc,KeyGeneration,Dec) described above is semantically secure.

Proof. Suppose that there exists PPT adversary A which has success in experi-
ment SemanticExp with probability non-negligibly larger than 1/2. We
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then construct an adversary B for the experiment DBDHExp that uses A as
subroutine.
Input. B receives in input [I, A = ga, B = gb, C = gc, Z], where Z is e(g, g)abc

or a random element of GT .
Init. B runs A and receives the attribute string x it wishes to be challenged
upon.
Setup. Set Y = e(A,B). For every 1 ≤ i ≤ n, B chooses t′i, v

′
i, r

′
i,m

′
i ∈ Zp at

random and set

Ti =

{
gt′

i , if xi = 1;
Bt′

i , if xi = 0;
and Vi =

{
gv′

i , if xi = 1;
Bv′

i , if xi = 0;

Ri =

{
Br′

i , if xi = 1;
gr′

i , if xi = 0;
and Mi =

{
Bm′

i , if xi = 1;
gm′

i , if xi = 0;

B runs A on input Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1].

Notice that Pk has the same distribution of a public key received by A in the
Setup phase of SemanticExp with y = a · b, and with ti = t′i, vi = v′i, ri = br′i,
and mi = bm′

i for i with xi = 1, and ti = bt′i, vi = bv′i, ri = r′i, and mi = m′
i for

i with xi = 0.
Query Phase I. B answers A’s queries for y such that Px(y) = 0 as follows. Let
j be an index where xj �= yj and yj �= � (such an index always exists). For every
i �= j such that yi �= �, choose a′i uniformly at random in Zp and let a′ =

∑
a′i.

Set Yj and Lj as

Yj =

{
A1/t′

jg−a′/t′
j , if yj = 1;

A1/r′
jg−a′/r′

j , if yj = 0.
and Lj =

{
A1/v′

jg−a′/v′
j , if yj = 1;

A1/m′
jg−a′/m′

j , if yj = 0.

and, for i �= j, set Yi, Li as follows

Yi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ba′
i/t′

i ; if xi = yi = 1;
Ba′

i/r′
i ; if xi = yi = 0;

ga′
i/r′

i ; if xi = 1 and yi = 0;
ga′

i/t′
i ; if xi = 0 and yi = 1;

∅; if yi = �.

and Li =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ba′
i/v′

i ; if xi = yi = 1;
Ba′

i/m′
i ; if xi = yi = 0;

ga′
i/m′

i ; if xi = 1 and yi = 0;
ga′

i/v′
i ; if xi = 0 and yi = 1;

∅; if yi = �.

Notice that Ky has the same distribution of the key returned by the KeyGener-
ation procedure. In fact, for i �= j, set ai = ba′i and set aj = b(a− a′). Then we
have that

∑
i∈Sy

ai = y. Moreover, if yi = 1 then Yi = g
ai
ti and Li = g

ai
vi and, if

yi = 0 then Yi = g
ai
ri and Li = g

ai
mi .

Challenge. A returns two messages M0,M1 ∈ GT .
B chooses uniformly at random η ∈ {0, 1} and si ∈ Zp, for i = 1, · · · , n. Then

B constructs Ctx = (Ω,C, (Xi,Wi)n
i=1), where Ω =MηZ

−1, C0 = C and
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Xi =

{
Ct′

ig−t′
isi ; if xi = 1;

Cr′
ig−r′

isi ; if xi = 0.
and Wi =

{
g−v′

isi ; if xi = 1;
g−m′

isi ; if xi = 0.

Observe that if Z = e(g, g)abc then Ctx is an encryption of Mη with s = c. If
instead Z is random in GT then Ctx is independent from η.
Query Phase II. Identical to Query Phase I.
Output. A outputs η′. B returns 0 iff η′ = η.

To conclude the proof observe that, if Z = e(g, g)abc then, since A is a suc-
cessful adversary for semantic security, the probability that B returns 0 is at
least 1/2 + 1/poly(k). On the other hand if Z is random in GT the probability
that B returns 0 is at most 1/2. This contradicts the BDDH assumption.

We now turn our attention at the attribute hiding property. We stress that a
crucial tool in achieving this property is the “linear splitting” technique first
used to construct anonymous hierarchical identity-based encryption in [BW06].
As an effect of employing this technique our ciphertexts and keys roughly double
in sizes. If one does not require attribute hiding then our scheme can be modified
so that, for attribute vectors of length n, the ciphertext has n+ 2 elements and
keys at most n elements.

To prove that the HVE scheme presented is attribute hiding we show that for
any attribute string x and for any messageM , an encryption of M with respect
to attribute string x is computationally indistinguishable from the uniform dis-
tribution on GT × G2n+1 to an adversary that has access to the key generation
procedure for y such that Px(y) = 0.

Specifically, for j = 0, 1, . . . , n, we denote by Distj(x,M) the following distri-
bution.

Distj(x,M)
1. choose I = [p,G,GT , g, e] with security parameter 1k;
2. compute [Msk,Pk] by executing Setup(1k, n);
3. choose R0 uniformly at random from GT and s uniformly at random from

Zp; set C0 = gs;
4. for i = 1, · · · , j choose Xi,Wi uniformly at random from G;
5. for i = j + 1, · · · , n

choose si uniformly at random Zp and set

Xi =

{
T s−si

i , if xi = 1;
Rs−si

i , if xi = 0.
and Wi =

{
V si

i , if xi = 1;
M si

i , if xi = 0.

6. return: (R0, C0, (Xi,Wi)n
i=1);

From the proof of semantic security it follows, that under the BDDH, distribu-
tion Dist0(x,M) is indistinguishable from the distribution of the legal ciphertexts
Enc(Pk,x,M) of M with attribute string x. Moreover, for all j, Distj(x,M) is
independent fromM and Distn(x,M) is the uniform distribution on GT ×G2n+1
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and thus is independent from x. Next lemma shows that distributions Dist�−1

and Dist� are computational indistinguishable even to an adversary that has
access to the key generation oracle. This concludes the proof of the attribute
hiding property.

Lemma 1. Under the DL assumption, for � = 1, 2, . . . , n and for any x ∈
{0, 1}n, we have that distributions Dist�−1(x) and Dist�(x) are computationally
indistinguishable to an adversary that has access to the key generation oracle.

Proof. Suppose that there exists PPT adversary A which distinguishes Dist�−1

from Dist�. We then construct an adversary B for the experiment DLExp.

Input. B takes in input [I, Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , U = gu, Z], where
either Z = gz2(u−z3) or Z is a random element of G.

Init. B receives from A the attribute string x it wishes to be challenged upon.

Setup. B sets Y = e(Z1, Z2) and, for i = 1 · · ·n, B chooses t′i, v
′
i, r

′
i,m

′
i uniformly

at random from Zp and sets

T� =

{
Z

t′
�

2 , if x� = 1;

Z
t′
�

1 , if x� = 0;
and V� =

{
Z

v′
�

1 , if x� = 1;

Z
v′

�
1 , if x� = 0;

R� =

{
Z

r′
�

1 , if x� = 1;

Z
r′

�
2 , if x� = 0;

and M� =

{
Z

m′
�

1 , if x� = 1;

Z
m′

�
1 , if x� = 0;

Moreover, for i �= �, B sets

Ti =

{
gt′

i , if xi = 1;

Z
t′
i

1 , if xi = 0;
and Vi =

{
gv′

i , if xi = 1;

Z
v′

i
1 , if xi = 0;

Ri =

{
Z

r′
i

1 , if xi = 1;
gr′

i , if xi = 0;
and Mi =

{
Z

m′
i

1 , if xi = 1;
gm′

i , if xi = 0;

B runs A on input Pk = [I, Y, (Ti, Vi, Ri,Mi)n
i=1].

Notice that Pk has the same distribution of a public key computed using
KeyGeneration, with y = z1 · z2, and ti = t′i, vi = v′i, ri = z1r

′
i,mi = z1m

′
i for

i �= � with xi = 1, and ti = z1t′i, vi = z1v′i, ri = r′i,mi = m′
i for i �= � with xi = 0;

moreover, if x� = 1 then we have t� = z2t
′
�, v� = z1v

′
�, r� = z1r

′
�,m� = z1m

′
�

whereas, if x� = 0, we have t� = z1t′�, v� = z1v′�, r� = z2r′�,m� = z1m′
�.

Query Phase I. B answers A’s queries for y such that Px(y) = 0 in the
following way. We distinguish two cases.

Case 1: x� = y� or y� = �. In this case there exists index j �= � such that
xj �= yj and yj �= �.

Then, for i �= j B chooses a′i uniformly at random in Zp and let us denote by
a′ the sum a′ =

∑
i�=j,� a

′
i.
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For i �= j and i �= �, B sets

Yi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z
a′

i/t′
i

1 , if xi = yi = 1;

Z
a′

i/r′
i

1 , if xi = yi = 0;
ga′

i/r′
i , if xi = 1, yi = 0;

ga′
i/t′

i , if xi = 0, yi = 1;
∅, if yi = �.

and Li =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Z
a′

i/v′
i

1 , if xi = yi = 1;

Z
a′

i/m′
i

1 , if xi = yi = 0;
ga′

i/m′
i , if xi = 1, yi = 0;

ga′
i/v′

i , if xi = 0, yi = 1;
∅, if yi = �.

Moreover, B sets

Y� =

⎧
⎪⎨

⎪⎩

Z
a′

�/t′
�

1 , if y� = 1;

Z
a′

�/r′
�

1 , if y� = 0;
∅, if y� = �.

and L� =

⎧
⎪⎨

⎪⎩

Z
a′

�/v′
�

2 , if y� = 1;

Z
a′

�/m′
�

2 , if y� = 0;
∅, if y� = �.

Finally, B sets

Yj =

{
Z

(1−a′
�)/t′

j

2 g−a′/t′
j , if yj = 1;

Z
(1−a′

�)/r′
j

2 g−a′/r′
j , if yj = 0.

and Lj =

{
Z

(1−a′
�)/v′

j

2 g−a′/v′
j , if yj = 1;

Z
(1−a′

�)/m′
j

2 g−a′/m′
j , if yj = 0.

By the settings above we have that, for i �= j and i �= �, ai = z1a′i, a� = z1z2a′�
and aj = z1z2−z1z2a′�−z1a′. Therefore, the ai’s are independently and randomly
chosen in Zp under the costraint that their sum is z1z2 = y and thus the key
computed by B has the exact same distribution as the key computed by the
KeyGeneration algorithm.

Case 2: x� �= y� and y� �= �. In this case, for i �= �, B chooses a′i uniformly
at random in Zp and let us denote by a′ the sum a′ =

∑
i�=� a

′
i. Then for i �= �,

B sets Yi and Li exactly as in the previous case, whereas, B sets Y� and L� as
follows

Y� =

{
Z

1/r′
�

2 g−a′/r′
� , if x� = 1;

Z
1/t′

�
2 g−a′/t′

� , if x� = 0;
and L� =

{
Z

1/m′
�

2 g−a′/m′
� , if x� = 1;

Z
1/v′

�
2 g−a′/v′

� , if x� = 0;

By the settings above we have that ai = z1a′i and a� = z1z2− z1a′. Therefore,
the ai’s are independently and randomly chosen in Zp under the costraint that
their sum is z1z2 = y. Hence, also in this case, the key computed by B has the
exact same distribution as the key returned by the KeyGeneration algorithm.

Challenge. B chooses R0 uniformly at random GT and, for � ≤ i ≤ n, chooses
s′i uniformly at random in Zp. B then constructs the tuple

D∗ = (R0, C0, (Xi,Wi)n
i=1)



86 V. Iovino and G. Persiano

where C0 = U , and, for i < �, Xi and Wi are chosen uniformly from G whereas,
for i ≥ �, B computes

Xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zt′
l , if i = �, xi = 1;

Zr′
l , if i = �, xi = 0;

U t′
ig−t′

is
′
i , if i > �, xi = 1;

U r′
ig−r′

is
′
i , if i > �, xi = 0;

and Wi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z
v′

l
13, if i = �, xi = 1;

Z
m′

l
13 , if i = �, xi = 0;
gv′

is
′
i , if i > �, xi = 1;

gm′
is

′
i , if i > �, xi = 0;

Now observe that if Z = gz2(u−z3) then D� is distributed according to
Dist�−1(x), s = u, s� = z3, and si = s′i for i > �. On the other hand, if Z
is random in G, then D� is distributed according to Dist�(x) with s = u and
si = s′i for i > �.

Query Phase II. Identical to Query Phase I.
Output. A outputs η which represents a guess for the tuple in input (η = 0 for
D�−1 and v = 1 for D�). B forwards the same bit as its guess for the tuple of
the experiment DLExp.

By the observation above, we observe that if Z = gz2(u−z3) then A’s view is
exactly the same as A’s view (including the answers for queries for private keys)
when receiving an input from Dist�−1(x,M); if Z is randomly and uniformly
distributed in G then A’s view (again this includes the replies obtained to the
queries for private keys) is the same as when receiving an input from Dist�(x,M).
Therefore, if A distinguishes between Dist� and Dist�−1 then the DL assumption
is broken.

The above lemma implies the following theorem.

Theorem 3 (Attribute Hiding). AssumeDLholds. ThenHVE scheme (Setup,
Enc,KeyGeneration,Dec) described above is attribute hiding.

6 Applications

As we have discussed in the introduction HVE schemes are a special type of
predicate encryption schemes.

Definition 4. A predicate encryption scheme for a class F of predicates over n-
bit strings is quadruple of probabilistic polynomial-time algorithms (Setup,Enc,
KeyGeneration,Dec) such that:

1. Setup takes as input the security parameter 1k and attribute length n =
poly(k) and outputs the master public key Pk and the master secret key
Msk.

2. KeyGeneration takes as input the master secret key Msk and a predicate f ∈ F
and outputs the decryption key Kf associated with f .

3. Enc takes as input the public key Pk and an attribute string x ∈ {0, 1}n and
a message M in some associated message space and returns ciphertext Ctx.
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4. Dec takes as input a secret key Kf and a ciphertext Ctx and outputs a
message M .

We require that for all k and n = poly(k), and for all strings x ∈ {0, 1}n and
predicates f ∈ F such that f(x) = 1, it holds that:

Prob[(Pk,Msk) ← Setup(1k, n); Kf ← KeyGeneration(Msk, f);
Ctx ← Enc(Pk,x,M) : Dec(Kf ,Ct) =M ] = 1.

The construction of searchable encryption of [BDOP04] can be seen an predicate
encryption for the class F of predicates Pa defined as Pa(x) = 1 iff and only if
a = x.

In [BW07], it is shown that HVE scheme can be used to construct predicate
encryption for the class of conjunctive comparison predicates defined as follows
Pa1,··· ,an(x1, · · · , xn) = 1 if and only if ai ≤ xi for all i. Futhermore, in [BW07]
it was shown how to construct predicate encryption schemes also for conjunc-
tive range query predicates and subset query predicates starting from HVE. All
reductions can be applied to our HVE thus yielding the following theorem.

Theorem 4. Assume DL holds. Then there exist predicate encryption schemes
for conjunctive comparison predicates, conjunctive range query predicates and
subset query predicates that are semantically secure and attribute hiding.

We expect there to be several other applications of HVE.
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Abstract. In this paper we study a novel computational problem called
the Hidden Root Problem, which appears naturally when considering
fault attacks on pairing based cryptosystems. Furthermore, a variant of
this problem is one of the main obstacles for efficient pairing inversion.
We present an algorithm to solve this problem over extension fields and
investigate for which parameters the algorithm becomes practical.1

Keywords: finite fields, subgroups, hidden root problem, pairing in-
version.

1 Introduction

All known public key cryptosystems are based on a presumed hard mathematical
problem, such as problems related to discrete logarithms [6], factoring [13] or
finding short vectors in a lattice [11]. The security of the cryptographic protocol
should ideally be implied directly by the hardness of the mathematical problem
and the precise relation should be captured in a proof of security.

Since the inception of pairing based cryptography, a plethora of new sup-
posedly hard problems has been introduced, but the main hard problem un-
doubtedly is pairing inversion [7], which has far-reaching implications [15,16]. In
this paper we formally define a new computational problem called the Hidden
Root Problem (HRP), which arises naturally as a cryptanalytic problem when
studying pairing inversion [7] and side-channel or fault attacks on pairing imple-
mentations [10,17,18]. The problem resembles the well-known Hidden Number
Problem [2,3,14], but is of a more algebraic nature, since the information re-
turned about the hidden root consist of a projection into a subgroup of the
multiplicative group of a finite field.

The remainder of this paper is organized as follows: Section 2 formally defines
several variants of the HRP and points out the similarities with the Hidden
Number Problem. Section 3 provides the motivation for studying this problem
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and in Section 4 we describe an algorithm to solve the HRP over extension fields.
In Section 5 we study the practicality of this algorithm for the linear version
of the HRP by considering projection onto algebraic tori. Finally, Section 6
concludes the paper.

2 The Hidden Root Problem

In this section we define various versions of the Hidden Root Problem (HRP)
over finite fields. We assume that the oracles appearing in the definitions are
perfect, i.e. they always return the correct result. The following problem was
first formulated in [7].

Definition 1 (Linear Hidden Root Problem). Let Fq be a finite field with
q = pn elements, where p is prime and let e be a positive integer with e|(q − 1).
Let Ox(·, ·) denote an oracle that on input (a, b) ∈ F2

q returns

ξa,b = (ax+ b)e

for a fixed secret x ∈ Fq. The Linear Hidden Root Problem (LHRP) is to recover
x in expected polynomial time in log q by querying the oracle repeatedly with
chosen pairs (ai, bi).

The restriction e|(q − 1) can be explained as follows: let e′ be a positive integer
with gcd(e′, q−1) = 1, then e′-powering defines a permutation on Fq with inverse
(e′−1 mod (q − 1))-powering. The LHRP formulated for e′ therefore is trivial to
solve using only one query by computing

x = (ξe
′−1 mod (q−1)

a,b − b)/a .

Similarly, if d = gcd(e′, q − 1), then (e′/d)-powering is a permutation which can
easily be inverted, so the problem reduces to the LHRP with e = d and thus
e|(q − 1). In the remainder of this paper we will use the notation h = (q − 1)/e,
i.e. the cofactor of e.

Note that in the definition of the LHRP, the querying party can choose the
pairs (ai, bi) himself. It would be possible to define a randomized version, where
we are simply given a list of random pairs (ai, bi) with the corresponding re-
sponses Ox(ai, bi) = ξai,bi . Clearly, this randomized version cannot be easier
than the LHRP as defined above, but the algorithms described in Section 4
work equally well in the randomized case. In fact, most cryptanalytic applica-
tions correspond to the randomized version, since the adversary does not control
a, b directly. For instance, a, b could be related to the coordinates of a point R
on an elliptic curve with R = [m]P , where the adversary is given P and can only
choose m.

Obvious generalizations would be to allow degree d polynomials in x instead of
a linear polynomial, or in fact any function in x of specified form, such as fractions
of polynomials. Further, one can also replace x by any unknown quantity such
as a vector of unknowns. This brings us to the following more general definition.
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Definition 2 (Hidden Root Problem). Let Fq be a finite field with q = pn

elements, where p is prime and let e be a positive integer with e|(q − 1). Let
fx(·) : D(Fq) → Fq be a specified map, i.e. the precise description of which is
given, depending on x from a domain D to Fq. Let Ox(·) denote an oracle that
on input α ∈ D returns

ξα = fx(α)e

for a fixed secret x ∈ Fq. The Hidden Root Problem is to recover x in expected
polynomial time in log q by querying the oracle repeatedly for chosen αi ∈ D(Fq).

An even further generalization would be to replace the multiplicative group F∗
q

by any group G and the e-th powering by a projection into a proper subgroup
of G.

The name “Hidden Root Problem” was chosen to point out the resemblance
with the Hidden Number Problem [2,3] and its generalizations as described
in [14]. Recall that the Fp-Hidden Number Problem (HNP) is defined as: for
a secret x ∈ Fp, we are given the k pairs

(ti,MSBl,p(xti)) i = 1, . . . , k

for k elements t1, . . . , tk ∈ F∗
p, chosen independently and uniformly at random,

and for some l > 0, where MSBl,p denotes (roughly speaking) the l most signif-
icant bits. The problem then is to recover x.

Note that in the LHRP, for each query we obtain roughly log2 h bits of infor-
mation about x, so in this sense the HRP is similar to the HNP. Heuristically,
we therefore expect a unique solution to the LHRP after roughly logh q queries.
The main difference with the HNP are the following two facts: firstly, the HNP
is randomized, i.e. the querying party cannot choose the ti for i = 1, . . . , k and
secondly, hiding the information about x in the HRP corresponds to an algebraic
operation, namely e-th powering.

Finally, a last version of the HRP is the subfield HRP, i.e. the HRP with
the restriction that the secret x lies in a strict subfield of Fpd � Fq for d|n.

3 Applications in Pairing Based Cryptography

The main motivation for our study of the Hidden Root Problem is undoubtedly
cryptanalysis of pairings, more specifically, side-channel and fault attacks on
pairings [10,17,18] and pairing inversion [7].

Recall that the general setting of pairings is the following: let E be an elliptic
curve over a finite field Fq and let r be a large prime with gcd(r, q) = 1 and
r | #E(Fq). By definition, the embedding degree k is the smallest positive integer
with r | (qk − 1). All variants of the Tate pairing can then be described as
functions of the form

e : G1 × G2 → μr ⊂ Fqk : (P,Q) 	→ e(P,Q) = fS,P (Q)L , (1)

where G1,G2 are given cyclic subgroups of E(Fqk )[r], fS,P is a Miller function,
i.e. has divisor S(P )− ([S]P )− (S−1)(O) and L|(qk −1). Often, L = (qk −1)/r
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with r | Φk(q), where Φk is the k-th cyclotomic polynomial. However, to speed
up the final exponentiation, L is sometimes taken to have very low Hamming
weight in base q, by moving some of the complexity into the scalar S (see for
instance [1]). In most protocols, one of the input values to the pairing is public,
e.g. the point P and so is the pairing value. The security of the protocol then
relies on the inability of the adversary to recover the other input point Q.

3.1 Fault Attacks on Pairings

The function fS,P is computed using Miller’s algorithm [9] and thus consists of
a product of roughly log2 S powers of evaluations of lines appearing in the scalar
multiplication of P by S. Algorithm 1 below gives the pseudo-code of Miller’s
algorithm: lT,P denotes the line through the points T and P and vT denotes the
vertical line through T .

Algorithm 1. Miller’s algorithm for elliptic curves
Inputs: S ∈ N, P, Q ∈ E[r]
Outputs: fS,P (Q)

Write s =
∑t

j=0 sj2
j , with sj ∈ {0, 1} and st = 1.

T ← P , f ← 1.
for j = t − 1 down to 0 do

f ← c2 · lT,T (Q)/v[2]T (Q).
T ← [2]T
if sj = 1 then

f ← f · lT,P (Q)/vT⊕P (Q).
T ← T ⊕ P

end if
end for
Return f .

The parameter S typically is public knowledge, since it’s either equal or related
to the group order r. In a much simplified setting (see [10,17,18] for more realistic
attacks) we could mount a fault attack on S resulting in a bit-flip of the least
significant bit of S. As such the adversary will have access to two pairing values:
the correct value fS,P (Q)L and a faulted one fS⊕1,P (Q)L. Note that all steps in
Miller’s algorithm, except the last, will be exactly the same in the computation
of both values. By dividing both values the adversary will know the value of
(assuming S is odd)

ξP =
(
l[S−1]P,P (Q)
v[S]P (Q)

)L

. (2)

Furthermore, in most cases we can ignore the last vertical line v[S]P (Q), either
due to denominator elimination or simply because [S]P = O. By repeating the
attack (for different known P ), several equations of the form (2) can be gathered
and the adversary is left to solve an instance of the HRP (and in many cases the
LHRP) with exponent L over Fqk .
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3.2 Pairing Inversion

In [7], several approaches to invert the pairing function (1) itself were described.
One of these approaches consists of solving two problems: firstly, inverting the
final exponentiation and secondly, Miller inversion, i.e. given the evaluation
fS,P (Q) and the point P , recover Q. Furthermore, it was shown that for some
instances of the ate pairing [8], Miller inversion can be achieved in polynomial
time and the security relies entirely on the final exponentiation. In these cases,
the function fS,P is of low degree and to invert the final exponentiation, the
adversary has to solve an instance of the HRP. Note that due to bilinearity of
the pairing, the adversary can easily generate many equations from one given
equation z = fS,P (Q)L by the following simple rule

zi = fS,[i]P (Q)L .

Finally, we note that in case of the ate pairing, the point Q is defined over the
field Fq, and pairing inversion corresponds to the subfield HRP.

4 An Algorithm for the HRP over Extension Fields

In this section we devise an algorithm to solve the HRP over extension fields
Fqk by combining Weil restriction and linearity of q-th powering. For simplicity
we will focus on the LHRP, but the same technique applies to any algebraic
function fx. However, the feasibility of the algorithm will very much depend on
the degree in x of fx (see the paragraph “Complexity for HRP”).

Version 0. Let e|(qk − 1) and write

e =
k−1∑

i=0

ciq
i −

k−1∑

i=0

diq
i , (3)

where ci, di ∈ N≥0. Clearly there are many tuples ci, di that give a valid expres-
sion for e, but we are only interested in those ci, di that minimize the quantity

De := max

{
k−1∑

i=0

ci,
k−1∑

i=0

di

}

. (4)

Consider Fqk as a degree k extension over Fq, i.e. Fqk = Fq[θ]/(f(θ)) where
f ∈ Fq[x] is an irreducible polynomial of degree k. In the LHRP we are given an
equation ξa,b = (ax+b)e for some pair (a, b) and unknown x. By Weil restriction
we will consider this as k equations over Fq in k unknowns. More precisely,
consider the map

ψ : Fqk → (Fq)k : α =
k−1∑

i=0

αiθ
i 	→ [α0, . . . , αk−1]
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and note that q-th powering is a linear operation, i.e. there exists an easily
computable k × k matrix F such that ψ(αq) = F · ψ(α). By substituting the
expression (3) for e, we obtain

ξa,b =
(ax+ b)

∑k−1
i=0 ciq

i

(ax+ b)
∑k−1

i=0 diqi
=

∏k−1
i=0 (ax+ b)ciq

i

∏k−1
i=0 (ax+ b)diqi

.

Exploiting linearity of qi-th powering, the above equation can be rewritten as
k−1∏

i=0

(
aqi

xqi

+ bq
i
)ci

= ξa,b

k−1∏

i=0

(
aqi

xqi

+ bq
i
)di

. (5)

Finally, apply ψ to both sides of this equation to obtain k non-linear equations
over Fq in the unknowns x0, . . . , xk−1. Furthermore, since ψ(xqi

) = F iψ(x), each
of the factors in the product is linear in the unknowns xi, so the degree of the
non-linear system of equations is precisely De defined in (4). Solving a system of
non-linear equations over finite fields is in general a very hard problem. A notable
exception however is when the system is highly overdetermined, which can be
easily obtained by repeatedly querying the oracle. In the latter case, Groebner
basis techniques [4] are rather efficient or one could resort to relinearization [5].
For both algorithms, the complexity is given by the time to solve a linear system
of equations of dimension equal to the total number of monomials of degree less
than or equal to De in k variables, which is given by

Me :=
(
De + k
De

)
.

The complexity of both algorithms then is O(Mω
e ) with ω ≤ 3 the matrix mul-

tiplication exponent. Since k is given, minimizing De is crucial, since only for
reasonably sized Me and thus very small De, will it be possible to even write
down the system of non-linear equations. The experiments in Section 5 show
that for the algorithm to succeed we need De to be very small (depending on k),
e.g. at most 4 for k = 30. This implies that for fixed k and growing q, version 0
of the algorithm will only be efficient for a constant number of exponents. This
situation will be much improved in versions 1 and 2.

Complexity for HRP. Version 0 (and also 1 and 2) also works for any algebraic
function fx. Assume that fx = h(x)/g(x) with h, g ∈ Fqk [x], then the equivalent
of equation (5) simply is:

k−1∏

i=0

(
h(x)qi

)ci

·
k−1∏

i=0

(
g(x)qi

)di

= ξa,b

k−1∏

i=0

(
h(x)qi

)di

·
k−1∏

i=0

(
g(x)qi

)ci

.

By applying ψ to both sides of this equation, we again obtain k non-linear
equations over Fq in the unknowns x0, . . . , xk−1. The main difference however is
the degree of these non-linear equations, namely

Df,e := max

{

deg h
k−1∑

i=0

ci + deg g
k−1∑

i=0

di, deg h
k−1∑

i=0

di + deg g
k−1∑

i=0

ci

}

.
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If deg h = deg g = d, we conclude that dDe ≤ Df,e ≤ 2dDe, so the algorithm
will only be efficient for fx of very low degree.

Version 1. The main idea of version 1 is to drastically increase the applicability
of version 0 of the algorithm by considering multiples of e. Indeed, each equation
ξa,b = (ax + b)e gives rise to many other equations ξma,b = (ax+ b)me for m ∈ Z
and as long as me �= 0 mod (qk − 1), these equations will be non-trivial. Note
that by raising to the power m we are in fact ignoring information contained
in the original equation. This is not a problem since we can query the oracle
to obtain sufficient equations. The main advantage however is that a random
looking exponent can be transformed in one with much more algebraic structure.
The goal therefore is to find a multiple me of e with Dme as small as possible.

A first method to find good multiples of e is to exploit the algebraic fac-
torization xk − 1 =

∏
d|k Φd(x) with Φd ∈ Z[x] the d-th cyclotomic poly-

nomial. Since e|(qk − 1), we can determine an index set I and a polynomial
Π(x) :=

∏
d|k,d∈I Φd(x) such that e|Π(q) and Π(x) has low D (i.e. sum of posi-

tive coefficients minus the sum of the negative coefficients). If Π(x) �= (xk − 1),
we have found a good multiple Π(q) of e.

Version 2. Although version 1 gives reasonable results for a wide variety of
e, it is limited to finding multiples me of e that also divide (qk − 1). Version 2
relies on LLL [12] to automatically find the best multiple possible. Consider the
lattice L ⊂ Zk spanned by the vectors

L :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

e 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .
−qk−1 0 . . . 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠
.

Note the inner product of all vectors in the lattice with the vector [q0, . . . , qk−1]
is a multiple of e. By reducing the lattice L, we find a short vector [s0, · · · , sk−1]
with e|

∑k−1
i=0 siq

i. Note that short vectors automatically have small D.

Subfield HRP. In case of the subfield HRP, we have the extra information that
x ∈ Fq, so all unknowns xi = 0 for i > 0. The system of non-linear equations
thus simplifies to a system of k univariate polynomials in x = x0 of degree De (or
Df,e in case of an algebraic function fx). To find the solution x, it suffices to take
the GCD of several of these polynomials, each of which takes O(D2) operations
in Fq. The subfield HRP therefore is fundamentally easier than the full HRP,
since its complexity is polynomial in the parameter D and the dependence on
k only appears in the first phase, i.e. writing down the system of univariate
polynomials.
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5 LHRP and Projection onto Algebraic Tori

In this section we analyze the effectiveness of the various versions of the algorithm
given in Section 4 in the special case of LHRP, where the e-th powering equals
projection onto the algebraic torus Tk(Fq). The main reason to consider this
special case is that Tk(Fq) is the biggest subgroup which is really contained in
Fqk itself and not in a strict subfield. Furthermore, all known pairings map into
(a strict subgroup of) Tk(Fq), so the torus Tk(Fq) can be considered as the base
case.

Recall that by definition we have

Tk(Fq) = {α ∈ Fqk | NF
qk /F

qd
(α) = 1 for all d|k, d < k} ,

and |Tk(Fq)| = Φk(q) with Φk the k-th cyclotomic polynomial. Therefore, we
choose the e in the LHRP equal to

e = (qk − 1)/Φk(q) .

This implies that we can take Π(x) in version 1 of the algorithm to be equal to
(xk − 1)/Φk(x). To investigate the degree D of the resulting non-linear system,
we prove the following lemma.

Lemma 1. Assume k has prime factorization k =
∏t

i=1 p
si

i with pi �= pj for
i �= j and si > 0. Define k̂ =

∏t
i=1 pi, then

Φk(x) = Φk̂(xk/k̂) .

Proof. This follows immediately from the explicit expression

Φk(x) =
∏

d|k
(xd − 1)μ(k/d) ,

with μ the Möbius function: for n ∈ N>0, μ(n) = 0 if n is not squarefree and
(−1)k if n is the product of k distinct primes. Note μ(k/d) = 0 except for d that
are multiples of k/k̂, i.e. d is of the form d = v · (k/k̂) for v|k̂.

Corollary 1. Using the notation of Lemma 1 we have Πk(x) = Πk̂(xk/k̂), where
Πk(x) = (xk − 1)/Φk(x).

The above corollary implies that the degree D of the non-linear system only de-
pends on k̂ and not on k itself. A further analysis gives the following refinement:
if k̂ = p, a prime, then D = 1 and thus the system of equations becomes linear.
For k̂ = pq, we have D = min{p, q} which follows from the equality

Πpq(x) =
(xp − 1)(xq − 1)

(x− 1)
.

Indeed, assume that p < q, then (xp − 1)/(x − 1) is the all-one polynomial of
degree (p−1) and since p < q, multiplication by (xq −1) does not cancel out any
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non-zero terms. For three or more primes, the pattern becomes more intricate,
but for k = 2pq with p < q, we have D = 2p. These cases cover all k up to 100
which is sufficient for practical applications.

To compare version 1 and version 2 of the algorithm described in Section 4,
we ran several tests using Magma for some interesting cases of k, namely k =
3, 6, 12, 15, 30. For each k, we determined the best multiple of e = (qk −1)/Φk(q)
using version 1 and 2. We then derived the system of non-linear equations as
described in Section 4 for the LHRP using a predetermined number of queries
to the oracle. Finally, the system of non-linear equations was solved using the
Groebner basis command in Magma. In these tests, the prime field Fp was kept
constant for some fixed random 32-bit prime p, since the size of p only has a
minor influence on the feasibility of the tests. Table 1 gives a summary of the test
results. Especially the last two entries are interesting since version 2 outperforms
version 1 considerably. For example, for k = 30, version 1 leads to a system of
non-linear equations of degree D = 6 corresponding to

Π(x) = (x30−1)/Φ30(x) = x22−x21+x20+x17−x16+x15−x7+x6−x5−x2+x−1

so it would be nearly impossible to even write down the system of equations,
since each non-linear equation contains 1947792 terms. However, version 2 finds
a much better multiple of e corresponding to

(x5 + x4 − x2 − x− 1)Π(x) = x27 − x20 − x17 − x15 − x12 + x5 + x2 + 1 ,

leading to D = 4 and thus non-linear equations of only 46376 terms, which is
just manageable, but already used up around 3 Gb of memory.

In each case, we made roughly 2 logh q
k queries to the oracle. The column “Min

# queries” contains the minimum number of queries to the oracle that gives a
unique solution to the system of non-linear equations. This number approximates
the expected logh q

k from the information theoretical viewpoint.
For most values of k < 100, the algorithm performs fairly well since D will

often be very small. However, for k having many prime factors, the number of
terms in the non-linear equations simply becomes too large, e.g. for k = 70,
version 2 gives D = 4 and thus M = 1150626.

In stark contrast, the subfield LHRP with projection onto Tk(Fq) is easy for
all practical k (for instance all k < 1000) and the algorithm runs very fast in

Table 1. Comparison of version 1 and 2 for the LHRP and projection on Tk(Fq) for
various extension degrees k

k D (v.1) D (v.2) M =
(

D+k
D

)
Min # queries Time (s)

3 1 1 4 2 0.01
6 2 2 28 4 0.01
12 2 2 91 4 0.04
15 3 2 816 / 136 5 0.15
30 6 4 1947792 / 46376 16 2420
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a matter of seconds, e.g. for k = 665 we have D = 85 and solving the subfield
LHRP by using GCD’s only takes 240 seconds, most of which is spent in comput-
ing the system of univariate equations. For the full LHRP, the number of terms
in the non-linear equations would be M � 10114, which is clearly infeasible.

The results in this section show that the LHRP will be solvable for moderately
sized k if e is a divisor of (qk−1)/Φk(q), since then it can be reduced to projection
onto Tk(Fq). However, when e is of the form (qk−1)/s with s a proper divisor of
Φk(q) with large cofactor (e.g. 280), i.e. e-th powering corresponds to projection
into a strict subgroup of Tk(Fq) with large cofactor, then the HRP (and also the
subfield HRP) remains hard. In implementing pairing based cryptosystems in a
side-channel resistant manner, it is therefore paramount to ensure that the final
exponentiation does not succumb to the algorithms described in Section 4. In
particular, this implies that final exponentiations of low Hamming weight in base
q should be avoided. The implications for the more general problem of pairing
inversion are currently unclear: it is possible to define pairings with “easy” final
exponentiation from an HRP point of view, but the obvious candidates all lead
to Miller functions fS,P of restrictively high degree.

6 Conclusion

In this paper we studied a new computational problem called the Hidden Root
Problem, motivated by immediate applications to cryptanalysis of pairing based
cryptosystems. We have given the first algorithm to solve this problem over ex-
tension fields and concluded that for exponents e which are divisors of (qk −
1)/Φk(q) the problem can be solved efficiently for moderately sized k. However,
for exponents e of the form (qk−1)/s with s a proper divisor of Φk(q) with large
cofactor, the problem remains hard. In implementing pairing based cryptosys-
tems, it is therefore advisable to avoid using Miller functions fS,P where S is a
multiple of Φk(q).
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Abstract. We present a new method to evaluate large degree isogenies
between elliptic curves over finite fields. Previous approaches all have
exponential running time in the logarithm of the degree. If the endomor-
phism ring of the elliptic curve is ‘small’ we can do much better, and
we present an algorithm with a running time that is polynomial in the
logarithm of the degree. We give several applications of our techniques
to pairing based cryptography.

1 Introduction

Various algorithms using elliptic curves rely on the efficient computation of iso-
genies between them. A noteworthy example is the ‘Schoof-Elkies-Atkin’ algo-
rithm [10] to compute the group order of an elliptic curve over a finite field. Here,
it is crucial that we are able to efficiently compute small degree isogenies. The
known algorithms to evaluate an isogeny are all exponential time algorithms (in
the logarithm of the degree), and the practicality of these algorithms is therefore
limited to relatively small degrees. A lot of effort has gone into speeding up the
algorithms [2]. In this paper we propose an algorithm to evaluate an isogeny
between ordinary elliptic curves over finite fields that, in special cases, has a run
time that is polynomial in the logarithm of its degree.

In Section 2 we explain how to represent certain prime degree l isogenies
that are defined over Fq with at most 3 log l bits. This is a big contrast with
the representation by rational functions or by its ‘kernel polynomial’ as these
represenations take roughly l bits. We show that our representation applies to
almost all isogenies: the only condition is that not all subgroups of order l are
defined over the base field Fq. As the l-torsion has l2 elements for l �= char(Fq),
this condition is harmless for large l.

We present our approach to evaluate an isogeny ϕ : E → E′ in Sections 3
and 4. The run time is polynomial in the class number of the endomorphism ring
of E, and is therefore only fast when this class group is small . This certainly
limits the practicality of the method since randomly chosen elliptic curves over
Fq will have an associated class group of size roughly

√
q. However, if the elliptic

curve in question is contructed by complex multiplication techniques then the
class group will always be small. In particular, our method applies to the curves
with prescribed prime order constructed in [3], the curves with prime order of
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prescribed size constructed in e.g. [7] and the pairing friendly curves constructed
in e.g. [9].

Section 5 gives several examples of the new evaluation algorithm. Our approach
is so fast that isogenies of degree l ≈ 10100 are easily computed. We focus on ap-
plications to pairing-based cryptography in Section 6. We first describe a variant
of the ‘BLS signature scheme’ [1] where two different isogenous elliptic curves are
used instead of a single elliptic curve as in the basic BLS scheme. As another ap-
plication, we show how our technique can be used in the isogeny variant of BLS
which was proposed by Jao and Venkatesan [5]. Their scheme replaces a secret in-
teger by a secret isogeny. For the security of the scheme, the secret isogeny must
have degree of cryptographic size. Until the present paper, efficient evaluation of
such large degree isogenies was only possible in special cases such as integer mul-
tiplication, or integer multiplication composed with a small degree isogeny.

2 Representation of Isogenies

Let E,E′ be two elliptic curves defined over some field F . An isogeny ϕ between
E and E′ is a non-constant morphism ϕ : E → E′. It is well known that isogenies
are geometrically surjective, i.e., for every point P ∈ E′(F ) there exists a point
Q ∈ E(F ) with ϕ(Q) = P . We say that ϕ is defined over F if the kernel of ϕ is
as a group defined over F , meaning that the absolute Galois group of F maps
the kernel of ϕ into itself. This does not mean that all the points of the kernel
of ϕ are F -rational. Indeed, the multiplication by n-map is F -rational, yet most
n-torsion points will not be defined over F .

An isogeny ϕ induces an inclusion F (E′) ⊂ F (E) of function fields, and the
degree [F (E) : F (E′)] is called the degree deg(ϕ) of ϕ. If deg(ϕ) is coprime to
the characteristic of F , the extension F (E)/F (E′) is separable and the degree
of ϕ equals the number of points in its kernel. Most of the isogenies we consider
in this article are separable.

The ‘standard’ way to represent an isogeny ϕ is to give 3 homogeneous poly-
nomials f1, f2, f3 ∈ F [X,Y, Z] satisfying ϕ((x : y : z)) = (f1(x, y, z) : f2(x, y, z) :
f3(x, y, z)) ∈ P2(F ). If l denotes the degree of ϕ, then usually one of these poly-
nomials will have degree roughly l, and this representation takes exponential time
in log l to write down. In this section we explain a representation of isogenies
between elliptic curves over finite fields whose length is polynomial in log l.

Assume that E/F has complex multiplication, meaning that the endomor-
phism ring EndF (E) is isomorphic to the imaginary quadratic order OΔ for
some Δ < 0. By writing OΔ = Z[α] and fixing a root in F of the minimal poly-
nomial of α, we view F as an OΔ-algebra. There are |O∗

Δ| > 1 isomorphisms
EndF (E) ∼−→ OΔ and throughout this article we assume that we have fixed the
normalized isomorphism, i.e., the unique isomorphism ι with the property that
ι∗(x)ω = xω for all invariant differentials ω and all x ∈ OΔ. In particular, we
will identify the rings EndF (E) and OΔ.

We let EllΔ(F ) be the set of F -isomorphism classes of elliptic curves over
F whose endomorphism ring equals OΔ. It is well known that for F = C, the
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set EllΔ(C) is a finite set of cardinality hΔ, the class number of the order OΔ.
The key to this result is that the class group acts in a natural way on EllΔ(C).
Indeed, if we let

E[L] = {P ∈ E(C) | ∀α ∈ L : α(P ) = 0}

denote the group of ‘L-torsion points’ for an OΔ-ideal L, then the map

j(E) 	→ j(E/E[L]) = j(E)L

factors through the class group. One then proves that this action is transitive
and free [11, Prop. II.1.2].

As there are only finitely many isomorphism classes of complex elliptic curves
with endomorphism ring equal to OΔ, the j-invariant j(E) is algebraic for j(E) ∈
EllΔ(C). In fact, we have EllΔ(C) = EllΔ(HO) where HO is the ring class field
associated to OΔ, i.e., the unique abelian extension inside C of Q(

√
Δ) whose

Galois group is isomorphic to the class group Pic(OΔ) under the Artin map. If
p is a prime that does not ramify in HO/Q, then we get a natural injection

g : EllΔ(HO) → EllΔ(Fq).

Here, Fq is the finite field with q = pf elements and f equals the residue class
degree of a prime lying over p. In particular, if p splits completely we get an
injection EllΔ(HO) → EllΔ(Fp). By the Deuring lifting theorem [8, Th. 13.12],
the map g is surjective as well. Furthermore, the class group action in character-
istic zero respects the reduction map, and we get a natural action of Pic(OΔ) on
EllΔ(Fq). Just like in characteristic zero, an OΔ-ideal L acts on j(E) ∈ EllΔ(Fq)
by j(E) 	→ j(E/E[L]) = j(E)L. Since the Frobenius endomorphism of E com-
mutes with all endomorphisms in L, the group E[L] is Fq-rational.

Lemma 1. Let E/Fq be an ordinary elliptic curve and let ϕ : E → E′ be an
Fq-isogeny of prime degree l �= char(Fq). Let πq be the Frobenius morphism of
E and let L ⊂ End(E) be an ideal of norm l. If l does not divide the index
[End(E) : Z[πq]] then the kernel of ϕ equals either E[L] or E[L].

Proof. The kernel of ϕ is a subgroup of order l of the l-torsion of E. We have
E[l] ∼= Z/lZ×Z/lZ and there are l+1 subgroups of order l. A slight generalization
of [6, Prop. 23] gives that only

(
Δ
l

)
+ 1 ∈ {0, 1, 2} of those are Fq-rational if

l does not divide [End(E) : Z[πq]]. As ϕ is defined over Fq, the group E[L] is
Fq-rational and the lemma follows. �

This lemma shows that ‘most’ of the Fq-rational prime degree isogenies between
ordinary elliptic curves over finite fields have a kernel of the form E[L]. Every
OΔ-ideal of prime norm l not dividing [End(E) : Z[πq]] can be written in the
form

L = (l, c+ dπq),

and we can therefore represent the kernel of E → E/E[L] by specifying the
End(E)-ideal L = (l, c+ dπq). This representation requires only 3 log l bits.
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The kernel C of a separable isogeny ϕ : E → E′ does not uniquely deter-
mine ϕ. Indeed, if we compose ϕ with an isomorphism E′ ∼−→ E′′ then the kernel
is unchanged. To keep track of isomorphisms, we choose Weierstraß equations
for E and E′ and note that the pull back ϕ∗(ωE′) of the invariant differential of
E′ equals a constant multiple of the invariant differential ωE of E. If we have

ϕ∗(ωE′) = ωE

then the isogeny ϕ is said to be normalized . It is easy to see that a subgroup
C ⊂ E[l] of order l defines a unique elliptic curve E′ such that there exists a
normalized isogeny E → E′ with kernel C. The isogeny E → E′ is uniquely
determined up to automorphisms of the curve E′. We conclude that a sub-
group C ⊂ E[l] determines a well-defined map E → E′/Aut(E′). The quotient
E′/Aut(E′) is isomorphic to the projective line P1 and in practice we will often
map a point P ∈ E′(Fq) to its x-coordinate in P1(Fq). If E′ has endomorphism
ring Z[i] or Z[ζ3] we need to consider the square resp. cube of the x-coordinate.
With this convention, the main result of the paper is the following.

Theorem 1. Let E/Fq be an ordinary elliptic curve with Frobenius πq, given
by a Weierstraß equation, and let P ∈ E(Fqn) be a point on E. Let Δ =
disc(End(E)) be given. Assume that [End(E) : Z[πq ]] and #E(Fqn) are co-
prime, and let L = (l, c+ dπq) be an End(E)-ideal of prime norm l �= char(Fq)
not dividing the index [End(E) : Z[πq]]. Then Algorithm 4.1 computes the unique
elliptic curve E′ such that there exists a normalized isogeny ϕ : E → E′ with
kernel E[L]. Furthermore, it computes the x-coordinate of ϕ(P ) if End(E) does
not equal Z[i] or Z[ζ3] and the square resp. cube of the x-coordinate of ϕ(P )
otherwise. The running time of the algorithm is polynomial in log l, log q, n
and |Δ|.

Although the run time algorithm is polynomial in the discriminant Δ of the
endomorphism ring End(E), the description of the algorithm in Section 4 shows
that this ‘bottleneck’ disappears once L is principal . Hence, it gives a polynomial
time algorithm to evaluate all endomorphisms of the curve, regardless of the size
of endomorphism ring of E.

3 Evaluating Small Degree Isogenies

Throughout this section, E/Fq is a fixed ordinary elliptic curve and L = (l, c+
dπq) is an End(E)-ideal of prime norm l �= char(Fq) not dividing the index
[End(E) : Z[πq]]. In this section we explain two methods to compute the image
ϕ(P ) ∈ E′/Aut(E′) ∼= P1 of a point P ∈ E(Fqn) under ‘the’ normalized isogeny
ϕ : E → E′ defined by L. As the run time of these approaches is polynomial
in l, the prime l should be small for these methods to be practical.

The first method is strongly based on the techniques that Atkin and Elkies
used to improve Schoof’s original point counting algorithm [10, Sec. 6–8]. It does
not work in some special cases and we will make assumptions while describing
the method. The second method works in general, but is typically slower.
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3.1 Atkin-Elkies Techniques

We assume p = char(Fq) > l ≥ 3 in this subsection, and we let E be given by
a Weierstraß equation Y 2 = X3 + aX + b. We assume that End(E) does not
equal Z[i] or Z[ζ3]. We will compute a polynomial fL ∈ Fq[X ] with the property
that its roots are the x-coordinates of the points in E[L]. Once we know fL it
is an easy matter to compute the image ϕ(P ). Indeed, Vélu’s formulas [13] give
us the normalized isogeny ϕ as rational function and we can simply evaluate at
the point P .

To compute fL ∈ Fq[X ], we start by computing the j-invariant of E′. As E′

is l-isogenous to E, we know that j(E′) is a root of the l-th modular polynomial
Φl(j(E), X) ∈ Fp[X ] specialized in j(E). The modular polynomial has degree
l + 1, but the assumption l � [End(E) : Z[πq]] ensures that it has either 1 (if L
is ramified) or 2 (if L splits) roots in Fq. We fix a root h �= 0, 1728. If L splits,
then h is either j(E′) = j(E)L or j(E)L. We do not know which one yet.

The ‘Atkin-Elkies techniques’ only work if the partial derivative ΦY of Φl ∈
Fq[X,Y ] with respect to Y does not vanish when evaluated in (X,Y ) = (j(E), h).
Using some algebraic geometry, one can prove [10, Sec. 7] that this only happens
when l is larger than 4|Δ|, withΔ the discriminant of End(E). Hence, it only fails
for ‘large’ l. In the examples we computed, this hardly caused any problems. If it
does happen, we switch to the second method described below. For the remainder
of this subsection we assume that ΦY (j(E), h) is not zero.

Next we compute an elliptic curve E1 with j-invariant h such that the isogeny
E → E1 with kernel E[L] or E[L] is normalized. As in [10, Sec. 7], we put

s = −18
l

b

a

ΦX(j(E, h)
ΦY (j(E), h)

j(E) ∈ Fq

and with

a′ = − 1
48

s2

h(h− 1728)
∈ Fq

b′ = − 1
864

s3

h2(h− 1728)
∈ Fq,

the equation for E1 is given by Y 2 = X3 + a′X + b′.
Let C be the kernel of the normalized isogeny E → E1, i.e., C is either

E[L] or E[L]. Theoretically, the hard part is computing the constant term p1
of the kernel polynomial fC describing C. The formulas are rather involved and
can be found in [10, Sec. 8]. The other coefficients of fC can now be found
using a recursive relation involving the coefficients of the Laurent series of the
Weierstraß-℘ function. The key point is that computing fC involves nothing
more than simple arithmetic in Fq. Once we have the equation for E1, there are
other methods as well to find fC ; we refer to [2] for an overview.

Knowing the polynomial fC , it remains to check if our initial guess h was
correct. We either have fC = fL or fC = fL and to check in which case we are,
we note that with L = (l, c + dπq), the Frobenius πq acts as multiplication by
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−c/d ∈ Fl on the points in E[L]. We test if (Xq, Y q) = (−c/d) · (X,Y ) holds for
the points in C, i.e., we compute both (Xq, Y q) and (−c/d) · (X,Y ) in the ring

Fq[X,Y ]/(fC(X), Y 2 −X3 − aX − b).

Note that the · means repeated adding on the curve and (−c/d) · (X,Y ) can be
computed by employing division polynomials.

If we find that fC does not equal fL we know that the unique other zero
h2 ∈ Fq of

gcd(Xq −X,Φl(j(E), X)) ∈ Fq[X ]

must be the j-invariant of E′ and we repeat the computation with h replaced
by h2 to find the polynomial fC = fL ∈ Fq[X ].

3.2 General Technique

The approach described in this subsection works for any prime power q and any
prime l �= char(Fq). Let Ψl be the division polynomial for E/Fq. For l > 2, the
polynomial Ψl has degree (l2 − 1)/2. By computing roots of Ψl, we compute two
generators G1, G2 of the group E[l] ∼= Z/lZ × Z/lZ. The points will typically
be defined over an extension of Fq of degree close to l. Indeed, if L denotes the
field of definition of the l-torsion, then the degree [L : Fq] equals the order of πq

in the group (OΔ/l)∗, and this order is usually close to l.
The goal is to find a point Q in the kernel E[L]. With L = (l, c + dπq) we

need to find an l-torsion point Q with πq(Q) = (−c/d)Q. We can simply list the
generators αG1 +βG2 of the l+1 subgroups of order l of E[l] and check for each
generator if Frobenius acts as multiplication by −c/d.

Once we find Q, we compute the subgroup generated by Q and use Vélu’s
formulas [13] to evaluate the isogeny.

4 Evaluating Large Degree Isogenies

The method described in Section 3 is intended for relatively small primes l.
In this section we explain how to use the class group of the endomorphism
ring End(E) = OΔ to reduce the computation of a large degree isogeny to the
computation of small degree isogenies. As before, E/Fq is an ordinary curve
and L = (l, c + dπq) is an End(E)-ideal of prime norm l � [End(E) : Z[πq ]].
Let P ∈ E(Fqn) be a point. For reasons to become clear, we demand in this
section that [End(E) : Z[πq]] and #E(Fqn) are coprime. The goal is to compute
ϕ(P ) ∈ E′/Aut(E′) with ϕ : E → E′ an isogeny with kernel E[L].

We have an equality
[L] = [p1]e1 . . . [pk]ek (4.1)

inside the class group Pic(OΔ) for some suitable choice of generators pi. The key
observation is that the norms of pi can be much smaller than the norm of L.
Indeed, the size of pi depends only on the discriminant of End(E) and not of
the norm of L. We can write L = pe1

1 · · · pek

k (α) for some fractional principal
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OΔ-ideal (α). To find α, we compute the integral ideal Lpe1
1 . . . p

ek

k and use
Cornacchia’s algorithm [4, Sec. 1.5.2] to find a generator β ∈ OΔ. The choice
α = β/m, withm the product of the norms of the ideals occuring in (4.1), works.

To evaluate ‘the’ isogeny ϕ associated to L, it suffices to evaluate the isogenies
associated to the pi’s and to (α). If the pi’s don’t divide [End(E) : Z[πq]], we can
use the method from Section 3 in the following way. We compute the isogeny

E −→ E1 = E/E[p1]

and note that we have a canonical isomorphism End(E) ∼−→ OΔ
∼−→ End(E1)

that allows us to interpret the ‘next’ ideal occuring in (4.1) as an End(E1)-ideal.
Multiplication of OΔ-ideals and composition of isogenies is compatible in the
sense that we have

E/[p1p2] ∼= E1/[p1].

By applying the method from Section 3 iteratively, we compute the normalized
isogeny φc : E → Ec = E/[pe1

1 . . . p
ek

k ].
We now explain how to deal with the ideal (α). The element β will typically not

lie in the subring Z[πq ] of OΔ. However, we can write α = (u+ vπq)/(mz) with
z ∈ Z dividing the index [End(E) : Z[πq]]. The curves Ec and E′ = E/E[L] are
Fq-isomorphic because (α) is a principal ideal. The space of invariant differentials
for E′ is a 1-dimensional Fq-vector space, and because πq is inseparable we have
π∗q (ωE′) = 0. Hence, the invariant differentials for the Weierstraß equations of
Ec and E′ satisfy

ωE′ = (u/mz)ωEc

if m is non-zero in Fq. To find the equation for E′, we need to apply an isomor-
phism η : Ec

∼−→ E′ with η∗(ωE′) = (u/mz)ωEc. This is easy: if Ec is given by
Y 2 = X3 + a′X + b′ then for λ ∈ F∗

q the isomorphism (X,Y ) 	→ (λ2X,λ3Y )
multiplies ωE1 by 1/λ. Hence, the curve E′ is given by Y 2 = X3+(u/mz)4a′X+
(u/mz)6b′.

Having found the equation for E′, we need to compute the action of (α) on
the image η(φc(P )) ∈ E′(Fqn). By assumption, the integer z in the denominator
of α is coprime to #E(Fqn). If m is also coprime to the group order of E(Fqn)
then we can simply compute the inverse of zm modulo #E(Fqn) and compute
R = ((zm)−1(u + vπq))(Q) ∈ E′(Fqn). A suitable power of the x-coordinate of
R is the value we are looking for. Summarizing everything, we have the following
algorithm.

Algorithm 4.1
Input: a discriminant Δ, an elliptic curve E/Fq with End(E) = OΔ and a

point P ∈ E(Fqn) such that [End(E) : Z[πq ]] and #E(Fqn) are
coprime, an End(E)-ideal L = (l, c+ dπq) of prime norm l �= char(Fq)
not dividing [End(E) : Z[πq]].

Output: the elliptic curve E′ such that an isogeny ϕ : E → E′ with kernel E[L]
is normalized and the x-coordinate of ϕ(P ) for Δ �= −3, 4 and the
cube resp. square of the x-coordinate otherwise.
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1. Compute the direct sum decomposition Pic(OΔ) =
⊗
〈[pi]〉 of Pic(OΔ)

into cyclic groups generated by the degree 1 prime ideals pi of smallest
norm that are coprime to the product p ·#E(Fqn) · [End(E) : Z[πq]].

2. Write L = pe1
1 · . . . · pek

k · (α) with the pi’s as in Step 1.
3. Compute a sequence of isogenies (φ1, . . . , φs) such that the composition
φc : E → Ec has kernel E[pe1

1 . . . p
ek

k ] using the method from Section 3.
Evaluate φc(P ) ∈ Ec(Fqn).

4. Write α = (u+ vπq)/(zm). Compute an isomorphism η : Ec
∼−→ E′ with

η∗(ωE′) = (u/zm)ωEc. Compute Q = η(φc(P )).
5. Compute the inverse (zm)−1 of zm modulo #E(Fqn) and compute
R = ((zm)−1(u+ vπq))(Q).

6. Put r = x(R)|OΔ|∗/2 and return (E′, r).

An analysis of the algorithm yields Theorem 1:

Proof of Theorem 1. To prove the correctness of the algorithm, it suffices to show
that we can take the generators in Step 1 coprime to p·#E(Fqn )·[End(E) : Z[πq ]].
This follows from the fact that every element in the class group is represented
by infinitely many ideals.

The exact run time of Step 1 depends on the method we choose and what
we are willing to assume, i.e., whether we want a probabilistic/deterministic
algorithm and whether we are willing to assume GRH. We refer to [4, Sec. 5.4–
5.5] for an overview. It can be done in deterministic polynomial time in |Δ|,
and the primes pi can be taken of polynomial size in |Δ|. If we are willing to
assume GRH, then we may even take pi to be of size O((log |Δ|)2). However, as
we possibly have very large exponents in relation (4.1) this does not affect the
total run time.

The computation of the exponents ei in Step 1 can be done in various ways.
The most näıve way of looping over all elements I ∈ Pic(OΔ) and checking
whether I−1L is principal using Cornacchia’s algorithm already has a run time
that is polynomial in log l and |Δ| and this suffices for the proof of Theorem 1.
This computation yields α as a by product.

Computing the cycle in Step 3 takes time polynomial in the norms of the
pi’s using the method in subsection 3.2. As the norms are of polynomial size
in |Δ|, this step takes polynomial time in |Δ|. The computation of φc(P ) takes
polynomial time in n log q and |Δ|. Steps 4–6 take time polynomial in n log q and
the theorem follows. �

5 Examples

In this section we give two examples of Algorithm 4.1. The first example is rather
small, and we check the result of the computation by employing the method of
Section 3 directly. In the second example we use an isogeny of degree roughly
1021, and checking the result using the method from Section 3 is impossible in
this case.
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5.1 Small Example

We fix q = p = 101 for this subsection. The elliptic curve E : Y 2 = X3+79X+44
has j-invariant 93 ∈ Fp and we will show how to evaluate an isogeny of degree
l = 31 using the class group algorithm from Section 4. An easy computation
shows that E has trace of Frobenius t = 15, and as Δ = t2 − 4p = −179 is
prime, we have End(E) ∼= OΔ. By fixing a root πp in OΔ of the polynomial
X2 − tX + p, we identify the rings End(E) and OΔ.

We will compute the normalized isogeny ϕ corresponding to the OΔ-ideal
L = (31, πp + 3) lying over 31. The class group Pic(OΔ) is cyclic of order 5. To
find a suitable generator, we compute #E(Fp) = 101 + 1− 15 = 87 = 3 · 29. We
see that we cannot use a prime lying over 3 to generate Pic(OΔ), and we choose

Pic(OΔ) = 〈[p5]〉

with p5 = (5,−2πp + 1). We have L = p5(α) with α = −3−πp

5 .
Using the method from Section 3.1, we compute the kernel polynoimal fp5 =

X2 + 59X + 81 ∈ Fp[X ] associated to p5. By applying Vélu’s formulas, we
find that the isogenous curve Ec = E/E[p5] has Weierstraß equation Y 2 =
X3 + 30X + 63. To find the Weierstraß equation for E′ = E/E[L], we compute
−3/5 = 60 ∈ Fp and compute

Y 2 = X3 + 30 · 604X + 63 · 606

to find the equation Y 2 = X3 + 96X + 75 for E′. We let η : Ec → E′ be an
isomorphism.

Take a random point P = (68, 53) ∈ E(Fp). We apply the isogeny φc asso-
ciated to p5 and find φc(P ) = (30, 17) ∈ Ec(Fp). The point Q = η(φc(P )) =
(31, 44) ∈ E′(Fp) lies on the right curve. As it lies in the base field, the Frobenius
acts as the identity on this point and we multiply Q by (−3−1)/5 = 34 ∈ Z/87Z
to find the image R = (46, 25) ∈ E′(Fp). The output of the algorithm is
(Y 2 = X3 + 96X + 75, 46).

The degree l = 31 is small enough that we can check this output by using
the method from Section 3 directly. The kernel polynomial associated to L is
fL = X15 +39X14 +88X13 + . . .+17X2 +65X+4 ∈ Fp[X ] and we compute the
image ϕ(P ) = (46, 25) for the isogeny ϕ : E → E′ directly from Vélu’s formulas.

5.2 Medium-Sized Example

Our algorithm is capable of handling much larger inputs than the l = 31 from
section 5.1. Evaluating isogenies of degree roughly 10100 is no problem. As dis-
playing large numbers is not especially pleasing to the human eye, we give a
‘medium sized’ example in this section. Using the method from [3], we construct a
curve with small endomorphism ring having exactly 1020+39 = nextprime(1020)
points.

With p = 99999999980010207001, the elliptic curve E/Fp defined by

Y 2 = X3 + 93111780581619358815X+ 13776438796781696372
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has 1020 + 39 points. The endomorphism ring End(E) is isomorphic to OΔ for
Δ = −3635. The prime l = 1021 + 117 = nextprime(1021) splits in OΔ and we
take the OΔ-ideal L = (l, πp + 469155077064851443344). Here, πp is the image
of the Frobenius morphism under the normalized isomorphism End(E) ∼−→ OΔ.

The smallest prime not dividing [End(E) : Z[πp]] = 34 · 192 · 312 · 19992

that splits in OΔ is 37 and we have Pic(OΔ) ∼= Z/10Z ∼= 〈[p37]〉 with p37 =
(37, πp + 15). An easy computation yields the equality L = p37(α) with

α =
−2947049πp − 708893381093724965

3 · 19 · 31 · 1999 · 37
.

The primes in the denominator of α are 37 and the primes dividing the index
[End(E) : Z[πp]].

We compute the isogeny φc corresponding to p37 using the method from
Section 3. The kernel polynomials equals X18 + 67504589328326227502X17 +
. . .+35418368365443750601 ∈ Fp[X ] and the isogenous curve Ec has Weierstraß
equation

Y 2 = X3 + 8082765115516817778X+ 51575975418311029503.

We multiply the coefficients of this equation by the 4th resp. 6th power of
−708893381093724965/(3 · 19 · 31 · 1999 · 37) = 98412218672392141083 ∈ Fp

to find the Weierstraß equation

Y 2 = X3 + 83032917062416905069X+ 31170711888319926172

for E′. We let η : Ec
∼−→ E′ be an isomorphism.

Take a random point P = (73931099962253475826, 29177286940991158970)
on E. We compute Q = η(φc(P )) ∈ E′(Fp) and multiply this by (−2947049−
708893381093724965)/(3·19·31·1999·37) = 89908927599601102372∈ Z/(1020+
39)Z to find

R = (95529214469768926304, 49609901207400538475) ∈ E′(Fp).

The output of the algorithm is the equation for E′ and 95529214469768926304.

6 Applications to Pairing-Based Cryptography

In the last decade, bilinear pairings have been used to enable new crypto-
graphic functionality and have been proposed as the basis for a wide variety
of cryptographic protocols, from Identity Based Encryption (IBE) to tri-partite
Diffie-Hellman to shorter digital signatures. The first digital signature scheme
(BLS) based on bilinear pairings was introduced in 2001 by Boneh, Lynn, and
Shacham [1].

6.1 BLS Digital Signatures

Here is an informal description of how the basic BLS signature scheme works on
an elliptic curve E with the Weil pairing.
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Public parameters. Let E be an elliptic curve over a field Fq of characteristic p.
Let m be a positive integer and let em(P,Q) denote the Weil pairing of two
points P and Q in the group ofm-torsion points E[m]. The Tate pairing or other
modified pairings, such as the squared Tate pairing, can also be substituted in
the scheme and in its security assumptions. The set-up for the scheme includes
a public point Q ∈ E[m]. We assume that m is prime.

Public/Private Key. Each user has a secret key which is an integer, s, and a
corresponding public key, sQ, which is published.

Signing. A message,M , to be transmitted and signed with signature σ is signed
as follows. The message is first hashed to a point P ∈ E[m], following for example
the procedure outlined in [1, Section 3.2]. The signer has a secret integer s, and
signs the message by computing σ = sP .

Verifying. To verify the signature σ = sP on a message M , the verifier uses
the same hashing procedure as above to hash M to the point P on the elliptic
curve. Then the verifier computes two Weil pairings em(P, sQ) and em(σ,Q) and
checks that they are equal.

Note: For ordinary elliptic curves with m co-prime to p, the group E[m] has
rank 2, and the points P and Q in the above scheme are chosen to be linearly
independent when using the Weil pairing, since otherwise the pairing would
be trivial. For efficiency reasons, E is usually chosen or constructed [9] to be
such that all the m-torsion is defined over a small degree extension of Fq, and
messages are hashed into the smallest possible field, to minimize the bit-length
of the signature.

Security. In order for the above scheme to be secure, it is assumed that the
groups generated by P and Q are a co-GDH pair ([1, Definition 2.1]), meaning
that the co-Gap Diffie Hellman problem is hard for the two pieces of the m-
torsion. The security proof models the hash function which maps messages to
points as a random oracle.

6.2 Isogeny Variants of BLS

The techniques described in Algorithm 4.1 can be used to enable several different
variants of the BLS signature scheme. These variants require expanded security
assumptions and depend on the ability to efficiently evaluate a large degree
isogeny (the degree should be of cryptographic size, such as on the order of
2160). Isogenies of such large degree were previously impossible to evaluate in
a reasonable amount of time, other than multiplication by an integer, possibly
composed with a small degree isogeny.

A. One extension of the basic BLS scheme described above is to use points P
and Q on two different isogenous elliptic curves.

In other words, letE1/Fp be an ordinary elliptic curve with endomorphism ring
End(E) �= Z[i],Z[ζ3] and letϕ : E1 → E2 be specified by an ideal L as in Section 2.
The triple (E1,L, E2) is public. Assume that the conditions from Theorem 1 are
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satisfied for the elliptic curve E1. This is a rather harmless condition, since for
pairing friendly curves, the degree l of ϕ does not divide [End(E) : Z[πp]]. For
a user with secret key s ∈ Z, the public key is sQ ∈ E2[m]. The message M , is
hashed to a point P ∈ E1[m] and signed as above, with σ = sP , but the verifi-
cation is accomplished by computing two pairings in E2[m] namely em(ϕ(P ), sQ)
and em(ϕ(σ), Q). As only the x-coordinate of ϕ(P ) is well-defined, we now accept
the signature if em(ϕ(P ), sQ) = ±em(ϕ(σ), Q) holds.

This scheme requires two evaluations of the isogeny in the verification step.
Here the isogeny is public, and need not have large degree. Whereas it was essen-
tial to choose P and Q to be linearly independent in the original BLS-scheme,
we now require P and Q to be such that ϕ(P ) and Q are lineary independent
in E2[m]. The security depends again on the co-Gap-Diffie-Hellman Assumption,
this time for the two groups G1 = 〈P 〉 ⊂ E1[m] and G2 = 〈Q〉 ⊂ E2[m].

B. Our original motivation for developing a polynomial time algorithm for eval-
uating large degree isogenies was for application to a BLS-variant proposed in [5]
where the isogeny is the secret key of the user.

The set-up is as follows. Two ordinary elliptic curves E1 and E2 over a field
Fp with isomorphic endomorphism rings of discriminant Δ < −4, and a point
Q in E2[m] are public parameters. A user has a secret key, which is an isogeny
ϕ : E1 → E2 specified by an ideal L as in Theorem 1. Let ϕ̂ : E2 → E1 denote the
dual isogeny, i.e., ϕ̂ corresponds to the complex conjugate L ⊂ End(E2) = OΔ

of L. The corresponding public key is the image ϕ̂(Q).

Signing. A user signs a messageM by computing the hash of the message onto a
point P ∈ E1[m], and then applying the secret isogeny ϕ to get the signature σ =
ϕ(P ).

Verification. The verification step depends on the adjoint property of ϕ and ϕ̂
with respect to the Weil pairing [12, Ch. 3, Prop. 8.2]. The verifier checks that
em(Q, σ) = ±em(ϕ̂(Q), P ) holds.

This system also requires two applications of an isogeny, one for setting up the
user’s public key and one for signing. Verification does not require computation
of an isogeny. Since the two elliptic curves are public, it is clear that the secret
isogeny must have large degree to avoid exhaustive search attacks. We note that
there are many isogenies of large degree that fit our theorem, since half of the
primes split in the ring End(E) and lead to an ideal L that we can use.

Acknowledgement. We thank René Schoof for helpful discussions.
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Abstract. Kolyvagin has shown how to study the Shafarevich-Tate
group of elliptic curves over imaginary quadratic fields via Kolyvagin
classes constructed from Heegner points. One way to produce explicit
non-trivial elements of the Shafarevich-Tate group is by proving that a
locally trivial Kolyvagin class is globally non-trivial, which is difficult in
practice. We provide a method for testing whether an explicit element of
the Shafarevich-Tate group represented by a Kolyvagin class is globally
non-trivial by determining whether the Cassels pairing between the class
and another locally trivial Kolyvagin class is non-zero. Our algorithm
explicitly computes Heegner points over ring class fields to produce the
Kolyvagin classes and uses the efficiently computable cryptographic Tate
pairing.

1 Introduction

The Kolyvagin Euler system of cohomology classes constructed in [15] (see also
[11] and [19]) is one of the most powerful tools for studying the Shafarevich-
Tate group of an elliptic curve over a quadratic imaginary field with a Heeg-
ner discriminant. Under certain assumptions, it can be used to prove that the
Shafarevich-Tate group of the elliptic curve is finite, and to determine its exact
group structure (see [11], [15] and [19]). The cohomology classes constructed
by Kolyvagin are locally trivial at all but a finite set of places. One can write
down local divisibility conditions on the corresponding Heegner points which
are equivalent to local triviality at the remaining finite set of places. Yet, even
when those conditions are satisfied, there is no guarantee that the Kolyvagin
cohomology class is a non-trivial element of the Shafarevich-Tate group.

One strategy for proving that such an element corresponds to a non-trivial ele-
ment of the Shafarevich-Tate group is to prove that it pairs with another element
of the Shafarevich-Tate group via the Cassels pairing to a nonzero element of
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Q/Z . The Cassels pairing is a skew-symmetric pairing on the Shafarevich-Tate
group X(K,E) which is non-degenerate when X(K,E) is finite. To use this
approach we need a way of explicitly computing the Cassels pairing. Our goal
in this paper is to describe a method for deciding whether the Cassels pairing
on two suitably chosen distinct locally trivial Kolyvagin cohomology classes is
nonzero. The algorithm uses the cryptographic Tate pairing and the computation
of Heegner points over ring class fields.

Our algorithm may have interesting applications to the study of X(K,E).
For instance, Mazur and Rubin ([18]) have suggested that X(K,E) should be
generated by locally trivial Kolyvagin cohomology classes. An interesting com-
putational question is to test this conjecture experimentally and to observe in
practice and predict bounds on the size of the Kolyvagin primes necessary to
find generators for X(K,E)[p]. Furthermore, our algorithm may be used for
producing examples related to visibility of X(K,E) at higher level in the sense
of Stein and the second author [14].

We first recall the definition of the Shafarevich-Tate group of an elliptic curve.
Section 2 provides the necessary background on Heegner points and describes
the construction of the Kolyvagin cohomology classes out of these points. In
Section 3 we explain how to decide whether a Kolyvagin cohomology class is
locally trivial. The algorithm takes as input the coordinates of the Heegner
point in the corresponding ring class field.

In Section 4 we discuss the Cassels pairing in general and establish a formula
for the pairing of two locally trivial Kolyvagin classes in terms of the Tate local
pairing. In Section 5 we explain how the Tate local pairing is related to a pairing
over finite fields, known in the cryptographic literature as the (cryptographic)
Tate pairing. In Section 6 we apply the pairing for suitably chosen Kolyvagin
classes to decide whether they pair non-trivially via the Cassels pairing. Finally,
in Section 7 we explain the computation of the coordinates of Heegner points
over ring class fields and give an example.

Notation and Background. For a field K, K denotes an algebraic closure of
K. For a number field K, MK denotes the set of places of K (both archimedean
and non-archimedean). For v ∈MK ,Kv is the completion ofK at v. For a fieldK
and a smooth commutative K-group scheme G, Hi(K,G) denotes the Galois
cohomology group Hi(GKs/K , G(Ks)) whereKs is a fixed separable closure ofK.

Let E be an elliptic curve over a number field K. The Shafarevich-Tate group
of E over K is

X(K,E) := Ker

(

H1(K,E) →
∏

v∈MK

H1(Kv, E)

)

.

For a positive integerm we define them-Selmer group Sel(m)(K,E) of the elliptic
curve as

Sel(m)(K,E) := Ker

(

H1(K,Em) →
∏

v∈MK

H1(Kv, E)m

)

,
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where each map H1(K,Em) → H1(Kv, E)m is the composition of the maps
H1(K,Em) → H1(Kv, Em) and H1(Kv, Em) → H1(Kv, E)m (for more details
see [24, Ch.X]). In general, if m is a positive integer and G is an abelian group
object, we denote by either Gm or G[m] the kernel of the multiplication-by-m
map on G.

2 Heegner Points and the Kolyvagin Construction

Heegner Points over Ring Class Fields. The standard references for this
section are [11], [15] and [19]. Let E be an elliptic curve over Q of conductor
N . Let K = Q(

√
−D), where −D is a fundamental discriminant, D �= 3, 4, and

all prime factors of N are split in K, i.e. (N) = NN̄ for an ideal N of the
ring of integers OK of K with OK/N � Z/NZ. We call such a discriminant a
Heegner discriminant for E/Q. By the modularity theorem [2], there is a modular
parameterization ϕ : X0(N) → E. We view OK and N as Z-lattices of rank two
in C and observe that C/OK → C/N−1 is a cyclic isogeny of degree N between
the elliptic curves C/OK and C/N−1. Here N−1 denotes the fractional ideal
of OK for which NN−1 = OK . This isogeny corresponds to a complex point
x1 ∈ X0(N). According to the theory of complex multiplication [25, Ch.II], the
point x1 is defined over the Hilbert class field K1 of K.

More generally, let On = Z + nOK be the order of index n in OK and let
Nn = N ∩On. Then On/Nn � Z/NZ and the map C/On → C/N−1

n is a cyclic
isogeny of degree N and thus it defines a point xn ∈ X0(N)(C). Again, by the
theory of complex multiplication, this point is defined over the ring class field
Kn of conductor n over K.

One can use the parameterization ϕ : X0(N) → E to obtain points yn = ϕ(xn)
on E. Define yK to be the point yK = TrK1/K(y1). If N ′ is another ideal with
O/N ′ � Z/NZ and corresponding point y′K , we have yK = ±y′K+ (torsion). We
refer to yK as the Heegner point for the discriminant D (where −D is negative).

Surjectivity of the Galois Representation and Choice of p. Let E and
K be as above. For a rational prime p, let Q(Ep) be the extension generated by
the p-torsion points of E in K. If the elliptic curve E does not have complex
multiplication then according to a theorem of Serre [23, Thm. 2], the extension
Q(Ep)/Q has Galois group GL2(Fp) for all but finitely many primes p; i.e., the
associated mod p Galois representation is surjective for all but finitely many
primes p. In practice, one tests the surjectivity of the Galois representation for a
given E and p by using the algorithm of [10, §2.1], which has been implemented
by Stein in the computer algebra system SAGE [26].

Construction of the Cohomology Classes. In [15], Kolyvagin uses the
points yn for suitably chosen indices n to define cohomology classes dn,M ∈
H1(K,E)pM which are locally trivial at all places coprime to n. We give a brief
account of the construction here following the notation in [11] (see [11] and [15]
for full details).
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Definition 1. Let E,K, p be as above, and let M be a positive integer. A prime
number � is called a Kolyvagin prime for (E,K, p,M) if the following three
conditions are satisfied

1. � does not divide N ·D · p.
2. � is inert in K.
3. a� ≡ �+ 1 ≡ 0 mod pM .

For each such �, let λ denote the unique prime ofK above � and let G� = GK�/K1 .
Then G� � (OK/�OK)×/(Z/�Z)× � F×

λ /F
×
� is cyclic of order �+ 1, so one can

choose a generator σ� ∈ G�. Let Tr� =
∑�

i=0 σ
i
� and let D� ∈ Z[G�] be chosen in

such a way that
(σ� − 1) ·D� = 1 + �− Tr� .

For instance, one can choose D� =
�∑

i=1

i · σi
�.

Now suppose that n is a square-free product of Kolyvagin primes for (E,K,
p,M). LetDn =

∏
�|nD�, Gn = GKn/K and Gn = GKn/K1 . Suppose that S ⊂ Gn

is a system of coset representatives for Gn/Gn. One can show [11, Prop. 3.6] that
the image of Dnyn in E(Kn)/pME(Kn) is fixed by Gn. Thus, if we set

Pn =
∑

σ∈S

σ(Dnyn),

then the image of Pn in E(Kn)/pME(Kn) will be fixed by Gn. To define the
classes, we consider the following commutative diagram

0
��

H1(Kn/K,E(Kn))pM

Inf��
0 �� E(K)/pME(K) δ ��

��

H1(K,EpM ) ��

φ��

H1(K,E)pM
��

Res��

0

0 �� (E(Kn)/pME(Kn)
)Gn δ �� H1(Kn, EpM )Gn �� H1(Kn, E)Gn

pM

According to [11], the restriction map φ : H1(K,EpM ) → H1(Kn, EpM )Gn is an
isomorphism, so we can define the cohomology class

cn,M = φ−1(δ(Pn)) ∈ H1(K,EpM ).

By Lemma 4.1 in [19], cn,M is represented by the cocycle

σ 	→ − (σ − 1)Pn

pM
+ σ

Pn

pM
− Pn

pM
, (1)

where (σ−1)Pn

pM is the unique pM -division point of (σ − 1)Pn in E(Kn).
Let dn,M be the image of cn,M in H1(K,E)pM .
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3 An Algorithm for Deciding Local Triviality

One of the basic properties of the class dn,M is that it is locally trivial at all but the
places lying over the prime divisors of n. We denote by resv the restriction resv :
H1(K,E) → H1(Kv, E). The following proposition is proved in [11, Prop. 6.2].

Proposition 1. (i) If v is a place of K such that v � n or if v = ∞ is the
archimedean place then resv(dn,M ) = 0.
(ii) If λ is a place of K above a prime divisor � of n then resλ(dn,M ) = 0 if and
only if Pn/� ∈ pME(Kn/�,λ′) for one (and hence all) places λ′ of Kn/� dividing
λ. Here, Kn/�,λ′ denotes the completion of Kn/� at λ′.

The following standard lemma will be used to provide an algorithm for deciding
whether a point is divisible.

Lemma 1. Let F be any number field and let Fv be the completion of F at a
non-archimedean place v. Let E be an elliptic curve over Fv with good reduction.
Let m be an integer which is relatively prime to the characteristic of the residue
field kv. We have
1. E(Fv)/mE(Fv) ∼= Ẽ(kv)/mẼ(kv), and
2. Em(Fv) ∼= Ẽm(kv).

In particular, a point Q ∈ E(Fv) is m-divisible if and only if its reduction Q̃ ∈
Ẽ(kv) is m-divisible.

Proof. Consider the following commutative diagram

K1

��

Em(Fv)

��

Ẽm(kv)

��
0 �� E1(Fv)

[m]��

��

[m]��

E(Fv) ��

[m]��

Ẽ(kv)
[m]��

�� 0

0 �� E1(Fv) ��

��

E(Fv) ��

��

Ẽ(kv) ��

��

0

C1 E(Fv)/mE(Fv) Ẽ(kv)/mẼ(kv)

where K1 and C1 are the kernel and cokernel of the first map, and E1(Fv) is the
kernel of reduction. We use the snake lemma to get an exact sequence

C1 → E(Fv)/mE(Fv) → Ẽ(kv)/mẼ(kv) → 0

Since m is prime to the characteristic of kv the multiplication-by-m map on
E1(Fv) is an isomorphism, i.e. K1 = C1 = 0 ([24, VII, Prop.2.2, IV,§3]). Thus,
we get isomorphisms E(Fv)/mE(Fv) � Ẽ(kv)/mẼ(kv) and Em(Fv) � Ẽm(kv).
This proves the lemma.

Remark 1. Applying this to the Kolyvagin setup, by Proposition 1, the class
dn,M is locally trivial at λ if and only if Pn/� is in pME(Kn/�,λ′). According to
the above lemma, this is equivalent to P̃n/� ∈ pM Ẽ(kλ), since Kλ and Kn/�,λ′

have the same residue field. The last condition can be tested by computing the
reduction of Pn/� modulo λ′.
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4 The Cassels Pairing on the Shafarevich-Tate Group

In this section we consider an elliptic curve E over an arbitrary number field
K. We will describe a skew-symmetric pairing on the Shafarevich-Tate group
X(K,E), the Cassels pairing, which will be non-degenerate in the case when
X(K,E) is finite. The description follows [19, §2]. Let d ∈ X(K,E)m and
d′ ∈ X(K,E)m′ be two elements of the Shafarevich-Tate group. Choose a lift
c′ ∈ Sel(m

′)(K,E) of d′ and for each valuation v ∈MK choose yv ∈ E(Kv), such
that c′v = δ(yv) (δ : E(Kv) → H1(Kv, Em′) is the connecting homomorphism).
Also, assume that there exists a class d1 ∈ H1(K,E)mm′ , such that m′d1 = d.
Since d is locally trivial, resv(d1) ∈ H1(Kv, E)m′ . We define the Cassels pairing
〈 , 〉C between d and d′ as

〈d, d′〉C :=
∑

v∈MK

〈yv, resv(d1)〉Kv ,

where 〈 , 〉Kv : E(Kv) × H1(Kv, E) → Q/Z is the Tate local pairing. For more
detail on Tate local duality and the pairing see [20].

Computing the Cassels Pairing on Kolyvagin Classes. The next propo-
sition, which is proved in [19, Prop.4.7], specializes the above formula to locally
trivial Kolyvagin cohomology classes.

Proposition 2. Let E,K, p be as in Section 2. LetM andM ′ be positive integers
and let n and n′ be square-free products of Kolyvagin primes for (E,K, p,M+M ′)
and (E,K, p,M ′), respectively. Suppose that the classes dn,M ∈ H1(K,E)pM and
dn′,M ′ ∈ H1(K,E)pM′ are everywhere locally trivial (i.e. they lie in X(K,E)).
Then the Cassels pairing is

〈dn,M , dn′,M ′〉C =
∑

�|n,(�,n′)=1

〈Pn′ , resλ(dn,M+M ′ )〉Kλ
.

For simplicity of notation, we write the pairing as 〈 , 〉Kλ
rather than introducing

Kn′,λ′ as in Proposition 1. We use the definition of the pairing given in the
previous section with m = pM and m′ = pM ′

. It follows from [19, Lemma 4.6]
that pM ′

(dn,M+M ′ ) = dn,M , so the element dn,M+M ′ can be used as d1 in the
definition of the pairing given in the previous section.

5 Tate Local Pairing and Pairings over Finite Fields

The main reference for this section is [8]. Throughout this section, let K be any
number field, and let Kv be the completion of K at a non-archimedean place v
of K. Let kv be the residue field of Kv, and let E be an elliptic curve over Kv

with good reduction. Let m be an integer which is prime to the characteristic of
kv. Consider the Tate local pairing

〈 , 〉Kv : E(Kv)/mE(Kv)× H1(Kv, E)m → Q/Z.



Computing the Cassels Pairing on Kolyvagin Classes 119

Since the Cassels pairing can be expressed as a sum of local Tate pairings by
Proposition 2, we would like to compute the Tate local pairing to determine if
two Kolyvagin classes pair non-trivially under the Cassels pairing. Unfortunately,
the Tate local pairing in this form is quite hard to compute. We will now show
how to relate the pairing 〈 , 〉Kv to a pairing over finite fields, and we will then use
this relationship to detect whether certain Kolyvagin classes pair to a non-trivial
element.

Description of H1(Kv, E)m. We will describe the group H1(Kv, E)m in a
way which is more convenient for computations. Fix an algebraic closure Kv of
Kv. Let π be a uniformizer of Kv and let ζm be a primitive m-th root of unity
in Kv. Consider the extensions Lm = Kv(ζm, π1/m) and Kv(ζm) of Kv, where
π1/m ∈ Kv. The Galois group GKv(ζm)/Kv

acts on GLm/Kv(ζm) by conjugation.
Let Kv(Em) be the field obtained by adjoining the coordinates of all m-torsion
points of E defined over Kv. The extension Kv(Em) is unramified and therefore
cyclic over Kv. Moreover, since the Weil pairing is Galois equivariant, it con-
tains Kv(ζm). Therefore, GKv(Em)/Kv

acts on GLm/Kv(ζm) through its quotient
GKv(ζm)/Kv

. The following proposition (see also [8, Prop.3.15] and [4, Prop 6.5])
describes the group H1(Kv, E)m as the cohomology of a finite group acting on
a finite module.

Proposition 3. H1(Kv, E)m � HomGKv(Em)/Kv
(GLm/Kv(ζm), Em).

In particular, if μm ⊂ Kv then the isomorphism becomes

H1(Kv, E)m � HomGKv(Em)/Kv
(GLm/Kv

, Em).

Proof. Let GKv = GKv/Kv
, let IKv ⊂ GKv be the inertia group of GKv , and let

Gkv = Gkv/kv
. Consider the exact sequence

0 → E1(Kv) → E(Kv) → Ẽ(kv) → 0,

where E1(Kv) is the kernel of reduction. Consider the corresponding long exact
sequence of Galois cohomology, where GKv acts on Ẽ(kv) through its quotient
GKv/IKv � Gkv .

H1(Kv, E1) → H1(Kv, E) → H1(Kv, Ẽ) → H2(Kv, E1) → . . . .

Since m is coprime to the characteristic of kv it follows from [24, Prop. 3.1(a)]
that the group E1(L) ism-primary for any finite extension L/Kv, L ⊂ Kv, so E1

ism-primary. It follows from the Kummer sequence for E1 that H1(Kv, E1)[m] =
H2(Kv, E1)[m] = 0. Therefore, the map

H1(Kv, E)[m] → H1(Kv, Ẽ)[m]

is an isomorphism.
Next, the inflation-restriction sequence for IKv ⊂ GKv gives us

0 → H1(kv, Ẽ) → H1(Kv, Ẽ) → H1(IKv , Ẽ)GKv /IKv → H2(kv, Ẽ)
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By [16], H1(kv, Ẽ) = 0, and by [22, p. 189] we also have H2(kv, Ẽ) = 0. Since
IKv acts trivially on Ẽ, we obtain an isomorphism

H1(Kv, Ẽ) ∼= Hom(IKv , Ẽ)GKv /IKv .

Finally, Hom(IKv , Ẽ)GKv /IKv [m] ∼= Hom(IKv , Ẽm)GKv /IKv , which is isomorphic
to HomGKv(Em)/Kv

(GLm/Kv(ζm), Em), by the fact that a homomorphism IKv →
Em factors through the tame inertia group since m is coprime to the residue
characteristic. This finishes the proof.

Let H := GKv(Em)/Kv
. By Proposition 3, we obtain a modified pairing

〈 , 〉Kv : E(Kv)/mE(Kv)×HomH(GLm/Kv(ζm), Em(Kv)) → Br(Kv)[m],

which is induced by the Tate pairing. Here we use the fact that Br(Kv) ∼= Q/Z,
and that the image of the Tate local pairing (for m) lies in the m-torsion part
of Q/Z .

Reducing to the Finite Field Case. In this section we assume that in addi-
tion μm ⊂ Kv, or equivalently that m | #k×v . We have that Br(Kv)[m] is cyclic
of order m. In this situation, we have a description of the Tate pairing (up to
sign) due to Lichtenbaum (see [17], see also [9, 5.3.4]):

Theorem 1 (Lichtenbaum). Let σ be a generator of GLm/Kv
and let P1 ∈

E(Kv) and P2 ∈ Em(Kv). Let D1 ∼ (P1) − (O) be such that D1 is coprime to
D2 = (P2) − (O). Let # : GLm/Kv

→ Em(Kv) be the homomorphism sending σ
to P2 and let f2 be a function on E whose divisor is equivalent to mD2. Then

〈P1 +mE(Kv), #〉Kv = f2(D1),

where f2(D1) is considered as an element of K×
v /NLm/Kv

(L×
m). We have K×

v /
NLm/Kv

(L×
m) ∼= k×v /(k×v )m.

SinceGLm/Kv
is cyclic, an elementψ ∈ Hom(GLm/Kv

, Em(Kv)) is uniquely deter-
mined by the image of its generator ψ(σ) in Em(Kv). So Hom(GLm/Kv

, Em(Kv))
is non-canonically (depending on the choice of π and the generator σ) isomorphic
to Em(Kv).

Let Ẽ/kv be the reduction of E/Kv. We have Em(Kv) � Ẽm(kv) by Lemma 1.
Together with the above argument this implies that Hom(GLm/Kv

, Em(Kv)) is
isomorphic to Ẽm(kv). Also, since Br(Kv)[m] is cyclic of orderm, it is isomorphic
to k×v /(k×v )m.

By Lemma 1 we also have E(Kv)/mE(Kv) � Ẽ(kv)/mẼ(kv). Thus, as a
corollary of Lichtenbaum’s theorem, we obtain the well known cryptographic
Tate pairing which can be efficiently computed.

Corollary 1. There is a non-degenerate pairing

ϕm : Ẽ(kv)/mẼ(kv) × Ẽm(kv) → k×v /(k
×
v )m,
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which is given by the following rule: Let P1 ∈ Ẽ(kv) and P2 ∈ Ẽm(kv) be two
points on the reduced elliptic curve. Let Di be a divisor equivalent to (Pi)− (O)
(i = 1, 2), such that D1 and D2 are coprime. Let f2 be a function on Ẽ with
divisor mD2. Then

ϕm(P1 +mẼ(kv), P2) = f2(D1),

where f2(D1) is considered as an element of k×v /(k
×
v )m.

Remark 2. Let P1 ∈ E(Kv) and P2 ∈ Em(Kv) be as in Theorem 1, and let #
be the homomorphism sending σ to P2. Let P̃1, P̃2 be the reductions of P1

and P2, respectively. By Lemma 1, E(Kv)/mE(Kv) ∼= Ẽ(kv)/mẼ(kv), and
Em(Kv) ∼= Ẽm(kv). This implies that ϕm(P̃1, P̃2) is nonzero if and only if
〈P1 +mE(Kv), #〉Kv is nonzero. Hence we conclude that the Tate local pairing
〈 , 〉Kv : E(Kv)/mE(Kv) × H1(Kv, E)m → Q/Z is nonzero if the cryptographic
Tate pairing ϕm(P̃1, P̃2) for the corresponding points P̃1, P̃2 is nonzero.

For efficient computation of the cryptographic Tate pairing, see [1] and [7].

6 Application to Kolyvagin Cohomology Classes

In this section we apply the results explained in the previous section to certain
Kolyvagin cohomology classes. Let E, K, p and M be as in Section 2. Suppose
that � is a Kolyvagin prime for (E,K, p,M + 1), such that the class d�,M is an
element of the Shafarevich-Tate group X(K,E), i.e. d�,M is locally trivial at the
unique place λ | �.

We provide a method for testing whether the class d�,M is a non-trivial element
of X(K,E) by pairing the class d�,M with another everywhere locally trivial
Kolyvagin cohomology class dn′,1 (which we call a test class) with � � n′. If
〈d�,M , dn′,1〉C �= 0, then both the class d�,M and the test class dn′,1 are nonzero
elements of X(K,E). However, if 〈d�,M , dn′,1〉C = 0, then we cannot conclude
anything. So in practice, we will have to compute 〈d�,M , dn′,1〉C for multiple test
classes. Our algorithm takes as input the data (E,K, p,M, �, n′) for which both
d�,M and dn′,1 are (possibly trivial) elements of X(K,E). The output is TRUE
or FALSE depending on whether the pairing is nonzero or zero, respectively.

We test whether the Cassels pairing is non-zero via the Tate pairing over finite
fields by using Proposition 2 and the reduction in Section 5. First, we use the
methods in Section 7 to compute the coordinates of the Heegner points y�, yn′

and their Galois conjugates. Once we do this, we can compute the points P� and
Pn′ in E(Kλ) defined in Section 2. By Proposition 2,

〈d�,M , dn′,1〉C = 〈Pn′ , resλ(d�,M+1)〉Kλ
.

The field Kλ contains the pM+1-th roots of unity since the Kolyvagin assump-
tions imply that #F×

�2 = �2 − 1 ≡ 0 mod pM+1. Hence we can apply Proposi-
tion 3 with the local field Kλ and we let m := pM+1. We obtain

H1(Kλ, E)m
∼= HomGKλ(Em)/Kλ

(GLm/Kλ
, Em).
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By the previous section, 〈Pn′ , resλ(d�,M+1)〉Kλ
is nonzero if ϕm(P̃n′ , Q) is nonzero,

where
ϕm : Ẽ(F�2)/mẼ(F�2) × Ẽm(F�2) → F×

�2/(F
×
�2)

m

is the cryptographic Tate pairing, P̃n′ is the image of Pn′ in Ẽ(F�2), and Q is
the image of resλ(d�,M+1) in Ẽm(F�2).

Since we have an explicit description for a 1-cocycle that represents the class
d�,M+1 associated to the Heegner point y� (see Equation (1) in Section 2), we can
compute its image in Hom(GLm/Kλ

, Ẽm(F�2)) and therefore the corresponding
point on the reduction Ẽm(F�2). Thus, we can compute the pairing ϕm.

7 Computational Aspects and Implementation Issues

Choice of E, p, D, �, n′. Choose a non-CM elliptic curve E over Q of conductor
N and analytic rank 1 from Cremona’s tables [5] with non-trivial conjectural p-
part of X(K,E) for some odd prime p such that ρE,p is surjective, and some
quadratic imaginary field K with a Heegner discriminant D coprime to p. In our
case, conjectural order of X(K,E) means the order predicted by a combination
of the Birch and Swinnerton-Dyer conjecture and the Gross-Zagier formula for
E/Q and the twist ED/Q. The precise conjecture (as stated in [19]) says that if
the Heegner point yK ∈ E(K) has infinite order then

#X(K,E) =

(
[E(K)/E(K)tors : ZyK ]

c ·
∏

q|N cq

)

,

where cq is the Tamagawa number for E at the prime q and c is a constant which
depends on the modular parameterization (the Manin constant). The computa-
tion of the conjectural order of X(K,E) has been implemented in SAGE and
uses the Heegner point algorithm of Watkins (see [27]). We use the methods of
Section 2 to test the surjectivity of the Galois representation ρE,p. For example,
we check that the curve E : y2 + xy + y = x3 − x2 (curve 53A1 in [5]) has
non-trivial 3-torsion in X(K,E) for K = Q(

√
−43) and the representation ρE,3

is surjective.
Once E, p and D are chosen, pick Kolyvagin primes � for (E, p,D, 1) and n′

for (E, p,D, 2).

Computation of Heegner Points over Ring Class Fields. The computa-
tion of Heegner points for non-fundamental discriminants now exists in MAGMA,
using the command HeegnerPoints and switching off the RemovePoint option.
However during the time of writing of this article that functionality was not avail-
able or known to be available, so we implemented a package ourselves. This section
explains some of the difficulties encountered during the implementation.

We compute the derived Heegner point P� =
∑

σ∈S σ(D�y�) over the ring class
field K� by computing the minimal polynomial of its x-coordinate. The last step
is achieved by running through all of the GK�/K = Pic(O�)-conjugates, where
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O� is the order of conductor � in K. Since � is an inert prime in K = Q(
√
D), the

degree of the ring class field over K is (�+ 1)hK , where hK is the class number
of K. We generate ideal class representatives for Pic(O�) by using Kluners and
Pauli’s package. This functionality is available in MAGMA as RingClassGroup.

To compute P� and its GK�/K-conjugates we use the reciprocity law. If c repre-
sents a class in Pic(O�), then the ideal class [c] acts on the Heegner point [C/I →
C/J ] by mapping it to the point [C/c−1I → C/c−1J ]. Once we compute τ in the
upper half plane corresponding to each conjugate, we need to evaluate ϕ(τ) to
sufficient accuracy, where ϕ(τ) =

∑

n≥1

an

n
qn, q = e2πiτ , and an is the n-th Fourier

coefficient of the modular form corresponding to the elliptic curve E.
Evaluating ϕ to sufficient accuracy turns out to be computationally expensive.

First of all, the number of digits of accuracy required is significant and can be
estimated as in [3] and [6] in terms of the height of the Heegner point. Cohen
and Elkies address the computation of Heegner points with coefficients in Q,
and use three tools which hold over Q: (1) known bounds on the difference
between the näıve and canonical heights of the Heegner point [3, Thm.8.1.18],
(2) the Gross-Zagier formula for the canonical height of the Heegner point in
terms of the derivative of the L-series [12], and (3) the conjectural BSD formula
relating the derivative of the L-series to the order of X and the regulator (see [3,
Alg.8.6.11, Step 1]). In our setting, the Heegner points are defined over the
ring class field and we made rough estimates of the accuracy required using a
conjectural generalization of the Gross-Zagier formula [21, Statement 2.6].

Secondly, the computation of the Heegner points requires not only large
amounts of precision to evaluate and recognize, but also many terms from the
Fourier expansion of the modular form. Cohen gives an estimate for the number
of terms needed for computing Heegner points over Q in [3, Alg.8.6.11, Step 4]
in terms of the binary quadratic forms representing the ideal classes.

The last few steps of the algorithm involve applying the Weierstrass ℘-function
to the point ϕ(τ) on the complex uniformization C/Λ of E to obtain the
x-coordinate of the Heegner point, forming the minimal polynomial of the x-
coordinate over the field K, and using the continued fraction algorithm to rec-
ognize the coefficients of this polynomial.

Example: D = −43, p = 3, � = 5, N = 53. Let E be the elliptic curve 53A1
from Cremona’s tables [5] with Weierstrass equation E : y2+xy+y = x3−x2. We
check that D = −43 is a Heegner discriminant for this elliptic curve and that the
Galois representation ρE,3 is surjective. Conjecturally, X(K,E)[3] ∼= Z/3×Z/3
for K = Q(

√
−43).

By computing the coefficients of the Fourier expansion, we determine that
� = 5 is a Kolyvagin prime for (E,−43, 3, 1). Although the minimal polynomial
for the x-coordinate of the Heegner point is small for this example, z6 − 12z5 +
1980z4 − 5855z3 + 6930z2 − 3852z + 864, the minimal polynomial P5 of the x-
coordinate of the derived Heegner point required using 1,000 digits of accuracy
and 20,000 Fourier coefficients to compute. Further computations of Kolyvagin
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classes from derived Heegner points are accomplished in [13], where a different
method for proving non-triviality is given.

Acknowledgments. We would like to thank the anonymous referees for many
helpful comments and corrections, and for pointing out the MAGMA Heegner
points package for non-fundamental discriminants.
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Abstract. We describe a new method for constructing Brezing-Weng-
like pairing-friendly elliptic curves. The new construction uses the minimal
polynomials of elements in a cyclotomic field. Using this new construction
we present new “record breaking” families of pairing-friendly curves with
embedding degrees of k ∈ {16, 18, 36, 40}, and some interesting new con-
structions for the cases k ∈ {8, 32}.

1 Introduction

Standard cryptosystems such as the Elliptic Curve Digital Signature Algorithm,
Elliptic Curve Diffie-Hellman and ElGamal Elliptic Curve Encryption require
randomly generated elliptic curves for their implementation. On the other hand
cryptosystems such as short digital signatures, identity-based encryption and
one-round three-way key exchange, require so-called pairing-friendly elliptic
curves. These curves have special properties which most randomly generated
curves will not have. The interest in recent times is to explore various meth-
ods of constructing pairing-friendly elliptic curves with prescribed embedding
degrees, ideally to make them readily available, more efficient and more secure.
Many strategies have been proposed by different researchers to construct such
curves ([1, 3, 4, 5, 7, 13]).

Of particular interest to our discussion is the strategy of constructing pairing
friendly elliptic curves as proposed by Brezing and Weng [4]. This construction
basically uses the Cocks and Pinch idea [5] over polynomials. The interesting
point in the Brezing-Weng method is that it reduces the ratio between the bit
lengths of the finite field p and the order r of the subgroup with embedding
� These authors acknowledge support from the Science Foundation Ireland under

Grant No. 06/MI/006.

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 126–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Constructing Brezing-Weng Pairing-Friendly Elliptic Curves 127

degree k. This is measured by using a parameter ρ, defined as log p
log r . For example

the Cocks-Pinch method invariably produces curves with ρ ∼ 2, which is rather
inefficient. It is observed that small ρ-values are desirable in speeding up the
arithmetic on the curves in the underlying field. Ideally we would prefer ρ = 1,
which is already achieved by the MNT [13], BN [1] and Freeman [7] constructions,
for the cases k ∈ {3, 4, 6, 10, 12}.

Let G1 and G2 be finite cyclic additive groups of prime order r and GT

be a finite cyclic multiplicative group of order r. A bilinear pairing is a map
e : G1 ×G2 → GT that satisfies the following properties:

1. (bilinear): e(aP, bQ) = e(P,Q)ab, for all P ∈ G1 and Q ∈ G2 and for all
a, b,∈ Zr

2. (non-degenerate): there exists P ∈ G1 and Q ∈ G2 such that e(P,Q) �= 1
3. (computable): e can be efficiently computed.

The traditional cryptographic pairings are the Weil and the Tate pairings. In
terms of efficiency it is generally accepted that the Tate pairing is superior to
the Weil pairing. The algorithm for the calculation of the Tate pairing requires a
Miller loop, followed by a final exponentiation. Recently more efficient variants
of the Tate pairing have been proposed like the Ate pairing [10], culminating in
the recent discovery of the R-ate pairing [11], [9], [18]. These variants achieve
their greater efficiency by requiring a much shorter (and thus faster) Miller loop.

Pairings change the elliptic curve discrete logarithm problem (ECDLP) on
elliptic curves over a prime field E(Fp) into the discrete logarithm problem in
some extension field Fpk . As such, for the pairing-based cryptosystems to be
secure, the ECDLP in E(Fp) and the DLP in the multiplicative group F∗

pk must
both be computationally infeasible [8]. The parameter k is called the embedding
degree.

On a non-supersingular elliptic curve while one parameter of the pairing may
be a point over the base field E(Fp), the best that can be done for the second
parameter is that it be a point on a twisted curve over an extension fieldE(Fpk/d),
where d | k and d = 2 for the quadratic twist is always possible for even k. The
use of even k also enables the useful denominator elimination optimisation for
the calculation of the pairing [2], and so this is generally regarded as a good
idea. Note that for the optimal R-ate pairing, G1 must be the group represented
in the larger extension field.

The paper is organised as follows: In Section 2 we discuss pairing-friendly
elliptic curves. The main contribution of this paper is presented in Sections
3 and 4 where we describe our method and where we give examples of the
application of the new method to construct pairing-friendly elliptic curves with
various embedding degrees k. We demonstrate the utility of the method by
constructing new “record-breaking” families of pairing-friendly elliptic curves of
embedding degrees 16, 18, 36 and 40.

2 Pairing-Friendly Elliptic Curves

The embedding degree in our context is defined as follows [7].
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Definition 1. Let E be an elliptic curve defined over a prime finite field Fp.
Let r be a prime dividing #E(Fp). The embedding degree of E with respect to r
is the smallest positive integer k such that r | pk − 1.

The definition explains that k is the smallest positive integer such that the
extension field Fpk , contains a set of rth roots of unity. The problem is: given
k, find a prime p and elliptic curve E, defined over the finite field Fp, such
that #E(Fp) has a large prime factor r and the curve has embedding degree
k with respect to r [7]. In pairing-based cryptography, when curves have small
embedding degrees and a large prime-order subgroup they are known as pairing-
friendly elliptic curves.

The number of points on an elliptic curve, E, is given by #E = p+1−t, where
t is the trace of the Frobenius; then by a simple substitution [2] the condition
r|pk − 1 is equivalent to

(t− 1)k ≡ 1 mod r,

so t − 1 is a k-th root of unity modulo r. Note that it is not sufficient just to
find values of r, p and t which satisfy these conditions but it is also necessary
to be able to construct the associated elliptic curve. The only known method
for doing this is the method of Complex Multiplication (CM). The CM method
requires that 4p− t2 should be of the form Dy2, where for practical reasons the
discriminant D must be less than about 1010. This is a very restrictive condition,
and so pairing-friendly elliptic curves are not so easy to find.

Let us set down some definitions.

Definition 2. Let g(x) be a polynomial with rational coefficients. Then g(x)
represents integers if there exists x0 ∈ Z such that g(x0) is an integer.

Definition 3. Let g(x) be a polynomial of even degree with rational coefficients.
Then g(x) represents primes if:

1. it is a non-constant irreducible polynomial with a positive leading coefficient
2. it represents integers
3. there exists x1 ∈ Z and x2 ∈ Z, for which g(x) represents integers, such that

gcd (g(x1), g(x2)) = 1.

Note that if n · g(x) ∈ Z[x] then we can verify the second condition by testing
n consecutive integer values of x. In addition, if � is a prime greater than the
degree of g(x), then we can test the third condition by testing � consecutive
integer values of x.

The following definition of pairing-friendly elliptic curves is an adaptation
from [8]:

Definition 4. Let t(x), r(x), and p(x) be polynomials with rational coefficients.
For a given positive integer k and square free integerD, the triple (t(x), r(x), p(x))
represents a family of elliptic curves with embedding degree k and CM discriminant
D if the following conditions are satisfied:
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a. p(x) represents primes.
b. r(x) represents primes.
c. t(x) represents integers.
d. r(x) divides p(x) + 1− t(x).
e. r(x) divides Φk(t(x) − 1), where Φk is the kth cyclotomic polynomial.
f. Dy(x)2 = 4p(x)− t(x)2 has infinitely many integer solutions in x.

Here the ρ-value for a family of curves is defined as follows:

Definition 5. Let t(x), r(x), p(x) ∈ Q[x], and suppose (t, r, p) represents a fam-
ily of elliptic curves with embedding degree k. The ρ-value of the family repre-
sented by (t, r, p) is given by ρ = limx→∞

log(p(x))
log(r(x)) = deg(p(x))

deg(r(x)) .

Note that the value of p(x) is the size of the field while the value of r(x) is the
size of the group in which we wish to do our cryptography.

The algorithm for the Brezing-Weng construction is summarised in the fol-
lowing algorithm[8]:

Algorithm 2.4. For a fixed positive integer k and positive square-free integer
D, execute the following steps:

1. Choose a number field K containing
√
−D and a primitive kth root of unity

ζk.
2. Find an irreducible (but not necessarily monic) polynomial r(x) ∈ Z[x] such

that Q[x]/r(x) ∼= K.
3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 ∈ K.
4. Let y(x) ∈ Q[x] be a polynomial mapping to ζk−1√−D

∈ K.
5. Let p(x) ∈ Q[x] be given by (t(x)2 +Dy(x)2)/4. If p(x) and r(x) represent

primes, then the triple (t(x), r(x), p(x)) represents a family of curves with
embedding degree k and discriminant D.

Pairing-friendly elliptic curves constructed using this method usually have
their ρ-values less than 2 and closer to 1.

The challenging part in the Brezing-Weng construction is finding the polyno-
mial r(x) satisfying the following conditions, the existence conditions:

1. r̃(x) = e · r(x), where r(x) represents primes and e ∈ N is a constant
2. K ∼= Q[x]/r̃(x) contains ζk and

√
−D

3. p(x) represents primes and
4. t(x) represents integers.

In many cases the Brezing and Weng method results in curves with discrim-
inant D = 1 or D = 3. Curves with these discriminants are not only easier to
find using the CM method (as clearly D is very small), they also permit very
efficient implementations, particularly of the R-ate pairing. For the case D = 1
the elliptic curve supports quartic twists (d = 4) if 4 | k, and for the case D = 3
the curve supports cubic (d = 3) and sextic (d = 6) twists for 3 | k and 6 | k
respectively. For example for the R-ate pairing, where D = 3 and k = 12 [1],
it is possible to implement the group G2 as points on E(Fp) over the base field
and G1 as points over the sextic twist, that is as points on E

′
(Fpk/6) = E

′
(Fp2).
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3 The New Construction

We start by making a general, if rather obvious, point about working with poly-
nomials with respect to an irreducible polynomial, rather than with integers with
respect to a prime modulus. Apower of a field element with respect to a prime mod-
ulus, will typically be a number the same size in bits as the modulus. Howeverwhen
working modulo an irreducible polynomial, the power of a field element will be a
polynomial of degree at least one less than that of the irreducible polynomial. With
some extra “luck” it may even be much less than this. Indeed it is exactly this kind
of luck which results in Brezing and Weng curves often having a ρ value much less
than 2, and closer to 1, (unlike the Cocks-Pinch method). This can alsobe exploited
to reduce the workload of the pairing’s final exponentiation [6].

In our construction we use a polynomial other than the cyclotomic polynomial
Φl(x) to define the cyclotomic field Q(ζl). In this construction we look for an
element γ of the cyclotomic field Q(ζl), where l is some multiple of the embed-
ding degree k. Through experiments, we found that choosing γ to be a linear
combination of a power basis {ζi

l | 0 ≤ i < φ(l)} with small integer coefficients,
often led to success. So let L be a bound on the absolute size of the integer coef-
ficients and allow a maximum ofM non-zero coefficients. If γ is in Q(ζl) but not
in any proper subfield then we find the minimal polynomial of γ in Q(ζl) which
we set as r̃(x). Otherwise γ gives a minimal polynomial whose degree is less than
φ(l). If D = 3, we set l = lcm(3, k); and if D = 1 we set l = lcm(4, k). Then
we proceed by using the Brezing-Weng construction to look for pairing-friendly
elliptic curves, with predefined k and D, as follows:

3.1 Outline of Our Algorithm

Search through elements
φ(l)−1∑

j=0

miζ
j
l of Q(ζl) where mi ∈ [−L,L]. For each el-

ement, γ ∈ Q(ζl) but not in any proper subfield of Q(ζl) compute the minimal
polynomial of γ and call it r̃(x). Then for each primitive kth root of unity, ζk do:

1. Compute the polynomial z(x) modulo r̃(x) mapping to ζk.
2. Find t(x) = z(x) + 1, which maps to ζk + 1 in Q[x]/r̃(x).
3. Using the algebraic relationship between ζk and

√
−D, find a polynomial

s(x) representing
√
−D in Q[x]/r̃(x).

4. Compute the polynomial y(x) = (t(x) − 2)s(x)/(−D).
5. Compute the polynomial p(x) = (t(x)2 +Dy(x)2)/4, and compute ρ. If p(x)

represents primes and the ρ-value is better than the best known, then
(a) Find the smallest positive number n ∈ Z, such that n · p(x) ∈ Z[x].
(b) Find the residue classes b modulo n such that p(x) ∈ Z

for x ≡ b mod n.
(c) Find the subset of those residue classes for which t(x) ∈ Z

for x ≡ b mod n.
If r̃(nx+ b) = e · r(x) where e is a constant in N and r(x) represents
primes, then output t(x), r̃(x), p(x), n, b, e.
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Thus for a given value of k, (t(nx + b), r̃(nx + b)/e, p(nx + b)) represents a
family of pairing-friendly elliptic curves. The ρ-value for such a family of curves
is then ρ = deg p(x)

deg r(x) . The elliptic curves found using this algorithm are pairing
friendly by construction, and have an embedding degree of k.

3.2 Searching for New Families of Pairing-Friendly Curves

This algorithm is potentially very time consuming. Our approach is to restrict
the search to integer coefficients with a limit L on their absolute size. We observe
that smaller coefficients are more likely to lead to usable solutions. But even so
the search space can quickly become huge for larger values of l. Therefore we
have taken two approaches. The first performs an exhaustive search through all
coefficients between −L and +L. If this is not practical, the second approach is
to limit the number of non-zero coefficients M to perhaps 2, 3 or 4. By trial and
error we found that elements of Q(ζl) of this form often produced good results.
The search programs are written in a mixture of NTL [14] and PARI [15]. For
comparision purposes a simple NTL program to generate Brezing and Weng
families of pairing friendly curves can be found at Mike Scott’s website [16].

4 Examples

The following examples demonstrate the construction of new families of pairing-
friendly elliptic curves. Most of our examples also improve the existing ρ-values
found in the literature. It is easy to verify that (t(nx+ b), r̃(nx+ b)/e, p(nx+ b))
for a particular embedding degree, satisfy the conditions given in Definition 4.

Example 4.1. We start however with the case k = 8, where we set no records in
terms of ρ, but nevertheless find some interesting new families of pairing friendly
curves. For this embedding degree there is a known Brezing and Weng family of
curves for D = 3 and l = 24 [4].

k = 8, D = 3

t(x) = x5 − x + 1

p(x) = (x10 + x9 + x8 − x6 + 2x5 − x4 + x2 − 32x + 1)/3

r(x) = x8 − x4 + 1

ρ = 5/4.

Such a pairing suffers from the fact that we cannot use a higher order twist for
G1, which must therefore be represented by points on E(Fp4).

However for a family of curves with k = 8 and D = 1 the quartic twist for G1

would be possible. Using our proposed method for K ∼= Q(ζ8) we search through
the range in which mi ∈ [−2, 2] and M = 2. We find that ζ8 − 2ζ38 ∈ Q(ζ8) has
minimal polynomial r̃(x) = x4 − 8x2 + 25.

In this field we find that (2x3−11x)/15 is a primitive 8th root of unity. So we
let t(x) = (2x3 − 11x+ 15)/15. With this we get y(x) = (x3 + 5x2 + 2x− 20)/15
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and p(x) = (x6 +2x5−3x4+8x3−15x2−82x+125)/180. When x ≡ ±5 mod 30,
t(x) represents integers, p(x) and r̃(x)/450 represent primes. So both of (t(30x±
5), r̃(30x±5)/450, p(30x±5)) represent a family of curves with embedding degree
8. In both cases we have

k = 8, D = 1

t(x) = (2x3 − 11x + 15)/15

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x + 125)/180

r̃(x) = x4 − 8x2 + 25

n = 30, b = ±5, e = 450

ρ = 3/2.

Here the ρ value is inferior to the previous case, but G1 can now be represented
by points over the smaller extension field Fp2 . However this construction does
not set any new records as similar families of curves are already reported in [8]
Example 6.18, and in [17] and [12].

Interestingly our method finds the BN family of pairing friendly curves [1].

Example 4.2. Fix the embedding degree k = 12 andD = 3 and setK ∼= Q(ζ12).
Searching through mi ∈ [−2, 2] and setting M = 4, we find ζ312 − ζ212 + ζ12 + 2 ∈
Q(ζ12) which has minimal polynomial r̃(x) = x4 − 6x3 + 18x2 − 36x+ 36. When
x ≡ 0 mod 6, t(x) represents integers, p(x) and r̃(x)/36 represent primes. So
(t(6x), r̃(6x)/36, p(6x)) represent a family of curves with embedding degree 12.
In this case we have

k = 12, D = 3

t(x) = (x2 + 6)/6

p(x) = (x4 − 6x3 + 24x2 − 36x + 36)/36

r̃(x) = x4 − 6x3 + 18x2 − 36x + 36

n = 6, b = 0, e = 36

ρ = 1.

Example 4.3. Fix the embedding degree k = 16 andD = 1 and setK ∼= Q(ζ16).
Searching through mi ∈ [−2, 2] and M = 2, we find −2ζ516 + ζ16 ∈ Q(ζ16) which
has minimal polynomial r̃(x) = x8 + 48x4 + 625. When x ≡ ±25 mod 70, t(x)
represents integers, p(x) and r̃(x)/61250 represent primes. So both of (t(70x ±
25), r̃(70x±25)/61250, p(70x±25)) represent a family of curves with embedding
degree 16. In both cases we have

k = 16, D = 1

t(x) = (2x5 + 41x + 35)/35

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x + 3125)/980

r̃(x) = x8 + 48x4 + 625

n = 70, b = ±25, e = 61250

ρ = 5/4.

This is an improvement over the old record value of ρ = 11/8.
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Example 4.4. Fix the embedding degree k = 18 andD = 3 and setK ∼= Q(ζ18).
With mi ∈ [−3, 3] and M = 2 we find −3ζ518 + ζ218 ∈ Q(ζ18) has minimal
polynomial r̃(x) = x6+37x3+343. When x ≡ 14 mod 42, t(x) represents integers,
p(x) and r(x)/343 represent primes. So (t(42x+14), r̃(42x+14)/343, p(42x+14))
represents a family of curves with embedding degree 18. We have

k = 18, D = 3

t(x) = (x4 + 16x + 7)/7

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21

r̃(x) = x6 + 37x3 + 343

n = 42, b = 14, e = 343

ρ = 4/3.

This is a significant improvement in ρ over the old record value of 19/12.
Until now there has not been a good choice of pairing-friendly families of curves

which are a good fit for the AES-256 level of security, for larger values of k.

Example 4.5. For the embedding degree k = 32, there is a Brezing and Weng
family of curves with ρ = 17/16, but with D = 3, which is the “wrong” discrim-
inant (3 � k) for a simpler form of G1 [8]. Here we suggest an alternative.

Fix embedding degree k = 32 and D = 1 and set K ∼= Q(ζ32). Searching
through mi ∈ [−3, 3] and M = 2, we find −3ζ32 + 2ζ932 ∈ Q(ζ32) has minimal
polynomial r̃(x) = x16 + 57120x8 + 815730721. When x ≡ ±325 mod 6214, t(x)
represents integers, p(x) and r̃(x)/93190709028482 represent primes. So both
of (t(6214x± 325), r̃(6214x± 325)/93190709028482, p(6214x± 325)) represent a
family of curves with embedding degree 32. In both cases we have

k = 32, D = 1

t(x) = (−2x9 − 56403x + 3107)/3107

p(x) = (x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8 + 815730721x2

− 4948305594x + 10604499373)/2970292

r̃(x) = x16 + 57120x8 + 815730721

n = 6214, b = ±325, e = 93190709028482

ρ = 9/8.

Example 4.6. Fix the embedding degree k = 36 and D = 3 and set K ∼=
Q(ζ36). Searching through mi ∈ [−2, 2] with M = 2, we find 2ζ36 + ζ736 ∈
Q(ζ36) has minimal polynomial r̃(x) = x12 +683x6 +117649. When for example
x ≡ 287 mod 777, t(x) represents integers, p(x) and r̃(x)/161061481 represent
primes.(There are other classes mod 777 that work.) So (t(777x+287), r̃(777x+
287)/161061481, p(777x+ 287)) represents a family of curves with embedding
degree 36. In both cases we have

k = 36, D = 3

t(x) = (2x7 + 757x + 259)/259
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p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7

+ 4781x6 + 117649x2 − 386569x + 823543)/28749

r̃(x) = x12 + 683x6 + 117649

n = 777, b = 287, e = 161061481

ρ = 7/6.

Again this is an improvement in ρ over the old record value of 17/12.

Example 4.7 Fix the embedding degree k = 40 and D = 1 and set K ∼=
Q(ζ40). Consider −2ζ40 + ζ1140 ∈ Q(ζ40). This element has minimal polynomial
r̃(x) = x16 + 8x14 + 39x12 + 112x10 − 79x8 + 2800x6 + 24375x4 + 125000x2 +
390625. When for example x ≡ ±1205 mod 2370, t(x) represents integers, p(x)
and r̃(x)/2437890625 represent primes. (There are other classes mod 2370 that
work.) So both of (t(2370x±1205), r̃(2370x±1205)/2437890625, p(2370x±1205))
represent a family of curves with embedding degree 40. In both cases we have

k = 40, D = 1

t(x) = (2x11 + 6469x + 1185)/1185

p(x) = (x22 − 2x21 + 5x20 + 6232x12 − 10568x11 + 31160x10

+ 9765625x2 − 13398638x + 48828125)/1123380

r̃(x) = x16 + 8x14 + 39x12 + 112x10 − 79x8

+ 2800x6 + 24375x4 + 125000x2 + 390625

n = 2370, b = ±1205, e = 2437890625

ρ = 11/8.

Again this is an improvement in ρ over the old record value of 23/16.

5 Conclusion

We have presented a new method of constructing pairing-friendly elliptic curves.
Basically the construction extends ideas from the Brezing-Weng method. The
main idea in the construction is to use minimal polynomials of the elements
of the cyclotomic field other than the cyclotomic polynomial Φl(x) to define
the cyclotomic field Q(ζl). The potential of the method has been illustrated
by constructing new families of pairing-friendly elliptic curves of degrees 8, 16,
18, 32, 36 and 40. In most of these cases the method improves the previously
best known ρ-values. Interestingly our method also rediscovers the BN family
of “ideal” ρ = 1 curves. This holds out the hope that by extending the search
space, further families of ideal pairing friendly curves might be found.
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Abstract. The problem of constructing pairing-friendly elliptic curves
has received a lot of attention. To find a suitable field for the construc-
tion we propose a method to find a polynomial u(x), by the method of
indeterminate coefficients, such that Φk(u(x)) factors. We also refine the
algorithm by Brezing and Weng using a factor of Φk(u(x)). As a result,
we produce new families of parameters using our algorithm for pairing-
friendly elliptic curves with embedding degree 8, and we compute some
explicit curves as numerical examples.

1 Introduction

Research on pairing-based cryptographic schemes has received interest over the
past few years. Recently many new and novel protocols have been proposed as
in [2, 3, 8, 12]. These protocols need an elliptic curve with special properties,
namely, the embedding degree is small enough and the curve has a large prime
order subgroup. However, randomly chosen curves do not have these proper-
ties. The systematic construction of “pairing-friendly” elliptic curves, especially
curves with higher embedding degrees is an attractive problem for cryptography
in the future.

Let q be a large prime power and E : y2 = x3 + Ax + B be an elliptic curve
defined over a finite field Fq. Let r be the largest prime dividing #E(Fq) =
q + 1 − t, the order of the group of Fq-rational points of E where t is the
Frobenius trace. When q is a prime, we call the smallest positive integer k such
that r divides qk−1 the embedding degree. The parameters required to construct
pairing-friendly elliptic curves are t, r, q, k and the CM discriminant D for the
CM method introduced in [1].

In this paper, we study the problem of computing suitable parameters t, r, q
from given parameters k,D. We employ the method proposed in [4, 5, 11] which
generates a family of pairing-friendly curves by considering t, r, q as polynomials
t(x), r(x), q(x) of a new parameter x. Our strategy is finding a polynomial u(x)
by the method of indeterminate coefficients so that u(a) = ζk for some a ∈ Q(ζk)
as in [6], and taking r(x) to be an irreducible factor of Φk(u(x)). We propose a
refinement of the Brezing-Weng algorithm using the factorization of Φk(u(x)),

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 136–145, 2008.
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and we give explicit formulas to compute u(x) for ϕ(k) = 4. As a result, we obtain
new families of pairing-friendly curves which are given explicitly in Table 1 and
Theorem 3 of Section 3. To the best of our knowledge, we give the first explicit
numerical results as in Examples 1–3.

This paper is organized as follows. Section 2 gives a brief mathematical def-
inition of curves suitable for pairing-based cryptography and the method of
construction we use to generate our curves. The main contribution of this pa-
per is presented in Sections 3 and 4 where we give our algorithm to construct
curves and where we give numerical examples of curves that we generate using
our parameters for k = 8 and whole formulas to solve the equation u(x) = ζk
over Q(ζk) for ϕ(k) = 4. Finally, we will discuss the conclusions that we will
draw from our approach in Section 5.

2 Pairing-Friendly Curves

A survey on the construction of pairing-friendly elliptic curves is written by
Freeman et al. [5]. We introduce several essential definitions from that paper to
explain our algorithm. We will use the same notation that they used in [5]. Let
lg be the base 2 logarithm.

2.1 Families of Curves for Pairing

Definition 1 ([5, Definition 2.3]). Suppose E is an elliptic curve defined over
Fq. We say that E is pairing-friendly if E satisfies the following conditions:

(1) there is a prime r ≥ √
q such that r | #E(Fq).

(2) the embedding degree of E with respect to r is less than (lg r)/8.

To define a parametric family of curves, we introduce

Definition 2 ([5, Definition 2.5]). Let f(x) be a polynomial with rational
coefficients. We say f represents primes if the following conditions are satisfied.

(1) f(x) is non-constant and irreducible.
(2) f(x) has positive leading coefficient.
(3) f(x) ∈ Z for some x ∈ Z.
(4) gcd({f(x) | x, f(x) ∈ Z}) = 1.

Using this, we can now introduce

Definition 3 ([5, Definition 2.6]). For a given positive integer k and positive
square-free integer D, the triple (t, r, q) represents a family of elliptic curves
with embedding degree k and CM discriminant D if the following conditions are
satisfied:

(1) q(x) = p(x)d for some d ≥ 1 and p(x) that represents primes.
(2) r(x) = c · r̃(x) with c ∈ Z≥1) and r̃(x) that represents primes.
(3) r(x) | q(x) + 1− t(x).
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(4) r(x) | Φk(t(x) − 1), where Φk is the kth cyclotomic polynomial.
(5) The CM equation 4q(x)− t(x)2 = Dy2 has infinitely many integer solutions

(x, y).

For a family (t(x), r(x), q(x)), if the CM equation in (5) has a set of integer
solutions (x0, y0) with both of p(x0) and r̃(x0) are primes, then we are able to
construct curves E over Fq(x0) where E(Fq(x0)) has a subgroup of order r̃(x0)
and embedding degree k with respect to r̃(x0) by using the CM method in [1].

We introduce a parameter ρ that represents how close the curve is to the ideal
curve by

Definition 4 ([5, Definition 2.7])

(1) Let E/Fq be an elliptic curve, and suppose E has a subgroup of order r.
The ρ-value of E (with respect to r) is

ρ(E) =
log q
log r

.

(2) Let t(x), r(x), q(x) ∈ Q[x], and suppose (t, r, q) represents a family of elliptic
curves with embedding degree k. The ρ-value of the family represented by
(t, r, q) is

ρ(t, r, q) = lim
x→∞

log q(x)
log r(x)

=
deg q(x)
deg r(x)

.

By Definition 1, a pairing-friendly curve E has ρ(E) ≤ 2. On the other hand,
the Hasse bound implies that ρ(t, r, q) is always at least 1. Finding parameters
efficiently with the same bit size of r and q, hence ρ(E) is close to 1, is one of
the important problems for cryptography (See [5, Section 1.1]).

2.2 Brezing-Weng Method

In this section, we briefly explain the construction of curves satisfying the con-
dition of Definition 3 proposed by Brezing and Weng [4],[5, Section 6.1].

Theorem 1. Fix a positive integer k and a positive square-free integer D. Ex-
ecute the following steps:

Step 1. Choose a number field K containing a primitive kth root of unity ζk and√
−D.

Step 2. Find an irreducible polynomial r(x) ∈ Z[x] such that Q[x]/(r(x)) ∼= K.
Step 3. Let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1 ∈ K.
Step 4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D ∈ K. (So,

if we discover a polynomial s(x) ∈ Q[x] mapping to
√
−D ∈ K, then

y(x) ≡ (2 − t(x))s(x)/D (mod r(x)).)
Step 5. Let q(x) = (t(x)2 +Dy(x)2)/4.

If both of r(x) and q(x) represent primes, then the triple (t, r, q) represents a
family of curves with embedding degree k and CM discriminant D.
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The ρ-value for this family is

ρ(t, r, q) =
2 max{deg t(x), deg y(x)}

deg r(x)
< 2.

For more details, refer to [5, Section 6.1]. To find a family of pairing-friendly
elliptic curves efficiently, we have to choose a good r(x) satisfying ζk,

√
−D ∈ K.

The idea by Brezing and Weng (also see Freeman et al.) is as follows. Choose
an integer multiple � of k so that

√
−D ∈ K = Q(ζ�). Then let r(x) = Φ�(x).

Freeman et al. further give some sporadic families [5, Section 6.2]. Our idea given
explicitly below is to construct such sporadic curves systematically.

3 Factorization of Cyclotomic Polynomial

3.1 The Background

When we use the Brezing-Weng method to construct families, the problem is how
to determine the polynomial r(x) in Theorem 1. One of the known strategies to
find r(x) and construct families is using the minimal polynomial of elements
in Q(ζk) by Kachisa, Schaefer and Scott [9]. On the other hand, if Φk(u(x))
is reducible over Q with a factor of degree ϕ(k) for some u(x) ∈ Q[x], we let
r(x) be one of the irreducible factors. Set K = Q[x]/(r(x)) and we will get
u(x) 	→ ζk. These factorizations are rare, however, it is possible to find them
using the technique introduced by Galbraith, McKee and Valença [6, Lemma 1]
for quadratic polynomials u(x). In fact, it is effective for the general case as is
easily seen from the proof there:

Lemma 1. Let u(x) ∈ Q[x] and ϕ be the Euler function. Then, the degree of
any irreducible factor of Φk(u(x)) over Q is a multiple of ϕ(k). Moreover, the
polynomial Φk(u(x)) has an irreducible factor of degree ϕ(k) if and only if the
equation

u(x) = ζk (1)

has a solution in Q(ζk).

3.2 Strategy of Factorization

Using Lemma 1, we can take r(x) to be one of the irreducible factors of Φk(u(x)).
Assume

√
−D ∈ Q(ζk). To obtain u(x) such that Φk(u(x)) has a factor of degree

ϕ(k), it is necessary and sufficient that

u(a(x)) ≡ x (mod Φk(x))

for some a(x) ∈ Q[x]. We consider the case

u(x) =
ϕ(k)−1∑

i=0

uix
i, a(x) =

ϕ(k)−1∑

i=0

aix
i.
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Let v(x) be the polynomial of degree<ϕ(k) such that v(x)≡u(a(x)) (modΦk(x)).
Then v(x) can be written in the form

v(x) =
ϕ(k)−1∑

i=0

ϕ(k)−1∑

j=0

ujvijx
i.

where vij are explicit polynomials of a0, · · · , aϕ(k)−1 of degree < ϕ(k). Therefore,
from given a0, · · · , aϕ(k)−1 ∈ Q, we should solve the linear equation

V

⎛

⎜
⎜
⎜⎜
⎜
⎝

u0

u1

u2

...
uϕ(k)−1

⎞

⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎝

0
1
0
...
0

⎞

⎟
⎟
⎟⎟
⎟
⎠
, (2)

where V = (vij) is a ϕ(k)×ϕ(k) matrix with entries in Q. It is well known that
the general solution u0, · · · , uϕ(k)−1 can be written as explicit rational functions
of a0, · · · , aϕ(k)−1 and exist if det(V ) �= 0 by Cramer’s rule. We now compute
d = det(V ) first, then take an irreducible factor r(x) of Φk(u(x)) when d �= 0.
The computation of u(x) and r(x) depends only on k. We can apply them for
any D such that

√
−D ∈ Q(ζk).

This leads to the following:

Algorithm 2

Input. Positive integers D, k such that
√
−D ∈ Q(ζk) and a finite subset S ⊂

Q(ζk).
Output. Families of elliptic curves with parameters t(x), r(x), q(x).

Step 1. For each a ∈ S, compute det(V ) of the equation (2). If det(V ) = 0
for all elements of S, then the algorithm fails. Otherwise, determine the
coefficients of u(x) ∈ Q[x] by the equation (2) for each a ∈ S.

Step 2. For each u(x) at Step 1, compute all irreducible factors r(x) of the
polynomial Φk(u(x)).

Step 3. For each pair of u(x), r(x) at Step 2, compute all polynomials t(x) ∈ Q[x]
such that deg t(x) < deg r(x) and t(x) ≡ u(x)m + 1 (mod r(x)) for all
m with 1 ≤ m < k, gcd(m, k) = 1.

Step 4. For each pair of r(x), t(x) at Step 3, execute Step 4 and Step 5 of The-
orem 1 to compute q(x).

Step 5. For each triple r(x), t(x), q(x) atStep 4, checkwhether q(x), r(x) represent
primes. If q(x), r(x) represent primes, output a family t(x), r(x), q(x).

4 Formulas for the Case ϕ(k) = 4

We solved the preceding linear equation for the case ϕ(k) = 4.
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4.1 The Case k = 8

In this case, we have

V =

⎛

⎜
⎜
⎝

1 a0 a0
2 − a22 − 2a1a3 a0

3 − 3a2(a0a2 + a12 − a32)− 6a0a1a3
0 a1 2a0a1 − 2a2a3 a3

3 − 3a1(a1a3 + a22 − a02)− 6a0a2a3
0 a2 a1

2 − a32 + 2a0a2 −a23 + 3a0(a0a2 + a12 − a32)− 6a1a2a3
0 a3 2a1a2 + 2a0a3 a1

3 − 3a3(a1a3 + a22 − a02) + 6a0a1a2

⎞

⎟
⎟
⎠ .

Let d and ni be as follows:

d := (a12 + a32)((a1 − a3)2 + 2a22)((a1 + a3)2 − 2a22),
n0 := a2(5a13a2

2 − 5a1a22a3
2 − 5a14a3 + 2a24a3 − 3a35),

n1 := a15 − 4a13a3
2 + 9a12a2

2a3 + a1(2a24 + 3a34) + 3a22a3
3,

n2 := 2a23a3 − a13a2 − 3a1a2a32,
n3 := a33 − a12a3 + 2a1a22.

Assume d is nonzero, the solution of the equation (1) is given by

ui =
1
d

ϕ(k)−1∑

j=i

(−a0)j−inj . (3)

By Algorithm 2 with input D = 1 and S = {ω ∈ Q(ζ8) | ω =
∑3

i=0 aix
i, ai ∈

Z, 0 ≤ ai ≤ 300}, the result of computations of families by MAGMA [10] for
lg lc (u) < 10 is given in Table 1, where lc (u) denotes the leading coefficient
of u(x). In the actual computation to make polynomial coefficients small, we
further transform u(x) obtained by Step 3 of Algorithm 2 to u(ax + b) ∈ Z[x]
with suitable a, b ∈ Q, a �= 0. We explain the symbols in Table 1. For the column
deg q(x), the symbol (†) denotes that q(x) does not represent primes for all
pairs t(x), r(x). For the rows, the highlighted entries mean that there exists a
family of curves such that both q(x) and r(x) are primes for many integers x,
probably infinitely many. From this, we can expect to produce pairing-friendly
curves of large bit size. We discovered many pairing-friendly families of curves
with ρ = 3/2 and also rediscovered known families. We describe one of them in
detail:

Theorem 3. The polynomials t(x), r(x), q(x) ∈ Z[x] given as follows represent
a family of elliptic curves with embedding degree k = 8 and CM discriminant
D = 1. This family indeed generates pairing-friendly elliptic curves.

t(x) = −82x3 − 108x2 − 54x− 8,
r(x) = 82x4 + 108x3 + 54x2 + 12x+ 1,
q(x) = 379906x6 + 799008x5 + 705346x4

+333614x3 + 88945x2 + 12636x+ 745.

Proof. The first half is already proved by Algorithm 2, so we only need to prove
the second half. We may verify both q(x0) and r(x0) are primes with some
integer x0. We take x0 = 104, then we get q(x0) = 490506332802458249 and
r(x0) = 9714910817. Both of these are primes, so we can generate pairing-
friendly curves by them. ��
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Table 1. Sporadic families generated from cubic u(x) with embedding degree 8

lc (u) u(x) t(x) deg r(x) deg q(x) ρ(t, r, q)

2 2x3 + 4x2 + 6x + 3 u(x)3 + 1 4 6 3/2
9 9x3 + 3x2 + 2x + 1 u(x)5 + 1 4 6 3/2

17 17x3 + 32x2 + 24x + 6 u(x)3 + 1 4 6 3/2

18 18x3 + 39x2 + 31x + 7 u(x)3 + 1 4 6 3/2

64 64x3 + 112x2 + 75x + 18 u(x)5 + 1 8 14 7/4

68 68x3 + 110x2 + 65x + 15 u(x)5 + 1 4 6 3/2

82 82x3 + 108x2 + 54x + 9 u(x)5 + 1 4 6 3/2
144 144x3 + 480x2 + 539x + 202 u(x)5 + 1 8 14 7/4

144 144x3 + 96x2 + 29x + 2 u(x)5 + 1 8 14 7/4

216 216x3 + 372x2 + 263x + 69 — — (†) —

225 225x3 + 2x — — (†) —

257 257x3 + 256x2 + 96x + 12 u(x)3 + 1 4 6 3/2

388 388x3 + 798x2 + 561x + 134 u(x)5 + 1 4 6 3/2

392 392x3 + 980x2 + 821x + 231 u(x)5 + 1 8 14 7/4

450 450x3 + 11x — — (†) —

626 626x3 + 500x2 + 150x + 15 u(x)5 + 1 4 6 3/2
738 738x3 + 1488x2 + 1006x + 229 u(x)5 + 1 4 6 3/2
800 800x3 + 9x u(x)5 + 1 8 14 7/4

873 873x3 + 969x2 + 379x + 53 u(x)7 + 1 4 6 3/2

From a family of curves, we can actually construct pairing-friendly curves. Find
an integer x such that q(x) is a prime and check whether r(x) is a prime. To
find such an integer x, we can restrict the candidates by the Chinese Remainder
Theorem.

Lemma 2. If an integer q(x) in Theorem 3 is a prime, then x≡14, 24 (mod 30).

Proof. We can easily check that all q(x) are even if x is odd. We see that

q(x) ≡ x6 + 3x5 + x4 + 4x3 + x (mod 5).

So q(x) ≡ 0 (mod 5) if x �≡ 4 (mod 5). In the same way we see that

q(x) ≡ x6 + x4 + 2x3 + x2 + 1 (mod 3).

So q(x) ≡ 0 (mod 5) if x �≡ 1 (mod 3). Then by the Chinese Remainder
Theorem, q(x) has no prime factor 2, 3 and 5 only if x ≡ 14, 24 (mod 30). ��

From this family, we can easily compute explicit examples of elliptic curves. The
elliptic curve E/Fq with CM discriminant D = 1 is represented as

E : Y 2 ≡ X3 +AX (mod q) (a �= 0)

where A is a parameter. Recall Definition 1 and Definition 4.
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Example 1. For x = 24000000000010394 (lg x ≈ 54.4), we get

q = 726011672004446604951703464791789328991217313776602768811
50532069758156754787842298703647640196322590069,

r = 272056320000471307161600306182614014808404525177076771934
82845476817 (224-bit),

t = −1133568000001472850432000637893917136092090964291460,
#E(Fq) = 726011672004446604951703464791789328991217313776602780147

18532071231007186788480192620783732287286881530,
A = 363005836002223302475851732395894664495608656888301384405

75266034879078377393921149351823820098161295035.

Then lg r ≈ 224.0, lg q ≈ 345.0 and ρ(E) ≈ 1.54.

Example 2. For x = 6130400000000029634 (lg x ≈ 62.4), we get

q = 20165501539097468598089799012338448337497685
26807341931299469596014851929961512795928195
2496431544631024161702159356789,

r = 11581614432149089047832789189966585476390503
3269185946585920376349372307631217 (256-bit),

t = −1889210236224232197405821630084439441516429
1734047019380020,

#E(Fq) = 20165501539097468598089799012338448337497685
26807341931299471485225088154193710201749825
3340825959795315895749178736810,

A = 10082750769548734299044899506169224168748842
63403670965649734798007425964980756397964097
62482157723155120808510796783952.

Then lg r ≈ 256.0, lg q ≈ 393.0 and ρ(E) ≈ 1.54.

Example 3. For x = −72057594037930756 (lg x ≈ 56.0), we get

q = 5318077912637504134292767901251647400395578540
3827730100050941212371435046023372666628598916
049952969199369,

r = 2210715626706698491377041180063927762099958931
722603805474805907424817 (230-bit),

t = 3067984237085391549834039420816298507616442947
7994640,

#E(Fq) = 5318077912637504134292767901251647400395578540
3827730069371098841517519547682978458465613839
885523491204730,

A = 1772692637545834711430922633750549133465192846
7942576700016980404123811682007790888876199638
683317656399790.
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Then lg r ≈ 230.4, lg q ≈ 354.5 and ρ(E) ≈ 1.54. For the Ate pairing [7], it is
important that t has a low Hamming weight for computation. We tried to find
a curve with r between 224 bit and 256 bit, we found that r has a Hamming
weight 72 and t has a Hamming weight 45 in this example.

4.2 The Case k = 5, 10, 12

Similar to the case k = 8, we can write down V and determine d, ni such that
the solution of the equation (1) is given by the equation (3) for other φ(k). For
convenience of explanation, we omit the representation of V .

In the case k = 5, we put as follows:

d := (a1(a1 − a2 + a3)− (a2 − a3)2)((−a1 + a2 + a3)4 − (a3 + 2a2)a13

−(−2a22 − 2a32 − 10a2a3)a12 − (a23 + 11a22a3 + 8a2a32 + 2a33)a1
+3a2a33 + 3a23a3 + 5a22a3

2),
n0 := (−5a2a3 + 3a32)a14 + (−a22a3 + 5a23 + 6a2a32 − 6a33)a13

+(−6a24 − 3a22a3
2 + 3a23a3 + 5a34)a12 + (3a25 + 5a22a3

3 − 3a24a3
−6a2a34)a1 − 2a2a34(a2 − a3),

n1 := a15 − (3a2 + 2a3)a14 + 5a13a2
2 + (5a33 − 3a2a32)a12

+(9a22a3
2 − 6a23a3 − 4a2a33)a1 + 3a23a3(a2 − a3),

n2 := −a2a13 + (3a22 − 3a2a3)a12 + a33(3a1 + a2 − a3),
n3 := (a22 − a12)a3 + 2a1(a32 − a2a3 + a22) − a23.

Also in the case k = 10, we put as follows:

d := (a1(a1 + a2 + a3) − (a2 + a3)2))((−a1 + a2 + a3)4 − (a3 + 6a2)a13

+(2a22 + 14a2a3 + 2a32)a12 + (−7a23 − 11a22a3 − 16a2a32 − 2a33)a1
+5a2a3(a22 + a2a3 + a32)),

n0 := (−5a2a3 − 3a32)a14 + (a22a3 + 5a23 + 6a2a32 + 6a33)a13

+(3a23a3 − 5a34 + 3a22a3
2 + 6a24)a12 + (3a24a3 − 5a22a3

3

−6a2a34 + 3a25)a1 + 2a2a34(a2 + a3),
n1 := a15 + (−2a3 + 3a2)a14 + 5a13a2

2 + (3a2a32 + 5a33)a12

+(6a23a3 + 9a22a3
2 + 4a2a33)a1 + 3a23a3(a2 + a3),

n2 := −a2a13 + (−3a22 − 3a2a3)a12 + a33(−3a1 + a2 + a3),
n3 := (a22 − a12)a3 + 2a1(a22 + a2a3 + a32) + a23.

Finally, in the case k = 12, we put as follows:

d := (a12 + a22)((a1 + a3)2 − a1a3)((a1 + 2a3)2 − 3a22),
n0 := −5a14a3a2 + (5a23 − 13a2a32)a13 + (8a23a3 − 12a33a2)a12

+(−4a34a2 − a25 + a23a3
2)a1 + a2a3(a24 − 2a22a3

2 − 2a34),
n1 := a15 + 5a3a14 + (6a32 − 2a22)a13 + (3a22a3 − a33)a12

+(−2a34 + 6a32a2
2 + 3a24)a1 + 5a33a2

2,
n2 := −a2(a13 + 3a1a22 + 2a33),
n3 := 2(a22 − a32)a1 + (a22 − a12)a3.
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5 Conclusion

The method of the indeterminate coefficients and the factorization of cyclotomic
polynomial gives us a chance to find more families of curves. It gives us an
efficient method to find polynomials u(x) such that Φk(u(x)) has a factor of
degree ϕ(k). On the other hand, it will be hard to construct curves with ρ-
values ≥ 3/2, at least for k = 8. Since the size and complexity of elements
of V are proportional to ϕ(k), it is hard to find a formula for the coefficients
for higher k. For constructing new families with higher embedding degrees and
ρ = 1, we intend to find element of Q(ζk) so that coefficients of higher degree of
u(x) vanish. Moreover, we also intend to apply our idea with other equations.
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Abstract. We give an algorithm that produces families of Weil numbers
for ordinary abelian varieties over finite fields with prescribed embed-
ding degree. The algorithm uses the ideas of Freeman, Stevenhagen, and
Streng to generalize the Brezing-Weng construction of pairing-friendly
elliptic curves. We use our algorithm to give examples of pairing-friendly
ordinary abelian varieties of dimension 2 and 3 that are absolutely sim-
ple and have smaller ρ-values than any previous such example.

Keywords: Abelian varieties, hyperelliptic curves, pairing-based cryp-
tosystems, embedding degree, pairing-friendly varieties.

1 Introduction

In recent years, many new and useful cryptographic protocols have been proposed
that make use of a bilinear map, or pairing [18]. For secure implementation, these
protocols require an easily computable, nondegenerate pairing between finite
groups in which the discrete logarithm problem is computationally infeasible.
At present, the only known pairings with these properties are the Weil and Tate
pairings on abelian varieties over finite fields. These pairings take as input points
on an abelian variety defined over the field Fq and produce as output elements
of an extension field Fqk . The degree of this extension is known as the embedding
degree.

For a pairing-based cryptosystem on an abelian variety A/Fq to be secure and
practical, the group of rational points A(Fq) should have a subgroup of large
prime order r, and the embedding degree k should be large enough so that the
discrete logarithm problems in A[r] and F×

qk are of roughly equal difficulty, yet
small enough so that the pairing can be computed efficiently. As the embedding
degree of a randomly chosen abelian variety over a field of cryptographic size
is expected to be very large (see e.g., [1]), it is a difficult problem to construct
“pairing-friendly” abelian varieties: those that have small embedding degree with
respect to a large prime-order subgroup.

The problem of constructing pairing-friendly elliptic curves (i.e., one-dimen-
sional abelian varieties) has been studied extensively; see [9] for a summary of
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the known constructions. In higher dimensions much less is known. Galbraith
[11] and Rubin and Silverberg [19] have classified supersingular abelian varieties
of dimension g ≥ 2, and the latter have shown that for g ≤ 6 the embedding
degree always satisfies k ≤ 7.5g. As the ratio k/g roughly measures the security
level of pairings on the abelian variety, for high security levels we require larger
ratios and must therefore turn to non-supersingular abelian varieties.

The only explicit constructions of pairing-friendly non-supersingular abelian
varieties of dimension g ≥ 2 are those of Freeman [8]; Kawazoe and Takahashi
[14]; and Freeman, Stevenhagen, and Streng [10]. The first two constructions
produce abelian surfaces (g = 2), while the last generalizes to arbitrary dimen-
sion the method of Cocks and Pinch [6] for constructing pairing-friendly elliptic
curves.

For a pairing-friendly abelian variety A/Fq, the ratio of the size (in bits) of
the full group order #A(Fq) to the size (in bits) of the subgroup order r is
approximated by the parameter

ρ =
g log q
log r

. (1.1)

The parameter ρ can be interpreted as measuring the ratio of an abelian variety’s
required bandwidth to its security level. In dimension g = 2 the constructions
of Freeman and Freeman, Stevenhagen, and Streng both lead to ordinary, ab-
solutely simple abelian varieties with ρ ≈ 8. The construction of Kawazoe and
Takahashi produces ordinary abelian surfaces with ρ-values between 3 and 4;
however, these varieties are not absolutely simple, and thus the construction can
be interpreted as producing pairing-friendly elliptic curves over some extension
field of Fq. In dimension g = 3 the best ρ-values produced by the Freeman-
Stevenhagen-Streng method are ρ ≈ 18.

In this paper, we demonstrate the first known examples of pairing-friendly
ordinary abelian varieties of dimension g = 2 or 3 that are absolutely simple and
have ρ-values significantly less than 8 or 18, respectively.

In Section 2 we give the conditions necessary for an abelian variety to be
pairing-friendly and describe the approach of Brezing and Weng [4] to satisfying
these conditions for elliptic curves. We then show how the ideas of Freeman,
Stevenhagen, and Streng can be used to view the Brezing-Weng construction
from a new perspective that admits a generalization to higher dimensions.

We give the details of this generalization in Section 3. The key idea is to
parametrize the subgroup order r and the Frobenius element π of the pairing-
friendly variety as polynomials of a single variable r(x) and π(x). The polynomial
r(x) has rational coefficients, while π(x) has coefficients in a CM field K. Adapt-
ing the method of Freeman, Stevenhagen, and Streng, we construct π(x) as the
extended type norm of an element ξ ∈ K̂[x], where K̂ is the reflex field of K,
that is chosen to have specified residues modulo factors of r(x) in K̂[x].

Section 4 discusses how we use the polynomial π(x) to construct explicit
pairing-friendly abelian varieties. We first find an x0 for which q = π(x0)π(x0) is
prime and r(x0) has a large prime factor, and then use a CM method to construct
an abelian variety over Fq whose Frobenius element is given by π(x0).
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In Section 5 we discuss how to select the parameters in our algorithm to
produce the optimal output, and provide a number of examples of families of
ordinary abelian varieties produced by our method. These include several families
of abelian surfaces (g = 2) with ρ ≤ 7 and one with embedding degree 5 and
ρ ≈ 4, which could be a practical choice for certain security levels and which also
answers (in one case) an open problem of Freeman, Stevenhagen, and Streng [10,
Open Problem 3.5]. We also demonstrate a family of three-dimensional abelian
varieties with ρ ≈ 12. We conclude by discussing avenues for further research in
this area.

2 Pairing-Friendly Abelian Varieties and the
Brezing-Weng Method

Let A be a g-dimensional abelian variety defined over the finite field Fq of q
elements. If the group of Fq-rational points of A, denoted A(Fq), has a cyclic
subgroup of order r with gcd(r, q) = 1, then the embedding degree of A with
respect to r is the smallest integer k such that the field Fqk contains all rth
roots of unity. Equivalently, the embedding degree is the order of q in (Z/rZ)×.
The embedding degree derives its name from the fact that Fqk is the smallest
field over which the Weil and Tate pairings take nontrivial values, and thus these
pairings can be used to embed a cyclic, order-r subgroup of A(Fq) into F×

qk . (Note
that if q is not prime then the image of these embeddings may be contained in
a proper subfield of Fqk [12].)

The embedding degree of an abelian variety A/Fq is determined by its Frobe-
nius endomorphism, which acts by raising the coordinates of points on A to the
qth power. The Frobenius endomorphism, denoted by π, satisfies a monic, inte-
ger polynomial hA known as the characteristic polynomial of Frobenius. If A is
simple then hA is a power of an irreducible polynomial, and we can view π as an
element of a number field K = Q(π). The field K is either a CM field, which is
an imaginary quadratic extension of a totally real field, or the field Q(

√
q) [21];

we will consider only the first case as the second corresponds to supersingular
abelian varieties. By a theorem of Weil, all embeddings K ↪→ C have ππ = q,
where · denotes complex conjugation. An algebraic integer π with this property
is called a q-Weil number.

We will henceforth assume that A is simple, as the case of non-simple A can
be reduced to the case of simple abelian varieties of lower dimension. We will
further assume that K = Q(π) is the full endomorphism algebra End(A) ⊗ Q;
in particular, this is the case when A is ordinary. Under these assumptions, we
have [K : Q] = 2 · dimA [22, Theorem 2], and the number of Fq-rational points
of A is given by

#A(Fq) = NK/Q(π − 1).

We can thus express the conditions for A being pairing-friendly as follows.

Proposition 2.1 ([10]). Let A/Fq be a simple abelian variety with Frobenius
endomorphism π, and assume K = Q(π) equals End(A) ⊗ Q. Let k be a
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positive integer, Φk the kth cyclotomic polynomial, and r a square-free integer
not dividing kq. If

NK/Q(π − 1) ≡ 0 (mod r),
Φk(ππ) ≡ 0 (mod r),

then A has embedding degree k with respect to r.

Proof. Since r is square free, the first condition tells us that A(Fq) has a cyclic
subgroup of order r, the second that ππ = q has order k in (Z/rZ)×. ��

The Brezing-Weng Method

If A is an ordinary elliptic curve over Fq with Frobenius endomorphism π, then
K = Q(π) = End(A) ⊗ Q is a quadratic imaginary field. In this case π can be
described by its norm q = ππ and its trace t = π + π. The two conditions of
Proposition 2.1 then become

r | q + 1 − t, (2.1)
r | Φk(q). (2.2)

Furthermore, the condition π ∈ K means that there is some integer y such that

t2 − 4q = −Dy2, (2.3)

where D is the unique square-free positive integer such that K = Q(
√
−D).

All of the known methods for constructing pairing-friendly ordinary elliptic
curves involve fixing k and D and determining primes r and q and an integer t
that satisfy (2.1)–(2.3) for some y. Many of these methods parametrize t, r, and
q as polynomials t(x), r(x), q(x) that produce valid curve parameters for many
different inputs x. The advantage of such “families” is that the ρ-values (1.1)
produced are often smaller than those produced by more general methods such
as that of Cocks and Pinch [6]. One of the most successful such approaches is
the method of Brezing and Weng [4]:

Algorithm 2.2 ([4])
Input: a positive integer k and a positive square-free integer D.

Output: polynomials r(x) ∈ Z[x] and q(x) ∈ Q[x] such that for any x0 for which
q(x0) is a prime integer, there is an ordinary elliptic curve E over Fq(x0) such
that End(E) ⊗ Q ∼= Q(

√
−D) and E has embedding degree k with respect to

r(x0).

1. Find an irreducible polynomial r(x) ∈ Z[x] such that L = Q[x]/(r(x)) is a
number field containing

√
−D and the cyclotomic field Q(ζk).

2. Choose a primitive kth root of unity ζ ∈ L.
3. Let t(x) ∈ Q[x] be a polynomial mapping to ζ + 1 in L.
4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζ − 1)/

√
−D in L.

5. Set q(x) ← (t(x)2 +Dy(x)2)/4. Return r(x) and q(x). ��
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Note that while L is often chosen in practice to be isomorphic to Q(ζk,
√
−D),

it can in fact be any number field — Galois or not — containing this field.
The key idea of the Brezing-Weng algorithm is that since elements of L are

represented by polynomials modulo r(x), we can always choose t(x) and y(x) to
have degree strictly less than deg r(x). Thus we can always obtain deg q(x) ≤
2 deg r(x) − 2, and in some cases we can do much better (see [9, §6]). As x
grows the ρ-value (1.1) of the curve E approaches deg q/ deg r; we call the latter
quantity the ρ-value of the family (t(x), r(x), q(x)). We thus see that families
generated by the Brezing-Weng method have ρ-values less than 2.

The Brezing-Weng algorithm is itself a generalization of an algorithm of Cocks
and Pinch [6], which has the same form but works modulo a prime r instead of a
polynomial r(x). Freeman, Stevenhagen, and Streng [10] generalized the Cocks-
Pinch algorithm to arbitrary CM fields K by demonstrating how the algorithm
constructs a Frobenius element π with specified residues modulo certain primes
over r in OK . We can use the same perspective to view the Brezing-Weng method
in a new light.

Our new perspective starts with the fact that since L = Q[x]/(r(x)) contains
K = Q(

√
−D), the polynomial r(x) splits into two irreducible factors when

viewed as an element of K[x]. We thus have r(x) = r1(x)r1(x) in K[x], and
L ∼= K[x]/(r1(x)) ∼= K[x]/(r1(x)). Without loss of generality, we may assume
that the map implied in Steps (3) and (4) of Algorithm 2.2 sends x to a root of
r1(x).

If we compute t(x) and y(x) as in Algorithm 2.2 and let π(x) = 1
2 (t(x) +

y(x)
√
−D), then π(x) ≡ ζ mod r1(x). In addition, we see that π(x) = 1

2 (t(x) −
y(x)

√
−D) ≡ 1 mod r1(x). We thus see that π(x) satisfies conditions analogous

to those of Proposition 2.1:

(π(x) − 1)(π(x) − 1) ≡ 0 mod r(x),
Φk(π(x)π(x)) ≡ 0 mod r(x).

The expression π(x)π(x) gives the q(x) of the algorithm, so we conclude that
for any x0 ∈ Q for which q(x0) is a prime integer, π(x0) ∈ K is the Frobenius
endomorphism of the elliptic curve E specified in the algorithm’s description.

3 Generalizing the Brezing-Weng Method

If K is a CM field of degree 2g, a CM type Φ of K is a set of g embeddings Φ =
{φ1, . . . , φg} of K into its normal closure, one from each complex conjugate pair.
A CM type is primitive if it is not induced from a CM type on a proper CM subfield
ofK. The reflex type of (K,Φ) consists of the reflex field K̂, which is a certain CM
subfield of the normal closure ofK, and a CM type Ψ of K̂. (For precise definitions
of the reflex field and the reflex type, see [20, Section 8] or [10].) If Φ is primitive
then the reflex of the reflex (K̂, Ψ) is the original CM type (K,Φ). If K is Galois
then K̂ = K and Ψ = {φ−1 : φ ∈ Φ}; however for generic K the degree of K̂ will
be much larger than the degree of K [10, Lemma 2.8].
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The main algorithm of Freeman, Stevenhagen, and Streng [10, Algorithm
2.12] fixes a prime subgroup size r and uses the type norm from K̂ to construct
a Frobenius element π ∈ K that has specified residues modulo certain primes
over r in OK . The type norm for a CM type (K,Φ) is the map

NΦ : ξ 	→
∏

φ∈Φ φ(ξ).

The image of the type norm NΦ is contained in the reflex field K̂ [10, Lemma
2.7], so the image of the reflex type norm NΨ is contained in K. If the CM type
Φ is primitive, then for generic ξ ∈ K we have K̂ = Q(NΦ(ξ)) (cf. [10, Theorem
3.1]).

To apply the ideas of Freeman, Stevenhagen, and Streng to the Brezing-Weng
construction, we extend the type norm to a multiplicative map on polynomials
in K[x].

Definition 3.1. Let K be a CM field and Φ be a CM type of K, and let L be
the normal closure of K. Define the extended type norm Nφ : K[x] → L[x] by

NΦ(ξ) =
∏

φ∈Φ φ(ξ),

where φ(ξ) is obtained by applying φ to the coefficients of ξ.

Lemma 3.2. Let ξ ∈ K[x], and let Φ be a CM type of K. Then NΦ(ξ) ∈ K̂[x],
where K̂ is the reflex field of (K,Φ).

Proof. Let L be the normal closure of K, and let σ ∈ Gal(L/K̂). Then by
definition of the reflex type, σ permutes the elements of Φ, so σ(

∏
φ∈Φ φ(ξ)) =∏

φ∈Φ φ(ξ). (Cf. [10, Lemma 2.7].) ��

Remark 3.3. Similarly, for any extension of number fields L/K we can extend
the field norm NL/K to a map of polynomials NL/K : L[x] → K[x] by setting
NL/K(f) =

∏
φ φ(f), where φ ranges over the set of embeddings of L in its

normal closure that fix K.

Let K be a CM field of degree 2g with primitive CM type Φ. Let (K̂, Ψ) be
the reflex CM type, and let deg K̂ = 2ĝ. Let L = Q[x]/(r(x)) be a number field
containing K̂ and Q(ζk). In the case whereK = K̂ is a quadratic imaginary field,
the Brezing-Weng method constructs directly a polynomial π(x) parametrizing
Frobenius elements by prescribing the residues of π(x) modulo each factor of r(x)
in K[x]. To generalize this construction along the lines of Freeman, Stevenhagen
and Streng, we construct π(x) as the extended type norm NΨ of an element
ξ ∈ K̂[x] with prescribed residues modulo factors of r(x) in K̂[x]. The following
proposition allows us to index the factors of r(x) in K̂[x] in a way that will be
useful for our construction.

Proposition 3.4. Let K̂ be a CM field and Ψ be a CM type on K̂. Let r(x) ∈
Q[x] be irreducible, and assume that L = Q[x]/(r(x)) is Galois and contains
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K̂. Let G = Gal(L/Q) and H = Gal(L/K̂). For each ψ ∈ Ψ let ψ′ ∈ G be a
representative of the left coset of H that induces the embedding ψ on K̂.

Fix a root γ ∈ L of r(x). For each ψ ∈ Ψ , define

rψ(x) = NL/K̂(x− ψ′−1(γ)), rψ(x) = NL/K̂(x− ψ′−1
(γ)).

Then for each ψ ∈ Ψ , rψ and rψ are irreducible elements of K̂[x], and the
complete factorization of r(x) in K̂[x] is given by

r(x) =
∏

ψ∈Ψ rψ(x)rψ(x). (3.1)

Proof. The fact that rψ and rψ are in K̂[x] follows from Remark 3.3. Since L is
Galois, any root δ ∈ L of rψ(x) is also a root of r(x), and thus L = Q(δ) = K̂(δ).
It follows that the minimal polynomial of δ over K̂ has degree [L : K̂], which by
construction is the degree of rψ(x). Therefore rψ(x) is the minimal polynomial
of δ over K̂ and is thus irreducible. The proof for ψ is analogous.

Since the elements of H induce the complete set of embeddings of K̂ in L, we
have

rψ(x) =
∏

σ∈H(x − σψ′−1(γ)), rψ(x) =
∏

σ∈H(x− σψ′−1
(γ)).

If we let Ψ ′ = {ψ′ : ψ ∈ Ψ}, then the set of roots of the right hand side of
(3.1) is exactly {τ(γ) : τ ∈ H(Ψ ′ ∪ Ψ ′)−1}. Since Ψ ′ ∪ Ψ ′ is a complete set
of left coset representatives of H in G, its inverse is a complete set of right
coset representatives of H in G, and thus H(Ψ ′ ∪ Ψ ′)−1 = G. We conclude that
{τ(γ) : τ ∈ H(Ψ ′ ∪ Ψ ′)−1} consists of precisely the roots of r(x) in L. ��

We now obtain an analogue of the main theorem of Freeman, Stevenhagen, and
Streng [10, Theorem 2.10]:

Theorem 3.5. Let (K,Φ) be a CM type and (K̂, Ψ) its reflex. Let r(x) ∈ Q[x]
be an irreducible polynomial such that L = Q[x]/(r(x)) is a Galois extension of
Q containing K̂ and the cyclotomic field Q(ζk).

Let γ ∈ L be a root of r(x), and write the factorization of r(x) in K̂[x] as in
Proposition 3.4. Given ξ ∈ K̂[x], for each ψ ∈ Ψ suppose αψ, βψ ∈ Q[x] satisfy

ξ ≡ αψ mod rψ(x) and ξ ≡ βψ mod rψ(x). (3.2)

Suppose that
∏

ψ∈Ψ αψ(γ) = 1 and
∏

ψ∈Ψ βψ(γ) = ζ, (3.3)

where ζ ∈ L is a primitive kth root of unity. Then π(x) = NΨ (ξ) ∈ K[x] satisfies

1. π(x)π(x) ∈ Q[x],
2. NK/Q(π(x) − 1) ≡ 0 mod r(x), and
3. Φk(π(x)π(x)) ≡ 0 mod r(x).
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Proof. Statement (1) follows from Remark 3.3 and the fact that π(x)π(x) =
NK̂/Q

(ξ). Next, (3.2) implies that ξ−αψ = fψrψ for some fψ ∈ K̂[x], so ψ′−1(γ) ∈
L is a root of ξ − αψ ∈ K̂[x]. Applying ψ′ to this expression and using the fact
that αψ ∈ Q[x], we see that γ is a root of ψ(ξ) − αψ ∈ L[x]. It follows that
(ψ(ξ))(γ) = αψ(γ), and by the same reasoning, (ψ(ξ))(γ) = βψ(γ). Now since
π(γ) =

∏
ψ∈Ψ (ψ(ξ))(γ) by definition of the extended type norm, we conclude from

(3.3) that π(γ) = 1 and π(γ) = ζ, from which statements (2) and (3) follow. ��

If π(x) and r(x) are as in Theorem 3.5, then by Proposition 2.1 for any x0 ∈ Q
for which q = π(x0)π(x0) is a prime, π(x0) ∈ OK is the Frobenius element of
an abelian variety over Fq that has embedding degree k with respect to r(x0).
We can thus view π(x) as defining a one-parameter “family” of pairing-friendly
Frobenius elements. The following definitions formalize this concept, generalizing
the “families” of Freeman, Scott, and Teske [9, Definition 2.6].

Definition 3.6. Let f(x) ∈ Q[x] be a non-constant, irreducible polynomial with
positive leading coefficient. We say f represents primes if (1) f(x) ∈ Z for some
x ∈ Z, and (2) gcd({f(x) : x, f(x) ∈ Z}) = 1.

Definition 3.6 is motivated by the conjecture of Bateman and Horn [3], which
gives a heuristic asymptotic formula for the number of prime values taken by a
set of polynomials with integer coefficients.

Definition 3.7. Let K be a CM field of degree 2g, let π(x) ∈ K[x], and let
r(x) ∈ Q[x]. We say that (π, r) represents a family of g-dimensional abelian
varieties with embedding degree k if:

1. q(x) = π(x)π(x) is in Q[x].
2. q(x) represents primes (in the sense of Definition 3.6).
3. r(x) is non-constant, irreducible, integer-valued, and has positive leading

coefficient.
4. NK/Q(π(x) − 1) ≡ 0 mod r(x).
5. Φk(q(x)) ≡ 0 mod r(x), where Φk is the kth cyclotomic polynomial.

With our setup, we can now adapt [10, Algorithm 2.12] to our new context.

Algorithm 3.8
Input: a primitive CM type (K,Φ); its reflex type (K̂, Ψ); a positive integer k;
a polynomial r(x) ∈ Q[x], satisfying condition (3) of Definition 3.7, such that
Q[x]/(r(x)) is a Galois number field containingK and the cyclotomic field Q(ζk);
and a non-empty set Σ ⊂ Q[x].

Output: a polynomial π(x) ∈ K[x] such that if q(x) = π(x)π(x) represents
primes (in the sense of Definition 3.6), then (π, r) represents a family of abelian
varieties with embedding degree k (in the sense of Definition 3.7).

1. Set ĝ ← 1
2 deg K̂ and write Ψ = {ψ1, ψ2, . . . , ψĝ}. Set L← Q[x]/(r(x)).

2. Let γ ∈ L be a root of r(x). Compute the factorization of r(x) in K̂[x] as in
Proposition 3.4.
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3. Choose a primitive kth root of unity ζ ∈ L.
4. Choose polynomials α1, . . . , αĝ−1, β1, . . . , βĝ−1 ∈ Q[x] from Σ.
5. Compute αĝ ∈ Q[x] such that

∏ĝ
i=1 αi(γ) = 1, and compute βĝ ∈ Q[x] such

that
∏ĝ

i=1 βi(γ) = ζ.
6. Use the Chinese remainder theorem to compute ξ ∈ K̂[x] such that ξ ≡
αi mod rψi(x) and ξ ≡ βi mod rψi(x) for i = 1, 2, . . . , ĝ.

7. Set π(x) ← NΨ (ξ), and return π(x). ��

We defer our discussion of how to choose the inputs r(x) and Σ to Section 5. We
note that if K is a quadratic imaginary field, then Step (4) is empty and setting
q(x) = π(x)π(x) and t(x) = π(x) + π(x) recovers the Brezing-Weng algorithm.

4 From Families to Explicit Abelian Varieties

We now consider the problem of constructing the varieties represented by a
family (π, r). Our strategy is to use a CM field K in Algorithm 3.8 such that
abelian varieties A in characteristic zero with End(A) ⊗ Q ∼= K are known or
can be easily computed. We can then use the polynomial π(x) to find primes q
for which the reductions of A modulo primes over q are pairing-friendly.

The desired varieties A in characteristic zero are constructed via CM methods,
which we will discuss shortly. We obtain the primes q by searching for values
of x0 for which q = π(x0)π(x0) is prime. If π(x0) generates K over Q and q
is unramified in K — both of which occur with very high probability — then
π(x0) is the Frobenius element of an ordinary, simple abelian variety of dimension
g = 1

2 [K : Q] [10, Lemma 2.2]. For cryptographic applications, we also need r(x0)
to be prime or very nearly prime. We use the following algorithm to search for
values of x0 with the desired properties.

Algorithm 4.1
Input: a CM field K, a pair of polynomials (π, r) that represents a family of
abelian varieties with embedding degree k (in the sense of Definition 3.7), and
a positive integer y0.

Output: integers x0 and h such that q(x0) = π(x0)π(x0) is prime and r(x0) is h
times a prime.

1. Set q(x) ← π(x)π(x).
2. Compute integers a, b such that q(ax + b) is integer-valued and represents

primes.
3. Set h← gcd({q(ax+ b)r(ax + b) : x ∈ Z}).
4. Set r̃(x) ← r(x)/h.
5. Set x1 ← y0.
6. Repeat x1 ← x1 + 1 until q(ax1 + b) and r̃(ax1 + b) are prime.
7. Set x0 ← ax1 + b. Return h and x0.
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The input y0 is the starting point for the search, and should be chosen so that
r(y0)/h is at least the minimum size desired for security. Since h does not depend
on the input y0, if the h output by the algorithm is too large we can try again
with a larger y0.

Proposition 4.2. Suppose the π(x) and r(x) input into Algorithm 4.1 have
degrees d1 and d2 respectively. If the Bateman-Horn conjecture [3] is true, then
the expected running time of the algorithm is O(d1d2(logαδy0)2), where δ is the
smallest integer such that δq(x) ∈ Z[x] and α = max{q(x)r(x) : |x| ≤ δ/2}.

Proof. We first show that integers a, b as in Step (2) always exist. Write q(x) =
q̃(x)/δ; then q̃(x) ∈ Z[x]. Write the prime factorization of δ as

∏
pep . Since q(x)

represents primes, for every prime p there exists an integer bp such that q(bp) is an
integer not divisible by p, and thus pep divides q̃(bp) exactly. Let a and b be integers
such that a =

∏
p|δ p

ep+1 and b ≡ bp (mod pep+1) for all p | δ. Then q(ax + b) is
integer-valued and is nonzero mod p for every p dividing δ. For every p not dividing
δ, ax+ b ranges through all residue classes mod p, so there is some residue class of
x mod p for which p does not divide q̃(ax + b). Thus there is no prime p dividing
q(ax+ b) for all x, which is equivalent to q(ax+ b) representing primes.

Let h be as in Step (3). Since q(ax+ b) and r(ax + b) are integer-valued and
q(ax+ b) represents primes, there is some c such that

gcd
(
{q(ax+ b) : x ≡ c mod h}

)
= 1,

gcd
(
{r(ax + b) : x ≡ c mod h}

)
= h.

It follows that the values of the polynomials q(ahx+ac+b) and r̃(ahx+ac+b) are
integers with no common divisor. The Bateman-Horn conjecture implies that we
should expect to test roughly 2d1d2(log ahy0)2 values of x1 before we find one for
which q(ax1+b) is prime and r(ax1+b) is h times a prime. Since log a = O(log δ)
and h ≤ α, the result follows. ��

We note (and find in practice) that the a computed in Step (2) of Algorithm
4.1 can be smaller than the a produced in the proof of Proposition 4.2, and that
there may be multiple valid choices of b for a given a. In addition, the α given
in Proposition 4.2 is usually a gross overestimate for h.

Once we have found an x0 such that q(x0) is prime and r(x0) is nearly prime,
the problem remains to construct an abelian variety over F = Fq(x0) whose Frobe-
nius element is π(x0). This is achieved using CM methods. We use CM methods
to construct all varieties over Q whose endomorphism rings are isomorphic to the
ring of integers OK of the CM field K. Since any ordinary abelian variety over a
finite field F arises as the reduction modulo a prime of a variety over Q with the
same endomorphism ring, we can produce a set of abelian varieties over F that
includes representatives of all of the F-isomorphism classes of varieties A with
End(A) ∼= OK . We test these candidates A, as well as all of their twists (varieties
over F that are F-isomorphic to A), to see which is in the correct F-isogeny class;
this can be determined by seeing if the number of F-rational points is equal to
NK/Q(π(x0) − 1).
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Even though counting the number of rational points on a g-dimensional abelian
variety A over a field F of cryptographic size is in general infeasible for g ≥ 2, we
can quickly determine whether the number of points is equal to n by choosing a
few random points Pi ∈ A(F) and seeing if [n]Pi is the identity onA for all i. In the
case where A is the Jacobian of a hyperelliptic curve of the form y2 = xn + a, one
can also use the algorithm of Buhler and Koblitz [5] to compute #A(F) directly.

Finally, a word is in order about the CM methods. Over an algebraically closed
field, all principally polarized abelian varieties of dimension g ≤ 3 are Jacobians
of genus g curves. It thus suffices to produce all curves whose Jacobians have
endomorphism ring isomorphic to OK ; we say that these Jacobians have CM by
OK . In dimension g = 1 we compute the Hilbert class polynomial, a polynomial
in Z[x] whose roots are equal to the j-invariants of elliptic curves over Q with CM
by OK . In dimension g = 2 we compute the Igusa class polynomials, which are
three polynomials in Q[x] whose roots are the Igusa invariants of genus 2 curves
over Q whose Jacobians have CM by OK . Methods for g = 3 are analogous but
have only been developed for fields K containing i or ζ3 [24,16]. Methods for
g ≥ 4 are completely undeveloped.

The class polynomials produced by the CM methods are very large: both the
degree and the size of the coefficients grow very quickly with the class number
of K, and in general the computation is only feasible for very small CM fields
K. For g = 1 the upper limit is roughly class number 105 [7], while for g = 2
we can only achieve class numbers around 100 [15], and for g = 3 the methods
are even more limited. Thus we must be careful to choose a field K as input to
Algorithm 3.8 for which we know that the CM method is feasible.

5 Parameter Selection and Examples

The primary advantage of Algorithm 3.8 is that it leads to pairing-friendly ordi-
nary, absolutely simple abelian varieties with smaller ρ-values than any previous
such construction. Recall that the ρ-value (1.1) of a g-dimensional abelian vari-
ety over Fq with respect to a subgroup of order r is ρ = g log q/ log r. If q = q(x)
and r = r(x) are parametrized as polynomials, then for large x the ρ-value ap-
proaches g deg q/ deg r. This motivates the definition of a ρ-value for a family of
pairing-friendly abelian varieties.

Definition 5.1. Suppose (π, r) represents a family of g-dimensional abelian va-
rieties with embedding degree k, and let q(x) = π(x)π(x). The ρ-value of the
family represented by (π, r), denoted ρ(π, r), is

ρ(π, r) = lim
x→∞

g log q(x)
log r(x)

=
g deg q(x)
deg r(x)

.

The key feature of Algorithm 3.8 is that the polynomial ξ constructed via the
Chinese remainder theorem in Step (6) can always be chosen to have degree
strictly less than deg r, and thus deg π ≤ ĝ(deg r − 1). We thus obtain

ρ(π, r) = 2gĝ
deg ξ
deg r

≤ 2gĝ
deg r − 1

deg r
.
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This asymptotic ρ-value is an improvement over the ρ-values produced by the
algorithm of Freeman, Stevenhagen, and Streng, which gives ρ ≈ 2gĝ
[10, Theorem 3.4].

To improve the ρ-values further we wish to choose the inputs to Algorithm
3.8 in some clever manner so that the π produced has degree significantly less
than ĝ deg r. These choices include the ζ of Step (3), the αi and βi of Step (4)
(which are chosen from the input Σ), and the input polynomial r(x).

In dimension g ≥ 2 we search for a π(x) of low degree by following the model
of Brezing and Weng [4]. We let r(x) be a cyclotomic polynomial Φ� such that
k | � and L ∼= Q(ζ�) contains the specified CM field K. Since L is abelian, in this
case the CM field K must also be abelian, and thus equal to the reflex field K̂.
Since r(x) is the �th cyclotomic polynomial, x is a primitive �th root of unity in
Q[x]/(rψ(x)) for all ψ ∈ Ψ . We choose Σ to be the set of monomials xi, all of
which map to roots of unity (of some order) in L. Thus if we choose αi, βi ∈ Σ
so that

(α1, . . . , αg) ∈ {(xa1 , . . . , xag ) : 0 ≤ ai < �,
∑g

i=1 ai = 0 mod �} , (5.1)
(β1, . . . , βg) ∈

{
(xb1 , . . . , xbg ) : 0 ≤ bi < �, gcd(�,

∑g
i=1 bi) = �/k

}
, (5.2)

then
∏
αi = x

∑
ai ≡ 1 mod r(x), and

∏
βi = x

∑
bi is a primitive kth root of

unity mod r(x).
For given CM type (K,Φ), embedding degree k, and cyclotomic polynomial

r(x) = Φ�(x), our implementation of Algorithm 3.8 searches through all αi, βi

satisfying (5.1) and (5.2) and returns the ξ of smallest degree. We illustrate with
a detailed example for g = 2 that produces ρ-values around 4, thus answering
(in one case) an open problem of Freeman, Stevenhagen, and Streng [10, Open
Problem 3.5].

Example 5.2 (g = 2, k = 5, ρ = 4). We give a step-by-step account of the
execution of Algorithm 3.8. We input the CM field K = Q(ζ5), the embedding
degree k = 5, the polynomial r(x) = Φ5(x), and the CM type Φ = {φ1, φ2} onK,
where φ1 is the identity and φ2 : ζ5 	→ ζ25 . The reflex type of Φ is Ψ = {ψ1, ψ2},
where ψ1 is the identity and ψ2 : ζ5 	→ ζ35 .

In Step (1) of the algorithm we set L = Q[x]/(r(x)) ∼= Q(ζ5). In Step (2) we
use the root γ = ζ5 ∈ L to factor r(x) in K[x] as in Proposition 3.4, obtaining

r(x) = r1(x)r2(x)r1(x)r2(x) = (x− ζ5)(x− ζ25 )(x− ζ45 )(x − ζ35 ).

In Steps (4) and (5) we set

α1 = x, α2 = x4, β1 = x, β2 = x3,

which will be the residues modulo r1, r2, r1, r2, respectively, of an element ξ ∈
K[x]. Note that this choice of αi, βi satisfies (5.1) and (5.2). In Step (6) we use
the Chinese remainder theorem to compute

ξ(x) = 1
5 (−2ζ35 − 4ζ25 − ζ5 − 3)x2 + 1

5 (−ζ35 − 2ζ25 + 2ζ5 + 1)x

+ 1
5 (−2ζ35 − 4ζ25 − ζ5 − 3).
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Finally, in Step (7) we take the extended type norm NΦ(ξ) (Definition 3.1) and
obtain

π(x) = 1
5 (−ζ35 + ζ25 + ζ5 − 1)x4 + 1

5 (ζ35 + 2ζ5 − 3)x3 + 1
5 (3ζ25 + 4ζ5 − 2)x2

+ 1
5 (ζ35 + 2ζ5 − 3)x+ 1

5 (−ζ35 + ζ25 + ζ5 − 1). (5.3)

The algorithm outputs π(x), from which we compute

q(x) = π(x)π(x) = 1
5

(
x8 + 2x7 + 8x6 + 9x5 + 15x4 + 9x3 + 8x2 + 2x+ 1

)
.

Since q(x) is irreducible and q(1) = 11 and q(−4) = 11941 are distinct primes,
q(x) represents primes as in Definition 3.6, and thus (π, r) represents a family
of abelian surfaces with embedding degree 5 (Definition 3.7).

Let us now construct an example abelian surface in this family. We use Algo-
rithm 4.1 to find a value x0 for which q(x0) is an integer prime and r(x0) has a
large prime factor. We input y0 = 254 to Algorithm 4.1. Using a = 5 and b = 1
in Step (2), the algorithm outputs h = 5 and x0 = 90071992547410826. We then
compute
r(x0) = 5 · 13164036458570178131583285920762360050673837342185838700280879526651
q(x0) = 86645927941282438593879248675221763717678028046793688224150664812559329726381 \

2468035956767095752602707670039813934558567516584668847561 (449 bits).

Then r(x0) is 5 times a 224-bit prime r0. The Frobenius element π(x0) ∈ Q(ζ5)
can be computed from (5.3), and the number of points n is
NK/Q(π(x0) − 1) = 7507516828805908807587117260296281789720943948010603861398771553099 \

7005372432573979531530426372804300662271515841885261632070998451086 \
3881685818554792291764148781436936054052813749689440867929088179317 \
2414373577234077457445260717721628274356919623931421673327445375718 \
05.

Over any field F there is a single F-isomorphism class of abelian surfaces whose
ring of F-endomorphisms is isomorphic to Z[ζ5]. If char F is prime to 10, then
this abelian surface is isomorphic (over F) to the Jacobian of C : y2 = x5 + 1.
Over F we must find the twist of C that is in the correct F-isogeny class; i.e., has
a Jacobian with the correct number of F-rational points. By choosing a random
point P on each twist and checking whether [n]P = O, we find that the correct
curve over F = Fq(x0) is

C : y2 = x5 + 5.

The ρ-value (1.1) of Jac(C) with respect to the subgroup of order r0 is 4.02. ��

Remark 5.3. The abelian surface A = Jac(C) computed in Example 5.2 has
the property that the bit size of the field Fqk in which pairings on A take their
values is ρk/g ≈ 10 times the bit size of the prime-order subgroup A[r]. It
follows that A is suitable for applications with security level equivalent to a 112-
bit symmetric-key system [9, §1.1]. In addition, since the curve C has a degree-10
twist, we expect that twisting methods such as those developed for elliptic curves
[17] can be used to increase the speed of pairing computation on the Jacobian
and reduce the size of the input.
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We ran Algorithm 3.8 for all degree-4 CM fields K that are primitive (i.e., do
not contain a quadratic imaginary subfield) and are contained in a cyclotomic
field Q(ζ�) with ϕ(�) ≤ 16. We let the inputs to the algorithm range over all such
K and � and embedding degrees k dividing �. Given an η such that K = Q(η),
we let Φ be the CM type that consists of embeddings φi such that φi(η) all have
positive imaginary part. We tested all choices of αi, βi satisfying (5.1) and (5.2),
and computed the ξ of smallest degree that produces a q(x) that represents
primes in the sense of Definition 3.6. Some examples appear below.

Example 5.4 (g = 2, k = 10, ρ = 6). Let K = Q(ζ5), k = 10, r(x) = Φ10(x) =
x4 − x3 + x2 − x+ 1. Algorithm 3.8 outputs

π(x) = 1
25 (ζ3

5 − ζ2
5 − ζ5 + 1)x6 + 1

25 (−6ζ3
5 + 5ζ2

5 + 3ζ5 − 2)x5 + 1
5 (2ζ3

5 − ζ2
5 − 2)x4 + 1

5 (−2ζ3
5

− ζ5 + 4)x3 + 1
5 (3ζ3

5 − 2ζ2
5 − 2)x2 + 1

25 (−4ζ3
5 − ζ2

5 − ζ5 + 11)x + 1
25 (4ζ3

5 − 5ζ2
5 − 2ζ5 − 2).

The ρ-value of this family is 6. On input y0 = 240, Algorithm 4.1 outputs h = 5
and x0 = 5497558154509. We find that A is the Jacobian of the genus 2 curve

C : y2 = x5 + 15.

Then r(x0) is 5 times a 168-bit prime r0. The ρ-value of A with respect to r0 is
within 10−10 of 6. ��

Example 5.5 (g = 2, k = 16, ρ = 7). Let K = Q(η), where η =
√
−2 +

√
2.

Let k = 16 and r(x) = Φ16(x) = x8 + 1. Algorithm 3.8 outputs

π(x) = 1
64 (−η2 − 2)x14 + 1

32 (−η2 − 3η − 2)x13 + 1
64 (η2 − 4η − 16)x12 + 1

16 (−2η3 + η2 − 6η

+ 5)x11 + 1
64 (−8η3 + η2 − 28η)x10 + 1

32 (4η3 − η2 + 7η − 2)x9 + 1
64 (8η3 − η2 + 16η

− 34)x8 + 1
8 (−η3 − 2η + 4)x7 + 1

64 (−8η3 − η2 − 16η − 2)x6 + 1
32 (4η3 − η2 + 13η − 2)x5

+ 1
64 (8η3 + η2 + 28η − 16)x4 + 1

16 (η2 + 2η + 5)x3 + 1
64 (η2 + 4η)x2 + 1

32 (−η2 − η − 2)x

+ 1
64 (−η2 − 2).

The ρ-value of this family is 7. The single Q-isomorphism class of genus 2 curves
whose Jacobians have CM by OK is given by van Wamelen [23]. On input y0 =
218, Algorithm 4.1 outputs h = 2 and x0 = 1083939. We find A to be the
Jacobian of the genus 2 curve

C : y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

Then r(x0) is 2 times a 160-bit prime r0. The ρ-value of A with respect to r0
is 6.91. ��

Example 5.6 (g = 2, k = 13, ρ = 20/3). Let K = Q(η), where η=
√

−13 + 2
√

13.

Let k = 13 and let r(x) = Φ13(x). Algorithm 3.8 outputs
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π(x) = 1
4056 (−19η3 + 183η2 − 377η + 2301)x20 + 1

338 (−2η3 + 7η2 − 39η + 78)x19 + 1
4056 (23η3

+ 177η2 + 481η + 2535)x18 + 1
1352 (7η3 + 49η2 + 65η + 767)x17 + 1

2028 (19η3 + 141η2

+ 221η + 1755)x16 + 1
1352 (η3 + 97η2 − 65η + 1183)x15 + 1

2028 (31η3 + 192η2 + 377η

+ 2496)x14 + 1
1352 (13η3 + 173η2 + 195η + 2587)x13 + 1

26 (3η2 − 2η + 39)x12 + 1
52 (η3 + 8η2

+ 11η + 104)x11 + 1
312 (5η3 + 33η2 + 55η + 507)x10 + 1

78 (2η3 + 9η2 + 28η + 117)x9

+ 1
312 (5η3 + 33η2 + 55η + 507)x8 + 1

4056 (97η3 + 441η2 + 1235η + 5811)x7 + 1
338 (2η3

+ 32η2 + 13η + 429)x6 + 1
2028 (8η3 + 165η2 + 52η + 2535)x5 + 1

1352 (19η3 + 81η2 + 273η

+ 923)x4 + 1
338 (−η3 + 9η2 − 26η + 130)x3 + 1

4056 (23η3 + 99η2 + 325η + 1521)x2

+ 1
2028 (8η3 + 3η2 + 130η + 39)x + 1

338 (−η2 − 13).

The ρ-value of this family is 20/3. The single Q-isomorphism class of genus 2
curves whose Jacobians have CM by OK is given by van Wamelen [23]. On input
y0 = 7 · 215, Algorithm 4.1 outputs h = 13 and x0 = 3127658. We find A to be
the Jacobian of the genus 2 curve

C : y2 = x5 + 104x4 + 5408x3 + 140608x2 + 1687296x+ 7311616.

Then r(x0) is 13 times a 256-bit prime r0. The ρ-value of A with respect to r0 is
6.74. ��

Some additional families we obtained for g = 2 are summarized in Table 1. The
π(x) produced by Algorithm 3.8 and example varieties of cryptographic size can
be found online at http://theory.stanford.edu/∼dfreeman/papers/gen-
bw-examples.pdf

Table 1. Best ρ-values for families of abelian surfaces

k CM field K r(x) ρ-value k CM field K r(x) ρ-value

6 Q(
√

−6 + 3
√

2) Φ48(x) 7.5 30 Q(ζ5) Φ60(x) 7

8 Q(
√

−5 +
√

5) Φ40(x) 7.5 32 Q(
√

−2 +
√

2) Φ32(x) 7.5
15 Q(ζ5) Φ15(x) 7 40 Q(ζ5) Φ40(x) 6.5
20 Q(ζ5) Φ20(x) 6 60 Q(ζ5) Φ60(x) 7

We restrict to r(x) of degree at most 16 because as the degree of r(x) grows it
becomes increasingly unlikely that we will find families with ρ-values significantly
less than 8. For the same reason, we expect that non-Galois quartic CM fields
K will not provide greatly improved ρ-values, as we must work in a field L
that contains the compositum of the Galois closure of K and the cyclotomic
field Q(ζk).

In dimension g = 3, we used the same procedure for the degree-6 Galois CM
field Q(ζ7). The family (π, r) we discovered leads to three-dimensional ordinary
abelian varieties with ρ-values better than the best previously known examples,
which have ρ ≈ 18 [10, Example 5.3].

Example 5.7 (g = 3, k = 7, ρ = 12). Let K = Q(ζ7), k = 7, and r(x) = Φ7(x).
Algorithm 3.8 outputs

http://theory.stanford.edu/~dfreeman/papers/gen-
bw-examples.pdf
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π(x) = 1
49 (−2ζ5

7 − 2ζ3
7 − 2ζ2

7 + 6ζ7)x
12 + 1

49 (−7ζ5
7 + 4ζ4

7 − 4ζ3
7 + 2ζ2

7 + 13ζ7 − 1)x11 + 1
49 (−9ζ5

7

+ 10ζ4
7 − 2ζ3

7 + ζ2
7 + 23ζ7 + 5)x10 + 1

49 (−16ζ5
7 + 9ζ4

7 − 13ζ3
7 − 2ζ2

7 + 45ζ7 − 2)x9

+ 1
49 (−22ζ5

7 + 6ζ4
7 − 19ζ3

7 + 3ζ2
7 + 39ζ7 − 7)x8 + 1

49 (−7ζ5
7 + 13ζ4

7 − 2ζ3
7 − 2ζ2

7 + 28ζ7

+ 12)x7 + 1
7 (−2ζ5

7 + ζ4
7 − 2ζ3

7 + ζ2
7 + 3ζ7 − 1)x6 + 1

49 (−12ζ5
7 − 7ζ4

7 − 26ζ3
7 − 12ζ2

7 + 8ζ7)x
5

+ 1
49 (−7ζ5

7 + 3ζ4
7 − 10ζ3

7 + 5ζ2
7 + 8ζ7 − 6)x4 + 1

49 (2ζ5
7 + 4ζ4

7 + 2ζ3
7 − ζ2

7 + 5ζ7 + 9)x3

+ 1
49 (−5ζ5

7 − 2ζ4
7 − 8ζ3

7 + 2ζ2
7 − 3ζ7 − 5)x2 + 1

49 (ζ5
7 + ζ4

7 − 2ζ3
7 − 3ζ2

7 + 3ζ7)x + 1
49 (ζ4

7

+ 2ζ3
7 + 2ζ2

7 + 2)

The ρ-value of this family is 12. The single Q-isomorphism class of genus 3 curves
whose Jacobians have CM by OK is given by y2 = x7 + 1. On input y0 = 228,
Algorithm 4.1 outputs h = 7 and x0 = 1879056152. We find A to be the Jacobian
of the genus 3 curve

C : y2 = x7 + 16.

Then r(x0) is 7 times a 183-bit prime r0. The ρ-value of A with respect to r0 is
12.10. ��

We also ran our algorithm for the degree-6 CM field Q(ζ9) and found families
with ρ-values of 15 for k = 9 and k = 18. Abelian varieties with CM by Q(ζ9)
are Jacobians of Picard curves of the form y3 = x4 +ax [16]. The π(x) output by
Algorithm 3.8 and example varieties of cryptographic size can be found online
at http://theory.stanford.edu/∼dfreeman/papers/gen-bw-examples.pdf

Future Directions

Our construction improves on the best known ρ-values of pairing-friendly or-
dinary abelian varieties of dimension g ≥ 2 for many different choices of CM
field K and embedding degree k. However, to make ordinary abelian varieties
of dimension g ≥ 2 competitive with elliptic curves in terms of performance,
we must construct varieties with ρ ≤ 2, with the ultimate goal of producing ρ-
values close to 1. Achieving this goal is the most important problem for further
work.

Our construction leaves a great deal of room for searching for better pa-
rameters. One direction would be to choose various Galois CM fields K and let
L = K(ζk). Another approach would be to fix L and use the approach of Kachisa,
Schaefer, and Scott [13] to search systematically through polynomials r(x) such
that L = Q[x]/(r(x)). In the case where g ≥ 2, one could also increase the size
of the input Σ, which is the set from which we choose the residues αi, βi of ξ
modulo factors of r(x) in K̂[x]. In practice we find that when we use elements of
Σ with large coefficients, the q(x) computed have coefficients with large denom-
inators and are thus unlikely to take integer values. However, even restricting Σ
to contain only polynomials with small coefficients leaves many possible choices
for αi and βi, and a program that searches systematically through these choices
would have a good chance of finding improved ρ-values.

http://theory.stanford.edu/~dfreeman/papers/gen-bw-examples.pdf
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Abstract. An explicit construction of pairing-friendly hyperelliptic
curves with ordinary Jacobians was firstly given by D. Freeman. In this
paper, we give other explicit constructions of pairing-friendly hyperellip-
tic curves with ordinary Jacobians based on the closed formulae for the
order of the Jacobian of a hyperelliptic curve of type y2 = x5 + ax. We
present two methods in this paper. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. By using these methods,
we construct a pairing-friendly hyperelliptic curve y2 = x5 + ax over a
finite prime field Fp whose Jacobian is ordinary and simple over Fp with
a prescribed embedding degree. Moreover, the analogue of the Cocks-
Pinch produces curves with ρ ≈ 4 and the cyclotomic method produces
curves with 3 ≤ ρ ≤ 4.

Keywords: pairing-based cryptography, hyperelliptic curves.

1 Introduction

Pairing-based cryptography was proposed around 2000 by three important works
due to Joux [15], Sakai, Ohgishi and Kasahara [20] and Boneh and Franklin [4].
In these last two papers, the authors constructed an identity-based encryption
scheme by using the Weil pairing of elliptic curves. Pairing-based cryptosystem
can be constructed by using the Weil or Tate pairing on abelian varieties over
finite fields. The key idea is that for an abelian variety of dimension g defined over
a finite field Fq, its subgroup of prime order � is embedded into the multiplicative
group of some extension field Fqk as the multiplicative group of �th roots of
unity via the Weil pairing or some other pairing map. The ratio g log q/ log �
and the extension degree k are important for the construction of pairing-based
cryptosystem. This ratio g log q/ log � is denoted by ρ, and the extension degree
k is called the embedding degree with respect to �.

In cryptography, abelian varieties obtained as Jacobians of hyperelliptic curves
are often used. The Jacobian variety of a hyperelliptic curve of genus g is an
abelian variety of dimension g. Note that an elliptic curve is a hyperelliptic
curve of genus one and also an abelian variety of dimension one. Suitable abelian
varieties for pairing-based cryptography are called “pairing-friendly”. Moreover,

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 164–177, 2008.
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hyperelliptic curves whose Jacobians are suitable for pairing-based cryptography
are also called “pairing-friendly”. One of important conditions for being pairing-
friendly is that the embedding degree should be in a appropriate size. It is known
that supersingular abelian varieties have small embedding degree (cf. [19]). For
example, for the case of dimension one (i.e. elliptic curves) it is at most 6, and for
the case of dimension two it is at most 12. Hence, if we need a larger embedding
degree, we need ordinary abelian varieties. Another important condition is that
the value of ρ should be small. By the definition of ρ, its theoretical minimum
is ρ ≈ 1 for abelian varieties of any dimension.

For the case of elliptic curves, there are many results for constructing pairing-
friendly ordinary elliptic curves: Miyaji, Nakabayashi and Takano [18], Cocks
and Pinch [7], Brezing and Weng [5], Barreto and Naehrig [2], Scott and Barreto
[21], Freeman, Scott and Teske [10] and so on. Using the above methods, we can
construct pairing-friendly elliptic curves with ρ ≈ 1 for the embedding degree
less than or equal to 6 (cf. [18]), ρ ≈ 2 (cf. [7]) or 1 < ρ < 2 for many embedding
degrees (cf. [10]). On the other hand, there are very few results for explicit
constructions of pairing-friendly ordinary abelian varieties of higher dimension.
The only known results are Freeman [8], Freeman, Stevenhagen and Streng [11]
and Freeman [9]. The ρ-values in these results are 4 ≤ ρ ≤ 8 for dimension two
(one family with ρ ≈ 4 is given in [9]) and ρ ≈ 12 for dimension three.

In this paper, we give other explicit constructions of pairing-friendly hyper-
elliptic curves with ordinary Jacobians. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. Both methods are based on the
closed formulae for the order of the Jacobian of a hyperelliptic curve of type
y2 = x5 + ax over a finite prime field Fp which are given by E. Furukawa,
M. Kawazoe and T. Takahashi [12] and M. Haneda, M. Kawazoe and T. Taka-
hashi [14]. By using these methods, for a given embedding degree k, we construct
a pairing-friendly hyperelliptic curve y2 = x5 +ax over Fp. Though Jacobians of
curves constructed by our methods are not absolutely simple, our methods pro-
duce curves whose Jacobians are simple over defining fields with smaller ρ-values
than previously obtained. In fact, the analogue of the Cocks-Pinch method pro-
duces curves with ρ ≈ 4 for arbitrary embedding degree and the cyclotomic
method produces curves with 3 ≤ ρ ≤ 4. In particular, when the embedding
degree equals 24, we obtain a cyclotomic family with ρ ≈ 3.

2 Definition and Basic Facts on Hyperelliptic Curves and
Pairing-Based Cryptography

In this section, we recall some basic facts on hyperelliptic curves and pairing-
based cryptography.

2.1 Hyperelliptic Curves and Their Jacobians

First, we recall the relation between the order of the Jacobian and the Frobenius
map. Let p be an odd prime and Fq a finite field with q elements where q = pr

for a positive integer r.
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Let C be a hyperelliptic curve of genus g defined over Fq. Then the defining
equation of C is given as y2 = f(x) where f(x) is a polynomial in Fq[x] of
degree 2g + 1 or 2g + 2. Let JC be the Jacobian variety of a hyperelliptic curve
C. The Jacobian variety JC is an abelian variety of dimension g. Note that if
g = 1 (i.e. C is an elliptic curve), then C is isomorphic to JC . The finite abelian
group of Fq-rational points on JC is denoted by JC(Fq) and called the Jacobian
group of C. Let χ(t) be the characteristic polynomial of the qth power Frobenius
endomorphism of C. We call χ(t) for C the characteristic polynomial of C. Then,
it is well-known that the order #JC(Fq) is given by

#JC(Fq) = χ(1).

2.2 Pairing-Based Cryptography

Here we recall pairing-based cryptography using Jacobian varieties of hyperel-
liptic curves over finite fields. Let C be a hyperelliptic curve of genus g defined
over Fq. Assume that JC(Fq) has a subgroup G of a large prime order. Let �
be the order of G. The group of �-torsion points of JC(Fq) is denote by JC [�]
where Fq is an algebraic closure of Fq and JC(Fq) is a group of Fq-rational points
on JC .

For a positive integer � coprime to the characteristic of Fq, the Weil pairing
is a non-degenerate bilinear map

e� : JC [�] × JC [�] → μ� ⊂ F×
qk

where μ� is the multiplicative group of �th roots of unity in Fq
×

and Fqk is the
smallest field extension of Fq containing μ�.

The key idea of pairing-based cryptography is based on the fact that the
subgroup G of prime order � is embedded to the group μ� via the Weil pairing or
some other pairing map. The extension degree k of the field extension Fqk/Fq is
called the embedding degree of JC with respect to �. The embedding degree with
respect to � equals the smallest positive integer k such that � divides qk − 1. In
other words, q is a primitive kth root of unity modulo �.

When C is an elliptic curve and k is the embedding degree of C with respect
to �, Fqk is a field generated by coordinates of all �-torsion points [1]. For the
higher genus case, we refer to the following result for an abelian varieties due to
Freeman [8].

Proposition 1 ([8]). Let A be an abelian variety over a finite field Fq, χ(t)
the characteristic polynomial of the qth power Frobenius map of A. For a prime
number � � | q and a positive integer k, suppose the following hold:

χ(1) ≡ 0 (mod �)
Φk(q) ≡ 0 (mod �)

where Φk is the kth cyclotomic polynomial. Then A has the embedding degree
k with respect to �. Furthermore, if k > 1 then A(Fqk) contains two linearly
independent �-torsion points.
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In pairing-based cryptography, for the Jacobian variety JC defined over Fq, the
following conditions must be satisfied to make a system secure:

– the order � of a prime order subgroup of JC(Fq) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

– the order qk of the field Fqk should be large enough so that solving a dis-
crete logarithm problem on the multiplicative group F×

qk is computationally
infeasible.

Moreover for an efficient implementation of a pairing-based cryptosystem, the
following are important:

– the embedding degree k should be appropriately small and
– the ratio ρ = g log2 q/ log2 � should be appropriately small.

Jacobian varieties satisfying the above four conditions are called “pairing-
friendly”. Hyperelliptic curves whose Jacobian varieties are pairing-friendly are
also called “pairing-friendly”. In practice, it is currently recommended that �
should be larger than 2160 and qk should be larger than 21024.

3 Formulae for the Order of the Jacobian of Hyperelliptic
Curves of Type y2 = x5 + ax

Our methods are based on the closed formulae for the order of the Jacobian of
a hyperelliptic curve of type y2 = x5 + ax over a finite prime field Fp which
were given by E. Furukawa, M. Kawazoe and T. Takahashi [12] and M. Haneda,
M. Kawazoe and T. Takahashi [14]. Due to the results of [12] and [14], the
characteristic polynomial of a hyperelliptic curve of type y2 = x5 + ax over Fp

are determined completely as follows. For the proof of the following theorem, see
[14] for the proof of (1) and see [12] for others.

Theorem 1 ([12], [14]). Let p be an odd prime, C a hyperelliptic curve defined
by an equation y2 = x5 + ax over Fp, JC the Jacobian variety of C and χ(t)
the characteristic polynomial of the pth power Frobenius map of C. Then the
following holds: (In the following, c and d denote integers such that p = c2 +2d2

and c ≡ 1 (mod 4). Note that such c and d exist if and only if p ≡ 1, 3 (mod 8).)

(1) If p ≡ 1 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4−4dt3+8d2t2−
4dpt+ p2 where f = (p− 1)/8 and 2(−1)fd ≡ (af + a3f )c (mod p).

(2) If p ≡ 1 (mod 8) and a(p−1)/4 ≡ −1 (mod p), or if p ≡ 3 (mod 8) and
a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + (4c2 − 2p)t2 + p2.

(3) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ 1 (mod p), or if p ≡ 9 (mod 16) and
a(p−1)/8 ≡ −1 (mod p), then χ(t) = (t2 − 2ct+ p)2.

(4) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ −1 (mod p), or if p ≡ 9 (mod 16) and
a(p−1)/8 ≡ 1 (mod p), then χ(t) = (t2 + 2ct+ p)2.

(5) If p ≡ 3 (mod 8) and a(p−1)/2 ≡ 1 (mod p), then χ(t) = (t2 + 2ct+ p)(t2 −
2ct+ p).
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(6) If p ≡ 5 (mod 8) and a(p−1)/4 ≡ 1 (mod p), or if p ≡ 7 (mod 8), then
χ(t) = (t2 + p)2.

(7) If p ≡ 5 (mod 8) and a(p−1)/4 ≡ −1 (mod p), then χ(t) = (t2 − p)2.
(8) If p ≡ 5 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + p2.

Remark 1. For the convenience in the following argument, we replaced d in [14]
by (−1)f+1d in Theorem 1 (1).

We remark that χ(t) for the case (3)-(7) are reducible over the ring Z. Moreover,
the case (6), (7) and (8) are the supersingular case. In the following we restrict
our interest to the case (1) and (2), because these are the only cases that JC

is a simple ordinary Jacobian over Fp. The above theorem leads to the closed
formulae for the order of the Jacobian group JC(Fp) by using #JC(Fp) = χ(1).

4 Analogue of the Cocks-Pinch Method

By using the formulae given in Theorem 1 (1) and (2), we obtain an analogue
of the Cocks-Pinch method for hyperelliptic curves y2 = x5 + ax. Let χ be
1 − 4d + 8d2 − 4dp + p2 or 1 + 4c2 − 2p + p2. Then we can construct pairing-
friendly hyperelliptic curves of type y2 = x5 + ax over Fp if we find integers c,
d and odd primes p, � satisfying the following conditions: (Note that p ≡ 1, 3
(mod 8). )

χ ≡ 0 (mod �)
Φk(p) ≡ 0 (mod �)

p = c2 + 2d2 with c ≡ 1 (mod 4).

The first condition means that the order of the Jacobian of a constructed curve
has a subgroup of prime order �. The second condition means that the embedding
degree with respect to � of the Jacobian of a constructed curve is k. Note that
the second condition implies that p is a primitive kth root of unity modulo � and
therefore it implies that �− 1 must be divisible by k. Moreover, in both cases of
Theorem 1 (1) and (2), square roots of −1 and 2 are required to be contained
in the ring Z/�Z so that integers c and d satisfying the above conditions exist.
Hence �− 1 is required to be divisible by 8.

According to Theorem 1 (1) and (2), we have the following theorems:

Theorem 2. For a given positive integer k, execute the following procedure:

(1) Let � be a prime such that LCM(8, k)|(�− 1).
(2) Let α be a primitive kth root of unity in (Z/�Z)×, β a positive integer such

that β2 ≡ −1 (mod �) and γ a positive integer such that γ2 ≡ 2 (mod �).
(3) Let c and d be integers such that

c ≡ (α+ β)(γ(β + 1))−1 (mod �) and c ≡ 1 (mod 4),

d ≡ (αβ + 1)(2(β + 1))−1 (mod �).
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If p = c2 + 2d2 is a prime satisfying p ≡ 1 (mod 8), then for an integer a
satisfying

a(p−1)/2 ≡ −1 (mod p)

2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c (mod p),

the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 = x5 + ax
over Fp has a subgroup of order � and the embedding degree of JC with respect
to � is k.

Proof. First note that the condition k|(�− 1) implies that a primitive kth root
of unity is contained in the ring Z/�Z and the condition 8|(� − 1) implies that
square roots of −1 and 2 are contained in Z/�Z.

Let � be a prime as in (1) and let α, β and γ be as in (2). Substituting
c ≡ (α + β)(γ(β + 1))−1 (mod �) and d ≡ (αβ + 1)(2(β + 1))−1 (mod �) into
p = c2 + 2d2, we have

p ≡
(
(α+ β)2 + (αβ + 1)2

) (
2(β + 1)2

)−1 ≡ (4αβ)(4β)−1 ≡ α (mod �).

Since α is a primitive kth root of unity in (Z/�Z)×, we have Φk(p) ≡ 0 (mod �).
Next we check the condition on the order of the Jacobian. From the condition

d ≡ (αβ + 1)(2(β + 1))−1 (mod �), we have

1 − 2d ≡ (2d− α)β (mod �).

Substituting this into the formula #JC(Fp) = 1− 4d+ 8d2 − 4dp+ p2 and using
p ≡ α (mod �), we have

#JC(Fp) = (1 − 2d)2 + (2d− p)2 ≡ −(2d− α)2 + (2d− p)2 ≡ 0 (mod �)

Thus the Jacobian variety of a constructed curve y2 = x5 + ax over Fp has a
subgroup of order � and its embedding degree with respect to � is k. ��

Theorem 3. For a given positive integer k, execute the following procedure:

(1) , (2) are as in Theorem 2.
(3) Let c and d be integers such that

c ≡ 2−1(α− 1)β (mod �) and c ≡ 1 (mod 4),

d ≡ (α+ 1)(2γ)−1 (mod �).

If p = c2+2d2 is a prime satisfying p ≡ 1, 3 (mod 8), take an integer δ satisfying
δ(p−1)/2 ≡ −1 (mod p) and set an integer a as

a = δ2 when p ≡ 1 (mod 8),
a = δ when p ≡ 3 (mod 8).

Then the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 =
x5 + ax over Fp has a subgroup of order � and the embedding degree of JC with
respect to � is k.
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Proof. As in the proof of Theorem 2, substituting c ≡ 2−1(α− 1)β (mod �) and
d ≡ (α+ 1)(2γ)−1 (mod �) into p = c2 + 2d2, we have

p ≡ 4−1
(
(β(α − 1))2 + (α+ 1)2

)
≡ α (mod �).

In particular, we have Φk(p) ≡ 0 (mod �).
Next we check the condition on the order of the Jacobian. Substituting c ≡

2−1(α − 1)β (mod �) into the formula #JC(Fp) = 1 + 4c2 − 2p + p2 and using
p ≡ α (mod �), we have

#JC(Fp) = 4c2 + (p− 1)2 ≡ −(α− 1)2 + (p− 1)2 ≡ 0 (mod �).

Thus the Jacobian variety of constructed curve y2 = x5 + ax over Fp has a
subgroup of order � and its embedding degree with respect to � is k. ��

Theorem 2 and 3 give an analogue of the Cocks-Pinch method for a hyperelliptic
curve of type y2 = x5 + ax. We call curves obtained by Theorem 2 “Type I”,
and curves obtained by Theorem 3 “Type II”.

Since our method based on the closed formulae of the order of the Jacobian,
we can construct a pairing-friendly hyperelliptic curve in a very short time. For
the running time of our algorithm, see Section 5. Moreover, we remark that ρ ≈ 4
in our construction. This ρ-value is smaller than previously obtained. (Recently,
Freeman [9] proposed another method to construct pairing-friendly hyperelliptic
curves and obtained one family with ρ ≈ 4 for the embedding degree 5.)

We remark one more thing. As is shown in [12], Jacobians for curves of type
I and II are isogenous to the product of two elliptic curves over the extension
field which contains a1/4.

Lemma 1 ([12]). Let p be an odd prime and C a hyperelliptic curve defined by
y2 = x5 + ax, a ∈ F×

p and Fq = Fpr , r ≥ 1. If a1/4 ∈ Fq, then JC is isogenous
to the product of the following two elliptic curves E1 and E2 over Fq:

E1 : Y 2 = X(X2 + 4a1/4X − 2a1/2),

E2 : Y 2 = X(X2 − 4a1/4X − 2a1/2).

By the above lemma, we have the following: (1) Jacobian for type I splits over
Fp4 , (2) Jacobian for type II with p ≡ 3 (mod 8) splits over Fp4 , and (3) Jacobian
for type II with p ≡ 1 (mod 8) splits over Fp2 .

Let C be a pairing-friendly hyperelliptic curve of type I or II with embedding
degree k with respect to �. We write the value 2 log2 p/ log2 � for C as ρ(C). If C
is of type I, or of type II with p ≡ 3 (mod 8), then E1 or E2 is a pairing-friendly
elliptic curve over Fp4 with embedding degree k/4 with ρ = log2 p

4/ log2 � =
2ρ(C). If C is of type II with p ≡ 1 (mod 8), then E1 or E2 is a pairing-friendly
elliptic curve over Fp2 with embedding degree k/2 with ρ = log2 p

2/ log2 � =
ρ(C).
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5 Result of Search for Pairing-Friendly Hyperelliptic
Curves: The Analogue of the Cocks-Pinch Method

In Table 1 and Table 2, we show the number of pairing-friendly hyperelliptic
curves of Type I, II for 13 ≤ k ≤ 32 obtained by using our method. For the
results of k ≤ 12 and k ≥ 33, see the extended version of this paper [17].

These tables show that we can find many pairing-friendly hyperelliptic curves
with ordinary Jacobians by using our method. All computations have been done
by Mathematica 6 on Mac OS X (1.66GHz Intel Core Duo with 1GB memory).
For each k, the running time of the search is on average 90 seconds in Table 1
and 170 seconds in Table 2, respectively.

Here we show only one example of pairing-friendly hyperelliptic curves of type
I with k = 16 obtained by the analogue of the Cocks-Pinch method. For examples
of other type and other k, see the extended version of this paper [17].

Table 1. The number of pairing-friendly hyperelliptic curves obtained by the analogue
of the Cocks-Pinch method for � ∈ [2160, 2160 + 220] with |c| < � and |d| < 2�

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

13 44 42 39
14 34 38 40
15 42 43 38
16 149 163 169
17 33 42 46
18 29 39 48
19 32 42 44
20 78 75 81
21 34 29 30
22 35 50 34

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

23 64 46 45
24 141 152 124
25 33 47 32
26 43 35 36
27 41 45 31
28 82 90 69
29 31 40 36
30 32 31 30
31 29 26 37
32 143 161 164

Table 2. The number of pairing-friendly hyperelliptic curves obtained by the analogue
of the Cocks-Pinch method for � ∈ [2256, 2256 + 220] with |c| < � and |d| < 2�

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

13 16 19 12
14 6 13 18
15 16 13 18
16 55 59 81
17 9 16 19
18 14 14 10
19 18 28 26
20 30 27 29
21 15 7 18
22 15 17 26

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

23 21 13 17
24 70 67 61
25 21 12 24
26 26 17 12
27 16 13 17
28 34 25 26
29 17 14 10
30 15 13 14
31 6 10 17
32 64 59 47
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k =16 (Type I)
� =1461501637330902918203684832716283019655932840529 (161 bits)
α =81844167457893182397317622245688612690934307989
β =195562276567303320541291199692793181706146839127
γ =759224753535341599938962978629340510421546983720
c =44377152517514522371933429191352073808466251009
d =10989841417965341398489085346020251473054265996
p =2210884894346798442145165481525960184900817737075987357833399335\

226916051626079472576037262113 (311 bits)
a =3
#JC(Fp) = 48880120160508541101232277959462765729571682125818741808\

2910733116855655035560868542777327696362024706637568420695212814\
3139938957120301819393955637481342467018816294397128800020723098\
722 (621 bits)

ρ =3.88

6 Another Construction: Cyclotomic Families

Here we give another construction of pairing-friendly hyperelliptic curves of type
y2 = x5 + ax. It is also based on the formulae given in Theorem 1 (1) and (2),
but it is a hyperelliptic version of cyclotomic families.

Cyclotomic families for the case of elliptic curves have been investigated by
Brezing and Weng [5], Freeman, Scott and Teske [10] and some other researchers.
In a cyclotomic family, a cyclotomic polynomial is used to set a prime � as
� = Φk(t) or � = Φck(t) for some c > 1 where k is the embedding degree and t is
a positive integer. Though a prime � is not taken arbitrarily, cyclotomic families
have an advantage that the ρ-value of obtained curves can be smaller than the
one obtained by the Cocks-Pinch method.

For a hyperelliptic curves of type y2 = x5 + ax, we require the condition that
the embedding degree k is divisible by 8. Assume that the embedding degree k
is divisible by 8 and �−1 is divisible by k. Let α be a primitive kth root of unity
modulo �, β an integer such that β2 ≡ −1 (mod �) and γ an integer such that
γ2 ≡ 2 (mod �). Then we have that β = ±αk/4 and γ = ±

(
αk/8 − α3k/8

)
. Note

that if gcd(k, h) = 1, then αh is also a primitive kth root of unity modulo �.

6.1 A Cyclotomic Family of Type I

From Theorem 2, we have

c =
α+ β
βγ + γ

=
(α+ β)(βγ − γ)
(βγ + γ)(βγ − γ) =

α(γ − βγ) + (γ + βγ)
4

d =
αβ + 1
2(β + 1)

=
(αβ + 1)(−β)β(1 − β)

2(1 + β)(1 − β) =
(α− β)(β + 1)

4
.
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Hence we obtain the following for curves of type I:

c =

{
± 1

2

(
αh+3k/8 − αk/8

)
when β = αk/4

± 1
2

(
αh+k/8 − α3k/8

)
when β = −αk/4

d =

{
± 1

4

(
αh − αk/4

) (
αk/4 + 1

)
when β = αk/4

± 1
4

(
αh + αk/4

) (
−αk/4 + 1

)
when β = −αk/4

where h is a positive integer such that gcd(k, h) = 1. Here we consider all choices
of primitive kth roots of unity modulo �.

Let c̃i(t) and d̃i(t) for i = 1, 2 be polynomials of minimal degree satisfying the
following conditions:

c̃1(t) ≡ th+3k/8 − tk/8 mod Φk(t)

d̃1(t) ≡
(
th − tk/4

)(
tk/4 + 1

)
mod Φk(t)

c̃2(t) ≡ th+k/8 − t3k/8 mod Φk(t)

d̃2(t) ≡
(
th + tk/4

)(
−tk/4 + 1

)
mod Φk(t).

Set polynomials p̃i(t) for i = 1, 2 as

p̃i(t) = 2c̃i(t)2 + d̃i(t)2.

Since c = ±c̃i(α)/2 and d = ±d̃i(α)/4, we have

p̃i(α) = 2c̃i(α)2 + d̃i(α)2 = 8(c2 + 2d2) = 8p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1 (mod 8) and c ≡ 1
(mod 4) that p̃i(x) is irreducible, c̃i(j) ≡ 2 (mod 4) and d̃i(j) ≡ 0 (mod 4) for
some i = 1, 2 and 0 ≤ j ≤ 3.

Searching suitable h which gives polynomials c̃i(t), d̃i(t) and p̃i(t) satisfying
the above condition and ρ < 4, we find some pairs of (k, h) for k ≤ 96. Here we
show only one example for k = 56. For other obtained pairs of (k, h) and exam-
ples of pairing-friendly curves with respect to them, see the extended version of
this paper [17].

For k = 56, we have the following example with h = 15 (th = t15):

c̃2(t) = −t21 + t22, d̃2(t) = 1 + t+ t14 + t15,

p̃2(t) = 1 + 2t+ t2 + 2t14 + 4t15 + 2t16 + t28 + 2t29 + t30 + 2t42 − 4t43 + 2t44.

Since Φ56(t) = 1 − t4 + t8 − t12 + t16 − t20 + t24, it is expected that p ≈ �11/6.
Actually, using the above polynomials we obtain pairing-friendly hyperelliptic
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curves of type I with p ≈ �11/6 (ρ ≈ 11/3 = 3.667). For example, we obtain the
following curve y2 = x5 + ax over Fp:

t =17783
� =Φ56(t)

=10002779230686568658271891198740139916691391002533265730688161\
69982687153678515599218400393930598555361(339 bits)

p =25009926587955740652430711168299461474477487005330814448266309\
21859994292374132881840001627580847758991403586307212832793884\
593036831026874212168508718320085925724310352568705063914008009
(620 bits)

a =16807
#JC(Fp) = 625496427934935475676920579041449747666447378567370170\

60668748452844388541065871838826350959809401213705032385658454\
39865415844381193485994423061404346850621512299187041080449163\
23640313220431222179122757531475418474824743249079679096712585\
20940122733798799315733907199411458090910206389272190634184873\
40855302675257495552262931204263421677462745355231160513380825\
632964082 (1238 bits)

ρ =3.655.

For some k, there is no h for which the necessary condition on the polynomials
p̃(t), c̃i(t) and d̃i(t) is satisfied. In such case, changing a choice of polynomials
c̃i(t) and d̃i(t), we might obtain h for which the necessary condition is satisfied.
For example, when k = 8, taking a polynomial d̃i(t) without modulo Φk(t), we
obtain the following with h = 1 (th = t) which gives ρ ≈ 4:

c̃1(t) = 1 + t, d̃1(t) = (t− t2)(1 + t2),

p̃1(t) = 2 + 4t+ 3t2 − 2t3 + 3t4 − 4t5 + 3t6 − 2t7 + t8.

Since Φ8(t) = 1 + t4, it is expected that p ≈ �2. Using the above polynomials we
obtain pairing-friendly hyperelliptic curves of type I with p ≈ �2 (ρ ≈ 4) when
t is odd and � = Φ8(t)/2. For examples of pairing-friendly hyperelliptic curves,
see the extended version of this paper [17].

6.2 A Cyclotomic Family of Type II

From Theorem 3, we have

c =
β(α− 1)

2
, d =

α+ 1
2γ

=
γ(α+ 1)

4
.

Hence we obtain the following for curves of type II:

c = ±
αk/4

(
αh − 1

)

2
, d = ±

(
αk/8 − α3k/8

) (
αh + 1

)

4
.
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Let c̃(t) and d̃(t) be polynomials of minimal degree satisfying

c̃(t) ≡ tk/4
(
th − 1

)
mod Φk(t)

d̃(t) ≡
(
tk/8 − t3k/8

) (
th + 1

)
mod Φk(t).

As in Section 6.1, set a polynomial p̃(t) as p̃(t) = 2c̃(t)2+d̃(t)2. Since c = ±c̃(α)/2
and d = ±d̃(α)/4, we have

p̃(α) = 2c̃(α)2 + d̃(α)2 = 8(c2 + 2d2) = 8p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1, 3 (mod 8) and c ≡ 1
(mod 4) that p̃(x) is irreducible, c̃(j) ≡ 2 (mod 4) and d̃(j) ≡ 0 (mod 4) for
0 ≤ j ≤ 3.

Searching suitable h which gives polynomials c̃(t), d̃(t) and p̃(t) satisfying the
above condition and ρ < 4, we find (k, h) = (24, 11), (24, 23). Here we show the
detail only for (k, h) = (24, 11):

h = 11, th ≡ −t3 + t7 (mod Φ24(t)),

c̃(t) = −t5 − t6, d̃(t) = −1 + t− t2 + t3 + t4 − t5,
p̃(t) = 1 − 2t+ 3t2 − 4t3 + t4 + 2t5 − 3t6 + 4t7 − t8 − 2t9 + 3t10 + 4t11 + 2t12.

Since Φ24(t) = 1− t4 + t8, it is expected that p ≈ �3/2. Actually, using the above
polynomials we obtain pairing-friendly hyperelliptic curves of type I with p ≈
�3/2 (ρ ≈ 3). For example, we obtain the following curves. For other examples,
see the extended version of this paper [17].

t =1049085
� =Φ24(t) = 1467186828927128936514540199634172027208104690001(161 bits)
p =4442924836378410825984100156654939780832773854842227112675716008\

30352907 (239 bits, p ≡ 3 mod 8)
a =2
#JC(Fp) = 197395811017081286100952602074494141989859585688087547012\

22796185282230421493108354514764965972648382397409891392151184968\
7830988000820416707336 (477 bits)

ρ =2.975.

7 Conclusion

In this paper, we present the analogue of the Cocks-Pinch method and the cy-
clotomic method by which we can construct pairing-friendly hyperelliptic curves
of type y2 = x5 +ax with ordinary Jacobians for a prescribed embedding degree.
These methods produce pairing-friendly hyperelliptic curves with small ρ-values.
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More precisely, we obtain pairing-friendly hyperelliptic curves with ρ ≈ 4 for ar-
bitrary embedding degree by using the analogue of the Cocks-Pinch method and
with 3 ≤ ρ ≤ 4 by using the cyclotomic method.

Constructing pairing-friendly ordinary abelian varieties of higher dimension
with smaller ρ-values are still in progress. The current best ρ-values are still
large compared with elliptic curves. Thus the problem is still open.
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Abstract. In implementing an efficient pairing calculation, it is said

that the lower bound of the number of iterations of Miller’s algorithm is

log2 r/ϕ(k), where ϕ(·) is the Euler’s function. Ate pairing reduced the

number of the loops of Miller’s algorithm of Tate pairing from log2 r� to

log2(t − 1)�. Recently, it is known to systematically prepare a pairing–

friendly elliptic curve whose parameters are given by a polynomial of

integer variable “χ”. For the curve, this paper gives integer variable χ–
based Ate pairing that achieves the lower bound by reducing it to log2 χ�.

Keywords: Ate pairing, Miller’s algorithm.

1 Introduction

Recently, pairing–based cryptographic applications such as ID–based cryptogra-
phy [4] and group signature authentication [16] have received much attentions.
In order to make these applications practical, pairing calculation needs to be ef-
ficiently carried out. For this purpose, several efficient pairings such as Tate, Ate
[5], twisted Ate [15], and subfield–twisted Ate [6],[1] have been proposed. In this
paper, Barreto–Naehrig (BN) curve, that is a typical class of non–supersingular
(ordinary) pairing–friendly elliptic curves of embedding degree 12, is mainly dealt
with. As a typical feature of BN curve, its characteristic p and Frobenius trace
t are given by using integer variable χ as

p(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (1a)

t(χ) = 6χ2 + 1. (1b)

Pairings can be roughly classified by the inputs for Miller’s algorithm [10].
In general, as the inputs, Miller’s algorithm needs two rational points and the
number of iterations. Let us suppose a prime order BN curve of embedding
degree 12 as E : y2 = x3 + b, b ∈ Fp , where p is the characteristic and let

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 178–191, 2008.
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the order be a prime number r. Since the embedding degree is 12, r divides
p12 − 1 and then r2 divides #E(Fp12). Tate pairing τ(·, ·) uses rational points
P ∈ E(Fp) and Q ∈ E(Fp12)/rE(Fp12), the number of iterations of Miller’s
algorithm is "log2 r#. Tate pairing mainly uses P for calculation. The output
of Miller’s algorithm is denoted by fr,P (Q). Ate pairing α(·, ·) uses rational
points P ∈ E(Fp) and Q ∈ E[r] ∩ Ker(φ − [p]), but the number of iterations is
"log2(t− 1)#, where φ is Frobenius map for rational point, E[r] is the subgroup
of rational points of order r in E(Fp12), and t is the Frobenius trace of E(Fp),
that is #E(Fp) = r = p+1− t. The number of iterations is about half of that of
Tate pairing; however, Ate pairing mainly uses Q for calculation. The output of
Miller’s algorithm is denoted by ft−1,Q(P ) and thus plain Ate pairing is slower
than Tate pairing.

Devegili et al.’s work [6] accelerated Ate pairing by using subfield–twisted BN
curve E′(Fp2), where the twisted BN curve is given by E′ : y2 = x3 + bv−1 and v
is a quadratic non residue and cubic non residue in Fp2 . In detail, in addition to
P ∈ E(Fp), it mainly uses Q′ ∈ E′(Fp2) for calculation. The authors have also
improved Ate pairing so as to substantially use subfield arithmetic operations
[1]. In what follows, it is called improved subfield–twisted Ate (improved St–Ate)
pairing. Both of these works [6],[1] have "log2(t− 1)# iterations in Miller’s algo-
rithm. According to [2], integer variable χ of small Hamming weight is efficient
for Ate pairing with BN curve.

Let k be the embedding degree, it is said that the lower bound of the number of
iterations of Miller’s algorithm is log2 r/ϕ(k), where ϕ(·) is the Euler’s function.
Ate pairing reduced the number of the iterations of Miller’s algorithm from
"log2 r# to "log2(t − 1)#. By reducing it to "log2 χ#, this paper gives a bilinear
map that achieves the lower bound. In detail, using Frobenius map and BN curve
whose embedding degree is 12, this paper proposes integer variable χ–based Ate
(Xate) pairing. First, based on Eqs.(1), the following relation is shown.

6χ ≡ 1 + p+ p3 + p10 (mod r). (2)

Though plain Ate pairing calculates ft−1,Q(P ) by using Miller’s algorithm, where
P ∈ E(Fp) and Q ∈ E[r]∩Ker(φ− [p]), based on Eq.(2), the proposed Xate pair-
ing calculates fχ,Q(P ). Noting that "log2 χ# is about half of "log2(t−1)#, Miller’s
part of Xate pairing is about twice more efficient than that of plain Ate pairing.
The idea of [6] or improved St–Ate pairing [1] can be efficiently applied for Xate
pairing. The authors simulated Xate pairing and also improved St–Xate pairing
on Pentium4 (3.0GHz) with C language and GMP library [9]. Then, it is shown
that, when r is a 254–bit prime number, improved St–Xate pairing that includes
so–called final exponentiation is calculated within 11.0 milli–seconds. After that,
it is shown that improved St–Xate is applied not only for BN curve but also
Freeman’s curve of embedding degree 10. Then, some recent works [19],[14] are
introduced and compared to Xate pairing. Note that Eq.(2) is also efficient for
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scalar multiplications in E(Fp12) and subfield–twisted BN curve E′(Fp2), more-
over exponentiation in Fp12 .

Throughout this paper, p and k denote characteristic and extension degree,
respectively. Fpk denotes k-th extension field over Fp and F∗

pk denotes the mul-
tiplicative group in Fpk . X | Y and X � Y mean that X divides and does not
divide Y , respectively.

2 Fundamentals

We briefly go over elliptic curve, Tate, Ate, improved St–Ate pairings, and di-
visor theorem. For instance, we mainly consider Barreto–Naehrig (BN) curve of
embedding degree 12, that is a class of ordinary pairing–friendly curves [7].

2.1 Elliptic Curve and Barreto–Naehrig Curve

Let Fp be a prime field and E be an elliptic curve over Fp . E(Fp) that is a set
of rational points on the curve, including the infinity point O, forms an additive
Abelian group. Let #E(Fp) be its order, consider a large prime r that divides
#E(Fp). The smallest positive integer k such that r divides pk − 1 is especially
called embedding degree. One can consider pairings such as Tate and Ate pairings
by using E(Fpk). In general, #E(Fp) is given as

#E(Fp) = p+ 1 − t, (3)

where t is the Frobenius trace of E(Fp). The characteristic p and Frobenius trace
t of Barreto–Naehrig (BN) curve [3] are given by using an integer variable χ as
Eqs.(1). In addition, the BN curve E is given by

E : y2 = x3 + b, b ∈ Fp (4)

whose embedding degree is 12. In this paper, let #E(Fp) be a prime r.

2.2 Tate Pairing

Let P ∈ E(Fp) and Q ∈ E(Fpk)/rE(Fpk), Tate pairing τ(·, ·) is defined as

τ(·, ·) :

{
E(Fp) × E(Fpk)/rE(Fpk) → F∗

pk/(F∗
pk)r

(P,Q) 	→ fr,P (Q)(p
k−1)/r.

(5)

In general, A = fr,P (Q) is calculated by Miller’s algorithm [5], then so–called
final exponentiation A(pk−1)/r follows. The number of iterations of Miller’s algo-
rithm for Tate pairing is determined by r, in detail "log2 r#. Twisted Ate pairing
[15] reduced the number of iterations of Miller’s algorithm. Let d be the twist
degree such as d = 2, 3, 4, 6, it is reduced to (t− 1)k/d (mod r).
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2.3 Ate Pairing

Let φ be Frobenius endomorphism, ı.e.,

φ : E → E : (x, y) 	→ (xp, yp), (6)

where x and y are x–coordinate and y–coordinate of rational point, respectively.
Then, let G1 and G2 be

G1 = E[r] ∩Ker(φ − [1]), (7a)

G2 = E[r] ∩Ker(φ − [p]), (7b)

and let P ∈ G1 and Q ∈ G2, Ate pairing α(·, ·) is defined as

α(·, ·) :

{
G2 × G1 → F∗

pk/(F∗
pk)r

(Q,P ) 	→ fT,Q(P )(p
k−1)/r,

(8)

where T = t−1, E[r] denotes a subgroup of rational points of order r in E(Fpk),
and [i] denotes [i] : P 	→ iP . The number of iterations of Miller’s algorithm for
Ate pairing is determined by t− 1, in detail "log2(t− 1)#.

In the case of using BN curve for Ate pairing, G1 and G2 become as

G1 = E(Fp), (9a)

G2 = (φ− [1])
{
E(Fp12)/rE(Fp12 )

}
, (9b)

therefore, compared to Tate paring, the number of iterations becomes about
half; however, Miller’s algorithm needs a lot of calculations in the above defined
G2. Thus, plain Ate pairing is not superior to Tate pairing.

Devegili et al.’s work [6] and the authors [1],[2] have improved Ate pairing
with BN curve by using subfield–twisted elliptic curve E′(Fp2) over Fp2 . It is
given as

E′ : y2 = x3 + bv−1, b ∈ Fp , v ∈ Fp2 , (10)

where v is a quadratic non residue and cubic non residue in Fp2 . It is also called
sextic twisted curve. In this case, we have the following isomorphism.

ψ : E′(Fp2) → E(Fp12) (11a)

Q′(xQ′ , yQ′) 	→ Q(xQ′v
1
3 , yQ′v

1
2 ), (11b)

Thus, noting that E(Fp12) and E′(Fp12) are isomorphic to each other, [6] effi-
ciently used subfield–twisted elliptic curve E′(Fp2). In detail, it calculates fT,ψ(Q′)

(P ) by using Q′. The authors have also improved Ate pairing so as to substan-
tially use subfield arithmetic operations [1]. In what follows, it is called improved
St–Ate pairing. In our previous work [2], it is shown that integer variable χ of
small Hamming weight is quite efficient for Ate pairing. It is also efficient for
twisted Ate pairing [18].
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2.4 Relation between Tate and Ate Pairings

Table 1 shows the parameter settings for Miller’s algorithm using BN curve of
embedding degree 12.

Table 1. Parameter settings for calculating fA,B(C) with Miller’s algorithm

pairing A group for B group for C

plain Tate r E(Fp) E(Fp12)

Twisted Ate [15] (t − 1)2 (mod r) E(Fp) E(Fp12)

plain Ate t − 1 E(Fp12) E(Fp)

Devegili et al.’s Ate [6] t − 1 E′(Fp2) E(Fp)

improved St–Ate [2] t − 1 E′(Fp2) E(Fp)

Between Tate and Ate pairings, we have the following relation [10].

τ(Q,P )L = fT,Q(P )c(pk−1)/N , (12)

where c ≡ kpk−1 (mod r) and

N = gcd(T k − 1, pk − 1), T k − 1 = LN, T = t− 1. (13)

Thus, let N = ru, according to Eq.(8), we have

τ(Q,P )uL = α(Q,P )c. (14)

r � L is needed for Ate pairing to be nondegenerate.

2.5 Divisor

Let D be the principal divisor of Q ∈ E given as

D = (Q) − (O) = (Q) − (O) + div (1) . (15)

For scalars a, b ∈ Z, let aD and bD be written as

aD = (aQ) − (O) + div (fa,Q) , (16a)

bD = (bQ) − (O) + div (fb,Q) , (16b)

where fa,Q and fb,Q are the rational functions for aD and bD, respectively. Then,
addition for divisors is carried out as

aD + bD = (aQ) + (bQ)− 2(O) + div (fa,Q · fb,Q · gaQ,bQ) , (17a)
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where gaQ,bQ = laQ,bQ/vaQ+bQ, laQ,bQ denotes the line passing through two
points aQ, bQ, and vaQ+bQ denotes the vertical line passing through aQ + bQ.
Moreover, the following relation holds.

a(bD) =
a−1∑

i=0

(bQ) − a(O) + div
(
fa

b,Q · fa,bQ

)
. (17b)

Thus, let (a+ b)D and (ab)D be written as

(a+ b)D = ((a+ b)Q)− (O) + div (fa+b,Q) , (18a)

(ab)D = (abQ)− (O) + div (fab,Q) , (18b)

we have the following relation.

fa+b,Q = fa,Q · fb,Q · gaQ,bQ, (19a)

fab,Q = fa
b,Q · fa,bQ = f b

a,Q · fb,aQ. (19b)

Consider Frobenius map φ(Q) for rational point Q ∈ E(Fpk) as

φ(·) :

{
E(Fpk) → E(Fpk)

(xQ, yQ) 	→ (xp
Q, y

p
Q).

(20)

In the case of Ate pairing, according to Eq.(7b) we have

φ(Q) = pQ, where Q ∈ G2. (21)

Thus, for Q ∈ G2, let fp,Q be given as

pD = (pQ) −O + div (fp,Q) , (22)

Eq.(19b) with b = p leads to

fap,Q = fa
p,Qfa,pQ = fa

p,Qfa,φ(Q) = fa
p,Qf

p
a,Q. (23)

Iteratively applying the above relation from a = pi−1, we have

fpi,Q = f ipi−1

p,Q . (24)

3 Main Proposal

In this section, using BN curve of embedding degree 12, integer variable χ–
based Ate pairing (Xate pairing) is proposed. First, derive

∑
j djχ

i =
∑

i cip
i

with small coefficients cj and dj . Based on the p–adic expansion, then consider
efficient bilinear map with Frobenius map, namely Xate pairing.
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3.1 Frobenius Expansion with χ

Note that G2 is defined as E[r] ∩ Ker(φ − [p]), the parameter settings of BN
curve are Eq.(1), and #E(Fp) is a prime number r. First, this section considers
p–adic (Frobenius) expansion with respect to χ. In the case of BN curve, the
expansion of 6χ is systematically obtained. According to Eq.(1b) and Eq.(3),

6χ2 ≡ t− 1 ≡ p (mod r). (25)

Then, substituting it to Eq.(1a), we have

p ≡ p2 − 6χ(p+ 1) + 4p+ 1 (mod r), (26)

6χ(1 + p) ≡ (p2 + 3p+ 1) (mod r). (27)

Then, based on cyclotomic polynomial p4 − p2 + 1 ≡ 0 (mod r) [1] and using
extended Euclidean algorithm, (1 + p)−1 is calculated as

p2(1 − p)(1 + p) ≡ 1 (mod r), (28)

(1 + p)−1 ≡ p2(1 − p) (mod r). (29)

Then, substituting Eq.(29) and p6 ≡ −1 (mod r) to Eq.(27), we have

6χ ≡ (1 + p)−1
{
(1 + p)2 + p

}

≡ 1 + p+ p3 + p10 (mod r). (30)

As introduced in Sec.3.4, for other pairing–friendly curves, such a p–adic (Frobe-
nius) expansion can be obtained in the same way. In the next section, based on
the above relation Eq.(30), we consider an efficient bilinear map that achieves
the number of calculations of Miller’s algorithm log2 r/ϕ(k) with BN curve.

3.2 Integer Variable χ–Based Ate (Xate) Pairing

First, for Q ∈ G2, we consider the following relation.

f6χ2,Q = fT,Q. (31)

Of course, for ∀P ∈ G1, we have

f6χ2,Q(P )(p
12−1)/r = fT,Q(P )(p

12−1)/r = α(Q,P ). (32)

In order to apply Eq.(30), according to Sec.2.5, we rewrite f6χ2,Q as

f
(p12−1)/r
6χ2,Q = f (p12−1)/r

6χ·χ,Q = f (p12−1)/r
(1+p+p3+p10)χ,Q. (33)
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from which we can obtain

f
(p12−1)/r
(1+p+p3+p10)χ,Q = {fχ,Q · fp

χ,Q · gχQ,pχQ · fp3

χ,Q · fp10

χ,Q · gp3χQ,p10χQ

·gχQ+pχQ,p3χQ+p10χQ · f1+3p2+10p9

p,χQ }(p12−1)/r.

(34a)

Then, we have f (p12−1)/r
6χ·χ,Q = AB(p12−1)/r with

A = f1+3p2+10p9

p,χQ , (35a)

B = f̂χ,Q, (35b)

where f̂χ,Q = f1+p+p3+p10

χ,Q · gχQ,pχQ · gp3χQ,p10χQ

·gχQ+pχQ,p3χQ+p10χQ. (35c)

As shown in App.A, f (p12−1)/r
p,χQ = fχ(p12−1)/r

p,Q . Thus, Eq.(35a) becomes

A(p12−1)/r = {f (1+3p2+10p9)χ
p,Q }(p12−1)/r. (36)

and then A(p12−1)/r gives a bilinear map. According to Eq.(30), we can consider
the right–hand side of Eq.(30) as a polynomial of variable p such as

h(p) = 1 + p+ p3 + p10. (37)

Then, A is given with its formal derivative h′(p) with respect to p as

A(p12−1)/r = {fχh′(p)
p,Q }(p12−1)/r. (38)

Finally, using A, B, Eqs.(31), (33), and (53), we have

f̂
(p12−1)/r
χ,Q =

{
fT,Q ·A−1

}(p12−1)/r
, (39)

we find that the right–hand side of the above equation gives a bilinear map. In
what follows, we consider the following bilinear map referring as integer variable
χ–based Ate (Xate) pairing ζ(·, ·).

ζ(·, ·) :

{
G2 × G1 → F∗

p12/(F∗
p12)r

(Q,P ) 	→ f̂χ,Q(P )(p
12−1)/r.

(40)

According to Eq.(35c), we find that the major computation of Xate pairing
is fχ,Q that achieves the lower bound log2 r/ϕ(k). The others are efficiently cal-
culated with Frobenius map. When one uses Miller’s algorithm, the Hamming
weight of χ directly affects the efficiency of calculating f̂χ,Q(P ). Moreover, one
can apply improved St–Ate pairing technique [1] to Xate paring, namely im-
proved subfield–twisted Xate (improved St–Xate) pairing.
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3.3 Nondegeneracy of Xate Pairing

Based on the nondegeneracies of Tate and Ate pairings, the condition that Xate
pairing needs to satisfy is given as follows.

Let N = gcd(T k − 1, qk − 1), T k − 1 = LN, and T = t − 1, r � L is needed
for the nondegeneracy of Ate pairing. In the same, according to Eqs.(14), (35a),
(39), (52), and (53), the following condition is needed for that of Xate pairing.

r � uL− χ(uL+ c)h′(p), (41)

where c ≡ 12p11 (mod r) and N = ru. (see App.B)

3.4 For Other Pairing–Friendly Curves

In the case of Freeman’s curve [7] whose embedding degree k is 10, the parameter
settings become as

p(χ) = 25χ4 + 25χ3 + 25χ2 + 10χ+ 3, (42a)

t(χ) = 10χ2 + 5χ+ 3, (42b)

in the same way of Eq.(30), we have

5χ ≡ −2p2 + p− 2 (mod r). (43)

In the case of embedding degree 8 and parameter settings as follows [7],

p(χ) = χ8 + χ5 − χ4 − χ+ 1, (44a)

t(χ) = χ5 − χ+ 1, (44b)

then we have
χ2 ≡ −χp5 − p2 (mod r). (45)

As shown in Eq.(30), Eq.(43), and Eq.(45), the highest degree term of χ can
be replaced to the other lower terms with powers of p from which the efficiency
of Xate pairing comes. Thus, Eq.(30), Eq.(43), and Eq.(45) are efficient not only
for constructing bilinear maps such as Eq.(40) but also scalar multiplication in
G2 and exponentiation in F∗

pk/(F∗
pk)r. Furthermore, the authors have found that

Eq.(30) leads to more improvement of Twisted Ate pairing.

4 Simulation

This section discusses the implementation of Xate pairing and then shows sim-
ulation result. In the discussion, suppose the following conditions.

– BN curve of prime order r and Frobenius trace t is given over Fp as Eq.(4).
– Using a certain integer χ, p and t are given by Eqs.(1).
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– Its quadratic and cubic twisted curve is given by Eq.(10).
– G1 = E(Fp), G2 = E[r] ∩ Ker(φ− [p]), and G′

2 = ψ−1(G2),
where ψ is defined as Eqs.(11) and ψ−1 is its inverse map.

– P ∈ G1, Q ∈ G2, Q′ ∈ G′
2, and Eq.(41) is satisfied.

– In this case, vaQ+bQ(P ) becomes 1 at final exponentiation (see App.A).

4.1 Implementation

As shown in Eq.(35c), the major calculation of Xate pairing is fχ,Q(P ). It is
efficiently calculated by using Miller’s algorithm. In the Miller’s algorithm for
calculating fχ,Q(P ), we obtain χQ ∈ E′(Fp2). Then, efficiently using χQ and
Frobenius map, the other parts of Xate pairing are calculated. By the way, final
exponentiaion for f given by Eq.(46) is calculated by Algorithm 1 [6].

f = f̂χ,Q(P ). (46)

Algorithm 1. Final exponentiation f (p6−1)(p2+1)(p4−p2+1)/r

Input : f given by Eq.(46), χ, p
Output : f (p6−1)(p2+1)(p4−p2+1)/r

Procedure :
1. f ← fp6 · f−1

2. f ← fp2 · f
3. a← (f6)χ · (f5)p6

4. b← ap

5. b← a · b
6. compute fp, fp2

, and fp3

7. c← b · (fp)2 · fp2

8. f ← fp3 · (c6)χ2 · c · b · (fp · f)9 · a · f4

9. Return f

4.2 Simulation Result

Using the following positive integer χ of small Hamming weight,

χ = 262 + 255 + 1, (47)

by which the order r becomes 254–bit prime number and the size of Fp12 becomes
3048–bit, the authors simulated improved St–Xate pairing. For constructing Fp12 ,
the authors used the previous work [12] and tower field technique as F(p4)3 [17].
The detail of the implementation is introduced in App.C.

According to Eq.(1b), log2(t − 1) ≈ 2 log2(χ). Therefore, it is understood
that Miller’s part of improved St–Xate pairing is about twice faster than that
of improved St–Xate pairing. The simulation result also shows it.
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Table 2. Comparison of timings of pairings with BN curve of 254–bit prime order

[unit:ms]

pairing Miller’s part final exponentiation total

plain Tate 22.1 27.2

Twisted Ate [18] 13.9 19.0

plain Ate 26.5
5.1

31.6

improved St–Ate [2] 10.5 15.6

Xate 13.6 18.7
improved St–Xate 5.4 10.5

Devegili et al.’s Ate [6] NA NA 23.2

Remark : Pentium4 (3.0GHz), C language, and GMP [9] are used.

The authors did not use 64–bit mode of Pentium4.

4.3 Some Recent Works and Comparison

As the most recent works, Vercauteren [19] and Lee et al. [14] have proposed
efficient Ate pairings. Vercauteren introduced optimal pairings. According to [19],
the basic idea is finding λ = mr, r � m that has p–adic expansion λ =

∑
cip

i

with small coefficients ci. Then, optimal pairing uses fci,Q with Miller’s algorithm
calculation. Lee et al. introduced R–ate pairing [14]. Lee’s basic idea is finding
Tx =

∑
cip

i with small coefficients ci, where Tx = (t− 1)x. In the same, R–ate
pairing uses fci,Q with Miller’s algorithm calculation.

As described in Sec.3, the proposed method derives
∑

j djχ
i =

∑
i cip

i with
small coefficients cj and dj , thus our approach is different from theirs [19],[14]. For
example, R–ate pairing for BN curve of embedding degree 12 calculates f6χ+2,Q

but Xate pairing calculates fχ,Q from which the difference could be understood
though their calculation costs are almost the same. As previously introduced, our
proposal, that is characterized by Eq.(30), Eq.(43), and Eq.(45), are efficient not
only for constructing Xate pairing such as Eq.(40) but also scalar multiplication in
G2 and exponentiation in F∗

pk/(F∗
pk)r to which the techniques [19] and [14] cannot

be directly applied. For example, when one calculates sQ, Q ∈ G2 with Eq.(30),
calculate the 6χ–adic representation of scalar s, then substitute 6χ by 1 + p +
p3 + p10. Then, using some Frobenius maps based on pQ = φ(Q), sQ can be ef-
ficiently calculated. Skew Frobenius map for Q′ ∈ G′

2 is also efficient as pQ′ =
ψ−1(φ(ψ(Q′))) with Eq.(11b). Efficient scalar multiplication using skew Frobenius
map is shown in Galbraith et al.’s work [8]. Furthermore, the authors have found
that Eq.(30) leads to more improvement of Twisted Ate pairing.

5 Conclusion

Using BN curve whose embedding degree is 12, this paper proposed integer
variable χ–based Ate (Xate) pairing. First, the following relation was shown.
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6χ ≡ 1 + p+ p3 + p10 (mod r), (48)

where the characteristic p of BN curve was given with integer variable χ as

p(χ) = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1. (49)

Let φ and t be Frobenius map and its trace, respectively, though plain Ate pair-
ing calculates ft−1,Q(P ) by using Miller’s algorithm, the proposed Xate pairing
calculates fχ,Q(P ) using χ, where P ∈ E(Fp) and Q ∈ E[r] ∩ Ker(φ − [p]).
Noting that "log2 χ# is about half of "log2(t − 1)#, it was shown that Miller’s
part of Xate pairing was about twice more efficient than that of plain Ate pair-
ing. Then, the authors simulated Xate pairing on Pentium4 (3.0GHz) with C
language and GMP library [9], it was shown that, when r was a 254–bit prime
number, improved St–Xate pairing that included so–called final exponentiation
was calculated within 11.0 milli–seconds.
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xQ′ and v1/3 belong to Fp2 and Fp6 , respectively. Therefore, vφ(Q)(P )(p

12−1)/r

becomes 1. Because, the x–coordinate of P belongs to Fp . Thus, we have
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Therefore fp,Q(P )(p
12−1)/r gives a bilinear map from which Eq.(35a) becomes

f
(p12−1)/r
p,χQ = fχ(p12−1)/r

p,Q . (53)

The bilinearity of fp,Q has been also shown in [15].

B Proof of Eq.(41)

Eq.(14) means
f

uL(p12−1)/r
r,Q = f c(p12−1)/r

T,Q . (54)

From Eq.(52), we have

f
uL(p12−1)/r
r,Q · fuL(p12−1)/r

T,Q = fuL(p12−1)/r
p,Q . (55)

Substituting Eq.(54) to Eq.(55), we have

f
(uL+c)(p12−1)/r
T,Q = fuL(p12−1)/r

p,Q . (56)

The (uL+ c)–th power of the right–hand side of Eq.(39) becomes

{
fuL+c

T,Q · A−(uL+c)
}(p12−1)/r

=
{
fw

p,Q

}(p12−1)/r
, (57)

where using Eq.(56) w is given as

w = uL− χ(uL+ c)h′(p). (58)

Thus, we obtain the condition as Eq.(41).

C Constructing Fp12 and Its Subfields Fp2, Fp4, Fp6

First, the authors prepared Fp4 with type–〈1, 4〉 Gauss period normal basis
(GNB) [5] and also Fp3 with type–〈2, 3〉 GNB. Then, the authors prepared Fp12

as tower field F(p4)3 by towering 〈2, 3〉 GNB over Fp4 [17]. For multiplication with
GNB, the authors implemented cyclic vector multiplication algorithm (CVMA)
[12]. For example, CVMA calculates a multiplication in F(pm)n by

Mmn =
n(n+ 1)

2
Mm =

mn(m+ 1)(n+ 1)
4

M1. (59)

For inversions in extension field and prime field, the authors implemented Itoh–
Tsujii inversion algorithm [11] and binary extended Euclidean algorithm [13],
respectively. Since GNB is a class of normal bases, one can easily prepare arith-
metic operations in subfields Fp2 ,Fp4 ,F(p2)3 .
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Abstract. A new form of elliptic curve was recently discovered by Ed-
wards and their application to cryptography was developed by Bernstein
and Lange. The form was later extended to the twisted Edwards form.
For cryptographic applications, Bernstein and Lange pointed out several
advantages of the Edwards form in comparison to the more well known
Weierstraß form. We consider the problem of pairing computation over
Edwards form curves. Using a birational equivalence between twisted
Edwards and Weierstraß forms, we obtain a closed form expression for
the Miller function computation.

Simplification of this computation is considered for a class of super-
singular curves. As part of this simplification, we obtain a distortion map
similar to that obtained for Weierstraß form curves by Barreto et al and
Galbraith et al. Finally, we present explicit formulae for combined dou-
bling and Miller iteration and combined addition and Miller iteration
using both inverted Edwards and projective Edwards coordinates. For
the class of supersingular curves considered here, our pairing algorithm
can be implemented without using any inversion.

Keywords: elliptic curve, pairings, Edwards form, Miller function, su-
persingular curves.

1 Introduction

Background. Pairings on curves find many applications in cryptographic pro-
tocols. These have been used to give one-round three-party key exchange [1],
identity-based encryption [2] and many other schemes. For implementing such
protocols, it is essential to have curves which are pairing friendly and an efficient
pairing algorithm. Construction of pairing friendly curves is itself an active area
of research. See [3] for a survey.

This work concerns computing (Tate) pairing on an elliptic curve. Tate pairing
was introduced in cryptology in [4]. An algorithm for finding Tate pairing on
elliptic curves was first given by Miller, which was subsequently published in [5].
Tate pairing over supersingular curves was studied in [6,7]. Several techniques
were described to improve the efficiency of computing the pairing.
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Edwards [8] introduced a new form of elliptic curves and gave an elegant ad-
dition rule for such curves. The work [8] considered elliptic curves over number
fields. Bernstein and Lange [9] showed the usefulness of the Edwards form el-
liptic curves in cryptography. Among other things, they showed that, unlike the
more well known Weierstraß form, the Edwards form admits a complete (and
hence, unified) addition formula. This is very useful in providing resistance to
side-channel attacks. Further, in [9] and [10] they developed efficient explicit for-
mulae for doubling, addition and mixed-addition using projective and inverted
coordinates. These provided the fastest methods for scalar multiplication on
elliptic curves.

Motivation. Pairing based cryptographic protocols use both scalar multipli-
cations and pairing computations. In view of the advantages of Edwards form
curves, a designer may wish to implement a pairing based protocol using such
curves. The problem, however, is with the pairing computation. Till date, all
pairing algorithms use the more well known Weierstraß form of an elliptic
curve. Thus, to implement pairings, one will have to use an isomorphism to
map Edwards points to points on Weierstraß form and then compute pairing on
Weierstraß form curve.

This raises several questions. Is it possible to compute pairing directly on the
Edwards form? How does this compare to the cost of converting to Weierstraß
form and then computing the pairing? More generally, how does pairing on
Edwards form compare to the cost of computing pairing on the Weierstraß form?
Are there any advantages in computing pairing directly on Edwards form?

Motivated by these questions, we make a detailed investigation of pairing on
Edwards form. The basic question is of course, how to perform pairing directly
on Edwards form.

Contributions. The following question is central to computing the Tate pair-
ing on elliptic curves using Miller’s algorithm: given points P1 and P2 on an
elliptic curve, find a point P3 and a rational function h such that

div(h) = (P1) + (P2)− (P3) −O,

where O is a distinguished rational point. This fact is emphasized in [4]. For
Weierstraß form curve this is easy to do using the chord-and-tangent rule for
addition. In this case, P3 is taken to be the negative of the sum of P1 and P2

and one such step is called a Miller iteration.
The first contribution of this work is to work out a solution to the above prob-

lem for twisted Edwards form curve. Using the birational equivalence between
twisted Edwards and Weierstraß form curves, we obtain the form of the rational
function h over twisted Edwards form when P3 is the sum of P1 and P2. In other
words, we show how to perform Miller iteration directly on twisted Edwards
form curve. Since the Miller iteration forms the basis of all pairing algorithms,
including the Weil, Tate, Eta and Ate pairings, our work shows how to compute
such pairings directly over twisted Edwards form curves.

In its general form, the expression for h looks a bit complicated. We show
that for special curves, it is possible to simplify the computation. As examples,
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we consider supersingular curves over finite fields of characteristic greater than
3 (and hence having embedding degree 2). An important aspect in pairing com-
putation over supersingular curves is the utilization of the so-called distortion
map. For Weierstraß form, such a map was obtained in [6,7]. We obtain a similar
distortion map for a class of Edwards form supersingular curves. Using this map
and some further simplifications, we work out explicit formulae for combined
doubling and Miller iteration and combined addition and Miller iteration using
both inverted Edwards and projective Edwards coordinates.

The cost for doubling and Miller value computation is 9[M]+6[S] and for mixed
addition and Miller value computation is 17[M]+1[S] using inverted Edwards
coordinates. The corresponding values using projective Edwards coordinates are
9[M]+6[S] and 18[M]+1[S]. This is slower than the best known pairing algorithm
for Weierstraß form supersingular curve s2 = r3 + ar using Jacobian curves
obtained in [11]. The corresponding values for general a, small a and a = −3 are
(8[M]+6[S], 11[M]+3[S]), (7[M]+6[S], 11[M]+3[S]) and (8[M]+4[S], 11[M]+3[S])
respectively. (The Edwards form does not distinguish between different values
of a.)

Comparison to Pairing on Weierstraß. In general, it is expected that
pairing over Edwards form will be slower than pairing over Weierstraß form. To
see this, consider the two ways of performing pairing over Edwards.

1. Convert the points to Weierstraß form and then perform the pairing on
Weierstraß form. In this method, the total cost of pairing will also include
the cost of converting points from Edwards form to Weierstraß form.

2. Perform pairing directly on twisted Edwards form using the required Miller
function (obtained here). The form for this function is obtained by mapping
Edwards points to Weierstraß points, obtaining the expression for Miller
function on Weierstraß and then mapping back to obtain the Miller function
on Edwards. So, the form for the Miller function on Edwards implicitly
includes both the maps to and from Weierstraß. Consequently, it is unlikely
that a Miller iteration on Edwards will be faster than a Miller iteration on
Weierstraß.

The above seems to suggest that Edwards form should not be used for imple-
menting pairing based protocols. The answer, however, is not that straightfor-
ward. Each algorithm in a protocol involves some scalar multiplications and some
pairings. For the scalar multiplications, Edwards form is faster, especially if the
implementation has to guard against side channel attacks. The pairing will be
slower but, this may be compensated by the faster scalar multiplications. We
believe that there is no general answer and a designer would have to look at the
very specific details before making a proper selection of elliptic curve form.

Pairing on Edwards: Compute Pairing Directly or Via Weierstraß

Form? Suppose a designer chooses to implement a protocol using the Edwards
form. From Point 2 mentioned above, it seems that each Miller iteration on
Edwards will be slower than that on Weierstraß. The direct method is faster if
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the cost of conversion to Weierstraß amortized over all the Miller iterations is
more than the difference between the Miller iteration on Edwards and that of
Weierstraß.

Inversion Free Pairing on Edwards Form. On the other hand, there is one
advantange of the direct method. This arises in specific reference to the class of
supersingular curves considered here. Suppose, a designer wants an inversion-free
pairing algorithm, i.e., a pairing algorithm, which does not make any inversion.
Then the implementation will not require an inversion module. For resource
constrained devices this may be an important issue.

For the specific class of supersingular curves considered here, the pairing al-
gorithm that we obtain is free from inversion. Hence, the inversion module is not
required to implement this algorithm. In contrast, we show that if the pairing is
computed by converting to Weierstraß, then the conversion itself will require an
inversion (as otherwise the resulting algorithm will be inefficient).

2 Preliminaries and Notations

Throughout this paper p denotes a prime greater than 3 and q an odd prime
power. The finite field of cardinality q will be denoted by Fq.

An elliptic curve (over Fq) in Weierstraß form is given by an equation y2 =
x3 + a2x2 + a4x + a6, where a2, a4 and a6 are from Fq. The addition rule and
other properties on this form of the curve are quite well known and hence we do
not repeat these here.

An elliptic curve (over Fq) in Edwards form is given by an equation x2 +
y2 = c2(1 + dx2y2), c, d �= 0. Edwards introduced this form for elliptic curves
over number fields and with d = 1. The curve parameter d was introduced
by Bernstein and Lange who also studied this equation over finite fields. The
additive identity is (0, c); (0,−c) has order 2; (±c, 0) have order 4. The addition
rule is given by the following formula.

(x1, y1) + (x2, y2) 	→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1 − dx1x2y1y2)

)
.

If E is an elliptic curve defined by a bi-variate polynomial C(x, y), then the
set of Fq-rational points of E is denoted by E(Fq) and is defined to be the set of
pairs (α, β) ∈ Fq ×Fq such that C(α, β) = 0. The set E(Fq) forms a group under
a suitably defined addition law and an additive identity. For an Fq-rational point
P , the i fold sum of P is denoted by [i]P .

2.1 Birational Equivalence

Rational functions on a curve are important in studying the behavior of the
curve. These rational functions form a field and two (forms of) elliptic curve
are said to be birationally equivalent if their fields of rational functions are
isomorphic.
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Another form of elliptic curves which is also quite well known is the Mont-
gomery form and is given by an equation of the form Bv2 = u3 +Au2 + u, with
B �= 0. Birational equivalences between Weierstraß and Edwards form use the
Montgomery form as an intermediate stepping stone.

It has been observed in [9] that the form x2 + y2 = 1 + dx2y2 is as general as
the form X2 + Y 2 = C2(1 +DX2Y 2) in the sense that there is an isomorphism
between them. The change of variablesX = Cx and Y = Cy transforms x2+y2 =
1 + dx2y2 into X2 + Y 2 = C2(1 +DX2Y 2) with the condition that C4D = d.

An extension, called the twisted Edwards form has been studied in [12]. The
curve equation in this case has the form ax2 + y2 = 1 + dx2y2 for distinct non-
zero elements a and d in a finite field F (of characteristic not equal to 2). It has
been proved in [12] that the set of twisted Edwards form curves over the field F
is birationally equivalent to the set of Montgomery form curves over F. Then

(x, y) 	→ (u, v) = ((1 + y)/(1 − y), (1 + y)(x(1 − y))) (1)

transforms ax2+y2 = 1+dx2y2 to Bv2 = u3+Au2+u, where A = 2(a+d)/(a−d)
and B = 4/(a−d). Since a and d are distinct and non-zero, A is not 2 or −2 and
B is non-zero. The inverse map is given by (u, v) 	→ (x, y) = (u/v, (u−1)/(u+1)).

The case a = 1 in twisted Edwards curve is the Edwards curve as considered
in [9]. Theorem 3.5 of [12] shows that an elliptic curve is birationally equivalent
to an Edwards form curve if and only if it has a point of order 4. Assuming the
curve to be in Weierstraß form s2 = r3 + a2r2 + a4r and using a point (r1, s1) of
order 4 on this curve, it is possible to exhibit a birational equivalence between
the Weierstraß and Edwards forms. The map

(x, y) 	→ (r, s) = ((r1(1 + y))/(1 − y), (s1(1 + y))/(x(1 − y))) (2)

transforms x2 + y2 = 1+ dx2y2 to s2 = r3 + a2r2 + a4r, where a2 = s21/r21 − 2r1;
a4 = r21 and d = 1− 4r31/s

2
1. This result was essentially contained in the proof of

Theorem 2.1 of [9]. The actual statement and the result were more complicated
because the proof missed the fact that r1/(1− d) equals (s1/(2r1))2 and hence,
is always a square. Instead, it was required that d is a non-square (equivalently,
there is a unique point of order 2), which caused some complications.

The following observation from [9] shows how to convert from S2 = R3 +
A4R +A6 to s2 = r3 + a2r2 + a4r.

Observation 1. Let E be an elliptic curve over F given in the Weierstraß form
S2 = R3 +A4R+A6 such that the group E(F) has an element Q = (R1, S1) of
order 4. Then E can be transformed into the curve E′: s2 = r3+a2r2+a4r by the
change of variables r = R−R2, and s = S. Then a2 = 3R2, a4 = 3R2

2+A4 andR2

is the x-coordinate of 2Q. The point Q is transformed into a point P = (r1, s1),
where r1 = R1 −R2 and s1 = S1 leading to 2P = (0, 0).

2.2 Background on Pairing

In this section, we discuss basics of Tate pairing. We first recall some funda-
mentals on divisors on elliptic curves. Let E be an elliptic curve over Fq, with
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identity O. Points are denoted by P, Q, etcetera, while the corresponding places
are denoted by (P ), (Q), etcetera. The function field of E is the quotient field
of the coordinate ring of E. Elements of this field are called functions over E.
Places correspond to valuation rings of the function field.

Divisors of E are formal Z-linear combinations of places. Any non-constant
function has finitely many zeros and poles at places, of some finite positive
order. The collection of zeros and poles of a function, expressed as a divisor is
called its principal divisor. For a function z, its principal divisor is denoted by
div(z) = (z)0 − (z)∞. The divisor (z)0 is called the zero divisor of z and (z)∞
its pole divisor.

The computation of Tate pairing depends on the addition rule on the elliptic
curve group. Following [4], the following task forms the backbone for pairing
computation:

Task 1. Given P1 = (x1, y1) and P2 = (x2, y2), points on an elliptic curve X,
find a point P3 and a function h such that div(h) = (P1) + (P2)− (P3) − (O).

Weierstraß form is the most well-studied form of elliptic curve. The task above
can be easily performed using the chord-tangent rule.

Tate pairing was first introduced in cryptography in [4]. We recall the defini-
tion of Tate pairing from [7]. Let E be an elliptic curve defined over Fq and r
be coprime to q and r | #E(Fq). Let k be a positive integer such that the field
Fqk contains all the rth roots of unity (that is, r | (qk − 1)).

Definition 1. With r as above, the smallest extension field of Fq which contains
all the rth roots of unity is denoted by L. The extension degree [L : Fq] is known
as embedding degree.

Following [7], the Tate pairing is defined as follows.

Definition 2. The choices for parameters are made as discussed above. Let
G := E(Fqk). The Tate pairing is defined as

er(·, ·) : G[r] ×G/rG −→ F∗
qk/F∗r

qk

with er(P,Q) := fP (Q)
qk−1

r . The function fP is such that div(fP ) = r(P )−r(O).

The quotient group on the right hand side is the set of equivalence classes modulo
the relation “a ≡ b if and only if there exists c ∈ F∗

qk such that a = bcr”. For
more properties of Tate pairing refer [4]. The pairing thus defined is well-defined,
non-degenerate and bilinear.

Let hP,Q denote the rational function corresponding to the addition of P
and Q. Let r = (rl−1 · · · r0) the binary representation of r. With this setup, an
algorithm for computing the Tate pairing er(P,Q) on an elliptic curve may be
given. The rational function appearing in the algorithm depends on the form of
the elliptic curve. See Table 1.

The algorithm in Table 1 computes in the ith iteration a function fi,P having
divisor div(fi,P ) = i(P )− ([i]P ) − (i− 1)(O), called Miller’s functions. At each
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Table 1. Miller’s algorithm for computing Tate pairing

Input : Points P and Q
Output : Tate pairing of P and Q

1. Set f = 1 and P1 = P .
2. For i = l − 2 downto 0

Set f = f2 · hP,P and P1 = 2P .
If ri = 1 then set f = f · hP1,P and P1 = P1 + P .

3. Set f = f
qk−1

r .
4. Return f.

step, the Miller’s functions are evaluated at the second argument. After l − 1
iterations, the evaluation at Q of the function f having divisor r(P ) − r(O) is
obtained.

3 Pairing over Twisted Edwards Form Curve

Pairing algorithms have been extensively studied. All such studies have used the
Weierstraß form. Let us first consider how to implement pairings on Edwards
form using pairings on Weierstraß form.

3.1 Pairing Via Weierstraß Form

Suppose we have a pairing friendly curve C in Weierstraß form having a point of
order 4 and let E be the corresponding Edwards form. The birational equivalence
between E and C is a group isomorphism between the corresponding group
of points. Using this isomorphism, we can map points on Edwards form into
Weierstraß form and compute the pairing on Weierstraß form. (Note that the
output of the pairing is an element of an extension field and there is no issue of
“going back” to Edwards form.) The cost of this procedure is the cost of applying
the isomorphism from Edwards to Weierstraß form plus the cost of computing
the pairing on Weierstraß form.

Suppose the input to the pairing are the points P = (xP , yP ) and Q =
(xQ, yQ) in Edwards form. Using (2), and recalling that (r1, s1) is a point of
order four on Weierstraß form, we have

(xP , yP ) 	→
(
r1 ×

1 + yP
1 − yP

, s1 ×
1 + yP

xP (1 − yP )

)
,

(xQ, yQ) 	→
(
r1 ×

1 + yQ
1 − yQ

, s1 ×
1 + yQ

xQ(1 − yQ)

)
.

(3)

The coordinates xP , yP of the point P are from Fq. However, the coordinates
xQ, yQ of the pointQ are from Fqk , where k is the embedding degree. The inverses
of (1 − yQ) and xQ are required as also the inverses of (1 − yP ) and xP . While
the later is easier to obtain, depending on the embedding degree, obtaining the
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former inverses may be rather expensive. As example, consider the value k = 10
which is the focus of current research on obtaining pairing friendly curves [3]. In
this case, the two inversions on Fq10 can be computed using one Fq10 -inversion
and three Fq10 -multiplications. The total cost will be equivalent to a few hundred
multiplications over Fq.

The above transforms an affine representation of a Edwards point into an
affine representation of a Weierstraß point. In many situations, one works with
other representations such as projective or Jacobian coordinates. It is possible
to convert to the desired coordinate system using a few multiplications. Suppose
that the Edwards form point is given in affine coordinates as (x, y) and we
want the Weistraß form point in projective coordinates. The output of (3) is
equal to (r, s), where r = a/b and s = c/d with a = r1(1 + y), b = (1 − y),
c = s1(1 + y) and d = x(1 − y). Then, the projective representation (R,S, T )
with r = R/T and s = S/T is obtained by setting R = ad, S = cb and T = bd.
After obtaining a, b, c and d, three extra multiplications convert the point to
projective coordinates. Further, the representation (RT, ST 2, T ) is in Jacobian
coordinates and two extra multiplications and one squaring are required for this.

The point in Edwards may not be given in affine. Projective and inverted
Edwards representations have been suggested in [9,10]. The representation is
(X,Y, Z), where in the former case, x = X/Z and y = Y/Z and in the latter
case, x = Z/X and y = Z/Y . With both coordinate systems it is possible to
convert to projective (and Jacobian) Weierstraß forms. We show this for the
inverted Edwards coordinates, the case for projective Edwards being similar. In
this case, the affine Weierstraß form is (r = a/b, s = c/d) where a = r1(Y + Z),
b = Y − Z, c = s1X(Y + Z) and d = Z(Y − Z). From this affine representation
the conversion to projective or Jacobian Weierstraß is as described above.

If we use (3) to convert to affine Weierstraß then an inversion is required.
Converting to projective or Jacobian can avoid inversion at the cost of several
extra multiplications. There are two additional issues to consider for inversion
free conversion.

1. Obtaining the point P in affine Weierstraß allows mixed addition formula to
be used during Miller iteration. Obtaining P in projective and Jacobian will
increase the cost of mixed addition.

2. The cost of converting the pointQ will require extension field multiplications.
Further, most pairing algorithms on Weierstraß form require Q in affine. If Q
is given in projective, this will imply extra (extension field) multiplications
when the Miller function is evaluated at Q. The last point is significant,
since, even one extra extension field multiplication per Miller iteration can
prove to be costly.

Thus, avoiding inversions in the conversion from Edwards to Weierstraß in
general pushes up the cost for pairing computation on Weierstraß form itself.
On the other hand, avoiding inversions may be required for other reasons in
addition to that of computational efficiency. In resource constrained devices, it
is desirable to implement the algorithm in as small hardware area or software
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code as possible. The ability to avoid implementing the inversion routine will be
useful for such scenarios.

Based on the above discussion, we consider the problem of developing a pairing
algorithm which works directly over the twisted Edwards form. The main task
is to compute the Miller function at each iteration.

3.2 Miller Function for Twisted Edwards Form Curve

This section deals with efficiently performing Task 1 (of Section 2.2) on twisted
Edwards form elliptic curve. As already seen, the Miller function computation
forms the backbone for computing Tate pairing. The result of this section gives
the Miller function corresponding to addition of P1 and P2.

Theorem 1. Let Fq be a field of characteristic not equal to 2 and ax2 + y2 =
1 + dx2y2 be a twisted Edwards form curve where a and d are distinct non-zero
elements of Fq. Let P0 = (0, 1). Let P1 = (x1, y1) and P2 = (x2, y2) be two points
on it. Let P3 = (x3, y3) be the sum of P1 and P2. Then the Miller function h(x, y)
such that

div(h) = (P1) + (P2)− (P3) − (P0) (4)

is given by

h(x, y) =
(1 − y3)
x(y − y3)

((1 + y) − x(λ(1 + y) + θ(1 − y))). (5)

where A = (2(a+ d))/(a− d), B = 4/(a− d) and

λ =

{
x1(A(y2

1−1)−2(1+y1+y2
1))

B(y2
1−1)

if P1 = P2;
x1(y1−1)(y2+1)−x2(y1+1)(y2−1)

2x1x2(y1−y2)
if P1 �= P2.

(6)

and θ = 2(1 + y1)/(x(1 − y1)) − λ(1 + y1)/(1 − y1) is given by

θ =

{
(y2

1−1)(Ax2
1−B)−2x2

1(1+y1+y2
1)

Bx1(y2
1−1)

if P1 = P2;
(x1−x2)(1+y1)(1+y2)

2x1x2(y1−y2)
if P1 �= P2.

(7)

[Note. There is no assumption on the embedding degree.]

Proof. The idea of the proof is simple. In the Weierstraß form it is easy to obtain
a rational function g(x, y) such that a relation similar to that of Equation 4 holds.
Basically g(x, y) is the ratio of two lines – the line passing through P1 and P2

and the line passing through P3 and −P3.
Let Φ be the transformation given in (1).

Φ(x, y) = (u, v) Δ=
(

1 + y
1 − y ,

(1 + y)
x(1 − y)

)
. (8)
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Then x = u/v and y = (u − 1)/(u + 1). This transforms the curve ax2 + y2 =
1 + dx2y2 into the curve Av2 = u3 +Bu2 + u, where A = 2(a+ d)/(a− d) and
B = 4/(a− d). The later curve is in Montgomery form. But, the Miller function
g(x, y) for Montgomery form is still the ratio of two lines as in the case of the
Weierstraß form.

The idea is to first transform points Pi on Edwards form into corresponding
points Qi on Montgomery form using Φ; compute g(x, y) on Montgomery form
and then use the inverse of Φ to transform g(x, y) into the desired rational
function h(x, y). For this to work we need to note that the transformation Φ
extends to several isomorphisms.

1. The map
∑
ni(Pi) 	→

∑
ni(Φ(Pi)) is an isomorphism of the set of divisors

on Edwards and Montgomery form curves.
2. The map h(x, y) 	→ h(Φ(x, y)) is an isomorphism of the function fields of the

Edwards and Montgomery form curves.

Let O be the identity on Montgomery form curve. Then Φ((P1) + (P2)− (P3)−
(P0)) = (Q1) + (Q2)− (Q3)− (O). We use (x, y) to denote Edwards coordinates
and (u, v) to denote Montgomery coordinates. Let l1(u, v) be the line through Q1

and Q2 and l2(u, v) be the line through Q3 and −Q3. Then l1(u, v) = v−λu− θ
and l2(u, v) = u− u3 where the slope λ and the constant θ are obtained later.

Define g(u, v) = l1(u, v)/l2(u, v) and so g(u, v) = (v − λu − θ)/(u − u3). The
desired function h(x, y) is g(Φ−1(u, v)) = g((1 + y)/(1− y), 2(1 + y)/(x(1− y))).
We have

h(x, y) =
1+y

x(1−y) − λ
1+y
1−y − θ

1+y
1−y − 1+y3

1−y3

=
(1 − y3)((1 + y) − λx(1 + y)− θx(1 − y))
x((1 + y)(1 − y3)− (1 + y3)(1 − y))

=
(1 − y3)

2x(y − y3)
((1 + y) − x(λ(1 + y) + θ(1 − y))).

It remains to obtain the expressions for λ and θ in terms of x1, y1, x2 and y2.
Recall that ui = 1+yi

1−yi
and vi = (1+yi)

xi(1−yi)
. Also, θ = v1 − λu1. The value of λ is

obtained as the slope of the line through P1 and P2, if they are distinct; or as
the slope of the tangent through P1, if the points are equal. In the former case,
λ = (v2− v1)/(u2−u1). In the later case, we have to refer to the equation of the
curve. The curve in question is the Montgomery form curve Bv2 = u3 +Au2 +u.
Differentiating with respect to u we have λ = (3u2

1 + 2Au1 + 1)/(2Bv1). The
expressions for λ and θ in the two cases can now be obtained by substituting
the values of ui, vi and simplifying the resulting expressions. ��

4 Supersingular Curves in Edwards Form

For p > 3, two supersingular curves in Weierstraß form are quite well known.
We provide the corresponding Edwards form. For the map given by (2) to exist,
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the curve must have a point of order 4. The number of Fp-rational points on
supersingular curves of characteristics greater than 3 is known to be p+ 1. So,
we require p ≡ 3 mod 4 as a necessary condition for a point of order 4 to exist.

s2 = r3 + a4r. The condition p ≡ 3 mod 4 ensures that this curve is supersin-
gular which is compatible with the condition for a point of order 4 to exist. Let
P = (r1, s1) be a hypothesized point of order 4 on this curve. Then a4 = r21 and

s21 = r1(r21 + a4) = 2a4r1. The possible values of (r1, s1) are
(
√
a4,±

√
2a3/2

4

)

and
(
−√a4,±

√
−2a3/2

4

)
. Since p ≡ 3 mod 4, a4 must be a square modulo p

which is a necessary and sufficient condition for transforming to Edwards form.
Since p ≡ 3 mod 4, −1 is a non-square modulo p and hence exactly one of

2a3/2
4 and −2a3/2

4 is a square modulo p. This shows that there are exactly two
points of order 4.

1. If a4 = 1, then (1,±
√

2) are the points of order 4 if (p2 − 1)/8 is even; and
(−1,±

√
−2) are the points of order 4 if (p2 − 1)/8 is odd. Later we will

consider pairing over this curve.
2. If a4 = −3, then the curve has a point of order 4 only if 3 is a non-square

modulo p, i.e., if p ≡ ±5 mod 12. Determining the two actual points of order
4 requires obtaining the square root of either

√
2 × 33/2 or

√
−2 × 33/2. We

know that one of them is a square, but the exact value of the square root
depends on p.

The value of d in the Edwards form curve is determined from the relation a2 =
0 = s21/r

2
1 − 2r1. Then 2r31 = s21 and so, d = 1 − (4r31/s

2
1) = −1. Thus, if a4 is a

square modulo p, then the corresponding Edwards form is

x2 + y2 = 1 − x2y2. (9)

Note that d is equal to −1 irrespective of the value of a4. Also, in (9) a4 = 1 so
that A = 0 and B = 2 in the Montgomery form obtained by applying (1).

Interestingly, the curve x2 + y2 = 1 − x2y2 was studied by Euler [13] and
Edwards [8] reports that the curve was also of “great interest” to Gauss [14].

S2 = R3 + α. The condition p ≡ 2 mod 3 ensures that this curve is supersin-
gular. This, along with the condition p ≡ 3 mod 4 for the point of order 4 to
exist, implies that p ≡ −1 mod 12.

Here A4 = 0 and A6 = α. Let P = (R1, S1) be a point of order 4 on this curve
and R2 is the x-coordinate of 2P . Since 2P has order 2, the y-coordinate of 2P
must be zero and so R3

2 = −α. Using 2P = (R2, 0), it can be shown that R1 and
S1 are obtained by first solving R3

1 − 3R2R1 − 2α = 0 for R1 and then solving
S2

1 = R3
1 + α for S1. So, for P to exist, first −α must be a cube modulo p and

then these two equations should be solvable modulo p.
Once R2 and (R1, S1) have been obtained, we can first apply Observation 1

followed by (2) to obtain the corresponding Edwards form.
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Concrete Examples. Consider E : y2 = x3 + x over Fp, p ≥ 5. In [15, Table
1], suitable values of p and r for various levels of security are given. We consider
some particular values given in [15, Section 7.2]. In both cases below p ≡ 3 mod 4
and hence the curve x2+y2 = 1−x2y2 is supersingular over Fp. The group E(Fp)
has a unique element of order 2 and the points (1,±

√
2) are of order 4.

For 80-bit security level, with k = 2, recommended sizes of p and r are 512
and 160, respectively. A suitable set of parameters is given there as p = 2520 +
2363 − 2360 − 1, r = 2160 + 23 − 1.

For 128-bit security level, with k = 2, recommended sizes of p and r are
1536 and 256 bits respectively. A suitable set of parameters is given there as
p = 21582 + 21551 − 21326 − 1, r = 2256 + 2225 − 1.

5 Pairing Computation on x2 + y2 = 1 − x2y2 over Fp,
p > 3 and p ≡ 3 mod 4

In Section 4, we have seen that the supersingular curve E : s2 = r3 + ar over
Fp, with p ≡ 3 mod 4 transforms to x2 + y2 = 1 − x2y2 over Fp, provided a is
a square modulo p. Let E(Fp)[r] be the set of all Fp-rational r-torsion points of
this curve. Let r be a prime greater than 3 and then 〈R〉 = E(Fp)[r]. Then for
any (α, β) ∈ 〈R〉, β �= 0. (If β = 0, then α = ±1 and the points (±1, 0) are of
order 4 and hence cannot be in 〈R〉; if they are, then 4|r which contradicts r is
a prime greater than 3.)

The domain of pairing is E(Fp)[r] × E(Fp2)/rE(Fp2 ). By using a so-called
“distortion map”, the domain can be changed to E(Fp)[r] × E(Fp)[r]. For the
corresponding Weierstraß form this has been done in [6,7].

Definition 1. [16, Section 4.2] A distortion map φ with respect to a cyclic group
〈P 〉 of order r is an endomorphism of the curve that maps any non-zero point
Q in 〈P 〉 to a point φ(Q) which is independent of Q.

The curve s2 = r3 + r over Fp with p > 3 is supersingular for p ≡ 3 mod 4,
with embedding degree k = 2. The map φ(r, s) = (−r, is) where i2 = −1 is a
distortion map for this curve. (For more details see [6].)

We obtain a distortion map for the Edwards form curve. The following result
can be proved by mapping (x, y) on Edwards form curve to (r, s) on Weierstraß
form; mapping (r, s) to (−r, is) using the distortion map on Weierstraß form;
and then mapping the resulting point back to Edwards form. The proof that we
provide is more direct.

Theorem 2. The function φ : E(Fp)[r] → E [Fp2 ] given by

φ(x, y) =
(
ix,

1
y

)
, (10)

is a distortion map on the Edwards form curve x2 + y2 = 1 − x2y2.
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Proof. First we notice that the image of φ is not contained in E(Fp)[r]. Next, we
verify that φ is an endomorphism. Let Pi = (xi, yi), for i = 1, 2. Let (x3, y3) be
the sum P1 + P2. Thus, we have

φ(P1 + P2) =
(
i
x1y2 + x2y1
1 − x1x2y1y2

,
1 + x1x2y1y2
y1y2 − x1x2

)
.

On the other hand,

φ(P1) + φ(P2) =
(
ix1,

1
y1

)
+

(
ix2,

1
y2

)
=

(
i
x1y1 + x2y2
x1x2 + y1y2

,
1 + x1y1x2y2
y1y2 − x1x2

)
.

We now verify that (x1y2 + x2y1)(x1x2 + y1y2) = (x1y1 + x2y2)(1 − x1x2y1y2).
Indeed, expanding the left hand side, we obtain,

(x1y2 + x2y1)(x1x2 + y1y2) = x2
1x2y2 + x1x

2
2y1 + x1y1y

2
2 + x2y

2
1y2

= x1y1(x2
2 + y22) + x2y2(x2

1 + y21)
= x1y1(1 − x2

2y
2
2) + x2y2(1 − x2

1y
2
1)

= (x1y1 + x2y2)(1 − x1x2y1y2)

which proves the theorem. ��

Under this distortion map, the output of e(P,Q) is defined to be e(P, φ(Q)).
Each Miller iteration takes two points P1 and P2 and obtains P3 to be the sum
of P1 and P2 and evaluates h(φ(Q)), where h is the rational function h given in
Theorem 1. In other words, we have to evaluate

h

(
ixQ,

1
yQ

)
=

(1 − y3)
((

1 + 1
yQ

)
− ixQ

(
λ
(
1 + 1

yQ

)
+ θ

(
1− 1

yQ

)))

ixQ( 1
yQ

− y3)

=
i(y3 − 1)

xQ(1 − yQy3)
((yQ + 1)− ixQ(λ(yQ + 1) + θ(yQ − 1)))

=
(yQ + 1)(y3 − 1)
xQ(1 − yQy3)

(xQλ+ αQθ + i)

(11)

where αQ = xQ(yQ − 1)/(yQ + 1) and λ and θ are given by Equation 6 and
Equation 7 respectively. Note that the expression for αQ is the same as that of
1/v obtained in transforming from Edwards to Montgomery (see (1)). The value
of αQ depends only on Q and can be computed before starting the actual pairing
computation.

Inversion Free Pairing. Computing αQ, however, requires an inversion over
Fp per pairing computation. While this cost is not severe, as discussed earlier,
in resource constrained situations, it might be desirable to altogether avoid im-
plementing the inversion module. For this, we express h(ixQ, 1/yQ) as

h

(
ixQ,

1
yQ

)
=

(y3 − 1)
xQ(1 − yQy3)

(βQλ+ γQθ + iδQ) (12)
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where βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1. The quantities βQ,
γQ and δQ do not vary with Miller iteration and can be computed using two
multiplications at the beginning of the pairing computation.

Observation 2. An important observation is that in Tate pairing computation,
the final output of Miller loop is raised to the power (p2 − 1)/r, where r does
not divide (p− 1). So, (p− 1) divides (p2 − 1)/r and hence, in the computation
of h(Q) we can freely divide or multiply by a non-zero element of Fp. This is
because for any non-zero α ∈ Fp, αp−1 = 1. This technique has been used in [6]
to speed up computation on Weierstraß form curve.

Since we can multiply and divide by non-zero elements of Fp, we see that it
is sufficient to evaluate

g(xQ, αQ) = βQλ+ γQθ + iδQ. (13)

In the following, we simplify this expression after substituting the values of λ
and θ and using appropriate coordinates and then obtain explicit formulae for
jointly computing P3 and g.

Converting to Weierstraß and Computing the Pairing. The Weierstraß
form of the supersingular curve that we are considering is s2 = r3 + ar. Explicit
formulae for doubling-and-Miller and addition-and-Miller for this curve have
been given in [11]. The coordinate system used was Jacobian and the pairing did
not require any Fp-inversion and still used mixed addition.

In contrast, ifwe use (3) to convert fromEdwards toWeierstraß then an inversion
is required. Due to the availability of the distortion map (for the Weierstraß form),
we may assume that the coordinates of both P andQ in (3) are from Fp. Then the
four inversions can be done using 9[M] and 1[I] using Montgomery’s trick (s1 = x1;
si = si−1xi−1, 1 ≤ i ≤ 4; y4 = s−1

4 ; x−1
i+1 = yi+1si, yi = xi+1yi+1, 3 ≥ i ≥ 1; this

procedure generalizes to arbitrary number of xis). The total operation (including
multiplications by r1 and s1) count is 19[M]+1[I] for the conversion.

If we choose not to perform any inversion, then as discussed in Section 3,
at the cost of some extra multiplications, we can put P in Jacobian and Q in
either Jacobian or projective. As a result, the mixed addition on Weierstraß will
be slower and the evaluation of each Miller function at Q will also be slower.
The exact amount of slowdown for the Weierstraß form pairing due to these two
factors is not clear and the entire pairing formulae for Weierstraß needs to be
worked out to determine this. We do not do this; instead we work out the explicit
formulae for performing inversion-free pairing directly on Edwards form. It does
not appear that performing inversion-free pairing after converting to Weierstraß
is likely to be faster.

In the following, by [M] we will denote one Fp multiplication and by [S] we
will denote one Fp squaring.

5.1 Pairing Using Inverted Edwards Coordinates

The point (x, y) is said to be in affine representation. There are several other co-
ordinate systems for representing a point. In [10], the inverted Edwards
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representation is used to represent the point (x, y) by (X,Y, Z), where x = Z/X
and y = Z/Y . The curve then transforms into Z4 = X2Y 2 −Z2(X2 + Y 2). The
addition and doubling formulae for the inverted Edwards representation have
been given in [10].

Let P1 = (X1, Y1, Z1), P2(X2, Y2, Z2) and P3 = (X3, Y3, Z3) such that P3 is
the sum of P1 and P2. It is possible to obtain unified formulae for X3, Y3 and Z3,
i.e., one which does not distinguish between P1 = P2 and P1 �= P2. While this is
useful for side channel resistance, a dedicated doubling formula is faster. We use
the dedicated doubling formula, since in the current context the value of r (the
order of the subgroup of E(Fp)[r]) is not a secret and the pairing computation
will be computing rP for some point P .

Suppose that we want to compute the pairing value for P and Q. We assume
that P is given as (X1, Y1, Z1) with Z1 = 1 and Q is given in affine as (xQ, yQ)
so that φ(Q) = (ixQ, 1/yQ). As discussed above, for computing h, it is sufficient
to compute g given in (13) or a product of g and some element of Fp.

Doubling and Miller Iteration. Doubling a point and computing the Miller
value are done together so that some computations can be shared. In Theorem 1,
substituting the value of d to be −1 and using inverted Edwards coordinates, we
obtain

λ =
Z1(Y 2

1 + Y1Z1 + Z2
1 )

X1(Y1 − Z1)(Y1 + Z1)
; θ =

(X2
1 (Y 2

1 − Z2
1) − Z2

1 (Y 2
1 + Y1Z1 + Z2

1))
X1(Y1 − Z1)2Z1

.

At this point we need to substitute these values of λ and θ into (13) and sim-
plify the resulting expression. During the simplification, we are free to multiply
and divide by non-zero elements of Fp as done earlier. We have performed this
simplification with the help of Mathematica [17] and the final expression for the
Miller value turns out to be Ψ = βQF + γQG+ 2iδQH, where

F = 4Z1(Y1 − Z1)(Y 2
1 + Y1Z1 + Z2

1)

G = −4Y1Z
2
1 (Y1 + Z1)

H = 2X1(Y1 + Z1)(Y1 − Z1)2.

(14)

Explicit formulae for doubling using inverted Edwards coordinates have been
given in [10] and requires 3[M]+4[S] operations over Fp. This is shown in the
column “doubling” in Table 2. Some of the expressions obtained during doubling
can be used in the computation of Ψ . With one squaring, the value of J =
2Y1Z1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 can be found. We also require I = 2X1Z1 =

(X1 + Z1)2 − X2
1 − Z2

1 , which can be computed with one squaring. It may be
easily seen that

F = (2Y1Z1 − 2Z2
1 )(2Y 2

1 + 2Y1Z1 + 2Z2
1) = (J − 2M)(2B + J + 2M),

can be computed with one multiplication. The computation of G = −J(J+2M)
and

H = (2X1Y1 + 2X1Z1)(Y 2
1 − 2Y1Z1 + Z2

1 ) = (E + I)(B − J +M)
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Table 2. Combined explicit formula for doubling and Miller value computation using
inverted Edwards coordinates. An alternative form for Ψ is xQF + αQG + 2iH . Here,
αQ = xQ(yQ − 1)/(yQ + 1), βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Doubling Miller value

A = X2
1 , B = Y 2

1 , C = A + B,
D = A − B, E = (X1 + Y1)

2 − C = 2X1Y1,
M = Z2

1 , Z3 = D · E, X3 = C · D,
Y3 = (C + 2Z2

1 )

J = (Y1 + Z1)
2 − B − M ,

I = (X1 + Z1)
2 − A − M ,

F = (J − 2M)(2B + J + 2M),
G = −J(J + 2M),
H = (E + I)(B − J + M),
Ψ = βQF + γQG + 2iδQH .

require two multiplications. Finally, the computation of Ψ = βQF + γQG +
2iδQH requires three additional multiplications. Thus, computing the Miller
value requires an additional 6[M ] + 2[S] operations and the combined doubling
and Miller value computation require a total of 9[M ] + 6[S] operations. The
complete description is given in Table 2.

Mixed Addition and Miller Iteration. Explicit formula for computing the
mixed addition of a point P1 and a point P2 (whose Z coordinate is 1) has been
given in [9]. In the present case, the point P is taken to be P2. (Recall that
we are computing the pairing value of P and Q.) This is shown in the column
“Mixed Addition” of Table 3. Proceeding as in the case of doubling, we need to
compute Ψ = βQF + γQG+ 2iδQH , where in this case,

F = −X2(1 + Y2)(Y1 − Z1)Z1 +X1(−1 + Y2)(Y1 + Z1)
G = (1 + Y2)(Y1 + Z1)(−X1 +X2Z1)
H = Z1(−Y1 + Y2Z1)

(15)

The sequence of operations is the following. First, J = Y2Z1 and K = X2Z1

need two multiplications. This gives J1 = Y1 − Y2Z1, J2 = (Y2 + 1)(Y1 + Z1),
J3 = (Y2 − 1)(Y1 + Z1), J4 = (Y2 + 1)(Y1 − Z1) and K1 = X2Z1 −X1 without
any other multiplications. Computation of F = −X2 · J4 +X1 · J3 requires two
multiplications. Computations of G = J2 · K1 and H = −Z1 · J1 require one

Table 3. Combined explicit formula for mixed addition and Miller value computation
using inverted Edwards coordinates. An alternative form for Ψ is xQF + αQG + 2iH .
Here, αQ = xQ(yQ −1)/(yQ +1), βQ = xQ(yQ +1), γQ = xQ(yQ −1) and δQ = yQ +1.

Mixed Addition Miller Value

B = −Z2
1 , C = X1X2, D = Y1Y2,

E = C · D, H = C − D,
I = (X1 + Y1) · (X2 + Y2) − C − D,
X3 = (E + B) · H,Y3 = (E − B) · I,
Z3 = A · H · I

D = Y1Y2, J = Y2Z1, K = X2Z1, J = Y1 − J ,
J2 = Y1 + Z1 + D + J , J3 = D + J − Y1 − Z1,
J4 = D − J + Y1 − Z1, K1 = K − X1,
F = −X2J4 + X1J3, G = J2K1, H = −Z1J1,
Ψ = βQF + γQG + 2iδQH .
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multiplication each. Thus, the value of Ψ can be computed with 9[M ]. Thus,
mixed addition plus rational function computation requires 17[M ] + 1[S] com-
putations. The complete formula is given in Table 3.

5.2 Pairing Using Projective Edwards Coordinates

The affine point (x, y) on a Edwards form curve can be represented in projective
coordinates as (X,Y, Z), where x = X/Z and y = Y/Z. The curve equation then
changes to X2 + Y 2 = Z2 − X2Y 2. Explicit formulae for doubling and mixed
addition using projective Edwards coordinates has been given in [9]. Equation 13
can be simplified using projective coordinates and formulae obtained for com-
bined computation of double-and-Miller value and add-and-Miller value. The
simplification process for doing this is similar to that done for inverted Edwards
coordinates. Hence, we do not provide the details. Instead, we provide the final
formulae in Tables 4 and 5. The total number of operations are 9[M]+6[S] and
18[M]+1[S] respectively.

Table 4. Doubling and computation of Miller value using projective Edwards coordi-
nates. An alternative form for Ψ is xQF +αQG+2iH . Here, αQ = xQ(yQ −1)/(yQ +1),
βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Doubling Miller Value

B = (X1 + Y1)
2, C = X2

1 , D = Y 2
1 ,

E = C + D, M = Z2
1 , J = E − 2M,

X3 = (B − E)J, Y3 = E(C − D), Z3 = EJ

B = (X1 + Y1)
2, C = X2

1 , D = Y 2
1 ,

L = 2X1Z1, K = 2Y1Z1, Z2
1 ,

F = (L − B + C + D)(2D + K + 2M),
G = −K · (L + B − C − D),
H = (2M + K)(M + D − K),
Ψ = βQF + γQG + 2iδQH .

Table 5. Mixed addition and computation of Miller value using projective Edwards
coordinates. An alternative form for Ψ is xQF + αQG + 2iH . Here, αQ = xQ(yQ −
1)/(yQ + 1), βQ = xQ(yQ + 1), γQ = xQ(yQ − 1) and δQ = yQ + 1.

Mixed Addition Miller Value

B = Z2
1 , C = X1X2, D = Y1Y2, E = −CD,

I = B − E, J = B + E,
X3 = Z1I((X1 + Y1)(X2 + Y2) − C − D),
Y3 = Z1J(D − C), Z3 = IJ

C = X1X2, K = Y2Z1, L = X2Z1,
D = Y1Y2, L1 = X1 − L, K1 = K − Y1,
K2 = D + K + Y1 + Y2,
K3 = D + K − Y1 − Z1,
K4 = D − K + Y1 − Z1,
F = −X1K4 + LK3, G = −K2L1,
H = CK1, Ψ = βQF + γQG + 2iδQH .

6 Concluding Remarks

In this work, we have studied pairing algorithms on Edwards form elliptic curves.
A general form for the function required in a Miller iteration has been obtained.
For a class of supersingular curves over fields of characteristic greater than 3,
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the expression for the Miller function has been simplified and explicit formu-
lae obtained for combined doubling and Miller iteration and combined addi-
tion and Miller iteration using both inverted Edwards and projective Edwards
coordinates.
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Abstract. We present efficiently computable homomorphisms of the
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tion in G2 and GT to be accelerated using the Gallant-Lambert-Vanstone
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1 Introduction

Let r be a prime and let G1, G2 and GT be cyclic groups of order r with a
bilinear pairing

e : G1 ×G2 → GT .

In practice G1 is a set of points on some elliptic curve E over Fp and G2 is a set
of points on a twist E′ of E over some field Fpe . The group GT is a subgroup of
F∗

pk , where k is the embedding degree, and is usually represented in a compressed
form by using traces or algebraic tori.

Pairings over ordinary elliptic curves suffer in comparison to those over su-
persingular curves, in that a larger group G2 is often required for one of the two
parameters to the pairing. The quadratic twist is always an option if k is even,
so e = k/2 and for the case k = 2 the quadratic twist is again over the base field.
There is a family of pairing-friendly curves [10] of embedding degree k = 6 where
the sextic twist applies, and again in this case e = k/6 = 1. However for most
other cases of interest e > 1. For example with the BN curves [5], even though
the sextic twist applies, G2 is over the field Fp2 . This suggests that manipula-
tions of points over G2 in some pairing-based protocols are in general likely to
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be more expensive than those over G1, and perhaps much more expensive. Here
we will demonstrate that this is not necessarily the case.

Gallant, Lambert and Vanstone (GLV) [12] gave a method to speed up op-
erations in groups when a suitable group homomorphism is available. The main
result of the paper is to get such a group homomorphism from the Frobenius map
in Fpk . This particularly speeds up operations in G2, but also has implications
for GT .

The main contributions of our paper are:

1. To speed up arithmetic in G2 and GT using the GLV method.
2. To show that simpler GLV decompositions of an exponent are often possible

for pairing friendly curves (i.e., not requiring lattice reduction as a precom-
putation), especially for Ate friendly curves.

3. To remark that parameters for Ate-friendly curves give rise to good param-
eters for XTR and torus based cryptography.

4. To note that our methods can be used to obtain larger equivalence classes
for the Pollard rho method.

We now outline the paper. Sections 2 and 3 recall basic facts about pairings
and the GLV method. Section 4 analyses the methods of Stam and Lenstra
when applied in the target group GT for pairing-based cryptography. Section 5
contains our main result, namely the construction of a group homomorphism on
G2. Section 6 studies some specific examples. Section 7 summarises the costs and
benefits of the GLV method. Sections 8 and 9 mention some consequences for
trace/torus cryptography and the difficulty of the DLP in G2, and we conclude
in Section 10.

2 Elliptic Curves and Pairings

Let E be an elliptic curve over Fp where p is prime. Denote by ∞ the point at
infinity on E. Let #E(Fp) = p + 1 − t be the number of points on the curve,
where t is the trace of the Frobenius. Let r | #E(Fp) be a large prime. The
embedding degree is the smallest integer k such that r | (pk − 1). We assume
that no proper subfield of F∗

pk contains elements of order r.
Let G1 = E(Fp)[r] and let GT be the subgroup of F∗

pk of elements of order r.
Denote by πp the p-power Frobenius map on E. Define G2 to be the subgroup
of E(Fpk)[r] such that πp acts as multiplication by p. We assume we have a
non-degenerate bilinear pairing (such as the Ate pairing [15])

e : G1 ×G2 → GT .

Following Section 4 of [15] we represent G2 as a group of points on a twist E′

of E. This means there is an isomorphism φ : E′ → E with field of definition
Fpd . It is necessary that the automorphism group Aut(E) contain an element of
order d. Hence the only non-trivial possibilities are d = 2, d = 4 if j(E) = 1728
(CM discriminant D = −4) and d = 3, 6 if j(E) = 0 (CM discriminant D = −3).
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We assume d | k and write k = de. Then G2 = E′(Fpe)[r] and φ(G2) ⊂ E(Fpk).
If r > d then the image of E′(Fpe)[r] under φ does lie in the eigenspace of the
q-power Frobenius on E(Fpk) with eigenvalue p.

For efficient pairing computation, much work has been done to find viable
bilinear pairings, with the minimum number of iterations in Miller’s algorithm.
Starting with the Duursma-Lee method [9] and subsequent work by Barreto et
al. [4] (in the context of supersingular curves), Hess al. extended the idea to
ordinary elliptic curves with the discovery of the Ate pairing. Now the main
Miller loop in the pairing computation iterates only lg(|t−1|) times, rather than
lg(r) times as required by the Tate pairing. An “Ate pairing friendly curve” is
defined as one where |t − 1| is as small as possible compared to r. It has been
conjectured that the minimum possible ratio between |t − 1| and r is 1/ϕ(r)
(where ϕ is the Euler totient function), and indeed this ideal condition is met
by some pairing-friendly families of curves. Recently Lee, Lee and Park [18],
Hess [16] and Vercauteren [28] have shown how to achieve the same level of loop
truncation on curves, even if they are not Ate pairing friendly.

Many families of pairing-friendly curves have been found - see [10] for a survey.
The most sought after curves are those with the minimum value of ρ, which is
defined as the rounded fraction lg(p)/ lg r. It is relatively easy to find families
of curves with ρ ≈ 2, but it is much preferred that ρ ≈ 1, as this leads to more
efficient implementations.

3 The GLV Method

Gallant, Lambert and Vanstone [12] introduced a method to speed up general
point multiplication nP in E(Fp)[r]. In its simplest form their method works
if, given a point P , one can somehow have knowledge of a non-trivial multiple
of P . This extra information is available if there is an efficiently computable
endomorphism ψ on E defined over Fp such that ψ(P ) = λP . One can then
compute nP efficiently by writing n ≡ n0 + n1λ (mod r) with |ni| <

√
r and

performing the double exponentiation n0P+n1ψ(P ). Decomposing n as n0+n1λ
(mod r) is done by solving a closest vector problem in a lattice and the Euclidean
algorithm can be used to compute a suitable lattice basis, see [12,23] for the
details. We call this the GLV method.

Double exponentiation algorithms require precomputation and storage, but
their efficiency comes from halving the number of doublings. One can simulta-
neously reduce the number of additions by using window methods, but this adds
further precomputation and storage. Another method to reduce the number of
additions is to allow signed representations for n0 and n1 and compute their
joint sparse form (that is such that the signed expansions of n0 and n1 both
have i-th bit equal to 0 with probability approximately 1/2). We refer to Section
9.1.5 of [1] for further details.

The idea generalises to m-dimensional expansions n ≡ n0 + n1λ + · · · +
nm−1λ

m−1 (mod r) assuming that the powers of λ are sufficiently different
modulo r (the typical requirement is that the endomorphism ψ satisfies a
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characteristic polynomial of degree ≥ m; see the discussion below). We call
this the m-dimensional GLV method.

The task of decomposing n is again solving a closest vector problem in a lat-
tice. This problem can be efficiently solved using Babai’s rounding method [2] if
an LLL-reduced lattice basis is precomputed. More precisely, define the modular
lattice

L =

{

x ∈ Zm :
m−1∑

i=0

xiλ
i ≡ 0 (mod r)

}

. (1)

The 2m vectors (0, . . . , 0, r, 0, . . . , 0) and (0, . . . , 0, λ,−1, 0, . . . , 0) generate the
(row) lattice L if gcd(λ, r) = 1. Run LLL on this basis to obtain a new basis.
Given an exponent n use the Babai rounding technique to find a lattice vector x =
(x0, . . . , xm−1) close to w = (n, 0, . . . , 0). Define u = w−x. Then

∑m−1
i=0 uiλ

i ≡ n
(mod r) by definition. If the LLL-reduced basis is sufficiently good then the coeffi-
cients ui will be such that |ui| ≈ r1/m. The practical performance of this approach
depends on the particular parameters under consideration.

We stress that the lattice reduction is a pre-computation; the online cost in
point multiplication is just the Babai rounding step. An alternative approach
(when a random multiple of a point P is required) is to simply choose random
coefficients n0, . . . , nm−1 instead of choosing n first and then decomposing it.

We remark that there are natural boundaries on the size of m. For example,
let r | (p2 − p+ 1) and let ψ be the p-power Frobenius map in the subgroup GT

of F∗
p6 of order r. Then λ ≡ p (mod r) satisfies λ6 ≡ 1 (mod r) and one might

expect to be able to take m = 6. However, since λ2 ≡ λ− 1 (mod r) it follows
that n0 + n1λ+ n2λ

2 ≡ (n0 − n2) + (n1 + n2)λ (mod r). Therefore the size of
the largest coefficient ni in the 3-dimensional expansion cannot be significantly
smaller than the size of the largest coefficient in the 2-dimensional case.

The original proposal of Gallant, Lambert and Vanstone specifically proposed
using the automorphisms of elliptic curves E with j(E) = 0, 1728. Hence it is
standard that the GLV method can be used to speed up point multiplication in
G1 and G2 in the cases for which using twists gives good compression of G2.
In both cases the automorphisms satisfy a characteristic polynomial of degree 2
with coefficients in {0, 1}, so only the two-dimensional GLV method applies.

4 Using the Frobenius to Speed Up Operations in GT

In this case much of the work has already been done by Stam and Lenstra.
However here we consider their results in the context of pairings.

We call the subgroup of F∗
pk of order Φk(p) (where Φk(x) is the k-th cyclotomic

polynomial) the “cyclotomic group”. The group GT of order r is a subgroup of
the cyclotomic group in F∗

pk . For the case k = 6, r | (p2 − p + 1) and GT is a
subgroup of the well studied “XTR subgroup” of F∗

p6 . For the case k = 2, the
cyclotomic group is of order p+ 1, and was used in the LUC cryptosystem (see
Stam and Lenstra [25]).
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There are three approaches for efficient arithmetic in cyclotomic subgroups.
The simplest approach is to perform arithmetic using a standard representation
for Fpk and to exploit tricks which arise from elements having order dividing
Φk(p) (for example, the fact that the inverse of an element can be computed
efficiently). The other approaches are based on compression of field elements
using traces or algebraic tori respectively. All three methods can be applied for
efficient exponentiation in GT (for example see [13]). The latter two methods
are also useful for minimising bandwidth in pairing-based cryptography.

Stam and Lenstra [26] discuss the first approach. They exploit the fact that
elements in the cylotomic group have some extra properties that do not hold for
general elements in Fpk . Specifically field inversion is a simple conjugation, and
thus effectively free, and the field squaring operation can be significantly cheaper.
Also as inversion is free, faster NAF methods of windowing are applicable [22].

For exponentiation in the XTR subgroup the most efficient method is to use
traces. For XTR the trace is over Fp2 , so the compression is by a factor of 3. For
LUC the trace is over Fp, and the compression is by a factor of two. However
traces can only be manipulated in limited ways: for example multiplication of
subgroup elements, if required by a protocol, is non-trivial. When using com-
pression by a factor of 2 then exponentiating using a torus representation is
competitive with LUC [13]. One advantage of tori is that one can efficiently
multiply group elements as well as exponentiate them. In [8] the applications of
higher dimensional tori are considered, and indeed it is suggested that in princi-
ple a degree 8 Frobenius automorphism can be used to split the exponent, and
then use multi-exponentiation, in much the same way as suggested here.

In [25] a method for double exponentiation using traces is proposed, for both
the LUC and XTR cases. This is required for example for the application of
LUC/XTR to ElGamal-like digital signature verification schemes. But the au-
thors also point out that the Frobenius endomorphism can be used to implement
a single exponentiation using a variant of the GLV idea (independently discov-
ered) with their double exponentiation algorithm, and indeed this is the fastest
way to do it. In Section 4.4 of [25] it is pointed out that if p mod r ≈

√
r then

the 2-dimensional decomposition of the exponent is particularly easy, and the
decomposition can be found at the cost a division and a remainder. In the sequel
we will refer to such a decomposition as “natural”. As we will see, in the context
of pairings, natural decompositions arise quite frequently.

It is apparently non-trivial to extend the double exponentiation of traces
to general multi-exponentiation [25], and so if multi-exponentiation is possibly
beneficial then we must either use torus methods or else work in the full F∗

pk (see
Stam and Lenstra [26]).

Pairings evaluate as elements in GT , often in higher degree cyclotomic fields
than those considered by Stam and Lenstra. Many of the same ideas apply
immediately if the embedding degree is a multiple of 2 or 6. However in the
context of pairings, since we know that the pair (p, r) arise in the context of
an elliptic curve, we know that p mod r = t − 1. Fortunately for us, for many
pairing friendly curves |t−1| is often rather small compared with r, in which case
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higher dimensional natural decompositions will also be possible. Application of
the Frobenius to an element x of order r gives us the value xp ≡ xt−1, so the
exponent n can be expressed to the base (t−1) and multi-exponentiation applied
as xn0 .(xp)n1 .(xp2

)n3 · · ·. See the examples below for more details.

5 A Homomorphism on G2

As described above, the group G2 is a subgroup of E′(Fpe) and there is a group
homomorphism φ : E′(Fpe) → E(Fpk). We now explain how to use the p-power
Frobenius on E(Fpk) to get an efficiently computed group homomorphism on G2.
Iijima et al [17] used essentially the same ideas to construct a homomorphism
for a different application.

Lemma 1. Let notation be as above. Denote by πp the p-power Frobenius map
on E. Then ψ = φ−1πpφ is an endomorphism of E′ such that ψ : G2 → G2.
Further, for Q ∈ G2 we have ψk(Q) = Q, ψ(Q) = pQ and Φk(ψ)(Q) = ∞ where
Φk(x) is the k-th cyclotomic polynomial.

Proof. Clearly ψ is a morphism from E′ to E′ which fixes the point at infinity.
Hence ψ is an endomorphism of E′.

Let Q ∈ E′(Fpe)[r]. Then φ(Q) ∈ E(Fpk) and, as mentioned in Section 2, we
have πp(φ(Q)) = pφ(Q). Hence Q′ = πp(φ(Q)) lies in the image of E′(Fpe) under
φ and so Q′′ = φ−1(Q′) ∈ E′(Fpe).

Clearly ψk = φ−1πk
pφ = φ−1πpkφ. Since πk

p = 1 on E(Fpk) it follows that
ψk(Q) = Q. Further, as noted above, πp(φ(Q)) = pφ(Q) and so

ψ(Q) = φ−1πpφ(Q) = φ−1pφ(Q) = pQ.

Finally, since Q has order r and r | Φk(p) it follows that Φk(ψ)(Q) = Φk(p)Q =
∞. This completes the proof. �

The group homomorphism ψ can be computed efficiently and so is potentially
useful for the GLV method. However, there are cases when this map is just a
familiar homomorphism arising in an unfamiliar way. Our main interest is when
the construction gives something which was not previously used for efficient
computation. The following result shows that if e = 1 then we are just recovering
elements of the automorphism group of the curve.

Lemma 2. If e = 1 then ψ is equal to ρπ′p where π′p is the p-power Frobenius
on E′ and where ρ is an element of Aut(E′).

Proof. By Corollary 2.12 of [24] ψ can be written as ρπp where πp : E′ → E′(p)

is the p-power Frobenius to a Galois conjugate of E′ and ρ : E′(p) → E′ is an
isomorphism. In the case e = 1 we have E′ = E′(p) and so ρ ∈ Aut(E′). �

This result shows that our methods give no new result in the case e = 1 (although
decomposition of a random exponent is always simpler than the general case of
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GLV). The case e > 1 is interesting as it gives potential for new and improved
applications of the GLV method. In particular, we have homomorphisms which
do not come from Aut(E′).

We mention that a similar optimisation for G1 was proposed by Granger,
Page and Stam in Section 4 of [13]. They considered a supersingular elliptic
curve E(F3m) and used the fact that multiplication by 3m on E is given by a
simple and easy to compute formula. Since 3m ≡ ±3(m+1)/2 − 1 (mod r) they
remarked that it is easy to obtain a GLV decomposition in this case.

6 Examples

Pairing friendly families vary significantly in detail, so the benefits of our meth-
ods are best considered on a case-by-case basis. The first two examples corre-
spond to the case e = 1 and, as explained earlier, our methods give nothing new
in this case. However, it is useful to demonstrate how simple the GLV decompo-
sition is in these cases.

Example 1. Consider the pairing-friendly family of k = 6, ρ = 2 curves (see
Section 6.7 of [10]), with D = −3 and j(E) = 0

p = 27x4 + 9x3 + 3x2 + 3x+ 1 r = 9x2 + 3x+ 1 t = 3x+ 2

One can construct an elliptic curve E : Y 2 = X3 + B over Fp having r |
#E(Fp). The embedding degree is 6 and one can identify G2 with E′(Fp) where
E′ is the sextic twist of E defined over Fp (in other words, e = 1).

Since j(E) = 0 the standard GLV method applies immediately to G1. However
observe that r is of the form λ2 + λ + 1, with λ = 3x. Therefore the standard
automorphism ρ(x, y) = (ζ3x, y) applied to a point P = (x, y), gives us the
point λP , and presents us with a natural 2-dimensional decomposition of a point
multiplier into its quotient and remainder modulo 3x.

Now consider the homomorphism ψ of Lemma 1. For Q ∈ G2 we have ψ(Q) =
TQ where T = t−1 = 3x+1. Hence ψ = ρ+1, which can naturally be interpreted
as −ρ2. The point multiplication by n < r can be written as n0Q+ n1ψ(Q) by
taking the base T representation of n.

Exponentiation in GT can use the fast trace methods of [25]. However the
decomposition is again simple to obtain, as p mod r = 3x + 1 ≈ √

r. Note that
the fast squaring operations of [25,26] do not apply since p �≡ 2 (mod 3), but
one can still obtain very efficient field arithmetic in this case.

Example 2. Miyaji, Nakabayashi and Takano [21] gave parameters for curves of
prime order r over Fp with embedding degree 6. These curves are ideal, in the
sense that ρ = 1.

p = x2 + 1 r = x2 − x+ 1 t = x+ 1

One major drawback of the MNT method is the necessity of solving Pell
equations to generate the curves. Furthermore, certain CM discriminants cannot



218 S.D. Galbraith and M. Scott

be used. Indeed, it is not possible to generate a suitable curve with j(E) = 0.
In the more general setting we have Aut(E) = {1,−1} and the GLV method
cannot usefully be applied. The best representation for G2 is then as a subgroup
of E′(Fp3) where E′ is a quadratic twist of E which is defined over Fp.

In this case nothing can be done for G1, but E′ is now a “subfield curve” so it
is natural to use the Frobenius map π′p on E′ to speed up arithmetic on E′(Fp3).
For the subgroup of relevance πp satisfies π′2p +π′p +1 = 0 and so a 2-dimensional
GLV method is the best on can hope for.

As with the previous example, our approach gives the same performance with
simpler decomposition of the exponents. The group homomorphism ψ on G2

defined above satisfies ψ2 − ψ + 1 = 0 and acts as multiplication by t− 1.

Example 3. Consider this family of Ate pairing-friendly curves [3], with k =
12, D = −3, ρ = 3/2.

p = (x6 − 2x5 + 2x3 + x+ 1)/3 r = x4 − x2 + 1 t = x+ 1

In this case standard GLV applies toG1, and again a natural 2-dimensional de-
composition is possible with the standard automorphism, given the special form
of r. The group G2 is a subgroup of the sextic twist E′(Fp2). Since j(E′) = 0 we
could use the standard GLV method, but in this case e = 2 so it is possible to
do better. In this case for G2 and GT we get a natural 4-dimensional decompo-
sition, as any multiplier in G2 or exponent in GT can be written as a degree 4
polynomial in T = t− 1 = x. For GT trace methods are probably not practical
for a degree 4 multi-exponentiation, so fast non-trace based methods should be
used here instead.

Example 4. Consider this family of Ate pairing-friendly curves [3], with k =
24, D = −3, ρ = 5/4. This curve might be appropriate at the highest levels of
security.

p = (x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + x+ 1)/3 r = x8 − x4 + 1 t = x+ 1

As before standard GLV applies to G1, again with a natural 2-dimensional de-
composition. G2 is a subgroup of the sextic twist E′(Fp4). In this case for G2

and GT we get a natural 8-dimensional decomposition, as any multiplier in G2

or exponent in GT can be written as a degree 8 polynomial in T = t − 1 = x.
Again for GT fast non-trace-based methods should be used.

Example 5. (BN curves [5]) Consider the BN parameters

t = 6x2 + 1, p = 36x4 + 36x3 + 24x2 + 6x+ 1, r = p+ 1− t.

One can construct an elliptic curve E : Y 2 = X3 + a over Fp having r points.
The embedding degree is 12 and one can identify G2 with a subgroup of E′(Fp2)
where E′ is a twist of E defined over Fp2 .

Taking φ−1π2
pφ gives the usual automorphism ζ6(x, y) = (ζ3x,−y) which sat-

isfies the characteristic polynomial ζ26 − ζ6 + 1 = 0. It is standard that the GLV
method using this automorphism speeds up point multiplication on E′.
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Now consider ψ = φ−1πpφ, which satisfies ψ4 −ψ2 + 1 = 0 and so behaves as
ζ12. Note that Aut(E′) does not contain an element of order 12. Since ψ acts as
multiplication by p and p ≡ (t− 1) (mod r) one can naturally decompose n as
n0 + n1(t − 1) such that |n0| < |t − 1| and n1 is a similar size. Hence one gets
the 2-dimensional GLV method with natural decomposition.

Unlike the previous two examples, |t − 1| �≈ r1/m and so obtaining the GLV
expansion is not as simple as writing the exponent n in base (t − 1). In this
case it is necessary to use lattice reduction. Let x be the parameter in the BN
polynomial family. Then a reduced basis for the lattice L of equation (1) with
λ = T = 6x2 is

B =

⎛

⎜
⎜
⎝

x+ 1 x x −2x
2x+ 1 −x −(x+ 1) −x

2x 2x+ 1 2x+ 1 2x+ 1
x− 1 4x+ 2 −(2x− 1) x− 1

⎞

⎟
⎟
⎠ .

The determinant of B is −3r(x).
To decompose an integer n one needs to find a vector x close to w = (n, 0, 0, 0)

in the lattice L. One first computes a vector v ≈ wB−1. As pointed out to us by
Barreto, for the above choice of B one has

wB−1=
(
n(2x2 + 3x+ 1)

r
,
n(12x3 + 8x2 + x)

r
,
n(6x3 + 4x2 + x)

r
,
n(−2x2 − x)

r

)

and so computing v can be done using integer multiplication and division by r.
One then computes the vector u = w − vB whose entries are the coefficients ni

for the decomposition of n.
We illustrate the method with a toy example. Let x = 10267 and choose the

“random” exponent n = 123456789123456789. The first step is to decompose
the vector (n, 0, 0, 0) with respect to the basis formed by the rows of B. This
gives

(n, 0, 0, 0)B−1 = (26031281270628101244596820/r, 1603448845102804975614356132115/r,

801724423185167914772443492389/r,−26028746085463451059434705/r)

Rounding these coefficients to the nearest integer gives a vector v such that vB
is a close vector in the lattice to (n, 0, 0, 0). Finally, compute

u = (n, 0, 0, 0)− vB = (−11418,−5569,−4753,−8683)

and one can check that n ≡
∑3

i=0 uiT
i (mod r) as required. Note that all the

entries in the vector u satisfy |ui| < r1/4. Experiments with 64-bit x (i.e., 258-bit
p) always had coefficients ui satisfying |ui| < 265 as desired.

Example 6. Pairing friendly elliptic curves with k = 9 were considered by [19].
Since ϕ(9) = 6 one would get a 6-dimensional GLV method in this case.
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7 Multi-exponentiation

As high-dimensional exponent decompositions are now possible, it is a useful
exercise to see just how much improvement can be expected from using them.
Here we follow the analysis and methods of Möller [22]. In particular we consider
the wNAF-based interleaving windowed exponentiation method, which applies
both for G2 and for GT . NAF methods apply when inversion is easy in the
group. It is well known that inversion is easy for points on an elliptic curve,
but perhaps not as well known that this also applies to elements in GT . Indeed
as part of the final exponentiation of the pairing, there is a component in that
exponentiation of pk/2−1. After this exponentiation elements become “unitary”
(i.e., norm 1), and with this property inversion becomes a simple conjugation,
and field squaring becomes significantly cheaper [26].

We stress that we are considering exponentiation for a variable base. Hence our
estimates and timings include the cost of any “precomputation” required. If the
base in exponentiation is fixed then there are all sorts of different optimisations
based on precomputation which can be adopted.

Here for simplicity, we do not further consider trace-based methods, as they
are limited by the extent to which they can exploit multi-exponentiation. But
we will of course exploit the “unitary” property of elements in GT .

When estimating the cost of multi-exponentiation, it is important to estimate
the relative costs of field multiplication and squaring inGT , and of point doubling
and addition in G2. So we make the assumption that a point addition/field
multiplication is c times the cost of a point doubling/field squaring, where we
will keep c as a variable.

In fact the relative costs of these operations for an elliptic curve over a prime
field is the subject of much debate, and improved formulae for both doubling and
addition are still being found, often using novel coordinate systems [6]. On the
other hand, for curves over larger extension fields the subject has not received
much attention. Indeed it seems likely that affine coordinates may be faster
than projective coordinates for higher extensions. In GT the matter is also not
so clear cut - but the fast methods for field squaring of unitary elements [26]
are certainly relevant. (Even just exploiting their quadratic extension formulae
leads to significant improvements when applied over large even extension fields;
see [14].)

Assuming that the same window size is used for all exponents, the cost of
multi-exponentiation [22] is approximated by

(mc(2w−1 − 1 + b/(w + 2)) + b)

point doublings/field squarings for an m-dimensional decomposition, using a
window size of w, and exponents of constant size b bits. Here w is simply chosen
to minimise this cost – we ignore the space required for the precomputation.
Clearly we have a choice as to the extent to exploit the possible decomposition,
so we might double m (which will halve the size of b) to see how this effects
the cost.
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Table 1. Cost of multi-exponentiation (Optimal w in brackets)

m c=1.0 c=1.33 c=1.66 c=2.0 c=3.0

1 306 (4) 322 (4) 338 (4) 355 (4) 405 (4)
2 185 (4) 203 (4) 222 (4) 241 (4) 298 (4)
4 127 (3) 148 (3) 169 (3) 190 (3) 254 (3)

Our estimates (based on the above formula) are given in Table 1, for a group
whose order r is 256-bits, assuming that a 1, 2, or 4 dimensional decomposition
is possible (as is the case for the BN curve). We conclude that it is beneficial to
decompose to the maximum extent possible, assuming that space for precompu-
tation is not an issue.

8 Hashing to G2

Some pairing based protocols, for example the original Boneh and Franklin IBE
scheme [7], require hashing of identities to G1 or G2. In the latter case this might
be considered inefficient, as a large co-factor multiplication would be required.
For example consider hashing an identity to the group G2 ⊂ E′(Fp2) on a BN
curve. The number of points on E′(Fp2) is r(p−1+t) (see [5]) where t is the trace
of Frobenius of E(Fp). To hash-and-map an identity to a point of order r, the
approach might be to hash the identity to an x coordinate, solve the quadratic
curve equation to find a y coordinate (and iterate on x if one should not exist),
and finally multiply this point by the co-factor p− 1 + t.

However, in this case the homomorphism ψ of Lemma 1 can be exploited to
advantage. As we have seen, ψ satisfies the equation

ψ2(P ) − [t]ψ(P ) + [p]P = 0

for P ∈ E′(Fp2). Therefore by simple substitution

[p− 1 + t]P = [t](π(P ) + P )− π2(P ) − P.

The major cost of the cofactor calculation is therefore a multiplication by t,
which is “half-sized” compared to a full multiplication by p− 1 + t.

9 Application to XTR and Torus-Based Cryptography

As mentioned in Section 4.7 of Stam’s thesis [27], a natural problem is to develop
the XTR cryptosystem in Fp6m . The main obstacle is efficient key generation. A
key generation algorithm was given in [20] but it requires factoring integers so
is not very practical for large security levels.

A fact (which does not seem to have been noted before) is that polynomial
families of parameters for pairing-friendly curves give efficient key generation
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algorithms for XTR or torus based cryptography over extension fields. Once such
parameters are available then one can immediately apply the GLV method to
speed up exponentiation (see [13,25,26]).

Furthermore, if one works in a subgroup of order r where r = p− T is “super
Ate friendly” then one can also benefit from the easy decomposition of exponents
using the base-|T | expansion and hence get very efficient multi-exponentiation
in dimension > 2.

10 Security Implications

Gallant, Lambert and Vanstone [11] and Wiener and Zuccherato [29] showed
how to speed up the parallel Pollard rho algorithm by using equivalence classes
coming from efficiently computable endomorphisms on elliptic curves. One can
always work with equivalence classes of size #Aut(E).

Such methods can also exploit our homomorphism, giving a slight lowering
of security for the group G2 compared with what was previously believed. As
shown in Lemma 1, the homomorphism ψ on G2 has order k and so we can
partition G2 − {0} into equivalence classes of size k. Similarly GT − {1} can be
partitioned into equivalence classes of size k.

The size of equivalence classes for G2 and GT is therefore k, while the size
of equivalence classes for G1 is Aut(E). When e = 1 then k = #Aut(E) and so
our result is not new, but when e > 1 then k > #Aut(E). For example, with
BN curves the size of equivalence classes is 6 for G1 and 12 for G2 and GT . This
does not imply that the DLP is easier by a factor

√
2 in G2 and GT than G1,

since those groups are defined over larger fields; in practice it will still be quicker
to solve the DLP in G1 = E(Fp)[r] than in G2 or GT .

11 Conclusion

In the deployment of pairing-based cryptography there has been much emphasis
on the efficiency of the pairing itself. But in real protocols the efficiency of
operations in the groups G1, G2 and GT are also of significance, but have been
rather overlooked. In this paper we address this imbalance by suggesting faster
algorithms for group operations in GT , and particularly in G2. The latter is of
particular significance for pairing-friendly ordinary elliptic curves, where G2 may
be defined over an extension field. Further work is required to determine more
precisely the speed-up that can be achieved in practise.
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Abstract. We give an explicit description of the matrix representation
of the Frobenius endomorphism on the Jacobian of a genus two curve
on the subgroup of �-torsion points. By using this description, we can
describe the matrix representation of the Weil-pairing on the subgroup
of �-torsion points explicitly. Finally, the explicit description of the Weil-
pairing provides us with an efficient, probabilistic algorithm to find gen-
erators of the subgroup of �-torsion points on the Jacobian of a genus
two curve.

1 Introduction

In [13], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz [14] then proposed using Jacobians of hyperelliptic curves. Af-
ter Boneh and Franklin [1] proposed an identity based cryptosystem by using
the Weil-pairing on an elliptic curve, pairings have been of great interest to
cryptography [8]. The next natural step was to consider pairings on Jacobians
of hyperelliptic curves.

Galbraith et al. [9] survey the recent research on pairings on Jacobians of hy-
perelliptic curves. Their conclusion is that, for most applications, elliptic curves
provide more efficient solutions than hyperelliptic curves. One way of making
pairing based cryptography on Jacobians of hyperelliptic curves interesting is to
exploit the full torsion subgroup of the Jacobian of a hyperelliptic curve. In par-
ticular, cryptographic applications of pairings on groups which require three or
more generators will be interesting. If such applications are found, the next nat-
ural problem will be to give efficient methods to choose points in the particular
subgroups. The present paper addresses this problem.

Let JC be the Jacobian of a genus two curve defined over IFq. In [5, Algo-
rithm 4.3], Freeman and Lauter describe a probabilistic algorithm to determine
generators of the subgroup JC [�] of points of order �, but the algorithm is in-
complete in the sense that the output only probably is a generating set - it is not
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tested whether the output in fact is a generating set. Furthermore, if the output
happens to be a generating set, it still may not be a basis of JC [�].

In [21], the author describes an algorithm based on the Tate-pairing to deter-
mine a basis of the subgroup JC(IFq)[m] of points of order m on the Jacobian,
where m is a number dividing q − 1. The key ingredient of the algorithm is a
“diagonalization” of a set of randomly chosen points {P1, . . . , P4, Q1, . . . , Q4} on
the Jacobian with respect to the (reduced) Tate-pairing ε; i.e. a modification of
the set such that ε(Pi, Qj) �= 1 if and only if i = j. This procedure is based on
solving the discrete logarithm problem in JC(IFq)[m]. Contrary to the special
case where m divides q − 1, it is in general infeasible to solve the discrete log-
arithm problem in JC(IFq)[m]. Hence, in general the algorithm in [21] does not
apply.

Results

In the present paper, we generalize the algorithm in [21] to subgroups of points
of prime order �, where � does not divide q−1. In order to do so, we must some-
how alter the diagonalization step. We show and exploit the fact that the matrix
representation on JC [�] of the q-power Frobenius endomorphism on JC can be
described explicitly. This description enables us to describe the matrix represen-
tation of the Weil pairing on JC [�] explicitly. Miller [18] uses the Weil pairing
to determine generators of E(IFqa), where E is an elliptic curve defined over a
finite field IFq and a ∈ IN. The basic idea of his algorithm is to decide whether
points on the curve are independent by means of calculating pairing values. The
explicit description of the matrix representation of the Weil pairing lets us trans-
fer this idea to Jacobians of genus two curves. Hereby, computations of discrete
logarithms are avoided, yielding the desired altering of the diagonalization step.

Setup. Consider the Jacobian JC of a genus two curve C defined over a finite
field IFq. Let � be an odd prime number dividing the number of IFq-rational points
on JC , and with � dividing neither q nor q − 1. Assume that the IFq-rational
subgroup JC(IFq)[�] of points on the Jacobian of order � is cyclic. Let k be
the multiplicative order of q modulo �, and let k0 be the least number, such
that JC [�] ⊆ JC(IFqk0 ). (Obviously, in applications k0 must be small enough
for representation of and computations with points on JC(IFqk0 ) to be feasible.
Hence, the algorithms presented are only efficient if k0 is “small”). Write the
characteristic polynomial of the qk-power Frobenius endomorphism on JC as
Pk(X) = X4 + sX3 + (2qk + (s2 − τk)/4)X2 + sqkX + q2k. Let ωk ∈ C be a root
of Pk(X). Finally, if � divides τk, we assume that � is unramified in Q(ωk).

Remark 1. Notice that most likely, in cases relevant to pairing based crypto-
graphy the considered Jacobian of a genus two curve fulfills these assumptions.
Cf. Remark 13 and 21.

The Algorithm. Let JC , �, q, k, k0 and τk be given as in the above setup. Note
that the numbers k and k0 are computed from JC , � and q - they are not chosen.
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Since � divides the number of IFq-rational points on JC , it is implicitly assumed
that JC contains points of order � defined over IFq, i.e. that JC(IFq)[�] is non-
trivial. Notice also that we assume to know the Weil polynomial (see Section 3)
of JC already - it is not computed in the algorithm. In particular, we know τk.

Now, first of all we notice that in the above setup the q-power Frobenius
endomorphism ϕ on JC can be represented on JC [�] by either a diagonal ma-
trix or a matrix of a particular form with respect to an appropriate basis B

of JC [�]; cf. Theorem 14. (In fact, to show this we do not need the IFq-rational
subgroup JC(IFq)[�] of points on the Jacobian of order � to be cyclic). From
this observation it follows that all non-degenerate, bilinear, anti-symmetric and
Galois-invariant pairings on JC [�] are given by the matrices

Ea,b =

⎡

⎢
⎢
⎣

0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

⎤

⎥
⎥
⎦ , a, b ∈ (ZZ/�ZZ)×

with respect to B; cf. Theorem 19. By using this description of the pairings, the
desired algorithm is given as follows.

Algorithm 16. Let the notation and assumptions be as in the above setup. On
input the Jacobian JC , the numbers �, q, k, k0, τk and a number n ∈ IN, the
following algorithm outputs a basis of JC [�] or “failure”.

1. If � does not divide τk, then do the following:
(a) Choose points O �= x1∈ JC(IFq)[�], x2∈ JC(IFqk)[�] and x′3 ∈ JC(IFqk0 )[�]

(cf. Section 8 for details on how to choose points); compute x3 = q(x′3 −
ϕ(x′3))−ϕ(x′3−ϕ(x′3)). If ε(x3, ϕ(x3)) �= 1, then output {x1, x2, x3, ϕ(x3)}
and stop.

(b) Let i = j = 0. While i < n do the following:
i. Choose a random point x4 ∈ JC(IFqk0 )[�].
ii. If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

(c) If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.
2. If � divides τk, then do the following:

(a) Choose a random point O �= x1 ∈ JC(IFq)[�].
(b) Let i = j = 0. While i < n do the following:

i. Choose a random point x2 ∈ JC(IFqk0 )[�].
ii. If ε(x1, x2) = 1, then i := i+ 1. Else i := n and j := 1.

(c) If j = 0, then output “failure” and stop.
(d) Let i = j = 0. While i < n do the following:

i. Choose random points y3, y4 ∈ JC(IFqk0 )[�]; compute xν := q(yν −
ϕ(yν)) − ϕ(yν − ϕ(yν)) for ν = 3, 4.

ii. If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.
(e) If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.

Algorithm 24 finds generators of JC [�] with probability at least (1 − 1/�n)2 and
in expected running time O

(
log � log qk0−1

� k0
3 log k0 log q

)
field operations in
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IFq (ignoring log log q factors); this is contained in Theorem 25. The algorithm
[5, Algorithm 4.3] runs in expected time O(k2 log k(log p)2�s−4

√
− log ε), where

the number s is given by |JC(IFqk0 )| = m�s and � � m, and ε is the rate of
failure. Hence, if s > 4, then Algorithm 24 is by far more efficient than [5,
Algorithm 4.3]. [5, Algorithm 4.3] is used in [5] to compute endomorphism rings
of Jacobians of genus two curves, and this in turn has applications for generating
Jacobians of genus two curves using the CRT version of the CM method [4].
Hence, Algorithm 24 also has applications for generating Jacobians of genus two
curves.

If the Weil polynomial splits in distinct factors modulo �, then the problem
of determining a basis of the �-torsion subgroup is trivially solved: the �-torsion
subgroup decomposes in four eigenspaces of the q-power Frobenius endomor-
phism, so to find a basis, simply choose an �-torsion point and project it to the
eigenspaces. A standard example is the Jacobian JC of the curve over IF3 given
by y2 = x5 + 1. The Weil polynomial of JC is given by P (X) = X4 + 9, the
number of IF3-rational points on JC is |JC(IF3)| = P (1) = 10, and P (X) fac-
tors modulo 5 as P (X) ≡ (X − 1)(X − 2)(X − 3)(X − 4) (mod 5). But there
are cases where the Weil polynomial does not split in distinct factors; cf. the
following example.

Example 1. Consider the Jacobian JC of the curve over IF3 given by

y2 = x5 + 2x2 + x+ 1 .

The Weil polynomial of JC is given by P (X) = X4 + X3 −X2 + 3X + 9, the
number of IF3-rational points on JC is |JC(IF3)| = P (1) = 13, and P (X) factors
modulo 13 as P (X) ≡ (X − 1)(X − 3)(X − 4)2 (mod 13).

Remark 2. To implement Algorithm 24, we need to find the Weil polynomial
of the Jacobian. On Jacobians generated by the complex multiplication method
[23, 10, 4], we know the Weil polynomial in advance. Hence, Algorithm 24 is
particularly well suited for such Jacobians.

Assumption

In this paper, a curve is an irreducible nonsingular projective variety of dimen-
sion one.

2 Genus Two Curves

A hyperelliptic curve is a projective curve C ⊆ IPn of genus at least two with a
separable, degree two morphism φ : C → IP1. It is well known, that any genus
two curve is hyperelliptic. Throughout this paper, let C be a curve of genus two
defined over a finite field IFq of characteristic p. By the Riemann-Roch Theorem
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there exists a birational map ψ : C → IP2, mapping C to a curve given by an
equation of the form

y2 + g(x)y = h(x) ,

where g, h ∈ IFq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [2, chapter 1].
The set of principal divisors P(C) on C constitutes a subgroup of the degree

zero divisors Div0(C). The Jacobian JC of C is defined as the quotient

JC = Div0(C)/P(C) .

The Jacobian is an abelian group. We write the group law additively, and denote
the zero element of the Jacobian by O.

Let � �= p be a prime number. The �n-torsion subgroup JC [�n] ⊆ JC of points
of order dividing �n is a ZZ/�nZZ-module of rank four, i.e.

JC [�n] � ZZ/�nZZ × ZZ/�nZZ × ZZ/�nZZ × ZZ/�nZZ ;

cf. [15, Theorem 6, p. 109].
The multiplicative order k of q modulo � plays an important role in crypto-

graphy, since the (reduced) Tate-pairing is non-degenerate over IFqk ; cf. [11].

Definition 3 (Embedding degree). Consider a prime number � �= p dividing
the number of IFq-rational points on the Jacobian JC . The embedding degree
of JC(IFq) with respect to � is the least number k, such that qk ≡ 1 (mod �).

Closely related to the embedding degree, we have the full embedding degree.

Definition 4 (Full embedding degree). Consider a prime number � �= p
dividing the number of IFq-rational points on the Jacobian JC . The full embedding
degree of JC(IFq) with respect to � is the least number k0, such that JC [�] ⊆
JC(IFqk0 ).

Remark 5. If JC [�] ⊆ JC(IFqk0 ), then � | qk0 − 1; cf. [15, Theorem 6, p. 109]
and [6, Proposition 5.78, p. 111]. Hence, the full embedding degree is a multiple
of the embedding degree.

3 The Frobenius Endomorphism

Since C is defined over IFq, the mapping (x, y) 	→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jaco-
bian JC . Let P (X) be the characteristic polynomial of ϕ; cf. [15, pp. 109–110].
P (X) is called the Weil polynomial of JC , and

|JC(IFq)| = P (1)

by the definition of P (X) (see [15, pp. 109–110]); i.e. the number of IFq-rational
points on the Jacobian is P (1).
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Definition 6 (Weil number). Let notation be as above. Let Pk(X) be the
characteristic polynomial of the qm-power Frobenius endomorphism ϕm on JC .
A complex number ωm ∈ C with Pm(ωm) = 0 is called a qm-Weil number of JC .

Remark 7. Note that JC has four qm-Weil numbers. If P1(X) =
∏

i(X − ωi),
then Pm(X) =

∏
i(X − ωm

i ). Hence, if ω is a q-Weil number of JC , then ωm is
a qm-Weil number of JC .

4 Non-cyclic Subgroups

Consider a genus two curve C defined over a finite field IFq. Let Pm(X) be the
characteristic polynomial of the qm-power Frobenius endomorphism ϕm on the
Jacobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m,
where s, t ∈ ZZ. Let τ = 8qm + s2− 4t. Then Pm(X) = X4 + sX3 +(2qm +(s2−
τ)/4)X2 + sqmX + q2m. In [22], the author proves the following Theorem 8 and
Theorem 9.

Theorem 8. Consider the Jacobian JC of a genus two curve C defined over
a finite field IFq. Write the characteristic polynomial of the qm-power Frobenius
endomorphism on JC as Pm(X) = X4+sX3+(2qm+(s2−τ)/4)X2+sqmX+q2m.
Let � be an odd prime number dividing the number of IFq-rational points on JC ,
and with � � q and � � q − 1. If � � τ , then

1. JC(IFqm)[�] is of rank at most two as a ZZ/�ZZ-module, and
2. JC(IFqm)[�] is bicyclic if and only if � divides qm − 1.

Theorem 9. Let notation be as in Theorem 8. Furthermore, let ωm be
a qm-Weil number of JC , and assume that � is unramified in Q(ωm). Now assume
that � | τ . Then the following holds.

1. If ωm ∈ ZZ, then � | qm − 1 and JC [�] ⊆ JC(IFqm).
2. If ωm /∈ ZZ, then � � qm−1, JC(IFqm)[�] � (ZZ/�ZZ)2 and JC [�] ⊆ JC(IFqmk)

if and only if � | qmk − 1.

Example 10 (The case � � τk). Let P (X) = X4 + X3 − X2 + 3X + 9 ∈ Q[X ].
By [16] and [12] it follows that P (X) is the Weil polynomial of the Jacobian
of a genus two curve C defined over IF3. The number of IF3-rational points on
the Jacobian is P (1) = 13, and the embedding degree of JC(IF3) with respect
to � = 13 is k = 3. The characteristic polynomial of the 33-power Frobenius
endomorphisms is given by P3(X) = X4 + 13X3 + 89X2 + 351X + 729. Hence,
JC(IF27)[13] is bicyclic by Theorem 8.

Example 11 (The case � | τk). Let P (X) = (X2 − 5X+ 9)2 ∈ Q[X ]. By [16] and
[12] it follows that P (X) is the Weil polynomial of the Jacobian of a genus two
curve C defined over IF9. The number of IF9-rational points on the Jacobian is
P (1) = 25, so � = 5 is an odd prime divisor of |JC(IF9)| not dividing q = 9. Notice
that P (X) ≡ X4 + 2qX2 + q2 (mod 5). The complex roots of P (X) are given
by ω = 5+

√−11
2 and ω̄, and 5 is unramified in Q(ω). Since 92 ≡ 1 (mod 5), it

follows by Theorem 9 that JC(IF9)[5] � ZZ/5ZZ⊕ZZ/5ZZ and JC [5] ⊆ JC(IF81).

Inspired by Theorem 8 and Theorem 9 we introduce the following notation.
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Definition 12. Consider the Jacobian JC of a genus two curve C defined over
a finite field IFq. We say that the Jacobian is a J(�, q, k, τk)-Jacobian or is of
type J(�, q, k, τk), and write JC ∈ J(�, q, k, τk), if the following holds.

1. The number � is an odd prime number dividing the number of IFq-rational
points on JC , � divides neither q nor q − 1, and JC(IFq) is of embedding
degree k with respect to �.

2. The characteristic polynomial of the qk-power Frobenius endomorphism
on JC is given by Pk(X) = X4 + sX3 +(2qk +(s2 − τk)/4)X2 + sqkX+ q2k.

3. Let ωk be a qk-Weil number of JC. If � divides τk, then � is unramified
in Q(ωk).

Remark 13. Since � is ramified in Q(ωk) if and only if � divides the discriminant
of Q(ωk) (see [20, Theorem 2.6, p. 199]), � is unramified in Q(ωk) with probability
approximately 1 − 1/�. Hence, most likely, in cases relevant to pairing based
cryptography the considered Jacobian is a J(�, q, k, τk)-Jacobian.

5 Matrix Representation of the Frobenius Endomorphism

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [�] → JC [�] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(ZZ/�ZZ) on JC [�].
If ψ can be represented on JC [�] by a diagonal matrix with respect to an ap-
propriate basis of JC [�], then we say that ψ is diagonalizable or has a diagonal
representation on JC [�].

Let f ∈ ZZ[X ] be the characteristic polynomial of ψ (see [15, pp. 109–110]),
and let f̄ ∈ (ZZ/�ZZ)[X ] be the characteristic polynomial of ψ̄. Then f is a monic
polynomial of degree four, and by [15, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod �) .

By Theorem 8 and Theorem 9 we get the following explicit description of the
matrix representation of the Frobenius endomorphism on the Jacobian of a genus
two curve.

Theorem 14. Consider a Jacobian JC ∈ J(�, q, k, τk). Let ϕ be the q-power
Frobenius endomorphism of JC . If ϕ is not diagonalizable on JC [�], then ϕ is
represented on JC [�] by a matrix of the form

M =

⎡

⎢⎢
⎣

1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

⎤

⎥⎥
⎦ (1)

with respect to an appropriate basis of JC [�]. In particular, c �≡ q + 1 (mod �).

Proof. Assume at first that � does not divide τk. Then we know that JC(IFq)[�]
is cyclic and that JC(IFqk)[�] is bicyclic; cf. Theorem 8. Choose points x1, x2 ∈
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JC [�], such that ϕ(x1) = x1 and ϕ(x2) = qx2. Then the set {x1, x2} is a basis
of JC(IFqk)[�]. Now, extend {x1, x2} to a basis B = {x1, x2, x3, x4} of JC [�].
If x3 and x4 are eigenvectors of ϕ, then ϕ is represented by a diagonal matrix
on JC [�] with respect to B. Assume x3 is not an eigenvector of ϕ. Then B′ =
{x1, x2, x3, ϕ(x3)} is a basis of JC [�], and ϕ is represented by a matrix of the
form (1) with respect to B′.

Now, assume � divides τk. Since � divides qk − 1, it follows that JC [�] ⊆
JC(IFqk); cf. Theorem 9. Since � divides the number of IFq-rational points on JC ,
1 is a root of the Weil polynomial P (X) modulo �. Assume that 1 is an root
of P (X) modulo � of multiplicity ν. Since the roots of P (X) occur in pairs of
the form (α, q/α), it follows that

P (X) ≡ (X − 1)ν(X − q)νQ(X) (mod �) ,

where Q ∈ ZZ[X ] is a polynomial of degree 4−2ν, Q(1) �≡ 0 (mod �) and Q(q) �≡
0 (mod �). Let U = ker(ϕ−1)ν , V = ker(ϕ−q)ν andW = ker(Q(ϕ)). Then U , V
and W are ϕ-invariant submodules of the ZZ/�ZZ-module JC [�],
rankZZ/�ZZ(U) = rankZZ/�ZZ(V ) = ν, and JC [�] � U ⊕ V ⊕ W . If ν = 1,
then it follows as above that ϕ is either diagonalizable on JC [�] or represented
by a matrix of the form (1) with respect to some basis of JC [�]. Hence, we may
assume that ν = 2. Now, choose x1 ∈ U such that ϕ(x1) = x1, and extend {x1}
to a basis {x1, x2} of U . Similarly, choose a basis {x3, x4} of V with ϕ(x3) = qx3.
With respect to the basis B = {x1, x2, x3, x4}, ϕ is represented by a matrix of
the form

M =

⎡

⎢
⎢
⎣

1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q

⎤

⎥
⎥
⎦ .

Notice that

Mk =

⎡

⎢⎢
⎣

1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1

⎤

⎥⎥
⎦ .

Since JC [�] ⊆ JC(IFqk), we know that ϕk = ϕk is the identity on JC [�]. Hence,
Mk = I. So α ≡ β ≡ 0 (mod �), i.e. ϕ is represented by a diagonal matrix with
respect to B.

Finally, if c≡q+1 (mod �), thenM is diagonalizable. The theorem is proved. ��

6 Determining Fields of Definition

In [5], Freeman and Lauter consider the problem of determining the field of
definition of the �-torsion points on the Jacobian of a genus two curve, i.e. the
problem of determining the full embedding degree k0. They describe a probabi-
listic algorithm to determine if JC [�] ⊆ JC(IFqκ); see [5, Algorithm 4.3]. (Notice
that Freeman and Lauter consider a Jacobian defined over a prime field IFp, and
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[5, Algorithm 4.3] determines if JC [�d] ⊆ JC(IFq), where q = pk and d ∈ IN. This
algorithm is easily generalized to determine if JC [�] ⊆ JC(IFqκ) for Jacobians
defined over IFq, q = pa).

In most applications, a probabilistic algorithm to determine k0 is sufficient.
But we may have to compute k0. To this end, consider a J(�, q, k, τk)-Jacobian JC .
Let ω be a q-Weil number of JC . In cases relevant to pairing based cryptography,
� is most likely unramified in Q(ω); cf. Remark 13. But then the full embed-
ding degree of JC with respect to � can be computed directly by the following
Algorithm 15.

Algorithm 15. Consider a Jacobian JC ∈ J(�, q, k, τk). Let ω be a q-Weil num-
ber of JC . Assume that � is unramified in Q(ω). Choose an upper bound N ∈ IN
of the full embedding degree k0 of JC with respect to �. If k0 ≤ N , then the fol-
lowing algorithm outputs k0. If k0 > N , then the algorithm outputs “k0 > N”.

1. Let j = 1.
2. If the Weil polynomial P (X) of JC does not split in linear factors modulo �,

then ϕ is represented by a matrix M of the form (1) on JC [�]. In this case,
let k0 = min{κ ∈ kIN, κ ≤ N,Mκ ≡ I (mod �)}, if the minimum exists. Else
let j = 0.

3. If P (X) ≡ (X− 1)(X− q)(X−α)(X− q/α) (mod �), then do the following:
(a) If α �≡ 1, q, q/α (mod �), then let k0 = min{κ ∈ kIN, κ ≤ N,ακ ≡ 1

(mod �)}, if the minimum exists. Else let j = 0.
(b) If α ≡ 1, q (mod �), then let k0 = k.
(c) If α ≡ q/α (mod �), then let k0 = 2k.

4. If j = 0 then output “k0 > N”. Else output k0.

Proof. First of all, recall that k0 ∈ kIN; cf. Remark 5. As usual, let ϕ be the
q-power Frobenius endomorphism of JC .

Assume at first that the Weil polynomial of JC does not split in linear factors
modulo �. Then ϕ is not diagonalizable on JC [�]. Thus, ϕ is represented by
a matrix M of the form (1) on JC [�]. Since ϕk0 is the identity on JC [�], it
is represented by the identity matrix I on JC [�]. But ϕk0 is also represented
by Mk0 on JC [�]. So Mk0 ≡ I (mod �). On the other hand, if Mκ ≡ I (mod �)
for some number κ ≤ k0, then ϕκ is the identity on JC [�], i.e. JC [�] ⊆ JC(IFqκ).
But then κ = k0 by the definition of k0. Hence, k0 is the least number, such that
Mk0 ≡ I (mod �).

Now, assume the Weil polynomial factors modulo � as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod �) .

The case α �≡ 1, q, q/α (mod �) is obvious. If α ≡ 1, q (mod �), then

P (X) ≡ (X−1)2(X−q)2 ≡ X4+2σX3+(2q+σ2−τ)X2+2σqX+q2 (mod �) ,

where σ ≡ −(q + 1) (mod �) and τ ≡ 0 (mod �). By Theorem 9 it follows
that JC [�] ⊆ JC(IFqk); i.e. k0 = k in this case. Finally, assume that α ≡ q/α
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(mod �), i.e. that α2 ≡ q (mod �). Then the q-power Frobenius endomorphism
is represented on JC [�] by a matrix of the form

M =

⎡

⎢
⎢
⎣

1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α

⎤

⎥
⎥
⎦

with respect to an appropriate basis of JC [�]. Notice that

M2k =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 2kα2k−1β
0 0 0 1

⎤

⎥
⎥
⎦ .

Thus, P2k(X) ≡ (X − 1)4 (mod �). By Theorem 9 it follows that JC [�] ⊆
JC(IFq2k ), i.e. k0 = 2k. ��

Theorem 16. Let the notation and assumptions be as in Algorithm 15. On
input JC , the Weil polynomial modulo � and a number N ∈ IN, Algorithm 15
outputs either “k0 > N” or the full embedding degree of JC with respect to � in
at most O(N) number of operations in IF�.

Proof. If the Weil polynomial of JC does not split in linear factors modulo �,
then powers {Mk, (Mk)2, . . . , (Mk)�N/k�} ofM modulo � are computed; here,M
is the matrix representation of the q-power Frobenius endomorphism on JC [�].
M is of the form

M =

⎡

⎢
⎢
⎣

1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

⎤

⎥
⎥
⎦ .

Hence, computing powers of M is equivalent to computing powers of M ′ =[
0 −q
1 c

]
and powers of q. Computation of the product of two matrices A,B ∈

Mat2(IF�) takes 12 operations in IF�, so computing the powers of M modulo �
takes O(N) operations in IF�.

Assume the Weil polynomial factors as (X−1)(X−q)(X−α)(X−q/α) mod-
ulo �. If α ≡ 1, q, q/α (mod �), then no computations are needed. If α �≡ 1, q, q/α
(mod �), then powers {αk, (αk)2, . . . , (αk)�N/k�} of α modulo � are computed;
this takes O(N) operations in IF�. ��

Remark 17. Recall that q = pa for some power a ∈ IN. Assume � and p are of the
same size. For small N (e.g. N < 200), a limit of O(N) number of operations
in IF� is a better result than the expected number of operations in IFp of [5,
Algorithm 4.3] given by [5, Proposition 4.6]. Furthermore, the algorithm of [5]
only checks if a given number κ ∈ IN is the full embedding degree k0 of the
Jacobian. Hence, to find k0 using [5, Algorithm 4.3], we must apply it to every
number in the set {κ ∈ kIN|κ ≤ N}. Thus, we must multiply the number of
expected operations in IFp with a factor O("N/k#). So if � and p are of the same
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size, then Algorithm 15 is more efficient than [5, Algorithm 4.3]. On the other
hand, if � $ p, then field operations in IFp is faster than field operations in
IF�, and [5, Algorithm 4.3] may be the more efficient one. Hence, the choice of
algorithm to compute the full embedding degree depends strongly on the values
of � and p in the implementation.

7 Anti-symmetric Pairings on the Jacobian

On JC [�], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing

ε : JC [�]× JC [�] → μ� = 〈ζ〉 ⊆ IF×
qk

exists, e.g. the Weil pairing; cf. e.g. [19, chapter 12]. Here, μ� is the group of �th

roots of unity. A fast algorithm for computing the Weil pairing is given in [3].
Since ε is bilinear, it is given by

ε(x, y) = ζxT Ey , (2)

for some matrix E ∈ Mat4(ZZ/�ZZ) with respect to a basis B = {x1, x2, x3, x4}
of JC [�].

Remark 18. To be more precise, the points x and y on the right hand of equa-
tion (2) should be replaced by their column vectors [x]B and [y]B with respect
to B. To ease notation, this has been omitted.

Let ϕ denote the q-power Frobenius endomorphism on JC . Since ε is Galois-
invariant,

∀x, y ∈ JC [�] : ε(x, y)q = ε(ϕ(x), ϕ(y)) .

This is equivalent to

∀x, y ∈ JC [�] : q(xT Ey) = (Mx)T E(My) ,

where M is the matrix representation of ϕ on JC [�] with respect to B. Since
(Mx)T E(My) = xTMT EMy, it follows that

∀x, y ∈ JC [�] : xT qEy = xTMT EMy ,

or equivalently, that qE =MT EM .
Now, let ε(xi, xj) = ζaij . By anti-symmetry,

E =

⎡

⎢
⎢
⎣

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎤

⎥
⎥
⎦ .
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At first, assume that ϕ is represented by a matrix of the form (1) with respect
to B. Since MT EM = qE, it follows that

a14 − qa13 ≡ a23 − a24 ≡ a14(c− (1 + q)) ≡ a24(c− (1 + q)) ≡ 0 (mod �) .

Thus, a13 ≡ a14 ≡ a23 ≡ a24 ≡ 0 (mod �), cf. Theorem 14. So

E =

⎡

⎢
⎢
⎣

0 a12 0 0
−a12 0 0 0

0 0 0 a34
0 0 −a34 0

⎤

⎥
⎥
⎦ .

Since ε is non-degenerate, a212a234 = det E �≡ 0 (mod �).
Finally, assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α)

with respect to B. Then it follows from MT EM = qE, that

a13(α− q) ≡ a14(α− 1) ≡ a23(α − 1) ≡ a24(α − q) ≡ 0 (mod �) .

If α ≡ 1, q (mod �), then JC(IFq)[�] is bi-cyclic. Hence the following theorem
holds.

Theorem 19. Consider a Jacobian JC ∈ J(�, q, k, τk). Let ϕ be the q-power
Frobenius endomorphism on JC . Choose a basis B of JC [�], such that ϕ is repre-
sented by either a diagonal matrix diag(1, q, α, q/α) or a matrix of the form (1)
with respect to B. If the IFq-rational subgroup JC(IFq)[�] of �-torsion points on the
Jacobian is cyclic, then all non-degenerate, bilinear, anti-symmetric and Galois-
invariant pairings on JC [�] are given by the matrices

Ea,b =

⎡

⎢
⎢
⎣

0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

⎤

⎥
⎥
⎦ , a, b ∈ (ZZ/�ZZ)×

with respect to B.

Remark 20. Let notation and assumptions be as in Theorem 19. Let ε be a non-
degenerate, bilinear, anti-symmetric and Galois-invariant pairing on JC [�], and
let ε be given by Ea,b with respect to a basis {x1, x2, x3, x4} of JC [�]. Then ε is
given by E1,1 with respect to {a−1x1, x2, b

−1x3, x4}.

Remark 21. In cases relevant to pairing based cryptography, we consider a prime
divisor � of size q2. Assume � is of size q2. Then � divides neither q nor q − 1.
The number of IFq-rational points on the Jacobian is approximately q2. Thus,
JC(IFq)[�] is cyclic in cases relevant to pairing based cryptography.

8 Generators of JC[�]

Consider a Jacobian JC ∈ J(�, q, k, τk). Assume the IFq-rational subgroup of
�-torsion points JC(IFq)[�] is cyclic. Let ϕ be the q-power Frobenius endomor-
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phism of JC . Let ε be a non-degenerate, bilinear, anti-symmetric and Galois-
invariant pairing

ε : JC [�]× JC [�] → μ� = 〈ζ〉 ⊆ IF×
qk .

In the following, frequently we will choose a random point P ∈ JC(IFqa)[�]
for some power a ∈ IN. This is done as follows: (1) Choose a random point P ∈
JC(IFqa). (2) Compute P := [m](P ), where |JC(IFqa)| = m�s and � � m. (3) Com-
pute the order |P | = �t(P ) of P . (4) If t(P ) > 0, then let P := [�t(P )−1](P ). Since
the power t(P ) will be different for each point P , this procedure does not define
a group homomorphism from JC(IFqa) to JC(IFqa)[�]. Thus, the image of points
uniformly distributed in JC(IFqa) will not necessarily be uniformly distributed
in JC(IFqa)[�]. A method of choosing points uniformly at random is given in [5,
Section 5.3], but it leads to a significant extra cost. In practice we believe it is
better to not use the method in [5], even though this means one might need to
sample a few extra points.

We consider the cases where � � τk and where � | τk separately.

8.1 The Case � � τk

If � does not divide τk, then JC(IFqk)[�] is bicyclic; cf. Theorem 8. Choose
a random point O �= x1 ∈ JC(IFq)[�], and extend {x1} to a basis {x1, y2}
of JC(IFqk)[�], where ϕ(y2) = qy2. Let x′2 ∈ JC(IFqk)[�] be a random point.
If x′2 ∈ JC(IFq)[�], then choose another random point x′2 ∈ JC(IFqk)[�]. After two
trials, x′2 /∈ JC(IFq)[�] with probability 1 − 1/�2. Hence, we may ignore the case
where x′2 ∈ JC(IFq)[�]. Write x′2 = α1x1 + α2y2. Then

O �= x2 = x′2 − ϕ(x′2) = α2(1 − q)y2 ∈ 〈y2〉 ,

i.e. ϕ(x2) = qx2. Now, let JC [�] � JC(IFqk)[�] ⊕W , where W is a ϕ-invariant
submodule of rank two. Choose a random point x′3 ∈ JC [�]. Since x′3 − ϕ(x′3) ∈
〈y2〉 ⊕W , we may assume that x′3 ∈ 〈y2〉 ⊕W . But then

x3 = qx′3 − ϕ(x′3) ∈W

as above. If ϕ(x′3) = qx′3, then x′3 ∈ JC(IFqk)[�]. This will only happen with
probability 1/�2. Hence, we may ignore this case. Notice that

JC [�] = 〈x1, x2, x3, ϕ(x3)〉 if and only if ε(x3, ϕ(x3)) �= 1;

cf. Theorem 19.
Assume ε(x3, ϕ(x3)) = 1. Then x3 is an eigenvector of ϕ. Let ϕ(x3) = αx3.

Then the Weil polynomial of JC is given by

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod �)
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modulo �. Assume α ≡ q/α (mod �). Then α2 ≡ q (mod �), and it follows that
the characteristic polynomial of ϕk is given by

Pk(X) ≡ (X − 1)2(X + 1)2 ≡ X4 − 2qkX2 + q2k (mod �)

modulo �. But then � | τk. This is a contradiction. So α �≡ q/α (mod �). There-
fore, we can extend {x1, x2, x3} to a basis B = {x1, x2, x3, x4} of JC [�], such
that ϕ is represented by a diagonal matrix on JC [�] with respect to B. We may
assume that ε is given by E1,1 with respect to B; cf. Remark 20.

Now, choose a random point x ∈ JC [�]. Write x = α1x1 +α2x2 +α3x3 +α4x4.
Then ε(x3, x) = ζα4 . So ε(x3, x) �= 1 if and only if � does not divide α4. On the
other hand, {x1, x2, x3, x} is a basis of JC [�] if and only � does not divide α4.
Thus, if � does not divide τk, then the following Algorithm 22 outputs generators
of JC [�] with probability at least 1 − 1/�n.

Algorithm 22. On input a Jacobian JC ∈ J(�, q, k, τk), the numbers �, q, k
and τk, the full embedding degree k0 of JC with respect to � and a number n ∈ IN,
if � does not divide τk, then the following algorithm outputs a basis of JC [�] or
“failure”.

1. Choose points O �= x1 ∈ JC(IFq)[�], x2 ∈ JC(IFqk)[�] and x′3 ∈ JC(IFqk0 )[�];
compute x3 = q(x′3 − ϕ(x′3)) − ϕ(x′3 − ϕ(x′3)). If ε(x3, ϕ(x3)) �= 1, then
output {x1, x2, x3, ϕ(x3)} and stop.

2. Let i = j = 0. While i < n do the following:
(a) Choose a random point x4 ∈ JC(IFqk0 )[�].
(b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.

8.2 The Case � | τk

Assume � divides τk. Then JC [�] ⊆ JC(IFqk); cf. Theorem 9. Choose a random
point O �= x1 ∈ JC(IFq)[�], and let y2 ∈ JC [�] be a point with ϕ(y2) = qy2.
Write JC [�] = 〈x1, y2〉 ⊕W , where W is a ϕ-invariant submodule of rank two;
cf. the proof of Theorem 14. Let {y3, y4} be a basis of W , such that ϕ is repre-
sented on JC [�] with respect to the basis B = {x1, y2, y3, y4} by either a diagonal
matrix

M1 = diag(1, q, α, q/α) ,

or a matrix of the form

M2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

⎤

⎥
⎥
⎦ ,

where c �≡ q + 1 (mod �); cf. Theorem 14.
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Now, choose a random point z ∈ JC [�]. Since z − ϕ(z) ∈ 〈y2, y3, y4〉, we may
assume that z ∈ 〈y2, y3, y4〉. Write z = α2y2 +α3y3 +α4y4. Assume at first that
ϕ is represented on JC [�] by M1 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3αy3 + α4(q/α)y4)
= α3(q − α)y3 + α4(q − q/α)y4;

so qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that q ≡ 1 (mod �).
This contradicts the choice of the Jacobian JC ∈ J(�, q, k, τk). Hence, we have
a procedure to choose a point O �= w ∈ W in this case. Now assume that ϕ is
represented on JC [�] by M2 with respect to B. Then

qz − ϕ(z) = α2qy2 + α3qy3 + α4qy4 − (α2qy2 + α3y4 + α4(−qy3 + cy4))
= q(α3 + α4)y3 + (α4q − α3 − α4c)y4;

so again qz − ϕ(z) ∈ 〈y3, y4〉. If qz − ϕ(z) = 0, then it follows that c ≡ q +
1 (mod �). This is a contradiction. Hence, we have a procedure to choose a
point O �= w ∈W also in this case.

Choose random points x3, x4 ∈ W . Write xi = αi3y3 + αi4y4 for i = 3, 4. We
may assume that ε is given by E1,1 with respect to B; cf. Remark 20. But then
ε(x3, x4) = ζα33α44−α34α43 . Hence, ε(x3, x4) = 1 if and only if α33α44 ≡ α34α43

(mod �). So ε(x3, x4) �= 1 with probability 1 − 1/�. Hence, we have a procedure
to find a basis of W .

Until now, we have found points x1 ∈ JC(IFq)[�] and x3, x4 ∈ W , such that
W = 〈x3, x4〉. Now, choose a random point x2 ∈ JC [�]. Write x2 = α1x1 +
α2y2 +α3y3 +α4y4. Then ε(x1, x2) = ζα2 , i.e. ε(x1, x2) = 1 if and only if α2 ≡ 0
(mod �). Thus, with probability 1− 1/�, the set {x1, x2, x3, x4} is a basis of JC [�].

Summing up, if � divides τk, then the following Algorithm 23 outputs gener-
ators of JC [�] with probability at least (1 − 1/�n)2.

Algorithm 23. On input a Jacobian JC ∈ J(�, q, k, τk), the numbers �, q, k
and τk, the full embedding degree k0 of JC with respect to � and a number n ∈ IN,
if � divides τk, then the following algorithm outputs a basis of JC [�] or “failure”.

1. Choose a random point O �= x1 ∈ JC(IFq)[�].
2. Let i = j = 0. While i < n do the following:

(a) Choose a random point x2 ∈ JC(IFqk0 )[�].
(b) If ε(x1, x2) = 1, then i := i+ 1. Else i := n and j := 1.

3. If j = 0, then output “failure” and stop.
4. Let i = j = 0. While i < n do the following:

(a) Choose random points y3, y4 ∈ JC(IFqk0 )[�]; compute xν := q(yν −ϕ(yν))
− ϕ(yν − ϕ(yν)) for ν = 3, 4.

(b) If ε(x3, x4) = 1, then i := i+ 1. Else i := n and j := 1.
5. If j = 0, then output “failure”. Else output {x1, x2, x3, x4}.
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8.3 The Complete Algorithm

Combining Algorithm 22 and 23, we obtain the desired algorithm to find gener-
ators of JC [�].

Algorithm 24. On input a Jacobian JC ∈ J(�, q, k, τk), the numbers �, q, k
and τk, the full embedding degree k0 of JC with respect to � and a number n ∈ IN,
the following algorithm outputs a basis of JC [�] or “failure”.

1. If � � τk, run Algorithm 22 on input (JC , �, q, k, τk, k0, n).
2. If � | τk, run Algorithm 23 on input (JC , �, q, k, τk, k0, n).

Theorem 25. Let JC be a J(�, q, k, τk)-Jacobian of full embedding degree k0
with respect to �. On input (JC , �, q, k, τk, k0, n), Algorithm 24 outputs generators
of JC [�] with probability at least (1 − 1/�n)2. We expect Algorithm 24 to run in

O

(
log � log

qk0 − 1
�

k0
3 log k0 log q

)

field operations in IFq (ignoring log log q factors).

Proof. We must compare the cost of the steps in Algorithm 24. From [5, proof
of Proposition 4.6], [7, proof of Corollary 1] and [17] we get the following es-
timates: (1) Choosing a random point on JC(IFqa) for some power a ∈ IN
takes O(a log q) field operations in IFqa , and computing a multiple [m](P ) of
a point P ∈ JC(IFqa) takes O(a log q) field operations in IFqa . (2) Evaluating
the qa-power Frobenius endomorphism of the Jacobian on a point P ∈ JC [�]
takes O(a log q) field operations in IFqa . (3) Evaluating the Tate pairing on two
point of JC(IFqk0 )[�] takes O(log �) field operations in IFqk0 . The Weil pair-
ing can be computed by computing two Tate pairings, raising the results to
the power qk0−1

� and finally computing the quotient of these numbers; see [8].

The exponentiation takes O(log qk0−1
� ) field operations in IFqk0 , and a division

takes O(k02) field operations in IFqk0 . Hence, evaluating the Weil pairing on two

point of JC(IFqk0 )[�] takes O(log �)O(log qk0−1
� )O(k02) field operations in IFqk0 .

(4) By using fast multiplication techniques, one field operation in IFqa takes
O(log qa log log qa) = O(a log a log q) field operations in IFq (ignoring log log q
factors).

We see that the pairing computation is the most expensive step in Algo-
rithm 24. Thus, Algorithm 24 runs in O(log � log qk0−1

� k0
3 log k0 log q) field ope-

rations in IFq (ignoring log log q factors). ��

9 Implementation Issues

To check if � ramifies in Q(ωk) in the case where � divides τk, a priori we need
to find a qk-Weil number ωk of the Jacobian JC . On Jacobians generated by the
complex multiplication method [23, 10, 4], we know the Weil numbers in advance.
Hence, Algorithm 24 is particularly well suited for such Jacobians.
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Fortunately, most likely � does not divide τk, and then we do not have to find
a qk-Weil number (� divides a random number n ∈ ZZ with vanishing probabi-
lity 1/�). And if the Weil polynomial splits in distinct linear factors modulo �,
then we do not even have to compute τk. To see this, assume that the Weil
polynomial of JC splits as

P (X) ≡ (X − 1)(X − q)(X − α)(X − q/α) (mod �) ,

where α �≡ 1, q, q/α (mod �). Let ϕ be the q-power Frobenius endomorphism
of JC , and let Pk(X) be the characteristic polynomial of ϕk. Then

Pk(X) ≡ (X − 1)2(X − αk)(X − 1/αk) (mod �) .

If � divides τk, then JC [�] ⊆ JC(IFqk); cf. Theorem 9. But then Pk(X) ≡ (X−1)4

(mod �). Hence,

� divides τk if and only if αk ≡ 1 (mod �). (3)

Assume αk ≡ 1 (mod �). Then Pk(X) ≡ (X − 1)4 (mod �). Hence,

� ramifies in Q(ωk) if and only if ωk /∈ ZZ. (4)

See [20, Proposition 8.3, p. 47]. Here, ω is a q-Weil number of JC .
Consider the case where αk ≡ 1 (mod �) and ωk ∈ ZZ. Then ω =

√
qeinπ/k

for some n ∈ ZZ with 0 < n < k. Assume k divides mn for some m < k. Then
ω2m = qm ∈ ZZ. Since the q-power Frobenius endomorphism is the identity on
the IFq-rational points on the Jacobian, it follows that ω2m ≡ 1 (mod �). Hence,
qm ≡ 1 (mod �), i.e. k divides m. This is a contradiction. So n and k has no
common divisors. Let ξ = ω2/q = ein2π/k. Then ξ is a primitive kth root of unity,
and Q(ξ) ⊆ Q(ω). Since [Q(ω) : Q] ≤ 4 and [Q(ξ) : Q] = φ(k), where φ is the
Euler phi function, it follows that k ≤ 12. Hence,

if αk ≡ 1 (mod �), then ωk ∈ ZZ if and only if k ≤ 12. (5)

The criteria (3), (4) and (5) provides the following efficient algorithm to check
whether a given Jacobian is of type J(�, q, k, τk), and whether � divides τk.

Algorithm 26. Let JC be the Jacobian of a genus two curve C. Assume that
the odd prime number � divides the number of IFq-rational points on JC , and
that � divides neither q nor q−1. Let k be the multiplicative order of q modulo �.

1. Compute the Weil polynomial P (X) of JC . Let P (X) ≡
∏4

i=1(X − αi)
(mod �).

2. If αk
i �≡ 1 (mod �) for an i ∈ {1, 2, 3, 4}, then output “JC ∈ J(�, q, k, τk)

and � does not divide τk” and stop.
3. If k > 12 then output “JC /∈ J(�, q, k, τk)” and stop.
4. Output “JC ∈ J(�, q, k, τk) and � divides τk” and stop.
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Abstract. Pairings on the Jacobians of (hyper-)elliptic curves have re-
ceived considerable attention not only as a tool to attack curve based
cryptosystems but also as a building block for constructing cryptographic
schemes with new and novel properties. Motivated by the work of Scott,
we investigate how to use efficiently computable automorphisms to speed
up pairing computations on two families of non-supersingular genus 2 hy-
perelliptic curves over prime fields. Our findings lead to new variants of
Miller’s algorithm in which the length of the main loop can be up to
4 times shorter than that of the original Miller’s algorithm in the best
case. We also implement the calculation of the Tate pairing on both
a supersingular and a non-supersingular genus 2 curve with the same
embedding degree of k = 4. Combining the new algorithm with known
optimization techniques, we show that pairing computations on non-
supersingular genus 2 curves over prime fields use up to 55.8% fewer
field operations and run about 10% faster than supersingular genus 2
curves for the same security level.

Keywords: Genus 2 non-supersingular hyperelliptic curves, Tate pair-
ing, Miller’s algorithm, Automorphism, Efficient implementation.

1 Introduction

Pairing based cryptography is a relatively new area of cryptography centered
around particular functions with interesting properties. Initially, bilinear pair-
ings were introduced to cryptography for attacking instances of the discrete log-
arithm problem (DLP) on elliptic curves and hyperelliptic curves [14,28]. With
the advent of non-interactive key distribution [33], tripartite key exchange [24],
and identity based encryption [5], the design of pairing based cryptographic
protocols has received a lot of attention from the research community. The im-
plementation of pairing based protocols requires the efficient computation of
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pairings. To date, the Weil and Tate pairings and their variants such as the Eta
and Ate pairings on Jacobians of (hyper-)elliptic curves are the only efficient
instantiations of cryptographically useful bilinear maps.

There has been a lot of work on efficient implementation of pairings on el-
liptic curves, and many important techniques have been proposed to accelerate
the computation of the Tate pairing and its variants on elliptic curves [2,3,4,22].
Furthermore, the subject of pairing computations on hyperelliptic curves is also
receiving an increasing amount of attention. Choie and Lee [6] investigated the
implementation of the Tate pairing on supersingular genus 2 hyperelliptic curves
over prime fields. Later on, hÉigeartaigh and Scott [21] improved the implemen-
tation of [6] significantly by using a new variant of Miller’s algorithm combined
with various optimization techniques. Duursma and Lee [10] presented a closed
formula for the Tate pairing computation on a very special family of supersin-
gular hyperelliptic curves. Barreto et. al. [2] generalized the results of Duursma
and Lee and proposed the Eta pairing approach for efficiently computing the
Tate pairing on supersingular genus 2 curves over binary fields. In particular,
their algorithm leads to the fastest pairing implementation in the literature. In
[27], Lee et. al. considered the Eta pairing computation on general divisors on
supersingular genus 3 hyperelliptic curves of the form of y2 = x7 − x ± 1. Re-
cently, the Ate pairing, originally defined for elliptic curves, has been generalized
to hyperelliptic curves [18] as well. Although the Eta and Ate pairings hold the
record for speed at the present time, we will focus on the Tate pairing in this
paper. The main reason is that the Tate pairing is uniformly available across a
wide range of hyperelliptic curves and subgroups, whereas the Eta pairing is only
defined for supersingular curves and the Ate pairing incurs a huge performance
penalty in the context of ordinary genus 2 curves [18, Table 6].

Motivated by previous work in [34,38,39], we consider pairing computations on
two families of non-supersingular genus 2 hyperelliptic curves over prime fields.
We first explicitly give efficiently computable automorphisms (also isogenies) and
the dual isogenies on the divisor class group of these curves. We then exploit
the automorphism in lieu of the order of the torsion group to construct the
rational functions required in Miller’s algorithm, and shorten the length of the
main loop in Miller’s algorithm as a result. Based on the new construction of the
rational functions, we propose new variants of Miller’s algorithm for computing
the Tate pairing on certain non-supersingular genus 2 curves over prime fields.
In the best case, the length of the loop in our new variant can be up to 4 times
shorter than that of the original Miller’s algorithm. Furthermore, we generate a
non-supersingular pairing-friendly genus 2 curve with embedding degree 4 and
compare the performance of our new algorithm with that of the variant proposed
by hÉigeartaigh and Scott [21] for supersingular genus 2 curves. Theoretical
analysis shows that our new algorithm uses 55.8% fewer field operations than
that of [21] for the same security level. However, the size of the field where the
non-supersingular curve is defined is 1.285 times larger than that of the field used
for supersingular curves, which somewhat offsets these gains. Nevertheless, our
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experimental results show that using the non-supersingular genus 2 curve one
can still obtain a 10% performance improvement over the supersingular curve.

The rest of this paper is organized as follows. Section 2 gives a short intro-
duction to the Tate pairing on hyperelliptic curves and Miller’s algorithm for
computing the pairing. In Section 3 we recall supersingular genus 2 curves over
prime fields which have been used for pairing computations, and introduce two
families of non-supersingular genus 2 curves with efficiently computable automor-
phisms. In Section 4 we prove the main results of our contribution and propose
new variants of Miller’s algorithm. Section 5 details the various techniques for
efficiently implementing the Tate pairing on a non-supersingular genus 2 curve
with embedding degree 4, analyzes the computational cost of our new algorithm
and gives experimental results. Finally, Section 6 concludes this paper.

2 Mathematical Background

In this section, we present a brief introduction to the definition of the Tate
pairing on hyperelliptic curves and also review Miller’s algorithm for computing
pairings. For more details, the reader is referred to [1].

2.1 Tate Pairing on Hyperelliptic Curves

Let Fq be a finite field with q elements, and Fq be its algebraic closure. Let C be
a hyperelliptic curve of genus g over Fq, and let JC denote the degree zero divisor
class group of C. We say that a subgroup of the divisor class group JC(Fq) has
embedding degree k if the order n of the subgroup divides qk − 1, but does not
divide qi − 1 for any 0 < i < k. For our purpose, n should be a (large) prime
with n | #JC(Fq) and gcd(n, q) = 1. Let JC(Fqk)[n] be the n-torsion group
and JC(Fqk)/nJC(Fqk) be the quotient group. Then the Tate pairing is a well
defined, non-degenerate, bilinear map [14]:

〈·, ·〉n : JC(Fqk)[n] × JC(Fqk)/nJC(Fqk) → F∗
qk/(F∗

qk)n,

defined as follows: let D1 ∈ JC(Fqk)[n], with div(fn,D1) = nD1 for some ratio-
nal function fn,D1 ∈ Fqk(C)∗. Let D2 ∈ JC(Fqk)/nJC(Fqk) with supp(D1) ∩
supp(D2) = ∅ (to ensure a non-trivial pairing value). The Tate pairing of two
divisor classes D1 and D2 is then defined by

〈D1, D2〉n = fn,D1(D2) =
∏

P∈C(Fq)

fn,D1(P )ordP (D2).

Note that the Tate pairing as detailed above is only defined up to n-th powers.
One can show that if the function fn,D1 is properly normalized, we only need to
evaluate the rational function fn,D1 at the effective part of the reduced divisor
D2 in order to compute the Tate pairing [3,18].

In practice, the fact that the Tate pairing is only defined up to n-th power is
usually undesirable, and many pairing-based protocols require a unique pairing
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value. Hence one defines the reduced pairing as

〈D1, D2〉(q
k−1)/n

n = fn,D1(D2)(q
k−1)/n ∈ μn ⊂ F∗

qk ,

where μn = {u ∈ F∗
qk | un = 1} is the group of n-th roots of unity. In the

rest of this paper we will refer to the extra powering required to compute the
reduced pairing as the final exponentiation. One of the important properties of
the reduced pairing we will use in this paper is that for any positive integer N
satisfying n | N and N | qk − 1 we have

〈D1, D2〉(q
k−1)/n

n = 〈D1, D2〉(q
k−1)/N

N . (1)

2.2 Miller’s Algorithm

The main task involved in the computation of the Tate pairing 〈D1, D2〉n is
to construct a rational function fn,D1 such that div(fn,D1) = nD1. In [29] (see
also [30]), Miller described a polynomial time algorithm, known universally as
Miller’s algorithm, to construct the function fn,D1 and compute the Weil pairing
on elliptic curves. However, the algorithm can be easily adapted to compute the
Tate pairing on hyperelliptic curves.

Let GiD1,jD1 ∈ Fqk(C)∗ be a rational function with div(GiD1,jD1) = iD1 +
jD1− (iD1 ⊕ jD1) where ⊕ is the group law on JC and (iD1 ⊕ jD1) is reduced.
Miller’s algorithm constructs the rational function fn,D1 based on the following
iterative formula:

fi+j,D1 = fi,D1fj,D1GiD1,jD1 .

The following Algorithm 1 shows the basic version of Miller’s algorithm for com-
puting the reduced Tate pairing on hyperelliptic curves according to the above
iterative relation. A more detailed version of Miller’s algorithm for hyperelliptic
curves can be found in [18].

Choie and Lee [6] described how to explicitly find the rational function G(x, y)
in the Algorithm 1 for the case of genus 2 hyperelliptic curves. Their results can
be summarized as follows: Let D1 = [u1, v1] and D2 = [u2, v2] be the two reduced
divisors in JC(Fqk) that are being added. In the composition stage of Cantor’s
algorithm, we compute the polynomial δ(x) which is the greatest common divisor
of u1, u2 and v1 + v2 +h and a divisor D

′

3 = [u
′

3, v
′

3], which is in the same divisor
class as D3 = [u3, v3] = D1 +D2. At this point, two cases may occur:

1. If the divisor D
′

3 is already reduced following the composition stage, then
the rational function G(x, y) = δ(x).

2. If this is not the case, then the rational function G(x, y) = δ(x) · y−v
′
3(x)

u3(x) .

In the most frequent cases1 δ = 1 and thus G(x, y) = y−v
′
3(x)

u3(x) .

1 For addition, the inputs are two co-prime polynomials of degree 2, and for doubling
the input is a square free polynomial of degree 2.



Speeding Up Pairing Computations on Genus 2 Hyperelliptic Curves 247

Algorithm 1. Miller’s Algorithm for Hyperelliptic Curves (basic version)

IN: D1 ∈ JC(Fqk)[n], D2 ∈ JC(Fqk), represented by D1 and D2

with supp(D1) ∩ supp(D2) = ∅
OUT: 〈D1, D2〉(q

k−1)/n
n

1. f ← 1, T ← D1

2. for i ← �log2(n)� − 1 downto 0 do
3. � Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

4. f ← f2 · GT,T (D2), T ← [2]T

5. if ni = 1 then
6. � Compute T

′
and GT,D1(x, y) such that T

′
= T + D1 − div(GT,D1)

7. f ← f · GT,D1(D2), T ← T ⊕ D1

8. Return f (qk−1)/n

3 Supersingular Curves and Non-supersingular Curves

In this section, we first recall the supersingular genus 2 curves over Fp which
have been used to implement the Tate pairing. Then, by making a small change
to the definition of these curves, we produce two families of non-supersingular
genus 2 curves over Fp with efficiently computable automorphisms which provide
potential advantages for pairing computations.

3.1 Supersingular Genus 2 Curves over Fp

Theoretically, supersingular genus 2 hyperelliptic curves exist over Fp with an
embedding degree of k = 6 [32]. However, only supersingular genus 2 curves with
an embedding degree of k = 4 are known to the cryptographic community at the
present time [7]. In [6,21], the authors investigated the efficient implementation
of the Tate pairing on supersingular genus 2 curves with embedding degree 4.
The curve used in their implementation is defined by the following equation:

C1 : y2 = x5 + a, a ∈ F∗
p and p ≡ 2, 3 (mod 5).

On these supersingular curves a modified pairing 〈D1, ψ(D1)〉(p
k−1)/n

n is com-
puted, where the map ψ1(·) is a distortion map that maps elements in C1(Fp)
to C1(Fp4). The distortion map ψ1 is given by ψ1(x, y) = (ξ5x, y), where ξ5 is a
primitive 5-th root of unity in Fp4 . We also note that another family of super-
singular genus 2 curves over Fp with embedding degree 4 [7] is also suitable for
implementing pairings. Such curves are given by an equation of the form

C2 : y2 = x5 + ax, a ∈ F∗
p ∩QRp and p ≡ 5 (mod 8),

where QRp denotes the set of quadratic non-residues modulo p. The distortion
map for the curve C2 is defined by ψ2(x, y) = (ξ28x, ξ8y), where ξ8 is a primitive
8-th root of unity in Fp4 .
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3.2 Non-supersingular Genus 2 Curves over Fp

Motivated by the work in [34,38,39], we consider now the following two families
of non-supersingular genus 2 hyperelliptic curves over Fp:

C′
1 : y2 = x5 + a, a ∈ F∗

p and p ≡ 1 (mod 5),

C′
2 : y2 = x5 + ax, a ∈ F∗

p and p ≡ 1 (mod 8).

Curves of this form exist which are pairing friendly (see Section 4). Note that
the only difference between the curves Ci and C′

i (i = 1, 2) is the congruence con-
dition applied to the characteristic p. Although distortion maps do not exist on
these non-supersingular curves, both C′

1 and C′
2 have efficiently-computable en-

domorphisms. In fact, these endomorphisms also induce efficient automorphisms
on the divisor class groups of C′

1 and C′
2, which have been used to accelerate

the scalar multiplication for hyperelliptic curve cryptosystems [31] and to attack
the discrete log problems on the Jacobians [9,17]. In the next section, we will
show how to speed up the computation of the Tate pairing using these efficiently
computable automorphisms on the curves C′

1 and C′
2. We first recall some basic

facts which will be used in this work.
For the curve C′

1, the morphism ψ1 defined by P = (x, y) 	→ ψ1(P ) = (ξ5x, y)
(see Section 3.1 and notice ξ5 ∈ Fp now) induces an efficient non-trivial auto-
morphism of order 5 on the divisor class group JC′

1
(Fp) [31]. The formulae for

ψ1 on the Jacobian are given by

ψ1 : [x2 + u1x+ u0, v1x+ v0] 	→ [x2 + ξ5u1x+ ξ25u0, ξ
−1
5 v1x+ v0]

[x+ u0, v0] 	→ [x+ ξ5u0, v0]
O 	→ O.

The characteristic polynomial of ψ1 is given by P (t) = t4 + t3 + t2 + t+ 1. Since
the automorphism ψ1 is also an isogeny, we can construct its dual isogeny as
follows:

ψ̂1 : [x2 + u1x+ u0, v1x+ v0] 	→ [x2 + ξ−1
5 u1x+ ξ−2

5 u0, ξ5v1x+ v0]
[x+ u0, v0] 	→ [x+ ξ−1

5 u0, v0]
O 	→ O.

Note that ψ1 ◦ ψ̂1 = [1] and # Ker ψ1 = deg[1] = 1, and ψ̂1 is also a non-trivial
automorphism on the curve C′

1.
Let D ∈ JC′

1
(Fp) be a reduced divisor of a large prime order n. From [31],

we know that the automorphisms ψ1 and ψ̂1 act respectively as multiplication
maps by [λ1] and [λ̂1] on the subgroup 〈D〉 of JC′

1
(Fp), where λ1 and λ̂1 are

the two roots of the equation t4 + t3 + t2 + t+ 1 ≡ 0 (mod n). Furthermore, it
is easily seen that [λ1]D = ψ1(D) can be obtained with only three or one field
multiplications in Fp for a general divisor and a degenerate divisor, respectively.
In the genus 2 context, a general divisor has two finite points in the support,
whereas a degenerate divisor has only a single finite point in its support.
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Similarly, for the curve C′
2, the morphism ψ2 defined by P = (x, y) 	→ ψ2(P ) =

(ξ28x, ξ8y) (see Section 3.1 and notice ξ8 ∈ Fp now) induces an efficient non-trivial
automorphism of order 8 on the divisor class group JC(Fp) as follows [31].

ψ2 : [x2 + u1x+ u0, v1x+ v0] 	→ [x2 + ξ28u1x+ ξ48u0, ξ
−1
8 v1x+ ξ8v0]

[x+ u0, v0] 	→ [x+ ξ28u0, ξ8v0]
O 	→ O.

The characteristic polynomial of ψ2 is given by P (t) = t4+1 and the dual isogeny
of ψ2 is defined as follows

ψ̂2 : [x2 + u1x+ u0, v1x+ v0] 	→ [x2 + ξ−2
8 u1x+ ξ48u0, ξ8v1x+ ξ−1

8 v0]
[x+ u0, v0] 	→ [x+ ξ−2

8 u0, ξ
−1
8 v0]

O 	→ O.

It is not difficult to show that ψ2 ◦ ψ̂2 = [1] and # Ker ψ2 = deg[1] = 1, and
ψ̂2 is also a non-trivial automorphism on the curve C′

2. Let D ∈ JC′
2
(Fp) be a

reduced divisor of a large prime order n. Then the automorphism ψ2 acts as a
multiplication map by λ2 on the subgroup 〈D〉 of JC′

2
(Fp), where λ2 is a root

of the equation t4 + 1 ≡ 0 (mod n). Moreover, [λ2]D = ψ2(D) can be computed
with four or two field multiplications in Fp for a general divisor and a degenerate
divisor, respectively.

4 Efficient Pairings on Non-supersingular Genus 2 Curves

In this section we investigate efficient algorithms for computing the Tate pair-
ing on the two families of genus 2 hyperelliptic curves C′

1 and C′
2 defined in

Section 3.2. We show how to use the efficiently-computable automorphisms on
these curves to shorten the length of the loop in Miller’s algorithm. As a re-
sult, we propose new variants of Miller’s algorithm for certain non-supersingular
genus 2 curves over large prime fields.

4.1 Pairing Computation with Efficient Automorphisms

In this subsection, we present the main results of this paper in the following
theorems and show their correctness. The pairing computation on the curve C′

1

is first examined.

Theorem 1. Let C′
1 be a non-supersingular genus 2 hyperelliptic curve over Fp

as above, with embedding degree k > 1 and automorphisms ψ1 and ψ̂1 defined
as above. Let D1 = [u1(x), v1(x)] ∈ JC′

1
(Fp) be a reduced divisor of prime order

n, where n2 � #JC′
1
(Fp). Let [λ1] act as the multiplication map on the subgroup

〈D1〉 defined as above such that [λ1]D1 = ψ1(D1). Suppose m ∈ Z is such that
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mn = λ4
1+λ

3
1+λ

2
1+λ1+1. Let rational functions c1(x,y)

d1(x,y) ,
c2(x,y)
d2(x,y) ,

c3(x,y)
d3(x,y) ∈ Fp(C′

1)
∗

respectively satisfy the following three relations:

[λ1]D1 + [λ2
1]D1 −

(
[λ1]D1 ⊕ [λ2

1]D1

)
= div

(
c1(x, y)
d1(x, y)

)
,

[
λ3

1

]
D1 + [λ4

1]D1 −
(
[λ3

1]D1 ⊕ [λ4
1]D1

)
= div

(
c2(x, y)
d2(x, y)

)
,

[
λ1 + λ2

1

]
D1 + [λ3

1 + λ4
1]D1 −

(
[λ1 + λ2

1]D1 ⊕ [λ3
1 + λ4

1]D1

)
= div

(
c3(x, y)
d3(x, y)

)
.

Let g(x, y) = c1(x,y)·c2(x,y)·c3(x,y)
d1(x,y)·d2(x,y) . Then for D2 ∈ JC′

1
(Fpk), we have

〈D1, D2〉
m(pk−1)

n
n =

[
f

λ3
1+λ2

1+λ1+1
λ1,D1

(D2) · fλ2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
· fλ1+1

λ1,D1

(
ψ̂2

1(D2)
)
·

fλ1,D1

(
ψ2

1(D2)
)
· g(D2)

] pk−1
n

.

Note that the condition that λ1 satisfies λ4
1 + λ3

1 + λ2
1 + λ1 + 1 ≡ 0 (mod n)

guarantees the existence of the integer m. Moreover, the pairing will be non-
degenerate if n � m and supp(D1) ∩ supp(D2) = ∅. We split the proof of the
Theorem 1 into the following lemmas.

Lemma 1. With notation as above, we have

〈D1, D2〉
m(pk−1)

n
n =

(
fλ4

1+λ3
1+λ2

1+λ1,D1
(D2) · u1(D2)

) pk−1
n

.

Proof. From the important property of the reduced pairing (see equation (1)),
we have

〈D1, D2〉
m(pk−1)

n
n = 〈D1, D2〉

pk−1
n

mn = fmn,D1(D2)
pk−1

n .

From the condition that mn = λ4
1 + λ3

1 + λ2
1 + λ1 + 1, we get

〈D1, D2〉
m(pk−1)

n
n = fmn,D1(D2)

pk−1
n = fλ4

1+λ3
1+λ2

1+λ1+1,D1
(D2)

pk−1
n .

Since [λ4
1 + λ3

1 + λ2
1 + λ1]D1 = −D1, we obtain the following relation

D1 + [λ1 + λ2
1 + λ3

1 + λ4
1]D1 = D1 + (−D1) = div(u1(x)).

Therefore, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1+1,D1

)
= (λ4

1 + λ3
1 + λ2

1 + λ1)D1 +D1

= div
(
fλ4

1+λ3
1+λ2

1+λ1,D1

)
+D1 + [λ1 + λ2

1 + λ3
1 + λ4

1]D1

= div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
,

which proves the result. ��
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The next lemma shows the relation between div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
and

the divisors div
(
fλ1,[λi

1]D1

)
for i = 0, 1, 2, and 3.

Lemma 2. With notation as above, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
=

div
(
f

λ3
1+λ2

1+λ1+1
λ1,D1

· fλ2
1+λ1+1

λ1,[λ1]D1
· fλ1+1

λ1,[λ2
1]D1

· fλ1,[λ3
1]D1

· g(x, y)
)
.

Proof. We first note the following relation

div
(
fλ4

1+λ3
1+λ2

1+λ1,D1

)
= (λ4

1 + λ3
1 + λ2

1 + λ1)D1 − [λ4
1 + λ3

1 + λ2
1 + λ1]D1

= div
(
fλ4

1+λ3
1,D1

)
+ div

(
fλ2

1+λ1,D1

)
+ [λ1 + λ2

1]D1 +

[λ3
1 + λ4

1]D1 −
(
[λ1 + λ2

1]D1 ⊕ [λ3
1 + λ4

1]D1

)

= div
(
fλ4

1+λ3
1,D1

)
+ div

(
fλ2

1+λ1,D1

)
+ div

(
c3(x, y)
d3(x, y)

)

= div
(
fλ4

1+λ3
1,D1

· fλ2
1+λ1,D1

· c3(x, y)
d3(x, y)

)

Since [λ4
1 +λ3

1 +λ2
1 +λ1]D1 = −D1, we get d3(x, y) = u1(x). Therefore, we have

div
(
fλ4

1+λ3
1+λ2

1+λ1,D1
· u1(x)

)
= div

(
fλ4

1+λ3
1,D1

· fλ2
1+λ1,D1

· c3(x, y)
)
. (2)

Similarly, we can obtain the following two equalities

div
(
fλ4

1+λ3
1,D1

)
= (λ4

1 + λ3
1)D1 − [λ4

1 + λ3
1]D1

= div
(
fλ4

1,D1

)
+ div

(
fλ3

1,D1

)
+ [λ4

1]D1 + [λ3
1]D1 −

(
[λ3

1]D1 ⊕ [λ4
1]D1

)

= div
(
fλ4

1,D1

)
+ div

(
fλ3

1,D1

)
+ div

(
c2(x, y)
d2(x, y)

)

= div
(
fλ4

1,D1
· fλ3

1,D1
· c2(x, y)
d2(x, y)

)

and

div
(
fλ2

1+λ1,D1

)
= (λ2

1 + λ1)D1 − [λ2
1 + λ1]D1

= div
(
fλ2

1,D1

)
+ div (fλ1,D1) + [λ2

1]D1 + [λ1]D1 −
(
[λ1]D1 ⊕ [λ2

1]D1

)

= div
(
fλ2

1,D1

)
+ div (fλ1,D1) + div

(
c1(x, y)
d1(x, y)

)

= div
(
fλ2

1,D1
· fλ1,D1 ·

c1(x, y)
d1(x, y)

)
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Some easy calculations (see Lemma 2 in [2]) give us

div
(
fλ4

1,D1

)
= div

(
f

λ3
1

λ1,D1
· fλ2

1
λ1,[λ1]D1

· fλ1
λ1,[λ2

1]D1
· fλ1,[λ3

1]D1

)
(3)

div
(
fλ3

1,D1

)
= div

(
f

λ2
1

λ1,D1
· fλ1

λ1,[λ1]D1
· fλ1,[λ2

1]D1

)
(4)

div
(
fλ2

1,D1

)
= div

(
fλ1

λ1,D1
· fλ1,[λ1]D1

)
(5)

Combining the equations (2)–(7) proves the result. ��

The following lemma shows how to evaluate functions fλ1,[λi
1]D1

(i = 1, 2, 3) at
the image divisor D2 by using the function fλ1,D1 .

Lemma 3. With notation as above, we have (up to a scalar multiple in F∗
p)

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ2
1]D1

(D2) = fλ1,D1(ψ̂
2
1(D2)),

fλ1,[λ3
1]D1

(D2) = fλ1,D1(ψ
2
1(D2)).

Proof. Using the pullback property (see Silverman [36] p. 33) and following the
same proof as the Lemma 1 in [2], we obtain (up to a scalar multiple in F∗

p)

fλ1,[λ1]D1 ◦ ψ1 = fλ1,D1 ,

fλ1,[λ2
1]D1

◦ ψ2
1 = fλ1,D1 ,

fλ1,[λ3
1]D1

◦ ψ3
1 = fλ1,D1 .

Using the relations between the isogeny ψ1 and its dual isogeny ψ̂1 (see Sec-
tion 3.2), we have

fλ1,[λ1]D1 ◦ ψ1 ◦ ψ̂1 = fλ1,[λ1]D1 = fλ1,D1 ◦ ψ̂1,

fλ1,[λ2
1]D1

◦ ψ2
1 ◦ ψ̂2

1 = fλ1,[λ2
1]D1

= fλ1,D1 ◦ ψ̂2
1 ,

fλ1,[λ3
1]D1

◦ ψ3
1 ◦ ψ̂3

1 = fλ1,[λ3
1]D1

= fλ1,D1 ◦ ψ̂3
1 = fλ1,D1 ◦ ψ2

1 ,

which proves the results. ��

With the above three lemmas, we can now prove the statement of Theorem 1 as
follows:

Proof (of Theorem 1). ForD1 ∈ JC′
1
(Fp)[n] and D2 ∈ JC′

1
(Fpk), Lemma 3 shows

that up to a scalar multiple in F∗
p we have

fλ1,[λ1]D1(D2) = fλ1,D1(ψ̂1(D2)),

fλ1,[λ2
1]D1

(D2) = fλ1,D1(ψ̂
2
1(D2)),

fλ1,[λ3
1]D1

(D2) = fλ1,D1(ψ
2
1(D2)).
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Now, substituting the above three equalities into Lemma 2 implies that

fλ4
1+λ3

1+λ2
1+λ1,D1

(D2) · u1(D2) = fλ3
1+λ2

1+λ1+1
λ1,D1

(D2) · fλ2
1+λ1+1

λ1,D1

(
ψ̂1(D2)

)
·

fλ1+1
λ1,D1

(
ψ̂2

1(D2)
)
· fλ1,D1

(
ψ2

1(D2)
)
· g(D2).

Finally, substituting the above equation into Lemma 1 gives the result of
Theorem 1. ��
Next, we consider how to use the efficiently-computable automorphism ψ2 to
accelerate the computation of the Tate pairing on the curve C′

2. The following
Theorem 2 describes our result.

Theorem 2. Let C′
2 be a non-supersingular genus 2 hyperelliptic curve over Fp

as above, with embedding degree k > 1 and automorphisms ψ2 and ψ̂2 defined
as above. Let D1 = [u1(x), v1(x)] ∈ JC′

2
(Fp) be a reduced divisor of prime order

n, where n2 � #JC′
2
(Fp). Let [λ2] act as the multiplication map on the subgroup

〈D1〉 defined as above such that [λ2]D1 = ψ2(D1). Suppose m ∈ Z is such that
mn = λ4

2 + 1. Then for D2 ∈ JC′
2
(Fpk), we have

〈D1, D2〉
m(pk−1)

n
n =

[
f

λ3
2

λ2,D1
(D2) · fλ2

2
λ2,D1

(
ψ̂2(D2)

)
· fλ2

λ2,D1

(
ψ̂2

2(D2)
)
·

fλ2,D1

(
ψ̂3

2(D2)
)
· u1(D2)

] pk−1
n

.

Proof. The proof is similar to that of Theorem 1. Therefore, we omit it here. ��

From Theorem 1 and Theorem 2, we note that the pairing computation on curve
C′

2 is more efficient than that on curve C′
1. Hence, the following discussions only

focus on the curve C′
2.

4.2 A New Variant of Miller’s Algorithm

In this subsection, we propose a new variant of Miller’s algorithm for the family
of genus 2 hyperelliptic curves C′

2 over Fp with efficiently computable automor-
phisms ψ2 and ψ̂2. From Theorem 2, we obtain the following Algorithm 2 for
computing the Tate pairing on such curves C′

2, which is a variant of Miller’s
Algorithm (see Algorithm 1 in Section 2.2). For the curve C′

1, we can also obtain
a similar variant of Miller’s algorithm as in Algorithm 2, based on Theorem 1.

5 Implementing the Tate Pairing with Efficient
Automorphisms

In this section, we describe various techniques that enable the efficient implemen-
tation of the Tate pairing on a non-supersingular genus 2 curve of type C′

2 over
Fp. Furthermore, we also analyze the computational cost of our new algorithm
in detail and give timings for our implementation.
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Algorithm 2. Computing the Tate Pairing with Efficient Automorphisms

IN: D1 = [u1, v1] ∈ JC′
2
(Fp)[n], D2 ∈ JC′

2
(Fpk), represented by D1 and D2

with supp(D1) ∩ supp(D2) = ∅, λ2 = (er, er−1, . . . , e0)2, where ei ∈ {0, 1}
for i = 0, . . . , r − 1 and er = 1, and mn = λ4

2 + 1.

OUT: 〈D1, D2〉m(pk−1)/n
n

1. T ← D1, f1 ← 1, f2 ← 1, f3 ← 1, f4 ← 1, f5 ← u1(D2)

2. for i from r − 1 downto 0 do
3. � Compute T ′ and GT,T (x, y) such that T ′ = 2T − div(GT,T )

4. T ← [2]T , f1 ← f2
1 · GT,T (D2), f2 ← f2

2 · GT,T (ψ̂2(D2))

5. f3 ← f2
3 · GT,T (ψ̂2

2(D2)), f4 ← f2
4 · GT,T (ψ̂3

2(D2))

6. if ei = 1 then
7. � Compute T

′
and GT,D1(x, y) such that T

′
= T + D1 − div(GT,D1)

8. T ← T ⊕ D1, f1 ← f1 · GT,D1(D2), f2 ← f2 · GT,D1(ψ̂2(D2))

9. f3 ← f3 · GT,D1(ψ̂2
2(D2)), f4 ← f4 · GT,D1(ψ̂

3
2(D2))

10. f ← ((fλ2
1 · f2)

λ2 · f3)
λ2 · f4 · f5

11. f ← f (pk−1)/n

12. Return f

5.1 Curve Generation

While generating suitable parameters for supersingular genus 2 hyperelliptic
curves over prime fields is easy, it seems to be more difficult to generate pairing-
friendly non-supersingular genus 2 curves over Fp because of the complicated
algebraic structure of hyperelliptic curves. Only a few results have appeared in
the literature to address this issue [12,16,23,25] and there is ongoing research in
this direction. In [12], Freeman proposed the first explicit construction of pairing-
friendly genus 2 hyperelliptic curves over prime fields with ordinary Jacobians
by modeling on the Cocks-Pinch method for the elliptic curve case [8]. In the
appendix of [12], we find two examples which belong to the curve family C′

1

considered in this paper. Unfortunately, the curve parameters in the two exam-
ples are too large to be optimal for efficient implementation. In a recent paper
[25], Kawazoe and Takahashi presented two different approaches for explicitly
constructing pairing-friendly genus 2 curves of the type y2 = x5 + ax over Fp.
One is an analogue of the Cocks-Pinch method and the other is a cyclotomic
method. Their findings are based on the closed formulae [15,19] for the order
of the Jacobian of hyperelliptic curves of the above type. In this paper we will
restrict to the case p ≡ 1 (mod 8) and generate a suitable non-supersingular
pairing-friendly genus 2 hyperelliptic curves C′

2 with embedding degree 4 using
the theorems in [25]. The reason that we only consider curves with embedding
degree 4 in this section is to facilitate performance comparisons between super-
singular and non-supersingular genus 2 curves. However, we would like to point
out that non-supersingular curves with higher embedding degree are available
from [25] and that our method is also applicable to such curves.
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To find good curve parameters which are suitable for applying our new algo-
rithm, we use the following searching strategies. From Theorem 2 we note that
the subgroup order n should satisfymn = λ4

2+1 for an integerm. Assume that we
require the (160/1024) bit security level. Then n is a prime around 160 bits and
λ2 is at least 40 bits. Furthermore, since the bit length of λ2 determines the length
of the loop in Algorithm 2, λ2 should be taken as small as possible. Based on these
observations, we first check all λ2’s of the form λ2 = 2a, a ∈ {41, 42, . . . , 60}. We
found two λ2’s, namely λ2 = 258 and 259, for which λ4

2 + 1 has a prime factor of
164 bits and 162 bits, respectively. However, using the above two primes as the
subgroup order n and running the algorithms of [25], we cannot find any curve.
Therefore, we consider the slightly more complicated choice of λ2 = 2a + 2b,
where a, b ∈ {41, 42, . . . , 50} and a > b. After a couple of trials, we found that
choosing λ2 = 243 + 210 generates a non-supersingular pairing-friendly genus 2
hyperelliptic curve whose Jacobian has embedding degree 4 with respect to a
163-bit prime n. The curve is given by the equation

C∗
2 : y2 = x5 + 9x

over Fp, for a 329-bit prime p, where the hexadecimal representations of n and
p are as follows:

n = 00000006 a37991af 81ddfa3a ead6ec83 1ca0fc44 75d5add9 (163 bits)

p = 0000016b 953ca333 acf202b3 0476f30f ff085473 6d0a0be4

c542fa48 66e5afba 7bc6cd6d 21ca9fad eef796f1 (329 bits)

In the following five subsections, we will detail various techniques required to
efficiently implement the calculation of the Tate pairing on the curve C∗

2 .

5.2 Finite Field Arithmetic

As the embedding degree of the curve C∗
2 in our implementation is k = 4,

we first discuss how to construct the finite field Fp4 . Rather than construct
Fp4 as a direct quartic extension of Fp, the best way is to define the field Fp4

as a quadratic extension of Fp2 , which is in turn a quadratic extension of Fp.
Since the p is congruent to 5 modulo 12 in our implementation, the field Fp2

can be constructed by the irreducible binomial x2 + 3 and the field Fp4 can be
constructed as a quadratic extension of Fp2 by the irreducible binomial x2−

√
−3.

Letting β = −3, elements of the field Fp2 can be represented as a+ b
√
β, where

a, b ∈ Fp, whereas elements of the field Fp4 can be represented as c+d 4
√
β, where

c, d ∈ Fp2 . Under this tower construction, a multiplication of two elements and
a squaring of one element in Fp4 cost 9M and 6M in Fp, respectively [21].

5.3 Encapsulated Group Operations

In [11], Fan et. al. proposed a method to encapsulate the computation of the line
function with the group operations for genus 2 hyperelliptic curves over prime
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fields, and derived new mix-addition and doubling formulae in projective and new
(weighted projective) coordinates, respectively. Applying their explicit formulae
to the curve C∗

2 defined above, we can respectively calculate the divisor class
addition and doubling with 36M + 5S and 32M + 6S in Fp in new coordinates.
We also include their explicit formulae in the appendix with some modifications
for the curve C∗

2 .

5.4 Using Degenerate Divisors and Denominator Elimination

For a hyperelliptic curve of genus g > 1, using a degenerate divisor as the
image divisor is more efficient than using a general divisor when evaluating line
functions. Frey and Lange [13] discussed in detail when it is permissible to choose
a degenerate divisor as the second argument of Miller’s algorithm. They also note
that, when the embedding degree k is even, one might choose the second pairing
argument from a set S = {(x, y) ∈ C(Fqk) | x ∈ Fqk/2 , y ∈ Fqk\Fqk/2}. Note that
the point in the set S is on the quadratic twist of C/Fqk/2 . When considering
C∗

2 as a curve defined over Fp2 , we can define a quadratic twist of C∗
2 over Fp2 ,

denoted by C∗
2,t, as follows

C∗
2,t : y2 = x5 + 9c4x,

where c ∈ Fp2 is a quadratic non-residue over Fp2 . It is known that C∗
2,t(Fp4) ∼=

C∗
2 (Fp4) and the isomorphism of C∗

2,t(Fp4) and C∗
2 (Fp4) also induces an iso-

morphism φ of JC∗
2,t

(Fp4) and JC∗
2
(Fp4) [26]. As in [11] we first generate a

degenerate divisor class Dt = [x − xt, yt] ∈ JC∗
2,t

(Fp2) on the twisted curve
C∗

2,t/Fp2 . Then the isomorphism φ will map Dt to a degenerate divisor class
D2 = φ(Dt) = [x − c−1xt, c

−5/2yt] ∈ JC∗
2
(Fp4) on the curve C∗

2 over Fp4 . Note
that the denominator elimination technique applies in this case since x− c−1xt

is defined over Fp2 . Furthermore, we do not need to compute f5 = u1(D2) ∈ Fp2

in Algorithm 2 either, for the same reason.

5.5 Evaluating Line Functions at a Degenerate Divisor

Here we consider the evaluation of line functions at a degenerate divisor D2 =
[x − x2, y2] ∈ JC∗

2
(Fp4) generated by the method in Section 5.4, where x2 =

c−1xt ∈ Fp2 and y2 = c−5/2yt ∈ Fp4\Fp2 . Moreover, we further assume that in
this work c =

√
−3 is taken as a quadratic non-residue over Fp2 . Therefore, y2

has only two non-zero coefficients instead of four in a polynomial basis represen-
tation of Fp4 . Furthermore, since the denominator elimination technique applies
in this case, we only need to evaluate the numerators of the rational functions at
D2. From [11] we know that in new coordinates we can respectively work with the
numerators c1(x, y) = (Z31Z32)y − ((s1z11)x3 + l2x2 + l1x + l0) for group dou-
bling and c2(x, y) = (r̃z21)y − ((s′1z21)x

3 + l2x2 + l1x + l0) for group addition,
where Z31, Z32, r̃, z11, z21, s1, s

′
1, l2, l1 and l0 are from Table 4 and Table 5 in the

appendix. Note that in Algorithm 2 we need to evaluate the function ci(x, y), i = 1
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or 2 at four imagedivisorsD2 = [x−x2, y2], ψ̂2(D2) = [x−ξ−2
8 x2, ξ

−1
8 y2], ψ̂2

2(D2) =
[x−ξ48x2, ξ

−2
8 y2] = [x+x2, ξ

−2
8 y2] and ψ̂3

2(D2) = [x−ξ28x2, ξ
−3
8 y2] for each iteration

of the loop. Hence we have the following relations

ci(D2) = (r̃z11)y2 − [((s′1z11)x
3
2 + l1x2) + (l2x2

2 + l0)],

ci(ψ̂2(D2)) = ((r̃z11)y2)ξ−1
8 − [((s′1z11)x

3
2 − l1x2)ξ28 − (l2x2

2 − l0)],
ci(ψ̂2

2(D2)) = ((r̃z11)y2)ξ−2
8 + [((s′1z11)x

3
2 + l1x2) − (l2x2

2 + l0)],

ci(ψ̂3
2(D2)) = ((r̃z11)y2)ξ−3

8 + [((s′1z11)x
3
2 − l1x2)ξ28 + (l2x2

2 − l0)].

We assume that x2
2, x

3
2, ξ

−1
8 and ξ28 are precomputed with 7M + 2S over Fp. Since

x2, x
2
2 and x3

2 are in Fp2 and y2 has only two non-zero coefficients in the polynomial
basis representation of Fp4 , ci(D2) can be computed with 10M over Fp. By reusing
the intermediate computation results, we can compute ci(ψ̂2(D2)), ci(ψ̂2

2(D2)) and
ci(ψ̂3

2(D2)) with 4M , 2M and 2M over Fp, respectively. Therefore, the total cost
of evaluating the function ci(x, y) at the degenerate divisor D2 is 18M over Fp

per iteration, with a precomputation of 7M + 2S. For the case of evaluating the
rational functions at a general divisor, the reader is referred to [11].

5.6 Final Exponentiation

For a genus 2 curve with an embedding degree of k = 4, the output of Miller’s
algorithm needs to be raised to the power of (p4 − 1)/n. Calculating this expo-
nentiation can follow two steps as shown in [21]. Letting f ∈ Fp4 be the output
of Miller’s algorithm, the first step is to compute fp2−1 which can be obtained
with a conjugation with respect to Fp2 and 1I + 1M in Fp4 . The remaining
exponentiation to (p2 + 1)/n is an expensive operation which can be efficiently
computed with the Lucas laddering algorithm [35] for the curve C∗

2 in question.

5.7 Performance Analysis and Comparison

In this section, we analyze the computational complexity of the Algorithm 2 for
calculating the Tate pairing on non-supersingular genus 2 hyperelliptic curves
C′

2 and compare the performance of pairing computations on supersingular and
non-supersingular genus 2 curves over prime fields with the same embedding
degree of k = 4 .

We first analyze the algebraic complexity of the pairing computation on curves
C′

2 with our new algorithm (see Section 4.2). Recall that n is the subgroup
order and λ2 is a root of the equation λ4 + 1 ≡ 0 mod n. We assume that the
embedding degree k is even and the line functions in Algorithm 2 are evaluated
at a degenerate divisor D2 instead of a general divisor for efficiency reasons.
We also assume that λ2 has a random Hamming weight, meaning that about(

1
2 log2 λ2

)
additions take place in Algorithm 2 on average. Then the algebraic

cost for computing the Tate pairing is given by (without including the cost of
the final exponentiation)

T1 + (log2 λ2)(TD + TG + 4Tsk + 8Tmk) +
(

1
2

log2 λ2

)
(TA + TG + 8Tmk) + T10,
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where

1. T2 – the cost of precomputing f5 in Step 1 of Algorithm 2.
2. TD – the cost of doubling a general divisor.
3. TA – the cost of adding two general divisors.
4. TG – the cost of evaluating rational function G(x, y) at the image divisors
D2, ψ̂2(D2), ψ̂2

2(D2) and ψ̂3
2(D2).

5. Tsk – the cost of squaring in Fpk .
6. Tmk – the cost of multiplication in Fpk .
7. T10 – the cost of computing f in Step 10 of Algorithm 2.

When applying various optimization techniques detailed in previous subsec-
tions to the particular curve C∗

2 , we can further reduce the above cost of com-
puting the Tate pairing to

43 · (TD + TG + 4Tsk + 4Tmk) + (TA + TG + 4Tmk) + T10,

where TD = 32M + 6S, TA = 36M + 5S, TG = 18M,Tsk = 6M,Tmk = 9M
and T10 = 828M . Furthermore, we also need 7M + 2S for precomputations
(see Section 5.5). Note that all multiplications and squarings here are over Fp.
Therefore, the total cost of computing the Tate pairing with our optimizations
is given by 5655M + 265S in Fp.

In [6,11,21], the authors examined the implementation of the Tate pairing
on a family of supersingular genus 2 hyperelliptic curves C1 (see Section 3.1)
over prime fields with embedding degree 4 in affine and projective coordinates,
respectively. We compare the performance of pairing computations on the super-
singular curve C1 and the non-supersingular curve C∗

2 in the following Table 1.
Note that both curves have the same embedding degree of k = 4.

From Table 1, we note that for the same security level the computation of the
Tate pairing on the non-supersingular genus 2 curve C∗

2 is algebraically about
55.8% faster than on the supersingular genus 2 curve C1, under the assumption
that field squarings have cost S = 0.8M . Therefore, our algorithm improves
previous work for pairing computations on genus 2 hyperelliptic curves over
prime fields by a considerable margin.

Table 1. Performance Comparison of Pairing Computation on Curves C1 and C∗
2

Reference Curve Coordinate Cost

Equation Type

Choie and Lee [6] Affine 240I, 17688M, 2163S

Ó hÉigeartaigh & Scott [21] C1 : y2 = x5 + a, Affine 162I, 10375M, 645S

Fan, Gong and Jao [11] a ∈ F∗
p, p ≡ 2, 3 mod 5 Projective 13129M, 967S

New 12487M, 971S

This work C∗
2 : y2 = x5 + 9x, New 5655M, 265S

p ≡ 1 mod 8
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5.8 Experimental Results

For verifying our theoretical analysis in Section 5.7, we report implementation
results of computing the Tate pairing on the supersingular genus 2 curve C1

and non-supersingular genus 2 curve C∗
2 in this section. Both curves are defined

over Fp and have an embedding degree of k = 4. The code was written in C
and Microsoft Developer Studio 6 was used for compilation and debugging on
a Core 2 DuoTM@2.67 GHz processor. For the curve C1 and the (160/1024) bit
security level we use the curve parameters that are generated in [21], where the
subgroup order n = 2159 +217 +1 is a Solinas prime [37] and the characteristic p
of the finite field Fp is a 256-bit prime. Recall that the curve C∗

2 is defined over
a prime field of size 329 bits (see Section 5.1). The operations in the above two
prime fields are implemented with various efficient algorithms in [20]. Table 2
shows the timings of our finite field library and the corresponding IM -ratio.
From Table 2 we note that the IM -ratios are sufficiently large for the two prime
fields in our implementation that using new coordinates and encapsulated group
operations [11] can provide better performance than using affine coordinates in
this case.

Table 3 summarizes previous work and our experimental results for the im-
plementation of the Tate pairing on the curve C1 and C∗

2 for the (160/1024) bit
security level. All of the timings are given in milliseconds.

From Table 3, we note that in our implementation the pairing computation
on the curve C∗

2 is about 10% faster than that on the curve C1, in contrast to the
algebraic complexity analysis in Section 5.7. The reason is that the sizes of the
fields over which both curves are defined are different. Observe that the curve
C∗

2 is defined over a larger prime field than C1, which significantly decreases
the speed of computing the final exponentiation of the Tate pairing when the
curve C∗

2 is used. This explains why our new algorithm only obtains a 10%
performance improvement in the implementation. Unfortunately, under current

Table 2. Timings of Prime Field Fp Library

Curve # of bits of p Multiplication (M) Squaring (S) Inversion (I) IM -ratio

C1 256 0.84μs 0.78μs 41.9μs 53.7

C∗
2 329 1.40μs 1.30μs 64.6μs 46.1

Table 3. Experimental Results – (160/1024) Security Level

Reference Curve Coordinate Subgroup Running

Type Order Time (ms)

Choie and Lee [6] C1 Affine Random 515

Ó hÉigeartaigh and Scott [21] C1 Affine n = 2159 + 217 + 1 16

This work C1 New n = 2159 + 217 + 1 14.6

C∗
2 New λ2 = 243 + 210 13.1
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techniques for generating pairing-friendly non-supersingular genus 2 hyperelliptic
curves, we cannot find such a curve of the form y2 = x5 + ax defined over a 256-
bit prime field with an embedding degree of k = 4. Nevertheless, despite the
unequal field size, our implementation on the curve C∗

2 is still slightly faster,
even though strictly speaking a direct comparison between fields of different size
is complicated as many factors could affect the comparison one way or another.

6 Conclusion

In this paper, we have proposed new variants of Miller’s algorithm for computing
the Tate pairing on two families of non-supersingular genus 2 hyperelliptic curves
over prime fields with efficiently computable automorphisms. We describe how
to use the automorphisms to unroll the main loop of Miller’s algorithm. As a
case study, we combine our new algorithm with various optimization techniques
in the literature to efficiently implement the Tate pairing on a non-supersingular
genus 2 curve y2 = x5 + 9x over Fp with an embedding degree of k = 4. We also
analyze the performance for the new algorithm in detail. When compared with
pairing computations on supersingular genus 2 curves at the same security level,
our new algorithm can obtain 55.8% performance improvements algebraically.
Furthermore, favorable experimental results have been obtained for the imple-
mentation of the Tate pairing on both a supersingular and a non-supersingular
genus 2 curve with embedding degree 4.
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21. Ó’hÉigeartaigh, C., Scott, M.: Pairing Calculation on Supersingular Genus 2
Curves. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 302–
316. Springer, Heidelberg (2007)

22. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52(10), 4595–4602 (2006)

23. Hitt, L.: Families of Genus 2 Curves with Small Embedding Degree, Cryptology
ePrint Archive, Report 2007/001 (2007), http://eprint.iacr.org/2007/001

24. Joux, A.: A One-Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

http://www.cacr.math.uwaterloo.ca/techreports/2008/cacr2008-03.pdf
http://eprint.iacr.org/2007/001


262 X. Fan, G. Gong, and D. Jao

25. Kawazoe, M., Takahashi, T.: Pairing-friendly Hyperelliptic Curves of Type y2 =
x5 + ax, Cryptology ePrint Archive, Report 2008/026 (2008)
http://eprint.iacr.org/2008/026

26. Kozaki, S., Matsuo, K., Shimbara, Y.: Skew-Frobenius Maps on Hyperelliptic
Curves. In: The 2007 Symposium on Cryptography and Information Security -
SCIS 2007, IEICE Japan, pp. 1D2–4 (January 2007)

27. Lee, E., Lee, H.-S., Lee, Y.: Eta Pairing Computation on General Divisors over
Hyperelliptic Curves y2 = x7 − x ± 1. In: Takagi, T., Okamoto, T., Okamoto,
E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 349–366. Springer,
Heidelberg (2007)

28. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing Elliptic Curve Logarithms to
a Finite Field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

29. Miller, V.S.: Short Programs for Functions on Curves (unpublished manuscript,
1986), http://crypto.stanford.edu/miller/miller.pdf

30. Miller, V.S.: The Weil Pairing and Its Efficient Calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

31. Park, Y.-H., Jeong, S., Lim, J.: Speeding Up Point Multiplication on Hyperellip-
tic Curves with Efficiently-Computable Endomorphisms. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)

32. Rubin, K., Silverberg, A.: Supersingular Abelian Varieties in Cryptography. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 336–353. Springer, Heidelberg
(2002)

33. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairings. In: Pro-
ceedings of the 2000 Symposium on Cryptography and Information Security - SCIS
2002, Okinawa, Japan, pp. 26–28 (2000)

34. Scott, M.: Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)

35. Scott, M., Barreto, P.L.S.M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

36. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics
106. Springer, Heidelberg (1986)

37. Solinas, J.: Generalized Mersenne Primes, Centre for Applied Cryptographic Re-
search (CACR) Technical Reports, CORR 99-39,
http://www.cacr.math.uwaterloo.ca/techreprots/1999/corr99-39.pdf

38. Takashima, K.: Scaling Security of Elliptic Curves with Fast Pairing Using Efficient
Endomorphism. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Science E90-A(1), 152–159 (2007)

39. Zhao, C., Zhang, F., Huang, J.: Speeding Up the Bilinear Pairings Computation on
Curves with Automorphisms, Cryptology ePrint Archive, Report 2006/474 (2006),
http://eprint.iacr.org/2006/474

Appendix: Explicit Formulae for Genus 2 Curves over Fp

In this appendix, we give efficient explicit formulae for group operations on genus
2 curves over Fp in new coordinates in the context of pairing computations.
Table 4 and Table 5 address the cases of new coordinates. Given two divisor
classes E1 and E2, Table 4 computes the divisor class E3 = [u3(x), v3(x)] and
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the rational function l(x) such that E1 + E2 = E3 + div
(

y−l(x)
u3(x)

)
in the new

coordinate system, where l(x) = s′
1

rz23
x3 + l2

rz24
x2 + l1

rz24
x+ l0

rz24
. For doubling a

reduced divisor class E1, Table 5 calculates the divisor class E3 = [u3(x), v3(x)]
and the rational function l(x) such that 2E1 = E3 + div

(
y−l(x)
u3(x)

)
in projective

coordinates, where l(x) = s1
s′
1Z32

x3 + l2
Z31Z32

x2 + l1
Z31Z32

x+ l0
Z31Z32

.

Table 4. Mixed-Addition Formula on a Genus 2 Curve over Fp (New Coordinates) [11]

Input Genus 2 HEC C : y2 = x5 + ax

E1 = [U11, U10, V11, V10, 1, 1, 1, 1] and

E2 = [U21, U20, V21, V20, Z21, Z22, z21, z22]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = E1 ⊕ E2

l(x) such that E1 + E2 = E3 + div
(

y−l(x)
u3(x)

)

Step Expression Cost

1 Compute resultant and precomputations: 7M, 1S

z23 = Z21Z22, z24 = z21z23, Ũ11 = U11z21

Ũ10 = U10z21, y1 = Ũ11 − U21, y2 = U20 − Ũ10

y3 = U11y1, y4 = y2 + y3, r = y2y4 + y2
1U10

2 Compute almost inverse of u2 mod u1: –

inv1 = y1, inv0 = y4

3 Compute s′: 7M

w0 = V10z24 − V20, w1 = V11z24 − V21, w2 = inv0w0

w3 = inv1w1, s
′
1 = y1w0 + y2w1, s

′
0 = w2 − U10w3

4 Precomputations: 4M, 3S

r̃ = rz23, R = r̃2, Z31 = s′
1Z21, Z32 = r̃Z21

z31 = Z2
31, z32 = Z2

32, s̃
′
0 = s′

0z21

5 Compute l: 5M

l2 = s′
1U21 + s̃′

0, l0 = s′
0U20 + rV20

l1 = (s′
1 + s′

0)(U21 + U20) − s′
1U21 − s′

0U20 + rV21

6 Compute U3: 7M, 1S

w1 = Ũ11 + U21, U31 = s′
1(2s̃′

0 − s′
1y1) − z32, l

′
1 = l1s

′
1

U30 = s̃′
0(s

′
0 − 2s′

1U11) + s
′2
1 (y3 − Ũ10 − U20) + 2l′1 + Rw1

7 Compute V3: 6M

w1 = l2s
′
1 − U31, V30 = U30w1 − z31(l0s

′
1)

V31 = U31w1 + z31(U30 − l′1)

Sum 36M, 5S
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Table 5. Doubling Formula on a Genus 2 Curve over Fp (New Coordinates) [11]

Input Genus 2 HEC C : y2 = x5 + ax

E1 = [U11, U10, V11, V10, Z11, Z12, z11, z12]

Output E3 = [U31, U30, V31, V30, Z31, Z32, z31, z32] = [2]E1

l(x) such that 2E1 = E3 + div
(

y−l(x)
u3(x)

)

Step Expression Cost

1 Compute resultant: 4M, 2S

w0 = V 2
11, w1 = U2

11, w2 = V10z11, w3 = w2 − U11V11

r = U10w0 + V10w3

2 Compute almost inverse: –

inv′
1 = −V11, inv′

0 = w3

3 Compute k′: 4M

Ũ10 = U10z11, k
′
1 = z12(2(w1 − Ũ10) + w1)

k′
0 = (z12U11)(4Ũ10 − w3) − w0

4 Compute s′: 5M

w0 = k′
0inv′

0, w1 = k′
1inv′

1

s′
1 = w2k

′
1 − V11k

′
0, s

′
0 = w0 − Ũ10w1

5 Precomputations: 8M, 4S

Z31 = s′
1z11, z31 = Z2

31, w0 = rz11, w1 = w0Z12

Z32 = 2w1Z11, z32 = Z2
32, w2 = w2

1 , R = rZ31

S0 = s′2
0 , S = s′

0Z31, s0 = s′
0s

′
1, s1 = s′

1Z31

6 Compute l: 6M

l2 = s1U11 + s0z11, V
′
10 = RV10

l0 = s0U10 + 2V ′
10, V

′
11 = RV11

l1 = (s1 + s0)(U11 + U10) − s1U11 − s0U10 + 2V ′
11

7 Compute U3: 1M

U30 = S0 + 4(V ′
11 + 2w2U11), U31 = 2S − z32

8 Compute V3: 4M

w0 = l2 − U31, w1 = w0U30, w2 = w0U31

V31 = w2 + z31(U30 − l1), V30 = w1 − z31l0
Sum 32M, 6S
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Abstract. We analyse the efficiency of pairing computations on hyper-
elliptic curves given by a real model using a balanced divisor at infinity.
Several optimisations are proposed and analysed. Genus two curves given
by a real model arise when considering pairing friendly groups of order
dividing p2 − p + 1. We compare the performance of pairings on such
groups in both elliptic and hyperelliptic versions. We conclude that pair-
ings can be efficiently computable in real models of hyperelliptic curves.

1 Introduction

The study of efficient pairing computation on hyperelliptic curves has focused
exclusively on the analysis of hyperelliptic curves given by an imaginary model.
With the development of new divisor addition algorithms on hyperelliptic curves
given by a real model [6], it is natural to ask if pairings can be implemented on
these curves competitively.

The authors of [7] construct a genus 2 curve C, defined over Fp for p a prime
p ≡ 5 mod 6. The Jacobian Jac(C) of this curve has p2 − p + 1 points, and
embedding degree 6 with respect to any subgroup with prime order r > 3. The
curve C is given by a real model (see [6]), which in particular means that it has
2 points at infinity.

In [18], Verheul presents the construction of an elliptic curve with embedding
degree 3. This curve is defined over a field Fp2 for p a prime p ≡ 5 mod 6, and
has p2 − p + 1 Fp2 -rational points. Pairings on these elliptic curves have been
studied by Hu et.al. in [11].

The similarities between these curves make them natural candidates for a
comparison between elliptic and hyperelliptic curve pairing implementations. In
this article we explore several optimisation techniques on these curves, imple-
ment pairings and compare their performance. Among the optimisations used
in the implementation is the recent R-ate pairing presented by Lee, Lee and

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 265–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



266 S.D. Galbraith, X. Lin, and D.J. Mireles Morales

Park in [12], and the well-known denominator elimination technique, which is
combined with the R-ate pairing thanks to Theorem 2.

A crucial step towards a competitive implementation of pairings on hyperel-
liptic curves given by a real model is having efficient divisor addition algorithms
that result in simple Miller functions. The addition algorithms presented in [6]
allow for a fast implementation not only because the operation count in the addi-
tion and doubling algorithms is smaller than that in previous proposals [15], but
also because the Miller function, whose evaluation is the bottleneck in pairing
computations on high genus curves, is simpler using the algorithms of [6]. We
give a theoretical and practical comparison of the efficiency of our pairings in
the elliptic and hyperelliptic cases. We conclude that pairings can be efficiently
implemented on hyperelliptic curves given by a real model, however it seems
that elliptic curves still offer better performance.

The article is organized as follows: Section 2 describes the representation of
divisors (and hence the addition algorithms) that we will use for genus 2 curves
given by a real model. In this section we also present the embedding degree 6
construction of Galbraith, Pujolas, Ritzenthaler and Smith [7]. Section 3 presents
a brief overview of pairing computation techniques, including the recently pre-
sented R-ate pairing. Section 4 describes our parameter generation algorithms
and the optimisations used in the implementation. In Section 5 we report our
implementation results and compare them with pairing computation results ob-
tained for similar elliptic or hyperelliptic curves. Some conclusions are discussed
in Section 6.

2 Curves

Given an algebraic curve C and two divisors D0 and D1 on C, we say that D0

and D1 are linearly equivalent, denoted D0 ∼ D1, if there is a function f such
that

div(f) = D1 −D0

where div(f) is the divisor of f .

Definition 1. The divisor class group of C is the group of divisor classes mod-
ulo linear equivalence. We will denote it as Cl(C). The class of a divisor D in
Cl(C) will be denoted by [D]. We define Cl0(C) to be the degree zero subgroup
of Cl(C).

Notice that the degree of the divisor div(f) associated to a function f is always
zero, and thus it makes sense to talk of the degree of a divisor class [D] in
Cl(C). In this article we will work exclusively with curves C which are elliptic
or hyperelliptic curves of genus 2.

2.1 Arithmetic on Hyperelliptic Curves

Let K be a field such that char(K) �= 2, 3. Let C be a genus 2 hyperelliptic curve
over K given by

C : y2 = F (x),
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where F (x) ∈ K[x] is a square-free degree 6 polynomial. We say that this is a real
model for C. If deg(F (x)) = 5 then we say it is an imaginary model. If P = (x, y)
is a point on C then we write P̄ = (x,−y) for the hyperelliptic conjugate. The
desingularization of C has 2 different points at infinity, which we will denote ∞+

and ∞−. Let D∞ = ∞+ + ∞−, note that this divisor is K-rational even if the
points ∞+ and ∞− are not independently so.

Proposition 1 (Proposition 1 in [6]). Let D∞ = ∞+ + ∞−, and let D ∈
Div0(C) be a K-rational divisor on the curve C. Then [D] has a unique repre-
sentative in Cl0(C) of the form [D0 −D∞], where D0 = P1 + P2 is an effective
K-rational divisor of degree 2 such that P1 �= P̄2.

A generic divisor class has a representative D0 − D∞ where D0 = P1 + P2

with P1, P2 /∈ {∞+,∞−}. Hence, for the remainder of the paper we discuss
arithmetic only for generic divisors. This is not a serious restriction for the
pairing applications: there will exist divisor classes of the required prime order
which are of the generic form. Full details of how to handle the special cases are
given in [6].

We will use Mumford’s representation to represent divisors of the form

D = P1 + P2 −D∞, P1, P2 /∈ {∞+,∞−}.

Let Pi = (xi, yi) for i ∈ {1, 2}. Mumford’s representation is a pair of polynomials
(u(x), v(x)), where u(x) = (x−x1)(x−x2) and where v(x) satisfies v(x)2−F (x) ≡
0 mod u(x). This last condition implies that yi = v(xi). The polynomial v is
only determined modulo u; if a canonical representative is needed, the unique
representative with deg v < deg u can be used.

We will denote the divisor D = P1 + P2 − D∞ associated to the pair of
polynomials (u, v) as D = div(u, v). Traditionally this notation has been used
to denote the affine divisor P1 + P2 but we will extend it since there is no risk
of confusion.

Let D1 = P1 +P2 −D∞ and D2 = P3 +P4 −D∞ be two divisors. An explicit
interpretation of the results of [6] in the case of a genus 2 curve implies that if
p(x) denotes the unique polynomial of degree at most 3 such that y−p(x) passes
through P1, P2, P3 and P4, and we let P5, P6 be the remaining intersection points
of y − p(x) with C, then

div(y − p(x)) =
6∑

i=1

Pi − 3D∞. (1)

If we write D3 = P̄5 + P̄6 −D∞, Equation (1) can be rewritten as

[D1] + [D2] = [D3].

If u3 is the first polynomial in the Mumford representation of D3, the function

gD1,D2 =
y − p(x)
u3

(2)

has associated divisor D1+D2−D3. This will be used later to compute pairings.
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In our pairing implementation we will use the addition formulae presented
in [4], which we include in an appendix for completeness. The polynomial p(x)
in Equation (1) can be easily computed from the intermediate results in the
addition formulae from [4] and presented in the Appendix.

When the divisor at infinity used is the traditional D∞ = 2∞+, the func-
tion gD1,D2 with divisor D1 +D2 −D3 has the form gD1,D2 = (y − p1(x))(y −
p2(x))/(u3(x)u4(x)), where again p1(x) and p2(x) are cubic polynomials and
u3(x), u4(x) are quadratic polynomials. Since the bottleneck of pairing calcu-
lations is precisely the evaluation of this function, the speed-up obtained from
using the representation of Cl0(C) described in [6] goes beyond the operations
saved in the addition algorithm.

2.2 Hyperelliptic Curves with Embedding Degree 6

In this section we will substitute the notation Cl0(C) we had been using for
the more geometric (and equivalent) Jac(C), better suited when dealing with
endomorphism rings.

In [7, Section 7], the authors present a family of genus 2 curves with embedding
degree 6 and generators of a subring R of the endomorphism ring of Jac(C), such
that R contains a distortion map for any non-trivial pair (D1, D2) of divisors.

The curves in this family will have 2 points at infinity and our addition al-
gorithm is well-suited to perform efficient arithmetic on them. We now briefly
describe the construction of the curves given in [7, Section 7].

Let p �= 2 a prime such that p ≡ 2 (mod 3). Denote by ζ6 a root of x2 − x+ 1
and by ζ3 = ζ26 , let γ ∈ Fp6 be such that γp2−1 = ζ3. The curve C is defined to
be

C : y2 = (ax+ b)6 + (cx+ d)6

where a = γp, b = ζ23γ
p, c = γ and d = ζ3γ. The following Lemma shows that this

is not an imaginary model of a curve (i.e., it does have two points at infinity).

Lemma 1. The model of the curve C defined above has 2 points at infinity.

Proof. The curve C is given by y2 = F (x) where the leading coefficient of F is

F6 = a6 + c6 = γ6p + γ6.

To prove the lemma we only need to prove that F6 �= 0. Since p2 − 1 is a
multiple of 3 and γp2−1 = ζ3 the multiplicative order of γ is a multiple of 9. So
F6 = γ6(γ6p−6 + 1) cannot be zero as this would imply that γ12p−12 = 1, but
12p− 12 is not a multiple of 9 as p ≡ 2 (mod 3). ��

Note that if a6 + c6 is not a square, we can take two rational points on C and
move them to the line at infinity, and get a curve isomorphic to C given by a
monic polynomial. This will let us use the addition formulae presented in [4],
which only work on curves given by an equation of the form y2 = x6 + f4x4 +
f3x

3 + f2x2 + f1x+ f0.
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The characteristic polynomial of Frobenius on C is T 4 − pT 2 + p2, so Jac(C)
has p2 − p + 1 elements. This implies that if r > 3 is a prime that divides
p2 − p+ 1, then the embedding degree of C with respect to r is 6. Note that if
C′ is the curve C′ : y2 = x6 + 1, then C is a twist of C′ by the automorphism
u : (x, y) 	→ ( ζ3

x ,
y
x3 ). Furthermore, there is an isomorphism φ : C −→ C′ given

by

φ(x, y) =
(
ax+ b
cx+ d

,
y

(cx + d)3

)
.

The authors of [7] then define the following endomorphisms of C′:

π(x, y) = (xp, yp)

χ(x, y) =
(

1
x
,
y

x3

)

ζ6(x, y) = (ζ6x, y).

We will abuse notation and extend these endomorphisms to Jac(C′). These en-
domorphisms are enough to find a distortion map on Jac(C) (see Definition 3),
as the following result shows.

Theorem 1 (Theorem 7.2 in [7]). Let r be a prime different from 2, 3 and p.
Then for all pairs of divisors D1 and D2 on C of order r, there exists a distortion
map in the ring φ−1Z[π, χ, ζ6]φ.

It is well known that if the first coordinate of the Mumford representation of
a divisor lies in a proper subfield of Fp6 , then the function gD1,D2 in Equation
(2) can be substituted by y − p(x) (p as in Equation (2)) in the Miller loop of
the pairing computation. The following Lemma shows that the automorphisms
χ and ζ6 can be used to this end.

Lemma 2. Let P ∈ C be a point with a Fp-rational x-coordinate. Then:

– The x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(P ) is Fp-rational.
– The x-coordinate of (φ−1 ◦ χ ◦ φ)(P ) is Fp3-rational.
– The x-coordinate of (φ−1 ◦ χ ◦ ζ6 ◦ φ)(P ) is Fp3-rational.

Proof. Let P = (x, y) be the coordinates of P . A tedious but simple calculation
shows that the x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(x, y) is given by

−x− 1
x− 2

,

which is Fp-rational whenever x is an element of Fp.
The x-coordinate of (φ−1 ◦ χ ◦ φ)(x, y) is given by

xχ =
(ζ3γ2 − ζ23γ2p)x + (ζ23γ

2 − ζ3γ2p)
(γ2p − γ2)x+ (ζ23γ2p − ζ3γ2)

,

and again, it is straightforward to prove that xp3

χ = xχ. The third claim follows
from the first two. ��
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The previous Lemma shows that using χ and ζ6 as distortion maps (see Defini-
tion 3) makes it possible to use denominator elimination. We will now prove that
the image of Fp-rational divisors under the distortion map (φ−1 ◦χ ◦ ζ6 ◦ φ) lies
in the p-eigenspace of Frobenius, thus allowing us to directly use loop-shortening
techniques.

Theorem 2. Let ψ = φ−1 ◦ χ ◦ ζ6 ◦ φ. Let D1 ∈ Cl0(C)[r] be a Fp-rational
divisor. Then D2 = ψ(D1) lies in the p-eigenspace of the p-power Frobenius on
Cl0(C)[r].

Proof. The r-torsion subgroup Cl0(C)[r] can be decomposed as the direct sum
of four 1-dimensional eigenspaces with respect to the p-power Frobenius πp, with
eigenvalues 1,−1, p and −p. The polynomial T 2 − T + 1 is divisible by T − p
mod r, hence the endomorphism (π2

p − πp + 1) annihilates the p-eigenspace, and
is invertible when restricted to the other eigenspaces. It follows that D2 lies in
the p-eigenspace if and only if (π2

p − πp + 1)(D2) = 0.
To prove that this is the case, it suffices to show that the unique cubic poly-

nomial passing through the four points in the affine support of D2 and π2
p(D2)

also passes through the points in the affine support of πp(D2). This can be
proven symbolically simply by defining formal variables γ and γp over Q(ζ6),
and formally defining the action of Frobenius as πp(γ) = γp, πp(γp) = ζ26γ and
πp(ζ6) = ζ56 . The verification of our claim boils down to a trivial, albeit tedious
calculation, which we performed using Magma [2]. ��

2.3 Elliptic Curves with Embedding Degree 3

In this subsection we describe the construction of elliptic curves with embedding
degree k = 3 given in [18]. We will report our pairing implementation results on
these curves in later sections.

Let p be a prime, p ≡ 5 mod 6, let E be an elliptic curve defined over Fp2 by
y2 = x3 + ρ2, where ρ ∈ Fp2 is an element such that ρ2 is not a cube in Fp2 .
The number of Fp2 rational points of E is p2 − p+ 1 (see Lemma 7 of [8] for a
proof). Let r be the largest prime dividing p2 − p + 1, then E has embedding
degree k = 3 with respect to r. Define the following map:

φE : E(Fp2) → E(Fp6 )
(x, y) → (aβxp, byp)

where a = ρ−(2p−1)/3, b = ρ−(p−1), and β is a cubic root of ρ in Fp6 . If we
let (x′, y′) = φE(x, y), it is not hard to see that x′ ∈ Fp6 and y′ ∈ Fp2 . By
Lemma 8 of [8] the endomorphism φE maps the 1-eigenspace of Frobenius to the
p2-eigenspace of Frobenius in E(Fp2), so this map will be used as a distortion
map in our pairing implementation.
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3 Pairings

3.1 Background on the Tate Pairing

We will briefly recall the definition of the Tate pairing (see [5] for a more detailed
description) and describe the applications of the results in [6] to the computation
of pairings on hyperelliptic curves given by a real model. Let Fq be a finite field
with q = pn elements and let C be a smooth, irreducible curve over Fq. Denote
the degree zero divisor class group of C over Fq by Cl0Fq

(C). Let r be an integer
such that r | # Cl0Fq

(C) and denote by Cl0Fq
(C)[r] the group of divisor classes

of order dividing r. Let k be the smallest integer such that r | (qk − 1). We say
that k is the embedding degree of C.

Let D1 ∈ Cl0Fq
(C)[r] and D2 ∈ Cl0F

qk
(C) be two divisors with disjoint sup-

port. Since rD1 is principal, there is a function fr,D1 defined over Fq such that
div(fr,D1) = rD1. The Tate pairing is defined as

〈D1, D2〉r = fr,D1(D2),

and one can prove that it is a non-degenerate, bilinear pairing:

Cl0F
qk

(C)[r] × Cl0F
qk

(C)/rCl0F
qk

(C) −→ F∗
qk/(F∗

qk)r.

The result is only defined up to an r-th power, hence to obtain a unique repre-
sentative, one defines the reduced Tate pairing as

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = fr,D1(D2)(q
k−1)/r.

In practice to compute the Tate pairing one uses Miller’s algorithm, which we
now describe.

Definition 2. Let C be a curve for which there exists a way to select a canonical
representative for every element of Cl0F

qk
(C). Given a degree 0 divisor D on C

and an integer n, let Dn be the canonical representative of the class [nD]. We
will denote the unique function (up to scalar multiples) with associated divisor
nD −Dn as fn,D.

The function fn,D is usually chosen to be normalised at infinity (i.e., the leading
coefficient with respect to a fixed uniformizer at infinity is 1; see [10]). For real
models there are two points at infinity and so two leading coefficients to consider.
For our application it is enough to insist that the functions fn,D are such that
the product of the two leading coefficients at infinity lies in the subfield Fqk/2 .
One can then avoid evaluating fn,D at D∞ and relax the requirement that D1

and D2 have disjoint support.
By definition, given two degree 0 divisors D1, D2 on C, if D3 is the canonical

representative of [D1 +D2], there is a function whose associated divisor is D1 +
D2 − D3. Denote this function as gD1,D2 . Miller’s fundamental observation is
that

fn1+n2,D = fn1,D · fn2,D · gn1D,n2D, (3)
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which allows us to compute fr,D (and hence the Tate-pairing) using a square
and multiply calculation with O(log r) steps. Note that in the case of a genus
2 hyperelliptic curve, gn1D,n2D is given by Equation (2). We will refer to the
process of calculating fn1+n2,D from fn1,D and fn2,D as a Miller step.

The ate pairings in the coming subsections are defined on the product G1×G2

where G1 is the 1-eigenspace of the q-power Frobenius element and G2 is the
q-eigenspace. We make the following definition.

Definition 3. Let G1 and G2 be groups. A surjective morphism ψ : G1 −→ G2

is called a distortion map.

We have already seen distortion maps which are suitable for the elliptic and
hyperelliptic curves studied in this paper.

3.2 Elliptic Ate Pairing

Let E be the supersingular elliptic curve defined over Fp2 from Section 2.3. Then
#E(Fp2) = p2 − p+ 1. Let r | (p2 − p+ 1) be prime and write T = t− 1 = p− 1.

Let πp2 be the p2-power Frobenius on E and define

G1 = E[r] ∩ Ker(πp2 − id), and G2 = E[r] ∩ Ker(πp2 − p2).

Since E is supersingular, by Section 4.2 of [10] it follows that

e(P,Q) = fT,P (Q)(p
6−1)/r = fp−1,P (Q)(p

6−1)/r (4)

is a non-degenerate bilinear pairing on G1 ×G2.
Since k = 3, the denominator elimination method of [1] does not apply. We

now describe a way to replace the denominator with a few multiplications.
When executing Miller’s algorithm to compute pairings on an elliptic curve,

the denominator of the function gn1,n2,D in Equation (3) has the form (xR−xQ),
where R and Q are points on the elliptic curve. Note that xR ∈ Fp2 and xQ ∈
Fp6 . We replace

1
xR − xQ

=
xR(xR + xQ) + x2

Q

y2R − y2Q
,

and since y2R− y2Q lies in the proper subfield Fp2 of Fp6 , we can discard its value
as it will become 1 after the final exponentiation.

So the function gn1,n2,D in Equation (3) can be substituted by

lR,P (Q) · (xR(xR + xQ) + x2
Q), (5)

where lR,P denotes the line passing through the points P and R. If x2
Q is pre-

computed then the saving compared with the standard method (i.e., writing the
Miller variable f as a numerator and a denominator) is to replace a squaring in
Fp6 by a multiplication of an element in Fp2 with an element in Fp6 .
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3.3 Hyperelliptic Ate Pairings

We have seen that in some cases it is possible to compute pairings using a
function fn,D where n is much smaller than required for the Tate-pairing. We
will revisit some of these techniques in the case of hyperelliptic curves.

Let C be a hyperelliptic curve defined over a finite field Fq. Denote the Frobe-
nius endomorphism of C as πq, and extend this notation to Cl0F

qk
(C). Let

G1 = Cl0F
qk

(C)[r] ∩ Ker(πq − id) and G2 = Cl0F
qk

(C)[r] ∩Ker(πq − q)

denote the 1- and q-eigenspaces of πq in the r-torsion subgroup of Cl0F
qk

(C). If
D1 ∈ G1 and D2 ∈ G2 are divisors on C, the authors of [9] proved:

Theorem 3. The function eq : G1 ×G2 −→ μr, given by

eq(D1, D2) = fq,D1(D2)(q
k−1)/r,

defines a non-degenerate bilinear pairing on G1 ×G2.

3.4 R-Ate Pairings

Let G1 and G2 be subgroups of the class group of a curve C. If D1 ∈ G1 and
D2 ∈ G2, Lee, Lee and Park prove in [12] the following:

Theorem 4. [Theorem 3.2 in [12]] Let A,B, a, b be integers such that A =
aB + b, where the functions fA,D1(D2) and fB,D1(D2) define bilinear maps in
G1 ×G2. Then the function

fa,BD1(D2) · fb,D1(D2) · gaBD1,bD1(D2)

defines a bilinear map in G1 ×G2.

Corollary 1. Let C be an elliptic curve over Fp2 or a genus 2 curve over Fp

whose divisor class group has p2 − p + 1 points. Let r | (p2 − p + 1) and write
b = (p− 1) (mod r) in the elliptic case and b = p (mod r) in the genus 2 case.
Then the function

fb,D1(D2)(p
6−1)/r

defines a non-degenerate bilinear pairing on G1 ×G2.

Proof. We already know that fr,D1(D2)(p
6−1)/r and (for T = p − 1 or p re-

spectively) fT,D1(D2)(p
6−1)/r are non-degenerate and bilinear. Write B = r and

A = p− 1 or p and apply Theorem 4. One gets the pairing

fa,rD1(D2) · fb,D1(D2) · garD1,bD1(D2).

Since rD1 = 0 it follows that one can choose fa,rD1(D2) = 1 and garD1,bD1(D2) =
1. The result follows. ��

Remark 1. Choosing (p, r) so that b is small will speed up the pairing computa-
tions. We show how to do this in the following section.
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4 Pairing Implementation and Efficiency Analysis

For the rest of the paper we restrict to the two curves from Sections 2.2 and 2.3.
Let G1 be the 1-eigenspace of Frobenius. We consider pairings

e : G1 ×G1 → μr ⊂ F∗
p6

obtained from Corollary 1 together with the distortion maps given earlier.
In this section, we describe some optimisations for pairing implementation

on these curves given above, including generation of parameters to shorten the
Miller loop, denominator elimination, and we give a suitable representation for
the required finite field.

4.1 Generation of Parameters

In this subsection, we describe a method to generate parameters for the curves
constructed in Subsections 2.2 and 2.3, which will allow the pairings to be com-
puted quickly by exploiting Corollary 1. As can be seen from the algorithm, b
can be chosen to have very low hamming weight and half the bit-length of r.

Algorithm 1. Parameter Generation
Input: Integers n, lmax.
Output: Integers b, r, l1, l0 and a prime p such that r | p2 − p + 1, p ≡ b mod r, and

p2 − p + 1 = r(l1p + l0).
1: repeat
2: Choose b of size n bits and low hamming weight.
3: Let r = b2 − b + 1.
4: until r is prime or nearly prime.
5: for l from 1 to lmax. do
6: let p = l · r + b.
7: if p is a prime and p ≡ 11 mod 12. then
8: Break.
9: end if

10: end for
11: if l = lmax, goto step 1.
12: let l1 = l and l0 = l(b − 1) + 1. (as p2 − p + 1 = r(lp + l(b − 1) + 1))
13: return p, r, b, l1 and l0.

The following is a set of parameters generated by Algorithm 1, using n = 80.
These are the parameters used in our implementation, which will be described
in the following section.

Example 1. A set of parameters for 80-bit security

– p =B000000000000000011260000000000000006AEFB
– r =10000000000000000018F00000000000000009B79
– b =1000000000000000000C8
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Remark 2. The parameters in Example 1 are given for the sake of comparison
with elliptic curves of embedding degree 3. Note that Algorithm 1 can efficiently
generate parameters for higher security levels. The relative performance of the
pairing computation in the elliptic and hyperelliptic cases at higher security level
should be very similar to that obtained in this article.

Remark 3. Algorithm 1 can be generalized to find parameters for many other
types of curves. For example, a similar algorithm can be used to generate pa-
rameters for supersingular genus 2 curves given by an equation of the form
y2 = x5 +a, where a ∈ F∗

p, p ≡ 2, 3 mod 5. Ó hÉigeartaigh and Scott efficiently
implemented pairings on these curves in [14], achieving some of the fastest pairing
computations on genus 2 curves. Using a parameter selection algorithm similar
to Algorithm 1 could further improve their results.

4.2 Finite Field Construction and Arithmetic

The following field construction was presented by Hu et al. in [11].
We restrict to p ≡ 3 mod 4 so that −1 is not a quadratic residue modulo p.

In other words, we require p ≡ 11 mod 12. The finite fields are represented as
follows:

Fp2 ∼= Fp[α]/(α2 + 1) = {w1α+ w2|w1, w2 ∈ Fp} = {a1 + a2β3|a1, a2 ∈ Fp}.
Fp6 ∼= Fp2 [β]/(β3 − ρ) = {b0 + b1β + b2β2 + b3β3 + b4β4 + b5β5|bi ∈ Fp}

= {c0 + c1β + c2β2|ci ∈ Fp2},

where ρ = α+ w0 and w0 is a small integer such that x3 − ρ is irreducible over
Fp2 .

Let Mi, Si, and Ii denote the cost of multiplication, squaring, and inversion
in Fpi for i = 1, 2, 6 using the above representation. It is standard (see Section 7
of [10]) that M2 = 3M1 and I2 = 2M1 + 2S1 + 1I1. For purposes of comparison
we follow [10] and assume that M1 = S1, and 1I1 = 10M1. Finally, as explained
in [3] one has S2 = 2M1, M6 = 15M1 and S6 = 11M1.

Let eij ∈ Fp be defined by βip = ei0 + ei1β + · · · + ei5β5 for 1 ≤ i ≤ 5.
We have that βip = β2iρi(p−2)/3. Since β3 = ρ and ρ ∈ Fp2 , there are at most
two non-zero terms in the coefficient vector (ei0, ei1, · · · ei5). Specifically, we have
(e30, e31, · · · e35) = (2w0, 0, 0,−1, 0, 0). Hence, raising a random element to the
pth power is given by

(b0 + b1β + b2β2 + b3β3 + b4β4 + b5β5)p = b0 +
5∑

i=1

bi(ei0 + ei1β + · · · + ei5β5).

This computation costs only 8 Fp−multiplications (remember w0 is a small
integer).
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The final exponentiation is often computed using a base p expansion. In the
cases k = 6, the final exponentiation can be represented as

p6 − 1
r

= (p3 − 1)(p+ 1)
p2 − p+ 1

r
= (p3 − 1)(p+ 1)(l1p+ l0)

where l1 is small. Thus, the construction above allows for very fast
exponentiation.

4.3 Optimised Pairing Computation

The cost of Miller’s algorithm to compute pairings is determined by the length
of the Miller loop, the cost of the calculations inside the loop, and the final
exponentiation. To compute pairings on hyperelliptic genus 2 curves given by a
real model, we used the techniques described above to speed up the computation,
that is:

– Algorithm 1 generates suitable parameters to get a short, low Hamming
weight Miller loop.

– Use D∞ = ∞+ + ∞− to represent elements of Cl0(C) to get fast addition
and a simple Miller funciton.

– The distortion map (φ−1 ◦ χ ◦ ζ6 ◦ φ) described in Theorem 2 allows for
denominator elimination while using the R-ate pairing [12] technique.

– The field construction in Subsection 4.2 provides the arithmetic for a very
efficient final exponentiation.

5 Efficiency Analysis and Implementation Results

The optimisation techniques described above make the computation of pairings
on hyperelliptic genus 2 curves practical and efficient. In this section we analyse
the efficiency, and compare it with pairing implementations on elliptic curves
with similar characteristics.

5.1 Comparison with Elliptic Curves with k = 3

As mentioned in the introduction, the curves constructed in Subsections 2.2 and
2.3 have very similar characteristics, so implementation results on the embed-
ding degree 3 elliptic curve provide a useful benchmark to analyse our pairing
implementation on hyperelliptic curves given by a real model.

As mentioned before, (the class groups of) both curves have the same number
of Fp-rational points, and the embedding field for both curves is the same, as
is the bandwith requirement. A point P = (x, y) ∈ E(Fp2) is represented by 4
elements of Fp, which is the same number of coefficients required to represent a
divisorD = (x2+u1x+u0, x

3+v1x+v0) over Fp. Here we use the representation
different from that of Section 2.1, please see the appendix for details. Since the
target field is the same, both pairing values can be compressed at the same rate
by using traces (as with the XTR public key cryptosystem [13]) or tori [16,17].
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In the notation of Theorem 4, we need to calculate fb,D1 . Since b is an integer
generated by Algorithm 1, it will have very low Hamming weight and we will
only analyse the cost of the doubling steps in the Miller loop.

We are pairing two divisors D1 and D2 defined over Fp. We assume that these
divisors are generic (as mentioned earlier). We further assume that the Mumford
representation of D2 factors over Fp and that we know the factorisation; this
is a restriction to roughly half the divisor classes. Before computing the pairing
we apply the distortion map ψ from Theorem 2 to map D2 to a divisor over
Fp6 . In other words, we know x1, x2 ∈ Fp3 and y1, y2 ∈ Fp6 such that ψ(D2) =
(x1, y1)+(x2, y2)−D∞. The Miller functions are evaluated at (x1, y1) and (x2, y2)
rather than performing a resultant computation. Since D∞ and p(x) are defined
over Fp we can omit the evaluation (y − p(x))(D∞).

To compare the efficiency of our pairing implementations on elliptic and hy-
perelliptic curves, we first estimate the cost of each doubling step. We will let f
denote the intermediate value in the Miller loop. The update of f is similar to
that used in other standard implementations of Miller’s algorithm, such as Algo-
rithm 1 in Section 2 of [9], except that the denominator of gn1D,n2D in Equation
(3) can be removed as described by Equation (5) in the elliptic curve case, and
by Lemma 2 in the hyperelliptic curve case.

elliptic : f ← f2 · lR,P (Q) · (xR(xR + xQ) + x2
Q) and R← 2R

hyperelliptic: f ← f2 · (y1 − p(x1)) · (y2 − p(x2)) and D1 ← 2D1.

Here lR,P is the line through R and P , and y − p(x) is as in Equation (1).
Note that p(x) is a cubic polynomial with coefficients in Fp.

We use affine coordinates for our implementation. In the elliptic case, doubling
a point costs 1I2 + 2M2 + 2S2, which makes each doubling step in the Miller
loop cost about 77M1 (see the formulae for M2, S2 etc in Section 4.2). In the
hyperelliptic case, doubling a divisor costs 1I1 +32M1 ≈ 42M1 [6], which makes
each doubling step in the Miller loop cost about 101M1. There are a total of
84 doubling steps using the parameters given in Example 1. So the costs of
the Miller loops are roughly 6468M1 and 8484M1 respectively (counting only
doubling steps since b has Hamming weight 4).

The final exponentiation step is identical in both cases, and costs about
1621M1.

This shows that pairings on real hyperelliptic genus 2 curves with k = 6 are
competitive to parings on elliptic curves with k = 3, though slower.

5.2 Theoretical Comparison with Imaginary Hyperelliptic Curves
with k = 4

To complement our efficiency analysis, we will also make an abstract comparison
of our implementation results with those reported in [14], using genus 2 hyper-
elliptic curves with embedding degree k = 4. The implementation results in [14]
are amongst the best reported in the literature.
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In curves with embedding degree k = 4, the underlying prime field needs to
be 86 bits larger than our implementation to achieve an 80-bit security level.
The representation of each divisor will then need 344 more bits.

The computation of pairings on genus 2 curves with embedding degree k = 4
given by an imaginary model is studied in [14], where timings for the pairing
computation of degenerate divisors (i.e., divisors of the form (P )−(∞)) are given.
As mentioned in Remark 3, the use of an algorithm similar to Algorithm 1 to
find curve parameters could improve the results of [14]. Since the computation
requires multiplication modulo a 256-bit prime rather than modulo a 170-bit
prime (as in the k = 6 case), for general divisors we expect pairings on curves
with embedding degree k = 4 to be slower than our results, although they will
probably be faster for degenerate divisors (there is no analogue of degenerate
divisors for hyperelliptic curves given by a real model).

We can see that pairings on hyperelliptic curves given by a real model can be
competitive with pairings on curves given by an imaginary model, in terms of
bandwidth and computation requirements.

5.3 Implementation Results

This section reports some implementation results. The implementation uses the
parameters given in Example 1. The timings are obtained using the Magma
Online Platform [2].

The following table summarizes the results. The first row shows our imple-
mentation result for hyperelliptic curves, and the second row shows our imple-
mentation result for elliptic curves.

Table 1. Efficiency Comparison with an AES 80 Security Level

Curve size of p Operation Count time(ms)

C(Fp) k = 6 160 10105M1 21.6

E(Fp2) k = 3 160 8089M1 15.3

6 Conclusion

In this article we presented several techniques to speed-up the calculation of
pairings on hyperelliptic curves given by a real model. We showed that com-
puting pairings on real genus 2 curves is practical. We compared the efficiency
of two similar elliptic and hyperelliptic curves, and conclude that pairings on
elliptic curves with k = 3 require 20% less field multiplications than pair-
ings on real hyperelliptic genus 2 curves with k = 6. The timing difference
in our implementation was that elliptic curves are 28% faster than genus 2
curves.
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A Appendix: Addition Formulae

We now present the formulae from [4], which are explicit formulae for the sub-
algorithms used in [6] to build an efficient algorithm for divisor arithmetic on
hyperelliptic curves with two points at infinity. These formulae require that the
curve have model of the form

y2 = x6 + f4x4 + f3x3 + f2x2 + f1x+ f0.

To make the polynomial monic one takes a random pair of Fp-rational points
(x,±y) on the curve, moves them to infinity, and absorbs the square root of the
leading coefficient into y. Since we are working in large characteristic there is no
problem setting f5 = 0.

To be compatible with the divisor representation used in [4] the second poly-
nomial in the Mumford representation is the unique polynomial v′ ≡ v mod u
of the form v′ = x3 + v1x + v0. Notice that v′ can be represented only by 2
coefficients even though it has degree 3.

Algorithm 2. Addition Formulae
Input: Divisors D1 = div(u1, v1) and D2 = div(u2, v2) .
1: z0 = u10 − u20, z1 = u11 − u21.
2: z2 = u11 · z1 − z0, z3 = u10 · z1.
3: r = z1 · z3 − z0 · z2.
4: w0 = v10 − v20, w1 = v11 − v21.
5: s′

1 = w0 · z1 − w1 · z0, s
′
0 = w0 · z2 − w1 · z3.

6: k2 = f4 − 2v21.
7: r2 = r2, ŵ0 = r2 − (s′

1 + r)2, ŵ1 = (r · ŵ−1).
8: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · w1.
9: s1 = s′

1 · ŵ2, s0 = s′
0ŵ2.

10: w̃0s0 · u20, w̃1 = s1 · u21, l2 = s0 + w̃1.
11: l1 = (s0 + s1)(u21 + u20) − w̃1 − w̃0, l0 = w̃0.
12: m′

3 = ŵ3 · (−s1 · (s0 + l2) − 2s0).
13: m′

2 = ŵ3 · (k2 − s1 · (l1 + 2v21) − s0l2).
14: u′

1 = m′
3 − u11, u

′
0 = m′

2 − u10 − u11 · u′
1.

15: w1 = u′
1 · (s1 + 2), w0 = u′

0 · (l2 − w1).
16: v′

1 = (u′
0 + u′

1) · (s1 + −w1 + l2) − v21 − l1 − w0 − w1.
17: v′

0 = w0 − v20 − l0.

When adding divisors D1 and D2, the cubic polynomial p(x) given by Equa-
tion (1) can be calculated as p(x) = v2(x) + u2(x)s(x), where s(x) = s1x+ s0 in
Algorithm 2.
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Algorithm 3. Doubling Formulae
Input: D = div(u, v) .
1: w1 = u2

1, ṽ1 = 2(v1 + w1 − u0), ṽ0 = 2(v0 + u0 · u1).
2: w2 = u0 · ṽ1, w3 = u1 · ṽ1.
3: inv1 = ṽ1, inv0 = w3 − ṽ0.
4: r = ṽ0 · inv0 −w2 · ṽ1.
5: k′

2 = f4 − 2v1

6: k′
1 = f3 − 2v0 − 2k′

2 · u1.
7: k′

0 = f2 − v2
1 − k′

1 · u1 − k′
2(w1 + 2u0).

8: s′
1 = inv1 ·k′

0 − ṽ0 · k′
1, s

′
0 = inv0 ·k′

0 − w2 · k′
1.

9: r2 = r2, ŵ0 = (s′
1 + r)2 − r2, ŵ1 = (r · ŵ0)

−1.
10: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · ŵ1.
11: s1 = ŵ2 · s′

1, s0 = ŵ2 · s′
0.

12: u′
1 = 2ŵ3 · ((s0 − u1) · s1 + s0).

13: u′
0 = ŵ3 · ((s02u1) · s0 + ṽ1 · s1 − k′

2).
14: z0 = u′

0 − u0, z1 = u′
1 − u1.

15: w0 = z0 · s0, w1 = z1 · s1.
16: v′

1 = 2u′
0 − v1 + (s0 + s1) · (z0 + z1) − w0 − w1 − u′

1 · (2u′
1 + w1).

17: v′
0 = w0 − v0 − u′

0 · (2u′
1 + w1).

The cubic polynomial from Equation (1) used in Miller’s algorithm when
doubling a divisor D is given by p(x) = v(x) + u(x)s(x), where s(x) = s1x+ s0
in Algorithm 3.
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Abstract. The ηT pairing in characteristic three is implemented by
arithmetic in GF(3) = {0, 1, 2}. Harrison et al. reported an efficient im-
plementation of the GF(3)-addition by using seven logical instructions
(consisting of AND, OR, and XOR) with the two-bit encoding {(0, 0) �→
0, (0, 1) �→ 1, (1, 0) �→ 2}. It has not yet been proven whether seven is
the minimum number of logical instructions for the GF(3)-addition. In
this paper, we show many implementations of the GF(3)-addition using
only six logical instructions with different encodings such as {(1, 1) �→
0, (0, 1) �→ 1, (1, 0) �→ 2} or {(0, 0) �→ 0, (0, 1) �→ 1, (1, 1) �→ 2}. We then
prove that there is no implementation of the GF(3)-addition using five
logical instructions with any encoding of GF(3) by two bits. Moreover,
we apply the new GF(3)-additions to an efficient software implementa-
tion of the ηT pairing. The running time of the ηT pairing over GF(3509),
that is considered to be realized as 128-bit security, using the new GF(3)-
addition with the encoding {(0, 0) �→ 0, (0, 1) �→ 1, (1, 1) �→ 2} is 16.3 mil-
liseconds on an AMD Opteron 2.2-GHz processor. This is approximately
7% faster than the implementation using the previous GF(3)-addition
with seven logical instructions.

Keywords: ηT pairing, GF(3)-addition, logical instruction.

1 Introduction

Bilinear pairings on elliptic curves over finite fields have attracted much at-
tention in cryptography, since pairing-based cryptosystems can provide many
novel applications, such as ID-based cryptosystems [9,27], keyword-searchable
encryption [8], and efficient broadcast encryption [10]. The first algorithm for
computing the Tate pairing was proposed by Miller [24]. Duursma and Lee [12]
proposed an efficient algorithm for computing the Tate pairing on supersingular
elliptic curves over the binary field GF(2m) or the ternary field GF(3m). Barreto
et al. [3] proposed an ηT pairing, which is a different version of the Duursma-Lee
algorithm. This pairing is about twice as fast as the Duursma-Lee algorithm.
Currently, one of the fastest pairings is the ηT pairing over GF(3m).

The arithmetic in GF(3m) requires the GF(3)-addition, which cannot be di-
rectly computed by virtually any typical CPU, such as one based on the x86-
architecture [20]. In an efficient implementation in GF(3), each element in GF(3)

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 282–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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is represented by two bits, and the GF(3)-addition is constructed using logical
instructions. Galbraith et al. [13] demonstrated a GF(3)-addition using 12 logical
instructions, consisting of AND, OR, XOR, and NOT. Then, Harrison et al. [19]
improved this to seven logical instructions, consisting of OR and XOR. Until
now, this has been the minimum number of logical instructions for computing
the GF(3)-addition.

In this paper, we describe our search for implementations of the GF(3)-
addition that use seven or fewer logical instructions. Every GF(3) element is
assigned to two bits in GF(2)2, and the GF(3)-addition is considered as a map
GF(2)2 ×GF(2)2 → GF(2)2. An exhaustive search was performed for sequences
of logical instructions that can construct the GF(3)-addition for the map. In-
deed, although we found many implementations of the GF(3)-addition with only
six logical instructions, the representation of GF(3) elements is not the natural
assignment {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}, or the special logical instruc-
tions such as ANDN are used. Moreover, we found no instruction sequence that
can compute the GF(3)-addition with five logical instructions. In other words,
we have proven that the minimum number of logical instructions required for
the GF(3)-addition is six for any assignment of elements in GF(3) using two
bits.

To demonstrate the cryptographic implications of the new GF(3)-addition
implementations using six logical instructions, we implemented arithmetic in
GF(3m) and the ηT pairing over GF(3m), on an AMD Opteron processor model
275 (2.2 GHz). For comparison, we chose the extension degree m = 509, because
NIST indicates that the key size should have more than 80-bit through 2011 [2],
and the ηT pairing over GF(3509) has 128-bit security [1,23]. With the assignment
{(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 1) 	→ 2}, the addition in GF(3509) was about 12% (�
1/7) faster than that with the natural assignment. Similarly, the multiplication in
GF(3509), computed by the left-to-right comb method with window size w = 4,
was about 8% faster than that with the natural assignment. As a result, the
running time of the ηT pairing over GF(3509) for the new GF(3)-addition with
six logical instructions was 16.3 milliseconds, which is about 7% faster than the
running time for the previous GF(3)-addition with seven logical instructions.

The rest of this paper is organized as follows. In Section 2, we describe the
addition in GF(3) and discuss previous results on this topic. Section 3 gives the
details of our search for instruction sequences to compute the GF(3)-addition,
along with the search results. In Section 4, we describe our implementations
and running time results for arithmetic in GF(3m) and the ηT pairing. Finally,
Section 5 concludes the paper.

2 Addition in GF(3)

Let GF(3) = {0, 1, 2} be a finite field of three elements. Here we can represent
e ∈ GF(3) by using two bits:

e = (eh, el),
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where eh, el ∈ GF(2). The assignment of GF(3) to GF(2)2 is the following:

{(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}. (1)

We call this natural assignment .
For given a and b in GF(3), we can compute addition c ← a+ b in GF(3) as

c = a + b mod 3. In the assignment of equation (1), a negative element, −e, of
e = (eh, el) in GF(3) is obtained as

{
(−e)h ← el
(−e)l ← eh.

Let a and b be elements in GF(3). The subtraction a − b can be performed as
a+ (−b), with the same cost as the GF(3)-addition.

In this paper, we construct the GF(3)-addition by using the logical instruc-
tions below.

| : bitwise OR operation
& : bitwise AND operation
∧ : bitwise XOR operation
x̄ : bitwise complement (NOT)

Implementation of an efficient GF(3)-addition using these logical instructions is
a non-trivial problem. For efficient implementation, it is preferable to keep the
number of logical instructions as small as possible. Galbraith et al. [13] presented
the following GF(3)-addition using 12 logical instructions.

ch ← ((ah ∧ bh)&(al | bl)) | (al&bl),
cl ← ((al ∧ bl)&(ah | bh)) | (ah&bh).

Harrison et al. [19] improved the implementation to seven logical instructions by
using an auxiliary variable t, as indicated below.

t← (ah | bl) ∧ (bh | al),
ch ← t ∧ (al | bl), (2)
cl ← t ∧ (ah | bh).

There are many other implementations of the addition in GF(3); all, how-
ever, are constructed using exactly the same logical instructions given in equa-
tion (2) [1,5,16,25]. It is not yet proved whether seven is the minimum number
of logical instructions for the GF(3)-addition.

3 Search for Minimum Number of Logical Instructions
for GF(3)-Addition

This section describes the process and results of our attempt to search for the
minimum number of logical instructions for computing the GF(3)-addition.
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3.1 Choice of Assignment in GF(3)

The assignment R of GF(3) to GF(2)2 is denoted by

R = {(eh, el) 	→ e | eh, el ∈ GF(2), e ∈ GF(3)}.

The addition c← a+ b in GF(3) is a map GF(3) ← GF(3)×GF(3). To specify
each assignment of GF(3) in the map, we denote by Ra, Rb, and Rc the assign-
ment for the right part of the input, the left part of the input, and the output,
respectively, of the addition c ← a + b in GF(3). The pair of Ra, Rb, and Rc,
called the assignment set, determines the implementation of the GF(3)-addition
c← a+ b. The natural assignment in the previous GF(3)-addition [19] uses the
pair Ra = Rb = Rc = {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}. Note that there are
many possible assignment sets, such as these:

Ra = {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2},
Rb = {(1, 0) 	→ 0, (0, 1) 	→ 1, (1, 1) 	→ 2, (0, 0) 	→ 2}, (3)
Rc = {(1, 1) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}.

In this paper, we consider the following assignments.

– Redundant representation. One element e0 in GF(3) has two different repre-
sentations e0 = (e0h, e0l) = (e′0h, e

′
0l) in GF(2)2, but the other two elements

e1 and e2 in GF(3) are uniquely assigned as e1 = (e1h, e1l) and e2 = (e2h, e2l)
in GF(2)2, where (e0h, e0l), (e′0h, e

′
0l), (e1h, e1l), and (e2h, e2l) are pairwise dif-

ferent in GF(2)2.
– Independent assignments. All assignments Ra, Rb, and Rc for the addition
c← a+ b in GF(3) are not necessarily the same.

The cardinality of the elements in Ri is denoted by #Ri, and we can define
the inclusion relation Ri ⊆ Rj , where i, j ∈ {a, b, c}. Then, all patterns of the
assignment set Ra, Rb, and Rc can be categorized according to the cardinality
and inclusion relation, as follows.

– #Ra = #Rb = #Rc = 3
1–i Natural assignment set Ra = Rb = Rc = {(0, 0) 	→ 0, (0, 1) 	→ 1,

(1, 0) 	→ 2}
1–ii Assignment set of common Ra = Rb = Rc (This assignment set includes

the natural assignment set.)
1–iii Assignment set of independent Ra, Rb, Rc

– #Ra = #Rb = 3, #Rc = 4
2–i Ra = Rb ⊆ Rc

2–ii Assignment set of independent Ra, Rb, Rc

– #Ra = #Rc = 3, #Rb = 4
3–i Ra = Rc ⊆ Rb

3–ii Assignment set of independent Ra, Rb, Rc

– #Ra = 3, #Rb = #Rc = 4
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4–i Ra ⊆ Rb = Rc

4–ii Assignment set of independent Ra, Rb, Rc

– #Ra = #Rb = 4, #Rc = 3
5–i Ra = Rb ⊇ Rc

5–ii Assignment set of independent Ra, Rb, Rc

– #Ra = #Rb = #Rc = 4
6–i Assignment set of common Ra = Rb = Rc using the redundant repre-

sentation
6–ii Assignment set of independent Ra, Rb, Rc

In this paper, we use this categorization of the assignments Ra, Rb, and Rc in
the search algorithm for efficient implementation of the GF(3)-addition.

3.2 Logical Instruction Sets

Many CPUs are equipped with AND, OR, and XOR as logical instructions. In
some architectures, however, other logical instructions are also available. Given
x, y in GF(2), ANDN (x ANDN y = x&ȳ) can be used in MMX and SSE
implementations. The SPARC and Alpha architectures provide ORN (x ORN
y = x | ȳ) and XORN (x XORN y = x∧ ȳ) [21,11]. Combining the last two with
the NOT operation, we further obtain NAND (x&y) and NOR (x | y).

Our search algorithm deals with the following two logical instruction sets.

LISet 3 = {AND, OR, XOR}
LISet 8 = {AND, OR, XOR, ANDN, ORN, XORN, NAND, NOR}

LISet 8 contains all binary operations except for trivial operation such as x ∗
y = x for the binary operation ∗. Note that LISet 8 includes non-commutative
instructions such as ANDN (x ANDN y �= y ANDN x).

3.3 Search Algorithm

In this section, we describe the search method for computing the addition c ←
a+b in GF(3) by using the assignments a = (ah, al), b = (bh, bl), and c = (ch, cl).
We prepare bit strings ah, al, bh, bl, ch, and cl consisting of all calculated patterns
for GF(3)-addition using the assignment set Ra, Rb, and Rc.

Recall that in the redundant representation, one element in GF(3) has two
different representations in GF(2)2. When both Ra and Rb do not use the re-
dundant representation, the bit strings ah, al, bh, bl, ch, and cl are constructed
using nine bits. These bit lengths depend, however, on whether assignments Ra

and Rb use the redundant representation. If either Ra or Rb uses the redun-
dant representation, then the bit lengths are 12 bits. Similarly, if both Ra and
Rb use the redundant representation, then the bit lengths are 16 bits. Further-
more, we need to consider the case in which assignment Rc uses the redundant
representation. In this case, one GF(3) element is assigned two non-unique rep-
resentations. Therefore, the result for one element (ch, cl) in GF(3) must be
checked twice.
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Table 1. Truth Table for Assignment Set Ra, Rb, and Rc in Equation (3)

ah 0 0 0 0 0 0 0 0 1 1 1 1
al 0 0 0 0 1 1 1 1 0 0 0 0

bh 1 0 1 0 1 0 1 0 1 0 1 0
bl 0 1 1 0 0 1 1 0 0 1 1 0

ch 1 0 1 1 0 1 1 1 1 1 0 0
cl 1 1 0 0 1 0 1 1 0 1 1 1

Table 1 gives the truth table for the bit strings created by the assignment set
Ra, Rb, and Rc in equation (3).

Using the above bit strings ah, al, bh, bl, ch, and cl, we use depth-first search
to search for instruction sequences to compute the GF(3)-addition. The search
algorithm proceeds as follows.

1. Using Table 1, initialize the search set S as S = {ah, al, bh, bl}.
2. Choose arbitrary two bit strings x and y in S.
3. Choose an arbitrary logical instruction ∗, and compute z ← x ∗ y.
4. Add the resultant bit string z to S.
5. Iterate Steps 2–4 for a limited number of logical instructions.
6. Check whether both ch and cl are included in S.

The search algorithm is not efficient if all instruction sequences are computed,
since most instruction sequences cannot be computed on the GF(3)-addition. Let
N be the limited number of logical instructions. Then we stop the search deeper
than the present iteration when it satisfies the following conditions.

- The computed result z is already contained in S.
- Neither ch nor cl is contained in S, when the limited number of instructions

is N − 1.

3.4 Search Algorithm Cost

This section discusses the computational cost of our search algorithm. The num-
ber of assignment patterns for #Ri = 3 is 24 (= 4 × 3 × 2). Similarly, the
number of assignment patterns for #Ri = 4 is 72 (= 24 × 3), since one element
in GF(3) is assigned to two representations. Let r be the number of assign-
ments of #Ri = 4 in #Ra,#Rb, and #Rc, where 0 ≤ r ≤ 3. Then, there are
243−r × 72r patterns using each assignment Ra, Rb, and Rc. For example, with
#Ra = #Rb = #Rc = 3, the number of assignment set patterns is 13,824
(= 243).

Here, we estimate the search algorithm cost for #Ra = #Rb = #Rc = 3,
N = 5, and LISet 8, including the details of the computational cost. All possible
instruction sequences give

5∏

j=1

((j + 3) · (j + 2) · 10) = 1693440000000≈ 240.6
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Table 2. Search Results for Computing the GF(3)-Addition

#Ra #Rb #Rc Assignment set LISet Number of instructions Existence

3 3 3 1-iii 8 Less than 6 No
3 3 3 1-i 3 Less than 7 No
3 3 3 1-ii 3 6 Yes

3 3 4 2-ii 8 Less than 6 No
3 3 4 2-i 3 6 Yes

3 4 3 3-ii 8 Less than 6 No
3 4 3 3-ii 3 Less than 7 No
3 4 3 3-i 3 7 Yes

3 4 4 4-ii 8 Less than 6 No
3 4 4 4-i 3 6 Yes

4 4 3 5-ii 8 Less than 6 No
4 4 3 5-ii 3 Less than 7 No
4 4 3 5-i 3 7 Yes

4 4 4 6-ii 8 Less than 6 No
4 4 4 6-i 3 6 Yes

LISet. LISet 3 = {AND, OR, XOR}.
LISet 8 = {AND, OR, XOR, ANDN, ORN, XORN, NAND, NOR}.

Assignment Set. The assignment set was Ra, Rb, and Rc as indicated in Section 3.1.

patterns. Most of the instruction sequences do not contain the results ch and cl
for computing the GF(3)-addition. Thus, we can reduce the computational cost
by using the conditions described in Section 3.3.

We performed an experiment using 24 Pentium 4, 96 Pentium D and 6 Xeon
processors in parallel. The search took about half a day for N = 5 and LISet 3.
It required about a day for #Ra = #Rb = #Rc = 3, N = 5, and LISet 8. We
completed all experiments in Table 2 about one month.

3.5 Search Results and Some Examples

Table 2 lists the specific results of our search, leading to the following general
results.

1. There is no implementation of the addition c ← a + b in GF(3) that uses
less than six logical instructions from the set of {AND, OR, XOR, ANDN,
ORN, XORN, NAND, NOR} for any assignment set Ra, Rb, and Rc.

2. There are many implementations of the addition c← a+b in GF(3) that use
six logical instructions from the set of {AND, OR, XOR} in the assignment
set Ra, Rb, and Rc with #Ra = #Rb = #Rc = 3.

Hence, we have proved that the minimum number of logical instructions for
computing the GF(3)-addition is six.

In the following, we show some examples of computing the GF(3)-addition
c ← a + b with six logical instructions. Let a = (ah, al), b = (bh, bl), and c =
(ch, cl) be elements in GF(3).
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In the case of Ra = Rb = Rc = {(1, 1) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}, the
GF(3)-addition can be computed by

{
ch ← (al ∧ bl) | ((ah ∧ bh) ∧ al)
cl ← (ah ∧ bh) | ((al ∧ bl) ∧ ah). (4)

In this assignment, the negative element, −a, can be converted to exchange ah

and al.
In the case of Ra = Rb = Rc = {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 1) 	→ 2}, the

GF(3)-addition can be computed by
{
ch ← (al ∧ bh)&(ah ∧ bl)
cl ← (al ∧ bl) | ((ah ∧ bl) ∧ bh). (5)

In this assignment, the negative element, −a, can be computed simply by ah ←
ah∧al. In this case, although additional cost is required to compute the negative
element, the subtraction a− b can be computed using six logical instructions:

{
ch ← (ah ∧ bl)&((al ∧ bl) ∧ bh)
cl ← (ah ∧ bh) | (al ∧ bl).

(6)

Moreover, we have found that the GF(3)-addition can be computed using
six logical instructions from the set of {AND, OR, XOR, ANDN} even for the
natural assignment set Ra = Rb = Rc = {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}:

{
ch ← (al ∧ bl)&((ah ∧ bh) ∧ al)
cl ← (ah ∧ bh)&((al ∧ bl) ∧ ah).

This instruction sequence can efficiently compute the GF(3)-addition by using
four registers, requiring no additional register. Therefore, it is suitable for an
implementation, such as SSE, in which the computed result overwrites one of
the operands. It can be performed using registers ri (i = 0, 1, 2, 3) as indicated
below.

1. r0 ← ah, r1 ← al, r2 ← bh, r3 ← bl,
2. r2 ← r0 ∧ r2, r3 ← r1 ∧ r3,
3. r1 ← r2 ∧ r1, r0 ← r3 ∧ r0,
4. r3 ← r1 ANDN r3, r2 ← r0 ANDN r2,
5. ch ← r3, cl ← r2.

4 Application to ηT Pairing over GF(3m)

In this section, we explain how to implement operations in GF(3m) and the ηT
pairing by using the new addition implementation proposed in the previous sec-
tion. Then, we give the operations’ running times on an AMD Opteron processor
model 275 (2.2 GHz), using GCC 4.1.2 with the -O3 option under Linux/x86 64.
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4.1 Bit Representation of GF(3m)

Let the ternary field GF(3m) be given by GF(3)[x]/(f(x)) where GF(3)[x] is the
set of all polynomials overGF(3) and f(x) is an irreducible polynomial overGF(3).
An element A in GF(3m) can be represented as the polynomial

∑m−1
i=0 aix

i, where
each coefficient ai is an element in GF(3). Recall that, for the purposes of this pa-
per, each coefficient is converted to two bits, such as ai = ((ai)h, (ai)l) ∈ GF(2)2.
By using bit-sliced representation [25], element A in GF(3m) can be represented
as two bit strings (Ah, Al) of GF(3) elements as indicated below.

Ah = ((am−1)h, (am−2)h, · · · , (a0)h) ,
Al = ((am−1)l, (am−2)l, · · · , (a0)l) .

(7)

In our implementation, the bit strings of the GF(3m) element are stored in two
arrays of size �m/W �, where W is the word size of the target processor. For the
purpose of this paper, the word size W = 64.

Here, we use the following three assignments to represent the coefficients of
ai in GF(3). The first assignment is the natural assignment shown by Harrison
et al., which can compute the GF(3)-addition with seven logical instructions.
The second and third ones are assignments in which the GF(3)-addition can be
computed using six logical instructions, as indicated in Section 3.5. These three
assignments are written as follows:

Natural assignment : {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2},
Type 1 assignment : {(1, 1) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2},
Type 2 assignment : {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 1) 	→ 2}.

In the following subsections, we compare the running times for addition, sub-
traction, and multiplication in GF(3m) and the ηT pairing with each of these
assignments.

4.2 Addition and Subtraction in GF(3m)

When the elements A,B,C ∈ GF(3m) are represented according to equation (7),
the addition C ← A + B in GF(3m) can be computed by the GF(3)-addition
ci ← ai + bi for each coefficient of elements A and B. In the Natural and
Types 1 and 2 assignments, the GF(3)-addition can be implemented according
to equations (2), (4) and (5), respectively. A logical instruction can compute W
coefficients at one time. Therefore, the GF(3m)-addition is implemented using
7�m/W � logical instructions in the Natural assignment, but in the Types 1 and
2 assignments, it is implemented using 6�m/W � logical instructions.

Similarly, the subtraction C ← A − B in GF(3m) can be constructed using
logical instructions. In the Natural and Type 1 assignments, the subtraction can
be performed as A + (−B), and its cost is the same as that of the GF(3m)-
addition. In the Type 2 assignment, the subtraction can be implemented using
6�m/W � logical instructions according to equation (6).

To compare the running times, we used the finite field GF(3509), since the
discrete logarithm problem for the extension field GF(36·509) achieves the 128-
bit security level [1,23]. Table 3 lists the running time results for addition and
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Table 3. Running Time Comparison for Addition and Subtraction in GF(3509) (μsec)

Assignment Natural Type 1 Type 2
Addition 0.0197 0.0166 0.0175

Subtraction 0.0199 0.0166 0.0176

subtraction in GF(3509). Each listed running time is the average of 100,000,000
executions. For fair comparison, we used the same program code for implement-
ing the logical instructions, and we did not use extensions such as SSE.

As a theoretical estimation, the running times of addition and subtraction in
GF(3m) for the Types 1 and 2 assignments should be about 6/7 of that for the
Natural assignment, since the number of logical instructions for computing the
GF(3)-addition is reduced from seven to six. In our experiment, both addition
and subtraction in GF(3m) using 6�m/W � logical instructions (Types 1 and 2)
were about 12 ∼ 16% (� 1/7) faster than using 7�m/W � logical instructions
(Natural). These operations are very simple and require hardly any compu-
tational cost except for computing 6�m/W � or 7�m/W � logical instructions.
Therefore, the running times of these operations became faster, as predicted
from the theoretical estimation, by reducing the number of logical instructions.

4.3 Multiplication in GF(3m)

The multiplication A · B in GF(3m) consists of the polynomial multiplication
C′ ← A · B in GF(3)[x] and the reduction C ← C′ mod f(x), where f(x) is
the irreducible polynomial defining GF(3m). If f(x) is an irreducible trinomial
f(x) = xm + xk + 2, then the computational cost of the reduction is negligibly
small compared to that of the polynomial multiplication [18]. Therefore, in the
following, we only discuss the polynomial multiplication algorithms.

The polynomial multiplication is constructed using the addition in GF(3m)
and the shift Axi computed by

∑m−1
j=0 ajx

j+i from xi and A =
∑m−1

j=0 ajx
j . A

simple algorithm is the shift-and-add method [18, Alg. 2.33], performed as C′ ←
C′+Abixi for i from 0 to m−1. The comb method [18, Alg. 2.35] is performed as
C′ ← C′ +AbjW+ix

jW+i (0 < j < �m/W �) after C′ ← C′ +Abixi (0 ≤ i < W )
for i from 0 to W − 1. The word size shift AxjW+i computation is virtually free,
so it is faster than the shift-and-add method.

In conjunction with the shift-and-add and comb methods, we deployed the
window method [18, Alg. 2.36], an algorithm that reduces the number of GF(3m)-
additions by using an online precomputed table. Let w be the window size. The
precomputation requires (3w−2w−1)/2 additions in GF(3m), (3w−1)/2 negative
elements, and w − 1 shifts. The number of the GF(3m)-additions required for
evaluation is about 1/w times smaller than with a non-window method.

In our experiment, we implemented the shift-and-add method and the comb
method with window size w = 4. Table 4 lists the running time results for
multiplication in GF(3509). We used the trinomial f(x) = x509 + x358 + 2 for
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Table 4. Running Time Comparison for Multiplication in GF(3509) (μsec)

Assignment Natural Type 1 Type 2
Shift-and-add method with w = 4 7.0910 6.9111 6.6184

Comb method with w = 4 4.9810 4.7391 4.5933

the polynomial basis of GF(3509). Each listed running time is the average of
1,000,000 executions.

The running time with the Type 2 assignment was about a few percent faster
than that with the Type 1 assignment. For the Type 1 assignment, the shift
requires some additional cost. When the shift Axi is computed, the bits less than
xi are padded by zeroes. Since 0 ∈ GF(3) is assigned as (1, 1) in this assignment,
it is necessary to change these bits from zero to one. On the other hand, the
negative element is computed by Ah ← Ah ∧ Al for the Type 2 assignment, so
that it requires �m/W � logical instructions.

The running time of the comb method with w = 4 for the Type 2 assignment
is about 8% faster than that for the Natural assignment. On the other hand,
the shift-and-add method requires more shifts than does the comb method, and
thus, the running time of the shift-and-add method with w = 4 for the Type 2
assignment was only about 7% faster than that for the Natural assignment.

As a result, we found that the comb method with w = 4 for the Type 2 as-
signment was the fastest multiplication implementation under these conditions.

4.4 ηT Pairing over GF(3m) and Its Efficient Implementation

This section describes how we applied the new GF(3)-addition to the ηT pairing
over GF(3m) proposed, by Barreto et al. [3].

Many efficient algorithms for implementing the ηT pairing have been pro-
posed [6,14,28,29,30]. We implemented the pairing with the following algorithms:
the ηT pairing algorithm without cube root, proposed by Shirase et al. [28]; the
loop unrolling technique proposed by Beuchat et al. [6]; an efficient multiplica-
tion in GF(36m) proposed by Gorla et al. [14]; reuse of the precomputed table
for the window multiplication in GF(3m), proposed by Takahashi et al. [30]; and
final exponentiation using the torus T2 over GF(3m), proposed by Shirase et
al. [29].

Cubing was performed with an 11-bit lookup table that computes
∑t+10

i=t

aix
3i for positive integer t, and the reduction by the irreducible polynomial.

Inversion was implemented by the extended Euclidean algorithm [18, Alg. 2.48]
for a ternary polynomial.

Table 5 lists the running time results for the ηT pairing over GF(3509). Each
listed running time is the average of 100,000 executions. We used the comb
method with w = 4 to compute the multiplication in GF(3m). As a result, we
obtained a running time of about 16.3 milliseconds for computing the ηT pairing
over GF(3509).
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Table 5. Running Time Comparison for ηT Pairing over GF(3509) (μsec)

Assignment Natural Type 1 Type 2
ηT pairing 17524.99 17238.31 16295.33

Table 6. Running Times for Arithmetic in GF(3m) and the ηT Pairing with the
Type 2 Assignment (μsec)

Degree(m) 97 167 193 239 353 509

Addition 0.0057 0.0075 0.0098 0.0098 0.0137 0.0175

Subtraction 0.0057 0.0075 0.0098 0.0098 0.0135 0.0176

Multiplication a 0.7706 1.3740 1.8223 1.8237 3.3079 4.5933

Cubing 0.0734 0.0955 0.1222 0.1297 0.1821 0.2820

Inversion 6.8932 13.6856 19.1599 23.8463 49.4362 94.3061

ηT Pairing b 614.96 1687.62 2611.45 3157.36 8299.48 16295.33

a Comb method with the window size w = 4 [18, Alg. 2.36].
b Loop unrolling [6], fast multiplication in GF(36m) [14], without cube root [28], final

exponentiation using torus T2 [29], reuse of precomputed table [30].

The efficiency improvement by using the Type 2 assignment instead of the
Natural assignment had almost the same ratio as that for the multiplication in
GF(3509) using the comb method with w = 4, since the dominant computational
cost of the ηT pairing is the multiplication in GF(3m). The ηT pairing for the
Type 1 assignment, however, was only 2% faster than that for the Natural as-
signment, because the shift requires additional cost in the cubing and inversion
for the Type 1 assignment.

Finally, we present the running times for arithmetic in GF(3m) and the ηT
pairing, using the Type 2 assignment with several degrees. We used irreducible
trinomials f(x) = xm+xk+2 with a given (m, k) = { (97, 12), (167, 96), (193, 12),
(239, 24), (353, 142), (509, 358)} 1. Table 6 lists the running time results for
computing arithmetic in GF(3m) and the ηT pairing.

For comparison, we give some recently reported efficient implementations of
arithmetic in GF(3509). Ahmadi et al. [1] reported the following timings. The ad-
dition in GF(3509) requires 0.09μsec, and the running time of the multiplication
in GF(3509), that is implemented by the comb method with w = 3, is 15.5μsec.
They depolyed an irreducible pentanomial f(x) = x509 − x477 + x445 + x32 − 1
for the polynomial basis of GF(3509). These running times were obtained on a
Pentium 4 processor (2.4 GHz), under Linux/x86 with GCC 3.3. Very recently,
Hankerson et al. [17] presented the following implementation. The timing of
the multiplication and the ηT pairing over GF(3509) is 10.6× 103 cycles (about
3.79μsec@2.8GHz) and 46×106 cycles (about 16.43msec@2.8GHz), respectively.

1 Page et al. [26] estimated that the discrete logarithm problems in GF(36m) with m =
97, 163, 193, 239, 353 have the security level of factoring 845, 912, 1080, 1338, 1976
bits, respectively.
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f(x) = x509−x318−x191+x127+1 was used for the polynomial basis of GF(3509).
These timings were obtained on 64-bit Opteron processor (2.8 GHz) using GCC
4.1 with neither SSE nor MMX.

5 Conclusion

In this paper, we have described our search for logical instruction sequences
implementing the GF(3)-addition in software. We considered a redundant rep-
resentation of GF(3) in GF(2)2 and an independent assignment of each GF(3)
via the addition map GF(3) × GF(3) → GF(3). We also deployed several log-
ical instructions provided in many CPUs, namely {AND, OR, XOR}, as well
as {ANDN, ORN, XORN, NAND, NOR}, available in the SPARC and Alpha
architectures, MMX, SSE, and other implementations.

As a result, we found many implementations of the GF(3)-addition with only
six logical instructions. Their representations in GF(2)2, however, do not use
the natural assignment {(0, 0) 	→ 0, (0, 1) 	→ 1, (1, 0) 	→ 2}, or their logical in-
structions include not only {AND, OR, XOR} but also other ones. Moreover,
we proved that the minimum number of logical instructions for constructing the
GF(3)-addition is six in any representation of GF(3) in GF(2)2 by using the
logical instructions {AND, OR, XOR, ANDN, ORN, XORN, NAND, NOR}.
Finally, we implemented the arithmetic in GF(3m) and the ηT pairing by apply-
ing the new GF(3)-addition with six logical instructions. The resulting running
time of the ηT pairing over GF(3509) was approximately 7% faster than that
using the GF(3)-addition with seven logical instructions, on an AMD Opteron
processor model 275 (2.2 GHz). Therefore, for an efficient implementation of the
ηT pairing, using the minimum number of logical instructions for computing the
GF(3)-addition is effective.
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Abstract. In this article we propose a study of the modified Tate
pairing in characteristics two and three. Starting from the ηT pairing
introduced by Barreto et al. [1], we detail various algorithmic improve-
ments in the case of characteristic two. As far as characteristic three is
concerned, we refer to the survey by Beuchat et al. [5]. We then show
how to get back to the modified Tate pairing at almost no extra cost.
Finally, we explore the trade-offs involved in the hardware implemen-
tation of this pairing for both characteristics two and three. From our
experiments, characteristic three appears to have a slight advantage over
characteristic two.

Keywords: Modified Tate pairing, reduced ηT pairing, finite field arith-
metic, elliptic curve, hardware accelerator, FPGA.

1 Introduction

Over the past few years, bilinear pairings over elliptic and hyperelliptic curves
have been the focus of an ever increasing attention in cryptology. Since their
introduction to this domain by Menezes, Okamoto & Vanstone [23] and Frey &
Rück [9], and the first discovery of their constructive properties by Mitsunari,
Sakai & Kasahara [26], Sakai, Oghishi & Kasahara [31], and Joux [17], a large
number of pairing-based cryptographic protocols have already been published.
For those reasons, efficient computation of pairings is crucial and, according to
the recommendations of [12, 21], the Tate pairing, rather than the Weil pairing,
appears to be the most appropriate choice.

Miller [24, 25] proposed in 1986 the first algorithm for iteratively comput-
ing the Weil and Tate pairings. In the case of the Tate pairing, a further final
exponentiation of the Miller’s algorithm result is required to obtain a uniquely
defined value. Various improvements were published in [2, 7, 10, 22] and we will
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consider in this paper the modified Tate pairing as defined in [2]. Generaliz-
ing some results by Duursma & Lee [7], Barreto et al. then introduced the ηT
pairing [1], in which the number of iterations in Miller’s algorithm is halved.
This nondegenerate bilinear pairing can also be used as a tool for computing the
modified Tate pairing, at the expense of an additional exponentiation.

General purpose microprocessors are intrinsically not suited for computa-
tions on finite fields of small characteristic, hence software implementations are
bound to be quite slow and the need for special purpose hardware coprocessors
is strong [5, 6, 11, 16, 18, 19, 20, 28, 29, 30, 33]. In this context, we extend
here to the characteristic two the results by Beuchat et al. [5] in the case of the
hardware implementation of the reduced ηT pairing in characteristic three.

In Section 2, we detail the algorithms required to compute the reduced ηT
pairing in characteristic two. Some algorithmic improvements in both the pairing
computation and the tower-field arithmetic are also presented, and an accurate
cost analysis in terms of operations over the base field F2m is given. We then
study in Section 3 the relation between the ηT and Tate pairings, and show
that the modified Tate pairing can be computed from the reduced ηT pairing at
almost no extra cost in characteristics two and three. Section 4 gives hardware
implementation results of the modified Tate pairing in both characteristics and
for various field extension degrees. Comparisons between F2m and F3m are pre-
sented at equivalent levels of security and they show a slight advantage in favor
of characteristic three. Finally, some comparisons with already published solu-
tions are also given to attest the meaningfulness of our results. Supplementary
material is available in a research report version of this paper [4].

2 Computation of the Reduced ηT Pairing in
Characteristic Two

2.1 Preliminary Definitions

We consider the supersingular curve E over F2m defined by the equation

y2 + y = x3 + x+ b, (1)

where b ∈ {0, 1} and m is an odd integer. We define δ = b when m ≡ 1, 7
(mod 8); in all other cases, δ = 1 − b. The number of rational points of E over
F2m is given by N = #E(F2m) = 2m + 1 + ν2(m+1)/2, where ν = (−1)δ [2]. The
embedding degree of this curve, which is the least positive integer k such that
N divides 2km − 1, is 4.

Choosing T = 2m − N and a prime � dividing N , Barreto et al. [1] defined
the ηT pairing of two points P and Q ∈ E(F2m)[�] as:

ηT (P,Q) = fT ′,P ′(ψ(Q)),

where T ′ = −νT , P ′ = [−ν]P , and E(F2m)[�] denotes the �-torsion subgroup of
E(F2m). The distortion map ψ is defined from E(F2m)[�] to E(F24m)[�] as

ψ(x, y) = (x+ s2, y + sx+ t),
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for all (x, y) ∈ E(F2m)[�] [1]. The elements s and t of F24m satisfy s2 = s + 1
and t2 = t + s. This allows for representing F24m as an extension of F2m using
the basis (1, s, t, st): F24m = F2m [s, t] ∼= F2m [X,Y ]/(X2 +X + 1, Y 2 + Y +X).
Finally, fT ′,P ′ is an element of F2m(E), where F2m(E) denotes the function field
of the curve, and is given by

fT ′,P ′ : E(F24m)[�] −→ F∗
24m

ψ(Q) 	−→

⎛

⎝
m−1

2∏

i=0

g[2i]P ′(ψ(Q))2
m−1

2 −i

⎞

⎠ lP ′(ψ(Q)), (2)

where:

– The point doubling formula is given by
[
2i
]
P ′ =

(
x22i

P ′ + i, y2
2i

P ′ + ix22i

P ′ + τ(i)
)

,

with

τ(i) =

{
0 if i ≡ 0, 1 (mod 4),
1 otherwise.

– gV , for all V = (xV , yV ) ∈ E(F2m)[�], is the rational function defined over
E(F24m)[�] corresponding to the doubling of V . For all (x, y) ∈ E(F24m)[�],
we have gV (x, y) = (x2

V +1)(xV +x)+ yV + y [1]. According to the equation
of the elliptic curve (1), x3

V + xV + yV is equal to y2V + b and we obtain [33]:

gV (x, y) = x(x2
V + 1) + y2V + y + b. (3)

We considered both forms of gV (x, y) when studying ηT pairing algorithms
over F2m and discovered that the second one always leads to the fastest
algorithms.

– lV , for all V = (xV , yV ) ∈ E(F2m)[�], is the equation of the line corresponding
to the addition of

[
2

m+1
2

]
V with [ν]V , and defined for all (x, y) ∈ E(F24m)[�]

as follows:

lV (x, y) = x2
V + (xV + α)(x + α) + x+ yV + y + δ + 1 +

(xV + x+ 1 − α)s+ t, (4)

where

α =

{
0 if m ≡ 3 (mod 4),
1 if m ≡ 1 (mod 4).

2.2 Computation of the ηT Pairing in Characteristic Two

Barreto et al. suggested reversing the loop to compute the ηT pairing [1]. They
introduced the new index j = m−1

2 − i and obtained

fT ′,P ′(ψ(Q)) = lP ′(ψ(Q))

m−1
2∏

j=0

(

g[
2

m−1
2 −j

]
P ′

(ψ(Q))

)2j

.
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A tedious case-by-case analysis allows one to prove that:

(

g[
2

m−1
2 −j

]
P ′

(ψ(Q))

)2j

= (x2−j

P ′ + α) · (x2j

Q + α) + y2
−j

P ′ + y2
j

Q + β +

(x2−j

P ′ + x2j

Q + α)s+ t,

where

β =

{
b if m ≡ 1, 3 (mod 8),
1 − b if m ≡ 5, 7 (mod 8).

This equation differs from the one given by Barreto et al. [1]: taking advantage
of the second form of gV (3), we obtain a slight reduction in the number of
additions over F2m .

We suggest a second improvement to save a multiplication over F2m . At first
glance multiplying lP ′(ψ(Q)) by g[

2
m−1

2

]
P ′

(ψ(Q)) involves three multiplications

over F2m . However, when j = 0, we have:

g[
2

m−1
2

]
P ′

(ψ(Q)) = (xP ′ + α)(xQ + α) + yP ′ + yQ + β + (xP ′ + xQ + α)s+ t.

Seeing that α+ β = δ + 1, we rewrite lP ′(ψ(Q)) as follows:

lP ′(ψ(Q)) = g[
2

m−1
2

]
P ′

(ψ(Q)) + x2
P ′ + xQ + α+ s.

Defining g0 = (xP ′ + α)(xQ + α) + yP ′ + yQ + β, g1 = xP ′ + xQ + α, and
g2 = x2

P ′ + xQ + α, we eventually obtain:

g[
2

m−1
2

]
P ′

(ψ(Q)) = g0 + g1s+ t and lP ′(ψ(Q)) = (g0 + g2) + (g1 + 1)s+ t.

The product lP ′(ψ(Q)) · g[
2

m−1
2

]
P ′

(ψ(Q)) can be computed by means of two

multiplications over F2m (see [4, Appendix D.2]). Algorithm 1 describes the
computation of the ηT pairing according to this construction. Addition over F2m

involves m bitwise exclusive-OR operations that can be implemented in parallel.
We refer to this operation as addition (A) when we give the cost of an algorithm.
However, the addition of an element of F2 requires a single exclusive-OR opera-
tion, denoted by XOR. Additionally, M denotes multiplications, S squarings and
R square roots. We also introduce δ̄ = 1 − δ.

The first step consists in computing P ′ = [−ν]P (line 1). Multiplication over
F24m usually requires nine multiplications and twenty additions over F2m . How-
ever, the sparsity of G (as given line 13) allows one to compute the product F ·G
(line 14) by means of only six multiplications and fourteen additions over F2m

(see [4, Appendix D.2] for further details). Contrary to what was suggested by
Ronan et al. [29], the loop unrolling technique introduced by Granger et al. [13]
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in the context of the Tate pairing in characteristic three turns out to be useless
in our case. Let Gj and Gj+1 denote the values of G at iterations j and j + 1,
respectively. Algorithm 1 computes (F ·Gj) ·Gj+1 by means of twelve multipli-
cations and some additions over F2m . The loop unrolling trick consists in taking
advantage of the sparsity of Gj and Gj+1: only three multiplications over F2m

are required to compute the product Gj ·Gj+1. Unfortunately, the result is not
a sparse polynomial, and the multiplication by F involves nine multiplications
over F2m . Thus, computing (Gj · Gj+1) · F instead of (F · Gj) · Gj+1 does not
decrease the number of multiplications over the underlying field.

Algorithm 1. Computation of the ηT pairing in characteristic two: reversed-
loop approach with square roots.
Input: P , Q ∈ F2m [�].
Output: ηT (P, Q) ∈ F∗

24m .
1. yP ← yP + δ̄; (δ̄ XOR)

2. u ← xP + α; v ← xQ + α (2α XOR)
3. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
4. g1 ← u + xQ; g2 ← v + x2

P ; (1 S, 2 A)
5. G ← g0 + g1s + t;
6. L ← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)
7. F ← L · G; (2 M, 1 S, 5 A, 2 XOR)

8. for j = 1 to m−1
2 do

9. xP ← √
xP ; yP ← √

yP ; xQ ← x2
Q; yQ ← y2

Q; (2 R, 2 S)
10. u ← xP + α; v ← xQ + α (2α XOR)
11. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
12. g1 ← u + xQ; (1 A)
13. G ← g0 + g1s + t;
14. F ← F · G; (6 M, 14 A)
15. end for

16. return F M ;

The square roots in Algorithm 1 could be computed according to the tech-
nique described by Fong et al. [8]. However, this approach would require ded-
icated hardware and could potentially slow down a pairing coprocessor. Thus,
it is attractive to study square-root-free algorithms which allow one to design
simpler arithmetic and logic units. Another argument preventing the usage of
square roots is that the complexity of their computation heavily depends on the
particular irreducible polynomial selected for representing the field F2m . On the
other hand, the complexity of squarings is somehow more independent of the
irreducible polynomial [27, 32]. To get rid of the square roots, we remark that

ηT (P,Q) = ηT
([

2−
m−1

2

]
P,Q

)2
m−1

2

.
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Let [2j]Q =
(
x[2j ]Q, y[2j ]Q

)
. Since

g[
2

m−1
2 −j

]([
2− m−1

2

]
P ′

) (ψ(Q)) = g[2−j ]P ′(ψ(Q)),

the ηT pairing is equal to

fT ′,P ′(ψ(Q)) = l[
2− m−1

2

]
P ′

(ψ(Q))2
m−1

2

m−1
2∏

j=0

((
g[2−j ]P ′(ψ(Q))

)22j)2
m−1

2 −j

,

where

l[
2− m−1

2

]
P ′

(ψ(Q)) = x2
P ′(x2

P ′ + xQ + α) + (α+ 1)x2
P ′ + y2P ′ + yQ +

γ + δ + (x2
P ′ + xQ)s+ t,

(
g[2−j ]P ′(ψ(Q))

)22j

=
(
x2

P ′ + 1
)
·
(
x[2j ]Q + 1

)
+

y2P ′ + y[2j ]Q + b+
(
x2

P + x[2j ]Q + 1
)
s+ t,

and

γ =

{
0 if m ≡ 1, 7 (mod 8),
1 if m ≡ 3, 5 (mod 8).

Again, one can simplify the computation of the product l[
2− m−1

2

]
P ′

(ψ(Q)) ·

gP ′(ψ(Q)). Noting that γ + δ = b and defining g′0 = x2
P ′xQ + x2

P ′ + xQ + y2P ′ +
yq + b+ 1, g′1 = x2

P ′ + xQ + 1, and g′2 = x4
P ′ + xQ + 1, we obtain

l[
2− m−1

2

]
P ′

(ψ(Q)) · gP ′(ψ(Q)) = ((g′0 + g′2) + (g′1 + 1)s+ t) · (g′0 + g′1s+ t).

An implementation of the ηT pairing following this construction is given in Al-
gorithm 2.

We also studied direct approaches based on Equation (2). However, they
turned out to be slower and we will not consider such algorithms in this pa-
per (see [4, Appendix A] for details).

2.3 Final Exponentiation

The ηT pairing has to be reduced in order to be uniquely defined. We have to
raise ηT (P,Q) to the Mth power, where

M =
24m − 1
N

= (22m − 1)(2m + 1 − ν2
m+1

2 ).

Two algorithms have been proposed in the open literature for ν = 1 and ν = −1,
respectively:



Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 303

Algorithm 2. Computation of the ηT pairing in characteristic two: reversed-
loop approach without square roots.
Input: P , Q ∈ F2m [�].
Output: ηT (P, Q) ∈ F∗

24m .
1. yP ← yP + δ̄; (δ̄ XOR)

2. xP ← x2
P ; yP ← y2

P ; (2 S)
3. yP ← yP + b; u ← xP + 1; (b + 1 XOR)
4. g1 ← u + xQ; (1 A)
5. g0 ← xP · xQ + yP + yQ + g1; (1 M, 3 A)
6. xQ ← xQ + 1; (1 XOR)
7. g2 ← x2

P + xQ; (1 S, 1 A)
8. G ← g0 + g1s + t;
9. L ← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)

10. F ← L · G; (2 M, 1 S, 5 A, 2 XOR)

11. for j ← 1 to m−1
2 do

12. F ← F 2; (4 S, 4 A)
13. xQ ← x4

Q; yQ ← y4
Q; (4 S)

14. xQ ← xQ + 1; yQ ← yQ + xQ; (1 A, 1 XOR)
15. g0 ← u · xQ + yP + yQ; (1 M, 2 A)
16. g1 ← xP + xQ; (1 A)
17. G ← g0 + g1s + t;
18. F ← F · G; (6 M, 14 A)
19. end for
20. Return F M ;

– Ronan et al. [29] assumed that ν = 1, unrolled the different powering, and
grouped the inversions together. Thus, their final exponentiation algorithm
involves a single inversion over F24m .

– Shu et al. [33] noted that raising the ηT pairing to the power of 22m − 1
requires only one inversion over F22m . When ν = −1, the second part of the
final exponentiation consists in raising this intermediate result to the power
of 2m + 1 + 2

m+1
2 .

In the following, we show that the final exponentiation of the ηT pairing in
characteristic two always involves a single inversion over F22m . SinceM = (22m−
1)(2m + 1) + ν(1 − 22m)2

m+1
2 , we compute

ηT (P,Q)M =
(
ηT (P,Q)2

2m−1
)2m+1

·
(
ηT (P,Q)ν(1−22m)

)2
m+1

2

,

and we remark that the final exponentiation requires a single inversion over
F22m

. Let U = ηT (P,Q) ∈ F∗
24m . Writing U = U0 +U1t, where U0 and U1 ∈ F22m

and noting that t2
2m

= t + 1, we obtain U22m

= U0 + U1 + U1t. Therefore, we
have:
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U22m−1 =
U0 + U1 + U1t

U0 + U1t
=

(U0 + U1 + U1t)2

(U0 + U1t) · (U0 + U1 + U1t)

=
U2

0 + U2
1 + U2

1 s+ U2
1 t

U2
0 + U0U1 + U2

1 s
, and

U1−22m

=
U0 + U1t

U0 + U1 + U1t
=
U2

0 + U2
1 s+ U2

1 t

U2
0 + U0U1 + U2

1 s
,

where U2
0 + U0U1 + U2

1 s ∈ F22m . Algorithm 3 summarizes the computation of
the ηT (P,Q)M :

– According to our notation, we have U = U0 +U1t, where U0 = u0 + u1s and
U1 = u2 + u3s. Since s2 = s+ 1, we remark that:

U2
0 = (u2

0 + u2
1) + u2

1s,

U2
1 = (u2

2 + u2
3) + u2

3s, U2
1 s = u2

3 + u2
2s.

Therefore, 4 squarings and 2 additions over F2m allow us to get T0 = U2
0 ,

T1 = U2
1 , and T2 = U2

1 s.
– Multiplication over F22m on line 3 is performed according to the Karatsuba-

Ofman’s scheme and involves three multiplications and four additions over
F2m :

T3 = U0U1 = u0u2 + u1u3 + ((u0 + u1)(u2 + u3) + u0u2)s.

– Thanks to the tower field, inversion of D = U2
0 + U0U1 + U2

1 s ∈ F22m is
replaced by an inversion (denoted by I), a squaring, three multiplications,
and two additions over F2m (see [4, Appendix C] for details).

– The next step consists in computing V = V0 + V1t = U22m−1 and W =
W0 +W1t = Uν(1−22m), where V0, V1, W0, and W1 ∈ F22m . Defining T5 =

U2
0 +U2

1 s

U2
0 +U0U1+U2

1 s
and T6 = U2

1
U2

0 +U0U1+U2
1 s

(line 6), we easily check that U22m−1 =

(T5 + T6) + T6t and U1−22m

= T5 + T6t. Thus,

V0 = T5 + T6, W0 =

{
T5 + T6 if ν = −1,
T6 if ν = 1,

V1 =W1 = T6.

– Raising V = V0 + V1t ∈ F∗
24m to the (2m + 1)th power over F24m (line 15)

consists in multiplying V 2m by V . This operation turns out to be less ex-
pensive than the usual multiplication over F24m (see [4, Appendix D.3] for
details).

2.4 Overall Cost Evaluations

Table 1 summarizes the costs of the algorithms studied in this section in terms
of arithmetic operations over F2m . Software implementations benefit from the
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Algorithm 3. Final exponentiation of the reduced ηT pairing.
Input: U = u0 + u1s + u2t + u3st ∈ F∗

24m .
The intermediate variables mi belong to F2m . The Ti’s, Vi’s, Wi’s, and D belong
to F22m . V and W ∈ F24m .

Output: V = UM ∈ F∗
24m , with M = (22m + 1)(2m − ν2

m+1
2 + 1).

1. m0 ← u2
0; m1 ← u2

1; m2 ← u2
2; m3 ← u2

3; (4 S)

2. T0 ← (m0 + m1) + m1s; T1 ← (m2 + m3) + m3s; (2 A)
3. T2 ← m3 + m2s; T3 ← (u0 + u1s) · (u2 + u3s); (3 M, 4 A)
4. T4 ← T0 + T2; D ← T3 + T4; (4 A)
5. D ← D−1; (1 I, 3 M, 1 S, 2 A)
6. T5 ← T1 · D; T6 ← T4 · D; (6 M, 8 A)
7. V0 ← T5 + T6; (2 A)
8. V1, W1 ← T5;
9. if ν = −1 then

10. W0 ← V0;
11. else
12. W0 ← T6;
13. end if

14. V ← V0 + V1t; W ← W0 + W1t;
15. V ← V 2m+1 (5 M, 2 S, 9 A)
16. for i ← 1 to m+1

2 do
17. W ← W 2; (4 S, 4 A)
18. end for
19. Return V · W ; (9 M, 20 A)

Extended Euclidean Algorithm (EEA) to perform the inversion over F2m . How-
ever, supplementing a pairing coprocessor with dedicated hardware for the EEA
is not the most appropriate solution. Computing the inverse of a ∈ F2m by
means of multiplications and squarings over F2m according to Fermat’s little
theorem and Itoh and Tsujii’s work [15] allows one to keep the circuit area as
small as possible without impacting too severely on the performances [3]. Since

a−1 =
(
a2

m−1−1
)2

, we first raise a to the power of 2m−1−1 using a Brauer-type

addition chain for m− 1. Then, a squaring over F2m suffices to obtain a−1. We
reported the cost of this inversion scheme for typical values of m in Table 2.

3 Computation of the Modified Tate Pairing

Several researchers designed hardware accelerators over F2m and F3m for the
modified Tate pairing. According to Barreto et al. [1], a second exponentiation
allows one to compute the modified Tate pairing from the reduced ηT pairing.
Thus, the modified Tate pairing is believed to be slower and a comparison be-
tween architectures for the modified Tate and ηT pairings would be unfair. Here,
we take advantage of the bilinearity of the reduced ηT pairing and show how to
get the modified Tate pairing almost for free.
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Table 1. Cost of the presented algorithms for computing the reduced ηT pairing in
characteristic two in terms of operations over the underlying field F2m

ηT pairing with ηT pairing without
Final Exponentiationsquare roots square root

(Algorithm 3)(Algorithm 1) (Algorithm 2)

Additions 10 + 17 · m−1
2 11m 2m + 53

XORs
3 + δ̄ +

5 + δ̄ + b + m−1
2 –

(2α + β) · m+1
2

Multiplications 3 + 7 · m−1
2 3 + 7 · m−1

2 26

Squarings m + 1 4m 2m + 9

Square roots m − 1 – –

Inversions – – 1

Table 2. Cost of inversion over F2m according to Itoh and Tsujii’s algorithm in terms
of multiplications and squarings

Field F2239 F2251 F2283 F2313

Cost 10 M, 238 S 10 M, 250 S 11 M, 282 S 10 M, 312 S

3.1 Modified Tate Pairing in Characteristic Two

The modified Tate pairing in characteristic two is given by ê(P,Q)M =
ηT (P,Q)MT , where M = 24m−1

N and T = 2m − N [1]. Let V = ηT (P,Q)M .
We have V N = ηT (P,Q)2

4m−1 = 1. Since ηT (P,Q)M is a bilinear pairing, we
obtain:

ê(P,Q)M = V T = V 2m−N = V 2m

= ηT (P,Q)M·2m

= ηT ([2m]P,Q)M ,

where [2m]P = (xP +1, xP + yP +α+1). Thus, it suffices to provide a hardware
accelerator for the reduced ηT pairing with [2m]P and Q to get the modified
Tate pairing. Since this preprocessing step involves an XOR operation and an
addition over F2m , it can be computed in software. Conversely, a processor for the
modified Tate pairing computes the ηT pairing if its inputs are [2−m]P and Q:

ηT (P,Q)M = ê([2−m]P,Q)M ,

where [2−m]P = (xP + 1, xP + yP + α).

3.2 Modified Tate Pairing in Characteristic Three

The same approach allows one to compute the modified Tate pairing in charac-
teristic three. Letm be a positive integer coprime to 6 and E be the supersingular
elliptic curve defined by E : y2 = x3 − x+ b, where b ∈ {−1, 1}. The number of
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rational points of E over F3m is given by N = #E(F3m) = 3m + 1 + μb3
m+1

2 [2],
with

μ =

{
1 if m ≡ 1, 11 (mod 12),

−1 if m ≡ 5, 7 (mod 12).

In characteristic three, we have the following relation between the reduced ηT
and modified Tate pairings [1]:

(
ηT (P,Q)M

)3T 2

=
(
ê(P,Q)M

)L
,

with M = 36m−1
N , T = 3m −N , and L = −μb3 m+3

2 . Defining V = ηT (P,Q)M ∈
F∗

36m and seeing that V N = 1, we obtain

V 3T 2
= V 32m+1−2·3m+1·N+3N2

= V 32m+1
.

Dividing by L at the exponent level, we finally get the following relation between
the reduced ηT and modified Tate pairings:

ê(P,Q)M = V
32m+1

L

= V −μb3
3m−1

2 = ηT
([
−μb3

3m−1
2

]
P,Q

)M

,

where
[
−μb3 3m−1

2

]
P = ( 3

√
xP − b,−μbλ 3

√
yP ) and

λ = (−1)
m+1

2 =

{
1 if m ≡ 7, 11 (mod 12),

−1 if m ≡ 1, 5 (mod 12).

Again, the overhead introduced is negligible compared to the calculation time of
the reduced ηT pairing. Consider now the cube-root-free reversed-loop algorithm
proposed by Beuchat et al. (Algorithm 4 in [5]). In this case, we suggest to

compute ηT
(
[−μb]P,

[
3

3m−1
2

]
Q
)M

. Surprisingly, the modified Tate pairing in
characteristic three turns out to be slightly less expensive than the ηT pairing:
we save two cubings and one addition over F3m (see [4, Appendix B] for details).
Conversely, a processor for the modified Tate pairing provided with [−μb]P and[
3

−3m+1
2

]
Q will return the reduced ηT pairing.

4 Implementation Results and Comparisons

4.1 A Unified Operator for the Arithmetic over F2m and F3m

In [3], Beuchat et al. presented an FPGA-based accelerator for the computation
of the ηT pairing in characteristic three. The coprocessor was based on a uni-
fied operator capable of handling all the necessary arithmetic operations over
the base field F3m . This streamlined design led to smaller circuits while retain-
ing competitive performances with respect to the other published architectures.
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For these reasons, we chose to use such a unified operator for our own imple-
mentations in characteristic three. We also adapted the operator for supporting
finite-field arithmetic in characteristic two.

The core of this unified operator is an array multiplier [34] for computing the
product of two elements of Fpm (where p = 2 or 3), represented in a polynomial
basis using a degree-m polynomial f(x) irreducible over Fp: Fpm ∼= Fp[x]/(f(x)).
D coefficients of the multiplicand are processed at each clock cycle. The D cor-
responding partial products are then shifted and reduced modulo f(x) according
to their respective weight, and finally summed into a register thanks to a tree of
adders over Fpm . A feedback loop allows the accumulation of the previous partial
products. A product over Fpm is therefore computed in �m/D� clock cycles.

With only slight modifications, it is possible for this multiplier to also sup-
port the other operations required by the computation of the modified Tate
pairing. For instance, bypassing the shift/modulo-f(x) reduction stage allows
for additions, subtractions and accumulations. Similarly, the Frobenius endo-
morphism (i.e. squaring in characteristic two or cubing in characteristic three)
only amounts to a linear combination of the coefficients of the polynomial. This
linear combination can be computed at design time and then directly hard-wired
as an alternative datapath during the shift/modulo stage.

4.2 Characteristic Two Versus Characteristic Three

It is common knowledge that arithmetic over F2m is more compact and efficient
than over F3m . However, due to the different embedding degrees enjoyed by the
elliptic curves of interest, competitive levels of security for pairing implementa-
tions in characteristic two are only achieved at the price of working over extension
degrees much larger than what their counterparts in characteristic three require.

For a better understanding of this trade-off, we present here FPGA imple-
mentation results of a coprocessor for the modified Tate pairing in both char-
acteristics two and three. The coprocessor is based on the previously described
unified operator and implements the square- and cube-root-free reversed-loop
algorithms (Algorithm 2, and Algorithm 4 in [5]) along with the corresponding
final exponentiation. We also experimented with several values for D, aiming at
a more exhaustive study of the trade-off between cost and performances.

Tables 3 and 4 present the post-place-and-route results for characteristic two
and three respectively. These results were obtained for a Xilinx Virtex-II Pro 20
FPGA with average speedgrade, using the Xilinx ISE 9.2i tool suite. The two
tables are also summarized in Figure 1.

The given results show a slight advantage of characteristic three over charac-
teristic two, for all the studied levels of security. This goes against the perfor-
mances obtained by Barreto et al. in the case of software implementation [1],
but also against the hardware results published by Shu et al. in [33]. Of course,
this observation remains closely related to our unified architecture. However, as
detailed in the following, our coprocessors perform better than the previously
published solutions in terms of area-time product, which leads us to believe this
observation to be accurate.
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Table 3. Implementation results of the modified Tate pairing in characteristic two
using our unified operator (on a Xilinx Virtex-II Pro xc2vp20, speedgrade -6)

Field
Security

D
Area Frequency

#cycles
Estimated

[bits] [slices] [MHz] calc. time [μs]

7 2366 199 39075 196
F2239 956 15 2736 165 20830 127

31 4557 123 13147 107

7 2270 185 41969 227
F2251 1004 15 3140 145 22846 157

31 4861 126 14794 117

7 2517 169 52820 313
F2283 1132 15 3481 140 27942 200

31 5350 127 17765 140

7 2661 182 63167 347
F2313 1252 15 3731 156 33283 213

31 6310 111 20831 186

7 3809 168 129780 771
F2459 1836 15 5297 135 66589 492

31 8153 115 37601 327

Table 4. Implementation results of the modified Tate pairing in characteristic three
using our unified operator (on a Xilinx Virtex-II Pro xc2vp20, speedgrade -6)

Field
Security

D
Area Frequency

#cycles
Estimated

[bits] [slices] [MHz] calc. time [μs]
3 1896 156 27800 178

F397 922 7 2711 128 14954 117
15 4455 105 9657 92

3 2003 151 32649 217
F3103 980 7 2841 126 16633 132

15 4695 103 10227 99

3 2223 140 41788 299
F3119 1132 7 3225 125 20814 166

15 5293 99 12607 127

3 2320 149 47234 317
F3127 1208 7 3379 129 24028 186

15 5596 99 14349 145

3 3266 147 100668 682
F3193 1835 7 4905 111 48205 433

15 8266 90 26937 298
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Fig. 1. Area (left) and calculation time (right) for the modified Tate pairing on our
unified operator, in both characteristics two and three, for various extension degrees
and different values for the parameter D

Moreover, the optimal number D of coefficients processed per clock cycle for
the array multiplier appears to be 15 in characteristic two and 7 in characteristic
three. However, modifying the value of this parameter changes only marginally
the overall area-time product. According to the requirements of each application
in terms of area and speed, one can then select the most appropriate value for D.

4.3 Comparisons

Tables 5, 6 and 7 present the cost and performances of other coprocessors for
the computation of the modified Tate and reduced ηT pairings in characteristics
two and three as published in the open literature. The results are summarized
in Figure 2 as a comparison of these solutions against our proposed architecture
in terms of their area-time product.

Despite its inherent lack of parallelism between operations, our unified opera-
tor greatly benefits from its compact design in order to reach higher frequencies.
Combined with the algorithmic improvements described in this paper and in [5],
this leads to competitive calculation times. Additionally, the streamlined design
allows for reaching higher extension degrees and levels of security without risking
to exhaust the FPGA resources: the slow increase of the area-time product with
the security level of the system hints at the high scalability of the coprocessor.

Finally, the good performances of our solution against the previously pub-
lished works vouches for a strong confidence in the outcome of our comparison
between characteristics two and three for the hardware implementation of the
modified Tate pairing.

5 Conclusion

We discussed several algorithms to compute the ηT pairing and its final expo-
nentiation in characteristic two. We then showed how to get back to the modified
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Table 5. FPGA-based accelerators for the modified Tate pairing over F2m in the
literature. The parameter D refers to the number of coefficients processed at each
clock cycle by a multiplier. The architectures by Shu et al. [33] include four kinds of
multipliers.

Curve FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [μs]
6 16

Shu et al. [33] E(F2239) xc2vp100
1 4

25287 84 41
1 1
1 2

1 16621 50 6440
Keller et al. [18] E(F2251) xc2v6000 13 6 21955 43 2580

10 27725 40 2370

1 6 3788 40 4900
Keller et al. [19] E(F2251) xc2v6000 3 6 6181 40 3200

9 6 13387 40 2600

1 18599 50 7980
Keller et al. [18] E(F2283) xc2v6000 13 4 22636 49 3230

6 24655 47 2810

1 6 4273 40 6000
Keller et al. [19] E(F2283) xc2v6000 3 6 6981 40 3800

9 6 15065 40 3000

6 32

Shu et al. [33] E(F2283) xc2vp100
1 4

37803 72 61
1 1
1 2

4 34675 55 203
Ronan et al. [29] E(F2313) xc2vp100 14 8 41078 50 124

12 44060 33 146

4 21021 51 206
Ronan et al. [30] C(F2103 ) xc2vp100 20 8 24290 46 152

16 30464 41 132

Table 6. FPGA-based accelerators for the modified Tate pairing over F397 in the
literature. The parameter D refers to the number of coefficients processed at each
clock cycle by a multiplier.

FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [μs]
Grabher and Page [11] xc2vp4 1 4 4481 150 432.3

Kerins et al. [20] xc2vp125 18 4 55616 15 850
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Table 7. FPGA-based accelerators for reduced ηT pairing over F397 in the literature.
The parameter D refers to the number of coefficients processed at each clock cycle by
a multiplier.

FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [μs]
Ronan et al. [28] xc2vp100 5 4 10540 84.8 187

Jiang [16] xc4vlx200 Not specified 7 74105 77.7 20.9

Beuchat et al. [5] xc2vp4 1 3 1833 145 192

Beuchat et al. [6]
xc2vp30 9 3 10897 147 33.0
xc4vlx25 9 3 11318 200 24.2

0.1
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900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Security [bits]

AT product [slices · s]

[33]

[33]

[18]
[18]
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[19]

[29]
[30]

[11], [28]

[20]

[16]

[6]

Unified operator, char. 2 (D = 15)
Unified operator, char. 3 (D = 7)
Results from the literature

Fig. 2. Area-time product of the proposed coprocessor for the modified Tate pairing
in characteristics two and three against the other solutions published in the literature

Tate pairing at almost no extra cost. Finally, we explored the trade-offs involved
in the hardware implementation of the modified Tate pairing for both charac-
teristic two and three. Our architectures are based on the unified arithmetic
operator introduced in [3], and achieve a better area-time trade-off compared to
previously published solutions [11, 16, 18, 19, 20, 28, 29, 30, 33].

Our modified Tate pairing coprocessors embed a single multiplier. A challenge
consists in designing parallel architectures with the same (or even a smaller) area-
time product. Future work should also include a study of the ηT pairing over
genus-2 curves. The Ate pairing [14] would also be of interest, for it generalizes
to ordinary curves the improvements introduced by the ηT pairing in the case
of supersingular curves.
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8. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Transactions on Computers 53(8), 1047–1059 (2004)

9. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Mathematics of Computation 62(206),
865–874 (1994)

10. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

11. Grabher, P., Page, D.: Hardware acceleration of the Tate pairing in characteristic
three. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 398–411.
Springer, Heidelberg (2005)

12. Granger, R., Page, D., Smart, N.P.: High security pairing-based cryptography re-
visited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp.
480–494. Springer, Heidelberg (2006)



314 J.-L. Beuchat et al.

13. Granger, R., Page, D., Stam, M.: On small characteristic algebraic tori in pairing-
based cryptography. LMS Journal of Computation and Mathematics 9, 64–85
(2006)

14. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions
on Information Theory 52(10), 4595–4602 (2006)

15. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and Computation 78, 171–177 (1988)

16. Jiang, J.: Bilinear pairing (Eta T Pairing) IP core. Technical report, City Univer-
sity of Hong Kong – Department of Computer Science (May 2007)

17. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

18. Keller, M., Kerins, T., Crowe, F., Marnane, W.P.: FPGA implementation of a
GF(2m) Tate pairing architecture. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S.
(eds.) ARC 2006. LNCS, vol. 3985, pp. 358–369. Springer, Heidelberg (2006)

19. Keller, M., Ronan, R., Marnane, W.P., Murphy, C.: Hardware architectures for the
Tate pairing over GF(2m). Computers and Electrical Engineering 33(5–6), 392–406
(2007)

20. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M.: Efficient hardware
for the Tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

21. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

22. Kwon, S.: Efficient Tate pairing computation for elliptic curves over binary fields.
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30. Ronan, R., ÓhÉigeartaigh, C., Murphy, C., Scott, M., Kerins, T.: Hardware accel-
eration of the Tate pairing on a genus 2 hyperelliptic curve. Journal of Systems
Architecture 53, 85–98 (2007)

31. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: 2000
Symposium on Cryptography and Information Security (SCIS 2000), Okinawa,
Japan, pp. 26–28 (January 2000)

http://crypto.stanford.edu/miller


Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 315

32. Scott, M.: Optimal irreducible polynomials for GF(2m) arithmetic. Cryptology
ePrint Archive, Report 2007/192 (2007)

33. Shu, C., Kwon, S., Gaj, K.: FPGA accelerated Tate pairing based cryptosystem
over binary fields. In: Proceedings of the IEEE International Conference on Field
Programmable Technology – FPT 2006, pp. 173–180. IEEE, Los Alamitos (2006)

34. Song, L., Parhi, K.K.: Low energy digit-serial/parallel finite field multipliers. Jour-
nal of VLSI Signal Processing 19(2), 149–166 (1998)



One-Round ID-Based Blind Signature Scheme

without ROS Assumption�

Wei Gao1,2, Guilin Wang3, Xueli Wang4, and Fei Li5

1 College of Mathematics and Information, Ludong University,
Yantai 264025, China

2 Guangdong Key Laboratory of Information Security Technology,
Guangzhou 510275, China
sdgaowei@yahoo.com.cn

3 School of Computer Science, University of Birmingham
Birmingham B15 2TT, UK
G.Wang@cs.bham.ac.uk

4 School of Mathematics Science, South China Normal University,
Guangzhou 510631, China
wangxuyuyan@yahoo.com.cn

5 College of Mathematics and Information, Ludong University,
Yantai 264025, China
miss lifei@163.com

Abstract. In this paper, we propose the first one-round identity-based
blind signature (IDBS) scheme without ROS assumption, which supposes
that it is infeasible to find an overdetermined, solvable system of linear
equations modulo q with random inhomogenities [25]. Our construction
has the following features. First, it achieves the optimal bound of round
complexity for blind signatures, i.e., each signature can be generated with
one round (or two moves) of message exchanges between the signer and
signature requesting user. Second, the proposed IDBS scheme is prov-
ably secure against generic parallel attack without relying on the ROS
assumption. This means our scheme can guarantee the same security level
with smaller security parameter, in contrast to some IDBS schemes with
ROS assumptions, such as the IDBS deduced from the blind Schnorr sig-
nature. Third, our construction is based on bilinear pairings from scratch
(i.e. without using existing identity-based signature schemes, and with-
out using existing computational assumptions). Finally, the security of
our IDBS is based on a new formalized assumption, called one-more bi-
linear Diffie-Hellman inversion (1m-BDHI) assumption.

1 Introduction

Background. In 1984, Shamir [26] introduced the concept of identity-based
(ID-based for short) public key cryptosystems to simplify key management pro-
cedures in certificate-based public key setting. ID-based cryptosystems have a
� This work is partially supported by National Natural Science Foundation of China

CNF10771078 and Open Fund of Guangdong Key Laboratory of Information Secu-
rity Technology.

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 316–331, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



One-Round ID-Based Blind Signature Scheme without ROS Assumption 317

property that a user’s public key can be easily derived from his identity by a
publicly available function, while his private key can be calculated for him by a
trusted authority, called Private Key Generator (PKG). They enable any pair of
users to communicate securely without exchanging public key certificates, with-
out keeping a public key directory, and without using online service of a third
party, as long as the trusted PKG issues a private key to each user when he
first joins the network. So they can be a good alternative for certificate-based
public key infrastructure (PKI), especially when efficient key management and
moderate security are required.

Bilinear pairings are the main tools to construct new ID-based cryptographic
primitives. In 2000, Joux [20] used the Weil pairing to construct a one-round tri-
partite Diffie-Hellman key agreement protocol. After Joux’s breakthrough, many
ID-based cryptographic schemes have been proposed using bilinear pairings [15].
In Crypto 2001, Boneh and Franklin [8] presented an ID-based encryption scheme
based on bilinear pairings which is the first fully functioning, efficient and prov-
ably secure ID-based encryption scheme. In Asiacrypt 2001, Boneh, Lynn and
Shacham [9] proposed a basic signature scheme using pairings which has the
shortest length among signature schemes in classical cryptography.

Blind signature, introduced by Chaum [12] in Crypto’82, is a variant of digi-
tal signature, which allows the user to get a signature without giving the signer
any information about the actual message or the resulting signature. Formally,
blindness means that the signer’s view and the resulting signature are statisti-
cally independent, where the signer’s view is the set of all values that can be
gotten by the signer during the execution of the signature issuing protocol. This
blindness property plays a central role in applications such as electronic voting
and electronic cash systems.

Motivation. Before the generic result of Galindo et al. [17], three ID-based
blind signature (IDBS) schemes [19, 28, 29] based on bilinear pairings have been
proposed. However, for all these schemes, the security against one more signa-
ture forgery under the generic parallel attack [22] requires that the following
ROS problem is intractable [19, 25, 28, 29]: find an overdetermined, solvable
system of linear equations modulo q with random inhomogenities (right sides).
Unfortunately, in Crypto 2002, Wagner [27] claimed that there is a subexponen-
tial time algorithm to break the ROS-problem. To resist this attack, the size of
q (security parameter) may need to be at least 1,600 bits long. In contrast, for
common cryptographic primitives based on bilinear pairings such as [8, 9], the
size of q is only about 160 bits. Since even the slightly larger security parameter
will result in the dramatically larger amount of computation, all these existing
schemes can not be efficiently implemented, and hence be of little interest in
practice. In fact, until Galindo et al.’s generic result [17], it remained an open
problem to construct an ID-based blind signature scheme whose security does
not depend on the ROS assumption.

On the other hand, all of the aforementioned IDBS schemes require two rounds
(more specifically, three moves) of message exchange between the signer and user,
who requests a blind signature from the signer, since these protocols have the
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signer go first which typically is a server. Of course, round complexity is the
most important efficiency factor for an ID-based blind signature scheme, es-
pecially for some applications like E-voting and E-cash. And one-round is the
optimal bound of round complexity. In fact, there are only four PKI-based blind
signature schemes [7, 12, 16, 21] with an optimal two-move signature genera-
tion protocol. However, to the best of our knowledge, there exists no ID-based
signature scheme with two-move signature generation protocol. This paper is
motivated to construct the first one-round IDBS scheme without relying on the
ROS assumption. To this end, we need to tackle three challenges here: (a) Since
almost all ID-based signature schemes are constructed by using the proof of
knowledge paradigm [5], it seems difficult to extend them into ID-based blind
signature schemes with optimal round complexity [19, 24, 28, 29]; (b) The ID-
based blind signature schemes constructed by Galindo et al.[17] need at least 4
moves (see Section 6 for more details); and (c) How to realize a concrete IDBS
scheme whose security does not rely on ROS assumption (so essentially improves
the results in [19, 28, 29]).

Our Contribution. In this paper, we propose the first one-round ID-based
blind signature scheme without ROS assumption. This construction is based on
bilinear pairings from scratch, i.e., it relies on new computational assumptions,
new basic ID-based signature scheme and/or new blind signature scheme. In
more details, our contribution can be summarized as follows. (1) The round
complexity of our IDBS is optimal. Namely, each interactive signature genera-
tion requires the requesting user and the signer to transmit only one message
to the other. (2) The provable security against generic parallel attack doesn’t
depend on the difficulty of ROS problem (see Definition 4 in Section 2). (3)
To prove its security, we introduce a new plausible computational assumption,
called one-more bilinear Diffie-Hellman inversion assumption (1m-BDHI, for
short). This new assumption may be of independent interest, since other recently
proposed computation assumptions in one-more flavor, such as one-more-RSA-
inversion [3], one-more CDH [7], one-more discrete logarithm [4], have found
many applications in provable security for blind signatures [3, 7], transitive sig-
natures [4], identification protocols [2] and so on. (4) The underlying ID-based
signature scheme may be of independent interest, since it avoids using the proof
of knowledge paradigm and has a loose algebraic structure which already allows
the efficient extension to blind signatures.

2 Preliminaries

In this section, we present the definitions of bilinear pairings and some relative
assumptions.

Definition 1. Let G1 and G2 be groups of prime order q and let P be a generator
of G1. The map e : G1×G1 → G2 is said to be an bilinear pairing if the following
three conditions hold: (i) e is bilinear, i.e. e(aP, bP ) = e(P, P )ab for all a, b ∈ Zq;
(ii) e is non-degenerate, i.e. e(P, P ) �= 1; (iii) e is efficiently computable. Such
a group G1 is called a bilinear group.
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Note that throughout this paper, without special descriptions, the groups G1,G2,
the prime order q, the generator P of G1 and the bilinear pairing e are as defined
in the above definition. Next, we review the following problems with respect to
(G1,G2, e, P, q):

– Computational Diffie-Hellman (CDH) Problem: Given random P, aP ,
bP ∈ G1, output abP ∈ G1, where a, b ∈R Zq.

– Bilinear Diffie-Hellman (BDH) Problem [8]: Given random P, aP, bP ,
cP ∈ G1, output e(P, P )abc, where a, b, c ∈R Zq .

– Generalized Tate Inversion (GTI) Problem [20]: Given h ∈ G2, find a
pair (S, T ) ∈ G1 such that e(S, T ) = h, where e : G1×G1 → G2 denotes the
Tate pairing.

– Modified Generalized Bilinear Inversion (MGBI)[1]: Given h ∈ G2

and the generator P ∈ G1, find a point S ∈ G1 such that e(P, S) = h, where
e denotes the bilinear pairing.

Based on the above problems, we propose a new computational problem:

Definition 2 (Bilinear Diffie-Hellman Inversion (BDHI) Problem).
Given three random elements aP, bP, cP ∈ G1, compute two elements S, T ∈ G1

such that e(S, T ) = e(P, P )abc. Accordingly, the Bilinear Diffie-Hellman Inver-
sion (BDHI) assumption states that: there is no PPT algorithm that can solve
the BDHI problem with non-negligible probability.

It is obvious that the BDH problem can be solved if the BDHI problem can be
solved. And it is also obvious that the BDHI problem can solved if the CDH
problem can be solved. So BDHI assumption is somewhere between CDH as-
sumption and BDH assumption. That is, BDHI assumption is weaker than BDH
assumption, but stronger than CDH assumption.

Furthermore, we propose another new computational assumption called one-
more bilinear Diffie-Hellman Inversion (1m-BDHI) assumption. In fact, there
exist many computational assumptions in the one-more flavor, such as One-more-
RSA-inversion [3], one-more CDH [7], one more discrete logarithm [4]. These one-
more assumptions can be used to prove security of many cryptographic schemes,
such as the GQ identification scheme [2], blind signature schemes [4, 7], transitive
signatures [3].

Definition 3 (1m-BDHI Assumption). Let e : G1 × G1 → G2 be a bilinear
pairing, where G1 and G2 be groups of prime order q and P be a generator of
G1. Let x, y be random elements in Zq and let X = xP, Y = yP . The adversary
A is given (e,G1,G2, q, P,X, Y ) and has access to two oracles.

– The first one is a target oracle T O that, each time it is invoked (it takes no
inputs), returns a random point from G1.

– The second one is the helper oracle HO which given Z ∈ G1, returns S, T ∈
G1 such that e(S, T ) = e(Y, Z)x. Additionally, this help oracle HO returns
an auxiliary information piece R which can be used to check whether the
equation e(S, T ) = e(Y, Z)x holds. An example of the form of (R,S, T ) used
in this paper is given in the following remark.
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We say that A wins if its output is a sequence of points S1, T1, . . . , Sn, Tn ∈ G1

satisfying e(S1, T1) = e(Y, Z1)x, . . . , e(Sn, Tn) = e(Y, Zn)x, where all different
Z1, . . . , Zn are random points returned by T O and the number of queries made
by A to its helper oracle HO, is strictly less than n. The 1m-BDHI advantage of
A, denoted Adv1m−BDHI

A (k), is the probability that A wins, taken over the coins
used in the generation of (e,G1,GT , q, P,X, Y ), the coins of A, and the coins
used by the target oracle across its invocations. We say that the one-more BDHI
problem is hard if the function Adv1m−BDHI

A (k) is negligible for all polynomial-
time adversaries A.

Remark 1: In this paper, a valid answer (R,S, T ) of the helper oracle HO
should satisfy:

e(R,S) = e(xP, yP ), e(R,Z) = e(P, T ).

Indeed, suppose that R = rP . Then the above two equations imply the following
equations respectively:

S = r−1xyP, T = rZ.

So we have e(S, T ) = e(yP, Z)x.
Finally, we review the ROS problem.

Definition 4 (ROS Problem [25]). Given an oracle random function F :
Zl

q → Zq, find coefficients ak,i ∈ Zq and a solvable system of l + 1 distinct
equations (1) in the unknowns c1, c2, . . . , cl over Zq:

ak,1c1 + . . .+ ak,lcl = F (ak,1, . . . , ak,l), for k = 1, 2, . . . , t. (1)

Accordingly, the ROS assumption states that: there is no PPT algorithm that
can solve the ROS problem with non-negligible probability.

As Schnorr states, the intractability of the ROS problem is “a plausible but novel
complexity assumption”. At Crypto 2002, D. Wagner [27] claimed that the ROS
problem can be broken in subexponential time. As argued in [28], to be resistant
against this new attack, q may need to be at least 1600 bits long.

3 Frameworks of ID-Based Blind Signatures

Definition 5. An identity-based blind signature scheme IDBS can be described
as a collection of the following four algorithms (or protocols):

– Setup. This algorithm is run by the trusted party called PKG on input a se-
curity parameter, and generates the public parameters params of the scheme
and a master secret. PKG publishes params and keeps the master secret to
itself.

– Extract. Given an identity ID, the master secret and params, this algorithm
generates the private key DID of ID.
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– Issue. The signer blindly issues a signature for the user by this protocol, which
is often divided into three sub-protocols or algorithms (Blind,BSign,Unblind):
• Blind. Given the message m and a random string r, it outputs the blinded

message m′ and sends it the signer. In this process, the user sometimes
needs the interactive help from the signer.

• BSign. Given the blinded message m′ and the signer’s private signing key
DID as the input, it outputs a blind signature σ′ and sends it to the user.
This procedure may be an interactive sub-protocol between the user and
the signer.

• Unblind. Given a signature σ′ and the previous used random string r, it
outputs the unblinded signature σ.

– Verify. Given a signature σ, a message m, an identity ID and params, this
algorithm outputs 1 if σ is a valid signature on m for identity ID, or 0
otherwise.

The security of an ID-based blind signature scheme consists of two requirements:
the blindness property and the unforgeability of additional signatures. We say a
blind signature scheme is secure if it satisfies these two requirements.

Definition 6 (Blindness). Let A be a probabilistic polynomial-time adversary
which plays the role of the signer, U0 and U1 be two honest users. U0 and U1 engage
in the blind signature issuing protocol with A on messages mb and m1−b, and out-
put signatures σb and σ1−b, respectively, where b ∈ {0, 1} is a random bit chosen
uniformly. (m0,m1, σb, σ1−b) are sent to A and then A outputs b′ ∈ {0, 1}. For all
such A, U0 and U1, for any constant c, and for sufficiently large n,

|Pr[b = b′]− 1/2| < n−c.

To define unforgeability, let us introduce the following game among the adversary
A which plays the role of the user, and the challenger C which plays the role of
the honest signer.

– Setup. The challenger C takes a security parameter 1k and runs the algorithm
Setup to generate common public parameters params and also the master
secret key s. C sends params to A.

– Queries. The adversary A can perform a polynomially bounded number of
queries in a concurrent and interleaving way as follows.
• Hash function query. If the security is analyzed in the random oracle

model [6], C computes the values of the hash functions for the requested
input and sends the values to A.

• Extract query. A chooses an identity ID and sends it to C. C computes
Extract(ID) = DID and sends the result to A.

• Issue query. A chooses an identity ID, a plaintext m. To blindly obtain
a signature on m with respect to ID, A engages in the blind signature
issuing protocol with C in a concurrent and interleaving way.

– Forgery. A wins the game if A outputs n valid signatures (m1, σ1),
. . . , (mn, σn) with respect to the identity ID∗ such that
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• mi �= mj for any pair (i, j), where i �= j i, j ∈ {1, . . . , n}.
• n is strictly larger than the number of the executions (with respect to

the identity ID∗) of the protocol Issue between C and A.
• A has not made an extract query on the identity ID∗.

The advantage Advunforge
IDBS of A is defined as the probability that it wins the

above game, taken over the coin tosses made by C,A, Setup. In the above attack
model, A is called one-more forger under parallel chosen message and ID attacks.

Definition 7 (Unforgeability). An adversary A (t, qE , qS , ε)-breaks an ID-
based blind signature scheme, if (1) A runs in time at most t, (2) A queries
private keys for at most qE identities and execute at most qS times the blind
signature issuing protocol, (3) Advunforge

IDBS is at least ε. We say an ID-based blind
signature scheme is (t, qE , qS , ε)-secure against one-more forgery under parallel
chosen message and ID attacks if no adversary A (t, qE , qS , ε)-breaks the scheme.

Remark 2: In the forgery step of the above attack game, if (mi, σi) �= (mj , σj)
instead of mi �= mj holds for message-signature pairs output by the adversary,
then we get the definition of the strong unforgeability of blind signature schemes.
As mentioned in [10], for the main application of blind signatures, i.e., electronic
cash, unforgeability (rather than strong unforgeability) suffices.

In fact, the above forger A against ID-based blind signatures is the natural
analogy of the one-more forger under parallel attack which is the most powerful
attack for blind signatures. Unfortunately, before our schemes, there is no ID-
based blind signature scheme based on bilinear pairings which can be proved
secure in this model.

4 Construction

Our proposed scheme is described as follows:

– Setup. The Private Key Generator (PKG) generates parameters and master
keys as follows:
• generates groups G1 and G2 of prime order q with bilinear pairing e :

G1 × G1 → G2;
• chooses an arbitrary generator P ∈ G1;
• picks a random s ∈ Zq and sets Ppub = sP ;
• chooses cryptographic hash functions H1, H2 : {0, 1}∗ → G1. The PKG’s

public parameter is params = (G1,G2, e, q, P, Ppub, H1, H2); its master
secret is s ∈ Zq.

– Extract. The signer with identity ID receives the value DID = sQID from
the PKG as its private key, where QID = H1(ID) ∈ G1.

– Issue.
• Blind. The user randomly chooses a number r1 ∈ Zq as the blinding

factor, computes P ′
m = r1H2(m) and sends it to the signer.

• BSign. The signer sends back (A′, B′, C′), where A′ = xIDP
′
m, B

′ =
x−1

IDDID, C
′ = xIDP, xID

R←− Zq.
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• Unblind. First, the user verifies the blind signature (A′, B′, C′) by check-
ing whehter

e(A′, P ) = e(P ′
m, C

′), e(QID, Ppub) = e(B′, C′).
Next, the user selects a random number r2 ∈ Zq and computes the
signature as (A,B,C), where A = r2r−1

1 A′, B = r−1
2 B′, C = r2C′.

– Verify. Let (A,B,C) be the signature on the message m and Pm = H2(m).
The verifier checks that:

e(A,P ) = e(Pm, C), e(QID, Ppub) = e(B,C).

Correctness. If an entity with identity ID blindly issues a signature σ = (A,B,C)
on a message m to a user as described in the Issue protocol above, it is easy to
see that σ will be accepted by a verifier:

e(A,P ) = e(r2r−1
1 A′, P ) = (r2r−1

1 xIDP
′
m, P )

= e(r2r−1
1 xIDr1Pm, P )

= e(r2xIDPm, P ) = e(Pm, r2xIDP )
= e(Pm, r2C

′)
= e(Pm, C),

e(B,C) = e(r−1
2 B′, r2C′)

= e(B′, C′)
= e(x−1

IDDID, xIDP )
= e(DID, P ) = e(QID, sP )
= e(QID, Ppub).

Similarly, we can see that the blind signature generated by the honest signer in
Bsign must be accepted by the user in the step Unblind.

Remark 3: After we submitted this work to ePrint (archive 2007/007), Sher-
man S.M. Chow informed us that our above IDBS scheme shares some similar
ideas with the ID-based signature scheme [14]. As we stated in the first section,
our proposal is motivated by solving some open problems related to ID-based
blind signature schemes, while the similar result in [14] is proposed as one of
applications of the so-called verifiable pairing.

5 Security

First, we claim that our scheme has the blindness property. This is obvious since
the signer receives only random elements in G1 which are independent of the
outputs of the user. In fact, as we stated in the first section, the idea of our
proposal is motivated by solving some open problems relative to ID-based blind
signature schemes.
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Theorem 1. The proposed ID-based blind signature scheme is blind.

Proof. The blindness property will be proved according to Definition 6. We
assume that when the signature σb = (Ab, Bb, Cb) on the message mb (resp.
σ1−b = (A1−b, B1−b, C1−b) on m1−b) is generated, the user U0 (resp. U1) sends
P ′

mb
(resp. P ′

m1−b
) to the adversary A which then returns the blinded signature

σ′b = (A′
b, B

′
b, C

′
b) (resp. σ′1−b = (A′

1−b, B
′
1−b, C

′
1−b)).

For σb, if we can prove that there exist two integers r′1, r′2 ∈ Zq such that

P ′
m1−b

= r′1H2(mb), Ab = r′2r
′−1
1 A

′
1−b, Bb = r′−1

2 B
′
1−b, Cb = r′2C

′
1−b,

then it is obtained that for the adversary, σb may be linked to the process relative
to the messages (P ′

m1−b
, A′

1−b, B
′
1−b, C

′
1−b) and the user U1. In other words, the

adversary A can not determine which of the two user generated the signature σb.
In fact, since (Ab, Bb, Cb) and (A′

1−b, B
′
1−b, C

′
1−b) are valid, we have

e(Ab, P ) = e(Pmb
, Cb), e(QID, Ppub) = e(Bb, Cb);

e(A′
1−b, P ) = e(P ′

m1−b
, C′

1−b), e(QID, Ppub) = e(B′
1−b, C

′
1−b).

Let cb, c′1−b ∈ Zq be integers satisfying Cb = cbP , C′
1−b = c′1−bP respectively.

By the bilinear property of the pairing, then we have

Ab = cbPmb
, Bb = c−1

b sQID;

A′
1−b = c′1−bP

′
m1−b

, B′
1−b = c′−1

1−bsQID.

Let r′1, r
′
2 be integers satisfying Cb = r′2C

′
1−b (i.e. r′2 = cbc

′−1
1−b mod q) and

P ′
m1−b

= r′1Pmb
(= r′1H2(mb)) respectively , then they also satisfy

Ab = r′2r
′−1
1 A

′
1−b, Bb = r′−1

2 B
′
1−b. ��

Next, we analyze the unforgeability of our scheme as follows. Here note that it is
obvious that our blind signature scheme is not strongly unforgeable (see Remark
2 in Section 3). Instead, we will prove that its security satisfies the standard def-
inition given in Section 3. As in [11], the proof is divided into two steps.

Consider the following variant of the attacking game for unforgeability in
Section 3. First we fix an identity ID∗. In Setup Step, C gives to A system
parameters together with ID∗, and in Step Forgery, A must output the given ID∗

(together with n pairs (mi, σi)) as its final result. If no polynomial time algorithm
A has non-negligible advantage in this game, we say that the blind signature
scheme is secure against one-more forgery under parallel chosen message and
given ID attacks. The first step of our proof is to reduce the problem to this
case.

Lemma 1. For our scheme, if there is a one-more forger A0 under a parallel
chosen message and ID attack with running time t0 and advantage ε0, then there
is a one-more forger A1 under a parallel chosen message and given ID attack,
which has running time t1 ≤ t0 and advantage ε1 ≥ ε0(1− 1

q )/qH1 , where qH1 is
the maximum number of queries to H1 asked by A0. In addition, the numbers of
queries to hash functions, Extract, and Issue asked by A1 are the same as those
of A0.
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Proof. Without any loss of generality, we can assume that for any ID, A0 queries
H1(ID) and Extract(ID) at most once. Let the fixed identity for A1 be ID∗.
Our algorithm A1 is as follows:

– Choose r ∈ {1, . . . , qH1} randomly. Denote by IDi the input of the i-th
query to H1 asked by A0. Let ID′

i be ID∗ if i = r, and IDi otherwise.
Define H ′

1(IDi),Extract′(IDi), Issue′(IDi,m) to be H1(ID′
i), Extract(ID′

i),
Issue(ID′

i,m), respectively.
– Run A0 with the given system parameters. A1 responds to A0’s queries to
H1, H2, Extract, and Issue by evaluating H ′

1, H2, Extract′, and Issue′, respec-
tively. Let the output of A0 be n valid signatures (m1, σ1), . . . , (mn, σn) with
respect to IDout, where n is strictly larger than the number of executions of
the Issue’ protocol.

– If IDout = ID∗, then output n valid signatures (m1, σ1), . . . , (mn, σn) to-
gether with the corresponding identity ID∗. Otherwise output fail.

Since the distributions produced by H ′
1,Extract′, and Issue′ are indistinguishable

from those produced by H1,Extract, and Issue of our scheme, A0 learns nothing
from query results, and hence

Pr[A0 succeeds] ≥ ε0.

Since H1 is a random oracle, if A0 has not made the the query H ′
1(IDout), the

probability that the A0’s output is valid is negligible. Explicitly,

Pr[IDout = IDi for some i|A0 succeeds] ≥ 1 − 1
q .

Since r is independently and randomly chosen, we have

Pr[IDout = IDr = ID∗|IDout = IDi for some i] ≥ 1
qH1

Combining these,

Pr[A1 succeeds] ≥ ε0(1 − 1
q ) 1

qH1

as desired. ��

Lemma 2. For our scheme, if there is a one-more forger A under a parallel
chosen message and given ID attack with running time t1 and advantage ε1,
then there is an adversary B attacking the one-more BDHI problem, which has
running time t2 ≤ t1 + 4cG1(qH1 + qH2 + qS + qE) and advantage ε2 ≥ ε1, where
cG1 is a constant that depends on G1, and qH1 , qH2 , qE , qS are the numbers of
queries to the hash functions H1, H2, Extract, and Issue asked by A1 respectively.

Proof. Suppose that A is a one-more forger against our scheme under a parallel
chosen message and given ID attack. We describe the algorithm B which will
simulate the challenger for A in order to solve the one-more BDHI problem.
The adversary B is given (e,G1,G2, q, P,X, Y ), the target oracle and the helper
oracle. B simulates the challenger and interacts with forger A as follows.
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– Setup. B first provides A with the public parameter (e,G1,G2, q, P, Ppub)
and the fixed identity ID∗, where Ppub = X .

– H1-queries. To respond to these queries, B maintains a list of tuples (IDi,
H1(IDi), ri) as explained below. We refer to this list as H1-list. The list is
initially empty. When A queries the oracleH1 at an identity IDi, B responds
as follows.
• If the query IDi appears on the H1-list in a tuple (IDi, H1(IDi), ri) (or

(IDi, H1(IDi), ∗)), then B responds with H1(IDi).
• If IDi = ID∗, B sets H1(IDi) = Y and sends it to A. Additionally, B

appends the tuple (IDi, H1(IDi), ∗) to the H1-list.
• If IDi �= ID∗, B randomly selects ri ∈ Zq and sends H1(IDi) = riP to
A. Additionally, B appends the tuple (IDi, H1(IDi), ri) to the H1-list.

Since H1 is a random oracle, A obtains no information on H1(ID) before he
queries the H1-oracle on ID. So, without loss of generality, we assume that
A has already queried the H1 oracle on an identity ID before he makes the
issue query or extract query with respect to the ID.

– H2-queries. When given the new query mj , that is distinct from the previous
hash queries, B obtains a point Zj ∈ G as the hash value H2(mj) from its
target oracle T O and sends it to A.

– Extract queries. Suppose that A makes an extract query on the identity
IDi �= ID∗. Let (IDi, H1(IDi), ri) be the tuple on the H1-list containing
IDi. B answers this query by sends to A DIDi = riX . By assuming X = xP
for some unknown x, it is obvious that DIDi = xH1(IDi) = riX , since
H1(IDi) = riP .

– Issue queries. Assume that A chooses the identity IDi and the plaintext mi

and wants to blindly obtain the signature on mi with respect to the identity
IDi. Note that the signer has only one move in the Issue protocol. Let P ′

mi

be the blinded message that A sends to B. B answer this query as follows.
• If IDi �= ID∗, B computes the private key DIDi = riX , where (IDi,
H1(IDi), ri) is the corresponding tuple on the H1-list. Then B uses the
private key DIDi to compute the corresponding blinded signature as in
BSign.

• If IDi = ID∗, B sends P ′
mi

to its helper oracleHO. Let (Ri, Si, Ti) be the
corresponding answer. B sets the blinded signature as (A′

i, B
′
i, C

′
i), where

A′ = Ti, B
′
i = Si, C

′
i = Ri. It is obvious that this simulated signature is

valid (see remark 1 in Section 2 and the algorithm Verifiy in Section 4).
– Outputs. At last, A outputs a list of message-signature pairs ((m1, (A1, B1,
C1)), . . ., (mn, (An, Bn, Cn)) with respect to the identity ID∗, where n is
strictly larger than the number of executions of the protocol Issue with re-
spect to the identity ID∗, and hence strictly larger than the number of
queries made by B to its helper oracle HO. B outputs A1, B1, A2, B2, . . . ,
An, Bn. Here note that a valid signature (Ai, Bi, Ci) satisfies e(Ai, Bi) =
e(H1(ID∗), H2(mi))x = (Y,H2(mi))x (see Remark 1 in Section 2), and
H2(mi) is obtained from the target oracle. So the one-more BDHI problem
is solved by B.



One-Round ID-Based Blind Signature Scheme without ROS Assumption 327

It is easy to see that the view of A in the simulated experiment is indistinguish-
able from its view in the real experiment, and that B is successful only if A
is successful. Thus, the probability ε2 that B succeeds is at least the probabil-
ity ε1 that A succeeds. Algorithm B’s running time is the same as A’s running
time plus the time it takes to respond to qH1 H1-hash queries, qH2 H2-hash
queries, qE extract queries and qS signature issue queries. Each query requires
at most four exponentiations (corresponding to issue queries for IDi �= ID∗)
in G1 which we assume takes time cG1 . Hence, the total running time t2 is at
most t1 + 4cG1(qH1 + qH2 + qS + qE) as required. This completes the proof of
Theorem 1. ��

Combing the above lemmas, we obtain the following theorem:

Theorem 2. If the one-more BDHI assumption is true in the group G1, then
the proposed ID-based blind signature scheme is secure against one-more forgery
under parallel chosen message and ID attacks in the random oracle model.

6 A Comparison of ID-Based Blind Signatures

In this Section, we give a brief comparison of ID-based blind signatures (IDBS)
(see Table 1 below). The purpose is to show the advantages of our scheme com-
pared with existing solutions. Namely, as we claimed before, the proposed scheme
is first one-round ID-base blind signature scheme, which is secure against generic
parallel attack without relying on the intractability of ROS problem.

Table 1. A Comparison of ID-based Blind Signatures

Schemes Signer User Verifier Move Security Model

Ours 3M 4M+4e 4e 2 ROM+1m-BDHI

ZK02 [28] 3M 3M+3e 1E+2e 3 ROM+CDH+ROS(?)

ZK03 [29] 2M 4M+2e 1M+2e 3 ROM+CDH+ROS(?)

HCW05 [19] 2M+1e 1M+3E+3e 1M+2e 3 ROM+CDH+ROS(?)

Schnorr [22, 25] 1E 3E 2E 4 ROM+DLP+ROS

Chaum [12, 17] 1E 2E 2E 4 ROM+1m-RSA

Boldyreva [7, 17] 1M 2M+4e 4e 4 ROM+1m-CDH

CKW04 [10, 17] 25E 38E 2E 10 SM+CRS+SRSA+Seqn.

KZ05 [17, 21] 5M+10E+6e 7M+15E+18e 1M+6e 6 SM+CRS+DLDH+LRSW

Okamoto [17, 23] 6M+3E 10M+5E+4e 3M+4e 6 SM+CRS+DCR+2SDH

Fischlin [16, 17] 1E NIZK NIZK 4 SM+CRS+GC

First of all, we remark that the first four schemes (including our construc-
tion) in Table 1 are explicit IDBS schemes, while all other schemes are deduced
from the underlying blind signatures by using the certificate-based generic trans-
formation [17], which extends the result given in [5]. More specifically, we get
these ID-based blind signature schemes from the corresponding blind signatures
[7, 10, 12, 16, 22, 23, 25]. Galindo et al.’s generic approach transforms a standard
blind signature scheme into an ID-based blind signature scheme as follows. The
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PKG selects a key pair (ski, pki) for a signer IDi, issues a certificate Certi to
certify the string IDi||pki by using the PKG’s PKI-based secret key, and then
forwards (ski, Certi) to the signer IDi. To get an ID-based blind signature, a
user first enquires the signer IDi for its Certi and checks the validity of Certi.
If this procedure is successful, the user and the signer can engage in the stand
blind signature issuing protocol to output a signature σ for a message m under
public key pki. The final ID-based signature is a pair (σ,Certi), which is valid
if Certi is a certificate for IDi together with some public key pki issued by the
PKG, and σ is a valid signature for message m with respect to pki.

As the main computational overheads, we only consider modular exponentia-
tions (denote by E), scalar multiplications (denote by M), and bilinear mappings
(denote by e). Since simultaneous exponentiations can be efficiently carried out
by means of an exponent array, for simplicity, we treat the cost for ax1

1 a
x2
2 or

ax1
1 a

x2
2 a

x3
3 as just one single exponentiation. To count the computational costs of

the signer, user and verifier in the above deduced IDBS schemes, we assume the
PKG use a similar underlying signature to issue certificates for signers. That is,
the PKG uses Schnorr signature in the ID-based blind Schnorr signature [25],
the RSA signature with a full domain hash in the ID-based Chaum [12] and
CKW04 [10] blind signature schemes, and the BLS short signature [9] in the
ID-based Boldyreva [7], KZ [21], and Okamoto [23] blind signature schemes. For
the generic scheme proposed by Fishlin [16], there are no concrete values since
his scheme relies on general NIZK to prove the correctness of a ciphertext. Due
to the usage of certificates in Galindo et al.’s approach, the round complexity,
the communication complexity and the signature size are also increased in all de-
duced IDBS schemes. For example, though the standard blind signature schemes
in [7, 12, 16] are round-optimal (i.e., they are one-round or 2-moves solutions),
the correspond ID-based blind signatures become 4-move schemes.

About the security model, we mainly consider the following aspects: (1)
whether a scheme is secure in the random oracle model (ROM) or standard
model (SM); (2) whether a scheme needs common reference string (CRS); (3)
whether a scheme relies on the ROS assumption; and (4) what are the computa-
tional assumptions required. According to Table 1, we can see that the last four
schemes are all provably secure in the standard model but need common refer-
ence strings. At the same time, these schemes are not very efficient, since in the
blind signature issuing protocols some kinds of ZK proofs are involved. In addi-
tion, note that the CKW04 scheme is only claimed to be secure in the scenario
of sequential attacks (weaker than generic parallel attacks). The directly con-
structed schemes in [19, 28, 29] are computationally efficient, but their security
against one-more forgery is not formally proved even under the ROS assumption.
Due to this reason, we make a question mark “?” to these three schemes under
the column of “Security Model”. Based on the result in [17, 22, 25], the ID-based
Schnorr blind signature scheme is secure against one-more forgery, but needs the
ROS assumption, which results the loss of practical efficiency since to guarantee
the security one has to select q as large as 1600 bits. Compared with efficient
ID-based blind signatures deduced from [7, 12], our scheme is round-optimal
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(i.e. two moves rather than 4 moves) and has shorter signatures (without using
a certificate to binding a random public key with each signer).

According to the above discussion, we can conclude that the proposed scheme
is the first one-round ID-based blind signature, which is provably secure against
generic parallel attack without relying on the ROS problem and any set-up
assumptions, in the the random oracle model. Compared with ID-based blind
scheme deduced from Galindo et al.’s generic transformation, which can be secure
in the stand model, our solution is much more efficient in all aspects of round
complexity, computational complexity, and signature size.

Remark 4: We are especially grateful to one reviewer of Pairing 2008 who
pointed out that one IDBS scheme from the generic construction [17], with some
improvements, could also be round-optimal and more efficient than our scheme.
However, we remark that such a scheme with these potential improvements is
not mentioned in [17], though this scheme mentioned by the referee is very
interesting and deserves further study. In addition, as stated in Section 1, both
the motivation and method of our work are different from that in [17].

7 Other Considerations

First, the new formalized 1m-BDHI assumption may be of independent interest,
since other recently proposed computation assumptions in one-more flavor, such
as one-more-RSA-inversion [3], one-more CDH [7], one-more discrete logarithm
[4], have found many applications in provable security for blind signatures [3, 7],
transitive signatures [4], identification protocols [2] and so on.

Second, the underlying ID-based signature scheme may be of independent
interest, since it avoids to use the proof of knowledge paradigm and has a
loose algebraic structure which already allows the efficient extension to blind
signatures. In fact, the underlying ID-based signature scheme is not strongly un-
forgeable, but satisfy the well-known standard definition of unforgeability. How-
ever, a non-strongly unforgeable signature may have other advantages over the
strongly unforgeable one. For example, the authors of [18] constructed the first
constant-length ID-based aggregate signature scheme based on an non-strongly
unforgeable ID-based signature scheme.

8 Conclusion

In this paper, we proposed a new identity-based blind signature scheme based on
bilinear pairings, which contributes the first one-round identity-based blind sig-
nature without the ROS assumption. This means that the proposed construction
is not only optimal in the sense of round complexity, but also practically efficient
in contrast to the existing solutions [19, 28, 29], which are actually inefficient
and rely on the difficulty of ROS problem, and other potential schemes that
can be deduced from a generic result [17]. In addition, we showed that the pro-
posed scheme is provably secure in the random oracle model, under the one-more
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bilinear Diffie-Hellman inversion (1m-BDHI) assumption, a new computational
assumption introduced in this work.

Acknowledgements. The authors thank the anonymous referees of Pairing
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his work in [14].
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Abstract. In 1998, Blaze, Bleumer and Strauss put forth a crypto-
graphic primitive, termed proxy re-encryption, where a semi-trusted
proxy is given some piece of information that enables the re-encryption of
ciphertexts from one key to another. Unidirectional schemes only allow
translating from the delegator to the delegatee and not in the opposite
direction. In all constructions described so far, although colluding proxies
and delegatees cannot expose the delegator’s long term secret, they can
derive and disclose sub-keys that suffice to open all translatable cipher-
texts sent to the delegator. They can also generate new re-encryption
keys for receivers that are not trusted by the delegator. In this paper, we
propose traceable proxy re-encryption systems, where proxies that leak
their re-encryption key can be identified by the delegator. The primi-
tive does not preclude illegal transfers of delegation but rather strives
to deter them. We give security definitions for this new primitive and a
construction meeting the formalized requirements. This construction is
fairly efficient, with ciphertexts that have logarithmic size in the number
of delegations, but uses a non-black-box tracing algorithm. We discuss
how to provide the scheme with a black box tracing mechanism at the
expense of longer ciphertexts.

Keywords: unidirectional proxy re-encryption, transferability issues,
collusion detection and traceability.

1 Introduction

Ten years ago, Blaze, Bleumer and Strauss proposed a cryptographic primitive
called proxy re-encryption (PRE), in which a proxy transforms – without being
able to infer any information on the corresponding plaintext – a ciphertext com-
puted under Alice’s public key into one that can be opened using Bob’s secret
key. In all known constructions, if Bob and a malicious proxy cooperate, they
can derive new re-encryption keys without Alice’s consent. The purpose of this
paper is to coin a new notion, that we call traceable proxy re-encryption (TPRE)
in which such misbehaving proxies can be identified by the delegator. We for-
malize security notions for this new primitive and give a reasonably efficient
construction fitting this model under appropriate complexity assumptions.
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Related work. Blaze et al. [8] proposed the first PRE scheme, where plaintexts
and secret keys remain hidden from the proxy. Unfortunately, their scheme has
inherent limitations: the proxy key also allows translating ciphertexts from Bob
to Alice, which may be undesirable, and the proxy and the delegatee can collude
to expose the delegator’s private key.

In 2005, Ateniese, Fu, Green and Hohenberger [4,5] showed how to construct
unidirectional schemes using bilinear maps and simultaneously prevent proxies
from colluding with delegatees in order to expose the delegator’s long term se-
cret. Their schemes involve two distinct encryption algorithms: first-level encryp-
tions are not translatable whilst second-level encryptions can be re-encrypted by
proxies into ciphertexts that are openable by delegatees. Let (G1,G2,GT , e, ψ)
be a cryptographic bilinear structure (denoted multiplicatively) of prime order
p and let g be a generator of G1 (see § 2.2 for a definition). Alice and Bob
publish the public keys yA = ga and yB = gb (respectively) and keep secret
their discrete logarithms a and b. To encrypt a message m ∈ GT to Alice at
the second level, a sender picks a random r ∈ Z∗

p and transmits the pair (c1, c2)
where c1 = yr

A and c2 = m · e(g, h)r where h = ψ(g). The proxy is given
the re-encryption key hb/a and can translate ciphertexts from Alice to Bob by
computing (e(c1, hb/a), c2) = (e(g, h)br,m · e(g, h)r). The decryption operations
are somewhat similar to those of the Elgamal [18] cryptosystem. This strategy
does not completely withstand collusions since, if Bob and the proxy cooperates,
they obtain the element h1/a which suffices to decrypt any second-level cipher-
text intended to Alice. Even if the last few years saw a renewed interest in proxy
re-encryption [4,5,25,16,19,24], all known constructions entail to trust proxies
not to collude with certain participants. Otherwise, sub-keys such as h1/a or
new re-encryption keys can be derived and disclosed over the Internet.

Transferability issues in proxy re-encryption. Following [21], a PRE
scheme is said non-transferable if the proxy and a set of colluding delegatees
cannot re-delegate their decryption rights. The first question that comes to mind
is whether transferability is really preventable since the delegatee can always de-
crypt and forward the plaintext. However, the difficulty in retransmitting data
restricts this behavior. The security goal is therefore to prevent the delegatee
and the proxy to provide another party with a secret value that can be used of-
fline to decrypt the delegator’s ciphertexts. Obviously, the delegatee can always
send its secret key to this party, but in doing so, it assumes a security risk that
is potentially injurious to itself. In the simple aforementioned unidirectional sys-
tem, colluders can unfortunately disclose h1/a which is clearly harmless to the
cheating delegatee and allows for the offline opening of second level ciphertexts
encrypted for the delegator. All other existing unidirectional [5] schemes are ac-
tually vulnerable to this kind of attack.

A desirable security goal is therefore to prevent a malicious proxy (or a col-
lusion of several rogue proxies) interacting with users to take such actions. To
the best of our knowledge, this non-transferability property has been elusive in
the literature. This is not surprising since, given that proxies and delegatees can
always decrypt level 2 ciphertexts by combining their secrets, they must be able



334 B. Libert and D. Vergnaud

to jointly compute data that allows decrypting and, once revealed to a malicious
third party, ends up with a transfer of delegation. Therefore, discouraging such
behaviors seems much easier than preventing them.

Our contributions. We introduce a new notion, that we call traceable proxy
re-encryption (TPRE), where proxies that reveal their re-encryption key to third
parties can be identified by the delegator. The primitive does not preclude il-
legal transfers of delegation but provides a disincentive to them. Unlike prior
unidirectional PRE systems, when delegators come across an illegally formed
re-encryption key, they can determine its source among potentially malicious
proxies. It also allows tracing delegatees and proxies that pool their secrets to
disclose a pirate decryption sub-key which suffices to decipher ciphertexts orig-
inally intended for the delegator. Identifying dishonest delegatees is useful in
applications such as PRE-based file storage systems [4,5] where there is a single
proxy (i.e. the access control server) and many delegatees (i.e. end users). When
a pirate decryption sub-key is disclosed in such a situation, we can find out which
client broke into the access control server to generate it.

Deterring potentially harmful actions from parties that are a priori trustwor-
thy may seem overburden: no one would elect a delegatee without having high
confidence in his honesty. In these regards, the present work is somehow related
to ideas from Goyal [20] that aim at avoiding to place too much trust in en-
tities (i.e. trusted authorities in identity-based encryption schemes) that must
be trusted anyway. Arguably, users are less reluctant to grant their trust when
abuses of delegated power are detectable and discouraged.

We formalize security notions for TPRE and give efficient implementations
meeting these requirements under different pairing-related assumptions. Our
constructions borrow techniques from traitor tracing schemes [17]. We also make
use of a special kind of identity-based encryption (IBE) system (where arbitrary
strings such as email addresses [27,11] can act as a public keys so as to avoid
costly digital certificates), introduced in 2006 by Abdalla et al. and called wild-
card identity-based encryption (WIBE) [1].

Our main scheme is fairly efficient, with ciphertexts of logarithmic size in the
number of delegations, but the tracing system is non-black-box. Its security relies
on (formerly used) mild pairing-related assumptions and the security analysis
takes place in the standard model (without the random oracle heuristic [7]).

We also discuss how the scheme can be equipped with a black-box tracing
mechanism at the expense of longer ciphertexts. The design principle is to asso-
ciate re-encryption keys with codewords from a collusion-secure code [14]. This
scheme is inspired from a WIBE-based identity-based traitor tracing scheme
[2] and inherits its disadvantages: its computational overhead and the size of
ciphertexts are linear in the length of the underlying code.

Roadmap. In the upcoming sections, we first define the concept of TPRE
scheme and its security model. Then, we describe the intractability assumption
that our scheme relies on. In section 3, we detail our scheme and first provide
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some intuition of the underlying idea. We finally give security results. Section 4
briefly explains how to obtain a black-box tracing mechanism.

2 Preliminaries

2.1 Model and Security Notions

Definition 1. A (single hop) unidirectional PRE scheme is a tuple of algorithms
(Global-setup,Keygen,ReKeygen,CheckKey,Enc1,Enc2,ReEnc,Dec1,Dec2):

- Global-setup(λ) → par: on input of a security parameter λ, this algorithm
produces public parameters par to be used by all parties.

- Keygen(λ, par) → (sk, pk): on input of common public parameters par and a
security parameter λ, all parties use this randomized algorithm to generate
a private/public key pair (sk, pk).

- ReKeygen(par, ski, pkj) → Rij : given public parameters par, user i’s private
key ski and user j’s public key pkj, this (possibly randomized) algorithm
outputs a key Rij that allows re-encrypting second level ciphertexts intended
to i into first level ciphertexts encrypted for j.

- CheckKey(par, ski, pkj , Rij) → b ∈ {0, 1}: is a deterministic algorithm check-
ing the well-formedness of Rij as a proxy key for re-encrypting messages
from user i to user j.

- Enc1(par, pk,m) → C: on input of public parameters par, a receiver’s public
key pk and a plaintext m, this probabilistic algorithm outputs a first level
ciphertext that cannot be re-encrypted for another party.

- Enc2(par, pk,m) → C: given public parameters par, a receiver’s public key
pk and a plaintext m, this randomized algorithm outputs a second level ci-
phertext that can be re-encrypted into a first level ciphertext (intended to a
possibly different receiver) using the appropriate re-encryption key.

- ReEnc(par, Rij , C) → C′: this (possibly randomized) algorithm takes as input
public parameters par, a re-encryption key Rij and a second level ciphertext
C encrypted for user i. The output is a first level ciphertext C′ re-encrypted
for user j. In single hop schemes, C′ cannot be re-encrypted any further.

- Dec1(par, sk, C) → m: given a private key sk, a first level ciphertext C and
system-wide parameters par, this algorithm outputs a plaintext m ∈ {0, 1}∗.

- Dec2(par, sk, C) → m: given a private key sk, a second level ciphertext C
and public parameters par, this algorithm returns a plaintext m ∈ {0, 1}∗.

For any common public parameters par, any message m ∈ {0, 1}∗ and any couple
of private/public key pair (ski, pki), (skj , pkj) these algorithms should satisfy the
following correctness conditions:

Dec1(par, ski,Enc1(par, pki,m)) = m;
Dec2(par, ski,Enc2(par, pki,m)) = m;

Dec1(par, skj ,ReEnc(par,ReKeygen(par, ski, pkj),Enc2(par, pki,m))) = m;
CheckKey(par, ski, pkj ,ReEnc(par,ReKeygen(par, ski, pkj))) = 1.
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In a traceable PRE scheme, there is an additional procedure Trace which, given
user i’s private key ski as well as a pirate proxy key Rbad

ij allowing for illegal
translations from i to another user j, outputs the identity of at least one of the
malicious proxies that made up Rbad

ij . Algorithm Trace can also take as input a
pirate decryption key Rbad

i� that, instead of re-encrypting second level ciphertexts
intended for user i, simply directly recovers the underlying plaintext. In this
case, the tracing algorithm should also determine which malicious delegatee has
colluded with the incriminated proxy to generate of Rbad

i� .

Semantic security. As in [4,5,16], we require that users publicize public keys only
if they hold the corresponding private keys. This amounts to adopt a trusted key
generation model or a model where all parties have to prove knowledge of their
secret keys when registering their public keys upon certification.

Like [4,5,16], we also assume a static model where adversaries do not choose
whom to corrupt depending on the information gathered so far.

Definition 2. A (single-hop) unidirectional PRE scheme is semantically secure
at level 2 if the probability

Pr[(pk�, sk�)← Keygen(λ), {(pkx, skx) ← Keygen(λ)}, {(pkh, skh) ← Keygen(λ)},
{Rx� ← ReKeygen(skx, pk

�)},
{R�h ← ReKeygen(sk�, pkh)}, {Rh� ← ReKeygen(skh, pk

�)},
{Rhx ← ReKeygen(skh, pkx)}, {Rxh ← ReKeygen(skx, pkh)},

{Rhh′ ← ReKeygen(skh, pkh′)}, {Rxx′ ← ReKeygen(skx, pkx′)},
(m0,m1, St) ← A

(
pk�, {(pkx, skx)}, {pkh}, {Rx�}, {Rh�},
{R�h}, {Rxh}, {Rhx}, {Rhh′}, {Rxx′}

)
,

d� R← {0, 1}, C� = Enc2(md	 , pk�), d′ ← A(C�, St) :
d′ = d�]

is negligibly (as a function of the security parameter λ) close to 1/2 for any
PPT adversary A. In our notation, St is a state information maintained by A
while (pk�, sk�) is the target user’s key pair generated by the challenger that also
chooses other keys for corrupt and honest parties. For other honest parties, keys
are subscripted by h or h′ and we subscript corrupt keys by x or x′. The adversary
is granted access to all re-encryption keys but those for re-encrypting from the
target user to a corrupt one. A is said to have advantage ε if this probability,
taken over all coin tosses, is at least 1/2 + ε.

Security of first level ciphertexts. Definition 2 provides adversaries with a second
level challenge ciphertext. An orthogonal definition captures A’s inability to
distinguish first level ciphertexts as well. For single-hop schemes, the adversary
is allowed to see all re-encryption keys in this definition. As first level ciphertexts
cannot be re-encrypted any further, there is no reason to hold specific honest-
to-corrupt re-encryption keys back from the adversary. A unidirectional scheme
fitting this definition is said semantically secure at the first level.
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Digital-identity security in PRE. In [4], Ateniese et al. define an important
security requirement for unidirectional PRE schemes. This notion, termed master
secret security or digital-identity security, demands that no coalition of dishonest
delegatees and proxies be able to pool their keys in order to expose the private key
of their delegator. More formally, the following probability should be negligible
as a function of the security parameter λ. In our notations, we superscript pk
and sk with � to denote the keys of the target honest user whereas adversarial
users’ keys are subscripted by x.

Pr[ (pk�, sk�) ← Keygen(λ), {(pkx, skx) ← Keygen(λ)},
{R�x ← ReKeygen(sk�, pkx)}, {Rx� ← ReKeygen(skx, pk

�)},
γ ← A(pk�, {(pkx, skx)}, {R�x}, {Rx�}) : γ = sk� ]

While reasonable in many applications, this definition does not consider colluding
delegatees and proxies who attempt to produce a new re-encryption key R�x′

that was not originally given and allows re-encrypting from the target user to
another malicious party x′. As already stressed, all known unidirectional PRE
schemes fail to resist such attacks. Although colluders are unable to expose the
delegator’s long term secret sk�, they can still compute a sub-key skbad that
allows decrypting ciphertexts at level 2. To address this issue, our model asks
that the cheated delegator be able to determine – at least partially and with
high probability – where the illegal transfer of delegation stems from or who
crafted the pirate sub-key skbad. In our scheme, this unfortunately comes at the
expense of sacrificing the key and ciphertext optimality properties met in [4,5].

Traceability. Consider a set of proxies P1, P2, . . . , PN that receive re-encryption
keys allowing for the translation of ciphertexts from user A to his delegatees
B1, B2, . . . , BN . We say that a PRE scheme is traceable if any subset of these
proxies colluding with delegatees B1, B2, . . . , BN is unable to generate a new
re-encryption key that cannot be traced back to one of them.

Definition 3. A unidirectional PRE scheme is traceable if no PPT adversary
A has non-negligible probability of success in the following game:

1. The challenger provides A with the target user’s public key pk0, public keys
pki for other honest parties and key pairs (ski, pki) for corrupt users.

2. On multiple occasions, A may invoke a re-encryption key generation oracle
Orkey. When queried on input of public keys (pki, pkj) that were both ob-
tained from the challenger, this oracle returns the re-encryption key Rij =
ReKeygen(ski, pkj). Let T be the set of proxy keys obtained by A.

3. A outputs a pirate re-encryption key R�
0t together with a public key pkt that

belongs to the public key space of the scheme (i.e. for which an associated
private key exists) and differs from public keys of the target user’s delegatees.
The adversary is declared successful if the following two conditions hold:
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a. CheckKey(sk0, pkt, R
�
0t) = 1 (i.e. R�

0t is a valid re-encryption key).
b. The tracing procedure (run by the challenger on R�

0t using the target
user’s secret sk0) fails to identify a correct proxy key Rbad

0j ∈ T . That is,
if Rbad

0j = Trace(sk0, R�
0t, pkt), we have either Rbad

0j = ⊥ or if Rbad
0j �∈ T .

The pirate key R�
0t should re-encrypt from user 0 to a user having public key pkt.

For simplicity, we assume that the latter is supplied by A at the end of the game.
When the target user finds a suspicious re-encryption key R� in practice, he does
not a priori know to whom ciphertexts can be re-encrypted using R�. However,
he can determine it by simply testing whether CheckKey(sk0, p̃kj , R

�) = 1, for
j = 1, . . . , η, given a set of suspicious public keys {p̃k1, . . . , p̃kη}.

We insist that pkt may differ from public keys that are generated by the
challenger at step 1 of the game. Besides, the definition does not force A to
reveal the matching private key skt to the challenger: the only requirement is
that such a private key exists.

At first glance, one may wonder why A should be allowed to come up with
an arbitrary pkt of her choosing whilst delegation queries to Orkey are only
permitted for delegatees’ public keys that were chosen by the challenger.

We actually find it natural to assume that honest users only delegate to parties
whose public key has been properly certified and for which knowledge of the
underlying secret key has been demonstrated to the CA at key registration. In
contrast, pkt is not meant to have a legal use and simply provides a way to
covertly translate the target user’s communications. Hence, there is no reason
to assume that the challenger learns skt whatsoever. Finally, when the proxy is
compromised but the delegatee j remains honest, the adversary obtains R0j such
that CheckKey(sk0, pkj, R0j) = 1. Then, she might be able to compute R�

0t and
pkt (as a function of pkj) such that CheckKey(sk0, pkt, R

�
0t) = 1. In this case, the

adversary clearly does not know skt. The property that we require is that R�
0t

can be traced back to the proxy involved in its creation. Then, if pkt happens
to be a registered public key (for which a proof of knowledge of the underlying
private key was provided), the delegator figures out that the original delegatee
was also part of the collusion, as well as the user holding skt.

Bounded Traceability. Similarly to common situations in traitor tracing schemes,
it may happen that traceability is guaranteed only if the adversary makes at most
k re-encryption key queries involving the secret sk0 of the target user acting as a
delegator (regardless of whether the delegatee is honest). On the other hand, she
is granted as many re-encryption key queries involving other honest delegators
as she likes. Schemes that are secure in this scenario are said k-traceable.

Black Box Traceability. A new analogy with traitor tracing primitives suggests
to strengthen the definition by assuming that the adversary only outputs a re-
encryption device P that translates ciphertexts with non-negligible probability
but cannot be reverse-engineered so as to extract the built-in key. Indeed, it has
been reported [22] that proxy re-encryption systems can be safely obfuscated.
It would thus be desirable to have a black-box tracing procedure to recover the
identity of colluding parties using P as a re-encryption oracle. A variant of our
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scheme can be equipped with a limited black-box tracing mechanism. Due to the
use of collusion-secure codes [14], this variant unfortunately features unreason-
ably large ciphertexts and cannot be considered as being practical. Moreover,
it only tolerates a bounded number of traitors k. Lastly, it does not allow to
determine who the dishonest delegatees are when running a pirate decryption
device D in tracing mode: only colluding proxies can be traced.

2.2 Bilinear Maps and Complexity Assumptions

We consider a configuration of bilinear map groups (G1,G2,GT ) of prime order
p with a mapping e : G1×G2 → GT and an isomorphism ψ : G2 → G1 satisfying
the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G1 × G2 and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) �= 1GT whenever g �= 1G1 and h �= 1G2 .

We will need an extension of the Decision Bilinear Diffie-Hellman (DBDH) as-
sumption which is the intractability of distinguishing e(g, h)abc given (ha, hb, hc).

Definition 4. In bilinear map groups (G1,G2,GT ), The Augmented Deci-
sion Bilinear Diffie-Hellman Problem (ADBDH) is to distinguish e(g, h)abc

from random elements of GT given (g, h, ha, hb, hc, ha2b) ∈ G1 × G5
2. A distin-

guisher D (τ, ε)-breaks the assumption if it has running time τ and

Adv(D) = |Pr[D(ha, hb, hc, ha2b, e(g, h)abc) = 1|a, b, c R← Z∗
p]

− Pr[D(ha, hb, hc, ha2b, e(g, h)z) = 1|a, b, c, z R← Z∗
p]| ≥ ε

This problem is not easier than breaking the �-Bilinear Diffie-Hellman Expo-
nent (�-BDHE) assumption of [12] that implies the infeasibility of recognizing
e(ψ(h′), h)(a

�+1) given (h′, h, ha, h(a2), . . . , h(a�), h(a�+2)) ∈ G�+4
2 . When a = b,

ADBDH boils down to a special case1 of �-BDHE with � = 1. The generic hard-
ness ADBDH is thus implied by that of �-BDHE, which was shown in [10].

Our proof of traceability relies on a problem named 2-out-of-3 Diffie-Hellman
in [23], where its generic intractability was shown in prime order groups. A not
harder version of this problem was previously considered in [3].

Definition 5. The 2-out-of-3 Diffie-Hellman problem (2-3-CDH) is, given
(h, ha, hb) ∈ G3, to find a pair (C,Cab) ∈ G × G with C �= 1G.

3 A Scheme with Logarithmic Complexity

This section presents our main scheme providing non-black-box traceability. It
borrows ideas from the identity-based traitor tracing described in [2].
1 It is actually the hardness of deciding if T

?
= e(g, h)a2c given (h′ = hc, ha, h(a3)).
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3.1 Intuition

To provide a better intuition of the scheme, we need the recall the Waters IBE
[29] and the notion of wildcard IBE [1]. The former involves a trusted party that
publishes a master public key mpk = (Z = e(g, h)z, V0, V1, . . . , Vn) ∈ GT ×Gn+1

2

where z R← Z∗
p and n is the length of identity strings. The trusted authority

keeps a master secret msk = hz to itself. This secret is used to derive private
keys from user’s identities id = i1 . . . in ∈ {0, 1}n by computing

did = (d1, d2) =
(
msk · (V0 ·

n∏

�=1

V i�

� )r , hr
)

for a randomly chosen exponent r R← Z∗
p. Such a private key always satisfies

e(g, d1) = Z · e(U0 ·
n∏

�=1

U�, d2) (1)

where U� = ψ(V�) for � = 0, . . . , n. Therefore, a ciphertext encrypted as

C0 = m · Zs C1 = gs C2 =
(
U0 ·

n∏

�=1

U i�

�

)s
,

for a random s R← Z∗
p, can be deciphered by computing m = C0 · e(C2, d2)/e

(C1, d1) (this is easily observed by raising both members of (1) to the power s).
Wildcard IBE schemes [1] (or WIBE for short) are hierarchical IBE systems

where certain levels of the hierarchy can be left unspecified by a sender will-
ing to allow decryption by any hierarchy member whose identity fits a certain
pattern. These WIBE systems were notably used to construct multi-receiver en-
cryption systems. In the case of Waters’ IBE, the unique level of the hierarchy
can be left unspecified by replacing the ciphertext component C2 with a vector
(Us

0 , U
s
1 , . . . U

s
n) so that C2 =

(
U0 ·

∏n
�=1 U

i�

�

)s can be reconstructed at decryption
for any identity id ∈ {0, 1}n. Placing such a “wildcard” at the unique level of
the hierarchy permits decryption by anyone holding a decryption key for some
identity. The same underlying idea was used in [2] to devise an identity-based
traitor tracing scheme from a 2-level WIBE built on [29].

At high level, our scheme can be seen as using a multi-receiver encryption
scheme derived from the single level Wa-WIBE of [1]. Instead of assigning a
unique identifier to decryption keys as in [2], we embed it in re-encryption keys.

These re-encryption keys are generated by binding decryption keys of the
multi-receiver scheme to delegatees’ public keys. Identity-based private keys are
associated with serial numbers (seen as identities) and tied up to the public keys
of entities to whom messages must be re-encrypted. More precisely, we let each
party j generate an additional public key component Yj = hyj and a delegation
from user i to user j is made effective by the re-encryption key

Rij = (id, Aij , Bij) =
(
id, Y zi

j · (Vi,0 ·
n∏

�=1

V i�

i,�)
r, hr

)
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where pki = (Zi = e(g, h)zi, Yi = hyi , Ui,0, . . . , Ui,n) is user i’s public key and
Ui,� = ψ(Vi,�) for � = 0, . . . , n. The re-encryption algorithm can actually be
thought of as translating WIBE ciphertexts into regular public key encryptions
under the delegatee’s public key.

The tracing system is non-black-box. It takes as input a pirate re-encryption
key and merely extracts the built-in serial number from it. With a non-black-
box tracing algorithm, we do not need collusion-secure codes [14]. The proof of
traceability takes advantage of the collusion-resistance of the underlying WIBE
and we have logarithmic-size ciphertexts in the number of delegations.

3.2 The Scheme

For simplicity, we assume that all users have at most N delegatees. Public keys
and second level ciphertexts consist of O(n) = O(logN) group elements.

Global-setup(λ): on input of a security parameter λ, choose bilinear map groups
(G1,G2,GT , e, ψ) of prime order p > 2λ with generators h R← G2, g = ψ(h).

Keygen(λ): user i sets his public key as

pki =
(
Zi = e(g, h)zi , Yi = hyi , Ui,0 = gui,0 , Ui,1 = gui,1 , . . . , Ui,n = gui,n

)

for random values (zi, yi, ui,0, ui,1, . . . , ui,n) R← (Z∗
p)

n+3. For � = 0, . . . , n,
group elements Vi,� = hui,� ∈ G2 (that satisfy Ui,� = ψ(Vi,�)) are also
computed and included in the private key ski = (zi, yi, Vi,0, . . . , Vi,n). Let
wi,j ∈ {0, 1}n be a unique identifier to be assigned by user i to the re-
encryption key Rij translating to user j. Elements Ui,�, Vi,� define functions

FVi : {0, 1}n → G2 : FVi(wi,j) = Vi,0 ·
n∏

�=1

V
wi,j,�

i,�

and FUi : {0, 1}n → G1 : FUi(wi,j) = ψ
(
FVi(wi,j)

)
.

ReKeygen(ski, pkj): given user i’s private key ski = (zi, yi, Vi,0, . . . , Vi,n) and
user j’s public key pkj = (Zj , Yj , Uj,0, Uj,1, . . . , Uj,n), choose2 a previously
unemployed string wi,j = wi,j,1 . . . wi,j,n ∈ {0, 1}n and a random exponent
r R← Z∗

p to generate the unidirectional key

Rij = (wi,j , Aij , Bij) = (wi,j , Y
zi

j · FVi(wi,j)r, hr).

CheckKey(ski, pkj, Rij): given ski = (zi, yi, Vi,0, . . . , Vi,n), parse user j’s public
key pkj as (Zj , Yj , Uj,0, Uj,1, . . . , Uj,n) and Rij as (wi,j , Aij , Bij). Return 1 if

e(g,Aij) = e(g, Yj)zi · e(FUi(wi,j), Bij) (2)

and 0 otherwise.

2 In order to avoid to store wij and r, the delegator can compute them as a pseudo-
random function of a short secret key and the public key pkj .
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Enc1(m, pki, par): to encrypt a message m ∈ GT under the public key pki =
(Zi, Yi, Ui,0, Ui,1, . . . , Ui,n) at the first level, choose s R← Z∗

p and output

C = (C0, C1) =
(
m · e(g, h)s, e(g, Yi)s

)

Enc2(m, pki, par): to encrypt a message m ∈ GT under the public key pki at
level 2, the sender picks a random exponent s R← Z∗

p and computes

C = (C0, C1, C2,0, C2,1, . . . , C2,n) =
(
m · Zs

i , g
s, Us

i,0, U
s
i,1, . . . , U

s
i,n

)

ReEnc(Rij ,Ci): given the translation key Rij = (wi,j , Aij , Bij) ∈ {0, 1}n × G2
2

and a ciphertext Ci = (C0, C1, C2,0, . . . , C2,n) ∈ GT × Gn+2
1 , compute

FUi(wi,j)s = C2,0 ·
n∏

�=1

C
wi,j,�

2,� =
(
Ui,0 ·

n∏

�=1

U
wi,j,�

i,�

)s

and output

C′
j = (C′

0, C
′
1) =

(
C0,

e(C1, Aij)
e(FUi(wi,j)s, Bij)

)
(3)

=
(
m · e(g, h)zis, e(g, Yj)zis

)
=

(
m · e(g, h)s̃, e(g, Yj)s̃

)
(4)

with s̃ = szi.

Dec1(Cj , skj): given skj = (zj , yj , Vj,0, . . . , Vj,n), parse the ciphertext Cj as
(C0, C1) ∈ G2

T . Return m = C0/C
1/yj

1 .

Dec2(Ci, ski): parse Ci as C = (C0, C1, C2,0, . . . , C2,n) ∈ GT × Gn+2
1 and ski

as (zi, yi, Vi,0, . . . , Vi,n). Return m = C0/e(C1, h)zi .

Trace(ski, Rit, pkt): on input of a public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) and
a re-encryption key Rit = (w,Ait, Bit) ∈ {0, 1}n × G2 × G2 such that
CheckKey(ski, pkt, Rit) = 1, this algorithm incriminates the proxy that has
been provided with a re-encryption key including w as identifier.

The correctness of the re-encryption algorithm is easily checked by observing
that re-encryption keys Rij = (wi,j , Aij , Bij) always satisfy relation (2). Raising
both members of the latter to the power s ∈ Z∗

p gives

e(gs, Aij) = e(g, Yj)zis · e(FUi(wi,j)s, Bij)

which explains the transition between relations (3) and (4).
As in prior unidirectional schemes, the proxy and the delegator can collude to

compute and disclose a quantity that allows opening all second level ciphertexts:
given Rij = (wi,j , Aij , Bij) and yj s.t. Yj = hyj , they can obtain

Rbad
i� = (wi,j , A

1/yj

ij , B
1/yj

ij ) =
(
wi,j , h

zi · FVi(wi,j)r′
, hr′)

,

with r′ = r/yj , that allows for the off-line decryption of level 2 ciphertexts. How-
ever, when presented with Rbad

i� = (wi,j , A
′
ij , B

′
ij), the tracing algorithm runs the
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validity check e(g,A′
ij)

?= Zi ·e(FUi(wi,j), B′
ij). If the latter test is successful, the

the proxy identified by wi,j and its associated delegatee are both found guilty for
having conspired to produce Rbad

i� . The serial number wi,j makes the source of
the collusion evident and provides a deterrent for abuses of trust.

When the tracing system takes as input a pair (Rit = (w,Ait, Bit), pkt), the
original delegatee j associated the serial number w = wij cannot be incrimi-
nated as the corrupt proxy may have maliciously chosen pkt as a function of pkj

(possibly in an attempt to trick user i into believing that j is not trustworthy).

3.3 Security

Theorem 1. The scheme is semantically secure at the second level under the
Augmented DBDH assumption.

Proof. Let (A = ha, B = hb, C = hc, D = ha2b, T ) ∈ G4
2 × GT be an Augmented

DBDH instance. We construct an algorithm B that decides if T = e(g, h)abc

using its interaction with a chosen-plaintext adversary A.
All public keys that A gets to see are indexed by an integer i ∈ {0, . . . , Nmax},

where Nmax + 1 denotes the maximal number of users in the system. Let us call
HU ⊂ {0, . . . , Nmax} the set of honest players, including the target receiver
whose public key has index 0. Let also CU ⊂ {1, . . . , Nmax} denote the set of
corrupt receivers. The attack environment is emulated as follows.

• Key generation:

- The public key pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) of the target user is
chosen as Z0 = e(ψ(A), B) = e(g, h)ab and Y0 = hy0 , U0,� = gu0,� with
y0, u0,�

R← Z∗
p for � = 0, . . . , n.

- For users i ∈ HU\{0}, public keys are defined by randomly choosing
zi, yi, ui,0, . . . , ui,n

R← Z∗
p and setting Zi = e(g, h)zi, Yi = Ayi = hayi and

Ui,� = gui,� for � = 0, . . . , n.
- For corrupt users i ∈ CU , B generates pki according to the specification

of the scheme and discloses private elements zi, yi, ui,0, . . . , ui,n ∈ Z∗
p.

• Re-encryption key generation: to generate re-encryption keys Rij from player
i to player j, B has to distinguish several situations.

- If i ∈ CU or i ∈ HU\{0}, B knows user i’s private key component zi
such that Zi = e(g, h)zi and generates a re-encryption key as specified
by the re-encryption algorithm.

- If i = 0 and j ∈ HU\{0}, B picks a new string w0,j ∈ {0, 1}n and a
random exponent r R← Z∗

p to return

R0j =
(
w0,j , D

yj · FV0(w0,j)r, hr
)
,

for a random r R← Z∗
p. Observe that R0j has the correct shape since

Z0 = e(g, h)ab, Yj = Ayj = hayj and Dyj = (ha2byj ) = (hayj )ab.
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• Challenge: when A comes up with messages m0,m1 ∈ GT , B flips a fair coin
d� R← {0, 1} and sets the challenge ciphertext as

C0 = md	 · T C1 = ψ(C) C2,� = ψ(C)u0,� for � = 0, . . . , n.

Since C = hc and Z0 = e(g, h)ab, C = (C0, C1, C2,0, . . . , C2,n) is a valid
encryption of md	 under pk0 with the encryption exponent s = c whenever
T = e(g, h)abc. When T is random in GT , C leaks no information on d� and
A can only guess it with probability 1/2. Therefore, B outputs 1 (meaning
that T = e(g, h)abc) if A successfully guesses d� and 0 otherwise. ��

Theorem 2. The scheme is semantically secure at the first level under the
DBDH assumption.

Proof. Given in appendix A. ��

Theorem 3. The scheme is traceable under the 2-3-CDH assumption in G2.

Proof. For the sake of contradiction, assume that an adversary A defeats the
non-black-box tracing algorithm (in the sense of definition 3) with probability
ε. We build an algorithm B′′ solving a 2-3-CDH instance (A = ha, B = hb) with
probability O(ε/qrk), where qrk is the number of re-encryption key queries.

• Key generation: a set of public keys is prepared by B′′. For the target user
0, it first defines Z0 = e(ψ(A), B) = e(g, h)ab and Y0 = hy0 for a random
y0

R← Z∗
p. The vector (V0,0, V0,1, . . . , V0,n) is defined as V0,0 = Aα0−κτ · hβ0 ,

V0,� = Aα� · hβ� for � ∈ {1, . . . , n} using random vectors (α0, α1, . . . , αn) R←
Zn+1

τ , (β0, β1, . . . , βn) R← Zn+1
p , where κ R← {0, . . . , n} is chosen at random

and τ = 2qrk. For any string w0,j = w0,j,1 . . . w0,j,n ∈ {0, 1}n, we have

FV0(w0,j) = V ′ ·
n∏

�=1

V
w0,j,�

0,� = AJ(w0,j)hK(w0,j)

for functions J : {0, 1}n → Z, K : {0, 1}n → Zp respectively defined as
J(w0,j) = α0 +

∑n
�=1 α�w0,j,� − κτ and K(w0,j) = β0 +

∑n
�=1 β�w0,j,�. For

� = 0, . . . , n, B′′ also sets U0,� = ψ(V0,�). As in [29], the simulator will be suc-
cessful if J(w0,j) �= 0 for all strings w0,j �= w� involved in delegation queries
whereas J(w�) = 0 for the identifier w� of the re-encryption key produced
by A at the tracing stage. Since |J(.)| ≤ τ(n + 1) ' p, we have J(w�) = 0
with non-negligible probability O(1/τ(n + 1)). For all other (honest or cor-
rupt) users i ∈ {1, . . . , Nmax}, public keys are honestly generated by B′′ that
chooses the private keys (zi, yi, ui,0, . . . , ui,n) ∈ Zn+3

p . The latter secrets are
given to A for indices i ∈ CU ⊂ {1, . . . , Nmax} of corrupt users.

• Re-encryption key queries: at any time, A may ask for re-encryption keys
Rij of her choosing. When i �= 0, B′′ knows user i’s private key and can
normally handle the delegation query. Otherwise, following the technique of
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[9,29], it constructs a re-encryption key by sampling a fresh random string
w0,j

R← {0, 1}n and a random exponent r R← Zp to compute

R0j = (w0,j , A0j , B0j) =
(
w0,j , B

−yj
K(w0,j )
J(w0,j ) · FV0(w0,j)r, B

− yj
J(w0,j ) · hr

)
,

where yj ∈ Z∗
p is part of user j’s private key, which is returned to A. If we

define r̃ = r − (byj)/J(w0,j), R0j has the correct distribution since

A0j = B
−yj

K(w0,j )
J(w0,j ) · F (w0,j)r

= B
−yj

K(w0,j )
J(w0,j ) · F (w0,j)r̃ · (AJ(w0,j) · hK(w0,j))

byj
J(w0,j ) = (hyj )ab · F (w0,j)r̃

and B0j = hr̃. If J(w0,j) = 0, B′′ aborts as it cannot answer the query.

• Tracing stage: a successful attacker must output a pair (R�
0t, pkt) such that

CheckKey(sk0, R�
0t, pkt) = 1 and R�

0t = (w�, A�
0t, B

�
0t) cannot be traced to a

member of the coalition T . This implies that w� must differ from all the serial
numbers w0j that were associated with user 0’s delegatees. At this point, B′′

declares failure if J(w�) �= 0. With probability at least 1/4qrk(n + 1) (see
[29] for a detailed analysis of this probability) such a failure state is avoided.
In this case, B′′ parses pkt as (Zt, Yt, Ut,0, . . . , Ut,n) and outputs

(
Yt, A

�
0t/B

�
0t

K(w	)) = (Yt, Y
ab
t )

which solves the 2-3-CDH problem in G2. ��

4 A Variant with Black Box k-Traceability

The scheme can be endowed with a black-box tracing mechanism which is sim-
ilar to the one described in [2]. The idea is to associate identity-based private
keys with the codewords (seen as identities) of a collusion-secure code [14] in-
stead of serial numbers. These keys are bound to delegatees’ public keys to form
fingerprinted re-encryption keys. Assuming the hardness of the Decision Diffie-
Hellman problem in G1 for configurations where G1 �= G2 (and no isomorphism
from G1 to G2 is computable), well-formed ciphertexts are not publicly recogniz-
able. Then, pirate re-encryption devices P can be probed with invalid ciphertexts
so as to determine the codeword of one of the pirate re-encryption keys.

As in [2], this comes at the expense of prohibitively large ciphertexts, the size
of which becomes proportional to the length of the collusion-secure code. We
need a binary (k,N, ε)-collusion-secure code (as defined in appendix B), where
N is the the maximal number of delegatees per user, k is the maximal number of
colluding proxies against a delegator and ε is the maximal probability that a col-
luder avoids being traced. Such a code can be obtained with codewords of length
n = O

(
k2(logN +log(ε−1))

)
[28], which is also the number of group elements in

a ciphertext. If users have at most N = 100 delegatees, in the case k ≈ 10, we
end up with ciphertexts made of about 700 group elements (which amounts to
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13 Kb using curves [6] where elements of G1 have a 161-bit representation). We
leave open the problem of constructing an efficient black-box traceable scheme.

The tracing system, borrowed from [2], probes re-encryption devices with sec-
ond level ciphertexts wherein certain components have been altered and eventu-
ally retrieves bits at all positions where words in the feasible set of the coalition
(see appendices B and C for details) are identical. More precisely, the tracing
algorithm checks whether the pirate device successfully re-encrypts ciphertexts
where components C2,� (for all � ∈ {1, . . . , n}), have been tampered with. If
it does, the tracer deduces that C2,� was not used by the pirate device, which
means that the associated bit is 0 in all codewords that were assigned to re-
encryption keys available to the coalition. Once a n-bit word in the feasible set
of the coalition has been found, the tracing procedure of the collusion-secure
code allows recovering the fingerprint of one of the involved re-encryption keys,
which identifies a misbehaving proxy.

5 Conclusion

In all PRE schemes proposed so far, proxies and delegatees can derive new re-
encryption keys for receivers that are not trusted by the delegator. In this paper,
we proposed traceable proxy re-encryption systems, in which proxies that leak
their re-encryption key can be identified by the delegator and we presented an
efficient realization of this concept. An interesting open issue is to design a more
efficient TPRE scheme with black-box traceability.
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A Proof of Theorem 2

Let (A = ha, B = hb, C = hc, T
?= e(g, h)abc) be a DBDH instance. We show

a simple distinguisher B′ built from an adversary A against first level challenge
ciphertexts. For the target user, the public key pk0 is made of Z0 = e(g, h)z0 ,
Y0 = C = hc, U0,� = gu0,� for � = 0, . . . , n with z0, u0,0, . . . , u0,n

R← Z∗
p. All other

users’ public keys are honestly generated and B′ knows the corresponding secret
key ski = (zi, yi, ui,0, . . . , ui,n). Recall that all re-encryption keys must be given
to the adversary. Since B′ knows zi ∈ Zp such that Zi = e(g, h)zi for all users
(including user 0), it can handle all delegation queries on behalf of all parties
acting as delegators.

At the challenge step, A outputs messagesm0,m1 ∈ GT and expects to receive
a challenge ciphertext encrypted for user 0. To generate it, B′ flips a fair coin
d� R← {0, 1} and sets

C0 = md	 · e(ψ(A), B) C1 = T.

Since Y0 = hc, it can be readily observed that C = (C0, C1) is a proper encryp-
tion ofmd	 with the encryption exponent s = ab if T = e(g, h)abc. If T is random,
the bit d� is perfectly hidden from A. As usual, B′ decides that T = e(g, h)abc if
and only if A’s guess is correct. ��

B Binary Collusion-Secure (Fingerprinting) Codes

In order to make the description of the scheme with black-box traceability self-
contained, we review in this appendix the definition of collusion-secure (finger-
printing) codes from [14]. We only consider binary codes (i.e. codes defined over
{0, 1}) and for more details on collusion-secure codes, we refer the reader to
[14,28] and references therein.
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We begin by defining some notation:

– x ∈ {0, 1}n is called a binary word of length n. For such a word, we write
x = x1 . . . xn where xi ∈ {0, 1} is the ith bit of x (for i ∈ {1, . . . , n}).

– Let I = {1 ≤ i1 < . . . < ij ≤ n} be a set of indices. For a word x ∈ {0, 1}n,
x|I denotes the subword xi1 . . . xij ∈ {0, 1}n made of bits at positions in I.

– Let W = {w1, . . . , wj ∈ {0, 1}n} be a set of words, and let I be the set of
all positions where all strings in W are equal, i.e. I is the maximal set such
that w1|I = · · · = wk|I . The feasible set FS(W ) of W is defined as the set
of all strings that are equal to w1, . . . , wk at positions in I, i.e.

FS(W ) = {x ∈ {0, 1}n : x|I = w1|I = · · · = wk|I}.

The formal definition of collusion-secure codes proposed by Boneh and Shaw in
[14] is the following:

Definition 6. Let 0 < k ≤ N be positive integers and ε ∈ (0, 1]. A binary
(k,N, ε) collusion-secure code of length n consists of a tracing algorithm T , a
set C called the codebook, of indexed codeswords wi for 1 ≤ i ≤ N and a
trapdoor τ . These are such that for all collusions C ⊂ {1, . . . , N} of size at most
k, W = {wi : i ∈ C}, and for all (unbounded) algorithms A it holds that

Pr [T (x, τ) ∈ C|x ∈ FS(W );x← A(W )] > 1 − ε,

where the probability is taken over the random coins of T and A.

C Details of the Scheme with Black-Box Tracing

The variant with black-box traceability is very close to the scheme of section 3
and we just outline the simple modifications that are required.

As in [2], we assume that pirate devices do not retain state information from
prior re-encryptions when run in tracing mode.

Unlike what occurs in the scheme of section 3, the black-box tracing algorithm
does not allow to incriminate delegatees when we run it on input of a pirate sub-
key that decrypts at level 2. The reason is that the reconstructed word eventually
lies in the feasible set of codewords assigned to all re-encryption keys (i.e. those
assigned to dishonest delegatees as well as those corresponding to honest ones)
that were made available to the coalition.

Global-setup(λ): is the same as in section 3.2.

Keygen(λ): is as in section 3.2 with the difference that user i also selects a
set Ci of N binary words wi,1, . . . , wi,N of length n that form a (k,N, ε)
collusion-secure code. The latter is generated with an underlying trapdoor
τi to be used by its tracing procedure and that is also part of user i’s private
key. For codewords, elements Ui,�, Vi,� define functions FVi : {0, 1}n → G2

and FUi : {0, 1}n → G1 as in section 3.2.
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ReKeygen, Enc2, Enc1, ReEnc, Dec2 and Dec1 also remain unchanged.

Trace(ski,P): given oracle access to a pirate proxy P that correctly re-encrypts
with probability δ, the tracing algorithm conducts the following steps.

Let pkt = (Zt, Yt, Ut,0, . . . , Ut,n) be the public key under which P re-
encrypts ciphertexts. For � = 1, . . . , n, initialize a counter ctr� ← 0 and
run the following test L = 16λ/δ times:

1. Choose a random messagem ∈ GT and encrypt it using a random ex-
ponent s R← Z∗

p to get a ciphertext C = (C0, C1, C2,0, C2,1, . . . , C2,n).
2. Replace element C2,� with a random element from G1.
3. Query the pirate proxy P on the altered ciphertext.
4. If P actually re-encrypts C as a first level ciphertext C′ = (C0, C

′
1)

with C′
1 = e(gs, Yt)zi , increase ctr�.

After these L iterations, set wP
� ← 1 if ctr� < 4λ and wP

� ← 0 otherwise.
The decoded n-bit word wP is finally taken as input by the tracing procedure
of the collusion-secure code that uses the trapdoor τi to uncover the identity
of a rogue proxy with probability ε.

If I denotes the set of positions where all codewords of the coalition are identical,
bits of wP outside I can be arbitrarily chosen by the pirate device (that can notice
the ill-formedness of the ciphertext when its altered component is C2,� for � �∈ I).
But it does not matter since, as in [2], the tracing system of the code only needs
a word wP ∈ {0, 1}n inside the feasible set.

It is essentially routine to prove the black-box traceability property using ideas
from [2] but a slightly different assumption is needed. As in [2], we first have to
count on the difficulty of DDH in G1 within asymmetric pairing configuration.
This assumption obviously requires the infeasibility of inverting ψ : G2 → G1

and found several applications (see [26,15,2] for instance).

Definition 7. The eXternal Diffie-Hellman assumption (XDH) in asym-
metric bilinear groups (G1,G2) posits the hardness of the Decisional Diffie-
Hellman problem in G1: given (ga, gb) ∈ G1

2, distinguishing gab from random
should be hard. A distinguisher’s advantage can be defined as in definition 4.

The second assumption that we make is a generalization – introduced in [3] – of
the computational BDH assumption (CBDH).

Definition 8. The Generalized Bilinear Diffie-Hellman Problem
(GBDH) is, given (ha, hb, hc) ∈ G3

2, to come up with a pair (g′, e(g′, h)abc) ∈
G1 × GT .

The GBDH assumption is non-standard but it is worth mentioning that any
algorithm breaking it would also be able to solve the Decision Tripartite Diffie-
Hellman problem in G2 which is to distinguish habc from random given
(ha, hb, hc) and that has been more widely used (see [13] for instance).

Theorem 4. The modified scheme is black-box k-traceable assuming that the
code is a (k,N, ε)-collusion-secure code of length n, that the XDH assumption
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holds in G1 and that the GBDH problem is hard. More concretely, the advantage
of any PPT adversary A in constructing an untraceable re-encryption device that
translates ciphertexts with probability δ after having obtained k re-encryption
keys is at most

Adv(A)TPRE ≤ ε+ n · (AdvGDBH(B′′) + exp(−λ))

if δ > 2 · Adv(B′)XDH where B′, B′′ are PPT algorithm that are built on A.

Proof. Given an adversary A that outputs a pirate device P translating cipher-
texts with probability δ, we construct an attacker A′ against the collusion-secure
code. The latter adversary takes a set of k codewords and outputs a new one
w′. As in [2], we show that, with all but negligible probability, A′ avoids being
traced whenever A does. Algorithm A′ takes as input a set of random codewords
W = {w1, . . . , wk} and generates public keys on behalf of all honest and corrupt
users i ∈ HU ∪ CU . Codewords of W are used to define the target user’s code-
book while A′ generates itself the codebooks that are part of other users’ private
keys. At the jth re-encryption key of the shape (pk0, pkj) (i.e. involving user 0
as a delegator and pkj as a delegatee’s public key), A′ fetches a fresh codeword
from W and assigns it to the re-encryption key R0j which is returned to A.

Eventually, A outputs a pirate translation device P which is run in tracing
mode so as to finally reconstruct a n-bit word w′. As in [2], it can be shown that
w′ falls outside FS(W ) with probability smaller than

n · (AdvGDBH(B′′) + exp(−λ)). (5)

Let I be the set of positions that are identical in all words ofW . For indices �� ∈ I
such that w�	 = 0, lemma 1 first shows that P re-encrypts ciphertexts where C2,�	

is random with probability negligibly close to δ unless the XDH assumption is
false. For indices �� ∈ I where w�	 = 1, lemma 2 gives an upper bound on
P’s chance to succeed in translating ciphertexts where C2,�	 is perturbed. The
claimed bound (5) is obtained through a similar analysis to [2]. ��

Lemma 1. For any �� ∈ {1, . . . , n}, if w0,j,�	 = 0 in all codewords w0,j associ-
ated with re-encryption keys available to the coalition, P has probability at least
p0 ≥ δ −AdvXDH(λ) to re-encrypt ciphertexts where C2,�	 was tampered with.

Proof. Towards a contradiction, assume that an adversary A comes up with a
pirate device P, where w0,j,�	 = 0 in all underlying codewords w0,j , that re-
encrypts ciphertexts with probability p0 ≤ δ − γ for some γ > 0. Then, there
exists an algorithm B′ breaking the XDH assumption with advantage γ.

On input of an XDH instance (A = ga, B = gb, η
?= gab), this algorithm

B′ first prepares a set of public keys by defining the target user’s public key
pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) as Z0 = e(g, h)z0 , Y0 = hy0 , with z0, y0

R← Z∗
p,

U0,�	 = A = ga and U0,� = gu0,� with u0,�
R← Z∗

p for � ∈ {0, . . . , n}\{��}.
Note that pre-images V0,� = hu0,� so that ψ(V0,�) = U0,� are also available for all
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� ∈ {0, . . . , n}\{��}. For other public keys pki with i ∈ {1, . . . , N}, B′ simply
runs the key generation algorithm according to its specification.

As w0,j,�	 = 0 for all codewords w0,j assigned to re-encryption keys R0j

queried by A, B′ is able to compute such keys R0j = (w0,j , Y
z0
j · FV0(w0,j)r, hr)

by running ReKeygen (although it does not know V0,�	 = ψ−1(ga)). When A
outputs a pirate ciphertext translator P, B′ feeds it with a ciphertext

C0 = m · e(B, h)z0 C1 = B C2,�	 = η C2,� = Bu0,� for � ∈ {0, . . . , n}\{��}

for a random message m R← GT . The device P then generates a re-encryption
C′ = (C0, C

′
1). Given the public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) of the user

receiving re-encryptions from P, B′ can check whether C′ was successfully trans-
lated by testing if C′

1 = e(B, Yt)z0 . If yes, B′ outputs 1 (meaning that η = gab).
Otherwise, it returns 0 and bets that η is random. ��

Lemma 2. For any �� ∈ {1, . . . , n}, if w0,j,�	 = 1 in all codewords w0,j em-
bedded in re-encryption keys of colluding proxies, then P has probability at most
p1 ≤ AdvGBDH(λ) to re-encrypt ciphertexts where C2,�	 was tampered with.

Proof. Assume that A is an adversary producing a re-encryption box P that has
non-negligible probability p1 of re-encrypting ciphertexts where C2,�	 has been
replaced by a random element of G1. We construct a distinguisher B′′ solving a
computational GBDH instance (A = ha, B = hb, C = hc).

B′′ first generates a set of public keys. The target user’s public key is set as
pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) where Z0 = e(ψ(A), B) = e(g, h)ab, Y0 = hy0

and U0,� = gu0,� with y0, u0,�
R← Z∗

p for � ∈ {0, . . . , n}\{��}. The remaining
public key component is chosen as U0,�	 = gα0,�	 · ψ(A)β0,�	 for random in-
tegers α0,�	 , β0,�	

R← Z∗
p. Note that V0,�	 = hα0,�	 · Aβ0,�	 is also computable

as well as V0,� = hu0,� for � �= ��. For other users i ∈ {1, . . . , n}, public keys
pki = (Zi, Yi, Ui,0, Ui,1, . . . , Ui,n) are calculated as specified by the key genera-
tion algorithm and private elements (zi, yi, ui,0, . . . , ui,n) are known to B′′.

Given that w0,j,�	 = 1 for all of the k codewords w0,j contained in re-
encryption keys R0j that A must be provided with, these keys can be generated
by choosing r R← Z∗

p and setting

A0j = V r
0,�	 ·B− yj α0,�	

β0,�	 ·
n∏

�=0,� �=�	

(
V r

0,� ·B
− yj u0,�

β0,�	
)w0,j,� , B0j = hr ·B− yj

β0,�	

which provides a valid re-encryption key R0j = (w0,j , A0j , B0j) since Xj = hxj

and, if we define r̃ = r − byj/β0,�	, we have B0j = hr̃ and

= (hyj )ab · V r̃
0,�	 ·

n∏

�=0,� �=�	

(
V r̃

0,�

)w0,j,� .

A0j =V r̃
0,�� · (hα0,�� ·Aβ0,�� )

byj
β0,�� · B

yjα0,��

β0,�� ·
n∏

�=0,� �=��

(
V r̃

0,� · h
u0,�

byj
β0,�� ·B− yju0,�

β0,��
)w0,j,�
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When B′′ obtains a pirate device P from A, it probes it with a ciphertext

C0
R← GT C1 = ψ(C) C2,�	

R← G1 C2,� = ψ(C)u0,� for � ∈ {0, . . . , n}\{��}

which is a valid ciphertext (with the encryption exponent s = c) where C2,�	 has
been replaced by a random element. By assumption, P is assumed to re-encrypt
it under some public key pkt = (Xt, Yt, Ut,0, Ut,1, . . . , Ut,n) that was not involved
in a re-encryption key query with user 0 acting as a delegator. When obtaining
a re-encryption C′

t = (C0, C
′
1) =

(
C0, e(g, Yt)abc

)
=

(
C0, e(ψ(Yt), h)abc

)
, B′′

outputs a pair (ψ(Yt), C′
1) which violates the GBDH assumption. ��



Security and Anonymity of Identity-Based

Encryption with Multiple Trusted Authorities

Kenneth G. Paterson and Sriramkrishnan Srinivasan

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, U.K.
{kenny.paterson,s.srinivasan}@rhul.ac.uk

Abstract. We consider the security of Identity-Based Encryption (IBE)
in the setting of multiple Trusted Authorities (TAs). In this multi-TA
setting, we envisage multiple TAs sharing some common parameters, but
each TA generating its own master secrets and master public keys. We
provide security notions and security models for the multi-TA setting
which can be seen as natural extensions of existing notions and mod-
els for the single-TA setting. In addition, we study the concept of TA
anonymity, which formally models the inability of an adversary to dis-
tinguish two ciphertexts corresponding to the same message and identity
but generated using different TA master public keys. We argue that this
anonymity property is a natural one of importance in enhancing pri-
vacy and limiting traffic analysis in multi-TA environments. We study
a modified version of a Fujisaki-Okamoto conversion in the multi-TA
setting, proving that our modification lifts security and anonymity prop-
erties from the CPA to the CCA setting. Finally, we apply these results
to study the security of the Boneh-Franklin and Sakai-Kasahara IBE
schemes in the multi-TA setting.

Keywords: identity-based encryption, multi-TA IBE, anonymity, mul-
tiple trusted authorities.

1 Introduction

The concept of Identity-Based Encryption (IBE) was first introduced by Shamir
in [23]. In identity-based cryptography(IBC), arbitrary identifying strings such
as e-mail addresses or IP addresses can be used to form public keys for users, with
the corresponding private keys being created by a Trusted Authority (TA) who
is in possession of a system-wide master secret. Then a party Alice who wishes,
for example, to encrypt to a party Bob need only know Bob’s identifier and the
system-wide public parameters. This approach eliminates certificates and the
associated processing and management overheads from public key cryptography.
The first efficient and secure constructions for IBE were not forthcoming till
the work of Cocks [12], and the pairing-based solutions of Sakai, Ohigishi and
Kasahara [22] and Boneh and Franklin [6]. Boneh and Franklin [6] also proposed

S.D. Galbraith and K.G. Paterson (Eds.): Pairing 2008, LNCS 5209, pp. 354–375, 2008.
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the first security models for IBE and gave schemes secure in the random oracle
model [5]. Since the publication of these first results, there has been an explosion
of interest in IBE and related cryptographic primitives.

1.1 Motivation and Contributions

Historically, anonymous encryption was motivated in the context of mobile com-
munication. In the standard public key setting, an entity B sends a user A ci-
phertexts of messages encrypted under A’s public key (and vice versa), over a
wireless network. It is reasonable to assume that A and B will want to keep
their identities hidden from an eavesdropper who can see all ciphertexts on the
network. This is possible only when ciphertexts do not leak information about
the public keys used to create them, a notion formalised as key-privacy in [4].

If an IBE scheme is used instead of a standard public key scheme, the equiv-
alent notion is that of recipient anonymity: the ciphertext should not leak the
identity of the (intended) recipient. In this setting, we assume that there is a
single global TA issuing keys to all users in the system, and that all ciphertexts
are created using the public parameters of that single global TA. With a small
number of exceptions (upon which we elaborate in the related work section be-
low), the security models proposed for IBE to date all consider such a single-TA
setting.

It is however possible to envisage scenarios as above but with multiple, in-
dependent TAs (perhaps sharing some common system parameters). In some
applications, each user may only have a single private key issued by one of the
TAs, while in others, users could have multiple private keys for the same iden-
tity string with the different private keys being issued by different TAs. In both
settings, in addition to the usual IBE security notions of indistinguishability and
recipient anonymity, the notion of TA anonymity arises as being both natural
and of fundamental importance. Here, we desire that an adversary should find
it difficult to distinguish ciphertexts produced using different TA master pub-
lic keys, even if the ciphertext is for the same message and identity string. As
well as being a natural security notion for the multi-TA setting, TA anonymity
may have practical significance. For example, we can imagine a coalition of TAs
operating in a wireless setting where all ciphertexts can be captured from the
network by an adversary. In such a scenario, if the ciphertext were to somehow
leak the identity of the TA, then this would open up avenues for traffic analysis.
In a hostile environment, traffic analysis can lead to the leaking of information
relating to which entities are communicating and how frequently, which can often
reveal important intelligence about the nature of operations.

In this paper we extend the usual indistinguishability and recipient anonymity
notions for IBE security to the multi-TA setting, and, in addition, formalize the
notion of TA anonymity. We introduce a modified version of the Fujisaki-Okamoto
conversion for the multi-TA setting, proving that our modified transformation lifts
security and anonymity properties from the CPA to the CCA setting. We then
apply these results to study the security and anonymity of the Boneh-Franklin [6]
and the Sakai-Kasahara [21] IBE schemes in the multi-TA setting.
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As well as formalising the notion of TA anonymity, our work also establishes
new results concerning the recipient anonymity of important IBE schemes. For
example, to the best of our knowledge, no CCA-secure variant of the Boneh-
Franklin IBE scheme was previously known to have recipient anonymity. More-
over, we show that the Sakai-Kasahara scheme (and a CCA-secure variant of it)
enjoys recipient anonymity, contradicting a claim of [7].

1.2 Related Work

Anonymity. In the standard public key setting, the notion of key-privacy [4]
captures the requirement that an adversary in possession of a ciphertext cannot
tell which public key was used to create the ciphertext, i.e the ciphertext should
not leak information about the public key. The equivalent notion in the IBE set-
ting is the notion of recipient anonymity, i.e the ciphertext should not leak the
identity of the recipient. The systematic study of recipient anonymity was initi-
ated in [1], motivated both by its intrinsic interest in IBE and for its application
in constructing PEKS (Public Key Encryption with Keyword Search) schemes
from IBE schemes. Since then, recipient anonymity has quickly become a stan-
dard security property for IBE schemes. IBE schemes known to offer recipient
anonymity include the CPA-secure BasicIdent scheme of Boneh and Franklin
[6] and the IBE schemes of Gentry [16].

Multi-TA Security for IBE. Holt [18] also considered security of IBE in
the multi-TA setting, motivated by earlier work on anonymous credential sys-
tems [19,9]. Two notions of key privacy for IBE were outlined in [18]. The first,
termed “identity-based indistinguishability of identity under chosen plaintext
attack” (ID-II-CPA), is just the standard single-TA recipient anonymity notion.
The second is termed “identity-based indistinguishability of key generator under
chosen plaintext attack” (ID-IKG-CPA), and is roughly similar to our notion of
multi-TA TA anonymity under chosen plaintext attack (m-TAA-CPA). However,
the ID-IKG-CPA security model in [18], while allowing corruption of TAs, does
not allow the adversary to extract any user private keys at all. Our m-TAA-CPA
model is strictly stronger, allowing both corruption of TAs and extraction of pri-
vate keys (even for the challenge TA)1. Moreover, [18] only considers the CPA
setting, showing that the BasicIdent scheme of [6] has ID-II-CPA and ID-IKG-
CPA security. However, even the proofs for these CPA cases are at best informal.
In this paper, we consider the CCA setting, use stronger security notions, and
give rigorous proofs.

Wang and Cao [24] gave examples of IBE schemes enjoying reduced ciphertext
expansion and reduced computation when the sender sends the same message
to a single identity using multiple, different master public keys belonging to
different TAs, such that the message can be recovered with a private key issued
1 Holt’s work allows the adversary to dynamically instantiate new TAs during its

attack but without any adversarial input to the set up process, while we set up all
the TAs at the start of the security games. These two approaches are easily seen to
have equivalent strength.
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for that identity by any one of the TAs. However, the security models presented
in [24] are the standard single-TA, indistinguishability-based security models,
and no consideration is given to how security may be affected by encrypting the
same message using multiple master public keys. In addition, the schemes of [24]
reuse randomness to enhance efficiency, and this is not formally addressed in the
security analysis. Barbosa and Farshim [3] consider the security of multi-recipient
IBE with randomness re-use, but only in the single-TA setting.

Chase [10] has considered Attribute Based Encryption (ABE), a generalisation
of IBE, in the setting of multiple authorities. In her work, a user is equipped
with private keys corresponding to attributes from different TAs and the user is
only able to decrypt a ciphertext if he possesses a threshold of attributes from
different TAs. Chase does not seem to consider the issue of TA anonymity.

Anonymity for Hierarchical IBE. Anonymity properties for IBE have al-
ready been studied in the hierarchical setting [1,8]. Anonymous Hierarchical IBE
(AHIBE) is related to, but different from, our notion of TA anonymity for IBE.
In AHIBE, a single root TA generates public parameters and a master secret,
using which the master secrets of all sub-TAs are produced. Ciphertexts are
then anonymous, in that an adversary cannot distinguish which identity was
used when producing a ciphertext, where now identities are comprised of a vec-
tor of strings identifying a hierarchy of TAs and a final user. On other hand,
in our multi-TA setting, there is no single root authority, but rather a group of
independent TAs (who may share some common parameters). The “right” gen-
eralisation of our multi-TA IBE concept to the hierarchical setting would then
involve multiple, independent root TAs, each being the root of a tree of TAs
and users. Thus we would have a forest of trees, and would then wish to study
anonymity properties of ciphertexts in this multi-HIBE setting. We leave further
development of this line of research to future work.

Fujisaki-Okamoto Conversions. Yang et al. [25] and Kitagawa et al. [20]
considered the adaptation of the Fujisaki-Okamoto conversions of [14] and [13]
to the IBE setting, showing that simple modifications of the original Fujisaki-
Okamoto approaches can be used to build IBE schemes with IND-CCA security
from schemes having only OW-CPA and IND-CPA security, respectively, in the
random oracle model. We adapt the Fujisaki-Okamoto technique of [13] to the
multi-TA setting, showing how it lifts security and anonymity properties from
the CPA to the CCA setting.

2 Background and Definitions

In this section, we provide basic definitions needed for the remainder of the
paper.

Definition 1. A pairing-friendly group generator PairingGen is a polynomial
time algorithm with input 1k and output a tuple (G,GT , e, q, P ). Here G,GT are
groups of prime order q, P generates G, and e : G × G → GT is a bilinear,
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non-degenerate and efficiently computable map. By convention, G is an additive
group and GT multiplicative.

For ease of presentation, we work exclusively in the setting where e is symmetric;
our definitions and results can be generalised to the asymmetric setting where e :
G1×G2 → GT , withG1 andG2 being different groups. Further details concerning
the basic choices that are available when using pairings in cryptography can be
found in [15].

Definition 2. A function ε(k) is said to be negligible if, for every c, there exists
kc such that ε(k) ≤ k−c for every k ≥ kc.

Definition 3. We define the advantage of an algorithm A in solving the Bilinear
Diffie-Hellman (BDH) problem in (G,GT ) to be:

AdvBDH
A (k) = Pr(A(aP, bP, cP ) = e(P, P )abc)

where a, b, c ← Zq. Here, we implicitly assume that parameters (G,GT , e, q, P )
are given to A as additional inputs. We say that the BDH problem is hard in
(G,GT ) if no polynomial-time algorithm that solves the BDH problem in (G,GT )
has a non-negligible advantage.

Definition 4. We define the advantage of an algorithm A in solving the �-
Bilinear Diffie-Hellman Inversion (�-BDHI) problem in (G,GT ) to be:

Adv�-BDHI
A (k) = Pr(A(xP, x2P, . . . , x�P ) = e(P, P )1/x)

where x ← Zq. Here, we implicitly assume that parameters (G,GT , e, q, P ) are
given to A as additional inputs. We say that the �-BDHI problem is hard in
(G,GT ) if no polynomial-time algorithm that solves the �-BDHI problem in
(G,GT ) has a non-negligible advantage.

Definition 5. A (single-TA) IBE scheme is defined in terms of four algorithms:

– Setup: On input 1k, outputs a master public key mpk which includes system
parameters params , and a master secret key msk . We assume that params
contains descriptions of the message and ciphertext spaces, MsgSp and CtSp,
and that MsgSp ⊂ {0, 1}∗.

– KeyDer: A key derivation algorithm that on input mpk , msk and identifier
id ∈ {0, 1}∗, returns a private key uskid . This algorithm may or may not be
randomized.

– Enc: An encryption algorithm that on input mpk , identifier id ∈ {0, 1}∗ and
message m ∈ MsgSp, returns a ciphertext c ∈ CtSp. This algorithm is usually
randomized; in subsequent descriptions, we will write c = Enc(mpk , id ,m; r)
when we wish to emphasize that randomness r (drawn from some space RSp)
is used when performing an encryption.

– Dec: A decryption algorithm that on input mpk , a private key uskid and
a ciphertext c ∈ CtSp, returns either a message m ∈ MsgSp or a failure
symbol ⊥.
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These algorithms must satisfy the standard consistency requirement that de-
cryption undoes encryption, i.e. ∀m ∈ MsgSp, Dec(mpk , uskid , c) = m where
c = Enc(mpk , id ,m).

3 Multi-TA Security

We formalize IBE in the multi-TA setting and the associated notions of security.
A multi-TA IBE scheme is defined in terms of five algorithms:

– CommonSetup: On input 1k, outputs params , a set of system parameters
shared by all TAs; T A = {tai : 1 ≤ i ≤ n} will represent the set of (labels
of) TAs, where n = n(k) ∈ N.

– TASetup: On input params , outputs a master public key mpk (which includes
params), and a master secret key msk . This algorithm is randomized and
executed independently for each TA in T A.

– KeyDer, Enc, Dec: These are all as per a normal IBE scheme.

Note that we explicitly include a CommonSetup algorithm which outputs params ,
a set of system parameters shared by all TAs. The different TAs will of course
have different master public keys and master secret keys. Our model is capable
of handling situations where no such common system parameters are used, sim-
ply by setting params to be the security parameter 1k. Nevertheless, it is not
unreasonable to assume that the different TAs may share some common system
parameters (e.g. the output of a pairing parameter generator in the Boneh-
Franklin IBE scheme), since cryptographic schemes and related parameters are
often standardised by bodies like ISO, NIST or IEEE P1363, and then used in
multiple domains by different authorities. Indeed, the IEEE P1363.3 working
group aims to produce a set of standards specific to identity based cryptography
and we may expect specific recommendations for cryptographic parameters to
be produced by this group in due course. For the concrete schemes considered
in this paper, common parameters are needed in order to achieve our notion of
TA anonymity; doing so without having some (non-trivial) common parameters
is an interesting open problem.

We also need a standard consistency requirement on such a scheme. In ad-
dition, in applications, we may require a robustness condition – decrypting a
ciphertext created using an identity and the master public key of one TA should
fail to decrypt using a private key for that (or any other) identity issued by
another TA. We return to this issue in Section 5.

In the security games defined below, TASet represents the set of TAs that
have been compromised, i.e queried for their master secret keys, IDSetta repre-
sents the set of identities queried for private keys for each ta ∈ T A, while CSetta
represents the set of identity/ciphertext pairs on which decryption queries have
been performed for each ta ∈ T A. In these games, MPK = {mpkta : ta ∈ T A}
and MSK = {mskta : ta ∈ T A} represent the set of all master public keys
and all master secret keys, respectively. For each experiment defined below,
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we associate to an adversary A and a bit b ∈ {0, 1}, the advantage of the adver-
sary for a given “notion-attack” combination, which is defined as:

Advnotion-atk
A (k) =

∣
∣
∣Pr[Expnotion-atk-1

A (k) = 1] − Pr[Expnotion-atk-0
A (k) = 1]

∣
∣
∣

A scheme is said to be “notion-atk”-secure if the advantage of all PPT adver-
saries is negligible as a function of the security parameter k.

We focus below on Chosen Ciphertext Attacks (CCA) for three different se-
curity notions: indistinguishability, recipient anonymity and TA anonymity. Re-
moving adversarial access to decryption oracles gives the same notions of security
against a Chosen Plaintext Attack (CPA).

In each of the first two cases (namely, indistinguishability of messages and
recipient anonymity), setting n = 1 and removing access to the Corrupt oracle
gives us a security notion that coincides with a known (single-TA) IBE security
notion. Formally, to obtain a (single-TA) IBE scheme, we need to combine the
CommonSetup and TASetup algorithms of the multi-TA scheme into a single Setup
algorithm. In what follows, we will refer to this scheme as being the corresponding
single-TA IBE scheme. In the third case, TA anonymity, the security notion is
inappropriate for the single-TA setting.

3.1 m-IND-CCA Security

We first define the m-IND-CCA security notion that captures indistinguishabil-
ity of messages under chosen ciphertext attacks in the multi-TA setting.

Experiment Expm-IND-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params)
IDSetta ← ∅, CSetta ← ∅
(ta , id ,m0,m1, state) ←

ACorrupt,KeyDer,Dec(find,MPK )
c∗ ← Enc(mpkta , id ,mb)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If {m0, m1} � MsgSp or |m0| �= |m1| or m0 = m1

then return 0
If ta /∈ TASet , id /∈ IDSetta and (id , c∗) /∈ CSetta
then return b′ else return 0

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta , id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

The following theorem relates the m-IND-CCA security of a multi-TA IBE
scheme to the IND-CCA security of the corresponding single-TA IBE scheme.

Theorem 1. Let atk ∈ {CPA,CCA}. Then for any m-IND-atk adversary A
against a multi-TA IBE scheme with n TAs having advantage ε and running in
time t, there exists an IND-atk adversary B against the corresponding single-TA
IBE scheme with advantage ε

n and running in time O(time(A)).
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Proof. Suppose there is an m-IND-atk adversary A against a multi-TA IBE
scheme having advantage ε and running in time t. We show how to construct
an algorithm B that uses A to break the IND-atk security of the corresponding
single-TA IBE scheme.

B’s input from its challenger is the public key mpk of the single-TA scheme
which, by our definitions, includes some public parameters params that are out-
put by the CommonSetup part of the Setup algorithm of the single-TA scheme.
B’s task is to break the IND-atk property of the scheme and it does this by
acting as a challenger for A.

B first sets up a multi-TA IBE scheme. It does this by first taking params
from the public key of the single-TA scheme. If n is the number of TAs in the
multi-TA setting, it first picks i $← {1, . . . n} and sets mpk tai

= mpk (note it does
not know the corresponding master secret key for this TA). For the remaining
n−1 TAs it generates the master public keys and master secret keys itself using
the TASetup algorithm. B now gives the set of n master public keys to A.

A then makes a series of TA corrupt queries, extraction queries (and decryp-
tion queries in the CCA setting) which B answers using either its knowledge of
the relevant master secret key or by relaying queries to its own challenger. If A
makes a corrupt query on tai then B aborts the simulation.

A also makes a single query in the challenge phase; if A’s selected TA in this
phase is not tai, then B aborts, otherwise B again uses its own challenger to
answer the query. When A terminates by outputting a bit b′, B simply relays
this bit to its challenger.

This completes our description of B’s simulation. Note that A’a view of the
simulation is identical to its view in a real attack, unless B aborts. Moreover B’s
output b′ is correct if A’s is. It is easy to see that B aborts with probability 1/n
and that B runs in time O(time(A)). The result follows.

3.2 m-RA-CCA Security

Our m-RA-CCA security notion captures the notion of recipient anonymity in
the presence of chosen ciphertext attackers, in the multi-TA setting. The single-
TA version of the m-RA-CPA security notion was studied in detail in [1], where
it was named IBE-ANO-CPA security.

Halevi [17] provides a simple sufficient condition for an IND-CPA public key
encryption scheme to have key-privacy: given public keys pk0 and pk1 and the
encryption of a random message under pkb for a bit b chosen at random, even a
computationally unbounded adversary should have negligible advantage in de-
termining which public key was used. Abdalla et al. [1] extended this condition to
study recipient anonymity of IND-CPA-secure IBE schemes. We further extend
these ideas to study multi-TA IBE schemes in the following sections.

Here, as throughout, we suppress “IBE”, since all of our work is in the ID-
based setting. We use “RA’ in place of “ANO” because we wish to study two
forms of anonymity, viz recipient anonymity (RA) and TA anonymity (TAA).



362 K.G. Paterson and S. Srinivasan

Experiment Expm-RA-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta, id0, id1,m, state) ←

ACorrupt,KeyDer,Dec(find, MPK )
c∗ ← Enc(mpkta , idb,m)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If m /∈ MsgSp or id0 = id1 then return 0
If ta /∈ TASet , id0 /∈ IDSetta, id1 /∈ IDSetta,
(id0, c

∗) /∈ CSetta and (id1, c
∗) /∈ CSetta then re-

turn b′ else return 0

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

Theorem 2. Let atk ∈ {CPA,CCA}. Then for any m-RA-atk adversary A
against a multi-TA IBE scheme with n TAs having advantage ε and running
in time t, there exists an RA-atk adversary B against the corresponding single-
TA IBE scheme with advantage ε

n and running in time O(time(A)).

The proof is similar to that of Theorem 1 and is omitted.

3.3 m-RA-RE-CCA Security

In order to establish the m-RA-CPA/m-RA-CCA security of concrete schemes,
it is helpful to work with a related notion, m-RA-RE-CPA/m-RA-RE-CCA se-
curity. Our treatment here follows that of [1], with appropriate modifications for
the multi-TA setting.

In handling the challenge phase in the following game, the challenger encrypts
a random message m′ in place of the adversary’s choice of message m, hence the
choice “RE” in m-RA-RE-CCA to signify “randomized encryption”.

Experiment Expm-RA-RE-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta, id0, id1,m, state) ←

ACorrupt,KeyDer,Dec(find,MPK )

m′ $← MsgSp with |m′| = |m|;
c∗ ← Enc(mpkta , idb, m

′)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If m /∈ MsgSp or id0 = id1 then return 0
If ta /∈ TASet , id0 /∈ IDSetta, id1 /∈ IDSetta,
(id0, c

∗) /∈ CSetta and (id1, c
∗) /∈ CSetta then re-

turn b′ else return 0

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

The following result relates the notions of m-RA-atk security and m-RA-RE-
atk security; a single-TA version of this result for atk = CPA was given in [1].
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Lemma 1. Let m-IBE be a multi-TA IBE scheme that is m-IND-atk-secure
and m-RA-RE-atk-secure. Then m-IBE is also m-RA-atk-secure. Here atk ∈
{CPA,CCA}.

Proof. Let A be a poly-time algorithm (PTA) attacking the m-RA-atk security
of a scheme m-IBE. It is easy to construct PTAs A1, A3 attacking the m-IND-
atk security of m-IBE, and a PTA A2 attacking m-RA-RE-atk security of m-IBE
such that:

Advm-RA-atk
A (k)

= | Pr[Expm-RA-atk-1
A (k) = 1] − Pr[Expm-RA-atk-0

A (k) = 1]|
= | Pr[Expm-RA-atk-1

A (k) = 1] − Pr[Expm-RA-RE-atk-1
A (k) = 1]

+ Pr[Expm-RA-RE-atk-1
A (k) = 1] − Pr[Expm-RA-RE-atk-0

A (k) = 1]

+ Pr[Expm-RA-RE-atk-0
A (k) = 1] − Pr[Expm-RA-atk-0

A (k) = 1]|
≤ | Pr[Expm-RA-atk-1

A1
(k) = 1] − Pr[Expm-RA-RE-atk-1

A1
(k) = 1]|

+ | Pr[Expm-RA-RE-atk-1
A2

(k) = 1] − Pr[Expm-RA-RE-atk-0
A2

(k) = 1]|
+ | Pr[Expm-RA-RE-atk-0

A3
(k) = 1] − Pr[Expm-RA-atk-0

A3
(k) = 1]|

≤ Advm-IND-atk
A1 (k) + Advm-RA-RE-atk

A2 (k) + Advm-IND-atk
A3 (k)

3.4 m-TAA-CCA Security

The m-TAA-CCA security notion formalizes TA anonymity: a ciphertext should
not leak which TA’s master public key was used to compute the ciphertext. We
work with chosen ciphertext adversaries in the multi-TA setting. As explained
above, TA anonymity is a necessary condition to achieve fully private communi-
cation thwarting adversarial activity like traffic analysis in the multi-TA setting.

Experiment Expm-TAA-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta0, ta1, id ,m, state) ←

ACorrupt,KeyDer,Dec(find,MPK )
c∗ ← Enc(mpktab

, id , m)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If m /∈ MsgSp or ta0 = ta1 then return 0
If ta0 /∈ TASet , ta1 /∈ TASet , id /∈ IDSetta0 ,
id /∈ IDSetta1 , (id , c∗) /∈ CSetta0

and (id , c∗) /∈
CSetta1

then return b′ else return 0

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta , id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

3.5 m-TAA-RE-CCA Security

Again, when proving m-TAA-RE-CCA security for a concrete scheme it is some-
times easier to work with the related m-TAA-RE-CCA security notion, which
we define next.
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Experiment Expm-TAA-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta0, ta1, id ,m, state) ←

ACorrupt,KeyDer,Dec(find,MPK )

m′ $← MsgSp with |m′| = |m|;
c∗ ← Enc(mpktab

, id ,m ′)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If m /∈ MsgSp or ta0 = ta1 then return 0
If ta0 /∈ TASet , ta1 /∈ TASet , id /∈ IDSet ta0 ,
id /∈ IDSet ta1 , (id , c∗) /∈ CSetta0

and (id , c∗) /∈
CSetta1

then return b′ else return 0.

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

Lemma 2. Let m-IBE be a multi-TA IBE scheme that is m-IND-atk-secure
and m-TAA-RE-atk-secure. Then m-IBE is also m-TAA-atk-secure. Here atk ∈
{CPA,CCA}.
The proof is similar to that of Lemma 1 and is omitted.

3.6 A Combined Security Notion: m-IND-TAA-RA-CCA Security

Finally, we define an m-IND-RA-TAA-CCA experiment that simultaneously cap-
tures message indistinguishability, recipient anonymity, and TA anonymity in the
multi-TA setting for chosen ciphertext adversaries.

Experiment Expm-IND-RA-TAA-CCA-b
A (k)

params ← CommonSetup(1k)
TASet ← ∅
∀ta ∈ T A, (mpk ta,msk ta) ← TASetup(params),
IDSetta ← ∅ and CSetta ← ∅
(ta0, ta1, id0, id1,m0,m1, state) ←

ACorrupt,KeyDer,Dec(find,MPK )
c∗ ← Enc(mpktab

, idb,mb)

b′ ← ACorrupt,KeyDer,Dec(guess, c∗, state)
If {m0, m1} � MsgSp or |m0| �= |m1|
then return 0
If (ta0 = ta1 and id0 = id1 and m0 = m1)
then return 0
If ta0 /∈ TASet , ta1 /∈ TASet , id0 /∈ IDSetta0

,
id1 /∈ IDSetta1

, (id0, c
∗) /∈ CSetta0

and (id1, c
∗) /∈

CSetta1
then return b′ else return 0.

Oracle Corrupt(ta)
TASet ← TASet ∪ {ta}
Return mskta

Oracle KeyDer(ta, id)
IDSetta ← IDSetta ∪ {id}
uskid ,ta ← KeyDer(mskta , id)
Return uskid ,ta

Oracle Dec(ta , id , c)
CSetta ← CSetta ∪ (id , c)
uskid ,ta ← KeyDer(mskta , id)

m ← Dec(mpkta , uskid ,ta , c)
Return m

Lemma 3. Let m-IBE be a multi-TA IBE scheme that is m-IND-atk-secure,
m-RA-atk-secure and m-TAA-atk-secure. Then m-IBE is also m-IND-RA-TAA-
atk-secure. Here atk ∈ {CPA,CCA}.
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Proof. The proof (informally) follows by noting that if m-IBE is m-TAA-atk-
secure, then the challenger may replace the triple (ta0, id0,m0) with (ta1, id0,
m0) in its response to the challenge query without the adversary being able
to detect the change. Likewise, using m-RA-atk security, the challenger may
then replace (ta1, id0,m0) with (ta1, id1,m0). Finally, using m-IND-atk security,
the challenger can replace (ta1, id1,m0) with (ta1, id1,m1), again, without the
adversary being able to detect the change. This informal argument can be made
rigorous using a sequence of games.

A combined m-IND-RA-CCA security notion can also be defined and it is easy
to show that m-IND-RA-CCA security holds for a scheme that has both m-IND-
CCA and m-RA-CCA security, using a similar strategy as above. In the single-TA
setting, we obtain IND-RA-CCA and IND-RA-CPA security notions. The latter
security notion for IBE was used to prove the security of PEKS schemes in [1].
Similarly, we define combined m-IND-TAA-CPA and m-IND-TAA-CCA security
notions.

4 Extending the Fujisaki-Okamoto Conversion to
Multi-TA IBE Schemes

In two separate but related strands of work, Fujisaki and Okamoto studied the
problem of building Public Key Encryption (PKE) schemes which are secure in
a very strong sense (IND-CCA) from PKE schemes which are secure in a weaker
sense.

In [14], Fujisaki and Okamoto gave a generic conversion that takes any OW-
CPA-secure PKE scheme satisfying a mild technical condition (γ-uniformity) and
outputs a PKE scheme that is IND-CCA-secure in the Random Oracle Model.
Yang et al. [25] investigated how to adapt this particular Fujisaki-Okamoto (FO)
technique to the ID-based setting.

Similarly, in [13], Fujisaki and Okamoto gave a generic conversion that takes
any IND-CPA-secure PKE scheme and outputs a PKE scheme that is IND-CCA-
secure in the Random Oracle Model. The security analysis in [13] is significantly
simpler than that of [14]. Kitagawa et al. [20] investigated how to modify this
particular FO technique for the ID-based setting.

We now describe a modified FO conversion for IBE in the multi-TA setting.
We are able to show that in the multi-TA setting, we can apply this modified
conversion to build an IBE scheme that has m-IND-RA-TAA-CCA security from
an IBE scheme that is m-IND-RA-TAA-CPA-secure and γ-uniform. We extend
the ideas of [13,20]. In particular, we include additional parameters in the input
to the hash function used in the scheme. This allows us to efficiently respond to
hash queries, simplifies book-keeping in the proof, and yields a simulation that
has a reduced running time in comparison to an application of the unmodified
Fujisaki-Okamoto transformation.

We begin by defining a suitable notion of γ-uniformity for the multi-TA setting.
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Definition 6. Let Π be a multi-TA IBE scheme with space of randomness RSp.
Then Π is said to be γ-uniform if, for any fixed choice of c ∈ CtSp, m ∈ MsgSp,
id ∈ {0, 1}∗ and ta ∈ T A, we have:

Pr
[
c = Enc(mpkta, id,m; r) : r $← RSp

]
≤ γ.

Now let Π = {CommonSetup, TASetup, KeyDer, Enc, Dec} be a multi-TA IBE
scheme. Then Π ′ = {CommonSetup′, TASetup′, KeyDer′, Enc′, Dec′} denotes a
new multi-TA IBE scheme with algorithms defined as follows.

Let l0 + l1 be the bit length of messages in Π , where l0 will be the bit length
of messages in Π ′, and let RSp be the space of randomness used by Enc.

– CommonSetup′: As in CommonSetup, but in addition, we pick a hash function
H : {0, 1}∗ × {0, 1}∗ × {0, 1}l0 × {0, 1}l1 → RSp.

– TASetup′:As in TASetup.
– KeyDer′: As in KeyDer.
– Enc′: This algorithm takes as input mpk ta for ta ∈ T A, id ∈ {0, 1}∗, and a

message m ∈ {0, 1}l0. Its output is:

Enc′(mpkta , id ,m) = Enc(mpkta , id ,m||σ;H(mpk ta, id ,m, σ))

where σ $← {0, 1}l1. So Π ′ has randomness space {0, 1}l1.
– Dec′: Let c denote a ciphertext to be decrypted using a private key uskid ,ta

issued by TA ta with master public key mpkta for identity id . This algorithm
works as follows:
1. Compute m ′ = Dec(mpkta , uskid ,ta , c).
2. Let m = [m ′]l0 and σ = [m ′]l1 where [a]b and [a]b denote the first and

last b bits of a string a respectively.
3. Test if Enc(mpkta , id ,m||σ;H(mpk ta, id ,m, σ)) = c. If not output ⊥;

otherwise output m as the decryption of c.

Theorem 3. Modelling H as a random oracle, if Π is a multi-TA IBE scheme
that is m-IND-RA-TAA-CPA-secure and γ-uniform for some negligible γ, then
Π ′ is m-IND-RA-TAA-CCA-secure.

In more detail, suppose Π is a γ-uniform IBE encryption scheme. Let A be
an m-IND-RA-TAA-CCA adversary which has advantage ε(k) against Π ′ and
which runs in time t(k). Suppose A makes at most qH queries to H, at most
qE extraction queries, and at most qD decryption queries. Suppose further that
executing Enc once needs at most time τ . Then there is an m-IND-RA-TAA-
CPA adversary B which has advantage at least ε′(k) against Π, with running
time t′(k), such that

ε′(k) = 2(
ε+ 1

2
− qh

2l1 − 1
)(1 − γ)qd − 1

and
t′(k) = O(t(k) + qhτ).
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Proof. Suppose there is an m-IND-RA-TAA-CCA adversary A against Π ′ with
advantage ε(k) and running in time t(k). We show how to construct an adversary
B that uses A to break the m-IND-RA-TAA-CPA-security of Π

B’s input is the set of all master public keys MPK . B gives A the set MPK .
A also has access to random oracle H that is controlled by B. A then makes a
series of queries which B answers as follows.

– H-queries: B maintains a list of tuples 〈mpk i, id i,mi, σi, gi, ci〉. We refer to
this list as the H list. The list is initially empty.
When A makes a H query on (mpk , id ,m, σ), B responds as follows:
• If the query (mpk , id ,m, σ) already appears in a tuple
〈mpk i, id i,mi, σi, gi, ci〉 then B responds with H(mpk , id ,m , σ) = gi.

• Otherwise B picks g $← RSp, generates c = Enc(mpkta , id ,m||σ; g),
adds the tuple 〈mpk , id ,m, σ, g, c〉 to the H list and responds to A with
H(mpk , id ,m, σ) = g.

– Corrupt Queries: If A issues a TA corrupt query on ta ∈ T A, then B sim-
ply relays this query to its challenger, which responds with the corresponding
master secret key mskta . B then passes the resulting key to A.

– Extraction Queries: If A issues an extraction query on (ta, id), then B for-
wards (ta, id) to its challenger, which responds with the private key uskid ,ta .
B forwards this key to A.

– Decryption Queries: If A issues a decryption query on (ta, id , c), A re-
sponds as follows:
• Searches for a tuple 〈mpk i, id i,mi, σi, gi, ci〉 from the H list such that

mpkta = mpk i, id = id i and c = ci.
• If such a tuple exists, then outputs m, else outputs ⊥.

– Challenge: A outputs data (ta0, ta1, id0, id1,m0,m1) on which it wishes to
be challenged. This data is subject to the usual restrictions (see Section 3.6).
B chooses two l1 bit strings σ0 and σ1 uniformly at random, subject to the
condition that they be distinct, and sends (ta0, ta1, id0, id1,m0||σ0,m1||σ1)
to its challenger. B’s challenger picks a random bit b and sets

c∗ = Enc(mpktab
, idb,mb||σb; r)

where r ∈ RSp. B forwards c∗ to A.

After the Challenge query has been issued, if the adversary A makes a hash
oracle query on either (ta0, id0,m0, σ0) or (ta1, id1,m1, σ1) then the adversary
B simply outputs b′ = 0 or b′ = 1, respectively, as its guess for the value of the
bit b. If neither hash query is made then, at the end of A’s attack, B simply
outputs the same bit b′ that A outputs. B wins if b′ = b. This completes our
description of the simulation.

Our analysis now follows closely the analysis in [13]. We define the following
events and probabilities.

Let Pr[SuccA] be the probability that adversary A outputs a bit b′ = b.
Similarly, let Pr[SuccB] be the probability that adversary B outputs a bit b′ = b.
For notational convenience, we let ε denote A’s advantage in the simulation.



368 K.G. Paterson and S. Srinivasan

Let Askb be the event that A asks a hash query that coincides with(mpktab
,

idb,mb, σb) and Askb̄ be the event that A asks a hash query that coincides with
(mpkta b̄

, id b̄,m b̄, σb̄). Notice that these two queries are distinct because σ0 �= σ1.
We define F to be the event that B fails to answer a decryption query correctly

at some point during the game so that Pr[¬F ] is the probability that B answers
all decryption queries correctly during the simulation. Now,

Pr[SuccA] = Pr[SuccA|Askb] · Pr[Askb]
+ Pr[SuccA|(¬Askb) ∧ Askb̄] · Pr[(¬Askb) ∧ Askb̄)]
+ Pr[SuccA|(¬Askb) ∧ (¬Askb̄)] · Pr[(¬Askb) ∧ (¬Askb̄)].

Similarly,

Pr[SuccB] = Pr[SuccB|Askb] · Pr[Askb]
+ Pr[SuccB|(¬Askb) ∧ Askb̄] · Pr[(¬Askb) ∧ Askb̄)]
+ Pr[SuccB|(¬Askb) ∧ (¬Askb̄)] · Pr[(¬Askb) ∧ (¬Askb̄)].

From the conditions of the simulation, we have the following:

Pr[SuccB|Askb] = 1,
Pr[SuccB|(¬Askb) ∧ Askb̄] = 0,

Pr[SuccA|(¬Askb) ∧ (¬Askb̄)] = Pr[SuccB|(¬Askb) ∧ (¬Askb̄)].

Therefore,

Pr[SuccB]− Pr[SuccA] = Pr[Askb](1 − Pr[SuccA|Askb])
+ Pr[(¬Askb) ∧ Askb̄](0 − Pr[SuccA|(¬Askb ∧ Askb̄)])

≥ −Pr[(¬Askb) ∧ Askb̄].

Since even a computationally unbounded adversary has no information about
what the string σb̄ is (except that it is distinct from σb and so is uniformly
distributed on a set of size 2l1 − 1), and our adversary makes at most qh queries
to the oracle H , we infer that Pr[(¬Askb) ∧ Askb̄] ≤ qh

2l1−1
. Hence,

Pr[SuccB] ≥ Pr[SuccA]− Pr[(¬Askb) ∧ Askb̄]
≥ ε+1

2 − qh

2l1−1
.

The event F occurs only when A submits a decryption query (ta, id , c) such that

c = Enc(mpkta , id ,m ||σ;H(mpk ta, id ,m, σ))

without first querying H on input (mpk ta, id ,m, σ). Now observe that, given
values ta, id , c, there is at most one possible message m′ = m||σ that could
result from decrypting ciphertext c under the private key uskid ,ta , namely m′ =
Dec(mpkta , uskid ,ta , c). Applying the definition of γ-uniformity, and noting that
the randomness r that would be used to form c for the schemeΠ ′ is still uniformly
distributed whenever the relevant hash query has not been made, we see that
B fails to properly answer each decryption query with probability at most γ.
Therefore Pr[¬F ] ≤ (1 − γ)qd .
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Hence, we have

AdvB(k) = 2 Pr[SuccB] · Pr[¬F ] − 1 ≥ 2(
ε+ 1

2
− qh

2l1 − 1
)(1 − γ)qd − 1.

For the running time analysis, note that in addition to the running time of
A, the adversary B has to run the encryption algorithm Enc at most qh times.
Therefore t′(k) = O(t(k) + qhτ). �

Notice that the above theorem as stated requires the initial scheme Π to have
all three security properties (IND, RA and TAA) in order to convert from CPA-
security to CCA-security. In fact, it is easy to prove versions of Theorem 3 that
convert IND-RA-CPA security to IND-RA-CCA security and IND-TAA-CPA
security to IND-TAA-CCA security. However, the proof technique does not allow
us to prove that the conversion preserves either of our anonymity properties in
isolation – we need the base scheme Π to also be IND-secure.

We leave as an open problem to find a modified version of the “other” FO
conversion (from [14]) that preserves anonymity properties in the multi-TA
setting.

4.1 Applying the Modified FO Conversion to BasicIdent

We describe and analyse a multi-TA scheme m-BasicIdent that is based on the
scheme BasicIdent from [6]. This scheme is defined as follows:

CommonSetup(1k):

– (G, GT , e, q, P ) ← PairingGen(1k).
– Output params =

(G, GT , e, q, P, H1, H2, n) where
H1 : {0, 1}∗ → G, H2 : GT → {0, 1}n

for some n = n(k).
– MsgSp = {0, 1}n, CtSp = G1 × {0, 1}n,

RSp = Zq.

TASetup(params)

– Set s
$← Zq, Q = sP .

– Set mpk = (params , Q).
– Set msk = s.
– Output (mpk ,msk).

KeyDerH1(ta, id):

– Set uskid ,ta = mskta · H1(id).
– Output uskid ,ta .

EncH1,H2(ta, id , m):

– Parse mpkta as (params , Qta ).

– Set r
$← Zq.

– Set T = e(H1(id), Qta )r.
– Output c = (rP, m ⊕ H2(T )).

DecH2(ta, uskid ,ta , c):

– Parse c as (U, V ).
– Set T = e(uskid ,ta , U).

– Output m = V ⊕ H2(T ).

The scheme m-BasicIdent.

We next show the scheme that results from applying the modified Fujisaki-
Okamoto tranformation to the m-BasicIdent scheme above.
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CommonSetup′(1k):

– (G, GT , e, q, P ) ← PairingGen(1k).
– Output params =

(G, GT , e, q, P, H1, H2, H3, l0, l1, n)
where H1 : {0, 1}∗ → G,
H2 : GT → {0, 1}n for some n = n(k),
l0 + l1 = n, and H3 : {0, 1}∗ ×{0, 1}∗ ×
{0, 1}l0 × {0, 1}l1 → Zq.

– MsgSp = {0, 1}l0 , CtSp = G1 ×{0, 1}n,
RSp = {0, 1}l1 .

TASetup′: As in TASetup

KeyDer′: As in KeyDer

EncH1,H2,H3(ta, id , m):

– Parse mpkta as (params , Qta ).

– Set σ
$← {0, 1}l1 .

– Set r = H3(mpk ta, id , m, σ).
– Set T = e(H1(id), Qta )r.
– Output c = (rP, (m||σ) ⊕ H2(T )).

DecH2,H3(ta, uskid ,ta , c):

– Parse c as (U, V ).
– Set T = e(uskid ,ta , U).

– Set m ′ = V ⊕ H2(T ).
– Set m = [m′]l0 and σ = [m ′]l1 .
– Test if r = H3(mpk ta, id ,m, σ).

If not, output ⊥; otherwise output
m as the decryption of c.

The scheme FO-m-BasicIdent.

Lemma 4. The multi-TA scheme m-BasicIdent is m-IND-CPA-secure, assum-
ing the hardness of the BDH problem in groups output by PairingGen.

Proof. The single-TA scheme corresponding to m-BasicIdent is nothing other
than the Boneh-Franklin BasicIdent scheme, whose IND-CPA security is known
to rest on the hardness of the BDH problem in groups output by PairingGen
[6]. Now apply Theorem 1.

The following result is an extension of a result from [1] that showed that the
BasicIdent scheme has recipient anonymity against CPA attackers.

Lemma 5. The multi-TA scheme m-BasicIdent is m-RA-CPA-secure and m-
TAA-CPA-secure, assuming the hardness of the BDH problem in groups output
by PairingGen.

Proof. Ciphertexts c in the m-BasicIdent scheme have two parts, namely U =
rP and V = m ⊕ H2(T ). The value U is chosen uniformly at random from G.
If the message m is chosen uniformly at random from {0, 1}n then V is also
distributed uniformly in {0, 1}n and is independent of H2(T ). Thus, in both 0
and 1 worlds of the m-RA-RE-CPA and m-TAA-RE-CPA games, the ciphertext c
has exactly the same distribution and any adversary in these RE games will have
zero advantage. By Lemma 4, m-BasicIdent is m-IND-CPA-secure. Applying
Lemmas 1 and 2 yields m-RA-CPA and m-TAA-CPA security for m-BasicIdent,
assuming the hardness of the BDH problem in groups output by PairingGen.
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Lemma 6. The m-BasicIdent scheme is γ-uniform for γ = 1/q.

Proof. In the m-BasicIdent scheme, the first component of the ciphertext is
U = rP where r $← Zq. It is them immediate that m-BasicIdent is γ uniform
with γ = 1/q.

Theorem 4. The scheme FO-m-BasicIdent obtained by applying the modified
FO conversion to the scheme m-BasicIdent is m-IND-RA-TAA-CCA-secure,
assuming the hardness of the BDH problem in groups output by PairingGen.

Proof. We obtain the above result by combining Lemmas 4, 5 with Lemmas 3,
6 and Theorem 3.

Thus we have obtained an efficient multi-TA IBE scheme enjoying indistinguisha-
bility, recipient anonymity and TA anonymity for the CCA setting, in the random
oracle model. We note as a corollary of our analysis that the single-TA version
of our scheme offers recipient anonymity. To the best of our knowledge, this is
the first such result for a CCA-secure variant of BasicIdent.

4.2 Applying the Modified FO Conversion to the Sakai-Kasahara
IBE Scheme

The Sakai-Kasahara IBE scheme [21] has an alternative (and attractive) private
key extraction algorithm compared to the Boneh-Franklin scheme. We define
m-BasicSK, a multi-TA version of this scheme using symmetric pairings, imme-
diately below, and then provide a sketch security analysis.

CommonSetup(1k):

– (G, GT , e, q, P ) ← PairingGen(1k).
– Output params =

(G, GT , e, q, P, Z, H1, H2, n) where
Z = e(P, P ) ∈ GT , H1 : {0, 1}∗ → Zq ,
H2 : GT → {0, 1}n for some n = n(k).

– MsgSp = {0, 1}n, CtSp = G1 × {0, 1}n,
RSp = Zq.

TASetup(params)

– Set s
$← Zq, Q = sP .

– Set mpk = (params , Q).
– Set msk = s.
– Output (mpk ,msk).

KeyDerH1(ta, id):

– Output
uskid ,ta = 1

mskta+H1(id )
· P .

EncH1,H2(ta, id , m):

– Parse mpkta as (params , Qta ).

– Set r
$← Zq.

– Set U = rQta + rH1(id)P .
– Output c = (U, m ⊕ H2(Z

r)).

DecH2(ta, uskid ,ta , c):

– Parse c as (U, V ).
– Set T = e(uskid ,ta , U).

– Output m = V ⊕ H2(T ).

The scheme m-BasicSK.
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The IND-CPA security of the single-TA scheme corresponding to m-BasicSK
can be proved by making small modifications to the proof of [11, Theorem 2],
which established the OW-CPA security of a closely related scheme based on the
hardness of the �-BDHI problem in groups output by PairingGen (for some value
� related to the number of queries made by the adversary). Using Theorem 1, we
can deduce that m-BasicSK is m-IND-CPA-secure under the same assumption.
It is then easy to establish that m-BasicSK is m-RA-CPA-secure and m-TAA-
CPA-secure; this requires a similar analysis as in Lemma 5. Moreover, m-BasicSK
is γ-uniform for γ = 1/q. We may now apply Theorem 3 to deduce that the
scheme FO-m-BasicSK that is obtained by applying our modified FO conversion
to m-BasicSK is m-IND-RA-TAA-CCA-secure, assuming the hardness of the �-
BDHI problem in groups output by PairingGen.

Thus we have obtained a second efficient multi-TA IBE scheme enjoying in-
distinguishability, recipient anonymity and TA anonymity for the CCA setting,
in the random oracle model. Our CCA-secure scheme has roughly the same per-
formance as the KEM-DEM-derived scheme of [11], but offers stronger proven
anonymity guarantees. We also note that even the recipient anonymity of the
single-TA version of m-BasicSK was not previously known – indeed this is ex-
plicitly claimed not to hold in [7].

5 Conclusion and Future Work

We have given a formal analysis of various security and anonymity notions for
multi-TA IBE schemes and the relationships between them. We have also in-
vestigated a modified Fujisaki-Okamoto transformation for IBE and shown that
this transformation preserves our security and anonymity notions when building
a CCA-secure scheme from a CPA-secure one. We investigated the application
of this transformation to the Boneh-Franklin BasicIdent scheme and to the
Sakai-Kasahara scheme.

In future work, we will investigate further specific IBE schemes and see if
they meet the multi-TA security notions introduced in this paper. In particular,
it will be interesting to examine the IND-RA-atk-secure IBE schemes of Gentry
[16] and see if they can also be proven to be TAA-atk-secure We raised the
possibility of adapting the “other” FO conversion of [14] so as to preserve our
multi-TA security notions. Another open problem suggested by this work is
its generalization to the hierarchical IBE (HIBE) setting, where the anonymity
properties of ciphertexts generated using different root TA master public keys
could be studied.

Finally, the subject of robustness of IBE in the single-TA and multi-TA
settings requires further investigation: when using an IND-RA-TA-CCA-secure
scheme in practice in a fully anonymous communications system, users will need
to be able to decide whether or not a ciphertext is intended for their consump-
tion. Seemingly the only way for a user to do this is to attempt a trial decryption
using his private key, relying on the decryption algorithm to reject the ciphertext
if the wrong private key has been used. However, there is nothing intrinsic to our
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formal definitions or security models that guarantees that decryption will always
output “⊥” when the wrong private key is used, though such a robustness prop-
erty is clearly desirable (as it would prevent attacks where an adversary fooled a
user into decrypting a ciphertext intended for another party to obtain a mean-
ingful message upon which the decrypting party might then act). Robustness in
this sense for standard public key encryption and IBE schemes is the subject of
a recent paper of Abdalla et al. [2]. It would be interesting to attempt to extend
their results to the multi-TA setting, but it should be noted that the authors
of [2] have already established that the FO conversion of [14] does not preserve
robustness in general.
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