

Lecture Notes in Artificial Intelligence 5239
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Klaus-Dieter Althoff Ralph Bergmann
Mirjam Minor Alexandre Hanft (Eds.)

Advances in
Case-Based Reasoning

9th European Conference, ECCBR 2008
Trier, Germany, September 1-4, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Klaus-Dieter Althoff
Alexandre Hanft
University of Hildesheim
Institute of Computer Science
31141 Hildesheim, Germany
E-mail: {althoff, hanft}@iis.uni-hildesheim.de

Ralph Bergmann
Mirjam Minor
University of Trier
Department of Business Information Systems II
54286 Trier, Germany
E-mail: {bergmann, minor}@uni-trier.de

Library of Congress Control Number: 2008933734

CR Subject Classification (1998): I.2, J.4, J.1, J.3, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-85501-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85501-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12514021 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 9th European Conference on
Case-Based Reasoning (ECCBR 2008).

Case-based reasoning (CBR) is an artificial intelligence approach whereby
new problems are solved by remembering, adapting and reusing solutions to a
previously solved, similar problem. The collection of previously solved problems
and their associated solutions is stored in the case base. New or adapted solutions
are learned and updated in the case base as needed.

In remembrance of the First European Workshop on Case-Based Reasoning,
which took place 15 years ago at the European Academy Otzenhausen, not far
from Trier, this year’s conference was especially devoted to the past, present,
and future of case-based reasoning.

ECCBR and the International Conference on Case-Based Reasoning (IC-
CBR) alternate every year. ECCBR 2008 followed a series of seven successful
European workshops previously held in Otzenhausen, Germany (1993), Chan-
tilly, France (1994), Lausanne, Switzerland (1996), Dublin, Ireland (1998), and
Trento, Italy (2000), and three European conferences in Aberdeen, UK (2002),
Madrid, Spain (2004), and Ölüdeniz/Fethiye, Turkey (2006). The International
Conferences on Case-Based Reasoning (ICCBR) were previously held in Sesim-
bra, Portugal (1995), Providence, Rhode Island, USA (1997), Seeon, Germany
(1999), Vancouver, Canada (2001), Trondheim, Norway (2003), Chicago, USA
(2005), and Belfast, Northern Ireland (2007). These meetings have a history
of attracting first-class European and international researchers and practition-
ers. The proceedings of the ECCBR and ICCBR conferences are published by
Springer in their LNAI series.

The ECCBR 2008 conference was held at the University of Trier, Germany
and offered a number of new program elements. This included the first Com-
puter Cooking Contest (CCC), a CBR system competition demonstrating the
application of case retrieval, adaptation, and combination methods for cooking
recipes. CCC was co-organized by Mirjam Minor (University of Trier), Armin
Stahl (DFKI), and Ralph Traphöner (empolis), and a professional cook was re-
sponsible for evaluating the computer generated recipes.

Furthermore, ECCBR 2008 focused on two special areas with high relevance
to CBR: The Role of CBR in the Future Internet (chaired by Enric Plaza)
and CBR in Healthcare (chaired by Isabelle Bichindaritz and Stefania Mon-
tani). When submitting a paper, the authors could relate their paper to one of
these areas. In each focus area, the area chairs selected three papers for oral
presentation.

The workshops, which took place on the first day of the conference, covered
various topics of specific interest to the CBR community such as Knowledge
Discovery, Similarity, Context-Awareness, Uncertainty, Health Sciences, and the

VI Preface

Computer Cooking Contest Workshop. The second day was the traditional In-
dustry Day, giving insight into fielded CBR applications. It also included the
Poster Session with its lively discussions. The remaining two days were devoted
to invited talks and technical presentations on both theoretical and applied re-
search in CBR as well as to the presentations related to the two special areas.

A total of 71 papers were submitted by authors from 19 different countries,
not only from Europe, but also from America, Asia, and Africa. The accepted
39 papers (18 oral presentations and 21 poster presentations) were chosen based
on a thorough and highly selective review process. Each paper was reviewed
and discussed by at least three Program Committee members and revised ac-
cording to their comments. We believe that the papers in this volume give a
representative snapshot of current research and contribute to both theoretical
and applied aspects of CBR research. The proceedings have been organized into
three sections: invited talks (3 papers), research papers (34), and application
papers (5).

The chairs would like to thank the invited speakers Isabelle Bichindaritz,
Enric Plaza, Pádraig Cunningham, and Barry Smyth for their contribution to
the success of this conference. While the talk of Cunningham and Smyth was
explicitly devoted to the past of ECCBR, the talks of Bichindaritz and Plaza
represented the respective focus areas they were chairing. Particular thanks go
to the Program Committee and additional reviewers for their efforts and hard
work during the reviewing and selection process.

We are also grateful for the work of the Industry Chair Ralph Traphöner,
the Workshops Coordinator Martin Schaaf as well as the chairs of the respec-
tive workshops and their various committee members for their preparations for
Industry Day and the workshops. We thank all the authors who submitted pa-
pers to the conference and gratefully acknowledge the generous support of the
sponsors of ECCBR 2008 and their, partly long-time, sponsorship of ECCBR
and ICCBR.

This volume has been produced using the EasyChair system1. We would
like to express our gratitude to its author Andrei Voronkov. Finally, we thank
Springer for its continuing support in publishing this series of conference pro-
ceedings.

June 2008 Klaus-Dieter Althoff
Ralph Bergmann

Mirjam Minor
Alexandre Hanft

1 http://www.easychair.org

Conference Organization

Program Chairs

Klaus-Dieter Althoff University of Hildesheim, Germany
Ralph Bergmann University of Trier, Germany

Local Organization

Mirjam Minor University of Trier, Germany

Proceedings and Conference Management System

Alexandre Hanft University of Hildesheim, Germany

Industry Day Coordination

Ralph Traphöner empolis GmbH, Germany

Workshop Coordination

Martin Schaaf University of Hildesheim, Germany

Program Committee

Agnar Aamodt Norwegian University of Science and Technology,
Norway

David W. Aha Naval Research Laboratory, USA
Esma Aimeur University of Montreal, Canada
Klaus-Dieter Althoff University of Hildesheim, Germany
Josep-Llúıs Arcos IIIA-CSIC, Spain
Kevin Ashley University of Pittsburgh, USA
Brigitte Bartsch-Spörl BSR Consulting, Germany
Ralph Bergmann University of Trier, Germany
Isabelle Bichindaritz University of Washington, USA
Enrico Blanzieri University of Trento, Italy
Derek Bridge University College Cork, Ireland
Robin Burke DePaul University, USA
Hans-Dieter Burkhard Humboldt University Berlin, Germany
William Cheetham General Electric Co. NY, USA

VIII Organization

Susan Craw Robert Gordon University, UK
Pádraig Cunningham Trinity College Dublin, Ireland
Belén Dı́az-Agudo Univ. Complutense de Madrid, Spain
Peter Funk Malardalens University, Sweden
Ashok Goel Georgia Institute of Technology, USA
Andrew Golding Lycos Inc., USA
Pedro A. González-Calero Univ. Complutense de Madrid, Spain
Mehmet Göker PricewaterhouseCoopers, USA
Eyke Hüllermeier University of Marburg, Germany
Igor Jurisica Ontario Cancer Institute, Canada
David Leake Indiana University, USA
Ramon López de Mántaras IIIA-CSIC, Spain
Michel Manago empolis, France
Cindy Marling Ohio University, USA
Lorraine McGinty University College Dublin, Ireland
David McSherry University of Ulster, UK
Erica Melis Saarland University, Germany
Mirjam Minor University of Trier, Germany
Stefania Montani University of Eastern Piedmont, Italy
Héctor Muñoz-Avila Lehigh University, USA
David Patterson University of Ulster, UK
Petra Perner Institute of Computer Vision and Applied CS,

Germany
Enric Plaza IIIA-CSIC, Spain
Luigi Portinale University of Eastern Piedmont, Italy
Lisa S. Purvis Xerox Corporation, NY, USA
Francesco Ricci ITC-irst, Italy
Michael M. Richter University of Calgary, Canada
Thomas Roth-Berghofer DFKI, Germany
Martin Schaaf University of Hildesheim, Germany
Rainer Schmidt University of Rostock, Germany
Barry Smyth University College Dublin, Ireland
Raja Sooriamurthi Indiana University, USA
Armin Stahl DFKI Germany
Jerzy Surma Warsaw School of Economics, Poland
Henry Tirri University of Helsinki, Finland
Brigitte Trousse INRIA Sophia Antipolis, France
Ian Watson University of Auckland, New Zealand
Rosina Weber Drexel University, USA
Stefan Wess empolis, Germany
David C. Wilson University of North Carolina, Charlotte, USA
Nirmalie Wiratunga Robert Gordon University, UK
Qiang Yang University of Science and Technology,

Hong Kong

Organization IX

Additional Reviewers

Ibrahim Adeyanju Eva Armengol Riccardo Bellazzi
Ralf Berger Steven Bogaerts Ann Bui
Edwin Costello Sarah Jane Delany Sidath Gunawardena
Marco A. Gómez-Mart́ın Manfred Hild Chad Hogg
Stephen Lee-Urban Giorgio Leonardi Gabriela Lindemann
Craig MacDonald Diego Magro Tariq Mahmood
Erik Olsson Amandine Orecchioni Belén Prados Suárez
Juan A. Recio-Garćıa Niall Rooney Raquel Ros
Antonio A. Sánchez-Ruiz Ning Xiong
Bassant Mohamed Aly El Bagoury

Conference Sponsors

empolis GmbH, Germany
DFKI GmbH, Germany
Daimler AG, Germany

Table of Contents

Invited Talks

Case-Based Reasoning in the Health Sciences: Why It Matters for the
Health Sciences and for CBR . 1

Isabelle Bichindaritz

An Analysis of Research Themes in the CBR Conference Literature . . . 18
Derek Greene, Jill Freyne, Barry Smyth, and Pádraig Cunningham

Semantics and Experience in the Future Web . 44
Enric Plaza

Research Papers

Recognizing the Enemy: Combining Reinforcement Learning with
Strategy Selection Using Case-Based Reasoning . 59

Bryan Auslander, Stephen Lee-Urban, Chad Hogg, and
Héctor Muñoz-Avila

Formal and Experimental Foundations of a New Rank Quality
Measure . 74

Steven Bogaerts and David Leake

Provenance, Trust, and Sharing in Peer-to-Peer Case-Based Web
Search . 89

Peter Briggs and Barry Smyth

Visualizing and Evaluating Complexity of Textual Case Bases 104
Sutanu Chakraborti, Ulises Cerviño Beresi, Nirmalie Wiratunga,
Stewart Massie, Robert Lothian, and Deepak Khemani

Learning Similarity Functions from Qualitative Feedback 120
Weiwei Cheng and Eyke Hüllermeier

Conservative Adaptation in Metric Spaces . 135
Julien Cojan and Jean Lieber

Opportunistic Acquisition of Adaptation Knowledge and Cases—The
IakA Approach . 150

Amélie Cordier, Béatrice Fuchs, Léonardo Lana de Carvalho,
Jean Lieber, and Alain Mille

Noticeably New: Case Reuse in Originality-Driven Tasks 165
Belén Dı́az-Agudo, Enric Plaza, Juan A. Recio-Garćıa, and
Josep-Llúıs Arcos

XII Table of Contents

Experience-Based Design of Behaviors in Videogames 180
Gonzalo Flórez Puga, Belén Dı́az-Agudo, and Pedro González-Calero

Considerations for Real-Time Spatially-Aware Case-Based Reasoning:
A Case Study in Robotic Soccer Imitation . 195

Michael W. Floyd, Alan Davoust, and Babak Esfandiari

Retrieval Based on Self-explicative Memories . 210
Albert Fornells, Eva Armengol, and Elisabet Golobardes

Increasing Precision of Credible Case-Based Inference 225
Thomas Gabel and Martin Riedmiller

Supporting Case-Based Retrieval by Similarity Skylines: Basic Concepts
and Extensions . 240

Eyke Hüllermeier, Ilya Vladimirskiy, Belén Prados Suárez, and
Eva Stauch

Using Case Provenance to Propagate Feedback to Cases and
Adaptations . 255

David Leake and Scott A. Dial

Towards Case-Based Support for e-Science Workflow Generation by
Mining Provenance . 269

David Leake and Joseph Kendall-Morwick

Knowledge Planning and Learned Personalization for Web-Based Case
Adaptation . 284

David Leake and Jay Powell

Cases, Predictions, and Accuracy Learning and Its Application to
Effort Estimation . 299

Jingzhou Li, Brenan Mackas, Michael M. Richter, and
Guenther Ruhe

Evaluation of Feature Subset Selection, Feature Weighting, and
Prototype Selection for Biomedical Applications . 312

Suzanne Little, Ovidio Salvetti, and Petra Perner

Case-Based Decision Support for Patients with Type 1 Diabetes on
Insulin Pump Therapy . 325

Cindy Marling, Jay Shubrook, and Frank Schwartz

Conversational Case-Based Reasoning in Self-healing and Recovery 340
David McSherry, Sa’adah Hassan, and David Bustard

Situation Assessment for Plan Retrieval in Real-Time Strategy
Games . 355

Kinshuk Mishra, Santiago Ontañón, and Ashwin Ram

Table of Contents XIII

Optimization Algorithms to Find Most Similar Deductive Consequences
(MSDC) . 370

Babak Mougouie

Understanding Dubious Future Problems . 385
Oğuz Mülâyim and Josep Llúıs Arcos

Conversational Case-Based Recommendations Exploiting a Structured
Case Model . 400

Quang Nhat Nguyen and Francesco Ricci

k-NN Aggregation with a Stacked Email Representation 415
Amandine Orecchioni, Nirmalie Wiratunga, Stewart Massie, and
Susan Craw

Case-Based Reasoning and the Statistical Challenges 430
Petra Perner

Evaluation Measures for TCBR Systems . 444
M.A. Raghunandan, Nirmalie Wiratunga, Sutanu Chakraborti,
Stewart Massie, and Deepak Khemani

CBR for CBR: A Case-Based Template Recommender System for
Building Case-Based Systems . 459

Juan A. Recio-Garćıa, Derek Bridge, Belén Dı́az-Agudo, and
Pedro A. González-Calero

Forgetting Reinforced Cases . 474
Houcine Romdhane and Luc Lamontagne

iReMedI - Intelligent Retrieval from Medical Information 487
Saurav Sahay, Bharat Ravisekar, Sundaresan Venkatasubramanian,
Anushree Venkatesh, Priyanka Prabhu, and Ashwin Ram

Adaptation through Planning in Knowledge Intensive CBR 503
Antonio Sánchez-Ruiz, Pedro P. Gómez-Mart́ın,
Belén Dı́az-Agudo, and Pedro A. González-Calero

Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 518
Lúıs A.L. Silva, John A. Campbell, and Bernard F. Buxton

Real-Time Plan Adaptation for Case-Based Planning in Real-Time
Strategy Games . 533

Neha Sugandh, Santiago Ontañón, and Ashwin Ram

Horizontal Case Representation . 548
Rosina Weber, Sidath Gunawardena, and Craig MacDonald

XIV Table of Contents

Application Papers

Supporting Fraud Analysis in Mobile Telecommunications Using
Case-Based Reasoning . 562

Pedro Almeida, Marco Jorge, Lúıs Cortesão, Filipe Martins,
Marco Vieira, and Paulo Gomes

Predicting the Presence of Oil Slicks After an Oil Spill 573
Juan Manuel Corchado and Aitor Mata

Case Based Interpretation of Soil Chromatograms . 587
Deepak Khemani, Minu Mary Joseph, and Saritha Variganti

Case-Based Troubleshooting in the Automotive Context: The
SMMART Project . 600

Stefania Bandini, Ettore Colombo, Giuseppe Frisoni,
Fabio Sartori, and Joakim Svensson

Rapid Prototyping of CBR Applications with the Open Source Tool
myCBR . 615

Armin Stahl and Thomas R. Roth-Berghofer

Author Index . 631

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 1–17, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Case-Based Reasoning in the Health Sciences: Why It
Matters for the Health Sciences and for CBR

Isabelle Bichindaritz

University of Washington, Tacoma, Institute of Technology
1900 Commerce Street, Box 358426,

Tacoma, WA 98402, USA
ibichind@u.washington.edu

Abstract. Biomedical domains have been an application domain of choice for
artificial intelligence (AI) since its pioneering years in expert systems. Some
simple explanations to this phenomenon are the intellectual complexity
presented by this domain, as well as the dominant industry market share of
healthcare. Following in AI’s tracks, case-based reasoning (CBR) has been
abundantly applied to the health sciences domain and has produced an excellent
as well as varied set of publications, which has fostered CBR research innova-
tion to answer some of the research issues associated with this intricate domain.
Some notable examples are synergies with other AI methodologies, and in par-
ticular with ontologies [8] and with data mining, the study of the temporal di-
mension in CBR, the processing of multimedia cases, and novel tasks for CBR
such as parameter setting. However CBR has a major endeavor to take on in the
health sciences: how to position itself with regard to statistics for studying data?
Some claim that CBR proposes an alternative viewpoint on the concept of evi-
dence in biomedicine; others that CBR and statistics complement one another in
this domain. In any case, an interesting question to study is whether CBR could
become one day as fundamental to the health sciences as statistics is today?
This question in particular broadens the health sciences challenge to a universal
scope.

1 Introduction

Case-based reasoning (CBR) in the health sciences (CBR-HS) has developed as a spe-
cialized area within case-based reasoning research and applications. This paper pre-
sents a survey of the accomplishments of CBR in the health sciences for CBR, more
generally AI, and for the health sciences.

CBR is a valued knowledge management and reasoning methodology in biomedi-
cal domains because it founds its recommendations on contextual knowledge by cap-
turing unique clinical experience. This type of knowledge is much more detailed and
to the point for solving clinical problems, and allows to account for some of the com-
plexity inherent to working in clinical domains [31]. As a matter of fact, cases play an
essential role in medical training and medical expertise acquisition, and a comprehen-
sive set of CBR systems in medicine now has been built and evaluated successfully
[31]. Their usefulness in clinical settings has been shown for decision-support, expla-
nation, and quality control [31]. If the value of contextual, instance-based knowledge,

2 I. Bichindaritz

is not in question, however main accomplishments remain to be reached, for which
practical endeavors are underway to validate the methodology in health domains.

The choice of health sciences domains to show case CBR usefulness in and impact
on science and society is neither novel nor fortuitous. These domains have been a ma-
jor application area for artificial intelligence (AI) from its beginnings. Moreover the
healthcare domain is one of the leading industrial domains in which computer science
is applied. Its importance in computer science research is second to none. This pre-
eminence of health sciences domains for computer science, artificial intelligence, and
CBR is discussed in the second section. Artificial intelligence has researched applica-
tions in the health sciences from its inception. The third section reviews progress in
artificial intelligence in biology and medicine, and explains its contributions to the
field of AI as well as to the health sciences. Similarly, CBR has invested itself in ap-
plications to the health sciences from its pioneering years. The fourth section reviews
progress in case-based reasoning in biology and medicine, and highlights its contribu-
tions to the field of CBR as well as to the health sciences. The following sections
highlight main research topics in CBR in the health sciences, such as complementarity
and synergies with other artificial intelligence methodologies, and complementarity
and synergies with statistics. They are followed by the conclusion.

Fig. 1. Forecasts for the evolution of computer science to be “more and more infused by appli-
cation areas”

2 Health Sciences Domains

Health Sciences domains encompass healthcare and health research, with in particular
human biology, genetics, proteomics, and phylogenetics aspects. In terms of computer
science, forecasts for the development of the profession confirm a general trend to be
“more and more infused by application areas”. The emblematic application infused
areas are health informatics and bioinformatics. For example the National Workforce
Center for Emerging Technologies (NWCET) lists among such application areas
healthcare informatics and global and public health informatics (see Fig. 1). The pre-
dominant role plaid by the health sciences sectors is confirmed by statistics from the
Department of Labor, which predicts among the highest increases in wage and salary
employment growth between 2006 and 2016 the offices of healthcare practitioners
(close 2nd overall rank), private hospitals (6th overall rank), residential care facilities
(9th overall), and home healthcare services (12th overall). By comparison, amusement,

 Case-Based Reasoning in the Health Sciences 3

gambling, and recreational services rank only 13th. The strength of health related in-
dustries answers a need for increased access to healthcare. This social need also fos-
ters research funding and endeavors. It is notable that the Science Citation Index
(Institute for Scientific Information – ISI – Web of Knowledge) lists among computer
science a specialty called “Computer science, Interdisciplinary applications”. More-
over this area of computer science ranks the highest within the computer science dis-
cipline in terms of number of articles produced as well as in terms of total cites (see
Fig. 2). These figures confirm the other data pointing toward the importance of appli-
cations in computer science. Among the journals within this category, many relate to
bioinformatics or medical informatics journals. It is also notable that some health
informatics or bioinformatics journals are also classified in other areas of computer
science. In addition, the most cited new papers in computer science are frequently
bioinformatics papers. For example, all the papers referenced as “new hot papers” in
computer science in 2008 until June included have been bioinformatics papers.

Fig. 2. Interdisciplinary applications of computer science represent the most cited literature
within computer science in the Journal Citation Reports in the ISI Web of Knowledge

Therefore it is understandable that health sciences applications of computer science
represent a major specialization area in computer science, based on complex interdis-
ciplinary research.

3 Artificial Intelligence in the Health Sciences

The health sciences have motivated an abundance of applied AI research both to take
on the challenge of its complexity – similarly to the chess playing challenge – and for
its particular influential role on society.

3.1 History

Since the early days of artificial intelligence, health sciences have been a favorite ap-
plication area. First were developed decision-support systems such as INTERNIST in
1970 [41] and MYCIN [54] in 1976. INTERNIST is classified as a rule-based expert
system focused on the diagnosis of complex diseases [41]. It has been commercialized
later on as Quick Medical Reference (QMR) to support internists’ diagnosis. MYCIN
was also a rule-based expert system, but applied to the diagnosis and treatment of
blood infections [54]. Created by Ted Shortliffe, this knowledge-based system
mapped symptoms to diseases, led to clinical evaluation of its effectiveness, and to

4 I. Bichindaritz

the development of an expert system shell EMYCIN. The evolution of artificial intel-
ligence engendered new generations of artificial intelligence systems in medicine,
expanding the range of AI methodologies in biomedical informatics, such as imple-
mentation of clinical practice guidelines in expert systems, data mining to establish
trends and associations between symptoms, genetic information, and diagnoses, and
medical image interpretation, to name a few. Researchers stressed the value of early
systems for testing artificial intelligence methodologies.

3.2 Impact on Artificial Intelligence

These systems provided a very valuable feedback to AI researchers regarding the va-
lidity of their approach, as reported by Ted Shortliffe: “Artificial intelligence, or AI,
is largely an experimental science—at least as much progress has been made by build-
ing and analyzing programs as by examining theoretical questions. MYCIN is one of
several well-known programs that embody some intelligence and provide data on the
extent to which intelligent behavior can be programmed. … We believe that the
whole field of AI will benefit from such attempts to take a detailed retrospective look
at experiments, for in this way the scientific foundations of the field will gradually be
defined." [49] When evaluating the advances of artificial intelligence systems in
medicine, several levels of evaluation can be proposed, which can be roughly differ-
entiated as computer system, user satisfaction, process variables, and domain out-
comes levels:

1. The computer system level is how effectively the program is performing its task.
Measures include diagnosis accuracy for a decision-support system providing
diagnostic recommendations, or precision and recall in an intelligent retrieval
system for medical information. Measures can be integrated in the system pro-
gramming.

2. The user satisfaction level involves assessing the user satisfaction with the sys-
tem – the user can be either the physician or the patient, whether the patient uses
the system or not. A questionnaire can be administered to the patients or physi-
cians.

3. The process variables level works by measuring some variable connected in the
clinical process, such as confidence in decision, pattern of care, adherence to
protocol, cost of care, and adverse effects [56].

4. The domain outcomes level aims at measuring clinical outcomes of the system.
This requires conducting a randomized clinical trial to measure improvements in
patient health or quality of life. For example one such measure may involve the
number of complications, or the cost of care, or even the survival duration.

3.3 Impact on Health Sciences

Notably, critics of artificial intelligence expressed concerns that the field had not
been able to demonstrate actual clinical outcomes. AI researchers mostly showed sat-
isfaction with computer system level evaluation results, some user satisfaction level
results and little process variables results. One major step was to include AI systems
in clinical practice. AI systems in use today are numerous. One of the first one was
NéoGanesh, developed to regulate the automatic ventilation system in the Intensive

 Case-Based Reasoning in the Health Sciences 5

Care Unit (ICU), in use since 1995 [22]. Another example is Dxplain, a general expert
system for the medical field, associating 4,500 clinical findings, including laboratory
test results, with more than 2,000 diseases [4]. Some of these systems are available for
routine purchase in medical supplies catalogues.

Even though clinical outcomes have been rare, there have been several studies
showing the effectiveness of these systems in clinical practice in terms of improving
the quality of care, the safety, and the efficiency [56]. One such example is a 1998
computer-based clinical reminder system showing evidence that a particular clinical
act – discussing advance directives with a patient – was significantly better performed
with the clinical reminders under evaluation than without them [20]. More generally
prescription decision-support systems (PDSS) and clinical reminder systems, often
based on clinical guidelines implementation, have consistently shown clinical out-
comes in several studies [16]. However clinical outcomes are rarely measured, while
process variables and user satisfaction are often measured. Obviously computer sys-
tem intrinsic measures are always reported.

The success of AI in the health sciences is explained by the shift of focus from cen-
tering the system success on the computational performance versus the application
domain performance. Indeed successful systems provide a practical solution to a spe-
cific healthcare or health research problem. The systems presenting the largest impact,
such as the clinical reminders, do not have to represent a challenging AI difficulty,
but they have to fit perfectly well the clinical domain in which they are embedded –
they are application domain driven – versus AI driven.

4 Case-Based Reasoning in the Health Sciences

Case-based reasoning (CBR) [1] in the health sciences is a particularly active area of
research, as attest in particular several recent workshops conducted at ICCBR-03,
ECCBR-04, ICCBR-05, ECCBR-06, and ICCBR-07. Additionally journals special is-
sues on CBR in the Health Sciences have been published in Artificial Intelligence in
Medicine, Computational Intelligence, and Applied Intelligence. As the health sector
is continuing to expand due to population lifespan increase, advanced decision-
support systems become more and more sought after in the evolution of medicine
towards a more standardized and computerized science. CBR systems are notable ex-
amples of decision-support systems as they base their recommendations on the subset
of the most similar or most reusable experiences previously encountered. It is thus a
method of choice for such experimental sciences as the natural and life sciences and
in particular for biology and medicine.

4.1 History

Early CBR systems in biomedicine have been Kolodner & Kolodner (1987) [34],
Bareiss & Porter (1987) [4], Koton (1988) [35], and Turner (1989) [58]. They focused
on diagnosis and were not yet systems developed in clinical settings. In that sense,
CBR followed the early goals of AI to represent experts reasoning. All the first sys-
tems developed in CBR in the health sciences have been devoted to modeling medical
expertise along the main medical tasks: diagnosis, treatment planning, and follow-up.

6 I. Bichindaritz

The main pioneering systems in CBR in the health sciences, with their application
domain and type of task, are, ranked by date:

− SHRINK, psychiatry, diagnosis (1987) [34];
− PROTOS, audiology disorders, diagnosis (1987) [3];
− CASEY, heart failure, diagnosis (1988) [35];
− MEDIC, dyspnoea, diagnosis (1988) [58];
− ALEXIA, hypertension, assessment tests planning (1992) [14];
− ICONS, intensive care, antibiotics therapy (1993) [28];
− BOLERO, pneumonia, diagnosis (1993) [36];
− FLORENCE, health care planning (1993) [15];
− MNAOMIA, psychiatry, diagnosis, treatment planning, clinical research as-

sistance (1994) [6];
− ROENTGEN, oncology, radiation therapy (1994) [5];
− MACRAD, image analysis (1994) [37].

Later, CBR has been applied to a variety of tasks, among which we can cite diag-
nosis (and more generally classification tasks) (SCINA 1997 [30], CARE PARTNER
1998 [14], AUGUSTE 2001 [39]), treatment planning (and similar tasks such as as-
sessment tests planning) (CARE PARTNER 1998 [14], CAMP 1999 [38],
AUGUSTE 2001 [39], T-IDDM 2000 [44]), image analysis (Imagecreek 1996 [29]),
long-term follow-up [14], quality control, tutoring (CADI 1996 [26]), and research
assistance (in conjunction with data mining). We count today more than 300 papers
published in specialized CBR conferences and workshops, AI journals, books, but
also medical informatics and bioinformatics conferences and journals. We also note a
regular increase in the number of papers published in CBR in biomedicine. Several
reviews on CBR in medicine have been published. We can list Schmidt et al. (2001)
[50], Nilsson & Sollenborn (2004) [46], Holt et al. [36], Bichindaritz (2006) [9], and
Bichindaritz and Marling (2006) [13].

4.2 Impact on CBR

CBR has found in biomedicine one if its most fruitful application areas, but also one
of its most complex ones. The main reason for these achievements and interest from
the biomedical community is that case-based reasoning capitalizes on the reuse of ex-
isting cases, or experiences. These abound in biology and medicine, since they belong
to the family of descriptive experimental sciences, where knowledge stems from the
study of natural phenomena, patient problem situations, or other living beings and
their sets of problems. In particular, the important variability in the natural and life
sciences plays an active role in fostering the development of case-based approaches in
these sciences where complete, causal models fully explaining occurring phenomena
are not available. One consequence of this fact is that biomedicine is a domain where
expertise beyond the novice level comes from learning by solving real and/or practice
cases, which is precisely what case-based reasoning is accomplishing. Prototypical
models are often more adapted to the description of biomedical knowledge [14] than
other types of models, which also argues in favor of case-based reasoning.

 Case-Based Reasoning in the Health Sciences 7

Among the complexities of biomedicine, we can list the high-dimensionality of
cases, as is noted in particular in bioinformatics [17, 18, 21], but also in long-term fol-
low-up [12]. Multimedia case representation and the development of suitable CBR
methods for handling these represent another complexity, for example in medical im-
age interpretation [24, 29, 32, 49], in sensor data interpretation [27], or in time series
case features [49]. Other factors are the co-occurrence of several diseases, not clearly
bounded diagnostic categories, the need to mine for features that can be abstracted
from time series representing temporal history [49], sensor signals [27], or other con-
tinuous input data, and the use of data mining techniques in addition to case-based
reasoning [11, 32]. Other aspects deal with specificity of the medical domain, such as
dealing with safety critical constraints, assisting the Elderly and the Disabled [19], or
the usefulness of explanations [23].

Recently, a major trend seems to be the widening of applications of CBR beyond
the traditional diagnosis, treatment, or quality control types toward the applicability of
CBR to novel reasoning tasks. An interesting example of system studies how cases
can represent non-compliance instances of clinical guidelines, and eventually lead to
expert refinement of these guidelines [43]. Another paper demonstrates the usefulness
of CBR to configure parameters for the task of temporal abstraction [53] in
haemodyalisis [42]. All these papers open new fields of application for CBR, which
will foster the spread of CBR in biomedical domains.

CBR-HS papers address all aspects of the CBR methodology, and attempt to
advance basic research in CBR. For example, some research addresses retrieval ques-
tions [10], while others address adaptation [2, 59]. Bichindaritz [10] shows how mem-
ory organization for CBR can bridge the gap between CBR and information retrieval
systems. The article surveys the different memory organizations implemented in CBR
systems, and the different approaches used by these systems to tackle the problem
of efficient reasoning with large case bases. The author then proposes a memory or-
ganization to support case-based retrieval similar to the memory organization of
information retrieval systems and particularly Internet search engines. This memory
organization is based on an inverted index mapping case features with the cases in
memory. D’Aquin et al. provide principles and examples of adaptation knowledge ac-
quisition in the context of their KASIMIR system for breast cancer decision support
[2]. These authors have identified some key adaptation patterns, such as adaptation of
an inapplicable decision, and adaptation based on the consequences of a decision. In
addition, KASIMIR has also acquired retrieval knowledge to take into account miss-
ing data and the threshold effect. The paper broadens the discussion by proposing a
sketch of a methodology for adaptation knowledge acquisition from experts.

Several authors have focused on the importance of prototype-based knowledge rep-
resentation in CBR-HS [7, 52], which encourages further research in this direction.

CBR-HS main impact on CBR can be further developed as the multimodal reason-
ing and synergies aspects with other AI methodologies. Since AI in the health
sciences has been much more studied than CBR-HS, CBR-HS very often relies on
complementarity with AI to be fully applicable to this domain. This aspect is there-
fore developed in section 5.

8 I. Bichindaritz

4.3 Impact on the Health Sciences

Several CBR-HS systems have been tested successfully in clinical settings. However,
none has been placed in routine use in a clinical setting. It is important to note that
this might not be the goal of such systems to be placed in permanent clinical use. For
example bioinformatics systems often aim at analyzing data, just like data mining sys-
tems, which is more of value to biomedical researchers. There is often a mispercep-
tion that only clinical applications are pertinent to biomedical domains. Biomedical
research support lies also within the range of activities of AI or CBR in the health sci-
ences. The fate of clinical CBR systems is often more within the realm of the pilot
testing or clinical trial than the daily clinical use, in part because its researchers are
generally not medical doctors. It is notable that most AI system in clinical use have
been developed by medical doctors.

However just like for AI in the health sciences, the shift from CBR driven systems
to application domain driven systems is currently occurring. Several systems under
development aim at being placed in routine clinical use [43].

One of the most interesting impacts of CBR-HS on the health sciences lies in the
place CBR has to find with regard to statistics, which is the data analysis and process-
ing method of reference in experimental sciences. This is a major trend in CBR-HS
research, to which section 6 is dedicated.

5 CBR Versus AI in the Health Sciences

CBR systems often resort to other AI methodologies either to complement CBR, or to
partake in larger AI systems. The main forms encountered relate to data mining, al-
though other multimodal reasoning schemes are also frequent.

5.1 Synergies with Data Mining and Knowledge Discovery

These synergies involve either proposing data mining as a separate process in prepa-
ration for CBR, for example as pre-processing for feature mining from time series
[27] or for prototype mining [11], or during the CBR reasoning cycle, such as for re-
trieval of cases involving temporal features [45] or for memory organization [32].

In the decoupled synergy between knowledge discovery, data mining, and CBR,
Funk and Xiong present a case-based decision-support system for diagnosing stress
related disorders [27]. This system deals with signal measurements such as breathing
and heart rate expressed as physiological time series. The main components of the
system are a signal-classifier and a pattern identifier. HR3Modul, the signal-classifier,
uses a feature mining technique called wavelet extraction to learn features from the
continuous signals. Being a case-based reasoning system, HR3Modul classifies the
signals based on retrieving similar patterns to determine whether a patient may be suf-
fering from a stress related disorder as well as the nature of the disorder [27]. Advanc-
ing this research, Funk and Xiong [27] argue that medical CBR systems incorporating
time series data and patterns of events are fertile ground for knowledge discovery.
While CBR systems have traditionally learned from newly acquired individual cases,
case bases as a whole are infrequently mined to discover more general knowledge.

 Case-Based Reasoning in the Health Sciences 9

Such knowledge mining would not only improve the performance of CBR systems,
but could turn case bases into valuable assets for clinical research.

The integrated synergy between knowledge discovery, data mining, and CBR is ex-
emplified by Jänichen and Perner [32] who present a memory organization for effi-
cient retrieval of images based on incremental conceptual clustering for case-based
object recognition. These authors explain that case-based image interpretation in a
biological domain, such as fungi spore detection, requires storing a series of cases
corresponding to different variants of the object to be recognized in the case base. The
conceptual clustering approach provides an answer to the question of how to group
similar object shapes together and how to speed up the search through memory. Their
system learns a hierarchy of prototypical cases representing structural shapes and
measures the degree of generalization of each prototype [32].

Bichindaritz [11] explores automatically learning prototypical cases from biomedi-
cal literature. The topic of case mining is an important recent trend in CBR to enable
CBR to capitalize on clinical databases, electronic patient records, and biomedical lit-
erature databases. Following, this author studies how mined prototypical cases can
guide the case-based reasoning of case-based decision-support systems as well as the
different roles of prototypical cases for guiding the case-based reasoning, to make it
more compliant with recent biomedical findings in particular [11].

5.2 Multimodal Architectures

Many papers focus on how CBR can be used in conjunction or in complement of yet
other AI methodologies or principles [8, 24, 25, 43].

Dìaz et al. demonstrate the applicability of CBR to the classification of DNA mi-
croarray data and show that CBR can be applied successfully to domains struck by the
‘curse of dimensionality’ [21]. This ‘curse,’ a well-known issue in bioinformatics, re-
fers to the availability of a relatively small number of cases, each having thousands of
features. In their Gene-CBR system, for cancer diagnosis, a case has 22,283 features,
corresponding to genes. The authors have designed a hybrid architecture for Gene-
CBR, which combines fuzzy case representation, a neural network to cluster the cases
for genetically similar patients, and a set of if-then rules extracted from the case base
to explain the classification results [21].

To explore further this synergy, Montani explains how CBR can be used to config-
ure the parameters upon which other AI methodologies rely [42]. This paper also pro-
vides a detailed analysis of the reasons why CBR is not more integrated today in
mainstream clinical practice, such as the complexity of the medical domain, and some
advances still required in the CBR methodology.

Yet another paper in this category is a case-based diagnostic system presenting a
novel hypothetico-deductive CBR approach to minimize the number of tests required
to confirm a diagnostic hypothesis [40]. A very interesting paper studies how cases
can represent non-compliance instances of clinical guidelines, and eventually lead to
expert refinement of these guidelines [43]. Other work capitalizes on the complemen-
tarity between knowledge-bases, ontologies, and CBR [8].

10 I. Bichindaritz

6 CBR Versus Statistics in the Health Sciences

In health sciences domains, statistics is considered as the scientific method of choice
for collecting and analyzing data. Therefore CBR-HS systems have studied how to
position CBR in these domains in comparison with it.

6.1 The Role of Statistics in the Health Sciences

Biometry is “the application of statistical methods to the solution of biological prob-
lems” [65]. Statistics has several meanings. A classical definition of statistics is “the
scientific study of data describing natural variation.” [65] Statistics generally studies
populations or groups of individuals: “it deals with quantities of information, not with
a single datum”. Thus the measurement of a single animal or the response from a sin-
gle biochemical test will generally not be of interest; unless a sample of animals is
measured or several such tests are performed, statistics ordinarily can play no role
[65]. Another main feature of statistics is that the data are generally numeric or quan-
tifiable in some way. Statistics also refers to any computed or estimated statistical
quantities such as the mean, mode, or standard deviation [65].

The origin of statistics can be traced back to the seventeenth century, and
derives from two sources. One is related to political science and was created to quan-
titatively describe the various affairs of a government or state, from which the term
statistics was coined. In order to deal with taxes and insurance data, problems of cen-
suses, longevity, and mortality were studied in a quantitative manner [65]. The second
source of statistics is the theory of probabilities developed also in the seventeenth cen-
tury around the popular interest in games of chance among upper society (Pascal, de
Fermat, Bernouilli, de Moivre) [65]. The science of astronomy also fostered the de-
velopment of statistics as a mathematical tool to build a coherent theory from individ-
ual observations (Laplace, Gauss) [65]. Applications of statistics to the life sciences
emerged in the nineteenth century, when the concept of the “average man” was de-
veloped (Quetelet) and those of statistical distribution and variation [65].

Statistics researchers focus on summarizing data: “All these facts have been proc-
essed by that remarkable computer, the human brain, which furnishes an abstract”
[65]. Statistics involves reducing, synthesizing data into figures representing trends
or central tendencies [65].

There are actually two approaches in statistics:

− The experimental approach, at the basis of any theory formation in experimental
sciences, and in particular in the life sciences, refers to a method aiming at iden-
tifying relations of cause to effect. A statistical experiment needs to follow a
precise and controlled plan with the goal of observing the effect of the variation
of one or more variables on the phenomenon under study, while eliminating any
potential hidden effects. The statistician is responsible for the complete conduct
of the experiment from the onset, and his role is to ensure that the data collected
will be able to derive the stated research hypothesis while all laws of the theory
of probabilities are followed. Researchers gather data in very strict contexts such
as randomized clinical trials in medicine. The subsequent statistical data analy-
sis of collected data represents only a small part of the statistician’s work,

 Case-Based Reasoning in the Health Sciences 11

− The descriptive approach deals with a set of data and how to summarize or rep-
resent it in a meaningful way through mainly quantitative features, although
qualitative variables are also considered.

Statistical data analysis is derived from the statistical descriptive approach, but deals
only with the data analysis part. It is this part of statistics that relates to data mining, in
particular so called inferential statistics, interested in building a model from data before
applying it to new data to produce inferences. Data analysis has freed itself from the con-
straints of the theory of probabilities to analyze data a posteriori.

6.2 The Role of CBR in the Health Sciences

CBR brings to the life sciences a method for processing and reusing datum, which sta-
tistics clearly considers outside of its scope. However, CBR partakes in the definition
cited above of statistics as “the scientific study of data describing natural variation.”
Indeed CBR does participate in the study of data, but particularly of datum. It deals
with natural variation in a novel manner, though analogical inference and similarity
reasoning. The rise of computers and their current ubiquity has made practically pos-
sible the study of the datum because case bases can handle large numbers of cases and
still process each of them individually efficiently without having to summarize the
data. Therefore CBR can be seen as an advance in the scientific study of data made
possible by progress in computer science.

This study of how CBR can complement statistics has been a main focus of CBR-
HS research. This is also one of the most salient contributions CBR-HS can make to
CBR in general. Advances in this articulation will be applicable to any application of
CBR to experimental sciences.

Many of the tasks performed by CBR-HS systems compete with corresponding sta-
tistical methods, particularly those of inferential statistics. For example, Schmidt et al.
[51] present a CBR system for the prediction of influenza waves for influenza surveil-
lance. The authors compare their method with classical prediction methods, which are
statistical, and argue that CBR is more appropriate in this domain due to the irregular
cyclicality of the spread of influenza. The rationale behind this is that statistical meth-
ods rely on laws of the theory of probabilities which are often not met in practice. In
these circumstances, methods like CBR can be advantageous because they do not rely
on these laws. Another interesting example demonstrates how CBR can be used to
explain exceptions to statistical analysis and particularly data summaries [60].

Some of the most interesting research in this domain is the role of CBR as an evi-
dence gathering mechanism for medicine [12]. CBR can detect and represent how
cases can illustrate contextual applications of guidelines [12], spark the generation of
new research hypotheses [12], such as how repeated exceptions to clinical guidelines
can lead to modifications of the clinical guidelines [43].

More generally, one of the main motivations for the development of case-based
reasoning systems in biomedicine is that cases, as traces of the clinical experience of
the experts, play a unique and irreplaceable role for representing knowledge in these
domains [48]. Recent studies have worked at better formalizing this specific role.
These studies explain that the gold standard for evaluating the quality of biomedical
knowledge relies on the concept of evidence [48]. Pantazi et al. propose an extension
of the definition of biomedical evidence to include knowledge in individual cases,

12 I. Bichindaritz

Fig. 3. The knowledge spectrum in biomedical informatics [47]

suggesting that the mere collection of individual case facts should be regarded as evi-
dence gathering [48]. To support their proposal, they argue that the traditional, highly
abstracted, hypothesis centric type of evidence that removes factual evidence present
in individual cases, implies a strong ontological commitment to methodological and
theoretical approaches, which is the source of the never-ending need for current and
best evidence, while, at the same time, offering little provision for the reuse of knowl-
edge disposed of as obsolete [48] (see Fig. 3). By contrast, the incremental factual
evidence about individuals creates, once appropriately collected, a growing body of
context-dependent evidence that can be reinterpreted and reused as many times as
possible.

Currently, the concept of evidence most often refers to an abstract proposition de-
rived from multiple, typically thousands of cases, in the context of what is known as a
randomized controlled trial [48]. Hypothesis forming is the cornerstone of this kind
of biomedical research. Hypotheses that pass an appropriately selected statistical test
become evidence [48]. However, the process of hypothesis forming also implies a
commitment to certain purposes (e.g., research, teaching, etc.), and inherently postu-
lates ontological and conceptual reductions, orderings and relationships [48]. All
these are direct results of the particular conceptualizations of a researcher who is in-
fluenced by experience, native language, background, etc. This reduction process will
always be prone to errors as long as uncertainties are present in our reality. In addi-
tion, even though a hypothesis may be successfully verified statistically and may be-
come evidence subsequently, its applicability will always be hindered by our inability
to fully construe its complete meaning [48]. This meaning is defined by the complete
context where the hypothesis was formed and which includes the data sources as well
as the context of the researcher who formed the hypothesis [48].

 Case-Based Reasoning in the Health Sciences 13

The discussion about commitment to research designs, methodological choices,
and research hypotheses led Pantazi et al. to propose to extend the definition and the
understanding of the concept of evidence in biomedicine and align it with an intui-
tively appealing direction of research: case-based reasoning (CBR) [48]. From this
perspective, the concept of evidence, traditionally construed on the basis of knowl-
edge applicable to populations, is evolved to a more complete, albeit more complex
construct which emerges naturally from the attempt to understand, explain and man-
age unique, individual cases. This new perspective of the concept of evidence is sur-
prisingly congruent with the current acceptation of the notion of evidence in forensic
science for instance [48]. Here, by evidence, one also means, besides general patterns
that apply generally to populations, the recognition of any spatio-temporal form (i.e.,
pattern, regularity) in the context of a case (e.g., a hair, a fiber, a piece of clothing, a
sign of struggle, …) which may be relevant to the solution to that case. This new view
where a body of evidence is incremental in nature and accumulates dynamically in
form of facts about individual cases is a striking contrast with traditional definitions
of biomedical evidence. Case evidence, once appropriately collected, represents a his-
tory that can be reinterpreted and reused as many times as necessary. But most impor-
tantly, the kind of knowledge where the “what is”, i.e., case data, is regarded as
evidence can be easily proven to be less sensitive to the issues of recency (i.e., current
evidence) and validity (i.e., best evidence) [48].

The evidence gathering mechanism allowed by CBR can lead to the design of new
research hypotheses, and engender statistical experiments aiming at integrating the
new knowledge in the theory, traditionally built through the statistical approach.
Therefore the evidence gathering role of CBR complements particularly well the sta-
tistical approach. As a matter of fact, CBR, by allowing the scientific study of the da-
tum, feels a gap in the statistics purpose, which is the scientific study of data.

7 Conclusion

CBR has found in the health sciences an exceptional rich field of experiment from
which it has expanded its methodology in many important directions. CBR-HS has also
contributed to the health sciences through pilot studies and in synergy with other suc-
cessfully deployed AI in the health sciences applications. However CBR is called to fit
even more closely the needs of the health sciences domain by providing a computational
methodology for processing contextual knowledge, in the form of cases – the datum,
now made possible by the advancement of computer science. CBR should rise to this
challenge to define itself as a scientific approach in a manner similar, though comple-
mentary - to the statistics approach in experimental sciences, the influence of which has
shaped the advancement of science for centuries in these application domains.

References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodologies Varia-
tions, and Systems Approaches. AI Communications 7(1), 39–59 (1994)

2. d’Aquin, M., Lieber, J., Napoli, A.: Adaptation Knowledge Acquisition: A Case Study for
Case-Based Decision Support in Oncology. Computational Intelligence, 161–176 (2006)

14 I. Bichindaritz

3. Bareiss, E.R., Porter, B.W., Wier, C.C.: Protos: an exemplar-based learning apprentice. In:
Proceedings of the Fourth International Workshop on Machine Learning, pp. 12–23. Mor-
gan Kaufmann, Los Altos (1987)

4. Barnett, G.O., Cimino, J.J., Huppa, J.A.: Dxplain: an evolving diagnostic decision-support
system. JAMA 258, 69–76 (1987)

5. Berger, J.: Roentgen: Radiation Therapy and Case-based Reasoning. In: O’Leary, D., Sel-
fridge, P. (eds.) Proceedings of the Conference on Artificial Intelligence Applications, pp.
171–177. IEEE Press, Los Alamitos (1994)

6. Bichindaritz, I.: A case based reasoner adaptive to several cognitive tasks. In: Veloso, M.,
Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 391–400. Springer, Heidelberg
(1995)

7. Bichindaritz, I.: Prototypical Cases for Knowledge Maintenance for Biomedical CBR. In:
Weber, R., Richter, M. (eds.) International Conference in Case-based Reasoning. LNCS
(LNAI), pp. 492–506. Springer, Heidelberg (2007)

8. Bichindaritz, I.: Mémoire: Case-based Reasoning Meets the Semantic Web in Biology and
Medicine. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 47–61. Springer, Heidelberg (2004)

9. Bichindaritz, I.: Case-Based Reasoning in the Health Sciences. Artificial Intelligence in
Medicine 36(2), 121–125 (2006)

10. Bichindaritz, I.: Memory Organization as the Missing Link between Case-Based Reason-
ing and Information Retrieval in Biomedicine. Computational Intelligence, 148–160
(2006)

11. Bichindaritz, I.: Prototypical Case Mining from Biomedical Literature. Applied Intelli-
gence 28(3), 222–237 (2007)

12. Bichindaritz, I., Kansu, E., Sullivan, K.M.: Case-based reasoning in care-partner: gathering
evidence for evidence-based medical practice. In: Smyth, B., Cunningham, P. (eds.) Pro-
ceedings of the 4th European Workshop on CBR, pp. 334–345. Springer, Berlin (1998)

13. Bichindaritz, I., Marling, C.: Case-Based Reasoning in the Health Sciences: What’s Next?
Artificial Intelligence in Medicine 36(2), 127–135 (2006)

14. Bichindaritz, I., Seroussi, B.: Contraindre l’analogie par la causalite. Technique et Sci-
ences Informatiques 11(4), 69–98 (1992)

15. Bradburn, C., Zeleznikow, J.: The application of case-based reasoning to the tasks of
health care planning. In: Proceedings of the First European Workshop on CBR, pp. 365–
378. Springer, Berlin (1993)

16. Coiera, E.: Guide to Health Informatics. Arnold Publications (2003)
17. Costello, E., Wilson, D.C.: A Case-Based Approach to Gene Finding. In: McGinty, L.

(ed.) Workshop Proceedings of the Fifth International Conference on Case-Based Reason-
ing, NTNU, Trondheim, Norway, pp. 19–28 (2003)

18. Davies, J., Glasgow, J., Kuo, T.: Visio-Spatial Case-Based Reasoning: A Case Study in
Prediction of Protein Structure. Computational Intelligence, 194–207 (2006)

19. Davis, G., Wiratunga, N., Taylor, B., Craw, S.: Matching SMARTHOUSE Technology to
Needs of the Elderly and Disabled. In: McGinty, L. (ed.) Workshop Proceedings of the
Fifth International Conference on Case-Based Reasoning, NTNU, Trondheim, Norway, pp.
29–36 (2003)

20. Dexter, P.R., Wolinsky, F.D., Gramelspacher, G.P.: Effectiveness of Computer-Generated
Reminders for Increasing Discussions about Advance Directives and Completion of Ad-
vance Directive Forms. Annals of Internal Medicine 128, 102–110 (1998)

 Case-Based Reasoning in the Health Sciences 15

21. Dìaz, F., Fdze-Riverola, F., Corchado, J.M.: Gene-CBR: A Case-Based Reasoning Tool
for Cancer Diagnosis using Microarray Datasets. Computational Intelligence, 254–268
(2006)

22. Dojat, M., Brochard, L., Lemaire, F., Harf, A.: A knowledge-based system for assisted
ventilation of patients in intensive care units. International Journal of Clinical Monitoring
and Computing 9, 239–250 (1992)

23. Doyle, D., Cunningham, P., Walsh, P.: An Evaluation of the Usefulness of Explanation in
a CBR System for Decision Support in Bronchiolitis Treatment. Computational Intelli-
gence, 269–281 (2006)

24. El Balaa, Z., Strauss, A., Uziel, P., Maximini, K., Traphoner, R.: FM-Ultranet: A Decision
Support System Using Case-Based Reasoning Applied to Ultrasonography. In: McGinty,
L. (ed.) Workshop Proceedings of the Fifth International Conference on Case-Based Rea-
soning, NTNU, Trondheim, Norway, pp. 37–44 (2003)

25. Evans-Romaine, K., Marling, C.: Prescribing Exercise Regimens for Cardiac and Pulmo-
nary Disease Patients with CBR. In: McGinty, L. (ed.) Workshop Proceedings of the Fifth
International Conference on Case-Based Reasoning, NTNU, Trondheim, Norway, pp. 45–
52 (2003)

26. Fenstermacher, K.D.: An application of case-based instruction in medical domains. In:
Proceedings of the Spring Symposium on Artificial Intelligence in Medicine, pp. 50–54.
AAAI Press/The MIT Press, Cambridge (1996)

27. Funk, P., Xiong, N.: Case-Based Reasoning and Knowledge Discovery in Medical Appli-
cations with Time Series. Computational Intelligence, 238–253 (2006)

28. Gierl, L.: Icons: cognitive basic functions in a case-based consultation system for intensive
care. In: Andreassen, S., et al. (eds.) Proceedings of the 4th Conference on Artificial Intel-
ligence in Medicine Europe, pp. 230–236. Elsevier Science Publishers, Amsterdam (1993)

29. Grimnes, M., Aamodt, A.: A two layer case-based reasoning architecture for medical im-
age understanding. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp.
164–178. Springer, Heidelberg (1996)

30. Haddad, M., Adlassnig, K.P., Porenta, G.: Feasibility analysis of a case-based reasoning
system for automated detection of coronary heart disease from myocardial scintigrams. Ar-
tificial Intelligence in Medicine 9(1), 61–78 (1997)

31. Holt, A., Bichindaritz, I., Schmidt, R.: Medical Applications in Case-based Reasoning. The
Knowledge Engineering Review 20(03), 289–292 (2005)

32. Jänichen, S., Perner, P.: Conceptual Clustering and Case Generalization of 2-dimensional
Forms. Computational Intelligence, 177–193 (2006)

33. Jurisica, I., Glasgow, J.: Applications of Case-Based Reasoning in Molecular Biology. AI
Magazine 25(1), 85–95 (2004)

34. Kolodner, J.L., Kolodner, R.M.: Using Experience in Clinical Problem Solving: Introduc-
tion and Framework. IEEE Transactions on Systems, Man, and Cybernetics SMC-17(3),
420–431 (1987)

35. Koton, P.: Reasoning about evidence in causal explanations. In: Proceedings of AAAI
1988. Seventh National Conference on Artificial Intelligence, pp. 256–261. Morgan
Kaufmann, Palo Alto (1988)

36. Lopez, B., Plaza, E.: Case-Base Planning for medical diagnosis. In: Komorowski, J., Raś,
Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 96–105. Springer, Heidelberg (1993)

37. Macura, R.T., Macura, K.J., Toro, V.E., Binet, E.F., Trueblood, J.H., Ji, K.: Computerized
case-based instructional system for computed tomography and magnetic resonance imag-
ing of brain tumors. Investigative Radiology 29(4), 497–506 (1994)

16 I. Bichindaritz

38. Marling, C.R., Petot, G.J., Sterling, L.S.: Integrating Case-Based and Rule-Based Reason-
ing to Meet Multiple Design Constraints. Computational Intelligence 15(3), 308–332
(1999)

39. Marling, C.R., Whitehouse, P.J.: Case-based reasoning in the care of alzheimer’s disease
patients. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp.
702–715. Springer, Heidelberg (2001)

40. McSherry, D.: Hypothetico-Deductive Case-based Reasoning. In: Wilson, D.C., Khemani,
D. (eds.) Proceedings of Case-based Reasoning in the Health Sciences Workshop. Interna-
tional Conference on Case-based Reasoning (ICCBR), Belfast, pp. 315–326 (2007)

41. Miller, R.A., Pople Jr., H.E., Myers, J.D.: Internist-1, an experimental computer-based di-
agnostic consultant for general internal medicine. N. Engl. J. Med. 307(8), 468–476 (1982)

42. Montani, S.: Exploring new roles for case-based reasoning in heterogeneous AI systems
for medical decision support. Applied Intelligence, 275–285 (2007)

43. Montani, S.: Case-based Reasoning for Managing Non-compliance with Clinical Guide-
lines. In: Wilson, D.C., Khemani, D. (eds.) Proceedings of Case-based Reasoning in the
Health Sciences Workshop. International Conference on Case-based Reasoning (ICCBR),
Belfast, pp. 325–336 (2007)

44. Montani, S., Bellazzi, R., Portinale, L., Stefanelli, M.: A multi-modal reasoning methodol-
ogy for managing iddm patients. International Journal of Medical Informatics 256, 58–59,
243–256 (2000)

45. Montani, S., Portinale, L.: Accounting for the Temporal Dimension in Case-Based Re-
trieval: a Framework for Medical Applications. Computational Intelligence 22(3-4), 208–
223 (2006)

46. Nilsson, M., Sollenborn, M.: Advancements and Trends in Medical Case-Based Reason-
ing: An Overview of Systems and System Development. In: Barr, V., Markov, Z. (eds.)
Proceedings of the Seventeenth International Florida Artificial Intelligence Research Soci-
ety Conference – Special Track on Case-Based Reasoning, pp. 178–183. AAAI Press,
Menlo Park (2004)

47. Pantazi, S.V., Arocha, J.F.: Case-based Medical Informatics. BMC Journal of Medical In-
formatics and Decision Making 4(1), 19–39 (2004)

48. Pantazi, S.V., Bichindaritz, I., Moehr, J.R.: The Case for Context-Dependent Dynamic Hi-
erarchical Representations of Knowledge in Medical Informatics. In: Proceedings of ITCH
2007, pp. 123–134 (2007)

49. Perner, P.: Different Learning Strategies in a Case-Based Reasoning System for Image In-
terpretation. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 251–261. Springer, Heidelberg (1995)

50. Schmidt, R., Montani, S., Bellazzi, R., Portinale, L., Gierl, L.: Case-Based Reasoning for
Medical Knowledge-based Systems. International Journal of Medical Informatics 64(2-3),
355–367 (2001)

51. Schmidt, R., Waligora, T., Gierl, L.: Predicting Influenza Waves with Health Insurance
Data. Computational Intelligence, 224–237 (2006)

52. Schmidt, R., Waligora, T., Vorobieva, O.: Prototypes for Medical Case-Based Applica-
tions. In: Industrial conference on Data Mining. LNCS (LNAI). Springer, Heidelberg (in
press, 2008)

53. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: A task-specific framework for
the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in
Medicine 14, 29–51 (1998)

54. Shortliffe, E.H.: Computer-Based Medical Consultations: MYCIN. Elsevier/North Hol-
land, New York (1976)

 Case-Based Reasoning in the Health Sciences 17

55. Shortliffe, E.H., Buchanan, B.G.: Rule-Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)

56. Sinchenko, V., Westbrook, J., Tipper, S., Mathie, M., Coiera, E.: Electronic Decision Sup-
port Activities in different healthcare settings in Australia. In: Electronic Decision Support
for Australia’s Health Sector, National Electronic Decision Support Taskforce, Common-
wealth of Australia, (2003),
http://www.health.gov.au/healthonline/nedst.htm

57. Sokal, R.R., Rohlf, F.J.: Biometry. The Principles and Practice of Statistics in Biological
Research. W.H. Freeman and Company, New York (2001)

58. Turner, R.M.: Organizing and using schematic knowledge for medical diagnosis. In: Pro-
ceedings of the First Workshop on CBR, pp. 435–446. Morgan Kaufmann, San Mateo
(1988)

59. Vorobieva, O., Gierl, L., Schmidt, R.: Adaptation Methods in an Endocrine Therapy Sup-
port System. In: McGinty, L. (ed.) Workshop Proceedings of the Fifth International Con-
ference on Case-Based Reasoning, NTNU, Trondheim, Norway, pp. 80–88 (2003)

60. Vorobieva, O., Rumyantsev, A., Schmidt, R.: ISOR-2: A Case-Based Reasoning System to
Explain Exceptional Dialysis Patients. In: Industrial conference on Data Mining. LNCS
(LNAI), pp. 173–183. Springer, Heidelberg (2007)

An Analysis of Research Themes in the CBR

Conference Literature�

Derek Greene, Jill Freyne, Barry Smyth, and Pádraig Cunningham

University College Dublin
{Derek.Greene,Jill.Freyne,Barry.Smyth,Padraig.Cunningham}@ucd.ie

Abstract. After fifteen years of CBR conferences, this paper sets out
to examine the themes that have evolved in CBR research as revealed
by the implicit and explicit relationships between the conference papers.
We have examined a number of metrics for demonstrating connections
between papers and between authors and have found that a clustering
based on co-citation of papers appears to produce the most meaning-
ful organisation. We have employed an Ensemble Non-negative Matrix
Factorisation (NMF) approach that produces a “soft” hierarchical clus-
tering, where papers can belong to more than one cluster. This is useful
as papers can naturally relate to more than one research area. We have
produced timelines for each of these clusters that highlight influential pa-
pers and illustrate the life-cycle of research themes over the last fifteen
years. The insights afforded by this analysis are presented in detail. In
addition to the analysis of the sub-structure of CBR research, this paper
also presents some global statistics on the CBR conference literature.

1 Introduction

To mark fifteen years of international conferences on case-based reasoning (CBR),
we have set out to explore what can be learned about the internal organisation of
CBR research by analysing the relationships that can be discerned from the lit-
erature. The objective is to discover the underlying themes within the literature,
and to examine how these themes have evolved over the course of the conference
series. A common way to perform this type of task is to apply unsupervised learn-
ing techniques to identify clusters of associated papers or authors, which corre-
spond to thematic groups [1]. In this paper, we propose a new ensemble approach
to Non-negative Matrix Factorisation (NMF) [2] for identifying such groups. We
describe the application of this algorithm to the network constructed from the bib-
liography of the CBR conference series. From the resulting clustering, we highlight
ten important research themes for discussion. We identify the influential papers
within these clusters, and we also highlight those papers that have played a cen-
tral role in the body of CBR literature as a whole. We hope that the results of our
investigation will be of broad interest to the CBR community, as well as assisting
new researchers to identify the current key themes within CBR and the seminal
research papers supporting these themes.
� This research was supported by Science Foundation Ireland Grant No. 05/IN.1/I24.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 18–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Analysis of Research Themes in the CBR Conference Literature 19

Given the objective of discovering the inherent organisation of the CBR re-
search literature, there are three issues to be considered:

1. Should the organisation be based upon authors or papers?
2. What is the best measure of similarity to use in organising things?
3. What technique (algorithm) should be used to perform the organisation?

In large bibliometric analysis tasks, it is perhaps more conventional to use
authors rather than papers as the basic unit of organisation. However, we have
found that an analysis based on papers produces a clearer picture when working
with a relatively small set of papers. We suggest that this is because we are
partitioning a specific discipline into sub-topics, and because individual authors
in the CBR area have frequently contributed to a range of different sub-topics,
making an analysis based on authors more convoluted.

A variety of different measures can be used to identify relationships between
papers and between authors in a collection of publications. A simple approach
is to examine co-authorship relations between authors. However, in the CBR
literature this approach appears to tell us more about geography than research
themes. Citation links between papers are another important source of infor-
mation, as they allows us to construct a network of scientific communication
[3]. A related source of information, paper and author co-citations, has been
frequently shown in bibliometric research to uncover more significant relation-
ships than those identified using raw citation counts [4]. Text similarity, based
on a “bag-of-words” representation of a corpus of papers, is yet another useful
measure of similarity between research papers.

Among these different measures, we have found paper-paper co-citations to
be particularly informative in the task of analysing the network formed from the
publications of the CBR conference series (see Section 4). Taking co-citation as a
useful means of assessing connectedness amongst research papers, it is interesting
to look at the eigenvector centrality of overall network of papers covered in this
study. The top ranked list of papers based on this criterion is presented in Section
4.1. It is interesting to compare this ranking with the list of papers as ordered
by raw citation frequencies – this list is also presented in that section.

One of the objectives of this work was to checkpoint the progress of case-based
reasoning research, after these last fifteen years of European and International
conferences. We were particularly interested in understanding the thematic rela-
tionship between “modern case-based reasoning” and the more traditional view
of case-based reasoning that dominated research prior to the commencement of
the ECCBR/ICCBR series. To what extent have important new research themes
emerged in the last fifteen years, for example? Is there evidence to suggest that
more traditional lines of enquiry have reached a natural conclusion within the
research space? With this in mind our cluster-based analysis has revealed a
number of interesting results.

The good health of CBR research is supported by the frequent emergence of
novel research ideas that have a history of developing into significant themes
in their own right. As we explore the research groupings that have emerged in
our analysis (see Section 4.2), we will highlight examples of important research

20 D. Greene et al.

themes that have developed and matured over the past fifteen years. For example,
since the early work of [5], conversational case-based reasoning has emerged as
an important area of research that continues to attract a significant contribution
at modern CBR conferences. And more recently we have seen new work in the
area of explanation in CBR, focusing on the role that cases play when it comes
to justifying decisions or recommendations to end-users; see for example [6,7,8].
Although the earliest paper in this theme is the paper by Aamodt from 1993
[9] this is still a new area of activity that has captured the attention of CBR
researchers and is likely to grow in maturity over the coming years.

Of course, research themes naturally come and go with some research activities
maturing to merge with the mainstream of CBR, while others appear to be more
short-lived as their activity levels are seen to decline. Perhaps one of the most
significant themes that has emerged in recent times has centred on the idea
of case base maintenance – the need to actively maintain the quality of live
case bases – and developed from the early work of [5,10,11,12,13]. This is a
good example of a research area whose activity has now begun to reduce as
maintenance techniques become well established within CBR systems; indeed
this line of research has had a lasting influence on the CBR process model with
a maintenance component now seen as a standard part of the CBR process [14].
More recent research in the area diversity — challenging the traditional similarity
assumption in CBR and arguing the need for diversity among retrieved cases —
seems to be heading in a similar direction: a critical mass of research from 2001
- 2004 (e.g., [15,16,17,18]) looks to be reaching a natural conclusion as the basic
trade-off between similarity and diversity comes to be accepted by practitioners.

This paper begins in Section 2, with a description of the data that has been
gathered for this work. The cluster analysis technique used in our work is de-
scribed in Section 3. A discussion of the findings of our analysis task is presented
in Section 4, and the paper finishes with some conclusions in Section 5.

2 Data Representation

Since the conception of the CBR conference series (ECCBR/ICCBR/EWCBR)
in 1993, a total of 672 papers have been published by 828 individual authors.
Data on these papers was gathered from the Springer online bibliographies1 for
each of the annual conference proceedings. These bibliographies are available in
the form of RIS files, a tagged file format for expressing citation information,
including details such as the issue title, paper titles, author lists, and abstracts
for each publication in the conference series.

To determine the connections within the network of CBR publications, we
submitted queries to Google Scholar2 to retrieve the list of papers referencing
each of the 672 “seed” papers. Each list contains all of the Google verified ci-
tations that a given paper had received at query submission time (December

1 Downloaded from http://www.springer.com
2 See http://scholar.google.com

http://www.springer.com
http://scholar.google.com

An Analysis of Research Themes in the CBR Conference Literature 21

2007). In total 7078 relevant citation links were recorded. Note that, while cita-
tion information from the supplementary (i.e. non-seed) set of papers was used to
provide additional information regarding co-citations, only the 672 seed papers
and their associated authors were considered as data objects in our analysis.

Inaddition to the informationprovidedby citation links, the availabilityof paper
titles and abstracts in the RIS format allowed us to construct an alternative view of
the seedpapers, in the form of a “bag-of-words” text representation.After applying
standard stemming, stop-word removalandTF-IDFpre-processing techniques, the
672 conference papers were represented by feature vectors corresponding to 1487
unique terms. Similarity values between pairs of papers were computed by finding
the cosine of the angle between their respective term vectors.

2.1 Co-citation Analysis

The most fundamental representation used to model scientific literature in biblio-
metrics is the unweighted directed citation graph, where an edge exists between
the paper Pi and the paper Pj if Pi cites Pj . This graph can be represented by
its asymmetric adjacency matrix A. However, it has been established in biblio-
metrics research that co-citation information can be more effective in revealing
the true associations between papers than citations alone [4].

The concept of co-citation analysis is illustrated in Figure 1. A direct analysis
of citation shows for instance that P1 is related to P2. However, the fact that P3

and P4 are both cited by P1 and P2 indicates a strong relationship between these
papers. In this simple example co-citation analysis suggests a weaker relationship
between P3 and P5 and P4 and P5 based on co-citation in P2. Thus co-citation has
the potential to reveal indirect associations that are not explicit in the citation
graph.

Consequently, a network of publications is often represented by its weighted
undirected co-citation graph. This graph has a symmetric adjacency matrix de-
fined by C = A

T
A, where the off-diagonal entry Cij indicates the number of

papers jointly citing both Pi and Pj . Note that the entry Cii on the main diag-
onal correspond to the total number of citations for the paper Pi.

P5

P1 P2

P3 P4

Fig. 1. Co-citation information can be more effective in revealing relationships between
papers that direct citations. In this example, the fact that papers P3 and P4 are both
cited by papers P1 and P2 is indicative of a relationship between them. (Note that an
arrow from Pi to Pj indicates that paper Pi cites paper Pj .)

22 D. Greene et al.

Rather than using raw co-citation values in C as a basis for measuring the
similarity between papers, a variety of normalisation strategies have been pro-
posed in the area of bibliometrics [19]. The CoCit-Score, proposed by Gmür [3],
has been shown to be a particularly effective choice for clustering co-citation
data. This measure allows us to compute a pairwise similarity matrix S, such
that the similarity between a pair of papers (Pi, Pj) is given by normalising
their co-citation frequency with respect to the minimum and mean of the pair’s
respective citation counts:

Sij =
Cij

2

min(Cii, Cjj)×mean(Cii, Cjj)
(1)

Each entry Sij is in the range [0, 1], where a larger value is indicative of a stronger
association between a pair of papers.

3 Cluster Analysis Techniques

A natural approach to identifying the thematic subgroups in a bibliographic
network, such as the CBR conference series dataset, is to apply cluster analysis
techniques. Traditional methods such as hierarchical agglomerative clustering
have previously been used for this task [19]. However, a distinct drawback of
these methods lies in the fact that each paper can only reside in a single branch
of the tree at a given level, and can only belong to a single leaf node.

As an alternative, matrix decomposition techniques such as Non-negative Ma-
trix Factorization (NMF) have been recently employed in the analysis of data
where overlapping structures may exist [2]. Unlike other hierarchical or parti-
tional clustering algorithms that produce disjoint (i.e. non-overlapping) clusters,
an NMF factorisation allows each data object to potentially belong to mul-
tiple clusters to different degrees, supporting the identification of overlapping
subgroups. However, there are a number of drawbacks apparent when applying
NMF in practical applications, notably its sensitivity to the choice of parameter
k, and the difficulty in interpreting the factors produced by the decomposition
procedure.

3.1 Soft Hierarchical Clustering

We would ideally like to combine both the ability of NMF techniques to accu-
rately identify overlapping structures, with the interpretability and visualization
benefits of hierarchical techniques. Towards this end, we make use of the Ensem-
ble NMF algorithm [20], which was previously applied to large protein interaction
networks to address the issue of proteins belonging to more that one functional
group. In the context of the CBR bibliographic network, we apply it to iden-
tify overlapping subgroups corresponding to specific areas of research within the
CBR community, and to investigate how these areas have developed over the
course of the conference series. The Ensemble NMF algorithm is motivated by
existing unsupervised ensemble methods that have been proposed to improve

An Analysis of Research Themes in the CBR Conference Literature 23

the accuracy and robustness of cluster analysis procedures by aggregating a di-
verse collection of different clusterings [21]. However, rather than combining hard
clusterings (i.e. sets of disjoint, non-overlapping clusters), the algorithm involves
aggregating multiple NMF factorisations. We refer to the output of this proce-
dure as a soft hierarchical clustering of the data, as data objects (e.g. research
papers) are organised into a binary tree such that they can be associated with
multiple nodes in the tree to different degrees. A complete description of the
Ensemble NMF algorithm is provided in Appendix A.

3.2 Assessing Paper Importance

When seeking to identify groups of related papers, the use of Ensemble NMF in
conjunction with a similarity matrix constructed using a co-citation similarity
function (such as Eqn. 1) is appropriate. However, the values in the resulting
membership vectors will measure the level of association between each paper
and a given cluster, rather than indicating the importance of the paper within
that cluster. For instance, a paper may receive a high membership weight for a
cluster as it is strongly related to the specific theme represented by the cluster,
when in fact it has received relatively few citations in the literature.

To produce a meaningful ranking of the importance of the papers occurring in
each cluster, we apply a re-weighting scheme based on the concept of centrality.
In graph theory, the degree of a vertex in a graph refers to the number of edges
incident to that vertex. A related measure, degree centrality, is commonly used
as a means of assessing importance in social network analysis [22]. The rationale
behind this measure is that the greater the degree of a vertex, the more potential
influence it will exert in a network. For a weighted graph, we can compute a
centrality score for a given vertex based on the sum of the edge weights on the
edges incident to that vertex. For the co-citation graph with adjacency matrix
C, this will represent the sum of the number of co-citations for each paper.

Since our focus was on the identification of influential papers within each
subgroup, we consider a measure of local degree centrality based on co-citation
counts. Firstly, for each cluster node in the soft hierarchy, we assign papers to
the cluster if their previous membership weight for that cluster exceeds a given
threshold. We found experimentally that a threshold of 0.1 proved suitable in
this context. Subsequently, for each paper deemed to belong to a given cluster,
we calculate the number of co-citations between the paper and all other papers
deemed to be in that cluster. To make scores comparable across different clusters,
these values can be normalised with respect to the total number of unique pairs
of articles in a given cluster. This yields new membership weights in the range
[0, 1], where a higher score indicates that a paper is more influential in the area
of research covered by a specific cluster.

3.3 Back-Fitting Recent Papers

One drawback of citation analysis is that we must wait for a sufficient amount
of time to pass for citations to accrue in order to identify the associations

24 D. Greene et al.

between a paper and previously published work. As a result, most recent pa-
pers in the CBR conferences series (from 2005 onwards) did not feature strongly
in the clusters generated on co-citation data. To address this issue, we propose
a simple approach to “back-fit” these papers to the clusters generated with En-
semble NMF. Using the disjoint cluster memberships derived in Section 3.2, we
associate each unassigned recent paper to a cluster if that paper cites three or
more of the papers within the cluster. This stringent threshold led to relatively
few assignments, which is desirable as we only wished to identify new papers that
were strongly related to the groups discovered during the clustering process.

3.4 Labelling Clusters

The text representation described in Section 2 proved valuable as a means of
summarising the content of the clusters in the soft hierarchy prior to human
inspection. Cluster keywords were automatically identified by ranking the terms
for each cluster based on their Information Gain [23]. Given a cluster of papers,
the ranking of terms for the cluster is performed as follows: firstly the centroid
vector of the cluster is computed; subsequently, we compute the Information
Gain between the cluster centroid vector and the centroid vector for the entire
set of papers. Terms that are more indicative of a cluster will receive a higher
score, thereby achieving a higher ranking in the list of keywords for the cluster.

4 Analysis

In this section, we discuss the analysis of the CBR dataset described in Section 2
based on the application of the Ensemble NMF algorithm. As noted previously,
a variety of different measures can be used to identify groupings in a collection of
publications. In our initial experiments, we applied the algorithm to four different
representations of the CBR network: the raw author-author co-citation matrix,
the raw paper-paper co-citation matrix, the paper-paper CoCit-score matrix,
and the Cosine similarity matrix constructed from the text data. Note that co-
citation links from the supplementary papers retrieved from Google Scholar (as
described in Section 2) was used in the construction of the co-citation matrices.

For each data representation, 1000 ensemble members were generated using
symmetric NMF, with a range k ∈ [15, 20] used for the number of basis vec-
tors in each factorisation. This range was chosen by inspecting the gaps between
the ordered set of eigenvalues in the eigenvalue decomposition of the individual
similarity matrices, as frequently applied in spectral analysis [24]. These evalua-
tions showed that clusterings generated on the CoCit-score matrix yielded clus-
ters that were far more informative in terms of producing meaningful thematic
groupings, without containing an undue bias toward the geographical co-location
of authors. Consequently, in the remainder of this paper we focus on the output
of the Ensemble NMF algorithm on this particular representation.

To examine these results in detail, we developed the “NMF Tree Browser”
tool, a cross-platform Java application for visually inspecting a soft hierarchy

An Analysis of Research Themes in the CBR Conference Literature 25

Fig. 2. Screenshot of the NMF Tree Browser application displaying the output of the
Ensemble NMF procedure when applied to the CBR network dataset

as produced by the Ensemble NMF algorithm. The clustering is graphically
arranged in a tree view, where the user can click on any node to reveal its
contents, in terms of relevant papers, authors and descriptive terms. A screenshot
of the main window of the application is shown in Figure 2. The application is
freely available online3, together with the data files used in our experiments.

4.1 Global Picture

In this section we look at the salient global statistics for the complete set of
papers presented at the conference series since 1993. Some statistics on citations
are provided in Table 1. It is interesting to note that ICCBR papers are no more
significant (in terms of citations) than ECCBR papers. In fact the mean and
median number of citations per paper is marginally higher for ECCBR than for
ICCBR. We feel this validates our strategy of treating these as a homogenous
set of papers.

Given that the main findings in this paper entail a clustering of the papers
based on co-citation links, it is interesting to see which papers are most ‘central’
to the overall collection based on these co-citation links. Following the literature
on centrality in social network analysis, we selected eigenvector centrality and
degree centrality as appropriate measures for this exercise [22]. Table 2 shows the
top 10 papers ranked by eigenvector centrality. This table also shows a count of
co-citations for these papers – this corresponds to degree centrality and correlates

3 The browser tool and data files can be downloaded from http://mlg.ucd.ie/cbr

http://mlg.ucd.ie/cbr

26 D. Greene et al.

Table 1. A comparison of overall citation statistics between ECCBR and ICCBR

Conference No. Papers Maximum Mean Median

ECCBR 305 92 11.01 6
ICCBR 367 137 10.14 5

well with eigenvector centrality. A further ranked list with papers ranked by raw
citation count is shown in Table 3. The evidence from these tables is that the
most important paper in the collection is “Weighting Features” by Wettschereck
& Aha [25]. These two lists of prominent papers are useful in that they do appear
to encapsulate the main themes in CBR research over the last 15 years.

An obvious shortcoming of the analysis reported here is that it is restricted to
papers presented at the international conferences since 1993 only. This excludes
a number of important publications that have greatly influenced the field and
are strongly linked to the papers that have been covered. Perhaps the most
prominent example of this is the paper by Aamodt & Plaza [14] – this is the
definitive citation for the CBR cycle which shapes the way we think about the
CBR process. Another important influence on CBR research has been Richter’s
“knowledge containers” idea that he introduced in an invited talk at ICCBR’95.
Unfortunately this work is not included in the CBR conference proceedings, but
is described elsewhere [26].

4.2 Analysis of Subgroups

As a result of this analysis we have been able to identify a number of important
research themes within the CBR literature, corresponding to cohesive clusters in
the soft hierarchy produced by Ensemble NMF. We refer to these as the modern
CBR themes, since they reflect how research focus has shifted over the past
fifteen years, and they clearly differ from more traditional CBR themes such
as representation and indexing, retrieval and similarity, adaptation, learning,
analogy, planning and design etc. In this section we briefly review and discuss
these modern CBR themes.

In addition, Figures 3 and 4 provide timelines which profile each theme in
terms of its core papers, and their relative centrality and impact for the duration
of the conference series. Each timeline shows the papers in a selected cluster
(i.e. modern research theme) in three dimensions: the year of the conference
(x-axis), the centrality of the paper in the cluster (y-axis), and the number of
citations for that paper (depicted by the size of the disc representing the paper).
For reasons of scale, papers with more than 50 citations are represented by a disc
of size 50 – this only happens for 3% of papers. Since eigenvector centrality can be
unreliable for small clusters, paper importance is measured by [0-1]-normalised
local degree centrality, as previously defined in Section 3.2. It can be seen from
the figures that different clusters have different importance profiles. This can
be interpreted to mean than clusters such as Case-Base Maintenance are more
compact and cohesive than clusters such as Case Retrieval. The timelines also
show papers that have been back-fitted to the clusters as described in Section 3.3.

An Analysis of Research Themes in the CBR Conference Literature 27

Table 2. A ranked list of the top 10 papers in the overall collection based on eigenvector
centrality. The total number of citations and the number of co-citations for these papers
is also shown.

Paper Year Citations Co-cites
1 Weighting features

Wettschereck & Aha
1995 137 522

2 Modelling the competence of case-bases
Smyth & McKenna

1998 92 525

3 Refining conversational case libraries
Aha & Breslow

1997 117 518

4 Maintaining unstructured case bases
Racine & Yang

1997 72 469

5 Using introspective learning to improve retrieval in
CBR: A case study in air traffic control
Bonzano et al.

1997 74 473

6 Similarity vs. diversity
Smyth & McClave

2001 72 452

7 Building compact competent case-bases
Smyth & McKenna

1999 64 399

8 Categorizing case-base maintenance: dimensions and
directions
Leake & Wilson

1998 82 322

9 Diversity-conscious retrieval
McSherry

2002 44 362

10 Similarity measures for object-oriented case represen-
tations
Bergmann & Stahl

1998 66 403

These papers are represented by blue discs. Note that all papers mentioned in
this section are labelled with their corresponding reference number.

Recommender Systems and Diversity: Recent research interest in recommender
systems has provided the impetus for a new take on one of the long-held as-
sumptions that has underpinned case-based reasoners, namely the similarity
assumption. The similarity assumption states that the similarity between the
target specification (query) and cases in the case base is the primary retrieval
constraint in CBR systems; in other words, that cases should be selected and
ranked for retrieval in terms of their similarity to the target specification. The
idea that this assumption does not always hold is an important theme within the
area of recommender systems (both single-shot and conversational). The work
of [15] argued that an exclusive focus on similar cases can lead to the retrieval of
a homogeneous set of case that fail to offer the user a diverse set of alternatives,
which is often an important consideration in many recommendation scenarios.
In addition [15] first introduced the notion of a diversity conscious approach
to case retrieval, with a view to producing more diverse retrieval-sets that pro-
vide a better set of alternatives to a user. This work captured the interest on a

28 D. Greene et al.

Table 3. A ranked list of the top 10 papers in the overall collection based on total
citation count

Paper Year Citations
1 Weighting features

Aha & Wettschereck
1995 137

2 Refining conversational case libraries
Aha & Breslow

1997 117

3 Modelling the competence of case-bases
Smyth & McKenna

1998 92

4 Categorizing case-base maintenance: dimensions and directions
Leake & Wilson

1998 82

5 Using k-d trees to improve the retrieval step in case-based rea-
soning
Althoff et al.

1993 76

6 Using introspective learning to improve retrieval in CBR: a case
study in air traffic control
Bonzano et al.

1997 74

7 Explanation-driven case-based reasoning
Aamodt

1993 72

8 Maintaining unstructured case bases
Racine & Yang

1997 72

9 Similarity vs. diversity
Smyth & McClave

2001 72

10 Cases as terms: A feature term approach to the structured repre-
sentation of cases
Plaza

1995 70

number of CBR researchers with the work of [17,18,27,28] providing a number
of extensions to this original diversity work.

This particular theme is notable because of the relatively large number of
highly cited, very central papers over a short and recent time period as shown
in Figure 3. The first two papers in this cluster [29,30] are early papers on
recommender systems that are also prominent in the Conversional CBR cluster
described later. This shows the benefit of a clustering strategy that allows objects
to belong to more than one cluster.

Case-Base Maintenance: One cluster of research that stands out particularly
well in our co-citation analysis concerns the area of case base maintenance. In
fact, this line of research has had a lasting impact on the landscape of case-based
reasoning, with maintenance now viewed an a standard component of modern
CBR systems. At the heart of case-base maintenance is the idea that the quality
of the case base as a whole needs to be actively managed, to ensure that erroneous
cases can be identified, if not removed, and so that redundancy may be reduced
as a way to stave of the impact of the utility problem. A key publication in this
area of research is the work of Leake & Wilson [10] which attempted, for the
first time, to categorise the various factors that influence case base maintenance
as well as laying out the challenges and opportunities for future research.

An Analysis of Research Themes in the CBR Conference Literature 29

Fig. 3. Timeline plots for selected leaf node clusters. The size of the disc for each paper
indicates its number of citations, and the position on the y-axis indicates its centrality.

30 D. Greene et al.

Subsequently, many researchers have focused on developing specific mainte-
nance techniques, some looking at different ways to measure case quality (e.g.
[11,31,32]), while others propose novel techniques for pruning or editing or oth-
erwise optimising the case base (e.g. [12,5,33,34,35,36]). It is worth noting that
this research area has evolved from a number of papers that have been pub-
lished outside of the ICCBR/ECCBR and, as such, are beyond the scope of this
analysis. These papers include early work on understanding the utility problem
[37] in a CBR context [38,39,40], especially the idea that traditional ML-style
strategies for coping with the utility problem, namely the outright deletion of
learned knowledge, might not be appropriate in a CBR setting [13]. Once again
this cluster is characterised by a relatively large number of papers over a rela-
tively short period of time. It is also interesting to note that a small number of
these papers attract the lion’s share of citations (see Table 2), with other works
playing a much less central role by exploring different aspects of the case base
maintenance. It is also notable that there has not been much new research in this
area in recent years. Perhaps this is an indication that this line of research has
now become common practice in CBR, with effective solutions already available.

Case Retrieval: From the beginning, case-based reasoning research has been
heavily influenced by the so-called similarity assumption — that the best case
to retrieve is that which is most similar to the target problem — and the early
years of CBR research were guided by cognitively-plausable similarity assessment
techniques. Contemporary CBR research has adopted a much more flexible posi-
tion when it comes to case retrieval and similarity assessment. Many researchers
have argued that similarity alone is rarely enough to guide retrieval, for exam-
ple, while others have pointed out that cases can be retrieved for purposes other
than problem solving (e.g., explanation). This body of research is evident within
our analysis as a cluster that covers a broad spectrum of contributions over an
extended period of time. These include early work on the foundations of case
retrieval and similarity [41,42], and the proposal of novel retrieval methods that
go beyond a pure similarity-based approach [43,44,45,46], to more recent work
on case explanation [7,8], where the job of retrieval is not to select a case that
will help to justify or explain a conclusion, a case which might not be the most
similar to a given problem [6].

Learning Similarity Measures: The importance of retrieval and similarity in CBR
research is evidenced by the emergence of two clusters of research that speak to
these topics. Above we have discussed research related to the role of similarity
in retrieval and in this section we briefly highlight the second cluster which is
dominated by work on the learning of similarity measures for case retrieval. The
work of Armin Stahl is particularly prominent in this cluster, with a number
of important papers covering the learning of feature weights [47], the role of
background knowledge in similarity learning [46], as well as a proposal for a for-
mal framework for learning similarity measures based on a generalised model of
CBR [48]. It is also worth highlighting some of the related research that appears
in this cluster, which focuses on the role of user preferences in similarity with

An Analysis of Research Themes in the CBR Conference Literature 31

research by [49,50,51], for example, looking at different approaches to harnessing
user profiles and user preferences in similarity-based retrieval.

Adaptation: One of the smaller clusters of research activity that has emerged
from our analysis is in the area of case adaptation. Despite a strong showing in
the early years of CBR, work in the area of adaptation is now far less prominent,
at least within the ECCBR/ICCBR series. And while the level of activity on this
topic has promoted some to proclaim the death of case adaptation there are clear
signs that researchers have not given up on this most challenging of CBR tasks.
This cluster, for example, reflects recent work in the area of case adaptation and
includes practical work on domain specific adaptation techniques [52] and more
general approaches to case adaptation such as the work of [53,54,55,56]

Image Analysis: CBR researchers will not be surprised to see that image analy-
sis (particularly medical image analysis) has been identified as a distinct research
theme in the CBR literature. The earliest paper in the cluster that has been iden-
tified is from ICCBR’95 by Macura & Macura [57], which describes the applica-
tion of CBR in the area of radiology imaging. Two other central papers in this
cluster are the paper on using CBR for image segmentation by Perner [58] and a
paper describing a CBR architecture for medical image understanding by Grimes
& Aamodt [59]. This cluster also includes two papers on geospatial image anal-
ysis, although the dominant theme in this area of CBR has been medical image
analysis. Given that significant research challenges still exist in image analysis it is
interesting that the clustering has attached few very recent papers to this theme.
The process of back-fitting recent papers as described in Section 3.3 has added
only one paper. Part of the explanation for this is that some of the research activ-
ity in this area is reported outside the CBR conferences. Surely this is an area of
research that warrants more attention from the CBR community.

Textual CBR: Ensemble NMF co-citation clustering identifies a theme that is
characterised by terms such as textual, CCBR, text, question and taxonomy. An
examination of the papers in this cluster shows that it covers Textual CBR.
While the earliest paper in this theme is from Brüninghaus & Ashley in 1997
[60] most of the material is from recent years. So this is a new but still well
established theme in CBR research. Some key papers in this cluster are the 2002
paper by Gupta et al. [61] and the 2004 paper by Wiratunga et al. [62]. It is
interesting that if the clustering is allowed to further divide the corpus then
this cluster splits into two distinct sub-groups: one pertaining to textual CBR
[60,63,64,62], and another pertaining to conversational CBR [61,65].

Conversational CBR: The cluster analysis reveals some interesting insights into
research on conversational CBR (CCBR). In fact CCBR papers are divided
into two sub-groups: one is associated with textual CBR in the overall cluster
hierarchy and the other is linked to learning and induction. The key papers
in the textual side of conversational CBR have been described already in the
previous section. Some central papers from the learning side of CCBR are the

32 D. Greene et al.

Fig. 4. Timeline plots for selected leaf node clusters (continued)

An Analysis of Research Themes in the CBR Conference Literature 33

2000 paper by Doyle & Cunningham [29], the 2000 paper by Göker & Thompson
[30] and the 1998 paper by Aha et al. [66]. This is a significant cluster that
contains seventeen papers, most of which have attracted an impressive number
of citations. In addition to this link to conversational CBR, this cluster also links
to the Recommender Systems and Diversity theme where the papers [29,30] are
also prominent. The back-fitting process has attached another three papers to
this cluster. It is clear from the timelines in Figure 4 that this research area is
in rude good health with considerable activity in the area.

Feature Weighting and Similarity: In fact, the clustering further divides this clus-
ter into two sub-groups, one on fault diagnosis and another on feature weight
learning. The former is unusual in that it contains no recent papers; there is
one paper from 2000 [67], and before that the most recent papers are from 1997
[68,69,70]. There have continued to be papers on diagnosis in the research liter-
ature but it does not seem to connect with this literature through co-citation.
Instead the clustering process has connected more recent papers on diagnosis
with research on textual CBR or with work on similarity for structured repre-
sentations. Two representative papers that describe the work on fault diagnosis
in this cluster are the work of Netten & Vingerhoeds [71], and Jarmulak et al. [69].

The other part of this cluster comprises papers on feature weight learning.
The seminal paper in this collection is the paper by Wettschereck & Aha from
1995 on “Weighting Features” [25]. This is also the most central and significant
paper is the whole 15 year collection (see Section 4.1). Other central papers in
this cluster are the paper on using introspective learning to learn feature weights
by Bonzano et al. [72] and the work by Stahl on learning feature weights from
case order feedback [73]. While activity in this area may be slowing down, there
appears to be ongoing work as the process of back-fitting papers has linked two
papers from 2004 and 2005 to this cluster [48,74].

Creativity & Knowledge-Intensive CBR: One of the more remarkable group-
ings revealed by the clustering process is the one we have called “Creativity &
Knowledge Intensive CBR”. The keywords associated with this cluster are cre-
ative, reason, design, rule, interpolation, tune, represent, model, integrate and
adapt and the influential papers include [75,76,77,78,79,80]. This cluster is un-
usual in that the most recent papers are from 1997. Thus, it represents a body
of research that has either waned or been taken up in other areas. An analysis
of the prominent papers in this cluster supports the impression created by the
list of terms above that this cluster covers research on knowledge intensive CBR
and links with earlier work on analogy and model-based reasoning. This cluster
includes papers on CBR as a creative problem solving process; the first paper
in this sequence is the invited paper from the 1993 conference by Kolodner on
“Understanding Creativity: A Case-Based Approach” [81].

It would be wrong to think of this as a strand of CBR research that did not
‘work out’. Rather, some of the papers in this cluster have proved influential
in other areas within CBR. For instance, the paper by Bunke and Messmer, on
“Similarity Measures for Structured Representations” [77] is a very influential

34 D. Greene et al.

paper in work on similarity and is still cited today. Furthermore the connection
between CBR and induction that went on to be a major theme in CBR in the
late 1990s is a prominent theme in some of the papers in this cluster [76,82].
The paper by Smyth and Keane on retrieving adaptable cases [78] marked the
beginning of a strand of research that offered a new perspective on case retrieval.
On the other hand, the view of CBR as a model of creativity does seem to have
waned. Perhaps this is no surprise as, to a large extent, the modern view of CBR
is one the emphasises retrieval rather than adaptation and, arguably, creativity
demands a significant measure of adaptation by definition. The early work of
creativity [81] stems from a time when there was a more optimistic view of the
potential for automated adaptation, and the lack of significant research activity
in the area of adaptation (as discussed above) suggests that this view is no longer
held.

5 Conclusion

In this work, we have set out to review the last fifteen years of CBR research
with a view to understanding how major research themes have developed and
evolved over this extended period of time. Unlike many more traditional research
reviews, which tend to adopt a top-down style of analysis based on long-accepted
thematic norms, we have instead opted for a bottom-up style of analysis. Our
intuition has always been that CBR research tends to be dynamic, with new
research themes emerging on a reasonably regular basis, and as such a pre-
canned top-down analysis would run the risk of missing important developments
that fall outside of the traditional themes.

Our bottom-up analysis has focused on mining the relationships between pa-
pers and authors from the fifteen years of international CBR conferences. The
results confirm that modern CBR research is characterised by a set of research
themes that are significantly different from those that would have characterised
the early years of the field. We have identified strong clusters of activity in ar-
eas such as Recommender Systems & Diversity, Textual CBR, Case-Base Mainte-
nance and Conversational CBR, which we believe to be characteristic of modern
CBR research. Interestingly, many of the more traditional research themes do not
feature prominantly in the clusters of research that have emerged from our anal-
ysis. For example, the traditional themes of representation and indexing, analogy,
architectures, and design and planning are conspicuous by their absence and even
critical areas of research such as adaptation or similarity and retrieval have either
become less active or have fundamentally changed their emphasis.

It is also pleasing to note from Figures 3 and 4 that new themes can emerge
(e.g. Recommender Systems & Diversity), and that research activity in an area
can come to a close (e.g. Case-Base Maintenance), as it matures to deliver ef-
fective solutions to the community. This can be considered a sign of a healthy
research area.

The choice of a clustering algorithm that produces a “soft” hierarchical or-
ganisation, allowing the identification of localised groupings where papers may

An Analysis of Research Themes in the CBR Conference Literature 35

belong to more than one cluster, has proved effective. This has revealed some
interesting links and overlaps between areas. For instance, overlaps between the
areas of Textual CBR and Conversational CBR, and between Conversational
CBR and Recommender Systems. It has also revealed the two aspects of Con-
versational CBR, the textual side and the learning side.

In this paper we have limited our discussion to the ten most prominent re-
search themes, largely based on the size of the cluster (in terms of papers pub-
lished). It is worth highlighting that a number of more minor clusters have also
been identified, including:

– CBR on temporal problems: time, temporal, prediction, series.
– Games and chess: game, chess, automatic, sequential.
– Scheduling and agents: schedule, agent, exploration.
– Structural cases: structural, case, induction, logic.

Clearly these clusters also represent important and interesting lines of research.
Work in the area of games and chess, while something of a niche area, has been
part of CBR research since 1995 [83], and continues to attract research interest.
Others clusters such as CBR on temporal problems cover a broad spectrum of
work dealing with a range of issues, such as using CBR to predict time-series
[84] and the representation of temporal knowledge in case-based prediction [85]
to more recent work on so-called historical case-based reasoning [86]. There is
no doubt that these themes are worthy of additional research, and a further
exploration of the papers in these clusters will no doubt lead to further fruitful
insights into the ever-changing landscape of CBR research.

References

1. Greene, D., Cunningham, P., Mayer, R.: Unsupervised learning and clustering. In:
Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia:
Case Studies on Organization and Retrieval, pp. 51–90. Springer, Heidelberg (2008)

2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788–791 (1999)

3. Gmür, M.: Co-citation analysis and the search for invisible colleges: A method-
ological evaluation. Scientometrics 57, 27–57 (2003)

4. White, H., Griffith, C.: Author Cocitation: A Literature Measure of Intellectual
Structure. J. ASIS 32, 163–171 (1981)

5. Aha, D., Breslow, L.: Refining conversational case libraries. Case-Based Reasoning
Research and Development, 267–278 (1997)

6. Cunningham, P., Doyle, D., Loughrey, J.: An evaluation of the usefulness of case-
based explanation. Case-Based Reasoning Research and Development, 1065 (2003)

7. McSherry, D.: Explaining the pros and cons of conclusions in cbr. Advances in
Case-Based Reasoning, 317–330 (2004)

8. Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation oriented re-
trieval. Advances in Case-Based Reasoning, 157–168 (2004)

9. Aamodt, A.: Explanation-driven case-based reasoning. Advances in Case-Based
Reasoning (1993)

36 D. Greene et al.

10. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and
directions. Advances in Case-Based Reasoning, 196 (1998)

11. Smyth, B., McKenna, E.: Modelling the competence of case-bases. Advances in
Case-Based Reasoning, 208 (1998)

12. Racine, K., Yang, Q.: Maintaining unstructured case bases. Case-Based Reasoning
Research and Development, 553–564 (1997)

13. Smyth, B., Keane, M.T.: Remembering to forget: A competence-preserving case
deletion policy for case-based reasoning systems. In: IJCAI, pp. 377–383 (1995)

14. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7, 39–59 (1994)

15. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.)
ICCBR 2001. LNCS (LNAI), vol. 2080, p. 347. Springer, Heidelberg (2001)

16. McSherry, D.: Diversity-conscious retrieval. In: Craw, S., Preece, A.D. (eds.) EC-
CBR 2002. LNCS (LNAI), vol. 2416, pp. 27–53. Springer, Heidelberg (2002)

17. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender
systems. Case-Based Reasoning Research and Development, 1065 (2003)

18. Bridge, D., Ferguson, A.: Diverse product recommendations using an expressive
language for case retrieval. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS
(LNAI), vol. 2416, pp. 291–298. Springer, Heidelberg (2002)

19. He, Y., Cheung Hui, S.: Mining a Web Citation Database for author co-citation
analysis. Information Processing and Management 38, 491–508 (2002)

20. Greene, D., Cagney, G., Krogan, N., Cunningham, P.: Ensemble Non-negative Ma-
trix Factorization Methods for Clustering Protein-Protein Interactions. Bioinfor-
matics (2008)

21. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining partitionings. In: Proc. Conference on Artificial Intelligence (AAAI 2002),
pp. 93–98. AAAI/MIT Press (2002)

22. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

23. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text cate-
gorization. In: Fisher, D.H. (ed.) Proc. 14th International Conference on Machine
Learning (ICML 1997), Nashville, US, pp. 412–420. Morgan Kaufmann Publishers,
San Francisco (1997)

24. Ng, A., Jordan, M., Weiss, Y.: On Spectral Clustering: Analysis and an Algorithm.
Advances in Neural Information Processing 14, 849–856 (2001)

25. Wettschereck, D., Aha, D.: Weighting features. Case-Based Reasoning Research
and Development, 347–358 (1995)

26. Richter, M.M.: Introduction. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D.,
Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp.
1–16. Springer, Heidelberg (1998)

27. Mougouie, B., Richter, M.M., Bergmann, R.: Diversity-conscious retrieval from
generalized cases: A branch and bound algorithm. Case-Based Reasoning Research
and Development, 1064 (2003)

28. McSherry, D.: Similarity and compromise. Case-Based Reasoning Research and
Development, 1067 (2003)

29. Doyle, M., Cunningham, P.: A dynamic approach to reducing dialog in on-line
decision guides. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI),
vol. 1898, pp. 323–350. Springer, Heidelberg (2000)

30. Goker, M., Thompson, C.: Personalized conversational case-based recommenda-
tion. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898,
pp. 29–82. Springer, Heidelberg (2000)

An Analysis of Research Themes in the CBR Conference Literature 37

31. Portinale, L., Torasso, P., Tavano, P.: Speed-up, quality and competence in multi-
modal case-based reasoning. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.)
ICCBR 1999. LNCS (LNAI), vol. 1650, p. 718. Springer, Heidelberg (1999)

32. Reinartz, T., Iglezakis, I., Roth-Berghofer, T.: On quality measures for case base
maintenance. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI),
vol. 1898, pp. 247–259. Springer, Heidelberg (2000)

33. Smyth, B.: Competence models and their applications. In: Blanzieri, E., Portinale,
L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 1–2. Springer, Heidelberg
(2000)

34. Heister, F., Wilke, W.: An architecture for maintaining case-based reasoning sys-
tems. Advances in Case-Based Reasoning, 221 (1998)

35. Surma, J., Tyburcy, J.: A study on competence-preserving case replacing strategies
in case-based reasoning. Advances in Case-Based Reasoning, 233 (1998)

36. Munoz-Avila, H.: A case retention policy based on detrimental retrieval. In: Althoff,
K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
p. 721. Springer, Heidelberg (1999)

37. Minton, S.: Quantitative results concerning the utility of explanation-based learn-
ing. Artif. Intell. 42, 363–391 (1990)

38. Ram Jr., A., Francis, A.G.: The utility problem in case-based reasoning. In: Pro-
ceedings AAAI 1993 Case-Based Reasoning Workshop (1993)

39. Smyth, B., Cunningham, P.: The utility problem analysed. Advances in Case-Based
Reasoning, 392–399 (1996)

40. Ram Jr., A., Francis, A.G.: A comparitive utility analysis of case-based reasoning
and control-rule learning systems. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995.
LNCS, vol. 912, pp. 138–150. Springer, Heidelberg (1995)

41. Osborne, H., Bridge, D.: A case base similarity framework. Advances in Case-Based
Reasoning, 309–323 (1996)

42. Osborne, H., Bridge, D.: Similarity metrics: A formal unification of cardinal and
non-cardinal similarity measures. Case-Based Reasoning Research and Develop-
ment, 235–244 (1997)

43. Smyth, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann,
R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, p. 719. Springer,
Heidelberg (1999)

44. Schaaf, J.: Fish and shrink. a next step towards efficient case retrieval in large
scaled case bases. Advances in Case-Based Reasoning, 362–376 (1996)

45. Lenz, M., Burkhard, H., Bruckner, S.: Applying case retrieval nets to diagnostic
tasks in technical domains. Advances in Case-Based Reasoning, 219–233 (1996)

46. Gabel, T., Stahl, A.: Exploiting background knowledge when learning similarity
measures. Advances in Case-Based Reasoning, 169–183 (2004)

47. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
Case-Based Reasoning Research and Development, 1064 (2003)

48. Stahl, A.: Learning similarity measures: A formal view based on a generalized cbr
model. Case-Based Reasoning Research and Development, 507–521 (2005)

49. Gomes, P., Bento, C.: Learning user preferences in case-based software reuse. In:
Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp.
112–123. Springer, Heidelberg (2000)

50. Bradley, K., Smyth, B.: An architecture for case-based personalised search. Ad-
vances in Case-Based Reasoning, 518–532 (2004)

51. Hayes, C., Avesani, P., Baldo, E., Cunningham, P.: Re-using implicit knowledge in
short-term information profiles for context-sensitive tasks. Case-Based Reasoning
Research and Development, 312–326 (2005)

38 D. Greene et al.

52. Bandini, S., Manzoni, S.: Cbr adaptation for chemical formulation. In: Aha, D.W.,
Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, p. 634. Springer, Heidel-
berg (2001)

53. McSherry, D.: An adaptation heuristic for case-based estimation. Advances in Case-
Based Reasoning, 184 (1998)

54. Neagu, N., Faltings, B.: Exploiting interchangeabilities for case adaptation. In:
Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, p. 422.
Springer, Heidelberg (2001)

55. Neagu, N., Faltings, B.: Soft interchangeability for case adaptation. Case-Based
Reasoning Research and Development, 1066 (2003)

56. Tonidandel, F., Rillo, M.: Case adaptation by segment replanning for case-based
planning systems. Case-Based Reasoning Research and Development, 579–594
(2005)

57. Macura, R., Macura, K.: Macrad: Radiology image resource with a case-based
retrieval system. Case-Based Reasoning Research and Development, 43–54 (1995)

58. Perner, P.: An architecture for a cbr image segmentation system. In: Althoff, K.-
D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
p. 724. Springer, Heidelberg (1999)

59. Grimnes, M., Aamodt, A.: A two layer case-based reasoning architecture for med-
ical image understanding. Advances in Case-Based Reasoning, 164–178 (1996)

60. Bruninghaus, S., Ashley, K.D.: Using machine learning for assigning indices to
textual cases. Case-Based Reasoning Research and Development, 303–314 (1997)

61. Gupta, K.M., Aha, D.W., Sandhu, N.: Exploiting taxonomic and causal relations
in conversational case retrieval. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002.
LNCS (LNAI), vol. 2416, pp. 175–182. Springer, Heidelberg (2002)

62. Wiratunga, N., Koychev, I., Massie, S.: Feature selection and generalisation for
retrieval of textual cases. Advances in Case-Based Reasoning, 806–820 (2004)

63. Bruninghaus, S., Ashley, K.D.: The role of information extraction for textual cbr.
In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, p. 74.
Springer, Heidelberg (2001)

64. Lamontagne, L., Lapalme, G.: Textual reuse for email response. Advances in Case-
Based Reasoning, 242–256 (2004)

65. Gu, M., Aamodt, A.: A knowledge-intensive method for conversational cbr. Case-
Based Reasoning Research and Development, 296–311 (2005)

66. Aha, D.W., Maney, T., Breslow, L.A.: Supporting dialogue inferencing in conver-
sational case-based reasoning. Advances in Case-Based Reasoning, 262 (1998)

67. Vollrath, I.: Handling vague and qualitative criteria in case-based reasoning ap-
plications. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI),
vol. 1898, pp. 403–444. Springer, Heidelberg (2000)

68. Faltings, B.: Probabilistic indexing for case-based prediction. Case-Based Reason-
ing Research and Development, 611–622 (1997)

69. Jarmulak, J., Kerckhoffs, E., van’t Veen, P.: Case-based reasoning in an ultrasonic
rail-inspection system. In: Case-Based Reasoning Research and Development, pp.
43–52 (1997)

70. Trott, J., Leng, B.: An engineering approach for troubleshooting case bases. Case-
Based Reasoning Research and Development, 178–189 (1997)

71. Netten, B., Vingerhoeds, R.: Large-scale fault diagnosis for on-board train systems.
Case-Based Reasoning Research and Development, 67–76 (1995)

72. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve
retrieval in cbr: A case study in air traffic control. Case-Based Reasoning Research
and Development, 291–302 (1997)

An Analysis of Research Themes in the CBR Conference Literature 39

73. Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Wat-
son, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, p. 502. Springer, Heidelberg
(2001)

74. Stahl, A.: Combining case-based and similarity-based product recommendation.
Advances in Case-Based Reasoning, 355–369 (2006)

75. Arcos, J.L., Plaza, E.: A reflective architecture for integrated memory-based learn-
ing and reasoning. Advances in Case-Based Reasoning (1993)

76. Armengol, E., Plaza, E.: Integrating induction in a case-based reasoner. Advances
in Case-Based Reasoning, 2–17 (1994)

77. Bunke, H., Messmer, B.: Similarity measures for structured representations. Ad-
vances in Case-Based Reasoning (1993)

78. Smyth, B., Keane, M.: Retrieving adaptable cases: The role of adaptation knowl-
edge in case retrieval. Advances in Case-Based Reasoning (1993)

79. Nakatani, Y., Israel, D.: Tuning rules by cases. Advances in Case-Based Reasoning
(1993)

80. Richards, B.: Qualitative models as a basis for case indices. Advances in Case-Based
Reasoning, 126–135 (1994)

81. Kolodner, J.: Understanding creativity: A case-based approach. Advances in Case-
Based Reasoning (1993)

82. Sebag, M., Schoenauer, M.: A rule-based similarity measure. Advances in Case-
Based Reasoning (1993)

83. Flinter, S., Keane, M.: On the automatic generation of case libraries by chunking
chess games. Case-Based Reasoning Research and Development, 421–430 (1995)

84. Nakhaeizadeh, G.: Learning prediction of time series - a theoretical and empirical
comparison of cbr with some other approaches. Advances in Case-Based Reasoning
(1993)

85. Jære, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-
based prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI),
vol. 2416, pp. 225–234. Springer, Heidelberg (2002)

86. Ma, J., Knight, B.: A framework for historical case-based reasoning. Case-Based
Reasoning Research and Development, 1067 (2003)

87. Ding, C., He, X.: On the Equivalence of Non-negative Matrix Factorization
and Spectral Clustering. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS,
vol. 3674. Springer, Heidelberg (2005)

88. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural-
network ensemble. Advances in Neural Information Processing Systems 8, 535–541
(1996)

89. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

90. Ding, C., He, X.: Cluster merging and splitting in hierarchical clustering algo-
rithms. In: Proc. IEEE International Conference on Data Mining (ICDM 2002), p.
139 (2002)

91. Giurcaneanu, C.D., Tabus, I.: Cluster structure inference based on clustering sta-
bility with applications to microarray data analysis. EURASIP Journal on Applied
Signal Processing 1, 64–80 (2004)

Appendix A: Ensemble NMF Algorithm

This appendix describes the operation of the Ensemble NMF clustering algo-
rithm that was used in the analysis described in Section 4. The approach is

40 D. Greene et al.

suitable for the identification of localised structures in sparse data, represented
in the form of a non-negative pairwise similarity matrix, such as the co-citation
matrix of the CBR network defined by Eqn. 1. The algorithm consists of two
distinct phases: a generation phase in which a collection of NMF factorisations
is produced (i.e. the members of the ensemble), and an integration phase where
these factorisations are aggregated to produce a final soft hierarchical clustering
of the data.

A.1 Ensemble Generation Phase

Given a dataset consisting of n data objects (e.g. research papers), the generation
phase of the ensemble process involves the production of a collection of τ “base”
clusterings. These clusterings represent the individual members of the ensemble.
Since we are interested in combining the output of multiple matrix factorisations,
each member will take the form of a non-negative n × ki matrix factor Vi,
such that ki is the number of basis vectors (i.e. clusters) specified for the i-th
factorisation procedure.

To generate the collection of base clusterings, we employ the symmetric NMF
algorithm proposed by Ding et al. [87]. This algorithm decomposes a non-negative
pairwise similarity matrix S ∈ IRn×n to produce a factor V by minimising the
objective function given by the Frobenius norm:

min
V>0

∣
∣
∣

∣
∣
∣S−VV

T
∣
∣
∣

∣
∣
∣

2

F
(2)

The optimal factor can be approximated by starting with an initial randomly-
generated factor and repeatedly applying a single update rule until convergence:

Vcj ← Vcj

(

1− β + β
(SV)cj

(VVTV)cj

)

(3)

where 0 < β ≤ 1 is a user-defined parameter which controls the rate of conver-
gence. We have observed that, not only is the algorithm efficient in comparison
to other NMF algorithms, but it also has a tendency to produce relatively sparse
factors representing localised clusters.

It has been demonstrated that supervised ensembles are most successful when
constructed from a set of accurate classifiers whose errors lie in different parts of
the data space [88]. Similarly, unsupervised ensemble procedures typically seek
to encourage diversity with a view to improving the quality of the information
available in the integration phase. A simple but effective strategy is to rely on the
inherent instability of randomly-initialised factorisation algorithms. By employ-
ing a stochastic initialisation scheme, symmetric NMF will generally converge
to a variety of different local solutions when applied multiple times to the same
matrix S. The level of diversity among the ensemble members can be increased
by varying the number of clusters in each base clustering, such as by randomly
selecting a value ki from a predefined range [kmin, kmax]. An important benefit
of this strategy is that it ameliorates a model selection problem with NMF which
is highly sensitive to the choice of the number of basis vectors ki.

An Analysis of Research Themes in the CBR Conference Literature 41

Further improvements in performance and accuracy can be achieved by seed-
ing each NMF factorisation using the output of the less computationally expen-
sive kernel k-means algorithm [89]. Specifically, to seed the i-th base clustering,
we randomly assign data objects to ki clusters and apply kernel k-means to
the matrix S. The resulting disjoint clustering can be represented as an n × ki

partition matrix, where the j-th column is a binary membership indicator for
the j-th cluster. This partition matrix is subsequently used as the initial factor
for symmetric NMF. The use of random cluster assignment and the tendency of
kernel k-means to converge to a local solution ensures that sufficient diversity in
the ensemble is maintained.

A.2 Ensemble Integration Phase

We now propose an approach for combining the factors produced during the
generation phase to construct a soft hierarchical clustering of the original dataset.

Graph Construction. From the generation phase, we have a collection of τ
factors, giving a total of l = (k1 + k2 + · · ·+ kτ) individual basis vectors across
all factors. We denote these vectors as the set V = {v1, . . . , vl}. This set can be
modelled as a complete weighted graph consisting of l vertices, where each vertex
represents a basis vector vi. The weight on each edge indicates the similarity
between the pair of vectors associated with the two vertices. The value of the
edge weight is computed as the [0, 1]-normalised Pearson correlation between a
pair of vectors (vi, vj):

ncor(vi, vj) =
1
2

(

(vi − v̄i)
T
(vj − v̄j)

||(vi − v̄i)|| · ||(vj − v̄j)||
+ 1

)

(4)

The entire graph can be represented by its adjacency matrix L, where Lij =
ncor(vi, vj).

Meta-Clustering. Following the lead of the MCLA approach described by
Strehl & Ghosh [21], we produce a “meta-clustering” (i.e. a clustering of clus-
ters) of the graph formed from the basis vectors in V. This is achieved by applying
an agglomerative clustering algorithm to L, resulting in a disjoint hierarchy of
“meta-clusters” (i.e. tree nodes containing basis vectors from V). Rather than
using a traditional linkage function such as average linkage during the agglom-
eration process, we compute the similarity between pairs of meta-clusters based
on the min-max graph partitioning objective [90]. This linkage function has a
tendency to produce clusters which are relatively balanced in size. Formally,
given the matrix L, the min-max inter-cluster similarity between a pair of meta-
clusters (Ma, Mb) is defined as:

sim(Ma, Mb) =
s(Ma, Mb)

s(Ma, Ma) s(Mb, Mb)
(5)

such that
s(Ma, Mb) =

∑

vi∈Ma

∑

vj∈Mb

Lij

42 D. Greene et al.

Soft Hierarchy Construction. The output of the meta-clustering procedure
is a clustering of the basis vectors in V, in the form of a traditional disjoint
hierarchical tree. We wish to transform this into a soft hierarchical clustering
of the original dataset. That is, a binary tree structure, where each node Ma

in the hierarchy is associated with an n-dimensional vector ya containing non-
negative real values indicating the degree of membership for all n data objects.
In practice, these node membership vectors will become increasingly sparse as
we proceed further down the tree, representing more localised sub-structures.

To transform the meta-clustering into a soft hierarchy, we process each node
Ma in the meta-clustering tree, computing the membership vector ya as the
mean of all the basis vectors contained in Ma:

ya =
1

|Ma|
∑

vi∈Ma

vi (6)

We associate the vector ya with the position held by the node Ma in the original
meta-clustering tree. By preserving the parent-child relations from that tree,
these vectors can be linked together to form a soft hierarchy as defined above.

Final Model Selection. A hierarchical meta-clustering of the l basis vectors
in V will yield a corresponding soft hierarchy containing l leaf nodes. However,
a certain proportion of these nodes will be redundant, where the membership
vectors of a pair of sibling nodes may be nearly identical to the membership
vector of their parent node. This situation will arise when a tree node in the
meta-clustering of V contains basis vectors that are highly similar to one another.
Ideally we would like to prune the soft hierarchy to remove all redundant leaf
and internal nodes, thereby facilitating visualisation and human interpretation.

The concept of ensemble stability has previously been considered as a means
of identifying an appropriate cut-off point in a disjoint hierarchy [91]. Here we
propose a stability-based approach to identifying an appropriate cut-off level,
which is applicable to a soft hierarchy. Specifically, we consider a tree node
to be stable if the basis vectors in the corresponding meta-cluster are highly
similar, while an unstable node has a corresponding meta-cluster consisting of
basis vector that are dissimilar to one another. To numerically assess stability,
we measure the extent to which an internal node can be split into diverse sub-
nodes. Given a node Ma with child nodes (Mb, Mc), this can be quantified in
terms of the weighted similarity between the membership vector ya and the pair
of vectors (yb, yc) associated with the child nodes:

split(Ma) =
|Mb|
|Ma|

ncor(ya, yb) +
|Mc|
|Ma|

ncor(ya, yc) (7)

From this, we define the splitting factor of an internal node Ma as the minimum
value for Eqn. 7 among Ma and all child nodes below Ma in the hierarchy. A
lower value indicates a lower degree of stability for the branch beginning at Ma.
Using this criterion, we can prune a soft hierarchy by processing each internal
node Ma in the tree, starting at the root node. The child nodes of Ma (together

An Analysis of Research Themes in the CBR Conference Literature 43

Inputs:

- S: Non-negative pairwise similarity matrix.
- τ : Number of factorisations to generate.
- [kmin, kmax]: Range for selecting number of clusters in each factorisation.

Generation Phase:

1. For i = 1 to τ
- Randomly select ki ∈ [kmin, kmax].
- Apply kernel k-means to S to initialise Vi ∈ IRn×ki .
- Apply symmetric NMF to S and Vi.
- Add each column vector of Vi to the set V.

Integration Phase:

1. Construct the adjacency matrix L from the set V according to Eqn. 4.
2. Apply min-max hierarchical clustering to L to produce a meta-clustering of

the basis vectors.
3. Build a soft hierarchy by computing the mean vector for each tree node in

the meta-clustering.
4. If required, recursively remove redundant tree nodes based on the splitting

factor criterion.

Fig. 5. Summary of Ensemble NMF clustering algorithm

with all the nodes below them) are removed from the tree if the splitting factor
of Ma is greater than or equal to a user-defined threshold λ. In practice we have
observed that a threshold value of λ = 0.9 frequently leads to the elimination of
redundant nodes without removing those containing informative structures.

The pruning procedure outlined above allows us to construct a tree with k
leaf nodes, where the value k does not need to be specified a priori. As with
cut-off techniques used to convert a disjoint hierarchy to a flat partition, we can
produce a flat soft clustering from the leaf nodes in the tree. Specifically, we
construct a n× k matrix whose columns correspond to the vectors of the k non-
redundant leaf nodes in the soft hierarchy. Unlike spectral dimension reduction
procedures such as PCA, standard NMF techniques do not produce an ordering
of the new dimensions in terms of importance. To produce an ordering of the
columns in the flat soft clustering, the related k leaf nodes may be ranked based
on their splitting factor, with the first column corresponding to the most stable
node. The complete Ensemble NMF algorithm is summarised in Figure 5.

Semantics and Experience in the Future Web

Enric Plaza

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research
Campus UAB, Bellaterra, Catalonia (Spain)

enric@iiia.csic.es

Abstract. The Web is a vibrant environment for innovation in com-
puter science, AI, and social interaction; these innovations come in such
great number and speed that it is unlikely to follow them. This paper
will focus on some emerging aspects on the web that are an opportunity
and challenge for Case-based Reasoning, specifically the large amount of
experiences that individual people share in the Web. The talk will try to
characterize this experiences, these bits of practical knowledge that go
from simple but practical facts to complex problem solving descriptions.
Then, I’ll focus on how CBR ideas could be brought to bear in sharing
and reusing this experiential knowledge, and finally on the challenging
issues that have to be addressed for that purpose.

1 Introduction

The Web is a vibrant environment for innovation in computer science, AI, and
social interaction; these innovations come in such great number and speed that
it is unlikely to follow them. This paper will focus on some emerging aspects
on the web that are an opportunity and challenge for Case-based Reasoning,
specifically the large amount of experiences that individual people share in the
Web. These experiences, ranging from client reports on hotels they have visited
to small explanations on how to do certain things, are searched for and reused
by thousands of people. These experiences can be found in forums and blogs, in
normal web pages and in specialized services like Question-Answer websites.

However, they are treated documents, not as experiences. That is to say, they
are represented, organized, analyzed, and retrieved as any other document. The
main purpose of this paper is to argue that there is a special kind of content,
namely experiences, that provides a specific form of knowledge, experiential
knowledge, and they should be represented, organized, analyzed, and retrieved
in accordance to this nature. Moreover, the paper will provide some food for
thought by proposing some ideas on the conditions required and the techniques
suitable to build systems capable of reusing experiential knowledge provided by
other people in specific domains.

The structure of this paper is as follows. Sections 2 and 3 discuss two of the
most noteworthy components of current debate on the web, namely adding a
semantic substrate to the web (e.g. the semantic web, folksonomies) and the

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 44–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantics and Experience in the Future Web 45

phenomenon of social networking. Then Section 4 discusses the nature of expe-
riential knowledge, while Section 5 elaborates the conditions for reusing other
people’s experiences.Next Section 6 discusses the relationship of semantics and
experience, Section 7 presents several forms of experience and discusses their
properties, and Section 8 proposes a process model for systems reusing experi-
ential knowledge on the web.

2 Semantics, Up and Down

In this section, I want to examine two approaches to imbue semantics in the web
content: the top-down approach of the semantic web and the bottom-up approach
of social networks. The Semantic Web (SW) [1] was proposed with the purpose
of allowing the human-produced web content to be understood by automatic
systems: ontologies define the terminology that “agents” use while roaming the
web pages entered by humans using SW-enabled tools. This proposal is a top-
down approach to semantics, in the sense that someone designs and maintains
the definition of an ontology for a given domain. In a new paper revisiting the
SW [2] this vision is refined: ontologies “must be developed, managed aged,
and endorsed by committed practice communities.” I think the conditions are
even more restrictive: an ontology only makes sense for a domain if used by a
community of practice — not just any community that endorses a particular
ontology specification. A community of practice (CoP) is developed by a process
of social learning of a group of people with common goals, while they interact
with the purpose of achieving those same goals. Knowledge Management (KM),
initially focused on explicit knowledge, has used the concept of CoP to address
tacit knowledge which cannot easily be captured, codified and stored. From this
perspective on semantics, SW and KM share a great deal of challenging issues.

Folksonomies, the bottom-up approach to web semantics, originates from the
tagging processes in software platforms for social networks, sometimes called
“Web 2.0”. Folksonomies are lightweight shallow ontologies that emerge in spe-
cific community of practice where users “tag” some content objects (like photos
in Flickr.com) with whatever keyword they deem more appropriate. Folksonomies
are interesting in that they emerge from the social learning process of a commu-
nity of practice: people learn to use other people’s tags and introduce their own
that, if found useful, will be used by the community at large. For this reason,
folksonomies are a way to capture part of the elusive tacit knowledge in a net-
work of practice (the name given to a community of practice in a social network
software platform).

Some people would object considering a bag of keywords or tags an ontology,
insisting it is merely a type of meta-data, but so are ontologies. The argument
usually focus on the fact that ontologies are structured and folksonomies un-
structured, but the main difference is in the way semantics are assigned: while
ontologies are based on explicit specification of terms, folksonomies rely on a
statistical analysis of the usage of terms in the context of a network of practice.
From the standpoint of the philosophy of language, ontologies purport a logicist

46 E. Plaza

approach to the meaning of terms: a term is an instance of a concept if and
only if it satisfies the concept’s definition. On the other hand, folksonomies seem
closer to Wittgenstein’s notion of language-game: a term has a specific meaning
by the way it is used in a particular context [3].

Some researchers will inevitably try an hybrid approach combining a top-down
ontological approach with a bottom-up user-driven open-ended folksonomy: an
ontology may define the explicit preexisting knowledge in a domain while the
folksonomy captures part of the explicit and tacit knowledge of a network of
practice. Although bridging the gap between both approaches is an interesting
research issue, this is beyond the scope of this paper. For the purposes of this
paper, the important point is that ontologies, the SW, and web semantics in
general, are a enabling technologies: a substrate that provides some service re-
quired by more complex tasks — not a way to do more complex tasks. Specially
the SW seems now to be a platform to develop a specific type of applications
called ontology-based systems [4]. At the end of the day, the developers of a
new web-based system will have to decide what kind of semantic model is suited
for the specific web content they have to work with. The suitability of semantic
models to different application domains and type of content is an empirical one,
and the future web-based systems will explore and ascertain their advantages
and shortcomings.

Let us now examine the existing, most burgeoning new systems in the web:
social networking software.

3 The Network Is the Content (or Vice Versa)

“The network is the computer” claimed J. B. Gage of Sun Microsystems to em-
phasize the importance of network access for modern computing systems; nev-
ertheless, Oracle’s “network computer” (a diskless desktop computer promoted
by Sun and Oracle) was not a successful answer to that claim. The myriad new
software platforms for social networking seem to make a similar claim: the social
network is the most important part of the so called Web 2.0. Indeed, the network
effect in the web has impressing performance, from Google’s page ranking based
on hyperlink connectivity to Facebook or MySpace social networking websites.
However, social networking is part of the picture but it is not the whole picture:
some systems like LinkedIn focus the network of social relationships, while others
like Flickr the (photographic) content is the most important part and the social
network (as such) plays a lesser role.

From my point of view, what is most relevant is the user-contributed content,
be it photographs or links to other people: the personal relationships that con-
stitute social networks are part of the content contributed by users. This does
not deny that the social networking plays an important role in facilitating the
contribution of content by the users, quite the contrary: social networks create
wealth and can originate a “social production mode” (see for instance Yochai
Benkler’s The Wealth of Networks [5], that presents a comprehensive social the-
ory of the Internet and the networked information economy). Thus, networking

Semantics and Experience in the Future Web 47

facilitates the creation/contribution of content, and it is indispensable; but as a
social mode of production1 is a means to an end, namely what is produced: the
user-contributed content.

Be that as it may, the bootstrapping of social networks and social production
of content is outstanding. In this paper I want to focus on a particular kind of
content that can easily be contributed by people: their own experience in some
domain or other.

4 The Case for Experience

Before proceeding on to discuss user-contributed experiential knowledge on the
web we need first to elucidate what the term experience means. Case-based rea-
soning (CBR) may be understood, first and foremost, as learning to solve problems
(or take decisions) from past experience. More specifically, past experience is rep-
resented in the form of a collection of cases, where a case (situation1, outcome1) is
to be understood as knowing that in the past, when what is described in situation1
held, then the outcome1 (that may be a consequence or a decision) also happened.
Thus, a case is a statement (at some level of description) of a fact observed or ex-
perienced in the world. Additionally, CBR systems use case-based inference (also
called analogy and similarity-based inference) based on the assumption that when
a new situation2 is similar to an old situation1 then we can plausibly predict an
outcome2 similar to outcome1 is correct.

The representation of cases, situations and outcomes may be very different
across domains (from k-NN classification to case-based planning); but they have
in common that they present the knowledge of an observed factual situation:
e.g. “this is a good hotel because my stay was very agreeable”, or “I did this
sequence of actions (this plan), in this situation, and I achieved that goal”.
Although there are no “cases” as such on the web there is a huge amount of
this kind of practical knowledge present today in the web. This kind of practical
knowledge coming from the direct observation or experiences of people is what
we will call experience.

In all likelihood, experiential content in the web is one of the most valuable web
resources: people constantly use these resources to decide issues (e.g. booking
a hotel, visiting or not some tourist spot) or solving problems (e.g. browsing
through a forum on digital photography to learn how to solve some issue they
encountered in a photo they made). In economic terms, experiential content
is one of the most added-value resources on the web today, and if properly
marshaled could provide attractive added-value services.

The technological challenge is how to represent, organize, and reuse experien-
tial content. I surmise that the first step to address this challenge is to recognize
that there is such a thing as “experiential content,” and not merely hyperlinked
texts. The way content is organized nowadays is a network of documents, and
1 Social Production is production of information, knowledge and culture that is not

based on price signals or on command structures [5]. Computers are the main means
of production and networks those of distribution.

48 E. Plaza

possibly in the next future, annotated documents (using ontology-defined con-
cepts or folksonomy-based tags).

Moreover, the way users work with web content is what I’ll call Search &
Browse (S&B). The web users typically need to first use a search engine to find
a “resource,” this may be an external search engine (e.g. Google or Yahoo to
find a website or a page) or an internal search engine (e.g. search inside a forum
for the posts that may talk about the topic of interest). Next, the users need to
browse a (sometimes disturbingly) large collection of “found items,” perform a
cursory read of them to filter out those blatantly irrelevant, then read carefully
the rest (while eliminating those subtly irrelevant) to isolate the relevant content.
Finally, the users have to reuse the relevant content, that may be dispersed in
a dozens of pages in different websites; notice that there is no support for the
users’ task and they simply use “copy & paste” to aggregate the information
found or print all those pages and then aggregate that information.

4.1 Found and Lost

A specific example may be useful to illustrate this scenario. Let us consider the
task of deciding which hotel to book and consider the existing experiential content
of previous hotel clients that describe their good and bad experiences in those ho-
tels. Let us say there are H hotels in the intended destination, W websites with
hotel-related experiential content, and each hotel in each websites has on aver-
age C client reports: a user to be well informed would need to search & browse
H ×W ×C user-contributed experience items. This is a huge amount of valuable
information but ineffective if it is to be manually processed, as is the case now in
the S&B paradigm where there is no support for the task the users want to carry
out, and for which reason they have performed a search in the first place.

Certainly, the users are capable of cutting down the work by filtering out infor-
mation: by selecting a few websites (equivalent to performing a sampling opera-
tion w = sample(W)), the reducing the eligible hotels by some hard constraints
like “3- or 4-star hotels only” (a filtering operation h = filter(H)), and finally
accessing a subset of all client reports (a sampling operation c = sample(C)),
the workload is reduced to examining h×w× c client reports. Notice that there
is no computer support to perform a good sampling of websites or client reports:
the users have no way to know if the acquire a good sample of the population —
simply having this kind of support automated would improve both user workload
and output quality.

Moreover, the real task for the users starts now and is also unsupported: they
have to aggregate for each hotel in h a number of around w × c client reports,
e.g. determining pros and cons for each hotel according to the majority opinion
of those reports, and finally deciding on the hotel that better fit their interests.
Clearly, the S&B paradigm does not support this process and the users end up
making a less informed decision. However, AI techniques could be used to support
this decision, and I’m not referring to data mining or recommender systems, but to
a reinterpretation of Case-based Reasoning that would allow us to support users
in using experiential knowledge provided by a community of practice.

Semantics and Experience in the Future Web 49

5 Reusing Other People’s Experiences

Considering again the hotel selection example, we can easily substitute the
Search & Browse process by Retrieve & Reuse processes of CBR:

1. the Retrieve process searches for client reports of hotels close to the declared
interests of a user and selects a subset of them; then

2. the Reuse process analyzes the retrieved client reports in order to aggregate
the information about pros and cons of each hotel and finally produces a
ranking of hotels taking into account both the user’s interests and the pros
and cons of each hotel.

This mapping is sound, in the sense that both Retrieve and Reuse processes
follow the ideas in [6]:

1. given a problem (a specific task to be achieved) the Retrieve process selects
the subset of cases (experiential knowledge) most similar (or relevant) to
that problem, while

2. the Reuse process combines, in some specific way, the (experiential) content
of those retrieved cases (and possibly using some domain-specific knowledge
as well) in order to achieve a solution for that problem (that specific task to
be achieved).

This rather abstract mapping allows us to determine in what a CBR approach
to support experiential reuse in the web add to the S&B paradigm: the definition
of a user-defined task to be achieved. Indeed, only when a problem (a specific
task to be achieved) is posited then a Retrieve & Reuse approach can be used.
Let us return to the hotel selection example again. Clearly the kind of hotel the
user is interested in depends on the type of travel. For instance, whether it’s in
a one-night business trip or a week of leisure, the pro and con factors that are
important may vary for one kind of travel to another. For instance, the factor
of whether the hotel staff is categorized as friendly (in pros) or unfriendly (in
cons) depends on the trip: a friendly/unfriendly staff is not important in a a
one-night business trip while is quite important on a leisure week travel. This
correspondence between the hotel client reports and the user interests would
be performed inside the Reuse process, e.g. preferring those hotels with a clear
majority of client reports stating a friendly stuff and the other factors important
for the user. Notice that this is precisely the work the human user has to do,
without any support, while examining h× w × c client reports.

Nevertheless, there are differences from the traditional CBR approach with
respect to a Retrieve & Reuse approach to use the experiential knowledge of
other people. These differences stem from tacit hypotheses used in CBR or im-
plicit assumptions built from practice in building CBR systems. A first implicit
assumption is that the Retrieve process will select one case (or a small number of
cases) on which the Reuse process will work upon. As the hotel scenario shows,
this is not the best option when dealing with experiential knowledge coming from
a (potentially large) number of people. In the hotel scenario the role of the Reuse

50 E. Plaza

process is to select, among a huge number of client reports, a sufficient number
of reports about hotels that are relevant for the specific request of a user (here
seems more appropriate to call a user-defined query a task or a request than a
problem).

Since the Reuse process needs to aggregate information from disparate sources
in order to avoid noisy data, the sample of data has to be large enough so
that aggregation methods like averages or weighted averages are meaningful.
That is to say, in the hotel scenario the role of the Retrieve process may be
to select the hotels relevant for the task at hand within some given ranges,
for instance, of price and location, and then gathering all their relevant client
reports. Additionally, the Retrieve process could perform an additional filtering
or client reports based on their age, client reputation, etc. Then, given this
sizeable sample of people’s reports on their experiences, the Reuse process may
be able to aggregate, from the evidence of disparate sources, the likelihood that
one or a few hotels are the most adequate for the particular interests of a user
travel.

The robustness of using experiential knowledge originating from multiple
sources has been studied in several scientific fields. In Machine Learning, the “en-
semble effect” states that using an ensemble of learning systems reduces always
the error when compared to any single learning system. The only requirements
for the “ensemble effect” to take place is that the prediction of individual learning
systems is better than random and that their errors are not correlated with one
another [7]. Similar properties have been characterized in Social Choice Theory,
where the Condorcet Jury Theorem provides a similar property for taking aver-
age measures like voting in a jury [8]. Communities of practice on the web have
been known to show a similar effect, a fact popularized in James Surowiecki’s
book The Wisdom of the Crowds — where similar conditions are prescribed in
order to insure the emerging effect of wise decision or prediction by aggregating
information from a crowd of people.

Therefore, a challenge for applying an approach like the Retrieve & Reuse one
sketched here is to enlarge the core ideas of CBR, namely reasoning and learning
from past experience, to a scenario where experiential knowledge originates from
multiple individual sources; this multiplicity would require that we incorporate
aggregation measures that obtain the desired “ensemble effect” into the Retrieve
& Reuse processes. There are other CBR assumptions that need to be challenged
to develop systems that reuse experiential knowledge on the web, and we will
summarily address them in the next sections.

6 Semantics and Experience

In this section I will address to more challenging issues that need to be ad-
dressed in order to reuse experiential knowledge on the web, namely the se-
mantics and structure of experiential knowledge. Concerning semantics, we have
already discussed in section 2 the top-down approach of the semantic web and
the bottom-up approach of folksonomies. Both approaches are suitable to be

Semantics and Experience in the Future Web 51

used in a CBR-like approach to reasoning from experiential knowledge on the
web:

1. the semantic web uses ontologies expressed in description logics (specifi-
cally the OWL language2), which is compatible with the research line on
knowledge-intensive CBR systems development using description logics;

2. Textual CBR [9] has been working on a bottom-up and hybrid approaches
to semantics in cases expressed as text, which is compatible with the cur-
rent research goals of folksonomies and web text mining — I think that the
natural extension of Textual CBR is to address the challenges of textual
experiential knowledge on the web.

Since both semantic approaches, or a combination of top-down and bottom-
up approaches, are suitable for a CBR-like approach to reuse web experiential
knowledge, the challenges are simply the same of any other web-based system
developed using Artificial Intelligence techniques. Moreover, since the applica-
bility and utility of either semantic approach may vary for different application
domains, it is an empirical issue to determine when and how these semantic
approaches will be useful. In this sense, the approach to reuse web experiential
knowledge I’m sketching here would be neutral on these semantic debates, trying
to find a suitable trade-off for a particular application domain and to keep up
with the new developments in web semantics.

Nevertheless, the focus on user-contributed experiential knowledge poses some
practical constraints. The first one is that the form in which experiential knowl-
edge is expressed has to be an easy and natural form to the people integrating
a community of practice; otherwise, very few content will be contributed, in
practice, by this people. This constraint seems to bias experience representation
towards text-based content, but this again depends on the specific community of
practice we are dealing with in a particular application domain. Ontology-based
approaches require a highly structured representation of content, but technical
communities of practice (e.g. medicine, engineering) may accept this approach
if they find provided services useful.

For other users in general a text-based approach seems more suitable, but it
need not be completely free text, we should be able to provide semi-structured
cases where the users can textually enter their experiences. This idea leads us
to the second challenging issue I’d like to discuss: the structure of experiential
knowledge.

7 Forms of Experience

An important issue about experiential knowledge on the web, as mentioned
before in section 4, is that cases as such are not already present on the web.
Recalling the hotel selection example we can see there is no collection of cases of
the form (situation, outcome); instead we had records of individual experiences

2 An overview of OWL is available at http://www.w3.org/TR/owl-features.

52 E. Plaza

in the form of client reports. That is to say, we have a collection of situations
without the outcome. For the task at hand, selecting a hotel, it is tempting
to conceive of the outcome as the selected hotel: this is true for the system
outputting a recommended hotel but it is not applicable to the client reports.
A case in the standard sense would be a pair where a situation would describe
the interests, preferences and constraints of a user and an outcome would be
a hotel satisfying (most of) them. However, the client reports do not directly
specify the persons interests, preferences and constraints; it is an account of an
experience that may have been positive or negative (or something in between).
Nevertheless, as I tried to show in the hotel scenario, some of this information
is implicit and can be extracted: the analysis of the client records in terms of
pro and con factors is a way to uncover the tacit interests and preferences of the
users giving an account of their experiences.

There may be other ways to uncover the important factors in experiential
accounts, since this pro and cons analysis is just an example. This leads us to
the core issue in this approach: How many different forms of experience are
there? Do we need to develop a new form or structure of experience for every
new application domain? This circumstance could make impractical to apply this
approach on the web at large. If not, are there a small collections of forms of
experience that could be characterized and reused? Which are they and how to
find them? I really have no answer in advance, since it is essentially an empirical
matter to be settled only after trying to develop systems that reuse experiential
knowledge on the web. I have some suggestions, though, as to how to proceed
for developing systems that reuse experiential knowledge on the web.

The first one is trying to characterize a form of experience for each class of
task commonly known in CBR systems: e.g. classification, regression, planning
and configuration3. These tasks are classically differentiated by the form of the
solution:

– Classification is a task that selects one solution from an enumerated collec-
tion of known solutions; the hotel selection scenario is thus a classification
task. Variations of classification included here are: multilevel hierarchical
classification and ranking of alternatives numerically or by partial ordering.

– Regression is a task where the numerical value of an attribute is predicted;
case-base interpolation is the method of choice.

– Planning is a task that builds a solution composed by a sequence of actions
or a partially ordered collection of actions; case-based planning has been
extensively researched to deal with this kind of tasks.

– Configuration is a task that builds a solution composed by a network of in-
terconnected solution elements; case-based configuration and design systems
have developed techniques for this kind of task.

It seems reasonable to assume that the differences on the solution structures
of these tasks imply that the corresponding experiential knowledge would also be
3 This list does not intend to be closed or exhaustive, other tasks like scheduling etc.,

could be included and should be taken in to account in the long run.

Semantics and Experience in the Future Web 53

Assumptions Photoshop, color image

Step description1

2

3

N

Step description

Step description

Step description

Effect B/W image, high quality

Use PluginX1

2

3

4

Download it from URL

Install it

Set it to Beginners mode

Fig. 1. Semi-structured form of experience for How-To tasks

structurally different. However, each class of task may have a sufficient degree of
internal coherence to allow the development of experience-reuse systems applica-
ble inside a class of tasks. For instance, the method of analyzing pros and cons
in hotel client reports could be used, in principle, to other application domains
whose task is a form of classification: e.g. selecting a digital camera, or selecting a
B/W plugin for Photoshop. Moreover, other different techniques to reuse experi-
ential knowledge for classification tasks could be developed. Again, only empirical
evidence will determine whether the hypothesis suggested here is correct or not.

As a further example, let us consider planning in the context of experiential
knowledge on the web. Since a plan is just a way to achieve some effect or
goal performing a series of steps, it is easy to see that they are pervasive on
the web, although they are not called “plans”: sometimes they are called How-
Tos, but most times they are just descriptions of how to do something in few
steps. Forums are websites where a large number of How-Tos can be found. For
instance, forums store numerous records of “question and answer” pairs that
may be interpreted as problems and their solution-plan. A specific forum like
one devoted to digital photography has both a community of practice and a
shared vocabulary of terms (e.g. B/W image), verbs (actions) and proper nouns
(e.g. “Photoshop”). A typical scenario is when a user asks how to perform some
effect on an image and the answer is a plan of the form “assuming you have
Photoshop, you should download this PluginX from this URL, install it and then
set it up in the beginner mode, you’ll already have a good quality B/W image.”
Forums organize this content in a structure based on questions and answers, and
thus we are expected to use Search & Browse to find and reuse this experience.
Capturing this experiential knowledge from free text using NLP techniques is
certainly an option, but a computationally costly one.

Another option is to design some semi-structured representation for this form
of experience that, if stored on a website (substituting the questions and

54 E. Plaza

Fig. 2. Reusing experiential knowledge by combining How-Tos

answers structure), would facilitate the analysis, retrieval and reuse of How-
To knowledge. As a further elaboration of this scenario, consider a possible
semi-structured template for How-To experiential knowledge as that show in
Figure 1. The semi-structured template clearly separates plan preconditions (As-
sumptions), plan goals (Effects) and each one of the Steps or actions of the plan.
Albeit text processing is still necessary, the previous example on PluginX shown
at the right hand side of Fig. 1 is now more easily analyzed for the purposes
of its reuse. Recall that the final user will be able to understand and perform
this How-To, we need only enough structure to (1) allow a user to express the
problem she wants to solve, e.g. “I have Photoshop and I want to transform a
color image into B/W image a high quality,” and (2) recognize that the How-To
in Fig. 1 is a way to solve that problem.

Moreover, accessing a large repository of How-Tos would also enable forms
of case-based plan adaptation. Consider the situation where the user has the
same goal but she does not have Photoshop. Figure 2 shows how a new plan can
be generated by concatenating two How-Tos: the first plan is one for acquiring
Photoshop, while then second plan is that of Fig. 1 that uses a Plugin to achieve
B/W image. Since the effect of the first How-To is having Photoshop, now the
second plan can be safely used since the Photoshop assumption is now satisfied.
Another form of adaptation is expanding a step, that is in fact a sup-plan, into its
component sub-steps. Fig. 2 shows that Step 3 “Install Plugin” is not an atomic
action, but can expanded into 4 steps because there is a How-To in the repository
whose goal is to install Photoshop plugins. This form of plan adaptation should

Semantics and Experience in the Future Web 55

be feasible whenever we have a large repository of plan-like How-Tos, and it is
in fact very akin to the currently fashionable idea of “mash-ups”4 on the web.

Planning by reusing, adapting and combining user-contributed plans can be
applied to a large number domains, from How-Tos and methods to itineraries
and route sheets, as long as a large repository of “action sequences” is available.
The fact that these plans have been already tried by someone and were suc-
cessful gives us a further advantage. The ensemble effect can be used on a large
repository: when several methods or plans are found to achieve the same result
then aggregation techniques like voting can be used to determine the one that
is considered more reliable (at least inside a community of practice).

Therefore, the hypothesis put forward in this section is that several forms of
experience could be defined with sufficient internal coherence so that is possi-
ble and practical to build systems for reusing experiential knowledge. The next
section discusses the overall organization of such systems.

8 The EDIR Cycle

These ideas can be integrated into a process model called the EDIR cycle, shown
in Fig. 3; the EDIR cycle consists of four processes: Express, Discover, Interpret,
and Reuse. They should be understood as interrelated processes, not as sequen-
tial or causally dependent steps: the state of the reuse process may require
changes of bias or revisions of state in the interpret or discover processes as well
as the other way around.

Express. This process addresses the different ways in which experience can be
expressed by a contributing user inside a community of practice. Free, semi-
structured and ontology-based templates for specific forms of experience and
application domains need to be developed and tested; the research goal is
finding a trade-off that (a) allows sufficient structuring of the expressed
experiences for automated analysis and (b) feels as a natural and unobtrusive
way to express experiences for the users in a community of practice.

Discovery. This process addresses the different ways in which specific expe-
riential content is recognised and retrieved as possibly relevant to a given
query posed by a system user. The research goal is determining how to ex-
tend CBR retrieval techniques to work on experiential content integrating
semantic web and/or bottom-up semantic analysis. The conditions under
which the Discovery process has to work requires a fast and possibly shallow
analysis of large quantities of experiential reports; the expected output is a
moderately-sized collection of experiences that are (likely) relevant to the
current query.

Interpret. This process addresses the different ways to build semantic inter-
pretations of the discovered experiences. The semantics are only assumed to
hold inside a community of practice. These interpretations can be understood

4 A mash-up refers to a web application that combines data from more than one source
into a new integrated service.

56 E. Plaza

Express Discover

Reuse Interpret

Fig. 3. The EDIR cycle for systems reusing experiential knowledge on the web

as a more in-depth analysis of the experiences selected by the Discovery pro-
cess using the semantic model of the community of practice and the available
domain knowledge. Several transformations are envisioned in the Interpret
process: (a) eliminating a subset of discovered experiences as non-relevant;
(b) transforming discovered experiences into a new canonical representation;
(c) translating discovered experiences into a canonical vocabulary coherent
with the one used to build the final users queries. One or several of these
transformations will be used in a particular system, but the final outcome
is a collection of canonical experience descriptions to be used by the Reuse
process.

Reuse. This process addresses the different ways in which the experiential con-
tent provided by the Interpret process is used to achieve the goals of a user
as described in a particular query. Reuse techniques from CBR may need to
be revised or extended in order to be applicable in this context (e.g. case-
based adaptation) but also new methods that rely on the nature of large
repositories of human experience should be developed (e.g. methods based
on the ensemble effect). Moreover there may be different modalities of ex-
perience reuse: from automated experience reuse (yielding to the user the
complete solution provided by reusing experiential knowledge) to the oppo-
site extreme where the user receives directly a small selection of relevant and
reliable experiences. Intermediate modalities may perform part of the reuse
process automatically while supporting the user in reuse finalization.

The EDIR cycle is a process model, so the relationship of the four processes is
not sequential in an implementation of the model. Clearly, during an interaction
with the final user to elucidate the requirements of her enquiry several discovery
and interpretation processes may be launched and their results used to help the
user narrow her options or change her preferences.

Finally, let’s compare this EDIR approach with the current Search & Browse
approach. The main difference is that the EDIR approach requires a query: a
description of the kind of result needed by the system —a definition of the

Semantics and Experience in the Future Web 57

problem to be solved. Only with a query it is possible to reuse experiences, since
the Reuse process employs methods that try to satisfy the requirements of the
current query using a collection of selected experiences. A second but important
difference concerns the form and organization of content. The Search & Browse
approach assumes the existence of just hyperlinked documents: even when some
structure is present (e.g. question-answer structures in forums), this structure is
not exploited to improve the results. The EDIR approach intends to characterize
a particular kind of content, experiential knowledge, and it is thus concerned on
how to adequately express, represent, organize, analyze, and retrieve this content.

9 Discussion

This paper is about current and future challenges on reasoning from experience.
As such, I’ve dispensed with some formalities of the typical structure and content
of scientific papers. There is not proper state of the art section, albeit sections 2
and 3 deal with the main issues on the state of the art for the purposes of this
paper. There is no state of the art on natural language processing and text mining
applied to the web, but this is because they are orthogonal to the purposes of
this paper: they can be applied, and they mostly are applied inside the S&B
approach; but they could also be used in an EDIR approach to experiential
knowledge reuse.

The purpose of the paper is not presenting a specific contribution but a series
of ideas that open a discussion on how to apply AI techniques, in general, and
CBR techniques in particular, to the ever-growing World-Wide Web. The main
idea to be opened to debate is whether there is, or is useful to conceive of, expe-
riential knowledge on the web. I’ve not given a formal definition of experience,
but my use of the term is close to the common sense meaning, and the exam-
ples presented, should be enough for a Wittgenstein-like grasp of its meaning.
I found worthy of attention that trying to apply CBR ideas like reuse of past
experience to the web, I’ve had had to abandon a straightforward notion of case.
CBR cannot be directly applied to the web, since there are no ready-made cases
preexisting on the web. However, if we understand CBR as ways of reusing past
experience, we can generalize these core ideas in CBR and investigate how could
we possibly reuse the experiences that people are already providing on the web.

The EDIR cycle is simply a way to organize the different issues and challenges
to be addressed in developing systems for reusing experiential knowledge on the
web. As such, is a tool for helping to start thinking and debating about how
to build systems that reuse experience, and should be left aside when enough
progress is made that shows how to proceed. I cannot claim that I can show
some example system that follows the EDIR cycle, and nevertheless I can point
you to the Poolcasting system, developed by Claudio Baccigalupo under my
supervision as part of his Ph. D. Indeed, the Poolcasting system does not follow
the EDIR cycle, since it was being developed in parallel with this proposal, and
yet it shows an example of how extending some core CBR ideas we can develop
a system that reuse experiential knowledge from a web community of practice.

58 E. Plaza

Poolcasting generates a stream of songs that is customized for a group of
listeners [10]. We needed to perform data mining processes over web communities
of practice to acquire the semantics of the vocabulary of terms the systems uses.
Several web-enabled information resources on the web needed to be accessed
and integrated with Poolcasting to acquire a domain model. The experiential
knowledge we used did not have the form of cases, but it is nevertheless a form
of content that expresses the listening experience of the users as recorded by
the music player devices. Because of this, Poolcasting is able to build, from the
listening experience of a user, a model of user’s musical interests that is exploited
by a Reuse process.

Thus, while I cannot claim that Poolcasting is a result of the EDIR approach,
it stems from the same core ideas, and as such worthy of being considered a proof
of concept. The bottom-line is that I think experience reuse can be brought to
the web, and the core ideas of CBR may be very useful in this endeavor.

Acknowledgements. This paper has benefited from long, engaging discus-
sions of the author with many people, specially Agnar Aamodt, Josep-Llúıs
Arcos, Paolo Avesani, Klaus-Dieter Althoff, Ralph Bergmann, Susan Craw, and
Nirmalie Wiratunga; all errors or misconceptions, however, are the author’s re-
sponsibility. This research has been partially supported by the Project MID-CBR
(TIN2006-15140-C03-01).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
Magazine (2001)

2. Shadbolt, N., Wendy Hall, T.B.L.: The semantic web revisited. IEEE Intelligent
Systems 21(3), 96–101 (2006)

3. Wittgenstein, L.: Investigacions filosòfiques (Philosophische Bemerkungen). Ed.
Laia, Barcelona (1983) (1953)

4. Davies, J.: Semantic Web Technologies: Trends and Research in Ontology-based
Systems. Wiley, Chichester (2006)

5. Benkler, Y.: The Wealth of Networks. How Social Production Transforms Markets
and Freedom. Yale University Press (2006)

6. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications 7(1), 39–
59 (1994), http://www.iiia.csic.es/People/enric/AICom ToC.html

7. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for
hydrid neural networks. In: Artificial Neural Networks for Speech and Vision.
Chapman-Hall, Boca Raton (1993)

8. Sunstein, C.R.: Group judgments: Deliberation, statistical means, and information
markets. New York University Law Review 80, 962–1049 (2005)

9. Weber, R.O., Ashley, K.D., Brninghaus, S.: Textual case-based reasoning. The
Knowledge Engineering Review 20, 255–260 (2005)

10. Baccigalupo, C., Plaza, E.: A case-based song scheduler for group customised radio.
In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp.
433–448. Springer, Heidelberg (2007)

http://www.iiia.csic.es/People/enric/AICom_ToC.html

Recognizing the Enemy: Combining

Reinforcement Learning with Strategy Selection
Using Case-Based Reasoning

Bryan Auslander, Stephen Lee-Urban, Chad Hogg, and Héctor Muñoz-Avila

Dept. of Computer Science & Engineering
Lehigh University

Bethlehem, PA, USA

Abstract. This paper presents CBRetaliate, an agent that combines
Case-Based Reasoning (CBR) and Reinforcement Learning (RL) algo-
rithms. Unlike most previous work where RL is used to improve accu-
racy in the action selection process, CBRetaliate uses CBR to allow RL
to respond more quickly to changing conditions. CBRetaliate combines
two key features: it uses a time window to compute similarity and stores
and reuses complete Q-tables for continuous problem solving. We demon-
strate CBRetaliate on a team-based first-person shooter game, where our
combined CBR+RL approach adapts quicker to changing tactics by an
opponent than standalone RL.

1 Introduction

Reinforcement Learning (RL) has been successfully applied to a variety of do-
mains including game theoretic decision processes [1] and RoboCup soccer [2]. It
has also been applied successfully for a number of computer gaming applications
including real-time strategy games [3], backgammon [4], and more recently for
first-person shooter (FPS) games [5].

Despite these successes, it may take a while before an agent using RL adapts
to changes in the environment. This is the result of the exploration process, in
which the agent must try new actions with unknown utility to develop a pol-
icy maximizing its expected future rewards. This can be problematic in some
applications. For example, we observed this when applying RL techniques to
team-based first-person shooters (TFPS). TFPS is a very popular game genre
where teams of two or more players compete to achieve some winning conditions.
In TFPS games, individual players must have good reflexes to ensure short-term
survival by shooting the enemy and avoiding enemy fire while working together
to achieve the winning conditions of the game. In recent work we constructed an
agent, Retaliate, which uses an online RL algorithm for developing winning poli-
cies in TFPS games [5]. Specifically, Retaliate uses the Q-learning variant of RL,
in which a policy is encoded in a table of expected rewards for each state-action
pair, called a Q-table. Retaliate demonstrated that it was capable of developing
a winning policy very quickly within the first game against an opponent that

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 59–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 B. Auslander et al.

used a fixed strategy. We also observed that it took Retaliate a number of itera-
tions before it adapted when the opponent changed its strategy. Thus, we began
considering techniques that would allow us to speed up the adaptation process
in such situations where the strategy employed by an opponent changes.

In this paper we present CBRetaliate, an agent that uses Case-Based Reason-
ing (CBR) techniques to enhance the Retaliate RL agent. Unlike most previous
work where RL is used to improve accuracy in the case selection process, CBRe-
taliate uses CBR to jump quickly to previously stored policies rather than slowly
adapting to changing conditions. Cases in CBRetaliate contain features indicat-
ing sensory readings from the game world when the case was created. They also
store the complete Q-table that is maintained by CBRetaliate when the case was
created. CBRetaliate stores a case when it has been accumulating points at a
faster rate than its opponent during a time window. When it is accumulating
points more slowly than its opponent, it attempts to retrieve a similar case.
CBRetaliate uses an aggregated similarity metric that combines local similarity
metrics for each feature. This similarity metric is computed by matching sen-
sory readings from the current gaming world and those of the case over the time
window. When a case is retrieved, its associated Q-table is adapted by Retaliate
by using standard RL punishment/reward action selection.

Our working hypothesis is as follows. The use of CBR will allow CBRetaliate
to recognize strategies similar to ones it has faced previously but different from
the one it has most recently fought, and thus to outperform Retaliate when such
a strategy change occurs. We tested our hypothesis with an ablation study com-
paring the performance of Retaliate and CBRetaliate in games against a number
of opponents each using a different strategy. Each of these tests consisted of a
tournament of several consecutive games with the Q-table saved between games.
Within a tournament, CBRetaliate was able to more soundly beat an opponent
similar to one it had previously faced by loading a case learned from the previ-
ous opponent. The nature of its opponent was not defined for CBRetaliate, but
needed to be inferred from sensory readings describing the behavior it observed
over time.

The paper continues as follows: the next section describes the TFPS game and
the Retaliate algorithm. Next, in Section 3, we describe CBRetaliate by discussing
how it uses the phases of the CBR problem-solving cycle. The next section
describes the empirical evaluation. Section 5 presents related work. We conclude
this paper with some final remarks.

2 Background

The CBRetaliate agent is an extension of an existing Reinforcement Learning
agent, Retaliate, to use techniques from Case-Based Reasoning. As a testbed
for this agent, we use a configuration of a first-person shooter game in which
individual computer-controlled players (bots) act independently but follow a
team-level strategy to achieve their objectives.

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 61

2.1 Domination Game Domain

Unreal Tournament (UT) is a first-person shooter game in which the usual ob-
jective is to shoot and kill opposing players. Players track their health and their
weapon’s ammunition, as well as attempt to pick up various items strewn about
the map while amassing kills and preserving their own life. Opponents may be
other human players via online multiplayer action or computer-controlled bots.
An interesting feature of UT is the ability to play several different game vari-
ants. One of these variants is a domination game, a feature offered by many
team-based multiplayer game.

In a domination game, the player’s objective is not to earn kills, although
this is usually necessary. Rather, the goal is to accumulate points for a player’s
team by controlling certain locations in the game world known as domination
locations. A domination point is controlled by the team of the player who was
last in the location, and lost when a player from the opposing team reaches it.
Each domination point produces points over time for the team that controls it,
and the game ends when one team’s score reaches some threshold.

Domination games are ideal test domains for cooperative artificial intelligence
agents because they require both tactics to succeed in individual firefights and
strategy to decide how and where individual bots should be deployed. We have
chosen to focus exclusively on strategy, using an abstract model described in
Section 2.4.

2.2 HTNbots

One of the first successful agents developed for controlling teams of bots in UT
domination games was HTNbots [6]. HTNbots uses Hierarchical Task Network
(HTN) planning to generate plans during the game. The preconditions of HTN
methods used by HTNbots map to state information about the game world,
and the operators correspond to commands telling each individual bot where
it should attack or patrol. We now use HTNbots as a known difficult opponent
against which Retaliate and CBRetaliate can be compared.

2.3 Retaliate

Retaliate is an online RL algorithm for developing winning policies in team-based
first-person shooter games. Retaliate has three crucial characteristics: (1) indi-
vidual bot behavior is fixed although not known in advance, therefore individual
bots work as plugins, (2) Retaliate models the problem of learning team tac-
tics through a simple state formulation, (3) discount rates commonly used in
Q-learning are not used. As a result of these characteristics, the application of
the Q-learning algorithm results in the rapid exploration towards a winning pol-
icy against an opponent team. In our empirical evaluation we demonstrate that
Retaliate adapts well when the environment changes.

Retaliate is controlled by two parameters: ε, which is known as the “epsilon-
greedy” parameter and controls the trade-off between exploration and exploita-
tion by setting the rate at which the algorithm selects a random action rather

62 B. Auslander et al.

Algorithm 1. RetaliateTick(Qt)
1: Input: Q-Table Qt

2: Output: updated Q-table
3: ε is .10, and Stateprev is maintained internally
4: if rand(0, 1) > ε then {epsilon greedy selection}
5: Act ← applicable action with max value in Q-table
6: else
7: Act ← random applicable action from Q-table
8: Statenow ← Execute(Act)
9: Reward ← Utility(Statenow) − Utility(Stateprev)

10: Qt ← update Q-table
11: Stateprev ← Statenow

12: return Qt

than the one that is expected to perform best, and α, which is referred to as the
“step-size” parameter and influences the rate of learning. For our case study, we
found that setting ε to 0.1 and α to 0.2 worked well.

The following computations are iterated through until the game is over. First,
the next team action to execute, Act, is selected using the epsilon-greedy pa-
rameter. The selected action Act is then executed.

On the next domination ownership update from the server, which occurs
rougly every four seconds, the current state Statenow is observed and the Q
values for the previous state Stateprev and previously selected actions are up-
dated based on whether or not Statenow is more favorable than Stateprev. New
actions are selected from the new current state, and the process continues.

The reward for the new state Statenow is computed as the difference between
the utilities in the new state, and the previous state Stateprev. Specifically, the
utility of a state s is defined by the function U(s) = F (s) − E(s), where F (s)
is the number of friendly domination locations and E(s) is the number that are
controlled by the enemy. This has the effect that, relative to team A, a state
in which team A owns two domination locations and team B owns one has a
higher utility than a state in which team A owns only one domination location
and team B owns two. The reward function, which determines the scale of the
reward, is computed as R = U(Statenow)− U(Stateprev).

The calculated reward R is used to perform an update on the Q-table entry
Q(s, a) for the previous state s in which the last set of actions a were ordered.
This calculation is performed according to the following formula, which is stan-
dard for computing Q-table entries in temporal difference learning [7]:

Q(s, a) ← Q(s, a) + α(R + γ ×maxa′Q(s′, a′)−Q(s, a))
In this computation, the entry in the Q-table for the action a that was just

taken in state s,Q(s, a), is updated. The function maxa′ returns the value from
the Q-table of the best team action that can be performed in the new state s′

which is simply the highest value associated with s′ in the table for any a′. The
value of γ (γ = 1 in Retaliate), the ‘discount rate parameter’, adjusts the relative
influences of current and future rewards in the decision making process.

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 63

2.4 Game Model

The Q-learning algorithm on which Retaliate is based stores the expected future
reward of each potential action in each state. There are many potential features
that could be used to define the state of the game and numerous actions a bot
may take at various levels of granularity. In Retaliate, we chose to use a very
simple, abstract model of the game world. Specifically, each state is defined by
the current ownership of each domination point. For a game containing three
domination points and two teams, as in our experiments, each state is a 3-tuple
where each value is either “Friendly”, “Enemy” or “Unowned” (the default before
any bot has entered the location). Thus, such a game has 27 possible states.

Because we are focusing on grand team strategy rather than tactics, our action
model is similarly simple. Each action consists of the assignments of each bot on
the team to one of the domination points. Thus, a game with three domination
points and teams of three bots will similarly have 27 possible actions.

This model of the world is quite simple, but surprisingly effective. Enough
information is provided to allow the representation of a robust strategy and the
Q-table is small enough that the algorithm is able to converge to a reasonably
complete table within the space of only a few games.

3 Algorithm

When the situation changes so dramatically that the policy encoded by Retaliate
is no longer valid, such as by changing the opponent, the Q-learning algorithm
must slowly explore the policy space again, trying actions and updating the
rewards until it finds a new good policy. We developed CBRetaliate to solve this
problem by storing winning policies and retrieving them later based on other
types of features from the game state. In this section we present the contents of
cases, how similarity is computed, and finally the psuedocode for CBRetaliate.

3.1 Case Features and Similarity Functions

As stated previously, CBRetaliate uses an aggregated similarity metric that com-
bines the local similarity metrics for each case feature. Local similarities are
valued between zero and one, and are computed by matching sensory readings
from a time window within the current game world with those stored in the
case. The value of the aggregate is simply the sum of the local similarity for
each feature, divided by the number of features. We found CBRetaliate to be
effective with this naive aggregate function and feature weights, but expect that
much better performance would be possible if these parameters were carefully
tuned.

Each case contains a Q-table along with a set of features that are summarized
in Table 1. The first two categories of features, Team Size and Team Score are
notable because they do not involve the navigation task. Whereas our RL prob-
lem model is limited to domination location ownership in order to reduce the
state space, the CBR component does not share this restriction. Consequently,

64 B. Auslander et al.

Table 1. Description of feature categories and their local similarity function name

Category Description Local Sim. Function
Team Size The number of bots on a team. SimTSize

Team Score The score of each team SimTScore

Bot/Dom Dist. Distance of each bot to each dom. loc. SimDist

Dom Ownership Which team owns each of the dom. locs SimOwn

the name of each team as well as the map name could have been used as fea-
tures, however, we wished to demonstrate the ability of CBRetaliate to recognize
strategies and situations based on behavior and observations.

The Team Size category is currently a single feature that records the number of
bots on a team. Teams are assumed to be of equal size, however this assumption
could be easily dropped by adding a feature for each team. If x is the size of the
team in the current game and y is the team size from a case, SimTsize(x, y) is
equal to one when x = y and zero otherwise.

The Team Score category consists of two features, namely the score of each
team. So, if x is the score of team A in the current game and y is the score
of team B from a case, then the similarity is computed by SimTScore(x, y) =
1 − (|x − y|/SCORE LIMIT). The constant SCORE LIMIT is the score to
which games are played and is 100 in our experiments. In our case-base, team
A is always CBRetaliate and team B is the opponent.

The next category of features, Bot/Dom Dist., uses the Euclidian distance
of each bot to each domination location to compute similarity. That is, each
case contains, for each opponent bot b and for each domination location l, the
absolute value of the Euclidian distance from b to l. Specifically, if x is the
Euclidian distance of b to l in the current game and y the analogous distance
from the case, then SimDist(x, y) = 1 − (|x − y|/MAX DIST). The constant
MAX DIST is the maximum Euclidian distance any two points can be in an
Unreal Tournament map. With an opposing teams of size 3 and a map with 3
domination locations, this category has a total of 3 ∗ 3 = 9 features.

The final category of features, Dom Ownership, uses the fraction of time
each team t has owned each domination location l during the time window δ
(elaborated upon in the next subsection) to compute similarity. So, if x is the
fraction of time t has controlled l in the current game and y is the analogous
fraction from the case, then SimOwn(x, y) = 1−|x−y|. Intuitively, with 2 teams
and 3 domination locations, this category has a total of 6 features.

3.2 The CBRetaliate Algorithm

Algorithm 2 shows at a high-level how CBRetaliate operates during a single game.
However, before explaining the algorithm, we must first define four constants
that control its behavior.

The first constant, U l, defines the minimum number of game cycles that must
occur, since the last case was retrieved or retained, before the load of a case
is considered. During retrieval the best case is returned and is used only if its

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 65

similarity is above the second constant, THRESH . The third constant, Us, has
the same meaning as U l except controls when saving can occur. For our empirical
evaluation we used U l = 22, Us = 30, and 0.75 for THRESH .

The fourth and final constant, δ, is used in two important ways. On the one
hand, δ is used to determine whether or not CBRetaliate is accumulating points
faster than its opponent by computing the current difference in score at game
cycle t and subtracting from that the score difference at cycle t−δ. On the other
hand, δ is also used to compute the so-called “sliding average” of domination
location ownership. This average tracks, for each domination location l, the
fraction of time that each team has owned l within the window defined between
the current game cycle t and t − δ (this value is used in SimOwn). For our
empirical evaluation, we set δ to 15.

Algorithm 2. CBRetaliate(CB, Qt)
1: Input: case-base CB, Q-table Qt

2: Output: The updated CB, and the Q-table last loaded Qt

3: num updates ← 0
4: while game is not over do
5: num updates++
6: Qt ← RetaliateTick(Qt) {Revise}
7: Snow ← GetCurrentState
8: if num updates >= δ then {wait for window}
9: if (ScoreDiffnow − ScoreDiffnow−δ) > 0 then

10: if num updates >= Us then {enough Q-table updates}
11: CB ← SaveCase(Qt, CB, Snow) {Retain}
12: num updates ← 0
13: else
14: if num updates >= U l then {enough Q-table updates}
15: SimCase ← OnePassRetreive(Snow) {find most sim case}
16: if similarity(Snow ,SimCase) > THRESH then {similar enough}
17: Qt ← getQTable(SimCase) {Reuse}
18: num updates ← 0
19: return (CB, Qt)

Algorithm 2 works as follows. When started for the first time, the case-base
CB is empty, and every entry in the Q-table is initialized to the same default
value. During a game, the number of game cycles that have passed since the last
case load or save is tracked with the variable num updates. In line 6, algorithm
1 is used to update the Q-table on every game cycle, as explained in Section 2.3.
Line 8 ensures that there have been at least δ game cycles since the last case
was loaded or saved before allowing the algorithm to proceed. As a consequence
of waiting at least δ game cycles, the Retaliate algorithm is able to perform at
least a few Q-table updates before an alternate table is considered. This helps
avoid reloading tables when losing, and also gives Retaliate a chance to learn a
better strategy.

If enough cycles have occurred, line 9 computes whether or not CBRetaliate
has increased its winning margin in the last δ updates. If the winning margin

66 B. Auslander et al.

has increased, and there have been a sufficient number of game cycles (Us), the
current Q-table is added to the case-base, along with all features describing the
current game state (Snow), and num updates is reset. A save when the winning
margin has increase is sensible because the Q-table in use is clearly working well
against the opponent. Otherwise, if the winning margin has decreased and there
have been a sufficient number of game cycles (U l), the case in the case base
most similar to the current game features is retrieved. If the similarity of the
retrieved case is above THRESH , the Q-table from that case is used to replace
the Q-table currently-in-use and num updates is reset.

4 Evaluation

To evaluate the effectiveness of combining Case-Based Reasoning with Rein-
forcement Learning in this way, we have performed several experiments using
the technique to control teams of bots in domination games. It should be noted
that we found a bug that gives the learning teams an advantage over non-learning
teams. However, this glitch does not effect our claims of using CBR with RL,
because both CBRetaliate and Retaliate are learning teams.

4.1 Evaluation against CompositeBot

In order to easily test our hypothesis about an opponent that changes strategies,
we developed a simple configurable agent called CompositeBot. CompositeBot
does not use any information about the game state, but simply provides static
assignments of each team member to a domination point. Rather than changing
strategies within a single game, we ran a series of seven games consecutively,
changing the configuration of CompositeBot (its static assignments) between each
game. The map on which these games were played contains three domination
points that we will call “A”, “J”, and “R”.

In the first three games, we configured CompositeBot to use a strategy of
stationing two bots at one of the domination points and one at another, changing
the points selected between games. The next three games are repeats of the first
three. In the last game, the opponent sends one bot to each domination point.
The specific strategies used in each game are shown in Table 2.

We ran 15 trials each of both Retaliate and CBRetaliate against this series of
opponents. Each trial begins with an empty Q-table and (for CBRetaliate) an
empty case base. Both the Q-table and case base are updated and enhanced
throughout the course of the 7 games.

The results of this experiment are summarized in Table 3. Each game ends
when one of the team reaches 100 points. All results are an average over the 15
trials. The values in this table are the difference in score between the algorithm
being tested and its opponent when the game is 25% finished and when it is
complete. Differences that are statistically significant with a 90% confidence
level are bolded.

One of the motivations for this work was an expectation that CBRetaliate
would have much better early performance than Retaliate when facing an

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 67

Table 2. CompositeBot configurations

Game 1 2 3 4 5 6 7

Strategy AAJ RRA JJA AAJ RRA JJA AJR

Table 3. CompositeBot results

Difference At 25% Different At 100%

Game 1
Retaliate 7.72 53.57

CBRetaliate 8.10 52.93

Game 2
Retaliate 9.7 48.35

CBRetaliate 6.01 46.49

Game 3
Retaliate 6.96 47.75

CBRetaliate 11.18 68.49

Game 4
Retaliate 6.02 57.8

CBRetaliate 10.05 65.84

Game 5
Retaliate 8.37 37.54

CBRetaliate 7.5 49.11

Game 6
Retaliate 6.53 58.66

CBRetaliate 7.92 62.98

Game 7
Retaliate 3.40 53.01

CBRetaliate 10.1 58.35

opponent from which it had already stored cases, because it would be able to
immediately jump to a Q-table that had been effective against the opponent in
the past. Thus, we would expect CBRetaliate to perform significantly better than
Retaliate in the first 25% of games 4, 5, and 6. Although this is the case in games
3, 4, and 7, it is not true of 5 or 6. Furthermore, Retaliate has an early advantage
in the second game. There are two reasons why we have not consistently seen
this expectation met. First, the features used for case retrieval require trend
information about the game. Thus, it is difficult to reliably select a good case
until enough of the game has been played to recognize the opponent’s strategy.
The other contributing factor is that the locations of the domination points are
not known at the beginning of the game, and strategies cannot be used until
the bots have discovered them by exploring the map. We do not explicitly count
the exploration phase as a team action, but rather treat it as an initialization
phase because all teams use the same search algorithm for the same length of
time. Work is underway to remove the need for finding locations. All domination
points are found, on average, when 13% of the game is finished, but in rare cases
there have been games that end before all have been found.

In game 1, Retaliate and CBRetaliate perform nearly identically by the end
of the game. This is expected, because when CBRetaliate has no cases stored it
works exactly like Retaliate (except that it stores new cases). Figure 1 shows the
comparative performance of Retaliate and CBRetaliate in the first game. This
and all future graphs show the difference between the scores of each algorithm
and its opponent over time, which is scaled to the percentage of game finished
to facilitate averaging over several trials.

68 B. Auslander et al.

-10

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

S
co

re
D

iff
er

en
ce

Time

CBoff
CBon

Fig. 1. Averaged score differential in game 1

Retaliate gains a small advantage in the second game, but is beaten soundly
in the third. At the start of game 3, Retaliate will have a mature Q-table built
to counter a strategy that heavily defends domination point “R”, lightly defends
point “A”, and ignores “J”. Such a Q-table will be poorly suited to fighting
an opponent who heavily defends “J”, lightly defends “A”, and ignores “R”.
Retaliate is able to win in spite of its poor initial strategy by adapting and
favoring those decisions that have positive outcomes. CBRetaliate, however, loads
a Q-table from the end of the first game. The strategies of the opponents in
the first and third games are not identical, but they are similar enough that a
strategy effective against one will be somewhat effective against the other.

CBRetaliate wins by a smaller but still significant margin in game 4, where it
faces an opponent identical to the one from game 1. The score differentials from
this game are shown in Figure 2. In this case Retaliate should have a reasonable
strategy from the previous game, but CBRetaliate is able to load an excellent strat-
egy from the first game. On average,CBRetaliate wins by a similar margin in games
5 and 6, but these results are not statistically significant due to higher variance.
CBRetaliate also does well against the balanced strategy of game 7, even though it
has not previously faced that strategy. This is because it returns to a less mature
Q-table from the early parts of a previous game that is more suited to combating
a balanced strategy than the specialized Q-table that Retaliate starts with.

4.2 Evaluation against HTNbots

We also performed a second experiment in which CBRetaliate and Retaliate were
matched against HTNbots. For this experiment, we used a sequence of 10 games.

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 69

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

S
co

re
D

iff
er

en
ce

Time

CBoff
CBon

Fig. 2. Averaged score differential in game 4

We did not alter HTNbots between games, but expected that its natural ability
to choose different strategies would allow it to perform better against Retaliate
than against CBRetaliate.

Surprisingly, this was not the case. The only stastically significant difference
between the performance of Retaliate and CBRetaliate against HTNbots was in
game 8, where Retaliate won by a higher margin. Across all 10 games, Retaliate
beat HTNbots by an average of 22.73 points while CBRetaliate’s margin of victory
was 23.86 points, a nearly indistinguishable difference.

The reason for these results is a design flaw with the knowledge base encoded
in HTNbots that was only revealed through these experiments. HTNbots has
one strategy used when not all domination points have been found and one
strategy for each number of domination points it controls when the locations of
all are known. Ownership of domination points can change quite rapidly during
a competitive game, causing HTNbots to quickly oscillate between strategies as
it loses and retakes domination points. CBRetaliate is designed to respond to
significant, long-lasting changes in strategy. Thus, it retrieves cases based on
observed behavior over a time interval. If the opponent is frequently changing
strategies such that throughout most of the game it is using its control-one
strategy 60% of the time and its control-two strategy 40% of the time, then this
combination is effectively a single static strategy, and CBRetaliate will have no
significant advantage over Retaliate.

5 Related Work

There are a number of works combining Case-Based Reasoning and Reinforce-
ment Learning. In his ICCBR-05 invited talk, Derek Bridge pointed out that one

70 B. Auslander et al.

of the possible uses of such a combination is for continuous problem solving tasks
[8]. Winning domination maps in an FPS game is precisely an example of such a
task. Our approach fits in Bridge’s 11-step CBR problem solving cycle; policies
are retrieved based on continuous sensory input. These policies are reused and
refined with RL updates while affecting the environment. These policies are then
retained, together with current sensory measurements, as new cases.

The CAT system [9] stores and reuses cases having sequences of scripting
commands in a real-time strategy game. For retrieval purposes, these cases are
annotated with the conditions observed when the case was stored. These con-
ditions include the current research level in the game (which influences which
buildings and units can be constructed) and several conditions that compute the
difference between CAT’s controlled player and the opponent’s controlled player
(e.g., the number of enemy buildings destroyed minus the number of friendly
buildings destroyed by the enemy). When a case it retrieved, its sequence of
scripting commands is executed. There are three key differences between CBRe-
taliate and CAT. First, retrieval in CBRetaliate is performed based on sensory
readings from a δ-time window [t − δ, t] rather than readings at a time t as in
CAT. Second, CBRetaliate stores a Q-table, which contains the strategy to be
followed and alternative strategies, rather than a sequence of scripted actions. A
policy can be seen as representing multiple sequences of scripted actions. Third,
in CAT, the case’s scripted actions are not adapted. In CBRetaliate, the retrieved
Q-table is adapted with the standard reward and punishment operations of RL.

In [10], a CBR system capable of playing real-time strategy games is presented.
The system learns cases by observing users’ actions. It reuses cases by combining
them into strategies that consists of the combination of individual cases. In
contrast, CBRetaliate stores Q-tables as cases, which contain the winning strategy
together with alternative strategies.

The CARL architecture combines CBR and RL to create agents capable of
playing real-time strategy games [11]. CARL is a multi-level architecture similar
in spirit to hierarchical task network representations [12] where the higher levels
of the hierarchy represents strategies and the low level concrete actions. At the
highest level a hand-coded planner is used. At the intermediate level, CBR and
RL are used to select the specific tactic (e.g., to attack, to defend), and at the
concrete level a plan executor module controls the actions being executed. As a
comparison, CBRetaliate can be seen as a two-level architecture. At the top level
CBR and RL are used to learn and reuse the strategy to follow. At the bottom
level, bots follow these strategies using hard-coded programs. This difference
is not arbitrary but almost certainly a design decision that reflects the differ-
ence between the two game genres that each system is targeting. In first-person
shooters, targeted by CBRetaliate, fast reflexes are needed from individual bots,
as players need to respond in fractions of a second to attacks from an opponent
or make quick decisions to grab a nearby weapon or follow an opponent. There-
fore, in CBRetaliate individual bot behavior is hard-coded. In real-time strategy
games, players have more time (seconds at least) to decide if they are going to
attack or defend. Like in CBRetaliate, cases in CARL stored what amounts to a

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 71

Q-table, annotated with the applicability conditions. But unlike CBRtaliate but
as with CAT, case retrieval in CARL is based on mapping of current readings
at time t rather than in a time window [t− δ, t] as in CBRetaliate.

CBRetaliate is closely related to Continuous Case-Based Reasoning, which
was implemented in the SINS system for robot navigation tasks [13]. Continu-
ous CBR advocates that in domains involving real time execution, a time win-
dow or time-history, as originally called, should be considered during retrieval.
All features in SINS are numerical, reflecting the navigation domain targeted.
Thus, the difference in trajectories is reflected in the computation of similarity.
CBRetaliate also uses features that reflect geometrical relations in the map (e.g.,
distance between a bot and a domination location). However, CBRetaliate also
uses features that are not geometrical relations (e.g., the current score in the
game). As a result, we needed to use an aggregate similarity metric to combine
these distinctive local similarity metrics. Another difference is that SINS did not
use RL for adapting the navigation path. This is possibly due to the fact that a
direct application of RL would have resulted in a large search space. More recent
work on robotics have found ways to work around that problem (e.g., [14]).

Researchers have proposed to use domain knowledge encoded as HTNs or sim-
ilar representations in the context of RL and more generally MDPs [15,16]. One
of the results of combining HTN-like knowledge and RL/MDPs is a significant
reduction in the search space compared to standalone RL/MDPs. The reason
for this is that knowledge encoded in the HTN eliminates unneccesary parts of
the search space, parts which pure RL/MDPs approaches would otherwise need
to explore. In CBRetaliate we do not provide such knowledge in advance, so it
is conceivable that CBRetaliate could also benefit from search reduction, albeit
with the tradeoff of extra effort required to encode the domain knowledge.

6 Conclusions

It is possible to enhance the states as defined currently in Retaliate by adding
the 18 features currently used in CBRetaliate to compute case similarity to the 3
features already used by Retaliate. This would require discretizing the real-valued
attributes and vastly increasing the number of states in the Q-table. Rather than
using such an expanded table, which would pose technical challenges and require
far more time to become mature, CBRetaliate can be seen as partitioning the
space of possibilities into regions, each with a suitable Q-table associated with
it, and using CBR to “jump” to the appropriate region of the space by selecting
a suitable 27-cell table for that region. In our experiments, this capability of
CBRetaliate to jump between regions demonstrated speed-up in the elicitation
of a winning policy when the opponent was changed.

Another point to be made is that we applied in our experiments a naive ap-
proach when computing the local similarities. For each feature, local similarity
is basically defined as a linear interpolation between the lowest and the high-
est possible distance between pairs of values for that feature. Furthermore, no
weights were used when aggregating these local similarities to compute a global

72 B. Auslander et al.

similarity metric. Significant gains in accuracy of the retrieval process can be
made if we use feature weighting, which could be computed by using statistical
sampling. The same can be said with the retrieval threshold. It was set to 75%
in our experiments and this value was selected arbitrarily. Retrieval accuracy
could be improved by tuning the threshold. The reason for not doing any of
these possible improvements is that we wanted to test our working hypothesis
without tweaking these parameters, so that we could confidently attribute the
results to the CBR approach rather than to some tweaking of these parameters.

In this paper we presented CBRetaliate, a CBR + RL system that is intended
to enhance RL capabilities for situations in which the environment suddenly
changes. CBRetaliate uses time windows during case retrieval and retention.
It stores and retrieves Q-tables to allow the RL algorithm to rapidly react to
changes in the environment. We demonstrated our approach in a TFPS game,
which is characterized by the speed in the decision making by individual bots
and in the overall strategy. Our results demonstrate that CBR can effectively
speed-up the RL adaptation process in dynamic environments.

As future work, we want to study case-base maintenance issues in the context
of CBRetaliate. In the experiments reported in this paper, we reset the case base
at the beginning of each tournament. As a result, the retrieval times were very
low and did not have any effect on the overall performance of the agent. Clearly
this will change in situations when the case base becomes permanent, and a
mechanism to refine the case base will be necessary. This poses some interesting
research questions: (1) Because cases contain Q-tables, how can we tell if a case
is covered by another case? (2) As the Q-table of a retrieved case is updated
with RL, can we identify situations where the updated Q-table should replace
one of the retrieved cases instead of being stored as a new case as currently done
by CBRetaliate? We intend to address these and other questions in the future.

Acknowledgments

This research was in part supported by the National Science Foundation (NSF
0642882).

References

1. Bowling, M.H., Veloso, M.M.: Multiagent learning using a variable learning rate.
Artificial Intelligence 136(2) (2002)

2. Salustowicz, R.P., Wiering, M.A., Schmidhuber, J.: Learning team strategies: Soc-
cer case studies. Mach. Learn. 33(2-3) (1998)

3. Ponsen, M., Spronck, P.: Improving adaptive game AI with evolutionary learning.
In: Proceedings of Computer Games: Artificial Intelligence, Design and Education
(CGAIDE 2004) (2004)

4. Tesauro, G.: Temporal dierence learning and TD-Gammon. Communications ofthe
ACM 38(3) (1995)

Recognizing the Enemy: Combining RL with Strategy Selection Using CBR 73

5. Smith, M., Lee-Urban, S., Muñoz-Avila, H.: RETALIATE: Learning winning poli-
ciesin rst-person shooter games. In: Proceedings of the Seventeenth Innovative
Applications of Articial Intelligence Conference (IAAI 2007), AAAI Press, Menlo
Park (2007)

6. Hoang, H., Lee-Urban, S., Muñoz-Avila, H.: Hierarchical plan representations for
encoding strategic game AI. In: Proceedings of the rst Arti cial Intelligence and-
Interactive Digital Entertainment Conference (AIIDE 2005). AAAI Press, Menlo
Park (2005)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

8. Bridge, D.: The virtue of reward: Performance, reinforcement and discovery in
case-based reasoning. In: Invited Talk at the 6th International Conference on Case-
Based Reasoning (ICCBR 2005) (2005)

9. Aha, D.W., Molineaux, M., Ponsen, M.J.V.: Learning to win: Case-based plan
selection in a real-time strategy game. In: Proceedings of the 6th International
Conference on Case-Based Reasoning (ICCBR 2005) (2005)

10. Ortañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Proceedings of the 7th International Conference
on Case-Based Reasoning Research and Development (ICCBR 2007) (2007)

11. Sharma, M., Holmes, M., Santamaŕıa, J.C., Irani, J.A., Isbell, C., Ram, A.: Trans-
ferlearning in real-time strategy games using hybrid CBR/RL. In: Proceedings of
the20th International Joint Conference on Articial Intelligence (IJCAI 2007) (2007)

12. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI
1994) (1994)

13. Ram, A., Santamaria, J.C.: Continuous case-based reasoning. Artificial Intelli-
gence 90(1-2) (1997)

14. Ros, R., Veloso, M.M., de Mántares, R.L., Sierra, C., Arcos, J.L.: Retrievingand
reusing game plays for robot soccer. In: Proceedings of the 8th European Confer-
ence on Advances in Case-Based Reasoning (ECCBR 2006) (2006)

15. Kuter, U., Nau, D.: Using domain-congurable search control in probabilistic plan-
ners. In: Proceedings of the The Twentieth National Conference on Artificial In-
telligence (AAAI 2005) (2005)

16. Ulam, P., Goel, A., Jones, J., Murdock, J.W.: Using model-based re ection toguide
reinforcement learning. In: Proceedings of the Nineteenth International JointCon-
ference on Articial Intelligence (IJCAI 2005) Workshop on Reasoning, Represen-
tation and Learning in Computer Games (2005)

Formal and Experimental Foundations
of a New Rank Quality Measure

Steven Bogaerts1 and David Leake2

1 Mathematics and Computer Science Department, Wittenberg University, P.O. Box 720
Springfield, OH 45501, U.S.A.

sbogaerts@wittenberg.edu
2 Computer Science Department, Indiana University, Lindley Hall 215

Bloomington, IN 47405, U.S.A.
leake@cs.indiana.edu

Abstract. In previous work, Bogaerts and Leake [1,2] introduced the rank qual-
ity measure for the evaluation of conversational case-based reasoning (CCBR)
systems. Rank quality assesses how well a system copes with the limited problem
information available in an ongoing dialog, giving useful evaluation information
not readily available from standard precision and efficiency measures. However,
that work also revealed surprising challenges for developing rank quality mea-
sures, restricting the proposed measures’ applicability. This paper explores two
open questions from that work: 1) how to define a rank quality measure immune
to the previous pitfalls, and 2) how to assess the meaningfulness of any proposed
rank quality measure. The paper establishes formal requirements for a rank qual-
ity measure, presents a new formulation of the measure, and provides a formal
proof and empirical evidence to support that the new measure avoids previous
pitfalls and meets the formal requirements.

1 Introduction

Influential work by Aha and Breslow [3] proposed evaluating conversational case-based
reasoning (CCBR) systems by two criteria: precision, which measures whether the so-
lution of the selected case solves the target problem, and efficiency, which measures
the number of questions that are asked before a candidate case is selected. These mea-
sures1 focus on judging the system at the close of the conversation, when a case has
been selected. In practice, automated system evaluations based on these measures typi-
cally depend on a simulated user to perform case selection. The simulated user proceeds
through the conversation and eventually selects a case according to given criteria, com-
monly when the top case or cases exceed a pre-set similarity threshold.

Evaluations of precision and efficiency can provide valuable information, especially
in the concrete context of a fielded system, for which a holistic evaluation may be
appropriate. However, it may be difficult to use their results to assess specific core
system capabilities (e.g., the quality of similarity assessment), because the results of
such measures depend on multiple factors whose effects may interact, making more
difficult the task of credit/blame assignment for system performance [1,2]:

1 We use “measure” informally, rather than referring to “measure” in the mathematical sense.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 74–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal and Experimental Foundations of a New Rank Quality Measure 75

– Precision and efficiency measures depend on case selection by the simulated user.
If the experiment is aimed at systematically studying the CCBR system’s perfor-
mance for given user populations, and can reliably model those populations, then
this dependence may be desirable. In many experiments, however, user populations
are not a focus. In these cases, it is preferable to use evaluation criteria which focus
entirely on system characteristics.

– Precision depends on solution applicability—the likelihood that a similar case will
have a similar solution—which depends on the contents of the case base. Although
this is appropriate for judging a system as a whole, this dependence can cause dif-
ficulties in interpretation of results when it is desirable to separate the performance
of similarity assessment from the coverage of the case base (e.g., when developing
similarity criteria before the case base is fully populated).

In addition, precision and efficiency measurements do not directly address another im-
portant question for user satisfaction and acceptance: the quality of the entire set of
cases and rankings presented incrementally at each step of the conversation. The ob-
vious way to try to address this for precision is to apply precision measures to each
case at each step in the conversation, but this still falls prey to the dependence on solu-
tion applicability. An analogous approach to incremental efficiency is a mere count of
questions answered at each step, which would provide minimal information.

Rank quality was devised for CCBR system evaluation, addressing precision and ef-
ficiency’s dependence on case selection and solution applicability, and providing infor-
mation about the entire set of cases retrieved throughout the conversation. Rank quality
compares two retrieval lists: The candidate list Lt̂ is the list of cases retrieved given the
incomplete target problem t̂ available at any given point in a dialog. The ideal list Lt

is the list of cases that would be retrieved if the complete target problem t were avail-
able2. Both lists are of length k, containing the k cases considered most similar to the
target problem. Rank quality describes the “similarity” between the candidate and ideal
lists with a value in [0, 1], with 1 indicating maximum similarity. That is, rank quality
measures how well the system is retrieving cases using only t̂ instead of t.

Rank quality has been compared to precision, efficiency, and several other related
measures [1]. It may also be compared to the ”rank measure” in [4], in which candidate
lists from different retrieval techniques are compared by ranking of the known best case;
rank quality contrasts in considering the entire contents of the list.

Rank quality does not depend on solution applicability or case selection, and thus
does not need to be assessed based on a simulated user. Furthermore, rank quality can
naturally provide data about the entire candidate list throughout the dialog. We have
presented empirical illustrations that a richer view of CCBR system performance can
be gained with a suite of system evaluation metrics that includes rank quality [1,2].

However, previous work on rank quality also revealed that defining a rank quality
measure involves surprisingly subtle issues, with the measure proposed there providing
counter-intuitive results for certain domains. That work developed strategies for judging

2 Rank quality as presented here is a measure for use in experimental settings, for which perfect
information about the complete target problem is available in advance, and the experimenter
reveals target problem attributes one-by-one. Alternatively, the so-called “ideal” list could ac-
tually be a hand-ordering of cases by an expert, or an ordering by some alternative system.

76 S. Bogaerts and D. Leake

the suitability of that measure for a given domain, but left two open questions: 1) how to
define a rank quality measure immune to the observed pitfalls of previous formulations,
and 2) how to systematically assess whether a given rank quality measure provides
meaningful information. This paper explores those questions.

This paper first summarizes previous work on rank quality and potential pitfalls for
the previous rank quality measure when cases’ similarity values appear tied. Second, it
formalizes the desired properties of a rank quality measure. Third, it defines a new rank
quality measure, and proves that it has the desired properties and is not susceptible to
the previous pitfalls. Fourth, it presents an empirical demonstration illustrating that the
defined rank quality measure’s performance captures two important desiderata for rank
quality: that rank quality values decrease as the noise in system distance measurements
increases and as the probability of spurious ties increases.

2 Previous Rank Quality Formulations and Their Problems

An early form of the rank quality measure was presented in [5], and a stronger version
in [1]. Informally, these measures compare the candidate and ideal lists. A weighted
sum of distances between t and each case in the candidate list is computed. A sum is
computed for the ideal list in the same way. The ideal list sum is the lowest possible
weighted sum for t and the current case base. If the candidate list has a sum as small
as the ideal list sum, then the rank quality is 1. The larger the candidate list’s sum
compared to the sum for the ideal list, the closer the rank quality is to 0.

In some domains, for some incomplete target problems t̂, there may be many cases
that are estimated to be equidistant from the actual target problem t. This is particularly
common in domains with ordinal and nominal attributes. Such cases are tied in Lt̂, and
form a tied sequence of cases, which a system may order arbitrarily3. The historical
approach for handling ties [6,7] involves averaging weights across the tied sequence so
that order does not matter. However, it must be stressed that weight averaging is insuf-
ficient for the rank quality measure. Specifically, a tied sequence may extend beyond
the end of Lt̂, where cases cannot be trivially included in a weight-averaging scheme.
We refer to this as splitting the k-boundary. In some k-boundary splitting situations,
the rank quality measure of [1] degenerates to a zero value.

Assigning a zero rank quality value in such situations holds some intuitive appeal,
because a candidate list with so many ties may be failing to properly distinguish the
cases (e.g., if the system did not yet have enough information about the target problem
to determine which cases were most relevant). Nevertheless, assigning zero rank quality
here may also fail to distinguish candidate lists which can reasonably be distinguished.
For example, for a system that presents 10 cases to the user, a zero would be given to
candidate lists for calling the top 30 or the top 500 cases tied. However, everything else
being equal, the list with a smaller set of tied top cases is likely superior. Thus, by using
the zero score for candidate lists with many ties (generally, very poor candidate lists),
some granularity is lost. Some domains are particularly susceptible to this problem of

3 There may also be ties in Lt, but since rank quality computes a weighted sum of true (not esti-
mated) distances, a reordering of cases with tied true distances does not affect the summation.

Formal and Experimental Foundations of a New Rank Quality Measure 77

the zero score. This can be predicted based on relationships of their cases [1]. The
previous rank quality formulation is not applicable to such domains.

In response, Bogaerts [2] examines several other possible rank quality formulations,
using strategies such as a threshold to determine which cases to present to a user (rather
than always presenting a fixed number), an overlap count, measures developed for as-
sessing the ordering of Web search results, and approaches based on statistical measures
of rank correlation. That analysis reveals that ultimately these approaches all fail at least
in the same circumstances as the measure of [1], and sometimes in more serious ways.

2.1 The Target Behavior for Rank Quality

Amidst these challenges it is important to define more carefully what is needed in a
rank quality measure. So, we define a highly intuitive, yet prohibitively expensive, rank
quality formulation, which we will designate rqslow . This is used only as a tool for
analysis of rank quality. The definition of rqslow requires the following notions:

– Given a candidate list Lt̂ with any number of tied sequences, each with some ar-
bitrary ordering of constituent cases, define a consistent refinement of Lt̂ as any
list identical to Lt̂ except that one or more of the tied sequences has some alterna-
tive arbitrary ordering of their constituent cases. (The general notion of consistent
refinements exists in other work in AI as well; for example, see [8].)

– Define the untied rank quality, rq′(Lt, Lt̂), as a simple rank quality calculation that
makes no consideration of ties. That is, arbitrary orderings within sequences of ties
are treated as non-arbitrary:

rq′(Lt, Lt̂) = 1−
∑

i wi · dist(t, Lt̂[i])−
∑

i wi · dist(t, Lt[i])
∑

i wi

• wi : Weight of a case of rank i in the corresponding list. These weights could
come from expert input or could be learned from user feedback.

• L[i] : Case at rank i in the given list.
• dist(t, c) : Distance in [0, 1] between t and c.

The intuition of rq′ is as follows: if Lt̂ is identical to Lt, then corresponding sum-
mations will be the same, resulting in an rq′ value of 1. Lt leads to the lowest possible
value for the corresponding summation, thus an Lt̂ that is different from Lt must have
a higher sum. The worse Lt̂ is, the higher the corresponding summation will be, thus
rq′ approaches 0. An rq′ of 0 is rare, and occurs only when Lt consists entirely of cases
with distance 0 from t, while Lt̂ consists entirely of cases with distance 1 from t.

Given this, we can define rqslow as a rank quality formulation that handles ties in Lt̂

by calculating the average untied rank quality over all consistent refinements. This is
a very intuitive approach: arbitrary outcomes are averaged for every possible result of
the arbitrary process, thus the process has no net effect on the rqslow result.

Unfortunately, rqslow is only appropriate as a target for behavior of the rank quality
measure, rather than as a definitive formulation. This is due to its high time complexity
when ties are present. In our analysis, let the distance calculation be the basic operation
to be counted. For each computation of rq′, each summation in the numerator takes
Θ(k) time, for k the length of each list, so rq′ takes Θ(k) time.

78 S. Bogaerts and D. Leake

Given G tied sequences in a candidate list and assuming for simplicity that none split
the k-boundary4, with sequence g in [1, G] of length sg, there are

∏

g sg! consistent re-
finements. Each refinement requires computing rq′, so rqslow operates in Θ(k

∏

g sg!)
time. So this formulation could be acceptable for systems that retrieve small numbers of
cases and/or are guaranteed to have few ties, but would be prohibitively expensive for
some domains. Consequently, rqslow is not a satisfactory formulation, and only serves
as a target for desired behavior of a rank quality formulation.

3 New Rank Quality Definition

To resolve the above issues, rank quality is defined:

rq(Lt, Lt̂) = 1−
∑

i wi · d̂ist(t, Lt̂[i])−
∑

i wi · dist(t, Lt[i])
∑

i wi
(1)

d̂ist(t, Lt̂[i]) =

{

dist(t, Lt̂[i]) Lt̂[i] is not involved in a tie

μm,n otherwise

μm,n =

∑n
j=m dist(t, L̂t̂[j])
(n−m + 1)

– m and n : A tied sequence is said to start with the case at rank m and end with the
case at rank n. (Note that there may be multiple tied sequences, each with its own
m and n.)

– L̂t̂ : The expansion of Lt̂ to length max(n, k). That is, L̂t̂ is the expanded list such
that any tied sequence extending beyond rank k in Lt̂ is fully included. If there is
no such tied sequence extending beyond rank k, then L̂t̂ is simply Lt̂.

Rationale for the Measure: Replacing Weight-Averaging with Distance-Averaging The
key insight underlying this formulation is to use a distance-averaging approach rather
than the historical weight-averaging approach [6,7], in which the weight across the tied
sequence is averaged. For any tied sequence, the average distance μm,n between t and

each case in the sequence is used as the distance d̂ist(t, Lt̂[i]) for each case in the
sequence. This is subtly yet crucially different from the weight averaging approach (see
[2] for a detailed discussion).

The weight-averaging approach requires that either all or none of the cases in the
sequence be included in the list, making sequences that split the k-boundary problem-
atic. To see why either all or none must be included, first recall that only the estimated
distances must necessarily be tied in a tied sequence, not the actual distances. That is,
for each case index i and j in the tied sequence, dist(t̂, Lt̂[i]) = dist(t̂, Lt̂[j]), but it is
not necessarily true that dist(t, Lt̂[i]) = dist(t, Lt̂[j]). Also recall that the rank quality
calculation directly uses dist(t, Lt̂[i]), not dist(t̂, Lt̂[i]). Thus, if the tied sequence ex-
tended beyond the k-boundary and only some of the tied cases (chosen arbitrarily) were

4 If a tied sequence does split the k-boundary, then this will be of little consequence in the time
complexity, but would complicate notation.

Formal and Experimental Foundations of a New Rank Quality Measure 79

included in the rank quality calculation, then the result would depend on which were
included, because not all dist(t, Lt̂[i]) in the sequence are equal. This arbitrariness is
unacceptable in a measure for evaluating rank quality, forcing a policy of including
either all or none of the tied cases in order to assure a consistent result.

As proved in the following section, this problem is avoided in the new distance-
averaging approach of Equation 1. Suppose as above that the tied sequence splits the
k-boundary. With distance-averaging, the rank quality calculation is not affected by
which cases in the tied sequence are included in Lt̂, because the same d̂ist(t, Lt̂[i]) is
used for each case in the sequence. A different arbitrary ordering would result in exactly
the same rank quality, making the new rank quality formulation acceptable even for tied
sequences splitting the k-boundary.

Time Complexity for the Measure: Consider the time complexity of computing rq,
again with distance calculation the basic operation. The dist(t, Lt[i]) summation is
computed in Θ(k), for k the length of the candidate list. For the dist(t, Lt̂[i]) sum-
mation, note that for any case not in a tie, its distance is computed once. For any case
that is in a tie, its distance is also computed once, in the μm,n computation. Thus, the
dist(t, Lt̂[i]) summation is also in Θ(k), and so the computation of rq is a Θ(k) opera-
tion — it is linear in the size of the candidate list, assuming a basic operation of distance
calculation.

The remaining sections will give evidence for the appropriateness of this formulation.

4 Proof of the Effectiveness of the New Measure’s Handling of Ties

We now prove the effectiveness of the tie-handling strategy of rq. Note that rq is sig-
nificantly more efficient than rqslow . Thus if we can show that in all possible scenarios,
rq = rqslow , then we may use the more efficient rq, while still achieving the desired
target behavior. In the proof, three scenarios must be considered:

1. Single Tied Sequence in Lt̂, not splitting the k-boundary
2. Multiple Tied Sequences in Lt̂, none splitting the k-boundary
3. Splitting the k-Boundary with one sequence in Lt̂, with possibly other tied se-

quences also present.

The following subsections discuss these related scenarios in turn. For more complete
discussion, see [2]. For simplicity of notation, 1-based indexing will be used.

4.1 Single Tied Sequence

Suppose that there is a single tied sequence in Lt̂, of length s, that does not split the
k-boundary. Thus there are s! consistent refinements of Lt̂. Label these orderings Lj

t̂
for each integer j in [1, s!]. In this scenario, we can define:

rqslow(Lt, Lt̂) =

∑

j rq′(Lt, L
j

t̂
)

s!

80 S. Bogaerts and D. Leake

Claim: In the Single Tied Sequence scenario, rq(Lt, Lt̂) = rqslow(Lt, Lt̂).

Proof: For convenience, define:

r(Lt, Lt̂, [a, b]) ≡
∑b

i=a wi · dist(t, Lt̂[i])−
∑b

i=a wi · dist(t, Lt[i])
∑k

i=1 wi

That is, r(Lt, Lt̂, [a, b]) is the portion of rank quality calculated for interval [a, b] where
1 ≤ a, b ≤ k, assuming no tied sequences overlapping the interval.

Suppose that the sequence extends from index m to n (inclusive) in the candidate
list. Then for i in [1, m− 1] and [n + 1, k], d̂ist(t, Lt̂[i]) ≡ dist(t, Lt̂[i]) because there
are no ties within those ranges. For i in [m, n], d̂ist(t, Lt̂[i]) ≡ μm,n. So rq5 is:

rq(Lt, Lt̂) = 1− r(Lt, Lt̂, [1, m− 1]) (2)

−
∑n

i=m wi · μm,n −
∑n

i=m wi · dist(t, Lt[i])
∑k

i=1 wi

− r(Lt, Lt̂, [n + 1, k])

Similarly for rqslow , within the i ranges [1, m − 1] and [n + 1, k], Lj

t̂
[i] = Lt̂[i] by

definition of Lj

t̂
. After some minor algebraic manipulations we have:

1
s!

∑

j

rq′(Lt, L
j

t̂
) =1− r(Lt, Lt̂, [1, m− 1]) (3)

−
s!∑

j=1

∑n
i=m wi · dist(t, Lj

t̂
[i])−

∑n
i=m wi · dist(t, Lt[i])

s!
∑k

i=1 wi

− r(Lt, Lt̂, [n + 1, k])

The right hand sides of equations (2) and (3) are identical except for the i in [m, n]
terms. Labeling these terms Am,n and Bm,n:

Am,n ≡
∑n

i=m wi · μm,n −
∑n

i=m wi · dist(t, Lt[i])
∑k

i=1 wi

Bm,n ≡
s!∑

j=1

∑n
i=m wi · dist(t, Lj

t̂
[i])−

∑n
i=m wi · dist(t, Lt[i])

s!
∑k

i=1 wi

It remains only to prove that Am,n is equivalent to Bm,n. Algebraic simplification gives:

Am,n =
∑n

i=m wi · μm,n
∑k

i=1 wi

−
∑n

i=m wi · dist(t, Lt[i])
∑k

i=1 wi

5 Note that one or both of the intervals [1, m − 1] and [n + 1, k] may be degenerate (if m = 1
or n = k.) In these scenarios, the r-term is considered 0.

Formal and Experimental Foundations of a New Rank Quality Measure 81

Bm,n =

∑s!
j=1

∑n
i=m wi · dist(t, Lj

t̂
[i])

s!
∑k

i=1 wi

−
∑n

i=m wi · dist(t, Lt[i])
∑k

i=1 wi

So to prove that Am,n and Bm,n are equivalent, after cancelling like terms it now re-
mains only to prove that:

n∑

i=m

wi · μm,n =
1
s!

s!∑

j=1

n∑

i=m

wi · dist(t, Lj

t̂
[i]) (4)

For convenience, name the right hand side of the above equation β. To show that equa-
tion (4) is true, we must consider the meaning of Lj

t̂
. Note that in the construction of a

consistent refinement Lj

t̂
, after placing some case Lt̂[h] in position i there remain s− 1

cases to place throughout the tied sequence. Thus there are (s − 1)! consistent refine-
ments of Lt̂ where case Lt̂[h] is in position i. So the term wi · dist(t, Lt̂[h]) appears
(s− 1)! times in the summations of β. Summing these up for each i, we get the sum of
all terms involving Lt̂[h] at any position i in [m, n]:

n∑

i=m

(s− 1)! · wi · dist(t, Lt̂[h])

To get the sum of all terms in β, we must sum the above for all h in [m, n]:
n∑

h=m

n∑

i=m

(s− 1)! · wi · dist(t, Lt̂[h])

and so:

β =
1
s!

n∑

h=m

n∑

i=m

(s− 1)! · wi · dist(t, Lt̂[h])

=
n∑

i=m

wi

∑n
h=m dist(t, Lt̂[h])

s

Recall that s is the tied sequence length, so s = n−m + 1:

β =
n∑

i=m

wi

∑n
h=m dist(t, Lt̂[h])

n−m + 1

Finally, note that:

μm,n =
∑n

h=m dist(t, Lt̂[h])
n−m + 1

when the tied sequence in [m, n] does not split the k-boundary, and so:

β =
n∑

i=m

wi · μm,n

That is, β, the right hand side of (4), is equivalent to the left hand side. So Am,n =
Bm,n. So rq(Lt, Lt̂) = rqslow(Lt, Lt̂) in the Single Tied Sequence scenario. �

82 S. Bogaerts and D. Leake

4.2 Multiple Tied Sequences

Suppose there are multiple tied sequences in Lt̂, none splitting the k-boundary. Enu-
merate them [1, G], and let each sequence length be denoted by sg for some integer g

in [1, G]. Thus there are
∏

g sg! consistent refinements of Lt̂. Label these orderings Lj

t̂
for each integer j in [1,

∏

g sg!]. So in this scenario, using the new range for j:

rqslow(Lt, Lt̂) =

∑

j rq′(Lt, L
j

t̂
)

s!

Claim: In the Multiple Tied Sequences scenario, rq(Lt, Lt̂) = rqslow(Lt, Lt̂).
Proof: This proof is a trivial extension of the proof in the Single Tied Sequences sce-
nario of Section 4.1. In that scenario, summations are split into the ranges [1, m − 1],
[m, n], and [n + 1, k]. In the Multiple Tied Sequences scenario, denote mg and ng as
the starting and ending indices (inclusive) of tie sequence g. Then the summations are
split into the intervals [1, m1−1], [m1, n1], [n1 +1, m2−1], [m2, n2], [n2 +1, m3−1],
..., [nG, k]6. Each of these intervals leads to a summation of terms comprised either en-
tirely of ties or entirely of non-ties. The summations of non-ties in rq and rqslow break
down and are equivalent in the same manner as in the Single Tied Sequences scenario.
The summations of ties are also shown to be equivalent by the same process. �

4.3 Splitting the k-Boundary

Note that tied sequences that do not split the k-boundary will be equivalent for rq
and rqslow by the argument in the Multiple Tied Sequences scenario above. Thus it is
sufficient to consider only the single tied sequence that splits the k-boundary. Therefore,
suppose that there is a tied sequence that splits the k-boundary in Lt̂. Let the sequence
be in the range [m, n] inclusive, for sequence length s = n−m + 1, with m ≤ k < n.

Recall in the original presentation of rq above that the computation of μm,n uses
the candidate list L̂t̂, which is Lt̂ expanded to include the entire sequence of ties. So
L̂t̂ is of length n, while the original candidate list Lt̂ used in all other calculations is
of length k < n. So in this scenario, only part of the sequence is within k: the cases
in positions [m, k]. For convenience, define the length of the sequence within the k-
boundary
 ≡ k − m + 1. There are s cases to be distributed to those
 spots, so
there are

(
s
�

)

·
! distinct consistent refinements of Lt̂. (That is, of the s possible cases,
choose any
 of them, and then order them in any of
! permutations.) Label the distinct
consistent refinements Lj

t̂
for j in [1,

(
s
�

)

·
!]. So in this scenario, we define:

rqslow(Lt, Lt̂) =

∑

j rq′(Lt, L
j

t̂
)

(
s
�

)

·
!

Claim: In the Splitting the k-Boundary scenario, rq(Lt, Lt̂) = rqslow(Lt, Lt̂).

6 Note that some of these intervals may be degenerate. For example, if ng = mg+1, then the
interval [ng + 1, mg+1 − 1] is equivalent to [ng + 1, ng], a degenerate interval. As in the
Single Tied Sequences scenario, these degenerate intervals lead to corresponding summations
of 0 and can therefore be ignored.

Formal and Experimental Foundations of a New Rank Quality Measure 83

Proof: Similar to Section 4.1, we can split rq(Lt, Lt̂) and rqslow(Lt, Lt̂):

rq(Lt, Lt̂) = 1− r(Lt, Lt̂, [1, m− 1]) (5)

−
∑k

i=m wi · μm,n −
∑k

i=m wi · dist(t, Lt[i])
∑k

i=1 wi

1
(

s
�

)

·
!
∑

j

rq′(Lt, L
j

t̂
) =1− r(Lt, Lt̂, [1, m− 1]) (6)

−

(s
�

)·�!
∑

j=1

∑k
i=m wi · dist(t, Lj

t̂
[i])−

∑k
i=m wi · dist(t, Lt[i])

(
s
�

)

·
!
∑k

i=1 wi

With simplifications as Section 4.1, it remains only to prove that:

k∑

i=m

wi · μm,n =
1

(
s
�

)

·
!

(s
�

)·�!
∑

j=1

k∑

i=m

wi · dist(t, Lj

t̂
[i]) (7)

Define β to be the right hand side of the above equation. To prove equation (7), we
must consider the meaning of Lj

t̂
. In the construction of a consistent refinement Lj

t̂
,

first place some case L̂t̂[h] in position i, where m ≤ i ≤ k. After this placement,
there are s− 1 cases that can be placed in the remaining
− 1 positions in the portion
of the tied sequence that is within the k boundary7. Thus there are

(
s−1
�−1

)

· (
 − 1)!
distinct consistent refinements of Lt̂ where case L̂t̂[h] is in position i. So the term
wi · dist(t, L̂t̂[h]) appears

(
s−1
�−1

)

· (
 − 1)! times in the summations of β. Summing

these for each i, we get the sum of all terms involving L̂t̂[h] at any position in [m, k]:

k∑

i=m

(
s− 1

− 1

)

· (
− 1)! · wi · dist(t, L̂t̂[h])

To get the sum of all terms in β, we must sum the above for all h in [m, n] (that is, over
all cases in the tied sequence at the end of L̂t̂):

n∑

h=m

k∑

i=m

(
s− 1

− 1

)

· (
− 1)! · wi · dist(t, L̂t̂[h])

and so:

β =
1

(
s
�

)

·
!

n∑

h=m

k∑

i=m

(

s− 1

− 1

)

· (
− 1)! · wi · dist(t, L̂t̂[h])

=
k∑

i=m

wi

∑n
h=m dist(t, L̂t̂[h])

s

7 Recall that s is the length of the tied sequence, while � is the length of the sequence that is
within the k-boundary.

84 S. Bogaerts and D. Leake

Recall that s is the tied sequence length, so s = n−m + 1:

β =
k∑

i=m

wi

∑n
h=m dist(t, L̂t̂[h])

n−m + 1

Finally, note that:

μm,n =
∑n

h=m dist(t, L̂t̂[h])
n−m + 1

and so:

β =
k∑

i=m

wi · μm,n

That is, β, the right hand side of (7), is equivalent to the left hand side. So Am,k = Bm,k.
So rq(Lt, Lt̂) = rqslow(Lt, Lt̂) in the Splitting the k-Boundary scenario. �

5 Experimental Demonstrations of Rank Quality

Given the mathematical equivalence of rq and rqslow proven above, we now consider
further empirical evidence that rq exhibits the following two central properties:

1. As noise in distance measurements increases, rank quality decreases.
2. As the probability of spurious ties increases, rank quality decreases.

The reader may find it obvious that this behavior should be observed. However, the ex-
periments are needed to show whether, despite the non-trivial computations described
above, the performance is reasonable. For example, similar experiments revealed
counter-intuitive behavior associated with the k-boundary splitting problem of [1].

To assess how well the new rank quality measure conforms to these, we conducted
experiments using the Indiana University Case-Based Reasoning Framework (IUCBRF)
[9]. IUCBRF is a freely-available Java framework for the rapid and modular develop-
ment of CBR systems.

5.1 Experimental Examination of Principle 1

Principle 1: As noise in the distance measurements increases, rank quality decreases.

Recall that rank quality is a measure of how well a candidate list matches an ideal list.
If the candidate list is ever unequal to the ideal list for any target, then the estimated
distance measure (based on t̂ rather than t) is less effective in some way, leading to an
incorrect ordering of cases. Typically this is due to missing case information that has
not been obtained from the dialog yet. The extent to which an estimated distance is
different from the actual distance should be reflected directly in the rank quality results.

An effective way to precisely control the difference between the estimated and actual
distances is by adding noise to the estimated distance:

estDist(t, Lt̂[i]) = dist(t, Lt̂[i]) + N(0, σ)

Formal and Experimental Foundations of a New Rank Quality Measure 85

for σ = 0.00 to 2.00 step 0.02 do
for each target t in CB do

Temporarily remove t from CB (leave-one-out)
for each c in CB do

estDist(t, c) ← dist(t, c) + N(0, σ)
Lt ← k min c ∈ CB according to dist(t, c)
Lt̂ ← k min c ∈ CB according to estDist(t, c)
Compute rq(Lt, Lt̂)
Add t back into CB

Compute average rq(Lt, Lt̂) for current σ

Fig. 1. An experiment to examine the effect of distance noise on rank quality, ignoring ties. Re-
trievals are done with k = 10.

where N(0, σ) denotes normally-distributed noise 8 with mean 0 and standard deviation
σ. Thus if rank quality follows principle 1 above, then there should be a steady decrease
in rank quality given increasing σ. Note that given the infinite number of distances that
can result from this addition of noise, the probability of a tie is effectively 0.

The evaluation procedure is shown in Figure 1. For each σ, a leave-one-out process is
followed in which rank quality is computed with the noisy estimated distance as defined
above, for k = 10. Average rank quality is computed for each σ.

This experiment was run on four domains from [10]: Car, Hayes-Roth, Monks, and
Zoo. The results of the Car domain are provided in Figure 2(a)9; other domains had
nearly identical results. As expected, when there is no noise (σ = 0), the estimated
distance is equivalent to the actual distance, and rank quality is 1.0. When there is just a
small amount of noise (low σ), average rank quality remains fairly high. However, rank
quality drops quickly as noise increases. Given that distance measures are in [0, 1], a
standard deviation of even 0.4 is quite high, capable of greatly distorting the ordering
in a candidate list. After this point, the effect of increasing standard deviation on av-
erage rank quality is lessened. This is because after a time, ordering has become quite
randomized in the candidate list already, and so further noise simply changes one very
random ordering into another.

Thus, the results support Principle 1 for rq: As noise in the distance measurements
increases, rank quality decreases.

5.2 Experimental Examination of Principle 2

Principle 2: As the probability of spurious ties increases, rank quality decreases.

8 This addition of noise may push distances outside the [0,1] range. However, because we are
using the distances for case ordering only, this differing magnitude is irrelevant to the results.

9 Regarding the scale of the measure, note that rank quality is designed to be an absolute
measure—measurements for one system are directly comparable to measurements for any
other. Thus a rank quality of 0 indicates the worst retrieval conceivable, in which every re-
trieved case is maximally distant from the target. In practice this is very rare, if not impossible,
for most case bases. So a rank quality of 0.5 or 0.6 is a “poor” retrieval on this scale.

86 S. Bogaerts and D. Leake

(a) Principle 1: Noise added (b) Principle 2: Noise and ties

Fig. 2. (a) Principle 1: Average rank quality given standard deviation of noise, for the car domain.
(b) Principle 2: Selected results of test for average rank quality given standard deviation of noise,
for the Hayes-Roth domain, with k = 10 and various tie probabilities p. From top to bottom:
� : 0.00. � : 0.66. + : 0.94. � : 0.98. � : 0.99. � : 1.00 (bottom horizontal line). Note that the
vertical axis in (b) is cropped, from 0.4 to 1.0.

This experiment is designed to test the adherence of rq to the above principle. The
probability of spurious ties can be controlled using the process of Figure 3.

It may appear by the experimental setup that the chosen p values are inappropriately
skewed towards higher values. To see why the chosen values are appropriate, the effect
of p on the average tied sequence length must be examined. For example, given a can-
didate list containing four cases in order, [A, B, C, D], p = 0.66 means that it would be
expected for, say, A, B, and C to be tied (thus two pairs tied) but not C and D (one pair
not tied). That is, for this example, two ties for every one untied case, making an average
sequence length of 3. In general, p = 1 − 1/s where s is the average sequence length.
So p = 0.9 leads to an average tied sequence of length 10. p = .967 leads to an average
tied sequence length of 30. Thus, most of the substantial differences in sequence length
come from high p values, and so these values are examined most closely.

This experiment was run on four domains from [10]: Car, Hayes-Roth, Monks, and
Zoo. Results for each domain were very similar. Hayes-Roth results are shown in Fig-
ure 2(b). The trends discussed here are reflected in all results.

First consider the vertical slice at σ = 0. It is clear that as the probability of spurious
ties increases, the average rank quality decreases. Spurious ties are an error in the for-
mation of the candidate list. In fact, they are the only errors in a list with σ = 0. This
corresponds to a list in perfect order, except for the sequences of ties. When more ties
are present in this otherwise perfect candidate list, rank quality decreases, as expected.

Consider p = 1 (for any σ). This means that every case is thought to be tied to every
other in the candidate list, so a random retrieval has been made. Rank quality accounts

Formal and Experimental Foundations of a New Rank Quality Measure 87

Estimated Distance Noise, With Ties
for each p in {0.00, 0.33, 0.66, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99, 1.0} do

for σ = 0.00 to 2.00 step 0.02 do
for each target t in CB do

Temporarily remove t from CB (leave-one-out)
for each c in CB do

estDist(t, c) ← dist(t, c) + N(0, σ)
Order Lt according to dist(t, c) for all c in CB
Order Lt̂ according to estDist(t, c) for all c in CB
makeTies(Lt̂, p)
Compute rq(Lt, Lt̂)
Add t back into CB

Compute average rq(Lt, Lt̂) for current σ and p

makeTies(Lt̂, p)
r ← 1
for each case c in Lt̂ do

if U(0, 1) > p then
r ← r + 1 // Don’t make this case tied to the previous one

setRank(c, r) // Set rank of c to r, and set estDist(c) to first case of rank r

Fig. 3. An experiment to examine how distance noise affects rank quality, while controlling tie
probability. makeTies(Lt̂, p) is a procedure that makes cases tied with probability p. U(0, 1) is a
random number from a uniform distribution over [0, 1]. Retrievals are done with k = 10.

for this by assigning a value equal to the average rank quality of all possible random
retrievals for a given target. (This was a key result proved in Section 4.) This average
can then be averaged again over all targets, giving, in the case of Hayes-Roth, 0.525.
This average is the same for all σ, because p = 1 means all cases are tied regardless of
how much noise the estimated distances contain.

Now consider the progression of vertical slices as σ increases. This signifies the
addition of more distance noise. As expected from the discussion in Section 5.1, rq
decreases as σ increases. Interestingly, as σ increases, it can also be seen that the dif-
ferences between lines for various p values decrease. This can be explained as follows.
When σ is low, the addition of many ties is a serious deficiency in the candidate list.
When σ is high, the candidate list is already quite poor, and so the addition of ties as
well is of less consequence. That is, as the actual distances become increasingly noisy,
the order is random enough that taking averages (in tie-handling) is no worse that using
the untied estimated distances.

It appears that the lines for various p are asymptotically approaching the p = 1.00
line. That is, as σ → ∞, there is no difference in average rank quality for various p
values. This is because both σ and p decrease the quality of the candidate list as they
increase. Ultimately, a candidate list cannot get any worse, at which point an increase
of σ →∞ or p → 1.0 has no effect.

Thus, it is clear that Principle 2 holds for rq: As the probability of spurious ties
increases, rank quality decreases. Furthermore, as noise increases, the detrimental effect

88 S. Bogaerts and D. Leake

of ties is reduced, because the candidate list is already poor on account of the noise. That
is, there is an important difference between finding averages and using the properly
ordered distances, but there is not an important difference between finding averages
and using improperly ordered differences.

6 Conclusion

Rank quality is an appealing measure for assessing conversational case-based reason-
ing systems, but previous formulations sometimes exhibited anomalous behaviors for
tied cases [5,1]. This paper has presented a new definition of rank quality that addresses
problems in those formulations. The measure provides an important complement to pre-
cision and efficiency as a measure of CCBR system evaluation. A formal proof of the
match of its tie-handling to the behavior of an intuitive (but computationally infeasible)
approach established that its behavior captures desired properties for consistency, and
further experimental demonstrations provide support that its behavior meets expecta-
tions for adhering to two fundamental principles for a rank quality measure. Thus the
new rank quality measure overcomes prior problems to provide a principled foundation
for forming conclusions about CCBR systems.

References

1. Bogaerts, S., Leake, D.: What evaluation criteria are right for CCBR? Considering rank qual-
ity. In: Proceedings of the Eighth European Conference on Case-Based Reasoning (2006)

2. Bogaerts, S.: Rank Quality for Evaluating CCBR System Performance. PhD thesis, Indiana
University, Bloomington, IN, USA (2007)

3. Aha, D., Breslow, L.: Refining conversational case libraries. In: Proceedings of the Second
International Conference on Case-Based Reasoning, pp. 267–278. Springer, Berlin (1997)

4. Kontkanen, P., Myllymäki, P., Silander, T., Tirri, H.: On BAYESIAN case matching. In: Cun-
ningham, P., Smyth, B., Keane, M. (eds.) Proceedings of the Fourth European Workshop on
Case-Based Reasoning, pp. 13–24. Springer, Berlin (1998)

5. Bogaerts, S., Leake, D.: Facilitating CBR for incompletely-described cases: Distance met-
rics for partial problem descriptions. In: Funk, P., González, P. (eds.) ECCBR 2004. LNCS
(LNAI), vol. 3155, pp. 62–76. Springer, Heidelberg (2004)

6. Kendall, M., Gibbons, J.D.: Rank Correlation Methods, 5th edn. Oxford University Press,
New York (1990)

7. Mosteller, F., Rourke, R.E.K.: Sturdy Statistics: Nonparametrics and Order Statistics.
Addison-Wesley Publishing Company, Reading (1973)

8. Ha, V., Haddawy, P.: Similarity of personal preferences: Theoretical foundations and empir-
ical analysis. Artificial Intelligence 146(2), 149–173 (2003)

9. Bogaerts, S., Leake, D.: IUCBRF: A framework for rapid and modular CBR system de-
velopment. Technical Report TR 617, Computer Science Department, Indiana University,
Bloomington, IN (2005)

10. Blake, C., Merz, C.: UCI repository of machine learning databases (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

Provenance, Trust, and Sharing in Peer-to-Peer

Case-Based Web Search�

Peter Briggs and Barry Smyth

Adaptive Information Cluster,
School of Computer Science & Informatics,

University College Dublin, Ireland
{Peter.Briggs,Barry.Smyth}@ucd.ie

Abstract. Despite the success of modern Web search engines, challenges
remain when it comes to providing people with access to the right infor-
mation at the right time. In this paper, we describe how a novel combina-
tion of case-based reasoning, Web search, and peer-to-peer networking
can be used to develop a platform for personalized Web search. This
novel approach benefits from better result quality and improved robust-
ness against search spam, while offering an increased level of privacy to
the individual user.

1 Introduction

Web search is one of the most important technologies in regular use, providing
literally billions of users with access to online content every day; search activ-
ity reached more than 60 billion searches per month in 2007 [1]. However, Web
search is far from perfect, and recent studies have highlighted the extent to
which leading search engines struggle to provide users with relevant results. For
example, Smyth et al. [2] describe how as many as 56% of Google Web searches
fail to attract any result selections. Over the past few years, as “the business
of search” has matured in to a major market sector, researchers have contin-
ued to look for new ways to enhance existing search engine technology. In this
regard the idea of “social search” — that result-lists might usefully be influ-
enced by the interests, preferences, or activities of other searchers — has gained
some considerable attention as a way to improve search quality by personalizing
result-lists.

Harnessing the search activities of users to improve result quality is a chal-
lenging task, but one that has benefited from a case-based perspective. The
collaborative Web search (CWS) work of Balfe & Smyth [3] demonstrates how
the search experiences (queries and result selections) of communities of like-
minded users can be stored as search case bases and used as a source of result
recommendations (promotions during future searches); in short, for a new tar-
get query, results that have been frequently selected by community members for
similar queries in the past are promoted during the new search.
� This research was supported by Science Foundation Ireland Grant No. 03/IN.3/I361.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 89–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 P. Briggs and B. Smyth

There are limitations to this standard approach to collaborative Web search.
First, it relies on some explicit representation of a search community, with in-
dividual users expected to register and search within specific communities. The
reality, of course, is that users simply want to search, and may not find it con-
venient to select a community context beforehand. Another limitation is that
individual community members cannot be identified. In fact this is often cited
as a privacy benefit, but in truth it has a downside when it comes to auditing
the source of a promoted result. As the seminal work of Leake & Whitehead
highlights, the origin, or provenance, of a case can be an important quality indi-
cator [4]. This is especially true in CWS because it is possible for malicious users
to influence result promotions [5]. By recording the source of a promotion (the
searcher who originally selected the result), it is possible to present provenance
information alongside the promoted result as a form of explanation. But, this is
only possible if individual users can be distinguished within a community.

In this paper we present an alternative model of collaborative Web search; one
that avoids the need for explicit communities, and which facilitates the identi-
fication of individual searchers to determine the provenance of promotions. We
demonstrate how provenance information can be used to enhance the conven-
tional CWS interface, and show how it can help to improve the quality of results
in two important ways. Firstly, such information can be used as the basis for a
computational model of user-trust, which we can apply to filter result promo-
tions. Secondly, we argue that exposing the provenance of promotions through
the search interface encourages the formation of social relationships between
searchers, helping them to avoid making spurious result selections. Furthermore,
we explain how the advantages of this trust-based approach can be achieved while
preserving the privacy of individual searchers by implementing a distributed
peer-to-peer search network. In this network, the search histories of individuals
are maintained by their own local search-agent and only shared on the basis
of trusted relationships between search peers. As an added benefit, we explain
how this peer-to-peer architecture facilitates a more flexible approach to CWS
by doing away with the need for explicit communities; essentially, an individ-
ual’s search community evolves as they develop implicit relationships with other
online searchers via the sharing and promotion of search experiences.

2 Background

This paper focuses on the personalization of search results, and, to this end,
there is a growing body of literature covering the many ways in which individual
and community preferences can be used to influence search. For example, the
SOAP system [6] builds user profiles from bookmark collections and employs a
collaborative filtering approach to result recommendation. Alternatively, Glance
[7] describes a community search assistant which recommends similar (based on
result overlap) queries from the previous searches of other community members.

In this paper we adopt an experience-based approach to personalization by
harnessing the previous search sessions of searchers. This technique is naturally

Provenance, Trust, and Sharing in P2P Case-Based Web Search 91

inspired by case-based reasoning, which of course emphasises the power of experi-
ence reuse in problem solving. Interestingly, work by [8] adopts a complementary
perspective. In brief, searchers on the University of Oregon’s library website are
encouraged to supplement their queries with natural language questions that
describe their information needs. New target queries are matched against any
past questions that have led to result selections, and the matching questions are
submitted alongside the user’s actual query to identify additional results that
may be of value to the user; see also the work of [2] for a similar approach.

If experience-reuse is an important feature of this work, then the idea of
experience sharing is equally vital. It is interesting to reflect on recent Web de-
velopments that have emphasised the value of cooperation and sharing between
users. The so-called Web 2.0 movement is based on a more flexible model of user
cooperation and information sharing, and these ideas have helped to inspire and
inform our own approach to Web search which, in this paper, is based very much
on the free exchange of search experiences between searchers. Our experience-
based approach relies on the idea that each user is associated with a case base
that reflects their own past search experiences (queries submitted and results
selected). As searches unfold, result recommendations are also harvested from
the case bases of other, potentially numerous, users who are similar to the target
user. This too echoes recent work by the CBR community on the use of multiple
case bases during problem solving, where the benefits of such multiple sources
of problem solving experiences have been convincingly demonstrated [9].

Other recent work in case-based reasoning has begun to explore how under-
standing the origins of cases is important when it comes to guiding their future
reuse. In particular, the work of [4] argues for the storage and reuse of provenance
information — information about where a case has come from or who provided
the case, for example — in CBR systems as a way to improve problem solving
performance and solution quality, especially where case learning is actively em-
ployed. This research has helped to clarify the importance of provenance-type
information in our own work: given that search recommendations can come from
the search experiences of other users, it is important to understand who these
users are and how reliable their recommendations are likely to be. To this end,
we use provenance information during search to advise the searcher about the
source of a recommendation, but also as the basis for a computational model of
trust that is used to filter out recommendations from unreliable searchers.

Finally, it is worth commenting briefly on research related to our use of a peer-
to-peer search network. Peer-to-peer networks are not uncommon in Web search
(see, for example, [10,11]), but in the main they have been used to distribute the
computational load associated with search, with individual peer nodes storing
and indexing a sub-set of the document collection. In our work, the core search
functionality is provided by a traditional search engine, such as Google, and the
peer-to-peer network is used as an experience overlay for the purpose of adapting
traditional search results according to the past experiences of like-minded users.

92 P. Briggs and B. Smyth

3 Peer-to-Peer Collaborative Web Search

A peer-to-peer approach to collaborative Web search (P2P-CWS) envisages an
overlay network of search agents, each capturing the search experiences of a user,
U . This so-called search network facilitates the sharing of search experiences
between agents. When a given user performs a search, their query (qT) is used
to access their local search experiences to identify relevant results that may be
promoted. In addition, however, this query is also propagated along the search
network links in order to probe the search expertise of trusted searchers with
similar interests and identify further candidates for promotion (Figure 1). Any
such promotions are then highlighted within, or added to, the result-list returned
by the searcher’s primary search engine, for example Google or Yahoo.

Fig. 1. The search network is made up of a set of individual user search agents each
with a local store of search experiences. Queries propagate throughout the network,
allowing the searcher to benefit from the recommendations of others.

The basic search agent architecture is shown in Figure 2, and in the follow-
ing sections we will describe this novel approach to collaborative Web search in
detail, focusing on how local search expertise is represented, shared, and reused
throughout a search network. We will describe how local search results can be
ranked and combined with the results from similar agents by using a compu-
tational model of trust that reflects the reliability of users within the search
network. In turn, we will explain how this trust model is fine-tuned by the
search interactions of pairs of users, and how the overall search network adapts
to these evolving search relationships.

3.1 Experiences and Cases

Each search agent maintains a local case base of search experiences (CU) such
that each individual search case reflects the result selections of the user, U , for
a particular query — accepting that these result selections may have been made

Provenance, Trust, and Sharing in P2P Case-Based Web Search 93

Trust
Model

Search
Cases

qT

Rank

Propagate

Ui

RUi, RUj, ...Prom
ote

A
ge

nt
 In

pu
t

A
gent O

utput
R

et
ri

ev
eqT

qT

R’Ui

qT

R’Ui

RUj, ..

RUi

Uj

(Ui,Uj,Tij),...

(qT, ri, Uk)
(qT, ri)

Uk

RUj

Fig. 2. The basic search agent architecture

over multiple search sessions. Thus each search case, cU
i , is represented as a n+1-

tuple made up of a query component and a result component; see Equation 1.
The query component, qi, is simply the set of terms that were used in the search
query. The result component is made up of n result-pairs, with each comprised
of a result-page id, rj , and a hit-count, hj , that reflects the number of times that
U has selected rj in response to qi.

cU
i = (qi, (r1, h1), ..., (rn, hn)) (1)

It is important to note that, compared to the previous community-oriented
versions of CWS [2], this peer-to-peer approach shifts the focus away from a
community of searchers and on to the individual user. Instead of the case base
corresponding to the community’s search history, in this instance it corresponds
to the search history of an individual. From a privacy viewpoint, however, it is
worth highlighting that unlike the community-oriented version of CWS, where
community case bases are stored centrally on a third-party server, this peer-to-
peer approach facilitates a local, client-side store of search history information
and thus provides the searcher with a further degree of security, privacy, and
control over the use of their search data.

3.2 Retrieval and Ranking

The basic case retrieval implemented by each search agent is similar to that
employed by community-based CWS [3]. In short, the target query, qT , is com-
pared to the search cases in the agent’s local case base, and those cases that are
deemed to be similar are retrieved (R′

Ui
). Case similarity is based on a simple

term-overlap metric (see Equation 2), although more sophisticated approaches
can be applied and have been evaluated elsewhere [12].

Sim(qT , ci) =
|qT ∩ qi|
|qT ∪ qi|

(2)

94 P. Briggs and B. Smyth

Each retrieved case contributes a set of results that have previously been
selected by the user for a query that is similar to the target query. The local
relevance of a result is calculated based on how frequently it has been selected
for a case, as shown in Equation 3.

Rel(rj, ci) =
hj

n∑

k=1

hk

(3)

An overall relevance score for a result rj , with respect to qT , is calculated as
the weighted sum of these local relevance and query similarity scores (see Equa-
tion 4); once again, this overall relevance metric is borrowed from community-
based CWS. Results that have been frequently selected for very similar queries
should be considered more important than those that have been less frequently
selected for less similar queries, and so the list of local search results, RUi , is
ranked according to these overall relevance scores.

WRel(rj , qT , c1, ..., cm) =

m∑

i=1

Rel(rj , ci) · Sim(qT , ci)

m∑

i=1

Exists(rj , ci) · Sim(qT , ci)

(4)

3.3 Propagation and Collaboration

So far, we have described how a given agent retrieves and ranks a local set of
search results based on its user’s prior search experiences. Each agent is also
connected to a number of peer nodes (search agents belonging to other users)
in the search network. The agent propagates qT to each of these peers in order
to receive their local search recommendations, with each peer producing their
recommendations using the same basic process. These agents will in turn prop-
agate qT on to their peers, and so on. As a practical matter, query propagation
is limited to a fixed number of propagation steps according to a time-to-live
counter that is decremented and passed on with each propagated query.

Ultimately, agents will be connected because there is some history of collab-
oration when it comes to prior search sessions. One agent may have suggested
a search result which came to be selected by the receiving agent, for example.
These positive examples of search collaboration serve to strengthen the trust be-
tween connected agents, which we shall discuss in the next section. Before we do,
however, it is worth highlighting another way that the search network can adapt
to search collaboration. As queries are propagated through the network, the tar-
get agent (the agent that is the original source of the target query) may receive
recommendations from distant agents through a chain of network connections.
If the target agent’s user comes to select one of these distant recommendations,
then it speaks to the potential for further positive search collaborations between
these search agents in the future. This provides the basis for a simple approach

Provenance, Trust, and Sharing in P2P Case-Based Web Search 95

to network adaptation: by connecting agents that collaborate. In Figure 1, we
can see that the searcher corresponding to agent A selects a recommendation
that has come from agent C, resulting in the creation of a direct link between A
and C. For simplicity, in this work we create a connection at the first sign of such
collaboration, but in reality there is significant scope for further research on this
particular topic to look for a more robust mechanism for adaptation that is not
mislead by what could be spurious collaborations. Similarly, if two connected
agents fail to collaborate, then there is scope to sever their connections.

Of course, when a user joins the search network for the first time, a set of
seed connections is needed to initialise their search network. There are a number
of ways that such connections might be identified in practice. For example, the
user might be asked to provide a list of friends, or connections might be selected
automatically from a centralised list of reputable searchers. In our evaluation in
Section 4 we simply choose a set of initial connections at random and let each
user’s local search network evolve from there.

3.4 Trust, Promotion and Provenance

Each agent is responsible for generating a set of result promotions based on the
combination of its own local recommendations and the remote recommendations
that have been returned by its neighbours as a result of query propagation.
Remember that each of these recommendations is accompanied by a relevance
score (as per Equation 4), and they must now be combined to produce a ranked
promotion list. To do this, there is one further vital source of information that
needs to be described: the trust model.

The previous section referred to the notion of collaboration between searchers
via their search agents — in the sense that a result suggested by one user (or,
more correctly, their agent) might be subsequently selected by another user —
and how frequent collaboration could be used as the basis for a computational
model of trust between users. Simply put then, we can model the trust between a
pair of directly connected users, Ui and Uj , as the percentage of recommendations
that Uj has made to Ui which have come to be selected by Ui (as shown in
Equation 5). Obviously trust, as we have defined it, is an asymmetric relationship
because Uj may be a better source of search recommendations to Ui than Ui is
to Uj. This simple trust model is straightforward to implement, with each agent
maintaining trust scores for its peers and updating them after each search session.

Trust(Ui, Uj) =
SelectedRec(Uj, Ui)
TotalRecs(Uj, Ui)

(5)

The key point is that we can use an agent’s trust score as a way to weight
its recommendations, so that the relevance score that accompanies a remote
recommendation is modified by the trust score of its contributory agent as shown
in Equation 6; where WRel(rk) is the weighted relevance score of result rk which
has been recommended by Uj to Ui.

TRel(Ui, Uj, WRel(rk)) = Trust(Ui, Uj) ·WRel(rk) (6)

96 P. Briggs and B. Smyth

But, via query propagation, users can also receive recommendations from
agents that they are not directly connected to and that they have no trust score
for. To accommodate this, the trust-weighted relevance score of the recommen-
dation is updated at each step as it is propagated back to the agent that issued
the query. In this way, the relevance score is scaled according to the trust scores
that exist between connected agents. Thus, the provenance of a recommendation
has a concrete influence on its final relevance score; see [4] for related work. If
a remote recommendation propagates through a short chain of highly trusted
peers, then its relevance score will be largely preserved. Alternatively, if a remote
recommendation propagates through a long chain of less trustworthy peers, then
its relevance score will be greatly discounted. Ultimately, the target agent will
assemble a combined list of local and remote recommendations ranked accord-
ing to their appropriate relevance scores. If a given recommendation has arrived
from multiple sources, then its relevance scores can be combined additively.

The final step for the target agent is to promote the final set of recommenda-
tions within the result-list that is returned for the target query by the baseline
search engine (e.g. Google, Yahoo etc.). In practice, this means highlighting
those results in the result-list that also appear in the recommendation-list. Ad-
ditionally, the top-k (with k = 3 usually) most relevant recommendations are
promoted to the top of the result-list.

3.5 An Example Session

Figure 3 presents a simple example of this peer-to-peer approach to Web search
in operation. In this case the query used, ‘cbr’, is ambiguous (at least to Google),
and produces a result-list where none of the first page of results refer to case-
based reasoning. In this example, the query has been propagated through a
search network of peers, many of whom have an interest in various aspects of
case-based reasoning and related AI research. Consequently, the top ranking
recommendations that are returned provide a more relevant set of results for the
searcher than the default Google list. In this case the top-3 most relevant results
have been promoted, and each refers to an important CBR site.

It is worth highlighting how each result recommendation is annotated with
icons that provide the searcher with hints as to the origins of the recommenda-
tion. For example, the icon that depicts a lone individual (see Figure 3) indicates
that the result in question is a local recommendation that, by definition, has been
previously selected by the current searcher for a similar query. In contrast, the
icon that depicts a group of individuals indicates that the result is a remote rec-
ommendation from the searcher’s peers. In the example shown, the top-ranking
result is both a local and a remote recommendation. The screenshot also shows
that “mousing-over” the group icon reveals further information about the origins
of the recommendation, including the “names” of the contributing searchers and
the queries that they have selected this result for in the past. In the example,
we see that the searcher has chosen to view more information about the user
‘mabes25’, and is shown that this user has selected this particular result for two
other queries: ‘research cbr’ and ‘cbr publications’.

Provenance, Trust, and Sharing in P2P Case-Based Web Search 97

Fig. 3. A search result-list from Google enhanced by CWS recommendations

3.6 Discussion

Identifying the individuals responsible for a result promotion is an important
departure from the traditional (community-based) model of CWS [2]. It is not
without its challenges, but it does bring significant potential benefits when it
comes to the facilitation of high quality search collaborations between users.

First and foremost, this new P2P collaborative Web search (P2P-CWS) ap-
proach is proposed as an effective strategy for coping with recommendation spam:
previous versions of CWS were found to be somewhat susceptible to the actions
of malicious users promoting irrelevant results [5]. The trust model used in this
peer-to-peer approach provides for a very practical coping strategy in the face of
such attacks, because promotions can only be made by a remote user if there is
already a path of trust connections to the target searcher. Of course, this does not
preclude more sophisticated forms of attack. For example, a particularly devi-
ous user might ‘groom’ the searcher by baiting them with good recommendations

98 P. Briggs and B. Smyth

early on, in an attempt to gain their trust, before inserting irrelevant results
into the recommendation stream. However, the searcher is likely to recognise
and ignore such spurious promotions, which will quickly erode the false-trust
that had been built up. Furthermore, the malicious user does not receive any
direct feedback on the effectiveness of their efforts.

Ultimately, of course, trust is not simply a computational measure of col-
laboration between searchers. It is a social construct that develops as a re-
sult of social interactions. And the anonymous promotions of community-based
CWS effectively limit the type of social relationships that can develop between
searchers. It is clear from trial data that some searchers are better promotion
sources than others, but this information is lost in community-based CWS. P2P-
CWS is different. It provides information about the provenance of promotions
by labeling recommendations with the names of the searchers who contributed
to their recommendation. And this affords the searcher an opportunity to de-
velop an implicit social connection with other searchers. If a searcher finds that
they frequently benefit from the recommendations of a particular user then they
will be naturally drawn to this user’s recommendations in the future as they
come to trust in their search experiences. Equally, if a searcher is seldom inter-
ested in the recommendations of another user then they will quickly learn to
avoid recommendations from this user. All of this is independent of the com-
putational model of trust that co-develops as such collaborations persist and
mature.

Where community-based CWS neatly side-stepped the privacy issue by ob-
scuring any personal search histories within community case bases, the new
model’s requirement of individual search histories clearly raises some significant
privacy demons. The peer-to-peer architecture is a direct response to this. It pro-
vides for an increased level of privacy and security by eliminating the need for a
central store of search histories. Instead, each user’s searches are stored locally
on their client and accessed by their personal search agent. This provides the in-
dividual user with a significant level of control over the sharing of their valuable
search data. For example, it is feasible to allow the user to control their local
search network and to influence which other search agents they are connected to.
In this way, only other trusted users are permitted to contribute to, or benefit
from, a given user’s search experiences. When it comes to the propagation of
queries, privacy is aided by the fact that when an agent receives a query request
it knows only of the forwarding agent, and nothing of the agent that initiated
the search. However, although agents handle such query requests automatically,
it is possible for a motivated user to intercept them. Consequently, as is the case
with search logs, personal information in the query could pose a privacy risk.

Finally, it has been noted that, with our current trust model, a peer who makes
useful recommendations on one topic may have their trust score reduced unfairly
if their recommendations for an entirely different topic are rarely selected. Future
work may address this issue by adjusting the trust model so that scores are not
reduced in such cases, or by maintaining topic-specific trust scores.

Provenance, Trust, and Sharing in P2P Case-Based Web Search 99

4 Evaluation

We have described an alternative approach to CWS which provides a searcher
with personalized search recommendations that are drawn from the related
search experiences of a set of trusted searchers. In this section we test this ap-
proach by evaluating the recommendations that are generated within an evolv-
ing search network. In addition to the traditional precision-recall study, we also
examine the evolution of the search network as collaboration and cooperation
between search agents unfold, with a view to better understanding how the trust
model adapts during the course of an extended period of time.

4.1 Data

Ideally we would have liked to test P2P-CWS in a live-user setting, but this
was not feasible. We considered a small-scale laboratory trial, but our previous
experience tells us that such limited studies are rarely very revealing. At the same
time, the alternative strategy of using simulated users is equally problematic even
though it offers greater scope for large-scale evaluation. In this work we have
chosen to adopt a middle-ground by using the search profiles of 50 real users as
the basis for our search network, and then applying a leave-one-out methodology
to evaluate various performance metrics such as precision and recall.

As a source of search data, we used the profiles of 50 users from the Del.icio.us1

online social bookmarking service. In doing so, we follow the work of [13,14] by
treating each bookmarked page as a result selection with the user’s tags acting as
query terms. Thus, each tag and its bookmarks acted as a proxy for a search case
with its query and associated result selections. Obviously, the core assumption
behind P2P-CWS is that there will be some opportunity for collaboration be-
tween the various searchers in the network, and this can only come about if there
is overlap between their various search interests. Thus we focused on the first 50
users that Del.ico.us listed as having tagged the http://www.foaf-project.org
URL (the home page of the Friend of a Friend project), on the grounds that
there would be a reasonable opportunity for naturally overlapping search inter-
ests from this group without actually biasing the results by forcing overlap. For
each user, we retrieved all their bookmarked URLs and their associated tags.
This produced an average of 406 bookmarks (pages and queries) per user, with
the typical profile containing an average of 242 unique tags (query terms).

The search network corresponding to these 50 users is initialised by randomly
connecting each user to 10 other users, and all trust scores are set to the de-
fault of 0.5. An alternative would have been to connect each individual user to
a set of other users based on some assessment of their similarity (for example,
query or page overlap), but we chose this more challenging initialisation strat-
egy in part because it provides a tougher test of network adaptation and trust
evolution.

1 http://www.del.icio.us

http://www.foaf-project.org

100 P. Briggs and B. Smyth

4.2 Methodology

To evaluate the performance of P2P-CWS, we adopt a leave-one-out method-
ology in which each user in turn is designated as the target user to whom rec-
ommendations will be made. We re-run each of the target user’s search queries
through the search network and examine whether the recommendations pro-
duced contain any pages bookmarked by the target user for that current query.
During each search we remove the corresponding search case from the target
user’s local search case base so that they cannot receive recommendations based
on their own result selections. Obviously this is a fairly strict notion of result
relevance. Many recommendations may actually be relevant to the query, but
will not be judged as such unless the user had deemed to bookmark them in the
past. Nevertheless, this approach at least provides a lower-bound on relevance
and has the advantage that it can be fully automated.

The above methodology is repeated for a number of iterations or, epochs, to
allow for the trust models to evolve as a result of sharing and collaboration
between search agents. This also allows us to explore how search performance
changes as the network adapts to search collaborations. After each search session,
the trust model of the searcher is updated to reflect any selections — according
to the above strict notion of relevance, we assume that the searcher will select
any relevant recommendations that have been made.

4.3 The Evolution of Trust

Before we come to look at the precision-recall performance of P2P-CWS, it
is interesting to examine how the search network and the trust models evolve
during the experiment. In Figure 4(a), we present a graph of the number of
network connections within the network. The experiment begins (epoch 0) with
500 connections (since each user is randomly connected to 10 other users), but
as the experiment progresses we see new connections being formed as searchers
collaborate successful. Interestingly, we see that the majority of new connections
are forged during the first 4 epochs as the network structure quickly converges.
As a matter for future work, it would be interesting to validate this convergence
behaviour over different and larger-scale networks.

Just as the structure of the search network evolves over time, so too do the
trust models employed by the individual search agents. The results in Figure
4(b) show a series of trust-score histograms that highlight the distribution of
searcher-pairs with different trust scores; each histogram was generated at the
end of a full epoch by counting the number of searcher-pairs with a trust score
that fell within a given range of values. At the end of the first epoch, the majority
of the trust relationships remain close to their default strength of 0.5; there are
579 trust relationships in our search network, and over 90% of these (529) have
a score of between 0.5 and 0.75 at the end of epoch 1. However, the trust scores
gradually settle as a result of search activity and, by the end of epoch 20, just
under 30% of the relationships have a trust score in this range. Overall, we see a
gradual flattening of the trust distribution curve, indicating that a broad range

Provenance, Trust, and Sharing in P2P Case-Based Web Search 101

Fig. 4. (a) The number of peer-to-peer connections per epoch; (b) The changing dis-
tribution of trust scores per epoch

of trust scores are distributed throughout the network as searchers collaborate
with varying degrees of success. Since, by design, the interests of this network
of searchers are likely to overlap to some degree (they share a common interest
in FOAF research), it is perhaps not surprising to see that, on the basis of the
trust values presented, there is a considerable degree of productive collaboration
within the network. For example, after 10 epochs we see that approximately
60% of trust scores fall in the 0.5-1 range, indicating a strong history of search
collaboration between at least half of the search relationships encoded by the
search network. Indeed, less that 10% of the relationships are weak, in the sense
that they have trust scores below the 0.25 threshold.

4.4 Recommendation Quality

The traditional metrics of information retrieval success are precision and re-
call. The former measures the percentage of results (recommendations) that are
relevant, while the latter measures the percentage of relevant results that are
recommended. In Figure 5 (a), we present a precision-recall graph in which each
plot represents the precision-recall characteristics for recommendation lists of
various sizes (k = 1, ..., 10) during each epoch. For example, in Figure 5 (a)
the points that represent epoch 1 are labeled with their respective values of k
so that the point corresponding to k = 1 indicates that during the first epoch,
when only the top recommendation was presented to the searcher, we found an
average precision score of 0.03 and a recall score of 0.015.

There are a number of points to be made about these results. First, the preci-
sion and recall scores are unusually low, more because of the strict nature of our
relevance judgement than any underlying shortcoming of the recommendations
themselves. As is usually the case in this type of experiment, precision tends
to decrease with increasing k, while recall tends to increase; as k increases it
becomes less likely that additional recommendations will be relevant, but it is
more likely that a greater number of relevant recommendations will be produced.
Perhaps most importantly, we see a sustained improvement in precision-recall

102 P. Briggs and B. Smyth

Fig. 5. (a) Precision versus recall for result-lists sizes from 1 to 10; (b) Percentage of
sessions with recommendations containing a relevant result within the top k

during later epochs. This means that as the search network evolves, and as trust
models adapt, better recommendations are being made. For example, by epoch
20 the precision and recall characteristics of the recommendations at the top of
the list have effectively doubled.

In Figure 5 (b), we present an alternative performance graph which computes
the average percentage of sessions that include a relevant result within the top k
recommendations in sessions where recommendations are actually made. Once
again, we see a steady increase in the percentage of successful recommendations
as the trust network evolves. For example, during epoch 1, successful results are
found in the top result-list position about 3% of the time, rising to just over
9% of the time if we consider the top 10 result-list positions. By epoch 20, this
success rate has more than doubled for k = 1, with a success rate of over 6% at
this position, and reaching nearly 11% for the top 10 results.

5 Conclusion

This work has been inspired by recent approaches to CWS [3] in which CBR tech-
niques are used to harness the search experiences of communities of searchers.
The research presented here is novel in that it provides for a more flexible CWS
architecture; one that avoids the need for explicit search communities while de-
livering similar benefits in terms of search quality. Moreover, the peer-to-peer
architecture provides a level of privacy and security that is sufficient to merit the
use of individual user search profiles in place of community-based profiles, re-
sulting in significant benefits when it comes to regulating the exchange of search
experiences within the network. By profiling individual users, for example, it is
possible to evaluate the reliability of searchers when it comes to recommend-
ing relevant results to others, and this can be used as an effective way to cope
with search spam that may be introduced by malicious searchers within the
network.

Provenance, Trust, and Sharing in P2P Case-Based Web Search 103

References

1. Search Engine Watch: Worldwide internet: Now serving 61 billion searches per
month, http://searchenginewatch.com/showPage.html?page=3627304

2. Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.:
A live-user evaluation of collaborative web search. In: Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1419–
1424 (2005)

3. Balfe, E., Smyth, B.: Case-Based Collaborative Web Search. In: Proceedings of the
7th European Conference on Cased Based Reasoning, pp. 489–503 (2004)

4. Leake, D.B., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 194–208. Springer, Heidelberg (2007)

5. O’Mahony, M.P., Smyth, B.: Collaborative Web Search: A Robustness Analysis.
In: Artificial Intelligence Review, Special Issue on the 18th Artificial Intelligence
and Cognitive Science Conference (AICS 2007) (to appear, 2007)

6. Voss, A., Kreifelts, T.: SOAP: Social Agents Providing People with Useful In-
formation. In: Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work, pp. 291–298. ACM Press, New York (1997)

7. Glance, N.S.: Community Search Assistant. In: Proceedings of the 6th International
Conference on Intelligent User Interfaces (IUI 2001), pp. 91–96. ACM Press, New
York (2001)

8. Jung, S., Harris, K., Webster, J., Herlocker, J.L.: Serf: integrating human rec-
ommendations with search. In: CIKM 2004: Proceedings of the thirteenth ACM
international conference on Information and knowledge management, pp. 571–580.
ACM, New York (2004)

9. Leake, D., Sooriamurthi, R.: When Two Cases Are Better Than One: Exploiting
Multiple Casebases. In: Proceedings of the International Conference on Case-Based
Reasoning. Springer, Heidelberg (2001)

10. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Bookmark-driven query routing
in peer-to-peer web search. In: Proceedings of the SIGIR Workshop on Peer-to-Peer
Information Retrieval, 27th Annual International ACM SIGIR Conference (2004)

11. Suel, T., Mathur, C., wen Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long,
X., Shanmugasundaram, K.: Odissea: A peer-to-peer architecture for scalable
web search and information retrieval. In: International Workshop on Web and
Databases (WebDB), pp. 67–72 (2003)

12. Smyth, B., Balfe, E.: Anonymous personalization in collaborative web search. Inf.
Retr. 9(2), 165–190 (2006)

13. Boydell, O., Smyth, B.: Enhancing case-based, collaborative web search. Case-
Based Reasoning Research and Development 4626, 329–343 (2007)

14. Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social
annotations. In: WWW 2007: Proceedings of the 16th international conference on
World Wide Web, pp. 501–510. ACM, New York (2007)

http://searchenginewatch.com/showPage.html?page=3627304

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 104–119, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visualizing and Evaluating Complexity of Textual
Case Bases

Sutanu Chakraborti1, Ulises Cerviño Beresi2, Nirmalie Wiratunga2, Stewart Massie2,
Robert Lothian2, and Deepak Khemani3

1 Systems Research Lab
Tata Research Development and Design Centre

54B Hadapsar Industrial Estate, Pune, India
sutanu.chakraborti@tcs.com

2 School of Computing,
The Robert Gordon University

Aberdeen AB25 1HG, Scotland, UK
{ucb,nw,sm,rml}@comp.rgu.ac.uk

3 Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Chennai – 36, India
khemani@iitm.ac.in

Abstract. This paper deals with two relatively less well studied problems in
Textual CBR, namely visualizing and evaluating complexity of textual case
bases. The first is useful in case base maintenance, the second in making in-
formed choices regarding case base representation and tuning of parameters for
the TCBR system, and also for explaining the behaviour of different re-
trieval/classification techniques over diverse case bases. We present an ap-
proach to visualize textual case bases by “stacking” similar cases and features
close to each other in an image derived from the case-feature matrix. We pro-
pose a complexity measure called GAME that exploits regularities in stacked
images to evaluate the alignment between problem and solution components of
cases. GAMEclass, a counterpart of GAME in classification domains, shows a
strong correspondence with accuracies reported by standard classifiers over
classification tasks of varying complexity.

1 Introduction

This paper presents a novel approach to visualizing textual case bases, and evaluating
their complexity. Visualization is useful in the Textual CBR (TCBR) context for the
following reasons:

1. easing knowledge acquisition from human experts
2. visually evaluating goodness of the underlying representation,
3. aiding case base maintenance, by revealing redundant features or noisy

cases
4. presenting and explaining retrieved results to end users.

 Visualizing and Evaluating Complexity of Textual Case Bases 105

The first three are concerned with building and maintaining textual case bases, and
are “off-line” activities in that they do not directly concern retrieval. In contrast, the
fourth is an “on-line” activity, and is outside the scope of the current paper. Also, it
may be noted that throughout this paper, we will focus on visualizing the case base in
its entirety, and not individual cases.

Our second goal is to evaluate case base complexity. Complexity has different
connotations in different contexts. In supervised classification tasks, a domain is
complex if the classes are not easily separable, whereas in unsupervised tasks where
we have a set of cases without any class labels, a complex domain is one which shows
no neat clustering tendencies between the cases. Most TCBR domains are character-
ized by cases each having a problem and a solution component, both textual. Later in
this paper, we will present an interpretation of complexity that estimates the compe-
tence of the system in solving a new problem by retrieving solutions to similar prob-
lems encountered in the past. It may be noted that complexity measures for supervised
classification domains can be treated as a special case of this formulation, where the
solution components map onto class labels. Complexity evaluation is important in
facilitating the three off-line tasks mentioned above, particularly tasks 2 and 3. In case
of task 2, a complexity measure would provide a quantitative basis for assessing the
suitability of a representation, while visualizations aid qualitative judgements by hu-
mans. While visualization and complexity evaluation have often been treated in isola-
tion, our current understanding is that they often share similar goals, and may exploit
similar mechanisms to realize these goals as well.

Visualization is a well studied sub-field of text mining (TM) [5], and it is not surpris-
ing that most approaches investigated till date can be extrapolated to TCBR tasks. How-
ever, some differences are worth noting. Firstly, most visualization approaches in TM
focus either on visualizing clusters of documents, or of words, but not both. In TCBR
maintenance tasks, we often want to highlight the nature of interrelationships between
words (alternately higher level TCBR features) and documents (cases) that give rise to
the clustering patterns, and serve as an explanation for the underlying complexity. This
helps in case base maintenance, as we can identify noisy cases or redundant features [7].
A second distinction, and one that has a strong bearing on complexity evaluation as men-
tioned above, is the TCBR emphasis on the split between problem and solution compo-
nents of a textual case. We choose a representation that maximizes the “alignment” [4]
between problem and solution components of texts. This issue has not been explored by
researchers in TM visualization. Thirdly, TCBR representations are often more knowl-
edge rich in comparison to those used in TM or Information Retrieval (IR). In contrast to
shallow Bag Of Words (BOW) representations used in TM/IR, TCBR often uses
“knowledge entities” ranging from domain specific terms, phrases or syntactic patterns
from Information Extraction, as features [14]. However, this distinction is not critical
here since our approaches are agnostic to the kind of features, though both visualization
and complexity measures can take into account sophisticated domain-specific similarity
measures associated with knowledge rich features.

Our first contribution in this paper is the idea of visualizing a textual case base as
an image displaying a matrix of cases and features such that interesting associations
and clusters within the case base are revealed. We present a simple algorithm that
generates this image by exploiting regularities across cases and features. The resulting
image has more than just a visual appeal; the compressibility of the image is used to

106 S. Chakraborti et al.

arrive at a novel measure of complexity called GAME (for Global Alignment MEas-
ure) that estimates alignment between problem and solution components of cases. We
present experimental studies to show that GAME correlates well with classifier accu-
racies in classification problems of varying complexity.

2 The “Case Base as Image” Metaphor

Let us consider a set of textual cases, each case consisting of a set of features. For
simplicity, we treat words in the text as features; the ideas presented can easily be
extended to deal with more complex features. Also, we will restrict our attention to
the problem side of cases, for the moment. To illustrate our ideas, we model the
documents in the toy Deerwester collection [6] as cases. This is shown in Figure 1(a).
An alternate representation is in the form of case-feature matrix shown in Figure 1(b);
elements are 1 when a feature is present in a case, 0 otherwise. It is straightforward to
map this matrix onto an equivalent image, shown in Figure 2(a), where the values 0
and 1 are mapped to distinct colours, a lighter shade denoting 1. We obtained this
image, and for that matter all other images in this paper, using Matlab. Very simply
put, this is the “case base as image” metaphor. However the image as it stands, is not
very useful. Firstly, it conveys very little information about underlying patterns in
terms of word or document clusters. Secondly, the image is highly sensitive to how
the words and documents are arranged in the matrix; this is clearly undesirable.
Thirdly, and we shall explore this in more detail in Section 3, the image tells us very
little about the complexity of the underlying case base.

To address these limitations, we propose an algorithm that does a twofold trans-
formation on the case-feature matrix to yield a matrix where similar cases (and similar
features) are stacked close to each other. The output is a matrix, which when visual-
ized as an image, captures the underlying regularities in the case base. Figure 3
shows a sketch of the algorithm. The broad idea is as follows. The first case row in
the original matrix is retained as it is. Next, we compute the similarity of all other
cases to the first case, and the case most similar to the first case is stacked next to it,
by swapping positions with the existing second row. If more than one case is found to
be equally similar, one of them is chosen randomly. In the next step, all cases except-
ing the two stacked ones are assessed with respect to their similarity to the second
case. The case that maximizes a weighted combination of similarities to the first and
second case (with higher weight assigned to the second case) is chosen as the third
case, and stacked next to the second row. The process is repeated till all rows are
stacked. In Step 2 of the algorithm, the same process is repeated, this time over the
columns of the matrix generated by Step 1.

The weighted similarity evaluation is critical to the working of this algorithm and
merits a closer look. The general rule for selecting the (k+1) row (case) is to choose
the one that maximizes

),(
1

ccsimw i

k

i
i∑

=

 such that for all 1 ≤ i < k , ii ww >+1 (1)

where k is the number of already stacked rows, ci is the ith stacked case, c is a case whose
eligibility for (k+1)th position is being evaluated, sim(ci, c) is the cosine similarity

 Visualizing and Evaluating Complexity of Textual Case Bases 107

(a) (b)

Fig. 1. Documents in the Deerwester Collection

between cases ci and c, and wi is the weight attached to the similarity of c with the ith
stacked case. In our implementations, we used

)1/(1 +−= ikwi
 (2)

The basic intuition behind this approach is that we want to ensure a gradual change
in the way cases are grouped. This has implications for facilitating a meaningful dis-
play of clusters, and also for the complexity evaluation discussed in Section 3. If only
sim(ck, c) were considered for the stacking process (which is equivalent to assigning 0
to all wi, i = 1 to k-1) we may have abrupt changes resulting in an image that fails to
reveal natural clusters. We note that for efficiency reasons, our implementation uses
an approximation of (2), where we take into account only the previous 10 stacked
cases and no more, since the weights associated with very distant cases are negligible
and have no significant effect on the ordering. Choosing the starting case for ordering
cases is an important issue, that we examine in the Section 4.

Figure 2(a) shows the image corresponding to an arbitrary arrangement of the
documents in the Deerwester matrix. Figure 2(b) shows the image after the rows are
stacked. Figure 2(c) is the final image after column stacking. It is interesting to see
that the two broad topics within the collection, namely Human Computer Interaction
(HCI) and graphs are clearly visible in Figure 2(c) as two “chunks” of contiguous
light shades. Also, there is a gradual transition in shades from HCI to graphs. This is
useful in identifying “bridge words” that can serve to connect two topics; an example
is word 9 (“survey”) in Figure 2(c) which is common to HCI and graphs. We can also
visually identify cases that are in the topic boundaries and deal strongly with more
than one topic. This has implications in case base maintenance tasks in terms of
identification of noisy cases, and redundant cases and features [7]. We have designed
a simple interface that allows users to “navigate” the image, and visualize the “topic
chunks”, and words that describe those chunks.

108 S. Chakraborti et al.

 (a) (b) (c)

Fig. 2. Images from Deerwester collection (a) arbitrarily stacked (b) after row stacking (c) after
column stacking

Step 1 (Stack Rows)
Input : Case-Feature Matrix M
Output : Case-Feature Matrix MR which is M stacked by rows
Method:
Instantiate first row of MS to first row M
for k = 1 to (noOfRows-1) /*the index of the last case (row) stacked*/

for j = (k+1) to noOfRows /* check through all candidate cases*/
 wsimj = 0; /* wsimi weighted similarity of ith case */

for i = 1 to k /* already stacked rows*/
 wsimj = wsimj + wsimj*(1/(k-i+1))*sim(ci,cj) ;
 end
 end
 choose j that maximizes wsimj and interchange rows (k+1) and j
end

Step 2 (Stack Columns)
Input : Case-Feature Matrix MR generated by step 1
Output : Case-Feature Matrix MC which is MR stacked by columns
Method: same as in Step 1 except that columns are interchanged (based on feature
similarity computed as cosine similarity between columns) instead of rows.

Fig. 3. The Stacking Algorithm

3 Complexity Evaluation Using Compression

In this section, we explore how the image metaphor can be exploited to obtain a measure
of the case base complexity. There are two reasons why complexity evaluation is useful.
Firstly, we can predict difficulty of domains (datasets) for a given choice of representa-
tion (feature selection/extraction and similarity measures). Secondly, we can compare

 Visualizing and Evaluating Complexity of Textual Case Bases 109

across different choices of representation over a fixed domain and choose the representa-
tion that minimizes complexity. We observe that complexity over a case base can be de-
fined in two ways, namely Alignment Complexity (AC) and Collection Complexity
(CC). The former, which is our main concern in this paper, measures the degree of
“alignment” [4] between problem and solution components of textual cases. Measuring
this helps us in answering the question “Do similar problems have similar solutions?”
and thereby assessing the suitability of CBR (or alternatively the choice of representa-
tion) to that task. A special case of this problem is seen in classification domains, where
the solution is replaced by class label. In measuring CC, the distinction between the prob-
lem and solution components of cases is ignored, and the complexity measure provides a
measure of clustering tendencies exhibited by the case base. Thus a case base with cases
uniformly distributed over the feature space has a high complexity; whereas, one with
more well-defined clusters has a lower complexity [12]. Intuitively, since the stacked
image captures regularities arising from topic chunks in the case base, we would expect
that, all else being equal, stacked images from simpler domains will be more compressi-
ble, and thus have higher compression ratios, compared to ones from complex domains.
This is because image compression algorithms typically exploit regularities to minimize
redundancy in storage. Alternatively, a simple domain is one where case clustering serves
as an explanation for feature clustering, and vice versa. We carry forth this intuition into
our discussions of AC, since AC can be thought of as an extension of CC.

Alignment can be interpreted in two different ways. The first interpretation is a lo-
cal one; an example is the case cohesion metric formulated by Lamontagne[4]. Here
we look at a case, say C, in isolation, and determine two sets: set S1, which comprises
cases whose problem components are closest to the problem component of C (based
on a threshold), and a set S2, comprising cases whose solution components are closest
to the solution of C. The overlap between S1 and S2 is used as a measure of alignment
of C. This is a local metric, in that each case is evaluated on its own, and assigned a
measure. The second interpretation is a global one based on how well the clusters
derived from problem components of cases correspond to clusters derived from solu-
tion components. In this paper we adopt this second interpretation of alignment.

For measuring alignment, we construct two case-feature matrices: one based on
problem components of cases, the other based on solution components. These two
matrices are stacked as described in Section 2, to yield two images IP and IS respec-
tively. IP and IS are now independently compressed to obtain compression ratios CRP
and CRS respectively. For measuring alignment, it is interesting to compare the order-
ing of cases in IP and IS. One way of doing this is to create a fresh solution side image
ISP by stacking solution components of cases using the problem side ordering of cases
as read out from IP. We would intuitively expect ISP to be less compressible than IS,
unless the case base is perfectly aligned. Compressing ISP yields a new compression
ratio CRSP. Let CRSMIN denote the minimum compression ratio that can be obtained
by reordering the solution components independent of the problem components;
CRSMIN corresponds to the worst possible stacking of the solution side, where dissimi-
lar cases are stacked next to each other, leading to an image having very few regulari-
ties and hence very poor compression ratio. The Global Alignment MEasure (GAME)
is given by (CRS – CRSMIN)/(CRS – CRSP). A higher value of GAME indicates a bet-
ter alignment. An alternate measure can be obtained by considering IPS, the problem
side image with solution ordering imposed on it, instead of ISP. However, our choice

110 S. Chakraborti et al.

of ISP over IPS was governed by the observation that while we are keen on ensuring
that similar problems have similar solutions, it is not of primal importance that similar
solutions necessarily originate from similar problems. Using ISP takes care of this
asymmetry.

GAME can be extended to classification domains where the class label is treated as
a solution. In this case, our interest is in determining whether near-neighbours in the
problem side ordering (as obtained from IP) belong to the same class. We obtain a
string of class labels corresponding to the problems as they appear in the problem side
ordering. This allows us to do away with the image compression and resort to a sim-
pler string based compression instead. As an illustration, let us consider a two class
problem of 10 cases in the email domain, where cases C1 through C5 belong to class S
(for SPAM) and C6 through C10 belong to L (for LEGITIMATE). Let us assume that
the problem side ordering of the cases after stacking is C1C2C6C4C5C7C3C9C10C8. Re-
placing each case identifier with its class label, we obtain the class string
SSLSSLSLLL. The most easily classifiable case base would have a string
SSSSSLLLLL, and the most complex would have SLSLSLSLSL. A compression
algorithm that exploits contiguous blocks (but not compound repeating patterns like
SL) would thus be ideal; Run Length Encoding is one such scheme. Using this, the
complexity is a direct function of the number of the flips (changes from one class la-
bel to another, L to S or S to L in the above example). We define GAME complexity
measure for classification as

GAMEclass ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
min

minmaxlog
flipsflips

flipsflips
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
−−−

=
)1(

)1()1(
log

kflips

kn (3)

where k is the number of classes, n is the number of cases (n > k), flips is the number
of transitions from one class to another in the class string, flipsmin is the value of flips
for the simplest possible case base having n cases and k classes, and flipsmax is the
value of flips for the most complex case base. We note the most complex case-base
presupposes a uniform class distribution; we then have flipsmax = (n-1). A higher value
of GAMEclass corresponds to a simpler domain; the most complex domain has GAME-
class = 0. Thus we expect positive correlation of GAMEclass to accuracy results derived
from classifiers. The logarithm has a dampening effect on the large values that could
result when n >> k, flips. As a further detail, a small constant (say 0.01) should be
added to the denominator to avoid division by zero when flips = flipsmin. Considering
the inverse relation that exists between flips and compression ratio (flipsmin corre-
sponds to CRS, and flipsmax to CRSMIN), and ignoring scaling due to logarithms, it is
clear that GAMEclass can be viewed as an extension of GAME.

4 Experimental Results

Evaluating the general formulation of GAME involves a study of its correlation with
an effectiveness measure (like precision/recall/F-measure) derived from subjective
relevance judgments from experts over diverse case bases. Because of the difficulty in
obtaining such TCBR datasets with relevance rankings, we evaluated the adapted ver-
sion of GAME (GAMEclass) over six different classification tasks.

 Visualizing and Evaluating Complexity of Textual Case Bases 111

For evaluating classification effectiveness in routing, we created datasets from the 20
Newsgroups [1] corpus. One thousand messages from each of the 20 newsgroups were
chosen at random and partitioned by the newsgroup name [1]. We form the following
four sub corpora: SCIENCE which has 4 science related groups, REC which has 4 rec-
reation related groups, HARDWARE which has 2 problem discussion groups on PC and
Mac, RELPOL which has 2 groups on religion and politics. We also used two datasets
for evaluation on spam filtering: USREMAIL [11] which contains 1000 personal emails
of which 50% are spam and LINGSPAM [8] which contains 2893 email messages, of
which 83% are non-spam messages related to linguistics, the rest are spam. Equal sized
stratified disjoint training and test sets were created, where each set contains 20 % of the
dataset of documents randomly selected from the original corpus. For repeated trials, 15
such train test splits were formed. Documents were pre-processed by removing stop
words and some special characters. We use an Information Gain based feature selection.

Figure 5 shows snapshots of stacked images obtained from the six datasets de-
scribed above. The rows of each image correspond to cases, and the columns to fea-
tures. The case rows are shaded to show the classes to which they belong. It is seen
that USREMAIL has very neat separability between the classes with cases belonging
to the same class packed closely to each other. LINGSPAM and RELPOL also dis-
play regularities with respect to ways cases belonging to the same class are packed. In
contrast, HARDWARE is clearly a complex domain, with very little separability be-
tween classes, and very few pronounced topic chunks. This is perhaps explained by
the presence of large number of features which are shared by classes PC and Mac. To
increase effectiveness of classification in HARDWARE, one approach is to combine
features to extract new features which are more discriminative of the two classes. We
note that in the colour shading as in Figure 5 is only applicable to classification do-
main. In non-classification domains (where the solution is textual) one approach is to
map the solution side similarities of cases having similar problem descriptions (and
hence stacked next to each other) to different colour shades (lighter shades for rela-
tively dissimilar solution components, say) and show the resulting “colour band”
alongside the stacked image. This helps in identifying complex regions of the case-
base, where similar problems do not have similar solutions.

Figure 4 shows the GAMEclass values obtained over the 15 trials in each of the six
datasets. Of the two class problems, LINGSPAM and USREMAIL have high GAME-
class values indicating that they are simpler compared to HARDWARE which has a
low GAMEclass value. Table 1 suggests that GAMEclass predictions are supported by
accuracy figures recorded by seven classifiers. The first of these is the standard 3-
nearest-neighbours classifier using a cosine similarity measure. The second and third
are 3-NN classifiers based on Latent Semantic Indexing (LSI) [6] and its class-aware
version sprinkled LSI (LSISPR in the table) [3] which are interesting in the TCBR
context, since they lend themselves to instance based retrieval, and incremental learn-
ing. The fourth is a neural network classifier embedded in an architecture called the
Extended Case Retrieval Network, presented in [15]. The Support Vector Machine
(SVM) [2] has been shown to be very successful with textual data [5]; we have ex-
perimented with SVM with a linear kernel (which has been shown in [18] to work
best for textual data) as our fifth classifier. The sixth is LogitBoost, which is a
boosting approach grounded on weak learners in the form of decision stumps [5]. Fi-
nally, we also used a classifier based on Propositional Semantic Indexing (PSI) which

112 S. Chakraborti et al.

Fig. 4. GAMEclass values across different datasets

Table 1. GAMEclass and Accuracies obtained by different classifiers

HARDWARE RELPOL USREMAIL LINGSPAM REC SCIENCE

GAME measure 1.0028 2.0358 2.3728 3.2222 1.1629 1.0492

kNN-3 59.51 70.51 59.23 85.09 62.79 54.89

LSI + kNN-3 66.30 91.17 94.67 97.37 79.32 72.55

LSISPR + kNN-3 80.42 93.89 96.13 98.34 86.99 80.60

ECRN(Neural
Network)

80.12 93.26 96.50 98.17 69.91 80.18

SVM 78.82 91.86 95.83 95.63 -- --

LogitBoost 77.99 79.67 92.67 95.80 87.15 73.77

PSI 80.1 91.2 94.83 95.8 76.2 59.9

Table 2. Correlation of GAMEclass with classifier accuracies over 4 binary classification
problems

kN
N

-3

L
SI

 +
 k

N
N

-3

L
SI

SP
R

 +

kN
N

-3

E
C

R
N

 (
N

N
)

SV
M

L
og

itB
oo

st

PS
I

0.7685 0.9176 0.9365 0.9360 0.9023 0.8820 0.9330

 Visualizing and Evaluating Complexity of Textual Case Bases 113

has been presented in the TCBR context [16]. Like LSI, PSI performs feature extrac-
tion; however the extracted features are more easily interpretable compared to LSI.
The current formulation of GAMEclass allows for more meaningful comparisons be-
tween problems when they have the same number of classes. So we compared the
binary and four-class problems separately. The correlation coefficient of the GAME-
class score against classification accuracies over the four binary problems are shown in
Table 2. We note a strong positive linear correlation of GAMEclass to accuracies re-
ported by all seven classifiers. It is also interesting to note a stronger correlation of
GAMEclass to LSISPR as compared to LSI, hinting at the importance of class knowl-
edge. It is pointless to do correlation over the four-class datasets since we have just
two of them; however we observe that GAMEclass declares SCIENCE to be more
complex than REC, and this is confirmed by all classifiers, excepting ECRN, where
the neural network training failed to converge in the REC dataset. SVM being inher-
ently a binary classifier was not tried on the 4-class datasets, though we plan to ex-
periment with multi-class SVM in future. The GAMEclass results closely relate to the
visualizations; for instance, comparing the stacked images in Figure 5 from RELPOL
and USREMAIL reveal that RELPOL is sparser with less conspicuous chunks, thus
partially explaining its lower GAMEclass value.

Figure 6 shows the result of stacking on a representation generated by LSI. LSI re-
covers from word choice variability, by inferring similarity between words that co-
occur in similar contexts. This has the effect of reducing sparseness of the original
representation. It is interesting to observe that the LSI image is a blurred version of
the original; also the compressed LSI image is approximately 73% the size of the
original compressed image. We note that both LSI and LSISPR results were at a di-
mensionality setting where they yielded best performances [3].

An important issue that merits closer attention is the choice of the starting case in
the stacking process, and its influence on the visualization and complexity measure.
Our experiments have shown that visualizations are not widely affected by the choice
of starting cases, except for the shuffling in the order in which clusters are displayed.
We carried out experiments to study the effect of choice of starting case on the
GAMEclass complexity measure. 50 different starting cases were chosen for each data-
set. Figure 7 shows histogram plots for variation in flips over these choices; each ver-
tical bar in the graphs shows the number of choices (out of 50) that result in a certain
range of flips values, which are plotted along the horizontal axis. The range indicators
flipsmax and flipsmin are shown along with mean flips and standard deviations. It is ob-
served that all graphs are either densely packed or have sharp peaking behaviour; in
other words, they have low standard deviations in comparison to the range (flipsmax --
flipsmin). This shows that the GAMEclass scores are statistically robust to choice of
starting cases, when it comes to comparing complexity between casebases. From a
purist standpoint, however, one would choose a starting case that that produces the
maximum GAMEclass score. An obvious brute force approach, which is impractical for
any case base of non-trivial size, is to exhaustively try each case as a starting case.
More research needs to go into finding efficient ways of pruning the search space to
make the process less computationally expensive. A graph theoretic perspective to
this problem is briefly outlined in Section 6.

114 S. Chakraborti et al.

Fig. 5. Stacked Images

 Visualizing and Evaluating Complexity of Textual Case Bases 115

Fig. 6. Stacked images from USREMAIL before and after LSI

Fig. 7. The impact of choice of starting cases on the GAMEclass complexity measure

Fig. 8. A snapshot of hierarchical visualization (courtesy HCI Maryland website [10])

116 S. Chakraborti et al.

5 Related Work

Visualization techniques in Text Mining have typically attempted to display one of
word associations or document clusters, but seldom both. Techniques to display word
associations include word association graphs and circle graphs [5]. For visualizing
document clusters, a common approach is multidimensional scaling which projects
documents in a high dimensional space to a two dimensional one, under the constraint
of preserving the similarity relationships between documents, as closely as possible.

An approach that comes close to our idea of stacking in terms of the generated lay-
out is the Hierarchical Clustering Explorer [10] which dynamically generates clusters
based on user-defined thresholds, and displays the mined document clusters. In addi-
tion to the fact that word clusters are not displayed, one other limitation of this ap-
proach is that there is no clear way of choosing the right ordering between several
sub-trees under a given node. This may lead to discontinuities in the image (some of
which are marked by D in Figure 8) and sudden change in concepts. Thus it would
fail to expose patterns exposed by the weighted stacking approach. An approach that
comes close to showing both words and documents in the same space is WEBSOM
[5]. WEBSOM fails to preserve the structure of cases as a set of feature values, and is
unwieldy for case base maintenance. Furthermore, our approach has the relative ad-
vantage of being free from convergence problems faced by WEBSOM.

It would be interesting to explore parallels between “topic chunks” revealed by the
stacked image, and concepts as mined by Formal Concept Analysis (FCA) [13].
While FCA has been applied to TCBR tasks, the inherent sparseness of textual data
leads to generation of a large number of concepts that are brittle and unintuitive. Re-
laxing the strict closure requirements of FCA could possibly lead to “approximate
concepts”. Our intuition is that a topic chunk, when interpreted as a blurred rectangu-
lar version of the actual light shades in close proximity, may be a close analog to such
an approximate concept. It is worth noting that this blurring operation can be viewed
as smoothing of cases based on the neighbourhood of each cell, thus achieving feature
generalization. Blurring makes sense only on the stacked image since we are assured
that neighbouring cells are likely to correspond to similar cases and features; it is
meaningless on the original image where the arrangement is arbitrary. In our earlier
work on LSI-based classification [3], we presented examples to show that lower rank
approximations to case feature matrices generated by LSI can be regarded as blurred
versions of the original. This parallel opens up avenues for exploring alternatives to
LSI that tailor the blurring to cater to specific TCBR goals.

6 Future Work

On the visualization front, several enhancements to our simple implementation are
desirable. Firstly, the visualization should facilitate interaction with the user, that al-
lows him to view and annotate concepts that act as descriptors of topic chunks, make
changes to the case-base, like add or remove cases and features, and generate revised
stacking on the fly using different parameter settings, and obtain qualitative judge-
ments for determining settings that work best. When case bases are large, the user
should be able to zoom in on interesting regions of the image. Another interesting
extension to our current interface would be a facility to show feature associations in

 Visualizing and Evaluating Complexity of Textual Case Bases 117

each topic chunk in the style of association graphs [5] rather than displaying just a list
of features. This may enhance its usability for the knowledge engineer.

As part of future work on global complexity measures, we would like to carry out an
evaluation of the original GAME measure on unsupervised case bases over which rele-
vance judgements are available, or can be inferred implicitly [17]. We are also investigat-
ing the problem of complexity evaluation from a graph theoretic perspective, where each
case is a vertex, and each edge carries a weight equal to the similarity between the two
cases it connects. Theoretically, the process of finding the best stacking arrangement
maps onto finding an optimal tour that connects all cases in the graph, while minimizing
a cost, which in our case is simply the sum of similarities (we could incorporate a weight-
ing as in equations (1) and (2) above) across all edges involved in the tour. This is the
classic Travelling Salesman Problem (TSP) [20] which is known to be NP-complete. We
can obtain approximate solutions based on branch-and bound heuristics and distance
measures that satisfy triangle inequality. An interesting alternative that leads to an exact
solution is to find the minimum spanning tree (MST) instead. The greedy algorithm for
the MST is the following: at each stage, build the cheapest (least cost) edge (in our case,
an edge corresponding to highest similarity) that, when added to the already constructed
graph, does not result in a cycle. It can be shown that this greedy algorithm results in a
minimal cost spanning tree, and several efficient variants of the above algorithm have
been proposed [20]. There are two ways in which the MST idea can be exploited. Firstly,
it can help us in a more principled and efficient choice of the starting case. Secondly, the
idea can be extended to devise a complexity measure based on forming MSTs independ-
ently of problem and solution components, and comparing these MSTs using one of sev-
eral tree edit measures [19].

As a final point, we note that case bases are seldom static, so the importance of ef-
ficient update strategies that can handle additions, deletions or updates of cases (or
features) cannot be over-emphasized. Though we have not experimented with dy-
namic collections, our current prescription is a lazy strategy that makes quick incre-
mental but approximate updates whenever a change happens, and relegates the job of
making accurate changes at a later “bulk update” stage. This saves the overhead
of performing stacking each time a change is encountered. The basic idea is to trade
off accuracy for efficiency, and is similar in sprit to the idea of folding-in [21] which
is a popular method for updating LSI based representations.

7 Conclusions

We presented a simple approach to visualize textual case bases. The stacked image dis-
play can help knowledge engineers in getting a bird’s eye view of the domain, thus facili-
tating knowledge acquisition. The visualization has three main advantages over other
approaches. Firstly, it shows case and feature clusters in relation to each other, thus al-
lowing case clusters to be explained in terms of feature clusters, and vice versa. Sec-
ondly, since stacking does not rely on any abstraction, it preserves the structure of cases
and displays case and feature vectors as they are. This helps case base maintenance since
noisy cases, redundant features or “bridge” features are revealed. Finally, stacking is fast
and simple to implement, has no convergence problems, and is parameter-free for all
practical purposes. We have also introduced a complexity measure founded on the idea
of stacking. We showed that in classification tasks, an adapted version of this measure
corresponds closely to accuracies reported by standard classifiers.

118 S. Chakraborti et al.

Acknowledgements

The authors are grateful to Dr. Derek Bridge for his interesting insights on various
aspects of this work.

References

1. Mitchell, T.: Machine Learning. Mc Graw Hill International (1997)
2. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many

Relevant Features. In: Proc. of ECML, pp. 137–142. ACM Press, New York (1998)
3. Chakraborti, S., Mukras, R., Lothian, R., Wiratunga, N., Watt, S., Harper, D.: Supervised La-

tent Semantic Indexing using Adaptive Sprinkling. In: Proc. IJCAI, pp. 1582–1587 (2007)
4. Lamontagne, L.: Textual CBR Authoring using Case Cohesion, in TCBR’06 - Reasoning

with Text. In: Proc of the ECCBR 2006 Workshops, pp. 33–43 (2006)
5. Feldman, R., Sanger, J.: The Text Mining Handbook. Cambridge University Press, Cambridge

(2007)
6. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: ndexing

by Latent Semantic Analysis. JASIST 41(6), 391–407 (1990)
7. Massie, S.: Complexity Modelling for Case Knowledge Maintenance in Case Based Rea-

soning, PhD Thesis, The Robert Gordon University (2006)
8. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Stama-

topoulos, P.: A Memory-based Approach to Anti-Spam Filtering for Mailing Lists. Infor-
mation Retrieval 6, 49–73 (2003)

9. Delany, S.J., Cunningham, P.: An Analysis of Case-base Editing in a Spam Filtering Sys-
tem. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155,
pp. 128–141. Springer, Heidelberg (2004)

10. HCE visualization, HCI Lab, University of Maryland, http://www.cs.umd.edu/hcil/hce/
11. Delany, S.J., Bridge, D.: Feature-Based and Feature-Free Textual CBR: A Comparison in

Spam Filtering. In: Proc. of Irish Conference on AI and Cognitive Science, pp. 244–253
(2006)

12. Vinay, V., Cox, I.J., Milic-Fralyling, N., Wood, K.: Measuring the Complexity of a Col-
lection of Documents. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsik-
rika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 107–118. Springer, Hei-
delberg (2006)

13. Díaz-Agudo, B., González-Calero, P.A.: Formal concept analysis as a support technique
for CBR. Knowledge Based Syst. 14(3-4), 163–171 (2001)

14. Brüninghaus, S., Ashley, K.D.: The Role of Information Extraction for Textual CBR. In:
Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 74–89. Springer,
Heidelberg (2001)

15. Chakraborti, S., Watt, S., Wiratunga, N.: Introspective Knowledge Acquisition in Case Re-
trieval Networks for Textual CBR. In: Proc. of the 9th UK CBR Workshop, pp. 51–61
(2004)

16. Wiratunga, N., Lothian, R., Chakraborti, S., Koychev, I.: A Propositional Approach to
Textual Case Indexing. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J.
(eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 380–391. Springer, Heidelberg (2005)

17. White, R.W., Ruthven, I., Jose, J.M.: A Study of Factors Affecting the Utility of Implicit
Relevance Feedback. In: Proc. of SIGIR 2005 (2005)

 Visualizing and Evaluating Complexity of Textual Case Bases 119

18. Joachims, T.: Text categorization with support vector machines: Learning with many rele-
vant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
137–142. Springer, Heidelberg (1998)

19. Bille, P.: A survey of tree edit distance and related problems. Theoretical Computer Sci-
ence 337(1-3), 217–239 (2005)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press and McGraw-Hill (2001)

21. Berry, M., Dumais, S., O‘Brien, G.: Using linear algebra for intelligent information re-
trieval. SIAM Rev. 37, 573–595 (1995)

Learning Similarity Functions from

Qualitative Feedback

Weiwei Cheng and Eyke Hüllermeier

FB Mathematik/Informatik, Philipps-Universität Marburg, Germany
{cheng,eyke}@mathematik.uni-marburg.de

Abstract. The performance of a case-based reasoning system often de-
pends on the suitability of an underlying similarity (distance) measure,
and specifying such a measure by hand can be very difficult. In this paper,
we therefore develop a machine learning approach to similarity assess-
ment. More precisely, we propose a method that learns how to combine
given local similarity measures into a global one. As training information,
the method merely assumes qualitative feedback in the form of similarity
comparisons, revealing which of two candidate cases is more similar to
a reference case. Experimental results, focusing on the ranking perfor-
mance of this approach, are very promising and show that good models
can be obtained with a reasonable amount of training information.

1 Introduction

The concept of similarity lies at the heart of case based reasoning (CBR), and
the success of a CBR system often strongly depends on the specification of
a suitable similarity measure. Unfortunately, domain knowledge provided by
human experts is often not sufficient to define an optimal measure by hand.
This problem remains despite the existence of “divide-and-conquer” techniques
such as the “local–global principle”, stating that the (global) similarity between
two cases can be obtained as an aggregation of various local measures pertaining
to different dimensions or features of a case [1].

In fact, even though it is true that local similarity measures can sometimes
be defined in a relatively straightforward way, the proper combination of these
local measures often remains a challenging problem. The reason is that, usually,
the definition of a local measure only requires the comparison of properties or
attribute values that are measured on the same scale and, therefore, are indeed
comparable. However, to aggregate different local measures into a global one,
one has to combine properties that may not be easily comparable, and whose
importance may be highly subjective or context-dependent.

In this paper, we address the above problem by using machine learning meth-
ods to elicit global similarity measures on the basis of feedback in the form of
examples. In this regard, the type of feedback expected as input by a learn-
ing method is of special importance. Roughly, two types of feedback can be
distinguished, namely absolute and relative. Typically, the former corresponds
to quantitative information about the degree of similarity between two cases,

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 120–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Similarity Functions from Qualitative Feedback 121

whereas the latter only provides qualitative information about the (order) rela-
tion between similarities. Even though absolute feedback is convenient from a
learning point of view, it is of course demanding and hence hard to acquire from
human experts. In this paper, we therefore proceed from qualitative feedback
which is much less difficult to obtain: Given a reference case and two cases to
compare with, we only expect information about which of these two cases is
more similar. Essentially, this is what Stahl in [2] refers to as relative case utility
feedback.1

The paper is organized as follows: In Section 2, we detail the formal setting
underlying our learning method. The method itself is then introduced in its basic
form in Section 3 and evaluated empirically in Section 4. We discuss possible
extensions of the basic model in Section 5 and related work in Section 6. The
paper ends with concluding remarks in Section 7. Before proceeding, we mention
that, formally, our approach will not be developed in terms of similarity functions
but instead resort to the dual concept of a distance function.

2 Problem Setting

A case base is a subset CB ⊆ C with |CB | < ∞, where C �= ∅ denotes the set
of all conceivable cases. We assume the existence of d local distance measures

δi : C× C → R+ (i = 1 . . . d). (1)

For each pair of cases a, b ∈ C, δi(a, b) ∈ R+ is a measure of the distance
between these cases with respect to a certain aspect. For example, suppose cases
to be represented as graphs, i.e., C is a set of graphs. A local distance δi(a, b)
may then be defined by |n(a)− n(b)|, where n(a) is the number of nodes in a,
or by max(n(a), n(b))−s, where s is the size of the maximal common subgraph.

According to the local–global principle, the (global) distance between two cases
can be obtained as an aggregation of the local distance measures (1):

Δ(a, b) = AGG (δ1(a, b), δ2(a, b) . . . δd(a, b)) , (2)

where AGG is a suitable aggregation operator. As a special case, consider a
representation of cases in terms of d-dimensional feature vectors

a = (a1, a2 . . . ad) ∈ A1 × A2 × . . .× Ad, (3)

where Ai is the domain of the i-th attribute Ai. C is then given by the Cartesian
product of these domains, A1×A2× . . .×Ad, and the local distances are of the
form

δi : Ai × Ai → R+, (4)

i.e., δi(ai, bi) assigns a distance to each pair of attributes (ai, bi) ∈ Ai × Ai;
obviously, (4) is a special case of (1). Even though a feature-based representation
1 In a different context though quite similar way, relative feedback of that kind is also

used in information retrieval [3].

122 W. Cheng and E. Hüllermeier

is of course not always optimal (in terms of performance), it is often the most
feasible approach and still predominant in practice [4]. In our experiments in
Section 4, we shall use data sets with numerical attributes and local distances
δi(ai, bi) = |ai − bi|.

2.1 Linear Combination of Local Measures

For the time being, we shall focus on a special type of aggregation operator (2)
which is simple and often used in practice, namely a linear combination:

Δ(a, b) =
d∑

i=1

wi · δi(a, b). (5)

Note that it makes sense to require

w = (w1 . . . wd) ≥ 0 (6)

in order to guarantee the monotonicity of the distance measure (2). That is, if
a local distance increases, the global distance cannot decrease.

Despite its simplicity, the linear model (5) has a number of merits. For exam-
ple, it is easily interpretable, as a weight wi is in direct correspondence with the
importance of a local measure. In principle, it thus also allows one to incorporate
additional background knowledge in a convenient way, e.g., that attribute Ai is
at least as important as attribute Aj (wi ≥ wj). Finally, the linear model is
attractive from a machine learning point of view, as it is amenable to efficient
learning algorithms and, moreover, to non-linear extensions via “kernelization”
[5]. We shall come back to this point in Section 5.

2.2 Learning Distance Measures and Learning to Rank

The problem we shall consider in the next section is to learn the weights wi

in (5) from user feedback. The kind of training information we assume to be
given as input to a learner is qualitative feedback of the following form: case a is
more similar to b than to c. Information of this type will be denoted by a triplet
(a, b, c) ∈ C3. Note that qualitative feedback of the above kind is typically much
easier to acquire than absolute feedback, that is, the degree of distance Δ(a, b)
between two cases a and b.

A global distance function induces for any query a total order on the case
base: Given a query q = (q1 . . . qd) ∈ C and two cases a, b ∈ CB,

a �q,Δ b
df⇐⇒ Δ(q, a) ≤ Δ(q, b).

Indeed, it is often only the ordering of cases that really matters, not the dis-
tance degrees themselves. For example, to retrieve the k nearest neighbors in
NN retrieval, a correct ordering of the case base is sufficient. Seen from this
point of view, it is actually not important to approximate the true distance (2)
accurately in the sense of minimizing a norm |Δ−Δest| (such as the L2 norm)

Learning Similarity Functions from Qualitative Feedback 123

on C × C → R+ mappings. Instead, it is more important to find an estimation
Δest that induces (almost) the same rankings, i.e., an estimation for which

�q,Δest ≈ �q,Δ . (7)

In our experiments in Section 4, we shall therefore evaluate a distance function
Δest by comparing the ranking induced by this function with the actually true
ranking (in terms of standard distance measures for rankings).

3 The Learning Algorithm

Suppose to be given a set of training data T, which consists of a finite number
of exemplary similarity constraints (a, b, c), where a, b, c ∈ CB. As mentioned
previously, the basic learning problem is to find a distance function (5) which
is as much as possible in agreement with these constraints and also satisfies the
monotonicity property (6). Besides, this function should of course generalize as
well as possible beyond these examples in the sense of (7).

3.1 Distance Learning as a Classification Problem

A key idea in our approach is to reduce the above learning problem to a binary
classification problem. Due to the assumption of a linear distance model, this
is indeed possible: The inequality Δ(a, b) < Δ(a, c) required by a constraint
(a, b, c) is equivalent to

〈w, x〉 =
d∑

i=1

wi · xi > 0,

where xi
df= δi(a, c)− δi(a, b). From a classification point of view, x = T (a, b, c)

= (x1 . . . xd) is hence a positive example and −x a negative one. That is, a
similarity constraint (a, b, c) can be transformed into two examples (x, +1) and
(−x,−1) for binary classification learning; see Fig. 1 for a schematic illustration.
Moreover, the vector w = (w1 . . . wd) that defines the distance function (5) in a
unique way also defines the model (hyperplane) of the associated classification
problem.

3.2 Ensemble Learning

Binary classification is a well-studied problem in machine learning, and a large
repertoire of corresponding learning algorithms is available. In principle, all these
methods can be applied in our context. Here, we make use of an ensemble learn-
ing technique, mainly for two reasons. First, ensembles typically produce more
accurate predictions than individual learners. Secondly, as will be detailed in Sec-
tion 3.4, the ensemble technique is also useful in connection with the selection
of informative queries to be given to the user.

124 W. Cheng and E. Hüllermeier

Fig. 1. Transformation of the distance learning problem to a classification problem:
Each similarity constraint referring to a case triplet gives rise to a classification example

More specifically, we train an ensemble of m linear perceptrons, using the
noise-tolerant learning algorithm proposed in [6], on permutations of the original
training data; the j-th perceptron is represented by a weight vector w(j) =
(w(j)

1 . . . w
(j)
d). The output produced by this ensemble for an input x ∈ Rd is

given by the average of the individual outputs:

M(x) =
1
m

m∑

j=1

d∑

i=1

w
(j)
i · xi =

d∑

i=1

w∗
i · xi. (8)

The w∗
i can be taken as estimates of the wi in the distance function (5).

In [7], it was shown that (8) approximates the center of mass of the version
space and, hence, that this learning algorithm yields an approximation to a Bayes
point machine. The latter seeks to find the midpoint of the region of intersection
of all hyperplanes bisecting the version space into two halves of equal volume.
This midpoint, the Bayes point, is known to be approximated by the center of
mass of the version space.

3.3 Monotonicity

The monotonicity constraint (6) constitutes an interesting challenge from a ma-
chine learning point of view. In fact, this relatively simple property is not guar-
anteed by many standard machine learning algorithms. That is, a model that
implements a distance function Δ(·) may easily violate the monotonicity prop-
erty, even if this condition is satisfied by all examples used as training data.

Fortunately, our learning algorithm allows us to incorporate the monotonicity
constraint in a relatively simple way. The well-known perceptron algorithm is an
error-driven on-line algorithm that adapts the weight vector w in an incremental
way. To guarantee monotonicity, we simply modify this algorithm as follows:
Each time an adaptation of w produces a negative component wi < 0, this
component is set to 0. Roughly speaking, the original adaptation is replaced by
a “thresholded” adaptation.

In its basic form, the perceptron algorithm provably converges after a finite
number of iterations, provided the data is linearly separable. We note that this

Learning Similarity Functions from Qualitative Feedback 125

property is preserved by our modification (proof omitted due to space restric-
tions). Obviously, monotonicity of the single perceptrons implies monotonicity
of their average (8).

3.4 Active Learning

So far, we did not address the question of where the training data T actually
comes from. The simplest assumption is that T is just a random sample, even
though this assumption is of course not always justified in practice. In this sec-
tion, we consider the interesting scenario in which additional training examples
can be gathered by asking for feedback from the user of a CBR system. Thus,
feedback is derived by selecting two cases b, c and a reference case a, and asking
the user whether b or c is more similar to a.

Again, the simplest way to generate such a query is to choose it at random
from CB. However, realizing that different queries can have different information
content, the goal of this step should be the selection of a maximally informative
query, i.e., an example that helps to improve the current distance function Δest

as much as possible. This idea of generating maximally useful examples in a
targeted way is the core of active learning strategies [8].

In the literature, numerous techniques for active learning have been proposed,
most of them being heuristic approximations to theoretically justified (though
computationally or practically infeasible) methods. Here, we resort to the Query
by Committee approach [8]. Given an ensemble of models, the idea is to find
a query for which the disagreement between the predictions of these models
is maximal. Intuitively, a query of that kind corresponds to a “critical” and,
therefore, potentially informative example. In our case, the models are given by
the ensemble of perceptrons (cf. Section 3.2). Moreover, given a reference case
a and two other cases b and c, two models Δ1, Δ2 disagree with each other if
Δ1(a, b) < Δ1(a, c) while Δ2(a, b) > Δ2(a, c).

Various strategies are conceivable for finding a maximally critical query, i.e.,
a query for which there is a high disagreement among the ensemble. Our current
implementation uses the following approach: Let W =

{

w(1) . . . w(m)
}

be the
set of weight vectors of the perceptrons that constitute the current ensemble.
In a first step, the two maximally conflicting models are identified, that is, two
weight vectors

{

w(i), w(j)
}

∈ W such that ‖w(i) − w(j)‖ is maximal. Then,
using these two weight vectors, two rankings πi and πj of the cases in CB are
generated, respectively, taking a randomly selected reference case a as a query.
Starting from the top of these rankings, the first conflict pair (b, c) is found, i.e.,
the first position k such that b and c are put on position k, respectively, by πi

and πj , and b �= c.2 This conflict pair then gives rise to a query for the user.
Depending on the answer, either (a, b, c) or (a, c, b) is added as an example to
the training data T (and the learner is retrained on the expanded data set).

2 In principle, an additional strategy is needed for the case where the two orderings
are identical. However, even though this problem is theoretically possible, it never
occurred in our experiments. Therefore, we omit further details here.

126 W. Cheng and E. Hüllermeier

4 Experimental Results

This section presents the results of experimental studies that we conducted to
investigate the efficacy of our approach. The aim of the experiments was twofold.
A first goal was to show that the performance is convincing in absolute terms,
which means that good predictions can be achieved with a reasonable amount of
training information. Second, we wanted to provide evidence for the effectiveness
of the special features of our learning algorithm, namely the incorporation of
the monotonicity constraint, the use of an ensemble of models, and the active
learning strategy.

4.1 Quality Measures

Let πest denote the ranking of the case base induced by a learned distance
function Δest. That is, when ordering all cases according to their estimated
distance to the query, πest(a) is the position of case a. To evaluate Δest, we
compare πest with the ranking π induced by the true distance function Δ. To
this end, we use three different quality measures: Kendall’s tau, recall, and the
position error.

Kendall’s tau is a well-known and widely used rank correlation measure [9]. It
calculates the number of pairwise rank inversions, i.e., the number of discordant
pairs (a, b):

#
{

(a, b) | π(a) < π(b), πest(a) > πest(b)
}

.

More specifically, the Kendall tau coefficient normalizes this number to the in-
terval [−1, +1] such that +1 is obtained for identical rankings and −1 in the
case of reversed rankings.

To complement the rank correlation, which takes the whole ranking into
account, we employed a second measure that puts more emphasis on the top-
ranks and is closely related to the recall measure commonly used in informa-
tion retrieval. Let K be the set of top-k elements of the ranking π, that is,
K = {a ∈ CB | π(a) ≤ k}, where k is an integer that is usually small in
comparison with the size of the case base (as a default value, we use k = 10);
likewise, let Kest denote the top-k elements of πest. We then define

recall(π, πest) df=
#(K ∩ Kest)

k
. (9)

This measure corresponds to the percentage of top-k cases of the ranking π that
are also among the predicted top-k cases. It is motivated by the assumption
that, typically, the top-k cases of a ranking are more important than the cases
at lower ranks.

Focusing even more on the top and looking only at the case which is most
similar to the query, we define the position error by the position of this case in
the predicted ranking (minus 1): pos(πest) df= πest

(

π−1(1)
)

− 1, where π−1 is
the inverse of π, i.e., π−1(1) is the topmost case in π.

Learning Similarity Functions from Qualitative Feedback 127

4.2 Data

To analyze our algorithm under different conditions, we used data sets of vary-
ing size in terms of the number of features and the size of the case base: UNI
(6/200), Iris (4/150), Wine (13/178), Yeast (24/2465), NBA (15,3924). The UNI
data set is a ranking of the top-200 universities world-wide in 2006, provided by
[10], where the universities are evaluated in terms of six numerical features (peer
review score, recruiter review score, international faculty score, international
students score, staff-to-student ratio, citation-to-staff ratio). Iris and Wine are
widely used benchmark data sets that are publicly available from the UC Irvine
machine learning repository [11]. Yeast is a genetic data set of phylogenetic pro-
files for the Yeast genome [12]. The genome consists of 2465 genes, and each gene
is represented by an associated phylogenetic profile of length 24. The NBA data
set records career statistics for regular seasons by NBA players. Each player is
characterized by a set of 15 match statistics, e.g., scoring, rebound, turnover,
steal, etc. This data set is part of the basketball player data set, which is pub-
lished and maintained by databasebasketball.com.

4.3 Experiments

To answer the questions raised at the beginning of this section, we conducted
three comparative studies:

– The first experiment investigates the advantage of using a modified percep-
tron learning algorithm that ensures monotonicity. We compare results for
the standard perceptron algorithm (standard) with those for the modified
one (monotone). For both variants, we use an ensemble of size m = 10 and
non-active learning.

– The second experiment investigates the advantage of using an ensemble of
models instead of a single model. Here, we compare the results obtained by
training a single perceptron (single) with those of an ensemble of size m = 10
(ensemble). For both variants, we use monotone, non-active learning.

– Finally, we investigate the improvements due to our active learning strategy.
To this end, we compare the active-learning strategy3 (active) as described
in Section 3 with the random strategy (random) that simply selects triplets
(a, b, c) ∈ CB at random.

In all experiments, we derived quality measures for different numbers of train-
ing data, ranging from 10 to 100. In a single experiment, we randomly generated
a weight vector w (uniformly in [0, 1]d) as the ground truth. A fixed number
of training examples was then generated according to this vector, either by se-
lecting triplets (a, b, c) at random or by using the active learning strategy. A
model is then learned on this data. To evaluate its quality, a query is generated
at random, and the ranking predicted for this query is compared to the true
ranking; this is done repeatedly and results are averaged.

3 Initialized with 10 randomly chosen triplets.

128 W. Cheng and E. Hüllermeier

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

2

4

6

8

10

12

14
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Kendall tau

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Recall

0 20 40 60 80 100
0

100

200

300

400

500

600
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1
Kendall tau

0 20 40 60 80 100
0

10

20

30

40

50
Position Error

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Recall

monotone
standard

standard
monotone

monotone
standard

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Kendall tau

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Recall

0 20 40 60 80 100
0

10

20

30

40

50
Position Error

monotone
standard

monotone
standard

monotone
standard

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1
Kendall tau

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Recall

0 20 40 60 80 100
0

100

200

300

400

500

600

700
Position Error

monotone
standard

standard
monotone

standard
monotone

Fig. 2. Monotone vs. non-monotone learning: Experimental results in terms of rank
correlation, recall, and position error as a function of the number of training examples
(x-axis). Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

Learning Similarity Functions from Qualitative Feedback 129

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1
Recall

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

Kendall tau

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

5

10

15

20
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

1

2

3

4

5

6
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kendall tau

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1
Recall

0 20 40 60 80 100
0

2

4

6

8
Position Error

ensemble
single

ensemble
single

ensemble
single

0 20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Kendall tau

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8
Recall

0 20 40 60 80 100
0

10

20

30

40

50

60

70
Position Error

ensemble
single

ensemble
single

ensemble
single

Fig. 3. Single vs. ensemble learning: Experimental results in terms of rank correlation,
recall, and position error as a function of the number of training examples (x-axis).
Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

130 W. Cheng and E. Hüllermeier

10 15 20
0.86

0.88

0.9

0.92

0.94

0.96
Kendall tau

10 15 20
0.75

0.8

0.85

0.9

0.95
Recall

10 15 20
0

0.5

1

1.5

2
Position Error

active
random

random
active

random
active

10 15 20
0.9

0.91

0.92

0.93

0.94

0.95

0.96
Kendall tau

10 15 20
0.5

0.55

0.6

0.65

0.7
Recall

10 15 20
0

5

10

15

20
Position Error

active
random

random
active

random
active

10 15 20
0.65

0.7

0.75

0.8

0.85

0.9
Kendall tau

10 15 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85
Recall

10 15 20
0

1

2

3

4

5

6
Position Error

random
active

random
active

random
active

10 15 20

0.65

0.7

0.75

0.8
Kendall tau

10 15 20
0.55

0.6

0.65

0.7

0.75
Recall

10 15 20
0

1

2

3

4

5

6

7
Position Error

random
active

random
active

random
active

10 15 20
0.55

0.6

0.65

0.7

0.75
Kendall tau

10 15 20
0.4

0.45

0.5

0.55

Recall

10 15 20
0

20

40

60

80

100

120

140
Position Error

random
active

random
active

random
active

Fig. 4. Active vs. non-active learning: Experimental results in terms of rank correlation,
recall, and position error as a function of the number of training examples (x-axis).
Data sets from top to bottom: Iris, NBA, UNI, Wine, Yeast.

Learning Similarity Functions from Qualitative Feedback 131

Figures 2, 3, and 4 show the results in terms of mean values and standard
deviations obtained from 100 repetitions. As can clearly be seen from the learning
curves in these figures, our approach to learning distance functions is indeed quite
effective, and all its extensions do obviously pay off. This is especially true for
the incorporation of the monotonicity constraint and the active learning strategy,
where the learning curves show a visible improvement. The ensemble effect, on
the other hand, yields only a slight improvement (the learning curves are often
very close) which is, nevertheless, still statistically significant.

5 Extensions

The linearity assumption underlying model (5) is of course not always justified
in practice. Instead, the aggregation (2) may be a nonlinear operator, and the
classification examples x = T (a, b, c) created by triplets of cases (cf. Fig. 1) will
no longer be linearly separable. As our idea of transforming the distance learning
problem into a classification problem, as outlined in Section 3.1, strongly exploits
the linearity of (5), one may wonder whether this approach can be extended to
the nonlinear case. Indeed, there are different options for such an extension, two
of which will be sketched in this section.

5.1 Kernel-Based Learning

First, it is important to note that our transformation only exploits the linearity
in the coefficients wi, not the linearity in the local distances. Therefore, the
approach can easily be extended to linear combinations of arbitrary functions of
the local distances. An especially important example is a model which is, in a
similar form, often used in fields like statistics and economics:

Δ(a, b) =
d∑

i=1

wi · δi(a, b) +
d∑

i=1

d∑

j=i

wij · δi(a, b)δj(a, b). (10)

The terms δi(a, b)δj(a, b), which are called interaction terms, enable the mod-
eling of interdependencies between different local distances.

It is noticeable that (10) is closely related to the transformation induced by a
quadratic kernel (x, x′) �→ 〈x, x′〉2 in kernel-based learning. More generally, (10)
is actually equivalent to (5) when looking at the local distances δi as features.
Indeed, both models are special cases of the representation

Δ(a, b) = v · φ(d(a, b)) =
k∑

�=1

v� · φ�(d(a, b)), (11)

where d(a, b) = (δ1(a, b) . . . δd(a, b)), and the φ� are properties of this vector of
local distances. This provides the basis for “kernelizing” our approach. Without

132 W. Cheng and E. Hüllermeier

going into technical detail, we just mention that finding a model with maximal
(soft) margin then comes down to solving a quadratic program defined as follows:

min
v,ξi

1
2
‖v‖+ C

∑

(ai,bi,ci)

ξi s.t.
{

v · (φ(d(a, c))− φ(d(a, b))) ≥ 1− ξi

ξi ≥ 0 ,

where the (ai, bi, ci) are the training examples and C is a regularization param-
eter. Eventually, this leads to learning a model that can be represented as

Δ(a, b) =
∑

i

αi (K(d(a, b), d(ai, ci)) −K(d(a, b), d(ai, bi))) ,

where K(·) is the kernel associated with the feature map φ(·).

5.2 Nonlinear Classification and Sorting

Our original model as well as the extension (10) establish a one-to-one corre-
spondence between the distance function Δ(·) and the model for the induced
classification problem. In fact, there is even a one-to-one correspondence be-
tween the parameters of Δ(·) and the parameters of the corresponding (linear)
classifier. A second extension is based on the observation that such a one-to-one
correspondence, even if desirable, is in principle not needed.

Suppose we train a possibly nonlinear classifier C(·) that separates the classi-
fication examples induced by the similarity constraints given. From this model,
it is perhaps not possible to recover the distance function Δ(·) in explicit form.
Still, given a query case q and any pair of cases a, b ∈ CB, the classifier C(·)
can answer the question whether a or b is more similar to q: In the first case
C(x) = +1, while in the second case C(x) = −1, where x = T (q, a, b). As
this information is a sufficient prerequisite for applying a sorting algorithm, it
is, in principle, again possible to order the case base for the query q. Such an
algorithm cannot be applied directly, however, as a non-perfect classifier may
produce non-transitive preferences. Yet, there are “noise-tolerant” ranking algo-
rithms that can handle non-transitive preferences and yield good approximations
to a true ranking [13].

6 Related Work

The learning and adaptation of similarity or distance measures has received
considerable attention is CBR and related fields. In particular, the work of Stahl
[14,15,2,16] shares a number of commonalities with ours. In fact, the problem
considered in [14] is basically the same, namely to learn the weights in a linear
combination of local similarity functions. However, the setting of the learning
problem is quite different, just like the learning method itself. Stahl [14] applies
a conventional gradient descent algorithm to minimize an “average similarity
error”. To obtain this error, he assumes the availability of a “similarity teacher”
who, given a query case, is able to provide feedback in the form of a ranking of a

Learning Similarity Functions from Qualitative Feedback 133

subset of cases of the case base. In [17], Stahl and Gabel also address the problem
of learning local similarity measures. They propose evolutationary optimization
techniques as an approach to adaptation.

Methods for feature weighing and selection have also been studied by many
other authors, especially in the context of k-NN classification [18,19,20,21,22].
In an early work, Wettschereck and Aha have proposed a general framework
for comparing feature weighting methods [23]. They distinguish such methods
along five dimensions, namely feedback, weight space, representation, generality,
and knowledge. More recent methods for feature weighing can also be found in
machine learning research [24,25].

Finally, problems related to feature weighing, selection, and aggregation are of
course also studied outside CBR and machine learning research, for example in
fields like decision making and information fusion (e.g. [26]). A complete review
of the literature, however, is beyond the scope of this paper.

7 Summary and Conclusions

To support the specification of similarity (distance) measures in CBR, we have
proposed a machine learning algorithm that proceeds from predefined local dis-
tance functions and learns how to combine these functions into a global measure.
The algorithm is quite user-friendly in the sense that it only assumes qualitative
feedback in the form of similarity comparisons: Case a is more similar to b than
to c. First experiments have yielded promising results, showing that the algo-
rithm is effective and, moreover, that its special features (monotonicity, ensemble
learning, active selection of examples) lead to increased performance.

Apart from technical aspects, we consider the general idea of the approach as
especially interesting, as it allows one to reduce the problem of distance learn-
ing to a conventional classification problem. Thus, distance learning becomes
amenable to a large repertoire of existing and well-understood algorithms. In this
regard, we are currently elaborating on several extensions of our basic model,
such as those outlined in Section 5.

References

1. Richter, M.M.: Foundations of similarity and utility. In: The 20th International
FLAIRS Conference, Key West, Florida (2007)

2. Stahl, A.: Learning similarity measures: A formal view based on a generalized CBR
model. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620,
pp. 507–521. Springer, Heidelberg (2005)

3. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002,
Proc. of the ACM Conference on Knowledge Discovery and Data Mining (2002)

4. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
Technical Report UCD-CSI-2008-01, University College Dublin (2008)

5. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge (2001)

134 W. Cheng and E. Hüllermeier

6. Khardon, R., Wachman, G.: Noise tolerant variants of the perceptron algorithm.
The Journal of Machine Learning Research 8, 227–248 (2007)

7. Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. Journal of Machine
Learning Research 1, 245–279 (2001)

8. Seung, H., Opper, M., Sompolinsky, H.: Query by committee. In: Computational
Learning Theory, pp. 287–294 (1992)

9. Kendall, M.: Rank correlation methods. Charles Griffin, London (1955)
10. O’Leary, J.: World university rankings editorial - global vision ensures healthy

competition. The Times Higher Education Supplement (2006)
11. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
12. Pavlidis, P., Weston, J., Cai, J., Grundy, W.: Gene functional classification from

heterogeneous data. Journal of Comput. Biology 9, 401–411 (2002)
13. Cohen, W., Schapire, R., Singer, Y.: Learning to order things. Journal of Artificial

Intelligence Research 10 (1999)
14. Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Wat-

son, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Hei-
delberg (2001)

15. Stahl, A., Schmitt, S.: Optimizing retrieval in CBR by introducing solution simi-
larity. In: Proc. Int. Conf. on Art. Intell., ICAI, Las Vegas, USA (2002)

16. Stahl, A., Gabel, T.: Optimizing similarity assessment in case-based reasoning. In:
Proc. 21th National Conf. on Artificial Intelligence. AAAI, Menlo Park (2006)

17. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551.
Springer, Heidelberg (2003)

18. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve
retrieval in CBR: A case study in air traffic control. In: Leake, D.B., Plaza, E.
(eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997)

19. Kononenko, I.: Estimating attributes: Analysis and extensions of RELIEF. In: Eu-
ropean Conference on Machine Learning, pp. 171–182 (1994)

20. Ricci, F., Avesani, P.: Learning a local similarity metric for case-based reasoning.
In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 301–312.
Springer, Heidelberg (1995)

21. Wilke, W., Bergmann, R.: Considering decision cost during learning of feature
weights. In: European Workshop on CBR, pp. 460–472 (1996)

22. Branting, K.: Acquiring customer preferences from return-set selections. In: Aha,
D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 59–73. Springer,
Heidelberg (2001)

23. Wettschereck, D., Aha, D.: Weighting features. In: Aamodt, A., Veloso, M.M. (eds.)
ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

24. Wu, Y., Ianakiev, K., Govindaraju, V.: Improvements in k-nearest neighbor classi-
fication. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS,
vol. 2013, pp. 222–229. Springer, Heidelberg (2001)

25. Toussaint, G.: Geometric proximity graphs for improving nearest neighbor methods
in instance-based learning and data mining. Int. J. Comput. Geometry Appl. 15(2),
101–150 (2005)

26. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation
Operators. Springer, Heidelberg (2007)

Conservative Adaptation in Metric Spaces

Julien Cojan and Jean Lieber

Orpailleur, LORIA, CNRS, INRIA, Nancy Universities,
BP 239, 54 506 Vandœuvre-lès-Nancy

{Julien.Cojan,Jean.Lieber}@loria.fr

Abstract. Conservative adaptation consists in a minimal change on a
source case to be consistent with the target case, given the domain knowl-
edge. It has been formalised in a previous work thanks to the AGM theory
of belief revision applied to propositional logic. However, this formalism
is rarely used in case-based reasoning systems. In this paper, conserva-
tive adaptation is extended to a more general representation framework,
that includes also attribute-value formalisms. In this framework, a case
is a class of case instances, which are elements of a metric space. Con-
servative adaptation is formalised in this framework and is extended
to α-conservative adaptation, that relaxes the conservativeness. These
approaches to adaptation in a metric space transform adaptation prob-
lems to well-formulated optimization problems. A running example in
the cooking domain is used to illustrate the notions that are introduced.

Keywords: adaptation, belief revision, conservative adaptation, case
representation, metric spaces.

1 Introduction

Adaptation is an issue of CBR (case-based reasoning [1]) that still deserves a
big amount of research. Conservative adaptation is an approach to adaptation
that consists in a minimal change on a source case to be consistent with the
target case, given the domain knowledge. It has been formalised in a previous
work thanks to the AGM theory of belief revision applied to propositionnal logic
(PL).

However, PL is rarely used in CBR systems. In this paper, conservative adap-
tation is extended to the general representation framework of “metric space
formalisms”, that includes PL and also attribute-value formalisms (which are
widely used in CBR [2]).

Section 2 is a reminder about adaptation in CBR and introduces the running
example in the cooking domain used throughout the paper. Section 3 presents
the metric space formalisms. Section 4 formalises conservative adaptation in
these formalisms. This approach to adaptation can be extended by relaxing the
conservativeness: this is the α-conservative adaptation, presented and studied in
section 5. Finally, section 6 concludes the paper and draws some future work.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 135–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 J. Cojan and J. Lieber

2 Adaptation in Case-Based Reasoning

2.1 Principles of CBR and of Adaptation in CBR

Case-Based Reasoning (CBR) is a reasoning paradigm using cases, where a case
encodes a particular piece of experience. The aim of a CBR system is to complete
a target case Target for which some information is missing. To do so, a case base
is assumed to be available. A case base is a finite set of cases, called the source
cases. The application of CBR on a target case Target consists in two main
steps:

– Retrieval of a source case Source from the case base, similar to Target.
– Adaptation, that consists in completing Target into Target-completed from

Source.

Target-completedmight still have to be completed. If so, it is used as a new tar-
get case for a new CBR session. Therefore several source cases may be involved
in the final completion of Target.

Much work has been done on retrieval, but adaptation still needs investiga-
tion work. In most CBR implementations, adaptation is either basic or domain
specific. The purpose of this paper is to present a general method for adaptation
based on the principle of minimal change.

2.2 An Adaptation Example

Cooking provides many case-based reasoning examples, a recipe book is indeed
a kind of case base. For simplicity, the focus is put on ingredients rather than
on preparation, a problem consists in requirements on ingredients and portions,
a solution is a recipe satisfying these requirements, i.e. an ingredient list and a
text of instructions.

Léon wants to cook a fruit pie for six persons but he only has pears at disposal
(and thus, no apple). He finds an apple pie recipe for four servings but no pear
pie recipe. This can be formulated as a CBR adaptation problem:

Target = a requested recipe for a 6 portion pie with pears and no other fruit.
Source = a 4 portion apple pie recipe with 2 apples, 40 grams of sugar, and

120 grams of pastry as ingredients.

It is quite natural for Léon to think of the following adaptation which can
be split into two steps: a substitution of apples by pears and an increase by
half of the amount of each ingredient. These two adaptation steps involve dif-
ferent pieces of knowledge. The first one involves similarity between apples and
pears. The second one is the following principle: the amount of ingredients is
proportional to the number of portions.

In addition to this adaptation knowledge, some more knowledge is needed.
The amount of apples and pears is expressed in number of fruits, however the
relevant quantity here is their mass, thus the average mass per apple and pear
is needed, say 120 grams for an apple and 100 grams for a pear. Moreover, to

Conservative Adaptation in Metric Spaces 137

preserve the pie sweet, the amount of added sugar should be adjusted so as to
compensate the different sweet amount contained in apples and pears —say 13
grams per pear and 14 grams per apple.

Knowing all this, from the source recipe Léon should infer he needs the fol-
lowing ingredients for his fruit pie:

– 3 or 4 pears as these values make the variation of fruit mass per person
∣
∣ 120×2

4 − 100×x
6

∣
∣ minimal (for x: a natural integer).

– 50 grams of sugar (resp., 63 grams) if 4 pears (resp., 3 pears) were used , as
it makes the variation of sweet mass per person

∣
∣ 40+2×14

4 − x+4×13
6

∣
∣ (resp.,

∣
∣ 40+2×14

4 − x+3×13
6

∣
∣) minimal (for x: a real number).

– 180 grams of pastry as it makes the variation of pastry mass per person
∣
∣ 120

4 − x
6

∣
∣ minimal (for x: a real number).

3 Metric Space Formalism for Case and Domain
Knowledge Representation

3.1 Background

Definition 1. A similarity measure on a set U is a mapping S from U × U to
[0, 1] such that:

for all x, y ∈ U S(x, y) = 1 iff x = y

The notation S is extended on y ∈ U and A, B ⊆ U :

S(A, y) = sup
x∈A

S(x, y) S(A, B) = sup
x∈A,y∈B

S(x, y) (1)

with the following convention: S(∅, y) = S(A, ∅) = S(∅, B) = 0.

A similarity measure S can be defined from a mapping d : U × U → R+

satisfying the separation postulate of metrics — for all x, y ∈ U d(x, y) = 0 iff
x = y — by the relation:1

for all x, y ∈ U S(x, y) = e−d(x,y) (2)

3.2 Case Representation

Cases are assumed to be represented by concepts of a concept language LC

where a concept C is interpreted by a subset Ext(C) of a set U (the “universe

1 Any mapping f : R+ → [0, 1] continuous, strictly decreasing and such that f(0) = 1
and limx→+∞ f(x) = 0 can be used instead of x �→ e−x. For instance, f(x) = 1

1+x
is

often chosen in CBR. This choice was made for simplifications (see further). And,
as the values do not have any relevance but through comparisons by ≤, this choice
has no other effect than simplicity.

138 J. Cojan and J. Lieber

of discourse”). LC is supposed to be closed under negation, conjunction and the
unary operators Gσ for σ ∈ [0, 1]:

if C, D ∈ LC then ¬C, C ∧D, Gσ(C) ∈ LC

C ∨D is defined by ¬(¬C ∧ ¬D)

Moreover LC is assumed to contain � and ⊥. The semantics is given by the
mapping Ext from LC to 2U (the subsets of U) satisfying:

Ext(�) = U Ext(C ∧D) = Ext(C) ∩ Ext(D)
Ext(⊥) = ∅ Ext(C ∨D) = Ext(C) ∪ Ext(D)
Ext(¬C) = U \ Ext(C) Ext(Gσ(C)) = {x ∈ U | S(Ext(C), x) ≥ σ}

Definition 2. A model of C ∈ LC is, by definition, an element of Ext(C). The
consequence � and equivalence ≡ relations on LC are defined by:

C � D if Ext(C) ⊆ Ext(D)
C ≡ D if Ext(C) = Ext(D)

A concept C ∈ LC is satisfiable if Ext(C) �= ∅, i.e. C � ⊥. For A ∈ 2LC and
C ∈ LC , A � C means that if x ∈ U is a model of each D ∈ A, then it is a model
of C. If C, C1, C2 ∈ LC , C1 ≡C C2 if C ∧ C1 ≡ C ∧ C2: ≡C is the equivalence
modulo C.

In this paper, � (and thus, ≡) are supposed to be computable: there is a program
taking as inputs two concepts C and D and giving in finite time a boolean value
that is equal to True iff C � D.

The following notations are introduced for the sake of simplicity:

S(C, x) = S(Ext(C), x) S(C, D) = S(Ext(C), Ext(D)) (3)

E = {Ext(C) | C ∈ LC} (Thus, E ⊆ 2U) (4)

3.3 Domain Knowledge Representation

Domain knowledge is about properties that can be inferred on cases. By contrast
with adaptation knowledge that is about comparisons between cases, it is static,
i.e. it applies to cases by their own. In the cooking example, the amount of
fruit is inferred from the amount of apples and pears in the recipe. From the
interpretation point of view, the domain knowledge comes to the restriction of
the extension space, some interpretations are not licit. So, like cases, it can be
represented by a concept DK provided that the language LC is expressive enough,
which is assumed. Thus, DK ∈ LC .

3.4 Attribute-Value Representation

Many CBR systems rely on attribute-values representation of cases. The formal-
ism presented below is a general attribute-value representation formalism that

Conservative Adaptation in Metric Spaces 139

specialises the (very) general framework presented above. In this formalism U is
assumed to be a Cartesian product:

U = V1 × V2 × . . .× Vn

where Vi are “simple values” spaces, i.e. either R (the real numbers), R+ (the pos-
itive or null real numbers), Z (the integers), N (the natural integers), B = {True,
False}, or another enumerated set given in extension (“enumerated type”).

For i ∈ {1, . . . , n}, the attribute ai is the projection along the ith coordinate:

ai(x1, x2, . . . , xi, . . . , xn) = xi (5)

The language LC is made of expressions with boolean values on the formal
parameters a1, a2, . . . , an: C = P (a1, a2, . . . , an). The extension of such a concept
C is:

Ext(C) = {x ∈ U | P (a1(x), a2(x), . . . , an(x)) = True}
= {(x1, x2, . . . , xn) ∈ U | P (x1, x2, . . . , xn) = True}

LC is still considered as closed for negation and conjunction.

3.5 Propositional Logic as a Kind of Attribute-Value Representation

The set of formulas on propositional variables p1, . . . , pn (n ∈ N) can be put
under the attribute-value representation with U = Bn. Indeed, to a propositional
logic formula f on p1, . . . , pn, can be associated the mapping Pf : Bn → B such
that, for an interpretation I of the variables p1, . . . , pn, I is a model of f iff
Pf (I(p1), I(p2), . . . , I(pn)) = True. Reciprocally, to a mapping P : Bn → B

it can be associated a formula f unique modulo logical equivalence such that
P = Pf .

For example, to f = a ∧ ¬(b ∨ ¬c) is associated Pf : (x, y, z) ∈ B3 �→
P (x, y, z) = and(x, not(or(y, not(z)))).

For I ∈ U , i ∈ {1, . . . , n} and f a propositional formula on p1, . . . , pn, let
ai(I) = I(pi) and Ext(f) = {x ∈ U | Pf (a1(x), a2(x), . . . , an(x)) = True}. The
following equivalence identifies the obtained semantics with the propositional
logic semantics: I is a model of f iff I ∈ Ext(f). This justifies the use of sec-
tion 3.1 formalism in section 4 to generalise conservative adaptation defined on
propositional logic in [3].

3.6 Formalisation of the Cooking Example Adaptation Problem

The section 2.2 example can be formalised as follows. The following attributes
are introduced:

– a1 = servings for the number of servings the recipe is meant to, V1 =
N \ {0}.

– a2 = sweet for the total amount of sweet (in equivalent saccharose grams),
V2 = R+.

140 J. Cojan and J. Lieber

– a3 = sugar for the amount of saccharose, in grams, V3 = R+.
– a4 = pastry-mass for the amount of pastry, in grams, V4 = R+.
– a5 = fruit-mass for the amount of fruits, in grams, V5 = R+.
– a6 = apples-nb for the number of apples, V6 = N.
– a7 = pears-nb for the number of pears, V7 = N.

The space is then U = (N \ {0})×R+ ×R+ ×R+×R+×N×N. The attributes
sugar, pastry-mass, apples-nb, and pears-nb correspond to the possible in-
gredients that can be used in the recipes. The values corresponding to the at-
tributes sweet and fruit-mass are deduced from the values of the “ingredient”
attributes and from the domain knowledge DK: the amount of fruits is the sum of
apple and pear masses, similarly, the sweet is equal to the sugar plus the sweet
contained in apples and pears:

DK =(sweet = sugar+ 14× apples-nb+ 13× pears-nb)
∧ (fruit-mass = 120× apples-nb+ 100× pears-nb)

The source case, an apple pie for four servings, is represented by the concept
Source stating the number of servings and the amount of each ingredient:

Source =(servings = 4) ∧ (pastry-mass = 120) ∧ (sugar = 40)
∧ (apples-nb = 2) ∧ (pears-nb = 0)

The target case, a pie for six servings, is represented by the concept
Target stating the number of servings, the fact that no apple is available, and
the fact that some fruit is required:

Target = (servings = 6) ∧ (apples-nb = 0) ∧ (fruit-mass > 0).

4 Conservative Adaptation in Metric Space Formalisms

4.1 Belief Revision

The belief revision theory aims at establishing how to incorporate new informa-
tion into previous beliefs that can be inconsistent with this new information, i.e.
to define an operator ◦ on beliefs such that if D is the new information to be
added to prior beliefs C, then the resulting beliefs should be C ◦ D. Require-
ments for a revision operator have been formalised in the AGM postulates [4].
In [5], Katsuno and Mendelzon give the following postulates which are equivalent
to AGM postulates —they prove the equivalence in propositional logic but their
demonstration is still valid in the formalism of section 3.1:

Basic postulates

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(R1) C ◦ D � D

(R2) if C ∧D is satisfiable then C ◦ D ≡ C ∧D

(R3) if D is satisfiable then C ◦ D too
(R4) if C≡C′ and D ≡ D′ then C ◦ D ≡ C′ ◦ D′

Minimality postulates

⎧

⎪⎨

⎪⎩

(R5) (C ◦ D) ∧ F � C ◦ (D ∧ F)
(R6) if (C ◦ D) ∧ F is satisfiable

then C ◦ (D ∧ F) � (C ◦ D) ∧ F

Conservative Adaptation in Metric Spaces 141

The postulate (R1) means that the new knowledge D must be kept, (R2) means
that if C and D are compatible, then both should be kept. (R3) means that
C ◦ D must be consistent whenever D is, (R4) states the irrelevance of syntax
principle. (R5) and (R6) are less intuitive, according to [5], they express the
minimality of change.

These postulates are not constructive and do not prove the existence nor the
unicity of such a revision operator. However, provided a similarity measure S is
given on U , a candidate ◦S for being a revision operator is defined by C ◦S D
where C and D are concepts and Σ = S(C, D):

C ◦S D = GΣ(C) ∧D (6)

In terms of interpretations, this means that:

Ext(C ◦S D) = {x ∈ Ext(D) |S(C, x) ≥ S(C, D)} (7)

The models of C ◦S D are the models of D which are the most similar to C.

Proposition 1. (i) ◦S satisfies postulates (R1), (R4), (R5), and (R6).
(ii) The postulate C ∧D � C ◦S D, weaker than (R2), is satisfied by ◦S.
(iii) ◦S satisfies (R2) iff for all A ∈ E and x ∈ U :

S(A, x) = 1 implies x ∈ A (8)

(iv) ◦S satisfies (R3) iff for all A, B ∈ E with B �= ∅:

if S(A, B) = Σ then there is x ∈ B such that S(A, x) = Σ (9)

The proof of this proposition is given in appendix B.

4.2 Conservative Adaptation

Conservative adaptation consists in completing Target by a minimal change on
Source.

In [3], conservative adaptation is defined for CBR systems where each case
is assumed to be decomposable in a fixed manner in a problem part and a solu-
tion part, both expressed in propositional logic. Below, conservative adaptation
is formalised in the more general framework of this paper. Given a target case
Target, a source case Source, and domain knowledge DK, conservative adapta-
tion returns Target-completed such that:

(DK ∧ Source) ◦ (DK ∧ Target) ≡DK Target-completed (10)

Therefore, conservative adaptation depends on the chosen revision operator
◦. Consider Katsuno and Mendelzon postulates meaning from the conservative
adaptation point of view:

(R1) means that, modulo DK, Target-completed specialises Target, and thus,
conservative adaptation realises a completion.

142 J. Cojan and J. Lieber

(R2) means that if Source is not incompatible with Target modulo DK, then it
completes Target correctly and Target-completed≡DK Source∧ Target.

(R3) is a success guarantee, if Source is consistent modulo DK, then conservative
adaptation returns Target-completed which is consistent with DK too.2

(R4) means that conservative adaptation satisfies the irrelevance of syntax prin-
ciple.

(R5) and (R6) mean that the adaptation from Source should be minimal, it
consists in a minimal change on Source to be consistent with Target.

Proposition 1 states that postulates (R2) and (R3) are only satisfied if some con-
ditions on d are satisfied. The non satisfaction of (R2) is not really a problem,
interpretations with a similarity of 1 to the original belief can arguably be in-
cluded in the extension of the revision. The non satisfaction of postulate (R3) is
more problematic, no solution can be found, not because Source is too different
to Target —(R3) can even be contradicted with S(Source, Target) = 1— but
because the similarity condition is too restrictive, the inferior boundary in the
definition of S on subsets (1) may not be reached. This concern leads to the
study of α-conservative adaptation in section 5.

4.3 Conservative Adaptation in the Cooking Example

In the cooking example formalisation (section 3.6) the source and target cases
and the domain knowledge have been formalised. However, conservative adap-
tation also depends on a revision operator which is chosen here to be of the (6)
kind where the similarity measure S is defined from a mapping d as in (2). d is
taken under the form:

d(x, y) =
7∑

i=1

widi(x, y)

where wi > 0 are weights and di : U × U �→ R+ are defined as follows, for
x = (x1, . . . , x7) and y = (y1, . . . , y7):

d1(x, y) = |y1 − x1|, for i ∈ {2, . . . , 7}, di(x, y) =
∣
∣
∣
∣

yi

y1
− xi

x1

∣
∣
∣
∣

The choice of d2 to d7 expresses proportionality knowledge: the quantity of each
product is to be considered relatively to the number of servings —2 apples for
4 servings and 3 apples for 6 servings correspond to the same amount of apples
per serving.

The conservative adaptation built upon S gives a concept Target-completed
from the source case Source and a target case Target satisfying:

(DK ∧ Source) ◦S (DK ∧ Target) ≡DK Target-completed

2 Note that the condition “Source is consistent with DK” should always be true: when
adding a case Source to the case base, the consistency test DK ∧ Source � ⊥ should
be done. Indeed, since we adhere to the irrelevance of syntax principle, a source case
that is inconsistent with domain knowledge is useless.

Conservative Adaptation in Metric Spaces 143

According to (7), its extension is equal to:

Ext(Target-completed)
= {x ∈ Ext(DK ∧ Target) |S(DK ∧ Source, x) is maximal}
= {x ∈ Ext(DK ∧ Target) | d(DK ∧ Source, x) is minimal}

Therefore, at this point, conservative adaptation is reduced to an optimisation
problem. The way this specific optimisation problem is solved is presented in
appendix A. However, the choice of wi values could not be completely justified,
in particular two sets of weights are proposed for which conservative adaptation
results are respectively Target-completed and Target-completed’:

Target-completed≡DK(servings = 6)∧(pastry-mass = 180) ∧ (sugar = 50)
∧ (apples-nb = 0) ∧ (pears-nb = 4)

Target-completed’≡DK(servings = 6)∧(pastry-mass = 180) ∧ (sugar = 63)
∧ (apples-nb = 0) ∧ (pears-nb = 3)

In the following, the values set corresponding to Target-completed is chosen.
However, the distance difference with DK ∧ Source is small:

d(DK ∧ Source, Target-completed) = 20 +
1
6
(10 + 40 + 10× 3 + 10× 4) = 40

d(DK ∧ Source, Target-completed’)=20 +
1
6
(3 + 60 + 10× 3 + 10× 3) = 40.5

It may be interesting to include both in the result. Indeed, the adaptation process
presented in section 2.2 is exactly Target-completed ∨ Target-completed’.
This can be done thanks to α-conservative adaptation.

5 α-Conservative Adaptation: A Less Conservative
Adaptation

Keeping only the models of Target closest to those of Source can be too re-
strictive, in particular when (R3) is not satisfied, the conservative adaptation
result is not satisfiable. Some flexibility in what is meant by “closest to Source”
is needed. For instance as the similarity difference between four and five pears is
small, both possibilities could be proposed to Léon letting him choose whether
he would rather have more or less fruits on his pie. To do so, a flexibility is intro-
duced in the revision operator conservative adaptation stands on, a stretchable
margin is added in the extension delimitation. This has also the merit to reduce
the sensitivity of the adaptation on some parameters of the similarity measure
(such as the weights wi).

5.1 α-Revision

Definition 3. Given a similarity measure S, α ∈ [0, 1], and C, D ∈ LC , the
α-revision of C by D is C ◦S

α D defined as follows where Σ = S(C, D):

C ◦S
α D = GΣ×α(C) ∧D

144 J. Cojan and J. Lieber

which entails that

Ext(C ◦S
α D) = {x ∈ Ext(D) |S(C, x) ≥ Σ × α}

Proposition 2. ◦S
1 =◦S, and for all 1 ≥ α ≥ β ≥ 0:

C ◦S D ≡ C ◦S
1 D � C ◦S

α D � C ◦S
β D � C ◦S

0 D ≡ D

Moreover, for α < 1, ◦S
α satisfies postulates (R1), (R3), (R4), and (R5).

A proof of this proposition is given in appendix B.
However, if ◦S does not satisfy (R2), then for any α ∈ [0, 1], ◦S

α neither does.
The fact that, for α < 1, ◦S

α may not satisfy postulate (R6) is not surprising as
the minimality criteria is loosened in α-revision.

5.2 α-Conservative Adaptation

The α-conservative adaptation is defined from α-revision as conservative adap-
tation has been from revision. Given a target case Target, a source case Source,
and domain knowledge DK, the α-conservative adaptation returns
Target-completedα such that:

(DK ∧ Source) ◦S
α (DK ∧ Target) ≡DK Target-completedα (11)

From proposition 2, it comes that, for all 1 ≥ α ≥ β ≥ 0:

Target-completed ≡ Target-completed1 � Target-completedα

� Target-completedβ � Target-completed0 ≡ Target.

5.3 α-Conservative Adaptation in the Cooking Example

In example 4.3, given DK and apples-nb = 0, three parameters fully deter-
mine a model of Target: pears-nb, sugar, pastry-mass. In Target-completed,
these parameters are fixed to precise values (pastry-mass = 180, sugar = 50,
and pears-nb = 4). For α < 1, Target-completedα is less restrictive than
Target-completed, and leaves some freedom in the parameter values. The rep-
resentation of Target-completedα needs 3D. Figure 1 represents cuts of its
extension by the plane corresponding to the pair (sugar, pastry-mass), for
pears-nb = 4 and pears-nb = 3. A point (x, y) of the graph pears-nb = k
is in the zone corresponding to α iff (servings = 6) ∧ (pastry-mass = y) ∧
(sugar = x) ∧ (apples-nb = 0) ∧ (pears-nb = k) is a model of
Target-completedα.

For instance, with α = e−0.5, the possible values for pears-nb, sugar, and
pastry-mass are: pears-nb = 3, sugar = 63, and pastry-mass = 180; or
pears-nb = 4 and any values for sugar and pastry-mass in the corresponding
zone of the left graph. In particular Target-completed’ � Target-completedα.

Conservative Adaptation in Metric Spaces 145

40 45 50 55 60 65
120

140

160

180

200

220

240

pears−nb=4

sugar

pa
st

ry
−

m
as

s

α = 1
α = e−0.5

α = e−2.5

α = e−6.67

α = e−10

50 55 60 65 70 75
120

140

160

180

200

220

240

pears−nb=3

Sugar

pa
st

ry
−

m
as

s

α = e−0.5

α = e−2.5

α = e−6.67

α = e−10

α = 1 zone is empty

Fig. 1. Possible values for sugar and pastry-mass with pears-nb = 4 (left) and
pears-nb = 3 (right). The graphs were made with Scilab [6].

6 Conclusion

The adaptation phase in CBR still lacks some formal definition. Conservative
adaptation and its extensions can be considered as attempts of defining, at a se-
mantic level, some approaches of adaptation based on revision operators. These
latters may satisfy or not some of the AGM postulates, which has consequences
on the properties of the adaptation function. A general question can be raised:
What are the adaptation approaches that can be covered by (more or less) con-
servative adaptation? In [3], an answer is given in propositional logic. In the
current paper, conservative adaptation is considered in the general framework
of metric spaces.

Given a revision operator defined from a similarity measure S, conservative
adaptation reduces the problem of adaptation to a problem of optimisation —
determine the x ∈ U which maximise the function y �→ S(DK ∧ Source, y) with
the constraint x ∈ Ext(DK ∧ Target). The associated α-conservative adaptation
is a relaxation of this optimisation problem —determine the x ∈ U such that
S(DK ∧ Source, x) ≥ α × supy∈ExtTarget S(DK ∧ Source, y)— and is reduced to
constraint programming problem. Powerful optimisation and constraint solvers
as [7] could be used to solve large adaptation problems.

A prospect is to define fuzzy conservative adaptation that from a Source con-
cept and Target concept would return a fuzzy concept Target-completed (an
expression to be interpreted as a fuzzy subset Ext(Target-completed) of U).
The α-conservative adaptation is a first step towards it: from the parametered
answer Target-completedα can be built a fuzzy concept since a fuzzy set can be
built from α-cuts [8]. However, in section 5, Source and Target are assumed to
be classical concepts which prevents Target-completed to be further completed
or retained as a new source case of the case base. The extension of fuzzy conser-
vative adaptation to fuzzy concepts Source and Target is therefore a necessity
for its coherence.

Another investigation direction is the construction of similarity measures
so as to express adaptation rules, i.e. such that rule-based adaptation gives a

146 J. Cojan and J. Lieber

result equivalent with conservative adaptation based on a similarity measure S.
The obtained adaptation operators should be then compared to other formally
defined adaptation approaches as, for example, the one presented in [9].

The implementation of a case-based reasoner based on conservative adaptation
is a third objective. The previous concern is intended to make this reasoner
as general as possible, applying the different adaptation rules that could be
expressed under a similarity measure form. The claim is that such a reasoner
could substitute many others as generalising them. This CBR reasoner should
be applicable to a complex application, such as the one raised by the computer
cooking contest (which explains, a posteriori, the choice of an example in the
cooking domain).

References

1. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum
Associates, Inc., Hillsdale (1989)

2. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, Inc., San Francisco (1993)

3. Lieber, J.: Application of the Revision Theory to Adaptation in Case-Based Reason-
ing: The Conservative Adaptation. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626. Springer, Heidelberg (2007)

4. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet functions for contraction and revision. Journal of Symbolic Logic 50,
510–530 (1985)

5. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52(3), 263–294 (1991)

6. Scilab software. Last consult (March 2008), http://www.scilab.org/
7. Puget, J.F.: A C++ implementation of CLP. In: Proceedings of the Second Singa-

pore International Conference on Intelligent Systems, Singapore (1994)

8. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

9. Hüllermeier, E.: Credible case-based inference using similarity profiles. IEEE Trans-
actions on Knowledge and Data Engineering 19(6), 847–858 (2007)

A Fruit Pie Adaptation Example Resolution

The minima of x �→ d(DK ∧ Source, x) have to be found upon
Ext(DK ∧ Target). However, some di are constant here, which simplifies the
minima search, for all x ∈ Ext(DK ∧ Target), with the “(x)” dropped from the
attributes:

d1(DK ∧ Source, x) = |servings− 4| = 2

d4(DK ∧ Source, x) =
∣
∣
∣
∣

pastry-mass

6
− 120

4

∣
∣
∣
∣
= 0

d6(DK ∧ Source, x) =
∣
∣
∣
∣

apples-nb

6
− 2

4

∣
∣
∣
∣
=

1
2

http://www.scilab.org/

Conservative Adaptation in Metric Spaces 147

Indeed, servings = 6, apples-nb = 0, and pastry-mass has no constraint and
can be taken equal to 180. What remains to be minimised is:

1
6

(

w2

∣
∣
∣
∣
sugar+ 13× pears-nb− 6

4
× 68

∣
∣
∣
∣
+ w3|sugar− 60|

+w5|100× pears-nb− 360|+ w7 × pears-nb
)

which is a sum of affine per parts functions with two parameters. Minima can be
searched one parameter at a time. First, let us focus on sugar, pears-nb being
taken as constant. The value of sugar should be a minimum of the function
x �→ w2|x− (102− 13× pears-nb)|+ w3|x− 60|, i.e.:

– If w2 > w3 then sugar = 102−13×pears-nb and the sweet mass per person
is preserved.

– If w2 < w3 then sugar = 60 the sugar mass per person is preserved.
– If w2 = w3, any value between 60 and 102− 13× pears-nb can be given to

sugar.

It is assumed that the preservation of sweet is to be preferred to the preservation
of sugar —sugar is used in cooking to adjust the sweet taste. Therefore w2 > w3.
What remains to be minimised is then:

w3 |(42− 13× pears-nb)|+ w5 |100× pears-nb− 360|+ w7 × pears-nb

As previously, some relative importance relation between term considerations
reduce the set of alternatives to explore. fruit-mass preservation is more impor-
tant than pears-nb’s, thus 100×w5 > w7, 100 being the average pear mass: this
coefficient is used in the inequality for normalisation. x �→ w5|100x− 360|+ w7x
decreases for x ≤ 360

100 = 3.6, and increases for x ≥ 3.6. x �→ w3|42 − 13x| also
decreases for x < 42

13 ≈ 3.23 and then increases. As both decrease before 3 and
increase after 4, the minima is then reached for pears-nb = 3 or 4:

– For pears-nb = 4, the term value is w3 × 10 + w5 × 40 + w7 × 4.
– For pears-nb = 3, the term value is w3 × 3 + w5 × 60 + w7 × 3.

Which one is minimal depends on the sign of 20×w5−7×w3−w7. The previous
considerations cannot help to determine it, consider the following two sets of wi:

– w1 = 10, w2 = 5, w3 = 1, w4 = 1, w5 = 1, w6 = w7 = 10, the constraints
w2 > w3 and 100 × w5 > w7 are satisfied and 20 × w5 − 7 × w3 − w7 > 0.
The minima of x �→ d(DK∧Source, x) with x ∈ Ext(Target) is then reduced
to the single tuple x = (6, 102, 50, 180, 400, 0, 4).

– w1 = 10, w2 = 5, w3 = 2, w4 = 1, w5 = 1, w6 = w7 = 10, as before
w2 > w3 and 100 × w5 > w7 but now 20 × w5 − 7 × w3 − w7 < 0. And
x �→ d(DK ∧ Source, x) with x ∈ Ext(Target) minima is reduced to a single
tuple too: y = (6, 102, 63, 180, 300, 0, 3).

148 J. Cojan and J. Lieber

Unlike for the constraint w2 > w3 any choice of values for the wi will not guar-
antee that sugar preservation will be given priority over pears-nb preservation
as in the first case or the opposite as in the second case, it depends on the case
attributes values. In this paper, the first set of weights is chosen and conservative
adaptation will return the concept Target-completed:

Target-completed ≡DK(servings = 6) ∧ (pastry-mass = 180) ∧ (sugar = 50)
∧ (apples-nb = 0) ∧ (pears-nb = 4).

B Proofs

Proposition 1

(i) (R1) is satisfied by construction of ◦S : C ◦S D = GΣ(C) ∧D � D.
(R4): If C ≡ C′ and D ≡ D′, then GΣ(C) ≡ GΣ(C′) so
C ◦S D = GΣ(C) ∧D ≡ GΣ(C′) ∧D′ = C′ ◦S D′.
For (R5) and (R6), two cases are to be considered:
First case: (C ◦S D) ∧ F � ⊥, (R5) and (R6) are automatically satisfied.
Second case: (C ◦S D) ∧ F � ⊥, then Ext((C ◦S D) ∧ F) �= ∅. Let x ∈

Ext((C ◦S D)∧F). According to ◦S definition, since x ∈ Ext(C ◦S D):

S(C, x) = S(C, D) = sup
u∈Ext(D)

S(C, u) ≥ sup
u∈Ext(D)∩Ext(F)

S(C, u)

≥ S(C, D ∧ F)

However, according to (R1), Ext(C ◦S D) ⊆ Ext(D), so x ∈ Ext(D ∧
F) and S(C, D ∧ F) = supu∈Ext(D∧F) S(C, u) ≥ S(C, x), therefore
S(C, D) = S(C, D ∧ F). And finally:

(C ◦S D) ∧ F = GS(C,D)(C) ∧D ∧ F = GS(C,D∧F)(C) ∧D ∧ F

= C ◦S (D ∧ F) thus, (R5) and (R6) are satisfied.

(ii) Satisfaction of C∧D � C ◦S D: the case C∧D � ⊥ is trivial. Consider now
the case C ∧D � ⊥, let x be in Ext(C ∧D), x ∈ Ext(C) thus S(C, x) = 1
and so x ∈ Ext(G1(C)∧D) = Ext(C ◦S D). This shows that Ext(C∧D) ⊆
Ext(C ◦S D) and thus C ∧D � C ◦S D.

(iii) (8) implies (R2): Assume (S(A, x) ⇒ x ∈ A), then for C ∈ LC ,
G1(C) ≡ C, indeed Ext(G1(C)) = {x ∈ U | S(Ext(C), x) = 1} = C.
(R2) follows from this property: if C ∧D is satisfiable, then Ext(C ∧
D) �= ∅ and S(C, D) = 1 (Σ = 1), thus

C ◦S D = G1(C) ∧D ≡ C ∧D

(R2) implies (8): Assume (R2) is satisfied, let A be in E , x in U , and
C in LC such that Ext(C) = A. Assume S(A, x) = 1 > 0, from the
convention established in definition 1 it follows that A �= ∅, so A =
Ext(C) = Ext(C) ∩ U = Ext(C) ∩ Ext(�) = Ext(C ∧ �) �= ∅. (R2)
implies that C ◦S � ≡ C ∧ � ≡ C, thus x ∈ Ext(C ◦S �) = Ext(C) =
A. and x ∈ A.

Conservative Adaptation in Metric Spaces 149

(iv) (9) implies (R3): Assume that (9) is satisfied, if D is satisfiable and
Σ = S(C, D), then (9) implies that there is an x in Ext(D) such that
S(C, x) = Σ. Thus Ext(C ◦S D) �= ∅ and C ◦S D is satisfiable.

(R3) implies (9): Assume that (R3) is satisfied, let A and B be in E
with B �= ∅, Σ = S(A, B), and C and D in LC such that Ext(C) = A
and Ext(D) = B. D is satisfiable so, according to (R3), C ◦S D is
satisfiable too. However Ext(C ◦S D) = {x ∈ B |S(A, x) = Δ}, it
follows that there is an x in B such that S(A, x) = Σ.

Proposition 2

– ◦S
1 =◦S , indeed, for C and D in LC with Σ = S(C, D):

C ◦S
1 D = GΣ×1(C) ∧D = GΣ ∧D = C ◦S D

– Similarly, for C and D in LC C ◦S
0 D ≡ D, indeed Ext(G0(C)) = {x ∈

U | S(C, x) ≥ 0} = U , thus G0(C) ≡ �. Let Σ = S(C, D),

C ◦S
0 D = GΣ×0 ∧D = G0(C) ∧D ≡ � ∧D ≡ D

– For α and β such that 1 ≥ α ≥ β ≥ 0, and C, D in LC with Σ = S(C, D):

Ext(GΣ×α(C)) = {x ∈ U | S(C, x) ≥ Σ × α}
⊆ {x ∈ U | S(C, x) ≥ Σ × β} = Ext(GΣ×β(C))

Thus GΣ×α(C) � GΣ×β(C) and

C ◦S
α D = GΣ×α(C) ∧D � GΣ×β(C) ∧D = C ◦S

β D.

Opportunistic Acquisition of
Adaptation Knowledge and Cases

— The IakA Approach

Amélie Cordier1, Béatrice Fuchs1, Léonardo Lana de Carvalho3,
Jean Lieber2, and Alain Mille1

1 LIRIS CNRS, UMR 5202, Université Lyon 1, INSA Lyon, Université Lyon 2, ECL
{Amelie.Cordier,Beatrice.Fuchs,Alain.Mille}@liris.cnrs.fr

2 LORIA UMR 7503 CNRS, INRIA, Universités de Nancy
Jean.Lieber@loria.fr

3 LEACM-Cris, Université Lyon 2, Institut de Sciences de l’Homme (ISH) LIESP,
Université Lyon 1, INSA Lyon

Leonardo.LanaDeCarvalho@univ-lyon2.fr

Abstract. A case-based reasoning system relies on different knowledge
containers, including cases and adaptation knowledge. The knowledge
acquisition that aims at enriching these containers for the purpose of
improving the accuracy of the CBR inference may take place during de-
sign, maintenance, and also on-line, during the use of the system. This
paper describes IakA, an approach to on-line acquisition of cases and
adaptation knowledge based on interactions with an oracle (a kind of
“ideal expert”). IakA exploits failures of the CBR inference: when such
a failure occurs, the system interacts with the oracle to repair the knowl-
edge base. IakA-NF is a prototype for testing IakA in the domain of
numerical functions with an automatic oracle. Two experiments show
how IakA opportunistic knowledge acquisition improves the accuracy of
the CBR system inferences. The paper also discusses the possible links
between IakA and other knowledge acquisition approaches.

1 Introduction

Case-based reasoning exploits knowledge, such as domain knowledge and adapta-
tion knowledge, to perform inferences on cases. The more complete and accurate
the knowledge is, the better the inferences are. Hence, building efficient knowl-
edge bases is of particular importance. The building of the knowledge base for
a CBR system is often done beforehand, during the design phase. However, in
order to make systems capable of evolving, the knowledge base has to evolve as
well, thus additional knowledge acquisition has to be possible during the system
use. In systems offering such a possibility, the acquired knowledge is reused in
further reasoning sessions to improve the solutions produced.

Several ways of performing knowledge acquisition have been explored in CBR
related research. Knowledge engineers and domain experts can collaborate to
model knowledge of the domain. This manual approach is efficient because it

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 150–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Opportunistic Acquisition of Adaptation Knowledge and Cases 151

allows the acquisition of relevant knowledge coming from the expert but it is
rather constrained by the availability of the expert and of the knowledge engi-
neer. Other approaches rely on the knowledge already available in the system
(often in the cases) to infer new knowledge, like adaptation rules. These ap-
proaches are efficient in the sense that they automate the acquisition process
but they produce a large amount of knowledge that has to be validated by an
expert. Moreover, this validation phase is performed off-line, out of a specific
context, thus it may be felt by an expert as an irksome task. Hybrid approaches,
such as IakA, combine the reasoning capabilities of the system with interactions
with the expert to acquire missing knowledge in context.

Usually, knowledge acquisition approaches assume that the knowledge of the
system is organized in separate knowledge containers and that the reasoning
process is split into several distinct steps. These assumptions are helpful better
to understand CBR, but they do not reflect the reality. Actually, knowledge con-
tainers are closely interconnected (not to say identical) and the steps of the CBR
process contribute to the achievement of the same objective: problem solving.
The adaptation-guided retrieval principle [11] is a good illustration of this point:
adaptation knowledge is used to support retrieval, and retrieval and adaptation
steps contribute to the problem solving. This paper advocates a unified view of
CBR steps and knowledge containers. In IakA, the CBR process is considered
as a whole and the knowledge acquisition process focuses on the knowledge of
the system: cases and adaptation knowledge are acquired at the same time.

This paper presents IakA, an interactive and opportunistic approach for
knowledge acquisition in CBR. IakA is interactive in so far as it exploits interac-
tions between the expert and the system during CBR sessions. Its opportunistic
aspect is due to the fact that reasoning failures trigger the acquisition process:
the system seizes this opportunity to identify missing knowledge and to acquire
it. One of the main advantages of this approach is that it focuses on knowledge
known to be needed, which constitutes a strong guidance for the knowledge ac-
quisition process and alleviates the effort required by the expert. In IakA, cases
are adapted using adaptation knowledge. When a failure occurs, the applicability
of the adaptation knowledge for this case has to be questioned. The expert plays
two important roles: identifying the failure and correcting the faulty adaptation
knowledge. As the adaptation knowledge is corrected in the context of the case
being solved, it stays linked with the case. The case and its related adaptation
knowledge are then added to the knowledge base.

The remainder of this paper is organized as follows. Section 2 compares several
approaches of knowledge acquisition in CBR. Then, section 3 describes IakA, a
set of principles for interactive knowledge acquisition in CBR systems which per-
form approximate reasoning (i.e when the aim is to find an approximate solution
for a problem). The modelling of the expert by an oracle is discussed. Formaliz-
ing the adaptation knowledge acquisition process is described and the classical
assumption of CBR—similar problems have similar solutions— is questioned.
Section 4 is dedicated to IakA-NF, a prototypical CBR application implement-
ing the principles of IakA in the numerical functions domain and describes two

152 A. Cordier et al.

experiments. Section 5 discusses the complementarity of the IakA approach with
other knowledge approaches introduced in section 2. Finally, section 6 concludes
the paper and outlines some prospects for future work.

2 Knowledge Acquisition in CBR

It has long been argued that CBR was a solution to the knowledge acquisition
bottleneck in knowledge-based systems because it is easier to collect cases than
other pieces of knowledge. However, CBR only partly overcomes this problem
because it also requires substantial effort to acquire the knowledge involved in the
reasoning process. As with other knowledge-based systems, the implementation
of knowledge-intensive CBR systems has to cope with the knowledge acquisition
problem, and this issue has motivated significant research.

Adaptation-guided retrieval [11] aims at retrieving a prior case that is the
easiest to adapt, given the available adaptation knowledge. Thus the adaptation
step is central and adaptation knowledge plays a major role in CBR. For this
reason, several studies focus on adaptation knowledge acquisition to improve the
global quality of the system [9,2].

Knowledge acquisition takes place at different stages of the life cycle of a CBR
system. Initial knowledge acquisition can be done with experts who manually
model the domain knowledge, or with the assistance of automated learning meth-
ods. Such approaches are off-line in that they take place outside a CBR reasoning
cycle. Among off-line methods, machine-learning techniques have been used for
instance in [7]. In these methods, the case base is exploited to learn adapta-
tion rules. Adaptation rules are generated by examining the differences between
problems related to the differences between solutions. In the same vein, Craw et
al. experiment further with this method by applying learning algorithms, such
as C4.5, in the tablet formulation domain [3]. The CabamakA system uses a
knowledge discovery process to acquire adaptation knowledge [4]. Data mining
algorithms are applied to detect regularities which are candidates to become
adaptation rules. Adaptation rules are then validated by a domain expert. Off-
line methods have been successfully applied, nevertheless these methods do not
make it possible to acquire knowledge that is not yet in the cases.

On-line methods take advantage of a reasoning cycle to learn from a problem-
solving session. One of the first CBR systems, Chef, a case-based planner in the
cooking domain, experimented learning from failures [6]. Chef learns by storing
successfully adapted plans or repaired plans. When an adapted plan fails, Chef
builds a causal explanation of the failure in order to anticipate a future simi-
lar problem. Hammond qualifies his approach as an incremental repair process
after a test or an execution: for a given problem, a first error-prone solution is
produced and further tested and repaired incrementally using a causal model.
Chef differs in that it takes advantage of a failure to anticipate it in further
reasoning cycles. Dial is a disaster response planning system that retrieves and
adapts prior similar past plans [10]. Adaptation is performed with help either of
general adaptation rules, or of prior successful adaptation cases, or of the user.

Opportunistic Acquisition of Adaptation Knowledge and Cases 153

Adaptation is a combination of transformations combined with memory search
processes of knowledge required by the transformation. The adaptation effort is
stored and reused for an adaptation-guided retrieval approach. FrakaS [1] is a
system for enriching domain knowledge when failures due to the incompleteness
of the knowledge base occur. When such a failure occurs, a knowledge acquisition
process involving the domain expert is triggered. Interactions with the expert
allow the system to add new knowledge to its knowledge base and to collect an
explanation of the failure. This knowledge is stored and reused to avoid the fail-
ure reoccurring in further reasoning. FrakaS is an example of the opportunistic
knowledge acquisition approach in which new knowledge is acquired from outside
the system. Next section presents IakA, a complementary approach to FrakaS.

3 IakA: InterActive Knowledge Acquisition

IakA is an approach to interactive knowledge acquisition in CBR systems that
produce approximate solutions. The main idea of the approach is to exploit
reasoning failures and their repairs to acquire cases and adaptation knowledge.
Indeed, the occurrence of a failure highlights the fact that knowledge is missing.
When correcting a failure, the required knowledge is added to the knowledge
base and is reused in the following reasoning sessions to improve the solutions.
The acquisition process is made possible thanks to an oracle that is capable of
correcting solutions and providing the necessary adaptation knowledge.

3.1 Definitions and Hypotheses

In this work, the notions of problem and solution are assumed to be well defined.
If pb is a problem (resp., sol is a solution), then pb (resp., sol) is an expression in
a knowledge representation formalism representing a problem (resp., a solution).
Lpb denotes the problem space and Lsol denotes the solution space. Moreover,
a binary relation on Lpb × Lsol is assumed to exist with the semantics “has for
solution”. This relation is generally not completely known by the system, but
some of its instances are: they are the pairs (srce, Sol(srce)) ∈ Lpb × Lsol,
called source cases. The aim of the CBR process is to find a solution for the
target problem denoted tgt. S̃ol(tgt) is a candidate solution of tgt, i.e. the
solution produced by the CBR system.

In order to adapt the solution of a case, IakA relies on adaptation knowledge
mainly composed of adaptation operators.

Definition 1 (Adaptation operator —AOr = (r,Ar))
An adaptation operator AOr is a pair (r,Ar) where r is a binary relation between
problems (r ⊆ Lpb × Lpb). Ar is an adaptation function:
if (srce, Sol(srce), tgt) ∈ Lpb × Lsol × Lpb and srce r tgt
then Ar(srce, Sol(srce), tgt) is a candidate solution of srce.

Adaptationoperators are organized inadaptationmethods.Anadaptationmethod
is linked to a source case.

154 A. Cordier et al.

Definition 2 (Adaptation method —AM(srce))
The adaptation method AM(srce) associated with the case (srce, Sol(srce)) is a
finite set of adaptation operators AOr = (r,Ar). An adaptation method may also
contain strategic knowledge for managing the adaptation operators.

The notions of adaptation operators and adaptation methods can be likened
respectively to adaptation specialists and adaptation strategies defined in [12].
The adaptation method is used to build a similarity path and an associated
adaptation path.

Definition 3 (Similarity path —SP)
A similarity path from a problem srce to a problem tgt is a set of q triples
(pbi−1, ri, pbi) with :

– pbi : q + 1 problems;
– pb0 = srce and pbq = tgt;
– pbi−1 ri pbi (for i ∈ {1, . . . , q});
– ri is such that (ri,Ari

) is an available adaptation operator.

P(srce, tgt) denotes the set of similarity paths that can be built from srce
to tgt.

The adaptation path is built after the similarity path.

Definition 4 (Adaptation path —AP)
The adaptation path AP associated to a similarity path SP is a set of q triples
(S̃ol(pbi−1),Ari

, S̃ol(pbi)) with :

– S̃ol(pb0) = Sol(srce) and S̃ol(pbq) = S̃ol(tgt);
– S̃ol(pbi) = Ari(pbi−1, S̃ol(pbi−1), pbi).

srce r1 pb1
r2 pb2

r3 tgt
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

S̃ol(srce)
Ar1

S̃ol(pb1) Ar2

S̃ol(pb2) Ar3

S̃ol(tgt)

Fig. 1. A similarity path and the associated adaptation path

Figure 1 shows an example of a similarity path and its adaptation path. In order
to choose between several similarity paths relating the same srce and tgt, the
notion of length of a similarity path is introduced. This notion relies on the
notion of estimated adaptation error.

Definition 5 (Adaptation error —er and its estimation —ẽr)
Each adaptation operator AOr introduces a numerical error er, function of the
problems srce and tgt related by r: er(srce, tgt) ∈ R+. This error is known
by the oracle but the system only knows an estimated value ẽr(srce, tgt) of it.
Moreover, ẽr is assumed to have the following property: ẽr(srce, tgt) = 0 if
srce = tgt.

Opportunistic Acquisition of Adaptation Knowledge and Cases 155

Definition 6 (Length of a similarity path —
(SP))

(SP) =
q
∑

i=1

ẽr(pbi−1, pbi)

Finally, the distance from a problem to another one is defined as the length of
the shortest similarity path.1

Definition 7 (Distance between problems —dist(srce, tgt))
dist(srce, tgt) = min{
(SP) | SP ∈ P(srce, tgt)}

Given these definitions, the retrieval process consists in building a similarity path,
and consequently an adaptation path, from srce to tgt that minimizes the length

(SP) and the adaptation process consists in following the adaptation path.

Illustration of the Definitions. This example is given in a fictive domain
where problems consist of ordered pairs of shapes and solutions consist of single
shapes. Shapes have two properties: number of edges and color. It must be
remarked that there is no available rule allowing the computation of the solution
knowing the problem. Figure 2 illustrates the concept of adaptation operator.
The candidate solution for the target problem (on the right) is obtained by
adaptation of the source case (on the left). The relation r between srce and tgt
means: to go from srce to tgt, a edge has to be added to the first shape of the
pair. Except this difference, all the relevant attributes of the shapes are identical.
To r is associated the adaptation function Ar which meaning is: If there is one
more edge on the first shape of the target problem, then the source solution must
be adapted by adding one edge to it. Hence, S̃ol(tgt) is obtained by application
of Ar on Sol(srce).

3.2 Mechanisms of the IakA Approach

The key idea of IakA is to exploit failures to acquire cases and adaptation
knowledge. In systems that produce approximate solutions, a failure occurs when
the distance between the solution of the system and the “ideal solution” is too
large. IakA relies on the availability of an oracle which is able to say if a solution
is satisfactory or not, to correct a non-satisfactory solution and to give adaptation
operators for a case. Hence, the oracle is able to compute a distance between
solutions and to compare it to a tolerance threshold denoted by ε (ε > 0): if the
distance is larger than ε, the solution is not satisfactory.

In CBR, the occurrence of a failure means that a piece of knowledge that was
used during adaptation has to be corrected or made precise. In the framework
of IakA, adaptation methods, adaptation operators and adaptation errors may
be questioned.
1 Technically, an inf should be used instead of a min: it is possible to find a series

of similarity paths (SPn)n such that �(SPn) > 0 and lim
n→∞

�(SPn) = 0. To avoid this
theoretical problem, it is assumed that the number q of steps in a similarity path is
bounded by a constant (e.g., q ≤ 10100).

156 A. Cordier et al.

A

Fig. 2. An example of adaptation operator

A main advantage of the IakA approach is that the different pieces of knowl-
edge (in particular, the adaptation operators) are separated and tested indepen-
dently thus enabling the faulty knowledge to be identified more easily. Indeed,
when a solution is not satisfactory, the adaptation operators involved are tested
by the oracle one after the other. If the oracle identifies a faulty adaptation
operator, it corrects it. The new piece of knowledge is added to the knowledge
base of the system and a new CBR cycle is performed in order to find a better
solution for the current problem. Adaptation operators are corrected and a new
CBR cycle is performed until a satisfactory solution is found.

Justification of the IakA Approach. The CBR inference is based on the
following principle (see, e.g., [5]):

Similar problems have similar solutions. (CBR principle)

The similarity between problems is the knowledge of the retrieval step, often in
the form of a similarity measure or a distance between problems. The similarity
between solutions is linked with the adaptation: the higher the error caused by
adaptation is, the less the solutions are similar.

This principle can be replaced by its contraposition:

Dissimilar solutions solve dissimilar problems.

Therefore, a failure of the CBR inference indicates:

(a) Either that srce and tgt are not (enough) similar;
(b) Or a failure in the CBR principle.

The failure (a) can also be split into two sub-situations:

(a1) There is no source case similar to the target problem;
(a2) There is at least a source case (srce′, Sol(srce′)) �= (srce, Sol(srce)) that

is similar to tgt but it has not been retrieved.

Each of the failures of type (a1), (a2), and (b) leads to a knowledge acquisition
from the oracle.

When a failure of type (a1) occurs, the oracle may provide a new source case
(with its associated adaptation method), that is similar to the target problem
(for instance a case (tgt, Sol(tgt)) and an adaptation method AM(tgt)).

Opportunistic Acquisition of Adaptation Knowledge and Cases 157

When a failure of type (a2) occurs, this questions the similarity between prob-
lems that constitute the retrieval knowledge: (srce, Sol(srce)) is closer to tgt
than (srce′, Sol(srce′)) and it should be the contrary. With a similarity based
on the estimated adaptation errors, the interactions with the oracle should lead
to a modification of these estimated errors.

When a failure of type (b) occurs, the similar problems srce and tgt have
no similar solution. In other words, in a neighborhood of srce, the solution
varies in an irregular manner. This situation can be interpreted with the notion
of (dis)continuity of numerical functions f : Rn → R. Indeed, if Lpb = Rn,
Lsol = R, and Sol(pb) solves pb if f(pb) = Sol(pb), then the continuity of f is
defined intuitively with the CBR principle: if x1 is close to x2 then f(x1) is close
to f(x2). A type (b) failure means that there is a discontinuity close to srce.
The interactions with the oracle may be useful to better locate the discontinuity
points. It may occur that these discontinuity points involve a partition of the
problem space in several points. For example, if Lpb = R and 4 is a discontinuity
point highlighted by the oracle, then Lpb is partitioned in {]−∞, 4[, {4},]4, +∞[}.
This implies that two problems of two different parts of this partition should
never be considered as similar. With the previous example, 3.99 is dissimilar to
4.01. Therefore, the knowledge of this discontinuity point can be used as pieces
of retrieval knowledge.

This justification of the IakA approach based on the CBR principle and the
proximity of this principle to the notion of continuity suggest that it should
be tested in domains where continuity is well-defined. The numerical functions
constitute such domains. IakA-NF, described in the following section, is a pro-
totype implementing IakA with numerical functions.

4 IakA-NF: A Prototype Implementing the IakA
Approach

4.1 The IakA-NF System

IakA-NF is a prototypical CBR engine implementing the principles of IakA
in the application domain of the numerical functions (f : Rn → R). The aim
of this prototype is to solve problems by approximation, i.e., given n variables
(x1, ..., xn), the goal is to find an approximate value of f(x1, ..., xn) by CBR.

In IakA-NF, a problem is a n-tuple of real numbers and a solution is an
approximation of the value of the function f for these values. fCB denotes the
approximation of the function f obtained from the CBR system using the case
base CB (and the adaptation methods). To each case is associated an adaptation
method containing n adaptation operators. In the numerical functions domain,
an intuitive way to define adaptation operators is to use the notion of partial
derivatives. Indeed, the influence of the variation of a problem variable on the
solution can be expressed by the partial derivative of this variable.

The retrieval is performed according to the distance defined in definition 7.
The adaptation consists in applying the different adaptation operators of the re-
trieved adaptation method. The solution is obtained by adding to the solution of

158 A. Cordier et al.

srce the variations involved by the different variables of the problem (calculated
using the partial derivatives).

The knowledge acquisition process is performed according to the principle
introduced before: a candidate solution produced by the system is always tested
by the oracle. If the solution is not satisfactory, the involved adaptation operators
are tested and corrected if needed, until a satisfactory solution is found. Then,
the newly solved case (tgt, Sol(tgt)) is added to the case base together with its
adaptation method, given by the oracle.

The oracle is simulated by the function f and by a tolerance threshold ε > 0
(the maximal tolerated error). The oracle is capable of computing the distance
between two solutions, to give the correct solution for a case and to give the
adaptation methods.

The following example illustrates the mechanism of IakA-NF with a function
fa : R → R. The first part of the example describes the notations used and the
knowledge available in the system:

Example : Oracle knowledge, source case and target problem are defined as follows:

fa : R → R fa(x) =

{
1 + arctan(3x) if x ≥ 0

−1 + arctan(3x) if x < 0

srce = xs tgt = xt

Sol(srce) = ys S̃ol(tgt) = ỹt

Moreover, there is only one adaptation operator AOr in the adaptation method
AM(srce). It is defined by xs r xt holds for any xs and xt, and ỹt = Ar(x

s, ys, xt)
= ys + ∂ys

∂x
(xt − xs).

4.2 Experiments

Several experiments have been conducted with IakA-NF. Two of them are pre-
sented below.

Influence of the Tolerance Threshold of the Oracle. The aim of this
experiment is to analyze the impact of ε (the tolerance threshold of the oracle)
on the quality of the results produced by the system. The hypothesis is that the
smaller ε is, the better the results are (for a constant number of solved problems).

In order to conduct this experiment, an initial knowledge base is built; it
consists 20 cases randomly generated (and solved by the oracle Ofm) and their
associated adaptation methods (also given by the oracle Ofm).

Ofm = (fm, ε) fm : R → R

fm(x) = x + 10 sin(5x) + 7 cos(4x)

Moreover, 70 target problems are randomly generated. The same initial knowl-
edge base and set of problems are used for all the tests in this experiment.

Opportunistic Acquisition of Adaptation Knowledge and Cases 159

−2�5

−2

−1�5

−1

−0�5

0

0�5

1

1�5

2

2�5

−5 −4 −3 −2 −1 0 1 2 3 4 5

f
fa

so
lu

tio
n

sp
ac

e

problem space

Fig. 3. Representation of the oracle knowledge fa and of the system knowledge fCB for
an initial case base of 20 cases (circles represent cases)

Two systems are run in parallel: the control system and the IakA system. The
goal is to solve the 70 problems of the set of problems. In both systems, problems
are solved according to the IakA approach (test and repair of the knowledge of
the system). The difference is that solved cases are not added to the case base
in the control system whereas they are in the IakA system.

The purpose of the experiment is to make ε vary, thus the experimental pro-
tocol described above is made 10 times with 10 different values for ε. For each
experiment, we compare, for each case, the difference between the error made
by the control system and by the IakA system.

Two statistical tests are performed on the gathered data: the Z-test [8] and
the Wilcoxon test [13] to measure the efficiency of the knowledge acquisition
process. The value ρ, determined in each test, is the probability of obtaining
the same results in a system performing knowledge acquisition as in a system
without knowledge acquisition. For a IakA system, the smaller ρ is, the lower
the chances of obtaining such results with the control system are. Therefore, the
smaller ρ is, the better the IakA system is. The Z-test is a parametric test for
two paired samples. As there is no guarantee that the initial distribution of cases
and problems follows a normal law, the Wilcoxon test, a non-parametric test for
two paired samples, is used to confirm the results of the first test. Figure 4 shows
a graphical interpretation of the results of the Wilcoxon test (the results of the
Z-test are similar).

On the charts, we observe that the smaller ε is, the smaller ρ is, i.e., the more
effective the system is. A significant difference (ρ < 0.01 i.e. 1%) in terms of
reduction of the size of the error is achieved when ε = 10 (which is a high value
in this domain). The conclusion is that the higher the tolerance threshold of the
oracle is, the bigger the probability for the system to make a mistake is, which
confirms the hypothesis of this experiment. Similar tests have been performed
with problems of two and three variables, giving similar results.

160 A. Cordier et al.

0

0�002

0�004

0�006

0�008

0�01

0�012

0 2 4 6 8 10

ρ

ε

Si
gn

ifi
ca

tio
n

co
ef

fic
ie

nt

Oracle tolerance

Fig. 4. Evolution of the value of ρ in function of ε for the Wilcoxon test

Impact of a Discontinuity on the CBR Process. The aim of this experi-
ment is to analyze the behavior of a CBR system solving problems by approxi-
mation when there is a discontinuity in the domain. This experiment is motivated
by the observation (b) discussed in section 3. The hypothesis is that more inter-
actions with the oracle are needed when a problem is in the neighborhood of a
discontinuity.

As for the previous experiment, an initial knowledge base of 20 cases ran-
domly generated is built by the oracle Ofa , and 70 target problems are also
randomly generated. The oracle is defined as Ofa = (fa, ε) with fa as defined
in section 4.1. The experiment consists in solving the 70 target problems with
IakA-NF. The results are processed to count the number of problem-solving
episodes that have required a correction from the oracle. As an example, figure 5

−3

−2

−1

0

1

2

3

−4 −2 0 2 4

fa

so
lu

tio
n

sp
ac

e

problem space

Corrected cases
Cumulated number of interactions

Fig. 5. Distribution of the corrected cases around a discontinuity (with ε = 0.2).
The dotted line represents the function to approximate, the crosses are the solved
cases that have required a correction from the oracle and the plain line represents the
accumulation of the number of interactions with the oracle.

Opportunistic Acquisition of Adaptation Knowledge and Cases 161

Table 1. Number of corrected cases and number of corrected cases around the discon-
tinuity in function of the tolerance of the oracle

Value of ε 0.05 0.1 0.2 0.5 1.0 1.5 2.0 5.0 10
Number of corrected cases 20 13 6 5 3 3 2 0 0
Number of corrected cases around the discon-
tinuitya

16 13 5 4 3 3 2 0 0

a The interval “around discontinuity points” is determined manually before the exper-
iment.

shows a graphical interpretation of the result of an experiment conducted with
a tolerance threshold ε = 0.2.

This experiment has been conducted several times with different values for
ε (but still with the same initial knowledge base and the same series of prob-
lems). Table 1 gives the results of these experiments. Empirical results show
that the number of cases learned around a discontinuity grows while the oracle
tolerance threshold decreases. This tends to confirm the initial hypothesis of this
experiment. The same experiment was also conducted with another function fht

involving two problems variables.

Ofht
= (fht, ε) fht : R2 → R

fht(x, y) =
{
−3− g(x, y) if x2 + y2 ≤ 4

−g(x, y) if x2 + y2 > 4

g(x, y) = sin
√

x2 + y2 +
x

7

For two-dimensional problems, the results and the conclusions are similar.
Figure 6 illustrates the conclusion. In this example, the oracle is Ofht

, ε = 1.0
and 20.000 problems are solved. Only 149 cases had to be corrected by the oracle,
113 of which during the first 1000 solved problems.

−10
−5

0
5

10−10

−5

0

5

10

x1

x2

y

−10
−5

0
5

10−10

−5

0

5

10

x1

x2

y

Fig. 6. Acquisition of cases around a discontinuity. The figure on the left represents the
oracle knowledge. The figure on the right shows the cases learned by the system (after
correction by the oracle): a high proportion of cases are acquired near discontinuity
points. It must be remarked that there is a discontinuity around the top of the curve.

162 A. Cordier et al.

5 Discussion

IakA is different from off-line approaches in that the knowledge, coming from
the external world, is acquired incrementally. Off-line approaches generate a
large amount of knowledge at once, leading to a significant work for the domain
expert to interpret the results. In IakA, the gradual acquisition alleviates the
effort required by the oracle. IakA may be used as a complement of a first
acquisition phase: it offers an easy way to acquire additional knowledge.

Among on-line methods, Chef learns from failures but differs from IakA in
that it exploits its own knowledge to explain failures and to avoid them in further
reasoning. In Dial, an adaptation case base is used to support an incomplete
adaptation rule base but it does not evolve over time. By contrast, IakA updates
its existing adaptation methods whenever a failure occurs.

On-line learning in CBR is usually limited to the accumulation of cases and to
their indexing. A failure due to system knowledge may reoccur several times if the
involved knowledge is not corrected. In IakA, the role of the oracle is to correct
such knowledge. The effort required from the oracle might seem quite important
but it is limited compared to the one required in off-line methods. Moreover, this
effort cannot be avoided when focusing on knowledge that usually resists other
knowledge acquisition approaches.

6 Conclusion

This paper has described IakA, an approach for on-line acquisition of cases
and adaptation knowledge based on interactions with an oracle (which can be
considered as an “ideal expert”). IakA has been designed using the idea of a
unified view of the knowledge involved in the CBR process. The failures of the
CBR inference are used to repair the knowledge base (adaptation knowledge
within cases). The decomposition of the adaptation process into several steps
makes the identification of the knowledge involved in the failure easier. IakA-
NF is a prototype for testing IakA in the domain of numerical functions with an
automatic oracle. The tests show that IakA opportunistic knowledge acquisition
improves the accuracy of the CBR system in the vicinity of the place where
failures have occurred. They also show that this acquisition ceases to be efficient
around discontinuity points, where the CBR principle is violated.

Although it has been tested, the IakA approach remains to be compared with
a real-world application, using an expert instead of an oracle (where an expert
can be seen as “a noisy oracle whose availability is usually quite low”).

Three kinds of failure have been described in this paper. Failures of type
(b) were the subject of experiments. However, additional work can be done to
improve the efficiency of the knowledge acquisition. For instance, when several
failures occur in the same part of the space, the system could point it out to
the expert. The interaction, that takes place off-line, may lead to the explicit
modelling of additional knowledge in this part of the space (e.g. “there is a
discontinuity in 4”). This knowledge could then be added to the system, thus

Opportunistic Acquisition of Adaptation Knowledge and Cases 163

avoiding the consideration that 3.99 and 4.01 are similar in further reasoning.
Failures of types (a1) and (a2) may also lead to knowledge acquisition. With
regard to type (a1) failures, experiments are currently conducted to measure the
impact of the addition of intermediate cases (by the oracle) when there is no
similar source case. The study of failures of type (a2) is possible future work.

The IakA approach and its justification rely on the viewpoint of CBR as
system producing approximate solutions. Another viewpoint is that of uncertain
reasoning. A future work direction aims at generalizing the IakA approach and
its justification so that it considers both viewpoints.

As discussed in section 5, IakA should inter-operate with other knowledge
acquisition/extraction/learning approaches. Most of the time, these approaches
are supposed to be applicable to different phases of CBR, with different goals
and with different knowledge sources. However, IakA adopts a unified view
of the CBR process and its knowledge. Therefore, more work must be done
to connect the various approaches in a more general framework. For instance, a
future work is to elaborate a strategy that focuses on the type of faulty knowledge
(adaptation knowledge, strategic knowledge, domain knowledge, etc.) to trigger
an appropriate acquisition method. Although this is a long-term future work,
the authors’ opinion is that this is an important issue in the field.

References

1. Cordier, A., Fuchs, B., Lieber, J., Mille, A.: Failure Analysis for Domain Knowledge
Acquisition in a Knowledge-Intensive CBR System. In: Weber, R.O., Richter, M.M.
(eds.) ICCBR 2007. LNCS (LNAI), vol. 4626. Springer, Heidelberg (2007)

2. Cordier, A., Fuchs, B., Mille, A.: Engineering and Learning of Adaptation Knowl-
edge in Case-Based Reasoning. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS
(LNAI), vol. 4248, pp. 303–317. Springer, Heidelberg (2006)

3. Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

4. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case
Base Mining for Adaptation Knowledge Acquisition. In: Proceedings of the 20th
International Joint Conference on Arti cial Intelligence (IJCAI 2007), pp. 750–755.
Morgan Kaufmann, Inc., San Francisco (2007)

5. Dubois, D., Esteva, F., Garcia, P., Godo, L., de Màntaras, R.L., Prade, H.: Fuzzy
Modelling of Case-Based Reasoning and Decision. In: Leake, D.B., Plaza, E. (eds.)
ICCBR 1997. LNCS, vol. 1266, pp. 599–610. Springer, Heidelberg (1997)

6. Hammond, K.J.: Explaining and Repairing Plans That Fail. Artificial Intelli-
gence 45(1-2), 173–228 (1990)

7. Hanney, K.: Learning Adaptation Rules from Cases. MSc Thesis, Trinity College
Dublin, Ireland (1996)

8. Kendall, M.G., Stuart, A.: The advanced theory of statistics: Tome 1 distribution
theory. Hafner, New York (1969)

9. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources
for case-based reasoning. In: Proceedings of the 15th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, San Francisco (1997)

164 A. Cordier et al.

10. Leake, D.B., Kinley, A., Wilson, D.: Learning to Improve Case Adaptation by
Introspective Reasoning and CBR. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR
1995. LNCS, vol. 1010, pp. 229–240. Springer, Heidelberg (1995)

11. Smyth, B., Keane, M.T.: Retrieving Adaptable Cases: The Role of Adaptation
Knowledge in Case Retrieval. In: Wess, S., Richter, M., Althoff, K.-D. (eds.)
EWCBR 1993. LNCS, vol. 837, pp. 209–220. Springer, Heidelberg (1994)

12. Smyth, B., Keane, M.T.: Adaptation-Guided Retrieval: Questioning the Similar-
ityAssumption in Reasoning. Artificial Intelligence 102(2), 249–293 (1998)

13. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83
(1945)

Noticeably New: Case Reuse in

Originality-Driven Tasks�

Belén Dı́az-Agudo1, Enric Plaza2,
Juan A. Recio-Garćıa1, and Josep-Llúıs Arcos2

1 Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain
belend@sip.ucm.es, jareciog@fdi.ucm.es

2 IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research,

Campus UAB, Bellaterra, Catalonia, Spain
{enric,arcos}@iiia.csic.es

Abstract. “Similar problems have similar solutions” is a basic tenet of
case-based inference. However this is not satisfied for CBR systems where
the task is to achieve original solutions — i.e. solutions that, even for
“old problems,” are required to be noticeably different from previously
known solutions. This paper analyzes the role of reuse in CBR systems
in originality driven tasks (ODT), where a new solution has not only
to be correct but noticeably different from the ones known in the case
base. We perform an empirical study of transformational and generative
reuse applied to an originality driven task, namely tale generation, and
we analyze how search in the solution space and consistency maintenance
are pivotal for ODT during the reuse process.

1 Introduction

A basic tenet of case-based inference is that similar problems have similar solu-
tions. This is not only a useful way to explain Case Based Reasoning to laypeo-
ple but is the central core of so-called similarity-based inference in fuzzy logic.
Based on this assumption developing a good CBR system basically has two re-
quirements: (1) acquiring a good sample of cases, and (2) designing a predictive
similarity measure (i.e. one that predicts a good solution when the cases are
similar). Nevertheless, there are domains where the task is to achieve not only
solutions but new solutions — i.e. solutions that, even for “old problems,” are
required to be noticeably different from previously known solutions. Domains
like music composition and performance, story plotting and writing, or archi-
tecture design, require the solutions to be noticeably dissimilar from previously
produced solutions, or at least from previous solutions from other authors. We
will call these kind of tasks originality-driven tasks.

Moreover, several CBR approaches have dealt with originality-driven tasks for
innovative design or for “creative” problem solving (as we discuss in Section 6).
� Supported by the MID-CBR project (TIN2006-15140-C03-02).

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 165–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

166 B. Dı́az-Agudo et al.

Focusing on the role of the Reuse process, this paper aims to analyze the issues
relevant for CBR systems when dealing with originality-driven tasks in general.
We will study how different Reuse techniques effect different search processes
in order to elucidate the main issues relevant for the construction of a notewor-
thy new solution. Specifically, we will consider two existing reuse techniques (a
transformational reuse technique and a generative reuse technique), and we will
apply them to the domain of folk tale generation to analyze these issues and
provide some guidelines for future originality-driven reuse techniques.

The structure of this paper is as follows. In Section 2, we present a search
based framework to study Reuse processes and we define novelty (or originality)
from the notions of solution space similarity and plagiarism. Section 3 character-
izes the two reuse techniques and analyzes them with respect to originality driven
tasks. Section 4 describes tale generation as an originality driven task. Section 5
presents the results of some experiments with different reuse approaches. Fol-
lowing a review of the related work in Section 6, Section 7 summarizes the main
conclusions and the lines of future work.

2 Search, Reuse and Plagiarism

First, we find it useful to distinguish between analytic and synthetic tasks. In
analytical tasks finding a solution is selecting one element from a known and
enumerable collection of solutions; examples are classification, identification or
single diagnosis. Synthetic tasks, on the other hand, do not not provide in ad-
vance with a collection of solutions; synthetic tasks define a collection of solution
elements, and a solution is constructed by a certain combination of some solution
elements. In general, a solution can be seen as a graph, where solution elements
are nodes and edges are the relationships holding among the solution elements.
In some synthetic tasks, like planning, a solution is a special kind of graph, like a
sequence or a partial order among actions (the solution elements of the planning
task). Clearly, originality-driven tasks are synthetic tasks, and novel solutions
can be found by new combinations of the solution elements.

Let us now consider the main differences between the “similar problems have
similar solutions” scenario (SPSS, see Figure 1) and the “originality-driven
tasks” scenario (ODT, see Figure 2). In the SPSS scenario of Figure 1 a new
problem x0 is compared in the problem space using a similarity measure with
other problems in the case base. Moreover, let us view the case base as a repos-
itory of the mappings from problem space to solution space given by the known
cases CB = {(xi, si)}. Assuming x1 is the most similar problem to x0, case
based inference yields s1 as the solution of case (x1, s1). Now, the “similar prob-
lems have similar solutions” hypothesis basically states that we expect to find
s0 (the solution for x0) in the neighborhood of s1 (depicted as a circle around
s1). The Reuse process, in abstract terms, is the one that moves from solution
s1 to solution s0 in the solution space; depending on the reuse technique, this
“trajectory” can be seen in different ways, but we will consider that in general
(as argued in [1]) it is some form of search process. However, the bottom line

Noticeably New: Case Reuse in Originality-Driven Tasks 167

x1

x2

s3

s2

s1

Problem Space Solution Space

x0

s0

Fig. 1. Scenario 1: Similar problems have similar solutions in CBR

is that CBR systems have been designed with the underlying idea that a short
length trajectory is desirable or even mandatory.

This assumption can not be satisfied, in general, for ODT using CBR. Figure
2 exemplifies this scenario where a solution to the new problem x0 cannot be too
close to the solutions of similar cases. Consider, for instance, that new problem
x0 is similar to case C1 = (x1, s1); an original solution to problem x0 cannot be
too close to s1 — they have to be outside the grey circle in Figure 2 centered
around s1. Additionally, an original solution for x0 must also not be too close
to any other existing solutions. The Reuse process in ODT CBR systems has to
build a trajectory such as that shown in Figure 2 from s1 to s0 — i.e. a trajectory
that cannot be ensured to be short and that finds a consistent solution for x0 in
a relatively unpopulated region of the solution space. Therefore, we formulate
the following hypothesis:

Hypothesis 1. ODT CBR Reuse needs a similarity (or a distance) measure on
the solution space S.

Most CBR systems do not require a definition of a similarity measure on the
space of solutions. There are exceptions, but we are not claiming any innovation
here. We simply state that for the ODT scenario, it makes sense to consider as
indispensable the definition of similarity measures on the space of solutions.

There is no problem, in principle, to find solutions in relatively unpopulated
region of the solution space: domains where ODT are applicable have large solu-
tion spaces since the combination of their solution elements into complex struc-
tures is huge. However, there are technical requirements that should addressed
by Reuse techniques when abandoning the “short length trajectory” assumption:
(1) the Reuse technique needs to search the solution space in a systematic (or
even exhaustive) way, and (2) the Reuse technique should ensure the validity
and consistency of the solutions

Assumption (1) is necessary to be able to reach unpopulated regions of the
solution space in large Reuse trajectories. Assumption (2) is needed because in
the SPSS scenario often the validity and coherence of solutions are not ensured or

168 B. Dı́az-Agudo et al.

x1

x2

s3

s2

s1

Problem Space Solution Space

x0

s4

s0

Fig. 2. Scenario 2: originality-driven tasks in CBR

explicitly tested: the “short length trajectory” assumption implies that, since few
changes are made, if the solution of the retrieved case is valid and consistent then
the Reuse process most likely will produce a valid and consistent solution. If not,
the Revise process is designed to check and/or repair the solution (usually with a
human in the loop). Validity and coherence of solutions play a different role in the
Reuse process for originality-driven tasks. Since Reuse will perform a large search
process it cannot simply present thousands of configurations to be Revised by
a human. Moreover, since the solution space to explore is huge, a Reuse process
that is able to prune most or all invalid or inconsistent partial solutions will be
more efficient in the exploration of the solution space. Therefore, we formulate
the following hypothesis for CBR systems in originality-driven tasks:

Hypothesis 2. ODT CBR Reuse needs knowledge to assess the internal coher-
ence of solutions and partial solutions meaning that (a) either the Reuse process
is able to ensure that it will only deal with consistent solutions and partial solu-
tions, or (b) partial solutions (intermediate points in the Reuse trajectory) may
have some inconsistencies but they are temporary, detectable, and remediable.

Later, in Section 3, we will see how generative reuse and transformational reuse
employ respectively approaches (a) and (b) to address validity and consistency
of solutions for “long length trajectory” reuse.

Indeed, ensuring validity and consistency of solutions requires additional do-
main knowledge, but it is an empirical question whether “more knowledge” is
a large or modest amount. Anyway, domains where originality-driven tasks are
usually applied to already have a rather rich ontology, and the solution elements
and their possible relationships have to be represented in some formalism. Al-
though we do not intend to address this issue in general, we address later in the
paper the role of domain knowledge for the domain of folk tale generation, and
how it differs in the specific generative and transformational reuse techniques
we use.

Finally, we will address the notion of plagiarism in the context of originality-
driven tasks. Plagiarism is an argument made against the quality of something
being original on the grounds that it is (very) similar to some preexisting body of

Noticeably New: Case Reuse in Originality-Driven Tasks 169

work. Although definitions of plagiarism in music, literature or architecture may
vary in how to measure or assess similarity, or which similarity threshold may
legally sustain a plagiarism lawsuit, the core idea of “plagiarism” seems quite
stable and transversal. This core idea allows us to define originality or novelty
for ODT case-based reasoning:

Definition 1 (Originality). Given a case base CB = {(xi, si)}, a distance
measure Δ over the solutions space S, and a plagiarism threshold γ, a solution
s0 is original iff ∀(xi, si) ∈ CB : Δ(s0, si) > γ.

This approach based on the plagiarism/originality dualism offers a pragmatic
framework to deal with the issues of novelty and innovation. Instead of propos-
ing some debatable definitions of what is or not “original” (or “novel” or “inno-
vative”), we propose to consider a solution original as long as no argument of
plagiarism attacks that solution; similarly, if there are plausible plagiarism argu-
ments against some solution, then that solution may be considered of “debatable
originality.” Another reason for this approach is that we wanted to avoid having
“degrees of innovation”, i.e. we do not intend to distinguish between something
being “very novel” (or “very creative”) vs. being not very novel. We think this
kind of phrasing mixes together an assessment of quality and an assessment of
dissimilarity from an existing body of work. Discussion in this paper of original-
ity refers to the definition above and does not imply any assessment about the
quality of solutions; for instance, in the domain of folk tale generation presented
later we deal with their originality but not with the “tale quality”, although a
certain consistency of solutions is guaranteed.

3 Reuse Techniques

The purpose of this paper is not to design new Reuse techniques for originality-
driven tasks (ODT) in CBR, but rather to analyze existing CBR Reuse tech-
niques inside a ODT framework in order to determine how well adapted they
are for these tasks and which possible shortcomings should be addressed to im-
prove CBR in originality-driven tasks. For this purpose we selected two broadly
different Reuse techniques, one based on transforming an existing solution into
a new solution (Figure 3a) and another based on generating or constructing a
new solution (Figure 3b).

Transformational Reuse –or Transformational Adaptation (TA)– is the most
widely used approach to case reuse; Figure 3a shows a schema of this approach
(where DK means domain knowledge and CK means case knowledge). Although
this schema is not intended to cover all existing techniques, it is useful to pinpoint
their main features. Typically, a new case is solved by retrieving the most sim-
ilar case in memory and copying the solution (although some techniques may
use solutions from multiple cases); then a transformational process using do-
main knowledge (DK) and/or case-derived knowledge (CK) modifies that copy
(which we consider a form of search) until a final solution adequate for the cur-
rent problem is found. In the experiments described in Section 5, we used a local

170 B. Dı́az-Agudo et al.

Initial

State

New

Case

TRANSLATE

Final

State

Search

Process

Solved

Case
Case

Base

TRANSLATEGUIDE

Search Tier

Case Tier

(b) Constructive

Old

Solution

Final

Solution

Trans-

forma-

tion

New

Case

Solved

Case

DK &

CK

RETRIEVE

Case Tier

(a) Transformational

Fig. 3. Schemas of reuse processes based on (a) transforming an existing solution into
a new solution, and (b) generating or constructing a new solution

search transformational reuse technique; basically, a node in the “working case”
is substituted by finding another related node in a taxonomic hierarchy — e.g.
a sword is a type of weapon in the folk tale generation domain, and may be sub-
stituted by another weapon like a crossbow. Moreover, Transformational Reuse
is able to modify more than a single node: deep substitution allows to modify
a whole subgraph in the solution — e.g. when substituting a character like the
evil wolf by an evil wizard then the constituent aspects of the characters (role,
sex, dwelling, physical appearance) are also substituted. Finally, consistency is
maintained by the use of explicit dependencies ; dependencies are used to detect
nodes that need to be transformed after some nodes are substituted — e.g. the
folk tales domain uses dependencies among actions to assure consistency, like
Release-from-captivity depends-on Kidnapping (see Figure 4).

Generative or Constructive Reuse builds a new solution for the new case
while using the case base as a resource for guiding the constructive process.
Figure 3a shows the schema of Constructive Adaptation [1], a family of methods
based on a heuristic search-based process —where the heuristic function guiding
search is derived from a similarity measure between the query and the case base.
Constructive Adaptation (CA) takes a problem case and translates it into an
initial state in the state space (Figure 3b); i.e. transform a case representation
into a state representation. Then a heuristic search process expands a search
tree where each node represents a partial solution, until a final state (with a
complete and valid solution) is found. Notice that final but non-valid states can
be reached, but this simply means the search process will backtrack to expand
other pending states.

This process is guided by a heuristic based on comparing the similarity from
states (represented in the state space) to cases (represented in the space of cases);
the nodes with higher similarity are expanded first during the search process. The
result is that CA adds one node to a partial solution as it moves from one state

Noticeably New: Case Reuse in Originality-Driven Tasks 171

Fig. 4. Deep Substitution and Dependencies

to the next; that is to say, it builds a solution by piecemeal copies of nodes from
similar cases. Notice that there is neither retrieval nor “single case adaptation”
here since the component nodes are incrementally copied from multiple cases in
the case base, depending only on the similarity measure that works on the whole
case base. To ensure consistency, however, CA requires that each component is
described with Before-formulae and After-formulae [1]. Before-formulae specify
what properties are required to be true in order for the component to be validly
added to a solution, while After-formulae state what properties are true by the
incorporation of this component in the solution. A consistent solution is one that
satisfies all the Before-formulae required by its components, and a valid solution
is one that satisfies the current problem.

Thus, the main difference between these techniques is that TA works in the
space of cases while CA works both in the state space and the space of cases.
Additionally, we are able now to characterize both Reuse techniques in our frame-
work of Reuse as a search process.

Concerning TA, we characterize it as follows: (1) eager reuse (copies an old
solution as the first step, and later discards parts of it by substituting them); (2)
based on case space search; and (3) single-focus reuse (since all transformations
are effected upon a single case solution; this is true even when using substitutes
from multiple cases, since parts of these cases are always substituted against the
structure of a single “working case” being transformed).

Concerning CA, we characterize it as follows: (1) lazy reuse (adds one com-
ponent at a time to the solution); (2) based on an interplay between state space
search and similarity on case space; (3) multi-focus reuse (since components
added to a solution come in principle from multiple cases); and (4) an exhaus-
tive search approach that can provide solutions even when no similar cases (or
no cases at all) are provided.

Finally, consistency is also approached in a different way in both reuse tech-
niques. Transformational Reuse uses explicit dependencies in the space of cases,

172 B. Dı́az-Agudo et al.

while Constructive Adaptation uses Before-formulae and After-formulae that
are used in the state space. Both techniques make sense for knowledge-intensive
CBR, and as we show in the next sections for folk tale generation, they both
use a domain-specific ontology about folk tales. The knowledge required by both
techniques for maintaining consistency is not large, and can be derived from an
analysis of that ontology.

4 Tale Generation

Automatic construction of tales has always been a longed-for utopian dream in
the entertainment industry [2,3,4]. The automatic generation of stories requires
some formal representation of the story line (plot), a reasoning process to gen-
erate a tale from a given query, and the choices of some (textual) format for
presenting the resulting plots. As a case study for the experiments, in this paper
we present a CBR approach to the problem of obtaining a structured description
of a tale plot from a given query. The problem of transforming the resulting plot
into a textual rendition is out of the scope of this paper.

Previous work by the UCM group has shown that Ontologies and Description
Logics are a very powerful combination as a resource for generating linguistically
correct texts [5,6]. The UCM group has formalized an ontology including the
primitives to represent a plot structure based on Vladimir Propp’s theory [7].
Propp’s original goal was to derive a morphological method of classifying tales
about magic, based on the arrangements of 31 primitive actions or “functions”,
resulting in the description of folk tales according to their constituent parts,
the relationships between those parts, and the relations of those parts with the
whole. Propp’s work has been used as a basis for a good number of attempts to
model computationally the construction of stories [8,9].

The UCM group approach relies on Propp’s main idea that folk tales are made
up of components that change from one tale to another, and actions or functions
that act as constants in the morphology of folk tales. What changes are the
names and certain attributes of the characters, whereas their actions remain the
same. For example, some Propp functions are: Villainy, Departure, Acquisition
of a Magical Agent, Guidance, Testing of the hero, etc. The ontology (explained
in [6]) includes various concepts that are relevant to tale generation and give
semantic coherence and structure to the tales. Based on this formalization we
previously proposed a CBR approach for storyline representation and adaptation
[5]. That work described a process to retrieve one plot based on a user query
specifying an initial setting for the story. Then a transformational reuse process
modifies the retrieved plot according to the query.

The goal of this paper is studying the role of reuse in CBR systems in Orig-
inality driven tasks, like tale generation, where the underlying goal is creating
a tale that is new and useful at the same time as maintaining narrative coher-
ence. Although in the literature there are different definitions for concepts like
creativity, novelty and originality, in this paper we characterize them using an
edit distance measure[10].

Noticeably New: Case Reuse in Originality-Driven Tasks 173

Each case is a story plot that, according to Propp’s structure, is formalized by
its actions, and each action by its properties, like the participant characters and
their roles (Donor, Hero, FalseHero, Prisoner, Villain), the place where the action
takes place (City, Country, Dwelling), the involved objects, attributive elements
or accessories (a ring, a horse). Each case is composed of a great number of
interrelated individuals, i.e instances of concepts, from the ontology.

The basic components are the Propp’s character functions that act as high
level elements that coordinate the structure of discourse. There are some restric-
tions on the choice of functions that one can use in a given folk tale, given by
implicit dependencies between functions: for instance, to be able to apply the
Interdiction Violated function, the hero must have received an order (Interdic-
tion function). There are many other examples, like the dependency between
Release-from-Captivity and Kidnapping, or Resurrection and Dead functions.

Background domain knowledge required by the system is related with the re-
spective information about characters, places and objects of our world. Domain
knowledge is used to measure the semantical distance between similar cases or
situations, and for maintaining an independent story plot structure from the
simulated world. The domain knowledge of our application is the classic fairy
tale world with magicians, witches, princesses, etc. The ontology is formalized
in OWL and it includes about 230 concepts, 626 distinct individuals (246 ap-
pearing in the initial case base), and 94 properties. Each case representing a
complete tale is typically composed of several interrelated actions. Each action
refers to a Propp function, and gives answers to the who (character), where
(place) and what (object) questions. We distinguish between temporal relations
(before, after, during, starts-before, ends-before, etc.) and actions with depen-
dencies (in which a change in one of them strongly affects the others). There
are different types of dependencies like place-dependency,character-dependency,
object-dependency and propagation-dependency. Dependencies are explicitly rep-
resented as relations that link the dependent elements in the ontology.

The initial case base in our system has 6 cases representing story plots for
traditional fairy tales like “Fortune Teller”, “Little Red Riding Hood”, “Cin-
derella” and “Yakky Doodle”. Each one of these cases is a complex structure
where many individuals are interrelated. See Figure 5 (right) for a summary of
the complexity and number of instances for each tale. The simpler one is “Cin-
derella” with 36 individuals including actions, characters, places and objects.
The more complex is “Goldfish” with 77 individuals. Figure 5 (left) depicts the
action structure of the “Little Red Riding Hood” story plot.

5 Experiments

The purpose of our experiments is to take a technique representative of transfor-
mational adaptation (TA) and another representative of constructive adaptation
(CA) and study how they behave in our ODT framework. We have used jCOL-
IBRI [11] to develop the Tales application and to perform the experiments. We
will analyze the results for two specific implementations of TA and CA for case

174 B. Dı́az-Agudo et al.

Fig. 5. Action structure of the Little Red Riding Hood story plot

reuse in the tale generation domain. First we describe the query structure and
some other decisions taken during the implementation of both approaches, TA
and CA. Then, for the same sets of queries we compare the distances between
the generated solutions and the solutions in the case base, and the distribution
of the generated solutions with respect to those preexisting in the case base.

Queries: The queries use the same vocabulary used to describe the cases in
the case base, i.e., the domain ontology. As a query the user provides a set of
actions, characters, places, and objects that (s)he would like to include in the
tale. Actions in the query are neither ordered nor linked to specific characters,
objects or places. For the experimentation we defined four collections of queries
named Q1, Q3, Q5, Q7. Each collection was populated, respectively, with queries
involving 1,3,5, and 7 instances of each first level concept (i.e. actions, characters,
places, and objects); 20 queries were randomly generated for each collection.

Originality Measure: In order to assess the novelty of solutions we will measure
an edit distance from a new solution to each solution in the case base. The
distance between two tale structures will assess the dissimilarity between those
solutions. We use the Zhang & Shasha’s algorithm [12], where the cost of adding,
deleting, or substituting a node in the tree depends on the distances of the
elements in the domain ontology. Moreover, the distance between two tales is
normalized by the size of the smaller one. We will analyze (1) the distances on
the preexisting tales in the case base, and (2) the distances of the generated tales
with respect to the case base for each query in both TA and CA.

We first analyze the distances among the tales preexisting in the case base.
Since they are assumed to be original (in the sense that there is no plagiarism

Noticeably New: Case Reuse in Originality-Driven Tasks 175

0.2

0.3

0.4

0.5

0.6

0.7

Q1 Q3 Q5 Q7

0.321

0.377

0.299 0.298

0.543

0.429

0.408

0.383

0.599

0.557

0.506 0.506

0.699

0.607

0.580

0.549

Distance

CA av

TA av

CA min

TA min

CB av

CB min

Fig. 6. Average and minimum distance of new solutions w.r.t the case base

among them), the distances among them will give us a qualitative measure of
what is desirable for the generated tales to be considered original. The average
edit distance over all pairs of the case base solutions is CBav = 0.54. Moreover,
the two solutions that are more similar have a distance CBmin = 0.3; thus we
can consider this a lower threshold for originality since we assume that the tales
in the case base are original. Therefore, if the distance of a generated solution to
every solution in the case base is higher than CBmin = 0.3, we will consider it
to be original. According to definition of originality in Section 2 the plagiarism
threshold in the example domain would be γ = 0, 3.

Figure 6 shows the average distances of the solutions for query collections Q1,
Q3, Q5, Q7 generated by TA and CA with respect to the case base. Both TAav and
CAav have on average distances higher than the threshold distance CBmin = 0.3,
so they can be considered, on average, to be original with respect to the cases
they are built from. Moreover, their average distances TAav and CAav are around
CBav = 0.54, the average distance among the case base solutions. Therefore, the
solutions generated by CBR are as original, on average, as the cases provided by
the initial case base.

Another way to visualize this fact is shown in Figure 7, where solutions in
the case base and solutions generated by TA and CA are mapped in a two-
dimensional space. The original data is a matrix of pairwise distance values
among all solutions, while the visualization is built using a force-directed graph-
drawing algorithm where the repulsive force between two cases is proportional
to their distance. In order to provide original solutions, a CBR system has to
look for solutions that are situated in a sparse area of the solution space. We can
see in Figure 7 that all solutions (initial and generated) are evenly distributed,
without clumps or clusters.

Comparing TA and CA, in general CA tends to find solutions in the unpopu-
lated region of the solution space while TA keeps closer to the previously existing
cases. This effect was expected by hindsight: since TA works by transforming an
existing solution, it seems reasonable to expect that it will change what needs to

176 B. Dı́az-Agudo et al.

Case Base

CA solution

TA solution

Fig. 7. Distribution of solutions regarding the original case base

be changed (following a parsimony principle) while CA builds the solution and
opportunistically reuses parts of existing solutions in different cases.

This difference can also be seen in Fig. 6, where CA solutions are more distant
on average from the case base than TA solutions. In relation to query complex-
ity, both TA and CA techniques follow the same pattern of decreasing average
distance to the case base as the query constraints increase from Q1 to Q7. Our
explanation for this effect is that Q7 constrains much more the set of admissi-
ble solutions than Q1; e.g. Q7 specifies 7 actions, 7 characters, 7 places, and 7
objects (and they are generated randomly in our experiments). Nevertheless, Q7
solutions are around the average CBav = 0.54 for the case base, which is good.
These results indicate however that very specific queries may cause problems by
being over-constraining and reducing admissible solutions to a rather small set;
in this circumstance an originality driven task would basically require a lot of
search and the usefulness of cases may be reduced. As future work, we suggest
later that a conversational CBR approach could be useful in this scenario.

Finally, we have so far analyzed average distance, so we turn to the worst case
scenario. Figure 6 also shows the minimal distances TAmin and CAmin from a
solution to the case base for each query collection Q1,..., Q7. Since both TAmin

and CAmin are above or around CBmin = 0.3, we can safely say that even the
generated solutions with lower distances can be safely considered original (with
respect to the originality in the content of the case base). As before, CA provides
solutions that are more distant from the case base than TA; the explanation is
again the parsimony principle of TA, while CA reuses opportunistically parts of
different cases in its constructive process.

Since both TA and CA produce solutions without knowing any threshold
of “minimal distance” that need be surpassed, it may seem unexpected that all

Noticeably New: Case Reuse in Originality-Driven Tasks 177

solutions end up being sufficiently original in our experiments. We think the
reason is the ontology used in the task of folk tale generation and the handling
of solution consistency in both TA and CA (albeit using different mechanisms).
Essentially, reuse in TA and CA explore the solution space searching for solutions
that satisfy the elements required in the query; this already put further the new
solution from the case base. Moreover, the reuse process by either adding a new
element (in CA) or transforming an element (in TA) triggers further constraints
to be satisfied, which in turn require further additions/transformations. Thus,
originality in folk tale generation is obtained by the consistency enforcement
during the reuse process in the presence of a large solution space. Clearly, this
need not be true for any originality-driven task using CBR; Section 7 we suggest
future work where solution space distance is estimated as part of the reuse
process for originality-driven tasks.

6 State of the Art

Related to our work are several CBR approaches for the task of innovative de-
sign. The FAMING system [13] is an example of the use of case adaptation for
supporting innovative design of kinematic pairs; reuse in FAMING combines a
structural model with constraint-based techniques for generating solutions differ-
ent from the ones in the case base. The structural model is akin to our ontology
in providing domain knowledge and constraint-based search provides a mecha-
nism for preserving consistency in solutions. The FAMING system thus fits in
our ODT framework of CBR systems, in that the originality of the solution is
not pursued as such, but is a result of the domain knowledge and the consis-
tency maintenance during reuse. However, the paper [13] is interested in showing
that “different solutions” can be found by a CBR system in this way, but it is
not intent on developing a framework for originality-driven CBR tasks. Another
CBR approach is the IDEAL system [14], that produces innovative solutions by
adapting solutions of design cases from one domain to another distant domain
by using structure-behavior-function models. A survey of CBR approaches to
design and innovation can be found in [15].

Regarding tale generation, there have been various attempts in the literature
to create a computational model. Many existing systems are somehow related
with the CBR paradigm, even if they do not explicitly mention it, because they
are based on re-using a collection of plots with the structure of coherent tales
[16,3,9,17,6]. Basically, these story creation systems retrieve a complete plot
structure and reuse it by changing secondary elements of the story world, like
places or characters. A related approach, that is also based on the Proppian
morphology, is that of Fairclough and Cunningham [9]. They implement an in-
teractive multiplayer story engine that operates over a way of describing stories
based on Propp’s work, and applies case-based planning and constraint satisfac-
tion to control the characters following a coherent plot.

178 B. Dı́az-Agudo et al.

7 Conclusions and Future Work

The purpose of this paper was to analyze CBR in the context of a class of tasks we
called originality-driven tasks (ODT). We characterized the originality of a CBR
solution using the pragmatic notion of plagiarism: a solution is original if it cannot
be accused of plagiarism with respect to previous solutions (i.e. to the solutions
in the case base). Since plagiarism is defined as a measure of similarity between
objects, originality of CBR solutions can easily be understood and measured by
defining a distance measure (or equivalently a similarity measure) on the space of
solutions. We then modeled the reuse process in ODTs as a search process that
builds solutions that are not only new and valid with respect to the query but also
distant enough in the space of solutions from preexisting solutions.

After establishing this conceptual framework, we examined how two differ-
ent reuse techniques (one transformational and the other constructive) address
the issues of originality-driven tasks in CBR; moreover, we designed and per-
formed some experiments in the domain of folk tale generation where originality
of solutions could be assessed and analyzed. We saw that the two reuse tech-
niques indeed produced original solutions, even if transformational reuse seemed
a priori more likely to produce solutions more similar to preexisting cases. Since
existing reuse techniques do not internally use a distance measure in the space
of solutions to enforce the originality of the new solution, we had to conclude
that this “originality” was a kind of side effect. Solutions are original because
of the interplay of two factors: the large solution space and the maintenance of
solution consistency that forces the reuse process to search for solutions even
more distant in order to build a consistent solutions.

The difference between transformational and constructive reuse was less than
a priori expected. We assumed that transformational reuse would find solutions
less distant than constructive reuse, as indeed can be observed in Fig. 6. The
differences however are not large, and transformational reuse always found solu-
tions that are original. One difference between transformational and constructive
reuse is the way in which they maintain solution consistency while searching in
the solution space, but this difference is minor compared with the fact that it is
this consistency maintenance mechanism that forces changes in the solution and
ends up building a solution far away from the initial case base.

Concerning future work we think that both TA and CA reuse for ODT should
include a way to measure distances in the solution space to be able to ensure
that solutions are original with respect to some appropriate domain threshold.
Most CBR systems focus on exploiting similarity on the problem space, but few
use similarity on the solution space; we think ODT is a class of problems where
new CBR techniques that use similarity on the solution space can be developed.
Moreover, the notion of plagiarism can be refined; we were using here a global
measure among solutions, but plagiarism accusations can focus on specific parts
of solutions (e.g. in music a few notes too similar to another song are grounds
for plagiarism claims). This refined notion of plagiarism would require more
introspective reuse techniques that estimate and maintain both consistency and
originality over partial solutions during the reuse process.

Noticeably New: Case Reuse in Originality-Driven Tasks 179

Finally, the effect of over-constrained queries suggests that a conversational
CBR approach would be best suited for folk tale generation, and maybe for
ODTs in general. A conversational CBR approach could start with a smaller
query, allowing the user to augment the query requirements incrementally while
the CBR system would assess whether new requirements can be incorporated or
compromise the originality of the solution.

References

1. Plaza, E., Arcos, J.L.: Constructive adaptation. In: Craw, S., Preece, A.D. (eds.)
ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 306–320. Springer, Heidelberg (2002)

2. Adams, S.: Storytelling and computer games: Past, present and future (2001)
3. Braun, N., Schneider, O., Habinger, G.: Literary analytical discussion of digital

storytelling and its relation to automated narration. In: Workshop Understanding
User Experience: Literary Analysis meets HCI, London, UK (2002)

4. Bringsjord, S., Ferrucci, D.: Artificial Intelligence and Literary Creativity: Inside
the mind of Brutus, a StoryTelling Machine. Lawrence Erlbaum Associates, Hills-
dale (1999)

5. Dı́az-Agudo, B., Gervás, P., Peinado, F.: A CBR approach to story plot generation.
In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155.
Springer, Heidelberg (2004)

6. Peinado, F., Gervás, P., Dı́az-Agudo, B.: A description logic ontology for fairy tale
generation. In: Language Resources for Linguistic Creativity Workshop, 4th LREC
Conference, Lisboa, Portugal (2004)

7. Propp, V.: Morphology of the Folktale. University of Texas Press (1968)
8. Malec, S.A.: Proppian structural analysis and XML modeling (2004),

http://clover.slavic.pitt.edu/∼sam/propp/theory/propp.html
9. Fairclough, C., Cunningham, P.: An interactive story engine. In: O’Neill, M.,

Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS
(LNAI), vol. 2464, pp. 171–176. Springer, Heidelberg (2002)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707–710 (1966)

11. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J., Sanchez-Ruiz, A.: Build-
ing CBR systems with jCOLIBRI. Journal of Science of Computer Program-
ming 69(1-3), 68–75 (2007)

12. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18, 1245–1262 (1989)

13. Faltings, B., Sun, K.: FAMING: Supporting innovative mechanism shape design.
The Knowledge Engineering Review 30(3), 271–276 (2005)

14. Bhatta, S., Goel, A.: Learning generic mechanisms for innovative strategies in
adaptive design. Journal of Learning Sciences 6(4), 367–396 (1997)

15. Goel, A.K., Craw, S.: Design, innovation and case-based reasoning. The Knowledge
Engineering Review 30(3), 271–276 (2005)

16. Turner, S.R.: Minstrel: a computer model of creativity and storytelling. PhD thesis,
Los Angeles, CA, USA (1993)

17. Callaway, C.B., Lester, J.C.: Narrative prose generation. Artificial Intelligence 139,
213–252 (2002)

http://clover.slavic.pitt.edu/~sam/propp/theory/propp.html

Experience-Based Design of Behaviors in

Videogames

Gonzalo Flórez Puga, Belén Dı́az-Agudo, and Pedro González-Calero

Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain

gflorez@fdi.ucm.es, {belend,pedro}@sip.ucm.es

Abstract. Artificial intelligence in games is usually used for creating
player’s opponents. Manual edition of intelligent behaviors for Non-Player
Characters (NPC) of games is a cumbersome task that needs experienced
designers. Amongst other activities, they design new behaviors in terms
of perception and actuation over the environment. Behaviors typically use
recurring patterns, so that experience and reuse are crucial aspects for
behavior design. In this paper we present a behavior editor (eCo) using
Case Based Reasoning to retrieve and reuse stored behaviors represented
as hierarchical state machines. In this paper we focus on the application
of different types of similarity assessment to retrieve the best behavior to
reuse. eCo is configurable for different domains. We present our experi-
ence within a soccer simulation environment (SoccerBots) to design the
behaviors of the automatic soccer players.

1 Introduction

Artificial Intelligence for interactive computer games is an emerging application
area where there are increasingly complex and realistic worlds and increasingly
complex and intelligent computer-controlled characters. Interactive computer
games provide a rich environment for incremental research on human-level AI
behaviors. These artificial behaviors should provide more interesting and novel
gameplay experiences for the player creating enemies, partners, and support
characters that act just like human players [1].

The edition of intelligent behaviors in videogames (or simulation environ-
ments) is a cumbersome and difficult task where experience has shown to be a
crucial asset. Amongst other activities, it implies identifying the entities which
must behave intelligently, the kind of behaviors they must show (e.g. helping,
aggressive, elusive), designing, implementing, integrating and testing these be-
haviors in the virtual environment.

Designing new behaviors could be greatly benefited from two features that are
common in most of everyday videogames. First of all, modularity in behaviors.
That means complex behaviors can be decomposed into simpler behaviors that
are somehow combined. Second, simpler behaviors tend to recur within com-
plex behaviors of the same game, or even in different games of the same genre.
For instance, in a soccer game “defend” could be a complex behavior that is

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 180–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Experience-Based Design of Behaviors in Videogames 181

composed of two simpler behaviors like “go to the ball” and “clear”; meanwhile
“attack” could be composed of “go to the ball”, “dribbling” and “shoot”. Both
features are useful to build new complex behaviors based on simple behaviors as
the building blocks that are reused.

We are developing a graphical behavior editor that is able to store and reuse
previously designed behaviors. Our editor (eCo) [2] is generic and applicable to
different games, as long as it is configured by a game model file. The underly-
ing technologies are Hierarchical Finite State Machines (HFSMs) [3] and Case
Based Reasoning (CBR). In this paper we focus on the similarity assessment
and retrieval processes and give some ideas about our future work on reuse.

HFSMs are appropriate and useful tools to graphically represent behaviors
in games[4]. HFSMs facilitate the modular decomposition of complex behaviors
into simpler ones, and the reuse of simple behaviors. The eCo behavior editor
provides with a graphical interface which allows the user to manually create
or modify behaviors just by “drawing” them. Using a CBR-based module, the
user can make approximate searches against a case base of previously edited
behaviors. Both technologies work tightly integrated. Initially, the case base is
empty, so all the editing has to be done via the manual editing (graphic) tools.
Once there are enough cases in the case base, new behaviors can be constructed
by retrieving and reusing the stored ones.

First, in Section 2, we introduce some general ideas on behavior representation
and present the approach followed by the eCo behavior editor. In Section 3 we
show a small example of application of the editor to a simulation environment:
SoccerBots. Section 4 describes the CBR module integrated in the editor focusing
in the different ways of computing similarity. Finally, in Section 5 and 6, we
present related work, future goals and conclusions.

2 Modeling Reusable Behaviors

In general terms, the execution of a computer video game can be viewed as the
continuous execution of a loop of perceiving, deciding the behavior, acting and
rendering tasks. The behavior for each NPC basically decides the set of actions
or reactions performed by the controlled entity, usually in relation with its en-
vironment. In a computer game or simulation, each entity gathers information
about its environment using a set of sensors, which could be compared to the
senses of the living beings. Depending on this information, the entity performs
certain actions, using a set of actuators. In general, the set of sensors and ac-
tuators is unique for all the entities of a game and is different for each game or
simulation environment, although there will be similarities between games of the
same genre. For example, sensors in a first-person-shooter (FPS) game will give
access to the position, the steering, the health, the visibility of other entities or
the remaining fuel of a vehicle. Regarding the actuators, the entity can shoot,
look at or go to a place, talk to other entities, among others.

Several suitable techniques exist for the representation of behaviors. Due to its
expressive power and simplicity, Finite State Machines (FSMs) is one of the most

182 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

Fig. 1. Example of a HFSM

popular techniques. FSMs have been used successfully in several commercial
games, like Quake [5], and in game editing tools, like Simbionic [6]. A FSM is
a computation model composed of a finite set of states, actions and transitions
between states. Simple states are described by the actions or activities which
will take place in a state and the transitions point out changes in the state, and
are described by conditions formulated over the sensors. One of the drawbacks
of the FSMs is that they can be very complex when the number of states grows.
To prevent this situation, we used Hierarchical Finite State Machines (HFSMs),
which are an extension to the classic FSMs. In a HFSM , besides a set of actions,
the states can contain a complete HFSM, reducing the overall complexity and
favoring its legibility [3].

We have developed eCo, a game designer oriented tool that represents be-
haviors using HFSMs. The main module offers a graphical editor to manually
“draw” the state machine representing a certain behavior. It includes tools for
loading, saving and importing the behaviors from disk, drawing and erasing the
nodes and edges, and specifying their content (actions or subordinate state ma-
chines, and conditions respectively). Once the behavior is complete, it is possible
to use the code generation tool to generate the source code corresponding to the
behavior. This tool uses the structure of the state machine together with the in-
formation in the game model to generate the source file. As the game model and
the source file required are usually different for each game, the code generator
will also be unique for each game.

The game model is a configuration file that describes some details of a game
or a simulation environment. Each game model is an XML file, which includes
the information about sensors and actuators, and a set of descriptors. The sensors

Experience-Based Design of Behaviors in Videogames 183

and actuators are obtained from the game API. Descriptors are the attributes
used by the CBR module to describe the behaviors and retrieve them from the
case base. The descriptors are obtained through the observation of the charac-
teristics of the different behaviors that exist in the domain of the game.

Every manually designed behavior is stored and indexed and, as behaviors
tend to recur, there is a CBR module that allows retrieving and reusing behaviors
previously stored. We use XML files to store the cases. Each case in the case base
represents a behaviour using the following components. Next section describes
an example using a Soccer simulation environment.

– Attributes: descriptors that characterize different properties of the behav-
ior. The attributes are different for each game, although similar games (e.g.
games of the same genre) will share similar attribute sets. The designer
specifies as many attributes as necessary in the game model.

– Description: textual description of the behavior used to fine tune the de-
scription given by attributes.

– Enclosed behaviors: specifies which behaviors are hierarchically subordi-
nated. This allows the user to retrieve behaviors which include a specific
set of sub-behaviors or actuators.

3 SoccerBots Example

As we have already mentioned, the behavior editor described in Section 2, and
the CBR system that we are describing in Section 4, are independent of any
specific game. However, for the sake of an easier exposition we are explaining
the basic ideas using a simple game. SoccerBots1 is a simulation environment
where two teams play in a soccer match. Simulation time, behavior of robots,
colours, size of field, and many other features are configured from a text file.
Basically, rules are similar to those from Robocup2[7].

The first step when using eCo to generate behaviors for the SoccerBots en-
vironment is to define the game model with the information about sensors, ac-
tuators and CBR descriptors. In the SoccerBots API we can find sensors for
example to check the X, Y position of the ball, its angle and distance. Some
examples of actuators (i.e. actions that robots can take) are kicking the ball,
change the speed of the robot, or change the direction the robot is facing.

Attributes (or descriptors) are obtained through the observation of the char-
acteristics of the different possible behaviors. We used four numeric descriptors
to characterize SoccerBots behaviors, namely mobility is the ability to move all
over the playfield; attack is the ability of the robot to play as an attacker; defence
is the ability of the robot to play as a defender; and goalkeeper is the ability of
the robot to cover the goal. Next section describes how to deal with these and
others ways of describing behaviors in the CBR system.

1 http://www.cs.cmu.edu/ trb/TeamBots/index.html
2 http://www.robocup.org/

184 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

4 CBR for Experience Based Behaviour Design

Case Based Reasoning is specially well suited to deal with the modularity and
reuse properties of the behaviors; it assists the user in the reuse of behaviors by
allowing her to query a case base. Each case of the case base represents a behav-
ior. By means of these queries, the user can make an approximate retrieval of
behaviors previously edited, which will have similar characteristics. The retrieved
behaviors can be reused, modified and combined to get the required behaviors.

Initially, the case base is empty, so all the editing has to be done via the
manual editing (graphic) tools. Once there are enough cases in the case base,
new behaviors can be constructed by retrieving and adapting the stored ones.
The number of cases necessary in the case base to obtain relevant results will
vary from game to game, depending on the complexity of the descriptors and
the heterogeneity of the behaviors that can be constructed for that particular
game. In the example of the Soccerbots environment, we began with a small
case base composed of five cases, and made it grow until we obtain reasonable
results for the queries. This happened with a case base of 25 cases. There are
two kinds of queries: functionality based queries and structure based queries.
In the former, the user provides a set of attribute-value parameters to specify
the desired functionality for the retrieved behavior. In the latter, a behavior is
retrieved, whose composition of nodes and edges is similar to the one specified
by the query.

4.1 Functionality Based Retrieval

The most common usage of the CBR system is when the user wants to obtain
a behavior similar to a query in terms of its functionality. The functionality is
expressed by means of a set of parameters, which can be any (or all) of the
components of the cases described at the end of Section 2.

The parameters describing the query behavior are closely related to the game
model. The more differences exist between two games, the more different the
associated behaviors are and, hence, the parameters used to describe them. The
eCo editor provides a query form, showed in figure 2 to enter the parameters
and texts describing the functionality based queries, and a graphical tool to draw
structural queries (see next section).

To obtain the global similarity value between the cases and the query, the
similarity of the numeric and symbolic attributes is aggregated with the simi-
larity due to the textual description of each behavior. The user can select the
most appropriate operator to combine them in the query form. Some examples
of operators could be the arithmetic and the geometric mean or the maximum.
Functionality queries are provided by mean of a form where the user selects
attributes, and gives a textual description of the required behaviour. (S)he also
selects the similarity measure used to compare the query to the cases. Descriptor
based similarity is based on standard similarity measures here, like the normal-
ized difference value for numbers. Textual similarity metrics like the vector space
model [8] are used to compare textual queries with a short textual description

Experience-Based Design of Behaviors in Videogames 185

Fig. 2. Functionality based queries

included in the cases. For instance, in the previous example, the user is request-
ing a behavior that stays near the goal. This descriptor was not included in the
game model, as it is not relevant for most of the behaviors.

4.2 Structure Based Retrieval

There are cases in which the behaviour designer knows the general structure of
the state machine (i.e. the distribution of the nodes and edges and the generic
functionality of them). In these cases, it would be easier and faster for the de-
signer if he could “draw” the state machine and let the editor find a similar
state machine in the case base. Finite state machines are directed graphs, so we
can compare them using any of the existing techniques in the literature. Figure
3(left) shows an example of a structure based query.

Entering this data, the retrieved state machine would be similar to the query
in terms of its shape, but the behaviour it implements could be any. Hence, we
need to allow the behaviour designer to point out the desired functionality of

186 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

Fig. 3. Query and case for structure based retrieval and similarity between nodes

the retrieved state machine and then, compare the desired functionality with the
functionality implemented in the nodes of the state machines in the case base.

The functionality of the drawn nodes is expressed linking each node to a
functionality query (see Section 4.1) that the user must build to expresses the
desired behaviour that should be contained in the node. The linked functionality
queries are compared to the descriptors in the nodes of the behaviours in the
case base during the query process. In the aforementioned example, and for the
sake of simplicity, instead of expliciting the whole functionality query, we will use
a descriptive name to express it. Thus, for instance, the user could link node A
to a behaviour whose desired functionality is “Go to my goal”. To do this (s)he
must build a functionality query that expresses this and link it to the node. For
the examples we will consider the following linking of the nodes: A = “Go to my
goal”; B= “Defend”; C = “Dribble”; and D = “Goal shot”.

Our approach to these structure based queries is to use the drawing facilities of
the editor to “draw” the state machine (the behaviour pattern) and then assign
functionality based queries to the nodes, which will show the functionality of each
node. Figure 4 shows the query editor for the structure based queries. In the left
pane the user can draw a behaviour pattern and in the right pane he can specify
the desired functionality of the retrieved behaviour by entering a functionality
query. Additionally, each node can be linked to another functionality query, as
we have already mentioned, to tune up the search.

In the next section we review different techniques to calculate labelled graph
similarity and how they can be applied to our specific problem.

Graph Similarity
The graph similarity problem is an issue that has been approached in several
different ways in the literature. Each approach has its own advantages and disad-
vantages. In the following paragraphs we review some of them and explain how
we adapted them to solve our current problem, the labelled graph similarity.

First approach
Bunke and Messmer’s approach [9] is based in the calculation of the weighted
graph edit distance, a generalization of the string edit distance [10]. They define
a set of edit operations (namely, adding a node (A), deleting a node (D) and
editing the label of a node (E), and adding an edge (A’), deleting an edge (D’)
and editing an edge(E’)). Each operation has an associated cost (CA, CD, CE ,

Experience-Based Design of Behaviors in Videogames 187

Fig. 4. Structure based query editor

etc.). Using different sets of cost values will lead us to different results. The edit
distance (dist) is the minimum cost among all sequences of edit operations that
transform the source graph into the target graph. The distance can be converted
into a similarity measure by defining a function that uses the distance, like:

sim(G1, G2) = [1 + dist(G1, G2)]
−1

For instance, for the example in figure 3, valid sequences of edit operations are:

S1 = {D(A), D(C)}
S2 = {D(A), D(B), E(C)[Dribble → Defend], A′(D, C)}
S3 = {E(A)[Go to my goal → Goal shot], D(C), D(D), A′(B, A)}

C1 = 2 · CD C2 = 2 · CD + CE + CA′ C3 = 2 · CD + CE + CA′

Intuitively, if CE and CA′ are greater than 0, the sequence S1 has the lowest
cost, and therefore, is the edit distance.

The sequence associated to the edit distance contains the operations needed
to transform one graph into the other, and hence, it can be used to perform the
adaptation of the retrieved behaviour later.

In the worst case, the complexity of the computation of the graph edit distance
is exponential in the size of the underlying graphs, although it can be speeded
up using heuristics and bound techniques.

188 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

This approach considers the labels in the nodes and edges of the graphs.
Continuing with the former example, in the second sequence we deleted nodes
A and B, and added an edge from D to C. After doing this edit operations, the
resulting graph is equal in shape to the case graph, but still differs from it in
the labels, so we have to use one edit operation to change the label on node C.

One of the limitations of this approach is, as we can see in the example, that
all the node editing operations have the same cost (CE) regardless of the labels
contained in the nodes. For instance, sequence 2 and sequence 3 have the same
cost, but the behaviours in nodes C (Dribble) and 1 (Defend) are more similar
than the ones in nodes A (Go to my goal) and 2 (Goal shot). In our approach,
as we will see later, we use a cost function. This function takes into account the
similarity of nodes in edit operations.

Second approach
The approach followed by Champin and Solnon in [11] is based on the definition
of correspondences between nodes of the source and target graph.

Each graph G is defined by a triplet 〈V, rV , rE〉 where V is the finite set of
nodes, rV is a relation that associates vertices with labels, and rE is a relation
that associates pairs of vertices (i.e. edges) with labels. rV and rE is called the
set of features of the graph. A correspondence C between G1 and G2 is a subset
of V1 × V2, that associates, to each vertex of one graph, 0, 1 or more vertices of
the other.

Given a correspondence C between G1 and G2, the similarity is defined in
terms of the intersection of the sets of features (rV and rE) of both graphs with
respect to C:

descr (G1) ∩C descr (G2) =
{(v, l) ∈ rV 1| (v, v′) ∈ C ∧ (v′, l) ∈ rV 2}∪
{(v′, l) ∈ rV 2| (v, v′) ∈ C ∧ (v, l) ∈ rV 1}∪
{

(vi, vj , l) ∈ rE1| (vi, v
′
i) ∈ C ∧

(

vj , v
′
j

)

∈ C ∧
(

v′i, v
′
j , l
)

∈ rE2

}

∪
{(

v′i, v
′
j , l
)

∈ rE2| (vi, v
′
i) ∈ C ∧

(

vj , v
′
j

)

∈ C ∧ (vi, vj , l) ∈ rE1

}

(1)

simC (G1, G2) =
f (descr (G1) ∩C descr (G2))− g(splits(C))

f (descr (G1) ∪ descr (G2))

Where splits is the set of vertices from V1 ∪ V2 which are associated with 2 or
more vertices by C. The total similarity value is the maximum similarity value
of all the possible correspondences:

sim (G1, G2) = max
C⊆V1×V2

{simC (G1, G2)}

The complexity of this problem is, again, exponential in the number of vertices
of the graphs being compared, but the use of heuristics and bounding functions
can accelerate the search.

Experience-Based Design of Behaviors in Videogames 189

This approach is more sensible to the similarity of the labels in the edges.
On the other hand, the possible values when comparing one label with another
(whether it is a node or an edge label) can only express if they are identical or
not. We need a way to compare, not only the shape of the behaviours but also
their functionalities and, in the scenario we are dealing with, its uncommon to
find two nodes or two edges which have exactly the same labels, so we will need
some way to relax this comparison.

Third approach
The similarity measure proposed by Wang and Ishii in [12] is also based in the
definition of correspondence relations between the nodes of the two graphs.

This method doesn’t use the intersection, but an algebraic formula to obtain
the final similarity measure. As in the previous approach, the similarity degree
of two graphs G1 and G2 is the maximum similarity of G1 and G2 over all the
possible correspondences:

sim (G1, G2) = max
C

{simC (G1, G2)}

and the similarity of G1 and G2 over the correspondence C

simC (G1, G2) =
Fn + Fe

Mn + Me

Fn =
∑

n∈V1

W (n) + W (C (n))
2

· sim (n, C (n))

Fe =
∑

e∈E1

W (e) + W (C (e))
2

· sim (e, C (e))

Mn + Me = max

(
∑

n∈V1

W (n),
∑

n∈V1

W (C (n))

)

+ max

(
∑

e∈E1

W (e),
∑

e∈E1

W (C (e))

)

where W is the weight of a node or an edge.
For this approach, the labels in the nodes and edges are single variables or

constants, and their similarity is defined by the following functions:

– For nodes, if the value represented for the constant or variable in both nodes
is the same, then the similarity is 1, and 0 in any other case.

– For edges, if the source and target nodes of the edges are related by C and
the labels are equal, then the similarity is 1; if the labels are different, the
similarity is 0.5 and is 0 in any other case.

In this case we can change this similarity function so we can obtain a more
descriptive value. We use a functionality based similarity function (Section 4.1)
to compare the descriptors of the nodes. As with the previous techniques, the
complexity of this one is also exponential and its also possible to reduce the
search space by the use of heuristics and bounding techniques.

190 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

Our Approach
Our approach to the similarity problem in finite state machines is based in both
the structure of the state machine and the labeling in the nodes. The labels
associated to the nodes are used to express the functionality of the behaviours
contained in them.

In our implementation we allow the user to select any of the three techniques
explained before to obtain the similarity measure in the structure based retrieval.

First approach
This approach is based in the calculation of the edit distance between two graphs.
The distance is obtained as the sum of the operations needed to transform one
graph into the other.

The cost assigned to each edit operation determines the final distance. In our
approach, we are considering the costs of edit operations, not as constants, but
as functions defined over the source and target nodes or edges. This way, we
can express the intuitive idea that changing one label for another is cheaper in
cost if the labels are more similar. For instance, the cost of the edit operation
E(C)[Dribble → Defend] is:

cost(E(C)[Dribble → Defend]) = CE · (1− sim(Dribble, Defend))

where Dribble and Defend are the labels of the nodes (actually, the labels are
the functional descriptors of the behaviours, but we used these descriptive names
to simplify the example) and the sim function is the similarity function used in
functionality based retrieval in Section 4.1.

We also impose the following restrictions on the possible values of the cost
functions, so the results of the distance function are reasonable:

1. CE ≤ CA + CD and CE′ ≤ CA′ + CD′

This means that editing the label of a node is cheaper than an addition and
a deletion of the same node with different labels.

2. CA = CD and sim(X, Y) = sim(Y, X)
These two restrictions give symmetry to our distance measure.

For instance, to obtain the similarity between the query and the case in
Figure 3, if we use the costs CA, CD, CE , CA′ , CD′ , CE′ = 1, and the sequences:

S1 = {D(A), D(C)}
S2 = {D(A), D(B), E(C)[Dribble → Defend], A′(D, C)}
S3 = {E(A)[Go to my goal → Goal shot], D(C), D(D), A′(B, A)}

The distances are:

d1 = 2 · CD = 2
d2 = 2 · CD + CE · (1− sim(Dribble, Defend)) + CA′ = 2 + 0.5 + 1 = 3.5
d3 = 2 · CD + CE · (1− sim(Go to my goal, Goal shot)) + CA′ = 2 + 1 + 1 = 4

As we can see, the result of d2 is better than d3 because the labels Dribble
and Defend are more similar than Go to my goal and Goal shot.

Experience-Based Design of Behaviors in Videogames 191

Second approach
This approach is based in the definition of a correspondence between the nodes
of the query and the case graphs.

As has been seen in equation (1), in page 188, the intersection with respect
to a correspondence C only takes into account the nodes and edges who share
identical labels. In the case of finite state machines, it is convenient to consider a
more relaxed similarity measure, so we can take into account the nodes that are
not equal but similar. To address this problem we add a value β to each tuple
in the intersection. This value represents the similarity between the labels of the
nodes or edges:

descr (G1) ∩C descr (G2) =
{(v, v′, β) | (v, v′) ∈ C ∧ (v, l) ∈ rV 1 ∧ (v′, l′) ∈ rV 2 ∧ β = sim (l, l′)}∪
{
(

(vi, vj), (v′i, v
′
j), β

)

| (vi, v
′
i) ∈ C ∧

(

vj , v
′
j

)

∈ C ∧ (vi, vj , l) ∈ rE1∧
(

v′i, v
′
j , l

′) ∈ rE2 ∧ β = sim (l, l′)}

simC (G1, G2) =
f (descr (G1) ∩C descr (G2))− g(splits(C))

F

The similarity function we use is the functionality based retrieval similarity (Sec-
tion 4.1).

The similarity value β is used by the function f to obtain the final similarity
value, and the constant F is an upper bound of f that maintains the result
in the interval [0, 1]. For instance, considering the example in figure 3, and the
functions:

f(I) =
∑

for each node n in I

(fN (n)) +
∑

for each edge e in I

(fE(e))

fN((v, v′, β)) = β

fE(((vi, vj), (v′i, v
′
j), β)) = β

g(S) = |S|
F = max {|rV 1| , |rV 2|}+ max {|rE1| , |rE2|} = 4 + 6 = 10

we can have the following similarity values:

– for C = {(A, 1) , (B, 1) , (C, 2) , (D, 2)}:

descr (G1) ∩C descr (G2) = {(A, 1, 0.5), (B, 1, 1), (C, 2, 0.5), (D, 2, 1),
((B, C), (1, 2), 1), ((B, D), (1, 2), 1),
((C, B), (2, 1), 1), ((D, B), (2, 1), 1)}

splits(C) = {(1, {A, B}) , (2, {C, D})}

simC(G1, G2) =
(3 + 4)− 2

10
= 0.5

192 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

– for C = {(A, 1) , (B, ∅) , (C, 1) , (D, 2)}:

descr(G1)∩C descr (G2)= {(A, 1, 0.5), (C, 1, 0.5), (D, 2, 1), ((C, D), (1, 2),1)}
splits(C) = {(1, {A, C})}

simC(G1, G2) =
(2 + 1)− 1

10
= 0.2

To simplify this approach, we can consider only the nodes and edges whose β
is greater than a certain threshold.

Third approach
The third approach is also based in defining the possible correspondences be-
tween the graphs being compared. In this case, the calculation includes the
comparison of the similarity of labels. To adapt it to our scenario we use the
functionality based retrieval similarity function, instead of the one proposed.

As a first approach we give all the nodes and edges the same weight (1). The
resulting similarity measure is:

simC (G1, G2) =
Fn + Fe

Mn + Me

Fn + Fe =
∑

n∈N1

sim (n, C (n)) +
∑

e∈E1

sim (e, C (e))

Mn + Me = |N1|+ |E1|

For the example in figure 3 we can have the following results:

– for C = {(A, 1) , (B, 1) , (C, 2) , (D, 2)}:

simC(G1, G2) =
(0.5 + 1 + 0.5 + 1) + (1 + 1 + 1 + 1)

4 + 6
= 0.8

– for C = {(A, 1) , (B, 2) , (C, 1) , (D, 2)}:

simC(G1, G2) =
(0.5 + 0 + 0.5 + 1) + (1 + 1 + 1 + 1)

4 + 6
= 0.6

5 Related Work

There exist several tools oriented towards the edition of finite state machines.
Most of them are general purpose state machine editors (like Qfsm or FSME),
which allow a more or less elastic definition of the inputs and outputs (the sensors
and actuators) and the generation of the source code corresponding to the state
machine in one or more common languages like C++ or Python. Most of them
don’t allow the use of HFSMs, nor facilitates the use of CBR or some other tool
to favour reusing the state machines.

Regarding game editors, most of them are only applicable to one game or,
at the most, to the games implemented by one game engine (as is the case of

Experience-Based Design of Behaviors in Videogames 193

the Valve Hammer Editor). Besides, the vast majority only allow map edition.
The few that allow editing the entity behaviors are usually script based, like the
Aurora Toolset for Neverwinter Nights.

Finally, there exist some tools like BrainFrame and, its later version, Sim-
bionic, which are game oriented finite state machine editors. These editors allow
the specification of the set of sensors and actuators for the game and the edition
of HFSMs using that specification. The HFSMs generated by the editor are in-
terpreted by a runtime engine that must be integrated with the game. Currently,
there exist a C++ and a Java version of the runtime engine. There are two cru-
cial differences between our approach and the approach used in Simbionic. First
of all, the Simbionic editor doesn’t offer any assistance for reusing the behaviors,
like the CBR approximate search engine integrated into the eCo editor. And
second, to integrate a behavior edited with the Simbionic editor with a game, it
is mandatory to integrate the Simbionic runtime engine with the game. On the
other hand, eCo offers capabilities to implement code generator to automatically
generate the source for behaviors in any language.

6 Conclusions and Future Work

In this paper we have described an ongoing work using CBR to design intelligent
behaviors in videogames. We have developed a graphical editor based on HFSM
that includes a CBR module to retrieve and reuse stored behaviors.

One of the main advantages of our approach is that the editor and the CBR
module are generic and reusable for different games. We have shown the appli-
cability in a soccer simulator environment (SoccerBots) to control the behavior
of the players. As part of the testing stage and to check the editor applicability
we have proposed the integration of the eCo editor with other games with very
different nature: SoccerBots is a sports simulator, Neverwinter Nights is a role
playing computer game, JV2M [13] is an action game and AIBO is a real life
multipurpose robot) and with different integrating characteristics. For instance,
while in JV2M we define the set of sensors and actuators, it is fixed for the other
environments; while Neverwinter Nights is highly event-oriented, the rest of the
environments are basically reactive systems.

In this paper we have described the current state of the work but there are
many open lines of work. We have finished the graphical editor, defined the
structure of the cases and the game models, and we have been working on case
representation, storage and similarity based retrieval. Current lines of work are
automatic reuse of behaviors and learning.

Regarding structure based similarity, in this paper we have proposed three dif-
ferent approaches to compare finite state machines. Our next step is testing them
to determine which is the most suitable approach and for what kind of cases.

The use of HFSM offers many possibilities to reuse and combine pieces of
behaviors within other more complex behaviors. We are also working on the
definition of an ontology about different games genres to be able to reuse be-
haviors, vocabulary and sets of sensors and actuators between different games

194 G.F. Puga, B. Dı́az-Agudo, and P. González-Calero

of the same genre. This way we can promote the reuse of behaviors, even among
different games, while making easier the use of the editor, since the user doesn’t
need to learn the characteristics of the game model for each game.

There exist numerous techniques, besides HFSMs, to represent behaviors, like
decision trees, rule based systems, GOAP or Hierarchical Task Networks, for
instance. One of the opened investigation lines is the study of the pros and cons
of each one of them and the possibility of combining some of them to create the
behaviors.

References

1. Bowling, M., Fürnkranz, J., Graepel, T., Musick, R.: Machine learning and games.
Machine learning 63, 211–215 (2006)

2. Flórez Puga, G., Dı́az-Agudo, B.: Semiautomatic edition of behaviours in
videogames. In: Proceedings of AI 2007, 12th UK Workshop on Case-Based Rea-
soning (2007)

3. Girault, A., Lee, B., Lee, E.: Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on Computer-Aided Design 18, 742–760
(1999); Research report UCB/ERL M97/57

4. Champandard, A.J.: AI Game Development - Synthetic Creatures with Learning
and Reactive Behaviors. New Riders Games (2003)

5. Brownlee, J.: (Finite state machines (fsm)) (accessed March 14, 2008),
http://ai-depot.com/FiniteStateMachines/FSM.html

6. Fu, D., Houlette, R.: Putting ai in entertainment: An ai authoring tool for simula-
tion and games. IEEE Intelligent Systems 17, 81–84 (2002)

7. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The robot
world cup initiative. In: Johnson, W.L., Hayes-Roth, B. (eds.) Proceedings of the
First International Conference on Autonomous Agents (Agents 1997), pp. 340–347.
ACM Press, New York (1997)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (to appear, 2007)

9. Bunke, H., Messmer, B.T.: Similarity measures for structured representations. In:
Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp.
106–118. Springer, Heidelberg (1994)

10. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21,
168–173 (1974)

11. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley,
K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 80–95. Springer,
Heidelberg (2003)

12. Wang, Y., Ishii, N.: A method of similarity metrics for structured representations.
Expert Systems with Applications 12, 89–100 (1997)

13. Gómez-Mart́ın, P.P., Gómez-Mart́ın, M.A., González-Calero, P.A.: Javy: Virtual
Environment for Case-Based Teaching of Java Virtual Machine. In: Palade, V.,
Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 906–913. Springer,
Heidelberg (2003)

http://ai-depot.com/FiniteStateMachines/FSM.html

Considerations for Real-Time Spatially-Aware

Case-Based Reasoning: A Case Study in Robotic
Soccer Imitation

Michael W. Floyd, Alan Davoust, and Babak Esfandiari

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario

Abstract. Case-base reasoning in a real-time context requires the sys-
tem to output the solution to a given problem in a predictable and usually
very fast time frame. As the number of cases that can be processed is
limited by the real-time constraint, we explore ways of selecting the most
important cases and ways of speeding up case comparisons by optimizing
the representation of each case. We focus on spatially-aware systems such
as mobile robotic applications and the particular challenges in represent-
ing the systems’ spatial environment. We select and combine techniques
for feature selection, clustering and prototyping that are applicable in
this particular context and report results from a case study with a simu-
lated RoboCup soccer-playing agent. Our results demonstrate that pre-
processing such case bases can significantly improve the imitative ability
of an agent.

1 Introduction

When using a case-based reasoning (CBR) system, the performance of the system
is highly dependant on the quality of the case base that is used [1]. One aspect
of case base quality is how well the cases in the case base represent the set
of possible problems that the CBR system might encounter. If the case base
contains too few cases (or cases that are highly similar to each other) then the
case base might not adequately cover the problem space leading to a decrease
in performance. One reason, which we will focus on in this paper, for a case
base being a less than ideal size is if the CBR system must operate under a
real-time constraint. Since the CBR system must search the case base in order
to determine the solution to a problem, a larger case base will likely lead to a
longer search time.

One specific area where CBR can be applied in a real-time setting is in the
imitation of spatially-aware autonomous agents. These agents are able to identify
objects that are visible to them in their environment and perform actions based
on the configuration of those objects. Unless the agent has a complete world
view, it is generally only able to see a subset of objects at any given time. In

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 195–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 M.W. Floyd, A. Davoust, and B. Esfandiari

addition to being able to only view a subset of the objects in the environment
at a given time, the agent may also not know the total number of objects that
exist in the environment.

When an agent is fully aware of each unique object in the environment and is
able to differentiate between similar objects (for example, the agent can differen-
tiate between two humans and does not just classify them both as human) then
there would exist a type for each of the unique objects. However, if the agent
is unable to differentiate between similar objects then multiple objects would
belong to a single type and the objects of a similar type could be considered
interchangeable.

The RoboCup Simulation League [2] is a realistic benchmark for examining
the type of agents we described. RoboCup agents must deal with temporal events
as well as with an environment consisting of a 2-D space (the soccer field) with
objects and other agents within that space. The agent does not know its exact
position on the field but must estimate it using the location of the objects that
are visible to it. During each time period in a game, the server provides clients
with world view and state information (subject to a noise model) using one of
see, hear, or sense body messages. Objects described in see messages may be
players, the ball, goal nets, or the numerous lines and flags located on the field.
Due to noise associated with seeing objects, a RoboCup agent often does not
possess enough information to properly differentiate similar objects (for example,
it may only be able to tell that it can see a player, though not which player it
sees). The RoboCup Simulation league provides a suitable testbed to examine
the methods described in this paper due to the real-time constraints and the
difficulty in differentiating similar objects.

In the remainder of this paper we will examine several techniques (feature
selection, clustering and prototyping) that can be used to increase the number
of cases that can be examined within a real-time limit as well as methods of
improving the diversity of cases contained in a fixed sized case base. It should be
noted that assume that the case bases do not use any method of fast-indexing,
although we feel that our techniques could be used as a complement to fast-
indexing. Initially, in Section 2 we describe the case study we will perform to
demonstrate the techniques presented in later sections of the paper. Section 3
will look at methods for representing a case and selecting the most useful features
in a case to use will be covered in Section 4. The creation of prototype cases will
be covered in Section 5. Related work will be examined in Section 6 followed by
conclusions in Section 7.

2 Case Study: RoboCup Simulation League

Our case study involves a case-based reasoning system that is used to imitate the
behaviour of a RoboCup [2] soccer player. Cases for this system are generated, in
an automated manner, by observing the RoboCup player that will be imitated
and logging the inputs to the player and the player’s outputs [3,4]. Each case
is comprised of the inputs to the player (what objects the player can see) as

Considerations for Real-Time Spatially-Aware CBR 197

well as the outputs (actions the player performs) of the player in response to
those inputs. The imitative CBR agent then uses those cases in an attempt to
select appropriate actions based on what it can currently see (what objects are
in its field of vision). The goal of such a system is to produce behaviour that is
indistinguishable from the behaviour of the RoboCup player it is imitating.

In the RoboCup Simulation League, the environment contains objects that
belong to a fixed number of object types. Although each individual object on
the field in unique, the agent is often unable to distinguish between objects
of the same type due to noise. For example, the agent would be able to see a
teammate but might not be able to tell what specific teammate it is. For this
reason, objects of the same type are treated as interchangeable. In the RoboCup
Simulation League we define the following object types:

Type = {Ball, Goalnet, F lag, Line, T eammate, Opponent, Unknownplayer}

Each player may only perform an action once per discrete time interval, called
a cycle. If the player does not perform an action each cycle then it will be at a
disadvantage compared to other players who act more often. The entire process
(Figure 1) of identifying what objects are currently visible to the agent, using
CBR to select the appropriate actions to perform and performing those actions
should then be completed within a cycle (of length 100ms). Also, given that the
CBR process is not the only task the agent needs to complete within each cycle,
we will set our time limit for performing CBR to half of the cycle (50ms).

Fig. 1. The activities the agent must perform in one 100ms cycle

2.1 Metrics

The effectiveness of each approach will be measured using a combination of two
criteria: how much time it takes to perform the case-based reasoning process and
how well the agent performs imitation.

The time it takes to perform the CBR process will be measured as the time
it takes from when the CBR system is given a problem (the objects an agent
can currently see) to when it provides a solution (the action to perform). As
was mentioned previously, we want this time to be as close to our imposed time
limit of 50ms as possible. If the time is lower than 50ms we could add more cases
to our case base, or if the time is greater than 50ms we would need to remove
cases from the case base. Either adding or removing cases may have an impact
of how well the imitative agent performs, so we also require a metric of agent
performance.

198 M.W. Floyd, A. Davoust, and B. Esfandiari

If it takes an amount of time, T , to perform CBR using a case base of size N ,
then we can estimate the number of cases, Nmax, that can be used within our
real-time limit, Tmax, as:

Nmax ≈
Tmax ∗N

T
(1)

A simple measure of agent performance would be to measure the classification
accuracy of the CBR system when performing a validation process. Each case
in a testing set will be used as input to the CBR system and the output of the
CBR system, the predicted action, will be compared to that case’s known action.
This provides a measure of the number of test cases that are classified correctly.
However it can be misleading when the testing data contains a disproportional
number of cases of a certain class. For example, in RoboCup soccer a player
tends to dash considerably more often than it kicks or turns. A CBR system
that simply selected the dominant class (dash) could gain a high classification
accuracy while completely ignoring the other classes.

Instead, we use the f-measure. We define the f-measure, F, for a single action,
i, as:

Fi =
2 ∗ precisioni ∗ recalli
precisioni + recalli

(2)

with
precisioni =

ci

ti
(3)

and
recalli =

ci

ni
(4)

In the above equations, ci is the number of times the action was correctly
chosen, ti is the total number of times the action was chosen and ni is the number
of times the action should have been chosen. The global f-measure, combining
the f-measures for all A actions, is:

Fglobal =
1
A

A∑

i=1

Fi. (5)

3 Case Representation and Comparison

As we focus on spatially-aware agents, an important issue is that of representing
the agent’s environment. Assuming a previous step in the considered system
extracts symbolic information from a robot’s sensor data, the “raw” information
is a list of recognized objects with spatial coordinates, for example in polar
coordinates with respect to the agent, as in the RoboCup context.

The standard inputs of most machine learning systems are feature vectors,
and in most CBR publications (particularly in the RoboCup context) researchers
have manually defined vectors from their input data, selecting features according
to their expertise in the application domain. For soccer simulation, the feature
vectors comprised such heterogeneous features as the distance from the ball to

Considerations for Real-Time Spatially-Aware CBR 199

the net, the current score, counts of players in particular zones, etc. In previous
work on this project [3,4,5] we have adopted an orthogonal approach, exploring
techniques to manipulate the raw data received from the feature extraction step,
minimizing application-specific bias and human intervention.

3.1 Raw Data Representation

The first representation that we consider here is a simple list representation of
the visible objects with their exact coordinates. The main problem with this rep-
resentation is that is does not form an ordered set of features of a fixed length.
At a given time the agent only has a partial view of the world, and cannot nec-
essarily differentiate objects of a given symbolic category. For example, a mobile
robot navigating a city could label the objects surrounding it as cars, people,
or buildings, but probably not identify each one according to some complete
reference of all possible cars, people, or buildings.

Comparing two cases represented by such “bags of objects” involves compar-
ing the sets of objects present in the scenes, matching as many objects from
one set to objects of the other set, and secondly evaluating the actual physical
distance in between matched objects. As permutations need to be considered,
the cost of object-matching algorithms is very high, as reported by Lam et al.
[4] and Karol et al.[6] in separate work. Objects of one scene which cannot be
matched to an object of the other must also be accounted for, for example by a
penalty added to the distance value.

3.2 Histogram Representation

In [5] we presented an alternative approach that creates a vector using all the
spatial data without the bias of manual feature selection. Our approach takes
inspiration from grid occupancy maps [7] used in mobile robotics, a technique
where sections of the environment are assigned probabilistic indications that
they contain obstacles. Such a representation aims to project all the available
information (e.g. from a sonar) on a feature map that represents the entire
known environment. Our representation is based on histograms of objects over a
partition of the visible space, and transforms a list of objects into an image-like
representation with customizable granularity.

As a feature vector, this representation supports practical similarity metrics
and opens the door for the application of other machine learning techniques
while avoiding the need of a priori manual feature selection. Distance and sim-
ilarity metrics that we have experimented with include Euclidean distance and
a similarity metric based on the Jaccard Coefficient, which has proved to give
better results in our experiments (see [5]).

3.3 Fuzzy Histograms

Discretizing the visible space into intervals, although efficient in our practical
experiments, has some drawbacks. Objects that are near the boundaries can be

200 M.W. Floyd, A. Davoust, and B. Esfandiari

artificially separated into two different sections, whereas two relatively distant
objects, at opposite ends of a section, would be lumped together. In fact, since we
are removing the information of the exact coordinates of the objects, some cases
which were only slightly different can now have the exact same representation. If
these cases were associated to the same solution then it can be a way of removing
redundant cases, but if the cases were associated to different solutions then the
indistinguishability of the two cases becomes a problem.

In order to address these problems we can introduce fuzzy logic to the dis-
cretization. Fuzzy logic allows for the smooth spreading of the count of objects
over neighbouring segments according to the actual position of the objects, and
thus limits boundary effects. For fuzzy histograms, we can use the same distance
or similarity metrics as for crisp (non-fuzzy) histograms.

3.4 Empirical Comparison

The case representation schemes we have described store the case features and
calculate distance between cases in different manners. As such, we can expect
the execution time of a CBR system to be different depending on which repre-
sentation scheme we use. The goal of these experiments is to find out how large
the case base can be for each representation (while still meeting our imposed
50ms time limit) and how well the CBR system performs when using a case base
of that size.

The experiments will use the following parameters:

– The player we will attempt to imitate is Krislet [8]. Krislet uses simple
decision-tree logic to express its behaviour, namely that the agent will always
search for the ball, attempt to run towards it, and then attempt to kick
it toward the goal. Although it may seem that simply inducing decision-
trees from our data would be an obvious solution to imitate this agent, our
preliminary studies found that this required more human intervention and
performed less accurately than a case-based reasoning approach.

– All features will be given an equal weighting.
– The CBR system will use a 1-nearest neighbour algorithm.
– All case representations will work on identical datasets (although they will

represent the data sets differently).
– The histogram approaches will discretize the data into a 5x8 grid.
– The histogram approaches use the Jaccard Coefficient similarity measure.

Case bases of varying sizes were used in order to determine the maximum
number of cases that could be used within a 50ms timeframe. We can see that
the histogram approaches can utilize far more cases, nearly 5 times more, that the
raw data representation (Table 1). Also, the histogram approaches achieve higher
f-measure scores in all categories except for kicking, with the crisp approach
slightly outperforming the fuzzy approach.

Considerations for Real-Time Spatially-Aware CBR 201

Table 1. Comparison of case representation

Max.
cases

f1global f1kick f1dash f1turn

Raw 3012 0.43 0.17 0.70 0.41

Crisp histogram 14922 0.51 0.12 0.84 0.57

Fuzzy histogram 14922 0.50 0.12 0.82 0.56

4 Feature Selection

The comparison between cases, usually a similarity or dissimilarity measure,
occurs quite often in a single CBR cycle and can represent a majority of the
computational time required by the CBR system. If the comparison between
cases is a function of the features contained in the cases, such that the compu-
tation time of the comparison is proportional to the number of features, then
removing unnecessary or redundant features can reduce the computational time
required.

Wrapper algorithms [9] are a type of feature selection algorithm that search
for an optimal feature weighting by evaluating the weightings when using them
in a target algorithm (in our case, a CBR algorithm). This is in contrast to
a filter algorithm [10] that selects features without using the target algorithm.
Wrapper algorithms are often favoured because they directly use the algorithm
that will use the feature weights, although they do have a higher computational
cost.

The downside of existing wrapper algorithms, when taking into account the
real-time concerns, is that they select the features that will optimize the per-
formance of a given algorithm when using a fixed-sized training sample. One
should note though that performing feature selection on a fixed-sized training
sample will produce an optimum feature weighting for that training sample and
will not take into account that every feature removed will result in more cases
that can be evaluated. For example, the removal of a feature might not improve
the performance of the target algorithm using a fixed-sized training set but the
performance might be increased if that feature was removed so that more cases
could be added to the training set (potentially improving the diversity of the
training set).

Given the total time to solve a problem case using a CBR system, ttot, when
the CBR system uses a case base of size N, then the average execution time cost
per case, tcase, is:

tcase =
ttot

N
(6)

And if the each case is composed of i types of features, then the average execution
time cost per feature type, tfeat, is:

tfeat =
tcase

i
(7)

202 M.W. Floyd, A. Davoust, and B. Esfandiari

It should be noted that this assumes that each type of feature has an equal
execution cost. If this is not the situation, each feature type can have a different
cost value. We can then apply the following algorithm to complement the use of
any existing wrapper feature selection algorithm:

Algorithm 1. Dynamic Training Set Feature Selection

Inputs: WrapperAlgorithm, allCases, timeLimit, CBRAlgorithm
Outputs: optimum weights

DTSFS(WrapperAlgorithm, allCases, timeLimit, CBRAlgorithm)
while(!WrapperAlgorithm.optimumWeightsFound()):

weights = WrapperAlgorithm.nextWeightsToTest()
caseCost = 0
for(each non-zero weight in weights)

caseCost += execution time cost of the feature being weighed
end loop
estimatedSize = timeLimit/caseCost
trainingCaseBase = randomly select ’estimatedSize’cases from allCases
CBRAlgorithm.setWeights(weights)
CBRAlgorithm.setTrainingData(trainingCaseBase)
performance = CBRAlgorithm.evaluatePerformance()
WrapperAlgorithm.returnEvaluation(performance)

end loop
return WrapperAlgorithm.optimumWeights()

end

This algorithm dynamically changes the size of the training data used by a
wrapper feature selection algorithm based on the estimated computational cost
of the feature set that is currently being evaluated by the CBR system.

4.1 Experimental Results

This round of experiments looks to demonstrate the benefit of using the feature
selection algorithm discussed in the previous section (Algorithm 1). For these ex-
periments we will use a simple wrapper feature selection algorithm, a backward
sequential selection (BSS) algorithm [11], as an input to Algorithm 1. We make
a slight variation to this algorithm in that it does not directly evaluate weights
using the CBR algorithm. Instead, it makes the current weights it wants to test
available (as in the nextWeightsToTest() method in Algorithm 1) and waits to re-
ceive the performance of those weights (as in the returnEvaluation(performance)
method in Algorithm 1). This wrapper algorithm requires two parameters. The
first parameter is the minimum percentage a feature set must improve over the
current best feature set in order to become the new best feature set. The second
parameter is the number of feature sets we examine, without finding a new best
feature set, before the algorithm terminates. For our experiments we will use a
0.01% minimum increase and up to 5 non-improving feature sets.

Considerations for Real-Time Spatially-Aware CBR 203

When the BSS wrapper algorithm is used to perform feature selection, with
all three case representation schemes that were used in Section 3 (using the same
parameters as those experiments), we find that all three schemes find the same set
of features (ball and teammate) produce the largest performance improvement
(Table 2). For all case representations we see noticeable increases in f-measure
values by using this subset of object types instead of using all object types. Case
base sizes were selected based on the experiments in Section 3 so that when using
all of the features the CBR process would take approximately 50ms. We see that
the feature selection algorithm found a set of features that did not contain all of
the features. By removing the features that the feature selection algorithm did
not select (and removing their computational cost) the CBR system will then be
able to process more cases within the 50ms time limit. Does it then make sense
to perform feature selection using a training case base of a fixed size if that fixed
size is chosen in order to ensure the real-time constraint when using all of the
features?

In fact, each feature set will allow for a different maximum case base size
depending on the number of features that are included. If we use the same
BSS wrapper algorithm as an input to Algorithm 1 we can see that it may be
more beneficial to remove a feature, and as a byproduct allow for a larger case
base size, then to keep the feature (Table 3). Using a fixed sized training case
base, we found ball and teammate to be the features that should be included.
However, using a dynamic sized training case base we find that only the ball
should be included. The performance using a larger case base size, by removing
the teammate feature, was larger than the performance of using a smaller case
base size and including the teammate feature. It should be noted that the same
can not be said about removing the ball feature and only keeping the teammate
feature, as that actually caused a performance decrease.

5 Case Selection through Case-Base Clustering and
Prototyping

The next method for improving case base diversity that we examine, in this
section, is prototyping. Prototyping involves replacing a set of cases with a single
case (a prototype case) that is representative of the entire set. In order for any
type of prototyping to occur, the case base can first be divided into a number
of smaller groups. Each of these clusters must contain similar cases so that the
prototyping process can successfully produce a case that represents the entire
cluster. Ideally, the cases within a specific cluster will be nearly identical to
each other, so that the prototypical case would be highly similar to all cases in
the grouping. However, if the cases in a grouping are highly dissimilar then the
prototypical case will be a less precise representation of the cluster.

Many clustering algorithms work on the assumption that the distance metric,
used to calculate the distance between two data points, follows the triangle
inequality [12]. While we can make this assumption for the histogram distance
calculation and data representation in Section 3.2, the same can not be said for

204 M.W. Floyd, A. Davoust, and B. Esfandiari

Table 2. Feature Selection Using Fixed Training Case Base

Num.
cases

Features f1global f1kick f1dash f1turn

Raw 3012 {ball,teammate} 0.52 0.30 0.79 0.47

Crisp histogram 14922 {ball,teammate} 0.57 0.25 0.87 0.60

Fuzzy histogram 14922 {ball,teammate} 0.55 0.26 0.82 0.58

Table 3. Feature Selection With Dynamic-sized Training Case Base

Max.
cases

Features f1global f1kick f1dash f1turn

Raw 21084 {ball} 0.60 0.42 0.84 0.55

Crisp histogram 104454 {ball} 0.61 0.30 0.90 0.64

Fuzzy histogram 104454 {ball} 0.60 0.30 0.88 0.62

the raw data representation and associated distance calculation (Section 3.1).
This is due to the fact that each case can contain a different number of known
values for features and features can be indistinguishable from each other. The
way in which indistinguishable features are “matched” between cases [3] can lead
to such a situation. For example, consider three cases A, B and C which contain
features a, b and c respectively. We might find a situation where a and b are
matched when comparing A and B, a and c are matched when comparing A and
C but b and c are not matched when comparing B and C. This situation can
lead to the triangle inequality not holding true. One type of clustering algorithm
that could work on such data would be non-parametric clustering algorithms
[13,14].

For the histogram representations we use a k-means clustering algorithm [15]
to cluster the data. However, due to the distance calculation used by the raw
data representation the k-means algorithm (along with a substantial number of
other clustering algorithms) can not directly be applied due to the fact that each
case contains a different number of known values for features. The data must first
be transformed by converting it to a distance vector [13]. The distance vector for
a case contains the distance between that case and each case in the case base.
So if the case base contains N cases, then each case will be represented by a
distance vector of size N. After this transformation is performed we can then
apply the k-means algorithm to the distance vectors.

Assuming we can adequately cluster our case data, we will now examine two
possible methods to create prototypical cases from the clustered data.

5.1 Using a Cluster Member

The simplest method for creating a prototypical case from a cluster of cases is to
simply use a single case from the cluster, a cluster member, as the prototypical
case and discard the remaining members of the cluster. This method is useful
because it does not require creating a new case, but instead it reuses an existing

Considerations for Real-Time Spatially-Aware CBR 205

case. By avoiding the creation of a new case the case base is guaranteed to be
composed entirely of acquired cases.

For a cluster with n cases in it and containing the cases {Ci, . . . , Cn}, we
locate the prototypical case as:

Cprot = arg
Cn

min
Ci=C1

n∑

j=1

d(Ci, Cj) (8)

This will find the case that is the minimum distance (where the distance between
two cases is d(Ci, Cj)) from all other cases in the cluster. Likewise, we could
modify the equation to find the maximum value when calculation a similarity
between the cases.

5.2 Creating an Average Case

The second method of creating a prototypical case from a cluster of cases is
to create an “average case”. This entails determining an average position that
spatial objects will be located when examining all cases in the cluster. Compared
to the first method, this method constructs a novel case and does not reuse
an existing case. The process of creating an average case when all cases have
a fixed number of features is quite simple (the average case will contain the
average value of each feature). The averaging process becomes more difficult in
situations where cases can have different numbers of features. For example, with
the raw data representation (Section 3.1) the issue of matching features between
a pair of cases becomes substantially more difficult when matching between a
set (cluster) of cases. To deal with the differing numbers of features we propose
Algorithm 2.

This algorithm uses a case in the cluster that is central to the other cases
(using Equation 8) and performs a pair-wise matching between that case and
each of the other cases in the cluster. The resulting prototype will have the
same number of features as the cental case and the feature values will be highly
dependant on how the other cases matched to the central case. This means
changing the case used as the cental case can result in different prototype cases
being produced.

5.3 Experimental Results

In this section of experiments we demonstrate the results of applying the proto-
typing methods that we have described previously. For these experiments we will
use the same parameters that we used in Section 3 and we will use the results
from that section (the maximum-sized case base that can be searched in 50ms)
as the benchmark.

Initially, each of the case bases (one for each case representation scheme)
must be clustered. As was mention previously in this section, we will use the
k-means clustering algorithm. The k-means algorithm requires a parameter, the
k-value, to specify how many clusters the data will be partitioned into. For

206 M.W. Floyd, A. Davoust, and B. Esfandiari

Algorithm 2. Spatial Cluster-Average Prototype
Inputs: cluster of cases
Outputs: prototypical case

SCAP(cluster)
remove the case, C, that is closest to all other cases
for(each feature f in C):

create an empty list and add the feature to that list
end loop
while(more cases exist in cluster):

remove the next case in the cluster, N
for(each feature in C):

match the feature with a feature in N
add the feature value from N to the list for this feature

end loop
end loop
create a prototypical case, P, that contains no objects
for(each feature in C):

compute the average location of all features in the feature list
add a feature with the average location to P

end loop
return P

end

each representation this value was found experimentally by finding the smallest
k-value such that the resulting clusters were still homogeneous. A cluster is
homogeneous if each case in the cluster has the same solution (the same action
in the RoboCup domain).

With the resulting clusters we then applied the prototyping methods described
in Section 5.1 and Section 5.2. Both prototyping methods resulted in the same
decrease in number of cases and decreased execution time, since they used the
same data partitioned into the same number of clusters. The difference between
prototyping using a cluster member and prototyping using an average case (Table
4) can be seen in their influence on performance. While both methods result in
a slight decrease in the f-measure, a tradeoff for the decrease in execution time,
we see that the f-measure decreases less when prototyping using an average
cluster.

Although we have focused exclusively on prototyping a case base that can
already be searched within our real-time limit of 50ms, in order to compare with
benchmarks set in previous experiments, the real benefit of such an approach is
to compress a larger case base to fit within the time limit. Given that k-means
allows the number of clusters produced to be specified, the case base can be
partitioned into a number of clusters equal to the maximum allowable case base
size. Each cluster can then be used to create a prototype case and the resulting
case base will be exactly the maximum allowable size. The only limiting factor
is that the more a case base is compressed the larger the potential performance
decrease that will occur.

Considerations for Real-Time Spatially-Aware CBR 207

Table 4. Prototyping using cluster member and average case

Initial
cases

Final
cases

Initial
execution
time

Final ex-
ecution
time

Initial
f1global

Member
Final
f1global

Ave.
Final
f1global

Raw 3012 2642 50ms 44ms 0.43 0.41 0.42

Crisp 14922 12335 50ms 41ms 0.51 0.47 0.49

Fuzzy 14922 11642 50ms 39ms 0.50 0.47 0.49

6 Related Work

In our previous work [4,3,5] we have exclusively looked at the application of
CBR to the topic of agent imitation and the various algorithms and data rep-
resentations used to facilitate that process. In that work we made no attempt
at preprocessing the case base in order to improve search time and case base
diversity.

Using CBR in the domain of RoboCup has been explored numerous times be-
fore, including the simulation [16,17,18], small-sized robot [19] and four-legged
robot [20,6] leagues. These CBR systems are often given a complete world-
view [17,18,19,6] or an artificially increased world-view (from opponents that
communicate their location [20]) which may not be attainable in many real-
world domains. The features contained in a case are selected by a human expert
[16,17,18,19,20,6] and the cases are often authored [19,20] or filtered [16] by a hu-
man expert. The main difference between our approach and these works is that
we use automatically generated cases, by observing another agent, that contain
all objects the agent can see, thus reducing bias by avoiding feature selection by
a human expert.

The topic of feature selection and feature weighting has been covered exten-
sively in case based reasoning research. This work ranges from comparisons of
various feature weighting methods [21] to applications of feature weighting [22].
While substantial work exists in the field of CBR, to our knowledge ours is the
first to address the feature selection needs of a real-time agent. Similarly, pro-
totyping and generalization have previously been examined and applied in CBR
[23] but the way in which a spatial-aware agent represents a case complicates the
prototyping processes and requires special consideration. Lastly, while it may ap-
pear that we ignored topics related to case base structure [24] and fast-indexing
techniques, we feel that our techniques compliment such work and should be
used in combination with, rather than as an alternative to them.

7 Conclusions

Throughout our case study we have experimented using three different methods
of case representation. Our results have generally shown the histogram represen-
tations to significantly outperform the raw representation (using a t-test with
p=0.01) and the crisp histogram outperformed the fuzzy version (p=0.05). There

208 M.W. Floyd, A. Davoust, and B. Esfandiari

are two notable exceptions. Throughout we have found that the raw representa-
tion achieves higher f-measure values related to the action of kicking (p=0.01).
This is likely because the artificial cell boundaries created by the histogram
approach. Secondly, we find that the fuzzy histogram representation achieves
better reduction in size while having no significant difference in f-measure score
compared to the crisp histogram. This is because the fuzzy histogram approach
produces fewer cases that have the same representation but different actions,
since the fuzziness better encodes the exact position of features.

We have demonstrated throughout this paper that applying preprocessing
techniques to a case base can increase the performance of a CBR system by
allowing it to consider more cases within a real-time limit or increasing the
diversity of the case base. We examined modifying the distance calculation used
(as a byproduct of changing the case representation), selecting a feature set that
optimize performance and clustering similar cases so that they may be used
to generate a prototypical case. While we have shown these techniques to be
successful in the domain of RoboCup soccer, and more specifically the imitation
of soccer playing agents, they are applicable to any situation where a CBR
system uses spatial data with real-time concerns.

Although the f-measure values attained may seem low (0.5 - 0.6 range), suc-
cessful agent imitation can be observed when watching the imitative agent play
a game of soccer. This study focused on data from a single agent (due to space
limitations) but further analysis for agents of different complexity, data sets,
source code and game videos can be found at http://rcscene.sf.net.

References

1. Smyth, B.: Case-base maintenance. In: Proceedings of the Eleventh International
Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems (1998)

2. RoboCup: Robocup online (2008), http://www.robocup.org
3. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based approach to imitating robocup

players. In: Twenty-First International FLAIRS Conference, pp. 251–256 (2008)
4. Lam, K., Esfandiari, B., Tudino, D.: A scene-based imitation framework for

robocup clients. In: Proceedings of the Workshop MOO at AAMAS 2006 (2006)
5. Davoust, A., Floyd, M.W., Esfandiari, B.: Use of fuzzy histograms to model the

spatial distribution of objects in case-based reasoning. In: Bergler, S. (ed.) Cana-
dian Conference on AI, pp. 72–83. Springer, Heidelberg (2008)

6. Karol, A., Nebel, B., Stanton, C., Williams, M.A.: Case based game play in the
robocup four-legged league part i the theoretical model. In: RoboCup (2003)

7. Moravec, H., Elfes, A.E.: High resolution maps from wide angle sonar. In: Proceed-
ings of the 1985 IEEE International Conference on Robotics and Automation, pp.
116–121 (1985)

8. Langner, K.: The Krislet Java Client (1999),
http://www.ida.liu.se/frehe/RoboCup/Libs

9. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97(1-2), 273–324 (1997)

10. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: Proceedings of the Eleventh ICML, pp. 121–129 (1994)

http://www.robocup.org
http://www.ida.liu.se/frehe/RoboCup/Libs

Considerations for Real-Time Spatially-Aware CBR 209

11. Aha, D.W., Bankert, R.L.: A comparative evaluation of sequential feature selection
algorithms. Learning from Data: AI and Statistics V, 199–206 (1996)

12. Xu, R., Wunsch, D.I.I.: Survey of clustering algorithms. IEEE Transactions on
Neural Networks 16(3), 645–678 (2005)

13. Bicego, M., Murino, V., Figueiredo, M.A.T.: Similarity-based clustering of se-
quences using hidden markov models. In: Perner, P., Rosenfeld, A. (eds.) MLDM
2003. LNCS, vol. 2734, pp. 86–95. Springer, Heidelberg (2003)

14. Dubnov, S., El-Yaniv, R., Gdalyahu, Y., Schneidman, E., Tishby, N., Yona, G.: A
new nonparametric pairwise clustering algorithm based on iterative estimation of
distance profiles. Mach. Learn. 47(1), 35–61 (2002)

15. Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons, Inc., New York (1975)
16. Berger, R., Lämmel, G.: Exploiting past experience – case-based decision support

for soccer agents. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS
(LNAI), vol. 4667. Springer, Heidelberg (2007)

17. Steffens, T.: Adapting similarity measures to agent types in opponent modeling.
In: Proceedings of the Workshop MOO at AAMAS 2004, pp. 125–128 (2004)

18. Ahmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using a two-layered
case-based reasoning for prediction in soccer coach. In: Proceedings of the MLMTA
2003, Las Vegas, Nevada, pp. 181–185 (2003)

19. Marling, C., Tomko, M., Gillen, M., Alexander, D., Chelberg, D.: Case-based rea-
soning for planning and world modeling in the robocup small sized league. In:
IJCAI Workshop on Issues in Designing Physical Agents for Dynamic Real-Time
Environments (2003)

20. Ros, R., de Mántaras, R.L., Arcos, J.L., Veloso, M.: Team playing behavior in robot
soccer: A case-based approach. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 46–60. Springer, Heidelberg (2007)

21. Wettschereck, D., Aha, D.W.: Weighting features. In: First International CBR
Research and Development Conference, pp. 347–358. Springer, Berlin (1995)

22. Jarmulak, J., Craw, S., Crowe, R.: Genetic algorithms to optimise CBR retrieval.
In: 5th European Workshop on Advances in CBR, pp. 136–147 (2000)

23. Maximini, K., Maximini, R., Bergmann, R.: An investigation of generalized cases.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 261–275.
Springer, Heidelberg (2003)

24. Lenz, M., Burkhard, H.D.: Case retrieval nets: Basic ideas and extensions. Kun-
stliche Intelligenz, 227–239 (1996)

Retrieval Based on Self-explicative Memories

Albert Fornells1, Eva Armengol2, and Elisabet Golobardes1

1 Grup de Recerca en Sistemes Intel·ligents
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull

Quatre Camins 2, 08022 Barcelona (Spain)
{afornells,elisabet}@salle.url.edu

2 IIIA - Artificial Intelligence Research Institute,
CSIC - Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
eva@iiia.csic.es

Abstract. One of the key issues in Case-Based Reasoning (CBR) sys-
tems is the efficient retrieval of cases when the case base is huge and/or
it contains uncertainty and partial knowledge. We tackle these issues by
organizing the case memory using an unsupervised clustering technique
to identify data patterns for promoting all CBR steps. Moreover, another
useful property of these patterns is that they provide to the user addi-
tional information about why the cases have been selected and retrieved
through symbolic descriptions. This work analyses the introduction of
this knowledge in the retrieve phase. The new strategies improve the
case retrieval configuration procedure.

Keywords: Case Retrieval, Case Memory Organization, Self-Explicative
Memories, Soft Case-Based Reasoning, Self-Organizing Map.

1 Introduction

Case-Based Reasoning (CBR) [1] systems solve new problems through an ana-
logical procedure based on experiences represented by a set of cases stored in a
case memory. The way in which CBR works can be summarized in the following
steps: (1) it retrieves the most similar cases from the case memory, (2) it adapts
them to propose a new solution, (3) it checks if this solution is valid, and finally,
(4) it stores the relevant knowledge used to solve the problem.

The building of the subset of cases similar to a given problem to perform an
efficient retrieval of cases is an important key issue, which is closer related to the
case memory organization. There are two possible organizations of the memory:
flat and structured. The flat organization is the simplest way because cases are
stored sequentially in a list. In such situation, the strategy for classifying a new
problem p is to sequentially compare p with all the cases in that list using some
similarity measure. The main shortcoming of this approach is that as more as
cases contains the case base higher becomes the time of retrieval.

Concerning the structured memory organization, many authors have tack-
led this issue from many points of view, such as representing the attributes in

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 210–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Retrieval Based on Self-explicative Memories 211

tree structures [22] or graphs [16], grouping cases by their similarity [23], ap-
plying knowledge-intensive approaches [20] or data-intensive approaches [21].
Nevertheless, many of these methods pay more attention to how to structure
the data than to the underlying features of the domain: uncertainty and partial
knowledge. In this scenario, Soft-Computing techniques are more suitable than
Hard-Computing techniques since they are able to manage this kind of knowl-
edge [7,6]. In particular, Self-Organizing Map (SOM) [14] has become one of the
most used Soft-Computing clustering techniques for visualizing and organizing
data [18] thanks to its capability for discovering hidden patterns. SOM trans-
lates complex and nonlinear statistical relations contained in high-dimensional
data into simple geometric relations on a low-dimensional space. This smart and
powerful ability is the reason why some CBR’s studies focus on indexing the case
memory for improving the retrieve phase [5,8]. The idea is to identify groups of
cases with certain characteristics in common and define a pattern for represent-
ing them. Then, the retrieval phase is done as follow: (1) select the set of clusters
which contain the patterns most similar to the new input case, and (2) retrieve
a set of cases from the selected clusters. Thus, the retrieve phase carries out a
selective retrieval with fewer cases than with the original case memory.

We focus on an approach called SOMCBR (Self-Organizing Map in a Case-
Based Reasoning) [13]. The main difference of SOMCBR in comparison with
other combinations of SOM and CBR is that the Soft-Computing and the
Knowledge-Discovery capabilities of SOM are introduced in all the CBR steps
for enhancing the global performance rather than only in the retrieve phase: (1)
The case retrieval is performed according to the data complexity and the user re-
quirements [11]; (2) The relation between cases and clusters is used for improving
the class prediction reliability [12]; and, (3) The knowledge is maintained from
an incremental and semi-supervised point of view [10]. Another distinguishing
aspect of SOMCBR is its capability for explaining the results [9] using symbolic
descriptions extracted from each cluster by means of a generalization process
based on the anti-unification concept [2]. The additional information provided
allows user to understand why a set of cases is retrieved and what aspects share
in common. This work analyses additional roles of explanations in the retrieval
phase. In particular, their role in the case retrieval configuration.

The paper is organized as follows. Section 2 briefly reviews the self-explicative
case memory organization. Section 3 outlines how explanations may improve the
case retrieval strategies. Section 4 describes the experiments and discusses the
results. Section 5 summarizes some related work about the characterization of
clusters. Finally, section 6 ends with the conclusion and further research.

2 The Self-explicative Memory of SOMCBR

SOMCBR uses a Self-Organizing Map (SOM) [14] to identify patterns and orga-
nize the case memory through them with the aim of promoting all CBR phases.

SOM is a non supervised clustering technique that projects the original N -
dimensional input space into a new space with fewer dimensions by highlighting

212 A. Fornells, E. Armengol, and E. Golobardes

Fig. 1. SOM groups cases according to their similarity

the most important data features. Contrary to other neural networks approaches
[4], the SOM’s architecture is only composed of two layers. The input layer
represents the new problem using as many neurons as input data features. On
the other hand, the output layer describes the new low-dimensional space using
as many neurons as the maximum number of expected clusters to identify. Each
output neuron is connected to all input neurons. Although the output layer can
represent any dimensionality lower than the original N -dimensional space, it
usually represents a grid of two dimensions such as the example of Fig. 1. In
this case, the output layer contains M ×M clusters, where each one contains a
group of similar cases represented by a pattern. A pattern can be described as
a director vector (vi) of N dimensions, where each one is the expected value of
each attribute for belonging to this pattern. Even this pattern allows system to
index the memory, it does not give an easy intuition of why some objects have
been clustered together. For this reason, symbolic explanations from clusters
were proposed in [9].

Symbolic explanations are built as a generalization of the objects of a cluster
based on the anti-unification concept with some differences (see [9] for details).
The descriptions are formed by the set of attributes that are common to all
objects of the same class and, consequently, there are many explanations as
many different classes are inside a cluster. Each one of these common attributes
takes as value the union of values that it holds in the objects of the cluster. Let
us illustrate with an example how explanations are built. Let m be the cluster
formed by the four cases shown in the upper part of Fig. 2. The explanation
Dm of these cases is shown in Fig. 2a. Attributes steroid, spleen-palpable, spiders,
fatigue, malaise, liver-big, protime, and ascites are not in Dm because they are
not common to all cases (i.e., steroid is not used in Obj-137). Attributes such as
sex, antiviral and histology are not in Dm because all take all possible values, this
means that the value of this attribute is irrelevant to describe m. Because m
usually contains cases of several classes, a description Dm,j can be built for each
class j contained in m, taking into account only the subset of cases of the class j
as Fig. 2b shows. Thus, a cluster m is described by a disjunction of descriptions
Dm,j. Notice that each description Dm,j also satisfies the global description Dm

of a cluster.

Retrieval Based on Self-explicative Memories 213

Obj-136
(Age 33)
(Sex Male)
(Steroid No)

Obj-137
(Age 31)
(Sex Female)
(Antivirals Yes)

Obj-138
(Age 78)
(Sex Male)
(Antivirals No)

Obj-139
(Age 34)
(Sex Female)
(Antivirals No)(Steroid No)

(Antivirals No)
(Spleen_Palpable No)
(Spiders No)
(Ascites Yes)

(Antivirals Yes)
(Fatigue No)
(Malaise No)
(Liver_Big Yes)
(Spleen Palpable No)

(Antivirals No)
(Fatigue Yes)
(Liver_Big Yes)
(Spiders No)
(Ascites No)

(Antivirals No)
(Fatigue No)
(Malaise No)
(Anorexia No)
(Liver Big Yes)()

(Varices No)
(Bilirubin 0.7)
(Alk_Phosphate 63)
(Sgot 80)

(p _ p)
(Varices No)
(Bilirubin 0.7)
(Alk_Phosphate 46)
(Sgot 52)

()
(Varices No)
(Bilirubin 0.7)
(Alk_Phosphate 96)
(Sgot 32)

(_ g)
(Spleen_Palpable No)
(Spiders No)
(Ascites No)
(Varices No)(g)

(Albumin 3.0)
(Protime 31)
(Histology Yes)

(g)
(Albumin 4.0)
(Protime 80)
(Histology No)

(g)
(Albumin 4.0)
(Histology No)

()
(Bilirubin 0.9)
(Alk_Phosphate 95)
(Sgot 28)
(Albumin 4.0)()
(Protime 75)
(Histology No)

Dm Dm,1 Dm,2

(Age 33 31 78 34)
(Varices No)
(Bilirubin 0.7 0.9)
(Alk_Phosphate 63 46 96

(Age 31 33)
(Varices No)
(Bilirubin 0.7)
(Alk_Phosphate 46

(Age 34 78)
(Antivirals No)
(Liver_Big Yes)
(Spiders No)

95)
(Sgot 80 52 32 28)
(Albumin 3.0 4.0)

63)
(Sgot 52 80)
(Albumin 3.0 4.0)
(Protime 31 80)

(Ascites No)
(Varices No)
(Bilirubin 0.7 0.9)
(Alk_Phosphate 95 96)
(Sgot 28 32)
(Albumin 4.0)
(Histology No)

(a) (b)

Fig. 2. Upper part shows the cases in Mi. Lower part shows the symbolic descriptions
of Mi when (a) all objects belong to the same class. (b) Obj-136 and Obj-137 belong to
the class C1 and Obj-138 and Obj-139 belong to the class C2.

We propose to use explanations for retrieval purposes in the same way as
generalizations are used for instance in PROTOS [19]. The idea is that because
the explanation contains attributes that are common to a subset of objects,
a new problem sharing these attributes probably will be assessed as having
higher similarity with these objects with respect to other objects of the base.
Nevertheless, the point here is that a problem can share a different set of features
with the explanations of several cluster. The next section analyses how this
capability can be used to automatically select clusters and cases.

3 Introducing Explanations in the Retrieval Process

The case memory access in SOMCBR is based on a procedure of two steps where
(1) a set of C clusters are selected according to the pattern of the new input case
and, (2) a set of K cases from the selected clusters are retrieved. The optimal
definition of the C and K values according to the data complexity and the user
requirements are crucial issues for improving the performance [11].

Let ci be the new input case, M be the set of clusters in which the case
memory is organized and Jm be the set of solution classes included of cluster m.
Let Dm,j be the generalization of cases belonging to the cluster m for a class
j. ci satisfies a description Dm,j if all the attribute’ value are included in this

214 A. Fornells, E. Armengol, and E. Golobardes

description. Therefore, a case ci is similar to a cluster m if at least one of the
description Dm,j is satisfied and, consequently, ci is also similar to the cases from
m associated with the satisfied descriptions. These criteria allows to identify an
important property of explanations: they can be used to define a case retrieval
that automatically selects the number of clusters and cases. The idea is that
only the cases contained in the clusters whose explanation is satisfied by the
case ci are considered. Figure 3 shows the retrieval process. In particular, a case
ci satisfies the explanation of a cluster when the values of all the attributes of ci

are similar to the values of the attributes of the explanations. This similarity

Function case retrieval using explanations is1

Let ci be the new input case2

Let M be the set of clusters in which the case memory is organized3

Let m be a cluster of M4

Let Jm be the set of classes included in the cases of a cluster m5

Let j be a class of Jm6

Let Dm,j be the generalization of the class j in m7

Let CR be the set of cases retrieved8

CR=∅9

forall m ∈ M do10

forall j ∈ Jm do11

if ci satisfies Dm,j then12

CR=CR ∪ {cases from m associated to the Dm,j}13

return CR14

Function satisfies is15

input : ci, Dm,j

output : True if ci satisfies Dm,j . Otherwise, false
Let A be the set of the attributes contained in Dm,j16

Let a be an attribute of A17

Let Va be the set of the possible values of a in Dm,j18

Let va be one of the possible values of Va19

Let va,i be the value of the attribute a belonging to Va for the case ci20

forall a ∈ Dm,j do21

found=false22

forall va ∈ Va do23

if a is numerical then24

if (va − ε) ≤ va,i ≤ (va + ε) then found=true; break;25

else if a is symbolic then26

if va=va,i then found=true; break;27

if found==false then return false28

return true29
1

Fig. 3. Case retrieval strategy based on explanations

Retrieval Based on Self-explicative Memories 215

v1=(0.4 0.6)

(a) Director Vector Description

(b) Symbolic Description

v0=(0.1 0.3) v2=(0.8 0.1)

Class 0
(a 0.3 0.4 0.6)
(b 0.5 0.6)

Class 1
(a 0.4 0.4)
(b 0.3 0.5)

Class 0
(a 0.8)
(b 0.1 0.2)

Class 0
(a 0.1 0.2)
(b 0.2 0.3 0.4)

Class 1
(a 0.1 0.3)
(b 0.2 0.3)

01
00

00
0

0
00

0
0

1
1 1

1

11
1

1

- Each case is described by two attributes:a and b
- There are two classes: 0 and 1
- The case memory is organized by 3 clusters
- We want to test a new case witha=0.5 and b=0.7

Scenario

v1 has the lowest normalized Euclidean distance

D01 is the unique valid explanation

Fig. 4. Both approaches select the same cluster m1

is assessed as the equality of values when these values are symbolic (line 26 of
the algorithm) and as belonging to an interval around the value hold by the
explanation when the value is continuous (line 24 of the algorithm). The ε value
depends on the attributes’ range and the expected accuracy. For example, 0.2
could be considered as a confidence value if range is [0..1].

Nevertheless, this strategy is not as perfect as it seems at first sight. The sim-
ilarity criteria using explanations is extremist (total or null) while the similarity
based on distances in the interval [0..1] is more flexible. For example, if a prob-
lem is described by 100 attributes, the normalized distance between an input
case and a director vector will not be significantly affected if three attributes
are very different. However, using explanations the similarity is considered as
different as when one of the attribute-value relations does not exist in the input
case. Anyway, the major part of retrieved cases should be the same because both
are based on the similarity between attributes. They key in the retrieval based
on explanations is the specificity of explanations. If they are very specific, any
cluster or case could be selected. In contrast, almost all clusters and cases could
be selected if they are very general. Consequently, this issue is directly affects the
performance. In our experiments we used epsilon to experiment with different
specificity degree of the explanations. Figure 4 shows an example where both
select the same cluster.

On the other hand, there is another issue to be careful when a high number
of cases is retrieved: how system can order their similarity with respect to the
new case if all are considered as ’equal’ in terms of similarity. This can be a
drawback during the reuse phase when the system uses a scheme voting on the

216 A. Fornells, E. Armengol, and E. Golobardes

Number of
clusters

and cases
selected

v1=(x1,x2,x3,...)
v2=(x1,x2,x3,...)

.....
vm=(x1,x2,x3,...)

Select the C most similar
clusters to the new input case

Retrieve the K most similar
cases to the new input case

M1= Class 0 is...
Class 1 is...

Mm= Class 1 is...
Class 2 is...

Select the clusters with the
explanations satisfied by the

new input case.

Retrieve the cases that satisfy
the same explanations than

the new input case

1

4

2
3

M
et

a-
le

ve
l

Cluster selection Case retrieval

Access

Fig. 5. The 3D Strategy Map is a taxonomy of the different ways in which the case
retrieval can be performed

candidate classes since the solution will depend on both the class distribution
and the number of cases in each class. Some criteria need to be defined to improve
the reliability of the solution such as recomputing the similarity between the re-
trieved cases and the new input case. Therefore, we need to combine the benefits
of both approaches: the capability of self-configuring C and K in explanations
and, the accuracy of similarity distances.

Figure 5 describes a 3D Strategy Map. The concept of the Strategy Map was
introduced in [11] and it is defined as a taxonomy of the different ways in which
strategies can be performed according to the number of clusters selected and the
number of cases retrieved from selected clusters (see x-axis and z-axis). In this
case, the Strategy Map is composed by an additional axis which provides infor-
mation related to the criteria used to represent the patterns: director vectors or
explanations (see y-axis). As figure shows, four main strategies can be identified
according to the way in which cluster and case selection is performed:

– Strategy 1: Clusters and cases are selected using a distance metric. The
methodology presented in [11] helps to do it according to the user require-
ments.

– Strategy 2: Clusters are selected using explanations and cases of these clus-
ters are selected using a distance metric. Although this capability simplifies
the setting up process, there is a risk of not selecting clusters when the
explanations are too specific. In contrast, general explanations can produce
the selection of a high number of clusters and this fact ciuld negatively affect
the system performance in terms of computational time.

– Strategy 3: Clusters are selected using a distance metric and cases of these
clusters are selected using explanations. In this strategy is necessary to define
the number of clusters to be used. Also, the problem is that it retrieves a set
of cases which have the same similarity with respect the input case. Thus,

Retrieval Based on Self-explicative Memories 217

the class solution is obtained using a voting scheme that depends on the
class distribution and the number of cases by cluster.

– Strategy 4: Clusters and cases are selected using explanations. The perfor-
mance of this strategy depends on the accuracy of explanations.

In general lines, strategies 1 and 2 provide a good degree of similarity in struc-
tured domains where a reliable similarity distance is available. On the other hand,
strategies 3 and 4 provide best results in unstructured and dynamic domains or
when a reliable similarity function is not available because they manage best the
data. Anyway, the performance of SOM in terms of defining ’good’ clusters is
directly related to the distance metric used for training the clusters. Thus, if is
not possible to get a reliable similarity function will not be possible to build the
clusters. The next section analyses the performance of the strategies proposed
above on structured and static domains because they are preconditions to use
SOM.

4 Experiments, Results and Discussion

The adequacy of the explanations is defined as the ability of them to select
both the clusters and the cases more adequate for a given problem. For this
reason, this section evaluates if this adequacy can be useful in the case retrieval
process as has been proposed in section 3. Although explanations can deal with
both symbolic and numerical values of attributes, in our experiments we selected
datasets with only numerical attributes because we want to compare the results
with those produced using the director vectors provided by SOM. The selected
datasets from the UCI Repository are summarized in Table 1.

The strategies have been executed applying a 10-fold stratified cross-validation
with the following common configuration: (1) The normalized Euclidean distance
is used as distance metric. (2) No new cases are stored. (3) The map size is
automatically computed as the map with the lowest error [13]. (4) 10 random
seeds are used to minimize the random effects (the percentage of each fold is the
mean of 10 random seeds). In addition, each strategy has some particularities.
The adaptation phase proposes the solution through the majority class using
K-NN with K = 1, 3 and 5 for the strategies 1 and 2. In the case of strategies 3
and 4, the solution is the majority class of all the selected cases. The strategies
1 and 3 uses three clusters since it is usually an optimal value [11].

4.1 Discussion

Tables 2, 3, 4, 5 and 6 show the averages of error percentage, standard deviation
and mean percentage reduction of the number of cases selected for retrieval, for
strategies 1, 2 and 4.

Tables 2 and 3 show results of SOMCBR using explanations for selecting
clusters and the distance measure for selecting cases included in the clusters.
In both situations we experimented with different values of K to compare the
effects of producing a solution based in a higher number of cases. The difference

218 A. Fornells, E. Armengol, and E. Golobardes

among both tables is the ε factor used to validate the explanations. As well as
the value of K is higher, the percentage of error decreases, however notice that
the increment of ε produces an increment of the error and a decrement of the
percentage of reduction of the number of cases retrieved. We do not interpret
this result as a malfunction of the explanation but as the explanations are too
specific and consequently some explanations are not satisfied because of the value
of only one or two attributes. Notice that the satisfaction of an explanation is
boolean, either all the attributes are satisfied or the explanation is not used. As
future work we plan to assess some satisfaction degree for the explanations.

Table 1. Description of the datasets used in experiments

Code Dataset Attributes Instances Classes
HE hepatitis 19 155 2
GL glass 9 214 6
TH thyroids 5 215 3
HS heart-statlog 13 270 2
IO ionosphere 34 351 2
WD wdbc 30 569 2
BA bal 4 625 3
WB wbcd 9 699 2
WI wisconsin 9 699 2
VE vehicle 18 846 4
TA tao 2 1888 2
SE segment 19 2310 7
WA waveform 40 5000 3

Table 2. Error percentage (%Error), standard deviation (σ), and mean reduction
percentage of cases retrieved (%R) using SOMCBR with strategy 2 and ε = 0.1 with
respect to use a flat memory

Code 1-NN 3-NN 5-NN
%Error (σ) %R %Error (σ) %R %Error (σ) %R

BA 23.4 (3.2) 44.1 19 (2.9) 44.1 15.2 (2.6) 44.1
GL 40.5 (9.8) 69.8 37.1 (17.1) 45.8 39.2 (15.4) 45.8
HS 23.4 (6.4) 40.7 20.8 (5) 40.7 19.8 (5.7) 67.9
HE 20.5 (8) 69.1 16.2 (7.5) 69.1 15.4 (9.5) 69.1
IO 12.9 (6.4) 89.8 11.3 (6) 89.8 12.6 (5.8) 89.8
SE 3.2 (1.3) 55.1 4 (0.9) 55.1 5 (1.2) 55.1
TA 3.7 (1.6) 8.2 4.2 (2) 8.2 3.3 (1) 8.2
TH 3.3 (2.2) 17.6 7.1 (5.7) 17.6 7.1 (5.3) 17.6
VE 30.4 (4.9) 15 29.6 (4.5) 15 29.1 (6.2) 15
WA 26.8 (1.9) 14 22.7 (1.4) 21.7 20.8 (1.6) 14
WB 3.6 (3.6) 63.9 4 (3.6) 63.9 3.8 (2.4) 65.7
WD 5.1 (2.5) 59.8 3.7 (2.2) 59.8 3.4 (2) 34.2
WI 4.6 (2.7) 60.6 4.2 (1.7) 79.2 4.3 (2.8) 60.6

14 52.4 11.6 61.7 9.8 52.4

Retrieval Based on Self-explicative Memories 219

Table 3. Error percentage (%Error), standard deviation (σ), and mean reduction
percentage of cases retrieved (%R) using SOMCBR with strategy 2 and ε= 0.2 with
respect to use a flat memory

Code 1-NN 3-NN 5-NN
%Error (σ) %R %Error (σ) %R %Error (σ) %R

BA 23.4 (3.2) 44.1 19 (2.9) 44.1 15.2 (2.6) 44.1
GL 39.3 (7.4) 45.3 38.9 (17.6) 42.2 39.9 (17.9) 42.2
HS 25 (8) 54.7 21.2 (5.5) 33.7 18.2 (5.1) 33.7
HE 21.5 (8.1) 61.9 16.3 (7.7) 61.9 15.6 (7.5) 61.9
IO 14.5 (4) 34.3 16.2 (3.9) 34.3 18.2 (4) 34.3
SE 2.9 (1.2) 32.7 4 (0.8) 32.7 4.9 (1.1) 32.7
TA 3.8 (1.6) 1.4 4.3 (2) 1.4 3.4 (0.9) 1.4
TH 3.3 (3.1) 17.1 6.1 (4.8) 17.1 6.1 (4.8) 17.1
VE 29.9 (4.1) 3.8 30 (4.9) 3.8 29.3 (4.8) 3.8
WA 27 (1.9) 0.4 22.6 (1.7) 1 21.1 (1.6) 1
WB 4.7 (2.8) 24.5 3.4 (1.5) 24.5 2.9 (2.1) 24.5
WD 5.3 (2.5) 12.7 3.5 (1.6) 25.4 3.4 (2) 26.6
WI 3.9 (1.6) 22.6 3.4 (1.1) 22.6 2.9 (1.9) 22.6

13.6 33.4 11.2 33.4 9 33.4

Table 4. Error percentage (%Error), standard deviation (σ), and mean reduction
percentage of cases retrieved (%R) using SOMCBR with strategy 1 with respect to use
a flat memory

Code 1-NN 3-NN 5-NN
%Error (σ) %R %Error (σ) %R %Error (σ) %R

BA 23.7 (3.9) 60 19.7 (2.8) 67.4 18.7 (4) 67.4
GL 33.6 (14.4) 47.9 31.3 (10.2) 21.4 33.2 (9.6) 21.4
HS 24.1 (8.8) 65.4 20.4 (5.8) 56 21.1 (3.7) 65.4
HE 19.4 (7.1) 67.6 13.6 (8.7) 56.1 16.8 (7.3) 56.1
IO 12.8 (4.5) 50.8 13.7 (4.9) 12.7 14.3 (4.8) 12.7
SE 4.7 (0.9) 56.5 5.7 (1.3) 56.5 6 (1.2) 56.5
TA 5.6 (1.7) 55.6 3.8 (1.8) 55.6 4.4 (2.1) 55.6
TH 2.8 (2.3) 3.1 7.9 (5.2) 52.8 5.1 (5) 3.1
VE 32 (4.6) 55.2 30.7 (6.7) 55.2 31.9 (5) 55.2
WA 27.2 (2.2) 76.5 23.8 (1.7) 54 21.8 (1.7) 55.4
WB 4.9 (1.5) 52.9 3.9 (2) 65.2 3.9 (1.9) 65.2
WD 4 (2.8) 44.3 3.3 (2) 44.3 4.2 (2.6) 53.9
WI 4 (1.2) 55.3 3.4 (1.7) 55.3 3.2 (1.2) 74.7

13.9 57.7 11.6 61.4 11 71.1

The ability of the explanations for selecting clusters is shown by comparing
the results from strategy 1 (see Tab. 4). Strategy 2 produces an error percentage
equal or better than the produced by strategy 1 (although both results are
not statistically different when applying a t-test at 95% of confidence level).
Our interpretation is that strategy 2 tends to select a high number of clusters
(commonly more than 3) and, consequently, this produces a wider picture of the

220 A. Fornells, E. Armengol, and E. Golobardes

Table 5. Error percentage (%Error), standard deviation (σ), and mean reduction
percentage of cases retrieved (%R) using SOMCBR with strategy 4 and ε= 0.1 with
respect to use a flat memory

Code 3×3 4×4 5×5
%Error (σ) %R %Error (σ) %R %Error (σ) %R

BA 39.8 (4.4) 44.1 42.2 (9.5) 60.1 38.9 (6) 87
GL 57.6 (11.4) 69.8 56.7 (10.4) 45.8 61.7 (12.1) 84.9
HS 33.1 (11.5) 40.7 37.7 (10.4) 67.9 37.6 (10.6) 79.4
HE 17.1 (6.4) 69.1 20.8 (9) 87.1 30.8 (17.2) 93.5
IO 29.8 (5.4) 69.8 35.3 (15.9) 66.3 14.5 (6.4) 89.8
SE 23.5 (3) 55.1 52.1 (8.5) 91.4 18.6 (3.8) 71
TA 36.4 (2) 1.9 33.7 (14.3) 59.3 22.5 (3.1) 8.2
TH 29.4 (4.3) 36.3 29.1 (4.2) 17.6 26.1 (5.7) 62.2
VE 60.9 (3.7) 15 57.8 (8.5) 43.9 58.4 (7.8) 57.2
WA 59.3 (1) 2.9 40.2 (1.3) 14 35.9 (3.1) 21.7
WB 18.1 (13.9) 63.9 22.2 (12.5) 65.7 10.9 (4.7) 83.9
WD 32.3 (6.3) 34.2 26 (10.7) 51.6 11.2 (7.5) 59.8
WI 13.2 (14.3) 60.6 11.6 (11.4) 76.5 4.7 (1.8) 79.2

26.5 52.4 26.9 68.3 21.8 83.1

case base. This effect is hidden in the strategy 2 when ε = 0.1 because a lot of
cases are filtered due to the lack of flexibility of the explanations. However, this
effect disappears when the explanation flexibility increases by taking ε = 0.2. Our
conclusion is that explanations are an automatic mechanism of cluster selection
allowing the adjustment of cases exploration according to the specificity. From
our point of view, this is an important issue because it simplifies the case retrieval
configuration although further analysis should be done to evaluate the impact
in performance related to the characteristics of the dataset.

Tables 5 and 6 show the results of strategy 4 with ε = 0.1 and 0.2 respectively.
To analyze the impact of the explanation flexibility, we performed experiments
with different map sizes (3×3, 4×4 and 5×5). The higher the maps are the higher
the number of clusters is and probably each cluster contains only few cases. In
turn, clusters with low number of cases will produce specific explanations. This
effect is shown in tables where the lowest error percentage and the maximum
reduction of retrieval is achieved for the map of size 5×5. Nevertheless, by com-
paring these results with those produced by the other strategies we seen that
probably the explanations have not been specific enough since the results for
strategy 4 are worst than the produced by the other strategies. Notice also that
in this strategy ε plays a different role. Now it is desirable that the explana-
tions be restrictive enough since there is not a latter filtering process, whereas
other strategies are more flexible in the selection of clusters because they have
a filtering post-process (the distance measure).

On the other hand, the results of strategy 3 are not presented because they
are very similar to the strategy 4 and, consequently, they do not provide any
new comment.

Retrieval Based on Self-explicative Memories 221

Table 6. Error percentage (%Error), standard deviation (σ), and mean reduction
percentage of cases retrieved (%R) using SOMCBR with strategy 4 and ε= 0.2 with
respect to use a flat memory

Code 3×3 4×4 5×5
%Error (σ) %R %Error (σ) %R %Error (σ) %R

BA 39.8 (4.4) 44.1 42.2 (9.5) 60.1 38.9 (6) 87
GL 61.1 (16.1) 45.3 59.6 (11.6) 42.2 65.7 (15) 57.8
HS 34.6 (10.6) 33.7 39.6 (6.5) 54.7 34.7 (9.1) 68.3
HE 18.5 (5.8) 61.9 19.7 (10.5) 83.5 24.1 (12.5) 87.8
IO 34.2 (5.7) 34.3 33.2 (14.4) 61 33.1 (5) 73.3
SE 46.8 (1.9) 32.7 60.3 (6.4) 88.2 44.7 (7.8) 42.9
TA 44.9 (2) 0.2 43.1 (7.6) 51.4 31 (7.3) 1.4
TH 29.8 (3.8) 17.1 29.4 (4.3) 11.4 26.5 (4.8) 32.6
VE 71 (3.5) 3.8 67.9 (5.5) 18.5 61.9 (2.9) 22.9
WA 66.1 (0.2) 0 65.6 (0.4) 0.4 64.9 (0.7) 1
WB 23.9 (12.2) 24.5 22.2 (15.1) 44.2 20.7 (13.1) 45.9
WD 35.2 (3.2) 12.7 31 (8.9) 26.6 32.4 (3.9) 25.4
WI 16.3 (12.9) 22.6 14.9 (12.8) 54.8 9.9 (9.5) 55.8

28.1 33.4 28.6 57.5 24.4 71.4

Experiments have shown the role of explanations to support the simplification
of the SOMCBR configuration. However, the use of explanation as mechanism
for selecting cases have not produced as good results as expected because of their
lack of flexibility. We conclude that is necessary to assess some similarity degree
among explanations and problem to obtain more accurate results.

5 Related Work

An intelligent organization of the memory seems to be one of the key issues for
an efficient case retrieval. Several approaches have been taken to produce useful
organizations. Most of them are based on clustering cases in order to explore
only a subset of cases. Bichindaritz [3] details several ways to organize the case-
base memory. As the approach we presented in this paper, there are approaches
based on constructing generalizations representing subsets of cases, and most of
them use clustering techniques to determine the subset of cases to be represented
by the same generalization.

For instance, PROTOS [19], one of the early CBR systems, defined categories
of cases and also links that make explicit differences among clusters. Thus, when
a new problem has to be classified, the retrieval of the most similar case is per-
formed based on a combination of the similarity between the problem and both
case features, categories and differences among particular cases. Zenko et al. [24]
use the CN2 algorithm to induce rules that determine prototypes for each cluster.
However this prototype is not symbolic but is a vector representing frequencies.
As in our approaches, cluster prototypes are not discriminant therefore a prob-
lem could be include in several clusters. Because the CN2 algorithm can produce

222 A. Fornells, E. Armengol, and E. Golobardes

an ordered set of prototypes (rules), the problem is classified as belonging to the
class represented by the first rule that is satisfied. In the modification proposed
by Zenko et al., CN2 produces a non-ordered set of rules, therefore authors use
class distributions of all rules to perform weighted voting.

The approach introduced by Lechevalier et al. [15] use the SOM algorithm
for clustering the case base. Differently than in our approach, Lechevalier et al.
combine SOM with a dynamic clustering algorithm called SCLUST that allows
the use of symbolic data. Clusters are represented by symbolic descriptions and
new problems are compared with these descriptions using the Hausdorff distance.

Malek and Amy [17] introduced a supervised approach focused on organizing
the case-base of a CBR system. The case base is organized in two parts, pro-
totypical and instance, and there is also a third part that contain cases than
cannot be classified in any of these parts. For classifying a new problem the
system tries to retrieve similar cases from those in the atypical part using some
similarity measure with a threshold. When no atypical cases are retrieved then
the problem is compared with the prototypes representing the classes. If the
problem satisfies more than one prototype (i.e. it could be classified in more
than one class), then it used k-NN to retrieve the most similar cases included in
the clusters represented by the activated prototypes. Finally, when no prototype
is satisfied by the problem the k-NN algorithm on the atypical cases is used.

A different approach was that taken by Bichindaritz [3] that proposed the
use of techniques if information retrieval to organize the memory. The idea is to
use a lexicon and an inverted index to organize the cases. Then, author proposes
several strategies where both the lexicon and the indexes are combined to retrieve
a subset of cases similar to the problem.

6 Conclusions and Future Work

SOMCBR is featured by organizing the case memory through SOM [14] to pro-
mote all the CBR phases [11,12,9,10]. Besides, SOMCBR is able to explain why
a set of cases are grouped together and why they have been retrieved through
descriptions built by a variant of the anti-unification operator [2]. This symbolic
explanations describes the existent classes in the cluster through the generaliza-
tion of its cases. This capability facilitate the revise task for two reasons: (1)
explanations are more understandable than directors vectors, and; (2) explana-
tions summarize best the common characteristics.

This work has analyzed if the smart properties of explanations can be intro-
duced in the case access procedure with the aim of improving the case access. In
particular, a 3D Strategy Map [11] has been defined as the combination of two
criteria: (1) the distance computed between the new input case and the direc-
tor vectors or between the new input case and the cases from the clusters, and
(2) the satisfaction of the explanations extracted from the clusters. The results
have been the definition of four different typologies of strategies: (1) cluster and
case selection by the distance metric; (2) cluster selection by explanations and
case selection by distance metric; (3) cluster selection by the distance metric

Retrieval Based on Self-explicative Memories 223

and case selection by explanations, and; (4) cluster and case selection by expla-
nations. The approaches 1 and 2 depend mainly on the distance metric while
the approaches 3 and 4 depends on the specificity of descriptions. The analysis
of strategies over several datasets has provided two important conclusions: (1)
Approach 2 offers a similar performance than approach 1 and at the same time,
it is easier to configure the strategy because user has not to select the number
of clusters selected; (2) The approaches where the case selection depends on the
explanations offer a very bad performance because the voting scheme is ’almost
random’ because it is related to the class distribution and the number of cases
by cluster.

As further work we plan to refine the numerical management, work with
unstructured and dynamic domains and introduce discriminant explanations.

Acknowledgments

We would like to thank the Spanish Government for the support in MID-CBR
project under grant TIN2006-15140-C03 and the Generalitat de Catalunya for
the support under grants 2005-SGR-00093 and 2005SGR-302. We would like
to thank Enginyeria i Arquitectura La Salle of Ramon Llull University for the
support to our research group as well.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological
variations, and system approaches. AI Communications 7, 39–59 (1994)

2. Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Machine Learn-
ing 41(1), 259–294 (2000)

3. Bichindaritz, I.: Memory organization as the missing link between case-based rea-
soning and information retrieval in biomedicine. Computational Intelligence 22(3-
4), 148–160 (2006)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Chang, P., Lai, C.: A hybrid system combining self-organizing maps with
case-based reasoning in wholesaler’s new-release book forecasting. Expert Syst.
Appl. 29(1), 183–192 (2005)

6. Cheetham, W., Shiu, S., Weber, R.: Soft case-based reasoning. The Knowledge
Engineering 0, 1–4 (2005)

7. Cordón, O., Herrera, E.: Special issue on soft computing applications to intelligent
information retrieval on internet. Int. Jour. of Approximate Reasoning 34, 2–3
(2003)

8. Aiken, J., Corchado, E., Corchado, J.M.: Ibr retrieval method based on topol-
ogy preserving mappings. Journal of Experimental & Theoretical Artificial Intelli-
gence 16(3), 145–160 (2004)

9. Fornells, A., Armengol, E., Golobardes, E.: Explanation of a clustered case memory
organization. In: Artificial Intelligence Research and Development, vol. 160, pp.
153–160. IOS Press, Amsterdam (2007)

224 A. Fornells, E. Armengol, and E. Golobardes

10. Fornells, A., Golobardes, E.: Case-base maintenance in an associative memory or-
ganized by a self-organizing map. In: Corchado, E., Corchado, J.M., Abraham, A.
(eds.) Innovations in Hybrid Intelligent Systems, vol. 44, pp. 312–319. Springer,
Heidelberg (2007)

11. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Maciá, N., Bernadó,
E.: A methodology for analyzing the case retrieval from a clustered case memory.
In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp.
122–136. Springer, Heidelberg (2007)

12. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Vilaśıs, X.: Patterns
out of cases using kohonen maps in breast cancer diagnosis. International Journal
of Neural Systems 18(1), 33–43 (2008)

13. Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory
organization: Analysing computational time and soft computing capabilities. In:
Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS
(LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)

14. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2000)
15. Lechevallier, Y., Verde, R., de Carvalho, F.: Symbolic clustering of large datasets.

In: Data Science and Classification. Studies in Classification, Data Analysis, and
Knowledge Organization, pp. 193–201. Springer, Heidelberg (2006)

16. Lenz, M., Burkhard, H.D., Brückner, S.: Applying case retrieval nets to diagnostic
tasks in technical domains. In: Proc. of the 3rd European Workshop on Advances
in Case-Based Reasoning, pp. 219–233. Springer, Heidelberg (1996)

17. Malek, M., Amy, B.: A pre-processing model for integrating cbr and prototype-
based neural networks. In: Connectionism-symbolic Integration, Erlbaum, Mahwah
(2007)

18. M. Oja, S. Kaski, and T. Kohonen. Bibliography of Self-Organizing Map (SOM)
Papers: 1998-2001 (2003), http://www.cis.hut.fi/research/refs/

19. Porter, B.: Protos: An experiment in knowledge acquisition for heuristic classifica-
tion tasks. In: Proceedings First International Meeting on Advances in Learning,
Les Arcs, France, pp. 159–174 (1986)

20. Rissland, E.L., Skalak, D.B., Friedman, M.: Case retrieval through multiple in-
dexing and heuristic search. In: Int. Joint Conf. on Art. Intelligence, pp. 902–908
(1993)

21. Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based clas-
sifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2),
37–42 (2003)

22. Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval
step in case-based reasoning. In: 1st European Workshop on Topics in Case-Based
Reasoning, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

23. Yang, Q., Wu, J.: Enhancing the effectiveness of interactive case-based reasoning
with clustering and decision forests. Applied Intelligence 14(1) (2001)

24. Zenko, B., Dzeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi,
F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer,
Heidelberg (2006)

 http://www.cis.hut.fi/research/refs/

Increasing Precision of

Credible Case-Based Inference

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group
Department of Mathematics and Computer Science

Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

{thomas.gabel,martin.riedmiller}@uni-osnabrueck.de

Abstract. Credible case-based inference (CCBI) is a new and theoreti-
cally sound inferencing mechanism for case-based systems. In this paper,
we formally investigate the level of precision that CCBI-based retrieval
results may yield. Building upon our theoretical findings, we derive a
number of optimization criteria that can be utilized for learning such
similarity measures that bring about more precise predictions when used
in the scope of CCBI. Our empirical experiments support the claim that,
given appropriate similarity measures, CCBI can be enforced to produce
highly precise predictions while its corresponding level of confidence is
only marginally impaired.

1 Introduction

Credible case-based inference (CCBI) has been recently proposed as a new re-
trieval paradigm for case-based problem solving [6]. It features a number of
desirable theoretical properties and allows for deriving formal statements about
its performance. Furthermore, it makes few assumptions regarding the applica-
tion domain for which it can be used and concerning the case structure and
similarity measures employed during the inference process.

The issue mentioned last – the use of fixed similarity measures – depicts one
point of departure for the work described in the paper at hand. We are going
to consider the similarity measure CCBI builds upon as a variable. The second
point of departure stems from the fact that the level of precision obtained when
doing inference with CCBI has been recently shown to be only of moderate
quality. Combining these two issues, our goal is to increase the precision of
CCBI’s predictions by modifying and optimizing the similarity measures that
CCBI builds upon.

In so doing, we will first formalize the notion of a precise retrieval result in
the context of CCBI and prove a number of its theoretical properties (Section
3). Then, we suggest the learning of high-precision similarity measures using a
recently proposed learning framework and utilizing a number of novel precision-
oriented error functions that we develop (Section 4). Finally, we empirically eval-
uate our findings using several benchmark data sets (Section 5). Before starting
off, we briefly summarize the core concepts of CCBI in Section 2.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 225–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 T. Gabel and M. Riedmiller

2 Credible Case-Based Inference

In [6], Hüllermeier introduced credible case-based inference as a novel method
for retrieving candidate solutions in case-based problem solving. CCBI is built
upon a sound formalization of the CBR paradigm and allows for proving some
of its theoretical properties. In this section, we briefly outline those specifics of
CCBI and of its inference mechanism that are of relevance in the scope of this
paper, and we also point to some possibilities for improving its performance.

2.1 Notation and Outline of CCBI

Throughout this paper, we denote by X a problem space and by L a solution
space, where a case consists of a problem part x ∈ X and solution part λx ∈ L.
Further, a case base M is a collection of cases 〈xi, λxi〉 ∈ M, 1 ≤ i ≤ |M|.

Motivating CCBI, the well-known CBR hypothesis that “similar problems
have similar solutions” has been equipped with the formal interpretation that

∀x, y ∈ X : simL(λx, λy) ≥ simX (x, y). (1)

Since, however, in practice this requirement will typically be frequently violated,
[6] introduces the concept of a similarity profile ζ that is defined by

ζ(α) := inf
x,y∈X

simX (x,y)=α

simL(λx, λy) for all α ∈ [0, 1].

As ζ is generally unknown, the notion of a similarity hypothesis h : [0, 1] → [0, 1]
is introduced which is meant to approximate ζ. Of special interest are similarity
hypotheses that are consistent with a given data set M, i.e. for which it holds

∀〈x, λx〉, 〈y, λy〉 ∈ M : simX (x, y) = α ⇒ simL(λx, λy) ≥ h(α).

One such data-consistent hypothesis that will play a major role throughout this
paper takes the form of a step function over a partition Ak of the problem
similarity interval [0, 1] and is called empirical similarity profile. It is defined as
a function hM : [0, 1] → [0, 1] with

hM : x �→
m∑

k=1

βk · IAk
(x) and βk := min

〈x,λx〉,〈y,λy〉∈M
simX (x,y)∈Ak

simL(λx, λy) (2)

where Ak = [αk−1, αk) for 1 ≤ k < m, Am = [αm−1, αm] and 0 = α0 < α1 <
. . . < αm = 1 (IA(x) = 1 if x ∈ A, IA(x) = 0 else, and min ∅ = 1 by definition).
Thus, by definition the following relaxation of the constraint in Equation 1 holds

∀〈x, λx〉, 〈y, λy〉 ∈ M : simL(λx, λy) ≥ hM(simX (x, y)).

In contrast to, for example, k-NN prediction, CCBI does not provide point pre-
dictions, but sets of candidate solutions. So, for predicting the label λq of a new
query problem q ∈ X , the notion of a credible solution set C(q) is introduced

Increasing Precision of Credible Case-Based Inference 227

and, when doing inference with a finite data set M, it is suggested that the
requested solution is an element of the following estimated credible solution set

Cest(q) =
⋂

c∈M
{λ|simL(λ, λc) ≥ hM(simX (q, c))}. (3)

For this inference mechanism, an estimation can be derived concerning the prob-
ability that a correct prediction (λq ∈ Cest(q)) is made subject to |M| and m.

2.2 Weaknesses of CCBI

As indicated before, high confidence levels in CCBI typically come along with
poor levels of precision, meaning that the solution set Cest(q) returned for some
query q, contains a large number of elements. While some extensions to pure
CCBI have been suggested to combat that shortcoming (e.g. the use of proba-
bilistic similarity profiles [6]), the underlying problem of low precision is not a
flaw in CCBI’s inferencing mechanism, but is actually caused by poor and un-
suitable problem similarity measures employed. Consequently, our goal pursued
in this paper is to improve the problem similarity measures in such a manner
that the imprecision of returned credible solution sets is reduced, while we rely
on the basic form of CCBI (cf. Equation 3) to actually perform the retrieval.

3 Imprecision in CCBI

Aiming at the reduction of imprecision in inferencing with CCBI by adjusting
problem similarity, we start off by formally investigating what it means for a
credible set Cest to be precise or imprecise.

3.1 Formalization

Precision is usually defined as the share of correct items retrieved to the overall
number of items retrieved [1]. Therefore, intuitively, we might say that a credible
solution set Cest(q) as prediction for the solution of q is of maximal precision
if it contains the correct solution λq and no further elements. However, in the
scope of CCBI, we need to extend that view slightly.

Definition 1 (Precise Solution Set). Let M be a case base and 〈q, λq〉 be a
case with q ∈ X and λq ∈ L as corresponding solution. Then, we call

Cprec(q) =
⋂

〈c,λc〉∈M
{λ|simL(λ, λc) ≥ simL(λq, λc)}

the precise solution set for q.
The following lemma lets us conclude that Cprec(q) ⊆ Cest(q) is the smallest,
hence, maximally precise solution set that (a) will be returned when doing case-
based inference with CCBI and that (b) is correct in the sense that λq ∈ Cest(q).
In other words, besides the correct solution λq, all other elements from Cprec(q)
are always included in Cest(q), no matter which similarity profile h is used during
retrieval.

228 T. Gabel and M. Riedmiller

Lemma 1. For any similarity hypothesis h consistent with the case data M and
any query q, the credible solution set Cest(q) contains Cprec(q) as a subset.

Proof: Let λd ∈ Cprec(q). So, for all 〈c, λc〉 ∈ M it holds: simL(λd, λc) ≥
simL(λq , λc). As h is assumed to be consistent with the data inM, it holds for all
〈x, λx〉, 〈y, λy〉 ∈ M that simL(λx, λy) ≥ h(simX (x, y)). Thus, for all 〈c, λc〉 ∈
M it also holds simL(λd, λc) ≥ h(simX (q, c)). Therefore, λd ∈

⋂

〈c,λc〉∈M{λ|
simL(λ, λc) ≥ h(simX (q, c))} = Cest(q). (Note: λq ∈ Cprec(q) by definition.) �

Note that for |Cprec(q)| > 1 to occur, we must require that there is at least
one 〈d, λd〉 whose solution λd is at least as similar to all other solutions in M
as λq. This situation is not as unrealistic as it might seem: It may occur even
for symmetric and reflexive solution similarity measures, e.g. if they contain
“plateaus” of maximal similarity (see Figure 1). In the remainder of this paper,
however, we focus on regression tasks using the Euclidean distance as the basis
for determining solution similarity, such that simL is a strongly monotonous
function and therefore always |Cprec| = 1 (proof omitted).

Fig. 1. Examples of solution similarity measures with |Cprec| ≥ 1. In a), for λq = 1,
for example, Cprec(q) = {λc|c ∈ M, λc ∈ [1, 3]}. In b), it holds Cprec(a) = {λa, λb, λd},
whereas in c), simX is decreasing strongly monotonically and hence |Cprec(q)| = 1.

3.2 Similarity Measures for High-Precision CCBI

We now focus on the relation between problem similarity measures, empirical
similarity profiles that can be induced from them, and their impact on CCBI.

From Lemma 1, we observe that CCBI attains its maximal precision when
it holds that Cprec(q) = Cest(q) for all q ∈ X . Assuming the case base M to
be fixed and considering simX as a variable, improving the precision of CCBI
means searching for a problem similarity measure such that Cest(q) contains as
few elements as possible for as many q as possible.

Definition 2 (Maximally Precise Problem Similarity Measure). A func-
tion sim�

X : X 2 → [0, 1] is called a maximally precise problem similarity measure
for a given case base M and number of intervals m, if for the predictions pro-
duced by CCBI, based on the corresponding empirical similarity profile h

sim�
X

M , it
holds that Pr(Cprec(q) = Cest(q)) = 1 for all q ∈ X .

Assuming the existence of an optimal problem similarity measure, it is straight-
forward to prove the following lemma.

Increasing Precision of Credible Case-Based Inference 229

Lemma 2. Let M be a case base, m > 0 the number of intervals used for
determining an empirical similarity profile hM, simX and simL be problem and
solution similarity measures, respectively. If for all 〈x, λx〉, 〈y, λy〉 ∈ M it holds
that simL(λx, λy) = hM(simX (x, y)), then simX is a maximally precise problem
similarity measure for M, i.e. hM = h

sim�
X

M .

Proof: We show Pr(Cprec(q) = Cest(q)) = 1 by proving by contradiction
that, under the assumptions made, Cest(q) \ Cprec(q) = ∅ for all q ∈ X . As-
sume there is a case 〈u, λu〉 ∈ M such that λu ∈ Cest(q) \ Cprec(q). The
CCBI inference scheme tells that λu ∈ Cest(q) implies that for all 〈c, λc〉 ∈
M it holds simL(λu, λc) ≥ hM(simX (q, c)). Knowing that simL(λx, λy) =
hM(simX (x, y)) for all 〈x, λx〉, 〈y, λy〉 ∈ M (precondition of Lemma 2), we
conclude that simL(λu, λc) ≥ simL(λq, λc) (�) for all 〈c, λc〉 ∈ M. Further,
as λu /∈ Cprec(q) =

⋂

〈c,λc〉∈M{λ|simL(λ, λc) ≥ simL(λq , λc)}, there must ex-
ist a 〈d, λd〉 ∈ M such that simL(λu, λd) � simL(λq , λd). This contradicts (�). �

Accordingly, we can force predictions produced by CCBI to be of maximal pre-
cision for a given case base M, if we manage to provide a problem similarity
measure such that the corresponding empirical similarity profile hM features no
interval in which any two pairs of cases have different levels of solution similar-
ity. For further investigations, we introduce the notion of the empirical similarity
boundary that represents a kind of counterpart to an empirical similarity profile.

Definition 3 (Empirical Similarity Boundary). Let Ak be a partition of
[0, 1] as in Equation 2. We call

ĥM : x �→
m∑

k=1

γk · IAk
(x) with γk := max

〈x,λx〉,〈y,λy〉∈M,
simX (x,y)∈Ak

simL(λx, λy),

the empirical similarity boundary for M (here, IA is the indicator function of
set A and max ∅ = 0 by definition).

From Lemma 2, it follows that CCBI has maximal precision for M, if the cor-
responding empirical similarity profile and boundary are identical for intervals
containing data (and by definition, ĥM is zero while hM is one for intervals that
contain no data). Note, however, that the inverse statement is not generally true.

Corollary 1. If, for a case base M and a similarity measure simX , it holds
hsimX
M (x) ≥ ĥsimX

M (x), then simX is maximally precise, i.e. simX = sim�
X .

3.3 Modifying Problem Similarity

Next, we investigate how to exploit the statements made so far for tuning similar-
ity measures in order to increase CCBI’s precision. Speaking about modifications
applied to similarity measures, we stress that we consider the solution similarity
measure simL to be fixed. By contrast, simX is a variable and may (at least in
theory1) take any value from the space of functions definable over X 2 → [0, 1].
1 In practice, we will usually confine ourselves to some “reasonable” or appropriately

representable sub-space of functions.

230 T. Gabel and M. Riedmiller

3.3.1 Partitioning Problem Similarity
A naive approach that allows for frequently fulfilling the constraint from Corol-
lary 1, i.e. hM(x) = ĥM(x) for many intervals, and so increases the probability
for precise solution sets, can be realized by incrementing the number m of inter-
vals used for determining the similarity profile and boundary (see Figure 2).

Lemma 3. If for all 〈x1, λx1〉, 〈y1, λy1〉, 〈x2, λx2〉, 〈y2, λy2〉 ∈ M with simL(λx1 ,
λy1) �= simL(λx2 , λy2)) it holds simX (x1, y1) �= simX (x2, y2), then for any m ≥
|M| there is a partition Ak (where Ak = [αk−1, αk] for 1 ≤ k ≤ m, Am =
[αm−1, αm], 0=α0 <α1< . . . <αm = 1) so that hM(x) ≥ ĥM(x) ∀x ∈ [0, 1].

Proof: Let SM = {simX (x, y)|〈x, λx〉, 〈y, λy〉 ∈ M} be the set of all prob-
lem similarity levels occurring for cases within M. Thus, |SM| ≤ |M|2, and
∀s ∈ SM the set {simL(λx, λy)|〈x, λx〉, 〈y, λy〉 ∈ M, simX (x, y) = s} contains
exactly one element. We define SL

M = [s1, . . . , s|M|] as an ordered list that ar-
ranges all elements from SM in ascending order. Next, we set αk = SL

M[k]
for 1 ≤ k ≤ m, and for k > |SM| we set αk distributed equidistantly over
[1 − SL

M[|SM|], 1]. Obviously, Ak is a well defined partition. If k > |SM|, then
1 = hM(x) > ĥM(x) = 0 for x ∈ Ak by definition, because there are no
〈x, λx〉, 〈y, λy〉 ∈ M with simX (x, y) ∈ Ak. If, however, k ≤ |SM| it holds
that |{simL(λx, λy)|〈x, λx〉, 〈y, λy〉 ∈ M, simX (x, y) ∈ Ak}| = 1. Consequently,
min〈x,λx〉,〈y,λy〉∈M,simX (x,y)∈Ak

simL(λx, λy) = max〈x,λx〉,〈y,λy〉∈M,simX (x,y)∈Ak

simL(λx, λy) and, hence, hM(x) = ĥM(x) for all x ∈ Ak. �

Lemma 3 suggests that increasing the value of m may support the precision
of the solution sets returned by CCBI. Unfortunately, there are two important
drawbacks to be considered. On the one hand, as shown in [6], increasing m also
decreases the probability that the correct solution λq for some problem q ∈ X is
not in the solution set, because Pr(λq /∈ Cest(q)) ≤ 2m/(1 + |M|).

On the other hand, even if m → ∞, that lemma fails to guarantee maximal
precision, if there exist pairs of cases in M whose problem parts have identical
values of problem similarity, but whose solution parts differ in their solution
similarities, i.e. ∃〈x1, λx1〉, 〈y1, λy1〉, 〈x2, λx2〉, 〈y2, λy2〉 ∈ M : simX (x1, y1) =
simX (x2, y2) and simL(λx1 , λy1) �= simL(λx2 , λy2). In particular, the latter
problem can be avoided only by modifying the problem similarity measure simX .

Fig. 2. By incrementing the number m of intervals, in principle maximal precision can
be attained, although such an approach is not valuable in practice

Increasing Precision of Credible Case-Based Inference 231

3.3.2 Basic Problem Similarity Modifiers
Drawing from the preceding remarks, the need for adapting simX becomes ob-
vious. As a very special case of Lemma 2, simX would trivially be a maximally
precise problem similarity measure, if for all cases 〈x, λx〉, 〈y, λy〉 ∈ M it held

simX (x, y) = simL(λx, λy). (4)

This idea of employing the solution similarity measure as a kind of similarity
teacher for learning a suitable problem similarity measure is not new. It has
already been employed for practical tasks [5], has been formalized in [9], and
empirically investigated in [3,4]. Although striving for a problem similarity mea-
sure that fulfills the constraint from Equation 4 in order to increase the precision
of CCBI seems appealing at first glance, we must be aware that such a naive
approach neglects all the knowledge about how the inferencing mechanism of
CCBI (cf. Section 2.1) works and, hence, would waste useful background knowl-
edge that can guide the search for a simX that yields high precision predictions.

By the same arguments, the strength of an empirical similarity profile (hsim1
X

M
is stronger than h

sim2
X

M iff. h
sim1

X
M (·) ≥ h

sim2
X

M (·), cf. [6]) as a function of the prob-
lem similarity measure and with m fixed is only of limited use, when searching
for a simX that induces high-precision predictions. We will empirically support
this claim in Section 5.

A final remark concerns the practical representation of similarity measures.
When the problem domain X is finite, simX can be represented using a table
and thus, simX (x, y) may be adjusted individually for any pair of problems
from X 2. Typically, however, X is a multi-dimensional, continuous space and
problem similarity measures defined over X 2 are represented in a parameterized
way. For example, for X = Rn one may set simX (x, y) = 1

1+||x−y||p , where p ≥ 1
is a parameter determining the norm used (e.g. p = 2 for Euclidean distance).
Here, when modifying p, simX is changed for vast parts of its domain. As a
consequence of such a parameterized similarity measure representation, fulfilling
the constraint from Equation 4 is in general infeasible (see Figure 3).

Fig. 3. Depending on the used representation for similarity measures, changing simX
may entail changes in the problem similarity for numerous problems x, y ∈ X . Here, for
the case pair 〈x, λx〉, 〈y, λy〉 a change of simX (x, y) from α to β is desired. As indicated
in the right part, conducting change A results in a number of side effect changes for
other case pairs that may also cause the similarity profile h to change.

232 T. Gabel and M. Riedmiller

4 Precision-Oriented Tuning of Similarity Measures

Optimizing similarity measures in CBR is not a novel issue. A lot of work in
this direction has been done, e.g. in the area of nearest-neighbor classification.
Here, one tries to adjust feature weights by examining pre-classified training
data [10,2,11]. Stahl [7] introduced a comprehensive methodology and a widely
applicable framework for learning similarity measures which we utilize and fur-
ther develop in the scope of this work. Optimizing similarity measures for the
use within CCBI and with the goal of increasing the precision of predictions,
however, is novel. In this section, we first briefly outline the learning framework
mentioned. Subsequently, we develop and analyze required error measures that
are geared towards improving the precision of case-based inferencing with CCBI.

4.1 A Framework for Learning Similarity Measures

The framework for learning similarity measures we utilize does not rely on ab-
solute information of a case’s utility for some query, but it allows for exploiting
relative utility feedback [7]. A second important feature boosting its applicability
is that it is not restricted to learning feature weights, but allows for optimizing
a broad class of similarity measures [8].

For the representation of problem similarity, typical knowledge-intensive simi-
larity measures consisting of feature weights wi and feature-specific local similar-
ity measures simXi are assumed, where X = X1 × · · · ×Xn, and for the features
of cases x, y ∈ X it holds that xi, yi ∈ Xi:

simX (x, y) =
n∑

i=1

wi · simXi(xi, yi). (5)

Local similarity measures are commonly represented as similarity tables which
assess all pairwise similarity values for symbolic features or as difference-based
similarity functions which map feature differences to similarity values for numer-
ical features (see [8] for an illustration).

For the task of optimizing feature weights as well as local similarity measures,
we developed an algorithm that performs search in the space of representable
similarity measures using evolutionary algorithms (EA). An EA maintains a
population of individuals (individuals correspond to similarity measures) and
evolves it using specialized stochastic operators (crossover and mutation) by
which new individuals (offspring) are created. Each individual is associated with
a fitness value and the least fit individuals are periodically excluded from the
evolution process (selection). So, the learning algorithm searches for the fittest
individual, whose corresponding similarity measure yields the minimal value of
an error function on the training data. For more details on this learning approach
and on the representation of similarity measures as individuals, we refer to [8].

Fitness Functions
A crucial component when using an evolution-based optimization technique is
the fitness function used for assessing the usefulness of the respective individual.

Increasing Precision of Credible Case-Based Inference 233

Thus, for the task at hand, we must associate each similarity measure with a
fitness value. While for learning similarity measures from relative case utility
feedback, the retrieval index error [7] represents an appropriate fitness function,
we found that more effort must be put into the fitness function’s definition [3]
when similarity measure optimization is to be performed for classification and
regression tasks, where often only some kind of binary feedback (e.g. retrieved
case has correct class or not) is available. Most of the corresponding fitness
functions we investigated made use of a solution similarity measure and/or tried
to induce relative utility feedback such that an index error was applicable. Being
developed for usage in combination with k-nearest neighbor retrieval those error
functions are unfortunately no longer usable if we work with CCBI and intend
to improve the precision of the retrieved solution sets it returns. Hence, next
we derive a number of candidate error functions that may be used as fitness
functions when performing problem similarity measure optimization for CCBI.

4.2 Precision-Oriented Error Measures

Considering a fixed set of cases M, a fixed number of intervals m, and a fixed
solution similarity measure simL, we can observe that

a) changing the problem similarity measure simX yields a shifting of data points
in the similarity space S = [0, 1]× [0, 1] (see Figure 3) along the x-axis,

b) the precision of returned solution sets is heavily influenced by the data dis-
tribution in that space,

c) maximal precision can be attained, if the data is distributed in such a manner
that the statement of Lemma 2 holds,

d) imprecision can arise, if there are cases 〈x, λx〉, 〈y, λy〉 such that hM(simX (x,
y)) < simL(λx, λy), in particular if this inequality holds for all 〈y, λy〉 ∈ M,

where we refer by hM to the empirical similarity profile for the currently con-
sidered problem similarity measure simX .

Departing from observation c), it is intuitive to employ the squared distance
between the empirical similarity profile and boundary, summed over all intervals,
as an error function (high fitness subsequently corresponds to a low error value).

Definition 4 (Boundary to Profile Error). Given a case base M, a partition
Ak of [0, 1] into m intervals, a problem and solution similarity measure simX
and simL, and the respective empirical similarity profile hM and boundary ĥM,

EB2P (simX) =
m∑

i=1

(

ĥM(xi)− hM(xi)
)2

defines the boundary to profile error of simX for M (where ∀xi, it holds xi ∈
Ai).

Thus, EB2P = 0 implies that simX is a maximally precise problem similarity
measure. Despite this, EB2P is apparently only of limited use, because the preci-
sion a problem similarity measure yields also strongly depends on the distribution

234 T. Gabel and M. Riedmiller

of similarity pairs within each interval Ai (cf. observation b)). An example of
two measures with EB2P (sim1

X) = EB2P (sim2
X) where sim2

X is the presumably
more precise one, is shown in Figure 4. Thus, a straightforward extension of Def-
inition 4 takes observation d) into account by summing the squared distances
between individual data points in S and their respective profile values.

Definition 5 (Solution Similarity to Profile Error). Using the same pre-
conditions as before, the solution similarity to profile error is defined as

ESS2P (simX) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M
(simL(λx, λy)− hM(simX (x, y)))2 .

Again, although ESS2P = 0 assures that h = ĥ and although ESS2P regards
the distribution of similarity pairs within intervals more smartly than EB2P , the
distance between solution similarities and profile values is only a coarse indicator
of whether imprecise solution sets Cest will occur.

Having taken a closer look at how Cest(q) is defined, i.e. on Equation 3, and
knowing that we obtain Cest = Cprec if hM(simX (x, y)) = simL(λx, λy) ev-
erywhere, we can conclude that an “imprecise λ” is in one of the intersected
sets {λ|simL(λ, λc) ≥ hM(simX (q, c))}, if there exists a 〈u, λu〉 ∈ M with
simL(λu, λc) ∈ (hM(simX (q, c)), simL(λq, λc)]2. This gives rise to defining:

Definition 6 (Pairs in Imprecision Interval Error). Let the same precon-
ditions be given as before, and define Ix,y = (hM(simX (x, y)), simL(λx, λy)] as
the imprecision interval for the case pair 〈x, λx〉, 〈y, λy〉. Then, we call

EPII(simX) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M

∑

〈u,λu〉∈M
u�=x

f(x, y, u)

where f(x, y, u) =

{

1 if simL(λu, λy) ∈ Ix,y

0 else
the pairs in imprecision interval

error.

Function f in Definition 6 indicates whether for two cases 〈x, λx〉, 〈y, λy〉 from
the case base there is a 〈u, λu〉 ∈ M (u �= x) such that simL(λu, λy) >
hM(simX (x, y)) and simL(λu, λy) ≤ simL(λx, λy). Consequently, one may say
that the case pair 〈x, λx〉 and 〈y, λy〉 bears some potential for yielding impreci-
sion (see Figure 4a for an illustration).

However, for Cest(x) \ Cprec(x) �= ∅ to actually occur and for λu to be in
that difference set, the two inequations mentioned in the previous paragraph
must not just hold for y, but also for all 〈z, λz〉 ∈ M (z �= y). In other words,
if we can find a 〈z, λz〉 ∈ M such that simL(λu, λz) < hM(simX (x, z)), then
the considered case pair 〈x, λx〉 and 〈y, λy〉 no longer bears potential for causing
imprecision concerning λu. The following error function takes care of that fact.
2 Note that λu is in the mentioned set anyway, if simL(λu, λc) > simL(λq, λc), even

if h = ĥ.

Increasing Precision of Credible Case-Based Inference 235

Fig. 4. In b+c), the similarity space for two problem measures sim1
X and sim2

X is shown
(both yield the same value of EB2P) which are presumed to be of different precision
(see text). In a), an illustration for Definitions 6+7 is provided. Looking at case pair
〈x, λx〉, 〈y, λy〉, there are two data points (·, y) in the corresponding imprecision interval
Ix,y. However, w.r.t. u, (x, y) bears no potential for yielding imprecision: Apparently,
there exists a 〈z, λz〉 ∈ M such that (u, z) is below Ix,z, which is why λu /∈ Cest(x).

Definition 7 (Pairs Causing Imprecision Error). Let the same precondi-
tions and definition of the imprecision interval for a case pair 〈x, λx〉, 〈y, λy〉 as
well as the definition of f be given as before. Then, we call

EPCI(simX) =
∑

〈x,λx〉∈M

∑

〈y,λy〉∈M

∑

〈u,λu〉∈M
u�=x

(

f(x, y, u) · min
〈z,λz〉∈M

z �=y

g(x, u, z)

)

with g(x, u, z) =
{

0 if simL(λu, λz) < hM(simX (x, z))

1 else
the pairs causing impre-

cision error.

Assume, we are given a case base M with M = |M|. Evaluating the fitness of a
problem similarity measure simX using one of the functions from Definitions 4
to 7, we have to acknowledge substantial differences in the computational effort
required for computing E. First of all, the time complexity of (re-)calculating
an entire empirical similarity profile3 subject to a changed problem similarity
measure is quadratic in the number of cases, as can be concluded from [6]. Thus,
any fitness evaluation will at least have quadratic complexity in M .

Because evaluating EB2P requires just one sweep over m intervals, the com-
plexity does not rise, EB2P ∈ O(M2). The same holds for ESS2P , although here
an additional sweep over all combinations of cases is required, thus ESS2P ∈
O(M2). Counting the number of similarity points that fall into the imprecision
interval Ix,y for any pair of cases, necessitates another iteration over all cases,
such that EPII ∈ O(M3). Finally, for EPCI the min operator (see Definition 7)
must be evaluated. In the worst case, here the complexity of evaluating the inner
sum can grow quadratically in the number of cases such that EPCI ∈ O(M4),
although a practical implementation may ease that by exploiting the fact that
3 The effort for computing an empirical similarity boundary is the same as for the

corresponding profile.

236 T. Gabel and M. Riedmiller

the min operator does not have to be evaluated when f(·) = 0 or that evaluating
min can be ceased as soon as a 〈z, λz〉 with g(x, u, z) = 0 has been discovered.

A final remark concerns the strength of an empirical similarity profile (see
Section 3.3.2) that may, in accordance to the other error functions, be defined as
ESTR(simX) =

∑m
i=1(1 − hM(xi))2 with arbitrary xi ∈ Ai. Note that such an

error function will in general not yield maximal precision according to Lemma
2. Nevertheless, we include ESTR in our experiments in the next section.

5 Empirical Evaluation

The focus of this evaluation is on a comparison of the performance of CCBI when
doing inference utilizing a knowledge-poor default similarity measure simdef

(corresponding to the Euclidean distance) and the measures acquired during
learning using the different error functions introduced above. All application do-
mains we consider depict regression tasks, i.e. there is a single real-valued solution
attribute for which we use a transformation of the Euclidean distance measure
as solution similarity measure simL. In accordance to [6], we measure the per-
formance of CCBI in terms of confidence (share of retrievals with λq ∈ Cest(q))
and imprecision which is the length of the prediction interval (difference of the
biggest and smallest element in Cest). Further, we provide the average point
prediction errors for the respective regression task, where the point prediction
of CCBI is determined as the center of the solution interval it predicts.

Note that the imprecision and point prediction of a retrieval result can only
be calculated for q ∈ X for which Cest(q) �= ∅. Therefore, we also provide an
indication of the share of retrievals during which Cest = ∅ was returned. However,
for larger case bases (|M| ≥ 100) it generally holds that Pr(Cest(q) = ∅) < 0.01,
so that the influence of empty solution sets becomes negligible.

5.1 Proof of Concept

The atomic power plant domain is a small data set covering German nuclear
power stations. Since German law dictates the discommisioning of all plants, the
task here is to predict the remaining allowed running time of individual stations.

In this experiment, we pursued a leave-one-out validation strategy. Obviously,
all error functions suggested are capable of yielding learning improvements re-
garding the level of precision CCBI achieves (see Figure 5). However, the com-
putational complexity of an error measure seems to heavily correlate to its ca-
pabilities in reducing imprecision and the point prediction error. In particular,
EPCI reduces the length of the prediction interval represented by Cest after 60
evolutionary generations to 0.13 years4, as opposed to an error of 1.78 years for
simdef . Interestingly, the confidence share (Pr(λq ∈ Cest(q))) is not impaired,
i.e. stays above the confidence level of the default similarity measure.

4 In 85% of all retrievals performed – in the remaining 15% it holds Cest(q) = ∅.

Increasing Precision of Credible Case-Based Inference 237

Fig. 5. Results for the Atomic Power Plant Domain (evaluations performed on a LOO
basis where the experiments were repeated 10 times, |M| = 20, and m = 15)

5.2 Benchmark Results

Next,we studied thebehavior ofour learning algorithmson severalUCIdatabench-
mark sets. In contrast to the experiments in Section 5.1 (LOO validation), we now
split the case bases, learned on the first part of training cases, and conducted all
evaluations of learning results on the remaining part of independent test cases.

The first question of our concern was on the influence of data-sparseness. Here,
our findings are in line with [6], revealing that confidence strongly correlates to the
size ofM. This dependency is even magnified when optimizing the problem simi-
larity measures for increasing precision: Learning with small data sets, not only the
imprecision, but also the level of confidence is clearly reduced. This effect is visual-
ized in the top rowofFigure 6where for theServo domain learning curves are shown
for optimization processes with 25 and 50 training instances only. The bottom row
shows how the situation improves when a more comprehensive training data set is
used. Here, it can be concluded that in particular an optimization process using
ESS2P , EPII , and EPCI as error function yields excellent precision improvements
while confidence stays at a satisfying level. Moreover, the point predictions that
CCBI produces using that acquired optimized problem similarity measure clearly
outperform the predictions of a k-NN regression (k = 1, . . . , 9).

The results for further benchmark data sets are summarized in Table 1. Since
we found that precision-improving similarity measures for CCBI can be reliably
obtained for |CB| ≥ 100, we have omitted the results for smaller training sets.
As the orders of magnitude of the solution attributes vary across the domains
we considered, we have provided percentual improvements/impairments of the
confidence and imprecision levels relative to the corresponding values the default
similarity measure yields. It is interesting to note that the changes of the point
prediction error are similar to those of the imprecision, which is why the former
are omitted in Table 1.

238 T. Gabel and M. Riedmiller

Fig. 6. Improved Precision for the Servo Domain (from UCI Repository)

Table 1. Results for different benchmark data sets. Conf refers to the confidence share
and Impr to the level of imprecision, i.e. to the length of the predicted solution interval.

Domain Train/ ESTR EB2P ESS2P EPII EPCI

Name Test Data Conf Impr Conf Impr Conf Impr Conf Impr Conf Impr

Abalone 200/1000 -2.0% -3.2% -3.1% -5.8% -7.7% -41.2% -11.3% -40.0% -6.1% -32.9%

AutoMpg 200/198 -7.0% +12.5% -4.3% +34.3% -11.3% -22.9% -11.9% -30.5% -19.8% -30.5%

Housing 200/306 -6.2% -18.7% -0.8% +0.6% -11.1% -39.6% -7.8% -48.3% -22.4% -51.3%

Liver 200/145 -5.3% -0.1% -3.9% +1.6% -10.6% -32.2% -7.4% -18.5% -17.5% -28.5%

Machines 100/109 -11.6% +3.0% -4.1% +102% -12.9% -60.8% -19.2% -71.4% -21.1% -70.2%

Servo 75/91 -14.1% -56.3% -17.0% -59.2% -13.3% -62.7% -12.9% -65.1% -25.6% -76.7%

While most of the results listed are based upon training data set of |M| = 200
(except where noted) for learning on the basis of the pairs causing imprecision
error EPCI , we maximally employed 100 training instances, as the enormous
computational complexity (cf. Section 4.2) prohibited the use of larger training
sets. Consequently, due to effects of overfitting (comparable to, yet not as distinct
as in the top row of Figure 6) the results given in the last two columns of the
result table are likely to feature comparatively better imprecision and worse
confidence levels than the other columns.

Summarizing, we can state that in most of the experiments conducted the
gain achieved in reducing imprecision was significantly more distinct than the
corresponding reduction of the confidence share. We thus can conclude that the
proposed optimization of similarity measures using the error functions derived
in Section 4 is highly beneficial for the performance of CCBI. Practically, our
evaluation shows that the solution similarity to profile error ESS2P as well as
the pairs in imprecision interval error EPII are most suitable for the realiza-
tion of a precision-oriented similarity measure optimization. Averaged over our
experiments they yield a confidence reduction of 11.3/11.8 percent5 compared to

5 We emphasize that this confidence reduction turns out to be much lower when the
amount of training data is further increased (beyond |M| = 200).

Increasing Precision of Credible Case-Based Inference 239

simdef and a simultaneous reduction of imprecision of 43.2/45.6%. The perfor-
mance of EPCI is evidently superior, but, as mentioned, its computation becomes
quickly intractable for increasing amounts of training case data.

6 Conclusion

The contribution of this paper is three-fold. First, we have theoretically examined
the notion of precision in the context of credible case-based inference and proved
several formal statements concerning the relation between similarity measures
and the level of precision inferencing with CCBI may yield. Second, utilizing the
theoretical properties of precision in CCBI, we have derived a number of poten-
tial error functions that can be employed for tweaking the problem similarity
measures CCBI uses towards increased precision. Finally, we have evaluated the
proposed optimization approach using several standard benchmark data sets and
found that two of the error measures proposed create excellent improvements of
the precision when generating candidate solutions with CCBI.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
Addison-Wesley, New York (1999)

2. Bonzano, A., Cunningham, P., Smyth, B.: Using Introspective Learning to Improve
Retrieval in CBR: A Case Study in Air Traffic Control. In: Proceedings of the 2nd
International Conference on Case-Based Reasoning. Springer, Heidelberg (1997)

3. Gabel, T.: Learning Similarity Measures: Strategies to Enhance the Optimisation
Process. Master thesis, Kaiserslautern University of Technology (2003)

4. Gabel, T., Stahl, A.: Exploiting Background Knowledge when Learning Similarity
Measures. In: Proceedings of the 7th European Conference on Case-Based Reason-
ing, Madrid, Spain, pp. 169–183. Springer, Heidelberg (2004)

5. Gabel, T., Veloso, M.: Selecting Heterogeneous Team Players by Case-Based Rea-
soning: A Case Study in Robotic Soccer Simulation. Technical Report CMU-CS-
01-165, Carnegie Mellon University (2001)

6. Hüllermeier, E.: Credible Case-Based Inference Using Similarity Profiles. IEEE
Transactions on Knowledge and Data Engineering 19(6), 847–858 (2007)

7. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based Rea-
soning, vol. 986, dissertation.de (2004)

8. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures.
In: Proceedings of the 5th International Conference on CBR, Trondheim, Norway,
pp. 537–551. Springer, Heidelberg (2003)

9. Stahl, A., Schmitt, S.: Optimizing Retrieval in CBR by Introducing Solution Sim-
ilarity. In: Proceedings of the International Conference on Artificial Intelligence
(IC-AI 2002), Las Vegas, USA. CSREA Press (2002)

10. Wettschereck, D., Aha, D.: Weighting Features. In: Proceeding of the 1st Interna-
tional Conference on Case-Based Reasoning. Springer, Heidelberg (1995)

11. Zhang, Z., Yang, Q.: Dynamic Refinement of Feature Weights Using Quantitative
Introspective Learning. In: Proceedings of the 16th International Joint Conference
on Artificial Intelligence (1999)

Supporting Case-Based Retrieval by Similarity

Skylines: Basic Concepts and Extensions�

Eyke Hüllermeier1, Ilya Vladimirskiy1, Belén Prados Suárez2, and Eva Stauch3

1 Philipps-Universität, FB Informatik, D-35032, Hans-Meerwein-Str.,
Marburg, Germany

{eyke,ilya}@mathematik.uni-marburg.de
2 Department of Computer Science and Artificial Intelligence,

University of Granada, Spain
belenps@decsai.ugr.es

3 Westfälische Wilhelms-Universität, Historisches Seminar, Robert-Koch-Str. 29,
D-48149, Münster, Germany
estauch@uni-muenster.de

Abstract. Conventional approaches to similarity search and case-based
retrieval, such as nearest neighbor search, require the specification of a
global similarity measure which is typically expressed as an aggregation
of local measures pertaining to different aspects of a case. Since the
proper aggregation of local measures is often quite difficult, we propose a
novel concept called similarity skyline. Roughly speaking, the similarity
skyline of a case base is defined by the subset of cases that are most
similar to a given query in a Pareto sense. Thus, the idea is to proceed
from a d-dimensional comparison between cases in terms of d (local)
distance measures and to identify those cases that are maximally similar
in the sense of the Pareto dominance relation [2]. To refine the retrieval
result, we propose a method for computing maximally diverse subsets of
a similarity skyline. Moreover, we propose a generalization of similarity
skylines which is able to deal with uncertain data described in terms of
interval or fuzzy attribute values. The method is applied to similarity
search over uncertain archaeological data.

1 Introduction

Similarity search in high-dimensional data spaces is important for numerous
application areas. In case-based reasoning (CBR), for example, it provides an
essential means for implementing case retrieval, a critical step in case-based
problem solving. In case-based retrieval, understood as the application of CBR
paradigms to information retrieval tasks [3], similarity search becomes an even
more central issue.

A commonly applied approach to case retrieval is nearest neighbor (NN)
search. In fact, NN queries as proposed in [4] and their application to similarity

� Revised and significantly extended version of a paper presented at the ICCBR-07
workshop on “Uncertainty and Fuzziness in Case-Based Reasoning” [1].

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 240–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 241

search have been studied quite extensively in the past. Despite their usefulness
for certain problems, NN methods exhibit several disadvantages. For example,
they are usually sensitive toward outliers and cannot easily deal with uncertain
data. Due to the “curse of dimensionality” [5], the performance of NN methods
significantly degrades in the case of high-dimensional data.

Perhaps even more importantly, NN methods assume a global similarity or,
alternatively, distance function to be specified across the full feature set. The
specification of such a measure is often greatly simplified by the “local–global
principle”, according to which the global similarity between two cases can be ob-
tained as an aggregation of various local measures pertaining to different features
of a case [6]. However, even though it is true that local distances can often be de-
fined in a relatively straightforward way, the combination of these distances can
become quite difficult in practice, especially since different features may pertain
to completely different aspects of a case. Moreover, the importance of a feature
is often subjective and context-dependent. Thus it might be reasonable to free a
user querying a system from the specification of an aggregation function, or at
least to defer this step to a later stage.

In this paper, we propose a new concept, called similarity skyline, for sup-
porting similarity search and case-based retrieval without the need to specify
a global similarity measure. Roughly speaking, the similarity skyline of a case
base is defined by the subset of cases that are most similar to a given query
in a Pareto sense. More precisely, the idea is to proceed from a d-dimensional
comparison between cases in terms of d (local) similarity or distance measures
and to identify those cases that are maximally similar in the sense of the Pareto
dominance relation.

The rest of the paper is organized as follows: Section 2 describes the ap-
plication that motivates our approach, namely similarity search over uncertain
archaeological data. The concept of a similarity skyline is introduced in Section 3.
In Section 4, we propose a method for refining the retrieval result, namely by
selecting a (small) diverse subset of a similarity skyline. Section 5 is devoted
to a generalization of similarity skylines which is able to deal with uncertain
data described in terms of interval or fuzzy attribute values. Finally, Section 6
presents some experimental results, and Section 7 concludes the paper.

2 Motivation and Background

Even though the methods introduced in this paper are completely general, they
have been especially motivated by a particular application. As we shall report
experimental results for this application later on, we devote this section to a
brief introduction.

The DEADDY project aims at using knowledge discovery techniques to ex-
tract valuable information from archaeological databases. The domain under
study is the analysis of graves in the Early Middle Ages. The data informs
about graves, the persons buried therein, and the grave goods (objects which
were put into the grave during the funeral ceremony according to religious rules

242 E. Hüllermeier et al.

Fig. 1. Grave Good Form in the DEADDY Database

or traditions typical for the given historical moment). Fig. 1 shows a screen shot
of the DEADDY user interface. One can see a data record with information
about particular grave goods: type, material, position in the grave, etc.

To demonstrate our approach, we have chosen the graveyard Wenigumstadt,
which dates from the Early Middle Ages and is situated in the south of Germany.
The inhabitants of a small village were buried in this cemetery from the end of the
Roman Empire to the Age of Charlemagne. The data set contains information
about 126 graves and 1074 grave goods. Data were extracted from a relational
database and put into a joint table containing attributes for graves, individuals
and grave goods. In total there are 9 attributes, 3 of which describe a grave, 2 a
person, and the remaining 4 the grave goods.

Imagine an archaeologist interested in discoveringdependencies between wealth
of the grave equipment and the age of the personburied therein.Tomake a first step
in analyzing this question, a system should support similarity searches in a proper
way. For example, an archaeologist may choose an interesting grave as a starting
point and then try to find graves which are similar to this one. The techniques
developed in this paper are especially motivated by the following experiences that
we had with this field of application and corresponding users:

– While local similarity measures pertaining to different attributes or proper-
ties of a grave can often be defined without much difficulty, an archaeologist
is usually not willing or not able to define a global distance measure properly
reflecting his or her (vague) idea of similarity between complete graves.

– Both the data, such as age or spatial coordinates of a grave good, as well as
the queries referring to the data are typically vague and imprecise, sometimes
even context-dependent.

3 Similarity Search and the Similarity Skyline

We proceed from a description of cases in terms of d-dimensional feature vectors

x = (x1, x2 . . . xd) ∈ X = X1 × X2 × . . .× Xd, (1)

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 243

where Xi is the domain of the i-th feature Xi. A case base CB is a finite subset
of the space X spanned by the domains of the d features. Even though a feature-
based representation is of course not always suitable, it is often natural and
still predominant in practice [7]. In this regard, we also note that a feature is
not assumed to be a simple numerical or categorical attribute. Instead, a single
feature can be a complex entity (and hence Xi a complex space), for example
a structured object such as a tree or a graph. We only assume the existence of
local distance measures

δi : Xi × Xi → R+, (2)

i.e., each space Xi is endowed with a measure that assigns a degree of distance
δi(xi, yi) to each pair of features (xi, yi) ∈ Xi×Xi. According to the local–global
principle, the distance between two cases can then be obtained as an aggregation
of the local distance measures (2):

Δ(x, y) = A (δ1(x1, y1), δ2(x2, y2) . . . δd(xd, yd)) , (3)

where A is a suitable aggregation operator. As mentioned in the introduction,
the specification of such an aggregation operator can become quite difficult in
practice, especially for non-experts. Therefore, it might be reasonable to free a
user querying a system from this requirement, or at least to defer this step to a
later stage.

One may of course imagine intermediary scenarios in which some of the lo-
cal similarity measures can be aggregated into measures at a higher level of a
hierarchical scheme. In this scheme, the problem of similarity assessment is de-
composed in a recursive way, i.e., a similarity criterion is decomposed into certain
sub-criteria, which are then aggregated in a suitable way. In other words, each
feature or, perhaps more accurately, similarity feature Xi in (1) might already
be an aggregation

Xi = Ai(Xi1, Xi2 . . . Xik)

of a certain number of sub-features, which in turn can be aggregations of sub-sub-
features, etc. Now, our assumption is that a further aggregation of the features
X1 . . .Xd is not possible, or at least not supported by the user. These (similar-
ity) features, however, do not necessarily correspond to the attributes used to
describe a single case. For example, suppose that two cars, each of which might
be described by a large number of attributes, can be compared with respect to
comfort and investment in terms of corresponding similarity measures. If a fur-
ther combination of these two degrees into a single similarity score is difficult,
then comfort and investment are the features in (1).

3.1 The Similarity Skyline

Note that a global similarity or distance function, if available, induces a total
order on the set of all alternatives: Given a query z = (z1 . . . zd) ∈ X and two
cases x, y ∈ CB,

x �z y
df⇐⇒ Δ(z, x) ≤ Δ(z, y).

244 E. Hüllermeier et al.

Instead of requiring a user to define a global distance measure and, thereby, to
bring all alternatives into a total order, the idea of this paper is to compare
alternatives in terms of a much weaker “closeness” or, say, “preference” relation,
namely Pareto dominance: Given a query z and cases x, y,

x �z y
df⇐⇒ ∀ i ∈ {1, 2 . . . d} : δi(zi, xi) ≤ δi(zi, yi).

Thus, x is (weakly) preferred to y if the former is not less similar to z than the
latter in every dimension. Moreover, we define strict preference as follows:

x �z y
df⇐⇒ x �z y ∧ ∃ i ∈ {1, 2 . . . d} : δi(zi, xi) < δi(zi, yi). (4)

When x �z y, we also say that y is dominated or, more specifically, similarity-
dominated by x. Note that the relation �z is only a partial order, i.e., it is
antisymmetric and transitive but not complete. That is, two cases x, y ∈ CB
may (and often will) be incomparable in terms of �z, i.e., it may happen that
one can neither say that x is “more similar” than y nor vice versa.

However, when x �z y holds, x is arguably more interesting than y as a
retrieval candidate. More precisely, the following observation obviously holds:
x �z y implies Δ(z, x) < Δ(z, y), regardless of the aggregation function A in
(3), provided this function is strictly monotone in all arguments. As a result, y
cannot be maximally similar to the query, as x is definitely more similar.

Consequently, the interesting candidates for case retrieval are those cases that
are non-dominated. Such cases are called Pareto-optimal, and the set itself is
called the Pareto set. This set corresponds to the set of cases that are potentially
most similar to the query: If there exists an aggregation function A such that
x is maximally similar to z among all cases in CB, then x must be an element
of the Pareto set. For reasons that will become clear in the next subsection, we
call the set of Pareto-optimal cases the similarity skyline:

SSky(CB, z) df= {x ∈ CB | ∀y ∈ CB : y ��z x } (5)

In passing, we note that only the ordinal structure of the local distance measures
δi is important for this approach, which further simplifies their definition: For
the X → R+ mapping δi(zi, ·), it is only important how it orders xi and yi, i.e.,
whether δi(zi, xi) < δi(zi, yi) or δi(zi, xi) > δi(zi, yi), while the distance degrees
themselves are irrelevant. In other words, the similarity skyline (5) is invariant
toward monotone transformations of the δi.

3.2 Skyline Computation

The computation of a Pareto optimal subset of a given reference set has received
a great deal of attention in the database community in recent years. Here, the
Pareto optimal set is also called the skyline. A “skyline operator”, along with
a corresponding SQL notation, was first proposed in [8]. It proceeds from a
representation of objects in terms of d criteria, i.e., “less-is-better” attributes
Ci, i = 1 . . . d, with linearly ordered domains R+; the corresponding data space

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 245

is the Cartesian product of these domains, and an object is a vector in this space.
In the simplest form, the skyline Sky(P) of a d-dimensional data set P is defined
by the subset of objects (c1 . . . cd) ∈ P that are non-dominated, i.e., for which
there is no (c′1 . . . c′d) ∈ P such that c′i ≤ ci holds for all and c′i < ci for at least
one i ∈ {1 . . . d}.

To illustrate, consider a user choosing a car from a used-cars database, and sup-
pose cars to be characterized by only two attributes, namely price and mileage. An
example data set and its skyline are presented in Fig. 2. Point A (Acura) is dom-
inated by point H (Honda), because the Honda is cheaper and has lower mileage.
The six points (marked black) which are non-dominated by any other point form
the skyline.

Car
Price ,
1000$

Milea ge,
1000km

Acura 17 68

BMW 32 13

Cadillac 24 37

Ford 14 29

Honda 12 33

Land Rover 26 16

Mercedes 13 91

Nissan 5 113

Toyota 21 18

Volkswagen 13 28
Price

N

0

50

100

0 10 20 30

M
ile

ag
e

BLT

FH
C

A

M

N

V

Fig. 2. Example of a two-dimensional skyline

Now, recall the problem of computing a similarity skyline, as introduced in
the previous subsection: Given a case base CB and a query case z, the goal
is to retrieve the set of cases x ∈ CB that are non-dominated in the sense of
(4). This problem can be reduced to the standard skyline problem in a relatively
straightforward way. To this end, one simply defines the criteria to be minimized
by the distances in the different dimensions. Thus, with δi : Xi × Xi → R+

denoting the distance measure for the i-th feature, a case x = (x1 . . . xd) is first
mapped to a point

x′ = Tz(x) df= (δ1(x1, z1), δ2(x2, z2) . . . δd(xd, zd)) ∈ Rd
+. (6)

Geometrically speaking, this transformation is a kind of reflection that, using
the reference point z as a center, maps all data points into the positive quadrant
(see Fig. 3). The similarity skyline then corresponds to the standard skyline of
the image of CB under the mapping Tz, i.e.,

SSky(CB, z) = Sky(Tz(CB)).

Computing a skyline in an efficient way is a non-trivial problem, especially in
high dimensions (cf. Section 6). In the database field, several main-memory algo-
rithms (for the case where the whole data set fits in memory) as well as efficient

246 E. Hüllermeier et al.

(a) (b) (c)

p1

p2

q q

p

pt

q

Fig. 3. Using the query point q as a center, the original data points (a) are mapped into
the positive quadrant in a distance-preserving way (b). The skyline in the transformed
space corresponds to the points that are not similarity-dominated (c).

methods for computation of skyline points over data stored in the database have
been proposed. In our implementation, we used the block nested loop (BNL)
algorithm for skyline computation [8]. The most naive way to compute a skyline
is to check the non-dominance condition explicitly for each case (by comparing
it to all other cases). BNL is a modification of this approach which proceeds as
follows: The list of skyline candidate objects (SCL) is kept in the memory, ini-
tialized with the first case. Then, the other cases y are examined one by one: (a)
If y is dominated by any case in the SCL, it is pruned as it can not belong to the
skyline. (b) If y dominates one or more case in the SCL, these cases are replaced
by y. (c) If y is neither dominated by, nor dominates any case in the SCL, it is
simply added to the SCL. We refer to [9] for more details on BNL and a thorough
review of alternative skyline computation algorithms. It is also worth mention-
ing that the concept of dynamic skyline, proposed in the same paper, provides a
perfect algorithmic framework for implementing similarity skyline computation
when the data is stored in an indexed database instead of main memory.

4 Refining Similarity Skylines

The similarity skyline (5) may become undesirably large, especially in high di-
mensions. A user may thus not always want to inspect the whole set of Pareto
optimal cases. A possible solution to this problem is to select an interesting
subset from S = SSky(CB, z), i.e., to filter S according to a suitable criterion.
Here, we propose the criterion of diversity, which has recently attracted special
attention in case-based retrieval [10,11]: To avoid redundancy, and to convey a
picture of the whole set S with only a few cases, the idea is to select a subset of
cases which is as diverse as possible.

An implementation of this criterion requires a formalization of the concept of
diversity. What does it mean that a set D ⊆ S is diverse? Intuitively, it means
that the cases in D should be dissimilar amongst each other. It is important to
note that, according to our assumptions, a formalization of this criterion must
only refer to the local distance measures δi, i = 1 . . . d, and not to a global
measure.

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 247

We therefore define the diversity of a subset D of cases by the vector div(D) =
(v1, v2 . . . vd), where

vi
df= min{ δi(xi, yi) |x = (x1 . . . xd), y = (y1 . . . yd) ∈ D }

is the diversity in the i-th dimension. In principle, it is now again possible to
apply the concept of Pareto optimality, i.e., to define a preference relation � on
subsets of cases by D � D′ iff div(D) ≥ div(D′), and to look for Pareto optimal
subsets of S. However, this Pareto set will also include subsets that are very
dissimilar in some dimensions but not at all dissimilar in others. From a diversity
point of view, this is not desirable. To find subsets that are as “uniformly” diverse
as possible, we therefore propose the following strategy: Suppose that a user
wants to get a diverse subset of size K, which means that the set of candidates
is given by the set of all subsets D ⊆ S with |D| = K. Moreover, for dimension
i, consider the ranking of all candidate subsets D in descending order according
to their diversity vi in that dimension, and let ri(D) be the rank of D. We then
evaluate a candidate subset D by

val(D) df= max{ ri(D) | i = 1 . . . d },

and the goal is to find a subset minimizing this criterion. Note that the latter
is a minimax-solution, that is, a subset which minimizes its worst position in
the d rankings; Fig. 4 gives an illustration. Interestingly, the above idea has
recently been proposed independently under the name “ranking dominance” in
the context of multi-criteria optimization [12].

Algorithmically, we solve the problem as follows. For every pair of cases x, y ∈
S and for each dimension i, one can precompute the rank ri(xi, yi) of their
distance δi(xi, yi). For a fixed v ∈ N, define a graph Gv as follows: the node set
is S, and for each x, y ∈ S, an edge is inserted in Gv if ri(xi, yi) ≤ v. Obviously,
a subset D with val(D) ≤ v corresponds to a K-clique in Gv. The optimization

Fig. 4. A set of cases represented as points, the similarity skyline (boxes), and a diverse
subset of size 4 (encircled boxes)

248 E. Hüllermeier et al.

problem can thus be solved by finding the minimal v ∈ N such that Gv contains
a K-clique.

Unfortunately, the K-clique problem is known to be NP-hard [13]. Neverthe-
less, there exist good heuristics. In our approach, we use a method similar to
the one proposed in [14]. Moreover, to find the minimal value v, we employ the
bisection method with lower bound 1 and upper bound vmax, where vmax is
guessed at the beginning (and probably increased if Gvmax does not contain a
K-clique). Essentially, this means that the number of search steps is logarithmic
in vmax.

We conclude this section by noting that a diverse subset D can be taken as
a point of departure for “navigating” within a similarity skyline. For example,
a user may identify one case x ∈ D as being most interesting. Then, one could
“zoom” into that part of the skyline by retrieving another subset of cases from
the skyline that are as similar to x as possible, using a criterion quite similar to
the one used for diversity computation. Such extensions are being investigated
in ongoing work.

5 Similarity Skyline for Uncertain Data

Motivated by our main application scenario, we have extended the concept of a
similarity skyline to the case of uncertain data. In fact, the problem of uncertain
and imprecisely known attribute values is quite obvious for archaeological data,
though it is of course not restricted to this application field. Besides, note that
the query itself is often imprecise. For example, consider a user looking for a
case which is maximally similar to an “ideal” case, which is given as a query.
This ideal case can be fictitious, and the user may prefer to specify it in terms
of imprecise or fuzzy features like “a prize of about 1,200 dollars”.

5.1 Uncertainty Modeling

Perhaps the most simple approach to handling imprecise attribute values is to
use an interval-based representation: Each attribute value is characterized in
terms of an interval that is assumed to cover the true but unknown value. For
example, the unknown age at death of a person could be specified in terms of
the interval [25, 45].

An interval of the form [a, b] declares some values to be possible or plausible,
namely those between a and b, and excludes others as being impossible, namely
those outside the interval. A well-known and quite obvious disadvantage of the
interval-based approach is the abrupt transition between the range of possible
and impossible values. In the above example, the age of 45 is considered as fully
plausible, while 46 years is definitely excluded.

Another approach to uncertainty modeling, which often appears to be more
appropriate, is to characterize the set of possible values of an attribute Xi in
terms of a fuzzy subset of the attribute’s domain Xi, that is, by a mapping
F : Xi → [0, 1]. Adopting a semantic interpretation of membership degrees in
terms of degrees of plausibility, a fuzzy set F can be associated with a possibility

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 249

10 20 30 40 50 60
0

0.5

1

age

m
em

be
rs

hi
p

Fig. 5. Example of a fuzzy set modeling the linguistic concept “middle-aged”

distribution πF : For every x ∈ Xi, πF (x) = F (x) corresponds to the degree of
plausibility that x equals the true but unknown attribute value xi. A possibility
distribution thus allows one to express that a certain value x is neither completely
plausible nor completely impossible, but rather possible to some degree. For
example, given the information that a person was middle-aged, all ages between
30 and 40 may appear fully plausible, which means that πF (x) = 1 for x ∈
[30, 40]. Moreover, all ages below 20 or above 50 might be completely excluded,
i.e., πF (x) = 0 for x ≤ 20 and x ≥ 50. All values in-between these regions are
possible to some degree. The simplest way to model a gradual transition between
possibility and impossibility is to use a linear interpolation, which leads to the
commonly employed trapezoidal fuzzy sets (see Fig. 5). According to this model,
πF (25) = 0.5, i.e., an age of 25 is possible to the degree 0.5.

A possibility distribution πF induces two important measures, namely a pos-
sibility and a necessity measure:

ΠF : 2Xi → [0, 1], A �→ sup
x∈A

πF (x)

NF : 2Xi → [0, 1], A �→ 1− sup
x �∈A

πF (x)

For each subset A ⊆ Xi, ΠF (A) is the degree of plausibility that xi ∈ A. More-
over, N(A) is the degree to which xi is necessarily in A. The measures ΠF and
NF are dual in the sense that ΠF (A) ≡ 1−NF (X\A). To verbalize, xi is possibly
in A as long as it is not necessarily in the complement X \A.

5.2 Transformation for Fuzzy Attribute Values

As outlined above, a first step of our approach consists of mapping a data point
x = (x1 . . . xd) ∈ CB to the “distance space”. According to (6), every attribute
value xi is replaced by its distance x′

i = δi(xi, zi) to the corresponding value of
the query case z = (z1 . . . zd).

When both xi and zi are characterized in terms of fuzzy sets Fi and Gi,
respectively, the distance x′

i becomes a fuzzy quantity F ′
i as well. It can be

derived by applying the well-known extension principle to the distance δi [15]:

F ′
i (d) = sup{min(Fi(xi), Gi(zi)) | δi(xi, zi) = d } (7)

250 E. Hüllermeier et al.

5.3 The Dominance Relation for Fuzzy Attribute Values

The definition of the skyline of a set of data points involves the concept of
dominance. In the case of similarity queries, dominance refers to distance, i.e.,
a value xi (weakly) dominates a value yi if xi ≤ yi. If the data is uncertain, an
obvious question is how to extend this concept of dominance to attribute values
characterized in terms of intervals or fuzzy sets. This question is non-trivial,
since neither the class of intervals nor the class of fuzzy subsets of a totally
ordered domain are endowed with a natural order.

Consider two objects (transformed cases) x = (x1 . . . xd) and y = (y1 . . . yd),
and suppose that the true distance values xi and yi are characterized in terms
of fuzzy sets Fi and Gi, respectively (derived according to (7)). The problem
is now to extend the dominance relation so as to enable the comparison of two
fuzzy vectors F = (F1 . . . Fd) and G = (G1 . . .Gd).

Let πFi and πGi denote, respectively, the possibility distributions associated
with the fuzzy sets Fi and Gi. If these distributions can be assumed to be non-
interactive, the degree of possibility and the degree of necessity of the event
xi ≤ yi are given, respectively, by

pi = Π(xi ≤ yi) = sup
x≤y

min(πFi(x), πGi(y)),

ni = N(xi ≤ yi) = 1− sup
x>y

min(πFi(x), πGi(y)) .

Since the dominance relation requires dominance for all dimensions, these de-
grees have to be combined conjunctively. To this end, one can refer to a t-norm
as a generalized logical conjunction [16]. Using the minimum operator for this
purpose, one eventually obtains two degrees p and n, such that

p = min(p1 . . . pd) ≥ min(n1 . . . nd) = n ,

which correspond, respectively, to the degree of possibility and the degree of
necessity that the first object (x) dominates the second one (y). Thus, the
(fuzzy) dominance relation between x and y is now expressed in terms of a
possibility/necessity interval:

FDOM(x, y) = [n, p] (8)

In principle, it would now be possible to use this “fuzzy” conception of dominance
to define a kind of fuzzy skyline. More specifically, for each object x one could
derive a degree of possibility and a degree of necessity for x to be an element of
the skyline. A less complex alternative is to “defuzzify” the dominance relation
first, and to compute a standard skyline afterward. Defuzzifying means replacing
fuzzy dominance by a standard (non-fuzzy) dominance relation, depending on
the two degrees p and n. Of course, this can be done in different ways, for example
by thresholding:

x � y
df⇐⇒ n ≥ α and p ≥ β , (9)

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 251

Fig. 6. Example in which the dominance relation (9) holds for α = 0.3 (and β = 1)
but not for α = 0.6. In the latter case, the (1 − α)-cuts of Fi and Gi intersect.

where 0 ≤ α ≤ β ≤ 1. If α is small while β = 1, this means that x � y
iff dominance is considered fully plausible and also necessary to some extent.
In fact, for β = 1, (9) has an especially intuitive meaning: A fuzzy interval
Fi dominates a fuzzy interval Gi if the (1 − α)-cut of Fi, which is the interval
[f l

1−α, fu
1−α] = {xi |Fi(xi) ≥ 1−α}, dominates the (1−α)-cut of Gi, [gl

1−α, gu
1−α],

in the sense that the former precedes the latter, i.e., fu
1−α < gl

1−α. The dominance
relation hence tolerates a certain overlap of the fuzzy intervals, and the degree
of this overlap depends on α; see Fig. 6 for an illustration.

As suggested by this example, the thresholds α and β can be used to make the
dominance relation more or less restrictive and, thereby, to influence the size of
the skyline: If α and β are increased, the dominance relation will hold for fewer
objects, which in turn means that the skyline grows. In this regard, also note
that α and β must satisfy certain restrictions in order to guarantee that x � y
and x � y cannot hold simultaneously. Since FDOM(y, x) = [1 − p, 1 − n], a
reasonable restriction excluding this case is α + β > 1.

6 Experiments

The get a first idea of the efficacy and scalability of our approach, we have
conducted a number of experiments. In particular, we investigated how many
cases are found to be similar to a query depending on the dimensionality of
the case base and the strictness of the dominance relation (9), that we used for
different values of α (while β was fixed to 1). Moreover, we addressed the issues
of run time and scalability. Since the original data in the current version of our
archaeological database is interval data, we turned intervals into fuzzy sets with
triangular membership functions, using the mid-point of an interval as the core
(center point) of the corresponding fuzzy set.

¿From the original 9-dimensional case base, 22 test sets of different dimen-
sion were constructed by projecting to corresponding subsets of the attributes.
Each case of a case base CB was used as a query resulting in a total number of
n = |CB | queries. For the corresponding n answer sets (skylines), we derived
the average and the standard deviation of the relative size of answer set (num-
ber divided by n); see Fig. 7. Likewise, the average run time and its standard
deviation were measured; see Fig. 8. Finally, Fig. 9 shows run time results for

252 E. Hüllermeier et al.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 0,2 0,4 0,6 0,8 1

2

3

4

5

6

Fig. 7. Mean and standard deviation of the relative size of answer sets (y-axis) de-
pending on the dimension (2–6) and the strictness level α (x-axis)

1

10

100

1000

2 3 4 5 6

Que ry dime nsionality

Time pro Que ry,
ms

Fig. 8. Run time for skyline computation depending on the dimensionality of the case
base

Fig. 9. Run time for the computation of diverse subsets of size 5 and dimensions 2–15
depending on the size of the original skyline

Supporting CBR by Similarity Skylines: Basic Concepts and Extensions 253

the computation of diverse subsets of size 5, depending on the size of the original
skyline.

As it was to be expected, the cardinality of the answer set critically depends
on the dimensionality of the case base and the strictness of the dominance re-
lation. Run time increases correspondingly but remains satisfactory even for
high-dimensional queries (171 ms on average for a 9-dimensional query). Similar
remarks apply to the computation of diverse subsets.

In summary, our results confirm theoretical findings showing that the com-
plexity of skyline computation, like most other retrieval techniques, critically
depends on the dimension of a data set, in the worst case exponentially. Still,
the results also show that problems of reasonable size (the number of features
deemed relevant by a user in a similarity query is typically not very large) can
be handled with an acceptable cost in terms of run time.

7 Conclusions

Motivated by an application in the field of archeology, we have proposed a new
approach to similarity search. Our method is based on the concept of Pareto
dominance and, taking an example case as a reference point, seeks to find objects
that are maximally similar in a Pareto sense. It is especially user-friendly, as it
does not expect the specification of a global similarity or distance function. Our
first experiences are promising, and so far we received quite positive feedback
from users.

Again motivated by our application, we have extended the computation of a
similarity skyline to the case of uncertain (fuzzy) data. Apart from advantages
with respect to modeling and knowledge representation, the fuzzy extension also
allows for controlling the size of answer sets: Since one object can dominate an-
other one “to some degree”, the (non-fuzzy) dominance relation can be specified
in a more or less stringent way. This effect is clear from our experimental results.

We believe that similarity search based on Pareto dominance is of general
interest for CBR, and we see this paper as a first step to popularize this research
direction. Needless to say, a lot of open problems remain to be solved. For ex-
ample, as Pareto dominance is a rather weak preference relation, the number of
cases “maximally similar” to the query can become quite large. Implementing
additional filter strategies, such as diverse subset computation, is one way to
tackle this problem. Another direction is to refine Pareto dominance, so that it
discriminates more strongly between cases. This is a topic of ongoing work.

References

1. Vladimirskiy, I., Hüllermeier, E., Stauch, E.: Similarity search over uncertain ar-
chaeological data using a modified skyline operator. In: Wilson, D., Khemani, D.
(eds.) Workshop Proceedings of ICCBR 2007, Belfast, Northern Ireland, pp. 31–40
(2007)

2. Aizerman, M., Aleskerov, F.: Theory of Choice. North-Holland, Amsterdam (1995)

254 E. Hüllermeier et al.

3. Daniels, J., Rissland, E.: A case-based approach to intelligent information retrieval.
In: Proc. 18th International ACM SIGIR Conference, Seattle, Washington, US, pp.
238–245 (1995)

4. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proc. SIG-
MOD 1995, New York, NY, USA, pp. 71–79 (1995)

5. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: Proc. VLDB 1998, San
Francisco, CA, USA, pp. 194–205 (1998)

6. Richter, M.: Foundations of similarity and utility. In: Proc. FLAIRS-20, The 20th
International FLAIRS Conference, Key West, Florida (2007)

7. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
Technical Report UCD-CSI-2008-01, University College Dublin (2008)

8. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. 17th
International Conference on Data Engineering, San Jose, California, USA, pp. 421–
430 (2001)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)

10. McSherry, D.: Diversity-conscious retrieval. In: Craw, S., Preece, A.D. (eds.) EC-
CBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002)

11. McSherry, D.: Increasing recommendation diversity without loss of similarity. Ex-
pert Update 5, 17–26 (2002)

12. Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization.
In: IEEE Congress on Evolutionary Computation, Singapore, pp. 3983–3990 (2007)

13. Pardalos, P., Xue, J.: The maximum clique problem. Journal of Global Optimiza-
tion 4(3), 301–328 (1994)

14. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimiza-
tion 37(1), 95–111 (2007)

15. Zadeh, L.: The concept of a linguistic variable and its applications in approximate
reasoning. Information Science 8, 199–251 (1975)

16. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers,
Dordrecht (2002)

Using Case Provenance to Propagate Feedback

to Cases and Adaptations�

David Leake and Scott A. Dial

Computer Science Department, Lindley Hall 215
Indiana University

Bloomington, IN 47405, U.S.A.
{leake,scodial}@cs.indiana.edu

Abstract. Case provenance concerns how cases came into being in a
case-based reasoning system. Case provenance information has been pro-
posed as a resource to exploit for tasks such as guiding case-based main-
tenance and estimating case confidence [1]. The paper presents a new
bidirectional provenance-based method for propagating case confidence,
examines when provenance-based maintenance is likely to be useful, and
expands the application of provenance-based methods to a new task:
assessing the quality of adaptation rules. The paper demonstrates the
application of the resulting quality estimates to rule maintenance and
prediction of solution quality.

1 Introduction

Case provenance concerns tracking how the cases in a case-based reasoning sys-
tem came into being, whether from external sources or from internal reasoning
processes [1]. Just as humans consider a case’s sources when determining its
trustworthiness [2], it may benefit a case-based reasoning system to consider the
origins of externally-provided cases to estimate cases’ applicability or reliability,
and some systems have considered case sources in their reasoning [3,4]. More gen-
erally, internal provenance information provides a basis for CBR systems to refine
their own processing through introspective reasoning (for an overview of intro-
spective reasoning, see [5]). Leake and Whitehead [1] hypothesized that informa-
tion about internal case provenance—how a CBR system derived a new case from
other cases—can be exploited for many purposes in CBR system maintenance
such as assessing case confidence, explaining system conclusions, and improving
the ability of case-base maintenance to respond to delayed feedback (as might
arise CBR tasks such as design or loan decisions) or case obsolescence (as might
arise when predicting prices for a real estate domain). In principle, provenance-
based methods could also help focus maintenance effort on knowledge containers
beyond the case base, such as similarity information or adaptation knowledge.

Leake and Whitehead provided empirical illustrations of the value of prove-
nance information to guide maintenance in the case of delayed feedback, and
� This material is based on work supported in part by the National Science Foundation

under Grant No. OCI-0721674.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 255–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 D. Leake and S.A. Dial

demonstrated that provenance information about adaptation history could help
to estimate case quality. The focus of these approaches is to use provenance to
identify low-confidence cases and how those potentially problematic cases arose,
in order to anticipate possible problems before the case is applied and, after feed-
back is available, to focus maintenance activities on cases or adaptation rules
which may have contributed to the problems.

This paper builds on that work, focusing on how provenance considerations
can enable more effective use of feedback at any time. It advances provenance-
based maintenance in three ways. First, it proposes and tests a new bidirectional
strategy for propagating case confidence, and provides a finer-grained examina-
tion of the use of provenance information to estimate case quality. Second, it
examines how initial case-base quality affects the benefit of provenance-based
feedback propagation. Third, it presents and evaluates a first study of the use of
provenance information to guide maintenance of case adaptation rules, a novel
area for CBR system maintenance. Experimental studies support the promise of
these new directions for exploiting case provenance information.

2 Bidirectional Feedback Propagation

When a CBR system derives new cases from the cases in its case library, their
provenance trace includes the cases from which they were derived and the adap-
tations used to derive them. Leake and Whitehead’s work suggested that propa-
gating feedback to related cases (as determined by adaptation history) provides
a computationally practical and effective way of exploiting feedback concerning
flawed conclusions. Their studies considered the effects of propagating feedback
either to parents of a case—the cases from which the case was derived—or to the
case’s children—cases which had been derived from it prior to the feedback be-
ing received. Both methods were shown to improve performance, but downward
propagation (to descendants) performed better in their tests [1].

To determine whether a bidirectional method could improve on both, we de-
veloped the algorithm shown in Figure 2. When the system receives feedback
on a case, it propagates the feedback to the case’s ancestors and repeats any
adaptations to descendants (we will refer to this as repairing the case base).
An example of a case base with adaptation provenance is shown in Fig. 1(a);
Fig. 1(b) then gives an example of the propagation of feedback if the feedback
was given for “Case 4.” We note that adapting children to find solutions for the
problems of their parent cases is not always possible. However, in practice the
ability to adapt cases is often symmetric, and the algorithm assumes the ability
to perform such adaptation.

Two factors complicate the propagation process:

1. Repeated ancestors: A single case may appear more than once in the ancestry
trace.

2. Repeated descendants: A single case may appear underneath more than one
parent (e.g., for k-NN with k > 1).

Using Case Provenance to Propagate Feedback to Cases and Adaptations 257

Case 1

Case 2 Case 3

Case 4 Case 5 Case 6 Case 7

(a) Graph of provenance

Case 1

Case 2 Case 3

Case 4 Case 5 Case 6 Case 7

(b) Path of feedback propagation

Fig. 1. Sample provenance and feedback propagation paths, beginning with “Case 4”

Consequently, bidirectional propagation must address the risk of cycles and mul-
tiple paths.

To address the problem of repeated ancestors, the algorithm only traverses
the graph upwards to parents which have not yet been visited. Because the
search is breadth-first, this ensures that the parent receives feedback along the
shortest possible chain. By the heuristic of using chain length as a proxy for
amount of knowledge degradation during propagation (which has been shown to
give reasonable performance in some tests [1]), in the absence of finer-grained
information we expect this to be the most reliable feedback.

To address the problem of repeated descendants, the algorithm simply re-
calculates the effect of each adaptation path in the provenance trace. When
the same adaptation that was previously used still applies (e.g., for numerical
averaging methods such as used by k-NN), this correctly reflects the change
in each case’s contribution to the solution. In general, if changes to the cases
are small, we might assume that the same adaptations would apply, by the
basic CBR assumption that similar problems (in this case, adaptation problems)
should have similar solutions (in this case, adaptations). In domains for which
updates to a case may invalidate the adaptation previously applied to it, how to
handle propagation is an open question.

3 Estimating Confidence in Adaptation Rules

Because adaptation rules may be expected to provide somewhat approximate
results, some loss of solution quality might be expected over long adaptation
chains. Leake and Whitehead explored a very simple method for estimating case
confidence based on the provenance trace: to predict a degradation of case quality
proportional to the number of adaptations applied. Their experiments showed
that in the absence of other feedback on case quality, this criterion can be a
useful heuristic for choosing cases to maintain.

However, provenance information about adaptations may be used in another
way, to guide maintenance of the adaptation rules themselves. If a solution is
flawed, the flaw may result from flaws in the retrieval process (selecting the
wrong case(s) as starting point), flaws in the case(s) from which the solution

258 D. Leake and S.A. Dial

0: GiveBidirectedFeedback(Cf, Ct)
1: /* Let Cf be the feedback case and Ct be the target of feedback. */
2:
3: Replace(Ct, Cf)
4:
5: work ← ∅ /* A queue of {target, source, direction} tuples */
6: parents ← ∅ /* The set of parent cases that have been seen */
7:
8: /* Propagate feedback to the parents and children of Ct. */
9: for all p ∈ Parents(Ct) do

10: work.push({Ct, p, UP})
11: end for
12: for all c ∈ Children(Ct) do
13: work.push({Ct, c, DOWN})
14: end for
15:
16: while work �= ∅ do
17: {f, t, d} ← work.pop()
18:
19: if d = UP ∧ t /∈ parents ∧ ¬IsReferenceCase(t) then
20: Replace(t,Adapt(f,Problem(t)))
21: parents ← parents ∪ {t}
22:
23: /* Propagate feedback to the parents and children of t. */
24: for all p ∈ Parents(Ct) do
25: work.push({Ct, p, UP})
26: end for
27: for all c ∈ Children(Ct) do
28: work.push({Ct, c, DOWN})
29: end for
30: else if d = DOWN then
31: Replace(t,Adapt(Parents(t),P roblem(t)))
32:
33: /* Propagate feedback to the children of t. */
34: for all c ∈ Children(Ct) do
35: work.push({Ct, c, DOWN})
36: end for
37: end if
38: end while

Fig. 2. Algorithm for bidirectional feedback propagation in a case-base, guided by
provenance information

was derived (e.g., due to obsolescence), flaws in the rules used to adapt those
cases to the solution, or from a combination. If we assume that cases in the
case base are approximately correct and retrieval is generally reliable, erroneous
solutions can be attributed to problems in adaptation rules.

To explore the use of provenance to guide rule maintenance, we have developed
a method to rank the performance of a system’s adaptation rules, assuming that

Using Case Provenance to Propagate Feedback to Cases and Adaptations 259

the cases to which they are applied are correct. Problem rules may then be
flagged for expert assessment and maintenance if necessary. In what follows, we
assume that a numerical error value can be assigned to any suboptimal solution.

Propagation approach: The rule ranking algorithm exploits a provenance trace,
which for each case records all of the rules invoked for a given adaptation. When
the system receives feedback about the performance of a solution in the case
base, it recursively assigns blame to rules. The propagation process follows the
same upward path as shown in Figure 1. However, feedback is not propagated
downwards to children; feedback only has bearing on the adaptations that di-
rectly led to the creation of the case through the case’s parents.

Blame assignment: The blame assignment process is inspired by back-prop-
agation in neural networks [6]. The feedback on an erroneous case is treated as
a training sample for a network, and each rule used in adaptation is treated as a
weighted edge. The weight is modified in response to the error determined from
feedback. The algorithm divides the local error evenly among all of the rules
(a possible future refinement would be to estimate the relative influence of each
rule). The algorithm then proceeds recursively through the ancestry (backwards)
as in backpropagation.

Despite the natural relationship to backpropagation, the differing tasks result
in a few differences:

1. Because the weights have no direct effect on the error of the system, local
errors do not converge towards zero as propagation proceeds. Consequently,
error weights tend to accumulate.

2. Unlike backpropagation, the algorithm does not visit all edges (rules) an
equal number of times.

3. Because a new case may arise from adaptation rules in complicated ways,
rather than from simple application of, e.g., backpropagation’s sigmoid func-
tion, blame assignment could require sophisticated reasoning.

For our purposes, difference (1) is unimportant: We are concerned only in ranking
rules by error levels, rather than in any specific error values. Difference (2) can be
addressed by normalizing the weights by the number of times that they have been
updated. The accumulation of error by a rule decreases confidence in that rule.
The lower the confidence, the worse the average performance of the rule. This
confidence information enables modifying or removing rules that are adversely
affecting the performance of the system.

Difference (3), concerning the transfer of error, is more difficult to address.
Because their is no canonical way to project backwards through the adaptation
to assign blame to the inputs, we have chosen the simple approach of assigning
a fixed proportion of the output’s error to each rule. The fractional coefficient,
or decay rate, reduces change to adaptation rule weights more distant from the
feedback case. The decay reflects the assumption that less is known about sources
of the error after it is passed backwards through an adaptation, and that it
consequently should have less effect on more distant weights. The full algorithm
is presented in Fig. 3.

260 D. Leake and S.A. Dial

0: GiveRuleFeedback(C, E)
1: /* Let case C be the target of feedback, E be the relative error of this case’s
2: solution, and let η be the decay rate. */
3:
4: work ← ∅ /* A queue of {target, error} pairs */
5: work.push({C, E})
6: while work �= ∅ do
7: {c, e} ← work.pop()
8:
9: /* Adjust the weights of all of the rules invoked. */

10: for all r ∈ Rules(c) do

11: rweight ←
(

1 − η·e
|Rules(c)|

)

· rweight

12: rvisited ← rvisited + η
|Rules(c)|

13: end for
14:
15: /* Add the parents to the work queue. */
16: for all p ∈ Parents(c) do
17: work.push(p, η · e)
18: end for
19: end while

Fig. 3. Algorithm for learning adaptation rule quality from feedback and provenance
information. The result is a weighting reflecting each rule’s contribution to system
error.

4 Experimental Evaluation of Bidirectional Repair

To study the bidirectional feedback method, we performed experiments to ad-
dress two questions:

1. How does the benefit of bidirectional repair compare to that of repair directed
only to either ancestors or descendants?

2. When is provenance-based maintenance most useful?

For the second question, we focused on the effects of initial case-base quality
(measured by solution accuracy) on the incremental benefit of provenance-guided
feedback.

4.1 Experimental Design

Our system was developed using the Indiana University Case-Based Reasoning
Framework (IUCBRF) [7]. We extended IUCBRF to automate the tracking of
case provenance by maintaining a directed graph recording adaptation history
for cases in the case base and to perform the record-keeping needed for the
algorithms presented in this paper.

The first set of experiments tested the system using the Boston Housing
dataset and the Abalone dataset from the UCI Machine Learning Repository

Using Case Provenance to Propagate Feedback to Cases and Adaptations 261

[8]. The Boston Housing dataset contains 506 cases with attributes capturing
the quality of housing in the Boston area. This dataset includes an attribute
denoting the median value of owner-occupied homes, and the system’s task is to
determine home values. The Abalone dataset contains 4177 cases with physical
attributes for the Abalone, which are used to predict age.

For both datasets, the system used 3-NN retrieval with the similarity deter-
mined by weighted Euclidean distance, for which feature weights were deter-
mined by a multiple linear regression on the given cases. The three retrieved
cases are adapted to the target problem by the scaling of a distance-weighted
mean. The adapted solutions are retained as new cases in the case base. Feedback
is given as the relative error of the solution.

In our trials, case bases were randomly populated with 100 cases, and the
system then tested on 200 problems randomly selected from the remaining set.
Each new solution was placed in the case base, with a case randomly selected and
removed from the case base after each iteration to keep case base size constant.
To evaluate the average accuracy during a trial, the system was tested by leave-
one-out testing with all problems from the original dataset. The absolute error
was measured, and the mean of these errors recorded as the mean absolute error
(MAE) of the case base.

4.2 Comparing Bidirectional Feedback to Prior Methods

In order to be able to compare results from [1], we recreated the experiment
from that paper. In this version of the system, we randomly choose a case to
give feedback after each problem is posed. We repeated this experiment for 1000
trials to produce the average performance shown in Fig. 4 and Fig. 5.

The results show that in all cases, the bidirectional propagation has the low-
est error compared to the previous best methods. With respect to the Boston
Housing dataset, the improvement is not as great as that with the Abalone
dataset. However, this is not entirely surprising because Leake and Whitehead
noted that propagation to descendants proved more useful than the ancestors
for that dataset, suggesting that the addition of propagation to ancestors might
have less benefit.

4.3 How Case Base Quality Affects Benefits of Provenance-Based
Propagation

An interesting question for any maintenance strategy is when it is likely to
be most useful. This experiment assessed how the benefit of the bidirectional
strategy depended on the original quality of the case base.

In this experiment, after selection of the original 100 cases and solution of 250
problems, the case bases were evaluated for quality of coverage. Twenty-five cases
were then randomly selected from the case base to have their solutions replaced
by correct feedback, simulating expert maintenance, with the case-base repaired
by bidirectional propagation. The quality of coverage was then recalculated to
determine to what degree the system was improved.

262 D. Leake and S.A. Dial

0 50 100 150 200

Problem Number

4.6

4.8

5.0

5.2

5.4

5.6

5.8
M
e
a
n
A
b
s
o
lu
te
E
rr
o
r

Ancestors

Descendants

Bidirected

Fig. 4. Mean absolute error of the Boston Housing system for bidirectional propaga-
tion, propagation to ancestors, and propagation to descendants

0 50 100 150 200

Problem Number

2.30

2.35

2.40

2.45

2.50

2.55

M
e
a
n
A
b
s
o
lu
te
E
rr
o
r

Ancestors

Descendants

Bidirected

Fig. 5. Mean absolute error of the Boston Housing system for bidirectional propaga-
tion, propagation to ancestors, and propagation to descendants

Using Case Provenance to Propagate Feedback to Cases and Adaptations 263

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Initial MAE

0%

5%

10%

15%

20%

25%
%

Im
p
ro
v
em

en
t

(a) Boston Housing

2.25 2.50 2.75 3.00 3.25 3.50

Initial MAE

0%

2%

4%

6%

8%

10%

%
Im

p
ro
v
em

en
t

(b) Abalone

Fig. 6. Performance of the feedback propagation system for various ranges of initial
MAE values

Figure 6 shows the results of this experiment as a histogram broken down
by the initial error in the system. This shows a clear trend towards increased
percent benefit with higher-error case bases.

5 Experimental Evaluation of Adaptation Rule
Maintenance

In a second set of experiments, we investigated the ability of the provenance-
based algorithm of Figure 3 to identify low-quality rules, in order to guide main-
tenance. We explored the question “Can the rule ranking algorithm identify rules
whose removal will improve system accuracy?”

5.1 Experimental Design

Because this experiment required a domain for which a rich set of adaptation
rules was available, for it we selected a domain conducive to the generation of
adaptation rules. We extracted cases from the Homefinder.org website [9], which
contains real estate listings for Bloomington, Indiana, U.S.A.. The extracted
data contain a number of features useful for predicting the value of a home, as
well as the listing price for each home, which was the target value for the system
to predict. The collected data was filtered for erroneous values, and those cases
were removed. The final dataset—a snapshot of listings on February 22, 2008—
contains 333 cases.

To generate a large set of rules, we applied an algorithm based on the auto-
matic adaptation rule acquisition work of Hanney [10], which also used a real
estate domain. Our algorithm produced rules that consider only a single feature
at a time, to simplify the implementation; more complex adaptations can be
achieved by successively applying multiple rules. We generated 272 rules of this
form.

As with our first experiment, for each run we populated the case base with 100
random cases with known solutions and tested the system with 200 problems.

264 D. Leake and S.A. Dial

Finally, 25 cases in the case base were randomly selected for feedback in the
form of the known solution. As feedback was applied, rule quality estimates
were updated according to the rule confidence algorithm.

We then considered two questions:

1. Does the algorithm properly identify problematic rules?
2. Are the rule confidence values useful for predicting case confidence of adapted

cases?

5.2 Identifying Problematic Rules

After each run, the lowest-ranked rules are removed from the system and the
trial is repeated with the same initial conditions. If the rule ranking identifies
bad rules, we expect that the removal of those rules will improve the system’s
performance. As a baseline, the same tests were performed removing random
rules.

The results of this experiment are shown in Fig. 7. Removing low-ranked rules
yields a significant performance improvement for the system. Given the simple
approach taken to generate rules, it is reasonable to expect a number of low-
quality rules. We observe that benefits are achieved for removal of even large
numbers of rules, though with diminishing returns as larger numbers of rules are
removed. The fact that random removals often provide benefit is initially surpris-
ing. Given that our rule generation procedure produces rules with a wide range
of quality, we hypothesize that this may result from occasional serendipitous
removal of very low-quality rules, but this and the discrepancy between benefit
of initial and later random deletions are subjects for further investigation.

Figure 8 shows the average marginal benefit of removing each rule. We hy-
pothesize that two factors affect the diminishing returns shown by the graph.
First, if the algorithm is performing as desired, the worst rules should tend to
be removed first; additional removed rules tend to be of higher quality. Second,
available feedback is limited, limiting the system’s ability to assess rule quality
for rules used infrequently. The improvement gained from removing rules based
on insufficient feedback is similar to the effect of removing random rules.

5.3 Using Rule Confidence to Predict Case Confidence

Leake and Whitehead’s [1] experimental test of provenance-based confidence
prediction treated all adaptations identically. Here we exploit the availability
of rule confidence information to explore a finer-grained approach, estimating
solution confidence based on the system-generated adaptation rule confidence
for the rules used to generate the solutions. After an adaptation, confidence in
a solution is adjusted by the mean weight of the rules used to adapt it. We use
the following confidence rule, where the parameter α controls how large of an
effect the adaptation confidence has on the solution:

SConfidence(c) = SConfidence(Parent(c)) ·

⎛

⎝
∑

r∈Rules(c)

RConfidence(r)
|Rules(c)|

⎞

⎠

α

Using Case Provenance to Propagate Feedback to Cases and Adaptations 265

5 10 20 40 80

Rules Removed

0%

5%

10%

15%

20%

25%

%
Im

p
ro
v
em

en
t

Random
Worst

Fig. 7. Percent improvement in relative error after removing rules considered worst
according to the rule confidence algorithm, compared to random rule deletion, based
on the mean of 1000 runs. The error bars represent 95% confidence intervals.

0 10 20 30 40 50 60 70 80

Rules Removed

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

M
ar
g
in
al
%

Im
p
ro
v
em

en
t

Fig. 8. A plot showing the amount of improvement per rule by removing a given number
of worst rules. The plot shows 1000 trials of N rules being removed, where N extends
from 5 to 80 rules.

266 D. Leake and S.A. Dial

SConfidence(c) denotes the confidence in a case c, RConfidence(r) denotes the
confidence in a rule r, and Rules(c) denotes the set of rules invoked to adapt a
case c.

In this test, to increase the quality of the rule weights, feedback is provided to
the system after every solution. For the experiment, we also modified the system
to retrieve five of the nearest neighbors of a case and adapt each one to the target
problem separately, returning the solution that has the greatest confidence. We
empirically determined an appropriate α – approximately 0.1.

We have recorded the mean absolute error of the solutions over the 100 test
cases, for 1000 random trials of the system. We observed an average of a 4%±1%
(95% confidence interval) reduction in the error of the system. We believe this
improvement, observed even with very simple methods, suggests the promise of
considering adaptation rule confidence when predicting case confidence. Future
work will refine the rule confidence estimation procedure.

6 Related Work

The notion of provenance tracking is receiving considerable attention in the e-
Science community, for tracking the derivation of scientific data [11]—and even
for case mining [12]—as well as in the semantic Web community (e.g., [13]).
Tracing the derivation of beliefs has a long history in AI as well, extending to
early work on truth maintenance systems [14].

Within CBR research, storage of meta-cases was proposed by Goel and Mur-
dock [15] to capture a CBR system’s reasoning for explanation, and reasoning
traces are used for introspective failure repair in Fox’s ROBBIE system [16].

Case-base maintenance has long been an active CBR area (see [17] for a sam-
pling of some of this work), but there has been little attention to the mainte-
nance of existing case adaptation knowledge. Often, the adaptation component
of a CBR system consists of static expert-specified rules that do not change
over the course of a CBR system’s lifetime. Existing work has focused on aug-
menting adaptation knowledge, rather than on identifying problems in adapta-
tion knowledge, as done in this paper. For example, work has explored mining
adaptation knowledge from pre-existing cases, as by Hanney and Keane [18],
Craw, Jarmulak and Rowe [19], and Patterson, Rooney, and Galushka [20];
other work has focused on capturing increasing adaptation knowledge by ac-
quiring adaptation cases [21,22]. Wilke et al. [23] propose knowledge-light ap-
proaches for refining adaptation knowledge using knowledge already contained
in the CBR system, and Patterson and Annad [24] propose methods for min-
ing adaptation rules; McSherry’s on-demand adaptation using adaptation triples
[25] is in a similar spirit. This work also relates to Aquin et. al’s CABAMAKA
system, which combines case base mining with expert guidance [26]. Rial et
al. [27] introduced a method for revising adaptation rules using belief
revision [28].

Using Case Provenance to Propagate Feedback to Cases and Adaptations 267

7 Conclusion

Case provenance provides a promising source for reasoning to guide CBR sys-
tem maintenance. This paper investigates the use of provenance to guide the
propagation of feedback, describing a bidirectional propagation method. It also
provides a first assessment of the case base characteristics for which such propa-
gation is likely to be useful, providing support for the hypothesis that the highest
percentage improvements arise for lower-quality case bases.

The paper also describes, to our knowledge, the first use of provenance in-
formation to guide maintenance of another knowledge container, the system’s
adaptation knowledge. It introduces an algorithm inspired by backpropagation
to assign blame to adaptation rules, identifying low-quality rules for revision
or removal. Evaluations suggest the promise of this approach and its potential
application to assessing case confidence. In future research we expect to de-
velop more refined methods for the evaluation of case and rule confidence and
provenance-based identification of problematic rules.

References

1. Leake, D., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626. Springer, Heidelberg (2007)

2. Evans, M.: Knowledge and Work in Context: A Case of Distributed Troubleshoot-
ing Across Ship and Shore. PhD thesis, Indiana University (2004)

3. Göker, M., Roth-Berghofer, T.: Development and utilization of a case-based help-
desk support system in a corporate environment. In: Althoff, K.D., Bergmann,
R., Branting, L.K. (eds.) Proceedings of the Third International Conference on
Case-Based Reasoning, pp. 132–146. Springer, Heidelberg (1999)

4. Leake, D., Sooriamurthi, R.: Case dispatching versus case-base merging: When
MCBR matters. International Journal of Artificial Intelligence Tools 13(1), 237–
254 (2004)

5. Cox, M.: Metacognition in computation: A selected research review. Artificial In-
telligence 169(2), 104–141 (2005)

6. Werbos, P.: Beyond regression: New tools for prediction and analysis in the behav-
ioral sciences. PhD thesis, Harvard University (1974)

7. Bogaerts, S., Leake, D.: IUCBRF: A framework for rapid and modular CBR system
development. Technical Report TR 617, Computer Science Department, Indiana
University, Bloomington, IN (2005)

8. Asuncion, A., Newman, D.: UCI machine learning repository. Technical report,
University of California, Irvine, School of Information and Computer Sciences
(2007)

9. Bloomington MLS, Inc.: homefinder.org (2007)

10. Hanney, K.: Learning adaptation rules from cases. Master’s thesis, Trinity College,
Dublin (1997)

11. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-Science.
SIGMOD Record 34(3), 31–36 (2005)

268 D. Leake and S.A. Dial

12. Leake, D., Kendall-Morwick, J.: Towards case-based support for e-science work-
flow generation by mining provenance information. In: Proceedings of the Nineth
European Conference on Case-Based Reasoning. Springer, Heidelberg (in press,
2008)

13. Murdock, J., McGuiness, D., da Silva, P.P., Welty, C., Ferrucci, D.: Explaining
conclusions from diverse knowledge sources. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 861–872. Springer, Heidelberg (2006)

14. Doyle, J.: A truth maintenance system. Artificial Intelligence 12, 231–272 (1979)
15. Goel, A., Murdock, J.: Meta-cases: Explaining case-based reasoning. In: Proceed-

ings of the Third European Workshop on Case-Based Reasoning, pp. 150–163.
Springer, Berlin (1996)

16. Fox, S., Leake, D.: Modeling case-based planning for repairing reasoning failures.
In: Proceedings of the 1995 AAAI Spring Symposium on Representing Mental
States and Mechanisms, March 1995, pp. 31–38. AAAI Press, Menlo Park (1995)

17. Leake, D., Smyth, B., Wilson, D., Yang, Q. (eds.): Maintaining Case-Based Rea-
soning Systems. Blackwell. Special issue of Computational Intelligence 17(2) (2001)

18. Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by
learning from cases. In: Proceedings of the Second International Conference on
Case-Based Reasoning. Springer, Berlin (1997)

19. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation
knowledge. In: Aha, D., Watson, I. (eds.) Proceedings of the Fourth International
Conference on Case-Based Reasoning, pp. 131–145. Springer, Berlin (2001)

20. Patterson, D., Rooney, N., Galushka, M.: A regression based adaptation strat-
egy for case-based reasoning. In: Proceedings of the Eighteenth Annual National
Conference on Artificial Intelligence, pp. 87–92. AAAI Press, Menlo Park (2002)

21. Sycara, K.: Using case-based reasoning for plan adaptation and repair. In: Kolod-
ner, J. (ed.) Proceedings of the DARPA Case-Based Reasoning Workshop, pp.
425–434. Morgan Kaufmann, San Mateo (1988)

22. Leake, D., Kinley, A., Wilson, D.: Acquiring case adaptation knowledge: A hy-
brid approach. In: Proceedings of the Thirteenth National Conference on Artificial
Intelligence, pp. 684–689. AAAI Press, Menlo Park (1996)

23. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning
adaptation knowledge based on knowledge light approaches. In: Proceedings of the
Fifth German Workshop on Case-Based Reasoning, pp. 235–242 (1997)

24. Patterson, D., Anand, S., Dubitzky, W., Hughes, J.: Towards automated case
knowledge discovery in the M2 case-based reasoning system. Knowledge and Infor-
mation Systems: An International Journal, 61–82 (1999)

25. McSherry, D.: Demand-driven discovery of adaptation knowledge. In: Proceedings
of the sixteenth International Joint Conference on Artificial Intelligence (IJCAI
2001), pp. 222–227. Morgan Kaufmann, San Mateo (1999)

26. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case
base mining for adaptation knowledge acquisition. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 750–755.
Morgan Kaufmann, San Mateo (2007)

27. Rial, R.P., Fidalgo, R.L., Rodriguez, A.G., Rodriguez, J.C.: Improving the revision
stage of a CBR system with belief revision techniques. Computing and Information
Systems 8, 40–45 (2001)

28. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. Journal of Symbolic Logic 50, 530–541
(1985)

Towards Case-Based Support for e-Science

Workflow Generation by Mining Provenance�

David Leake and Joseph Kendall-Morwick

Computer Science Department, Indiana University, Lindley Hall 215
150 S. Woodlawn Avenue, Bloomington, IN 47405, U.S.A.

{leake,jmorwick}@cs.indiana.edu

Abstract. e-Science brings large-scale computation to bear on scientific
problems, often by performing sequences of computational tasks orga-
nized into workflows and executed on distributed Web resources. Sophis-
ticated AI tools have been developed to apply knowledge-rich methods
to compose scientific workflows by generative planning, but the required
knowledge can be difficult to acquire. Current work by the cyberinfras-
tructure community aims to routinely capture provenance during work-
flow execution, which would provide a new experience-based knowledge
source for workflow generation: large-scale databases of workflow exe-
cution traces. This paper proposes exploiting these databases with a
“knowledge light” approach to reuse, applying CBR methods to those
traces to support scientists’ workflow generation process. This paper in-
troduces e-Science workflows as a CBR domain, sketches key technical
issues, and illustrates directions towards addressing these issues through
ongoing research on Phala, a system which supports workflow generation
by aiding re-use of portions of prior workflows. The paper uses workflow
data collected by the myGrid and myExperiment projects in experiments
which suggest that Phala’s methods have promise for assisting workflow
composition in the context of scientific experimentation.

1 Introduction

e-Science takes a multidisciplinary approach to scientific investigation, allowing
easy coupling of scientific research with computational studies, processes, nu-
merical simulation, data transformations, and visualization to perform scientific
research. e-Science is having profound scientific impact, enabling scientists to
study phenomena such as weather systems or nuclear reactions through high-
fidelity simulations with a low barrier to entry. The importance of the data
produced by such studies has led to significant interest in recording the process
by which results are generated—the provenance of the data products—for tasks
� This material is based on work supported by the National Science Foundation under

Grant No. OCI-0721674. Our thanks to Beth Plale, Yogesh Simmhan, and the rest
of the Indiana University SDCI group at IU for their vital contributions to this work,
and to Yogesh Simmhan and the anonymous reviewers for valuable comments on a
draft of this paper.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 269–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 D. Leake and J. Kendall-Morwick

such as assessing data quality and validating results. Consequently, the capture
and use of provenance has become an important e-Science research area [1].

Often, e-Science computational tasks are supported by a cyberinfrastructure
that automates the management of data and computational tasks distributed
over the Internet based on user specifications of scientific workflows. These work-
flows play a crucial role in enabling computational and data-driven science by
providing the means for composing and running in silico experiments (e.g., [2]),
and their importance has prompted interest in the use of artificial intelligence
techniques to support workflow generation and use. Previous research has exam-
ined automated methods for workflow generation based on generative planning
in situations where it is practical to perform the requisite knowledge acquisition
[3,4], but this may be costly. In addition, studies of users suggest that they may
be more interested in “quick ways of finding a relevant service” and “help for [the
users] to build workflows themselves” than in “fancy knowledge-based descrip-
tive techniques for services so that workflows would be composed automatically”
[5]. This suggests interactive methods, such as retrieving related workflows and
workflow fragments for users to analyze and incorporate [6].

Recent e-Science efforts aiming at large-scale capture and storage of data
provenance information [7] present a new opportunity for applying provenance
information, here as a source of cases to support e-Science. When traces of
previous workflows are available, the traces may be mined for cases. We are in-
vestigating the use of this case information in intelligent interfaces to support
scientists in defining workflows by suggesting additions to workflow designs un-
der construction. This effectively acts as an aid to scientists for defining a new
experiment based on prior experiments they have performed, or those performed
by others. Our work builds on research into case-based methods for workflow re-
use in other contexts [8,9,10] and other projects which we compare and contrast
in Section 3. This application of CBR to provenance complements our work on
case provenance to support CBR [11,12].

Applying CBR to support e-Science workflow generation will require special
attention to four types of issues in addition to the standard issues for CBR:

1. Case mining: provenance provides a low-level view of a workflow’s execu-
tion which, when mined into cases, must be made comparable to the user’s
abstract workflow specification.

2. Scalability: Scientific workflows are structured and may be large, but inter-
active support systems require fast response time, making efficient processing
of large graph structures a significant concern.

3. Interaction: Effective user interfaces to support workflow generation will
depend on addressing a host of intelligent user interfaces issues. These will
include how best to integrate support into existing e-Science workflow com-
poser interfaces, balancing automated and interactive authoring based on
user expertise, and developing anytime methods [13] to enable providing
“good enough” results when it would take too long to fully analyze all can-
didate cases for an optimal solution.

Towards Case-Based Support for e-Science Workflow Generation 271

4. Privacy and other social issues: In a multi-user or multi-institution e-
Science environment, addressing issues of privacy, attribution, and propri-
etary information is vital to acceptance (e.g., when scientific workflows are
used in the service of drug design).

Our current focus is on addressing case mining and scalability issues.
Our research is grounded in a real-world project for large-scale provenance

capture. Our testbed system, Phala, interoperates with the Karma provenance
capture system [14].1 Phala mines cases from execution traces to support human
workflow generation with the XBaya Graphical Workflow Composer [15].

This paper begins by briefly introducing research in e-Science and provenance.
The next section explains Phala’s methods, and is followed by the results of
experiments assessing Phala’s performance and scalability and the usefulness of
cross-user suggestions for sample workflow data, as a first test of the suitability
of using cross-user cases to support e-Science workflow generation. We then
compare Phala’s approach to previous work and close the paper with conclusions
and expectations for future work.

2 e-Science and Provenance

2.1 Mining Provenance for Cases

Grid computing and workflow technology are widely used by the scientific com-
munity for in silico experimental simulations, data analysis, and knowledge dis-
covery [16]. Scientific workflows differ from those seen in other contexts, such
as business processes, in that they are often deterministic and fully automated,
with user intervention rarely required during execution.

Workflows supporting e-Science are used to coordinate control and data flow
between individual Web services or processes through an annotated graph struc-
ture, as shown by the sample workflow in Figure 1. This example is a weather
simulation experiment using the WRF forecasting model performed in the LEAD
project [17], a large-scale project for mesoscale meteorology research and edu-
cation which provides a test case for Phala. Input data is represented by the
left-most node labeled “Assimilated ADAS Data/Config.” Intermediate nodes
represent web services which process data from the preceding nodes, and the
edges between them represent data flowing from one service to another. Finally,
the output of the workflow is represented by the right-most node labeled “WRF
Output Data/Config”.

The depicted workflow is small, but scientific workflows may contain a hun-
dred steps or more, making them challenging for humans to compose. Also, the
number of workflows that a scientist runs may be large. For example, ensemble
simulation workflows run hundreds of highly similar workflows, differing slightly

1 In Sanskrit, Karma means causality; the Karma project was named to reflect the
capture of the causality of execution. In Sanskrit, Phala is the ripened fruit, so
KarmaPhala is the fruit of provenance capture.

272 D. Leake and J. Kendall-Morwick

Fig. 1. The XBaya Graphical Workflow Composer

in structure or in parameters, to perform a parameter sweep study. In addition,
the amount of data produced and consumed by services on the grid can be
extremely large, and processing times long, making it important to generate the
right workflow on the first attempt, to avoid wasting computational resources.

In the e-Science context, provenance is a type of metadata that describes
the source and steps taken to derive a data product [7], which is collected by
provenance management systems (such as Karma [14]).

Phala mines cases from process provenance gathered by the Karma prove-
nance management system [14]. Karma collects provenance through software
sensors embedded in the services represented as task nodes in workflows, oper-
ating independently of the workflow management system used. The information
collected can be mined to produce workflow execution traces that identify pro-
ducer/consumer relationships for data exchange by these services.

To generate cases, Phala mines the data flow between services within an in-
stance of workflow execution. Workflows themselves would be equally useful as
a source of data to mine (in fact, we mined a collection of workflows to generate
data to evaluate our system), however we currently focus on building a tool for
mining provenance because cyberinfrastructures using provenance management
systems will have this data readily available on a long term basis and in a more
homogeneous format. In addition, workflows can vary greatly in specification
language used and support for various control and data flow patterns [18], but
execution traces mined from provenance provide a simplified view of the execu-
tion of a workflow, while providing sufficient detail to support Phala’s task of
service recommendation.

2.2 The User Interface

Phala has been developed as a plug-in for the graphical workflow composer
XBaya [15], an interface for authoring e-Science workflows composed of Web
services (Figure 1 shows a portion of an XBaya screenshot). In XBaya, scientists

Towards Case-Based Support for e-Science Workflow Generation 273

interact with a graphical representation of workflows that abstracts away the
details of workflow languages so that users who are not familiar with such lan-
guages can use the tool. Workflows are represented as directed graphs in which
nodes represent services and control flow constructs within the workflow, and
edges represent the transmission of data or control information between services.

Phala suggests “next steps,” or extensions, from a partially authored workflow
to an incrementally more developed workflow. The goal of providing these sug-
gestions is twofold: first, to inform users about data and services that they might
not have considered when authoring a workflow (e.g., by making new suggestions
based on the workflows of others), and, second, making familiar components con-
veniently accessible for reuse (e.g., by making suggestions based on similarities
to the user’s own prior workflows).

At any point during the construction of a workflow, the current state of the
workflow can be considered a query to the Phala plug-in. The plug-in sends
that query to the Phala Web service, which searches prior cases for relevant
information and, if successful, returns a collection of edges to new services. These
queries are performed automatically every time the user makes a change to the
workflow. If results are found, they are displayed as soon as they are received.
No results are displayed if Phala determines that the quality of the suggestions
is too low (based on a similarity threshold). An anytime algorithm is used to
assure that suggestions will be generated in a reasonable time frame.

If Phala finds a sufficiently relevant suggestion, the system presents it as an
additional highlighted node connected to the selected node. The user may then
opt to have this extension automatically added to the workflow, sidestepping an
otherwise possibly laborious process of manually determining which service to
use, locating it in the registry, and loading/adding it to the available services in
XBaya, before adding the service instance to the workflow.

3 Case-Based Support for e-Science Workflow Generation

Phala focuses on retrieval to support user extension of workflows under con-
struction. When the user makes a change to the workflow, Phala forms a query
from the new workflow and retrieves similar cases (execution traces). Phala re-
places traditional adaptation with extraction and re-capture. Its extraction pro-
cess determines which services used in the execution trace should be suggested
as extensions to the query workflow. Once the workflow completes execution,
the control decisions made during the execution are reflected in the recorded
provenance, resulting in a more specific case on the execution path taken than
the original workflow. That case is then captured for future use. This process is
illustrated in Figure 2.

As a workflow is composed, Phala compares the state of the workflow being
composed with cases in its case-base of execution traces to search for possible
extensions. This similarity assessment problem differs from comparing workflows
to other workflows because the set of control patterns in a workflow is more
extensive. In the execution traces, only Sequence (the passing of control from one

274 D. Leake and J. Kendall-Morwick

Fig. 2. Phala’s re-use cycle

service to the next), AND-join (the merging of parallel processes) and AND-split
(the splitting of one process into multiple parallel processes) control patterns
exist. Also, segments of the workflow may appear any number of times in the
processing trace depending on whether they were between an XOR split/join
(exclusive choice of the next service to be executed) or part of a loop.2

Retrieval. Once non-deterministic control flow constructs are removed from a
query to convert the form of the workflow to match that of the execution traces,
similar execution traces are retrieved. The graph structure of the cases makes
case matching potentially expensive for large e-Science case bases, but the ser-
vices used in each node provide a promising set of content-based indices for more
rapid retrieval. Consequently, Phala uses a two-step retrieval process: an inex-
pensive coarse-grained retrieval followed by a more expensive matching process
to select the most promising candidates. Based on experiments discussed at the
end of the following section, we believe that this simple approach is sufficiently
efficient for medium to large case-bases of moderately sized cases.

For coarse-grained retrieval, Phala uses an indexing strategy similar to a filter
used for comparing CAD models [19] and engineered to return results that will
score highest according to its similarity assessment algorithm. Indices are the
services (each node represents a unique service) combined with service links (an
edge between two nodes solely identified by their services).

Phala retrieves from a database the entries for all workflows containing any
one of the service links used in the query. In order to increase efficiency, only
case identifiers are retrieved, rather than complete case structures. Because a
stored case may have multiple matches with the services and service links in a
query, cases are ranked by the number of times they are present in the results

2 For a detailed discussion of workflow patterns see van der Aalst et. al [18] or the
Workflow Patterns Web site: http://www.workflowpatterns.com

http://www.workflowpatterns.com

Towards Case-Based Support for e-Science Workflow Generation 275

1: INPUT: Q is a workflow
2: IDS ← {} {IDS maps case id’s to a relevance score}
3: for all service links L in Q do {course-grained similarity assessment}
4: Retrieve all id’s for workflows containing L
5: for all retrieved id’s ID do
6: if IDS does not map ID to any value then
7: Map ID to 0 in IDS
8: else
9: Increment the value IDS maps to ID

10: end if
11: end for
12: end for
13: Insert id’s from IDS into RANKED in decreasing order of their mapped values
14: Retrieve workflows for the top N id’s in RANKED {N is a predefined limit}
15: Let C be a workflow with maximal mapping to Q {fine-grained similarity assess-

ment}
16: Compute a map M between the nodes of Q and C {M identifies a sub-graph

relationship}
17: for all pairs {NQ, NC} in M do
18: for all edges {FROM, TO} in C such that FROM = NC do
19: if M does not map any value to TO then
20: Yield the edge {NQ, TO} as a suggestion
21: end if
22: end for
23: end for

Fig. 3. A sketch of Phala’s re-use algorithm

of a query and only the top-ranked cases are fully retrieved and sent to the
comparison phase. This process is represented by steps 3 - 14 in Figure 3.

Similarity Assessment. Once the top-ranked execution traces containing sim-
ilar service links are retrieved, they are re-ranked by the size of the largest map-
ping produced between the query and the retrieved case (step 15 in Figure 3).
The top ranked case (in the case of a tie, one is chosen at random) is then
used to extract extension suggestions (steps 16 - 23 in Figure 3). This and other
graph-based comparison methods for workflows are discussed by Goderis et. al.
[6]. They found that graph matching algorithms can generate similarity rankings
close to the average of those created by domain experts.

Phala’s similarity assessment is based on a metric proposed by Minor et al.[20],
with two significant differences. Apart from control structures, Minor et. al.
consider each service within a workflow to be unique. Structural comparison can
now be performed by summing the number of service links and services which
are not common between the case and the query. The sum represents the edit
distance between them, where an edit operation is the addition or deletion of a
node or edge. Minor et. al. use this as a distance metric after normalizing by the
number of all services and service links in the query and the case.

For Phala, comparing a query to a case for similarity does not involve deter-
mining how close to equality the two graphs are, but rather how close the query

276 D. Leake and J. Kendall-Morwick

is to being a subgraph of the case. In fact, the case must be a supergraph of the
portion of the query for which Phala is to produce suggestions. To determine
similarity based on the minimum edit distance from the query to a subgraph of
the case, it is sufficient for us to count how many services and service links are
shared between the query and the case, in contrast to Minor et. al.’s method
that counts non-common services and service links. In this scenario, a maxi-
mum similarity score (number of services and service links present in the query)
represents a full subgraph relationship. Normalization is not required in Phala,
because every comparison is only relevant to one query.

Phala’s task also contrasts in that it must sometimes consider workflows with
multiple instances of the same service, as is not uncommon in e-Science (we
have encountered multiple instances in scientific workflows, e.g., within the my-
Experiment [21] dataset). Phala supports workflows that re-use general-purpose
computations at different points in processing by allowing for repeated use of
services in the query and the case-base. Incorporating Minor et. al.’s methods of
approximating similarity in the presence of repeated control structures could be
useful for this purpose, but because the extraction task ultimately requires an
accurate correspondence between the nodes of the query and the nodes of the
case in order to generate suggestions, we are instead applying a greedy algorithm
to search for an optimal mapping between the nodes of the query and the nodes
of the case (cf. Champin and Solnon [22]). Such an optimization is necessary
because, in the worst case (where only one service is used in both the case and
the query), the problem of comparing workflows becomes the same as the sub-
graph isomorphism problem, which is NP-complete [22]. Once the mapping is
complete, extensions are generated by identifying edges in the case from a node
which is mapped, and to a node which is not mapped.

4 Evaluation

To assess Phala’s performance and the potential to exploit available provenance
data for case-based support, we performed experiments addressing four ques-
tions:
1. Given real data, how often will Phala produce relevant suggestions?
2. Given real data, how often will Phala be able to produce suggestions match-

ing user choices?
3. How does performance vary when relying on a user’s own prior workflows

vs. workflows of others?
4. How scalable is Phala’s retrieval method?

4.1 Ability to Produce Relevant Suggestions and Match User
Choices

Data. For workflow data, we used the public database of workflows available
from the myGrid/myExperiment projects3 [21,23,24]. These projects facilitate
3 Theserepositoriescanbefoundat“http://workflows.mygrid.org.uk/repository/”

and “http://www.myexperiment.org ,” respectively.

http://workflows.mygrid.org.uk/repository/
http://www.myexperiment.org

Towards Case-Based Support for e-Science Workflow Generation 277

workflow development through re-use of prior knowledge, by providing infor-
mation enabling users to locate relevant services and re-purpose similar work-
flows [25]. Our data set contains 236 workflows from both the public myGrid
repository and the myExperiment Web site. These workflows relate primarily
to bio-informatics experiments and have 860 unique services and 2792 unique
service links4. Some non-deterministic control data is present in a minority of
these workflows, but it is discarded and only the data flow is considered for the
purposes of our analysis.

Evaluation Method. The experiments for questions 1 and 2 were performed
using leave-one-out testing with the myGrid/myExperiment data-set. Queries
are formed for each workflow by deleting a single node and its connected edges.
Each input edge leading into the deleted node is counted as an “opportunity”
for a suggestion. These edges are then compared with the suggested extensions
generated by Phala. If a suggested edge links from the same node as one of
the deleted edges, an “attempt” is recorded. If the suggested edge also links to
the same service as the deleted node, making the suggestion identical to the
choice of the original workflow designer, a “success” is recorded. We will refer
to the proportion of attempts to opportunities as the suggestion rate and the
proportion of successes to attempts as the success rate.

As a baseline for comparison, we devised another knowledge light method of
suggesting new edges that does not rely on the structure of individual cases,
the “popular link” method. This method identifies the service to which the
given node’s service is most often linked, and links the node to an instance of
that service. In the case that multiple services are tied for most-linked-to, one
of them is selected at random. For comparison purposes, proportional success
was recorded when the target service was within the set of possible suggestions,
rather than making random choices. The popular link method relates to a similar
method proposed by Xiang and Madey [3], which is discussed in Section 5.

Phala uses similarity as a predictive measure of the quality of the suggestions
that the system makes. A user-determined similarity threshold controls a tradeoff
between suggestion and success rates for a particular user. At threshold 0, all
results are considered; at threshold 1, only results in which the query was a
subgraph of the retrieved case are considered. Because the popular-link method
is not case-based, it requires a different strategy for predicting suggestion quality.
Here suggestion quality was considered to be the number of times the target
service was linked proportionate to the number of times any service was linked.

To compare the different methods, for each method we tuned the method’s
quality threshold to generate a desired collection of suggestion rates, for which
we could then compare the success rates. Using the popular-link method at a
quality threshold of 0 (all suggestions are considered), a suggestion is made 79%
of the time with a success rate of 47%. The results with the case-based method
(also with a quality threshold of 0) are more conservative, making a suggestion
4 We determined uniqueness differently for different types of nodes within the work-

flows. Where applicable, parameter values are ignored and service names, locations,
and the exact texts of scripts are used to identify a service.

278 D. Leake and J. Kendall-Morwick

Fig. 4. Analysis of Suggestion Methods

45% of the time but with a much higher success rate of 77%. The success rates
tended to rise and the suggestion rate strictly decreased as the threshold of
consideration was raised. Figure 4 shows the results. Note that because the case-
based method’s maximum suggestion rate was 45%, no values are shown for that
method at higher suggestion rates.

4.2 A Hybrid Method

The different strengths of the two methods suggested that a hybrid method
might give the best results. We developed a hybrid method that generally uses
the case-based suggestion but falls back on the popular-link method of suggestion
when the popular-link quality is above a constant cut-off value and is expected to
have higher quality than the case-based suggestion.5 If a case-based suggestion
is ever present in the set of suggestions generated by the popular-link method,
it is used as the tie-breaking vote rather than choosing one at random. At a
quality threshold of 0, this method produced a higher suggestion rate than the
case-based method at 56.1%, allowing us to add additional comparisons to the
popular-link method in Figure 4 at 50% and 55%.

A χ2 test was used to determine the significance of differences in success rates
between methods. Differences were considered significant when P was less than
0.05. No significant difference was found between the case-based method and
the hybrid method for suggestion rates 25% through 40%, but the difference was
significant at 45%. Because the case-based method attained a 47% suggestion
rate at quality threshold 0 (the lowest possible setting), the success rate could
not be measured at 50% or 55% for this method. There was no statistically
significant difference in success rates between the popular-link and either of the
case-based and hybrid methods at 25% and 30%. The differences were significant
at all other suggestion rates.

It is important to note that relevance of services is difficult to determine (and
is, in fact, an interesting research issue that we intend to explore), so we do not
5 Though the quality measures for the case-based and popular-link methods cannot

directly be compared, we developed a rough translation for this purpose.

Towards Case-Based Support for e-Science Workflow Generation 279

consider our results to represent precision. Rather, the success rate we recorded
represents a lower bound on precision, as services other than the service used in
the deleted node may also be relevant.

4.3 Authorship Effects

Phala aims both to provide quick reminders of services the author has used in
the past (potentially from the author’s own workflows) and to provide sugges-
tions for services the author might not have in mind (potentially from workflows
of others). The following experiment explores how each source contributes to
Phala’s suggestions.

Evaluation Method. To test authorship effects, we used the authorship data
included with the myGrid/myExperiment data set. Workflows on myExperiment
are labeled with authors, contributors, and uploaders. Workflows in the myGrid
repository are separated into different directories labeled with users’ names. We
re-ran our previous experiments in two new scenarios. In the first, the case-
base for a given query was selected to be all of the other workflows credited
to the same author as that of the query. In the second, the case-base included
all workflows except those credited to the author of the query. The case-based
method of generating suggestions was used in the analysis.

Results. Both the author’s collection of workflows and the rest of the database
turned out to be useful sources of data for suggestions. The results for each source
separately were comparable to, though worse than, the original results when all
workflows were included in the case-base. When only populating the case-base
with workflows from the same authors, the suggestion rate was 36% and the
success rate was 72%, compared to 37% and 70% when only populating the
case-base with workflows that were not from the same author. This is compared
to 45% and 77% when all workflows are included.

Though the results are encouraging, we believe that the authorship data we
have may be incomplete, and that this may have increased scores for the scenario
when the case-base is populated only with workflows that were not from the same
author. We plan to repeat these experiments once more complete authorship data
is available.

4.4 Scalability

Evaluation Method. To obtain a large set of test cases for this evaluation
we generated artificial data. We generated execution traces with between 5 and
15 services drawn randomly from a predefined set of arbitrary service labels.
Each node was randomly linked to one other node. We also developed a set
of artificial workflow data that mirrored the myGrid/myExperiment data-set
in terms of clustering statistics for our similarity metric and also in terms of
statistics on frequency distribution of service links (cf. [26]).

280 D. Leake and J. Kendall-Morwick

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Size of Case−Base

A
ve

ra
ge

 R
et

rie
va

l T
im

e
in

 S
ec

on
ds

4 : 1 Services to Cases

1 : 1 Services to Cases

Fig. 5. Average Retrieval Time When Generating Case-Bases With Different Ratios
of Services to Cases

This evaluation was performed with an average of 4 services per case in the
generated cases, which is close to the ratio of the myGrid/myExperiment data-
set. Because the myGrid/myExperiment data-set consists of only 236 workflows,
and it is possible that the ratio with other case bases might differ, we also ran
the evaluation with an average of 1 service per case, which we expected to reduce
the efficiency of retrieval.

We loaded 1000 cases into the case-base and randomly selected 100 of them
to be queries (this time leaving the queries in the case-base). We performed 500
iterations of this test, each time increasing the case-base size by 1000 cases. The
results are shown in Figure 5. The evaluations were run on a 1.66 Ghz Intel Core
Duo laptop with 1 GB of RAM and running Ubuntu 7.10 and mySQL.

Results. Retrieval times for both approaches started out near 0.02 seconds
for case-bases of 1000 cases. When 50,000 cases were considered, retrieval times
increased to 0.11 seconds when generating 4 services per trace. When generat-
ing 1 service per trace, retrieval times increased to 0.13 seconds. Both graphs
are roughly linear. Although the number of services has a significant effect on
retrieval time, we consider these times acceptable.

5 Related Work

A number of projects in the e-Science domain employ knowledge-rich generative
methods. One such project called CAT (Composition Analysis Tool) and devel-
oped by Kim, Spraragen, and Gil, is a mixed-initiative system for developing
workflows [4]. Their tool validates workflows and provides an interface that sug-
gests edits to correct invalid workflows. Background knowledge and ontologies
are combined with an AI planning framework to suggest node additions and
replacements that move the workflow toward the goal of producing the desired
outputs, at times allowing for abstract nodes to act as place holders for concrete,
executable nodes. A main difference with Phala is that, instead of requiring a

Towards Case-Based Support for e-Science Workflow Generation 281

pre-constructed ontology, Phala depends on its case base; it needs no additional
support other than the installation of a system for provenance collection.

Case-based methods have also been employed in a number of related projects.
A project by Xiang and Madey uses a method similar to the ’popular-link’
method of re-using past experience as part of a planning approach to assist-
ing workflow composition [3], though without the quality metric used in our
hybrid approach. In their work, users are presented with a ranked list of ser-
vices which is constructed with semantic information and a table of service links
mined from previous workflows. They also propose a planning approach that
constructs a sequence of services linking to other services or abstract input /
output requirements of a task. In general their work focuses on a more ab-
stract process of composing a complete workflow from specifications, whereas
the Phala project focuses on the specific task of suggesting minimal extensions
to partially composed workflows. Their work also involves retrieving previously
executed workflows similar to a workflow currently being authored. The user
can then adapt features of the retrieved workflows into the workflow they are in
the process of developing. Phala differs in its automatic extraction; Xiang and
Madey’s method provides more information to the user but requires more user
assistance in adapting it.

Beyond the domain of e-Science, Minor et al. have developed a system for case-
based agile workflow support [8,20]. In their system, cases represent a workflow
revision as a pair of two workflows: one representing the workflow before the
revision and the other representing the revised workflow. Along with contex-
tual information and domain knowledge, these cases are retrieved in order to
determine how a similar workflow can be altered. They also present a similarity
metric which we have adapted to suit the characteristics of Phala’s workflows.
Weber et. al [9] also support workflow adaptation with CBR. Their tool, CBR-
Flow, uses Conversational Case-Based Reasoning to adapt a workflow to new
circumstances at execution time.

Madhusudan and Zhao have investigated case-based support for workflow
modeling in the business process domain [10]. Their system, CODAW, utilizes
workflow templates of varying degrees of generality, as well as concrete cases of
previously defined workflows. Their work includes various indexing techniques
and graph-based case retrieval. Their system also supports workflow composi-
tion through generative planning. Another related system, DWMSS, developed
by Kim et. al. [27], stores cases in a hierarchical tree for facilitating user retrieval.

6 Conclusion and Future Work

Phala explores a case-based, knowledge-light approach to supporting production
of e-Science workflows. We view the current results as encouraging for the ability
of knowledge light case-based methods to draw on databases of workflows or
provenance traces to assist the authors of scientific workflows.

Phala currently suggests single services. In our future work we expect to ex-
pand the types of suggestions Phala makes to include sequences of services or

282 D. Leake and J. Kendall-Morwick

partial workflows, control information, and annotations, in addition to explor-
ing the case-based suggestion of specific data products. We also intend to mine
and directly exploit more of the semantic information existing in provenance
and workflows, and to explore inclusion of user-driven generation of semantic
information, such as tagging, which is used in the myExperiment project [21],
or ontologies when available. In addition, we intend to develop Phala plug-ins
for alternative workflow composition tools to allow larger-scale testing and to
enable integration of Phala into mainstream e-Science experimentation.

References

1. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-Science.
SIGMO Record 34(3), 31–36 (2005)

2. Gil, Y., Deelman, E., Blythe, J., Kesselman, C., Tangmunarunkit, H.: Artifi-
cial intelligence and grids: Workflow planning and beyond. IEEE Intelligent Sys-
tems 19(1), 26–33 (2004)

3. Xiang, X., Madey, G.R.: Improving the reuse of scientific workflows and their by-
products. In: ICWS, pp. 792–799. IEEE Computer Society, Los Alamitos (2007)

4. Kim, J., Spraragen, M., Gil, Y.: An intelligent assistant for interactive workflow
composition. In: IUI 2004: Proceedings of the 9th international conference on In-
telligent user interfaces, pp. 125–131. ACM, New York (2004)

5. Roure, D.D., Goble, C.: Six principles of software design to empower scientists.
IEEE Software (January 2008)

6. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-science and a graph-based solution. ICWS 0, 312–319 (2006)

7. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance techniques.
Technical Report 612, Computer Science Department, Indiana University (2005)

8. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technol-
ogy and case-based change reuse for long-term processes. International Journal of
Intelligent Information Technologies (2007)

9. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Funk, P., González Calero,
P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidel-
berg (2004)

10. Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework for
workflow model management. Data Knowl. Eng. 50(1), 87–115 (2004)

11. Leake, D., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626. Springer, Heidelberg (2007)

12. Leake, D., Dial, S.: Using case provenance to propagate feedback to cases and
adaptations. In: Proceedings of the Nineth European Conference on Case-Based
Reasoning. Springer, Heidelberg (in press, 2008)

13. Dean, T., Boddy, M.: An analysis of time-dependent planning. In: Proceedings
of the seventh national conference on artificial intelligence, pp. 49–54. Morgan
Kaufmann, San Mateo (1988)

14. Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance management for data
driven workflows. International Journal of Web Services Research 5, 1 (2008)

15. Shirasuna, S.: A Dynamic Scientific Workflow System for the Web Services Archi-
tecture. PhD thesis, Indiana University (September 2007)

Towards Case-Based Support for e-Science Workflow Generation 283

16. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble,
C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M.,
Stevens, R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow en-
vironment for the life sciences: Research articles. Concurr. Comput.: Pract. Ex-
per. 18(10), 1067–1100 (2006)

17. Droegemeier, K.: Linked Environments for Atmospheric Discovery (LEAD): A Cy-
berinfrastructure for Mesoscale Meteorology Research and Education. AGU Fall
Meeting Abstracts (December 2004)

18. van der Aalst W.M.P., ter Hofstede A.H.M., B., K., A.P., B.: Workflow patterns.
Distributed and Parallel Databases 14(47), 5–51 (2003)

19. Anandan, S., Summers, J.D.: Similarity metrics applied to graph based design
model authoring. Computer-Aided Design and Applications 3(1-4), 297–306 (2006)

20. Minor, M., Schmalen, D., Koldehoff, A., Bergmann, R.: Structural adaptation of
workflows supported by a suspension mechanism and by case-based reasoning. In:
Proceedings of the 16th IEEE Internazional Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2007), pp. 370–375. IEEE
Computer Society, Los Alamitos (2007)

21. Goble, C.A., Roure, D.C.D.: Experiment: social networking for workflow-using e-
scientists. In: WORKS 2007: Proceedings of the 2nd workshop on Workflows in
support of large-scale science, pp. 1–2. ACM, New York (2007)

22. Champin, P.A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley,
K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 80–95. Springer,
Heidelberg (2003)

23. Stevens, R.D., Goble, A.R.,, C.A.: Grid: Personalised bioinformatics on the infor-
mation grid. In: Proceedings 11th International Conference on Intelligent Systems
in Molecular Biology, ISBN N/A (June 2003)

24. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

25. Wroe, C., Goble, C., Goderis, A., Lord, P., Miles, S., Papay, J., Alper, P., Moreau,
L.: Recycling workflows and services through discovery and reuse: Research articles.
Concurr. Comput. Pract. Exper. 19(2), 181–194 (2007)

26. Aha, D.W.: Generalizing from case studies: A case study. In: Proceedings of the
Ninth International Conference on Machine Learning (1992)

27. Kim, J.H., Suh, W., Lee, H.: Document-based workflow modeling: a case-based
reasoning approach. Expert Syst. Appl. 23(2), 77–93 (2002)

Knowledge Planning and Learned

Personalization for Web-Based Case Adaptation

David Leake and Jay Powell

Computer Science Department, Indiana University
Bloomington, IN 47405, U.S.A.

{leake,jhpowell}@cs.indiana.edu

Abstract. How to endow case-based reasoning systems with effective
case adaptation capabilities is a classic problem. A significant impedi-
ment to developing automated adaptation procedures is the difficulty of
acquiring the required knowledge. Initial work on WebAdapt [1] proposed
addressing this problem with “just-in-time” knowledge mining from Web
sources. This paper addresses two key questions building on that work.
First, to develop flexible, general and extensible procedures for gather-
ing adaptation-relevant knowledge from the Web, it proposes a knowledge
planning [2] approach in which a planner takes explicit knowledge goals
as input and generates a plan for satisfying them from a set of gen-
eral operators. Second, to focus selection of candidate adaptations from
the potentially enormous space of possibilities, it proposes personalizing
adaptations based on learned information about user preferences. Eval-
uations of the system are encouraging for the use of knowledge planning
and learned preference information to improve adaptation performance.

1 Introduction

Case adaptation is a classic problem for case-based reasoning. From the early
days of CBR research, endowing CBR systems with automated adaptation capa-
bilities has been recognized as a substantial challenge [3,4], and fielded applica-
tions with automatic adaptation remain rare. A key impediment to automated
adaptation is the difficulty of acquiring adaptation-relevant knowledge. In previ-
ous work, we proposed addressing this problem by “just-in-time” mining of Web
sources [1]. This paper builds on that work by combining a new Web mining
approach with personalization of adaptation based on learned user preferences.

Usually, the adaptation component of case-based reasoning systems rely on
hand-built adaptation rules. However, in some domains the amount of adapta-
tion knowledge needed or its dynamic nature can make it difficult to pre-code the
needed knowledge (cf. [5]). For example, a general-purpose system for planning
tourist itineraries might need to adapt plans involving thousands of destina-
tions. In such domains, developers face two undesirable alternatives: fielding the
system with incomplete adaptation knowledge—reducing knowledge acquisition
cost but making adaptation failures more likely—or coding extensive knowledge,
increasing development cost and including knowledge likely to go unused.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 284–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Knowledge Planning and Learned Personalization 285

The difficulties of hand-building knowledge make it appealing to enable CBR
systems to learn new adaptations (see Section 6 for a survey of this work).
However, the enormous amount of knowledge now available on the Web presents
opportunities for another approach, drawing on Web-based knowledge sources
as needed. The WebAdapt system [1] was a first effort to support adaptation
with as-needed mining of large-scale, publicly-available Web knowledge sources
such as the formalized knowledge of OpenCyc [6], the informal natural language
text of Wikipedia [7], and the geographical information of the Geonames GIS
database [8]. The WebAdapt project aims to enable CBR systems to adapt a wide
range of problems with minimal pre-coded knowledge. Evaluations of the initial
version of the system were encouraging, with the system often able to propose
good adaptations by relying only on its cases, knowledge sources external to the
system, and a few simple hand-coded rules for mining those sources.

This paper addresses two questions to build on the WebAdapt approach and
to increase its generality. First, it considers how to replace the hand-coded Web
mining procedures of the initial WebAdapt system with a more flexible, general
and extensible method for guiding the adaptation process and extracting Web-
based adaptation knowledge. Its response is a knowledge planning [2] framework
for Web mining, in which a planner takes explicit knowledge goals as input
and generates a plan for satisfying them from a set of operators ranging from
source-independent abstractions to concrete source-specific procedures. Second,
it considers how to focus selection of specific adaptations, given the potentially
enormous space of possibilities in large Web sources. Its response is to learn user
preferences and apply those preferences to personalize the choice of adaptations.
This personalization contrasts with standard perspectives on case adaptation,
in which the same adaptations are proposed for all users.

The paper begins with an overview of the system’s basic approach, architec-
ture, and knowledge sources, followed by a description of its knowledge planning
process to support adaptation. It then presents experiments assessing its knowl-
edge planning and personalization processes, and closes with a comparison to
related research. The experimental results suggest that the new approaches can
play a valuable role in exploiting Web-based knowledge sources for adaptation.

2 WebAdapt’s Approach

This section summarizes key aspects of WebAdapt’s approach and user interac-
tion (described in detail in [1]),1 and introduces the system’s new Web mining
approach based on knowledge planning and learned preference information.

Viewing adaptation as transformation and memory search: Kass [9] proposed
a view of adaptation in which adaptations are built from two components: (1) a
small set of abstract structural transformations and (2) memory search strategies
for finding the information needed to apply those transformations, by substitut-
ing appropriate components into the case structure. For example, in case-based

1 The first two paragraphs of this section are adapted from [1].

286 D. Leake and J. Powell

explanation, search could find a new potential cause for an event, and trans-
formation could re-structure the explanation to accommodate that cause [10]).
However, rather than relying on a hand-coded search procedure for each pos-
sible adaptation, rather than searching internal memory, WebAdapt generates
search procedures by a planning process, in a spirit similar to Leake, Kinley and
Wilson’s DIAL [11], and searches external Web resources.

The WebAdapt project focuses on substitution adaptations. It generates
knowledge goals as sets of constraints to be satisfied (represented as item cat-
egories), based on examination of the item to be replaced and additional user
preference information. It draws on information in Web-based sources both (1)
to hypothesize constraints which a substitution adaptation must satisfy, and (2)
to find replacement elements satisfying such constraints on the Web.

User Interactions: WebAdapt’s task domain is sightseeing itinerary planning;
its task is to adapt proposed itineraries to fit user preferences. Its initial case base
contains eight travel itineraries taken from Frommer’s Paris Travel Guide [12].
Users interact with WebAdapt by first selecting an itinerary and then designating
any steps to modify. Such a system might be used to plan a customized itinerary
in advance of a trip, or could be used on a portable wireless device to provide
recommendations on-site (e.g., a traveler facing a long wait to ascend the Eiffel
tower could request nearby alternatives to visit).

The system can automatically generate a substitution or support interactive
user-guided adaptation by providing a ranked set of candidate alternatives. In
interactive mode, the user can request an explanation of why any candidate was
chosen, in terms of the constraints used, and can provide feedback on the appro-
priateness of the constraints as feedback for the system learning user preferences.

The Adaptation Process: WebAdapt’s adaptation process and related learn-
ing are summarized in Figure 1. When the user requests a substitution for an
itinerary item, WebAdapt formulates a knowledge goal for finding a substitution
(Step 1). WebAdapt then selects a Web-based knowledge source to use to satisfy
the request, based on a source performance profile and prior experience (Step
2). If possible, a prior plan, relevant to the formulated goals and already used
successfully, is retrieved from memory. Otherwise a new plan is generated (Step
3). Next, the plan is executed to gather information from Web sources (Step 4)
and candidate solutions are chosen, based on user preference information, for
display (Step 5). The user can request explanations of how the displayed solu-
tions were found (Step 6) before selecting a solution to use (Step 7). WebAdapt’s
knowledge and process are described in the following sections.

3 WebAdapt’s Knowledge

The WebAdapt system relies on four main knowledge sources: (1) A model of user
adaptationpreferences, built up by user feedback during adaptations; (2) a domain
model, built up by saving information retrieved by previous searches, (3) profiles of
the Web sources it accesses, and (4) a case base of previous adaptations, used both
to support decision-making about source selection and to guide new adaptations.

Knowledge Planning and Learned Personalization 287

Fig. 1. WebAdapt’s adaptation process and knowledge sources

User Model: As a user selects candidate adaptations, WebAdapt builds a simple
model of user content preferences (i.e., of the constraints which, when used to
guide knowledge source search, lead to acceptable substitutions). For example,
if a user favors an adaptation falling under the constraint “Art museums in
Paris,” that constraint is stored as reflecting a possible area of user interest.
WebAdapt also learns about categories in which a user is not interested, based
on user feedback. This initial approach to user preferences provides a coarse-
grained model of broad classes of preferences, which was suitable for proof of
concept testing. However, we note that this simple approach does not yet address
important aspects such as context-dependent preferences.

Source Profiles: Source profile statistics are available to influence source selec-
tion; users can interactively select weightings on these and how they should
be balanced against content-based criteria (e.g., if the user is only interested
in the top selection or wishes to compare alternatives). As WebAdapt queries
Web sources, it maintains a source performance profile summarizing average ac-
cess times and reliability (e.g., how often the source is available when queried),
updated each time a source is accessed.

WebAdapt also maintains source content estimates for each knowledge source,
reflecting coverage for past system queries and the diversity of results from that
source. Source coverage is estimated from the percent of times the user found an
acceptable item in the list of suggestions from the source in prior adaptations.
Diversity is a measure of the average dissimilarity of items returned. Diversity is
calculated based on Smyth and McClave’s [13] approach, except that WebAdapt
calculates diversity of knowledge returned for adaptations rather than of cases.

288 D. Leake and J. Powell

Cases for Dispatching and Adaptation: WebAdapt applied a case-based approach
to source selection, favoring sources which have been successfully used to find
content satisfying similar constraints in the past (cf. [14], which proposes a case-
based approach to dispatching problems to multiple case bases). Each time the
system generates a new set of candidate substitutions, it stores a knowledge
planning case containing the set of constraints hypothesized for the item to
adapt, the knowledge source(s) searched, and a Boolean value describing whether
each knowledge source returned results for the problem. When future problems
arise with similar constraints, the case suggests knowledge sources which may
have relevant information. Because the sources may change over time, if two
cases are equally similar, the most recent is selected.

Domain Model: WebAdapt uses the results of its Web searches to build up a
domain model over time. After successfully generating a set of candidate substi-
tutions for a problem, it collects the constraints captured during the knowledge
planning process and notes which items were retrieved under each constraint.
This provides a hierarchical model of the items identified during retrievals and
their categories. The domain model is primarily used for explaining why partic-
ular items were proposed as candidate adaptations, as discussed in Section 4.2.

4 Knowledge Planning Process

4.1 Knowledge Planning Operators

WebAdapt’s adaptation process relies primarily on fourteen abstract domain-
independent search and transformation operators, which call upon basic source-
specific operators to perform source-specific operations. The low-level operators
currently include some simple text mining procedures (see [1] for an overview of
WebAdapt’s text mining process), and could be integrated with more sophisti-
cated natural language processing. WebAdapt’s knowledge planning is done by
the regression planner UCPOP [15].

The preconditions of WebAdapt’s operators specify knowledge required for
their execution, while the postconditions specify the knowledge they generate,
which is then available to later plan steps. Search operators affect only the
system’s knowledge state; transformation operators modify the structure of the
case, based on inputs such as the case to be modified, item in the case to modify,
and the type of modification to take place.

Each operator is defined in terms of a vocabulary of roles filled in during the
planning process, either from the initial knowledge goal or based on intermediate
results. The role-fillers include the knowledge source from which to retrieve, the
constraints to be satisfied by the adaptation, and candidate items to be refined
and ranked. Figure 2 illustrates the pre- and post-conditions for two operators
used to hypothesize and expand constraints. Each operator contains:

1. A description of the problem solved after the execution of a step (described
by the predicate Problem Solved), to be matched with the knowledge goal to
be satisfied during the regression planning process.

Knowledge Planning and Learned Personalization 289

Fig. 2. Example operators for hypothesizing and expanding constraints

2. Preconditions describing the knowledge necessary for execution (in the figure
Q : Query)

3. A description of the knowledge acquired during execution (the postconditions
Constraints and Hypothesis).

4. A description of the source to search for the acquired knowledge (Source Of)
5. A description of what WebAdapt is expected to know after execution of

a step (e.g., Is A Hypothesized Constraint Of and Is Constrained By), also
matched with the knowledge goal to be satisfied

The slots in the operators fall into two categories: 1) slots that are filled during
the problem dispatching stage, and 2) variables that are bound during plan
execution. Examples of slots filled during problem dispatching are the knowledge
source to use (e.g., S : KnowledgeSource may be filled with Wikipedia), a frame
representing a sub-unit of knowledge (e.g., ?page{?title}), an encoding of a user
query, and information describing how to refine knowledge from a source (e.g.,
the contextual information to search for in a Wikipedia entry).

The generic operator Hypothesize Constraints queries a knowledge source for
an item (e.g., Eiffel Tower) and hypothesizes a set of seed constraints for the
search process. The ?C : Constraints variable is then bound to a list of sub-
units of knowledge representing hypothesized constraints. When using source-
specific Wikipedia operators, the hypothesized constraints are the categories
under which an item falls and the category’s URL, while OpenCyc constraints
are the collections under which an item falls. The operator Expand Constraints
takes a set of hypothesized constraints and recursively searches for a pool of
related items, which can be presented to the user as hypothesized candidates.

290 D. Leake and J. Powell

4.2 Applying Knowledge Planning for Adaptation

Generating Knowledge Goals: WebAdapt generates top-level knowledge goals
in response to a user request to find substitutions for an itinerary item, or to
suggest constraints for search (Step 1 in figure 1). Lower-level knowledge goals
may be generated during the knowledge planning process. Knowledge goals are
represented in three parts: (1) a set of constraints to be satisfied by candidate
adaptations, (2) a set of constraints whose satisfaction would cause candidate
adaptations to be rejected (for example, used to avoid duplicating items already
in the itinerary), and (3) a ranking procedure for results (e.g., that results should
be ordered from most constrained to least constrained). A sample goal to acquire
candidate substitutions from an unspecified knowledge source and to rank them
according to a given model of the user’s preferences is represented as:

Is_Constrained_By(?HC : HypothesisCandidates, ?C : Constraints, ?S : KnowledgeSource, ?R : Refinement)

Ordered_By_User_Preference(?R : Role, ?P : UserPreferences, ?HC : HypothesisCandidates)

Problem Dispatching: After a goal has been formulated, WebAdapt determines
which knowledge sources are best suited to achieve its goal (Step 2). WebAdapt
selects Web knowledge sources based on (1) prior cases for satisfying similar
knowledge goals, and (2) the source profiles reflecting estimated average source
coverage, speed, and reliability. These factors are balanced based on a user-
selected weighting. If WebAdapt has learned a set of preferred constraints for a
user, then WebAdapt ranks the retrieved cases by how closely the items found
by each case match the user’s preferred constraints.

Selecting Operators: After knowledge source selection, the knowledge goal and
source are passed to a planning component (Step 3). That component first at-
tempts to retrieve a prior plan satisfying the knowledge goals generated by the
system.2 If no plan is found, one is generated from scratch using UCPOP. The
plan is then executed (step 4), and the resulting adaptation-relevant knowledge is
extracted from the sources, to instantiate empty role-fillers with the knowledge
from each source (e.g., constraints and candidate substitutions are extracted
from Wikipedia entries). In general, the role-fillers may include lists of alter-
native candidates. In the solution selection step (Step 5), candidate items are
refined using source specific techniques (e.g., searching for the word ”Paris” in
a candidate’s Wikipedia entry).

Candidates are ranked based on the user preference model and constraints
captured during execution. For example, if a user prefers items satisfying the
constraint “Churches in Paris,” candidates can be filtered by that constraint.
Once a set of candidates has been generated, the system’s domain model is
updated with newly discovered candidates and constraints.

Preference Learning, Explanation and Feedback: Filtered candidate substitutions
are displayed to the user, who can request explanations of why a candidate was
2 In the current implementation, planning cases are reused when possible but are not

adapted. A more flexible model is a subject for future research.

Knowledge Planning and Learned Personalization 291

chosen for presentation (Step 6). WebAdapt explains the choice of candidates by
describing the constraints they satisfy, based on its domain model and new con-
straints captured during knowledge plan execution, and how those constraints
relate to the user’s preferences. When the user chooses a substitution, the expla-
nation module attempts to explain why a user chose a candidate to learn from
the choice. The system refers to its user model of the constraints the user prefers
and those in which the user is not interested to filter the constraints found and
then adds the remaining new constraints to its user model, while incrementing
the weight of constraints already present. The weights are used to help rank
pools of substitutions matching several of a user’s preferred constraints.

4.3 An Example of the Knowledge Planning Process, Suggestion
and Explanation Processes

As an example, consider a user who requests an alternative to a planned visit to
the Notre Dame cathedral. WebAdapt formulates a knowledge goal to hypoth-
esize a set of candidate replacements ranked by user preferences. Suppose that
WebAdapt’s user model records that this user prefers Art museums in Paris,
and Churches in Paris. WebAdapt chooses Wikipedia as the knowledge source
to mine because its profile suggests that it has the best coverage and because
past adaptations using Wikipedia described Notre Dame as a Church in Paris.
After Web mining and ranking, the first item presented to the user is the Church
of Saint-Merri, a small church located in Paris. When asked for an explanation,
WebAdapt refers to its domain model and describes this church as a “Church in
Paris,” specifically a “Roman Catholic Church in Paris,” and explains that the
item was chosen because the user prefers “Churches in Paris.”

5 Evaluation

Our evaluation addresses the following questions:

1. Benefits of knowledge planning: How do the results of WebAdapt’s knowledge
planning search compare to those of traditional keyword-based search?

2. Benefits of preference learning: When users have varying preferences for
adaptations, will re-use of captured constraints from previous adaptations
improve the suitability of mined adaptations?

3. Benefits of source profile learning: Can aggregate profile information improve
the choice of knowledge sources to mine?

The experiments tested adaptation suggestions for a single itinerary taken from
Frommer’s Paris Travel Guide, The Best of Paris in 3 Days, a tour of 24 sites.

Experimental Design: To provide an easily quantifiable means for evaluating the
ability of WebAdapt to reflect user preferences, we developed nine simple simu-
lated users to interact with the system. Each user requested a set of candidate
substitutions for each item in the sample itinerary, resulting in over 400 adap-
tations. Eight of the simulated users were associated with a set of 1–6 preferred

292 D. Leake and J. Powell

Table 1. List of preferred adaptation constraints for each simulated user

User Preferred Categories User Preferred Categories

1 Museums in Paris 2 Roman Catholic Churches in Paris

3 Paris IVe arrondissement 4 Churches in Paris
Roman Catholic Churches in Paris

5 Gothic architecture 6 Geography of Paris
Paris IVe arrondissement Visitor attractions in Paris

Parks and open spaces in Paris Art museums and galleries in Paris
Tall structures in Paris region Monuments and memorials in Paris

7 Art museums and galleries in Paris 8 Bridges over the River Seine in Paris
Museums in Paris Parks and open spaces in Paris
Musee d’Orsay River Seine

Louvre Boulevards in Paris
Collections of the Louvre Avenues in Paris

Streets in Paris

constraints (typically corresponding to some theme, such as “Art Museums in
Paris”) that were unknown to WebAdapt. Table 1 lists the constraints used. The
ninth user had no preferences, and served as a baseline.

Performance measures: Our experiments explore WebAdapt’s ability to suggest
the right items from a pool of candidate substitutions to present to the user,
measured by precision of the pool of the top 5 or 10 candidates generated by
the system.3 As a coarse-grained impartial relevance criterion, we consider items
relevant if they are mentioned in Frommer’s Paris Travel Guide. Because it is
possible that the system could suggest relevant items not mentioned in the guide,
our criterion is a conservative measure of precision.

Choosing substitutions: From each pool of candidate substitutions generated by
WebAdapt, the simulated user selected a substitution to use. The simulated
user iterated through the pool of candidates in the order they were presented,
requesting an explanation from WebAdapt for why each item was presented.
WebAdapt then produced a list of constraints describing the candidate, captured
during the search process. The first candidate encountered with at least one
constraint matching a user’s preferences was selected as the substitution, and
the user’s choice of that candidate was provided to the system as basic feedback,
from which the system adjusted the user preference model. No feedback was
given to the system if no suitable candidate was found.

Providing extended feedback on hypothesized preferences: During a second round
of experiments, the simulated users were given the ability to critique WebAdapt’s
hypothesized set of adaptation preferences. After a set of substitutions was pre-
sented and a substitution selected, the simulated user provided feedback to the
system on any constraints which WebAdapt used to explain the candidates’

3 Although recall is typically shown with precision, here the goal is to select a small
focused set of filtered results.

Knowledge Planning and Learned Personalization 293

Fig. 3. Wikipedia precision trends

Fig. 4. OpenCyc precision trends

relevance but were not in the user’s preferences. These were removed from We-
bAdapt’s user model.

Results for Questions 1 and 2: Benefits of knowledge planning and of preferences
and preference learning: As a non-learning baseline to compare to the knowl-
edge planning approach, keyword-based search was used to search Wikipedia
for substitutions. Keywords consisted of a hypothesized constraint, combined
with the item’s location to establish the context, for a Google query.4 Queries
were executed for each hypothesized constraint, and the average precision was
calculated for the first ten results returned from each query.

To assess the benefits of preference use and preference learning, two other
non-learning baselines were also used—no preference model, or a complete model
provided to the system—versus learning of preferences with or without feedback.
Figures 3 and 4 show WebAdapt’s average performance over all simulated users

4 E.g., site:en.wikipedia.org Visitor Attractions in Paris France.

294 D. Leake and J. Powell

Fig. 5. Requests generating a match for a user in the top 5 and 10 candidates presented

and trials, with the three nonlearning baselines. The graphs show precision as a
function of the number of suggestions presented to each simulated user. In some
cases, precision figures were reduced by retrieval of items which were relevant
but were counted as non-relevant, due to their omission from Frommer’s guide.

Performance of keyword-based search on Wikipedia was quite low, because the
keywords used in the query were often contained in many non-relevant articles,
which were typically avoided when using WebAdapt’s search strategy.

Without preference knowledge, the first few candidates presented are often not
relevant. When the system is given a complete model of adaptation preferences,
precision for the first few items increases noticeably, as WebAdapt is able to use
the given constraints to ensure that the top items presented conform to a user’s
preference model. Performance with preference learning is quite competitive with
performance with a complete user model. Adding feedback to basic preference
learning did not improve performance, and was sometimes slightly detrimental.

Precision for OpenCyc remained low, as OpenCyc contains a large set of
concisely defined knowledge which is difficult to filter. Our prior work [1] has
shown that using multiple knowledge sources to filter OpenCyc’s content pro-
duces greater accuracy, but these methods were not used here, in order to ex-
amine the effects of learning for a single source. Figure 5 illustrates the rates at
which Wikipedia and OpenCyc suggested substitutions conforming to a user’s
preferences, as well as the percentage of substitutions picked by the simulated
users in the top five and ten suggestions.

When hypothesizing a preference model for a user, WebAdapt tended to hy-
pothesize constraints that were not in a user’s true preference set, but were
closely related to that user’s preferences. For example, WebAdapt tended to
over generalize its constraints and hypothesized that nearly every user preferred
items that fell under the constraint “Visitor Attractions in Paris” when using
Wikipedia, though only user 6 had this as a specific preference. Based on the
incorrect hypothesis, WebAdapt would present a pool of items that were typi-
cally a mix of miscellaneous tourist attractions, as well as items that actually

Knowledge Planning and Learned Personalization 295

corresponded to a user’s true preferences, resulting in the higher performance in
Figure 5 when no feedback was given.

Discussion for questions 1 and 2: In the nonlearning conditions, WebAdapt’s
performance remains low. More specifically, the quality of the first few items
is typically very low, which in practice might reduce a user’s confidence in the
system’s ability to suggest substitutions. When WebAdapt is provided with a set
of constraints, the quality of the top few items increases noticeably for Wikipedia,
and slightly for OpenCyc, as shown in Figures 3 and 4. OpenCyc contains a
large body of knowledge defined by a set of general constraints (e.g., Wikipedia
defines a constraint for “Visitor attractions in Paris,” while OpenCyc’s closest
equivalent is “Tourist Attraction”). When only taking knowledge from OpenCyc
into account, it is difficult to remove items that are related to the travel domain
but not to a specific city. Despite these limitations, WebAdapt was able to use
discovered adaptation knowledge to improve the quality of the first ten items
presented from OpenCyc.

WebAdapt was also able to successfully capture a set of constraints to improve
adaptation quality, as shown in Figures 3 and 4. When no user feedback was given
on the set of captured constraints, adaptation quality was comparable to when
WebAdapt was provided with a complete set of constraints to use. Precision was
slightly lower when WebAdapt received user feedback on the applicability of its
captured constraint knowledge in the context of specific user preferences, due to
filtering of items generated by constraints closely related to the user’s, but not
exactly matching them. We plan to explore more sensitive filtering processes to
address this in the future.

Results for Question 3: Benefits of profile learning for dispatching: For an ini-
tial assessment of the usefulness of using source profiles when selecting Web
sources, the average performance characteristics for Wikipedia and OpenCyc
were stored during an initial set of 200 adaptations. These included information
on average access time, failure rate, estimated result diversity, and estimated
coverage. Wikipedia and OpenCyc had comparable measures for access time,
estimated diversity, and reliability, but differed on estimated coverage: suitable
adaptations were found for 86% of Wikipedia queries, vs. 33% of all OpenCyc
queries. This information proved predictive not only of which source would yield
usable suggestions more often, but of improved precision in the list of adaptations
presented to the user. On a test set of another 200 adaptations, average preci-
sion with 5 suggestions was 45% with Wikipedia, 29% for random selection, and
14% for OpenCyc. Precision with 10 suggestions was 45% for Wikipedia, 30%
for random selection, and 8% for OpenCyc. This suggests that source selection
could make an important difference in performance, and we plan to investigate
finer-grained strategies.

6 Related Work

Web search was used to gather information to support user adaptation in the
Stamping Advisor [16], which suggested candidate search terms derived from the

296 D. Leake and J. Powell

case being adapted, for the user to augment. In WebAdapt, the user makes a
top-level request for an adaptation, and the system selects a knowledge source
to query and generates a set of search constraints which are used for document
retrieval. Relevance feedback occurs when a user selects a retrieved document
to use as a substitution and the system builds an implicit model of preferred
adaptation constraints to personalize future suggestions.

WebAdapt’s on-demand Web mining of adaptation knowledge from semi-
structured sources such as Wikipedia contrasts with CBR research on acquiring
adaptation knowledge in advance from sources such as cases [17,18,19,20] and
databases [21] whose content and structure are known. Finding useful knowl-
edge on the Web requires a flexible knowledge acquisition framework capable
of leveraging prior experience to adapt to the idiosyncratic content of external
knowledge sources, which is reflected in the system’s use of source profiles to
determine which sources to use to solve problems.

Ponzetto [22] has shown that it is possible to use large web-based sources
such as Wikipedia to derive taxonomic information that is comparable to pro-
fessionally developed ontologies such as OpenCyc. WebAdapt uses the category
network of Wikipedia to discover relationships between different Wikipedia en-
tries, which is then captured as adaptation knowledge. In our experiments, this
produces adaptations competitive with those the system generates from the for-
mally represented knowledge of OpenCyc.

Aquin et al.’s CABAMAKA [23] also combines knowledge discovery with
the CBR process, but unlike WebAdapt, assumes the existence of a domain on-
tology associated with the system’s case-base to facilitate the explanation of
mined adaptation rules. WebAdapt’s approach is in the spirit of Leake, Kin-
ley, and Wilson’s DIAL [11]. However, DIAL relied on pre-specified role-filler
constraints, rather than generating and learning those for particular users. Also,
DIAL assumed that its pre-defined internal knowledge would be sufficient, rather
than searching for knowledge outside the system.

Finally, Muñoz-Avila and Cox point to [24] case-based planning for infor-
mation gathering as a new CBR direction raising interesting issues in its own
right, especially for how to adapt information-gathering plans. WebAdapt’s plan-
ning process currently combines generative planning with very simple case-based
reuse, and we are exploring how to enrich this model.

7 Conclusion

This paper presents a framework for acquiring adaptation knowledge on demand
from large-scale Web sources external to a CBR system. WebAdapt treats adap-
tation as involving transformation operations applied to knowledge mined on
the fly by knowledge plans to satisfy explicit knowledge goals for the needed
information. Preferred constraints for suggestions are learned from user choices
in prior adaptations, personalizing the suggested adaptations.

Experimental results support the ability of the approach to generate good
candidate adaptations and that learning preferences from prior adaptations can

Knowledge Planning and Learned Personalization 297

substantially improve adaptation quality. They also suggest that selective choice
of Web sources may have an important effect on the quality of results, making
that a promising area for future research. Additional future areas include better
methods for exploiting feedback information, a richer user model and model
of adaptation plan reuse, a reactive planning framework [25] to recover from
information extraction failures, and richer NLP processes as low-level operators
for adaptation plans.

References

1. Leake, D., Powell, J.: Mining large-scale knowledge sources for case adaptation
knowledge. In: Weber, R., Richter, M. (eds.) Proceedings of the Seventh Interna-
tional Conference on Case-Based Reasoning, pp. 209–223. Springer, Berlin (2007)

2. Ram, A., Leake, D.: Learning, goals, and learning goals. In: Ram, A., Leake, D.
(eds.) Goal-Driven Learning. MIT Press, Cambridge (1995)

3. Barletta, R.: Building real-world CBR applications: A tutorial. In: The Second
European Workshop on Case-Based Reasoning (1994)

4. Kolodner, J.: Improving human decision making through case-based decision aid-
ing. AI Magazine 12(2), 52–68 (Summer 1991)

5. Stahl, A., Bergmann, R.: Applying recursive CBR for the customization of struc-
tured products in an electronic shop. In: Proceedings of the Fifth European Work-
shop on Case-Based Reasoning, pp. 297–308. Springer, Heidelberg (2000)

6. Cycorp: OpenCyc (2007) (Accessed February 17, 2007), http://www.opencyc.org/
7. Wikimedia Foundation: Wikipedia (2007) (Accessed February 17, 2007),

http://www.wikipedia.org
8. Geonames: Geonames (2007) (Accessed February 17, 2007),

http://www.geonames.org
9. Kass, A.: Tweaker: Adapting old explanations to new situations. In: Schank,

R., Riesbeck, C., Kass, A. (eds.) Inside Case-Based Explanation, pp. 263–295.
Lawrence Erlbaum, Mahwah (1994)

10. Kass, A., Leake, D.: Case-based reasoning applied to constructing explanations. In:
Kolodner, J. (ed.) Proceedings of the DARPA Case-Based Reasoning Workshop,
pp. 190–208. Morgan Kaufmann, San Mateo (1988)

11. Leake, D., Kinley, A., Wilson, D.: Learning to improve case adaptation by intro-
spective reasoning and CBR. In: Proceedings of the First International Conference
on Case-Based Reasoning, pp. 229–240. Springer, Berlin (1995)

12. Frommer’s: Frommer’s Paris 2006. Frommer’s (2006)
13. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.)

ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)
14. Leake, D., Sooriamurthi, R.: Automatically selecting strategies for multi-case-base

reasoning. In: Craw, S., Preece, A. (eds.) Advances in Case-Based Reasoning: Pro-
ceedings of the Fifth European Conference on Case-Based Reasoning, pp. 204–219.
Springer, Berlin (2002)

15. Penberthy, J., Weld, D.: UCPOP: A sound, complete, partial order planner for
ADL. In: Proceedings of the Third International Conference on Principles of Knowl-
edge Representation and Reasoning, pp. 103–114. Morgan Kaufmann, San Fran-
cisco (1992)

http://www.opencyc.org/
http://www.wikipedia.org
http://www.geonames.org

298 D. Leake and J. Powell

16. Leake, D., Birnbaum, L., Hammond, K., Marlow, C., Yang, H.: Integrating infor-
mation resources: A case study of engineering design support. In: Proceedings of the
Third International Conference on Case-Based Reasoning, pp. 482–496. Springer,
Berlin (1999)

17. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning
adaptation knowledge based on knowledge light approaches. In: Proceedings of the
Fifth German Workshop on Case-Based Reasoning, pp. 235–242 (1997)

18. Patterson, D., Anand, S., Dubitzky, W., Hughes, J.: Towards automated case
knowledge discovery in the M2 case-based reasoning system. Knowledge and Infor-
mation Systems: An International Journal, 61–82 (1999)

19. Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by
learning from cases. In: Proceedings of the Second International Conference on
Case-Based Reasoning. Springer, Berlin (1997)

20. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation
knowledge. In: Aha, D., Watson, I. (eds.) Proceedings of the Fourth International
Conference on Case-Based Reasoning, pp. 131–145. Springer, Berlin (2001)

21. Yang, Q., Cheng, S.: Case mining from large databases. In: Ashley, K.D., Bridge,
D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 691–702. Springer, Heidelberg
(2003)

22. Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from wikipedia. In:
Proceedings of the Twenty-Second National Conference on Artificial Intelligence.
AAAI Press / MIT Press (2007)

23. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case
base mining for adaptation knowledge acquisition. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 750–755.
Morgan Kaufmann, San Mateo (2007)

24. Muñoz-Avila, Cox, M.: Case-based plan adaptation: An analysis and review. IEEE
Intelligent Systems (in press)

25. Firby, R.: Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale
University, Computer Science Department TR 672 (1989)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 299–311, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Cases, Predictions, and Accuracy Learning and Its
Application to Effort Estimation

Jingzhou Li, Brenan Mackas, Michael M. Richter, and Guenther Ruhe

Department of Computer Science, University of Calgary, Canada
{jingli,bhmackas,mrichter,ruhe}@ucalgary.ca

Abstract. Estimation by analogy EBA (effort estimation by analogy) is one of
the proven methods for effort prediction in software engineering; in AI this
would be called Case-Based Reasoning. In this paper we consider effort predic-
tions using the EBA () method AQUA and pay attention to two aspects: (i) The
influence of the set of analogs on the quality of prediction. The set of analogs is
determined by a learning process incorporating the number of nearest neighbors
and the threshold of the similarity measure used, (ii) Analyzing and understand-
ing the conditions under which the prediction can be expected to be the most or
the least accurate.

We study two types of learning: One for finding the “best” set of analogs, and
one for finding out factors for reliability. While both questions are relevant for dif-
ferent areas and disciplines, the focus of the paper is on estimation of effort in
software engineering. For EBA method AQUA, the cases can be features or past
projects characterized by attributes of various type. Classical estimation approaches
just investigate the overall estimated quality of a system. However, in that case in-
formation is missing if and why estimation was performing the way it did. Bad es-
timates are often due to external influences. Therefore it is valuable for to find out
under which conditions the estimates are more or less reliable.

Keywords: Software effort, estimation by analogy, accuracy, learning, AQUA.

1 Introduction

A central goal of the AQUA [1] effort estimation method is to estimate the needed ef-
fort for developing software products. Such estimates play an essential role in busi-
ness planning, in particular in early development stages, e.g. in release planning. We
are interested in estimates at an early stage in the development life cycle; this usually
excludes the use of metrics because such numbers are not available.

A goal of any prediction is to achieve accuracy. A prediction system with a high aver-
age accuracy is called reliable. This kind of reliability is of interest to a company that
may use the system. However, often results are distributed around the average and the
company would like to know under which conditions they can trust an estimate and when
one has to be suspicious. We assume we have an experienced estimator and we want to
detect objective influence factors. For this, we assume that the reliability is influenced by
the attributes and their values used in the cases. Besides that, we want to discover the
situations where the success of the prediction is based on chance.

300 J. Li et al.

In principle, both tasks – prediction and reliability detection – are suitable for any
domain; the specific approach will, however, depend on the application used. The
domain of application of this paper is effort estimation and prediction and validation
methods for software development projects. These problems were considered in algo-
rithmic approaches (see [3], [4], [5], [6]) as well as analogy based methods (see [7],
[8]). The term analogy in this area is often used in place of case-based. Both use ex-
pert knowledge, in either a compiled form or as past explicit experiences; in addition,
analogy can also apply to an operation performed by humans utilizing the expert
knowledge in their heads. A discussion can be found in [2]. Effort estimations have
also be considered in CBR. A (critical) overview can be found in [9], see also [10]. In
order to overcome several problems mentioned we describe a system AQUA that has
approached the effort prediction problem in a comprehensive way, [1], [2]. The im-
plementation was done in [1]. In [2] the target audience was quite different from the
CBR audience and we found it useful to reformulate several techniques in CBR terms.
In contrast to past approaches in software engineering, we combine the full power of
statistical methods with those of case-based reasoning.

From the view point of CBR we emphasize two parameters that are used in most
CBR systems but have not yet been investigated systematically. The first parameter N
is the number of nearest neighbors considered and the second one is the size T of the
threshold for similarity for cases in order to be considered. It should be noted that
these parameters play a role only under certain circumstances. There need to be many
cases that are well distributed; this is the case in our application. The parameters have
also been considered in [11], but with a different focus.

The specification of a CBR system is done in terms of its utility (i.e., its useful-
ness), see [12]. The utility can be used as the specification for a similarity measure as
pointed out in [12]. In order to meet the specification the similarity measure has to be
chosen properly. In our situation the utility is the average reliability.

The CBR view results in AQUA in the presence of many elements that are not
used in current software estimation approaches. The system AQUA contains a learn-
ing component which is based on evaluations of past experiences, i.e. past projects.
We present an explorative study that was conducted not only for studying the quality
of the estimates but also for improving the performance. The results were compared
with results of other similar methods. In the present stage of AQUA there are cur-
rently three types of evaluations and two types of learning involved:

− Evaluation 1: A statistical evaluation for judging the overall quality of the ap-
proach in order to increase the confidence of the software company in the method.
The main concern is the accuracy of these predictions.

− Evaluation 2: It was studied to see how each factor affecting the similarity meas-
ure influences the performance. This analysis deals mainly with the two parameters
N (number of nearest neighbors), and T (threshold for the degree of similarity con-
sidered); in addition, the number of attributes, the number of qualitative attributes
etc. was considered. This gave rise to the first kind of learning.

− Evaluation3: The analysis of (2) was then extended, based on the observation that
good predictions do not only depend on the quality of the predictor. There are often
circumstances that influence the accuracy that are outside of the control of the es-
timator. This is the motivation behind the second kind of learning.

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 301

Evaluation 1 is standard. There are several approaches to judge confidence in CBR
systems, see for instance [13]. Evaluation 2 is not commonly used for CBR systems.
Improvements of CBR systems are mainly obtained by weight learning, or, less often
by learning local measures, see [14], [15]. Here the focus for learning is placed on the
parameters N and T. For this reason it can be tolerated that all weights are set to 1.

The problem is now that a fixed and small number of cases, as assumed in existing
analogy-based methods, may not produce the best accuracy of prediction. Therefore, a
flexible mechanism based on learning of existing data is proposed for determining the
appropriate values of N and T for offering the best accuracy of prediction. Some crite-
ria for measuring the quality of predictions in terms of N and T are proposed. This is
the goal of the first kind of learning.

Evaluation 3 provides an additional insight into the technique looking at total per-
cent error only. This allows one to establish under what conditions (attribute values)
the prediction result should be trusted as true. The evaluation allows one to establish
when a high expected accuracy rate of the predictions is not simply caused by a num-
ber of lucky guesses. This kind of insight is the goal of the second kind of learning.
The benefit of this type of learning is that it allows a company to keep a closer eye on
a situation where the prediction method doubtful. Our principal method can be ap-
plied to other predictions like weather forecast or in economy.

We do not claim to have a universally applicable system. This is due to the fact
that many aspects depend on the context, for instance, the type of projects a given
company generally works on. The application affects the choice of which parameters
are important and their weighting. However, our principal method can be applied
once these parameters have been determined.

From the viewpoint of knowledge containers (see [16]) the vocabulary container
contains the reliability knowledge; presently it cannot be seen how to shift it to other
containers. The parameters N and T obviously carry some knowledge. Therefore it
seems to be justified to regard them as knowledge containers; in fact, sub containers
of the similarity container. This has not been investigated so far.

The paper is organized as follows: Section 2 discusses AQUA, section 3 presents
the two leaning processes (3.1 and 3.2), and Section 4 gives a summary and outlook.

2 AQUA

2.1 Terminology and Basics

In the software community predictions of effort estimates are a common goal and
many methods are employed. Some use experiences in ways that is called analogy
reasoning. AQUA was originally targeted at the software community which is not
very familiar with CBR. Therefore our approach varies somewhat from what is stan-
dard in CBR, and for that reason we introduce some concepts and partially reformu-
late the original AQUA concepts in CBR terms.

The cases are of the form (problem, solution) where the problem is usually given
as an attribute value vector with attributes A = {a1, a2, …, am}, and the solution is a
number called Effort. The case base is CB = {r1, r2, …, rn}, and A is the set of attrib-
utes to describe the objects. The set S = {s1, s2, …, st} denotes the given objects to be
estimated.

302 J. Li et al.

We discuss shortly how we use CBR techniques. The similarity measure is con-
structed in a standard way using the local-global principle, see [16]:

Gsim(sg, ri) = f(Lsim(a1(sg,), a1(ri)), Lsim(a2(sg,),a2(ri)), … , Lsim(am(sg,),am(ri)))
It should be remarked that our global measure is monotonic, i.e., Gsim(sg, ri) >

Gsim(sg, rj), i ≠ j, if and only if ∃ ak∈A: Lsim(ak(sg), ak(ri)) > Lsim(ak(sg), ak(rj)) must
be true to be useful for our considerations.

For simplicity we take f as a weighted sum. We will not discuss the local measures
here. They are standard in CBR (but not so much in software estimation), depending
mainly on the types of the attributes.

An essential problem is which attributes to choose. To ensure meaningful attrib-
utes, we assume that the set A of attributes is determined by applying the paradigm of
goal-oriented measurement [17] or other possible methods. The attributes in our ex-
ample data set were not quite ideal but we could not change them because they were
given to us. Typical attributes used are contained in the set {Internal process, Data en-
try, Output form, Data query from database, Data query from file, Printing}.

We comment only on two types of attributes that represent uncertainties because
they are not standard in software estimates. In particular, it is good to see how they
are treated by the local measures.

One type is FUZ where the values of an attribute are fuzzy subsets of a crisp set C.
For example, the attribute Funct% of a project describing its functionality is of FUZ
type. There may be several types of functionality existing in one project, e.g. an inter-
nal process together with data entry and output form; each with a different percentage
of total functionality, e.g. {0.70/Internal process, 0.1/Data entry, 0.1/Output form,
0.1/Data query from database, 0/Data query from file, 0/Printing}. The set of the de-
grees to which each functionality accounts for in the overall functionality of a project
will be treated as a fuzzy subset of Funct%.

Given aj(sg), aj(ri)∈FUZ aj(sg)={cg1, cg2, …,
cgnc }, aj(ri)={ci1, ci2, …,

cinc }, they

are treated as two vectors ()j ga s (cg1, cg2, …,
cgnc) and ()j ia r (ci1, ci2, …,

cinc),

with the fuzzy set elements as their vector elements, where nc=|Cj|, Cj is the corre-
sponding crisp set of aj. Seeing FUZ as a vector space, the local similarity is calcu-
lated using the Euclidean distance between the two vectors:

2

1
((), ())

1+ ()
c

j g j i n

gk ik
k 1

Lsim a s a r

c - c
=

=

∑

The role of the parameters N and T is described by:

(P1) number of cases considered is N, i.e. |CBtopN(sg)| = N,
(P2) the global similarity between sg and all objects in CBtopN must be greater than

the given threshold T: Gsim(sg,
g

ir) ≥ T for all g
ir ∈CBtopN

(P3) CBtopN includes only the closest N objects to sg in R in terms of global similar-

ity: Gsim(sg,
g

ir) ≥ Gsim(sg, rx) for all g
ir ∈CBtopN and all rx∈(CB\\CBtopN) (the dif-

ference set).

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 303

The other type of attributes is RNG (range). These are numerical but instead of num-
bers intervals are taken. They are also useful in software engineering to represent impre-
cise information. For example, the time spent on developing a part of a requirement is
estimated to be between 12 to 17 hours. Given a case r, aj(sg), aj(ri)∈RNG, let aj(sg)=<lgj,
hgj> and aj(ri)=<lij, hij>, then, the similarity between aj(sg) and aj(ri) is defined as:

(,) - (,) + 1

(,) - (,)

1 and

0 or ((), ())=

ij gj gj ij

ij gj gj ij
j g j i

gj ij gj ij

gj ij gj ij

min h h max l l

max h h min l l

l l h h

l h l hLsim a s a r

≤ ≤

> >

 + 1 otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

It can be seen that the similarity depends on the overlap between the two ranges.
In summary, an AQUA system is described by the following parameters:

<attributes, local measures Lsim, global measure Gsim, N, T>

The last two parameters are the subject of the first type of learning while the attrib-
utes are the basis for the second type of learning.

2.2 AQUA Predictions

The goal of the AQUA process itself is to generate predictions. Before performing the
prediction itself we optimize the similarity system. The objects of the optimization are
the values of the parameters N and T for a given project. This takes place in a learning
procedure. For this, cross-validation based learning is performed to determine the ac-
curacy distribution of predictions depending on varying parameters N and T. This is
described below in the section 3.1 (first learning process).

The results of the optimization are then used to actually perform the effort prediction.
The predicted value for the effort of sg is then taken as

()

()

(* (,))

(,)

()

() k topN g

k topN g

g k
R

g k
R

k
r s

g

r s

Effort Gsim s r

Gsim s r

r

Effort s
∈

∈

=
∑

∑

where Effort is the real effort. This turns out to be an improvement of the analogy
strategy used in former analogy-based methods, where a fixed and a small number of
cases are considered regardless of the similarity threshold T.

2.3 Evaluation Data

AQUA has been tested on data set USP05 (University Students Projects 2005). It con-
tains 197 different projects, each with 15 different attribute fields. The data set was
split into two parts: USP05-FT and USP05-RQ for 76 features and 121 requirements
respectively. The attributes of the data set are specified in Appendix 1.

The choice of the attributes is crucial for the results of further processing. They
varied from abstract concepts such as the internal complexity of the project to more
specific attributes like development tools. What matters is the information that is con-
tained in the values of the attributes. The attributes are described in the Appendix.
When AQUA was confronted with the data one could not influence the attributes used
anymore; a posterior we found that not all attributes of interest had been used.

304 J. Li et al.

3 Learning

3.1 The First Learning Process

This process is concerned with the determination of the optimal parameter settings of
N (number of nearest neighbors considered) and T (the threshold for the similarity).
For a project P the optimal values of N and T are denoted by PN,T. These numbers
have been investigated in software engineering in the past. For instance, N and T were
tested separately in [12] as two strategies to determine the number of K-nearest
neighbors. In existing analogy-based methods in software engineering, a small num-
ber of cases, typically from one to five, are used. This number is fixed for a given
data set regardless of the similarity of the cases. In the following section we present
the results of a more flexible approach in the form of an explorative study to gain fur-
ther insight into the sensitivity between prediction accuracy and how similar the cases
are, as well as how many cases are used.

For the explorative study the quasi-standard Leave-One-Out Cross Validation
(LOOCV) method for validating effort estimation methods is used, (see [18)]). Given
a data set CB with known efforts of all the objects, cross-validation is done on CB it-
self by estimating one object using others as cases each time, thus we have
Gsim:CB×CB→[0, 1]. For our purposes, PN,T will be decided by varying values of
both N and T. A statistical distribution of the accuracy in dependence of N and T is
thus obtained after all the projects in the data set are estimated.

In addition to commonly used criteria as discussed in [5], the evaluations criteria
contain the new criteria: support, strength, number of Top-N similar objects, and T.

In order to measure accuracy, different kinds of errors have been examined in the
literature, they are more or less refined and we combine them. We go into some detail
in order to be able to compare the results. The most important are (used here):

(1) Mean of magnitude of relative error (MMRE)

() ()

()

1

k

k k

r R k

Effort r Effort r

Effort rn
MMRE

∈

−
= ∑ for a fixed pair of values of N and T for all the

objects in R in a single run of jack-knife, where R = CB and n=|CB|; this is a relative
error.

(2) Prediction at level α: Pred(α) measures the percentage of estimates that are
within a given level of accuracy: Pred(α)=τ/λ, where λ is the total number of esti-
mates, and τ the number of estimates with a MRE less than or equal to α. Greater
Pred(α) with smaller α means

(3) Support and strength: Given an object rg∈R under estimation in the jack-knife
process, if thresholds of N and T are set to N* and T* respectively, only when
|RtopN(rg)|≥1 can rg have analogies and be able to be predicted. In other words, RtopN(rg)
might be empty if T* is too high or/and N* is too big, hence rg cannot be predicted
without any eligible analogies. Therefore, the number of objects that can be estimated
with given values of N and T is also an important measure for the prediction quality.

According to [5], the acceptable threshold values for MMRE and Pred(0.25) are
suggested to be MMRE≤25% , Pred(1/4)≥75% , and Strength≥ 0.3, respectively. We

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 305

adopted these thresholds in order to be able to compare our results with those reported
elsewhere. These criteria are combined using the criterion MPS:

" " 0.25 and (25) 0.75 and 0.3

" " Otherwise

Yes CMMRE CPred CStrength
MPS

No

≤ ≥ ≥
=
⎧
⎨
⎩

where CMMRE, CPred(0.25), and CStrength are the maximum value of MMRE,
minimum value of Pred(1/4) and minimum value of Strength, respectively. Yes means
accepted and No means not accepted. Values of N and T for corresponding acceptable
cases are called qualified N and T.

We split the sensitivity analysis of MMRE into two parts by varying N and T inde-
pendently and simultaneously. The former is shown in [2] for data sets USP05-FT,
USP05-RQ with two-dimensional scatter plots, the latter is shown in Fig.1. The only
system so far that varied N and T simultaneously was GRACE (19].

Fig. 1. MMRE for N,T Fig. 2. MMRE for T only

The distinction between accurate and inaccurate was decided by whether or not the

prediction percent error fell below a predetermined cutoff point CO which means that
small prediction error counted as accurate. We chose to test the networks with cutoffs
of 1%, 3%, 5%, 10%, and 15%. What can also be seen here is the expected fact that
beyond a certain level increasing T does not add to the accuracy of the prediction, see
the second learning.

The learning phase is a process of multiple runs of cross-validation which vary
both T and N. The increment of N is set to 1 starting from 1, T to 0.01 or 0.02 starting
from 0, depending on the size of the data set and the density of accuracy pursuing. In
order to determine the best values of T and N we search for the smallest MMRE,
greatest Strength and then greatest Pred(0.25), with MPS measuring whether the best
accuracy is acceptable or not. Let’s assume that the data base of accuracy distribution
is sorted by MMRE (ascending), Strength (descending), Pred(0.25) (descending), T
(ascending), and N (ascending). We skip the details of this search process. At the end
it is decided whether the expected prediction accuracy is acceptable or not depending
on the value "Yes" or "No" of MPS1 . An example for the exploration data is shown in
table 1.

306 J. Li et al.

Table 1. Accuracy for USP05-FT

N T
MMRE
%

Pred(0.25)
%

Strength
%

Support
(76)

MPS

1 0.86 17 86 75 57 Yes
1 0.8 20 82.26 82 62 Yes

1-24 0.94 4-18 76-92 33-70 25-53 Yes

20-26 0.92 13-18 75 42 32 Yes

3.2 The Second Learning Process

The experiments in this section should only be taken as an example for illustration.
For a real statistical insight one would need more data. For this reason the shown re-
sults have not been investigated further.

Goal of the second learning process was to provide more insight into the reliability
of AQUA. Percent accuracy is inadequate for our purposes because it can provide a
false sense of confidence in specific results and does nothing to affirm that correct re-
sults are due to more than luck. The point is that accuracies are distributed around the
average where the variance may be high. In such a situation one is interested in de-
termining factors on which the accuracy depends. Our assumption is that we have an
experienced estimator. We also assume that the relevant influence factors are hidden
in the attributes and their values. This view results in a learning task where the data
are provided by the case base. We use the following terminology:

Correct: The learning process was able to predict the accuracy of the estimator
Incorrect: The learning process was not able to predict the accuracy of the estima-
tor
Positive: The prediction was that the estimator would be correct
Negative: The prediction was that the estimator would not be correct.

We use these terms to create a set of four possible outcomes, Correct Positive,
Correct Negative, Incorrect Positive and Incorrect Negative predictions of estimator
accuracy.

Step one: Neural network application (see [20]). The purpose was 1) show the
results of AQUA are more than luck and 2) attempt to identify the cases, their attrib-
utes and values in which the results of AQUA should be deemed more or less reliable

For learning we used neural networks. All data processing was done with ruby
scripts and the Java Neural Network Simulator (Java version of SNNS, ([21], [22]))
was used for building and training the neural networks.

The input of the network is the attribute representation of the cases. We varied the
number of hidden nodes. The net has two outputs, representing positive and negative
predictions. This pair of outputs represents a statement about the accuracy of AQUA.
During the training process these outputs were trained to binary XOR values accord-
ing to the four possible outcomes. A percent error cut-off CO was chosen as in section
3.1. Each of the outputs may now be correct or incorrect, which leads to four possi-
bilities. The training data were chosen randomly.

Concerning the attribute types mentioned above, a different strategy was used.
Each percentage value in the fuzzy set of functionality percentages was assigned to a

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 307

single input. Ranged values were split into two inputs, one for the minimum value and
one for the maximum.

Once the networks were trained they were tested using a randomly chosen test sub-
set of each dataset. Each result from the test set was placed into one of four catego-
ries: Correct Positive (CP), Incorrect Positive (IP), Correct Negative (CN), and Incor-
rect Negative (IN).

Step two: Analysis of results
The analysis of the results was done in two steps:

• Analysis at a per network level
• Analysis at a per attribute level.

On the network level the network outputs were classified for each project. The re-
sults are shown in Table 3. If a network is able to accurately classify the prediction of
AQUA, it reinforces that AQUA is not simply making a lucky guess; in this case we
have an additional conformation.

Secondly, the results were analyzed at an attribute per value level, which helps to
identify not only the attributes that most adversely affect accuracy, but also the spe-
cial cases for these attributes that have either very high or very low accuracy. For this
purpose, for each attribute a, the case base was split into disjoint subsets according to
the occurring values of the attribute and the same analysis step was performed. A part
of the results are shown in Table 4.

Attributes of interest were identified by high percentage of correct classifications.
Having a high percentage of Correct Positive classifications for a specific attrib-
ute/value pair should indicate that more confidence can be placed in the effort estima-
tion of similar projects, whereas a high percentage of Correct Negative classifications
points to problem scenarios where AQUA’s prediction should be taken with a grain of
salt. For a software company this means that the company should look mainly at the
per attribute evaluation. If an attribute has certain critical values then one should not
rely too much on the prediction.

The experimental results shown in Table 2 where done for 66 input nodes, 75 re-
spectively. 150 hidden nodes, and two output nodes (with two variations a and b). The
results show that AQUA was in general confirmed by the neural network for the posi-
tive answers but not so much for the negative ones. On a qualitative level one can say
that more than luck was involved for the AQUA method.

In Table 3 we investigate as an example the attribute internal complexity that has in
different projects different values 1, …,5. The values 1 and 2 give more confidence
than 3 or 5.

The USP05 was relatively useful for our purposes, in particular because there are
several stand-out cases in which the networks were able to correctly guess the success
of the effort estimation in not only the positive cases but also a number of the nega-
tive cases as well. This hints that this neural network verification method was able to
learn some of the estimation behaviour of AQUA, and as such, that in the case of
USP05 there may be more than luck involved. A table listing the test set classification
statistics for the USP05 dataset is included in the appendix.

308 J. Li et al.

Table 2. Network based analysis

Cutoff Percent Network CP IP CN IN

1 USP05_66_150_2a 11 1 2 4

1 USP05_66_150_2b 12 0 2 4

1 USP05_66_70_70_2a 12 0 1 5

1 USP05_66_70_70_2b 12 0 1 5

1 USP05_66_75_2a 12 0 0 6

1 USP05_66_75_2b 12 0 0 6

3 USP05_66_150_2a 14 0 0 4

3 USP05_66_150_2b 14 0 0 4

3 USP05_66_70_70_2a 12 2 0 4

3 USP05_66_70_70_2b 13 1 0 4

3 USP05_66_75_2a 14 0 0 4

3 USP05_66_75_2b 13 1 0 4

5 USP05_66_150_2a 14 0 1 3

5 USP05_66_150_2b 12 2 0 4

5 USP05_66_70_70_2a 13 1 0 4

5 USP05_66_70_70_2b 13 1 1 3

5 USP05_66_75_2a 12 2 0 4

5 USP05_66_75_2b 14 0 0 4

10 USP05_66_150_2a 13 1 1 3

10 USP05_66_150_2b 13 1 0 4

10 USP05_66_70_70_2a 13 1 1 3

10 USP05_66_70_70_2b 13 1 0 4

10 USP05_66_75_2a 14 0 0 4

10 USP05_66_75_2b 14 0 1 3

15 USP05_66_150_2a 13 1 1 3

15 USP05_66_150_2b 14 0 1 3

15 USP05_66_70_70_2a 14 0 1 3

15 USP05_66_70_70_2b 13 1 2 2

15 USP05_66_75_2a 12 2 2 2

15 USP05_66_75_2b 14 0 0 4

Table 3. Attribute based analysis

Attribute Value CP IC CN IN

IntComplx 1 8 0 0 1
IntComplx 2 2 0 0 0
IntComplx 3 1 1 0 1
IntComplx 4 0 0 0 0
IntComplx 5 1 1 0 2

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 309

The belief that more than luck is involved for USP05 is further enhanced by ana-
lyzing the individual attribute value scores. Most of the attribute values with high oc-
currence count attributes are very heavily sided to either correct or incorrect. For
space reasons were are not able to include a full listing of these per attribute per value
scores, but numbers showing the results of one network for various values of internal
complexity are shown in Table 2. From this table we can note that more confidence
should be placed in AQUA’s estimation of projects with internal complexity 1 or 2,
than 3 or 5. The method can be further refined (in the same way as done here) by
looking at effort overestimates and underestimates.

4 Summary and Outlook

In this paper we tackled a problem that is known to be notoriously difficult problem
of effort estimation for software development. It is of high economic importance and
therefore it has been approached in the past from many different angles. Here we used
CBR methods, but added an aspect that is not common yet. We showed that consider-
ing the number of nearest neighbors and the similarity threshold can have a consider-
able influence on the prediction accuracy. Therefore these parameters were subject to
optimization by a statistical learning process. A second type of learning was applied
to get an insight into the factors that determine the reliability of the prediction in a
single instance. This is again of importance to software companies. Both kinds of
learning need further evaluations. For the second type of learning, alternative methods
and configuration of neural networks need to be evaluated. The principal applicability
of the approach has been demonstrated for the purpose of effort estimation of soft-
ware projects, but is not limited to that.

There are several issues left for the future and we name only a few. The first is the
question in how far the knowledge contained in N and T can also be expressed in
terms of other subcontainers of the similarity measure, in particular the weights. An-
other problem is to try other learning methods instead of neural networks, for instance
clustering or fuzzy clustering. This related to the question in how far the strict cut-off
ca be replaced by a fuzzy representation.

Acknowledgements

The authors are grateful for the helpful comments of the referees and to Jim McElroy
for corrections and proof reading.

References

1. Li, J.Z.: A Flexible Method for Software Effort Estimation by Analogy. PhD Thesis, Uni-
versity of Calgary, Department of Computer Science, Calgary (2007)

2. Li, J.Z., Ruhe, G., Al-Emran, A., Richter, M.M.: A flexible method for software effort es-
timation by analogy. Empirical Software Engineering 12(1), 65–106 (2007)

310 J. Li et al.

3. Angelis, L., Stamelos., I., Morisio, M.: Building a Software Cost Estimation Model Based
on Categorical Data. In: METRICS 2001: Proceedings of the IEEE 7th International Sym-
posium on Software Metrics, England, UK, pp. 4–15 (2001)

4. Ruhe, M., Jeffery, R., Wieczorek, I.: Cost Estimation for Web Application. In: ICSE 2003:
Proceedings of 25th International Conference on Software Engineering, Oregon, USA, pp.
285–294 (2003)

5. Conte, S.D., Dunsmore, H., Shen, V.Y.: Software engineering metrics and models. Benja-
min-Cummings Publishing Co. Inc. (1986)

6. Mendes, E., Watson, I., Chris, T., Nile, M., Steve, C.: A Comparative Study of Cost Esti-
mation Models for Web Hypermedia Applications. Empirical Software Engineering 8(2),
163–196 (2003)

7. Shepperd, M., Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE
Transactions on Software Engineering 23(12), 736–743 (1997)

8. Walkerden, F., Jeffery, R.: An Empirical Study of Analogy-based Software Effort Estima-
tion. Empirical Software Engineering 4(2), 135–158 (1999)

9. Delany, S.J., Cunningham, P., Wilke, W.: The Limits of CBR in Software Project Estima-
tion. In: 6th German Workshop On Case-Based Reasoning,
https://www.cs.tcd.ie/publications/tech-reports/reports.99/
TCD-CS-1999-21.pdf

10. Kadoda, G., Michelle, C., Chen, L., Shepperd, M.: Experiences Using Case-Based Reason-
ing to Predict Software Project Effort. In: EASE 2000, Staffordshire, UK (2000)

11. Leake, D.B., Sooriamurthi, R.: Case dispatching versus case-base merging: when MCBR
matters. International Journal on Artificial Intelligence Tools 13(1), 237–254 (2004)

12. Richter, M.M.: Foundations of Similarity and Utility. In: Proc. FLAIRS 2007, pp. 30–37.
AAAI Press, Menlo Park (2007)

13. Cheetham, W.: Case Based Reasoning with Confidence. In: Blanzieri, E., Portinale, L.
(eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 15–25. Springer, Heidelberg (2000)

14. Wettschereck, D., Aha, D.W.: Weighting features. In: ICCBR 1995. Springer, Heidelberg
(1995)

15. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based Reason-
ing. Dissertation Kaiserslautern (2003)

16. Richter, M.M.: Similarity. In: Perner, P. (ed.) Case-Based Reasoning on Signals and Im-
ages, pp. 25–90. Springer, Heidelberg (2007)

17. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. Encyclo-
pedia of Software Engineering. John Wiley & Sons, Inc., Chichester (1994)

18. Efron, B., Gong, G.: A Leisurely Look at the Bootstrap, the Jackknife, and Cross-
Validation. The American Statistician 37(1), 36–48 (1983)

19. Song, Q., Shepperd, M., Mair, C.: Using Grey Relational Analysis to Predict Software Ef-
fort with Small Data Sets. In: METRICS 2005: Proceedings of the 11th IEEE International
Software Metrics Symposium, Como, Italy, pp. 35–45 (2005)

20. Mackas, B.: Prediction Accuracy Validation. In: Richter, M.M. (ed.) Teaching Machine
Learning, Technical Report, University of Calgary (2007)

21. SNNS user manual, http://www.ra.informatik.uni-tuebingen.de/
SNNS/UserManual/UserManual.html

22. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from
examples without local minima. Neural Network 2(1), 53–58 (1989)

 Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation 311

Appendix A: Data Set UPS05

Attribute
Name

Type Values Description

Funct% Fuzzy {Internal Process, Data en-
try/modification/deletion, Out-
put, Data query from data-
base/file, Printing, Report,
Other}

Percentage of each type of func-
tionality

Internal
Complexity

Ordinal 1-Very low, 2-Low, 3-
Medium, 4-High, 5-Very
high

Complexity of internal calcula-
tions

Data File Ordinal Positive Integer Number of data files/database
tables accessed

DataEn Ordinal Positive Integer Number of data entry items
DataOut Ordinal Positive Integer Number of data output items
UFP Ordinal Positive Integer Unadjusted function point count
Lang Set C++, Java, VB, Java Script,

VB Script, SQL, Php, Perl,
Asp, Html, XML, etc

Programming Languages used
for implementation

Tools Set VJ++, VB, Delphi, Visual-
Cafe, JUnit, PowerBuilder,
BorlandC++, etc.

Development Tools and plat-
forms used for implementation

ToolExpr Range Range of positive integers Range of experience (in
months) of the development
team with the development
tools and languages.

AppExpr Ordinal 1-Very low, 2-Low, 3-
Medium, 4-High, 5-Very
high

Application experience level

TeamSize Range Range of positive integers Range in size of development
team over project. E.g. [2,5]
indicates at any time the project
had between 2 and 5 people ac-
tively working

DBMS Set Oracle, Access, SQLServer,
MySQL, etc

Names of database systems
used for project

Method Set OO, SA, SD, RAD, JAD,
MVC, others

Programming methodologies
used for implementation

SAType Set B/S, C/S, BC/S, Centered,
other

Type of System/Application
Architecture: B-Browser,
C-Client, S-Server

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 312–324, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Evaluation of Feature Subset Selection, Feature
Weighting, and Prototype Selection for Biomedical

Applications

Suzanne Little1, Ovidio Salvetti2, and Petra Perner1

1 Institute of Computer Vision and Applied Computer Sciences, Germany
Suzanne.Little@ibai-institut.de, pperner@ibai-institut.de

2 ISTI-CNR, Pisa, Italy
Ovidio.Salvetti@isti.cnr.it

Abstract. Many medical diagnosis applications are characterized by datasets
that contain under-represented classes due to the fact that the disease appears
more rarely than the normal case. In such a situation classifiers that generalize
over the data such as decision trees and Naïve Bayesian are not the proper
choice as classification methods. Case-based classifiers that can work on the
samples seen so far are more appropriate for such a task. We propose to calcu-
late the contingency table and class specific evaluation measures despite the
overall accuracy for evaluation purposes of classifiers for these specific data
characteristics. We evaluate the different options of our case-based classifier
and compare the performance to decision trees and Naïve Bayesian. Finally, we
give an outlook for further work.

Keywords: Feature Subset Selection, Feature Weighting, Prototype Selection,
Evaluation of Methods, Methodology for Prototype-Based Classification, CBR
in Health.

1 Introduction

Many medical diagnosis applications are characterized by datasets that contain under-
represented classes due to the fact that the disease appears more rarely than the nor-
mal case. In such a situation classifiers that generalize over the data such as decision
trees and Naïve Bayesian are not the proper choice as classification methods. Deci-
sion trees tend to over-generalize to the class with the most examples while Naïve
Bayesian requires enough data for the estimation of the class-conditional probabili-
ties. Case-based classifiers that can work on the samples seen so far are more appro-
priate for such a task.

A case-based classifier classifies a new sample by finding similar cases in the case
base based on a proper similarity measure. A good coverage of the casebase, the right
case description and the proper similarity are the essential functions that enable a
case-based classifier to perform well.

In this work we studied the behavior of a case-based classifier based on different
medical datasets with different characteristics from the UCI repository [1]. We chose

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 313

datasets where one or more classes were heavily under-represented compared to the
other classes as well as datasets having more or less equally distributed samples for
the classes for comparison purposes.

The case-based classifier has several options for improving its performance that can
be chosen independently or in combination. Currently available options in our case-
based classifier are: k-value for the closest cases; feature subset selection (FS); feature
weight learning (FW) and prototype selection (PS). To conclusively determine which
combination of options is best for the current problem is non-obvious and time-
consuming and the hope of our study is to develop a methodology that assists a user to
design and refine our case-based classifiers. We observe the influence of the different
options of a case-based classifier and report the results in this paper. Our study is an on-
going study; we also intend to investigate other options in casebase maintenance.

The aim of work here is to give the user a methodology for best applying our case-
based classifier and how to evaluate the classifier particularly in situations where
there is under-representation of specific classes. In Section 2 we describe our case-
based classifier named ProtoClass while Section 3 describes the evaluation strategy.
The datasets are described in Section 4. Results are reported in Section 5 and a dis-
cussion on the results is given in Section 6. Finally, we summarize our work and give
an outlook of further work in Section 7.

2 Case-Based Classifiers

A case-based classifier classifies a sample according to the cases in a case base and
selects the most similar case as output of the classifier. A proper similarity measure is
necessary to perform this task but in most applications there is no a-priori knowledge
available that suggests the right similarity measure. The method of choice to select the
proper similarity measure is therefore to apply a subset of the numerous similarity
measures known from statistics to the problem and to select the one that performs best
according to a quality measure such as, for example, the classification accuracy. The
other choice is to automatically build the similarity metric by learning the right attrib-
utes and attribute weights. The later one we chose as one option to improve the per-
formance of our classifier.

When people collect samples to construct a dataset for a case-based classifier it is
useful to select prototypical examples from this input. Therefore a function is needed
to perform prototype selection and to reduce the number of examples used for classi-
fication. This results in better generalization and a more noise tolerant classifier. It is
also possible for an expert to select prototypes manually. However, this can result in
bias and possible duplicates of prototypes causing inefficiencies. Therefore a function
to assess a collection of prototypes and identify redundancy is useful.

Finally, an important variable in a case-based classifier is the value used to deter-
mine the number of closest cases and the final class label.

Consequently, the design-options the classifier has to improve its performance are
prototype selection, feature-subset selection, feature weight learning and the ‘k’ value
of the closest cases (see Figure 1).

We choose a decremental redundancy-reduction algorithm proposed by Chang [2]
that deletes prototypes as long as the classification accuracy does not decrease. The

314 S. Little, O. Salvetti, and P. Perner

feature-subset selection is based on the wrapper approach [3] and an empirical fea-
ture-weight learning method [4] is used. Cross validation is used to estimate the clas-
sification accuracy. A detailed description of our classifier ProtoClass is given in [6].
The prototype selection, the feature selection, and the feature weighting steps are
performed independently or in combination with each other in order to assess the
influence these functions have on the performance of the classifier. The steps are
performed during each run of the cross-validation process. The classifier schema
shown in Figure 1 is divided in the design phase (Learning Unit) and the normal clas-
sification phase (Classification Unit). The classification phase starts after we have
evaluated the classifier and determined the right features, feature weights, the value
for ‘k’ and the cases.

Our classifier has a flat case base instead of a hierarchical that makes it easier to
conduct the evaluations.

dataset format
converter

feature subset
selection

feature weight
learning

prototype
selection

 generalised CaseBase
 feature weights
 similiarity measures

Learning Unit

similarity-based classification
cross validation

CBR
Classifier

Classification Unit

classdataset format
converter

accuracy
contingency table

Fig. 1. Case-based Classifier

2.1 Classification Rule

This rule [5] classifies x in the category of its closest case. More precisely, we call
x’n∈{x1,x2,…,xi,…xn} a closest case to x if () ()min , ,i nd x x d x x′= , where

i=1,2,…,n.
The rule chooses to classify x into category Cn, where nx′ is the closest case to x

and nx′ belongs to class Cn.

In the case of the k-closest cases we require k-samples of the same class to fulfill
the decision rule. As a distance measure we use the Euclidean distance.

2.2 Prototype Selection by Chang’s Algorithm

For the selection of the right number of prototypes we used Chang’s algorithm [2].
The outline of the algorithm can be described as follows: Suppose the set T is given

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 315

as T={t1,…,ti,…,tm} with ti as the i-th initial prototype. The idea of the algorithm is
as follows: We start with every point in T as a prototype. We then successively merge
any two closest prototypes t1 and t2 of the same class by a new prototype t, if the
merging will not downgrade the classification of the patterns in T. The new prototype
t may simply be the average vector of t1 and t2. We continue the merging process
until the number of incorrect classifications of the pattern in T starts to increase.

Roughly, the algorithm can be stated as follows: Given a training set T, the initial pro-
totypes are just the points of T. At any stage the prototypes belong to one of two sets –
set A or set B. Initially, A is empty and B is equal to T. We start with an arbitrary point in
B and initially assign it to A. Find a point p in A and a point q in B, such that the distance
between p and q is the shortest among all distances between points of A and B. Try to
merge p and q. That is, if p and q are of the same class, compute a vector p* in terms of p
and q. If replacing p and q by p* does not decrease the recognition rate for T, merging is
successful. In this case, delete p and q from A and B, respectively, and put p* into A, and
the procedure is repeated once again. In the case that p and q cannot be merged, i.e. if
either p or q are not of the same class or merging is unsuccessful, move q from B to A,
and the procedure is repeated. When B becomes empty, recycle the whole procedure by
letting B be the final A obtained from the previous cycle, and by resetting A to be the
empty set. This process stops when no new merged prototypes are obtained. The final
prototypes in A are then used in the classifier.

2.3 Feature-Subset Selection and Feature Weighting

The wrapper approach [3] is used for selecting a feature subset from the whole set of
features and for feature weighting. This approach conducts a search for a good feature
subset by using the k-NN classifier itself as an evaluation function. By doing so the spe-
cific behavior of the classification methods is taken into account. The leave-one-out
cross-validation method is used for estimating the classification accuracy. Cross-
validation is especially suitable for small data set. The best-first search strategy is used
for the search over the state space of possible feature combination. The algorithm termi-
nates if we have not found an improved accuracy over the last k search states.

The feature combination that gave the best classification accuracy is the remaining
feature subset. We then try to further improve our classifier by applying a feature-
weighting tuning-technique in order to get real weights for the binary weights.

The weights of each feature wi are changed by a constant value, δ: wi:=wi±δ. If
the new weight causes an improvement of the classification accuracy, then the weight
will be updated accordingly; otherwise, the weight will remain as it is. After the last
weight has been tested, the constant δ will be divided into half and the procedure
repeats. The process terminates if the difference between the classification accuracy
of two interactions is less than a predefined threshold.

3 Classifier Construction and Evaluation

Since we are dealing with small sample sets that may sometimes only have two sam-
ples in a class we choose leave one-out to estimate the error rate. We calculate the

316 S. Little, O. Salvetti, and P. Perner

average accuracy and the contingency table (see Table 1) showing the distribution of
the class-correct classified samples as well as the distribution of the samples classified
in one of the other classes. From that table we can derive a set of more specific per-
formance measures that had already demonstrated their advantages in the comparison
of neural nets and decision trees [7] such as the classification quality (also called the
sensitivity and specificity in the two-class problem).

Table 1. Contingency Table

True Class Label (assigned by
expert)

 1 i … m pki
1 c11 c1m
i ... cii
…
m cm1 cmm

Assigned

Class
Label

(by Classi-
fier)

pti

In the fields of the table are recorded the true class distribution within the data set

and the class distribution after the samples have been classified as well as the mar-
ginal distribution cij. The main diagonal is the number of correctly classified samples.
From this table, we can calculate parameters that describe the quality of the classifier.

The correctness or accuracy p (Equation 1) is number of correctly classified samples
according to the number of samples. This measure is the opposite to the error rate.

∑
=

∑
=

∑
==

m

i

m

j
ij

c

m

i
ii

c

p

1 1

1 (1)

The class specific quality pki (Equation 2) is the number of correctly classified
samples for one class i to all samples of class i and the classification quality pti (Equa-
tion 3) is the number of correctly classified samples of class i to the number of cor-
rectly and falsely classified samples into class i:

∑
=

=
m

j
ji

ii
ki

c

c
p

1

 (2)

1

ii
ti m

ij
j

c
p

c

(3)

These measures allow us to study the behavior of a classifier according to a par-
ticular class. The overall error rate of a classifier may look good but when examining
the classification quality pti for a particular class we may find it not acceptable.

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 317

We also calculate the reduction rate, that is, the number of samples removed from
the dataset versus the number of samples in the case base.

Since the classifier has several options: prototype-selection, feature subset selec-
tion and feature weighting that can be chosen combinatorially we performed the tests
on each of these combinations in order to get an understanding for which data charac-
teristics it is necessary to use what functions. Table 2 lists the various combinations
and their order of application for the evaluations applied.

Table 2. Combinations of classifier options for testing

Test Feature Subset
Selection

Feature
Weighting

Prototype
Selection

1 1
2 1
3 1
4 1 2 3
5 2 3 1

4 Datasets and Methods for Comparison

A variety of datasets from the UCI repository [1] were chosen. The IRIS and EColi
datasets are presented here as representative of the different characteristics of the
datasets. Space constraints prevent the presentation of other evaluations in this paper.

The well-known, standard IRIS Plant dataset consists of sepal and petal measure-
ments from specimens of IRIS plants and aims to classify them into one of three spe-
cies. The dataset consists of 3 equally distributed classes of 50 samples each with 4
numerical features. One species (setosa) is linearly separable from the other two,
which are not separable from each other. This is a simple and frequently applied data-
set within the field of pattern recognition.

The EColi dataset aims to predict the cellular localization sites of proteins from a
number of signal and laboratory measurements. The dataset consists of 336 instances
with 7 numerical features and belonging to 8 classes. The distribution of the samples
per class is highly unequal (143/77/2/2/35/20/5/52).

The Wisconsin Breast Cancer dataset consists of visual information from scans and
provides a classification problem of predicting the class of the cancer as either benign
or malignant. There are 699 instances in the dataset with a distribution of 458/241 and
9 numerical features.

Table 3. Dataset characteristics and class distribution

Features Classes
No.
Samples

No. No. Class Distribution

setosa versicolor virginica IRIS 150
50

4 3
5050

cp im imL imS imU om omL pp E.Coli 336 7 8
143 77 2 202 35 5 52

benign malignant Wisconsin 699 9 2
458 241

318 S. Little, O. Salvetti, and P. Perner

For each dataset we compare the overall accuracy generated from:
[

1. Naïve Bayesian, implemented in Weka [11];
2. C4.5 decision tree induction, implemented in DECISION MASTER [12];
3. k-Nearest Neighbor (k-NN) classifier, implemented in Weka with the set-

tings “weka.classifiers.lazy.IBk -K k -W 0 -A
"weka.core.neighboursearch.LinearNNSearch -A
weka.core.EuclideanDistance"”;

4. case-based classifier, implemented in ProtoClass (described in section 2)
without normalization of features.

Where appropriate, the k values were set as 1, 3 and 7 and leave-one-out cross-
validation was used as the evaluation method. We refer to the different “implementa-
tions” of each of these approaches since the decisions made during implementation
can cause slightly different results even with equivalent algorithms.

5 Results

The results for the IRIS dataset are reported in Table 4 to Table 6. In Table 4 you can
see the results for Naïve Bayes, decision tree induction, k-NN classifier done with
Weka implementation and the result for the combinatorial tests described in Table 2
with ProtoClass. As expected, decision tree induction performs well since the data set
has an equal data distribution but not as well as Naïve Bayes.

In general we can say that the accuracy does not significantly improve when we do
feature subset selection, feature weighting and prototype selection with ProtoClass. In
case of k=1 and k=7 the feature subset remains the initial feature set. We marked this
in Table 4 by an “X” indicating that no changes were made in the design phase and
the accuracy is as in case of the initial classifier. This is not surprising since the data
base contains only 4 features which are more or less well-distinguished. In case of
k=3 we see a decrease in the accuracy although the stopping criteria for the methods
for feature subset selection and feature weighting require the overall accuracy not to
decrease. This accuracy is calculated within the loop of the cross validation cycle on
the design data set and afterwards the single left out sample is classified against the
new learnt classifier to calculate the final overall accuracy. Prototype selection where
k=7 demonstrates the same behavior. This shows that the true accuracy must be calcu-
lated based on cross validation and not just on the design data set.

We expected that feature subset selection and feature weighting would change the
similarity matrix and therefore we believed that prototype selection should be done
afterwards. As can be seen from the table in case of k=3 we do not achieve any im-
provement in accuracy when running PS after the feature options. However, when
conducting PS before FS and FW, we see that FS and FW do not have any further
influence on the accuracy. When combining FS/FW/PS, the final accuracy was often
the same as the accuracy of the first function applied. Therefore prototype selection
prior to feature subset selection or feature weighting seems to provide a better result.

The contingency table in Table 5 gives us a better understanding what is going dur-
ing the classification. Here we can see what samples get misclassified according to
what class. In case of k=1 and k=3 the misclassification is more equitably distributed

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 319

over the classes. If we prefer to accurately classify one class we might prefer k=7
since it can better classify class “virginica”. It depends on the domain what require-
ments are expected from the system.

Table 6 shows us the remaining sample distribution according to the class after
prototype selection. We can see that there are two or three samples merged for class
“versicolor”. The reduction of the number of samples is small (less than 1.4% reduc-
tion rate) but this behavior fits our expectations when considering the original data
set. It is well known that the IRIS dataset is a sanitized dataset.

The Ecoli data set has the most unequally distributed classes among our selected
datasets which matches the characteristics we are interested in.

Table 7 lists the overall accuracies for the different approaches using the EColi
dataset. Naïve Bayesian shows the best overall accuracy and decision tree induction
the worst one. The result for Naïve Bayesian is somewhat curious since we have to
say that the Bayesian scenario does not hold for this data set. The true class condi-
tional distribution can not be estimated for the classes with small sample number.
Therefore, we consider this classifier as not applicable to such a data set. That it
shows such a good accuracy might be due to the fact that the classifier can classify
excellently the classes with large sample number (e.g., cp, im, pp) and the misclassifi-
cation of sample from classes with a small number do not have a big impact on the
overall accuracy. Although previous evaluations have used this data to demonstrate
the performance of their classifier on the overall accuracy (for example in [11][12])
we suggest that this number does not necessarily reflect the true performance of the
classifier. It is essential to examine the data characteristics and the class-specific clas-
sification quality when judging the performance of the classifier.

Table 4. Overall accuracy for IRIS dataset using leave-one-ou

k Naïve
Bayes

Decision
Tree

kNN ProtoClass Feature
Subset

Feature
Weighting

Prototype
Selection

FS+
FW+
PS

PS+
FS+
FW

1 95.33 96.33 95.33 96.00 X X 96.00 96.00 96.33
3 na na 95.33 96.00 96.33 96.33 96.00 96.33 96.00
7 na na 96.33 96.67 X 96.00 96.00 96.33 96.00

Table 5. Contingency table for k=1,3,7 for the IRIS dataset and ProtoClass

IRIS setosa versicolor virginica
k 1 3 7 1 3 7 1 3 7

setosa 50 50 50 0 0 0 0 0 0
versicolo 0r 0 0 74 47 46 3 3 4
virginica 0 0 0 3 3 1 47 47 49

Cla 1ssification
quality

00 100 100 94 94 97. 987 4 94 92.45

Class specific
quality

100 100 100 94 94 92 94 94 98

As in the former test, the k-NN classifier of Weka does not perform as well as the
ProtoClass classifier. We can see for k=7 the best accuracy which is surprising but the
contingency table (Table 8) confirms again that the classes with small sample number
seem to have low impact to the overall accuracy.

320 S. Little, O. Salvetti, and P. Perner

Table 6. Class distribution and percentage reduction rate of IRIS dataset after prototype selection

 Iris-
sertosa

Iris-
versicolor

Iris-
virginica

Reduction
Rate in %

orig 50 50 50 0.00
k=1 50 49 50 0.67
k=3 50 49 50 0.67
k=7 50 48 50 1.33

Feature subset selection works on the EColi dataset. One or two features get

dropped out but the same observations as of the IRIS data set are also true here. We
can see an increase and a decrease of the accuracy. That means only on the accuracy
estimated with cross-validation provides the best indication of the performance of
feature subset selection. Feature weighting works only in case of k=1 (see table 9).
There we can see an improvement of 1.79% in the accuracy.

The contingency table (Table 8) confirms our hypothesis that only the classes with
many samples are well classified. In the case of classes with a very low number of
samples (e.g., imL and imS) we get an error rate of 100% for the class. For these
classes we have no coverage [8] of the class solutions space. The reduction rate on the
samples after PS (Table 10) confirms again this observation. Some samples of the
classes with high number of samples are merged but the classes with low sample
numbers remain constant.

Results for the Wisconsin Breast Cancer dataset are summarized in Table 11 and
12. Due to the expensive computational complexity of the prototype implementation
and the size of the dataset it was not possible to generate results for prototype selec-
tion. Therefore only results for feature subset selection and feature weighting have
been completed. While the Wisconsin dataset is a two class problem, it still has the
same disparity between the number of samples in each case. As expected in a rea-
sonably well delineated two-class problem Naïve Bayes and Decision Trees both
perform acceptably.

The k-value of 7 produces the best overall accuracy. The feature subset and feature
weighting tasks both display slight improvements or maintenance of the performance
for all values of k. The Wisconsin dataset has the largest number of features (9) of the
datasets discussed here and it is to be expected that datasets with larger numbers of
features will have improved performance when applying techniques to adjust the
importance and impact of the features. However it is worth noting that the feature
subset selection and feature weighting techniques used in this prototype assume that
the features operate independently from each other. This may not be the case, espe-
cially in applying these techniques to classification using low-level analysis of media
objects.

The contingency tables shown in table 12 provide a more in-depth view of the per-
formance of the ProtoClass classifier than is possible using the overall accuracy value.
In this instance the performance difference between classes is relatively stable and the
k-value of 7 still appears to offer the best performance.

Overall the results from the three datasets summarised in this section demonstrate
that measuring performance by using the overall accuracy of a classifier is inaccurate

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 321

T
ab

le
 7

. O
ve

ra
ll

 a
cc

ur
ac

y
fo

r
E

C
ol

i d
at

as
et

 u
si

ng
 le

av
e-

on
e-

ou
t

k
N

aï
ve

B

ay
es

D

ec
is

io
n

T
re

e
W

ek
a

N
ea

re
st

N

ei
gh

bo
ur

P
ro

to
C

la
ss

F

ea
tu

re

Su
bs

et

(F
S)

F
ea

tu
re

W

ei
gh

ti
ng

(F

W
)

P
ro

to
ty

pe

Se
le

ct
io

n
(P

S)

F
S+

F
W

+
P

S
P

S+
F

S+

F
W

1
86

.0
1

66
.3

7
80

.9
5

81
.2

5
80

.9
5

83
.0

4
80

.6
5

82
.4

4
80

.9
5

3
na

na

83

.9
3

84
.2

3
85

.1
2

84
.2

3
82

.7
4

83
.9

3
82

.7
4

7
na

na

87

.2
0

87
.5

0
87

.2
0

86
.3

1
86

.6
1

85
.4

2
86

.6
1

T
ab

le
 8

. C
om

bi
ne

d
co

nt
in

ge
nc

y
ta

bl
e

fo
r

k=
1,

3,
7

fo
r

th
e

E
C

ol
i d

at
as

et
 a

nd
 P

ro
to

C
la

ss

cp

im

im
L

im

S
im

U

om

om
L

pp

k

1
3

7
1

3
7

1
3

7
1

3
7

1
3

7
1

3
7

1
3

7
1

3
7

cp
13

3
13

9
14

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
6

4
3

im
3

4
3

56

60
60

1
0

0
1

0
0

15
12

11
0

0
0

0
0

0
1

0
3

im
L

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

0
0

im
S

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

0
0

0
0

0
1

1
1

im
U

1
1

1
15

16

12
0

0
0

0
0

0
19

17
22

0
1

0
0

0
0

0
0

0
om

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
16

17
17

0
1

1
3

2
2

om
L

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
5

5
0

0
0

pp
5

4
4

1
1

1
0

0
0

0
0

0
0

0
0

2
2

0
0

0
0

44
45

47
p k

i
93

.6
6

93
.9

2
94

.5
9

72
.7

3
76

.9
2

81
.0

8
0.

00

0
0

0.
00

0

0
52

.7
8

56
.6

7
64

.7
1

88
.8

9
85

.0
0

10
0.

00
83

.3
3

71
.4

3
71

.4
3

80
.0

0
86

.5
4

83
.9

3
p t

i
93

.0
1

97
.2

0
97

.9
0

72
.7

3
78

.9
5

77
.9

2
0.

00
 0

.0
0

0.
00

 0
.0

0
0.

00
0.

00
54

.2
9

48
.5

7
62

.8
6

80
.0

0
85

.0
0

85
.0

0
10

0.
00

10

0.
00

10

0.
00

 8
4.

62
86

.5
4

90
.3

8

T
ab

le
 9

. L
ea

rn
t w

ei
gh

ts
 f

or
 E

C
ol

i d
at

as
et

k
f1

f2

f3

f4

f5

f6

f7

1
0.

5
1

1
1

0.
75

1.

5
1

3
1.

5
0

1
1

1
1

1
7

0.
75

0.

5
1

1
1

1
1

T
ab

le
 1

0.
 C

la
ss

 d
is

tr
ib

ut
io

n
an

d
pe

rc
en

ta
ge

 r
ed

uc
tio

n
ra

te
 o

f
E

C
ol

i d
at

as
et

 a
ft

er
 P

ro
to

ty
pe

 S
el

ec
ti

on

cp

im

im

L

im
S

im

U

om

om
L

p

p

R
ed

u
ct

io
n

 r
at

e
in

 %

or
ig

14

3
77

2

2
35

20

5

52

0.
00

k=

1
14

0
73

2

2
34

20

5

49

3.
27

k=

3
14

2
72

2

2
31

20

5

52

2.
97

322 S. Little, O. Salvetti, and P. Perner

and insufficient when there is an unequal distribution of samples over classes espe-
cially when one or more classes are significantly under-represented. In addition when
the classifier uses the overall accuracy as the feedback measurement for feature subset
selection, feature weighting and prototype selection is flawed as it encourages the
classifier to ignore classes with a small number of members. Examining the contin-
gency table and calculating the class specific quality measurements allows a more
complete picture of classifier performance to be formed.

Table 11. Overall accuracy for Wisconsin dataset using leave-one-out

k Naïve
Bayes

Decision
Tree

Weka
Nearest
Neighbour

ProtoClass Feature
Subset
(FS)

Feature
Weighting
(FW)

Prototype
Selection
(PS)

1 96.14 95.28 95.56 94.42 95.14 94.71 na
3 na Na 96.42 95.99 96.42 95.99 na
7 na Na 96.85 96.85 96.85 97.14 na

Table 12. Combined contingency table for k=1,3,7 for the Wisconsin dataset using ProtoClass

 benign malignant
k 1 3 7 1 3 7

benign 444 445 447 14 13 11
malignant 25 15 11 216 226 230

class specific
quality 94.67 96.74 97.6 93.91 94.56 95.44

classification
quality 96.94 97.16 97.6 89.63 93.78 95.44

6 Discussion

We have studied the performance of some well-known classifiers such as Naïve
Bayesian, decision induction and k-NN classifiers towards our case-based classifier.
We liked to study it on datasets where some classes are heavily under-represented.
This is a characteristic of many medical applications.

The choice of the value of k has a significant impact upon the classifier. If a k-
value is selected that is larger than the number of cases in some classes in the data set
then samples from those classes will not be correctly classified. This results in a clas-
sifier that is heavily generalized to over-represented classes and does not recognize
the under-represented classes. For example, in the EColi dataset (described in section
4) there are two classes with only two cases. When the k-value is greater than 3, these
cases will never be correctly classified since the over-represented classes will occupy
the greater number of nearest cases. This observation is also true for Decision Trees
and Naïve Bayesian classifiers. To judge the true performance of a classifier we need
to have more detailed observations about the output of the classifier. This is given by
the contingency table in Section 3 from which we derive more specific accuracy
measures. We choose the class-specific classification quality described in Section 3.

The prototype selection algorithm used here has problems with the evaluation ap-
proach. Relying on the overall accuracy of the design dataset to assess whether two

 Evaluation of Feature Subset Selection, FW, and PS Biomedical Applications 323

cases should be merged to form a new prototype tends to encourage over-
generalization where under-represented classes are neglected in favor of changes to
well-populated classes that have a greater impact on the accuracy of the classifier.
Generalization based on the accuracy seems to be flawed and reduces the effective-
ness of case-based classifiers in handling datasets with under-represented classes. We
are currently investigating alternative methods to improve generalization in case-
based classifiers that would also respect the concept of under-represented classes in
spite of the well-represented classes.

What is important from the methodology point of view? FS is the least computa-
tionally expensive method because it is implemented using the best first search strat-
egy. FW it is more expensive then FS but less expensive than PS. FS and FW go
along into the same group of methods. That means FS changes the weights of a fea-
ture from “1” (feature present) to “0” (feature turned off). It can be seen as a feature
weighting approach. When FS does not bring any improvement FW is less likely to
provide worthwhile benefits. From the methodology point of view this observation
indicates that it might be beneficial to not conduct feature weighting if feature subset
selection shows no improvement. This rule-of-thumb would greatly reduce the re-
quired computational time.

PS is the most computationally expensive method. In case of the data sets from the
machine learning repository this method did not have so much impact since the data
sets have been heavily pre-cleaned over the years. For a real world data set, where
redundant samples, duplicates and variations among the samples are common, this
method has a more significant impact [6].

7 Future Work and Conclusions

The work described in this paper is a further development of our case-based classifi-
cation work [6]. We have introduced new evaluation measures into the design of such
a classifier and have more deeply studied the behavior of the options of the classifier
according to the different accuracy measures.

The study in [6] relied on an expert selected image dataset that was considered by
the expert as prototypical images for this application. It is a real-world data set. The
study had in its central focus the conceptual proof of such an approach for image
classification as well as to evaluate the usefulness of the expert selected prototypes.
The study here was on more specific evaluation measures for such a classifier and
focused on a methodology for handling the different options of such a classifier.

Rather than relying on the overall accuracy to properly assess the performance of
the classifier, we create the contingency table and calculate more specific accuracy
measures from it. Even for datasets with a small number of samples in a class, the k-
NN classifier is not the best choice since this classifier also tends to prefer well-
represented classes. Further work will evaluate the impact of feature weighting and
changing the similarity measure. Generalization methods for datasets with well-
represented classes despite the presence of under-represented classes will be further
studied. This will result in a more detailed methodology for applying our case-based
classifier.

324 S. Little, O. Salvetti, and P. Perner

References

[1] Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of Califor-
nia, School of Information and Computer Science, Irvine, CA (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

[2] Chang, C.-L.: Finding Prototypes for Nearest Neighbor Classifiers. IEEE Trans. on Com-
puters C-23(11), 1179–1184 (1974)

[3] Perner, P.: Data Mining on Multimedia Data. LNCS, vol. 2558. Springer, Heidelberg
(2002)

[4] Wettschereck, D., Aha, D.W.: Weighting Features. In: Aamodt, A., Veloso, M.M. (eds.)
ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

[5] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based Learning Algorithm. Machine
Learning 6(1), 37–66 (1991)

[6] Perner, P.: Prototype-Based Classification. Applied Intelligence 28, 238–246 (2008)
[7] Perner, P., Zscherpel, U., Jacobsen, C.: A Comparision between Neural Networks and

Decision Trees based on Data from Industrial Radiographic Testing. Pattern Recognition
Letters 22, 47–54 (2001)

[8] Smyth, B., McKenna, E.: Modelling the Competence of Case-Bases. In: Advances in
Case-Based Reasoning, 4th European Workshop, Dublin, Ireland, pp. 208–220 (1998)

[9] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques,
2nd edn. Morgan Kaufmann, San Francisco (2005)

[10] DECISION MASTER, http://www.ibai-solutions.de
[11] Horton, P.: Better Prediction of Protein Cellular Localization Sites with the it k Nearest

Neighbors Classifier. In: Proceeding of the International Conference on Intelligent Sys-
tems in Molecular Biology, pp. 147–152 (1997)

[12] Ratanamahatana, C.A., Gunopulos, D.: Scaling up the Naive Bayesian Classifier: Using
Decision Trees for Feature Selection. In: Proceedings of Workshop on Data Cleaning and
Preprocessing (DCAP 2002), at IEEE International Conference on Data Mining (ICDM
2002), Maebashi, Japan (2002)

Case-Based Decision Support for Patients with

Type 1 Diabetes on Insulin Pump Therapy

Cindy Marling1, Jay Shubrook2, and Frank Schwartz2

1 School of Electrical Engineering and Computer Science
Russ College of Engineering and Technology
Ohio University, Athens, Ohio 45701, USA

marling@ohio.edu
2 Appalachian Rural Health Institute, Diabetes and Endocrine Center

College of Osteopathic Medicine
Ohio University, Athens, Ohio 45701, USA
shubrook@ohio.edu, schwartf@ohio.edu

Abstract. This paper presents a case-based approach to decision sup-
port for diabetes management in patients with Type 1 diabetes on insulin
pump therapy. To avoid serious disease complications, including heart
attack, blindness and stroke, these patients must continuously monitor
their blood glucose levels and keep them as close to normal as possi-
ble. Achieving and maintaining good blood glucose control is a difficult
task for these patients and their health care providers. A prototypical
case-based decision support system was built to assist with this task.
A clinical research study, involving 20 patients, yielded 50 cases of ac-
tual problems in blood glucose control, with their associated therapeutic
adjustments and clinical outcomes, for the prototype’s case base. The
prototype operates by: (1) detecting problems in blood glucose control
in large quantities of patient blood glucose and life event data; (2) finding
similar past problems in the case base; and (3) offering the associated
therapeutic adjustments stored in the case base to the physician as deci-
sion support. Results from structured evaluation sessions and a patient
feedback survey encourage continued research and work towards a prac-
tical tool for diabetes management.

1 Introduction

Not long ago, a waitress we will call Sally collapsed at the restaurant where she
was working and was taken, unconscious, to the hospital emergency room. Sally,
who has Type 1 diabetes, was in a coma due to severely depressed blood glucose
levels, a problem known as hypoglycemia, or insulin reaction. The diabetic coma
is a serious condition that can quickly lead to permanent brain damage or death.
When efforts to restore Sally’s blood glucose levels and revive her were successful,
her physician turned his attention to preventing such occurrences in the future.

In Type 1 diabetes, the pancreas fails to produce insulin, an essential hormone
required to convert food into energy. Therefore, patients with Type 1 diabetes

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 325–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

326 C. Marling, J. Shubrook, and F. Schwartz

must depend on exogenous supplies of insulin to survive. Too little insulin re-
sults in elevated blood glucose levels, called hyperglycemia. Hyperglycemia can
lead to numerous diabetic complications over time, including blindness, neu-
ropathy and heart failure. Patients who take insulin to avoid hyperglycemia are
subject to hypoglycemia, which occurs when they inadvertently take too much
insulin. Hypoglycemia may cause weakness, confusion, dizziness, sweating, shak-
ing, and, if not treated promptly, loss of consciousness or seizure. On the surface,
the solution to Sally’s problem may seem simple: she should take less insulin.
Unfortunately, despite the best efforts to precisely balance insulin dosages with
physical requirements, managing blood glucose levels is still a difficult and de-
manding task. It is a task faced by patients with Type 1 diabetes every day,
who must keep their blood glucose levels as close to normal as possible, avoiding
both hyper and hypoglycemia, to maintain their health and avoid serious disease
complications [1].

In Sally’s case, there was more to the story than just her physical manifesta-
tions. It turns out that Sally collapsed toward the end of her twelve-hour shift
working as a waitress. Despite the facts that Sally had been wearing her insulin
pump and had taken regular breaks for meals and snacks, the demands of her job
created too much physical stress for her body to handle. In addition, from hav-
ing had diabetes for many years, she no longer sensed the typical symptoms of
hypoglycemia experienced by most people with diabetes. This condition, called
hypoglycemia unawareness, made her especially vulnerable to hypoglycemia. For
financial reasons, Sally needed to work as many hours as possible. Her employer
urged her to work part-time, but Sally did not feel she could afford to do that.
Her physician (the third author) proposed a compromise, in which she could
still work a full forty hour week, but would not work more than eight hours in
a single day. This solution worked for Sally, whose life has returned to normal.

Physical, social and lifestyle factors, with their myriad permutations and com-
plex interactions, impact blood glucose levels in patients with Type 1 diabetes.
To provide individualized decision support that can help each patient maintain
good blood glucose control, we propose a case-based approach. The use of CBR
to enhance rule-based and model-based reasoning for diabetes management was
first introduced by the T-IDDM project [2]. Our work differs from this project in
three important ways: (1) it uses CBR as the primary reasoning modality, rather
than as an adjunct to other reasoning approaches; (2) it adds consideration of
life event data, which may influence blood glucose fluctuations; and (3) it focuses
on patients on insulin pump therapy, a more advanced and flexible treatment
regime than that used by T-IDDM patients.

Traditionally, people with Type 1 diabetes recorded their daily blood glucose
readings in paper log books. These logs were presented to the physician for re-
view and analysis at office visits three or four times per year. Today, continuous
glucose monitors can record blood glucose data every five minutes, and insulin
pumps and glucose meters collect and store data daily. Patients can email this
data to their physicians every day or every week. Commercially available soft-
ware can acquire, transfer and plot data, but it does not, at present, provide

Case-Based Decision Support for Patients 327

data analysis. This leaves physicians with the complex and time-consuming task
of interpreting voluminous blood glucose records and making appropriate ther-
apeutic adjustments. Studies have shown that physicians may feel overwhelmed
by data overload, which may lead to “clinical inertia,” in which physicians do not
even try to regularly adjust therapy for diabetes patients during their scheduled
office visits [3,4].

Our goal is to ease the physician’s task by automatically analyzing patient
data and providing therapeutic recommendations comparable to those an en-
docrinologist or diabetologist would make. Initially, recommendations would be
provided to physicians for review. We envision that, once proven safe and effec-
tive, decision support software could be embedded in patient medical devices,
directly assisting patients with their daily diabetes management.

CBR seems especially appropiate for diabetes management for several reasons.
First, the established guidelines for managing diabetes [5] are general in nature
and must be customized to meet the needs of each patient. Cases can help to
complement and individualize such general guidelines, as noted in [6]. Second,
the factors that influence blood glucose control are both quantitative (e.g., blood
glucose readings and insulin dosages) and qualitative (e.g., perceived stress and
food preferences). CBR systems have long integrated the quantitative with the
qualitative for applications ranging from generating expressive music [7] to menu
planning [8] to recommender systems [9]. Finally, CBR has been successfully
applied to other long-term medical conditions that can not be cured but must
nevertheless be managed [10,11,12,13].

This paper presents a case-based approach to decision support for diabetes
management in patients with Type 1 diabetes on insulin pump therapy. It de-
scribes the construction and evaluation of a research system prototype. It con-
cludes with an overview of related research and plans for future work.

2 System Prototype Construction

2.1 Knowledge Acquisition and Representation

Existing diabetes information systems focus primarily on blood glucose levels and
insulin dosages, and sometimes store limited data concerning the times of meals,
carbohydrate consumption, and timing of exercise. As knowledge engineers shad-
owed physicians and conducted structured interviews, it became apparent that
endocrinologists and diabetologists consider many more features when deter-
mining appropriate therapy for patients with Type 1 diabetes on insulin pump
therapy. The most significant factors involved are shown in Figure 1.

Because these features are not routinely maintained, in either electronic or
non-electronic form, it was not possible to build cases for the case base from
existing patient records. Therefore, a preliminary clinical study involving 20 pa-
tients with Type 1 diabetes on insulin pump therapy was conducted to acquire
cases for the system. A 44-table Oracle database with a Web-based user interface
was designed and implemented to store the data provided by the patients partic-
ipating in the study. Each patient submitted extensive daily logs documenting

328 C. Marling, J. Shubrook, and F. Schwartz

Problem Description Features

High and Low Blood Glucose Target Levels
Actual Blood Glucose Levels throughout the Day

Insulin Sensitivity (patient specific reaction to insulin)
Carbohydrate Ratios (patient specific need for insulin with food)

Type of Insulin Used
Basal Rates of Insulin Infusion throughout the Day

Bolus Doses of Insulin with Food Consumption
Bolus Doses of Insulin Used to Correct for Hyperglycemia

Type of Bolus Wave for Each Bolus
Actions Taken to Self-Correct for Hypoglycemia

Meal Times
Amount of Carbohydrate Consumed at Each Meal

Specific Foods Consumed at Each Meal
Alcohol Consumption

Mechanical Problems with the Insulin Pump
Time of Change of Insulin Infusion Set

Location of Insulin Infusion Set on Patient’s Body
Time, Type and Duration of Exercise

Work Schedule
Sleep Cycles

Menstrual Cycles
Stress (as subjectively determined by patient)

Illness (other than diabetes, such as cold or flu)

Fig. 1. Significant Features Used by Physicians to Determine Appropriate Therapeutic
Adjustments for Patients with Type 1 Diabetes on Insulin Pump Therapy

their daily values for the features shown in Figure 1 over a six-week period. Once
collected and reviewed by physicians, this data was used to structure cases. Each
case represents one problem in blood glucose control for a specific patient, along
with its associated physician-recommended solution and clinical outcome.

Patients participated in the preliminary study between February, 2006 and
June, 2007. From one to four patients participated at a time. The number of
patients who could supply data at once was limited by the available resources,
including continuous glucose monitoring devices and physician time. Through-
out the length of the study, knowledge engineers met with physicians weekly
to review the patient data collected for that week. The immediate goal of each
weekly meeting was for the physicians to examine the data, find problems in
blood glucose control, and suggest therapeutic adjustments to help patients cor-
rect or prevent these problems. To facilitate this data review process, knowledge
engineers provided the physicians with written data summary reports for each
patient. They also built a data visualization tool to display all of the different
types of data available for a patient over a 24-hour period.

Case-Based Decision Support for Patients 329

Following each weekly meeting, physicians would contact patients to recom-
mend therapeutic adjustments for the problems discovered in the data. In sub-
sequent weeks, the data was monitored to evaluate the clinical outcome of each
adjustment. A recommended adjustment might resolve a patient’s problem, pro-
vide some degree of benefit but not completely resolve a problem, or fail to
resolve a problem. Follow-up also ascertained if the patient had accepted and
applied the recommended adjustment or not. Knowledge engineers then struc-
tured the problems, solutions (adjustments) and outcomes into cases for the case
base. A total of 50 cases were built for the system prototype during the study.

2.2 Example Case: Problem of Nocturnal Hypoglycemia

The problem of nocturnal hypoglycemia was found in a 56-year-old female pa-
tient who had had Type 1 diabetes for 32 years. This patient had been on insulin
pump therapy for eight years, and was generally well controlled, as evidenced
by her HbA1c tests, which measure long-term blood glucose control. When her
first week’s data was displayed to her physician, as shown in Figure 2, it was
evident that she had been hypoglycemic all night long without sensing it. This

Fig. 2. Data Visualization Display for Patient with Nocturnal Hypoglycemia

330 C. Marling, J. Shubrook, and F. Schwartz

is a serious problem, because untreated hypoglycemia can lead to diabetic coma
and/or death.

In the data visualization display of Figure 2, blood glucose levels are indi-
cated on the vertical axis, while time, beginning at midnight, is indicated by
the horizontal axis. A curve, displayed in dark blue, shows the data captured by
the continuous glucose monitoring device, while individual red dots show blood
glucose values obtained through routine finger sticks. Life events recorded by the
patient are denoted by markers at the top of the display. These are arranged by
time of occurance, so that daily activities that impact blood glucose levels can
be viewed together with the blood glucose values themselves. Clicking on a life
event marker displays additional information as recorded by the patient.

In Figure 2, the patient’s problem with nocturnal hypoglycemia is evidenced
by the continuous glucose monitoring data curve between midnight and 9:30
AM. When she awakes at 9:30 AM, she takes a finger stick measurement, and
reports that her blood glucose level is 46 mg/dl, which is dangerously low. She
also reports that she feels “totally out of it” and is unable to take action to cor-
rect her hypoglycemia. The physician examined the rest of the data displayed
to determine what might be causing this problem and what could be done to

Fig. 3. Data Visualization Display of Successful Resolution of Nocturnal Hypoglycemia

Case-Based Decision Support for Patients 331

eliminate it. By checking the meal markers at the top of the display, he could
see that the patient was not eating snacks before bed. He recommended that
she always eat a bedtime snack, and also that she lower her rate of basal insulin
infusion by 0.1 units per hour between midnight and 7:00 AM. The basal rate
is shown by the line at the very bottom of the display. The physician’s recom-
mended solution included adjustments to both diet and insulin intake. Having
more food in a patient’s system overnight helps to prevent blood glucose lev-
els from falling. Because insulin depresses blood glucose levels even further, the
basal rate of insulin infusion was decreased overnight.

In Figure 3, data for the same patient is displayed toward the end of her
participation in the study. It is clear that she has taken the physician’s advice,
as her basal rate now appears lower and a meal marker indicates that she has
eaten a bedtime snack. It is also clear from the blood glucose data displayed
that the patient is no longer hypoglycemic overnight. This solution was therefore
deemed to have a successful outcome.

This problem, solution and outcome comprise one of the 50 cases in the case
base. Should another patient experience nocturnal hypoglycemia, this case may
be recalled to suggest applicable therapeutic adjustments. A more detailed de-
scription of the abstract case representation is presented in [14]. Three cases are
presented from a physician’s perspective in [15]. Internally, a case is represented
as an object of a hierarchical Java class containing over 140 data fields.

2.3 Reasoning with Cases

A prototypical case-based decision support system was built with the case base
described above as its central knowledge repository. The system operates as
shown in Figure 4. The patient enters daily blood gluose and life event data into
the database via any available Web browser. Situation assessment software then
searches the database to find problems in blood glucose control. Twelve different
types of problems, defined during the preliminary study, can be detected. These
problem types are listed in Figure 5. Next, the specific problems detected for the
patient are displayed to the physician, who must select a problem of interest. The
selected problem, with its associated values for all relevant features, becomes the
input to the case retrieval module.

Cases are retrieved using a traditional two-step process in which: (a) a subset
of potentially similar cases is identified; and (b) the most usefully similar cases
are selected from that subset. The initial partition of the case base is based solely
on problem type, as shown in Figure 5. For example, if a patient experiences hy-
perglycemia upon awakening, then other problems of this type or closely related
types may be relevant. However, cases involving problems with hypoglycemia
would not be useful or relevant, even if they share surface features like time of
day or pattern of occurance.

To select the most usefully similar cases from the initial subset of potentially
relevant cases, a standard nearest neighbor metric is used. Domain specific sim-
ilarity functions compute the degree of correspondence between the input case
and each potentially relevant case on 18 distinct problem features. An aggregate

332 C. Marling, J. Shubrook, and F. Schwartz

Fig. 4. Overview of Prototypical Decision Support System Operation

match score is then computed for each case by weighting the relative contribution
of each feature toward the match. Next, the highest aggregate score is compared
to a numeric threshold to determine if the best matching case is similar enough
to the input case to contain a therapeutic adjustment of potential benefit. If so,
the best matching case is displayed to the physician. Because similar problems
often have similar solutions, the best matching case may aid the physician in
determining an appropriate therapeutic adjustment for the current patient. It is
up to the physician to determine whether or not, and in what form, to relay the
retrieved solution to the patient.

The best matching case for the problem presented in Section 2.2 was recorded
for an 18-year-old male patient. This patient reported waking up in a sweat at
2:00 AM with a blood glucose level of 49 mg/dl. In the first step of the retrieval
process, this case is selected as potentially relevant, because both problems in-
volve hypoglycemia. In the second step, the two cases are found to be similar in
many respects, including time of day and relationships to meals, boluses, exer-
cise and stress. They differ in the methods by which the problems were detected
and also in the frequency with which the problems occurred. The physician’s
advice to the patient in the best matching case was, “The patient should have
at least a small bedtime snack, perhaps a glass of milk.” This solution overlaps
with, although it is not identical to, the solution recommended for the patient
in the input case.

Case-Based Decision Support for Patients 333

1. Hyperglycemia upon wakening
2. Hypoglycemia upon wakening
3. Over-correction for hyperglycemia
4. Over-correction for hypoglycemia
5. Over-boluses for meals
6. Pre-waking hypoglycemia
7. Post-exercise hypoglycemia
8. Pre-meal hyperglycemia
9. Pre-meal hypoglycemia

10. Post-meal hyperglycemia
11. Post-meal hypoglycemia
12. Possible pump or infusion set malfunction

Fig. 5. Blood Glucose Control Problem Types Detected During Situation Assessment

3 Evaluation and Feedback

A patient exit survey and two structured feedback sessions for diabetes prac-
titioners were administered to evaluate the feasibility of case-based decision
support for patients with Type 1 diabetes on insulin pump therapy. The exit
survey questioned patients about time requirements, ease of use, and benefits of
participating in the study. Patients did not evaluate actual outputs from the pro-
totype, as it was built after patients concluded their participation in the study.
Diabetes practitioners evaluated the outputs from the situation assessment and
case retrieval modules of the prototype.

Twelve patients completed the exit survey. Patients reported that the time
required for data entry ranged from 15 minutes or less (5 patients) to between
30 and 60 minutes per day (7 patients). While 10 of 12 patients found the
Web-based data entry system easy to use, 8 of 12 indicated a preference for
having data entry capabilities available on their own insulin pumps or glucose
meters. Ten of 12 patients indicated that their increased contact with health care
professionals throughout the study was beneficial for their diabetes management.
All patients confirmed that it would be beneficial to receive immediate feedback
and therapeutic advice from an automated system. When asked, “How likely are
you to adopt a therapy adjustment recommended by your doctor?” 10 patients
marked very likely and 2 marked fairly likely. The exact same response was
given to the question, “If a computerized therapy adjustment wizard were to
recommend a therapy adjustment, how likely would you be to adopt it?” This
patient acceptance of the concept of automated decision support suggests that
further research could lead to a practical tool for patients, especially if the data
entry burden were reduced.

To evaluate the situation assessment capabilities of the prototype, the situa-
tion assessment module was run retroactively on the completed patient database.
A total of 352 problems in blood glucose control were detected for the patients
who completed the study. Ten problem detections were randomly selected for re-

334 C. Marling, J. Shubrook, and F. Schwartz

view by a panel of three physicians and one advance practice nurse specializing
in diabetes. Each problem detected was shown to the evaluators via the graphic
visualization display. Evaluators were then asked to indicate their agreement
with each of the following statements:

1. This is a correct identification of a problem
2. It would be useful to call this problem to the attention of the patient
3. It would be useful to call this problem to the attention of the physician

Evaluators agreed with the first statement 77.5% of the time, reported mixed
feelings 15% of the time, and disagreed 7.5% of the time. Evaluators agreed with
the second statement 87.5% of the time, had mixed feelings 10% of the time, and
disagreed 2.5% of the time. Evaluators agreed with the third 90% of the time,
reported mixed feelings 7.5% of the time, and disagreed 2.5% of the time.

Leave one out testing was performed to evaluate the case retrieval module of
the prototype. During testing, thresholding was turned off, so that the closest
match to an input case was always returned, whether or not there was a usefully
similar case in the base base. Ten of the 50 cases in the case base were randomly
selected as test cases for review by a panel of three physicians specializing in
diabetes. For each test case, physicians were given the problem descriptions and
recommended solutions of the case and its nearest neighbor. Then they were
asked to answer the following multiple choice questions:

1. The problem in the original case and the problem in the matching case are:
(a) Very Similar
(b) Somewhat Similar
(c) Somewhat Dissimilar
(d) Very Dissimilar

2. Applying the matching case’s solution to the original problem would be:
(a) Very Beneficial
(b) Somewhat Beneficial
(c) Neither Beneficial nor Detrimental
(d) Somewhat Detrimental
(e) Very Detrimental

Evaluators judged matching cases to be similar 80% of the time and dissimilar
20% of the time. They judged retrieved solutions to be beneficial 70% of the time,
neither beneficial nor detrimental 23% of the time, and detrimental 7% of the
time. Because not every case in the case base had a usefully similar nearest
neighbor, this performance is expected to improve as the case base grows in size.

4 Future Work

A second clinical research study has been designed and approved by Ohio Uni-
versity’s Institutional Review Board (IRB). Twenty-eight patients with Type 1
diabetes on insulin pump therapy will participate for three months each. The

Case-Based Decision Support for Patients 335

first goal of this study is to significantly grow the case base as a central knowledge
repository, thereby increasing system competence.

The second goal is to develop patient specific case bases to remember recur-
rent problems with glucose control and the specific therapeutic solutions that
are effective or ineffective for each patient. Each individualized case base will
extend the general case base with cases documenting the individual patient’s
own problems, therapy adjustments and responses. This will enable the system
to learn how an individual patient responds to changes in therapy so that the
most effective therapy for a particular problem experienced by a specific patient
can be recalled. The case retrieval metric will be extended to look first for similar
problems experienced by the same patient and to search the central case base
only when this does not yield an applicable solution.

The final goal of this clinical research study is to develop new similarity met-
rics to compare patients with Type 1 diabetes to each other. Then solutions
known to work for similar problems in similar patients could be recommended.
This is important, because even when problems are similar, lifestyle variations
may preclude the successful transfer of therapeutic adjustments. For example,
a retiree living alone might be willing to perform therapeutic actions that a
teenager would not willingly perform in front of peers at school.

Longer term, we envision extending our work to patients with different types
of diabetes, patients on different types of insulin or oral therapy, and patients
with special needs, like elite athletes, pregnant women, and teenagers. We hope
that eventually, following additional research, development, and safety testing,
the software might be directly accessed by patients for continuous blood glucose
monitoring and daily decision making support. We maintain contact with the
manufacturers of diabetic equipment and supplies to ensure the future viability
of our system for patients in the real world.

5 Related Research

The Telematic Management of Insulin-Dependent Diabetes Mellitus (T-IDDM)
project was first to explore CBR for diabetes management [2,16,17]. The goals
of T-IDDM were to: (a) support physicians in providing appropriate treatment
for maintaining blood glucose control; (b) provide remote patients with tele-
monitoring and tele-consultation services; (c) provide cost-effective monitoring
of large numbers of patients; (d) support patient education; and (e) allow insulin
therapy customization [2]. T-IDDM integrated CBR with rule-based reasoning
and a probabilistic model of the effects of insulin on blood glucose over time. The
role of CBR in T-IDDM was to specialize the behavior of rules, by tuning rule
parameters, when rules could not provide optimal advice for patients. Cases were
found to be especially helpful in providing advice for poorly controlled patients.

Our work shares T-IDDM’s goal of supporting physicians in providing ap-
propriate treatment for maintaining blood glucose control, but we have taken a
different approach. This may be due, in part, to the differences between treating
patients on conventional intensive insulin therapy and on insulin pump therapy.

336 C. Marling, J. Shubrook, and F. Schwartz

The therapy regimen for a patient in the T-IDDM project consisted of from
three to four insulin injections per day. Each patient had an insulin protocol
in which he or she injected the same amount of insulin at the same time of
day for each daily injection. The patient then attempted to regulate his or her
daily food intake and activities in accordance with this insulin protocol, rather
than adjusting the insulin intake to account for variations in daily routine. The
data input to the probabilistic model for a patient was the insulin protocol plus
three to four blood glucose measurements per day. A therapy adjustment con-
sisted of changing the amount of insulin regularly taken for a daily injection.
The model used by T-IDDM was a steady state model that did not account for
daily variations in diet or lifestyle, but treated them as stochastic occurrences,
or noise. This approach makes sense for conventional intensive insulin therapy,
where available data and treatment options are limited. We expect CBR to pro-
vide even greater benefits to patients on insulin pump therapy, who can adjust
a wider range of insulin and lifestyle parameters to manage their diabetes.

Telemedicine, which aims to enable remote access heath care, has been lever-
aged in T-IDDM and other research projects that aim to help patients manage
their diabetes. Notable examples include VIE-DIAB [18], DIABTel [19], and the
Intelligent Control Assistant for Diabetes (INCA) [20]. Telemedicine systems
use mobile phones, email, and online applications to enhance data transfer and
communication between patients and physicians. When human physicians are
the primary sources of knowledge, AI decision support capabilities may be lim-
ited or non-existent. The problem with telemedicine approaches that incorporate
limited, or no, intelligent decision support is that they can actually increase the
workload on physicians. This effect was reported in [18], and also documented
in a controlled trial of the fiscal and administrative aspects of telemedicine for
patients with diabetes [21]. Certainly, the increased availability of patient data
without automated data analysis capabilities created the physician overload that
motivated our own work.

The dream of an artificial pancreas, which could someday supplant the dia-
betic patient’s own deficient pancreatic function, has led to much work in devel-
oping formal models that depend on the relationship between blood glucose and
insulin. These models may or may not include the effects of diet, but do not nor-
mally include other lifestyle factors, as these could not be automatically detected
by an implanted device. The best known model, because of its ready availability
for research and educational purposes via the Internet, is AIDA [22]. A number
of researchers have tried integrating this model with other decision support tech-
niques, including rule-based reasoning and neural networks [23]. Clearly, efforts
to develop an accurate formal model complement efforts to develop intelligent
decision support. However, a restricted focus on blood glucose/insulin models
that can be embedded in an artificial pancreas presents at least two difficulties.
First, the underlying physiological pharmacokinetic relationship is highly com-
plex. Extensive modeling research dates back to the 1960s without the advent
of a definitive model [24]. Second, should technical obstacles be surmounted,
there will still be financial barriers to providing major surgery for the nearly five

Case-Based Decision Support for Patients 337

million patients who have Type 1 diabetes worldwide. Case-based decision sup-
port may provide a lower cost practical tool in the near-term, as well as account
for observed individual variations not currently accounted for by formal models.

Finally, this research builds upon the work of CBR researchers in other med-
ical domains. Workshops on CBR in the Health Sciences have been held for
the past five years at the International and European Conferences on Case-
Based Reasoning. Overviews of medical CBR have been published in [6,25,26,27].
Among the most closely related projects are MNAOMIA, in the domain of psy-
chiatric eating disorders [10], CARE-PARTNER, for stem cell transplantation
follow-up care [11], RHENE, in the domain of end-stage renal disease [12], and
the Auguste Project, for the management of Alzheimer’s Disease [13]. These re-
search projects, like ours, aim to assist in managing long-term, or chronic, med-
ical conditions. Special challenges in such domains include: (a) handling data
that varies over time; (b) accounting for individual variation among patients;
and (c) tailoring general guidelines to the needs of individual patients.

6 Summary and Conclusion

This paper has presented a case-based approach to decision support for diabetes
management in patients with Type 1 diabetes on insulin pump therapy. A pre-
liminary clinical research study, involving 20 patients with Type 1 diabetes on
insulin pump therapy, was conducted. Through this study, 50 cases of problems
in blood glucose control, with their associated therapeutic adjustments and clin-
ical outcomes, were compiled in a case base. This case base became the central
knowledge repository for a prototypical case-based decision support system. The
prototype contains a Situation Assessment module that detects common prob-
lems in blood glucose control in large volumes of blood glucose and life event
data. It contains a Case Retrieval module that finds the cases containing the most
similar past problems in the case base. It displays the therapeutic adjustments
from the best matching cases to the physician as decision support in therapy
planning. The prototype was evaluated by means of a patient exit survey and
two structured feedback sessions for diabetes practitioners. Preliminary results
encourage continued research and work toward a practical tool for patients and
their health care providers. The case-based approach presented herein has appli-
cability to the management of all forms of diabetes and potential applicability
to the management of other chronic medical conditions.

Acknowledgments

The authors gratefully acknowledge support from Medtronic MiniMed, Ohio
University’s Russ College Biomedical Engineering Fund, and the Ohio Univer-
sity Osteopathic College of Medicine Research and Scholarly Affairs Committee.
We would also like to thank Eric Flowers, Thomas Jones, Tony Maimone, Wes
Miller and Don Walker for their software development and knowledge engineer-
ing contributions.

338 C. Marling, J. Shubrook, and F. Schwartz

References

1. The effect of intensive treatment of diabetes on the development and progression
of long-term complications in insulin-dependent diabetes mellitus. New England
Journal of Medicine 329, 977–986 (1993)

2. Bellazzi, R., Larizza, C., Montani, S., Riva, A., Stefanelli, M., d’Annunzio, G.,
Lorini, R., Gómez, E.J., Hernando, E., Brugués, E., Cermeno, J., Corcoy, R., de
Leiva, A., Cobelli, C., Nucci, G., Prato, S.D., Maran, A., Kilkki, E., Tuominen, J.:
A telemedicine support for diabetes management: The T-IDDM project. Computer
Methods and Programs in Biomedicine 69, 147–161 (2002)

3. Grant, R.W., Buse, J.B., Meigs, J.B.: Quality of diabetes care in U.S. academic
medical centers: Low rates of medical regimen change. Diabetes Care 28, 337–442
(2005)

4. Shah, B.R., Hux, J.E., Laupacis, A., Zinman, B., van Walraven, C.: Clinical inertia
in response to inadequate glycemic control: Do specialists differ from primary care
physicians? Diabetes Care 28, 600–606 (2005)

5. American Diabetes Association: American Diabetes Association Complete Guide
to Diabetes. 4 edn. Bantam, New York (2006)

6. Bichindaritz, I., Marling, C.: Case-based reasoning in the health sciences: What’s
next? Artificial Intelligence in Medicine 36, 127–135 (2006)

7. López de Màntaras, R., Arcos, J.L.: AI and music from composition to expressive
performance. AI Magazine 23, 43–58 (2002)

8. Marling, C.R., Petot, G.J., Sterling, L.S.: Integrating case-based and rule-based
reasoning to meet multiple design constraints. Computational Intelligence 15(3),
308–332 (1999)

9. Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems.
The Knowledge Engineering Review 20, 315–320 (2005)

10. Bichindaritz, I.: MNAOMIA: Improving case-based reasoning for an application
in psychiatry. In: Artificial Intelligence in Medicine: Applications of Current Tech-
nologies, Stanford, CA. Working Notes of the AAAI 1996 Spring Symposium (1996)

11. Bichindaritz, I., Kansu, E., Sullivan, K.M.: Case-based reasoning in CAREPART-
NER: Gathering evidence for evidence-based medical practice. In: Smyth, B., Cun-
ningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 334–345. Springer,
Heidelberg (1998)

12. Montani, S., Portinale, L., Leonardi, G., Bellazzi, R.: Applying case-based retrieval
to hemodialysis treatment. In: McGinty, L. (ed.) Workshop Proceedings of the Fifth
International Conference on Case-Based Reasoning, Trondheim, Norway (2003)

13. Marling, C., Whitehouse, P.: Case-based reasoning in the care of Alzheimer’s
disease patients. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI),
vol. 2080, pp. 702–715. Springer, Heidelberg (2001)

14. Marling, C., Shubrook, J., Schwartz, F.: Towards case-based reasoning for diabetes
management. In: Wilson, D.C., Khemani, D. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 305–314. Springer, Heidelberg (2007)

15. Schwartz, F.L., Shubrook, J.H., Marling, C.R.: Use of case-based reasoning to
enhance intensive management of patients on insulin pump therapy. Journal of
Diabetes Science and Technology (in press, 2008)

16. Montani, S., Bellazzi, R.: Supporting decisions in medical applications: The knowl-
edge management perspective. International Journal of Medical Informatics 68,
79–90 (2002)

Case-Based Decision Support for Patients 339

17. Montani, S., Magni, P., Bellazzi, R., Larizza, C., Roudsari, A.V., Carson, E.R.:
Integrating model-based decision support in a multi-modal reasoning system for
managing type 1 diabetic patients. Artificial Intelligence in Medicine 29, 131–151
(2003)

18. Popow, C., Horn, W., Rami, B., Schober, E.: VIE-DIAB: A support program for
telemedical glycaemic control. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds.)
AIME 2003. LNCS (LNAI), vol. 2780, pp. 350–354. Springer, Heidelberg (2003)

19. Gómez, E.J., Hernando, M.E., Garćıa, A., del Pozo, F., Cermeno, J., Corcoy,
R., Brugués, E., de Leiva, A.: Telemedicine as a tool for intensive manage-
ment of diabetes: the DIABTel experience. Computer Methods and Programs in
Biomedicine 69, 163–177 (2002)

20. Hernando, M.E., Gómez, E.J., Gili, A., Gómez, M., Garćıa, G., del Pozo, F.: New
trends in diabetes management: Mobile telemedicine closed-loop system. In: Du-
plaga, M., Zielinski, K., Ingram, D. (eds.) Transformation of Healthcare with In-
formation Technologies. IOS Press, Amsterdam (2004)

21. Biermann, E., Dietrich, W., Rihl, J., Standl, E.: Are there time and cost savings by
using telemanagement for patients on intensified insulin therapy? A randomised,
controlled trial. Computer Methods and Programs in Biomedicine 69, 137–146
(2002)

22. Lehmann, E.D.: AIDA (2008) (accessed February, 2008),
http://www.2aida.net/welcome/

23. Lehmann, E.D.: Research use of the AIDA www.2aida.org diabetes software sim-
ulation program: A review. Part 1. Decision support testing and neural network
training. Diabetes Technology & Therapeutics 5, 425–438 (2003)

24. Boutayeb, A., Chetouani, A.: A critical review of mathematical models and data
used in diabetology. Biomedical Engineering Online 5 (2006)

25. Schmidt, R., Montani, S., Bellazzi, R., Portinale, L., Gierl, L.: Case-based reasoning
for medical knowledge-based systems. International Journal of Medical Informat-
ics 64, 355–367 (2001)

26. Nilsson, M., Sollenborn, M.: Advancements and trends in medical case-based rea-
soning: An overview of systems and system development. In: Proceedings of the
Seventeenth International Florida Artificial Intelligence Research Society Confer-
ence – Special Track on Case-Based Reasoning, pp. 178–183. AAAI Press, Menlo
Park (2004)

27. Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-
based reasoning. The Knowledge Engineering Review 20, 289–292 (2005)

http://www.2aida.net/welcome/

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 340–354, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Conversational Case-Based Reasoning
in Self-healing and Recovery

David McSherry1, Sa’adah Hassan2, and David Bustard1

1 School of Computing and Information Engineering, University of Ulster
Coleraine BT52 1SA, Northern Ireland

{dmg.mcsherry,dw.bustard}@ulster.ac.uk
2 Faculty of Computer Science and Information Technology, University Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia
saadah@fsktm.upm.edu.my

Abstract. Self-healing and recovery informed by environment knowledge
(SHRIEK) is an autonomic computing approach to improving the robustness of
computing systems. Case-based reasoning (CBR) is used to guide fault diagnosis
and enable learning from experience, and rule-based reasoning to enable fault
remediation and recovery informed by environment knowledge. Focusing on the
role of conversational CBR (CCBR) in the management of faults that rely on user
interaction for their detection and diagnosis, we present a hypothesis-driven ap-
proach to question selection in CCBR that aims to increase the transparency of
CCBR dialogues by enabling the system to explain the relevance of any question
the user is asked. We also present empirical results which suggest that there is no
loss of problem-solving efficiency in the approach. Finally, we investigate the ef-
fects of the environment awareness provided by autonomous information gathering
in SHRIEK on the efficiency of CCBR dialogues.

Keywords: Autonomic computing, self-healing, environment awareness, fault
management, case-based reasoning, explanation, transparency.

1 Introduction

Inspired by the autonomic computing concept of self-healing [1], SHRIEK is an ap-
proach to increasing the robustness of computing systems through self-healing and
recovery informed by environment knowledge [2-3]. Soft Systems Methodology [4] is
used in SHRIEK to build an explicit model of the system’s environment (e.g., avail-
able resources) to inform self-healing and recovery from service failures. Case-based
reasoning (CBR) is used to guide fault diagnosis and enable learning from experience,
and rule-based reasoning to enable decision making informed by environment knowl-
edge in fault remediation and recovery. Autonomous information gathering (AIG)
also plays an important role in maintaining the environment awareness needed for
effective problem solving in a dynamic environment.

While self-healing in autonomic computing has traditionally focused on fault diag-
nosis and remediation [1, 5-7], fault management in SHRIEK is based on the view
that guiding user recovery from service failures is an equally important aspect of

 Conversational Case-Based Reasoning in Self-healing and Recovery 341

robustness in a computing service. Environment knowledge needed to guide recovery
from service failures includes staff responsibilities and availability as well as avail-
able resources and their locations. Shriek-Printer, for example, is an intelligent system
for fault management in a local printer network based on the SHRIEK approach [2].
Recovery strategies suggested to the user by Shriek-Printer following the diagnosis of
a printer fault might include:

• Waiting for assistance from a technician who has been notified about the problem
and is known to be available

• Tackling the problem herself by taking remedial action suggested by the system
(e.g., clearing a paper jam detected by AIG)

• Redirecting her print job to another available printer identified by the system

Another feature that distinguishes SHRIEK from existing approaches to self-
healing in autonomic computing is the use of conversational CBR (CCBR) [8-12] in
the management of faults that cannot be detected automatically by the system. For
example, Shriek-Printer can detect simple problems such as an empty paper tray by
AIG, but has no way of knowing if the quality of a printed document is acceptable to
the user. To enable self-healing and recovery in the case of faults that rely on feed-
back from users for their detection and diagnosis, Shriek-Printer includes a CCBR
system called Shriek-CBR which is available at workstation level to assist users with
printing problems. As we show in Section 5, helping to minimize the number of ques-
tions the user is asked before a diagnosis is reached is an important benefit of the en-
vironment awareness provided by AIG.

One of the lessons learned from experience with our initial approach to CCBR in
Shriek-CBR [2] is the need for greater transparency in CCBR dialogues. In contrast to
CCBR approaches in which the user selects from a ranked list of questions [8], the
user is asked one question at a time in Shriek-CBR, and can answer unknown to any
question. While asking the user a few well-chosen questions often enables a diagnosis
to be reached with a minimum of effort, one problem is that the relevance of ques-
tions selected by a CCBR system can be difficult to explain. Other important issues
include how to recognize when a CCBR dialogue can be safely terminated without
loss of solution quality, or when no solution is possible based on the available infor-
mation. Although these issues have previously been discussed in relation to intelligent
systems for interactive problem solving [10, 11, 13-16], there has been limited inves-
tigation of their implications for CCBR systems like Shriek-CBR in which the case
structure is heterogeneous [8-9].

In this paper, we present a hypothesis-driven approach to question selection that
aims to increase the transparency of CCBR dialogues by enabling the system to ex-
plain the relevance of any question it asks the user in terms of its current hypothesis.
In Sections 2-4, we present the theory on which our approach to CCBR is based and
demonstrate the approach in a new version of Shriek-CBR. We also present criteria
for recognizing when a CCBR dialogue can be terminated without loss of solution
quality and when no solution is possible given the available information. In Section 5,
we investigate the trade-offs between efficiency and transparency in the approach and
empirically demonstrate the effectiveness of AIG in helping to reduce the length of
CCBR dialogues in Shriek-CBR. Our conclusions are presented in Section 6.

342 D. McSherry, S. Hassan, and D. Bustard

2 Conversational CBR in SHRIEK

In CCBR, a query describing a problem to be solved is incrementally elicited (or an
initial query is extended) in an interactive dialogue, usually with the aim of minimiz-
ing the number of questions the user is asked before a solution is reached [8-9]. Fac-
tors that may influence a CCBR system’s performance and acceptability to users
include: (1) the strategy it uses to select the most useful questions, (2) its ability to
explain the relevance of questions it asks the user and the conclusions it reaches, (3)
its ability to solve problems for which the user is unable to provide a complete de-
scription, and (4) the criteria it uses to decide when to terminate a CCBR dialogue.

Following a brief overview of how these issues are addressed in our approach to
CCBR, we describe how cases and queries are represented in Shriek-CBR, the simi-
larity measure used in the system, and the role of AIG in fault diagnosis. The section
finishes with a discussion of other basic concepts in our approach, such as open, vi-
able, and competitive cases in a CCBR dialogue.

2.1 Question Selection and Explanation

Question selection (or ranking) in CCBR is often based on criteria (e.g., information
gain, question frequency) in which the absence of a specific hypothesis makes it diffi-
cult to explain the relevance of questions the user is asked. In contrast, question selec-
tion in Shriek-CBR is hypothesis driven in that questions are selected with the goal of
confirming a target case. As described in Section 4, a target case is selected by the
system at the start of a CCBR dialogue and may later be revised in light of new in-
formation obtained as the description of the problem is extended. An important bene-
fit is that the system can explain the relevance of any question it asks the user in terms
of its current hypothesis. Also with the aim of increasing the transparency of the rea-
soning process, the user is shown the target case that the system is trying to confirm in
each cycle of a CCBR dialogue, and is asked only questions in the target case. At the
end of a CCBR dialogue, Shriek-CBR explains the solution it has reached, if any, by
showing the user the most similar case and its matching and mismatching features.

2.2 Dialogue Termination and Incomplete Information

Recent research has highlighted the importance of CCBR systems being able to rec-
ognize when a problem-solving dialogue can be safely terminated without affecting
solution quality [15]. The ability to solve problems for which the user is unable to
provide a complete description is another important aspect of an intelligent system’s
performance. However, the possible benefit of allowing a problem-solving dialogue
to continue when the user answers unknown to one or more questions must be bal-
anced against the risk that no solution may be possible no matter what other questions
the user might be asked [16].

In most CCBR approaches, a case is required to reach a minimum similarity
threshold for its solution to be suggested by the system as a solution to the user’s
problem. However, simply presenting the solution of any case that reaches the simi-
larity threshold as a solution to the user’s problem ignores the risk that another case
might exceed the similarity of the solution case if the dialogue is allowed to continue

 Conversational Case-Based Reasoning in Self-healing and Recovery 343

[15]. This is a risk that cannot be lightly dismissed for CCBR similarity measures that
use negative scoring for mismatching features as this means that even a single unan-
swered question can have a major impact on a case’s similarity.

In Section 3, we present our approach to ensuring that a case’s solution is sug-
gested as a solution to the user’s problem only when it is certain that the similarity of
the solution case cannot be exceeded no matter how the user’s query is extended. We
also present a simple criterion for recognizing when no solution is possible based on
the available information, thus ensuring that the user is never asked questions that
cannot lead to a solution.

2.3 Case Structure and Query Representation

Below we briefly describe how cases and queries are represented in Shriek-CBR, and
the similarity measure used in our approach. Table 1 shows an example case base that
we use to illustrate the discussion. The example case base is a small subset of the case
base used for fault diagnosis in Shriek-Printer, our intelligent system for fault man-
agement in a local printer network [2].

Case Structure. A case in Shriek-CBR consists of a case identifier, a problem de-
scription, a fault diagnosis, and, optionally, a remedial action (i.e., the action that was
taken to correct the fault). The problem description is a set of question-answer (Q-A)
pairs. As often in CCBR, the case structure is heterogeneous (i.e., a case includes only
questions that are relevant for solution of the problem it represents) [9].

Query Representation. The current query Q in a CCBR dialogue is represented in
Shriek-CBR as a set of Q-A pairs, including a Q-A pair for any question that the user
answered unknown. In a CCBR dialogue based on the example case base in Table 1,
the current query might be: Q1 = {able to print = N, power light on = unknown}.

Table 1. Example case base for printer troubleshooting

Questions Case 1 Case 2 Case 3 Case 4
Able to print? N N N Y
Toner level? low

Power light on? N N
Printer switched on? Y N
Printer plugged in? N

Print quality? okay
Printing speed? okay

Fault Diagnosis: Printer not
plugged in

Printer
switched

off

Out of toner
and refusing

to print

Printer
functioning
normally

Remedial Action:
Connect
printer to

power outlet

Switch on the
printer

Replace toner
cartridge

344 D. McSherry, S. Hassan, and D. Bustard

Definition 1. For any case C, questions(C) is the set of questions in C.

Similarity Measure. Similarity assessment in Shriek-CBR is based on a measure
commonly used in CCBR when the case structure is heterogeneous [8]. We define the
similarity of any case C to a given query Q to be:

Sim(C, Q) =
matches(C,Q) − mismatches(C,Q)

questions(C)
 . (1)

In Equation 1, matches(C, Q) is the set of questions in C that are also in Q and
have the same answer in C and Q, and mismatches(C, Q) is the set of questions in C
that are also in Q, are not answered unknown in Q, and have different answers in C
and Q. Thus a question that is answered unknown in a given query Q makes no con-
tribution to the similarity of any case. The similarity measure’s lack of symmetry is
not an important issue in our approach as we use it only to assess the similarity of
each case to a given query, and not the similarity between two cases. For the example
query Q1 = {able to print = N, power light on = unknown}, the similarities of Cases 1,
2, 3, and 4 in Table 1 are 0.25, 0.33, 0.50, and -0.33 respectively.

2.4 Autonomous Information Gathering

In general, the initial query in a CCBR dialogue may be empty, or the user may pro-
vide an initial query containing a partial description of the problem [8-9]. While the
user is often the only source of information in a CCBR dialogue, some approaches
support AIG from other sources [17-18]. When possible in Shriek-CBR, the initial
query contains a partial description of the problem situation obtained by AIG from
available sources in the computing environment. For example, when a user reports
that she is having a problem with a printer, information that can normally be obtained
directly from the printer includes toner level and paper status. The initial query in
Shriek-CBR also includes the answers to any questions that can be inferred from the
fact that this information can be obtained from the printer. For example, the printer
must be switched on and connected to the power supply. There is also no need to ask
the user if the power light is on.

Inferring the user’s answer to one question from her answer to another question, a
process known as dialogue inferencing (DI), is another approach to avoiding unneces-
sary questions in a CCBR dialogue [8-9]. However, even if a CCBR system can ex-
plain the additional reasoning steps needed for DI, a potential trade-off is that the
overall reasoning process may be less transparent to the user. Moreover, we show in
Section 5 that for the case base used for printer fault diagnosis in Shriek-Printer, rule-
based DI appears to offer no improvement in the efficiency of CCBR dialogues based
on the hypothesis-driven approach to question selection that we present in this paper.
For these reasons, there is no DI in the current version of Shriek-CBR.

Also in Section 5, we demonstrate the effectiveness of AIG in helping to increase
the efficiency of CCBR dialogues. In the interest of generality, however, we make no
assumption in the rest of the paper about how the initial query in a CCBR dialogue is
obtained.

 Conversational Case-Based Reasoning in Self-healing and Recovery 345

2.5 Open, Viable, and Competitive Cases

Other basic concepts in our approach to CCBR include the openness, viability, and
competitiveness of cases with respect to the current query in a CCBR dialogue.

Definition 2. For any query Q, questions(Q) is the set of questions that are answered
in Q, including any questions that the user answered unknown.

Definition 3. For any case C and query Q, unanswered(C, Q) is the set of questions in
C that are not yet answered in Q. That is, unanswered(C, Q) = questions(C) - ques-
tions(Q).

Definition 4. A case C is open with respect to a given query Q if unanswered(C, Q) ≠
∅ (i.e., some of the questions in C are not answered in Q). Otherwise, C is closed
with respect to Q.

In the example case base (Table 1), Case 3 is closed with respect to the query Q2 =
{able to print = N, toner level = unknown}, while Cases 1, 2, and 4 are open with re-
spect to Q2.

Definition 5. A query Q* is an extension of another query Q if Q ⊆ Q*.

Definition 6. For any case C and query Q, QC is the extension of Q such that ques-
tions(QC) = questions(Q) ∪ questions(C) and every question in questions(QC) - ques-
tions(Q) has the same answer in QC and C.

For the example case base in Table 1 and Q1 = {able to print = N, power light on =
unknown}, Q1

Case 2 = {able to print = N, power light on = unknown, printer switched
on = N}, while Q1

Case 3 = {able to print = N, power light on = unknown, toner level =
low}. It can also be seen that QC = Q for any query Q and case C that is closed with
respect to Q.

Definition 7. For any case C and query Q, MaxSim(C, Q) is the maximum similarity
that can be reached by C over all possible extensions of Q.

In Theorem 1, we show how a case’s maximum similarity can easily be determined
with no need for exhaustive search over all possible extensions of a given query. Note
that we make no assumption that the information provided by the user in a CCBR
dialogue is consistent.

Theorem 1. For any case C and query Q,

MaxSim(C, Q) = Sim(C, QC) = Sim(C, Q) +
unanswered (C,Q)

questions(C)
.

Proof. The similarity of C to any extension of Q cannot exceed its similarity to QC.
As the current query is extended from Q to QC, the similarity of C increases by
1/|questions(C)| for each q ∈ unanswered(C, Q). □

For any case C that is closed with respect to a given query Q, MaxSim(C, Q) = Sim(C,
QC) = Sim(C, Q). For the example case base in Table 1 and Q1 = {able to print = N,
power light on = unknown}, MaxSim(Case 1, Q1) = 0.75, MaxSim(Case 2, Q1) = 0.67,
MaxSim(Case 3, Q1) = 1, and MaxSim(Case 4, Q1) = 0.33.

346 D. McSherry, S. Hassan, and D. Bustard

Definition 8. A case C is viable with respect to a given query Q if MaxSim(C, Q) ≥ T,
where T is the minimum similarity threshold required for a case’s solution to be re-
used as a solution to the current problem.

A case that is not viable with respect to a given query Q can never reach the similarity
threshold T no matter how Q is extended, and can thus be eliminated from considera-
tion. In Shriek-CBR, the minimum similarity threshold required for a case’s solution
to be reused as a solution to the current problem is T = 0.65. For example, a case with
four features (or Q-A pairs) in its description must have at least 3 matching features
and no mismatching features. Other conditions for a case’s solution to be suggested
by Shriek-CBR as a solution to the user’s problem are discussed in Section 3. For the
example case base in Table 1 and Q1 = {able to print = N, power light on = un-
known}, only Cases 1, 2, and 3 are viable.

Definition 9. A case C1 is competitive with respect to a given query Q if MaxSim(C1,
Q) ≥ MaxSim(C2, Q) for all cases C2.

At least one case must always be competitive, even if no case can reach a similarity of
one. For the example case base in Table 1, Case 3 is the only competitive case with
respect to Q1 = {able to print = N, power light on = unknown}. However, a case that
is not competitive with respect to the current query in a CCBR dialogue may later
become competitive as the query is extended.

3 Knowing When to Stop Asking Questions

In Section 3.1, we present our approach to ensuring that a case’s solution is suggested
by Shriek-CBR as a solution to the user’s problem only when it is certain that the
similarity of the solution case cannot be exceeded no matter how the user’s query is
extended. Equally important when the user is unable to provide a complete descrip-
tion of the problem is the ability to recognize when no solution is possible given the
available information. In Section 3.2, we present our approach to ensuring that the
user is never asked questions that cannot lead to a solution.

3.1 Recognizing When a Problem Has Been Solved

Our criterion for allowing a case’s solution to be suggested as a solution to the user’s
problem in Shriek-CBR is that the case is confirmed by the current query in a CCBR
dialogue. As soon as any case is confirmed, the dialogue is terminated and the solu-
tion from the confirmed case is presented as a solution to the user’s problem.

Definition 10. A case C1 is confirmed by a given query Q if Sim(C1, Q) ≥ 0.65, C1 is
closed with respect to Q, and Sim(C1, Q) ≥ MaxSim(C2, Q) for all cases C2.

Thus there are three conditions that a case C must satisfy for its solution to be sug-
gested by Shriek-CBR as a solution to the user’s problem. First, C must have reached
the minimum similarity threshold (T = 0.65) for its solution to be reused as a solution
to the current problem. Second, C must be closed with respect to the current query Q,
thus ensuring that its similarity cannot decrease no matter how Q is extended. Third,
there must be no other case that is more similar to Q or might exceed the similarity of

 Conversational Case-Based Reasoning in Self-healing and Recovery 347

C if Q is extended. It is possible, though unlikely, for two or more cases to be con-
firmed at the same point in a CCBR dialogue. In this situation, the user can be shown
the solutions from all the confirmed cases, or as currently in our approach, the solu-
tion from the confirmed case that appears first in case base.

A case C is clearly confirmed by any query Q such that Sim(C, Q) = 1, as C must
be closed with respect to Q, and no case can exceed its similarity no matter how Q is
extended. It is also possible for a case to be confirmed without reaching a similarity of
one. For the example case base in Table 1, Case 1 is confirmed by the query Q3 =
{able to print = unknown, power light on = N, printer switched on = Y, printer
plugged in = N}. It can be seen from Table 1 that Sim(Case 1, Q3) = 0.75, Case 1 is
closed with respect to Q3, and the maximum similarity that can be achieved by Case
4, the only other viable case, is 0.67.

Of course, the solution from a confirmed case cannot be guaranteed to solve the
user’s problem even if it has reached the maximum similarity of one. However, to
enable learning from experience in Shriek-CBR, the user can refer any problem that
remains unsolved by the system’s recommendations to the person responsible for
maintenance of the case base.

3.2 Recognizing When No Solution Is Possible

In Theorem 2, we present a simple criterion for recognizing when no solution is pos-
sible in a CCBR dialogue no matter how the current query is extended. An important
benefit is that the user can be informed at the earliest possible stage when no solution
is possible, and need never be asked questions that cannot lead to a solution.

Definition 11. A query Q is inconclusive if no case is (as yet) confirmed by Q.

Lemma 1. If at least one case is viable with respect to an inconclusive query Q, then
all cases that are competitive with respect to Q are also open and viable.

Proof. If C0 is a viable case, then for any competitive case C1, MaxSim(C1, Q) ≥ Max-
Sim(C0, Q) ≥ 0.65, and so C1 is also viable. As Q is inconclusive, it is also clear that
C1 cannot be closed with respect to Q, as this would imply that Sim(C1, Q) = Max-
Sim(C1, Q) ≥ 0.65 and Sim(C1, Q) = MaxSim(C1, Q) ≥ MaxSim(C2, Q) for all cases C2,
leading to the contradictory conclusion that C1 is confirmed by Q. □

Lemma 2. Any case C that is viable and competitive with respect to an inconclusive
query Q is confirmed by QC.

Proof. If C1 is any case that is viable and competitive with respect Q, then Sim(C1,

QC1) = MaxSim(C1, Q) ≥ 0.65. It is also clear that C1 is closed with respect to QC1 . It

remains only to observe that, for all cases C2, Sim(C1, QC1) = MaxSim(C1, Q) ≥ Max-

Sim(C2, Q) ≥ MaxSim(C2, QC1). □

Theorem 2. A solution is possible by extending an inconclusive query Q if and only
if at least one case is viable with respect to Q.

Proof. It is clear that no solution is possible by extending an inconclusive query if no
case can reach the similarity threshold (T = 0.65) required for its solution to be ap-
plied to the current problem. Conversely, suppose that at least one case is viable with

348 D. McSherry, S. Hassan, and D. Bustard

respect to an inconclusive query Q, and let C1 be any case that is competitive with
respect to Q. By Lemma 1, C1 is also viable with respect to Q. It follows from Lemma

2 that C1 is confirmed by QC1 . Thus if Q is incrementally extended in a CCBR dia-
logue by asking the user only questions in unanswered(C1, Q), and all the user’s an-
swers are the same as in C1, then C1 must eventually be confirmed unless another case

C2 is confirmed (and the dialogue terminated) before QC1 is reached. In either case,
we have established that a solution is possible by extending Q. □

For example, none of the cases in Table 1 is viable with respect to the query Q4 =
{able to print = N, toner level = unknown, power light on = Y}. The user can thus be
informed that no solution is possible after she has answered at most three of the seven
questions in the case base. In Shriek-Printer, any fault that Shriek-CBR is currently
unable to diagnose is automatically referred to the person responsible for maintenance
of the case base and authoring of new cases for diagnosis of previously unseen faults.
In this situation, possible recovery strategies suggested to the user by Shriek-Printer
are likely to include redirecting her print job to another available printer.

4 Asking the Right Questions

In Section 4.1, we describe how an initial target case is selected in our hypothesis-
driven approach to question selection in CCBR, and may later be revised as the query
describing the problem is extended. In Section 4.2, we describe how the target case is
used to guide the selection of the most useful question in each cycle of a CCBR dia-
logue. This is followed in Section 4.3 by a brief demonstration of Shriek-CBR based
on the example case base in Table 1.

4.1 Selecting a Target Case

The target case used to guide question selection in Shriek-CBR is uniquely deter-
mined by the current query Q. To be selected as a target case, a case C must be com-
petitive with respect to Q. If there is more than one competitive case, then the one
with fewest unanswered questions in its problem description is selected as the target
case. If there is still a tie between two or more competitive cases, then the one that
appears first in the case base is selected as the target case. In a CCBR dialogue in
which the user’s problem is initially represented by an empty query Q, all cases are
initially competitive as MaxSim(C, Q) = 1 for every case C. In this situation, the target
case initially selected by Shriek-CBR is the first case with the smallest number of
questions in the case base. Of course, the target case may later be revised in light of
the user’s answers to the system’s questions.

Definition 12. The target case for an inconclusive query Q is the first competitive
case C1 in the case base such that |unanswered(C1, Q)| ≤ |unanswered(C2, Q)| for all
competitive cases C2.

Selecting the most similar case as the target case is one possible alternative to the
proposed strategy. However, the most similar case may not be open, competitive, or
even viable with respect to the current query. In Table 1, for example, the case that is

 Conversational Case-Based Reasoning in Self-healing and Recovery 349

most similar to Q5 = {able to print = N, toner level = unknown} is Case 3 (0.50). But
Case 3 is not open, viable, or competitive with respect to Q5. In contrast, only a com-
petitive case can be selected as a target case in Shriek-CBR. As a CCBR dialogue is
allowed to continue in Shriek-CBR only if there is at least one viable case, the target
case must also be open and viable by Lemma 1. Another potential problem with target
selection based on similarity is that a non-target case with the same answer to a ques-
tion in the target case may obtain a greater increase in similarity than the target case if
the user’s answer is the same as in both cases. This may result in seemingly incon-
stant behavior (i.e., frequent changes from one target case to another).

4.2 Selecting the Most Useful Question

In Shriek-CBR, the user is asked only questions in the target case, which must include
at least one unanswered question by Lemma 1. However, our approach to selecting
the most useful question also takes account of question frequency, a criterion that has
been shown to be effective in other CCBR approaches [8]. The most useful question
at any stage of a CCBR dialogue in Shriek-CBR is the unanswered question in the
target case that occurs most frequently in the viable cases. If two or more unanswered
questions in the target case occur with maximum frequency in the viable cases, the
one that occurs first in the target case is selected as the most useful question.

Definition 13. If C is the target case for an inconclusive query Q, then the most use-
ful question is the first unanswered question in C that occurs with maximum fre-
quency in all cases that are viable with respect to Q.

4.3 Example Dialogue in Shriek-CBR

The example dialogue in Fig. 1 that we use to demonstrate our approach to CCBR in
Shriek-CBR is based on the example case base in Table 1 and a problem situation in
which a user is attempting to use a printer that is not switched on. As printer status
information cannot be obtained by AIG from a printer that is not switched on, the
initial query is empty. Thus all cases in the example case base are initially open, vi-
able, and competitive. As Case 3 has fewer questions (2) than any other case, it is
initially selected as the target case. The question in Case 3 that occurs most frequently
in the viable cases is ‘Able to print?’. In light of the user’s answer (N), the maximum
similarity that Case 4 can reach falls to 0.33, so Case 4 is no longer viable. However,
Cases 1, 2, and 3 remain open, viable, and competitive.

With Q = {able to print = N} as the current query in the second cycle, Case 3 is
again selected as the target case, and the user is asked about the toner level, the only
question that remains unanswered in Case 3. However, the user does not know the
toner level, with the result that Case 3 is no longer viable (i.e., its similarity can never
reach 0.65). Though both less similar than Case 3 (0.50), Cases 1 and 2 (0.25 and
0.33) are still open, viable, and competitive. Case 2 is now selected as the target case
because it has fewer unanswered questions (2) than Case 1 (3). As the two unan-
swered questions in Case 2 occur with equal frequency (2) in the viable cases, ‘Power
light on?’ is selected as the most useful question because it appears first in the target
case. The user’s answer (N) increases the similarity of Case 2 to 0.67.

350 D. McSherry, S. Hassan, and D. Bustard

Confirmed Case:
Case 2 (Printer switched off)

able to print = N (+)
power light on = N (+)

 printer switched on = N (+)
Similarity: 1.00

Fault Diagnosis: Printer
switched off

Remedial Action: Switch
on the printer

Target Case:
Case 3 (Out of toner and

refusing to print)
able to print = N
toner level = low
Similarity: 0.00

Question: Able to print?

Target Case:
Case 3 (Out of toner and

refusing to print)
able to print = N (+)

toner level = low
Similarity: 0.50

Question: Toner level?

Target Case:
Case 2 (Printer switched off)

able to print = N (+)
power light on = N

 printer switched on = N
Similarity: 0.33

Question: Power light on?

N

unknown

N

Target Case:
Case 2 (Printer switched off)

able to print = N (+)
power light on = N (+)

 printer switched on = N
Similarity: 0.67

Question: Printer switched on?

Explanation: If toner level = low
this will confirm Case 3

N

Explanation: If power light on = N
this will help to confirm Case 2

Fig. 1. An example CCBR dialogue in Shriek-CBR

Case 2 is again the target case in the fourth cycle as its only unanswered question is
now ‘Printer switched on?’ while Case 1 still has two unanswered questions. When
the user is asked if the printer is switched on, her answer (N) is enough to confirm
Case 2 as it has now reached a similarity of one. Finally, the user is shown the solu-
tion (i.e., fault diagnosis and remedial action) from the confirmed case. A detail not
shown in Fig. 1 is that Shriek-Printer also uses its environment knowledge to identify
possible recovery strategies (e.g., waiting for assistance from an available technician)
that the user may wish to consider.

The example dialogue also shows how Shriek-CBR can explain the relevance of
any question it asks the user. Before answering any question, the user can ask why it

 Conversational Case-Based Reasoning in Self-healing and Recovery 351

is relevant. If so, Shriek-CBR explains that if the user’s answer is the same as in the
target case, this will confirm, or help to confirm, the target case. In each cycle of a
CCBR dialogue, the user is also shown the target case that the system is trying to con-
firm, its matching (+) and mismatching (-) features, and its overall similarity to the
current query. At the end of the dialogue, Shriek-CBR explains the solution it has
reached by showing the user the confirmed case and its matching and mismatching
features.

5 Empirical Study

The hypothesis that motivates the work presented is that the transparency of CCBR
dialogues can be increased by a hypothesis-driven approach to question selection
without loss of problem-solving efficiency. As shown in Section 4, our hypothesis-
driven approach to question selection enables a CCBR system to explain the rele-
vance of any question the user is asked. However, an important question is how the
efficiency of CCBR dialogues based on this strategy compares with other approaches
to question selection and ranking in CCBR. While approaches that assume a homoge-
neous case structure [11, 14-15] are not directly comparable to ours, an approach of-
ten used when the case structure is heterogeneous is to rank questions according to
their frequency in the most similar cases [8]. The question-selection strategies com-
pared in our evaluation are:

 Random: Select any question at random
 Frequency: Select the question that occurs most frequently in the most simi-

lar open cases
 Target: Select the first unanswered question in the target case that occurs

with maximum frequency in the viable cases.

Also of interest in our evaluation are the effects of AIG and DI on the efficiency of
CCBR dialogues in Shriek-CBR. The case base used in our experiments is the one
used for fault diagnosis in Shriek-Printer, our intelligent system for fault management
in a local printer network [2]. It contains 20 cases, most of which have 3 or 4
Q-A pairs, and there are 12 questions in the case base. Because some printer faults
(e.g., paper jams) cannot be arranged “to order” in a live environment, we use an off-
line version of Shriek-Printer in which printer status information (e.g., toner level)
normally obtained by AIG is provided in an initial query. The initial query also in-
cludes the answers to any questions that Shriek-Printer normally infers from its ability
to communicate with the printer (if that is the case) as described in Section 2. When
enabled in our experiments, DI is based on simple rules (e.g., if the power light is on,
then the printer must be switched on).

We use a leave-one-in approach in which each case in the Shriek-Printer case base
provides the description of a problem to be solved in a simulated CCBR dialogue.
Any question that does not appear in the description of the left-in case is answered
unknown in the CCBR dialogue. For any question that does appear in the left-in case,
the answer given is the answer in the left-in case. The dialogue is allowed to continue
until any case reaches a similarity of one. In our first experiment, this process is

352 D. McSherry, S. Hassan, and D. Bustard

repeated for all cases and for each question-selection strategy with no AIG or DI. In
our second experiment, the Target strategy is used with all combinations of AIG
(on/off) and DI (on/off). In 90% of AIG-enabled dialogues, 7 of the 12 possible ques-
tions are already answered in the initial query. In the remaining 10%, the initial query
is empty, for example because printer status information cannot be obtained by AIG
from a printer that is not switched on.

In all CCBR dialogues, the left-in case was the only case to reach a similarity of
one. Fig. 2 shows the minimum, average, and maximum lengths of CCBR dialogues
(i.e., numbers of questions) observed in each question-selection strategy. Also shown
is the optimal performance that could be achieved with any question-selection strat-
egy, given that the number of questions asked before a case reaches a similarity of
one cannot be less than the number of questions in the case. In the Shriek-Printer case
base, the number of questions in a case ranges from 2 to 7 with an average of 3.3.

0

2

4

6

8

10

12

Random Frequency Target Optimal

N
o

.
o

f
Q

u
e
s
ti

o
n

s

Min Avg Max

Fig. 2. Minimum, average, and maximum lengths of CCBR dialogues based on three question-
selection strategies, and the optimal results achievable with any question-selection strategy

0

2

4

6

8

10

12

Target Target + DI Target + AIG Target + AIG + DI

N
o

.
o

f
Q

u
e

s
ti

o
n

s

Min Avg Max

Fig. 3. Effects of AIG and DI on the efficiency of CCBR dialogues based on hypothesis-driven
question selection in the Shriek-Printer case base

 Conversational Case-Based Reasoning in Self-healing and Recovery 353

Average dialogue lengths in the Target and Frequency strategies (3.8 and 3.9) are
much lower than in the Random strategy (9.4). In fact, average dialogue lengths in
these two strategies are close to optimal (3.3). With the Target and Frequency strate-
gies differing only slightly in average dialogue length, the results support our
hypothesis that the transparency of CCBR dialogues can be increased by a hypothe-
sis-driven approach to question selection without loss of efficiency.

Fig. 3 shows the effects of AIG and DI on the lengths of CCBR dialogues in the
Target strategy. In the absence of DI, AIG reduced average dialogue length from 3.8
to 2.2, a reduction of 42%. Average dialogue length for the Target strategy with AIG
(2.2) is 33% lower than the best possible average (3.3) that could be achieved with
any question-selection strategy in the absence of AIG (Fig. 2). Whether or not AIG is
enabled, however, rule-based DI appears to have no effect on the average length of
simulated CCBR dialogues based on our hypothesis-driven approach to question se-
lection in the Shriek-Printer case base.

6 Conclusions

In the SHRIEK approach to increasing the robustness of computing systems, CCBR is
used to guide fault diagnosis and enable learning from experience in the management
of faults that rely on user interaction for their detection and diagnosis [2-3]. In this
paper, we presented a hypothesis-driven approach to question selection in CCBR that
enables the system to explain the relevance of any question the user is asked. Also
with the aim of increasing transparency, the user is shown the target case in each cy-
cle of a CCBR dialogue and asked only questions in the target case.

Our empirical results suggest that there is no loss of efficiency in our approach
relative to an approach often used in CCBR when the case structure is heterogeneous
[8]. We also demonstrated a 42% reduction in the average length of CCBR dialogues
as a result of the environment awareness provided by autonomous information gather-
ing in Shriek-Printer. Finally, we presented CCBR techniques for ensuring that (1) the
user is never asked questions that cannot lead to a solution, and (2) a solution is pre-
sented to the user only when no other case can exceed the similarity of the solution
case no matter what additional questions the user might be asked.

Acknowledgements. Sa’adah Hassan’s research is supported by the Ministry of
Higher Education Malaysia. The authors would also like to thank Chris Stretch for his
helpful comments on an earlier version of this paper.

References

1. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy. In: Agenda 2001. IBM Watson Research Center, Scottsdale (2001)

2. Hassan, S., McSherry, D., Bustard, D.: Autonomic Self Healing and Recovery Informed
by Environment Knowledge. Artificial Intelligence Review 26, 89–101 (2006)

3. Hassan, S., Bustard, D., McSherry, D.: Soft Systems Methodology in Autonomic Comput-
ing Analysis. In: UK Systems Society International Conference, pp. 106–115 (2006)

4. Checkland, P., Scholes, J.: Soft Systems Methodology in Action. Wiley, Chichester (1990)

354 D. McSherry, S. Hassan, and D. Bustard

5. Crapo, A.W., Aragones, A.V., Price, J.E., Varma, A.: Towards Autonomic Systems for
Lifecycle Support of Complex Equipment. In: International Conference on Information
Reuse and Integration, pp. 322–329. IEEE, Los Alamitos (2003)

6. Montani, S., Anglano, C.: Achieving Self-Healing in Service Delivery Software Systems
by Means of Case-Based Reasoning. Applied Intelligence 28, 139–152 (2008)

7. Montani, S., Anglano, C.: Case-Based Reasoning for Autonomous Service Failure Diagno-
sis and Remediation in Software Systems. In: Roth-Berghofer, T.R., Göker, M.H., Güve-
nir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 489–503. Springer, Heidel-
berg (2006)

8. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-Based Reasoning. Ap-
plied Intelligence 14, 9–32 (2001)

9. Aha, D.W., McSherry, D., Yang, Q.: Advances in Conversational Case-Based Reasoning.
Knowledge Engineering Review 20, 247–254 (2005)

10. Gu, M., Aamodt, A.: Evaluating CBR Systems Using Different Data Sources: a Case
Study. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS
(LNAI), vol. 4106, pp. 121–135. Springer, Heidelberg (2006)

11. McSherry, D.: Interactive Case-Based Reasoning in Sequential Diagnosis. Applied Intelli-
gence 14, 65–76 (2001)

12. Shimazu, H., Shibata, A., Nihei, K.: ExpertGuide: a Conversational Case-Based Reasoning
Tool for Developing Mentors in Knowledge Spaces. Applied Intelligence 14, 33–48
(2001)

13. Cheetham, W.: A Mixed-Initiative Call Center Application for Appliance Diagnostics. In:
AAAI 2005 Fall Symposium on Mixed-Initiative Problem-Solving Assistants. AAAI/MIT
Press (2005)

14. McSherry, D.: Hypothetico-Deductive Case-Based Reasoning. In: ICCBR 2007 Workshop
on Case-Based Reasoning in the Health Sciences, pp. 315–324 (2007)

15. McSherry, D.: Increasing Dialogue Efficiency in Case-Based Reasoning Without Loss of
Solution Quality. In: 18th International Joint Conference on Artificial Intelligence, pp.
121–126 (2003)

16. McSherry, D.: Increasing the Coverage of Decision Trees through Mixed-Initiative Inter-
action. In: 18th Irish Conference on Artificial Intelligence and Cognitive Science, pp. 101–
110 (2007)

17. Carrick, C., Yang, Q., Abi-Zeid, I., Lamontagne, L.: Activating CBR Systems through
Autonomous Information Gathering. In: Althoff, K.-D., Bergmann, R., Branting, L.K.
(eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 74–88. Springer, Heidelberg (1999)

18. Giampapa, J., Sycara, K.: Conversational Case-Based Planning for Agent Team Coordina-
tion. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 189–
203. Springer, Heidelberg (2001)

Situation Assessment for Plan Retrieval in

Real-Time Strategy Games

Kinshuk Mishra, Santiago Ontañón, and Ashwin Ram

Cognitive Computing Lab (CCL)
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332/0280

{kinshuk,santi,ashwin}@cc.gatech.edu

Abstract. Case-Based Planning (CBP) is an effective technique for
solving planning problems that has the potential to reduce the computa-
tional complexity of the generative planning approaches [8,3]. However,
the success of plan execution using CBP depends highly on the selection
of a correct plan; especially when the case-base of plans is extensive. In
this paper we introduce the concept of a situation and explain a situ-
ation assessment algorithm which improves plan retrieval for CBP. We
have applied situation assessment to our previous CBP system, Darmok
[11], in the domain of real-time strategy games. During Darmok’s ex-
ecution using situation assessment, the high-level representation of the
game state i.e. situation is predicted using a decision tree based Situation-
Classification model. Situation predicted is further used for the selection
of relevant knowledge intensive features, which are derived from the basic
representation of the game state, to compute the similarity of cases with
the current problem. The feature selection performed here is knowledge
based and improves the performance of similarity measurements during
plan retrieval. The instantiation of the situation assessment algorithm to
Darmok gave us promising results for plan retrieval within the real-time
constraints.

1 Introduction

Generative planning techniques are typically inapplicable for solving problems
with extensive search spaces within real-time constraints. Case-based planning
(CBP) [13] has the potential of reducing the computational complexity of tradi-
tional planning techniques. Specifically, CBP works by reusing previous stored
plans for new situations instead of planning from scratch. Thus, CBP is a promis-
ing paradigm to deal with real-time domains. In this paper we will focus in
Darmok, [11] a case-based planning system that is able to deal with the complex-
ity of real-time strategy (RTS) games. Darmok was designed to play WARGUS,
an open source implementation of the famous Warcraft II. However, the success
of plan execution using CBP in such domains depends on the quality of plan
selection within the real-time constraints. The performance of Darmok’s plan

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 355–369, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 K. Mishra, S. Ontañón, and A. Ram

retrieval suffers when the case-base stores numerous plans representing several
strategies played over maps of different sizes and terrain formations. In this pa-
per we explain our work on situation assessment technique applied to Darmok
for better plan retrieval in real-time.

A Situation is a high-level representation of the state of the world. For exam-
ple, in the WARGUS domain the player might be in an attacking situation, or in
a base development situation, among others. Depending on which situation the
player is in, different aspects of the world state will be important to take deci-
sions. Thus, in order to select which strategy to execute, it is important to know
the current situation. Situations can be predicted based on raw features that can
be directly computed from the game state, i.e. shallow features. However, shal-
low features by themselves are not strong enough for selection of a strategy in a
game. Additional derived deep features for a situation are needed. For example,
shallow features, like the ratio of a player’s resources to that of the opponent,
by themselves are less suggestive of usefulness of an appropriate strategy. How-
ever deeper features, like knowing the existence of path or a barrier between the
player and its opponent, can help in choosing a rush or a tunneling strategy.
Situation assessment is used to predict the situation of a game state based on
the shallow features. This information is used to further select a set of deep fea-
tures specific to the situation for choosing the best strategy. Formally, Situation
Assessment is a process of gathering high-level information using low-level data
to help in better decision making.

Our general situation assessment technique comprises of four steps: shallow
feature selection, model generation, model execution and case retrieval. Firstly, a
subset of shallow features is selected which are used for classification of a game
state into a situation. Then three models: a) for classification of game state into
situations based on shallow features, b) for mapping of situations to cases and c)
for mapping of situations to deep features respectively are generated. Execution
of these models helps Darmok to classify a game state into a situation and
then retrieve the most optimal plan using situation specific deep features. Plan
retrieval results in Darmok using situation assessment have been promising.

The rest of the paper is organized as follows. Section 2 presents a summary
of the related work. Then, Section 3 briefly explains the architecture of the
Darmok system. After that, Section 4 describes the process of situation assess-
ment. Section 5 explains the situation assessment algorithm applied to Darmok
System. Section 6 provides an illustration of the process. Finally, we summarize
our experiment results in Section 7 and then end with a conclusions section.

2 Related Work

There are several relevant areas of work related to our approach, namely: situa-
tion assessment, feature selection, and the application of CBR to computer game
AI. Concerning situation assessment, work has been done extensively in the area
of information fusion [4] and defense related command and control projects [2],
however little work has been done using CBR. Kolodner [10] defined situation

Situation Assessment for Plan Retrieval in RTS Games 357

assessment as the process of deriving additional features in a particular situa-
tion in order to compare it with previous experiences, but no CBR system to
our knowledge implements such process. Kofod-Petersen and Aamodt [9] define
a case-based situation assessment system for a mobile context-aware application.
The system uses case-based reasoning to determine the situation in which the
user might be in, and the possible goals associated with these situations. They
define a situation as a context, and define a hierarchy of contexts in which the
user might be in. The difference with our work is that we are interested in situa-
tion assessment as a way to select a subset of features that allows us to perform
better case retrieval.

Plenty of work exists on feature selection in the machine learning literature.
Hall and Holmes [7] present a nice overview and empirical evaluation of several
feature selection techniques. Some well-known techniques include: information-
gain based techniques [14], Principal Component Analysis, Correlation-based
Feature selection [6], or Cross-validation methods (that simply run the learn-
ing algorithm repeatedly with different feature subsets and select the best one
empirically). The main difference of our work with the existing feature selection
techniques, is that the set of possible features from where we can select features is
too large and the examples are few, and thus we need a more knowledge-based
feature selection method (situation assessment) that does not involve trying
feature-by-feature.

Concerning the application of case-based reasoning techniques to computer
games, Aha et al. [1] developed a case-based plan selection technique that learns
how to select an appropriate strategy for each particular situation in the game of
WARGUS. In their work, they have a library of previously encoded strategies,
and the system learns which one of them is better for each game phase. In addi-
tion, they perform an interesting analysis on the complexity of real-time strategy
games (focusing on WARGUS in particular). Another application of case-based
reasoning to real-time strategy games is that of Sharma et al. [12], where they
present a hybrid case-based reinforcement learning approach able to learn which
are the best actions to apply in each situation (from a set of high level actions).
The main difference between their work and ours is that they learn a case selec-
tion policy, while our system constructs plans from the individual cases it has in
the case-base. Moreover, our architecture automatically extracts the plans from
observing a human rather than having them coded in advance.

3 Case-Based Planning and Execution in Wargus

In this section we will present an overview of WARGUS and of the Darmok
system. WARGUS (Figure 1) is a real-time strategy game where each player’s
goal is to remain alive after destroying the rest of the players. Each player has
a series of troops and buildings and gathers resources (gold, wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy. In addition,
players can also build defensive buildings such as walls and towers. Therefore,

358 K. Mishra, S. Ontañón, and A. Ram

Fig. 1. A screenshot of the WARGUS game

WARGUS involves complex reasoning to determine where, when and which
buildings and troops to build. For example, the map shown in Figure 1 is a
2-player version of the classical map ”Nowhere to run nowhere to hide”, with
a wall of trees that separates the players. This maps leads to complex strategic
reasoning, such as building long range units (such as catapults or ballistae) to
attack the other player before the wall of trees has been destroyed, or tunneling
early in the game through the wall of trees trying to catch the enemy by surprise.

The Darmok system [11] is a case-based planning system designed to play
the game of WARGUS. Darmok learns plans (cases) by observing a human
playing the game, and then reuses such plans combining and adapting them
to play new games using case-based planning methods. Figure 2 presents the
Darmok architecture that is split into two main processes: Behavior Acquisition
and Behavior Execution. The Behavior Acquisition process is performed by the
Revision and Case Learning modules in the following way. Each time a human
plays a game, a trace is generated (containing the list of actions performed by the
human). During revision, the human annotates that trace stating which goals
he was pursuing with each action. This annotated trace is processed by the case
learning module that extracts plans in form of cases from the trace. Each plan
consists of two components:

– A Behavior: consisting of a goal and a plan. Basically, a behavior stores that,
to achieve a particular goal, the human used a particular plan.

– An Episode: consisting of a reference to a behavior, a game state and an
outcome. Episodes store how well a particular behavior performed in a par-
ticular game state. The outcome is a real number between 0 and 1, stating
how much the behavior achieved its goal in the specified game state.

Thus, the case-base of Darmok is composed of behaviors, and each behavior
is associated with a bunch of episodes. Behaviors are learnt from traces, and

Situation Assessment for Plan Retrieval in RTS Games 359

Fig. 2. Overview of our case-based planning approach

episodes can be learnt either from traces or from experience. The Behavior Ex-
ecution process is performed by the rest of the modules in the architecture, and
works as follows. Darmok starts off by giving the initial unexpanded goal ”Win
Wargus” to the Plan Expander. Each time the Plan Expander wants to expand
a goal, it asks the Behavior Retriever for a behavior, which uses the case-base to
select the best behavior for the goal at hand in the current game state. The Plan
Adapter adapts the retrieved behaviors before they are inserted in the current
plan, which is maintained by Darmok for execution. The Plan Executioner con-
stantly tries to execute that plan that might be only partially expanded. Such a
plan is maintained by the Plan Expander that looks for unexpanded goals in the
plan and tries to expand them. Thus, the Plan Executioner tries to see if there
is any part of the plan that has been expanded to the level of primitive actions
that can be sent to the game, and executes such actions if possible. Some of the
primitive actions in the game are like move-unit, repair-building, etc.

Finally, notice that WARGUS is a dynamic domain, thus the game state
changes constantly. For that reason, the Plan Expander delays the adaptation of
plans till the last moment (right before they have to start execution) to ensure
they are adapted with the most up-to-date game state (Delayed Adaptation). In
this paper we will focus on the behavior retrieval problem. See [11] for a detailed
explanation of the Darmok system.

4 Situation Assessment for Case Retrieval

Traditionally, in Case-Based Reasoning the process of case retrieval is done by
selecting the case from the case-base that has the closest similarity to the world
state of the problem. This similarity is measured over the various features that
are computed from the representation of the world state. The key to the most
optimal case selection is choosing the set of most important features which im-
prove the similarity measurement during the case selection process. The choice
of features depends on their relevance in representing the high-level inferential

360 K. Mishra, S. Ontañón, and A. Ram

knowledge about the world state. Here, we define a Situation as a high-level
representation of the state of the world in a problem. For example, in the WAR-

GUS domain the player might be in an attacking situation, or in a base building
situation among others. Depending on which situation the player is in, different
aspects of the world state will be important for decision making. Hence, the
task of choosing the most relevant set of features for optimal case selection de-
pends on the current situation of the world. Situations can be predicted based
on the raw features that are directly computed from the world state i.e. shallow
features. These shallow features are generally computationally inexpensive but
lack the high-level inferential knowledge about the world. For instance, in the
WARGUS domain, the features like ratio of player’s gold resources versus that
of the opponent or the number of trees in the map are shallow features. Once a
situation is predicted, through situation assessment, the additional derived deep
features specific to a situation are used for comparing the high-level knowledge
represented by each case. For instance, in the WARGUS domain, the deep fea-
tures like knowing the existence of path or a barrier between the player and its
opponent, can help in choosing a rush or a tunneling strategy. The deep features
are generally computationally expensive but provide information very relevant
for case selection in specific situations. As we said before, situation assessment
is a process of gathering high-level information using low-level data to help in
better decision making. Thus, in the case of CBR, it is the process of gathering
the important features and other pieces of information that will help us retrieve
the most appropriate case.

Our general situation assessment algorithm is described in Figure 3. It com-
prises of four main steps:

– Shallow Feature Selection: During this first step, a situation annotated
trace T is provided to a feature selection algorithm. An annotated trace
consists of a sequence of world states annotated with the set of shallow
features computed for each world state and the appropriate situation that
world state corresponds to. This algorithm returns the set of shallow features
F ′

s which have high information gain. Specifically, in Darmok, we have used
best-first greedy hill-climbing algorithm [5] for filtering the high information
gain shallow features.

– Model Generation: In this step the following three models are generated:
• The Situation-Classification Model, Mcf , is built by providing F ′

s and T
to a classification algorithm. This model is useful for classification of a
world state to a situation using shallow features in F ′

s. In Darmok, we
have used a standard algorithm inducing a decision tree classifier model.

• The Situation-Case Model, Mc, provides a mapping from the set of sit-
uations S to a subset of cases in the case-base C. It can be built using
statistical or empirical analysis. This model captures the intuition that
not all the cases will be useful in all the situations.

• The Situation-Deepfeature Model, Mdf , provides a mapping from S to
deep features in the set Fd. This mapping is done using a feature selection
algorithm or by using empirical knowledge.

Situation Assessment for Plan Retrieval in RTS Games 361

Function SituationAssessment(C, T)
1 Shallow Feature Selection

F ′
s = SelectShallowFeatures(Fs, T)

2 Model Generation
Mcf = GenerateClassificationModel(F ′

s, T)
Mc = GenerateCaseModel(S, C)
Mdf = GenerateDeepFeatureModel(S, Fd)

3 Model Execution
s = GetCurrentSituation(Mcf , F ′

s)
C′ = GetRelevantCaseSubset(Mc, s)
F ′

d = GetDeepFeatureSet(Mdf , C′)

4 Case Retrieval
Return RetrieveCase(C′, F ′

d, Fs)
End-Function

Fig. 3. General Situation Assessment Algorithm. Where C is the case-base, T is the
situation annotated training set. Fs and Fd are the set of all shallow and deep features
respectively. F ′

s is the subset of high information gain features selected from Fs. Mcf is
the Situation-Classification model. S is the universal set of all possible situations. Mc

and Mdf are the Situation-Case model and Situation-Deepfeature models respectively,
built empirically in Darmok. s represents the current situation of the game state. C′ is
the most relevant subset of cases from the case-base obtained for s from the execution
of Mc. F ′

d is the subset of deep features obtained from execution of Mdf . RetrieveCase
returns the best case from C′ using F ′

d and Fs.

– Model Execution: In this third step, the models generated in the previous
step are executed to get the current situation s, the subset of cases C′ from
the case-base C and the subset of deep features F ′

d which are most relevant
to s. s is obtained by running Mcf over F ′

s. Once s is known, using Mc and
Mdf , C′ and F ′

d are obtained respectively.
– Case Retrieval: This is the last step where using F ′

d and Fs the most
similar case in retrieved from C′ using normal retrieval techniques.

5 Situation Assessment Applied to Darmok

In this section we shall present the instantiation of the situation assessment
algorithm in our system, Darmok, to improve the performance of its case-based
plan retrieval. We apply the General Situation Assessment algorithm in Figure
3 to Darmok, but split in two stages:

– The Offline Stage: comprising of Feature Selection and Model Generation
before the game-play.

– The Online Stage: comprising of Model Execution and Plan Retrieval during
the game-play.

362 K. Mishra, S. Ontañón, and A. Ram

Fig. 4. Offline Stage of Situation Assessment. Where T is the trace, Fs is the set of
shallow features, F ′

s is the subset of shallow features after feature selection, Fd is the
set of deep features, S is the set of situations and C is the case-base.

Table 1. Goal to Situation Mapping

Goals Situations

ResearchGoal Base Development, Defense,
Dev-Defense

AbsoluteBuildUnitsGoal, Base Development, Defense,
RelativeBuildUnitsGoal Attack, Dev-Defense,

Dev-Attack

ResourceInfrastructureGoal Base Development

KillAllUnitsOfTypeGoal,
KillUnitGoal, Attack

DefeatPlayerGoal

WinWargusGoal Beginning

We perform situation assessment in two stages since the models required for
predicting the situation during Darmok’s game-play are built just once at the
start. Therefore, the models can be easily generated offline using standard feature
selection and classification algorithms.

5.1 Offline Stage

As shown in the Figure 4 the offline stage of the situation assessment algorithm
in Darmok consists of the first two steps of the algorithm from Figure 3.

In the first step of shallow feature selection the set of shallow features Fw
s

in WARGUS and the situation annotated trace T w are provided to the best-
first greedy hill-climbing-with-backtacking feature selection algorithm [5]. T w is
generated over various game states, with the values of all the shallow features, by
forcing Darmok to play particular maps with the best strategies for those maps,
which were demonstrated by an expert. In our experiments, trace generation

Situation Assessment for Plan Retrieval in RTS Games 363

and annotation was automated, based on the goals that Darmok was pursuing
in those particular game states, because a goal being pursued is the high-level
representation of the game state that helps in choosing a particular plan.

The feature selection algorithm we have used returns the set of shallow fea-
tures Fw′

s , which have high information gain. Once Fw′

s is generated it is pro-
vided along with T w to a pruning enabled C4.5 decision tree algorithm [5] to
learn a decision tree situation-classifier model Mw

cf . Mw
cf generated here is used

in real-time during game-play for predicting the situation of the game state.
The Situation-Case model Mw

c is built using empirical knowledge of the
WARGUS domain. The cases are mapped manually to situations based on the
goal of the behavior in the plan represented in the case as shown in Table 1.

The Situation-Deepfeature model Mw
df is constructed manually by using an ex-

pert’sempiricalknowledgeaboutusefulnessofvariousdeepfeatures incertainsitua-
tions.For example,usingdeep features likeattacking-speed-of-troops andattacking-
radius-of-troop-formation are more relevant in choosing a strategy while a player is
in attacking situation as compared to when he is in base development situation.

5.2 Online Stage

This stage comprises of the last two steps of the algorithm of Figure 3 as shown in
Figure 5. This stage in interleaved with the case-based planning and execution of
Darmok. During Darmok’s online game-play when the Plan Expander requests
the Behavior Retriever for a new plan, Darmok, before the plan retrieval, first
executes the model Mw

cf followed by the parallel execution of Mw
c and Mw

df

respectively . Darmok computes the value of Fw′

s from the current game state
and evaluates the current situation through the decision tree based Mw

cf .
Once the current situation s is evaluated, mapping based Mw

c and Mw
df model

suggest the case-base subset Cw′
and a deep feature subset Fw′

d for the final plan
retrieval.

Fig. 5. Online Stage of Situation Assessment. Where s is the current situation, F ′
d is

the relevant subset of deep features, C′ is the relevant subset of the case-base, Fs is
the set of shallow features and P is the retrieved plan.

364 K. Mishra, S. Ontañón, and A. Ram

Fig. 6. Plans for ballista and rush strategies for game-play in WARGUS. a) The bal-
lista strategy comprises of initial resources development followed by building the units
to strengthen the player base. Later the units are built and sent to kill the opponent
units in parallel. b) The rush strategy comprises of quick resource development and
building the units at the start in parallel followed by killing the opponent units.

In the last step of this stage the features in Fw′

d and Fw
s are used to measure

the similarity of the cases in Cw′
and return the plan having most similar goal

and game state to the scenario during the game-play. The similarity is measured
by placing more importance to the features in Fw′

d as compared to Fw
s .

Let us illustrate this process with an example.

6 Example

Let us illustrate the online stage of the situation assessment process in Darmok
with an example. Imagine that Darmok has just started the game-play against
the built in game AI opponent in a variation of the well-known map “Nowhere to
run nowhere to hide” (NWTR) as shown in Figure 1. Unlike the typical NWTR
maps that have a wall of trees separating the opponent this map has a narrow
opening in the wall of trees. Darmok starts the execution with the initial goal of
“WinWargus”. During the execution, the Plan Expander requests the Behavior
Retriever to return a plan to satisfy this goal. Here, the online stage of situation
assessment gets triggered and Darmok uses the decision tree based situation-
classifier and the set of relevant shallow features, say, lumber (number of trees in
the map), food (amount of food), gold (amount of gold of the player), peasants
(number of peasants) and units (number of units the player has), which were
chosen during the offline stage, to predict the current situation as beginning.

Once the situation is predicted the Situation-Case model, essentially a map-
ping of situations to plans based on the goals that the plans satisfy as shown
in Table 1, is searched to find the subset of the plans which are relevant to the
beginning situation. Since the beginning situation is mapped to plans satisfying

Situation Assessment for Plan Retrieval in RTS Games 365

the “WinWargus” goal, Darmok has successfully narrowed down its search space
to the set of few relevant plans.

Darmok also refers to the Situation-Deepfeature model to get the set of most
relevant features for the beginning situation: ispath (a boolean feature that is
true when there is a path from the player base to the enemy base), wallbarrier-
width (the width of the biggest barrier between the player and the enemy) and
baseproximitydistance (distance between the player’s base and the enemy base).

Beginning situation is where player has to choose a game strategy which is
most optimal for a particular map-terrain and opponent strength, to win the
game. Assuming that there are just two plans as shown in Figure 6 for the
beginning situation in the reduced case-base Cw′

, each representing different
game strategies, the task of the Darmok’s Behavior Retriever is to choose the
plan with the best strategy for the current game state.

The two plans in Figure 6 represent the ballista and rush strategies. Ballista
strategy is good for maps where the player and the opponent are separated by
a wall of trees while rush strategy is good when there is a path from player
to the opponent in the map. The selection amongst these strategies depends
highly on the measurement of the deep features like ispath, wallbarrierwidth and
baseproximitydistance since the concept of existence of path between player and
opponent bases, wall of trees and separation distance of base are not expressed
through shallow features like gold, lumber, trees, etc. Also the other deep features
like attacking-speed-of-troops and attacking-radius-of-troop-formation are more
relevant for attack strategy selection rather than for game strategy selection
and hence are not be considered for beginning situation. Using the three deep
features and all the shallow features in a weighted manner Darmok’s Behavior
Retriever searches the two plans and retrieves the plan for the rush strategy
since the game state’s similarity is found to be higher for the episodes of plan
representing rush strategy.

If no deep features were used, Darmok would have difficulty identifying which
strategy to pick. Moreover, if no situation assessment is used, and all the deep
features are always used for retrieval, the time consumed to compute all the deep
features would be prohibitive (as we will show in the next section).

7 Experimental Evaluation

In our evaluation we found out that the performance of plan retrieval applying
situation assessment algorithm (Figure 3) is better compared to plan retrieval
without the application of situation assessment by conducting three set of ex-
periments as follows:

– Exp1: Darmok performed plan retrieval without the situation assessment
algorithm. Darmok used only the shallow features for computing similarity
during the retrieval stage and no situation prediction was performed.

– Exp2: Darmok performed plan retrieval without the situation assessment
algorithm. Darmok used only the deep features for computing similarity
during the retrieval stage and no situation prediction was performed.

366 K. Mishra, S. Ontañón, and A. Ram

– Exp3: Darmok performed plan retrieval using the situation assessment algo-
rithm. It used selected shallow and deep features for similarity computation
during the retrieval stage.

The experiments Exp1, Exp2 and Exp3 were conducted over 11 variations of the
“Nowhere to run nowhere to hide” (NWTR) map (with a wall of trees separating
the opponents that introduces a highly strategic component in the game) and over
“Garden of War” (GOW) map (large map having lot of open spaces, with tree
and gold resources in the middle). Darmok was tested with 10 different strategies
with slight variations, demonstrated over 6 out of the 11 different maps. The 10
strategies demonstrated were variations of the ranged attack (ballistas attack over
the wall of trees), rush (footmen are built and quickly sent to attack the opponents
when there is a path betweem them), tunneling (footmen and knights are built and
tunnel through the wall of trees to attack the opponent) and towering (towers are
built around the wall of trees to block the enemy).

We conducted the experiments with 10 traces in the case-base (that gives
a total of 52 behaviors and 52 episodes in the case base) over 5 runs of the
game and measured the performance of Darmok’s plan retrieval in Exp1 and
Exp3 over the following parameters: 1) number of wins, 2) number of draws, 3)
number of losses, 4) player’s score assigned by WARGUS, and 5) opponent’s
score assigned by WARGUS. We also report the average retrieval time for each
plan by Darmok. For our experiments, and in order to properly validate retrieval,
and retrieval only, episode learning and structural plan adaptation were disabled
in Darmok.

Tables 2 and 3 show the results of Exp1 and Exp3 respectively. The first
column shows the map in which a game was played, the next three columns
show the number of wins, draws and losses respectively. The last two columns
show the scores of player and the opponent which are assigned by WARGUS.
The bottom row of each table shows a summarized view of Darmok’s win ratio
and average score ratio, where the win ratio is the number of wins divided by
the total number of games played and the average score ratio is the average
score of the player divided by the opponent’s average score. As seen, there is
a clear improvement in the results of the game-play in Exp3; with win ratio of
0.683 which is thrice better than win ratio of 0.233 in Exp1. Also, the average

Table 2. Exp1 results

map win draw loss player score opponent score
NWTR1 1 0 4 1068 1331
NWTR2 3 1 1 2410 562
NWTR3 2 0 3 2094 1613
NWTR4 1 0 4 1964 1791
NWTR5 1 0 4 1296 1700
NWTR6 1 1 3 1652 1128
NWTR7 1 0 4 1016 2161
NWTR8 2 0 3 1418 1560
NWTR9 0 0 5 832 2643
NWTR10 0 0 5 406 1997
NWTR11 0 0 5 82 1507

GoW 2 0 3 756 626
Win Ratio 0.233 Average Score Ratio 0.81

Situation Assessment for Plan Retrieval in RTS Games 367

Table 3. Exp3 results

map win draw loss player score opponent score
NWTR1 2 3 0 7136 1386
NWTR2 5 0 0 3000 24
NWTR3 5 0 0 1800 0
NWTR4 4 0 1 1180 388
NWTR5 2 0 3 1794 1505
NWTR6 5 0 0 2450 50
NWTR7 5 0 0 3100 94
NWTR8 0 0 5 1750 2790
NWTR9 5 0 0 3356 60
NWTR10 5 0 0 1410 50
NWTR11 0 0 5 4466 3601

GoW 3 1 1 1355 585
Win Ratio 0.683 Average Score Ratio 3.12

score ratio in case of Exp3 is four times better than Exp1 (i.e. 3.12 as compared
to 0.81), which indicates that Darmok wins convincingly and even its losses
are well-fought. Situation assessment through its results, thus, can be seen to
increase the performance of plan retrieval. An interesting observation is that on
maps NWTR3, NWTR6, NWTR7, NWTR10 for which the expert demonstrated
strategies, Darmok won on all 5 occassions in Exp3. For the same maps in
Exp1, Darmok had marginal success and even complete failure in case of map
NWTR10. In general Darmok performs better using situation assessment over
all the maps except NWTR8 and NWTR11. For the map NWTR8, Darmok’s
performance in Exp1 is marginally better compared to the performance in Exp3.
Darmok’s performance suffers on map NWTR11 even after correctly retrieving
the plan, demonstrated for map NWTR11 by the expert, from the case-base since
in adversarial non-deterministic domain like WARGUS there are lots of factors
which can influence winning a game. On the map NWTR11, Darmok’s win ratio
is same in Exp1 and Exp3, however, using situation assessment improved the
average score ratio in Exp3.

Using selective deep features like ispath, wallbarrierwidth, etc. based on the
situations certainly improved the similarity metric for proper retrieval. Experi-
ments were also conducted to measure the average plan retrieval time in seconds
with all the deep features as shown in Table 4. Exp2 was simply not feasible
and experiments couldn’t be run, retrieval time was some times over a minute,
completely inappropriate for the dynamic nature of WARGUS. Using situation
assessment we managed to reduce the time to a few seconds, which is acceptable
for the speed at which WARGUS is played (notice that retrieval is only executed
a few times during game-play, and thus spending a few seconds on selecting the
appropriate plan paid off, as shown above). Interestingly, it was observed that
using all the deep features makes the system use lots of irrelevant information
during plan retrieval and reduces the efficiency. It is therefore necessary to filter

Table 4. Average retrieval time (in seconds) for Exp1, Exp2 and Exp3

Exp1 Exp2 Exp3

retrieval time 0.016 46.428 4.990

368 K. Mishra, S. Ontañón, and A. Ram

the deep features and select only the relevant ones. Also, Situation assessment
reduced the retrieval time by ten times through use of situation relevant deep fea-
tures. The above observations indicate that deep features improve the retrieval
performance only if chosen appropriately.

In the experiments conducted, Darmok’s score in Exp3 increased to 0.683
compared to 0.233 in Exp1. The retrieval times with application of the situation
assessment algorithm are also acceptable for Darmok’s real-time performance
and clearly show that quality of plan retrieval has improved.

8 Conclusions

In this paper we have presented situation assessment technique for plan retrieval
in real-time strategy games. Our technique is a knowledge based approach for
feature selection for improving the performance of case retrieval in case-based
reasoning systems. Situation assessment essentially involves two major steps be-
fore case retrieval: the generation of models for case-base size reduction and
feature selection and then their execution to get the reduced size case-base and
set of high information features for case selection. The main characteristics of
our approach are a) the capability to perform a knowledge based feature selec-
tion rather than a feature by feature, b) the ability to perform search in the
case-base in a fast and focused manner by reducing the search space to the set
of relevant cases using computationally inexpensive features, c) the capability to
resize the dimensions of similarity metric based on the high-level representation
of the game state i.e. situations. We have implemented the situation assessment
algorithm inside the Darmok system that plays the game of WARGUS. The
experiments conducted using situation assessment show a great improvement of
performance in the system.

The main contributions of our technique are: 1) introduction of a domain inde-
pendent situation assessment algorithm that can be applied for knowledge based
feature selection to any domain; 2) the idea of case-base size reduction during
the search operation through Situation-Case mapping; 3) the introduction of the
concept of a situation as a high-level game state representation for effective plan
selection for game strategies; 4) the idea of selective similarity-metric resizing
based on the game state situation.

As future lines of work, we plan to explore strategies to fully automate the
situation assessment procedure. Currently, the Situation-Case and the Situation-
Deepfeature models are empirically determined by hand. Also, the subset of
situations is defined by hand. Automated techniques to generate such models
will greatly increase the applicability of the approach.

References

1. Aha, D., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection
in a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005.
LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

Situation Assessment for Plan Retrieval in RTS Games 369

2. Arritt, R.P., Turner, R.M.: Situation assessment for autonomous underwater ve-
hicles using a priori contextual knowledge. In: 13th International Symposium on
Unmanned Untethered Submersible Technology (UUST) (2003)

3. Bergmann, R., Muñoz-Avila, H., Veloso, M.M., Melis, E.: Cbr applied to planning.
In: Case-Based Reasoning Technology, pp. 169–200 (1998)

4. Blasch, E., Kadar, I., Salerno, J., Kokar, M.M., Das, S., Powell, G.M., Corkill, D.D.,
Ruspini, E.H.: Issues and challenges of knowledge representation and reasoning
methods in situation assessment (level 2 fusion). In: Proc. SPIE vol. 6235 (2006)

5. Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B.: Weka - a machine
learning workbench for data mining. In: The Data Mining and Knowledge Discov-
ery Handbook, pp. 1305–1314 (2005)

6. Hall, M.A.: Correlation-based feature selection for discrete and numeric class ma-
chine learning. In: ICML, pp. 359–366 (2000)

7. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete
class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003)

8. Hammond, K.F.: Case based planning: A framework for planning from experience.
Cognitive Science 14(3), 385–443 (1990)

9. Kofod-Pedersen, A., Aamodt, A.: Case-based situation assessment in a mobile
context-aware system. In: Artificial Intelligence in Mobile System (AIMS 2003),
pp. 41–49 (2003)

10. Kolodner, J.: Case-based reasoning. Morgan Kaufmann, San Francisco (1993)
11. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution

for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

12. Sharma, M., Homes, M., Santamaria, J., Irani, A., Isbell, C., Ram, A.: Transfer
learning in real time strategy games using hybrid CBR/RL. In: IJCAI 2007. Morgan
Kaufmann, San Francisco (2007)

13. Spalazzi, L.: A survey on case-based planning. Artificial Intelligence Review 16(1),
3–36 (2001)

14. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text catego-
rization. In: ICML, pp. 412–420 (1997)

Optimization Algorithms to Find Most Similar

Deductive Consequences (MSDC)

Babak Mougouie1,2

1 University of Trier
Department of Business Information Systems II

Trier, Germany
2 DFKI GmbH, Knowledge Management Department

Kaiserslautern, Germany
mougouie@dfki.de

Abstract. Finding most similar deductive consequences, MSDC, is a new
approach which builds a unified framework to integrate similarity-based
anddeductive reasoning. In this paperwe introduce anew formulation OP -
MSDC(q) of MSDC which is a mixed integer optimization problem. Al-
though mixed integer optimization problems are exponentially solvable in
general, our experimental results show that OP-MSDC(q) is surprisingly
solved faster than previous heuristic algorithms. Based on this observation
we expand our approach and propose optimization algorithms to find the
k most similar deductive consequences k-MSDC.

1 Introduction

Logic-oriented approaches for knowledge representation and reasoning have a
long tradition in AI. Well known are also the limitations of pure logic-oriented
approaches for real-world problems that involve uncertain or vague knowledge,
that handle imprecise situations, or that search for approximate solutions to
a problem instead of exact ones. During the past 30 years several approaches
have been developed that combine logics with some kind of “softer” forms of
reasoning. Famous examples are the fuzzy logic or rough set theory.

Also in case-based reasoning (CBR) [1,3], deductive reasoning is often com-
bined with reasoning based on similarity. In CBR, problems are solved by first
retrieving cases with similar problems from a case base and then adapting the
solutions in these cases such that a solution of the new problem is constructed.
The latter step often involves deductive reasoning that makes use of general
adaptation knowledge represented in a logic-oriented manner. Hence, CBR com-
bines specific knowledge represented as cases with general knowledge, e.g. for
adaptation.

While reasoning with cases is usually done in a similarity-based manner, gen-
eral knowledge is often represented in rules, constraints, or ontology definitions
and is often applied in a deductive reasoning process. Therefore, the question of
combining specific and general knowledge is strongly connected with the question
of combining logic-oriented (deductive) and approximate reasoning[5].

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 370–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimization Algorithms to Find MSDC 371

In our previous paper [2], we presented MSDC as a new way of combin-
ing deductive and approximate reasoning in a unified manner. In this approach
the specific knowledge about cases, similarity measure and additional general
knowledge are combined and represented as a logical domain theory Σ (cases
are encoded as facts and general knowledge as logical sentences and possibly
additional facts). Given a query q and a similarity measure, k-MSDC is the
problem of finding the k most similar cases to q that can be deduced from Σ.

In this paper we introduce a new formulation OP-MSDC(q) of MSDC which
is a mixed integer optimization problem. Mixed integer optimization problems
are exponentially solvable in general [6]. However our experimental results show
that OP-MSDC(q) is surprisingly faster than our previous heuristic algorithms
in [2]. Based on this observation we provide an algorithm OP-k-MSDC to find
k-MSDC. Furthermore we use the result of OP-1-MSDC to initialize a minimum
acceptable similarity, Min Acc Sim, to prune the search space of our previous
heuristic algorithms.

The paper is organized as follows. In sec. 2, we define k-MSDC, construct a
state-space to find deductive consequences of a domain theory and represent the
heuristic algorithm dfs MAS to find the most similar deductive consequences.
In sec. 3, we define the alternating tree of a domain theory which is used to
construct OP-MSDC(q) in sec. 4. Optimization algorithms and experimental
results will be provided in sections 5 and 6.

2 Finding Similar Deductive Consequences

Based on a domain theory Σ in which all knowledge of the domain including
cases are represented, we look for the most similar case q′ = p(t′1, ..., t

′
n) that

can be deduced from Σ to a query q = p(t1, ..., tn) (t1, ..., tn, t′1, ..., t
′
n can be

constants or variables) given a similarity measure simp : AFp × AFp �→ [0, 1]
where AFp is the set of all atomic formulas starting with the n-ary predicate
symbol p.

A deduction D of q′ from Σ is defined as a finite sequence 〈l1, l2, ..., ld = q′〉
of literals such that for each lj ∈ D there exists a substitution σj such that
either lj is a fact in Σ or vj :- vj1 , ..., vjm is a rule in Σ and lj = σj(vj),
lj1 = σj(vj1), ..., ljm = σj(vjm) for j1, ..., jm < j and lj1 , ..., ljm ∈ D.

We further formalize the similarity measure following the local-global princi-
ple: simp(q, q′) = Ω(sim1(t1, t′1), . . . , simn(tn, t′n)) such that Ω is an aggregate
function that is monotonous in every argument and 0 ≤ simi(ti, t′i) ≤ 1 for
i = 1, . . . , n are local similarities. For the sake of simplicity, let sim = simp.

In this paper we restrict Σ to Horn logic such that recursive deduction is not
allowed. MSDC is defined as follows:

Definition 1. (MostSimilarDeductiveConsequences,MSDC,k-MSDC)
The most similar deductive consequence is defined as follows:

MSDC(q) = arg max sim(q, q′)
q′ ∈ closurep(Σ)

372 B. Mougouie

where q = p(t1, . . . , tn) and closurep(Σ) = {p(t′1, . . . , t
′
n) |Σ � p(t′1, . . . , t

′
n)} is

the deductive closure of Σ restricted to atomic formulas starting with the n-ary
predicate symbol p.

This can be easily extended to k-MSDC which delivers the k-most similar
deductive consequences: k-MSDC(q) = {q1, . . . , qk} ⊆ closurep(Σ) such that
sim(q, q′) ≤ min{sim(q, qi)|i = 1, . . . , k} ∀q′ ∈ closurep(Σ)− {q1, ..., qk}.

Example 1. Consider the following domain theory Σ1 denoted in traditional no-
tation for Prolog (the terms in the parenthesis are indices of the clauses)1:

(R1) q(X,Y) :- c(X,Y).
(R2) q(X,Y) :- c(X1,Y1), a(X,Y,X1,Y1).
(F1) c(2,5).
(F2) c(8,9).
(R3) a(X,Y,X1,Y1) :- b(X), D is X-X1, D>0, D<3, Y is Y1+X-X1.
(F3) b(1).
(F4) b(2).

...
(F12) b(10).
(F13) c(3,4,5).

One can verify that closureq(Σ1) = {q(2, 5), q(8, 9), q(3, 6), q(4, 7), q(9, 10),
q(10, 11)} such that
D1 = 〈c(2, 5), q(2, 5)〉
D2 = 〈c(8, 9), q(8, 9)〉
D3 = 〈b(3), 1 is 3− 2, 1 > 0, 1 < 3, 6 is 5 + 3− 2, a(3, 6, 2, 5), c(2, 5), q(3, 6)〉
D4 = 〈b(4), 2 is 4− 2, 2 > 0, 2 < 3, 7 is 5 + 4− 2, a(4, 7, 2, 5), c(2, 5), q(4, 7)〉
D5 = 〈b(9), 1 is 9− 8, 1 > 0, 1 < 3, 10 is 9 + 9− 8, a(9, 10, 8, 9), c(8, 9), q(9, 10)〉
D6 = 〈b(10), 2 is 10−8, 2>0, 2 < 3, 11 is 9+10−8, a(10, 11, 8, 9), c(8, 9), q(10, 11)〉
are the deductions of the elements of closureq(Σ1) respectively.

For the query q(5, 8) and the similarity measure sim(q(t1, t2), q(T1, T2)) =
(2sim1(t1, T1)+3sim2(t2, T2))/5 such that sim1(t1, T1) = 1− (|t1−T1|/10) and
sim2(t2, T2) = 1− (|t2 − T2|/7), it can be shown that MSDC(q(5, 8)) = q(4, 7)
and sim((q(5, 8), q(4, 7)) ≈ 0.874. !

2.1 State-Space Search and dfs MAS

In [2], we transformed the problem of finding the elements of closurep(Σ) to
a state-space search problem. The state-space T is such constructed that each
state of T differs from its successor in one resolution step:

1. Set (〈q∗〉, q∗) with q∗ = p(T1, . . . , Tn) be the starting state of T
/* Ti are some new variables */

2. Let S = (〈q1, ..., qd〉, q̄) be a state of T ;
For all qi (i = 1, ..., d) do {

1 In this paper, we provide a chain of examples to explain the procedure of constructing
OP-MSDC(q) and let Σ1 be known in all of them.

Optimization Algorithms to Find MSDC 373

2.1. For each substitution σ such that σ(qi) ∈ Σ
(trim (〈σ(q1), . . . , σ(qi−1), σ(qi+1), . . . , σ(qd)〉), σ(q̄))
is a direct successor state of S; /* Resolution with a fact*/

2.2. For each substitution σ such that σ(qi) = σ(r) for r :- r1, ..., rm ∈ Σ
(trim (〈σ(q1), . . . , σ(qi−1), σ(r1), . . . , σ(rm), σ(qi+1), . . . , σ(qd)〉), σ(q̄))
is a direct successor state of S; /* Resolution with a rule*/ }.

trim(list){Delete each qi ∈ list from list if it is a true built-in predicate}.

T is constructed by iteratively applying step 2. of the above procedure. Final
states of the form (〈 〉, q′) are elements of closurep(Σ) and it holds ∃σ s.t. σ(q∗) =
q′. Final states that are not of this form are search branches not leading to a
logical consequence of Σ.

We assume Σ contains no recursion therefore closurep(Σ) has a finite number
of elements. Even under this assumption, T might have a huge number of states.
Since it is expensive to exhaustively explore the entire T (for instance by a depth
first search (dfs)) to deliver the optimal k-MSDC(q), we provided heuristic
algorithms to prune the state-space in [2].

Below we recall the approximative algorithm dfs MAS which surprisingly had
the best performance, in terms of computation time and similarity error, among
the developed heuristic algorithms.

dfs MAS. This algorithm is a kind of dfs algorithm that cuts the state-space
at the cost of not assuring to finding the optimal solution of k-MSDC. It ideally
finds up to k solutions with a similarity higher than a minimum acceptable
similarity Min Acc Sim. We run dfs MAS(q, S, k-MSDC, k, Min Acc Sim)
such that S is initiated to (〈q∗〉, q∗) with q∗ = p(T1, . . . , Tn) and k-MSDC is an
empty list:

dfs MAS(query q, state S, list k-MSDC, int k, int Min Acc Sim){
If length(k-MSDC) = k stop;
If S = (〈 〉, q′) and sim(q, q′) ≥ Min Acc Sim then append(q′, k-MSDC)
else for all direct successors S′ of S run dfs MAS(q,S′, k-MSDC, k);}.

dfs MAS achieved a good performance in [2] because we set Min Acc Sim
very close to the real similarity sim(q, MSDC(q)) found by a complete dfs in
advance. dfs MAS turns out to be very weak if Min Acc Sim is initialized us-
ing a faster but inaccurate algorithm such as hill climbing(hc). To have a fast
and good approximation of Min Acc Sim, we developed OP-MSDC(q) which
is constructed from the alternating tree of a domain theory Σ for a query.

3 Alternating Tree of Σ

A useful picture of deductions from a domain theory Σ is a tree of deductions
rather than just some sequences. We call this tree the alternating tree Gq∗(Σ) =
(N , E) of Σ for a query q∗ = p(T1, ..., Tn) such that T1, ..., Tn are some variables.
Gq∗(Σ) is a labeled directed tree consisting of:

374 B. Mougouie

– a set N = 〈l1, l2, ..., lβ , s〉 of nodes such that s is a dummy node and for each
node li, i = 1, ..., β, there exists a substitution σi such that li = σi(l′i) and
l′i is a literal of a fact or rule of Σ,

– a set E of edges such that e = [li, lj]R ∈ E is a directed edge from li to lj
labeled with a label R.

Additionally Gq∗(Σ) has the following properties:
1) Gq∗(Σ) is a tree with finite number of nodes and edges. A domain theory Σ
which allows no recursion has Gq∗(Σ) with finite number of nodes and edges.
2) There exist disjoint sets of edges [l, l′1]

R1 , ..., [l, l′f]Rf ∈ E that are extensionally
clustered such that l′i = p′(T i

1, ..., T
i
m) for i = 1, ..., f in which T i

1, ..., T
i
m are

constants or variables and p′ is an m-ary predicate symbol.
In sec. 3.1, we construct subtrees of Gq∗(Σ) using the above clusters (each

subtree contains at most one edge [l, l′γ]Rγ from each cluster). Additionally we
show a subtree is either valid or invalid and for each valid subtree 〈l1, l2, ..., ld〉
there exists a unique substitution σ̄ such that 〈σ̄(l1), ..., σ̄(ld) = σ̄(q∗)〉 is a
deduction of σ̄(q∗) from Σ.

We construct Gq∗(Σ) by indexing the rules and facts of Σ, initially setting N
to 〈s〉 and E to empty set and calling Generate alternating tree (s, q∗, -).

Generate alternating tree(literal l, literal l′, label R){
If l′ is a built-in predicate then {insert(l′,N); insert([l, l′]R, E)}
else{ Find all literals σ1(l′), ..., σf (l′) such that σi is a substitution and

either σi(l′) is a fact in Σ or σi(l′) = σi(ri) for ri :- ri
1, ..., r

i
m ∈ Σ;

For (i = 1, ..., f) {
insert(σi(l′),N);
Let RFi be the index of the fact σi(l′) or the rule ri :- ri

1, ..., r
i
m;

If l = s then ei = [l, σi(l′)]RFi else ei = [l, σi(l′)]R,RFi ;
insert(ei, E);
If RFi is the index of the rule ri :- ri

1, ..., r
i
m then

For (j = 1, ..., m){Generate alternating tree (σi(ri), σi(ri
j), RFi)};}

Cluster the edges e1, ..., ef ;}}.

Example 2. Gq∗(Σ1) is shown in Fig. 1. in which the clustered edges are con-
nected with a dashed-line together. !

Definition 2. (Binding): Let [l, σ(l′)]R ∈ Gq∗(Σ). In the course of the algo-
rithm Generate alternating tree, let l′ be a literal of the form p′(T1, ..., Tm)
and σ(l′) = p′(T1, ..., Ti−1, ti, Ti+1, Tm) be a generated node such that ti is a
constant. We say σ(l′) binds Ti to ti.

3.1 Subtrees of Gq∗(Σ)

In this section we construct the subtrees of Gq∗(Σ). Before we explain this,
let’s suppose that Gq∗(Σ) of a domain theory Σ has no extensionally clustered
edges. It means for each literal l′ in Σ there exists at most one fact σ(l′) or
rule with head literal r (where σ(l′) = σ(r)) in Σ such that σ is a substitution.
Consequently, it can be shown that closurep(Σ) has at most one element.

Optimization Algorithms to Find MSDC 375

�

������ ������

	�
���

	���
� ������������

�����

��
��

�

��
�

�

�
�

��

�

�
���

	�
��� 	���
�

������� ��
� ��
� �����

�
����
��

���

��
��
�

�
���

��

������������

���������

���

���

��
��

�
�

��

Fig. 1. The alternating tree Gq∗ (Σ1)

A domain theory Σ does not have the above property in general. However since
finding deductions from Σ can be reduced to finding subsets Σ̄i of Σ with this
property, we construct subtrees of Gq∗(Σ) which are nothing else but graphical
representations of Σ̄i. Formally speaking, Σ̄i is a domain theory consisting of a
subset of facts and rules of Σ such that for l = q∗ the statement 1. holds.

1. There exists exactly one fact σ(l) or rule with head literal r (where σ(l) =
σ(r)) in Σ̄i such that σ is a substitution. If r is a head literal of a rule R
then the statement 2. holds.

2. Let r :- r1, ..., rm be a rule in Σ̄i labeled with R. The statement 1. holds for
all l = r1, ..., rm which are not built-in predicates.

Consequently, we can derive that closurep(Σ̄i) contains at most one element.
Now if we construct all such possible domain theories Σ̄i, we can find the

elements of the deductive closure of Σ from some of the constructed domain
theories (there might exist a domain theory Σ̄j such that closurep(Σ̄j) = ∅).

Definition 3. (Subtree): A subtree of Gq∗(Σ) is a subset of the nodes and
edges of Gq∗(Σ) constructed as follows: delete s and for each set of extensionally
clustered edges [l, l1]R1 , ..., [l, lf]Rf ∈ N , keep one node lδ for 1 ≤ δ ≤ f and
prune2 l′ for all l′ ∈ {l1, ..., lf}\lδ from Gq∗(Σ).

All such permutations give the set of the subtrees of Gq∗(Σ).

Example 3. The subtrees of Gq∗(Σ1) are:
V1 = 〈c(2, 5), q(X, Y)〉
V2 = 〈c(8, 9), q(X, Y)〉
V3 = 〈b(1), BI, a(X, Y, X1, Y 1), c(2, 5), q(X, Y)〉

...

2 We prune l′ ∈ Gq∗(Σ) by deleting l′, all its successors l′′ and the edges connecting
l′ to l′′.

376 B. Mougouie

�

������

	�
���

	���
� ������������

�����

��
��

�

��
�

�

�
�

��

�

�
���

	�
��� 	���
�

�������������������������������� �����

�
����
��

���

�
��
��

������������

���������

���

���

��
��

�
�

��

����

������

Fig. 2. The subtree V6 of Gq∗(Σ1)

V21 = 〈b(9), BI, a(X, Y, X1, Y 1), c(8, 9), q(X, Y)〉
V22 = 〈b(10), BI, a(X, Y, X1, Y 1), c(8, 9), q(X, Y)〉

such that BI = D is X −X1, D > 0, D < 3, Y is Y 1 + X −X13.
Fig. 2. shows Gq∗(Σ1) in which the subtree V6 is colored gray.
V6 is the graphical representation of the following domain theory Σ̄1:

(R2) q(X,Y) :- c(X1,Y1), a(X,Y,X1,Y1).
(F1) c(2,5).
(R3) a(X,Y,X1,Y1) :- b(X), D is X-X1, D>0, D<3, Y is Y1+X-X1.
(F6) b(4). ��

It can be proven that each subtree of Gq∗(Σ) gives a subset of the facts and
rules of Σ which constructs a domain theory Σ̄ such that for every query q̄, if
Σ̄ � σ̄(q̄) then the substitution σ̄ is unique. Furthermore

Lemma 1. Let V = 〈l1, l2, ..., ld〉 be a subtree of Gq∗(Σ). Then there exists a
unique substitution σ̄ such that either V̄ = 〈σ̄(l1), ..., σ̄(ld)〉 is a deduction of q∗

from Σ or at least one literal σ̄(lj) for j = 1, ..., d fails. !

Example 4. Consider Σ1 and its subtrees Vi in Example 3. There exist unique
substitutions σ̄i such that V̄i = σ̄i(Vi) and:

V̄1 = 〈c(2, 5), q(2, 5)〉
V̄2 = 〈c(8, 9), q(8, 9)〉
V̄3 = 〈b(1),−1 is 1− 2,−1 > 0,−1 < 3, 4 is 5 + 1− 2, a(1, 4, 2, 5), c(2, 5), q(1, 4)〉

...

3 We have represented a subtree V in form of a list of nodes 〈l1, l2, ..., ld〉. This is
unambiguous since for each two nodes l, l′ ∈ V, if [l, l′]R ∈ Gq∗(Σ) then [l, l′]R ∈ V.
This means we can obtain the edges of a subtree by having its nodes and Gq∗(Σ).

Optimization Algorithms to Find MSDC 377

V̄21 = 〈b(9), 1 is 9− 8, 1 > 0, 1 < 3, 10 is 9 + 9− 8, a(9, 10, 8, 9), c(8, 9), q(9, 10)〉
V̄22 =〈b(10), 2 is 10−8, 2>0, 2<3, 11 is 9+10−8, a(10, 11, 8, 9), c(8, 9), q(10, 11)〉.

For example V̄1 = σ̄1(V1) such that σ̄1 = {2/X, 5/Y } and V̄22 = σ̄22(V22)
such that σ̄22 = {10/X, 11/Y, 8/X1, 9/Y 1, D/2}.
V̄1, V̄2, V̄5, V̄6, V̄21, V̄22 are equal to D1, ..., D6 represented in Example 1.

respectively. V1, V2, V5, V6, V21 and V22 are valid subtrees and the rest are
invalid subtrees of Gq∗(Σ1). One can verify that for each invalid subtree Vi, V̄i

contains one built-in predicate which fails. For example V̄3 contains −1 > 0. !

Definition 4. (Valid and Invalid Subtree of Gq∗(Σ)): V is a valid subtree
of Gq∗(Σ) iff V̄ is a deduction of σ̄(q∗) from Σ. V is invalid otherwise.

4 Optimization Problems

One way to obtain the subtrees of Gq∗(Σ) is to solve the optimization problem:

OP-T = max x(s)
s.t. h(x(s), x(l1), ..., x(lβ)) = 0

x(li) ∈ {0, 1} ∀i = 1, ..., β

such that x(s), x(l1), ..., x(lβ) are some 0-1 variables assigned to the nodes s,
l1, ..., lβ of Gq∗(Σ) respectively. Besides h(x(s), x(l1), ..., x(lβ)) = 0 is a set of

assignment constraints that assigns each solution
→
X= (x(l1), ..., x(lβ)) of OP-T

to a subtree V = 〈..., li, ...〉 of Gq∗(Σ) such that li ∈ V iff x(li) = 1 and li /∈ V
otherwise. h(x(s), x(l1), ..., x(lβ)) = 0 is generated as follows:

Generate Assignment Constraints{
Set x(s) = 1;
For each set of extensionally clustered edges [l, l1]R1 , ..., [l, lf]Rf ∈ Gq∗(Σ)
{generate the assignment constraint: x(l1R1

) + ... + x(lfRf
) = x(l);}

For all other edges [l, l′]R
′
in Gq∗(Σ) (such that [r, l]R in Gq∗(Σ))

{generate the assignment constraint: x(lR) = x(l′R′);}}.

Example 5. Assign each node l′ ∈ Gq∗(Σ1) to the 0-1 variables:

– x(pR,RF) if l′ = p(T1, ..., Tm) and [l, l′]R,RF ∈ Gq∗(Σ1),
– x(pR) if l′ = p(T1, ..., Tn) and [s, l′]R ∈ Gq∗(Σ1),
– x(bi(X1, ..., Xr)) if l′ = bi(X1, ..., Xr) is a built-in predicate.

The set of the generated assignment constraints is:
x(qR1) + x(qR2) = x(s) = 1;
x(cR1,F1) + x(cR1,F2) = x(qR1);
x(cR2,F1) + x(cR2,F2) = x(qR2);

378 B. Mougouie

x(aR2,R3) = x(qR2);
x(bR3,F3) + ... + x(bR3,F12) = x(aR2,R3);
x(D is X −X1) = x(aR2,R3);
x(D > 0) = x(aR2,R3);
x(D < 3) = x(aR2,R3);
x(Y is Y 1 + X −X1) = x(aR2,R3);

One can verify that the generated OP-T has 22 solutions. For example:
→
X1= (x(qR1) = 1, x(cR1,F1) = 1, 0, ..., 0),
→
X2= (x(qR2)=1, x(cR2,F2) = 1, x(aR2,R3) = 1, x(bR3,F12) = 1,x(D is X −X1)

= 1, x(D > 0) = 1, x(D < 3) = 1, x(Y is Y 1 + X −X1) = 1, 0, ..., 0),
→
X3= (x(qR2)=1, x(cR2,F1) = 1, x(aR2,R3) = 1, x(bR3,F3) = 1, x(D is X −X1)

= 1, x(D > 0) = 1, x(D < 3) = 1, x(Y is Y 1 + X −X1) = 1, 0, ..., 0)

are some of the solutions of OP-T . !

Note 1. The notation used to show the solutions
→
X1,

→
X2 and

→
X3 in Example 5.

is a standard optimization notation. In this notation, the variables of a solution
are sorted so that the ones equal to 1 are on the left hand side of the ones equal
to 0. For example

→
X1= (x(qR1) = 1, x(cR1,F1) = 1, 0, ..., 0) means the variables

x(qR1) and x(cR1,F1) are equal 1 and the rest are equal to 0. !

Lemma 2. Let a solution
→
X∈ OP-T be assigned to a set of nodes V. Then V

can be sorted so that it is a subtree of Gq∗(Σ).

Example 6. It can be verified that the solutions
→
X1,

→
X2,

→
X3 in Example 5. are

assigned to the subtrees V1,V22,V3 in Example 3. respectively. !

Pruning Constraints. In order to retrieve only solutions assigned to valid
subtrees of Gq∗(Σ), we add some pruning constraints h′(x(l1), ..., x(lβ)) ≤ 0 to
OP-T which give the new 0-1 optimization problem OP-VT .

For each built-in predicate bi(T1, ..., Tr) of a subtree V of Gq∗(Σ) let the
nodes l1, ..., lm ∈ V̄ bind T1, ..., Tr to t1, ..., tr. If bi(t1, ..., tr) fails then

x(l1) + ... + x(lm) ≤ m− 1 (1)

is a pruning constraint assuming that Σ is a well-defined domain theory.

Definition 5. (Well-Defined Domain Theory): Let a domain theory Σ and
a query q∗ be given. For each variable X of a literal of Σ, let l′1, ..., l

′
f be all

non built-in predicates that bind X. Σ is well-defined iff [l, l′1]
R1 , ..., [l, l′f]Rf are

extensionally clustered in Gq∗(Σ).

Note 2. We can directly derive from the above definition that for a well-defined
domain theory Σ, whenever V is an invalid subtree of Gq∗(Σ), then only built-in
predicates of V̄ fail.

We will provide examples of well-defined domain theories in [4] and show that
this property is not a restriction on a domain theory. !

Optimization Algorithms to Find MSDC 379

Example 7. Consider Gq∗(Σ1) and its invalid subtrees presented in Example 4.
We construct the following pruning constraints:

x(cR2,F1) + x(bR3,F3) ≤ 1 prunes the solution assigned to V3

x(cR2,F1) + x(bR3,F4) ≤ 1 ” V4

x(cR2,F1) + x(bR3,F7) ≤ 1 ” V7

x(cR2,F1) + x(bR3,F8) ≤ 1 ” V8

...
x(cR2,F2) + x(bR3,F9) ≤ 1 ” V19

x(cR2,F2) + x(bR3,F10) ≤ 1 ” V20
 !

Up to now, given a domain theory Σ and a query q∗, we have constructed OP-
VT which gives the solutions assigned to valid subtrees of Gq∗(Σ). Now we can
add some similarity functions to OP-VT to construct OP-MSDC(q).

4.1 OP-MSDC(q)

Let a domain theory Σ, an instantiated query q = p(t1, . . . , tn) and q∗ =
p(T1, ..., Tn) be given such that t1, ..., tn are either real numbers or variables
and T1, ..., Tn are variables. Additionally let the following be given:

– the similarity measure sim(q, q∗) =
∑n

j=1 wjsimj(tj , Tj)/
∑n

j=1 wj ,
– the local similarities: 0 ≤ simj(tj , Tj) = 1−|tj−Tj|/nj ≤ 1 and simj(tj , Tj)

= 1 if tj is a variable,
– wj ≥ 0 and nj ≥ max|tj − Tj| for all possible values of tj and Tj.

We transform the above similarity measure to some similarity functions and
add them to OP-VT to construct OP-MSDC(q). OP-MSDC(q) is also an op-
timization problem in which 0-1 variables are assigned to the nodes of Gq∗(Σ)

and each solution
→
X∈ OP-MSDC(q) is assigned to a valid subtree of Gq∗(Σ).

With the new similarity functions, the optimal solution of OP-MSDC(q) is as-
signed to a valid subtree D∗ = 〈l1, ..., ld〉 such that D̄∗ = 〈σ̄(l1), ..., σ̄(ld)〉 and
MSDC(q) = σ̄(ld). OP-MSDC(q) is formalized as follows:

OP-MSDC(q) = max SIM

s.t. h(
→
X) ≤ 0

SIM ≤
∑n

j=1 wjSIMj/
∑n

j=1 wj

SIMj ≤ 1− (tj − Tj)/nj ∀j = 1, ..., n
SIMj ≤ 1− (Tj − tj)/nj ”
Tj =

∑βj

i=1 τ j
i x(lji) ”

SIM, SIMj, Tj ∈ R ”
x(lji) ∈ {0, 1} ∀lji ∈ Gq∗(Σ)

such that

– h(
→
X) ≤ 0 is the set of assignment and pruning constraints generated in

previous section,
– each 0-1 variable x(lji) is assigned to a node lji ∈ Gq∗(Σ),

380 B. Mougouie

– q = p(t1, ..., tn) such that t1, ..., tn are the same real numbers or variables in
both MSDC and OP-MSDC(q),

– q∗ = p(T1, ..., Tn) such that T1, ..., Tn are the same real variables in both
MSDC and OP-MSDC(q). Besides lj1, ..., l

j
βj

are all nodes that bind Tj to

real numbers τ j
1 , ..., τ j

βj
respectively for j = 1, ..., n,

– SIM, SIMj are some real variables for j = 1, ..., n.

By solving OP-MSDC(q)

– the variables x(lji) will be set to 0 or 1. If x(lji) = 1 then lji ∈ D∗ and
x(lji) = 0 otherwise.

– Tj is set to τj such that τj ∈ {τ j
1 , ..., τ j

βj
} for j = 1, ..., n. We call q′ =

p(τ1, ..., τn) the optimal deductive consequence of OP-MSDC(q).
– SIMj is equal to simj(tj , τj) for j = 1, ..., n.
– SIM∗(OP-MSDC(q)) = sim(q, MSDC(q)) is the optimal objective value of
OP-MSDC(q).

In the following section, we construct the constraints Tj =
∑βj

i=1 τ j
i x(lji) for

j = 1, ..., n which we call Tj Constraints.

4.2 Tj Constraints

In a well-defined domain theory, a variable Tj of the query q∗ = p(T1, ..., Tn)
is either bound by some nodes of Gq∗(Σ) with a substitution or determined by
arithmetic built-in predicates. Therefore for each of the above cases, we provide
a different algorithm to generate Tj Constraints.

1) Tj Bound with Substitution: Let Tj be bound by some nodes of Gq∗(Σ)
with a substitution. Tj Constraints are then generated by calling the algorithm
Generate Tj Constraint(q∗, Tj) for j = 1, ..., n:

Generate Tj Constraint(literal p(T1, ..., Tn), variable Tj){
Find all nodes lji ∈ Gq∗(Σ) that bind Tj to a real number τ j

i for i = 1, ..., βj

and add Tj =
∑βj

i=1 τ j
i x(lji) to OP-MSDC(q).

}.

2) Tj Determined by Arithmetic Built-in Predicates: Sometimes the val-
ues of Tj in a domain theory are determined by arithmetic built-in predicates.
For example the arithmetic built-in predicate Y is Y1 + X - X1 gives the value
of the variable Y in Σ1. Therefore we need to generate an arithmetic function
Y = Y1 +X−X1 to calculate the values of the real variable Y in OP-MSDC(q).
Furthermore Tj Constraints for Y1, X, X1 should be generated. This is done by
the following version of the algorithm Generate Tj Constraint:

Generate Tj Constraint(literal p(T1, ..., Tn), variable Tj){

- Find all nodes lji ∈ Gq∗(Σ) that bind Tj to a real number τ j
i for i = 1, ..., βj .

Optimization Algorithms to Find MSDC 381

- Find all nodes σ(l′jk) ∈ Gq∗(Σ) for k = 1, ..., γj such that l′jk :- ..., fk(Tj ,
T j

k1
, ..., T j

kr
) is a rule in Σ and fk(Tj , T

j
k1

, ..., T j
kr

) is an arithmetic built-in
predicate with variables T j

k1
, ..., T j

kr
which calculates the values of Tj.

- Add the constraint Tj =
∑βj

i=1 τ j
i x(lji) +

∑γj

k=1 T̄ j
kx(l′jk) to OP-MSDC(q)

such that T̄ j
1 , ..., T̄ j

γj
are some new real variables.

- For (k = 1, ..., γj) construct an arithmetic function fk(T̄ j
k , T j

k1
, ..., T j

kr
) and

add it to OP-MSDC(q) (we assume that there exists a procedure performing
such a construction for built-in predicates of the domain theory).

- For (i = k1, ..., kr) Generate Tj Constraint(fk(T̄ j
k , T j

k1
, ..., T j

kr
), T̄ j

i).}.

Example 8. Given Gq∗(Σ1) and the similarity measure of Example 1., the simi-
larity function and Tj constraints:

SIM ≤ (2SIM1 + 3SIM2)/5;
SIM1 ≤ 1− (5− T1)/10;
SIM1 ≤ 1− (T1 − 5)/10;
SIM2 ≤ 1− (8− T2)/7;
SIM2 ≤ 1− (T2 − 8)/7;
T1 = 2x(cR1,F1) + 8x(cR1,F2) + 1x(cR3,F3) + 2x(cR3,F4)+

3x(bR3,F5) + 4x(bR3,F6) + 5x(bR3,F7) + 6x(bR3,F8)+
7x(bR3,F9) + 8x(bR3,F10) + 9x(bR3,F11) + 10x(bF12,R3);

T2 = 5x(cR1,F1) + 9x(cR1,F2) + T̄ 2x(aR2,R3);
T̄ 2 = Y1 + X −X1;
Y1 = 5x(cR1,F1) + 9x(cR1,F2);
X = 1x(cR3,F3) + 2x(cR3,F4) + 3x(bR3,F5) + 4x(bR3,F6) + 5x(bR3,F7)+

6x(bR3,F8) + 7x(bR3,F9) + 8x(bR3,F10) + 9x(bR3,F11) + 10x(bF12,R3);
X1 = 2x(cR1,F1) + 8x(cR1,F2);
SIM, SIM1, SIM2, T1, T2, T̄

2, Y1, X, X1 ∈ R; x(i) ∈ {0, 1}
as well as the assignment and pruning constraints in examples 5. and 7. consti-
tute the set of constraints of OP-MSDC(q(5, 8)). It can be verified that

(x(qR2) = 1, x(cR2,F1) = 1, x(aR2,R3) = 1, x(bR3,F6) = 1, x(D is X −X1) = 1,
x(D > 0) = 1, x(D < 3) = 1, x(Y is Y 1 + X −X1) = 1, 0, ..., 0),

is the optimal solution of OP-MSDC(q(5, 8)) assigned to the valid subtree:

V6 = 〈b(4), D is X −X1, D > 0, D < 3, Y is Y 1 + X −X1, a(X, Y, X1, Y 1),
c(2, 5), q(X, Y)〉.

Besides T1 = 4, T2 = 7, thus q(4, 7) is the optimal deductive consequence of
OP-MSDC(q(5, 8)) with the optimal objective value ≈ 0.874. Again V̄6 = D4:

D4 = 〈b(4), 2 is 4− 2, D > 0, 2 < 3, 7 is 5 + 4− 2, a(4, 7, 2, 5), c(2, 5), q(4, 7)〉. !

4.3 OP-MSDC(q) for Symbolic Domain Theories

In previous sections, we constructed OP-MSDC(q) for a domain theory whose
variables were bound to numbers. However, real domain theories also have vari-
ables bound to symbols. A known challenge raised by Richter [5] is:

382 B. Mougouie

“How to extend approximation techniques to symbolic domains and integrate
them smoothly with logical reasoning methods?”

To solve this problem, we transform the symbols of a domain theory into inte-
gers by replacing each symbol with a unique integer. For example, let a domain
theory Σcar contain the facts fuel type(’super’) and fuel type(’benzin’).
We can replace these facts with fuel type(1) and fuel type(2). Clearly the
similarity measures with symbols should also be transformed into numerical sim-
ilarity functions. For example the local similarity simi(t, T)

simi(’super’, ’super’) = 1; simi(’benzin’, ’benzin’) = 1;
simi(’super’, ’benzin’) = 0.5; simi(’benzin’, ’super’) = 1;

is transformed into the similarity functions

SIMi + x1 ≤ (
∑β1

j=1 1 . x(l1j)) + 1; SIMi + x2 ≤ (
∑β2

j=1 1 . x(l2j)) + 1;
SIMi + x1 ≤ (

∑β2
j=1 0.5 . x(l2j)) + 1; SIMi + x2 ≤ (

∑β1
j=1 1 . x(l1j)) + 1;

such that x(l11), ..., x(l1β1
) binds T to 1 (≡ ’super’), x(l21), ..., x(l2β2

) binds T to 2
(≡ ’benzin’), x1 = 1 iff t = 1 (≡ ’super’) and x2 = 1 iff t = 2 (≡ ’benzin’).

It is important to mention that SIMi is an approximation of simi.

5 Optimization Algorithms

We use the free package lp solve4 to solve optimization problems5. Assuming
that lp solve(OP) is a program that provides an optimal solution, an optimal
objective value and an optimal deductive consequence of an optimization prob-
lem OP , we develop OP-k-MSDC to find k similar deductive consequences.

OP-k-MSDC. The idea of this algorithm is straightforward. Given a query
q = p(t1, ..., tn), we first solve lp solve(OP-MSDC(q)) and retrieve the optimal
solution of OP-MSDC(q). Then we add a pruning constraint to OP-MSDC(q)
to prune the retrieved optimal solution and solve the new optimization problem.
Keeping a list k-MSDC of the retrieved optimal solutions, we continue the same
procedure until no further solution is found or k-MSDC contains k solutions.
The algorithm OP-k-MSDC(OP-MSDC(q), 〈〉, k, 1) is formalized as follows.

OP-k-MSDC(problem OP , list k-MSDC, int k, int counter){
If counter ≤ k then {

Run lp solve(OP),
If a solution

→
X assigned to V̄ = 〈l1, ..., lβ〉 is retrieved then{

insert(q̄, k-MSDC) s.t. q̄ is the optimal deductive consequence of OP ;
OP = OP ∪ x(l1) + ... + x(lβ) ≤ β − 1;
OP-k-MSDC(OP , k-MSDC, k, counter + 1);}

else return k-MSDC;}
else return k-MSDC;}.

4 lp solve: http://tech.groups.yahoo.com/group/lp solve/
5 There exist also commercial packages such as ILOG-CPLEX which is frequently used

in research institutions: http://www.ilog.com/products/cplex/

Optimization Algorithms to Find MSDC 383

dfs MAS OP and dfs MAS hc. These algorithms are the same as dfs MAS
in which Min Acc Sim is set to sim(q, q′) − ε such that q′ is found by OP-
1-MSDC or hill climbing and ε is a small deviation e.g. 2%, 4% An upper
bound for ε can only be retrieved using statistics. A possible strategy is to apply
several experiments and make ε bigger and bigger until k solutions are found.

6 Experimental Results

To evaluate the performance of the algorithms with respect to computation time
and similarity error caused by approximating the similarity measure or pruning
heuristics, they are implemented in SWI-Prolog6. As test domains we employ:

1. the domain theory Σpc which formalizes a case-based configuration scenario
that deals with the configuration of PCs. The deductive closure of the related
domain theory contains 287280 elements,

2. the domain theory Σcar which formalizes a car buying scenario to find the
most appropriate car for a user. The deductive closure of the related domain
theory Σcar contains 304721 elements.

All experiments were executed on the same Intel Pentium 4 computer (1.8
GHz, 480 MB Ram). Each algorithm was executed with the parameter k = 10
for the same 400 randomly generated queries, each of which describes a demand
for a PC or a car.

The results of the algorithms are shown in Table 1. with the following set-
ting: for each query we measured the average computation time for the search
(AET) as well as the average number of solutions found (AFS). One of the test
algorithms is the complete dfs which computes k-MSDC exactly and serves as
a base line for the similarity of the k-best solutions. This allows to determine
the errors of other algorithms caused by approximating the similarity measure
or the heuristic pruning. We determined the similarity error, i.e. the difference
in similarity of the retrieved ith-best solution found with some algorithm and
the similarity of the ith-best solution found by dfs. The following measures were
introduced: MinEr1 is the minimal similarity error for the best solution over
all 400 queries. Correspondingly, MaxEr1 is the maximum error and AveEr1
is the average error for the best solution. Further MinEk, MaxEk, and AveEk
denote the minimum, maximum, and average similarity error averaged over all
k solutions retrieved for each query.

Discussion of Results. Table 1. shows the results of the algorithms which are
more or less the same for both domain theories Σpc and Σcar. We have used a
better insert procedure to organize the list k-MSDC and therefore the results
for dfs in this paper are better than those in [2]. However dfs still explores the
whole state-space and is the slowest algorithm. In contrast, dfs MAS hc and
dfs MAS OP are both fast but the latter provides a lot better solutions than

6 SWI-Prolog: http://www.swi-prolog.org/.

384 B. Mougouie

Table 1. Comparison of the algorithms for Σpc and Σcar

Algorithm Theory ε AET AFS MinEr1 MaxEr1 AveEr1 MinEk MaxEk AveEk

dfs Σpc - 24.55 10 0 0 0 0 0 0
dfs MAS hc Σpc 5% 0.16 9.75 0 0.40 0.141 0 0.43 0.152
dfs MAS OP Σpc 2% 4.02 9.84 0 0.05 0.008 0 0.06 0.010
dfs MAS OP Σpc 4% 2.84 10 0 0.07 0.027 0 0.08 0.030
OP-k-MSDC Σpc - 0.73 10 0 0.05 0.002 0 0.07 0.003

dfs Σcar - 33.39 10 0 0 0 0 0 0
dfs MAS hc Σcar 5% 3.48 9.49 0 0.31 0.049 0 0.32 0.051
dfs MAS OP Σcar 2% 5.91 10 0 0.02 0.007 0 0.02 0.008
OP-k-MSDC Σcar - 0.84 10 0 0.005 0.0002 0 0.06 0.001

the former. Clearly, OP-k-MSDC is the best choice since it is not only fast but
also provides results with least errors.

In our current research we are improving the formulation of OP-MSDC(q) by
applying pre-compilation. Detailed results will be presented in future papers.

Acknowledgment. The author would like to thank Ralph Bergmann for his
help, guidance and comments on this paper.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

2. Bergmann, R., Mougouie, B.: Finding Similar Deductive Consequences – A New
Search-Based Framework for Unified Reasoning from Cases and General Knowledge.
In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS
(LNAI), vol. 4106. Springer, Heidelberg (2006)

3. KER; The Knowledge Engineering Review: Special Issue on Case-Based Reasoning,
vol. 20(3). Cambridge university press, Cambridge (2005)

4. Mougouie, B.: Integration of Similarity-Based and Deductive Reasoning for Knowl-
edge Management. Ph.D. thesis (to appear, 2008)

5. Richter, M.M.: Logic and Approximation in Knowledge Based Systems. In: Lenski,
W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 33–42. Springer, Hei-
delberg (2004)

6. Wolsey, L.: Integer Programming. John Wiley, Newyork (1998)

Understanding Dubious Future Problems

Oğuz Mülâyim and Josep Llúıs Arcos

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Spain
{oguz,arcos}@iiia.csic.es

Abstract. Being able to predict the performance of a Case-Based Rea-
soning system against a set of future problems would provide invaluable
information for design and maintenance of the system. Thus, we could
carry out the needed design changes and maintenance tasks to improve
future performance in a proactive fashion. This paper proposes a novel
method for identifying regions in a case base where the system gives low
confidence solutions to possible future problems. Experimentation is pro-
vided for RoboSoccer domain and we argue how encountered regions of
dubiosity help us to analyse the case base and the reasoning mechanisms
of the given Case-Based Reasoning system.

1 Introduction

When we use Case-Based Reasoning (CBR) [1] for solving problems, we count on
the main assumption underlying this methodology[2], viz. similar problems have
similar solutions. Wouldn’t it be nice if we could anticipate to what extent the
CBR assumption holds for future problems? A positive feedback in this direction
would increase the reliability of the system. Contrariwise, we would be aware of
the need for carrying out the required design and maintenance tasks throughout
our system to improve its future performance in a proactive fashion [3].

Indeed, this preanalysis would give us important clues about the future. For
instance, we could discover deserted regions in our case base (CB) where we do
not have available cases to reason with, or we could encounter overcrowded zones
in which we would have difficulty to classify our problem among cases of diverse
classes.

Furthermore, this analysis would not only yield predictions about the case
base but it could also give us valuable insight about the reasoner itself helping us
to verify the functioning of CBR mechanisms like retrieval and reuse in advance.

The question, of course, is how this preanalysis could be performed. Case-Base
Maintenance (CBM) techniques proved useful for improving the performance of
CBR systems. Most of the existing CBM techniques focus on removing redundant
or erroneous cases while preserving the system’s competence [4,5,6]. More recent
research introduces a complexity measure for highlighting areas of uncertainty
within the problem space [7]. The common assumption of these techniques is that
analysis of the cases provided in the case base is a good approach for estimating

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 385–399, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 O. Mülâyim and J.L. Arcos

the performance of the system for future cases. This assumption is known as the
representativeness assumption. Nevertheless, new problems are expected to be
slightly different from the existing cases.

Thus, the possibility of systematically assessing the performance of a system
in a set of problems different from the existing cases becomes an interesting issue.
One way for such an assessment is confronting the CBR system with possible
future problems to detect deficiences beforehand. Though the idea sounds intu-
itive, the task of finding possible future problems that lead to system deficiencies
is far from being trivial for most of the domains where the problem space is too
vast or even infinite depending on the features that characterise a domain.

A common approach to attacking such a vast space is to use heuristics that
guide the search. We believe that confidence measures can be used as effective
heuristics to find system deficiences as they state how sure the system is about
the solution it proposes for a given problem (where a solution with a low con-
fidence indicates an inaccurate solution). The importance of the availability of
such a measure is emphasised in recent research introducing possible confidence
indicators and calculations for a CBR system [8,9,10].

In preliminary work [11] we have proposed a method inspired on evolutionary
techniques to detect problematic future problems in terms of confidence. We call
these future problems with low confidence solutions Dubious Future Problems
(DFPs). In this paper we extend the previous work for detecting and character-
ising dubious regions in the problem space.

To effectively scan the problem space for finding dubious regions, we propose a
method based on four steps: First, we explore the problem space to find dubious
future problems. Then, we carry out an exploitation phase to better identify
these problems by focusing the search on additional future problems in their
neighborhoods. Next, to help the understanding of the regions where dubious
future problems are located, we associate each DFP with a neighborhood pattern
(e.g. hole, border). Finally, to focus on regions in the case base that suffer from
the same deficiency rather than dealing with individual problems, we group
DFPs according to these patterns.

In Section 2 we summarize our evolutionary approach for scanning the prob-
lem space to find dubious future problems. The definitions of dubiosity patterns
and the grouping algorithm are described in Section 3. In Section 4 we give
an example of how to explore dubious future problems and how to group them
by patterns that they exhibit in a Robosoccer system. We interpret the results
showing how they helped us to analyse our CBR system. We finally conclude
discussing the outcomes of the methodology introduced in this paper and giving
directions for future work in Section 5.

2 Exploring Dubious Future Problems

Given a domain ontology associated with a CBR system, we are interested in
identifying possible future problems that: 1) are similar enough to the current

Understanding Dubious Future Problems 387

cases and, 2) that the confidence on their solutions provided by the CBR system
is low. Thus, the exploration of the problem space to find DFPs requires only
three knowledge components in a CBR system: a domain ontology (specifying at
least the features and their data types used for defining cases); a similarity met-
ric; and a confidence measure that attaches a confidence value to each solution
proposed by the CBR system.

In the search for dubious problems, the search space is the space of all prob-
lems that can be generated according to the domain ontology. As indicated above,
this space can be too vast or even infinite depending on the features that charac-
terise the domain. To find DFPs we use Genetic Algorithms (GA) as they have
demonstrated their capabilities for exploring such vast search spaces. They have
the advantage of scanning the search space in a parallel manner using a fitness
function as heuristics and their implementations can be domain independent.

With a diverse initial population of possible future problems and an appropri-
ate fitness function, DFPs will evolve as the GA runs, where the less confident
the CBR system is about a problem’s solution the more it will prefer to regard
that problem as a DFP. However, as commonly seen in practice, GAs might
have a tendency to converge towards local optima [12]. In our case, this would
result as getting stuck to a low confidence zone and generating problems only
within that locality instead of scanning a wider region in the problem space. In
many GAs, mutation is the trusted genetic operator to avoid this problem as it
introduces diversity to the population, nevertheless it is usually not a guarantee.

Our approach to effectively search the problem space and to avoid local min-
ima has been to divide the search into two steps, namely Exploration and Ex-
ploitation of dubious future problems. In the Exploration step, the aim is to find
DFPs which are similar enough to existing cases and which are as dissimilar as
they could be to each other. The similarity to existing cases argument is to avoid
dealing with irrelevant(although possibly not unlikely) problems which have no
neighbour cases in the CB. The confidence for a solution to a generated prob-
lem which has no similar neighbours would probably be very low, but since this
would already be an expected result, it would not be of much interest to bring
these problems to the expert’s inspection. Additionally, the dissimilarity between
DFPs is for the sake of obtaining diversity in the results of Exploration to achieve
a richer set of future problems and their neighbours after the Exploitation step.

Successively, in the Exploitation step our objective is to find future neighbours
of the DFPs encountered in the Exploration step for providing a more precise
analysis of the low confidence local regions.

Both, Exploration and Exploitation steps, incorporate two proximity limits
in terms of similarity to an existing case or a future problem. These limits define
the preferred region in the problem space during the search for DFPs and their
neighbours. We will explain both limits in detail for each step in the next sub-
sections. We also added a Diversity Preservation feature to our GAs for both
steps to keep the population’s diversity at a desired level.

The following sub-sections describe the details of the Exploration and Ex-
ploitation steps.

388 O. Mülâyim and J.L. Arcos

Fig. 1. Graphical representation of the Exploration step. Hollow shapes are existing
cases (where different shapes refer to different classes); filled shapes are the encountered
Dubious Future Problems; IBEC and OBEC are, respectively, inner and outer bounds.

2.1 Exploration

The goal of the Exploration step is to identify an initial set of dubious problems
similar enough to the cases defined in a case base. A problem is considered
dubious when its confidence is lower than a given threshold. Since the minimum
value for considering a solution as confident may vary in each CBR application,
the decision about the confidence threshold is domain dependent.

For the Exploration step, the proximity limits mentioned above define the
preferred region of the search for dubious problems. The outer limit OBEC

defines the border for the less similar problems, while the inner limit IBEC

defines the border for the most similar ones to an existing case in the CB. We
also use the inner limit to draw a border around the found DFPs since we
are looking for DFPs that are as diverse as possible in this step. A graphical
representation of the Exploration step is provided in Figure 1.

The decision of the proximity limits depends on the answer of how similar a
problem can be to a case to be regarded as a relevant problem for the domain
and application. The similarity among existing cases may give an idea of the
range of possible values for these limits. For example; if these two limits are
chosen so that their sum is closer to the similarity value between two nearest
cases of different classes, then preffered proximities will overlap thus giving us
the possibility to discover borders for the classes in the CB.

Throughout the execution of the GA for Exploration, we maintain a list of
encountered future problems with low confidence solutions LCFP . During the
evaluation of a population, each time we come across a chromosome representing
a dubious problem we add it to the LCFP list.

The concepts used in the GA for the Exploration step are explained below:

Chromosomes: Each chromosome in our population represents a future prob-
lem where each gene is a feature of the problem. The value of a gene is thus one
of the possible values for the associated feature.

Understanding Dubious Future Problems 389

Initial Population: The initial population is formed by chromosomes generated
by the Random-Problem-Generator function (RPG). RPG is a function able to
generate a new problem by assigning random values for each problem feature.
Values for problem features can be easily generated using the definitions of fea-
tures in the domain ontology (feature definitions explicitly state the data type
and the set of possible values for a feature). It should also be considered that in
the existence of domain constraints, the Random-Problem-Generator function
generates valid problems that conform to those constraints. Otherwise, gener-
ated future problems might be non-valid or irrelevant in the domain. The size
of the population directly depends on the vastness of the problem space of the
CB that is being worked on.

Fitness Function: The fitness of a chromosome is determined by two param-
eters: the confidence value of the solution to the problem represented by the
chromosome and the similarity of the problem to the nearest problem in the
CB. The fitness function has to be adapted in each different domain or CBR
system. However, the following guidelines should be used in Exploration regard-
less of the domain or the application:

– The lower the confidence value is for a chromosome, the better candidate is
that chromosome.

– A chromosome in the preferred proximity of an existing case is a better
candidate than a chromosome which is not in this proximity.

– The confidence factor of the fitness is more significant than the similarity
factor. This is not surprising since we are searching for dubious problems.

Our proposal for the fitness function definition is the following:

Fitness(c) = Confidence(c)2 × SimilarityFactor(c)

where c is the chromosome to be evaluated; Confidence returns the confidence
value supplied by the CBR application after solving c; and SimilarityFactor
takes into account the similarity to both cases and DFPs. SimilarityFactor is
calculated as follows:

SimilarityFactor(c) = partSimEC(c) + partSimDFP (c)

where partSimEC refers to the similarity of c to existing cases and partSimDFP
refers to the similarity of c to DFPs in LCFP. partSimEC is defined as:

partSimEC(c) =
{

1− (OBEC + IBEC − Sim(c, CB)) if Sim(c, CB) ≥ IBEC

1− Sim(c, CB) otherwise

where Sim(c, CB) is the similarity value of c to the most similar case in the
CB (i.e. the highest similarity); IBEC and OBEC are, respectively, the inner and
outer bounds of similarity to the existing cases. partSimDFP (c) is defined as:

partSimDFP (c) =
∑

p∈FP

(similarity(c, p)− IBEC)

390 O. Mülâyim and J.L. Arcos

where FP ⊂ LCFP is the set of future problems to which c is more similar than
the allowed value IBEC and similarity(c, p) is the similarity value of c to the
problem p.

Following the previously defined guidelines, SimilarityFactor penalizes the
chromosomes that are too close to either cases or future problems discovered in
previous iterations (i.e. inside the radius defined by the inner threshold).

It should also be noted that for a desired chromosome (i.e. representing a du-
bious future problem which is in the preferred proximity of an existing case) our
proposed function produces a fitness value which is lower than a non-desired one.

Selection: We defined a fitness-proportionate selection method. Fitness-
proportionate selection is a commonly used and well studied selection mech-
anism where each chromosome has a chance proportional to its fitness value to
be selected as a survivor and/or parent for the next generations. However, since
we are interested in chromosomes with lower fitness values as explained above,
to comply with our fitness function, selection of a chromosome was inversely
proportional to its fitness value.

Crossover: We use single-point crossover as it is simple enough and widely
used. Depending on the observed convergence of the GA, this method could eas-
ily be replaced by Two-Point or n-Point crossover methods.

Mutation: Generally, one random gene value is altered for a number of off-
spring chromosomes in the population. If a local minima problem is observed,
more genes and/or more chromosomes can be mutated.

Diversity Preservation: We decided to use a diversity threshold that can
be tuned for each application. Specifically, at each generation when the number
of twins exceeds the diversity threshold, they are removed probabilistically us-
ing as probability their fitness value (i.e. twins with higher fitness have a higher
probability to be deleted).

In our approach, the validity of a problem is another important issue. Due
to the application of genetic operators in the evolution cycle, they are likely to
reproduce offspring chromosomes which are non-valid. We may deal with these
chromosomes basically in two ways: we may replace them with new valid chro-
mosomes or we may let some of them survive hoping them to produce nice
offspring in the following generations. In the former option, the replacement can
be done in the Diversity Preservation. In the latter option, either a validity check
can be incorporated into the fitness function reducing the fitness of non-valid
chromosomes or simply non-valid chromosomes can be excluded from the LCFP
after the termination of the Exploration step. In the current implementation we
adopted this last solution.

Termination: The termination criterion for the GA can be reaching a number
of generations or a number of dubious future problems. We let the population
evolve for a certain number of generations.

Understanding Dubious Future Problems 391

Fig. 2. Graphical representation of the Exploitation step. Hollow shapes are existing
cases; filled shapes are the encountered and exploited Dubious Future Problems. IBFP

and OBFP are, respectively, inner and outer bounds.

Result: As the result of the GA we obtain the list of future problems with low
confidence solutions LCFP.

2.2 Exploitation

The goal of the Exploitation step is to explore the neighbourhood of the low-
confidence problems discovered in the Exploration step. Similarly to the Explo-
ration step, during the execution of the GA for the Exploitation step we maintain
a list of Low Confidence Problem Neighbours LCPN . We initialise this list with
the members of the LCFP . In other words, the members of this list are the
dubious future problems that we want to exploit.

For the Exploitation phase, the proximity limits define the preferred region of
the search for neighbour problems. The outer limit OBFP defines the border for
the less similar problems, while the inner limit IBFP defines the border for the
most similar ones to any member of the LCPN . A graphical representation of
the Exploitation step is provided in Figure 2. Notice that, comparing with the
Exploration step, the proximity limits for Exploitation step are narrower since
in this step we are looking for neighbours of the DFPs.

All DFPs satisfying the proximity limits are added to the LCPN list. The
confidence threshold for dubiosity is the same value used in the Exploration.

The concepts used in the GA for the Exploitation step are the following:

Chromosomes, Selection, Crossover, Mutation, Diversity Preserva-
tion: These concepts have the same definitions as the corresponding ones pre-
viously given in the Exploration step.

Initial Population: We partially feed the initial population with the LCFP set
hoping to reproduce similar problems. We use the Random-Problem-Generator
to reach to the desired initial population size when needed.

Fitness Function: The fitness of a chromosome c in the Exploitation step de-
pends only on its neighbourhood to any member of LCPN . The fitness function
is defined as follows:

392 O. Mülâyim and J.L. Arcos

Fitness(c)=
{

1− (OBFP + IBFP − Sim(c,LCPN)) if Sim(c,LCPN) ≥ IBFP

1− Sim(c,LCPN) otherwise

where Sim(c,LCPN) is the similarity value of c to the most similar problem in
LCPN ; IBFP and OBFP are, respectively, the inner and outer proximity bounds
of similarity to the previously found future problems.

Termination: We let the population evolve for a certain number of genera-
tions in Exploitation as well.

Result: At the end, the Exploitation step provides the list LCPN which con-
tains dubious future problems found both in the Exploration and Exploitation
steps.

3 Regions of Dubiosity

Exploration and Exploitation of DFPs give us a foresight of a possible bad
performance of the CBR system. To inspect the underlying reasons of such a
malfunction, the encountered DFPs may be presented directly for the domain
expert’s attention. Experts in turn may use this future map of the case base
to initiate maintenance tasks if needed. However, depending on their number,
analysing DFPs manually may become a difficult task as domain experts would
have to check each DFP together with its neighbours to reveal the system defi-
ciencies.

To be able to assist the domain experts in the endeavour of analysing DFPs, we
have defined six dubiosity patterns. Each DFP is tagged with a dubiosity pattern
which indicates the possible reason of being classified as dubious. Furthermore,
when we have a numerous list of DFPs, we propose a grouping algorithm for
helping the expert to focus on regions in the case base that suffer from the same
deficiency.

3.1 Dubiosity Patterns

DFPs are good pointers to possible future system weaknesses as their solutions
have low confidence values. But to identify the cause of the low confidence result,
and thus, the needed policies for eliminating these weaknesses, DFPs themselves
alone are not much of a help. This is because confidence measures, in general, do
not provide detailed explanations of the judgement they make while attaching
a confidence value to a solution. Thus, for analysing why DFPs were considered
as dubious the expert should inspect the indicators of confidence used by the
confidence measure of the CBR system.

On the other hand, since usually the similarity measure plays an important
role in confidence calculus[9,10], looking at the neighbour cases of a DFP would
give strong clues for analizing DFPs. For this aim, we have defined six dubiosity

Understanding Dubious Future Problems 393

Fig. 3. Graphical representation of DFP Patterns. Hollow shapes are cases and the
filled one is a Dubious Future Problem. Each shape represents a different solution
class. δ is the similarity threshold delimiting the neighbourhood of a DFP.

patterns according to the solution classes of a DFP and of its neighbour cases.
Given a similarity threshold δ defining the neighbourhood, we say that a DFP
exhibits a pattern of type (see Figure 3 for a graphical representation):

– Hole (H). When all of its neighbour cases are of the same class as the DFP;
– Stranger (X). When all of its neighbour cases are of the same class which

is different from the DFP’s;
– Lost (L). When there are at least two different groups of neighbour cases,

according to their solution classes, where none of the groups is of the same
class as the DFP;

– Border (B). When its neighbour cases can be grouped into two groups with
different solution classes and one group shares the same class as the DFP;

– Shaky Terrain (S). When its neighbour cases can be grouped into at least
three groups of different solution classes and one group shares the same class
as the DFP. This pattern indicates regions where adding or removing a case
might redraw borders for multiple classes.

– Outer Limit (O). When it has only one neighbour case sharing the class.
This pattern may indicate outer limits for a particular class or it may point
out isolated cases in the case base.

After the Exploitation step, for each DFP in LCPN we check the solution
classes of its neighbour cases together with its own and we associate a pattern
to each DFP according to the above pattern definitions. The similarity threshold
δ value should be coherent to the OBEC value in the Exploration step since we
were looking for similarity between DFPs and existing cases. We propose to
choose a value slightly bigger than the OBEC value for the δ.

3.2 Grouping Dubious Future Problems

Preliminary experiments for exploring DFPs have shown that depending on the
features that characterise a domain and on the CBR inference mechanism we
may end up with a lengthy list of explored DFPs. In one sense, a high number
of DFPs is attractive since the more DFPs we encounter the more possible
future deficiencies we are discovering. However, using this lengthy list to carry
out maintenance tasks may turn out to be a tedious task in both manual and
automated maintenance of a CBR system. Although the associated dubiosity

394 O. Mülâyim and J.L. Arcos

Fig. 4. Regions of Dubiosity. Hollow shapes are cases and filled shapes are DFPs.
Subscripts point out the patterns associated to each DFP.

patterns help us to analyse DFPs, each DFP still requires special attention to
identify the needed maintenance tasks.

To overcome this overhead when we have too many DFPs to deal with, we
propose to group the DFPs according to their patterns and the similarity of
the DFPs among each other. Grouping DFPs in this way makes it easier to
identify regions in the problem space that suffer from the same deficiency. Thus,
any maintenance task that eliminates a common deficiency in such a region
will probably make the CBR system more confident of its solutions for similar
future problems that will fall into that region. We call these regions Regions of
Dubiosity.

Given the list LCPN and a similarity threshold δ′, the grouping algorithm
performs the following two steps:

1. Identification of the Regions of Dubiosity by transitively grouping all DFPs
that are neighbours at similarity δ′. This step forms different isolated regions.
Each region is a graph where the nodes are the DFPs and edges connect two
nodes when their similarity is, at least, δ′.

2. Characterization of the Regions of Dubiosity by grouping all the DFPs
that share the same pattern and are directly connected. Thus, each subregion
is a subgraph highlighting a pattern.

δ′ should be coherent(if not equal) with the OBFP value in the Exploitation
step since we are looking for similarity between DFPs for grouping them.

At the end, the regions of dubiosity that we obtain from the above algorithm
help us to identify the problematic zones in the CBR system. Moreover, each
subregion of shared patterns serves to detect zones that suffer from the same
deficiency, thus preventing us from having to deal with individual DFPs.

A graphical representation of an example for identifying Regions of Dubiosity
is given in Figure 4. In the figure two different regions have been detected.
The first one on the left only has two DFPs identified as outer limits. The big
region on the right has three border sub-regions, one stranger sub-region, and

Understanding Dubious Future Problems 395

one central shaky terrain sub-region. Connecting lines between two DFPs show
that they are neighbours according to a given similarity threshold δ′. Note that
region surfaces are only painted with the purpose of highlighting the dubiosity
regions in the problem space.

4 Experimentation

We have performed the analysis of DFPs on a CBR system developed for the
Four-Legged League (RoboCup) soccer competition [13]. In RoboCup two teams
of four Sony AIBO robots compete operating autonomously, i.e. without any
external control. The goal of the CBR system is to determine the actions (called
gameplays) the robots should execute given a state of the game.

The state of the game is mainly represented by the position of the ball and
the positions of the players (both teammates and opponents). The positions are
constrained by the field dimensions (6 m long and 4 m wide). Moreover, since
robots occupy a physical space in the field, a state of the game is considered
valid whenever the distances among the robots are higher than their dimensions
(30 cm long and 10cm wide).

The 68 cases stored in the system can be grouped into three main behaviors:
cooperative behaviors (where at least two teammates participate); individualistic
behaviors (only one player is involved); and back away behaviors (where the
position of the opponents forces a player to move the ball back).

The confidence measure provided by the application took into account not
only the similarity of the problem to the cases but also the actual distance of
the current position of the players to the ball. Therefore, although all similar
cases share the same solution, when the players are away from the ball the
confidence of the solution is low.

The first goal of our experiments was to foresee whether there exist states of
the game where the CBR system has difficulties in determining the best behavior,
i.e. the confidence on the proposed solution is low. The secondary goal was to
detect if there were any bad performing mechanisms of the CBR system.

The experimentation settings were the following: 40% of the population was
selected as survivors to the next generation; 60% of the chromosomes were se-
lected as parents to reproduce offspring; mutation was applied to a randomly
chosen 5% of the offspring modifying a gene’s value for each chosen chromosome;
the diversity threshold for the twin chromosomes was 5% (we kept this amount
of twins in the new generation and replaced the rest of them with new ones
created by the RPG).

Taking into account the similarities among existing cases, we chose the test
range [0.93, 0.99] for the proximity limit values and we kept the proximity
for Exploitation narrower than Exploration (see subsections 2.1 and 2.2). The
similarity threshold (δ in Figure 3) for associating patterns to DFPs was always a
value slightly bigger than the OBEC value in the Exploration step. Analogously,
the similarity threshold for grouping DFPs (δ′ in Figure 4) to form Regions
of Dubiosity, was the same as the OBFP value in the Exploitation step (see

396 O. Mülâyim and J.L. Arcos

Table 1. Average (Avg) and standard deviation (σ) of DFPs discovered in the Ex-
ploration (LCFP) and Exploitation (LCPN) steps in 63 experiments. RD shows the
number of the Regions of Dubiosity created from DFPs. H, X, L, B, S, O are, respec-
tively, the percentage of the number of the experiments in which Hole, Stranger, Lost,
Border, Shaky Terrain, and Outer Limit patterns appeared.

LCFP LCPN RD

Avg 59.26 183.21 55.95
σ 34.12 105.78 30.89

H X L B S O

95% 100% 50% 85% 15% 85%

subsections 3.1 and 3.2). Finally, the test range for confidence threshold was
chosen as [0.3, 0.7].

We ran different experiments for analysing the sensitivity in identifying DFP
regions by changing parameters such as the size of the initial population, the
number of generations, the confidence threshold, and the proximity limits. More-
over, because of the random nature of GAs, for each setting we executed the
Exploration and Exploitation steps several times to get an average value for the
number of identified DFPs and regions of dubiosity.

Throughout experimentation we have seen that we may encounter a higher
number of DFPs when, the initial population is larger in size or GAs evolve
during enough generations or the preferred proximity is wider.

The results show (see Table 1 left) that the number of the DFPs encountered in
the Exploration step is closely related to the number of the Regions of Dubiosity.
The difference between these two numbers is due to linking of DFPs found in
Exploration with other DFPs found in the Exploitation step. This happens when
we reach a DFP previously found in the Exploration step while we are exploiting
another DFP problem found in the same step. Therefore, when no linking is
achieved between such DFPs, the number of the Regions of Dubiosity is equal
to the number of the DFPs found in the Exploration step.

Another interesting result is the analysis of the DFP patterns discovered in
the experiments (Table 1 on the right summarizes the percentage of experiments
where each pattern is detected). This analysis allows a better understanding
of the regions of the problem space where the CBR system is not performing
confidently:

− Holes in the soccer domain occured when although all the closer cases
shared the same individualistic solution, the players were far from the ball. This
was due to the provided confidence measure explained above. To obtain more
confident solutions the neighbourhood of holes can be populated with new cases.
− Stranger DFPs were problems that proposed cooperative behavior but

whose neighbours were individualistic cases. We saw that this was because of
the design of the system for favouring cooperative behavior. If there is a close
cooperative case to the problem, the application proposes cooperative solution
even if there are more similar cases with different solutions. Stranger DFPs
helped us to discover regions where the influence of the cooperative cases was
excessive. To improve the confidence, we proposed to reduce that influence for
similar regions.

Understanding Dubious Future Problems 397

− Lost DFPs were problems that proposed cooperative behavior in a region
where their neighbours were individualistic and back away cases. This was again
due to the excessive influence of a cooperative case nearby. The proposed main-
tenance task was the same as in the previous pattern.
− Border DFPs identified the regions where neither individualistic nor coop-

erative behaviors reach a significantly better confidence. The confidence in these
regions could be improved by incorporating new cases into the case base to be
able to mark the borders better between these two classes.
− Shaky terrain DFPs does not seem to be significant in the Robosoccer do-

main due to the distribution of the cases in the CB. There are only three solution
classes and back away behaviors are mainly close to individualistic behaviors.
Hence, in only 15% of the experiments we encountered this pattern when the
proximity limits were chosen to be too wide and the proximity of the cases of
all three classes were overlapping in some regions.
− Finally, the encountered Outer Limit DFPs were either in the proximity of

isolated cases in deserted regions of the CB or they were on the outskirts of the
proximity of cases which were themselves at the border of a class.

In Figure 5 a visualisation of an example of a dubious region in the Soccer
domain is provided. Hollow and filled squares represent respectively cases and
DFPs with cooperative solutions. Analogously, hollow and filled stars represent
respectively cases and DFPs with indivudualistic solutions. The visualisation
of cases and DFPs was built using a force-directed graph-drawing algorithm
where the repulsive force between two cases is proportional to their distance.
The dotted line indicates the border of the dubiosity region. We have drawn
dubiosity groups at two similarity levels by using two different values for δ′ (dark
and light colors in figure). Neighborhood lines have been omitted for facilitating
the understanding of the figures.

HHH

O

O O

X

X

X

Fig. 5. Visualizing a dubious region in the Soccer problem. DFPs with individualistic
solutions are represented as stars. Squares represent DFPs with cooperative solutions.
H, X and O, respectively, indicate Hole, Stranger and Outer Limit patterns attached
to the cases in the darker coloured regions of dubiosity.

398 O. Mülâyim and J.L. Arcos

5 Conclusions and Future Work

In this paper we have presented a novel method for identifying future low confi-
dence regions given an existing case base. The method was based on four steps.
First, we explored the problem space to find dubious future problems. Then,
we exploited these problems to better locate them in the case base within their
future neighbourhood. Both steps used an evolutionary approach to scan the
problem space. Next, to help the understanding of the regions where dubious
future problems are located, we associated each problem with one of the six du-
biosity patterns defined in the paper. These patterns were based on the neigh-
bourhood of future problems to the existing cases. Finally, we have proposed an
algorithm for grouping dubious future problems according to these patterns to
identify regions of dubiosity. We argued that these regions enabled us to focus
on the regions in the case base that suffer from the same deficiency rather than
dealing with individual problems, thus facilitating maintenance tasks.

We described the experiments performed in a Robosoccer application and
have shown how DFPs associated with dubiosity patterns helped us to detect
dubious regions in the case base and to analyse bad performing mechanisms of
the CBR system.

We believe that the proposed method is useful for improving the performance
of CBR systems in a proactive fashion. The proposed method uses only the
domain ontology for generating future problems and evaluates them by using
the confidence and similarity measures provided by the CBR system.

As future work we plan to relate the dubiosity patterns to possible mainte-
nance tasks and to design a graphical tool for navigating through the problem
space. We plan to join the method described in this paper with a visualisation
method for case base competence based on solution qualities presented in [14].

Acknowledgements. This research has been partially supported by the Span-
ish Ministry of Education and Science project MID-CBR (TIN2006-15140-C03-
01), EU-FEDER funds, and by the Generalitat of Catalunya (2005-SGR-00093).

References

1. Lopez de Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M., Forbus, K., Keane, M., Watson, I.: Retrieval,
reuse, revision, and retention in CBR. The Knowledge Engineering Review 20(3),
215–240 (2005)

2. Watson, I.: CBR is a methodology not a technology. Knowledge Based Sys-
tems 12(5,6), 303–308 (1999)

3. Wilson, D.C., Leake, D.B.: Maintaining case-based reasoners: Dimensions and di-
rections. Computational Intelligence 17(2), 196–213 (2001)

4. Smyth, B., Keane, M.T.: Remembering to forget: A competence-preserving case
delection policy for case-based reasoning systems. In: Proceedings of IJCAI 1995,
pp. 377–382 (1995)

Understanding Dubious Future Problems 399

5. Smyth, B., McKenna, E.: Building compact competent case-bases. In: Althoff, K.-
D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 329–342. Springer, Heidelberg (1999)

6. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Com-
putational Intelligence 17(2), 235–249 (2001)

7. Massie, S., Craw, S., Wiratunga, N.: When similar problems don’t have similar
solutions. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 92–106. Springer, Heidelberg (2007)

8. Cheetham, W.: Case-based reasoning with confidence. In: Blanzieri, E., Portinale,
L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 15–25. Springer, Heidelberg
(2000)

9. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning
systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 106–118. Springer, Heidelberg (2004)

10. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates
of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg
(2005)

11. Mulayim, O., Arcos, J.L.: Exploring dubious future problems. In: Petridis, M. (ed.)
Twelfth UK Workshop on Case-Based Reasoning, pp. 52–63. CMS Press (2007)

12. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs, 3rd
edn. Springer, New York (1996)

13. Ros, R., Lopez de Mantaras, R., Arcos, J.L., Veloso, M.: Team playing behavior in
robot soccer: A case-based approach. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626, pp. 46–60. Springer, Heidelberg (2007)

14. Grachten, M., Garcia-Otero, A., Arcos, J.L.: Navigating through case base compe-
tence. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620,
pp. 282–295. Springer, Heidelberg (2005)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 400–414, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Conversational Case-Based Recommendations
Exploiting a Structured Case Model

Quang Nhat Nguyen and Francesco Ricci

Free University of Bozen-Bolzano
{qnhatnguyen,fricci}@unibz.it

Abstract. There are case-based recommender systems that generate personal-
ized recommendations for users exploiting the knowledge contained in past
recommendation cases. These systems assume that the quality of a new recom-
mendation depends on the quality of the recorded recommendation cases. In
this paper, we present a case model exploited in a mobile critique-based re-
commender system that generates recommendations using the knowledge con-
tained in previous recommendation cases. The proposed case model is capable
of modeling evolving (conversational) recommendation sessions, capturing the
recommendation context, supporting critique-based user-system conversations,
and integrating both ephemeral and stable user preferences. In this paper, we
evaluate the proposed case model through replaying real recommendation cases
recorded in a previous live-user evaluation. We measure the impact of the vari-
ous components of the case model on the system’s recommendation perform-
ance. The experimental results show that the case components that model the
user’s contextual information, default preferences, and initial preferences, are
the most important for mobile context-dependent recommendation.

1 Introduction

Product suggestions provided by recommender systems (RSs) are useful when users
are overwhelmed by a large number of options to consider or when they do not have
enough knowledge about a specific domain to make autonomous decisions [2].

Case-based recommender systems [3, 7] are knowledge-based RSs [5] that exploit
case-based reasoning [1] to generate personalized recommendations. A case-based RS
maintains a set of cases (i.e., a case base) of previously solved recommendation prob-
lems and their solutions. In many case-based RSs (e.g., [4, 8, 9, 16]), the authors
assume that the case base is the product catalogue, i.e., the solutions of the recom-
mendation problem, and the “problem” is the user's query that is essentially a partial
description of her desired product. In this approach, the case does not store the user
needs/preferences or the context that originates the recommendation problem, and the
solution of the case is the case itself, i.e., the product recommended. Hence, this
product-based case modeling approach does not capture the link between the problem,
i.e., the user’s preferences and the recommendation context, and the solution, i.e., the
user’s selected product, as in traditional CBR systems. Moreover, here no learning
takes place, since no new knowledge is stored after a problem is solved, and no adap-
tation of a previously solved case is done.

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 401

Besides the product-based case modeling approach, there have been a few attempts
to exploit more extensively the CBR methodology in RSs. In the approach presented
in [14], a case models a user’s interaction with the system in the recommendation
session, and consists of four components: the collaborative features, which are the
user’s general characteristics, wishes, constraints, and goals; the queries executed
during the recommendation session, representing the user’s additional preferences and
constraints on products; the selected products; and the ratings (evaluations) given to
the selected products. To build the recommendation list, the system first retrieves the
products that satisfy the user’s current query, and then ranks the retrieved products
according to their similarity to the products selected in past similar recommendation
cases. In another approach, discussed in [17], a case is composed of a user’s query
(the problem part) and the selected product (the solution part). Given a user’s query,
the system’s construction of the recommendation list consists of two steps. First, the
system builds the retrieval set that is a union of 1) the set of the products in the prod-
uct catalogue most similar to the user’s query and 2) the set of the products selected in
the past cases most similar to the current case. Then, the system applies a weighted
majority voting rule to the retrieval set, because different items in the retrieval set
may refer to the same product, to build the recommendation list. Both these ap-
proaches show how cases can be generated and reused in the recommendation task.

In addition, we observe that many RSs, e.g., collaborative filtering [2], follow the
single-shot recommendation strategy, where given a user's request for recommenda-
tions the system computes and shows to the user the recommendation list, and the
session ends. Conversely, in conversational RSs a recommendation session does not
terminate immediately after the first recommendation list is shown to the user, but it
evolves in a dialogue where the system tries to elicit step-by-step the user’s prefer-
ences to produce better recommendations [3]. In conversational RSs a recommenda-
tion case should record not only the user’s query and her selected products but also
the important information derived from the human-computer dialogue. So, for in-
stance, in critique-based conversational RSs [4, 8, 6, 10, 16] the information con-
tained in the user’s critiques should also be stored in the recommendation case.

Moreover, most of the existing case-based RSs have been designed for Web users,
not for mobile users who move from place to place and access the system using mo-
bile devices such as PDAs or mobile phones. In mobile RSs the contextual informa-
tion, such as the user’s position and the time of her request, is important, and should
be included in the case model and exploited in the recommendation process.

In a previous paper [15], we presented our critique-based recommendation ap-
proach and its implementation in MobyRek, a mobile case-based RS that helps mobile
users find their desired travel products (restaurants). In that paper, we also presented a
live-user evaluation of MobyRek, and the experimental results showed that our rec-
ommendation methodology is effective in supporting mobile users in making product
selection decisions. We also showed in [12] that the composite query representation
employed in our recommendation methodology results in a better recommendation
quality over a simpler query representation using either a logical or similarity query,
and in [13] that the exploitation of both long-term and session-specific user prefer-
ences does improve recommendation performance compared to the exploitation of a
single preferences component.

402 Q.N. Nguyen and F. Ricci

In this paper, we present the case model employed in our mobile recommendation
methodology, which extends the case modeling approaches presented in [14] and
[17]. In our approach, a mobile recommendation session is modeled as a case that is
built when a user requests a product suggestion, and it is incrementally updated
throughout the conversational recommendation session. The CBR problem solving
strategy is used to exploit (reuse) the knowledge contained in the past recommenda-
tion cases to build the user-query representation, and to adapt the current case to the
user’s critiques. In this paper, we also present off-line experiments aimed at evaluat-
ing the impact, on the system’s recommendation performance, of the different case
components. In particular, we compare the full case model with the other partial
case models. These off-line experiments exploit the log data of real recommendation
cases recorded in the previous live-user evaluation of MobyRek [15]. The experimen-
tal results show that the full case model does improve the system’s recommendation
performance over the partial ones, and that the case components that model the user’s
contextual information, default preferences, and initial preferences, are the most im-
portant for mobile context-aware recommendation. In summary, the paper makes the
following contributions.

• A new and more comprehensive case model for the mobile conversational recom-
mendation problem.

• A case-based approach for building and revising the user-query representation.
• A number of off-line experiments that show the impact of the different case com-

ponents on the system’s recommendation performance.

The rest of the paper is organized as follows. In Section 2, we present the product
and the user-query representations, and discuss the recommendation process. Section
3 presents the proposed case model and discusses our case-based approach to building
and revising the user query representation. In Section 4, we present the experimental
evaluation of the proposed case model. Finally, Section 5 gives the conclusions and
discusses future work.

2 The Recommendation Approach

In the proposed approach, a product is represented as a feature vector x = (x1, x2, …,
xn), where a feature value xi may be numeric, nominal, or a set of nominal values. For
instance, the restaurant x = (“Dolomiti”, 1713, {pizza}, 10, {air-conditioned, smok-
ing-room}, {Saturday, Sunday}, {credit-card}) has name x1 = “Dolomiti”, distance x2
= 1,713 meters (from the user's position), type x3 = {pizza}, average cost x4 = 10 Eu-
ros, characteristics x5 = {air-conditioned, smoking-room}, opening days x6 = {Satur-
day, Sunday}, and payment method x7 = {credit-card}.

In a recommendation session, the user-query representation encodes the user’s
preferences and is used by the system to compute the recommendation list. The user-
query representation is managed in the case. (The case-based construction and adapta-
tion of the query representation are discussed later in Section 3.) The user query q
consists of three components, q = (ql, p, w).

• The logical query (ql) models the conditions that the recommended products must
satisfy. The logical query is a conjunction of constraints, ql = (c1 ∧ c2 ∧ … ∧ cm).

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 403

• The favorite pattern (p), represented in the same vector space of the product repre-
sentation, p = (p1, p2, …, pn), models the conditions that the recommended products
should match as closely as possible. These wish conditions allow the system to
make trade-offs.

• The feature importance weights vector (w) models how much important each fea-
ture is for the user with respect to the others, w = (w1, w2, …, wn), where wi ∈ [0,1]
is the importance weight of feature fi. The system exploits the feature importance
weights when it makes trade-offs or when it needs to find query relaxation solu-
tions [15].

For example, the query q = (ql = (x2 ≤ 2000) ∧ (x6 ⊇ {Saturday, Sunday}); p = (?, ?,
{pizza}, ?, ?, ?, ?); w = (0, 0.4, 0.2, 0, 0, 0.4, 0)) models a user who looks for restau-
rants within 2 km from her position that are open on Saturday and Sunday and prefers
pizza restaurants. For the user the distance and the opening days are the most impor-
tant, followed by the restaurant type, and she is indifferent to the other features.

In our approach, a case models a recommendation session starting when a user asks
for a product recommendation (see Fig. 1a) and ends either when the user selects a
product or when she quits the session with no product selection. A recommendation
session evolves in cycles. In each recommendation cycle, the system shows the user a
ranked list of recommended products (see Fig. 1b) that she can browse and criticize
(see Fig. 1c), and the cycle ends when a new recommendation list is requested and
shown. We note that users are supported to make critiques on all the product features,
not just on distance and cost.

a) b) c)

Fig. 1. MobyRek user interface. a) Search initialization options. b) The recommendation list. c)
Critique on a numeric feature.

In a recommendation cycle, the current query representation, q = (ql, p, w), is used by
the system to compute the recommendation list, i.e., the system first retrieves the prod-
ucts that satisfy ql and then ranks the retrieved products according to their similarity to (p,
w). Only the k best products in this ranked list, i.e., those which satisfy ql and are most
similar to (p, w), are shown to the user as the recommendation result for the current cycle.

404 Q.N. Nguyen and F. Ricci

In the retrieval phase, if no products in the catalog satisfy ql, then the system automati-
cally finds a minimum number of constraints that if discarded from ql make it satisfiable.
In this automatic relaxation process, the constraints involving less important features are
considered before those involving more important ones. The discarded constraints are
converted to wish conditions and put in p. Similarly, in case no products satisfy a critique
stated as must, the critique is converted to a wish condition and put in p. (More details on
the recommendation list computation are presented in [15]).

Given a user’s request asking for some product suggestions (see Fig. 1a), the sys-
tem integrates the user’s initial input and her long-term preferences to build a case
that models the current recommendation session. Next, the system retrieves past rec-
ommendation cases similar to the current one, and uses the knowledge contained in
these retrieved cases to update the current case. Then, the current case is iteratively
adapted through a system-user dialogue that interleaves the system’s recommenda-
tions with the user’s critiques to the proposed products. When the session finishes, the
current recommendation case is retained in the system’s case base and the knowledge
about the newly solved problem is stored. The case retention allows the system to
exploit past recommendation cases in making recommendations for users in the future
[1]. The model of the recommendation process is shown in Fig. 2.

Case retention

Case retrieval and reuse

User’s initial
conditions &
contextual
constraints

Query
initialization

Case adaptation

Recommendation
computation

Recommendation
presentation

User
evaluation &

critiquing

Query
adaptation

Recommendation
session storing

Fig. 2. A mobile recommendation case

3 Case-Based Construction of the User Query Representation

In this section, we present the case model and discuss how CBR is exploited in build-
ing and revising the user-query representation.

3.1 The Case Model

In the definition of the case model we considered the following requirements.

• Capture the problem definition, i.e., the knowledge necessary to compute personal-
ized recommendations, and the solution (recommendations) of a mobile recom-
mendation session.

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 405

• Support the critique-based conversational recommendation approach.
• Include the contextual information useful to solve a recommendation problem.
• Model both the user’s ephemeral preferences (i.e., the user’s query) and the user’s

stable ones.

Given a user’s request for a product suggestion, the system exploits the user’s ini-
tial input together with her stable preferences to initialize the case. In our approach, a
recommendation case is modeled as:

C = (SAH, CTX, UDP, UIS, IQR, CTZ, SEL);
where:
• SAH stores the user’s product selections (e.g., a selected hotel) made earlier (using

a different web system, NutKing) and related to the current recommendation ses-
sion. The idea is that if, for instance, users u1 and u2 selected the same hotel h be-
fore going to destination and user u2 selected also restaurant r; then the system
would consider restaurant r to be a good product for user u1.

• CTX stores the contextual information of the current recommendation case. We
note that in our tests (reported in Section 4) CTX stores only the user’s position and
the time of her recommendation request. The user’s position is automatically de-
tected by the system, or is approximated by the co-ordinates of a close landmark
specified by her.

• UDP stores the preferences on product features that are explicitly set by the user as
her default preference settings, i.e., UDP = (u1, u2, …, un), where ui is a default fa-
vorite value set by the user. For example, the user may set a default preference of
non-smoking room.

• UIS stores the conditions that are explicitly specified by the user at the beginning
of the session, i.e., UIS = (v1, v2, …, vn), where vi = (ci, si), and ci is an initial condi-
tion, and si ∈ {wish, must}.

• IQR stores the system’s initial user-query representation.
• CTZ stores the sequence of the critiques that the user makes in the session.
• SEL stores the user’s product selection at the end of the (mobile) session.

Given a user’s request for a product suggestion, together with all the other informa-
tion contained in the case, the system builds the initial representation of the user query
(discussed in the next section): IQR = q0 = (ql

0, p0, w0), where ql
0 is the system’s ini-

tial representation of the user’s must conditions, p0 is the system’s initial representa-
tion of the user’s wish conditions, and w0 is the system’s initial representation of the
user’s feature importance weights.

After the system outputs a recommendation list the user can browse it and criticize
any recommended product (see Fig. 1c). A sequence of critiques is modeled as:

CTZ = null | (Ctz_Rec)*;
Ctz_Rec = (prdPos, recSize, prdID, fID, ctzOpt, ctzVal);

where Ctz_Rec is a critique record, prdPos is the criticized product’s position in the
recommendation list in the current cycle, recSize is the number of the products in the
recommendation list in the current cycle, prdID is the identity of the criticized prod-
uct, fID is the identity of the criticized feature, ctzOpt is the critique operator applied,
and ctzVal is the value of the criticized feature. An example of a critiques sequence is
as follows.

406 Q.N. Nguyen and F. Ricci

(1, 20, Prd4, f2, Opt(<), 2000) →
(2, 12, Prd7, f5, Opt(~⊇), {parking, smoking-room}) →
(1, 12, Prd3, f4, Opt(~=), 15)

In this example, the user first makes a critique of “must be nearer than 2 km”, then
she “wishes to have the parking and smoking-room characteristics”, and finally she
“wishes a price around 15 Euros”.

A recommendation session ends either when the user selects a product or when she
quits the session with no product selected. The former case is referred as a successful
recommendation case whereas the latter a failed one. Hence, the final result (i.e., the
solution part) of a mobile recommendation case is modeled as:

SEL = null | (prdPos, recSize, prdID, postRating);

where prdPos is the position of the selected product in the recommendation list in the
final cycle, recSize is the number of the products in the recommendation list in the
final cycle, prdID is the identity of the selected product, and postRating is the user’s
rating of the selected product (i.e., before visiting it) to indicate how close it is to her
needs and preferences.

3.2 Exploiting Past Cases in Building the User Query Representation

The user-query representation initialization starts when the user requests the system
for product recommendation and ends before the first recommendation list is pro-
duced and shown to her. In the initialization process, both the past information (e.g.,
past recommendation cases) and the current information (e.g., the user’s explicit ini-
tial conditions) are exploited. At the end of the initialization process, the system
builds the IQR case component, IQR = q0 = (ql

0, p0, w0).
The discussions on how the system builds the initial logical query (ql

0) and the ini-
tial feature weights vector (w0) components are presented in [15, 11]. Basically, ql

0 is
built exploiting the user’s space-time constraints and her initial conditions stated as
must, and w0 is built exploiting the history of the user’s critiques expressed in her past
recommendation sessions (i.e., recorded in the CTZ case component).

In this section, we focus the discussion on how the system initializes the favorite
pattern component (p) exploiting the knowledge contained in past recommendation
cases, together with the user’s default preferences (stored in her mobile device’s
memory) and her initial conditions stated as wish. The initial favorite pattern compo-
nent (p0) is built in the three following steps.

• First, find the past recommendation case which 1) contains a product selection (i.e.,
the value of the SEL case component is not null) and 2) is the most similar to the
current case.

• Then, take out the product selected in that most similar case (i.e., stored in the SEL
case component).

• Finally, merge the three preferences sources (i.e., the product selected in the most
similar case, the user’s default preferences, and the user’s initial conditions stated
as wish) to build the initial favorite pattern component (p0). (This merging step is
discussed later.)

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 407

As discussed in the previous section, the case model consists of seven components.
However, at the time when the user-query initialization takes place only the first four
components of the current case are known.

C* = (SAH*, CTX*, UDP*, UIS*, ?, ?, ?)

The most similar case is found by computing the dissimilarities of the past cases to
the current one C*. In particular, the dissimilarity of a past case C to the current one
C* is given by the following distance function.

d(C, C*) = [1 / (wSAH + wCTX + wUDP + wUIS)] .
[wSAH . dSAH(C, C*) + wCTX . dCTX(C, C*) +
wUDP . dUDP(C, C*) + wUIS . d

UIS(C, C*)];
(1)

where the weights wSAH, wCTX, wUDP, and wUIS model the relative importance of the
case components SAH, CTX, UDP, and UIS, respectively. We note that the weights of
these case components are fixed (predefined) in the tests discussed in Section 4.

The dissimilarity of a past case C to the current one C* with respect to case compo-
nent COM (i.e., either SAH or CTX or UDP or UIS) is given by:

()

∑

∑

=

==
k

i

COM
i

k

i
ii

COM
i

COM

w

CCOMCCOMdw

CCd

1

1

*

*

)(),(.

),((2)

where k is the number of the features of case component COM, d(COMi(C),
COMi(C

*)) is the local dissimilarity function for the i-th feature of case component
COM, and wi

COM is the weight of the i-th feature of case component COM.
For the three case components SAH, CTX, and UDP, the local dissimilarity func-

tions, d(xi, yi), are defined for different feature types as follows.

• d(xi, yi) = 1, if xi or yi is undefined.
• For a numeric feature fi, d(xi, yi) = |xi - yi| / (maxi - mini), where maxi and mini are

the maximum and minimum values of feature fi.
• For a nominal feature fi, d(xi, yi) is equal to zero if (xi = yi), and is equal to one if

otherwise.
• For a nominal-set feature fi, d(xi, yi) = 1 - (|xi ∩ yi| / |xi U yi|).

As discussed in Section 3.1, the UIS case component models the preferences that
the user explicitly specifies at start-up. When specifying initial preferences, the user
also indicates the strength of each initial preference; i.e., if an initial preference is a
must or a wish. Therefore, the case similarity computation relative to the UIS case
component must involve these strengths. In particular, the local dissimilarity func-
tions, dUIS(xi, yi), used for the UIS case component are defined as follows.

• dUIS(xi, yi) = 1, if xi or yi is undefined.
• For a numeric feature fi, dUIS(xi, yi) is equal to d(xi, yi) if both xi and yi are must

conditions or both are wish ones, and is equal to [d(xi, yi)]
α (α ∈ (0,1)) if otherwise.

408 Q.N. Nguyen and F. Ricci

• For a nominal feature fi, dUIS(xi, yi) is equal to zero if (xi = yi) and both xi and yi are
must conditions or both are wish ones, and is equal to β (β ∈ (0,1)) if (xi = yi) and xi
and yi have different strength, and is equal to one if (xi ≠ yi).

• For a nominal-set feature fi, dUIS(xi, yi) = ∑ =
in

j ijijUISi yxdn
1

),()/1(, where ni is the

size (i.e., the number of the elements) of feature fi.

The similarity of a past case C to the current one C* is then computed as:

sim(C, C*) = 1 - d(C, C*) (3)

Having found the case Csim most similar to the current one C*, the system merges
the following preferences sources to build the initial favorite pattern (p0).

• The user’s initial conditions stated as wish stored in the UIS component of the
current case C*. (We note that the UIS component stores both the initial conditions
stated as must and those stated as wish.)

• The user’s default preferences (i.e., those kept in her mobile device’s memory)
stored in the UDP component of the current case C*.

• The product selected in the most similar case Csim, i.e., the solution part (SEL) of
the most similar case Csim.

The preference merging is done at the feature level, i.e., for each feature the prefer-
ence expressed in the highest priority knowledge source overwrites that in the other
sources. The order of the priority among the three knowledge sources is: the user’s
initial conditions, followed by the user’s default preferences, and finally the product
selected in the most similar case. For example, if the user specifies a wish condition
on cost, then it is used to set the initial preference on cost (p4

0); otherwise, the system
sets p4

0 by the preference on cost indicated in the user’s default preferences. If no
preference on cost indicated in the user’s default preferences, the system sets p4

0 by
the cost of the product selected in the most similar case.

3.3 Adaptation of the User Query Representation through the User Critiquing

At the end of the initialization process, the system produces the initial user-query
representation q0 = (ql

0, p0, w0), i.e., the content of the IQR case component. However,
this initial user-query representation may be far from the user’s true preferences. To
refine this initial representation, the user is involved in a dialogue where the system
suggests some products and the user makes some critiques. The elicited preferences
help the system to revise its current guess; i.e., adapt its current user-query representa-
tion. So, cycle by cycle, a more precise knowledge of the user’s needs and preferences
is obtained and the critiques are used to adapt the case.

When making a critique to a recommended product, the user indicates the strength of
the preference (e.g., in Fig. 1c the user’s critique is stated as a wish). A critique expressed
as a must is incorporated in the logical query component (ql), which makes the system
focuses on a certain region of the product space, and the weight wi of the criticized fea-
ture fi is updated. A critique expressed as a wish is incorporated in the favorite pattern
component (p), which makes the system re-rank the recommendation list, and the weight
wi of the criticized feature fi is updated. After the user makes a critique the system up-
dates the CTZ case component incorporating (appending) the new critique.

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 409

We note that our critique-based approach is different from the existing ones in sev-
eral aspects. First, in our approach users are supported to make critiques on feature-
level, but not on item-level (like the preference-based approach in [8]). Second, in our
approach, given a user’s critique, only the user’s preference expressed on the criti-
cized feature, but not the values of the other features in the criticized item (as in [4, 8,
6, 10]), is used to adapt the query representation. The rationale is that, due to the pe-
culiar characteristics of the mobile usage environment (e.g., small screens), it is not
practical to assume, or require, that the user looks at all the recommended items, or all
the features of an item, before making a critique. Third, in our approach, when mak-
ing a critique, the user is supported to indicate the preference strength (i.e., wish or
must) of the critique.

4 Experimental Evaluation

The proposed recommendation approach has been implemented in MobyRek – a
mobile case-based RS that supports mobile users in the selection of their desired
travel products (restaurants). The MobyRek system was validated with real users,
employing a catalog of 84 restaurants [15]. The log data of this live-user evaluation
consists of fifteen successful recommendation cases.

In a previous work [13], we introduced the two system variants, sysMR and sysSS,
using the same composite query representation, but in building the initial user-query
representation sysMR exploited the past recommendation cases while sysSS did not.
We ran off-line experiments that, exploiting the log data of the real recommendation
cases, compared the average position of the user selected product in the first recom-
mendation list in the two variants. The experimental results showed that sysMR pro-
duced a better quality of the first recommendation list over sysSS, i.e., the average
position of the selected product in sysMR was 23.19% higher than that in sysSS [13].
This initial comparative result proves the benefit of exploiting past recommendation
cases for generating the first recommendation list. Here, we shall extend this result
evaluating the impact of the different case components on the system’s recommenda-
tion performance. In this evaluation, we compare five system variants exploiting dif-
ferent case components.

• “Full case model”: the full case model is exploited.
• “without COM”: not exploiting case component COM, where COM ∈ {SAH,

CTX, UDP, UIS}.

Here we are also exploiting the log data of the recommendation cases recorded in
the previous live-user evaluation of MobyRek. First we compare the performance of
the five system variants with respect to the quality of the first recommendation list.
Then, we compare the performance of these variants with respect to the quality of the
whole (simulated) recommendation session.

4.1 Quality of the First Recommendation List

In this first test, each variant incrementally replayed the first recommendation cycle
of each tester’s case. Here, “replayed” means that the initial user-query representation
in the original case was recomputed, considering or not certain case components.

410 Q.N. Nguyen and F. Ricci

The test procedure, followed by all the five system variants, consists of three main
steps (see [13] for another application of this evaluation methodology). First, for each
tester’s original case the system builds the initial user-query representation q0 = (ql

0,
p0, w0), as discussed in Section 3.2. Second, the system uses the initial query represen-
tation to compute the first recommendation list. We note that in this first test the sys-
tem produces the full recommendation list, not top-k as discussed in Section 2. Third,
the system checks in the first recommendation list the position of the product selected
by the tester in her original case. For each system variant the average position of the
selected product is computed over all the simulated cases. We assume that the best
variant is the one achieving the highest average position of the selected product.

The performance of the five variants is shown in Fig. 3 with the “all cases” label. The
results in Fig. 3 show that the variant exploiting the full case model outperformed the
other variants exploiting a partial case model. In particular, the average position of the
selected product in the first recommendation list was 15, 15.87, 19.73, 17.73, and 27 for
“Full case model”, “without SAH”, “without CTX”, “without UDP”, and “without UIS”,
respectively (the lower the better, as 1 means the first position in the list). In Fig. 3, by
comparing the “Full case model” variant with the others we can understand how much a
case component influences the quality of the first recommendation list. As shown in
Fig. 3, the SAH case component has a small impact, since the exclusion of this case
component caused just a 5.8% increase of the average position of the selected product.
However, each of the CTX, UDP, and UIS case components has a major impact, since
its exclusion caused a larger increase of the average position of the selected product, i.e.,
31.53%, 18.2%, and 80% for CTX, UDP, and UIS, respectively.

0

5

10

15

20

25

30

35

Full case
model

w ithout
SAH

w ithout
CTX

w ithout
UDP

w ithout
UIS

A
ve

ra
ge

 p
os

iti
on

all
cases

selected
cases

Fig. 3. The average position of the selected product in the first recommendation list

Since in the live-user evaluation of MobyRek we used the full case model, one
might conjecture that a product has been selected just because it appeared in the first
screen of the first recommendation list, and therefore the comparison could be biased
in favor of the “Full case model” variant. Hence, in order to obtain a possibly more
fair comparison, we also considered just the selected products that did not appear in
the first screen (i.e., top 3, in the mobile phone interface) of the first recommendation
list [13]. The performance, on this subset of simulated cases, of the five system vari-
ants is shown in Fig. 3 with the “selected cases” label. Even for these selected cases,
the “Full case model” variant, which exploited the full case model, still achieved the

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 411

best quality of the first recommendation list. In particular, the average position of the
selected product in the first recommendation list was 21.7, 23, 27, 24.1, and 33 for
“Full case model”, “without SAH”, “without CTX”, “without UDP”, and “without
UIS”, respectively. Hence, the conclusions made above are still true under this proba-
bly less biased evaluation.

4.2 Quality of the Full Recommendation Session

In the second test, each system variant incrementally replayed the whole sessions. Here,
“replayed” means that in a simulated recommendation case the system first re-computed
the initial query representation, considering or not certain case components, and then re-
applied, one by one in the original order, the user’s critiques. To replay a real recommen-
dation case, we had to define different ways of re-applying (i.e., simulating) user
critiques. That is because the case models employed by the four variants “without SAH”,
“without CTX”, “without UDP”, and “without UIS” were different from that employed by
MobyRek. Therefore, at each simulated cycle the recommendation list produced by a
variant (hereafter called “the output list”) can be different from that produced in the real
session, and moreover the real criticized product can be absent from the output list.
Hence, for each variant, we tried different critique-simulation methods, and measured its
performance using the best (or average) result obtained over all these methods. In this
way, we are trying to be unbiased, i.e., not in favor of any variant.

In a recommendation session, the cause and motivation for a critique made in a cy-
cle may be inferred based on the product criticized at that cycle or the one selected at
the end of the session. Hence, for each system variant, we tried the four critique-
simulation methods listed below. (See [12] for more details and another application of
these simulation methods).

• Just repeat the critique. This method assumes that a user’s critique is influenced by
her preferences, rather by the products shown. In this method, the critique is re-
applied even if the criticized product does not appear in the output list.

• Critique according to the selected product. This method assumes that a user’s
critique is motivated by her selected product. Hence, for a simulated critique the
value of the criticized feature in the selected product is used to adapt the user-query
representation.

• Critique according to the product similar to the criticized one. In case the criti-
cized product is not found in the output list, this method assumes that the user
makes a similar critique to a product (in the output list) similar to the criticized
one. In particular, if the criticized product is found in the top N of the output list,
then the critique is repeated; otherwise, the product most similar to the criticized
one is identified, and the value of the criticized feature in that product is used to
adapt the user-query representation.

• Critique according to the product similar to the selected one. In case the criticized
product is not found in the output list, this method assumes that the user makes a
similar critique to a product (in the output list) similar to the selected one.

The simulation test procedure, followed by all the five system variants, consists of
four main steps [12]. At Step 1, for each tester’s original case the system builds the
initial user-query representation (as discussed in Section 3.2), considering or not

412 Q.N. Nguyen and F. Ricci

certain case components, and retrieves the list of the original critiques that are re-
corded in the CTZ case component. At Step 2, the system uses the current query rep-
resentation to compute the output list (as discussed in Section 2). At Step 3, the sys-
tem checks if one of the termination conditions is met; if not, the system proceeds to
Step 4. The simulation of a tester’s original case ends either when the selected product
appears in the view window of the output list (a successfully simulated case) or when
all the original critiques have been re-applied but the selected product is still not
found (an unsuccessfully simulated case). In this test procedure, the view window
models the number of products that the simulated user is supposed to look at. At Step
4, the system takes the next critique from the original critiques list, and simulates it
using one of the four critique-simulation methods. The simulated critique is then used
by the system to adapt the query representation (see Section 3.3), and the simulation
process proceeds to the next cycle (at Step 2). Finally, for each system variant the
number of successfully simulated cases and the average session length are measured.

Fig. 4 shows the results obtained for a view-window size of 5 items. For each sys-
tem variant, Fig. 4 shows the best result among the four critique-simulation methods
and the average result over these methods.

The number of sucessfully simulated cases

0
2
4
6
8

10
12
14
16

Full
case

model

without
SAH

without
CTX

without
UDP

without
UIS

The
best
result

The
average
result

The average session length

0

0.5

1

1.5

2

2.5

3

Full
case

model

without
SAH

without
CTX

without
UDP

without
UIS

Fig. 4. The number of successfully simulated cases and the average session length, for the
view-window size of 5

We first look at the number of successfully simulated cases (success rate). When
comparing on the best result, both the “Full case model” and “without SAH” variants
achieved the same highest success rate. This confirms the result of the previous test
where the average position of the selected product in the first recommendation list in
the “without SAH” variant was just a bit lower (5.8%) than that in “Full case model”.
Also, the “without SAH” variant, applying the user critiques, achieved the same suc-
cess rate as “Full case model”. Conversely, the success rates of the three variants
“without CTX”, “without UDP”, and “without UIS” were 53.33%, 20%, and 20%,
respectively, lower than that of “Full case model”. Hence, these three variants
achieved a lower quality of the first recommendation list (see Fig. 3) and a lower
success rate. Looking at the average result we observe that “Full case model” and
“without SAH” achieved the same success rate, but the success rates of “without
CTX”, “without UDP”, and “without UIS” were lower than that of “Full case model”.
These comparative results show that the three case components CTX, UDP, and UIS

 Conversational Case-Based Recommendations Exploiting a Structured Case Model 413

are important for the mobile recommendation problem, since their exclusion from the
case model causes a decrease of the system’s recommendation performance.

We now look at the average session length (i.e., the average number of recommen-
dation cycles). We note that in the simulated recommendation cases, the length of the
dialogue was rather short, i.e., just 2-3 recommendation cycles. This average session
length is much shorter than those of Web critique-based RSs [16, 8, 6, 10], and it is
due to the mobile usage context, i.e., mobile users tend to spend less time and effort
than Web users do in searching for some information or products. As shown in Fig. 4,
the three variants “without SAH”, “without UDP”, and “without UIS” took the average
session lengths approximately to that taken by “Full case model”. However, the
“without CTX” variant consumed a longer (55.56%) average session length than “Full
case model”. In fact, the exclusion of the CTX component from the case model caused
not only a poor success rate but also a longer session length.

5 Conclusions and Future Work

In this paper, we have described a case-based approach for modeling mobile context-
aware recommendation problems and solutions. The proposed case model is capable
of modeling evolving recommendation sessions, capturing the recommendation con-
text, supporting critique-based user-system conversations, and integrating both
ephemeral and stable user preferences. We have discussed the exploitation of the
proposed case model to build and revise the user query representation. We have illus-
trated an experimental evaluation aimed at testing the impact of different case com-
ponents on the system’s recommendation performance. The experimental results
showed that the exploitation of the full case model results in a better recommendation,
hence proving the correctness of our design choices, and that the case components
that model the user’s contextual information, default preferences, and initial prefer-
ences, play the most important role in the mobile recommendation problem.

In the proposed approach, when searching the case base for similar cases, the sys-
tem uses a fixed set of pre-defined importance weights for the case components (see
Equation 1). However, a case component may be very important in a recommendation
situation, but less important in another one. Hence, in the future we want to define an
appropriate approach for learning and adapting the importance weights of the case
components for a given user in a particular recommendation situation. Also, in our
approach the CTX case component contains only the user’s position and the time of
the request. In fact, the recommendation contextual information may include not only
spatial-temporal information but also other situational information such as if the user
goes to the restaurant alone or with a friend, on a date or for a casual dinner, etc. We
plan to deal with this extension of the contexts exploitation in a future project.

References

1. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. AI Communications 7(1), 39–59 (1994)

2. Adomavicius, G., Tuzhilin, A.: Toward the next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowledge and Data
Engineering 17(6), 734–749 (2005)

414 Q.N. Nguyen and F. Ricci

3. Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based Recommender Systems.
Knowledge Engineering Review 20(3), 315–320 (2005)

4. Burke, R.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial Intelli-
gence Review 18(3-4), 245–267 (2002)

5. Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization, pp. 377–408.
Springer, Heidelberg (2007)

6. Chen, L., Pu, P.: Preference-based Organization Interface: Aiding User Critiques in Re-
commender Systems. In: 11th International Conference on User Modeling, pp. 77–86.
Springer, Heidelberg (2007)

7. Lorenzi, F., Ricci, F.: Case-based Recommender Systems: A Unifying View. In: Mo-
basher, B., Anand, S. (eds.) Intelligent Techniques for Web Personalization, pp. 89–113.
Springer, Heidelberg (2005)

8. McGinty, L., Smyth, B.: Adaptive Selection: An Analysis of Critiquing and Preference-
based Feedback in Conversational Recommender Systems. International Journal of Elec-
tronic Commerce 11(2), 35–57 (2006)

9. McSherry, D.: Completeness Criteria for Retrieval in Recommender Systems. In: 8th
European Conference on Case-Based Reasoning, pp. 9–29. Springer, Heidelberg (2006)

10. McSherry, D., Aha, D.W.: Mixed-Initiative Relaxation of Constraints in Critiquing Dia-
logues. In: 7th International Conference on Case-Based Reasoning, pp. 107–121. Springer,
Heidelberg (2007)

11. Nguyen, Q.N., Ricci, F.: User Preferences Initialization and Integration in Critique-Based
Mobile Recommender Systems. In: 5th International Workshop on Artificial Intelligence
in Mobile Systems, pp. 71–78. Universitat des Saarlandes Press (2004)

12. Nguyen, Q.N., Ricci, F.: Replaying Live-User Interactions in the Off-Line Evaluation of
Critique-based Mobile Recommendations. In: Recommender Systems 2007, pp. 81–88.
ACM Press, New York (2007)

13. Nguyen, Q.N., Ricci, F.: Long-Term and Session-Specific User Preferences in a Mobile
Recommender System. In: 2008 International Conference on Intelligent User Interfaces,
pp. 381–384. ACM Press, New York (2008)

14. Ricci, F., Venturini, A., Cavada, D., Mirzadeh, N., Blaas, D., Nones, M.: Product Recom-
mendation with Interactive Query Management and Twofold Similarity. In: 5th Interna-
tional Conference on Case-Based Reasoning, pp. 479–493. Springer, Heidelberg (2003)

15. Ricci, F., Nguyen, Q.N.: Acquiring and Revising Preferences in a Critique-based Mobile
Recommender System. IEEE Intelligent Systems 22(3), 22–29 (2007)

16. Shimazu, H.: Expertclerk: A Conversational Case-based Reasoning Tool for Developing
Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Review 18(3-4), 223–
244 (2002)

17. Stahl, A.: Combining Case-Based and Similarity-Based Product Recommendation. In: 8th
European Conference on Case-Based Reasoning, pp. 355–369. Springer, Heidelberg
(2006)

k-NN Aggregation with a Stacked Email Representation

Amandine Orecchioni, Nirmalie Wiratunga, Stewart Massie, and Susan Craw

School of Computing,
The Robert Gordon University,

Aberdeen AB25 1HG, Scotland, UK
{ao,nw,sm,smc}@comp.rgu.ac.uk

Abstract. The variety in email related tasks, as well as the increase in daily
email load, has created a need for automated email management tools. In this pa-
per, we provide an empirical evaluation of representational schemes and retrieval
strategies for email. In particular, we study the impact of both textual and non-
textual email content for case representation applied to Email task management.
Our first contribution is STACK, an email representation based on stacking. Mul-
tiple casebases are created, each using a different case representation related with
attributes corresponding to semi-structured email content. A k-NN classifier is
applied to each casebase and the output is used to form a new case representa-
tion. Our second contribution is a new evaluation method allowing the creation
of random chronological stratified train-test trials that respect both temporal and
class distribution aspects, crucial for the email domain. The Enron corpus was
used to create a dataset for the email deletion prediction task. Evaluation results
show significant improvements with STACK over single casebase retrieval and
multiple casebases retrieval combined using majority vote.

1 Introduction

Over time, email has evolved from a simple medium of communication to one involv-
ing complex management tasks. Nowadays, it is not enough to simply read and reply
to emails. One must also prioritise reading order, filter spam and phish emails, avoid
viruses, organise and maintain information repositories and manage social networks
and diaries. This increase in email related tasks coupled with the increase in email han-
dling load has created the need for automated email management tools.

Research in email management recognises five key areas [19,9]: information man-
agement, task management, time management, contact management and security pro-
tection. Machine learning research applied to email has focused on individual prediction
tasks within each area such as delete [8], reply [23,18], attach [12], forward [22], fil-
ter [20,15,10] and classify [2,4]. However, since each area typically involves several
chronologically organised email tasks, these tasks can be seen as email workflows. Ta-
ble 1 presents four workflows by decomposing each management activity into a set
of chronologically organised tasks. The Contact Workflow combines contact manage-
ment and email classification tasks, while the Task Workflow combines automated email
response, reply prediction and email classification tasks. The advantage of the email
workflow view is that it provides a template that can be used to guide prediction. For
instance, consider an incoming email, it would be useful to predict what action the user

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 415–429, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

416 A. Orecchioni et al.

Table 1. Email Workflow Examples

Task Workflow Information Workflow Time Workflow Contact Workflow
Helpdesk Query Paper Recommendation Meeting Announcement New Contact Detail

1. Read Email

2. Reply

3. Keep as ”open queries”

4. Receive follow-up question

5. Reply

6. File in ”closed queries”

1. Read Email

2. Open Attachment

3. Print Attachment

4. Save Attachment

5. Delete Email

1. Read Email

2. Open calendar

3. Add reminder

4. Keep email in inbox

5. Delete email after meeting

1. Read Email

2. Open Address Book

3. Add contact

4. Save contact

5. Delete email

might take. Is the email going to be forwarded, if so to whom? Is the user likely to reply,
if so can the reply be semi-authored? Should the email be deleted, if so when?

An email prediction task requires a learner to handle both local interactions between
emails and potentially evolving email concepts. CBR’s ability to handle these challenges
were demonstrated on an email filtering task [10]. An email is commonly represented
as a bag-of-words of its textual content. However, there is also separate evidence to
suggest the utility of non-textual email attributes for email classification [11,17]. In this
paper, we present a systematic evaluation of email attribute extraction from both textual
and non-textual content. Our work differs from existing feature selection and extraction
research in that we establish the importance of email sub-sections in case representation
instead of that of features. Since every workflow in Table 1 terminates in the delete or
filing tasks, we choose to focus our study on deletion prediction using the Enron corpus.

The rest of this paper is organised as follows. Section 2 discusses related work. Mul-
tiple email representations are defined in Section 3 and how they can be used in multiple
casebases in Section 4. Section 5 defines a new evaluation methodology allowing the
creation of random chronological stratified train-test trials that respect both temporal
and class distribution aspects. The evaluation and results are presented in Section 6.
Finally, our conclusions and future work are highlighted in Section 7.

2 Related Work

This section presents three different aspects of related work. We will start by discussing
email representation and possible email attributes. We will then report the benefits of
ensemble of classifiers documented in the literature. Finally, we will highlight the draw-
backs of current evaluation methods for the email domain.

Research in email categorization is commonly focused by classification into topical
folders [2] or into speech-acts [4], email prioritisation [16] and Spam filtering [10]. A
standard information retrieval approach for document representation is to use a bag-of-
words representation. However, research focused on the acquisition of indexing vocab-
ulary for email identifies three types of features:

– structured : features extracted from the header such as date, from, to;
– textual : keywords from the free text sections such as subject and body; and

k-NN Aggregation with a Stacked Email Representation 417

– handcrafted : features created from preprocessing the emails such as email length
and number of special characters [11].

It was shown that handcrafted features typically do not improve prediction accuracy
and so are not considered further in this paper.

Email features can be incorporated in a single feature vector. However, previous
work has highlighted the benefits of using an ensemble of classifiers, based on differ-
ent feature subsets, over a single feature vector [7]. Performance improvements with
ensembles are due to the aggregation of base-learners which are essentially local spe-
cialists. This gets round the problem of feature weight optimisation otherwise needed
with a single feature vector [5]. Feature subsets can be generated randomly [1] or us-
ing feature selection [6]. One possible ensemble aggregation method is stacking, which
is typically used to combine different types of base-learners into a meta-learner [25].
The idea is to use the prediction of each base-learner as input for the meta-learner.
This requires each case in the meta-learner casebase to be represented with values cor-
responding to predictions of the base-learners. Stacking has been successfully applied
to spam filtering by combining a memory-based classifier and a Naive Bayes classi-
fier [21].

The temporal aspect of email is an important issue to consider when generating train-
test splits for evaluation. Indeed, test set emails must be more recent than train set
emails. In a real life situation, it would be impossible to make a decision about an in-
coming email based on emails not yet received. This aspect is not taken into account by
standard evaluation methodologies such as cross-validation, leave one out or hold out. A
possible approach is to order emails chronologically and use the earlier half for training
and the later half for testing [17]. However, a single split of the dataset is problematic to
evaluate statistical significance as it only permits one trial. Another approach is to create
multiple splits from a chronologically ordered dataset. The classifier is trained on the
first N messages and tested on the following N , then trained on the first 2N messages
and tested on the following N , then trained on the first 3N messages and tested on the
following N and so on [2]. This approach is similar to the previous in that it ensures
a chronological ordering of the data. But, it also allows statistical significance testing
as it creates N -1 trials instead of a single trial. However, class distribution should also
be respected, and these approaches are only suitable when emails from each class are
evenly distributed over time.

3 Case Representation for Emails

The decomposition of a semi-structured document into constituents, such as from, to,
subject and body in emails, allows case retrieval to focus on each of them separately.
This is particularly useful when they have their own indexing vocabulary as they are
further decomposable into feature vectors.

The top-half of Table 2 presents nine attributes identified in relation to email sections.
Date and From Address are nominal attributes while the others are textual attributes rep-
resented as binary feature vector. For instance, all the email addresses from the To field
of the emails in the casebase form the indexing vocabulary of To Address. This attribute
is represented for each email as a feature vector of the indexing vocabulary, where the

418 A. Orecchioni et al.

Table 2. Case representations for email

Descriptor Email Representation

S
in

gl
e-

A
tt

ri
bu

te

Date Date = date
From Address from@ = (Addressfrom1, ...Addressfromi)
From Name fromN = (Namefrom1 , ...Namefromj)
To Address to@ = (Addressto1, ...Addresstok)
To Name toN = (Nameto1 , ...Nametol)
CC Address Cc@ = (Addresscc1 , ...Addressccm)
CC Name ccN = (Namecc1 , ...Nameccn)
Subject subject = (keywordsubj1 , ...keywordsubjn)
Body body = (keywordbody1, ...keywordbodyn)

M
ul

ti
-A

tt
ri

bu
te From from = (from@, fromN)

To to = (to@, toN)
CC cc = (Cc@, ccN)
Recipients recipients = (to@, toN , cc@, ccN)
Text text = (subject, body)
All all = (Date, from@, fromN , to@, toN , Cc@, ccN , subject, body)

value for each feature is 1 if the email’s To field contains the feature or 0 otherwise.
From Name, To Name, CC Address, CC Name, Subject and Body are represented simi-
larly. Accordingly, an email can be represented with a single-attribute representation or
a multi-attribute representation using alternative combinations of attributes (see bottom-
part of Table 2). For instance, From combines feature attributes From Address and From
Name and Text represents all textual content by including attributes Subject and Body.

The advantage of a representation that preserves document structure is that similarity
computations can be confined to corresponding email sections. Figure 1 illustrates the
aggregation of local similarities Si into a global similarity S(E1, E2) between emails
E1 and E2. Local similarities are computed for each corresponding attribute and aggre-
gated using average.

An obvious approach to represent email is to include all attributes in a single feature
vector representation which we call All. The similarity between two emails with such a
representation is computed as above. However, since seven out of the nine attributes are

E1 BodySubjectCC NameCC AddressTo NameTo AddressFrom NameFrom AddressDate

E2 BodySubjectCC NameCC AddressTo NameTo AddressFrom NameFrom AddressDate

Si
m

ila
rit

y
S 1

Si
m

ila
rit

y
S 2

Si
m

ila
rit

y
S 3

Si
m

ila
rit

y
S 4

Si
m

ila
rit

y
S 5

Si
m

ila
rit

y
S 6

Si
m

ila
rit

y
S 7

Si
m

ila
rit

y
S 9

Si
m

ila
rit

y
S 8

S(
E 1

,E
2)=

Av
er

ag
e(

S i
)

Fig. 1. Similarity computation with semi-structured document representations

k-NN Aggregation with a Stacked Email Representation 419

binary feature vectors, we considered multiple casebases where every casebase contains
the same set of emails but uses a different case representation. Each casebase uses one of
the single-attribute representations listed in the top-half of Table 2. The prediction task
involves aggregating retrieval results from multiple casebases. Essentially, our interest
is to study how best to combine similarities from separate email sections.

4 Retrieval with Multiple Casebases

Previous work has shown that retrieval over multiple casebases can be achieved with en-
sembles of k-NN classifiers [7]. Each k-NN classifier constitutes a CBR system which
we refer to as a base-learner. The final prediction is obtained by combining the predic-
tions of each base-learner. Figure 2 illustrates majority voting, a common aggregation
strategy. Each base-learner uses the same casebase, but with a different case represen-
tation, and the final prediction of the new email is the majority vote of the base-learners
predictions.

However, voting only makes sense if the classifiers perform comparably well. If, for
instance, six of the nine classifiers make incorrect predictions, the majority vote will
be incorrect. Majority vote is therefore unsuitable when the relevances of base-learners
vary. This is because it is unclear which classifier to trust and a dynamic weighting
would have to be applied to capture the importance of each classifier in difference cir-
cumstances. For instance, when a case is represented using Date, the classifier is typ-
ically unable to make a prediction. However, when a prediction is made, it is highly
likely to be correct. Therefore, when this classifier is able to make a prediction, its
weight should be high, but otherwise low. In this work, since each classifier learns from
the same set of emails represented differently, if each classifier performed comparably
well, one classifier would suffice. The goal in using multiple classifiers is to exploit the
complementarity of email attributes. Stacking combines multiple models differently by
introducing the concept of meta-learner. It tries to learn which classifiers are reliable

B
od

y

Su
bj

ec
t

C
C

 N
am

e

C
C

 A
dd

re
ss

To
 A

dd
re

ss

Fr
om

 N
am

e

Fr
om

 A
dd

re
ss

D
at

e

To
 N

am
e

3NN 3NN 3NN 3NN 3NN 3NN 3NN 3NN 3NN

base-learners predictions
New
Email

Final prediction = Majority Vote

Fig. 2. Aggregation with majority voting

420 A. Orecchioni et al.

9
C

as
eb

as
es

3NN 3NN 3NN 3NN 3NN 3NN 3NN 3NN 3NN

New
Email

3NN
3NN

3NN
3NN

3NN
3NN

3NN
3NN

3NN

M
eta C

asebase

base-learners predictions

B
od

y

Su
bj

ec
t

C
C

 N
am

e

C
C

 A
dd

re
ss

To
 A

dd
re

ss

Fr
om

 N
am

e

Fr
om

 A
dd

re
ssD

at
e

To
 N

am
e

3NN
base-learners predictions

= new email representation
Final prediction

Fig. 3. STACK representation

using another learning algorithm to discover how best to combine the predictions of
the base-learners. It is suited to situations where base-learners are reliable in different
circumstances [24].

Stacking is generally used to combine different types of base-learners. Here, we use
stacking to combine the same type of base-learners, k-NN classifiers, but where each
classifier uses a different case representation. Each base-learner provides a prediction,
like in majority voting, but the meta-learner combines these predictions into a new case.
Therefore, cases in the casebase used by the meta-learner, or meta-casebase, have as
many attributes as there are base-learners.

In this work, a new case is classified by nine base-learners, one for each single-
attribute representation. The predictions are used to create a new case representation
for the meta-learner called STACK. The top-part of Figure 3 illustrates how the meta-
casebase is created by using the predictions of each base-learners to create a new case
representation, or STACK representation. The bottom-part illustrates the classification
of a new case. First, the new email is classified by the nine base-learners to obtain its
STACK representation. It is then classified by the meta-learner which uses the meta-
casebase where cases are represented with STACK.

The hypothesis supporting the STACK representation is that the base-learners predic-
tions of similar emails follow the same pattern. For instance, if two emails are classified
similarly by the base-learners, their representation in the meta-casebase will be similar.

5 Creating Random Chronological Stratified Trials

We introduce a new evaluation method, n-RCST, in order to create random chronolog-
ical stratified trials that maintain the temporal aspect of email and respect the overall
class distribution.

Given a set of n emails belonging to m classes, n-RCST creates chronologically
ordered email subsets Ei corresponding to each class. Each subset Ei is further split

k-NN Aggregation with a Stacked Email Representation 421

into k even splits Eij . Typically k=2, where one split is used for training and the other
for testing. When using stacking, k=3: the new representation for the meta-learner is
obtained for Ei1 and Ei2 using Ei2 and Ei3 respectively for training. Next, k-1 suitable
dates dj are identified in order to create k chronological splits E′

ij for each class ci,
such that all emails in class ci received between dj−1 and dj form E′

ij . This enforces
the temporal aspect on our trials because emails in any jth split are more recent than
emails in any j+1th split. Multiple stratified trials can then be generated by randomly
selecting a number of emails according to ci’s distribution from E′

ij for testing and
E′

ij+1 for training. This algorithm is detailed in Figure 4 to illustrate its generality.
Figure 5 illustrates n-RCST applied to a DELETE/KEEP classification task. First

DELETE emails are separated from KEEP emails and put into chronologically ordered
subsets. Assuming 2 splits are required, one for testing and one for training, each subset
is further decomposed into 2 even splits (e.g. D1 and K1). The date at which the oldest
email of each split has been received is identified (e.g. dD1 and dK1). Finally, a date
d is chosen between dD1 and dK1. Splits can be recreated so that delete′1 and keep′1
are all emails, from each class respectively, received after d, whilst delete′2 and keep′2
are those received before d. Trials are now created by randomly selecting emails from
delete′1 and keep′1 for testing and delete′2 and keep′2 for training. We are now ensured
that emails in the test set are more recent than those in the training set.

Let assume we have a dataset of 1500 emails, including 900 emails labeled as
DELETE and 600 emails labeled as KEEP. Imagine we want to create N trials, respecting
the overall class distribution and the chronological order of the dataset, where each trial

E = {e1, ..., en}, set of emails
C = {c1, ..., cm}, set of classes
D = {d1, ..., dk}, set of dates
k the number of splits required
d(ei) date at which email ei was received
c(ei) class of email ei

Create a subset Ei per class
∀ci ∈ C , ∃Ei ⊂ E where, ∀e ∈ Ei, c(e) = ci

Order subset chronologically
∀Ei, order so that ∀ej ∈ Ei, d(ej) < d(ej+1)

Create k even splits Eij for each subset Ei

∀Ei, Ei = Ei1 ∪ ... ∪ Eik

and |Ei1| ≈ ... ≈ |Eik|
Get the date of the oldest email in each split Eij

∀Eij , dij = d(e∗),
where e∗ ∈ Eij and ∀e ∈ Eij , d(e∗) < d(e)

Create a set Dj with the dates of the oldest
email in the jth split of all Eij subsets

Dj =
⋃

i{dij}
Select a date dj between the most recent
and the oldest date in Dj

∀Dj , min(Dj) < dj < max(Dj)

Create k chronological splits E′
ij per class ci,

∀e ∈ E, E′
ij = E′

ij ∩ {e},
where dj−1 > d(e) > dj , and c(e) = ci

so that ∀ej ∈ Ej =
⋃

i Eji , d(ej) > d(ej+1)

Fig. 4. n-RCST algorithm

delete’ 1

delete2(D2)

delete1(D1)

keep2(K2)

keep1(K1)

keep’ 2

keep’ 1

dD1 dK1

d

delete’ 2

d

DELETE (D)

DELETE (D)
P

er
so

na
l U

se
r E

m
ai

ls

dD2 dK2

KEEP (K)

KEEP (K)

= timeline

Fig. 5. n-RCST for delete prediction

422 A. Orecchioni et al.

represents 10% of the dataset and contains 1/3 for testing and 2/3 for training. A trial
must therefore contain 90 emails labeled as DELETE and 60 emails labeled as KEEP.
Out of the 90 DELETE, 30 are used for testing and 60 for training. Similarly, out of the
60 KEEP, 20 are used for testing and 40 for training. After n-RCST is applied to the
dataset (as in Figure 5), a training set is formed by randomly selecting 60 emails from
delete′2 and 40 from keep′2 and the test set formed with 30 emails from delete′1 and
20 from keep′1. Multiple trials can now be generated similarly, ensuring each is strati-
fied by selecting the correct number of emails from each class, and are chronological,
as the emails from the test set have been received after the emails from the training
set.

6 Evaluation and Results

In this paper, we compare different email representations for the prediction of email
deletion. An ideal dataset should contain the time at which an email has been deleted.
Indeed, an email can be deleted for different reasons. If an email is irrelevant, it is likely
to be deleted as soon as it is received. An email regarding a meeting or an event is likely
to be kept until a certain date then deleted when it becomes obsolete. Therefore, predic-
tion of email deletion should also include the time at which the email should be deleted.
A dataset containing deletion time is not currently available and is hard to obtain for
ethical reasons. Therefore, in this paper, we experiment on a binary classification task
where an email is classified either as DELETE or KEEP.

Our evaluation has three main objectives:

– show that all email attributes contribute to the performance of a classifier
– show that combining base-learners using a STACK representation is a better ap-

proach than the combination of base-learners using majority voting or a multi-
attribute representation

– show that a meta-learner using a STACK representation is more stable across users.

In the remaining of this section, we will first present the Enron Corpus and how it
was processed to create datasets for the purpose of our experiments. We will then define
the experimental design. Finally, we will discuss the results for each objective.

6.1 Email Dataset

The raw version contains 619,446 emails belonging to 158 users [3]. The Czech Am-
phora Research Group (ARG) has processed the Enron corpus into 16 XML files [14].
We used the file which identifies duplicate emails to remove all duplicate emails and
we also cleaned the corpus by removing folders such as all documents and discus-
sion threads [13]. These folders are computer generated folders and do not reflect user
behaviour. Our cleaned Enron corpus contains 288,195 emails belonging to 150 users.
For each user, we assumed that every email in deleted items should be classified as
DELETE and every other email should be classified as KEEP. We therefore do not take
into consideration the time at which an email has been deleted.

k-NN Aggregation with a Stacked Email Representation 423

6.2 Experimental Design

n-RCST could not be applied to some Enron users because the time period covered by
emails labeled as DELETE and the time period covered by email labeled as KEEP do
not overlap or do not have an overlapping period large enough to create train-test trials.
We extracted 14 Enron users for which n-RCST was suitable and generated 25 trials
for each. The class distribution and the number of emails for these users is detailed in
Table 3.

Table 3. Class distribution and Number of Email for selected Enron Users

User % of Deleted Emails User Number of Emails
Dean-C 0.205 Lucci-P 753

Watson-K 0.214 Bass-E 754
Heard-M 0.270 Giron-D 767

Quigley-D 0.376 Shively-H 769
White-S 0.426 Heard-M 833

Schoolcraft-D 0.447 Quigley-D 988
Giron-D 0.495 Mims-Thurston-P 1028
Zipper-A 0.511 Zipper-A 1056
Bass-E 0.533 Thomas-P 1099
Parks-J 0.612 Schoolcraft-D 1321

Thomas-P 0.621 Dean-C 1540
Mims-Thurston-P 0.661 Parks-G 1661

Lucci-P 0.754 Watson-K 1974
Shively-H 0.765 White-S 2296

Three splits were generated for each user using n-RCST. In order to evaluate the
email representations listed in Table 2, one test set and one train set are required. A trial
is created by randomly selecting emails from the most recent split for testing and from
the second most recent split for training. In order to evaluate the stack representation,
one test set and one train set of emails represented with STACK are required. Emails
from the most recent split are classified by the base-learners using the second most
recent split for training. Similarly, emails from the second most recent split are classified
by the base-learners using the third split for training. This provides us with a stack
representation for emails in the first and second splits, allowing us to use the first split
for testing and the second for training. The creation of trials is illustrated in Figure 6 and
Figure 7. We maintain consistency in that, for all representations, test sets and training
sets are identical.

Once the trials are generated, a casebase is created for each case representation for
each trial. All base-learners and the meta-learner are k-Nearest-Neighbour classifiers
with k = 3. Further research on the optimal number of neighbours to consider for each
base-learner would be beneficial but is not considered further in this paper. For binary
feature vectors attributes, the similarity is computed using the Euclidean distance. For
nominal attributes, the similarity is 1 if the values are identical, 0 otherwise. During
retrieval, any ties between multiple candidates are resolved randomly. Alternative rep-
resentations are compared using classification accuracy. Since our data is not normally

424 A. Orecchioni et al.

Fig. 6. Trial creation for single feature vector representation

Fig. 7. Trial creation for STACK representation

distributed, significance results are based on a 95% confidence level when applying the
Kruskal Wallis test to three or more datasets and 99% confidence when applying the
Wilcoxen signed-rank test to two data sets.

6.3 Is Using All Attributes Best?

We compared the classification accuracy using the 12 email representations listed in
Table 2. Our results show that using only the textual attributes (Subject, Body and Text)
or using all the attributes (All) result in significantly better results compared to using
any of the other attributes. Additionally, using All attributes gives significantly better
results across users than Subject, Body and Text. This suggests that representing emails
only using the textual attributes is not enough and that useful information for retrieval
can be extracted from non-textual attributes. However, it is important to note that the
accuracy achieved with the best single-attribute representation (All) is outperformed by
simply predicting the majority class for 8 users out of 14. This is clearly illustrated in
Figure 8, where the accuracy achieved with the four best representations is compared to
the accuracy achieved by systematically predicting the majority class. We can note that
All tends to perform well when classes are evenly distributed but struggles on highly
skewed data.

k-NN Aggregation with a Stacked Email Representation 425

Fig. 8. Accuracy achieved with different email representations

6.4 What Is the Best Way to Combine Base-Learners?

The All representation, where all email attributes are included in a feature vector, is the
simplest way to combine email attributes. Since a classifier using such a representation
does not perform well on highly skewed data, we evaluated an alternative approach. A
casebase is created for each single-attribute representation. The performance of k-NN
using All representation is compared to an ensemble of 9 k-NN classifiers combined
using majority vote (MAJORITY), each using a different casebase.

Unlike All, MAJORITY implicitly captures the importance of each attribute by giving
a weight to each classifier based on the similarity between the retrieved neighbours and
the new case. This is because the prediction of each base-learner is a numeric value
between 0 and 1 based on the similarity of the new case to the 3 nearest neighbours. For
instance, for a given base-learner, let the similarities between the new case and the 3
nearest neighbours 0.2, 0.6 and 0.8 and their class KEEP, DELETE and DELETE respec-
tively. The prediction for this base learner is (0.2∗0+0.6∗1+0.8∗1)/(0.2+0.6+0.8) =
0.875. If the prediction is smaller than 0.5, the email is classified as KEEP, otherwise it
is classified as DELETE. The closer the prediction is to 0 or 1, the more the base-learner
is confident that the class for the new case should be KEEP or DELETE respectively. The
majority vote is calculated by averaging the predictions of all the base-learners. We
therefore expect MAJORITY to perform better than All. However, significance test show
that both approaches perform comparably. This is clearly illustrated with a scatter-plot
in Figure 9. This suggests that the global similarity, or similarity across all attributes,
is equivalent to the combination of local similarities, or similarities of individual at-
tributes.

We then compared STACK to both previous approaches. Results show that k-NN us-
ing STACK representation performs significantly better than MAJORITY or k-NN using
All representation. The scatter-plot in Figure 10 provides a closer look at STACK and
MAJORITY results. The performance achieved using the STACK representation can be
explained by its ability to generate predictions based on similarity values computed over
the predictions of multiple base-learners. When combining email attributes using MA-
JORITY, a good performance is expected only if base-learners tend to agree on a pre-
diction. However, STACK further exploits the fact that if the ensemble of base-learners

426 A. Orecchioni et al.

Fig. 9. Accuracy and Delete precision for 15 Enron users using MAJORITY and All

Fig. 10. Accuracy and Delete precision for 15 Enron users using MAJORITY and STACK

agree and disagree in a similar way then the emails are also similar. For instance, if
k-NN using Date predicts DELETE and k-NN using From predicts KEEP, MAJORITY

would struggle to make a judgment whilst STACK will decide based on other emails
classified similarly.

It is interesting to note that STACK is also more robust to highly skewed data. Fig-
ure 11 shows how STACK significantly outperforms a classifier consistently predicting
the majority class.

6.5 Is a Meta-Learner More Consistent Across Users Than a Base-Learners?

Email management is challenging because every individual deals with emails in a dif-
ferent way. A classifier can perform very well for one user and very poorly for another.
In this work, the availability of emails from 14 different users permits us to compare
the consistency of the 3 approaches. The accuracy, for each user, achieved with the 4
best email representations from Table 2 are illustrated in Figure 8. It is clear that all
approaches achieve inconsistent results across users. The accuracy with Subject varies
from 0.49 to 0.75; Body from 0.46 to 0.74; Text from 0.37 to 0.70 and All from 0.48 to

k-NN Aggregation with a Stacked Email Representation 427

Fig. 11. Accuracy using different aggregation methods

0.83. Even if All significantly performs better, it is clearly inconsistent. It may perform
extremely well for some users such as Schoolcraft but extremely poorly for others such
as Bass. Such an approach is therefore unsuitable in a real life system.

The classification accuracy using MAJORITY, All and STACK appear in Figure 11.
MAJORITY seems to be comparable to STACK in terms of consistency, but STACK still
significantly outperforms MAJORITY in terms of overall accuracy.

7 Conclusions and Future Work

An email representation including both structured and non-structured content results in
significantly better retrieval when compared to a bag-of-word representation of just the
textual content. Semi-structured content can be dealt with at the representation stage by
incorporating it into a single feature vector or alternatively at the retrieval stage by use
of multiple casebases, each using a different representation. Multiple casebases, when
combined with a stacked representation, perform significantly better than when com-
bined using majority voting. STACK, MAJORITY and other alternative representation
strategies are evaluated using n-RCST; a novel evaluation technique to create stratified
train-test trials respecting the temporal aspect of emails. This methodology is applicable
to any classification task dealing with temporal data. Future work will investigate the
impact of feature selection techniques to optimise case representation in each casebase
and the allocation of weights to the prediction of each classifier. It is also important to
evaluate the generality of the STACK representation for other email management tasks
(e.g Reply, Forward, File). Finally, it would be interesting to compare this approach with
other machine learning methods such as Support Vector Machines and Naive Bayes.

References

1. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: Pro-
ceedings of the International Conference on Machine Learning (ICML 1998), pp. 37–45 (1998)

2. Bekkerman, R., McCallum, A., Huang, G.: Automatic categorization of email into folders:
Benchmark experiments on Enron and Sri Corpora. Technical report, UMass CIIR (2004)

428 A. Orecchioni et al.

3. Cohen, W.W.: Enron email dataset (April 2005), http://www.cs.cmu.edu/∼enron/
4. Cohen, W.W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into “speech acts”.

In: Proceedings of the conference on Empirical Methods in Natural Language Processing
(EMNLP 2004), pp. 309–316 (2004)

5. Craw, S., Jarmulak, J., Rowe, R.: Maintaining retrieval knowledge in a case-based reasoning
system. Computational Intelligence 17, 346–363 (2001)

6. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on
feature selection. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI),
vol. 1810, pp. 109–116. Springer, Heidelberg (2000)

7. Cunningham, P., Zenobi, G.: Case representation issues for case-based reasoning from en-
semble research. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080.
Springer, Heidelberg (2001)

8. Dabbish, L., Venolia, G., Cadiz, J.J.: Marked for deletion: an analysis of email data. In:
Proceedings of the Conference on Human Factors in Computing Systems (CHI 2003), pp.
924–925 (2003)

9. Dabbish, L.A., Kraut, R.E., Fussel, S., Kiesler, S.: Understanding email use: Predicting ac-
tion on a message. In: Proceedings of the Conference on Human Factors in Computing Sys-
tems (SIGCHI 2005), pp. 691–700 (2005)

10. Delany, S.J., Cunningham, P., Coyle, L.: An assessment of case-based reasoning for spam
filtering, vol. 24, pp. 359–378. Springer, Heidelberg (2005)

11. Diao, Y., Lu, H., Wu, D.: A comparative study of classification based personal e-mail filter-
ing. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805. Springer, Heidelberg
(2000)

12. Dredze, M., Blitzer, J., Pereira, F.: Sorry, I forgot the attachment: email attachment predic-
tion. In: Proceddings of the Conference on Email and Anti-Spam (CEAS 2006) (2006)

13. Dvorský, J., Gajdos, P., Ochodkova, E., Martinovic, J., Snásel, V.: Social network problem in
enron corpus. In: Proceedings of the East-European Conference on Advances in Databases
and Information Systems (ADBIS 2005) (2005)

14. Amphora Research Group,
http://arg.vsb.cz/arg/Enron Corpus/default.aspx

15. Gupta, A., Sekar, R.: An approach for detecting self-propagating email using anomaly de-
tection. In: Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (2003)

16. Kiritchenko, S., Matwin, S.: Email classification with co-training. In: Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative research (CASCON 2001)
(2001)

17. Klimt, B., Yang, Y.: The Enron Corpus: A new dataset for email classification research. In:
Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI),
vol. 3201. Springer, Heidelberg (2004)

18. Lamontagne, L., Lapalme, G.: Textual reuse for email response. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 242–256. Springer, Hei-
delberg (2004)

19. Mackay, W.E.: Diversity in the use of electronic mail: a preliminary inquiry. ACM Transac-
tions on Information Systems 6(4), 380–397 (1988)

20. Palla, S., Dantu, R.: Detecting phishing in emails. In: Spam Conference 2006 (2006)
21. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Stam-

atopoulos, P.: Stacking classifiers for anti-spam filtering of e-mail. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pp. 44–50 (2001)

http://www.cs.cmu.edu/~enron/
http://arg.vsb.cz/arg/Enron_Corpus/default.aspx

k-NN Aggregation with a Stacked Email Representation 429

22. Smith, M.A., Ubois, J., Gross, B.M.: Forward thinking. In: Proceedings of the Conference
on Email and Anti-Spam (CEAS 2005) (2005)

23. Tyler, J.R., Tang, J.C.: ’When can I expect an email response?”: a study of rhythms in email
usage. In: Proceedings of the European Conference on Computer-Supported Cooperative
Work (2003)

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

25. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 430–443, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Case-Based Reasoning and the Statistical Challenges

Petra Perner

Institute of Computer Vision and applied Computer Sciences, IBaI, Germany
pperner@ibai-institut.de, www.ibai-institut.de

Abstract. Case-based reasoning (CBR) solves problems using the already stored
knowledge, and captures new knowledge, making it immediately available for
solving the next problem. Therefore, CBR can be seen as a method for problem
solving, and also as a method to capture new experience and make it immediately
available for problem solving. The CBR paradigm has been originally introduced
by the cognitive science community. The CBR community aims to develop com-
puter models that follow this cognitive process. Up to now many successful com-
puter systems have been established on the CBR paradigm for a wide range of
real-world problems. We will review in this paper the CBR process and the main
topics within the CBR work. Hereby we try bridging between the concepts devel-
oped within the CBR community and the statistics community. The CBR topics we
describe are: similarity, memory organization, CBR learning, and case-base main-
tenance. Then we will review based on applications the open problems that need to
be solved. The applications we are focusing on are meta-learning for parameter se-
lection, image interpretation, incremental prototype-based classification and nov-
elty detection and handling. Finally, we summarize our concept on CBR.

Keywords: Case-Based Reasoning, Incremental Learning, Similarity, Memory
Organization, Signal Processing, Image Processing, CBR Meta-learning.

1 Introduction

CBR [1] solves problems using the already stored knowledge, and captures new
knowledge, making it immediately available for solving the next problem. Therefore,
CBR can be seen as a method for problem solving, and also as a method to capture
new experience and make it immediately available for problem solving. It can be seen
as an incremental learning and knowledge-discovery approach, since it can capture
from new experience general knowledge, such as case classes, prototypes and higher-
level concepts.

The CBR paradigm has originally been introduced by the cognitive science commu-
nity. The CBR community aims at developing computer models that follow this cogni-
tive process. For many application areas computer models have successfully been
developed based on CBR, such as signal/image processing and interpretation tasks, help-
desk applications, medical applications and E-commerce-product selling systems.

In this paper we will explain the CBR process scheme in Section 2. We will show
what kinds of methods are necessary to provide all the necessary functions for such a

 Case-Based Reasoning and the Statistical Challenges 431

computer model. Then we will focus on similarity in Section 3. Memory organization
in a CBR system will be described in Section 4. Both similarity and memory organi-
zation are concerned in learning in a CBR system. Therefore, in each section an intro-
duction will be given as to what kind of learning can be performed. In Section 5 we
will describe open topics in CBR research for specific applications. We will focus on
meta-learning for parameter selection, image interpretation, incremental prototype-
based classification and novelty detection and handling. In Section 5.1 we will de-
scribe meta-learning for parameter selection for data processing systems. CBR based
image interpretation will be described in Section 5.2 and incremental prototype-based
classification in Section 5.3. New concepts on novelty detection and handling will be
presented in Section 5.4. While reviewing the CBR work, we will try bridging be-
tween the concepts developed within the CBR community and the concepts developed
in the statistics community. In the conclusion, we will summarize our concept on
CBR in Section 6. The paper presented here is a short version of a more extended
version [55] presented to the European Network of Business and Industry Statistics
Community.

2 Case-Based Reasoning

CBR is used when generalized knowledge is lacking. The method works on a set of
cases formerly processed and stored in a case base. A new case is interpreted by
searching for similar cases in the case base. Among this set of similar cases the clos-
est case with its associated result is selected and presented to the output.

In contrast to a symbolic learning system, which represents a learned concept ex-
plicitly, e.g. by formulas, rules or decision trees, a CBR learning system describes a
concept C implicitly by a pair),(simCB where CB is the case base and sim the

similarity, and changes the pair),(simCB as long as no further change is necessary
because it is a correct classifier for the target concept C.

Formal, we like to understand a case as the following:

Definition 1. A case F is a triple (P,E,L) with a problem description P, an explanation
of the solution E and a problem solution L.

The problem description summarizes the information about a case in the form of at-
tributes or features. Other case representations such as graphs, images or sequences
may also be possible. The case description is given a-priori or needs to be elicitated
during a knowledge acquisition process. Only the most predictive attributes will guar-
antee us to find exactly the most similar cases.

Equation 1 and definition 1 give a hint as to how a case-based learning system can
improve its classification ability. The learning performance of a CBR system is of
incremental manner and it can also be considered as on-line learning. In general, there
are several possibilities to improve the performance of a case-based system. The sys-
tem can change the vocabulary V (attributes, features), store new cases in the case
base CB, change the measure of similarity sim, or change V, CB and sim in combina-
torial manner.

432 P. Perner

That brings us to the notion of knowledge containers introduced by Richter [2].
According to Richter, the four knowledge containers are the underlying vocabulary
(or features), the similarity measure, the solution transformation, and the cases. The
first three represent compiled knowledge, since this knowledge is more stable. The
cases are interpreted knowledge. As a consequence, newly added cases can be used
directly. This enables a CBR system to deal with dynamic knowledge. In addition,
knowledge can be shifted from one container to another container. For instance, in the
beginning a simple vocabulary, a rough similarity measure, and no knowledge on
solution transformation are used. However, a large number of cases are collected.
Over time, the vocabulary can be refined and the similarity measure defined in higher
accordance with the underlying domain. In addition, it may be possible to reduce the
number of cases, because the improved knowledge within the other containers now
enables the CBR system to better differentiate between the available cases.

The abstraction of cases into a more general case (concepts, prototypes and case
classes) or the learning of the higher-order relation between different cases may re-
duce the size of the case base and speed up the retrieval phase of the system [3]. It
can make the system more robust against noise. More abstract cases which are set in
relation to each other will give the domain expert a better understanding about his
domain. Therefore, beside the incremental improvement of the system performance
through learning, CBR can also be seen as a knowledge-acquisition method that can
help to get a better understanding about the domain [4][5] or learn a domain theory.

The main problems with the development of a CBR system are the following:
What makes up a case?, What is an appropriate similarity measure for the problem?,
How to organize a large number of cases for efficient retrieval?, How to acquire and
refine a new case for entry in the case base?, How to generalize specific cases to a
case that is applicable to a wide range of situations?

3 Similarity

Although similarity is a concept humans prefer to use when reasoning over problems,
they usually do not have a good understanding of how similarity is formally ex-
pressed. Similarity seems to be a very incoherent concept.

From the cognitive point of view, similarity can be viewed from different perspec-
tives [8]. A red bicycle and a blue bicycle might be similar in terms of the concept
“bicycle”, but both bicycles are dissimilar when looking at the colour. It is important
to know what kind of similarity is to be considered when reasoning over two objects.
Overall similarity, identity, similarity, and partial similarity need to be modelled by
the right flexible control strategy in an intelligent reasoning system. It is especially
important in image data bases where the image content can be viewed from different
perspectives. Image data bases need to have this flexibility and computerized conver-
sational strategies to figure out from what perspective the problem is looked at and
what kind of similarity has to be applied to achieve the desired goal. From the
mathematical point of view, the Minkowski metric is the most used similarity meas-
ure for technical problems:

 Case-Based Reasoning and the Statistical Challenges 433

p
J

j

p

jiij
p

ii xx
J

d

/1

1

)(1
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=
′′ (1)

the choice of the parameter p depends on the importance we give to the differences in
the summation. Metrical properties such as symmetry, identity and unequality hold
for the Minkowski metric.

If we use the Minkowski metric for calculating the similarity between two 1-
dimensional curves, such as the 1-dimensional path signal of a real robot axis, and the
reconstructed 1-dimensional signal of the same robot axis [9], calculated from the
compressed data points stored in a storage device, it might not be preferable to chose

2=p (Euclidean metric), since the measure averages over all data points, but gives

more emphasis to big differences. If choosing 1=p (City-Block metric), big and

small differences have the same influence (impact) on the similarity measure. In case
of the Max-Norm)(∞=p none of the data point differences should exceed a prede-

fined difference. In practice it would mean that the robot axis is performing a smooth
movement over the path with a known deviation from the real path and will never
come in the worse situation to perform a ramp-like function. In the robot example the
domain itself gives us an understanding about the appropriate similarity metric.

Unfortunately, for most of the applications we do not have any a-priori knowledge
about the appropriate similarity measure. The method of choice for the selection of
the similarity measure is to try different types of similarity and observe their behav-
iour based on quality criteria while applying them to a particular problem. The error
rate is the quality criterion that allows selecting the right similarity measure for classi-
fication problems. Otherwise it is possible to measure how well similar objects are
grouped together, based on the chosen similarity measure, and at the same time, how
well different groups can be distinguished from each other. It changes the problem
into a categorization problem for which proper category measures are known from
clustering [24] and machine learning [30].

In general, distance measures can be classified based on the data-type dimension.
There are measures for numerical data, symbolical data, structural data and mixed-data
types. Most of the overviews given for similarity measures in various works are based
on this view [10][12][16]. A more general view to similarity is given in Richter [11].

Other classifications on similarity measures focus on the application. There are
measures for time-series [54], similarity measures for shapes [53], graphs [29], music
classification [13], and others.

Translation, size, scale and rotation invariance are another important aspect of
similarity as concerns technical systems.

Most real-world applications nowadays are more complex than the robot example
given above. They are usually comprised of many attributes that are different in nature.
Numerical attributes given by different sensors or technical measurements and categori-
cal attributes that describe meta-knowledge of the application usually make up a case.

These n different attribute groups can form partial similarities nSimSimSim ,...,, 21

that can be calculated based on different similarity measures and may have a meaning
for itself. The final similarity might be comprised of all the partial similarities. The

434 P. Perner

simplest way to calculate the overall similarity is to sum up over all partial similarities:

nn SimwSimwSimwSim ++= ...2211 and model the influence of the particular

similarity by different weights iw . Other schemas for combining similarities are possi-

ble as well. The usefulness of such a strategy has been shown for meta-learning of seg-
mentation parameters [14] and for medical diagnosis [15].

The introduction of weights into the similarity measure in equation 1 puts a different
importance on particular attributes and views similarity not only as global similarity, but
also as local similarity. Learning the attribute weights allows building particular similar-
ity metrics for the specific applications. A variety of methods based on linear or stochas-
tic optimization methods [18] , heuristics search [17], genetic programming [25], and
case-ordering [20] or query ordering in NN-classification, have been proposed for attrib-
ute-weight learning.

Learning distance function in response to users’ feedback is known as relevance
feedback [21][22] and it is very popular in data base and image retrieval. The optimi-
zation criterion is the accuracy or performance of the system rather than the individual
problem-case pairs. This approach is biased by the learning approach as well as by the
case description.

New directions in CBR research build a bridge between the case and the solution
[23]. Cases can be ordered based on their solutions by their preference relations [26]
or similarity relation [27] given by the users or a-priori known from application. The
derived values can be used to learn the similarity metric and the relevant features.
That means that cases having similar solutions should have similar case descriptions.
The set of features as well as the feature weights are optimized until they meet this
assumption. Learning distance function by linear transformation of features has been
introduced by Bobrowski et. al [19].

4 Organization of Case Base

The case base plays a central role in a CBR system. All observed relevant cases are
stored in the case base. Ideally, CBR systems start reasoning from an empty memory,
and their reasoning capabilities stem from their progressive learning from the cases
they process [28].

Consequently, the memory organization and structure are in the focus of a CBR
system. Since a CBR system should improve its performance over time, imposes on
the memory of a CBR system to change constantly.

In contrast to research in data base retrieval and nearest-neighbour classification,
CBR focuses on conceptual memory structures. While k-d trees [31] are space-
partitioning data structures for organizing points in a k-dimensional space, conceptual
memory structures [30][29] are represented by a directed graph in which the root node
represents the set of all input instances and the terminal nodes represent individual
instances. Internal nodes stand for sets of instances attached to that node and represent
a super-concept. The super-concept can be represented by a generalized representa-
tion of the associated set of instances, such as the prototype, the mediod or a

 Case-Based Reasoning and the Statistical Challenges 435

user-selected instance. Therefore a concept C, called a class, in the concept hierarchy
is represented by an abstract concept description (e.g. the feature names and its val-
ues) and a list of pointers to each child concept M(C)={C1, C2, ..., Ci, ..., Cn}, where
Ci is the child concept, called subclass of concept C.

The explicit representation of the concept in each node of the hierarchy is preferred
by humans, since it allows understanding the underlying application domain.

While for the construction of a k-d tree only a splitting and deleting operation is
needed, conceptual learning methods use more sophisticated operations for the con-
struction of the hierarchy [33]. The most common operations are splitting, merging,
adding and deleting. What kind of operation is carried out during the concept hierar-
chy construction depends on a concept-evaluation function. There are statistical func-
tions known, as well as similarity-based functions.

Because of the variety of construction operators, conceptual hierarchies are not
sensitive to the order of the samples. They allow the incremental adding of new ex-
amples to the hierarchy by reorganizing the already existing hierarchy. This flexibility
is not known for k-d trees, although recent work has led to adaptive k-d trees that
allow incorporating new examples.

The concept of generalization and abstraction should make the case base more ro-
bust against noise and applicable to a wider range of problems. The concept descrip-
tion, the construction operators as well as the concept evaluation function are in the
focus of the research in conceptual memory structure.

The conceptual incremental learning methods for case base organization puts the
case base into the dynamic memory view of Schank [32] who required a coherent
theory of adaptable memory structures and that we need to understand how new in-
formation changes the memory.

Memory structures in CBR research are not only pure conceptual structures, hybrid
structures incorporating k-d tree methods are studied also. An overview of recent
research in memory organization in CBR is given in [28].

Other work goes into the direction of bridging between implicit and explicit repre-
sentations of cases [34]. The implicit representations can be based on statistical mod-
els and the explicit representation is the case base that keeps the single case as it is.
As far as evidence is given, the data are summarized into statistical models based on
statistical learning methods such as Minimum Description Length (MDL) or Mini-
mum Message Length (MML) learning. As long as not enough data for a class or a
concept have been seen by the system, the data are kept in the case base. The case
base controls the learning of the statistical models by hierarchically organizing the
samples into groups. It allows dynamically learning and changing the statistical mod-
els based on the experience (data) seen so far and prevents the model from overfitting
and bad influences by singularities.

This concept follows the idea that humans have built up very effective models for
standard repetitive tasks and that these models can easily be used without a complex
reasoning process. For rare events the CBR unit takes over the reasoning task and
collects experience into its memory.

436 P. Perner

5 Applications

CBR has been successfully applied to a wide range of problems. Among them are
signal interpretation tasks [35], medical applications [36], and emerging applications
such as geographic information systems, applications in biotechnology and topics in
climate research (CBR commentaries) [37]. We are focussing here on hot real-world
topics such as meta-learning for parameter selection, image&signal interpretation,
prototype-based classification and novelty detection & handling. We first give an
overview on CBR-based image interpretation system.

5.1 Meta-learning for Parameter Selection of Data/Signal Processing
Algorithms

Meta learning is a subfield of Machine learning where automatic learning algorithms
are applied on meta-data about machine-learning experiments. The main goal is to use
such meta-data to understand how automatic learning can become flexible as regards
solving different kinds of learning problems, hence to improve the performance of
existing learning algorithms. Another important meta-learning task, but not so widely
studied yet, is parameter selection for data or signal processing algorithms. Soares et.
al [39] have used this approach for selecting the kernel width of a support-vector
machine, while Perner and Frucci et. al [14][40] have studied this approach for image
segmentation.

The meta-learning problem for parameter selection can be formalized as follows:
For a given signal that is characterized by specific signal properties A and domain
properties B find the parameters of the processing algorithm that ensure the best
quality of the resulting output signal:

iPBAf →∪: (2)

with iP the i-th class of parameters for the given domain.

What kind of meta-data describe classification tasks, has been widely studied
within meta-learning in machine learning. Meta-data for images comprised of image-
related meta-data (gray-level statistics) and non-image related meta-data (sensor,
object data) are given in Perner and Frucci et. al [14][40]. In general the processing
of meta-data from signals and images should not require too much processing and
they should allow characterizing the properties of the signals that influence the signal
processing algorithm.

The mapping function f can be realized by any classification algorithm, but the
incremental behaviour of CBR fits best to many data/signal processing problems
where the signals are not available ad-hoc but appear incrementally. The right similar-
ity metric that allows mapping data to parameter groups and in the last consequence
to good output results should be more extensively studied. Performance measures that
allow to judge the achieved output and to automatically criticize the system perform-
ances are another important problem.

 Case-Based Reasoning and the Statistical Challenges 437

Abstraction of cases to learn domain theory are also related to these tasks and
would allow to better understand the behaviour of many signal processing algorithms
that cannot be described anymore by standard system theory [41].

5.2 Case-Based Image Interpretation

Image interpretation is the process of mapping the numerical representation of an
image into a logical representation such as is suitable for scene description. This is a
complex process; the image passes through several general processing steps until the
final result is obtained. These steps include image preprocessing, image segmentation,
image analysis, and image interpretation. Image pre-processing and image segmenta-
tion algorithm usually need a lot of parameters to perform well on the specific image.
The automatically extracted objects of interest in an image are first described by
primitive image features. Depending on the particular objects and focus of interest,
these features can be lines, edges, ribbons, etc. Typically, these low-level features
have to be mapped to high-level/symbolic features. A symbolic feature such as fuzzy
margin will be a function of several low-level features.

The image interpretation component identifies an object by finding the object to
which it belongs (among the models of the object class). This is done by matching the
symbolic description of the object to the model/concept of the object stored in the
knowledge base. Most image-interpretation systems run on the basis of a bottom-up
control structure. This control structure allows no feedback to preceding processing
components if the result of the outcome of the current component is unsatisfactory. A
mixture of bottom-up and top-down control would allow the outcome of a component
to be refined by returning to the previous component.

CBR is not only applicable as a whole to image interpretation, it is applicable to all
the different levels of an image-interpretation system [42][12] and many of the ideas
mentioned in the chapters before apply here. CBR-based meta-learning algorithms for
parameter selection are preferable for the image pre-processing and segmentation unit
[14][40]. The mapping of the low-level features to the high-level features is a classifi-
cation task for which a CBR-based algorithm can be applied. The memory organiza-
tion [29] of the interpretation unit goes along with problems discussed for the case
base organization in Section 5. Different organization structures for image interpreta-
tion systems are discussed in [12]. The organization structure should allow the in-
cremental updating of the memory and learning from single cases more abstract cases.
Ideally the system should start working with only a few samples and during usage of
the system new cases should be learnt and the memory should be updated based on
these samples. This view at the usage of a system brings in another topic that is called
life-time cycle of a CBR system. Work on this topic takes into account that a system
is used for a long time, while experience changes over time. The case structure might
change by adding new relevant attributes or deleting attributes that have shown not to
be important or have been replaced by other ones. Set of cases might not appear any-
more, since these kinds of solutions are not relevant anymore. A methodology and
software architecture for handling the life-time cycle problem is needed so that this
process can easily be carried out without rebuilding the whole system. It seems to be
more a software engineering task, but has also something to do with evaluation meas-
ures that can come from statistics.

438 P. Perner

5.3 Incremental Prototype-Based Classification

The usage of prototypical cases is very popular in many applications, among them are
medical applications [43], Belazzi et al. [45] and by Nilsson and Funk [44], knowl-
edge management systems [46] and image classification tasks [48]. The simple near-
est-neighbour- approach [47] as well as hierarchical indexing and retrieval methods
[43] have been applied to the problem. It has been shown that an initial reasoning
system could be built up based on these cases. The systems are useful in practice and
can acquire new cases for further reasoning during utilization of the system.

There are several problems concerned with prototypical CBR: If a large enough set
of cases is available, the prototypical case can automatically be calculated as the
generalization from a set of similar cases. In medical applications as well as in appli-
cations where image catalogues are the development basis for the system, the proto-
typical cases have been selected or described by humans. That means when building
the system, we are starting from the most abstract level (the prototype) and have to
collect more specific information about the classes and objects during the usage of the
system.

Since a human has selected the prototypical case, his decision on the importance of
the case might be biased and picking only one case might be difficult for a human.
As for image catalogue-based applications, he can have stored more than one image
as a prototypical image. Therefore we need to check the redundancy of the many
prototypes for one class before taking them all into the case base.

According to this consideration, the minimal functions a prototype-based classifi-
cation system should realize are: classifications based on a proper similarity-measure,
prototype selection by a redundancy-reduction algorithm, feature weighting to deter-
mine the importance of the features for the prototypes and to learn the similarity met-
ric, and feature-subset selection to select the relevant features from the whole set of
features for the respective domain.

Statistical methods focus on adaptive k-NN that adapts the distance metric by fea-
ture weighting or kernel methods or the number k of neighbours off-line to the data.
Incremental strategies are used for the nearest- neighbour search, but not for updating
the weights, distance metric and prototype selection.

A prototype-based classification system for medical image interpretation is de-
scribed in [48]. It realizes all the functions described above by combining statistical
methods with artificial intelligence methods to make the system feasible for real-
world applications. A system for handwriting recognition is described in [49] that can
incrementally add data and adapt the solutions to different users’ writing style. A k-
NN realization that can handle data streams by adding data through reorganizing a
multi-resolution array data structure and concept drift by realizing a case forgetting
strategy is described in [50].

The full incremental behaviour of a system would require an incremental processing
schema for all aspects of a prototype-based classifier such as for updating the weights
and learning the distance metric, the prototype selection and case generalization.

 Case-Based Reasoning and the Statistical Challenges 439

5.4 Novelty Detection by Case-Based Reasoning

Novelty detection [51], recognizing that an input differs in some respect from previ-
ous inputs, can be a useful ability for learning systems.

Novelty detection is particularly useful where an important class is under-
represented in the data, so that a classifier cannot be trained to reliably recognize that
class. This characteristic is common to numerous problems such as information man-
agement, medical diagnosis, fault monitoring and detection, and visual perception.

We propose novelty detection to be regarded as a CBR problem under which we
can run the different theoretical methods for detecting the novel events and handling
the novel events [34]. The detection of novel events is a common subject in the litera-
ture. The handling of the novel events for further reasoning is not treated so much in
the literature, although this is a hot topic in open-world applications.

The first model we propose is comprised of statistical models and similarity-based
models. For now, we assume an attribute-value based representation. Nonetheless, the
general framework we propose for novelty detection can be based on any representa-
tion. The heart of our novelty detector is a set of statistical models that have been
learnt in an off-line phase from a set of observations. Each model represents a case-
class. The probability density function implicitly represents the data and prevents us
from storing all the cases of a known case-class. It also allows modelling the uncer-
tainty in the data. This unit acts as a novel-event detector by using the Bayesian deci-
sion-criterion with the mixture model. Since this set of observations might be limited,
we consider our model as being far from optimal and update it based on new observed
examples. This is done based on the Minimum Description Length (MDL) principle
or the Minimum Message Length (MML) learning principle [52].

In case our model bank cannot classify an actual event into one of the case-classes,
this event is recognized as a novel event. The novel event is given to the similarity-
based reasoning unit. This unit incorporates this sample into their case base according
to a case-selective registration-procedure that allows learning case-classes as well as
the similarity between the cases and case-classes. We propose to use a fuzzy similar-
ity measure to model the uncertainty in the data. By doing that the unit organizes the
novel events in such a fashion that is suitable for learning a new statistical model.

The case-base-maintenance unit interacts with the statistical learning unit and gives
an advice as to when a new model has to be learnt. The advice is based on the obser-
vation that a case-class is represented by a large enough number of samples that are
most dissimilar to other classes in the case-base.

The statistical learning unit takes this case class and proves based on the MML-
criterion, whether it is suitable to learn the new model or not. In the case that the sta-
tistical component recommends to not learn the new model, the case-class is still
hosted by the case base maintenance unit and further up-dated based on new observed
events that might change the inner-class structure as long as there is new evidence to
learn a statistical model.

The use of a combination of statistical reasoning and similarity-based reasoning al-
lows implicit and explicit storage of the samples. It allows handling well-represented
events as well as rare events.

440 P. Perner

6 Conclusion

In this paper we have presented our thoughts and work on CBR under the aspect
“CBR and Statistical Challenges”. CBR solves problems using already stored knowl-
edge, and captures new knowledge, making it immediately available for solving the
next problem. To realize this cognitive model in a computer-based system we need
methods known from statistics, pattern recognition, artificial intelligence, machine
learning, data base research and other fields. Only the combination of all these meth-
ods will give us a system that can efficiently solve practical problems. Consequently,
CBR research has shown much success for different application areas, such as medi-
cal and technical diagnosis, image interpretation, geographic information systems,
text retrieval, e-commerce, user-support systems and so on. CBR systems work effi-
ciently in real-world applications, since the CBR method faces on all aspects of a
well-performing and user-friendly system.

We have pointed out that the central aspect of a well-performing system in the real-
world is its ability to incrementally collect new experience and reorganize its knowl-
edge based on these new insights. In our opinion the new challenging research aspects
should have its focus on incremental methods for prototype-based classification,
meta-learning for parameter selection, complex signals understanding tasks and nov-
elty detection. The incremental methods should allow changing the system function
based on the newly obtained data.

Recently, we are observing that this incremental aspect is in the special focus of
the quality assurance agency for technical and medical application, although this is in
opposition to the current quality performance guidelines.

While reviewing the CBR work, we have tried bridging between the concepts de-
veloped within the CBR community and the concepts developed in the statistics
community. At the first glance, CBR and statistics seem to have big similarities. But
when looking closer at it one can see that the paradigms are different. CBR tries to
solve real-world problems and likes to deliver systems that have all the functions
necessary for an adaptable intelligent system with incremental learning behavior.
Such a system should be able to work on a small set of cases and collect experience
over time. While doing that it should improve its performance. The solution need not
be correct in the statistical sense, rather it should help an expert to solve his tasks and
learn more about it over time.

Nonetheless, statistics disposes of a rich variety of methods that can be useful for
building intelligent systems. In the case that we can combine and extend these meth-
ods under the aspects necessary for intelligent systems, we will further succeed in
establishing artificial intelligence systems in the real world.

Our interest is to build intelligent flexible and robust data-interpreting systems that
are inspired by the human CBR process and by doing so to model the human reason-
ing process when interpreting real-world situations.

Acknowledgement

The work presented here is a short version of an invited talk presented at the ENBIS 7
conference of the European Network of Business and Industry Statistics Community.

 Case-Based Reasoning and the Statistical Challenges 441

We like to thank the steering committee of ENBIS for encouraging us to present our
ideas on that topic and for their cooperation in establishing the link between CBR and
Statistics.

References

[1] Althoff, K.D.: Case-Based Reasoning. In: Chang, S.K. (ed.) Handbook on Software Engi-
neering and Knowledge Engineering (2001)

[2] Richter, M.M.: Introduction to Case-Based Reasoning. In: Lenz, M., Bartsch-Spörl, B.,
Burkhardt, H.-D., Wess, S. (eds.) Case-based Reasoning Technology: from Foundations
to Applications. LNCS (LNAI), vol. 1400, pp. 1–16. Springer, Heidelberg (1998)

[3] Smith, E.E., Douglas, L.M.: Categories and Concepts. Havard University Press (1981)
[4] Branting, L.K.: Integrating generalizations with exemplar-based reasoning. In: Proc. Of

the 11th Annual Conf. of Cognitive Science Society, vol. 89, pp. 129–146. MI Lawrence
Erlbaum, Ann Arbor (1989)

[5] Bergmann, R., Wilke, W.: On the role of abstraction in case-based reasoning. In: Smith,
I., Faltings, B. (eds.) Advances in Case-Based Reasoning. LNCS (LNAI), vol. 1168, pp.
28–43. Springer, Heidelberg (1996)

[6] Iglezakis, I., Reinartz, T., Roth-Berghofer, T.: Maintenance Memories: Beyond Concepts
and Techniques for Case Base Maintenance. In: Funk, P., González Calero, P.A. (eds.)
ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 227–241. Springer, Heidelberg (2004)

[7] Minor, M., Hanft, A.: The Life Cycle of Test Cases in a CBR System. In: Blanzieri, E.,
Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 455–466. Springer, Hei-
delberg (2000)

[8] Smith, L.B.: From global similarities to kinds of similarities: the construction of dimen-
sions in development. In: Smith, L.B. (ed.) Similarity and analogical reasoning, pp. 146–
178. Cambridge University Press, New York (1989)

[9] Fiss, P.: Data Reduction Methods for Industrial Robots with Direct Teach-In Program-
ming, Diss A, Technical University Mittweida (1985)

[10] Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition. World
Scientific, Singapore (2005)

[11] Richter, M.: Similarity. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals,
Studies in Computational Intelligence, pp. 1–21. Springer, Heidelberg (2008)

[12] Perner, P.: Why Case-Based Reasoning is Attractive for Image Interpretation. In: Aha,
D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 27–44. Springer,
Heidelberg (2001)

[13] Cl. Weihs, U., Ligges, F., Mörchen, D.: Classification in music research. Journal Ad-
vances in Data Analysis and Classification 3(1), 255–291 (2007)

[14] Perner, P.: An Architecture for a CBR Image Segmentation System. Journal on Engineer-
ing Application in Artificial Intelligence, Engineering Applications of Artificial Intelli-
gence 12(6), 749–759 (1999)

[15] Song, X., Petrovic, S., Sundar, S.: A Case-Based Reasoning Approach to Dose Planning
in Radiotherapy. In: Wilson, D.C., Khemani, D. (eds.) The Seventh Intern. Conference on
Case-Based Reasoning, Belfast, Northern Irland, Workshop Proceeding, pp. 348–357
(2007)

[16] Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of
Artificial Intelligence Research 6, 1–34 (1997)

442 P. Perner

[17] Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms. Artificial Intelligence Re-
view 11, 273–314 (1997)

[18] Zhang, L., Coenen, F., Leng, P.: Formalising optimal Feature Weight Settings in Case-
Based Diagnosis as Linear Programming Problems. Knowledge-Based Systems 15, 298–
391 (2002)

[19] Bobrowski, L., Topczewska, M.: Improving the K-NN Classification with the Euclidean
Distance Through Linear Data Transformations. In: Perner, P. (ed.) ICDM 2004. LNCS
(LNAI), vol. 3275, pp. 23–32. Springer, Heidelberg (2004)

[20] Stahl, A.: Learning Feature Weights from Case Order Feedback. In: Aha, D.W., Watson,
I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080. Springer, Heidelberg (2001)

[21] Bhanu, B., Dong, A.: Concepts Learning with Fuzzy Clustering and Relevance Feedback.
In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 102–116. Springer, Hei-
delberg (2001)

[22] Bagherjeiran, A., Eick, C.F.: Distance Function Learning for Supervised Similarity As-
sesment. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals, Studies in
Computational Intelligence, pp. 91–126. Springer, Heidelberg (2008)

[23] Bergmann, R., Richter, M., Schmitt, S., Stahl, A., Vollrath, I.: Utility-Oriented Matching:
A New Research Direction for Case-Based Reasoning. In: Schnurr, H.-P., et al. (eds.)
Professionelles Wissensmanagement, pp. 20–30. Shaker Verlag (2001)

[24] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data, 320 pages. Prentice Hall, Inc.,
Upper Saddle River (1988)

[25] Craw, S.: Introspective Learning to Build Case-Based Reasoning (CBR) Knowledge Con-
tainers. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 1–6.
Springer, Heidelberg (2003)

[26] Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based reasoning.
Journal of Intelligent & Fuzzy Systems, 407–416

[27] Perner, P., Perner, H., Müller, B.: Similarity Guided Learning of the Case Description and
Improvement of the System Performance in an Image Classification System. In: Craw, S.,
Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 604–612. Springer, Hei-
delberg (2002)

[28] Bichindaritz, I.: Memory Structures and Organization in Case-Based Reasoning. In:
Perner, P. (ed.) Case-Based Reasoning on Images and Signals, Studies in Computational
Intelligence, pp. 175–194. Springer, Heidelberg (2008)

[29] Perner, P.: Case-base maintenance by conceptual clustering of graphs. Engineering Ap-
plications of Artificial Intelligence 19(4), 295–381 (2006)

[30] Fisher, D.H.: Knowledge Acquisition via Incremental Conceptual Clustering. Machine
Learning 2(2), 139–172 (1987)

[31] Bentley, J.: Multidimensional binary search trees used for associative searching. Commu-
nication of the ACM 18(9), 509–517 (1975)

[32] Schank, R.C.: Dynamic Memory. A theory of reminding and learning in computers and
people. Cambridge University Press, Cambridge (1982)

[33] Jaenichen, S., Perner, P.: Conceptual Clustering and Case Generalization of two dimen-
sional Forms. Computational Intelligence 22(3/4), 177–193 (2006)

[34] Perner, P.: Concepts for Novelty Detection and Handling based on a Case-Based Reason-
ing Scheme. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 21–34.
Springer, Heidelberg (2007)

[35] Perner, P., Holt, A., Richter, M.: Image Processing in Case-Based Reasoning. The
Knowledge Engineering Review 20(3), 311–314

 Case-Based Reasoning and the Statistical Challenges 443

[36] Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-based rea-
soning. The Knowledge Engineering Review 20(3), 289–292

[37] De Mantaras, R.L., Cunningham, P., Perner, P.: Emergent case-based reasoning applica-
tions. The Knowledge Engineering Review 20(3), 325–328

[38] CBR Commentaries, The Knowledge Engineering Review 20(3)
[39] Soares, C., Brazdil, P.B.: A Meta-Learning Method to Select the KernelWidth in Support

Vector Regression. Machine Learning 54, 195–209 (2004)
[40] Frucci, M., Perner, P., di Baja, G.S.: Case-based Reasoning for Image Segmentation by

Watershed Transformation. In: Perner, P. (ed.) Case-Based Reasoning on Signals and Im-
ages. Springer, Heidelberg (2007)

[41] Wunsch, G.: Systemtheorie der Informationstechnik. Akademische Verlagsgesellschaft,
Leipzig (1971)

[42] Perner, P.: Using CBR Learning for the Low-Level and High-Level Unit of a Image In-
terpretation System. In: Singh, S. (ed.) Advances in Pattern Recognition, pp. 45–54.
Springer, Heidelberg (1998)

[43] Schmidt, R., Gierl, L.: Temporal Abstractions and Case-Based Reasoning for Medical
Course Data: Two Prognostic Applications. In: Perner, P. (ed.) MLDM 2001. LNCS
(LNAI), vol. 2123, pp. 23–34. Springer, Heidelberg (2001)

[44] Nilsson, M., Funk, P.: A Case-Based Classification of Respiratory Sinus Arrhythmia. In:
Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 673–
685. Springer, Heidelberg (2004)

[45] Belazzi, R., Montani, S., Portinale, L.: Retrieval in a Prototype-Based Case-Library: A
Case Study in Diabetes Therapy Revision. In: Smyth, B., Cunningham, P. (eds.) EWCBR
1998. LNCS (LNAI), vol. 1488, pp. 64–75. Springer, Heidelberg (1998)

[46] Bichindaritz, I., Kansu, E., Sullivan, K.M.: Case-Based Reasoning in CARE-PARTNER:
Gathering Evidence for Evidence-Based Medical Practice. In: Smyth, B., Cunningham, P.
(eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 334–345. Springer, Heidelberg
(1998)

[47] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithm. Machine Learn-
ing 6(1), 37–66 (1991)

[48] Perner, P.: Prototype-Based Classification. Applied Intelligence (online available) (to ap-
pear)

[49] Vuori, V., Laaksonen, J., Oja, E., Kangas, J.: Experiments with adaptation strategies for a
prototype-based recognition system for isolated handwritten characters. International
Journal on Document Analysis and Recognition 3(3), 150–159 (2001)

[50] Law, Y.-N., Zaniolo, C.: An Adaptive Nearest Neighbor Classification Algorithm for
Data Streams. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.)
PKDD 2005. LNCS (LNAI), vol. 3721, pp. 108–120. Springer, Heidelberg (2005)

[51] Markou, M., Singh, S.: Novelty Detection: A Review-Part 1: Statistical Approaches. Sig-
nal Processing 83(12), 2481–2497 (2003)

[52] Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Series:
Information Science and Statistics. Springer, Heidelberg (2005)

[53] Shapiro, L.G., Atmosukarto, I., Cho, H., Lin, H.J., Ruiz-Correa, S.: Similarity-Based Re-
trieval for Biomedical Applications. In: Perner, P. (ed.) Case-Based Reasoning on Signals
and Images. Springer, Heidelberg (2007)

[54] Sankoff, D., Kruskal, J.B.: Time warps, string edits, and macromolecules: the theory and
practice of sequence comparison. Addison-Wesley, Reading (1983)

[55] Perner, P.: Case-Based Reasoning and the Statistical Challenges, Quality and Reliability
Engineering International (to appear)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 444–458, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Evaluation Measures for TCBR Systems

M.A. Raghunandan1, Nirmalie Wiratunga2, Sutanu Chakraborti3,
Stewart Massie2, and Deepak Khemani1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, India

maraghu@cse.iitm.ac.in, khemani@iitm.ac.in
2 School of Computing,

The Robert Gordon University, Scotland, UK
{nw,sm}@comp.rgu.ac.uk

3 Tata Research Development and Design Centre,
Pune, India

sutanu.chakraborti@tcs.com

Abstract. Textual-case based reasoning (TCBR) systems where the problem and
solution are in free text form are hard to evaluate. In the absence of class informa-
tion, domain experts are needed to evaluate solution quality, and provide rele-
vance information. This approach is costly and time consuming. We propose three
measures that can be used to compare alternate TCBR system configurations, in
the absence of class information. The main idea is to quantify alignment as the
degree to which similar problems have similar solutions. Two local measures cap-
ture this information by analysing similarity between problem and solution
neighbourhoods at different levels of granularity, whilst a global measure
achieves the same by analyzing similarity between problem and solution clusters.
We determine the suitability of the proposed measures by studying their correla-
tion with classifier accuracy on a health and safety incident reporting task. Strong
correlation is observed with all three approaches with local measures being
slightly superior over the global one.

1 Introduction

Textual case-based reasoning (TCBR) systems often contain problems and solutions
in the form of natural language sentences [1]. Unlike classification domains where a
solution (class label) is associated with a group of cases, problem descriptions map
onto unique solutions. Other forms of CBR systems such as in configuration and
design domains are also less likely to contain groups of cases with identical solutions.
However with problem decomposition, these tasks are often resolved using classifica-
tion approaches [2]. Evaluation methods for text classification tasks are well studied,
and measures such as accuracy, or information retrieval measures such as precision
and recall are commonly employed [3,4]. These measures evaluate the correspon-
dence between the actual and proposed class labels. With TCBR systems comparison
of actual and proposed textual solution content is hard due to variability in vocabulary
usage and uniqueness of solutions. Intuitive measures of relevance to the problem,
instead of solution comparisons based on exact matches, are required.

 Evaluation Measures for TCBR Systems 445

The applications of evaluation measures in TCBR are four-fold. Firstly, they help
predict the effectiveness of the system in solving unseen problems. A challenge here
is to arrive at competent estimates without relying on human relevance judgements,
which are hard to obtain. Secondly, during the design phase of a CBR system, deci-
sions have to be taken regarding the contents of the knowledge containers [5] in rela-
tion to case representation, indexing and similarity measures, adaptation, and case
authoring. Evaluation measures are useful in guiding these design choices. Thirdly,
evaluation measures are useful in facilitating maintenance of the case base. Examples
of maintenance tasks are the deletion of noisy or redundant cases or features, addition
of representative cases and refinement of case representation or similarity measures.
Visualization tools, which we briefly explore in this paper, are specifically relevant in
this context. Finally, evaluation measures can be used to measure and compare the
complexity of different TCBR problem domains, for a given choice of representation.

Empirical evaluation measures in TCBR remain an open area of research. Al-
though a few measures have been proposed, to date no systematic comparison across
these measures has been reported. Recent work reported in the literature exploit the
basic tenet of CBR that “similar problems have similar solutions”. The general ap-
proach involves devising measures that quantify the extent to which this assumption
holds good given different system configurations. Local alignment measures capture
the similarity of problems and solutions in the neighbourhood of individual cases. In
contrast global alignment compares case clusters generated separately from the prob-
lem and solution spaces, derived from the entire case base.

In this paper we provide a meta-evaluation of TCBR alignment measures by ana-
lyzing correlation of evaluation measures with standard evaluation measures such as
accuracy. Such a study presupposes that textual cases are also labelled with class
information. In our experiments, we use a real-word dataset from the medical health
and safety incident reporting domain. Each case consists of both a textual problem
and solution but importantly also has an incident-related class label associated with it.
We have created several case bases from this domain with different levels of diffi-
culty. This provides CBR systems exhibiting a range of accuracy values thereby fa-
cilitating the correlation study with local and global textual alignment measures.

Section 2 discusses related work in evaluation and visualization. Section 3 presents
the main idea of this paper, namely the relationship between classification accuracy
and problem-solution space alignment. Next, Section 4 describes the local alignment
measures, followed by the global alignment measure in Section 5. An evaluation of
alignment measures on a real-world health and safety reporting task is presented in
Section 6, with conclusions in Section 7.

2 Related Work

Estimating data complexity is a fundamental task in machine learning. In supervised
classification tasks, which have been the focus of most work reported so far, data com-
plexity helps in explaining behaviour of different classifiers over diverse datasets. It is
also useful in parameter tuning, an example being selecting feature combinations that
minimize complexity of the classification problem. Several approaches for measuring
complexity have been proposed: statistical ones based on overlap between probability

446 M.A. Raghunandan et al.

distributions of classes [6], information theoretic approaches based on estimating infor-
mation needed to encode all feature values in a given class with class labels [7], graph
theoretical approaches based on constructing Minimum Spanning Trees connecting data
points to their nearest neighbours, and observing the number of adjacent points sharing
opposite class labels [8], and approaches based on splitting the feature space into hyper-
cubes (hyperspheres) and measuring class purity of these hypercubes [9]. Many of these
approaches can be extended to complexity evaluation of supervised text classification
problems, with allowance for the fact that textual data is characterized by high dimen-
sionality, and often leads to sparse representations.

Unfortunately, most real world TCBR tasks cannot be neatly mapped onto run-of-the-
mill classification tasks. Hence, from a practical TCBR perspective, two other relatively
less well studied problems turn out to be interesting. The first: can we estimate the com-
plexity of a text collection, without resorting to any additional information (like class
labels)? The second: Can we estimate the complexity of given text collections, each of
which has a problem and solution component?

In case of the first problem, complexity would measure the clustering tendency within
the collection. The work by Vinay et al [10] falls into this category; they use the Cox-
Lewis measure to test whether the data points are well-clustered, or spread randomly in
the feature space. In the context of the second problem, complexity reflects the degree to
which we can expect the system to be competent in answering a new problem, by retriev-
ing solutions to similar problems in the repository. This involves study of alignment
between problem and solution components of texts, and our current work belongs to this
category.

Local measures of case base alignment have been independently studied by La-
montagne [11] and Massie et al [12] in the context of very different TCBR applica-
tions. Global measures explored by Chakraborti et al [13] have not been evaluated
beyond a supervised setting. Our work attempts to fill in the void and propose a
global alignment measure, which can be compared against the two local alignment
measures in a level playing field. Absence of readily available human judgments
makes evaluation a formidable problem in TCBR, which researchers often tend to
sweep under the rug; or alternatively, make grossly simplifying assumptions (like
availability of class knowledge) which are defeated in the real-world. In addition to
proposing and comparing new alignment approaches, our current work adopts a novel
evaluation strategy, which is central to our comparative empirical analysis. The study
consolidates past and novel work, so that TCBR researchers can choose the appropri-
ate measure based on their domain nuances, and also propose further enhancements.

3 Problem and Solution Alignment

In CBR the “similar problems have similar solutions” assumption is often taken for
granted, whereas, in fact it is a measure not only of the suitability of CBR for the
domain but also of the competence of the system design. Essentially quantifying the
alignment between problem and solution space allows us to measure the degree to
which the similarity assumption is respected by a CBR system.

The complexity of a domain in CBR is a measure of the difficulty of the problem
being faced. Complexity is dependent on the extent to which a natural structure exists

 Evaluation Measures for TCBR Systems 447

within the domain over which we have no control. However, complexity also depends
on the contents of the knowledge containers in terms of the availability of cases and
of the case representation and similarity knowledge chosen, over which we have at
least some control. In designing a CBR system choices are made about the contents of
the knowledge containers with the aim of making some aspects of the underlying
natural structure apparent. This process results in clusters of cases being formed
within the problem space that identify groups of recurring concepts, as shown in the
problem space of Figure 1. In Information Retrieval data complexity has been esti-
mated by measuring the extent to which documents in a dataset form into clusters as
opposed to a random distribution [10].

Fig. 1. Similarity assumption and alignment

However, CBR is a problem-solving methodology and cases consist of problem-
solution pairs. This adds another layer to complexity. There is no guarantee that a
strong structure in the problem space will lead to a competent CBR system. For ex-
ample, consider an accident reporting system in which the problem representation
captures and organises problems in relation to “type of industry”. The system may be
poor at identifying solutions to similar accidents that occur equally across all industry
sectors. Here the problem and solution spaces are not aligned to the same concepts.

The solution space also has a natural structure and forms clusters that are deter-
mined by the chosen design configuration (as depicted in Figure 1). In unsupervised
tasks the structure or concepts in the solution space emerge from the nature of the
domain and the knowledge chosen to represent the solution. A competent CBR sys-
tem requires a strong relationship between the concepts identified in the problem and
solution spaces. It is this problem-solution alignment that we aim to measure in this
paper.

We use a relatively large Health and Safety dataset in this paper where each case is
composed of three parts: problem and solution description together with the class
label. This allows us to compare concepts identified in the problem and solution
spaces with those identified by the domain expert as class labels. By comparing the
correlation between alignment measurements and accuracy we are able to provide a

448 M.A. Raghunandan et al.

more comprehensive evaluation of local and global techniques for measuring align-
ment in unsupervised problems.

In the next sections we compare and contrast three measures of case base align-
ment: Case Cohesion; Case Alignment and Global Alignment. The first two are local
alignment measures, which first calculate the alignment of a case in its neighbour-
hood, and then aggregate the alignment values of all cases to obtain a value for the
entire case base. The third is a global measure, which calculates the alignment value
for the case base as a whole.

4 Local Alignment Measures for TCBR

Case Alignment [14] measures the degree of alignment between problem and solution
spaces by using similarity measures between the cases both on the problem and on the
solution side, in the neighbourhood of a given case. The similarity measure chosen is
the same as that of a normal retrieve operation. In our experiments, we used the co-
sine similarity measure. The number of cases in the neighbourhood is a parameter
which can be varied to obtain the best results. Case Cohesion [11] is less granular in
that it measures the overlap between the problem and solution spaces in terms of the
number of common neighbours in each space for a given case. Neighbours are ascer-
tained by set similarity thresholds applicable to each of problem and solution
neighbourhoods. The Global Alignment Measure looks at the regularity in the prob-
lem and solution spaces by analysing the problem and solution term-document matri-
ces. It differs from local alignment in that the case base is considered as a whole, to
calculate the alignment.

4.1 Case Alignment

Case alignment measures how well the neighbourhood of cases are aligned on the
problem and solution side. A leave-one-out test is used to calculate alignment of each
target case, t, with reference to its k nearest neighbours, {c1,...,ck}, on the problem
side.

Align(t,ci) = 1 – (Dsoln(t,ci)-Dsmin)/(Dsmax-Dsmin)

The function Dsoln(t,ci) is a measure of distance between the target case t and the
case ci on the solution side, and Dprob(t,ci) is that on the problem side. The initial
neighbours, {c1,...,ck}, are identified using Dprob(t,ci). Here Dsmin is the minimum dis-
tance from t to any case on the solution side, and Dsmax is the maximum. Align(t,c2),
Align(t,c3),...,Align(t,ck) are calculated in the same way.

The case alignment for the case t in its neighbourhood is a weighted average of the
individual alignments with each of the cases:

CaseAlign(t) = (∑ i=1 to k (1-Dprob(t,ci))*Align(t,ci)) / (∑ i=1 to k (1-Dprob(t,ci)))
An alignment value closer to 1 would indicate that the problem and solution spaces

are well aligned around the case, whereas a value closer to 0 would indicate poor
alignment.

 Evaluation Measures for TCBR Systems 449

Fig. 2. a) Case alignment calculation b) Case base alignment profile

Figure 2(a) illustrates the alignment computation for a target case t, with 3 nearest

neighbours from the problem side, {c1,c2,c3}. Notice how the relative distances of
problem space neighbours differ in the solution space. It is this difference that is being
captured by the alignment measure and normalised by the nearest and farthest
neighbour distances in the solution space. A plot of the alignment values for all the
cases sorted in increasing order gives the local alignment profile of the case base. An
example alignment profile for a set of 50 cases from a health and safety case base is
shown in Figure 2(b). The area under this curve provides an average local alignment
score for a given case base:

CaseBaseAlign = ∑ CaseAlign(ci) / N

where N is the number of cases in the case base.
Like with complexity profiles used in classification tasks [12], alignment profiles

provide useful insight into individual cases as well as groups of cases that exhibit
similar alignment characteristic. We expect that such profiles can be exploited for
maintenance purposes in the future, for instance, the focus of case authoring could be
informed by areas of poor alignment.

4.2 Case Cohesion

Case cohesion is a measure of overlap between retrieval sets in the problem and solu-
tion side. This is measured by looking at the neighbourhood of a target case in both
the problem and the solution side. We retrieve cases which are close to the case in the
problem as well as solution side, within some threshold, to form the sets RSprob and
RSsoln. The degree to which RSprob and RSsoln are similar is an indication of the cohe-
sion of the case. Cases which have RSprob and RSsoln identical will have a strong cohe-
sion, and those which have RSprob and RSsoln completely different will have weak
cohesion. This concept is defined below.

The nearest neighbour set of a case, t, on the problem and solution sides are given by:

RSprob(t) = { ci∈CB: Dprob(t,ci) < δprob }

RSsoln(t) = { ci∈CB: Dsoln(t,ci) < δsoln }

450 M.A. Raghunandan et al.

δprob and δsoln are the distance thresholds on the problem and solution side respec-
tively. Functions Dprob and Dsoln are as defined in Section 4.1 and compute pair-wise
distances on the problem and solution side. The intersection and union of these two
retrieval sets are then used to calculate case cohesion for a case:

CaseCohesion(ci) = | RSprob(ci) ∩ RSsoln(ci)|/| RSprob(ci) ∪ RSsoln(ci) |

Then case base cohesion is the average case cohesion of cases in the case base:

CaseBaseCohesion = ∑ CaseCohesion(ci) / N

where N is the number of cases in the case base. Figure 3(a) illustrates the cohesion
calculation for a case target. Like case alignment here distances are computed to iden-
tify nearest neighbours not only in the problem space but also in the solution space.
However unlike with case alignment here distances are not directly utilised in the
cohesion computation. Instead it is the retrieval sets that are compared. As a result
case cohesion scores are less granular compared to alignment scores. This can be
clearly observed when comparing the cohesion profile for a case base in Figure 3b
with its alignment profile in Figure 2b.

Fig. 3. a) Case cohesion calculation b) Case base cohesion profile

5 Global Alignment Measure

A global alignment measure derives alignment scores by comparing problem and
solution space clusters. Although local case base profiles provide a map of well
aligned and poorly aligned areas of the case base they do so without showing interest-
ing patterns, regularities and associations in the case base in relation to the features.
For this purpose, work in [13] has adopted a “case base image” metaphor as the basis
for a Global Alignment Measure: whereby a textual case base is viewed as an image
generated from its case-feature matrix such that visually interesting associations are
revealed. Unique to this approach is that clusters can be used to observe both cases as
well as features. Importantly for alignment this approach can be used to form and
compare clusters in both the problem and solution space.

 Evaluation Measures for TCBR Systems 451

5.1 Image Metaphor

Consider the trivial case-feature matrix in Figure 4 taken from [15]. Here examples of
nine textual cases and their corresponding binary feature vector representation appear
in a matrix where shaded cells indicate presence of a keyword in the corresponding
case. Very simply put, such a matrix, with shaded cells, is the “case base as image”
metaphor. A 2-way stacking process is applied to transform such a matrix into its
clustered image where useful concepts in the form of underlying term associations or
case similarity patterns can be observed.

Fig. 4. Binary vector representation of 9 cases taken from the Deerwester Collection [15]

5.2 Case-Feature Stacking Algorithm

The aim of the 2-way stacking algorithm is to transform a given matrix such that
similar cases as well as similar features are grouped close together. Given a random
initial ordering of cases and features, an image of the case base is obtained by row
stacking followed by column stacking (see Figure 5). Given the first row, stacking
identifies the most similar row from the remaining rows and makes that the second
row. Next the row that is most similar to the first two rows is chosen to be the third
row. But in calculating this similarity, more weight is given to the second row than
the first. This process continues till all rows are stacked. A similar iterative approach
is applied to column stacking, but this time, columns are selected instead of rows.
Essentially column stacking employs feature similarity while row stacking is based on
case similarity.

The weighted similarity employed here ensures that more recently stacked vectors
play a greater role in deciding the next vector to be stacked. This ensures continuity
in the image whereby a gradual transition in the image is achieved by a decaying
weighting function. Unlike a step function which only considers the most recent
stacking and disregards previously stacked vectors a decaying function avoids abrupt
changes across the image. Figure 6 shows the resultant images for the matrix in Fig-
ure 4 after row and column stacking is applied.

5.3 Stacked Global Alignment Measure

Alignment can be measured by comparing the stacked matrices resulting from prob-
lem and solution side stacking. The matrix Mp obtained by stacking the problem side

452 M.A. Raghunandan et al.

Fig. 5. The stacking algorithm

Fig. 6. Images from Deerwester Collection after row stacking and column stacking

shows the best possible ordering of the problem space and Ms similarly from the
solution side. In order to establish alignment between Mp and Ms a third matrix is
generated Msp by stacking the solution space using the case ordering obtained by
problem side stacking. Figure 7 demonstrates how case stacking from the problem
side is enforced on the solution side to obtain matrix Msp (the matrix in the middle).
Here the 5 cases are ordered similar to that with Mp while the 4 features are ordered
according to Ms. The more similar the case ordering of Msp to that of Ms the greater
the alignment between problem and solution space. We quantify this alignment by
measuring the average similarity between neighbouring cases in matrix Ms and Msp.

Fig. 7. Three matrices used in the global alignment measure

 Evaluation Measures for TCBR Systems 453

The average similarity of a case to its neighbours in the matrix (except the first) is
given by:

Sim(ci) = ∑ j=1 to k sim(ci, ci-j)* (1/j)

This is a weighted sum of similarity values to the k previously allocated cases in
the matrix with the weight decreasing exponentially. sim(ci,cj) is the cosine similarity
function in our experiments. The average similarity value for the matrix is:

Sim(M) = (∑ i=2 to N Sim(ci)) / (N-1)

We calculate the average similarity values for the matrices Ms and Msp, to get
Sim(Ms) and Sim(Msp). The global alignment value is now calculated as:

GlobalAlign = Sim(Msp) / Sim(Ms)

Ms is the optimally stacked matrix, and Msp is the matrix obtained by arranging
the cases according to the problem side ordering. Hence, Sim(Ms)≥ Sim(Msp). For
well aligned datasets, the best problem side ordering should be close to the best solu-
tion side ordering and the GlobalAlign ratio will be close to 1. On the other hand, for
poorly aligned datasets, there will be considerable difference between the problem
and solution side orderings and the GlobalAlign ratio should be much less than 1.

6 Evaluation and Experimental Results

We wish to evaluate the effectiveness of the local and global alignment measures. To
do this we evaluate how well each measure correlates with classifier accuracy, over
10 case bases. A strong correlation indicates that the measure is performing well and
provides a good indication of case base alignment.

In our experiments we use cosine similarity to measure pair-wise similarity
between cases in the alignment algorithms and, in conjunction with k-Nearest-
Neighbour (k-NN) with weighted voting, to calculate classifier accuracy. A leave-
one-out experimental design is used and for each algorithm a paired series of results
for alignment and accuracy are calculated and compared to give the correlation coef-
ficient.

6.1 Dataset Preparation

The evaluation uses the UK National Health Service (Grampian) Health and Safety
dataset, which contains incident reports in the medical domain. The cases consist of
the description of the situation or incident, and the resolution of the situation, or what
action was taken when the incident occurred. The cases also have a class label called
“Care Stage,” which can be used as a solution class for this dataset.

The NSHG dataset contains a total of 4011 cases distributed across 17 classes. We
generated 10 different datasets, each containing about 100 cases and varying number
of classes, from 2 to 10. The cases are preprocessed using the OpenNLP library,
available as a part of the jCOLIBRI [16] framework. First, cases are organized into
paragraphs, sentences, and tokens, using the OpenNLP Splitter. Stop words are
removed; words are stemmed and then tagged with part-of-speech. The remaining

454 M.A. Raghunandan et al.

features are pruned to remove terms which occur in less than 2% of the cases. After
these operations, the vocabulary size of each dataset is not more than 200.

6.2 Evaluation Methodology

Alignment measures are compared to each other by their correlation to problem side
accuracies. How confident are we that problem side accuracy based on class labels
can be used so? To answer this, we analysed classifier accuracies on problem and
solution sides. Essentially a leave-one-out test on each case base was used to calculate
classifier accuracy for problem and solution sides separately. We use weighted 3-NN
with the problem-side representation using class labels as pseudo-solutions, to calcu-
late the problem-side accuracy (a similar approach was followed for solution side
accuracies).

The 10 datasets and their problem and solution-side accuracies appear in Figure 8.
The acronym of each dataset includes the number of classes and approximate size of
the case base. For example, the acronym CB3-100 indicates a case base with 3 classes
and a total of 100 cases.

Fig. 8. Problem and Solution side accuracy values

The problem-side accuracies vary from a low 47% (10-class) to a high 93% (2-
class) and highlights different complexities of our case bases. The solution side accu-
racy is a measure of confidence associated with the class labels of each dataset. These
remain mostly constant and high (i.e. from 90% to 98%) indicating that the solution
side concepts have a strong relationship with the class labels. Hence we are justified
in our use of class labels to calculate classifier accuracy on the problem side. We now
have an objective measure of the datasets, which can be used to judge our alignment
measures. Essentially this allows us to correlate alignment values obtained for all the
datasets, with their problem side classifier accuracy values.

6.3 Results with Local and Global Alignment

The case alignment measure for each dataset was calculated with different values of
the parameter k, as explained in Section 4.1. Fig 9 shows a graph of Case Alignment

 Evaluation Measures for TCBR Systems 455

Fig. 9. Comparison of Accuracy and Case Alignment values

values plotted against accuracy for all the datasets. Generally the values of Case
Alignment follow the values of accuracy closely for all values of k, i.e., the case bases
with low accuracy also have low alignment, and vice-versa. We found positive corre-
lation with all values of k with maximum correlation, i.e., 0.935, with k=9.

Unlike case alignment, with case cohesion (Section 4.2) we need to specify two pa-
rameters: the problem and solution neighborhood thresholds, δprob and δsoln. Figure 10
plots the correlation with accuracy for case cohesion with different values of δprob and
δsoln. Each correlation point on the graph is obtained by comparing cohesion values
for all 10 datasets with the accuracy values for a given δprob and δsoln. Here the x-axis
consists of 4 δprob threshold values and each graph line corresponds to results with 1 of
4 δsoln threshold values. Generally cohesion is sensitive to the threshold values and
best correlation (0.983) is achieved with δsoln=0.8 and no correlation (i.e. close to
zero) with δsoln= 0.4. Figure 11 provides a closer look at the 10 cohesion values ob-
tained for each dataset with δsoln=0.8, for different values of δprob. Best correlation of
0.983 is achieved with δprob=0.4 and δsoln=0.8.

Fig. 10. Cohesion-Accuracy correlation with different δprob and δsoln threshold values

456 M.A. Raghunandan et al.

Fig. 11. Comparison of Accuracy and Cohesion values

The global alignment measure for each dataset was calculated as explained in Sec-

tion 5. Figure 12 plots these values against the accuracy values for different k. Here
the k parameter refers to the number of previously stacked cases that contribute to the
weighted similarity computation. As with the local measures, global alignment also
has good correlation with accuracy. However like cohesion it is also sensitive to the k
parameter in that correlation increases with k at first, from 0.63 (with k=3) to 0.84
(with k=30), and decreasing thereafter.

Fig. 12. Comparison of Accuracy and Global alignment values

6.4 Discussion on Evaluation Results

Generally strong correlation with accuracy is observed with all three alignment meas-
ures. The best correlation values were 0.935 for the case alignment measure, 0.983 for
the case cohesion measure, and 0.837 for the global alignment measure. Overall, the
local measures result in better correlation than the global measure. This is because
local measures are better able to capture k-NN’s retrieval performance. However
positive correlation with the global measure is encouraging, because unlike local

 Evaluation Measures for TCBR Systems 457

measures its visualisation aspect (i.e. the case base image metaphor) creates interest-
ing opportunities for TCBR interaction and maintenance.

All three approaches require parameter tuning. Case cohesion is very sensitive to
the threshold values (δprob and δsoln) and so these must be chosen carefully. The global
alignment measure is slightly less sensitive, whilst the case alignment measure shows
very little variation with k and therefore is most consistent of the three.

7 Conclusions

Evaluation is a challenge in TCBR systems. However to our knowledge there have
been no comparative studies of evaluation measures. Here we consolidate existing
and novel TCBR evaluation measures in a correlation study with accuracy. Results
show strong correlation thus allowing us to conclude that such measures can be suita-
bly applied to evaluate TCBR systems, in the absence of class knowledge. Local
measures showed stronger correlation with accuracy compared to the global align-
ment measure. It is our observation that the local case alignment measure is most
consistent because it is least sensitive to parameter tuning.

In future work evaluation measures could be utilized to optimize TCBR systems.
In particular we would be interested in applying alignment measures as a fitness func-
tion for feature weighting or selection algorithms. The measures could also be applied
for maintenance, in particular to identify neighbourhoods with poorly aligned problem
and solution concepts. Local profiles and stacked images of case bases provide useful
insight with potential for interactive knowledge acquisition tools.

Acknowledgements

RGU and IIT exchanges are funded by UKIERI. The dataset for this work was pro-
vided by NHS Grampian, UK.

References

1. Weber, R., Ashley, K., Bruninghaus, S.: Textual CBR. Knowledge Engineering Review
(2006)

2. Wiratunga, N., Craw, S., Rowe, R.: Learning to adapt for case based design. In: Proc. of
the 6th European Conf. on CBR, pp. 421–435 (2002)

3. Bruninghaus, S., Ashley, K.: Evaluation of Textual CBR Approaches. In: AAAI 1998
workshop on TCBR, pp. 30–34 (1998)

4. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many
Relevant Features. In: Proc. of European Conf. on ML, pp. 137–142 (1998)

5. Richter, M.: Introduction. In: Case-Based Reasoning Technology: From Foundations to
Applications, pp. 1–15 (1998)

6. Glick, N.: Separation and probability of correct classification among two or more
distributions. Annals of the Institute of Statistical Mathematics 25, 373–383 (1973)

7. Wallace, S., Boulton, D.M.: An information theoretic measure for classification. Computer
Journal 11(2), 185–194 (1968)

458 M.A. Raghunandan et al.

8. Marchette, D.J.: Random Graphs for Statistical Pattern Recognition. Wiley Series in
Probability and Statistics (2004)

9. Singh, S.: Prism, Cells and Hypercuboids. Pattern Analysis & Applications 5 (2002)
10. Vinay, V., Cox, J., Milic-Fralyling, N., Wood, K.: Measuring the Complexity of a

Collection of Documents. In: Proc of 28th European Conf on Information Retrieval, pp.
107–118 (2006)

11. Lamontagne, L.: Textual CBR Authoring using Case Cohesion. In: 3rd TCBR 2006 -
Reasoning with Text, Proceedings of the ECCBR 2006 Workshops, pp. 33–43 (2006)

12. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base editing.
In: Proc. of the 8th European Conf. on Case-Based Reasoning, pp. 325–339 (2006)

13. Chakraborti, S., Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Watt, S.: A Simple
Approach towards Visualizing and Evaluating Complexity of Textual Case Bases. In:
Proc. of the ICCBR 2007 Workshops (2007)

14. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From Anomaly Reports to
Cases. In: Proc. of the 7th International Conf. on Case-Based Reasoning, pp. 359–373
(2007)

15. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by Latent
Semantic Analysis. JASIST 41(6), 391–407 (1990)

16. JCOLIBRI Framework, Group for Artificial Intelligence Applications, Complutense
University of Madrid,
http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri2/index.html

CBR for CBR:

A Case-Based Template Recommender System
for Building Case-Based Systems

Juan A. Recio-Garćıa1, Derek Bridge2,
Belén Dı́az-Agudo1, and Pedro A. González-Calero1

1 Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain

jareciog@fdi.ucm.es, {belend,pedro}@sip.ucm.es
2 Department of of Computer Science, University College Cork, Ireland

d.bridge@cs.ucc.ie

Abstract. Our goal is to support system developers in rapid prototyp-
ing of Case-Based Reasoning (CBR) systems through component reuse.
In this paper, we propose the idea of templates that can be readily
adapted when building a CBR system. We define a case base of templates
for case-based recommender systems. We devise a novel case-based tem-
plate recommender, based on recommender systems research, but using
a new idea that we call Retrieval-by-Trying. Our experiments with the
system show that similarity based on semantic features is more effec-
tive than similarity based on behavioural features, which is in turn more
effective than similarity based on structural features.

1 Introduction

It is an aspiration of the software industry that software development proceeds,
at least in part, by a process of reuse of components. The anticipated benefits
are improvements in programmer productivity and in software quality.

Compositional software reuse consists of processes such as: identifying reusable
components; describing the components; retrieving reusable components; adapt-
ing retrieved components to specific needs; and integrating components into the
software being developed [1]. These are difficult processes, made more difficult
by the high volume of reusable components with which a software developer
must ideally be acquainted.

Over the last twenty years, researchers have been looking at ways of provid-
ing software support to programmers engaged in software reuse. A lot of this
research has drawn ideas from Case-Based Reasoning (CBR). The CBR cycle
[2], retrieve-reuse-revise-retain, has obvious parallels with the processes involved
in software reuse [3]. For example, an ambitious CBR system for software reuse is
proposed in [4]. Its design combines text retrieval on component documentation
with similarity-based retrieval on a case base of software components represented
in LOOM. In [5], information about a repository of Java class definitions is ex-
tracted using Java’s reflection facilities, and this information is used (along with

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 459–473, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 J.A. Recio-Garćıa et al.

human annotations) to index the repository for similarity-based retrieval. In [6]
retrieval is from a case base of Java ‘examplets’ (that is, snippets that demon-
strate Java usage), using a mixture of text retrieval and spreading activation
over a graph-based representation of the examplet token stream.

The most sustained research effort is that of Gomes [7]. In his ReBuilder
system, cases represent designs and design patterns expressed as class diagrams
in the Unified Modeling Language (UML). The work is unusual in providing
some support for automated adaptation of the user’s retrieved cases.

There has been surprisingly little work in which CBR applications have them-
selves been the target of case-based reuse: CBR for CBR! Perhaps the only ex-
ample is the work reported in [8,9], where CBR is used at the corporate level to
support organization learning in software development projects, including CBR
projects.

On the other hand, there are now several frameworks for building CBR sys-
tems, including myCBR1, IUCBRF2, and, the most developed, jcolibri

3.
jcolibri, for example, is a Java framework for building CBR systems. Build-

ing a CBR system with jcolibri is a process of configuration: the system devel-
oper selects tasks that the CBR system must fulfil and, for every primitive task,
assigns one of a set of competing methods to achieve the task, where a method
is an actual Java implementation. Non-primitive tasks decompose into subtasks,
which themselves may be primitive (achieved by methods) or non-primitive (re-
quiring further decomposition). Ideally, every task and method that a system
designer needs will already be defined; more realistically, s/he may need to im-
plement some new methods and, more rarely, to define some new tasks.

In jcolibri 1, the emphasis was on supporting the novice system developer.
A developer could build a CBR system using a visual builder, i.e. s/he used a
graphical tool to select tasks and methods in point-and-click fashion. While easy
to use, this offered low flexibility. For example, it was not easy to implement
new methods; and to keep the visual builder simple, non-primitive tasks could
be decomposed only into sequences of subtasks.

jcolibri 2 is a more ‘open’ system: a white-box framework that make it
easier for programmers to add new methods to its repository. Non-primitive task
decomposition now supports conditionals and iteration, as well as sequence. This
raises the question of how best to support system developers who wish to use
jcolibri 2 to build CBR systems. For novices building simple systems, a visual
builder might again be appropriate, although as yet a visual builder for jcolibri

2 has not been written. But for more complex systems, students, inexperienced
designers and even experienced designers may benefit from greater support. In
this paper, we explain how we have extended jcolibri to have a case base of
past CBR systems and system templates, and how we explain how we can give
case-based support to these users of the jcolibri framework: truly, CBR for
CBR.

1 http://mycbr-project.net/
2 http://www.cs.indiana.edu/ sbogaert/CBR/index.html
3 http://gaia.fdi.ucm.es/grupo/projects/jcolibri/

CBR for CBR: A Case-Based Template Recommender System 461

The contributions of this paper are as follows. We define the idea of templates,
as abstractions over past systems (Section 2). We show how a case base of systems
can be defined, where each can be described in terms of the templates from
which it was constructed and features drawn from an ontology of CBR systems,
and we describe Retrieval-by-Trying, which we have implemented in a case-
based recommender system for case-based recommender systems (Section 3). We
define alternative similarity measures that can be used in Retrieval-by-Trying
(Sections 4). We give an example of our system in operation (Section 5). And we
use ablation experiments to evaluate the different similarity measures (Section 6).

2 Template-Based Design

2.1 Templates

A template is a predefined composition of tasks. Each template is an abstraction
over one or more successful systems (in our case, CBR systems). A template
may contain primitive tasks, for which there will exist one or more methods
that implement that task. A template may also contain non-primitive tasks,
for which there may be one or more decompositions, each defined by a further,
lower-level template. As already mentioned, in jcolibri 2 tasks can be composed
in sequence, conditionals and iteration. Templates are defined by experts who
have experience of building relevant systems and are capable of abstracting over
the systems they have built.

A system developer can rapidly build a new prototype CBR system by retriev-
ing and adapting relevant templates, a process we will refer to as template-based
design. The designer will select among retrieved templates, among decompo-
sitions of non-primitive tasks, and among methods that implement primitive
tasks. There may be occasions too when the designer must modify templates,
e.g. inserting or deleting tasks or altering control flow; and there may be times
when s/he must implement new methods. The degree to which these more rad-
ical adaptations are needed will depend on the extent to which the template
library covers the design space. It also depends on the extent to which CBR is
suitable for CBR, i.e. the extent to which problems recur, and similar problems
have similar solutions.

There is a knowledge acquisition bottleneck here: experienced CBR designers
must define the templates. Furthermore, templates are not concrete instances.
They are abstractions over successful designs. Nevertheless, we believe that this
is feasible for CBR systems. They have a strong, recurring process model, whose
essence the expert can capture in a relatively small number of templates.

As proof-of-concept, we have built a library of templates for case-based rec-
ommender systems. The second author of this paper acted as expert, while the
other authors acted as knowledge engineers. Within a few hours, we obtained a
library of templates with, we believe, good coverage, which we have refined, but
not substantially altered, over the last twelve months. We will describe some of
these templates in the next section. More of them are described in [10].

462 J.A. Recio-Garćıa et al.

Fig. 1. Single Shot Systems

2.2 Templates for Case-Based Recommender Systems

We have defined twelve templates for case-based recommender systems, based in
part on the conceptual framework described in the review paper by Bridge et al.
[11]. We take the systems’ interaction behaviour as the fundamental distinction
from which we construct templates:

– Single-Shot Systems make a suggestion and finish. Figure 1 shows the tem-
plate for this kind of system, where One-Off Preference Elicitation (for so-
liciting the user’s ’query’) and Retrieval (for finding items to recommend)
are complex tasks that are solved by decomposition methods having other
associated templates.

– After retrieving items, Conversational Systems (Figure 2) may invite or allow
the user to refine his/her current preferences, typically based on the recom-
mended items. Iterated Preference Elicitation might be done in navigation-
by-proposing fashion [12] by allowing the user to select and critique a recom-
mended item thereby producing a modified query, which requires that one
or more retrieved items be displayed (Figure 2 left). Alternatively, it might
be done in navigation-by-asking fashion [12] by asking the user a further
question or questions thereby refining the query, in which case the retrieved
items might be displayed every time (Figure 2 left) or might be displayed
only when some criterion is satisfied (e.g. when the size of the set is ‘small
enough’) (Figure 2 right). Note that both templates share the One-Off Pref-
erence Elicitation and Retrieval tasks with single-shot systems.

In the diagrams, non-primitive tasks are shown as red/dark grey rectangles.
These tasks are associated with one or more further, lower-level templates. For
the purposes of this paper, we will describe the decompositions of the Retrieval
task, because it is common to all case-based recommender systems and because
it will be familiar to everyone in a CBR audience. For information about the
decompositions of the other non-primitive tasks in Figures 1 and 2, see [10].

CBR for CBR: A Case-Based Template Recommender System 463

Fig. 2. Conversational Systems A and B

Retrieval is a complex task, with many alternative decompositions. Although
Figure 3 shows only three decompositions, each of these three contains non-
primitive tasks which themselves have more than one decomposition Commonly,
for example, Retrieval comprises a scoring process followed by a selection pro-
cess (Figure 3 top). For example, in similarity-based retrieval (k-NN), items are
scored by their similarity to the user’s preferences and then the k highest-scoring
items are selected for display. Most forms of diversity-enhanced similarity-based
retrieval follow this pattern too: items are scored by similarity, and then a diverse
set is selected from the highest-scoring items [13,14,15].

But there are other types of recommender system in which Retrieval decom-
poses into more than two steps (Figure 3 bottom). For example, in some forms
of navigation-by-proposing, first a set of items that satisfy the user’s critique
is obtained by filter-based retrieval, then these are scored for similarity to the
user’s selected item, and finally a subset is chosen for display to the user.

For completeness we mention also that some systems use filter-based retrieval
(Figure 3 middle), where the user’s preferences are treated as hard constraints.
Although this is not commonly used in CBR in general, it can be found in some
recommender systems. Despite its problems [16] it is still used in many com-
mercial web-based systems. Also, systems that use navigation-by-asking often
use filter-based retrieval: questions are selected using, e.g. information gain, and
cases are retrieved in filter-based fashion [17].

A final observation about Figure 3 is that it shows optional tasks for up-
dating a ‘tabu list’. The tabu list can be used to prevent certain items from
being recommended. A common use, for example, is to prevent the system from
recommending an item that it has recommended previously.

464 J.A. Recio-Garćıa et al.

Fig. 3. Retrieval decomposition

2.3 Template Recommendation

We envisage that a system developer will build a CBR system by adapting
relevant templates. This implies a way of retrieving relevant templates.

We had originally thought that we would devise a description language for
templates. With this language we would be able to describe each template in the
library from the point-of-view of the functional and non-functional requirements
that it might satisfy. The same description language could then be used by the
CBR system developer to construct a query description of the functional and
non-functional requirements of the system s/he is building. A retrieval engine
would then find the best-matching templates from the template library.

We soon realized that this raised two formidable problems. There is the dif-
ficulty for system developers of expressing their requirements as a query. But
more fundamentally, we realized that templates often do not lend themselves to
a useful level of description. It is easier to say useful things about systems, rather
than templates.

This insight led us to define the case-based template recommender system
that we describe in the next section.

3 Case-Based Template Recommendation

3.1 Cases

In line with the insight of the previous section, each case in our case-based
template recommender represents a successful CBR system (in our case, each
is a case-based recommender system). But the templates that characterize the
system are stored in the case as well. One can think of the system itself and its
templates as the ‘solution’ part of the case.

The description part of the case is a set of feature-value pairs. The feature
set includes the tasks of the system, the methods of the system, and semantic
features from an ontology defined by the domain expert. We postpone a detailed
explanation of the features to Section 4.

In some situations, the systems in the case base may be original systems,
collected over the years. In other situations, this may not be possible. It was not
the way in which we built our case base of case-based recommender systems,
for example. The original systems, such as Entree [18] and ExpertClerk [12], are

CBR for CBR: A Case-Based Template Recommender System 465

not available. How then did we build a case base of systems? Very simply, we
re-implemented versions of these systems and included these, along with their
templates, in the case base. It is testimony to jcolibri’s repository of templates,
tasks and methods that it did not take long to re-implement simplified versions
of each of the main case-based recommender systems from the research and
development literature. The case base we use in the rest of this paper contains
fourteen such systems, although others could easily be implemented.

3.2 Retrieval-by-Trying

In Section 2.3, we noted two problems with a simple approach to template rec-
ommendation. We have overcome one of these problems (that the most useful
descriptions apply to systems rather than to templates) by basing our case base
on systems (see above). The other problem was that system developers would
find it difficult to express their requirements as a query.

This problem is not unique to case-based template recommendation. In other
recommender systems domains, it is not uncommon for users to find it difficult to
articulate their preferences. But recommender systems research offers a solution.

In some of the most influential recommender systems, users make their prefer-
ences known through one or other of the many forms of navigation-by-proposing
[18,19,12,20]. In navigation-by-proposing, the user is shown a small set of prod-
ucts from which s/he selects the one that comes closest to meeting his/her re-
quirements. The next set of product s/he is shown will be ones that are similar
to the chosen product, taking into account any other feedback the user supplies.

This is the idea we adopt in our case-based template recommender. We show
the user (the system developer) two systems. In the style of McGinty & Smyth’s
comparison-based recommendation, s/he may choose one, and the system will
try to retrieve more systems that are like the chosen one. This overcomes the
problem that system developers may not be able to articulate their requirements.

But it raises another problem. On any iteration, how will the system developer
know which system to choose? If all we do is show the names of the systems
or abstruse descriptions of the systems, s/he is unlikely to be able to make a
decision. But, what the user is choosing between here are implemented systems.
Therefore, we allow the user to run these system. We call this Retrieval-by-
Trying: the user can actually try the recommended items (in this case, the
recommended recommender systems) to inform his/her choice.

Retrieval-by-Trying is a natural approach for systems that are relatively sim-
ple and interactive, like case-based recommender systems. The approach may not
extend to other kinds of CBR system that are more complicated (e.g. case-based
planners) or non-interactive (e.g. case-based process controllers).

In the next three subsections, we explain the following: how our implementa-
tion of Retrieval-by-Trying selects the initial pair of systems that it shows to the
user; how it selects the pair of systems that it shows to the user on subsequent
iterations; and how the user’s feedback on every iteration is handled.

466 J.A. Recio-Garćıa et al.

3.3 Entry Points

Initially, our system selects two systems to show to the user. One is as close to
the ‘median’ of the case base as possible; the other is as different to the median
as possible. A similar idea is used in ExpertClerk system [12], except that it
selects three cases, one near the median and two dissimilar ones. Whether it is
better to show three systems rather than two is something we can evaluate in
future work. We decided to use two in our initial prototype because it simplifies
the comparisons the user must make.

The first system that we retrieve is the most similar case to the median of
the case base. The median of the case base is an artificial case where the value
for every numerical attribute is obtained as the median of the values of that
attribute in the case base, and the value for non-numerical attributes is set to
the most frequent value for that attribute in the case base.

The second system initially retrieved is chosen to be as different to the median
of the case base as possible. We compute for every case in the case base the
number of ‘sufficiently dissimilar’ attributes between that case and the median
case, and select the one with the largest number of dissimilar attributes. Two
values of a numerical attribute are sufficiently dissimilar when their distance is
larger than a predefined threshold. Two values of a non-numerical attribute are
sufficiently dissimilar simply when they are different.

Although the process of selecting the initial two cases may be computationally
expensive, it does not need to be repeated until new cases are added to the case
base.

3.4 Diversity-Enhanced Retrieval for Comparison-Based
Recommendation

The user is shown a pair of systems, which s/he may try. In the style of preference-
based feedback, s/he may then select one, and we will retrieve a new pair of sys-
tems that are similar to the one s/he chooses.

We need to ensure that the two systems that we retrieve are similar to the
user’s choice but are different from each other. If they are too similar to each
other, the chances that at least one of the systems will satisfy the user are
reduced. In recommender systems terminology, we want to enhance the diversity
of the retrieved set [13]. There are several ways to achieve this. We use the
well known Bounded Greedy Selection algorithm which enhances diversity while
remaining reasonably efficient [13].

3.5 Preference-Based Feedback

The case that the user chooses gives us information about his/her preferences.
But the rejected case also gives important feedback. Therefore we have imple-
mented several of the preference feedback elicitation techniques described in [19].

The More Like This (MLT) strategy just uses the selected case as the new
query for the following iteration. A more sophisticated version named Partial

CBR for CBR: A Case-Based Template Recommender System 467

More Like This (pMLT) only copies attributes from the selected case to the
query if the rejected case does not contain the same value for that attribute.
Another option is the Less Like This (LLT) strategy that takes into account the
values of the rejected case that are different from the values of the selected one. In
the subsequent iteration, cases with these ‘rejected values’ will be filtered before
retrieving the cases. Finally, the More and Less Like This strategy combines
both MLT and LLT behaviors. Given that it is difficult for users to express their
requirements as a query (as we have explained above), it is an advantage that
none of these approaches requires the user him/herself to deal explicitly with
features and their values.

Our tool to retrieve templates can be configured to work with any of these
strategies. We compare them empirically in Section 6.

4 Similarity in Case-Based Template Recommendation

The description part of each case is a set of feature-value pairs. The feature
set includes the tasks of the system, the methods of the system, and semantic
features from an ontology defined by the domain expert. Thus we can compute
similarity based on what the systems do (by comparing system task structure);
we can compute their similarity based on how they do what they do (by compar-
ing their methods); and we can compute their similarity using semantic features
defined by an expert to describe structural and behavioural characteristics of
the systems. Or, of course, we can use combinations of these. We will describe
each of them in more detail in the next three subsections.

4.1 Task Structure Similarity

We take a simple approach to task similarity for the moment, which relies to an
extent on the fact that our ‘top-level’ templates (Figures 1 and 2) contain very
similar non-primitive tasks. A more complex approach might be needed for case
bases whose templates share less top-level structure. Let G be the set of non-
primitive tasks {C1, C2, C3, . . . , Cn}, (such as Retrieval) and Q the set of possible
decompositions of tasks in G into primitive tasks Q = {Q1, Q2, Q3, . . . , Qn}.
Each sequence Qi is composed of a set of primitive tasks S = {S1, S2, S3, . . . , Sn}
(e.g. see Retrieval decompositions in Figure 3).

We define one attribute for each non-primitive task in G. The allowed values
of these attributes are the specific sequences of primitive tasks Q used in this
case. Comparing two cases by their structure means comparing the attributes of
their templates using the equals function that returns 1 if they have the same
value and 0 otherwise.

4.2 Methods Similarity

Computing system similarity based on how the systems do what they do means
comparing their methods. To be able to do that we include in the case repre-
sentation structure different attributes, one for each primitive task. The allowed

468 J.A. Recio-Garćıa et al.

Fig. 4. Semantic features classification

values for each one of these attributes are the set of methods that implement the
primitive task. If a primitive task occurs more than once, then it is represented
by different attributes.

To be able to compare methods we have created a concept in CBROnto
for each method, and we have organized them into subconcepts of the Method
concept. These method concepts are hierarchically organized according to their
behaviour. Then we apply the ontological similarity measures implemented in
jcolibri2 to compare the methods. This family of ontological measures use
the structure of the ontology to compute the similarity between instances. The
CBROnto ontology and the similarity measures are described in [21].

4.3 Semantic Feature Similarity

As well as comparing systems by their tasks and methods, we let the expert
define semantic features to describe structural and behavioural characteristics of
the systems. In the recommenders domain, for example, we can classify systems
depending on their preference elicitation approach: navigation-by-asking (asking
questions to the user) or navigation-by-proposing (showing items to the user).
We can also classify them according to their retrieval process: filtering, scoring or
both. These features (navigation type and retrieval) define two different ways of
classifying recommenders, and by extension the templates associated with those
systems. There are other axes to classify systems, like the type of interaction
with the user and the type of user information that it collects. The left-hand
side of Figure 4 illustrates some of these semantic features.

Each case (system) in the case base is represented by an individual and
is assigned properties describing the tasks and methods that define its be-
haviour. Using the classification capabilities of a Description Logic reasoner, each

CBR for CBR: A Case-Based Template Recommender System 469

Fig. 5. Case values during retrieval

individual (system) is classified into the concepts that this individual fulfils,
based on the properties of the individual. The concepts into which each indi-
vidual is classified define different relevant features of the recommender. For
example, in the right-hand side of Figure 4 we show the definition of the feature
“JustMoreSimilar”. It is a defined concept described as follows:

JustMoreSimilar ≡ not SimilarAndDiverse and

hasmethod some SelectCasesMethod

This definition applies to systems whose retrieval methods do not use any mecha-
nism to enhance diversity but which do contain some method for selecting cases.
The right-hand side of Figure 4 shows the systems in our case base that have
been automatically classified as instances of this defined concept: eight of the
fourteen recommenders are classified according to this feature.

The ontology allows us to compare two systems by classifying them into the
hierarchy and comparing the concepts under which they are classsified. We use
one of the ontological similarity metrics included in jCOLIBRI: the cosine func-
tion [21]. Similarity in the different semantic features can be computed separately
as each feature represents a subtree in the hierarchy. Then the similarity results
for each feature are aggregated.

5 Example

Let’s illustrate the first step of our Retrieval-by-Trying template recommender.
When the system is launched, it finds the most similar case to the median of the
case base and the case that has most different attributes with respect to this me-
dian case. Figure 5 shows the content of the two retrieved cases and the median

470 J.A. Recio-Garćıa et al.

Fig. 6. Templates recommender screenshot

case computed by our method. The table contains the value of the attributes for
each component of the case description: tasks, methods and semantic features. The
first group of attributes describes the task decomposition of the templates associ-
ated with each case. Our templates have five non-primitive tasks: One-Off Prefer-
ence Elicitation, Retrieval, Display and Iterated Preference Elicitation. Each one
of these tasks can be decomposed into several sequences of primitive tasks as shown
in Figure 3. This way, the values of this set of attributes reflect the decomposition
into primitive tasks. The method attributes describe which methods were assigned
to solve each task of the template to obtain the recommender. Finally, the semantic
features refer to the roots of each classification hierarchy of our ontology (shown in
Figure 4). The values of these features are the leaves of the hierarchy where each
recommender is classified by the Description Logic reasoner.

The median case is a Conversational A recommender where each attribute
has the most repeated value among all cases. This median case has no semantic
features because it does not correspond to a real system in the case base. Rec-
ommender 6 is the closest case to the median and it is also a Conversational A
system. Finally, Recommender 8 is the most different case to the median and to
Recommender 6. The first feature that makes it different is that it is a Conver-
sational B recommender. Also, our application has retrieved this recommender
because it is an implementation of the ExpertClerk system [12] and thus has
several features that make it different from other recommenders. For example,
it acts both as a navigation-by-asking and a navigation-by-proposing system.

The result displayed to the user is shown in Figure 6. The user can read
descriptions of the two recommender systems and choose to execute one or both.
Once the user has selected the closest recommender to his/her preferences, s/he
can ask the system for something similar. The system uses the Bounded Greedy
algorithm to select the next pair of recommenders.

CBR for CBR: A Case-Based Template Recommender System 471

6 Evaluation

Our experimental evaluation is an ablation study. It is a leave-one-in study,
where a chosen case from the case base is taken to be the user’s target system.
We simulate user preferences by deleting some of the case’s attributes and take
the resulting partial description to be a representation of the user’s preferences.

Six representative recommenders were selected to act as target systems/
queries (two Single-Shot systems, two Conversational A systems, and two Con-
versational B systems). We used random deletion, and hence we repeated each
cycle twenty times to allow for deletion of different sets of attributes.

Our experiments measured the number of steps required to retrieve the same
recommender using our tool. Obviously, the number of steps (or depth) when
using 100% of the attributes is always 0 but depth will increase when using only
75%, 50% and 25% of the attributes.

Fig. 7. Similarity approaches comparison

During the first stage of our experiment we used only one of the three simi-
larity approaches: either tasks, methods or semantic features. We also tried each
preference feedback elicitation strategy: MLT, LLT, pMLT, MLT LLT (see Sec-
tion 3.5). Figure 7 shows, for every similarity approach and every preference
feedback elicitation strategy, the percentage of queries where that particular
combination results in the minimum number of retrieval steps. Averaging those
results we find that task-based similarity provides the best results in 10% of
the queries, method-based in 40% and feature-based in 50%. As might be ex-
pected, the semantic feature similarity is most often the best because it is a
knowledge-intensive measure.

Next we tested our hypothesis that the best similarity measure would be a
weighted combination of the three similarity approaches using as weights the
percentages discovered in the previous experiment. This hypothesis was actu-
ally confirmed in the experiments as shown in Figure 8 (left) where the pro-
posed weight combination is shown to outperform other weight combinations
(70%-15%-15%, 15%-70%-15%, and 15%-15%-70%), and Figure 8 (right) where
it outperforms pure task, method and semantic feature approaches.

472 J.A. Recio-Garćıa et al.

Fig. 8. Optimum weighted combination of similarity approaches

We can also propose a set of weights to use in the case where semantic fea-
tures are not available. It is important to consider this scenario because it may
not always be possible for an expert to define an ontology. In this case, our ex-
periments show that the best weights are: Tasks = 34% and Methods = 66%.
These values demonstrate that the behaviour of the system (methods) is more
important than its structure (tasks) when computing the similarity.

7 Conclusions

In this paper, we have extended jcolibri 2 with facilities to support reuse during
the construction of CBR systems. In particular, we propose the use of templates,
which a system developer can adapt to his/her new purposes. Our case-based
template recommender draws ideas from case-based recommender systems re-
search, and uses a new approach that we call Retrieval-by-Trying. We have il-
lustrated the ideas by building a case-based recommender system for case-based
recommender systems. We have defined and empirically evaluated different ap-
proaches to the measurement of similarity. We found, as might be expected, that
knowledge-intensive semantic features are more important than behavioural fea-
tures, which are in turn more important than structural features.

We will soon report on an empirical evaluation in which students template-
based and other approaches to build recommender systems. In the future, we
want to apply these ideas to CBR systems other than recommender systems.
For example, we are looking at textual CBR systems. And we want to gain more
practical experience of using the approach for rapid prototyping in educational,
research and industrial environments.

References

1. Smolárová, M., Návrat, P.: Software reuse: Principles, patterns, prospects. Journal
of Computing and Information Technology 5(1), 33–49 (1997)

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variants, and system approaches. Artificial Intelligence Communications 7(1), 39–
59 (1994)

CBR for CBR: A Case-Based Template Recommender System 473

3. Tautz, C., Althoff, K.-D.: Using case-based reasoning for reusing software knowl-
edge. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 156–165.
Springer, Heidelberg (1997)

4. Fernández-Chamizo, C., González-Calero, P.A., Gómez, M., Hernández, L.: Sup-
porting object reuse through case-based reasoning. In: Smith, I., Faltings, B. (eds.)
EWCBR 1996. LNCS, vol. 1168, pp. 135–149. Springer, Heidelberg (1996)

5. Tessem, B., Whitehurst, A., Powell, C.L.: Retrieval of java classes for case-
based reuse. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 148–159. Springer, Heidelberg (1998)

6. Grabert, M., Bridge, D.: Case-based reuse of software examplets. Journal of Uni-
versal Computer Science 9(7), 627–640 (2003)

7. Gomes, P.: A Case-Based Approach to Software Design. PhD thesis, Departamento
de Engenharia Informática, Faculdade de Ciêcias e Tecnologia, Univerisdade de
Coimbra (2003)

8. Althoff, K.D., Birk, A., von Wangenheim, C.G., Tautz, C.: CBR for experimental
software engineering. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S.
(eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 235–254.
Springer, Heidelberg (1998)

9. Jedlitschka, A., Althoff, K.D., Decker, B., Hartkopf, S., Nick, M.: Corporate in-
formation network: The Fraunhofer IESE Experience Factory. In: Weber, R., von
Wangenheim, C. (eds.) ICCBR 2001, pp. 9–12 (2001)

10. Recio-Garćıa, J.A., Bridge, D., Dı́az-Agudo, B., González-Calero, P.A.: Semantic
templates for designing recommender systems. In: Procs. of the 12th UK Workshop
on Case-Based Reasoning, University of Greenwich, pp. 64–75 (2007)

11. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowledge Engineering Review 20(3), 315–320 (2006)

12. Shimazu, H.: ExpertClerk: A conversational case-based reasoning tool for develop-
ing salesclerk agents in e-commerce webshops. Artificial Intelligence Review 18(3–
4), 223–244 (2002)

13. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.)
ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

14. McSherry, D.: Diversity-conscious retrieval. In: Craw, S., Preece, A.D. (eds.) EC-
CBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002)

15. McSherry, D.: Similarity and compromise. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

16. Wilke, W., Lenz, M., Wess, S.: Intelligent sales support with CBR. In: Lenz, M.,
Bartsch-Spörl, B., Burkhard, H.D., Wess, S. (eds.) Case-Based Reasoning Technol-
ogy: From Foundations to Applications, pp. 91–113. Springer, Heidelberg (1998)

17. Doyle, M., Cunningham, P.: A dynamic approach to reducing dialog in on-line
decision guides. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI),
vol. 1898, pp. 49–60. Springer, Heidelberg (2000)

18. Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe approach to assisted
browsing. IEEE Expert 12(5), 32–40 (1997)

19. McGinty, L., Smyth, B.: Comparison-based recommendation. In: Craw, S., Preece,
A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 575–589. Springer, Heidel-
berg (2002)

20. Smyth, B., McGinty, L.: The power of suggestion. In: Gottlob, G., Walsh, T. (eds.)
Procs. of the IJCAI 2003, pp. 127–132. Morgan Kaufmann, San Francisco (2003)

21. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A., Sánchez, A.: Ontology
based CBR with jCOLIBRI. In: Procs. of the 26th SGAI Int. Conference AI-2006.
Springer, Heidelberg (2006)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 474–486, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Forgetting Reinforced Cases

Houcine Romdhane and Luc Lamontagne

Departement of Computer Science and Software Engineering
Laval University, Québec, Canada, G1K 7P4

{houcine.romdhane,luc.lamontagne}@ift.ulaval.ca

Abstract. To meet time constraints, a CBR system must control the time spent
searching in the case base for a solution. In this paper, we presents the results of
a case study comparing the proficiency of some criteria for forgetting cases,
hence bounding the number of cases to be explored during retrieval. The criteria
being considered are case usage, case value and case density. As we make use
of a sequential game for our experiments, case values are obtained through
training using reinforcement learning. Our results indicate that case usage is the
most favorable criteria for selecting the cases to be forgotten prior to retrieval.
We also have some indications that a mixture of case usage and case value can
provide some improvements. However compaction of a case base using case
density reveals less performing for our application.

Keywords: Case base management, Reinforcement learning, Anytime CBR.

1 Introduction

Games are an interesting laboratory for CBR as they involve interactivity, complex
situations and evolving scenarios. As games often depict complex environments for
which an exact model is difficult to build, they present some opportunities for the
insertion of approximate approaches relying on example-based reasoning. Our work
pertains to the application of CBR to games involving uncertainty and real-time
response where time available to make a decision might vary with the context. Tem-
poral constraints in games might be resulting from a change of level, a situation pre-
senting increased complexity or a variation of tempo in the occurrence of events.

Computational time in a CBR cycle depends on the time dedicated to retrieval and
adaptation. In a nearest neighbor setting, retrieval time depends on the number of
cases being considered for making recommendations. Hence to meet time constraints
a CBR system would either have to forget cases prior to case retrieval or to filter
cases while performing retrieval. For this work, we adopt a forgetting approach to
limit retrieval time. Characterization of adaptation time is more complex as this phase
is less standardized. As most applications do not require adaptation or make use of
simple case modification heuristics, we assume that most of the overall CBR compu-
tational time depends on the number of cases being considered during retrieval.

Forgetting cases involves removing those less valuable to the task being accom-
plished in order to maintain run-time performance and competence to an acceptable
level. Means are required to assess the value of individual cases. As most games are

 Forgetting Reinforced Cases 475

sequential in nature, reinforcement learning [15] is an interesting framework for de-
termining the contribution or payoff expected from each case for solving some prob-
lems. Recent progress has been made in this direction [1, 2, 3, 9, 11] and we adopt
this approach to assign values to individual cases.

In this paper, our goal is to determine if values obtained through reinforcement
learning could provide a good indication on which cases a CBR system should forget
to reduce the size of a case base. We conduct this work as a case study using Tetris, a
game with simple rules presenting relevant time constraints. In section 2, we briefly
survey the related CBR techniques used to manage a case base. Section 3 describes
our research motivations and section 4 presents the reinforcement learning scheme we
used for training a case base. In sections 5 and 6, we compare reinforcement value to
other criteria such as case usage and case density to assess its importance as guidance
for case forgetting. We also present in section 7 some experiments conducted with
variants of a case deletion strategy proposed in [13] to determine if the compaction of
case base is relevant to our problem.

2 Related Work

Managing the size of case bases has been addressed mostly by the community of CBR
researchers working on case base maintenance strategies. Markovitch and Scott [6]
showed that additional knowledge can degrade the performance of learning system
and that removing some of this knowledge can help to correct the situation. Minton
[7] proposed a deletion technique for explanation based learning systems. Racine and
Yang [8] proposed to reduce the size of a textual case base by exploiting redundancy
and incoherence relationships between cases.

Smyth and McKenna [13] proposed a technique for constructing compact case
bases. Their approach relies on the notions of coverage and reachability [12], two
criteria for estimating the competence of a case base when case adaptation is possible.
This work highlights the importance of finding a trade-off between the competence
and the efficiency of a CBR system. This is in opposition to machine learning deletion
approaches mostly concentrating on computational time reduction.

It is important to mention that an alternative to removing cases prior to retrieval
would be to filter cases during retrieval, and hence avoiding an exhaustive search of
the case base. Schaaf [10] proposed Fish and Shrink, an approach where the similar-
ity between two cases depends on how they are related to other cases already visited
during retrieval. Also Footprint-Based Retrieval [14] is a retrieval procedure where a
search is guided by a limited number of cases (the footprint set) covering all of the
other cases in the case base. Following the selection of a reference case from the foot-
print set, the search is extended to covered cases, i.e. those that can be solved follow-
ing adaptation of the reference case.

The main specificity of our work is that we make use of reinforcement learning to
guide the forgetting of cases. Reinforcement learning (RL) in CBR has recently been
studied by some authors. Gabel and Riedmiller make use of CBR to approximate RL
versions of temporal difference learning [2] and Q-Learning [5]. Sharma et al. [11] pro-
posed an approach for conducting RL/CBR in games. In our previous work [9], we ex-
perimented with Q-Learning for evaluating existing case bases. Finally Aha & Molineaux
[1] proposed a model for the reinforcement of continuous actions in CBR systems.

476 H. Romdhane and L. Lamontagne

3 Motivations

As mentioned previously, we are interested in the application of CBR to games where
time to make a decision varies for different situations. To conduct our study, we make
use of Tetris [9]. Tetris consists of placing a dropping piece onto a set of columns to
complete rows and avoid accumulation of pieces (Figure 1). Seven different shapes of
pieces exist in the game. Placing each of them involves various combinations of rota-
tion and sliding. This game presents interesting time constraints as a decision must be
made before the piece touches the upper row of cubes. Time constraints in Tetris are
caused by the following:

• As a piece is dropping, time is limited to make a decision.
• As the upper row of cubes rises up, space is reduced to rotate and translate

the dropping piece.
• As the level of the game increases, the dropping speed increases.

This has an impact on the number of cases that can be processed to select a move.
For instance, in most implementations of the game, a dropping figure takes less then a
second for going down one step at level 0. And for each additional level, the time
allocated for each step is reduced by tens of milliseconds. For our current implemen-
tation, this means that less than 25 000 cases could be explored for each step at level 0
during the retrieval phase. And each subsequent time reduction would corresponds to
approximately 1000 cases that could not be used by the CBR component to meet its
constraints.

Fig. 1. Playing Tetris with CBR local patterns (from [9])

We assume for the moment that adaptation efforts are limited. In our current set-
ting, adapting a solution consists of rotating and translating the dropping figure. This
can be easily accomplished by comparing cases and determining where some target
patterns are located on the surface of the board (for additional details, see details in
[9]). As this computation is negligible compared to retrieval time, temporal con-
straints would not influence how adaptation is performed.

We are interested to determine which cases should not be considered by the CBR
system when time is limited. To do so, we need some selection criteria to momentar-
ily forget some of the cases. Such criteria would be associated to a performance pro-
file indicating how the removing cases impact on the competence of a CBR system.

 Forgetting Reinforced Cases 477

As mentioned in section 2, criteria such as usage, recency and density could be con-
sidered. However, Tetris is a sequential game where a decision on how to place a
figure impact on the next moves that can be done. This suggests that it is possible
through reinforcement learning to assign a value to each case that would indicate the
payoff expected from its usage. As reported in the next section, we made use of a Q-
Learning scheme to determine such case values.

Given some profiles on how forgetting cases impact on CBR performance, we
would need a framework to manage how to exploit these while reasoning online.
Work on anytime reasoning could constitute an interesting framework to explore this
issue. Case based reasoning could be formulated as an interruptible algorithm that can
provide answers without running through a full completion of the reasoning cycle. As
soon as one case has been consulted, the CBR system could be interrupted and return
a solution whose quality might be partially satisficing. Quality measures are then
required to guide a CBR component to keep searching for the amount of time being
given. So our current goal is to learn how to characterize these performance profiles
for CBR systems.

In the next sections, we will explore how reinforcement of learning is used to
evaluate the payoff of a group of cases. Then we conduct a case study for evaluating
the influence of various criteria on the performance of a CBR component for the
game of Tetris.

4 Evaluation of Cases through Reinforcement Learning

Reinforcement learning [15] is a practical approach to learn consistent evaluations
from observed rewards for complex Markov decision processes (MDPs). RL can be
used to estimate the value of a state through temporal difference techniques or to
evaluate state-action pairs through Q-Learning. For our application, we adopt a Q-
Learning approach to evaluate a case base and the general training procedure is de-
scribed in Figure 2.

Training relies on conducting multiple problem solving episodes with the CBR
component. The case-based reasoning cycle (function CHOOSE-CBR-MOVE) used for
this work contains the usual phases of CBR, i.e. retrieval and reuse. For our Tetris
application, retrieval is performed by matching pattern cases with a subset of the
columns on the board [9]. A pattern is represented as the heights of a sequence of N
columns where a specific piece type can be dropped. This process returns the k best
matching patterns. Case selection (function SELECT-BEST-CASE) is based on the value
assigned to a case and returns, during exploitation, the most valued neighboring case.
Case evaluation is performed using a Q-Learning procedure and is explained in the
next paragraphs. Finally case adaptation (function ADAPT-SOLUTION) in Tetris is
done by modifying the orientation of a dropping piece. This can easily be determined
by placing the piece where a pattern was matched and by applying the move (i.e. the
rotation) recommended by the selected case.

The training procedure (EVAL-CB-WITH-QLEARNING) for evaluating cases pro-
vided by a case base goes as follows. We start with some initial evaluations Value
corresponding to the rewards assigned by Tetris to each of the cases of the case base.
Then we let the CBR component play games during which cases are selected and

478 H. Romdhane and L. Lamontagne

procedure EVAL-CB-WITH-QLEARNING (CB)
 inputs: CB, the case base used by the CBR cycle.
 local variables:
 State, the current state of the game (i.e. the height of the columns, initially empty).
 Problem, a problem to solve (i.e. a new piece P presented with orientation O)

Case, one specific case (a pattern of columns + a piece + its orientation + a move)
 Previous_Case, the case recommended in the previous cycle.

Solution, a move (i.e. the rotation and translation of the piece P).
 R, the reward obtained by applying Solution to State

repeat
 Problem GENERATE-NEW-PROBLEM(); // Select randomly a piece to be placed
 Case, Solution CHOOSE-CBR-MOVE(Problem, State, CB);

 Previous_Case.Value UPDATE-CASE-VALUE (Previous-Case, Case, R)
 R, State reward and new state resulting from the application of Solution to State

Case.usage Case.usage + 1
 Previous-Case Case

until some stopping criterion is satisfied

function CHOOSE-CBR-MOVE(New-problem, State, CB) returns a case and a solution
 local variables:
 k, the number of nearest neighbors being considered
 Case, one specific case (a pattern of columns + a piece + its orientation + a move)
 Candidates, some similar cases
 New-solution, a move (i.e. the rotation and translation applied to the piece P).
 // Retrieval
 Candidates FIND-KNN(k, New-Problem, State, CB)
 // Reuse
 Case SELECT-BEST-CASE(Candidates, New-Problem, State)
 New-solution ADAPT-SOLUTION(Case, New-Problem, State) // rotate and translate the piece
 return Case, New-solution

Fig. 2. CBR problem-solving cycle for the reuse of reinforced cases with its interpretation for
the game of Tetris

modified. For a case Ct selected at time t, a revision of its value is performed by UP-

DATE-CASE-VALUE using the following function:

() ()
1

1() 1 () (,) max ()
t

t t t t t
C

Value C Value C R C state Value Cα α γ
+

+= − + + (1)

where R is the reward obtained by applying the move adapted from Ct to the new
target surface at time t. The discount factor γ assigns some importance to future
moves and α determines the trade-off between the current value of a case and its
potential future payoff.

In the update equation (1), Ct+1 corresponds to the case selected by the CBR sys-
tem at the iteration t+1. This captures the idea that an efficient CBR system should
seek the maximum payoff expected from future moves. Hence the value of future
moves should be backed up in the value of Ct. As the CBR cycle always chooses the
most valued case present in the case base (function SELECT-BEST-CASE), we assume

 Forgetting Reinforced Cases 479

that the next selected case Ct+1 is a good approximation of the maximum solution to
be applied to statet+1. From an implementation point of view, the value of Ct is up-
dated during the CBR cycle at time t+1.

In order to prevent falling into local optima regions, the training process is allowed
to explore the search space by selecting non maximal cases from the set of nearest
neighbors. This is captured by a softmax rule [16] where the probability of selecting
one of the nearest neighbors is given by

()
()/

()/i

i

Value case

Value case

case knn

e
P case

e

τ

τ

∈

=
∑

(2)

where τ is an exploration factor (or temperature). This factor is reduced progressively
with time to bring the training algorithm to adopt a greedy exploitation behavior (i.e.
select the most valued case). And exploration is not allowed during the exploitation of
the case base once training is completed.

5 Forgetting Cases Using Reinforcement Values

The first issue we addressed was to determine if reinforcement learning helps to pro-
vide good indications on how to reduce the size of a case base. We conducted an
experiment with an initial case base of 55 000 cases trained with Q-Learning and
softmax exploration as described in the previous section. All the results were obtained
using the Tieltris testbed and we made use of the rewards assigned by this implemen-
tation of Tetris to update the value of the cases.

The two following parameters for each case were determined following the training
session:

• Case value (V) : the reinforcement value resulting from successive updates
of a case during training;

• Case usage (U): the number of times a case was selected during the training
experiment.

For evaluating the impact of these two criteria on the performance of the CBR
component, we built performance profiles as follows:

• We impose a threshold value on one of the criteria and we remove all cases
presenting lower characteristics;

• We play a number of games to evaluate the performance obtained by using
the remaining cases. In our experiments, 100 games were played for each
trial. And for each game, the pieces to be dropped were selected randomly.

• We increase the cutoff threshold and repeat this evaluation until the case
base gets empty.

Performance profiles for both criteria are presented in Figure 3. Performance is
characterized by the number of lines removed during a Tetris game. We obtained
similar results for indicators such as game scores and the number of moves played
during a game. Hence these are not presented in this experimentation section as they
would lead to similar conclusions.

480 H. Romdhane and L. Lamontagne

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

Size of the Case base

N
u

m
b

er
 o

f e
lim

in
at

ed
 li

n
es

Case usage (U)

Case Value (V)

Initial
case base

Fig. 3. Performance profiles for case usage and case reinforcement value. These are perform-
ance profiles obtained by progressively removing cases from an initial case base of 55 000
cases.

Our experimental results indicate that progressively removing cases based on their
reinforcement value prematurely yields an important degradation of performance (see
curve V). By deleting about one thousand of the least valued cases (i.e. 2% of the
initial case base), the CBR component removes on average 25% fewer lines during a
game. We conjecture that some of these cases are applied to difficult moves offering
little payoff. These states might often be visited during the course of a game and, by
removing them from the case base, the CBR system is left with no guidance on how
to manage these situations. Then by progressively removing additional cases, we
notice a performance degradation which is almost linear. Finally, the system becomes
totally inefficient when less than a thousand cases are used by the system.

Case usage presents a much different performance profile. The number of lines be-
ing removed remains constant even after removing 40 000 of the less frequently used
cases (i.e. 2/3 of the initial case base). However with a CBR system operating with
between 2000 and 12 000 cases, the performance starts to oscillate. In this transition
phase, we notice some peak performance even surpassing results obtained from larger
case bases. However no guarantee for improvements can be made due to the instabil-
ity of the performance profile in this region. Finally, as we keep removing the last few
cases (< 1000), the performance drops rapidly to lower values as the number of cases
becomes insufficient.

Hence, from this experiment, we can conclude that case usage (U) provides a better
decision criterion for progressive forgetting of cases for our application. Results also
indicate that reinforcement value (V) is not by itself an informative criterion for re-
ducing the size of the case base. It is also interesting to note that the size of the CBR
memory can significantly be reduced without impacting severely on its performance.

 Forgetting Reinforced Cases 481

6 Combining Multiple Criteria

Based on the results of the previous experiment, we tried to combine both criteria to
see if additional improvements could be obtained using a mixture of them. We con-
sidered 2 variants:

• Additive form: a linear combination of the two criteria.

() . .f Case CaseU CaseVα β= +

• Product form: a product of the two criteria where V is normalized to remove
negative reinforcement values.

() . (.)f Case CaseU CaseVα β= × +

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000

Size of the case base

N
u

m
b

er
 o

f
el

im
in

at
ed

 li
n

es

U

V

U+V

7U+V

20U+V

U

V

U +V

7U +V

20U +V

Fig. 4. Combining criteria U and V for forgetting cases

Figure 4 displays some experimental profiles we obtained for these forms. For
most of the coefficients α and β, making a linear combination of V and U represents a
compromise between these two criteria. Hence the resulting combination generates a
performance profile that stands between those of the individual criteria. For instance,
the curve U+V is a slight improvement over V but does not nearly surpass the
performance profile of U. And as the component U becomes more important in the
mixture, the performance profile of the combination resembles the profile of the case
usage criteria. We tried different linear combinations and we found that, for our Tetris
application, the best results were obtained when 7α β ≈ . While some significant
improvements can be expected from this combination, we can not however conclude
that such a linear combination guarantees better results for any number of cases.
However it seems to be an advantageous option for case bases comprising less then
20 000 cases.

482 H. Romdhane and L. Lamontagne

-60

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60

Case Usage (U)

C
as

e
V

al
u

e
(V

)

Fig. 5. Case being removed from the case base for a linear combination of 7U + V. Points with
a lighter shade of gray represent cases that have been removed from the case base.

30

35

40

45

50

55

60

0 10000 20000 30000 40000 50000

Case Base Size

N
u

m
b

er
 o

f
el

im
in

at
ed

 li
n

es

U

U x (V+52)

7U+V

Fig. 6. Comparison of additive and product forms

Figure 5 illustrates the composition of the case base when reduced to 5200 cases
(i.e. less than 1/10th of its initial size) by applying a linear combination of 7U + V (i.e.
a ratio of α/β = 7). If we refer to Figure 4, this corresponds to the optimum peak value
obtained by this performance profile. The dark points correspond to those cases left in

 Forgetting Reinforced Cases 483

the case base while the gray points correspond to those being removed. We notice that
while more than 90% of the cases have been removed, those are highly concentrated
in the bottom left part of the figure. This region depicts cases with both lower usage
and reinforcement values. This suggests that this is a region where it is beneficial to
concentrate its forgetting efforts.

Finally a comparison of the additive and product forms of combination, as illus-
trated in Figure 6, clearly indicates that the product form does not provide any addi-
tional advantage over the best results obtained using an additive form.

7 Compacting the Case Base

Smyth and McKenna proposed in [13] a case deletion strategy to build compact case
bases. The basic idea is to select a subset of cases that perform well and that are well
dispersed in the problem space. To achieve this, we evaluate all the cases of the CBR
system with respect to some criterion and sort them in decreasing order. Then we
create a new case base and we successively add cases, following a decreasing order,
that can not be solved by other cases already present in the new case base. This algo-
rithm is presented in Figure 7.

function CONSTRUCT_COMPACT_CB (Cases, Criterion), returns a case base
 inputs: Cases, all the case originally used of the CBR system.

Criterion, the attribute used to rank cases.
 local variables:

Sorted_Cases, the cases ranked by some criterion
New_CB, the result of this function, a subset of the original cases
SIM_THRESHOLD, a cutoff threshold for forgetting cases.

 Sorted_Cases SORT-CB(Cases, Criterion);
 New_CB {};
 CHANGES true;

 while CHANGES do
CHANGES false;

 For each case C Sorted_Cases
 if MAX-SIMILARITY (C, New_CB) < SIM_THRESHOLD then
 CHANGES true;
 Add C to New_CB;
 Remove C from Sorted_Cases;
 return New_CB

function MAX-SIMILARITY (C, Cases) returns a similarity value
Sim = 0.0;

 for each case C’ Cases do
 if C.type = C’.type; // similarity is restricted to pieces of the same type.
 Sim MAX(Sim,GET-SIMILARITY(C, C’));
 return Sim;

Fig. 7. Algorithm for compacting a case base – Adapted from [13]

484 H. Romdhane and L. Lamontagne

Fig. 8. Compaction of cases using various sorting criteria. Progressive performance profiles
refer to the removal of cases without compaction as described in sections 5 and 6 of this paper.

From an intuitive point of view, compaction seems to favor the removal of cases
from different regions of the problem space. This approach should provide perform-
ance profiles different from those of the progressive forgetting studied in section 5
and 6 of this paper where cases were removed in concentrated areas. By diversifying
the regions where cases are removed, we could expect a better preservation of the
competence of the CBR system.

Authors in [13] proposed a competence criterion, based on reachability and cover-
age [12], to determine the extent of cases that can be solved. For our game of Tetris,
we consider that a case can solve another if both pertain to the same type of piece and
if the configurations of columns are sufficiently similar (i.e. superior to some similar-
ity thresholds). This is a reasonable assumption as, for similar board configurations, a
piece can be rotated and translated to produce a reusable solution.

The function CONSTRUCT_COMPACT_CB is sensitive to the ordering of the original
cases. To control this factor, we need to sort the cases with respect to some criterion
(function SORT-CB). We compared experimental results obtained when cases were
sorted based on their usage and reinforcement values. We also considered the possi-
bility, for building a compact case base, to remove cases based on their similarity with
other cases. So we estimated for each case the density of its neighborhood (i.e. the
average similarity of its nearest neighbors) and we made use of this criterion for our
experiments. The resulting performance profiles are presented in Figure 8. To obtain
various sizes of case bases, we applied the compaction function for different values of
similarity thresholds SIM_THRESHOLD.

We note that the compaction of a case base brings a constant and linear decrease
for most of the sorting criterion. While this approach is superior to progressively

 Forgetting Reinforced Cases 485

forgetting cases based on reinforcement values, the various performance profiles
obtained using U, V and case density as sorting criteria reveal largely inferior to the
progressive approach with case usage.

Finally we also tried a variant of this approach called NUN [13]. While it compares
favorably to the other compaction performance profiles, it does not outrank the results
obtained by progressive forgetting with case usage.

8 Discussion

We learned from our case study with Tetris that profiles can be built for estimating
the performance of a CBR system with various case base sizes. Our results clearly
indicate that, for our application, case usage is the best criteria for forgetting cases.
Reinforcement values are not necessarily by themselves good indicators for forgetting
cases but could contribute if combined with other criteria. Finally a progressive
reduction of the case base seems to be more appropriate than compaction for our
application.

However this does not mean that reinforcement learning does not contribute to
CBR. Our previous work [9] clearly illustrated that reinforcement training of a case
base can improve the overall performance of a CBR system.

As mentioned in section 3 of this paper, one of our objectives is to make use of
performance profiles to limit the size of a case base when facing time constraints
(which we referred to as anytime CBR). This supposes that using fewer cases would
imply a degradation of performance. But one of our findings is that using the 55 000
cases that were initially provided to build the CBR system, we could play Tetris at an
optimum level by using a subset of approximately 5 000 cases. Hence with such a
limited number of cases, retrieval time would never exceed temporal constraints im-
posed by the game. This is a surprising result as our internal case representation for
Tetris has a dimensionality of approximately 70 million different states. But it seems
to be a particular situation where the competence of the CBR system is not propor-
tional to the number of cases being used.

We expect that the proposed approach could be applicable to other time-
constrained games. For instance, pursuit games could benefit from performance pro-
files and by dimensioning the size of the case base to meet time-critical situations.
For instance, a reactive game like Pacman could be simple and interesting laboratory
for conducting such a study. This remains to be done as future work.

References

1. Aha, D., Molineaux, M.: Learning Continuous Action Models in a Real-Time Strategy En-
vironment. In: Proceedings of the Twenthy First International FLAIRS Conference, pp.
257–262. AAAI Press, Menlo Park (2008)

2. Gabel, T., Riedmiller., M.: CBR for State Value Function Approximation in Reinforce-
ment Learning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI),
vol. 3620, pp. 206–220. Springer, Heidelberg (2005)

486 H. Romdhane and L. Lamontagne

3. Gabel, T., Riedmiller., M.: An Analysis of Case-Based Value Function Approximation by
Approximating State Transition Graphs. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626, pp. 344–358. Springer, Heidelberg (2007)

4. Haouchine, K.M.: Chebel-Morello, B., Zerhouni, N.: Méthode de Suppression de Cas pour
une Maintenance de Base de Cas, 14e Atelier de Raisonnement à Partir de cas (2006)

5. Kira, Z., Arkin, R.C.: Forgetting Bad Behavior: Memory Management for Case-Based
Navigation. In: Proceedings of the 2004 International Conference on Intelligent Robots
and Systems, pp. 3145–3152. IEEE, Los Alamitos (2004)

6. Markovitch, S., Scott, P.D.: The Role of Forgetting in Learning. In: Proceedings of The
Fifth International Conference on Machine Learning, pp. 459–465. Morgan Kaufmann,
San Francisco (1988)

7. Minton, S.: Qualitative Results Concerning the Utility of Explanation-Based Learning. Ar-
tificial Intelligence 42, 363–391 (1990)

8. Racine, K., Yang, Q.: Maintaining Unstructured Case Bases. In: Leake, D.B., Plaza, E.
(eds.) ICCBR 1997. LNCS, vol. 1266, pp. 25–27. Springer, Heidelberg (1997)

9. Romdhane, H., Lamontagne, L.: Reinforcement of Local Pattern Cases for Tetris. In: Pro-
ceedings of Twenthy First International FLAIRS Conference, pp. 263–269. AAAI Press,
Menlo Park (2008)

10. Schaff, J.: Fish and Shrink: A Next Step Towards Efficient Case Retrieval in Large Scale
Cases-Bases. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 362–
376. Springer, Heidelberg (1996)

11. Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., Ram, A.: Transfer Learning
in Real-Time Strategy Games Using Hybrid CBR/RL. In: Proceedings of IJCAI 2007, pp.
1041–1046 (2007)

12. Smyth, B., Keane, M.: Remembering to Forget: A Competence Preserving Deletion Policy
for Case-Based Reasoning Systems. In: Proceedings of IJCAI 1995, pp. 377–382. Morgan
Kaufmann, San Francisco (1995)

13. Smyth, B., McKenna, E.: Building Compact Competent Case-Bases. In: Althoff, K.-D.,
Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 329–342.
Springer, Heidelberg (1999)

14. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: Althoff, K.-D., Bergmann, R.,
Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 343–357. Springer, Hei-
delberg (1999)

15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

iReMedI - Intelligent Retrieval from Medical

Information

Saurav Sahay, Bharat Ravisekar, Sundaresan Venkatasubramanian,
Anushree Venkatesh, Priyanka Prabhu, and Ashwin Ram

College of Computing
Georgia Institute of Technology

Atlanta, GA

Abstract. Effective encoding of information is one of the keys to qual-
itative problem solving. Our aim is to explore Knowledge representation
techniques that capture meaningful word associations occurring in doc-
uments. We have developed iReMedI, a TCBR based problem solving
system as a prototype to demonstrate our idea. For representation we
have used a combination of NLP and graph based techniques which we
call as Shallow Syntactic Triples, Dependency Parses and Semantic Word
Chains. To test their effectiveness we have developed retrieval techniques
based on PageRank, Shortest Distance and Spreading Activation meth-
ods. The various algorithms discussed in the paper and the comparative
analysis of their results provides us with useful insight for creating an
effective problem solving and reasoning system.

1 Introduction

The knowledge explosion has continued to outpace technological innovation in
search engines and knowledge management systems. It is increasingly difficult to
find relevant information, not just on the World Wide Web but even in domain
specific medium-sized knowledge bases. Despite advances in search and database
technology, the average user still spends inordinate amounts of time looking for
specific information needed for a given task.

The problem we are addressing in this paper differs from traditional search
paradigms in several ways. Unlike traditional web search, the problem requires
precise search over medium-sized knowledge bases; it is not acceptable to return
hundreds of results matching a few keywords even if one or two of the top ten are
relevant. Unlike traditional information retrieval, the problem requires synthesis
of information; it is not acceptable to return a laundry list of results for the user
to wade through individually but instead the system must analyze the results
collectively and create a solution for the user to consider. And unlike traditional
database search, the users are both experts who know how to ask the appro-
priate questions and non-experts who have more difficulty in knowing the exact
question to ask or the exact database query to pose. For this reason, existing
approaches, such as feature vector based retrieval methods are not sufficient.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 487–502, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 S. Sahay et al.

Knowledge Representation (KR) has long been considered one of the princi-
pal elements of Artificial Intelligence, and a critical part of all problem solving.
Many powerful meta models of semantic networks have been developed such
as Existential Graphs [1] of Charles S Peirce, Conceptual Graphs [2] of John
F Sowa and the Resource Description Framework [3] by the World Wide Web
Consortium. This work aims to give an insight into the development of a TCBR
system which involves investigating graph based KR formalism as the semantic
network model to be used as an indexing mechanism for the system. Different
retrieval algorithms are implemented on top of this representation in order to
effectively exploit the structure of the representation. As mentioned in [4] com-
mentary paper on TCBR, “some of the decisions to be made as part of the design
and development of CBR systems are how to identify problem solving experiences
to populate the case base, what representation for cases to adopt, how to define
the indexing vocabulary, which retrieval methods to adopt, and how to extract
and represent reusable components.” We have addressed the above problem and
explored several design questions in coming up with an effective TCBR system.
We argue that there is no universal solution to this design question and the
decisions to be made depend on the features of the problem being addressed in
such a situation. One of the goals in this paper has been to give the user the
option to choose the design he prefers and customize the solutions in his chosen
design decision according to his user experience.

The specific problem addressed here is that of domain- specific small corpus
precise search for relevant information: helping the user find specific information
pertinent to the search problem addressed as a short natural language query. This
research falls at the intersection of standard web search systems and question
answering systems by trying to bridge the gap between the two systems and
providing pertinent results that address the search in a much direct way and
learn according to user’s preference. We have looked at biomedical articles to
research and address this problem.

A typical use case in such context would be trying to find information such
as ‘symptoms and treatment of prolonged fever during pregnancy’ This kind of
medical search seeks much targeted information is personal to the user and de-
mands reliability and authenticity of the obtained results Therefore a user cannot
rely on typical web search and has to look up information in specific databases.
The problem actually lies on the continuum between web search and relational
database search. More formally, the problem has the following characteristics:

Diverse users: The user may be an expert user like a doctor searching for specific
technical information, a patient searching for disease specific symptoms and
treatment options, any layman user with a biomedical information need (such
as pain management).

Specialized knowledge bases that are medium-sized, focused, unstructured and
reliable: Knowledge bases are not as large or as diverse as the entire World-Wide
Web, yet they are unstructured, may contain free text documents, and may not
share semantics or ontologies between them.

iReMedI - Intelligent Retrieval from Medical Information 489

Precise search: Search queries may be longer than the one or two word queries
typical for web search, but they are unlikely to contain all the right keywords.
Yet it is not acceptable to return dozens or hundreds of irrelevant results, even
if the right answer is amongst them. The aim is to retrieve successive solutions
that try to address the search problem precisely.

Knowledge synthesis : The user expects the system to provide an “answer” and
not simply a list of documents to read in which the answer may be buried. The
system needs to integrate and correlate information from multiple documents,
from multiple data sources, and/or from multiple reasoning strategies so as to
develop a specific recommendation for the user. The system may need to pro-
vide an explanation for the recommendation in terms of supporting cases or
documents that were retrieved from the knowledge bases.

2 Related Work

Textual Case Based Reasoning (TCBR) systems are finding applications in areas
like Question Answering (Burke et. al), Knowledge Management [5], and Infor-
mation Retrieval [6]. Traditional approach to indexing and retrieval are based
on the Vector Space model where each textual case is represented as a feature
vector (bag of words notation). The similarity measure is based on the cosine
distance between the feature vectors. This approach, however suffers from prob-
lems like synonymy (different words have same meaning) and polysemy (same
word has different meanings in different contexts).

Consequently, researchers have explored techniques to overcome the problems
of the traditional bag words approach. These involve combining NLP techniques
and statistical techniques with ontology to generate a more rich representation
for the textual cases. [7] proved that syntax analysis on text can improve the
retrieval. [8] used domain specific hand-coded thesaurus to improve the perfor-
mance of retrieval. The work of [9] proved that inclusion of semantic information
from sources like the WordNet [10] can considerably improve the performance of
the bag of words technique. [6] describes a hybrid CBR-IR system in which CBR
is used to drive IR. Their system uses a standard frame-based representation of
a problem and matches it against frame-based representations of cases using
a previously developed CBR system called HYPO. Documents stored in those
cases are then used to construct keyword queries, which are run against a large
document repository using the INQUERY search engine. This approach relies on
frame-based symbolic AI representations. Their approach returns a potentially
large set of documents for the user to interpret.

With these developments it is sufficiently clear that a knowledge rich repre-
sentation of text can improve the retrieval efficiency considerably. An extreme
case of such a knowledge representation technique, we can foresee is, to repre-
sent the text in such rich semantic representation format that the original text
is subsumed in the representation itself. Though research is being carried out
in this field, there has been little or almost no breakthrough in this regard, We
feel that such representations are prohibitively expensive as it would need deep

490 S. Sahay et al.

semantic analysis of text and require domain specific ontologies, which would
require huge knowledge engineering effort. Also such a system would be well
suited for problems involving rule-based inference. For a TCBR system aimed
at efficient IR, such representations are not only expensive, but also unnecessary
as well.

Recently, researchers have used graph-based technique for such knowledge
rich representations. [11] proposes the use of Semantic Graph Model (SGM),
while [12] develops a semantic graph based on extraction of triples using deep
semantic analysis of text. The advantage of such graph base approach is that
we can employ graph based algorithms on them and do interesting things. [13]
proposes the use of Spreading Activation for IR, [11] proposes the use of graph
structural matching for similarity calculation, while [14] uses Google PageRank
[15] based approach for document summarization.

3 System Overview

Our currentwork attempts to come up with representations that capture pertinent
knowledge of the corpus and return documents for queries based on that knowledge
and previous query-response episodes containing user’s result preferences.

We are particularly interested in a generic TCBR system capable of meaning-
ful link based search for diverse users using the knowledge synthesis approach.
We strive to improve the quality of retrieval with the use of NLP techniques
combined with knowledge from generic ontologies. We see the problem of case
representation as a way of having an effective representation scheme that acts as
an index into the knowledgebase. Knowledge representation has been dealt with
in number of ways by AI researchers that include methods like Frames, Predicate
Calculus/Predicate Logic, Production Systems, and Scripts. A technique that is
becoming increasingly popular is that of Semantic Networks, where knowledge
is represented as a graph, vertices are concepts and edges are the associations
between the concepts. Besides, such graph based formalism lends itself naturally
to use graph based algorithms and do meaningful statistical and graph based
analysis. In this paper, we have explored various techniques for generating such
knowledge rich Semantic Networks and evaluated them for their effectiveness
in a TCBR system. We have developed a TCBR based IR system that can do
precise IR. For our base data, we use a corpus of medical journal abstracts ex-
tracted from the Pubmed repository in Nuclear Cardiology domain. Our system
retrieves a ranked list of documents from the corpus for a user query. We com-
pare the retrieval for different techniques with Pubmed results as a benchmark
for evaluation. We use the graph based representation techniques like the one
inspired by [14] and compare it with a traditional vector space model. We use
spreading activation for similarity calculation, which is similar to the method
proposed by Francis et. al. We are using PageRank score and shortest path
metrics between graph nodes for ranking documents as opposed to finding im-
portant nodes for document summarization (as done by [14]). We create semantic
graph using triples, similar to what [12] have done, but we use shallow syntactic

iReMedI - Intelligent Retrieval from Medical Information 491

analysis and ontology based methods to generate triples as opposed to a deep
semantic parse, which we feel is infeasible for our system as it requires domain
specific tree banks. In this paper we propose and evaluate the following tech-
niques to generate triples: Syntactic Dependency based representation - Using
dependency parser (using the Stanford Parser) to extract dependency triples.
Shallow Linguistic Triples based Representation - Using shallow syntactic parse
and generating triples based on the Subject Verb Object (SVO) relations. Se-
mantic Triples Representation (UMLS based) - Using existing domain specific
ontology to generate triples Semantic chain of closed class words.

4 TCBR System Description

In this section, we explain the various representation techniques and retrieval
algorithms implemented to evaluate and compare the outcome of the system. In
all our methods, we create link based graph structures where nodes in the graph
are fragments of text either associated through relationship links or reified links.
Each of the term nodes in the graph has information such as the document ids
of the particular abstract, the TFIDF value of the term nodes in each of the
abstracts it appears in and the initial activation value stored in it. Our TCBR
system makes use of this representation to perform retrieval and adaptation of
problem solutions. The case base stores the query and the solution. The knowl-
edge representation acts as an indexing structure where the nodes map on to the
documents where the corresponding word appears. A possible enhancement is
to enrich the representation sufficiently, such that the document repository can
be discarded.

Figure 1 describes the system architecture for iReMedI. Figure 2 shows the
link structure for our knowledge representation.

Fig. 1. System Architecture

492 S. Sahay et al.

Fig. 2. Knowledge Graph

The Case in the Case Base: A case is a query response episode and stores : -
Set of nodes retrieved from graph - Final ranked retrieved document list

Our current system uses two algorithms for implementing the retrieve stage:

1. Spreading activation
2. PageRank and Shortest distance

Spreading activation is a method for searching associative networks, neural
networks or semantic networks. The search process is initiated from a set of
source nodes (e.g. concepts in a semantic network) with weights or “activation”
and then iteratively propagating or “spreading” that activation out to other
nodes linked to the source nodes. Most often these “weights” are real values
that decay as activation propagates through the network. In our retrieval mech-
anism, we have implemented intelligent propagation through the network, i.e,
implementing the concepts of rewards and punishments which in simpler terms
would be positive and negative propagation depending on the learning that the
system undergoes, as explained in the later sections.

PageRank is a link analysis algorithm that assigns a numerical weighting to
each element of a hyperlinked set of documents, such as the World Wide Web, with
the purpose of “measuring” its relative importance within the set. This is analo-
gous to the relative importance of a node in the semantic network with respect
to the input the system gets, thus enabling retrieval of nodes of similar meaning
and importance. The next step in a CBR system is the revise step (the adaptation
phase). This is the stage where the knowledge representation is modified in terms
of assigned weights to nodes to understand the user preference. Given a query,
the system either builds a new case from the graph (on return of no similar results
from the case base) or adapts an existing case and learns from it by retaining it.

4.1 Situation Assessment

Effective problem-solving necessitates a situation assessment phase. In this phase
the system needs to maximize its understanding of the problem. The query is

iReMedI - Intelligent Retrieval from Medical Information 493

converted from the language of communication to the system-understandable
language of representation, depending on the choice of representation structure
selected by the user. The query can be any unstructured text in English, for
eg., the user may give an abstract to find related abstracts or may just give
some keywords to find the relevant abstracts containing them. In the context
of textual CBR, the system can improve its understanding of the problem in
two ways - 1) by knowing more about different concepts related to the language
of communication 2) by knowing more about the concepts related to the query
terms in the language of representation. Linguistically,knowing more about the
query-related terms helps the system to understand the different ways in which
the query terms may be represented in the representation language. This repre-
sentation is done by applying simple transformations (if any) from the language
of communication to that of representation. In our case, the language of commu-
nication is English and the representation language is the set of extracted triples.
The WordNet ontology is used to find synonyms of the query terms. Thus by
using the original query terms and their synonyms which together comprise the
expanded query, we can get a better matching when we transform from the
problem space to the knowledge representation (concept graph). A more holistic
understanding of the problem can be achieved by identifying the concepts that
are related to the concepts identified as relevant by the “expanded query and
graph” concept matching algorithm. To find such relevant concepts we use a
path based approach. Let A and B be two concepts that have been found in the
graph after the initial matching. For all such A and B in the expanded query
we find the shortest path between them and identify the concepts that we en-
counter along this path. Given the expanded query, the newly identified concepts
which occur most frequently along the shortest paths that we have explored are
the most relevant related concepts. This idea is based on the assumption that
the shortest path between two concepts will contain the most relevant concepts
connecting them. This completes our situation assessment phase. Thus, given
a user query in natural language as input to the situation assessment phase,
the output is the set of concepts matched with the user query and the concepts
related to the query both linguistically and semantically. Retrieval is performed
on the documents associated with these concepts.

4.2 Knowledge Representation

In this sub-section we describe in detail the different representation techniques
we have tested in our system. All the sample graphs showing the representation
have been derived from the sentences : “Pancreatitis may be caused by excessive
intake of alcohol. Pancreatitis is the inflammation of the pancreas.”

Shallow Syntactic Triples. This representation formalism uses a Part of
Speech Tagger (openNLP) to extract the concepts and relations in the form
of Subject Verb Object Triples. Stemming and stop word removal is performed
to create a rich representation of root terms and relationship links. Common
nodes in the triples are merged to create a large forest of connected components

494 S. Sahay et al.

Fig. 3. Shallow syntactic triples representation

that is exploited in the retrieval process. This is a very fast statistical technique
and is amenable to web scale data indexing and processing. Figure 3 shows an
example graph for shallow syntactic triples.

Typed Dependency Triples. Typed dependencies and phrase structures are
other ways of representing the structure of sentences. While a phrase struc-
ture parse represents nesting of multi-word constituents, a dependency parse
represents governor-dependent dependencies between individual words. A typed
dependency parse additionally labels dependencies with grammatical relations,
such as subject or indirect object. This is a very rich syntactic representation for-
malism that captures sentences in the documents as dependency trees. The entire
document structure is represented as a graph, hence this method is knowledge-
rich and processor intensive but can potentially do away with the need to retain
the original document. Figure 4 shows an example graph for typed dependency
triples.

Fig. 4. Typed Dependency triples representation

iReMedI - Intelligent Retrieval from Medical Information 495

Fig. 5. Semantic Word Chains

Semantic Word Chains. This Knowledge Representation formalism builds a
contextual map of related biomedical concepts for the corpus. This representa-
tion is constructed using the MedPostSKR Tagger, a POS Tagger trained on
biomedical corpus and bundled with NLM’s MMTx Mapping System. In this
representation, nouns phrases, adjective phrases, verb phrases and preposition
phrases are connected as reified chains of terms. The NounPhrases are UMLS
concepts in this representation. This method of representation is more akin to
knowledge navigation and summarization kind of tasks. We are not extracting
triple based relationships, as these semantic relationships are hard to correctly
extract and limit the system’s retrieval performance. Figure 5 shows an example
graph Semantic Word Chains.

4.3 Retrieval Techniques

In this paper, we have focused our efforts on the Knowledge Representation and
Retrieval aspect of the TCBR cycle.

Spreading Activation Method. Recall that the graph representation that
we have is a weighted graph with edges and nodes having weights (For e.g. In
some representation edges hold the frequency of occurrence of that particular
relationship. On the other hand the nodes hold the IDF value of that particular
concept). Spreading activation in our system intiates the propogation by activat-
ing the query nodes, which is then iteratively propagated through the network
of nodes . Spreading activation is an iterative process (Pulse-by-pulse process)
in which each pulse involves the following operations in each node:

– Gather incoming activation, if any
– Retain activation
– Spread the activation to neighbors
– Termination check

496 S. Sahay et al.

The process continues until the termination condition is met. At this stage,
the activations of individual nodes are collected and the information to be re-
turned to the user is decided based on the activation levels of different nodes of
the system. Our implementation of the spreading activation technique is briefly
described in the following algorithm: Given a query:

1. Do initial processing to the query including tokenizing and stop-word re-
moval.

2. Activate the nodes corresponding to the query, to the activation value =
(Maximum weight of all the edges in the graph)

3. Activate rest of the nodes in the graph to zero
4. While termination condition is not met, do the following (This loop corre-

sponds to a pulse) For each node that has received some activation in this
pulse and if it has not propagated activation in past pulses, do the following:
i. Let total edge weight = sum of weights of edges coming out of this node.
ii. For each neighbor of this node, propagate an activation of value = (weight
on edge reaching this neighbor / total edge weight) * Activation of this node

5. Collect activations of each of the individual documents as sum of activations
of all its constituent nodes.

6. Return the ranked set of documents based on final activations to the user.

A termination condition is said to be met if either of the following is true:

1. There are no new nodes that have gathered activation in some pulse.
2. The Net activation gained by the entire network reaches a particular thresh-

old. (Net of the network is the sum of activations of the individual nodes in
the network)

At the end of the algorithm, the net activations for each of the individual
documents is computed as the sum of activation of its associated nodes. A sorted
list of documents on the normalized activation levels is returned to the user as
the relevant set of documents with relevancy ranking.

PageRank and Shortest Distance Based Method. With this technique,
we compute the sum of products of strengths of nodes in the graph along the
query node paths to compute the overall strengths of documents. Since our graph
nodes capture the associated document information, it is easy to invert the node
map to the corresponding document strength maps. The process of retrieval is
based on exploration and exploitation of both the structure and the semantics
encoded in the knowledge representation. Intuitively the choice of algorithm was
guided by the fact that we were dealing with a “link” structure of concepts.
Page and Brin’s PageRank Algorithm is a link analysis algorithm that assigns
a numerical weights, called PageRank values, to each concept of the knowledge
link structure, with the purpose of measuring its relative importance within the
graph. Applying the idea of PageRank to our context, a concept node which
relates to many concepts is considered important. Similarly if many important
concepts are relate to a concept node it is considered important. Thus PageR-
ank values give the relevance of each node in the link structure. PageRank gives

iReMedI - Intelligent Retrieval from Medical Information 497

a structural relevance measure of a concept since it operates on the linkage of
the rich knowledge. It also gives a semantic relevance measure since it gives
a better rank to the concepts nodes connected to important concepts and a
lower rank to the concept nodes connected to less important ones. Once we have
identified the most relevant concepts as per the PageRank algorithm, we use
TFIDF based measure to rank the documents connected to the nodes. Further,
this scheme is also based on the mutual information in all the documents con-
nected to the same concept. This is illustrated mathematically with the formula
below:

Scoredoc,query = [
∑

nodei

(PageRanknodei ∗
∑

docij

strengthij)] ∗ UserRating

Here i is the Vertex String Node on the graph and j is the associated docu-
ments on nodes i, strengthij is the TFIDF value of Node i in document j. In our
implemented scheme, the query nodes are expanded to contain the additional
nodes along the shortest paths between pair of recurring nodes in the query.
The expanded query is matched with the concept graph to identify the relevant
concept nodes. The PageRank values associated with these nodes is taken into
account. Then for each document that is connected to a relevant concept node,
its TFIDF value for that concept string is calculated. The aggregate sum of the
TFIDFs for all documents is calculated. The product of the PageRank and this
aggregate gives the score. This is further multiplied by the user rating to boost
the documents which are more important from the user’s perspective. This user
rating is the positive or negative feedback given to the document being shown
at the current ranking. Thus we get an overall ranking for the documents based
on structure of the knowledge representation, the mutual information of the re-
lated concepts, semantics stored in the knowledge representation and the user
preference.

4.4 Adaptation

In the adaptation phase, the system modifies the existing solutions to solve a
novel but very similar problem. In our case the problem is a query and the
solution is the ranked list of documents for that query. The adaptation phase
obtains a set of similar cases from the retrieve phase of the CBR, which essen-
tially uses a similarity metric to find the nearest neighbors to the new query.
From these retreived cases, a list of associated weighted documents is retrieved.
Once we obtain a list of documents, we re-rank these documents for the new
query. The re-ranking is simply sorting the set and presenting the top n to the
user. The adaptation phase is multi-pass, where the user can rank the “good-
ness” of each retrieved document using the UI we provide. We use the user
rating to modify the weight of that document and re-sort the documents and
present to the user. The adaptation phase ends when the user is satisfied with
the solution.

498 S. Sahay et al.

Fig. 6. Adaptation of Results

5 Experiments and Results

5.1 Gold Standard

We used a collection of 50 abstracts taken from Pubmed for testing. 50% of these
were related to the topic of diabetes and the rest consisted of abstracts on random
topics. We manually created five prototypical queries on diabetes and ranked all
the 50 abstracts based on how well they answered the given queries. The following
queries were used in our experiments: Q1: What are the medications for type
2 diabetes? Q2: What are the risks of diabetes in adolescents? Q3: Studies on
gestational diabetes mellitus. Q4: What are the effects of diet and eating habits
on diabetes? Q5: What are the side effects of Thiazolidinediones?

The above queries cover a sufficient range to test our methods as they are the
kind of questions a disparate section of people would like to ask. For instance,
a medical expert interested in knowing the latest available treatments for type
2 Diabetes would ask such a question as in query 1. The results should suggest
specific medication and its effects for the type of disease given. A worried mother
asking a question to get a broad overview on risks of diabetes for her adolescent
son would ask query 2. The results should give a broad perspective of the risks
especially for adolescents. A researcher wanting to know more about a certain
topic like gestational diabetes mellitus would ask query 3. The results should
be studies conducted on gestational diabetes. A dietician updating her current
knowledge would like query 4 answered. The results should give relationships
between the eating habits and risk of diabetes. An informed patient analyzing
the effects of a particular drug would typically have a query like the query 5.
The results should give side effects of the drug mentioned. The manually ranked
list of documents was used as the gold standard.

iReMedI - Intelligent Retrieval from Medical Information 499

5.2 Baseline

We used the vector space model as the baseline. The abstracts and the queries
were represented as vectors based on TFIDF value. Lucene system was used to
calculate the cosine distance of each document from a given query and rank the
results with respect to the queries. The ranks thus obtained were used as the
baseline.

5.3 Evaluation Metrics

Our information retrieval mechanisms output documents in a ranked order. We
have used the following metrics to evaluate the performance of the various rep-
resentation and retrieval methods:

1. Precision and Recall: We used the standard IR evaluation to calculate the
precision, recall and the f-score for each method.

– N: The number of relevant documents in the corpus. (We used N as 25 in
our experiments).

– Ret: The number of documents that were retrieved by our system.
– RR: The number of documents that were relevant and retrieved by our

system.
– Recall (R) R = RR

N

– Precision (P) P = RR
Ret

– F-Score (F) F = 2PR
P+R

2. Goodness Score: Since we are dealing with ranking the documents for a
given query, it made sense to do a more fine grained analysis on the results
rather than a basic precision and recall. We bracketed the ranked results into 4
regions: Highly Relevant (HR): the documents placed among the top 5, Moder-
ately Relevant (MR): the documents placed from 6 to 15, Somewhat Relevant
(SR): the documents ranked between 16 and 25, and Irrelevant (I) are the ones
below 25. Using the gold standard ranking and the rankings produced by the
algorithm, we formed a Table for each query as shown in Figure 9.

The diagonal elements (shaded black) correspond to the perfect classification;
we give a score of +4 for each element falling in this region. The entries on
either side of the diagonal (cross striped) correspond to a 1 level of discrepancy
in the ranking; we give a score of +2 for all such elements. The (checked entries)

Fig. 7. Fine-grained Goodness Measurement

500 S. Sahay et al.

correspond to a 2 levels of discrepancy in the ranking and we give a penalty of
-2 for each entry in this region. While the two extreme regions (vertical stripes)
correspond to opposite classification and we give a penalty of -4 for such cases.
So the score for each algorithm for a given query is the sum of number in each
entry of the table each multiplied by the score. We normalize the final score to
get the goodness measure.

5.4 Results

Figure 8 shows the Precision (P), Recall (R) and F-Score values of the compari-
son for different knowledge representation methods using PageRank and Spread-
ing Activation based retrieval techniques. We see that the state of the art Lucene
based VSM method outperforms our other techniques. The typed dependency
triples performs almost at par with the VSM method.

Figure 9 shows the overall goodness score of various techniques.

Here are some observations from our experiments:

– We haven’t been able to capture the rich triple relations due to the com-
plexity of the research articles and long sentences.

– The queries we have used are short that do not fully exploit the link based
rich representations.

– We haven’t implemented anaphora and abbreviations resolution that would
enhance the results of our system.

Fig. 8. Precision, Recall and F-Measure of Techniques

Fig. 9. Goodness Scores

iReMedI - Intelligent Retrieval from Medical Information 501

– The syntactic shallow triples method is very fast and scalable. The other
richer representation techniques are viable for a small to medium sized cor-
pus.

– The baseline still performs the best as Lucene system is highly optimized and
we have developed an initial prototype system that can be further enhanced
in many ways.

6 Conclusion

This paper reports our initial efforts towards the development of a knowledge-
rich TCBR infrastructure. We have experimented with different graph based
linguistic representation methods and developed some techniques for link based
information retrieval. Shallow triples offer fast and effective solution for large
scale applications whereas dependency structures provide rich indexed informa-
tion for advanced reasoning capabilities. The medical ontology based semantic
representation requires much enhancements as the semantic word chains are in-
complete and hard to exploit effectively. Our ultimate goal is to develop a truly
learning adaptive problem solving system that uses planning (Situation Assess-
ment) and TCBR techniques for performing various tasks. We have promising
results for our system.

References

1. Peirce, C.S.: The aristotelian syllogistic. In: Hartshorne, C., Weiss, P. (eds.) Col-
lected Papers: Elements of Logic, pp. 273–283. Harvard University Press, Cam-
bridge (1965)

2. Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research
and Development 20(4), 336–357 (1976)

3. Lassila, O., Swick, R.: Resource description framework (RDF) model and syntax
specification

4. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. Knowl.
Eng. Rev. 20(3), 255–260 (2005)

5. Weber, R., Aha, D., Sandhu, N., Munoz-Avila, H.: A textual case-based reasoning
framework for knowledge management applications (2001)

6. Rissland, E.L., Daniels, J.J.: The synergistic application of CBR to IR. Artif. Intell.
Rev. 10(5-6), 441–475 (1996)

7. Mott, B.W., Lester, J.C., Branting, K.: The role of syntactic analysis in textual
case retrieval. In: ICCBR Workshops, pp. 120–127 (2005)

8. Brüninghaus, S., Ashley, K.D.: Reasoning with textual cases. In: Muñoz-Ávila,
H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 137–151. Springer,
Heidelberg (2005)

9. Burke, R.D., Hammond, K.J., Kulyukin, V.A., Lytinen, S.L., Tomuro, N., Schoen-
berg, S.: Question answering from frequently asked question files: Experiences with
the FAQ finder system. Technical Report TR-97-05 (1997)

10. Fellbaum: WordNet: An Electronic Lexical Database (Language, Speech, and Com-
munication). MIT Press, Cambridge (May 1998)

502 S. Sahay et al.

11. Shaban, K.B., Basir, O.A., Kamel, M.: Document mining based on semantic un-
derstanding of text. In: Mart́ınez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J.
(eds.) CIARP 2006. LNCS, vol. 4225, pp. 834–843. Springer, Heidelberg (2006)

12. Leskovec, J., Grobelnik, M., Milic-Frayling, N.: Learning sub-structures of docu-
ment semantic graphs for document summarization (2004)

13. Anthony, G., Francis, J., Devaney, M., Santamaria, J.C., Ram, A.: Scaling spread-
ing activation for information retrieval. In: Proceedings of IC-AI 2001, July 25
(2001)

14. Jagadeesh, J., Pingali, P., Varma, V.: A relevance-based language modeling ap-
proach to DUC 2005 (2005)

15. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1-7), 107–117 (1998)

Adaptation through Planning in Knowledge

Intensive CBR�

Antonio Sánchez-Ruiz, Pedro P. Gómez-Mart́ın,
Belén Dı́az-Agudo, and Pedro A. González-Calero

Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

{antonio.sanchez,pedrop}@fdi.ucm.es, {belend,pedro}@sip.ucm.es

Abstract. Adaptation is probably the most difficult task in Case-Based
Reasoning (CBR) systems. Most techniques for adaptation propose ad-
hoc solutions that require an effort on knowledge acquisition beyond
typical CBR standards.

In this paper we demonstrate the applicability of domain-independent
planning techniques that exploit the knowledge already acquired in many
knowledge-rich approaches to CBR. Those techniques are exemplified
in a case-based training system that generates a 3D scenario from a
declarative description of the training case.

1 Introduction

In most modern CBR systems, adaptation is not considered at all, or is just
delegated to the user. Knowledge acquisition effort and the lack of domain in-
dependent adaptation techniques are responsible for this situation.

The motivation behind the work presented here was to determine whether, by
authoring a knowledge rich representation of the domain, we could define adap-
tation procedures that would generate meaningful new cases automatically. The
goal was to demonstrate that the additional effort on the representation of the
domain would pay off in the long term. By defining an adaptation method which
is based on domain-independent planning techniques which are parameterised
with a domain ontology, we have given the first steps towards that goal.

We propose a domain-independent algorithm for case adaptation that takes
the query as the planner goal and applies operators that transform the most
similar retrieved case. This way, case adaptation is the problem of finding a
sequence of operators, i.e. a plan, that transform a past solution into a new
solution that verifies the constraints of the new query.

The adaptation through planning approach has been tested in a system for
case-based training in virtual environments [1,2] where we faced the problem
of knowledge acquisition for case authoring. Different elements of a training
scenario need to be represented through a time consuming process where every
� Supported by the Spanish Ministry of Science and Education (TIN2006-15202-C03-

03 and TIN2006-15140-C03-02).

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 503–517, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

504 A. Sánchez-Ruiz et al.

Proposed solution

3

46

5

Initial query

3

4
65

Ideal query

Solution
Retrieved case

In this artificial example, the query is a polyhedron
with four polyhedrons inside, and the solution
is the same external polyhedron filled with the
number of vertices of the inner polyhedrons,

switching left and right columns, and
with the number up-side-down as the polyhedron

Fig. 1. Adaptation working scheme

case is essentially one of a class. We demonstrate that, in that particular domain,
case authoring through case adaptation is a feasible and cost-effective solution.

The rest of the paper runs as follows. Section 2 presents the planning approach
to adaptation. Section 3 presents the domain that will be used as a test-bed for
it, and Section 4 describes the representation of cases within this domain using
Description Logics (DLs). Section 5 goes into the details of a running example.
Finally Section 6 reviews related work and 7 concludes the paper.

2 Using Planning to Adapt Cases

Literature about CBR adaptation is much smaller than for CBR retrieval. Most
of the CBR systems do not provide adaptation at all, or they just use very simple
“ad hoc” adaptation rules, that cannot be reused in other systems. Adaptation is
a complex task that needs a good understanding of the domain, and even domain
experts often have problems to describe what they have learned by experience.
However, the more complex adaptations the system is able to do, the less cases
are needed in the case base, because the coverage of each case is increased.

Figure 1 shows the general idea. The initial query is used to retrieve a case
that does not exactly fit with it. The CBR reuse step manipulates in some way
this case in order to adapt the solution.

We propose to use planning for case adaptation in an attempt to define a
domain-independent method for the reuse phase in Knowledge-Intensive CBR
systems. A planner is a system that gets a formal description of a domain (types
of entities, constraints and legal operators to change the state), and a partic-
ular problem (initial state and goals), and finds a sequence of operators that

Adaptation through Planning in Knowledge Intensive CBR 505

3

46

5

3

4

65 3

4

6

5

+180º+180º

+180º+180º

Operators

Initial queryRetrieved case ideal query

Retrieved case solution

3

4

6

5

3

46

5

Fig. 2. Adaptation using query-space planning

makes the system evolve from the initial state to another state that holds the
goals. Each operator defines the preconditions that the current state must hold
to be applicable, and how it will modify the state after being applied. The plan-
ning problem is really hard due to the combinatorial explosion that arises from
combining operators. In order to deal with this difficulty, different ways of im-
plementing heuristics have been proposed.

To transform the CBR adaptation problem into a planning problem, we use
the following rules:

– The retrieved case represents the initial planning state.
– The original CBR query is used to set the planning goals. Let us remember

that we are adapting the retrieved case because it is not an exact match for
the query.

– Planner operators transform the initial retrieved case, exploring different
alternatives while searching a way to satisfy the original CBR query.

Figure 2 shows an example. The retrieved case query is shown at the upper-left
corner, while the user initial query is in the upper-right one. The planner must
change (applying operators) the retrieved query in order to look for a way to
convert it into the user query, while, at the same time transforming the solution
accordingly. In the example, operators rotate and swap the internal figures or
change the external one. Keep in mind that the planner will test other options
that are not shown in the figure. For example, it will try to apply the swap
operator to the retrieved query, exploring other paths. Due to the fact that
the planner is always manipulating the query, we call this approach query-space
planning.

While changing the query, operators must also modify the retrieved solution
in a consistent way depending on what they did in the query space. But the
important aspect within this model is that the planner never looks at the solution
space, that is travelled as a lateral effect of the query manipulation. If operators

506 A. Sánchez-Ruiz et al.

3

46

5

+n+n
-n-n

3

4

65

Operators

Initial query

Retrieved case solution

3

6

6

3

3

6

5

4

+n+n
-n-n

3

6

5

4

Does it fit? Does it fit?

Fig. 3. Adaptation using solution-space planning

can be defined to transform the solution according to every transformation in
the query, then when the initial query is reached, a valid solution has been found.

Depending on the domain, defining these operators can be quite difficult if not
impossible. A different approach is the solution-space planning (figure 3, where
operators manipulate only the retrieved case solution and the planner explores
the solution space. Now the only way for knowing if a goal state (the correct
solution) has been reached is to have available a test function that checks if a
solution is valid for the user query. Depending on the domain, this could be easier
than defining the “dual operators” required by the query-space planning. As a
drawback, it is more difficult to optimise the planner’s search because heuristics
must deal with a target state that is, in fact, unknown. But due to the expected
proximity between initial and final solutions (it is the more similar case, after
all), this limitation could not be a big problem in many domains.

When comparing with the ad hoc adaptation, the advantages of using planning
(over the query or solution space) are:

– Operators represent atomic changes that are easy to write. The planner will
combine these operators to create complex adaptations, and will manage the
dependences between operators.

– Adaptation knowledge can be represented using a standard logic language,
by means of preconditions and effects. This declarative approach eases the
sharing and reutilisation of the adaptation knowledge.

– Planners are experts solving this type of problems, and could use complex
heuristics to improve the search and to reduce the space of possibilities.

Keep in mind that although this way to proceed is related to Case-Based
Planning (CBP) [3], we are not retrieving plans nor trying to adapt them. The
retrieved cases are not built using the planning operators. Actually, the operators
are only used to modify existing cases, and not to create them from scratch. We
are using planning to implement the reuse phase of a CBR system, not CBR to
solve the planning problem.

Adaptation through Planning in Knowledge Intensive CBR 507

One of the strength of CBR systems is that cases may contain implicit knowl-
edge about the domain that we cannot fully model. An interesting concern that
may arise is, if during the planning process, after applying several operators,
the generated cases are still correct. This general question is beyond the scope
of this paper, but obviously, the planning operators must be chosen carefully to
protect the cases, and there is a trade off between adaptation and correctness
preservation. Later on, in the following section, we describe the safeguards that
we use in our domain to deal with this problem.

2.1 Planning with Description Logics

Planners usually work with domain and problem descriptions formalised in some
variant of PDDL [4], the standard planning language. PDDL was developed to
compare different planners in an international planning competition. During the
last few years it has been evolving, letting us to describe more complex problems.
However, the language expressivity is kept limited intentionally to be able to
check constraints and apply operators fast.

PDDL is used both for writing operators and specifying initial and goal states.
Therefore, using PDDL for reuse in CBR, would require using it as case descrip-
tion language. Unfortunately, KI-CBR community does not usually represents
cases using PDDL. A more convenient alternative are Description Logics (DLs)
[5], well-known subsets of First Order Logic whose main strength is that they
offer considerable expressivity power, while reasoning is still decidable. This for-
malism is very useful to represent complex structured domains, and has been
chosen as base for OWL-DL1, the standard language for the Semantic Web.

DLs represent complex domains by means of concepts, properties and individ-
uals. Concepts represent sets of individuals with common features, and are de-
scribed by potentially complex logical formulas. Properties are binary predicates
that relate concepts, and may have additional properties like being symmetric
or transitive. The main property is the is-a relation that allows to define a hier-
archy of concepts. Finally, Individuals are simple entities that represent objects
in the domain as concept instances.

A Knowledge Base (or Ontology) has two different parts: the TBox, that
contains concepts and properties, and represents the domain constraints; and
the ABox, that contains individuals and assertions over those individuals, and
represents a particular domain instantiation, i.e., knowledge that may change.

DLs allow to represent and reason with complex domains and to compute
elaborated similarity metrics, but inferences and reasoning (required for plan-
ning) is computationally expensive. Therefore, there are two different options
to integrate a planner into a CBR system that uses DLs (such as OWL-DL) as
case representation language. The first approach is to translate all the domain
knowledge as well as the cases from OWL-DL to PDDL, taking into account
the potential loss of semantics during the process. The idea to keep several do-
main representations with different expressivity has been studied in [6]. The main

1 W3C Recommendation http://www.w3.org/TR/owl-guide/

http://www.w3.org/TR/owl-guide/

508 A. Sánchez-Ruiz et al.

advantage of this strategy is that the planning process can be done efficiently,
and a lot of implemented planners exist. The second approach consists on using
a planner that utilises OWL-DL as formal language to describe the domain, i.e.,
a planner that will keep the original semantics. The main drawback of these
planners is the lower performance.

Although the best option would depend on the domain, it should be kept in
mind that classical planners are able to solve problems that require the execution
of hundreds of operators, but in our domain, i.e., case adaptation, we may safely
assume that only a few operators are needed to adapt the case. After all, the
initial state (retrieved case) should be quite near to the goal state (initial query)
or other case would have been retrieved. Finally, having the knowledge duplicated
in different formalisms (DLs and PDDL) carries synchronization problems.

Under these circumstances, planning using DLs is a valuable option. The ba-
sic idea behind this planning is to use the TBox as description of the domain
constraints, and the ABox to represent the current state. Operators modify the
current state by adding and deleting asserts in the ABox. The technical de-
tails of this type of planning can be found in [7,8], but some of its benefits
are:

1. We can solve problems in very complex domains. DLs reasoners are optimized
to work with large ontologies with lots of concepts, constraints and instances.
PDDL domains are usually simpler, and the planning complexity is based
on the length of the solution plan, not in the domain complexity.

2. It is easier to write the operators. We can use all the concepts and properties
of the ontology to write the preconditions and effects of the operators, so
there is a very rich vocabulary available.

3. Operator’s check. DLs provide an automatic consistency checking of the
knowledge base. Using this feature we can know whether after applying an
operator the planner reaches an inconsistent state. That would mean that
the operator is not properly written and we should alert the domain scripter.
Additionally, some recent research allows to obtain accurate description of
the inconsistencies [9] that could be displayed as error messages.

4. Heuristics based on similarity. Ontologies can be used to compute similarity
metrics that take into account the domain structure [10]. These similarity
metrics can be used by the planner to compute a heuristic function that will
drive the search.

5. Reasoning with incomplete knowledge. Planners usually assume Closed World,
but DLs reason with an Open World. Close World means that everything that
is not asserted explicitly in the state is false, and the only entities that exist
in the state are those which have been defined. On the contrary, Open World
assumes that we only have a partial description of the real state, and thus, all
the predicates that are not explicitly asserted in the state can be true or false.
Moreover, there can exist individuals in the current state that have not been
noticed.

Adaptation through Planning in Knowledge Intensive CBR 509

(a) User looking for resources (b) User writing instructions

Fig. 4. JV2M

3 A Domain Example: Case-Based Training

During the last few years we have been working on an educational game where
students learn, in an intuitive way, how to compile Java programs into object
code, specifically the assembler language of the Java Virtual Machine (JVM).
The system, known as JV2M (figure 4), follows the learning-by-doing approach
of teaching. Students confront increasingly complex compilation exercises, and
must figure out the corresponding JVM object code.

The game component comes up as a virtual environment where the student
is immersed. Exercises are embedded in that 3D world, and compiling a Java
code (solving an exercise) consists on looking for resources needed to write the
assembly instructions in a terminal. The program incorporates other game com-
ponents, such as enemies and time limits [11].

The learning process consists on more and more complex exercises, each one
represented in a game level. Therefore, the educational and game components
are merged due to the fusion between a game level and an exercise. In each
learning episode, the system chooses the next exercise to be solved depending
on the user profile. In the first interactions, only simple expressions are put into
practise, but if, while or for structures are presented later on.

The system must also be aware of the student proposed solution, in order to
provide some kind of feedback when errors are committed. In that sense, JV2M
knows the correct solution to the exercise, and is able to compare it with the
alternative proposed by the student. When the user makes a mistake, the system
must decide if she should be interrupted. A balance must be found between the
waste of time while the user is trying bad approaches and the user freedom, that
encourage students to browse the environment and explore new ways of solving
exercises (a typical behaviour when playing games).

As said before, JV2M analyses the user model in order to plan the next
learning episode. In that sense, we have divided the taught domain in different

510 A. Sánchez-Ruiz et al.

public static int euclides(int a, int b) {
int res ;
if ((a <= 0) || (b <= 0))

res = 0;
else {

while (a != b) {
if (a < b)

b −= a;
else

a −= b;
}
res = a;

}
return res;

}

Fig. 5. Exercise example

concepts (closely related to the Java language structures), such as StaticMethod,
AddExpression or WhileStatement. The specific task of the pedagogical module
consists on selecting which concepts the user must practise in the next exercise.
It must also indicate which concepts should not be included in the exercise,
because they are too difficult for the student.

Once the concepts have been chosen, the system must obtain an exercise that
contains them. We are working with a quite structured domain, so it could be
possible to automatically create a new Java program from scratch, containing the
required source code structures using a bit of randomness. Unfortunately, this
process would provide, if done with care, compilable exercises, but they would
not execute anything interesting. When teaching how to compile source code, the
important aspect of the exercise is, actually, that it compiles, but semantically
useful source code is, obviously, more motivating for students.

That leads us to a case-based approach, where an exercise base is manually
built by domain experts. A source code corpus is made available for the system
to look for exercises that match the query proposed by the pedagogical module.
Each exercise is indexed using the compilation concepts mentioned previously
and they are used in the retrieval process. For example, the Euclidean algo-
rithm shown in figure 5 would be indexed using concepts such as IfStatement,
WhileStatement, MinusExpression and some other boolean expression concepts.

Unfortunately, using cases imposes a big work in content creation, something
quite annoying in a so structured domain. Furthermore, educational programs
need a quite big amount of exercises, in order to create the illusion of a never
ending source of alternatives and to avoid repetition and tedium. Therefore,
we need a better balance between automatic and manual exercise creation, and
knowledge intensive CBR adaptation seems the best alternative.

Adaptation through Planning in Knowledge Intensive CBR 511

Type

IntegerType

IntegerExpression

LoopStatement

StaticMethod

NumericType

Literal

Statement

Array

CharacterLiteral

BooleanExpression

ReturnStatement

PrimitiveType

Expression

IfStatementAssignmentStatement

Class

Parameter

FloatingPointLiteral

LessThanExpr

Interface

SubtractExpr

AbstractMethod

FloatingPointType

Method

ForStatement

WhileStatement

Enum

BooleanLiteral

owl:Thing

UnaryOperatorExpression

Constructor

SimpleStatement

StaticField

ConditionalStatement

EqualExpr

CallStatement

RawType
ReferenceType

Terminal

AddExpr

StringLiteral

IntegerLiteral

NotExpr

Variable

BinaryOperatorExpression

CompoundStatement SwitchStatement

LocalVariable

InstanceMethod

Field

Fig. 6. Partial view of the domain ontology

4 Case Representation in Description Logics

We use DLs to formalise the JV2M domain and to index the case base. DLs
provide us with several benefits. First, we can improve the retrieval phase of the
CBR cycle by means of similarity metrics based on the domain structure. It also
provides a rich vocabulary to index the case base and to make queries. Besides,
DLs can automatically check the consistency of the knowledge base, and so, we
can detect problems during the authoring process. Finally, DLs are a declarative
and standard way to represent knowledge that eases sharing and reusing it.

Figure 6 shows a small part of the ontology that we use to define the domain,
and only the hierarchy due to the is-a relation. The actual ontology defines
several more concepts and properties. Light circled concepts represent primitive
concepts, i.e., concepts that have been defined using only necessary conditions,
while dark circled concepts represent defined concepts, i.e., concepts that are
defined using necessary and sufficient conditions. Instances can be automatic
classified under these defined concepts if they fit the proper conditions.

512 A. Sánchez-Ruiz et al.

Fig. 7. Example of Java code represented in DLs

Java exercises are represented as a graph of instances. Figure 7 shows a very
simple example in which an if statement is formalised in DLs. The if statement
is represented by an individual of type IfStatement, that is related by the prop-
erty hasCondition with an individual of type BooleanExpresion (a logic OR),
and by the property hasYesBranch with the body statement (the assignment).

The class definitions preserve the consistency of the model. This way, the DL
reasoner will warn us if we try to break any constraint. For example, the defi-
nition of IfStatement compels to have a relation hasCondition with a Boolean-
Expression. This constraint protect us from writing an if condition using, for
instance, a numeric expression.

Authoring programming cases using DLs is a really time-consuming and error-
prone task. Domain experts are used to write Java code, but not “drawing it”
in OWL-DL tools such as Protégé. We have developed an application, known as
java2owl that bridges this gap converting any Java program to OWL-DL.

5 A Practical Example

Summarising what we have told in this paper, when JV2M has to choose a new
exercise for a student, the first step is to decide what type of exercise fits next,
using the student profile. The system builds a query containing the statements
that the new exercise must have as well as the statements that cannot be part
of it. Then, the most similar case in the case base is retrieved using similarity
metrics based on the ontology. If the retrieved case fits the query, then we are
done, and the case can be used as next exercise. In other case, the retrieved
exercise must be adapted using the planner. The planning problem is built using
the retrieved exercise as initial state, and the CBR query as goal. Finally, the
planner will try do adapt the exercise using the domain operators.

Let us suppose that, using the student profile, the system decides that a good
candidate for next exercise must contain if and while statements, but it cannot
contain neither the OR (||) nor the NOT (!) logical operators. This can be a real
situation for a student that still does not know how to compile some logical
expressions, but has already practice if and while statements separately and
now must prove that she can manage them combined.

Adaptation through Planning in Knowledge Intensive CBR 513

Let us suppose now that, using the previous query, the most similar case in
the case base is the Euclidean algorithm that was presented in figure 5. This
exercise combines if and while statements; unfortunately, an undesired logical
OR appears, that should be avoided. In this situation, the planner must try to
adapt this exercise to fit the query but without changing the semantics.

The required operators to solve this problem are introduced next. The vocab-
ulary used to describe the preconditions and effects are the concepts and roles
of the ontology. The operator effects are described using two different lists: the
del list, that contains assertions that must be removed from the current state,
and the add list with new assertions that will be added. For example, the follow-
ing operator changes the two branches of an If-Then-Else, negating the boolean
condition and swapping the statements of the “yes” and “no” branches (the
newIndividual predicate represents the creation of a new individual, different
from the others):

operator swapIfBranches
vars ?if1, ?c1, ?br1, ?br2
pre IfInstruction(?if1), hasCondition(?if1, ?c1), hasIfYesBranch(?if1, ?br1), hasIfNo-

Branch(?if1, ?br2)
del hasCondition(?if1, ?c1), hasYesBranch(?if1, ?br1), hasNoBranch(?if1, ?br2)
add newIndividual(?c2), NotExpr(?c2), hasSubExpr(?c2, ?c1), hasCondition(?if1, ?c2),

hasYesBranch(?if1, ?br2), hasNoBranch(?if1, ?br1)

The second operator simplifies a logical expression as follows: not(a ≤ b) ⇒
a > b. We can define similar operators to simplify not(a = b) ⇒ a �= b, not(a <
b) ⇒ a ≥ b, etc.

operator notLessOrEqual
vars ?e1, ?e2, ?le, ?re
pre NotExpr(?e1), hasSubExpr(?e1, ?e2), LessOrEqualThanExpr(?e2), hasSubexpr(?e2,

?le), hasSubexpr2(?e2, ?re)
del NotExpr(?e1), hasSubExpr(?e1, ?e2), hasSubexpr(?e2, ?le), hasSubexpr2(?e2, ?re),

removeIndividual(?e2)
add GreaterThanExpr(?e1), hasSubexpr(?e1, ?le), hasSubexpr2(?e1, ?re)

Finally, we have operators to represent the De Morgan’s laws (not(a or b) ⇒
not a and not b, not(a and b) ⇒ not a or not b). Next, we only show the operator
for one of them, but the other one is very similar:

operator notOr

vars ?e1, ?e2, ?le, ?re

pre NotExpr(?e1), hasSubExpr(?e1, ?e2), OrExpr(?e2), hasSubexpr(?e2, ?le), has-
Subexpr2(?e2, ?re)

del NotExpr(?e1), hasSubExpr(?e1, ?e2), hasSubexpr(?e2, ?le), hasSubexpr2(?e2, ?re),
removeIndividual(?e2)

add newIndividual(?n1), newIndividual(?n2), AndExpr(?e1), hasSubexpr(?e1,?n1), has-
Subexpr2(?e1,?n2), NotExpr(?n1), NotExpr(?n2), hasSubexpr(?n1,?le), hasSubexpr(?n2,?re)

We do not need any more operators for this practical example, but several
more can be scripted to improve the planner. Next, we describe how, using these

514 A. Sánchez-Ruiz et al.

int euclides (int a, int b) {
int res ;
if (!((a <= 0) || (b <= 0))) {

while (a != b) {
if (a < b)

b −= a;
else

a −= b;
}
res = a;

}
else

res = 0;
return res;

}
(a) Euclides 1

int euclides (int a, int b) {
int res ;
if (!(a <= 0) && !(b <= 0)) {

while (a != b) {
if (a < b)

b −= a;
else

a −= b;
}
res = a;

}
else

res = 0;
return res;

}
(b) Euclides 2

Fig. 8. Euclidean algorithm during the adaptation process

operators, the planner will be able to adapt the retrieved Euclidean algorithm,
removing the logical OR and completely matching the query

First, the planner uses the swapIfBranches operator on the more external if,
transforming the code as shown on the left side of figure 8. Then, the planner
tries one of the De Morgan operators to remove the negated OR, and the program
changes as shown in the same figure on the right. At this point, the planner has
removed the OR operator, but has also generated a couple of NOTs. However,
this problem can be easily solved using the operators that simplify the logical
negation twice. This way, the planner obtains a code that fits the original query
(if and while, but no logical OR neither NOT) (figure 9), and the case has been
successfully adapted.

6 Related Work

Regarding related work about domain-independent case adaptation, is very rel-
evant the work of Leake [12] and the DIAL system. They use reasoning from
scratch to build a library of adaptation cases that are stored for future reuse.
The reasoning from scratch process is divided in two different phases. The first
one, is a transformation phase based on general rules that define the general
strategy for adaptation. Each rule defines the information that needs to be ap-
plied, or knowledge goals. The second phase uses a planning component to obtain
that information using introspective reasoning about memory search strategies.
Traces of all this process are stored as cases to enable future adaptation. The
system keeps two types of cases: memory search cases encapsulate information
about the steps in the memory search process; and, adaptation cases encapsu-
late information about the adaptation problem as a whole, including both the
transformation used and the memory search process followed.

Adaptation through Planning in Knowledge Intensive CBR 515

int euclides (int a, int b) {
int res ;
if ((a > 0) && (b > 0)) {

while (a != b) {
if (a < b)

b −= a;
else

a −= b;
}
res = a;

}
else

res = 0;
return res;

}
(a) Euclides 3

Fig. 9. Euclidean algorithm adapted successfully

A difference with our approach is that they use planning to retrieve infor-
mation from the memory, and thus, their operators describe actions within a
“mental” world, rather than within the external world. Our operators describe
atomic changes in cases, that will be combined to perform possibly complex and
structural changes. Another difference is the lack of general rules to define adap-
tation strategies in our approach. Although these rules can improve the system
performance, the knowledge to define them will not always be available. Finally,
the use of DLs in our work, besides the inherent benefits of a knowledge repre-
sentation technology equipped with a well defined and formal semantic, provides
an expressive and standard language for domain descriptions. DL reasoners can
take advantage of this semantic information to perform different types of rea-
soning, and this way, an adaptation process based on DLs becomes more flexible
and effective.

Our research group has worked previously in CBR adaptation with DLs [13].
In that work cases are also represented as a net of connected individuals, where
each one of them represents a component of the solution. However, that time
we chose to represent dependences between individuals explicitly in each case
using properties, and adaptation was performed replacing individuals with an-
other similar ones. Similarity was computed using the ontology and when one
individual was replaced all its dependences had to be updated. An important
limitation of that approach is that cannot change the structure of the solution
being adapted. On the other hand, using planning we only need to write planning
operators that represent atomic adaptations, but it is the planner responsibility
to deal with all the dependences and constraints.

The main drawback of this work is that knowledge about adaptation is needed
from the beginning to write the planning operators. An obvious research line is
to find different sources of knowledge and learning techniques to relax this as-
sumption. Different alternatives has been proposed, [14] is a framework which

516 A. Sánchez-Ruiz et al.

focus on what they call knowledge light approaches. This lightness means that
they are interested in methods which do not presume a lot of knowledge acqui-
sition work before learning, but, instead, use already acquired knowledge inside
the system. Wilke et al present as the first work on this area, the one described
in [15], where Hanney and Keane present an inductive learning algorithm to ex-
tract adaptation knowledge from the cases in the case base. Craw et al present a
more modern work in the same line [16] that achieves more robust learning us-
ing different learning algorithms, exemplifying these ideas in a component-based
pharmaceutical design system.

7 Conclusions

In this paper we have introduced the idea of using domain-independent planning
techniques for CBR adaptation. We use a special kind of planning that makes use
of rich ontologies for knowledge representation, but the idea of using a planner
for case adaptation is easily extended to other planning paradigms. We have
exemplified our approach in JV2M , a 3D educational game, that teaches how
to compile Java code into object code for the JVM. This system uses a CBR
subsystem to retrieve appropriate exercises for students, but if there is not a
perfect exercise in the case base, we use a planner to implement the exercise
adaptation.

An interesting idea for future work is if we can extend the domain ontol-
ogy with “high level” concepts about algorithms like final recursive algorithm
or simple iterative algorithm. These concepts would allow us to categorise and
retrieve cases using not only the vocabulary about Java statements but other
more abstract indexes.

It is also interesting the idea of improving the user profile adding more infor-
mation about what the student knows. This way, we would be able to represent
not only if the student knows how to compile a statement, but also in which
particular cases (combination of instructions) the student has had problems and
needs to improve. Using the planner we will be able to adapt the cases to fit
more specific requirements, starting with the general Java exercises from the
case base.

References

1. Gómez-Mart́ın, M.A., Gómez-Mart́ın, P.P., González-Calero, P.A.: Aprendizaje ac-
tivo en simulaciones interactivas. Revista Iberoamericana de Inteligencia Artifi-
cial 11(33), 25–36 (2007)

2. Gómez-Mart́ın, P.P., Gómez-Mart́ın, M.A., González-Calero, P.A.: Using
metaphors in game-based education. In: Hui, K.-c., Pan, Z., Chung, R.C.-k.,
Wang, C.C.L., Jin, X., Göbel, S., Li, E.C.-L. (eds.) EDUTAINMENT 2007. LNCS,
vol. 4469, pp. 477–488. Springer, Heidelberg (2007)

3. Hammond, K.J.: Case-Based Planning: Viewing Planning as a Memory Task. Aca-
demic Press, Boston (1989)

Adaptation through Planning in Knowledge Intensive CBR 517

4. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press, Cambridge (2003)

6. McNeill, F., Bundy, A., Walton, C.: Planning from rich ontologies through trans-
lation betweeen representations. In: Proceedings of ICAPS 2005 Workshop on The
Role of Ontologies in Planning and Scheduling, Monterey, CA, USA (2005)

7. Sirin, E.: Combining Description Logic reasoning with AI planning for composition
of web services. PhD thesis, University of Maryland (2006)

8. Sánchez-Ruiz, A.A., González-Calero, P.A., Dı́az-Agudo, B.: Planning with de-
scription logics and syntactic updates. In: Salido, M., Fdez-Olivares, J. (eds.):
Planning, Scheduling and Constraint Satisfaction (CAEPIA 2007 Workshop), Uni-
versidad de Salamanca, pp. 140–150 (2007)

9. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, 2006 (2006)
10. Dı́az-Agudo, B., González-Calero, P.: An Ontological Approach to Develop Knowl-

edge Intensive CBR Systems. In: Ontologies: A Handbook of Principles, Concepts
and Applications in Information Systems, pp. 173–214 (2007)

11. Gómez-Mart́ın, M.A., Gómez-Mart́ın, P.P., Palmier-Campos, P., González-Calero,
P.A.: Not yet another visualization tool: Learning compilers for fun. In: Panizo-
Alonso, L., Sánchez-González, L., Fernández-Manjón, B., Llamas-Nistal, M. (eds.)
8th International Symposium on Computers in Education (SIIE 2006), León, Spain,
Universidad de León, October 2006, pp. 264–271 (2006)

12. Leake, D.B., Kinley, A., Wilson, D.C.: Learning to improve case adaption by in-
trospective reasoning and CBR. In: ICCBR, pp. 229–240 (1995)

13. González-Calero, P.A., Gómez-Albarrán, M., Dı́az-Agudo, B.: A substitution-based
adaptation model. In: ICCBR Workshops, pp. 17–26 (1999)

14. Wilke, W., Vollrath, I., Bergmann, R.: Using knowledge containers to model a
framework for learning adaptation knowledge. In: Wettschereck, D., Aha, D.W.
(eds.) European Conference on Machine Learning (MLNet) Workshop Notes —
Case-Based Learning: Beyond Classification of Feature Vectors, pp. 68–75 (1997)

15. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith,
I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer,
Heidelberg (1996)

16. Craw, S., Wiratunga, N., Rowe, R.: Learning adaptation knowledge to improve
case-based reasoning. Artif. Intell. 170, 1175–1192 (2006)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 518–532, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Folk Arguments, Numerical Taxonomy and
Case-Based Reasoning

Luís A.L. Silva∗, John A. Campbell, and Bernard F. Buxton

Department of Computer Science, University College London,
Malet Place, London, WC1E 6BT, UK

{l.silva,j.campbell,b.buxton}@cs.ucl.ac.uk

Abstract. Experts who narrate their knowledge in case-like form often express
significant parts of it in folk arguments − considerations for and against alterna-
tive recommendations where informal judgment is involved. Such arguments do
not fit naturally into common frameworks of case-based reasoning. The knowl-
edge they contain may therefore be overlooked despite its value. The paper
indicates a mean of helping knowledge acquisition in such circumstances, pro-
poses numerical taxonomy for structuring case bases where folk arguments are
included, and shows how these contributions are used, through an example in-
volving both scientific considerations and subjective expert judgment: alloca-
tion of frequencies for shortwave broadcasting.

1 Introduction

In typical case-based reasoning (CBR) applications, cases consist of factual and/or
prescriptive information. In stating or justifying the contents of a case, its supplier
may use arguments in support of those contents. Explanations which figure in cases
when CBR becomes explanation-based reasoning [1] are a form of argument, but they
do not capture most of what a supplier would say if asked to reason aloud, for many
applications. Our present work has been concerned with recording this more informal
variety of argument, which we can call “folk argument” for simplicity, and with rep-
resenting it for use as an integral part of CBR.

Our starting point was an observation made during acquisition of knowledge that
was primarily case-like: apparently significant parts of experts’ knowledge which
emerged as “folk arguments” – mainly justifications for choices of items that then
fitted into standard CBR formats – found no eventual place in the cases themselves.
On the assumption that losing any relevant knowledge degrades the quality of later
reasoning or computation based on what is captured, we have considered how to ex-
ploit reasoning with folk arguments (i.e. arguments that do not have a logical and
formal structure as in [2] and do not maintain a logical character in a more informal
but detailed representation as in [3]) along with the standard components of cases.

The paper describes this process and the results that it produces in one application:
frequency allocation for shortwave radio broadcasting. This application is typical of

∗ This work is supported by CAPES/Brazil (grant number 2224/03-8).

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 519

many where folk argument about contents of cases occurs: there is no single strong
underlying theory, even implicit, hence no a priori objective criteria for success or
failure of a choice. The person/expert who makes the choice therefore rehearses all
the arguments for and against each key decision and decides on balance of their ap-
parent weights. We find the same expert behaviour in a second case-based applica-
tion: authentication of paintings through information about pigments contained in
them for which preliminary results are presented in [4].

2 Background to the Work

Argumentation is an active area of research in its own right, both inside Artificial
Intelligence (AI) and outside. [2, 5] give a reliable impression of this level of activity.
Broadly speaking, the greatest advances and the greatest interest have been concen-
trated in two overlapping areas: the nature of legal argumentation in legal applications
of AI where [6] present a good picture of the state of play in CBR, and the formula-
tion of arguments via some appropriate version of mathematical logic [2].

Whether the initial consideration is systematic in terms of law (e.g. [6]) or reflects
the not so systematic nature of human decision-making (e.g. [7]), there has been a
strong tendency towards the use of logic to express what a reasoner is doing. This is
appropriate for other areas besides law. However, in other areas the domain expert
may believe, tacitly at least, that early reference from a consideration or set of consid-
erations to some general “factor”, principle or tentative rule is unhelpful or impracti-
cable. This is particularly so when expert behaviour in a subject consists of making
recommendations based on considerations for and against intermediate or final
conclusions without apparent development of an argument that goes naturally into a
logical framework. Imposing any such framework (e.g. as a means of directing an
interview of an expert) can then reduce the quality of information given or the ex-
pert’s degree of cooperation with the interviewer. This is a particular example of a
general phenomenon that knowledge engineers in the early days of expert systems
discovered and then tried to avoid.

In our experience, it is not difficult to find applications where experts naturally of-
fer “considerations” in support of their conclusions. The same behaviour also occurs
frequently in non-expert reasoning towards a conclusion. The term “folk argument”
describes the phenomenon rather well, and memorably. A folk argument is a sequence
of individual considerations or steps. The most common sequence consists of positive
and negative considerations, with item i+1 being a supportive or contradictory re-
sponse to item i. An example is given in section 3. Seeing a case of frequency alloca-
tion for shortwave broadcasting with and without its accompanying folk argument F
shows immediately that neglecting F loses essential information (and the same is true
for use of pigment observations to authenticate paintings). The question is: how can F
be used to assist CBR? There is also the subsidiary question of helping to elicit F as
fully as possible (addressed in section 4).

2.1 Numerical Taxonomy and Its Role

Suppose that a set of items is given, where each item has various features and where
the values of the features can be noted. Suppose also that it is possible to assign or

520 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

measure directly the relative distances or differences between any pair of values of
any one feature. Direct measurement is appropriate, for example, if a feature is a spa-
tial coordinate. Assignment is needed if there is no obvious coordinate in any space,
e.g. where a feature is a certain kind of texture or a preferred food. It is required to
propose a classification of the specimens in a tree showing their relative closeness to
each other. Proceeding upwards from the individuals, the closest are associated first,
forming small clusters, and further specimens or clusters are associated into larger
clusters, until a single cluster is reached as the root of the tree. Each intermediate node
between the leaves and the root represents one association. What is necessary to make
this process work?

Historically, the earliest demands for the process came from botany and zoology.
Either (usually) there was no strong theory which could be used to make the classifi-
cation or it was desired to see what would happen and what generalisations the tree (a
“dendrogram”) could suggest if no theory were assumed. Numerical taxonomy [8] is
the response to this demand. In brief, for features 1, 2 ... of specimens x and y, only a
distance function D of all the differences x1 – y1, x2 – y2, ... is needed. There are
then several clustering algorithms which can use D in generating the dendrogram. For
any application there are still questions to be answered in order to define D, e.g. nor-
malisation and scaling of feature values, choice of the functional form of D (a Py-
thagorean form is a default choice) and - even before these - choice of the attributes to
be parameterised in setting up D. [8] treats these issues in detail.

Numerical taxonomy is relevant for the classification or indexing of cases − or,
more generally, any items with heterogeneous features. It is particularly useful where
the numbers of available items are too small for trustworthy machine learning and
where no single set of keys for indexing suggests itself (e.g. when even experts have
no preferred framework for the job). The latter consideration holds for folk argumen-
tation characteristics even when it may not be true for the facts of a case.

3 Frequency Allocation for Shortwave Broadcasting

Shortwave broadcasting is an international activity. Even when a station in a given
country is intended only for reception by listeners in that country, it has international
implications. This is because the short waves (by convention, with frequencies be-
tween about 3 and 26 MHz), unlike the 0.5-1.7 MHz medium wave band, are fa-
voured for long-distance reception. It is not unusual for domestic broadcasts, even at
the lowest frequencies, to be heard on the other side of the world.

Shortwave stations’ choices of frequencies and broadcasting times are registered
with the International Telecommunications Union – ITU which makes summary in-
formation about the choices available at least annually. In principle this allows sta-
tions to plan their allocations to avoid significant instances of interference between
different transmitters on the same frequency at the same time. In practice there are
several reasons why interference persists. For example, the registration system is too
cumbersome to support multi-step negotiation between stations whose choices of
allocation risk leading to interference, and some nations (the ITU’s informants are
national ministries and not stations themselves) have only a hazy impression of what
is happening in shortwave broadcasting inside their borders. Therefore, many stations

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 521

rely on specialist consultants on international allocation to advise them on appropriate
choices so that their listeners can hope to hear their broadcasts without interference.
Nevertheless, the most accessible and accurate compilations of actual monitored
shortwave broadcasting activity, the Passport to World Band Radio - PWBR [9], still
show many examples of potential or real interference each year. The graphical content
of the “blue pages” there shows also, better than any short explanation in words, why
allocation is a complicated exercise.

This is the starting point for our collection of cases of at least potential interfer-
ence. Each case consists of factual information about broadcasts that may interfere
with some given transmission, an expert-level assessment of the quality of the as-
signment of frequency (including a numerical rating within [0.0, 4.0] in steps of 0.25)
and time to that transmission, and the folk arguments relevant to the assessment. The
material is taken from the 2003 PWBR. Conclusions drawn by computation on this
case base are subject to evaluation by a comparison with what is recorded in the 2004
PWBR, i.e. after the stations had a year of experience and listener feedback concern-
ing the choices, and through the comments of shortwave reception specialists who
have a different user perspective from that of an allocation consultant.

We consider the treatment of the folk argument parts of cases in section 4. It may
be helpful, first, to appreciate Fig. 1 for several examples of what we mean by a folk
argument. This has two purposes. First, it establishes a foundation which makes it
easier to understand the more abstract discussion in section 4. Second, it indicates the
kinds of terms that occur in radio knowledge, and is evidence for why the argument
part of a radio case is too multifaceted and informal for the approaches to argumenta-
tion found in publications on legal applications and/or logic. This example refers to
the broadcaster “Radio Melodia”, a Peruvian station on 5.9975 MHz, with transmitter
power of 5 kW, aiming to reach domestic listeners (in principle, a large area around
Arequipa, Peru) and transmitting from 11:00 to 14:00 (UTC). A potential interfering
station considered is “Voz del Upano”, a station in Ecuador on 5.9994 MHz, with
transmitter power of 10 kW, domestic listeners and transmitting over the same time
interval as “Radio Melodia”. Facts regarding target station and potential interfering
stations are selected as inputs to the allocation problem. According to the expert
analysis of this Peruvian allocation, the rating of this assignment is 3.25 (not perfect,
but very acceptable for the transmission purposes).

4 Folk Arguments Revisited

There are several well-developed methods of knowledge elicitation, KADS [10] in
particular. Although first devised for acquiring knowledge for use in rule-based expert
systems, their foundation in cognitive psychology ensures that such methods are not
limited to the recognition of rules. Such methods are not immediately usable for the
elicitation of arguments of any kind, but we have adapted the “reasoning template”
(the model in which the task and method of reasoning are described in an abstract and
reusable way) approach of [10] to this end. A basic template for “radio allocation”,
the essence of our application, is the central part of Fig. 1. This serves not only as a
framework to be filled out by the facts and prescriptions of a case, but also as support
for elicitation of pro and con assertions that comprise a folk argument, and eventually

522 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

as a repository of the knowledge that is expressed in arguments. Examples are shown
at the sides of Fig. 1. The complete template can be found in [11].

We began this project by trying to represent expert arguments, folk and otherwise,
by using a full structure [3] which covers most of what is presented in argumentation
formalisms in the literature [2, 5]. However, our practical experience has shown that
the full Toulmin model (which contains data, qualifier, warrant, backing and rebuttal)
requires too much information from experts to be an effective knowledge acquisition
tool. In practice, as experts’ time is valuable, expert arguments can be captured effec-
tively enough as sequences of statements. A statement expresses what we call a con-
sideration in section 2.

The sequences amount to an explanation of the problem-solving process, resem-
bling what is presented as a “fossilised” explanation trace of the decision-making [12]
and an anchored narrative [13]. Basically, the representations involve the proposition
and qualification of arguments and decisions, in which these two components evolve
according to how the expert perceives information in the problem. We also follow a
qualitative line of representation [14]. The argument process in our framework,
“ArgCases”, is expressed as i) statement, ii) Annotated-argument-type iii) orientation
and iv) Inputs ⇒argument-effect Outputs.

A statement is a simple textual sentence making an assertion that has some rele-
vance in the problem situation, as at the end of section 3. Once statements like these
have been collected from the expert, they are labelled with “argument types”. An
argument-type (AT) summarises the nature of the information exploited by the expert
in proposing and testing arguments. In principle, the types summarise what these
statements are about. Such a labelling of information comes naturally to experts. Ex-
amples of argument types presented in Fig. 1 include: “target station propagation”,
“features of Braun contour maps” from a set of 25 different argument types, different
facets of knowledge, in the shortwave radio application.

The characterisation of statements by using argument types requires a list of types
to be obtained in advance. Such a list can be developed by the equivalent of a knowl-
edge engineering analysis of the information contained in any record of arguments
available from case problems solved in the past. Then, the list can be refined gradu-
ally according to what experts consider to be the most appropriate level of detail. In
the radio application, most of these refinements were related to adjusting the wording
of argument types and the introduction of new types. In addition to argument types,
an argument is characterised by its orientation. As exploited in various qualitative
methods of decision-making, an orientation states whether the argument is in favour
of or against some proposal: Orientation-type = {in-favour; against; neutral}. In the
current application, for example, arguments are said to be “in favour” (i.e. part of a set
of pros) if they give support to the allocation that an expert is evaluating.

Another key aspect of the ArgCases framework is that it records the changes that
each statement makes in a running estimate of the quality of an allocation. The sym-
bolic form of this record is Inputs ⇒argument-effect Outputs. The Inputs and Outputs are
each of the form {<sign1, quality1>, <sign2, quality2>, …}. Each quality is a member
of a small set of values decided in advance, e.g. {B, U, A, G, E} or {bad, usable,
adequate, good, excellent}; {N, Z, S, A, R} or {none, slight, nuisance, problematic,
unavoidable}. The adjectives in the last set refer to radio interference. In the earlier
set here, they refer to likely overall quality of reception – but they could stand for a

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 523

5-stage gradation of a decision estimate on anything in any application. Any quality is
accompanied by a sign, drawn from Signs = {+ +, +, 0, −, − −} indicating the weight
of evidence for or against the value that it qualifies. “0” here denotes “some evi-
dence”, while “no evidence” for some quality Q means that Q is absent in the expert’
choice. Once the argument information has been collected, the expert is asked to sup-
ply an Inputs ⇒ Outputs pair for each statement. In a connected sequence of state-
ments, the Input of each will be the Output of the previous statement.

Target area

Propagation

Quality of
propagation

Target area
effects

specify

specify

(A1) “Braun maps say the
target station propagation is
practicable”; AT01: “Target
station propagation”; Pro
allocation; {+ +G; +E}

(A2) “For d close to 0, the
frequency may be very close to
maximum usable frequency -
MUF”; AT23: “Features of
Braun contour maps” and
AT01: “Target station propa-
gation”; Against allocation;
{+ +G; +E} {0A; +G; E}

(A3) “Shortwave band is traditional
over 50+ years for South American
domestic broadcasting in mornings /
daylight, i.e. the practical evidence is
that the propagation will work”;
AT20:“Daytime / night effects”; Pro
allocation; {0A; +G; E} {+ +G}

(A4) “Terrain includes mountainous regions
which reduce effectiveness of the basic

propagation”; AT13: “Refinements concerning
listeners’ locations”; Against allocation;

{+ +G} {+A; +G}

(A5) “Most listeners will be
in agricultural districts

which are relatively open
and not hidden in deep

mountain valleys”; AT12:
“Location(s) of the most
important listeners” and

AT13: “Refinements
concerning listeners’

locations”; Pro allocation;
{+A; +G} { A; +G}

(A6) “Actual target area is much smaller than a country -
it’s likely to be confined to a small area around Arequipa –

hence energy density in the target area is good enough to
keep the listeners happy”; AT05: “Level of energy at target

area”; Pro allocation; { A; +G} {+G}

Grounds Grounds

Body of knowledge Inference step Data and knowledge flow Sequence of arguments

Fig. 1. The analysis of target station allocation (i.e. propagation and target area effects)

Fig. 1 shows what happens when we start to attach the characteristics of the
ArgCases argumentation framework to the reasoning template [11] and its representa-
tion characteristics [10]. In addition to the list of facts for target and interfering sta-
tions as presented near the end of section 3, we used the structure of the template for
guiding the elicitation of several pro and con folk arguments and how they were char-
acterised by the expert in terms of “argument types” (ATs). Each folk argument was
also represented along with the expert evaluation of possible input and output esti-
mates of an allocation decision. Once not only facts but also folk arguments are avail-
able in cases, the next step in the development of a CBR application is the taxonomic
analysis of these case characteristics.

524 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

5 Numerical Taxonomy Revisited

In order to use numerical taxonomy on folk arguments recorded in cases for CBR, we
have to decide what versions or parts of them to parameterise, and then how to pa-
rameterise them. The information that an overall folk argument carries has a more
immediate effect on the outcome in a case than the details of any individual statement
within it. There are many ways to express collective properties by combining local
details in folk arguments whose form is indicated in section 4 and Fig. 1. If a choice is
too simple, this will be visible in poor indexing when the resulting case base is ana-
lysed taxonomically. We omit any account of this experience (touched on in [11]),
and go straight to the end-point.

Informally, the expert’s estimate in a radio frequency allocation depends at least on
the overall trend of an argument and on the pro and con balance of these statements as
the argument proceeds. We have found that just these two, suitably represented ac-
cording to the expert description (i.e. analysing folk arguments according to the de-
gree of detail provided by the expert, without breaking them up in possibly incorrect
ways), lead through numerical taxonomy to an indexing of cases that results in a good
evaluation.

The balance feature is the quantitative balance of negative and positive statements
in an overall folk argument (i.e. a sequence of statements). It is at least as old as Ben-
jamin Franklin’s method of decision-making or “moral algebra”. In his method, deci-
sions could be made merely by considering (counting) the pros and cons in a problem
situation. The actual balance of pros and cons is traditionally investigated in argumen-
tation by “balancing heuristics”, e.g. as discussed in [15]. We start from the different
and simpler question of whether problems with similar quantitative balance of pros
and cons have similar solutions.

Separately from balance, a trend or direction feature identifying the way an esti-
mate of a decision in a sequence of folk arguments is tending is easy to see infor-
mally: for example, whether a) there is a systematic tendency to strengthen or weaken
the support for the action (here, a frequency allocation) under consideration, b) no
movement on that front, c) or irregular movement but no global trend. In section 6,
we explain how to apply such an observation to the folk arguments present in our
cases.

5.1 The Observation and Coding of Argumentation Features

The values of balance we use are: Balance feature = {“Indecisive”, “Positive”, “En-
couraging”, “Negative”, “Discouraging”}. The data allow us to distinguish these
values reliably, but do not encourage finer distinctions. These values are determined
by simple rules involving the number of pros and cons such as IF Pros >= 3 AND
Cons = 1 THEN BalanceValue = “Positive”. Finally, balance results are recorded in a
Balance Feature Table (Table 1).

There is a similar simple set of trend values: Trend feature = {“Upwards”, “Down-
wards”, “Flat”, “Irregular”}. “Global trends” in a sequence of folk argument estimates
are determined from “local trends” expressed in argument inputs and outputs. Local
trends are found via a Mean Decision Value (MDV): a simple weighted mean compu-
tation between labels of qualities in which the signs of these labels are taken as

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 525

Table 1. Balance Feature Table: balance values in each inference in the radio problem

Case name
(including the
allocation rating)

Balance values
of target station
arrangements

Balance values of
interfering station
arrangements

Balance values
of listeners’
arrangements

s01Rating3.75 “Indecisive” “Discouraging” “Encouraging”
s02Rating2.00 “Indecisive” “Negative” “Indecisive”
… … … …
s39Rating3.00 “Encouraging” “Indecisive” “Positive”

weights. Similar to what happens when symbolic factual features are transformed into
numerical features in traditional numerical taxonomy, qualities and signs are con-
nected first to numerical scales: Numerical qualities = {“E” = 5.0; “G” = 4.0; …} and
Numerical signs = {“+ +” = 1.0; “+” = 0.8; “0” = 0.6; …}. For instance, the initial
qualitative value in A1 in Fig. 1 has an MDV({+ +G; +E}) = 4.44 since “G” = 4.0,
“E” = 5.0, “+ +” = 1.0 and “+” = 0.8 (i.e. (((1.0 * 4.0) + (0.8 * 5.0)) / (1.0 + 0.8)) =
4.44). Then, the “local trend” of any individual folk argument can be found from the
MDVs of its input and output. For A2 in Fig. 1, {+ +G; +E} ⇒ {0A; +G; −E} is
“Downwards” because the MDV({+ +G; +E}) is higher than MDV({0A; +G; −E}).
Automatic determination of “Upwards” and “Flat” local trends occurs similarly.

Global trends are determined by computation of the amount by which inputs and
outputs change over an individual folk argument: the Degree of Change (DoC). We
use a set-theoretic fuzzy approach to calculate DoC (details of fuzzy functions can be
found in [16]). Taking {+ +G; +E} ⇒ {0A; +G; −E} as an example, the degree of
change is calculated as: Step 1): Take the “E” quality only. The Inputs and Outputs
are respectively “+E” and “−E”. Apply minimum and maximum functions over the
signs of “E”, MIN(+E, −E) = “−E” and MAX(+E, −E) = “+E”; Step 2): Repeat (Step
1) for the other Input and Output qualities. The results are MIN(Inputs, Outputs) =
{+G; −E} and MAX(Inputs, Outputs) = {0A; + +G; +E}. Then the values of Numeri-
cal signs from the MIN and MAX elements are substituted in (1), giving DoC({+ +G;
+E}, {0A; +G; −E}) = 1.0 – ({+G; −E} / {0A; + +G; +E}) = 1.0 – ((0.8 + 0.4) / (0.6 +
1.0 + 0.8)) = 0.5.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑∑

==

n

i

ii

n

i

ii OutputsInputsMAXOutputsInputsMINOutputsInputsDoC
11

),(),(0.1),(

(1)

By using information from both local trends and degrees of change when individ-
ual folk argument estimates are examined, a pictorial representation for the global
trend can be constructed. In this representation, local trend determinations provide the
direction of the graph (i.e. up, down and horizontal) and degrees of change provide
the points in the graph such that: IF LocalTrendValue(An) = “Upwards” THEN Lo-
calTrendPoint(An) = LocalTrendPoint(An − 1) + DoC(An). Determination of trend
points for “Downwards” and “Flat” local trends occur by subtracting a DoC from a
previous trend point value and by keeping a trend point value, respectively. The result
of the manual annotation of global trends in a sequence of folk argument estimates
(e.g. Fig. 2) is recorded in a Trend Feature Table (Table 2). Tables 1 and 2 show a
simple version of the full folk argumentation information recorded in cases in our

526 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

A2

A3

A4

A5

A6

A1

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Sequence of arguments

The pictorial representation supports the
recognition of “global trends” by the
knowledge engineer (and later checking by
the expert in the application domain). In the
picture here, the overall trend in the
sequence of pro and con folk argument
estimates presented in Fig. 1 is evidently
“Irregular”. Note how we represent folk
arguments (An) on the “x” axis and a) the
direction and b) degree of change of “local
trends” from each folk argument Input and
Output estimates on the ”y” axis

Fig. 2. Example of a pictorial representation of trend

Table 2. Trend Feature Table: global trend values in each inference of the radio problem

Case name
(including the
allocation rating)

Trend values of
target station
arrangements

Trend values of
interfering station
arrangements

Trend values
of listeners’
arrangements

s01Rating3.75 “Irregular” “Irregular” “Downwards”
s02Rating2.00 “Downwards” “Upwards” “Upwards”
… … … …
s39Rating3.00 “Downwards” “Upwards” “Downwards”

case base. Nevertheless, the complete case structure is formed by a) facts, b) folk
arguments along with their estimates and c) an allocation conclusion (i.e. a rating).

5.2 The Estimation of Similarity of Argumentation Features

A central aspect in our CBR applications, and also in numerical taxonomy, is the
computation of similarity here of not only facts, but also folk argumentation features.
The simplest way of computing the similarity between individual balance and/or trend
characteristics is to take these features as “strings”. Even though matching of strings
is simple, the resulting similarities between cases are enough to form case groups
containing similar quality of allocation. In more specific detail, useful results follow
from the exploitation of what two folk argumentation features in our case base tell us:
a) the number of pros and cons in the different balance types and b) the number of
different types of local trends within the global trend types.

In exploiting the composition of balance features, for example, the similarity be-
tween two balance values (e.g. “Positive” and “Encouraging”) is obtained from a
table: a Balance Similarity Table (BST). The entries in the BST reflect the similarities
of normalised distributions of pros and cons in each different balance feature of the
case base (Table 1). For example, the “Positive” balance appears in 33 places in the
full Table 1. The composition of one of these “Positive” balances is 3 pros (P) and 1
con (C). This composition is P3 = 1 and C1 = 1. We just count these “Positive” com-
positions and then normalise them by the number of “Positive” balances in the case
base. These normalised distributions are expressed as fuzzy sets of pros and cons
(Table 3). The BST records the similarities from the numerical composition sets of

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 527

Table 3. Normalised distributions of pros and cons in balance features

Balance feature Pros fuzzy set Cons fuzzy set
“Positive” {P0: 0.00; P1: 0.18; P2: 0.27; P3:

0.36; P4: 0.12; P5: 0.06}
{C0: 0.64; C1: 0.36; C2: 0.00; C3:
0.00; C4: 0.00; C5: 0.00}

“Encouraging” {P0: 0.00; P1: 0.00; P2: 0.57; P3:
0.22; P4: 0.22; P5: 0.00}

{C0: 0.00; C1: 0.57; C2: 0.39; C3:
0.04; C4: 0.00; C5: 0.00}

… … …

Table 3. Applying a geometric fuzzy set similarity function [16] – for a 2-dimensional
Euclidean space – to the data in Table 3 for each pair of rows then produces the con-
tents of the BST.

The similarity between two trend values (e.g. “Irregular and “Downwards”) is ob-
tained in the same way from a table: the Trend Similarity Table (TST). As for balance
distributions, we compute global trend distributions from local trend elements. Nor-
malised by the number of “Irregular” trends in Table 2, its “Irregular” global trend is
then: Irregular trend fuzzy set = {Upwards: 1.33; Downwards: 1.55; Flat: 1.28} which
leads to a trend feature table analogous of Table 3. The TST is found from this table
in the same way as the BST is derived from Table 3.

5.3 Clustering and Determination of Taxonomies for Argumentation Features

Similarities between cases are computed and stored in a similarity matrix which then
is used as input in the clustering analysis. We have exploited hierarchical methods of
clustering [8, 17], considering both “average” and “complete” linking methods (since
they most often give the best hierarchical representation of relationships expressed in
a similarity matrix). Fig. 3 presents the hierarchical cluster structure (dendrogram)
arising from the similarities of the balance features only in the radio frequency alloca-
tion cases (Table 2). These similarities are computed in each of the three subdivisions
of the case arguments (target station details, details about interfering station(s) and
listeners’ arrangements). The balance values in these three areas are the dimensions
for a weighted Euclidean distance computation. Fig. 3 shows just the groups that
appear when each of the three balance dimensions has the same weight = 1.0. The
clusters formed are reasonable in the sense that cases with similar expert ratings for
the quality of the frequency allocation tend to occur together. Where low (inadvis-
able) and high (good) rated cases are present in the same cluster, this may be either
because there is some significant consideration in their folk arguments not captured
by our simple parameterisation or because the parameters obtained so far have not
been scaled appropriately in our distance measure D. To deal with the latter and to
improve the clustering results, we experimented with variations in the scales, equiva-
lent to altering the weights.

The procedure starts from an “extreme heuristic” − e.g., using a weight of 20 for
each of the three dimensions of Table 1 while the other two weights in these dimen-
sions are unchanged, and examining the changes of cluster membership from Fig. 3.
The original weights are then adjusted, subject to expert agreement that they do not
distort the relative importance of the dimensions, and values are chosen that maximise
the overall agreement between the ratings of cases in the same clusters. This treatment
is repeated for the “trend” features of Table 2.

528 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

s3
6R

at
in

g0
.5

0

s1
9R

at
in

g0
.5

0

s2
4R

at
in

g2
.5

0

s2
3R

at
in

g0
.7

5

s0
2R

at
in

g2
.0

0

s0
7R

at
in

g0
.7

5

s1
2R

at
in

g3
.2

5

s2
1R

at
in

g3
.7

5

s2
7R

at
in

g0
.5

0

s3
1R

at
in

g0
.5

0

s2
9R

at
in

g2
.7

5

s0
3R

at
in

g2
.7

5

s0
8R

at
in

g3
.0

0

s0
1R

at
in

g3
.7

5

s1
6R

at
in

g3
.5

0

s1
0R

at
in

g2
.0

0

s2
6R

at
in

g2
.2

5

s3
2R

at
in

g3
.7

5

s0
4R

at
in

g3
.7

5

s0
9R

at
in

g3
.2

5

s1
7R

at
in

g3
.7

5

s3
9R

at
in

g3
.0

0

s1
3R

at
in

g3
.2

5

s3
0R

at
in

g3
.2

5

s1
5R

at
in

g2
.5

0

s2
8R

at
in

g3
.7

5

s0
5R

at
in

g2
.5

0

s1
4R

at
in

g2
.7

5 s1
1R

at
in

g3
.5

0

s3
3R

at
in

g3
.2

5

s2
5R

at
in

g3
.0

0

s3
8R

at
in

g2
.7

5 s3
7R

at
in

g3
.5

0

s0
6R

at
in

g3
.7

5

s1
8R

at
in

g2
.7

5

s2
0R

at
in

g3
.0

0

s2
2R

at
in

g3
.7

5

s3
4R

at
in

g1
.0

0

s3
5R

at
in

g0
.2

5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 3. The analysis of balance features only (weights = 1.0, “average” linking)

s2
2R

at
in

g3
.7

5

s3
7R

at
in

g3
.5

0

s1
3R

at
in

g3
.2

5

s2
5R

at
in

g3
.0

0

s3
8R

at
in

g2
.7

5

s1
5R

at
in

g2
.5

0

s2
8R

at
in

g3
.7

5

s3
0R

at
in

g3
.2

5

s0
9R

at
in

g3
.2

5

s1
8R

at
in

g2
.7

5

s3
9R

at
in

g3
.0

0

s1
7R

at
in

g3
.7

5

s0
6R

at
in

g3
.7

5

s0
4R

at
in

g3
.7

5

s3
2R

at
in

g3
.7

5 s0
5R

at
in

g2
.5

0

s1
4R

at
in

g2
.7

5

s0
3R

at
in

g2
.7

5

s0
1R

at
in

g3
.7

5

s3
3R

at
in

g3
.2

5

s1
1R

at
in

g3
.5

0

s1
6R

at
in

g3
.5

0

s1
2R

at
in

g3
.2

5

s2
0R

at
in

g3
.0

0

s2
1R

at
in

g3
.7

5

s0
8R

at
in

g3
.0

0

s2
9R

at
in

g2
.7

5

s3
6R

at
in

g0
.5

0

s1
9R

at
in

g0
.5

0

s2
4R

at
in

g2
.5

0

s2
3R

at
in

g0
.7

5

s0
2R

at
in

g2
.0

0

s0
7R

at
in

g0
.7

5

s1
0R

at
in

g2
.0

0

s2
6R

at
in

g2
.2

5

s3
5R

at
in

g0
.2

5

s2
7R

at
in

g0
.5

0

s3
1R

at
in

g0
.5

0

s3
4R

at
in

g1
.0

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 4. Weighted and combined balance and trend features (“average” linking)

The process we have described here is typical of applications in numerical taxon-
omy: a machine-supported process of user-directed learning through construction and
examination of different taxonomies. It is appropriate to involve the domain expert in
the search for a good taxonomy (and the weights that may lead to it) for the current
purposes. The dendrogram structure is clear and simple enough for the expert to make
comments about the organisation and relevance of the groups formed. In several situa-
tions, the radio expert has started to explain why some groups of cases were formed in
the taxonomy according to folk arguments recorded. The information thus elicited
was not available before the application of the taxonomic procedures, which shows
that even simple folk argumentation characteristics may help to reveal deeper relevant
information in the application. In essence, this taxonomic process is a two-way task of
both the successive formalisation of the domain by the expert and the improvement of
the taxonomic structure by the knowledge engineer. In developing a CBR application,
we use folk argumentation information first, for the improvement of similarity

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 529

assessment and the taxonomic organisation of the cases. In the radio application, the
most satisfactory taxonomy from adjusted weights in combined balance and trend
features in a six-dimensional Euclidean space is presented in Fig. 4.

6 Evaluation: How the Actual CBR Application Works

The ultimate authorities on the quality of an allocation are the listeners to radio sta-
tions. The listeners are amateurs who have gained this intuitive knowledge by long
contact with the different kinds of transmission, often in different places via “DXpedi-
tions” (DX = distance, in their argot) to hear exotic stations not audible at home and
by exchange of periodicals referring to such experience in other countries. They are
best placed to comment on a variety of allocations covering different types of source
and target region, broadcasting period and station operator, and to criticise the rec-
ommendations of allocation experts.

Fig. 4 is a collection of 39 radio allocation cases indexed to associate most closely
the most similar cases. Fig. 4 mimics the behaviour of an allocation expert who fo-
cuses on a simple abstract structuring of folk arguments, as discussed in section 3 and
Fig. 1, to provide the index for the cases. If the approach were misguided, the result-
ing index for the case base would make no sense to experienced amateur listeners,
who would point out where the similarities it suggested were locally defective and
offer counter-suggestions of their own. Substantial correspondence between its struc-
ture and their opinions, on the other hand, would amount to a positive evaluation of
the means and knowledge used to build it.

The facts and folk arguments of the 39 cases, minus the Inputs and Outputs infor-
mation and the expert’s numerical rating of the quality of each allocation, were pro-
vided to two such amateurs together with an explanation of dendrograms and how
they were formed. They were asked to construct, as far as possible, dendrograms G
showing their view of the similarities of the cases from the perspective of the stations’
listeners. After trying, neither one was willing to sketch a full dendrogram. However,
they were prepared to group cases into clusters (including clusters of size 1) at some
level, and to propose further structure inside some clusters. We contrast these ama-
teurs’ clusters with the clusters formed in our numerical taxonomy process. It can be
seen from Fig. 4 that the main clustering occurs around 0.25 on the vertical scale.
Using this value as a reference, one can draw a horizontal line in the tree and read off
the main case families below this line.

After clarification of ambiguities in amateurs’ replies but without hints about the
detailed memberships of clusters, both respondents offered one large cluster strongly
similar to the (s22 ... s32) family in Fig. 4. There were other local differences, none
gross, e.g. one gave (s14) (s01 s05 s33) in place of (s05 s14) (s01 s33), and one gave
(s08 s11) (s16 s29) in place of (s11 s16) (s08 s29). Informally this indicates a very
good agreement between specialist amateur opinions and the set of cases indexed
automatically via “balance” plus “trend” folk argumentation characteristics. But more
quantitatively, let us suppose a case C and the three most similar cases to it in Fig. 4
as a set S, and look for correspondences between the cluster they form in the figure
and the positions of the members of S in a respondent’s grouping G. We chose |S| = 4
because we assume that a retrieval of three cases in response to a typical CBR enquiry

530 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

would be a reasonable user demand. Score 1 for each presence of C and another ele-
ment of S in the same cluster, or n + 1 if they co-occur n levels down (towards the
leaves) in G; add 1 for specificity if the size of the cluster where they are found is no
greater than 3; score 0 if they occur in different top-level clusters in G; sum the scores
for all Cs, and divide by the size of the case base. High scores indicate a high degree
of correspondence between the expected retrieval results and the cases a specialist
listener would bring to mind under the same circumstances. For such a G, a dendro-
gram with perfect agreement would have a score of at least 3 or higher according to
how much further structure G has. A random dendrogram score would fall to near 1.

In our analysis, no clear distinction was visible when one of our specimens of G
was replaced by the other. If we use the dendrogram formed from “balance” features
only with equal weights for the three main parts of the folk arguments as presented in
Table 1, the scores for the two specimens of G were 2.64 and 2.66. For a dendrogram
like Fig. 3 with the trend rather than the balance information, the quality is lower:
2.43 and 2.45. Finally, for the dendrogram combining trend and balance characteris-
tics as given in Fig. 4, the scores were 2.75 and 2.93.

Actual retrieval of cases during CBR would start using factual information about a
current allocation exercise as a probe. Our first evaluation of the quality of retrieval
has employed the facts of four new exercises Q present in the 2003 PWBR tables but
not in the case base (i.e. new cases proposed by the expert). For each example in Q,
the four cases Rfacts in the case base with the closest match to its facts according to a
weighted distance measure for factual items (as described in section 3) were found.
Rfacts is thus the result of this first step of retrieval. For each case in Rfacts, a second
step of retrieval found up to four (depending on a threshold of similarity or distance)
of the cases closest to it in Fig. 4. Note we use the most similar cases retrieved by
using facts (Rfacts) as new query cases. Since these new query cases in Rfacts contain
folk arguments, balance and trend characteristics are used to retrieve other cases con-
taining folk argumentation information, which results in Rarguments. In some situations,
some of the retrieved cases may of course occur more than once in the combination of
Rfacts and Rarguments. Moreover, similarity is computed against all cases in the case base
since the case base is small and is likely to remain small. The most similar cases in
Rfacts and Rarguments are used to construct a recommendation “template”. This is filled
out automatically in order to show how the cases in the flat Rfacts and Rarguments re-
trieval results would be arranged taxonomically as an answer to a query Q. This is
possible because both a factual (not shown in this paper) and a folk argumentation
taxonomy (Fig. 4) involving cases are used when the CBR application presents the
results of the retrieval. Further “filtering” in Rfacts and Rarguments can be applied by
considering relevant instances of argument types in the query Q. One such query
might be expressed as for example: “Find past allocation cases where the transmitter
power is high but one still has concerns regarding their power characteristics”. An
answer for the query would involve selecting past cases containing high values of
power along with folk arguments against the target station allocation that are anno-
tated by the “AT06: Power” argument type.

According to the radio expert, the recommendations and folk arguments for one of
the new exercises (Radio Ukraine, 6.02 MHz) were positive about the allocation. For
the other three (Radio Polonia, 6.015 MHz; and two Sunday pirate stations with quite
low power and with interference from similar unregulated European pirates), the bulk

 Folk Arguments, Numerical Taxonomy and Case-Based Reasoning 531

of the retrieved cases (and all the most similar ones) had low ratings. Some of the less
similar cases retrieved had high ratings, but their folk arguments contained emphasis
on the relatively high power of the transmitters concerned. Someone using the case
base for training would thus receive suggestions about a target allocation plus taxo-
nomic information along with argument-based information on what issues to consider
further if the suggestions were not uniform.

An independent way of examining the quality of an allocation found in the 2003
PWBR is to compare it with the 2004 tables. If the allocation has disappeared from
the later tables, it is at least prima facie evidence that the quality has been unaccept-
able. All the low-rated test examples Q above were absent from the 2004 PWBR. The
high-rated Ukrainian example was still present in 2004. The evaluation above indi-
cates that the use of simple features of folk arguments in cases, assisted by numerical
taxonomy, can create a structured case base which reflects what people with special-
ised knowledge might themselves create.

7 Concluding Remarks

There are subjects where significant information in an expert’s stock of case-like
knowledge is expressed in “folk arguments” and where this information, even in a
simplified or summary form, can be captured and used in the analysis and structuring
of case taxonomies. We find that numerical taxonomy is an effective tool that can
support this process by the creation of dendrograms, especially where the nature of
the knowledge or the small size of a case base excludes other techniques, e.g. from
machine learning. We have also developed means of assisting acquisition of folk-
argument knowledge: use of a cognitively-inspired reasoning template together with a
qualitative notation for the changes in strengths of alternative estimates caused by pro
and con folk arguments. We are finding that our framework is equally applicable in a
different application area: the use of knowledge about pigments in authentication of
paintings. It is thus reasonable to expect that our approach will be relevant and de-
serving of attention for any problem where knowledge is expressed naturally in cases
and where folk arguments are a marked feature of that knowledge.

References

1. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning–Perspectives and
goals. Artificial Intelligence Review 24, 109–143 (2005)

2. Chesñevar, C., Maguitman, A., Loui, R.P.: Logical models of argument. ACM Computing
Surveys 32, 337–383 (2000)

3. Toulmin, S.E.: The uses of argument (Updated edition 2003). Cambridge University Press,
Cambridge (1958)

4. Silva, L.A.L., Campbell, J.A., Eastaugh, N., Buxton, B.F.: A Case for Numerical Taxon-
omy in Case-Based Reasoning. In: The 19th Brazilian Symposium on Artificial Intelli-
gence - SBIA 2008, Salvador, Brazil (to appear, 2008)

5. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial In-
telligence 171, 619–641 (2007)

532 L.A.L. Silva, J.A. Campbell, and B.F. Buxton

6. Ashley, K.D., Rissland, E.L.: Law, learning and representation. Artificial Intelligence 150,
17–58 (2003)

7. Pennington, N., Hastie, R.: Reasoning in explanation-based decision making. Cogni-
tion 49, 123–163 (1993)

8. Sneath, P.H., Sokal, R.R.: Numerical taxonomy - The principles and practice of numerical
classification. W. H. Freeman and Company, San Francisco (1973)

9. Magne, L., Jones, T. (eds.): Passport to World Band Radio. Lawrence Magne (2003)
10. Schreiber, A.T.G., Akkermans, H., Anjewierden, A., Hoog, R.d., Shadbolt, N., Velde,

W.v.d., Wielinga, B.: Knowledge engineering and management - The Common KADS
Methodology. MIT Press, Cambridge (2000)

11. Silva, L.A.L., Buxton, B.F., Campbell, J.A.: Enhanced Case-Based Reasoning through Use
of Argumentation and Numerical Taxonomy. In: The 20th Int. Florida Artificial Intelli-
gence Research Society Conference (FLAIRS-20), Key West, Florida, pp. 423–428. AAAI
Press, Menlo Park (2007)

12. Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively. Law-
rence Erlbaum Associates, Inc., Mahwah (1986)

13. Wagenaar, W.A., van Koppen, P.J., Crombag, H.F.M.: Anchored Narratives. The Psychol-
ogy of Criminal Evidence. St. Martins Press, New York (1993)

14. Forbus, K.S.H.: Qualitative reasoning. In: Tucker, A.B. (ed.) The Computer Science and
Engineering Handbook, Ch. 32, pp. 715–733. CRC Press, Boca Raton (1997)

15. Bonnefon, J.-F., Fargier, H.: Comparing Sets of Positive and Negative Arguments: Em-
pirical Assessment of Seven Qualitative Rules. In: Brewka, G., Coradeschi, S., Perini, A.,
Traverso, P. (eds.) 17th European Conference on Artificial Intelligence (ECAI 2006), Riva
del Garda, Italy, pp. 16–20. IOS Press, Amsterdam (2006)

16. Chen, S.-M., Yeh, M.-S., Hsiao, P.-Y.: A comparison of similarity measures of fuzzy val-
ues. Fuzzy Sets and Systems 72, 79–89 (1995)

17. Jain, A.K., Murty, M.N., Flym, P.J.: Data clustering: A review. ACM Computing Sur-
veys 31, 264–323 (1999)

Real-Time Plan Adaptation for Case-Based

Planning in Real-Time
Strategy Games

Neha Sugandh, Santiago Ontañón, and Ashwin Ram

CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 30332/0280
{nsugandh,santi,ashwin}@cc.gatech.edu

Abstract. Case-based planning (CBP) is based on reusing past success-
ful plans for solving new problems. CBP is particularly useful in envi-
ronments where the large amount of time required to traverse extensive
search spaces makes traditional planning techniques unsuitable. In par-
ticular, in real-time domains, past plans need to be retrieved and adapted
in real time and efficient plan adaptation techniques are required. We
have developed real time adaptation techniques for case based planning
and specifically applied them to the domain of real time strategy games.
In our framework, when a plan is retrieved, a plan dependency graph is
inferred to capture the relations between actions in the plan suggested
by that case. The case is then adapted in real-time using its plan de-
pendency graph. This allows the system to create and adapt plans in an
efficient and effective manner while performing the task. Our techniques
have been implemented in the Darmok system (see [8]), designed to play
WARGUS, a well-known real-time strategy game. We analyze our ap-
proach and prove that the complexity of the plan adaptation stage is
polynomial in the size of the plan. We also provide bounds on the final
size of the adapted plan under certain assumptions.

1 Introduction

Traditional planning techniques are inapplicable in real-time domains with vast
search spaces. Specifically, we are interested in real-time strategy (RTS) games
that have huge decision spaces that cannot be dealt with search based AI tech-
niques [1]. Case-based planning (CBP) can be useful in such domains since they
can potentially reduce the complexity of traditional planning techniques. CBP
techniques [10] work by reusing previous stored plans for new situations instead
of planning from scratch. However, plans cannot be replayed exactly as they
were stored in any non trivial domain. Therefore, CBP techniques require plan
adaptation to adapt the information contained in plans. More specifically, CBP
techniques for RTS games need adaptation techniques that are suitable for dy-
namic and unpredictable domains, and that have a low complexity to be useful
for real-time situations. In this paper we present Darmok, a case-based planning

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 533–547, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

534 N. Sugandh, S. Ontañón, and A. Ram

Fig. 1. A screenshot of the WARGUS game

architecture that integrates planning and execution and is capable of dealing
with both the vast decision spaces and the real-time component of RTS games.
Then, we will focus on the problem of how to adapt plans stored in the knowl-
edge base of our system to suit new situations in real-time. We further analyze
the algorithms and establish bounds on their complexity, thus proving that the
algorithms presented are suitable for a real-time situation.

It is hard to approach RTS games using traditional planning approaches:
RTS games have huge decision spaces [1], they are adversarial domains, they
are non-deterministic and non fully-observable, and finally it is difficult to de-
fine postconditions for actions (actions don’t always succeed, or take a different
amount of time, and have complex interactions that are difficult to model us-
ing planning representation formalisms). To address these issues, we developed
Darmok [8], a case-based planning system that is able to deal with domains such
as WARGUS. We apply our plan adaptation techniques to Darmok.

Plan adaptation techniques can be classified in two categories: those adap-
tation techniques based on domain specific rules (domain specific, but fast)
and those based on domain independent search-based techniques (domain in-
dependent, but slow). In this paper, we will present a domain independent and
search-free structural plan adaptation technique based on two basic ideas: a)
removing useless operations from a plan can be done by analyzing a dependency
graph and b) the insertion of new operations in the plan can be delegated to
the case-based planning cycle itself. Thus, the plan adaptation will state that
some new operations to achieve a particular goal must be inserted, and the CBP
engine will generate a plan for that goal. Our plan adaptation approach has been
implemented in the Darmok system with promising results.

In the rest of this paper we introduce the Darmok system in Section 2, and
then we focus on plan adaptation in Section 3. Then, we analyze the complexity
of the adaptation algorithms in Section 4. After that, we report experimental
results in Section 5. The paper closes with related work and conclusions.

Real-Time Plan Adaptation for CBP in RTS Games 535

Case Base:
-Behaviors
-Episodes

Behavior
Retrieval

Plan

Plan
Adaptation

Case
Learning

Revision:
Trace Annotation

Trace

Plan
Expansion

Plan
Execution

Game
State

Behavior

Annotated
Trace

WinWargusgoal

Adapted
Behavior

Delayed
Adaptation

request

Game
State

Expert

Wargus

Expert

Fig. 2. Overview of the Darmok system

2 Case-Based Planning in WARGUS

Figure 1 shows a screen-shot of WARGUS, a RTS game where each player’s
goal is to remain alive after destroying the rest of the players. Each player has
a series of troops and buildings and gathers resources (gold, wood and oil) in
order to produce more troops and buildings. Buildings are required to produce
more advanced troops, and troops are required to attack the enemy.

In this section we will briefly describe the Darmok system, in which we
have implemented our plan adaptation techniques. In order to play WARGUS

Darmok learns behaviors from expert demonstrations, and then uses case-based
planning to play the game reusing the learnt behaviors. Figure 2 shows an
overview of our case-based planning approach. Basically, we divide the process
in two main stages:

– Plan Learning: performed by the Revision and Case Learning modules. Each
time a human plays a game, a trace is generated (containing the list of actions
performed in the game). During revision, the human annotates that trace
stating which goals he was pursuing with each action. This annotated trace
is processed by the case learning module that extracts plans in form of cases.

– Plan Execution: The execution engine consists of several modules that to-
gether maintain a current plan to win the game. The Plan Execution module
executes the current plan, and updates its state (marking which actions suc-
ceeded or failed). The Plan Expansion module identifies open goals in the
current plan and expands them. In order to do that it relies on the Behavior
Retrieval module, that retrieves the most appropriate behavior to fulfill an
open goal. Finally, the Plan Adaptation module adapts the retrieved plans.

Cases in Darmok consist of two parts: behaviors and episodes. A Behavior
contains executable code to achieve a particular goal, and an episode contains
information on how successful a behavior was in a particular situation.

A behavior has two main parts: a declarative part and a procedural part. The
declarative part has the purpose of providing information to the system about

536 N. Sugandh, S. Ontañón, and A. Ram

the intended use of the behavior, and the procedural part contains the executable
behavior itself. The declarative part of a behavior consists of three parts:

– A goal, that is a representation of the intended goal of the behavior.
– A set of preconditions that must be satisfied before execution.
– A set of alive conditions that must be satisfied during the execution of the

behavior for it to have chances of success.

Unlike classical planning approaches, postconditions cannot be specified for
behaviors, since a behavior is not guaranteed to succeed. Thus, we can only
specify the goal a behavior pursues. The procedural part of a behavior consists
of executable code that can contain the following constructs: sequence, parallel,
action (primitive actions in the application domain), and subgoal (that need to be
further expanded). A goal may have parameters, and must define a set of success
conditions. For instance, AbsoluteHaveUnits(TOWER,1) is a valid goal in our
gaming domain that has the following success condition: UnitExists(TOWER).

2.1 Run-Time Plan Expansion and Execution

During execution, the plan expansion, plan execution and plan adaptation mod-
ules collaborate to maintain a current partial plan tree that the system is exe-
cuting. A partial plan tree in our framework is represented as a tree consisting of
goals and behaviors (similar to HTN planning [6]). Initially, the plan consists of a
single goal: “win the game”. Then, the plan expansion module asks the behavior
retrieval module for a behavior for that goal. That behavior might have sev-
eral subgoals, for which the plan expansion module will again ask the behavior
retrieval module for behaviors, and so on. When a goal still does not have an
assigned behavior, we say that the goal is open.

Additionally, each behavior in the plan has an associated state that can be:
pending (when it still has not started execution), executing, succeeded or failed.
A goal that has a behavior assigned and where the behavior has failed is also
considered to be open. Open goals can be either ready or waiting. An open goal
is ready when all the behaviors that had to be executed before this goal have
succeeded, otherwise, it is waiting.

The plan expansion module is constantly querying the current plan to see
if there is any ready open goal. When this happens, the open goal is sent to
the behavior retrieval module. The retrieved behavior is sent to the behavior
adaptation module, and then inserted in the current plan, marked as pending.

The plan execution module has two main functionalities: check for basic ac-
tions that can be sent to the game engine and check the status of plans that are
in execution:

– Pending behaviors with satisfied preconditions change status to executing.
– Basic actions that are ready and with all their preconditions satisfied are

sent to WARGUS to be executed. If the preconditions are not satisfied, the
behavior is sent back to the adaptation module to see if the plan can be
repaired. If it cannot, then the behavior is marked as failed.

Real-Time Plan Adaptation for CBP in RTS Games 537

– Whenever a basic action succeeds or fails, the execution module updates
the status of the behavior that contained it. When a basic action fails, the
behavior is marked as failed, and thus its corresponding goal is open again.

– If the alive conditions of an executing behavior are not satisfied, the behavior
is marked as failed.

– If the success conditions of a behavior are satisfied, the behavior is marked
as succeeded.

– Finally, if a behavior is about to be executed and the current game state
has changed since the time the behavior retrieval module retrieved it, the
behavior is handed back to the plan adaptation module.

In the remainder of this paper we will focus on the plan adaptation component.
See [8] for a more detailed explanation of the rest of the system.

3 Real-Time Case-Based Plan Adaptation

The plan adaptation module is divided in two submodules: the parameter adap-
tation module and the structural plan adaptation module. The first one is in
charge of adapting the parameters of the basic actions, i.e. the coordinates and
specific units (see [8] for an explanation on how that module works). In this
section we will focus on the structural plan adaptation module.

We specifically consider plans which are only composed of actions, sequen-
tial constructs and parallel constructs. This implies that we consider only those
plans which are completely expanded and do not contain a sub-goal which further
needs to be expanded. We generate a plan dependency graph using the precon-
ditions and success conditions of the actions. The structural plan adaptation
process has two sub-processes: elimination of unnecessary actions, and insertion
of required actions. The first one is performed as soon as the plan is retrieved,
and the second one is performed on-line as the plan executes.

3.1 Plan Dependency Graph Generation

Figure 3 shows the algorithm for plan dependency graph generation. Each action
within a plan has a set of preconditions and a set of success conditions. The
plan dependency graph generator analyzes the preconditions of each of these
primitive actions. Let p′ be an action in the plan which contributes to satisfying
the preconditions of another action p. Then, a directed edge from p′ to p is
formed (function FindDependencies, shown in Figure 3). This directed edge can
be considered as a dependency between p′ and p. Here, we assume that actions
in different parts of a parallel plan are independent of each other (a strong
assumption, subject to improvement in future work). A pair of actions might have
a dependency between them only if their closest common parent is a sequential
plan. This is what is effectively done by using the set of actions D, in Figure 3. For
any action p′ when the function FindDependencies is called D contains exactly
the set of actions on which p′ might be dependent. The set of primitive actions for
a subplan p′ of p are added to D only if p is a sequential construct. The recursive

538 N. Sugandh, S. Ontañón, and A. Ram

Function GeneratePlanGraph(p,D)
G = ∅
ForEach p′ ∈ p.subP lans

If p′ is sequential or parallel Then
G = G ∪ GeneratePlanGraph(p′, D)

ElseIf p′ is a primitive action Then
G = G ∪ FindDependencies(p′, D)

EndIf
If p is sequential Then D := D ∪ p′.allPrimitiveActions

EndForEach
Return G

End-Function

Function FindDependencies(p,D)
G = ∅
ForEach p′ ∈ D

If p′ statisfied any condition of p Then
G = G ∪ (p′, p)

EndIf
EndForEach
Return G

End-Function

Fig. 3. Algorithm for Plan Dependency Graph Generation. Where p is the plan to be
adapted, and D is the set of plans on which any sub-plan in p might depend (and it is
equal to ∅ in the first call to the algorithm). p.subP lans refers to the set of sub-plans
directly inside p in case p is sequential or parallel. And p.allP rimitiveActions refers
to all the primitive actions inside p or in any sub-plan inside p.

call to GeneratePlanGraph ensures that nested parallel and sequential constructs
can be processed. This process results in the formation of a plan dependency
graph G with directed edges between actions that have dependencies.

A challenge in our work is that simple comparison of preconditions of a plan p
with success conditions of another plan p′ is not sufficient to determine whether p′

contributes to achievement of preconditions of p. This is because there isn’t nec-
essarily a direct correspondence between preconditions and success conditions.
An example is with attacking: the success condition of a goal might specify that
a particular enemy unit has to be killed, but the attack actions have no post-
condition named “killed”, since we cannot guarantee that an attack will succeed
(the success condition of the attack action is that a particular unit will be in the
“attacking status”).

For that purpose, the plan dependency graph generation component needs
a precondition-success condition matcher (ps-matcher). In our system, we have
developed a rule-based ps-matcher that incorporates a collection of rules for
the appropriate condition matching. For example, our system has six different
conditions which test the existence of units or unit types. Thus the ps-matcher
has rules that specify that all those conditions can be matched. In some cases it is
not clear whether a relation exists or not. However it is necessary for our system
to capture all of the dependencies, even if some non-existing dependencies are
included. If a dependency was not detected by our system, a necessary action in
the plan might get deleted.

Real-Time Plan Adaptation for CBP in RTS Games 539

Function RemoveRedundantPlans (p, g)
B = GetDirectActions(p, g)
G = GeneratePlanGraph(p, ∅)
A = BackPropagateActivePlans(B, G, ∅)
remove from p all the actions not in A
Return p

EndFunction

Function BackPropagateActivePlans (B, G, A)
ForEach p ∈ B

If p’s success conditions are not satisfied Then
A = A ∪ {p}
B′ = GetParentPlans(p, G)
A = BackPropagateActivePlans(B′, G, A)

EndIf
EndForEach
Return A

EndFunction

Fig. 4. Algorithm for Removal of Unnecessary Actions. Where p is the plan to be
adapted, and g is the goal corresponding to p. GetParentPlans(p, G) is a simple function
that returns all the plans that have a causal direction with a given plan p, according
to a graph G. GetDirectActions(p, g) is a function that returns those primitive actions
in p that are direct actions.

3.2 Removal of Unnecessary Actions

Figure 4 shows the algorithm for the removal of unnecessary or redundant ac-
tions. Every plan p has a root node that is always a goal g. The removal of
unnecessary actions begins by taking the success conditions of the goal g and
finding out which of the actions in the plan contribute to the achievement of
those conditions. This is done by the function call to GetDirectActions in Fig-
ure 4. These actions are called direct actions for the subgoal. Then the plan
dependency graph for p is generated using the GeneratePlanGraph function in
Figure 3. The algorithm works by maintaining a set of active actions A. At the
end of the algorithm, all the actions not in A will be removed from the plan.
The removal of actions proceeds using the plan dependency graph and the set of
direct actions, B. The success conditions of each action in B are evaluated for
the game state at that point of execution. Each of these actions p with unsatis-
fied success conditions is added to the list of active actions. The set of actions
B′ on which the action p has a dependency according to the dependency graph
G are recursively checked to see if they have to be activated. Such plans are
obtained using the function GetParentPlans in the algorithm (that can be easily
implemented to have constant time). The result of this process is a set A of ac-
tions whose success conditions are not satisfied in the given game state and which

540 N. Sugandh, S. Ontañón, and A. Ram

Function AdaptForUnsatisfiedConditions(p)
C = GetUnsatisfiedPreconditions(p)
G = ∅
ForEach c ∈ C

G = G ∪ GetSatisfyingGoal(c)
EndForEach
Initialize q as an empty parallel plan
ForEach g ∈ G

add SubGoalPlan(g) to q
EndForEach
insert q at the beginning of p
Return p

End-Function

Fig. 5. Algorithm for Adding Goals for Unsatisfied Preconditions, where p is the
primitive action to be adapted. GetUnsatisfiedConditions(p) is a function which returns
the set of those preconditions of p which are not satisfied. GetSatisfyingGoal(c) is a
function which returns a goal whose success satisfies the condition c. SubGoalPlan(g)
is a function which returns a sub-goal plan with goal g.

have a dependency to a direct plan, also with success conditions not satisfied in
the given game state. Actions that are not active (not in A) are removed.

3.3 Adaptation for Unsatisfied Preconditions

Figure 5 shows the algorithm for adaptation for unsatisfied preconditions. If
the execution of an action fails because one or more of its preconditions are
not satisfied, the system needs to act so that the execution of the plan can
proceed. To do this, each unsatisfied condition is associated with a corresponding
satisfying goal. The satisfying goal is such that when a plan to achieve the
goal is retrieved and executed, the success of the plan implies that the failed
precondition is satisfied. Initially, all the unsatisfied preconditions of the action
p to adapt are computed, resulting in a set C. For each condition c ∈ C, a
satisfying goal is obtained, using the function GetSatisfyingGoal in Figure 5.
This gives a set of goals G which need to be achieved before the action p can
be executed. A parallel plan q is generated where each of the goals in G can be
achieved in parallel. q is inserted as the first step of plan p.

After the modified plan is handed back to the plan execution module, it is
inserted into the current plan. In the next execution cycle the plan expansion
module will expand the newly inserted goals in G.

Notice that the plan adaptation module performs two basic operations: delete
unnecessary actions (which is performed by an analysis of the plan dependency
graph), and insert additional actions needed to satisfy unsatisfied preconditions.
This last process is performed as a collaboration between several modules: the
plan execution module identifies actions that cannot be executed, the adaptation
component identifies the failed preconditions and generates goals for them, and
the plan expansion and plan retrieval modules expand the inserted goals.

Real-Time Plan Adaptation for CBP in RTS Games 541

4 Complexity Analysis

In the following sections we will analyze the complexity of our structural adap-
tation techniques. We analyze both the removal of redundant actions through
plan dependency graph generation as well as the addition of goals to the partial
plan to satisfy unsatisfied conditions. In the first case the time complexity of
plan dependency graph generation and removal of actions is obtained. In the
case of goal additions, the goal addition for a single condition happens in con-
stant time. Here, the time complexity is not as important as the number of goals
added during a game play, because the addition of goals has an impact on the
size of the plan for winning the game and thereby on the time taken to win the
game. We obtain a bound on the number of goals that are added during the plan
adaptation stage for satisfying any unsatisfied preconditions.

4.1 Complexity of Removal of Unnecessary Actions through Plan
Dependency Graph Generation

Theorem 1. The time complexity for removal of unnecessary actions through
plan dependency graph generation is O(N(n)), where N(n) = kl(n − 1)(n −
2)/2+ l2n+(n− 1)(n− 2)/2. Where n is the size of the plan, k is the maximum
number of pre-conditions and l is the maximum number of success conditions of
actions.

We derive Theorem 1 in the following discussion. A plan dependency graph is
generated for a plan which has been expanded to the level of primitive actions.
Let the number of pre-conditions in any action be bounded by k and the number
of success conditions for any subgoal or action be bounded by l. The maximum
number of comparisons that can occur while comparing the preconditions of any
action with the success conditions of another action is bounded by Nmax

c = kl.
Now consider a retrieved plan with n actions. If the plan is a sequential plan,

to obtain the dependencies we compare the preconditions of each action with
the success conditions of the preceding actions. Thus the preconditions of the
second action are compared with the success conditions of the first action, the
preconditions of third action are compared with the success conditions of the
first action and the second action and so on. The total number of comparisons
at the level of plans is thus:

NP
c (n) = 1 + 2 + + (n− 1) =

(n− 1)(n− 2)
2

(1)

In case the plan retrieved is a parallel plan we do not try to obtain the
dependencies as we assume that the component plans are independent of each
other. When the retrieved plan is a combination of sequential plans and parallel
plans, some comparisons take place but the number of comparisons will be less
than that in the case of a sequential plan. The sequential plan thus provides
an upper bound on the number of comparisons. Within each action comparison,
there can be Nmax

c condition comparisons and these condition comparisons take
constant time.

542 N. Sugandh, S. Ontañón, and A. Ram

When obtaining the direct actions we compare the success conditions of each
primitive action with the success conditions for the goal. The maximum number
of condition comparisons possible here is l2 and this is done for each of the n
actions. Thus the number of condition level comparisons for obtaining direct
plans is bounded by Nmax

d (n) = nl2.
Once the dependencies between plans have been determined we remove re-

dundant actions. Only those direction actions with unsatisfied success conditions
are initially considered active. Then we propagate it to the plans on which the
direct plans depend, we also recursively do this for the plans made active. We
do the propagation only once for each action. If the total number of actions is n,
and the position of an action in a sequential plan is i, the maximum number of
actions the action can depend upon is i− 1. Thus, the number of links we follow
is bound by Nmax

l (n).

Nmax
l (n) = 1 + 2 + + (n− 1) =

(n− 1)(n− 2)
2

(2)

The complexity of adaptation through plan dependency graph generation is
thus O(N(n) = Nmax

c ∗NP
c (n) + Nmax

d (n) + Nmax
l (n)), proving Theorem 1.

4.2 Analysis of Adaptation for Unsatisfied Preconditions

Considering the maximum number of preconditions for any action to be k and
that each precondition when not satisfied leads to the addition of a single goal,
the maximum number of goals inserted to satisfy an action’s preconditions is also
k. Each goal is expanded into a plan. The primitive actions present in this new
plan can further have unsatisfied conditions during execution. This may lead to
the creation of cycles i.e it is possible that a goal g1 has a precondition c1 which
leads to goal g2 and the goal g2 has a precondition c2 which leads to the goal
g1, it might lead to the continuous addition of goals. No bound regarding the
size of the final partial plan can be obtained if such cycles can occur (Darmok
incorporates a simple cycle detection mechanism that prevents these situations).

Theorem 2. Assuming all plans succeed upon execution and goals do not form
cycles, the number of goals added by the adaptation module is O(Mmax

G), where:
Mmax

G = nmaxk ∗ (nG−1
maxkG−1 − 1)/(nmaxk − 1). Where nmax is the maximum

size of any plan in the case base, k is the maximum number of preconditions in
any plan and G is the number of different goals possible in the domain.

If the goals in a real-time planning system cannot form a cycle i.e any plan for a
goal g1 will never lead to a goal g2 such that the plan for g2 leads to the goal g1,
a bound can be established on the number of goals added. If the total number of
possible different goals in the system is G, the number of possible goals a plan
for a top level goal g can lead to is G− 1. Let g′ be one such goal. The number
of goals a plan for this goal can lead to is G − 2, and so on. Additionally, the
number of goals added for any action is limited by k. Consider the maximum
number of actions in any fully expanded plan for a goal to be nmax. If the goals

Real-Time Plan Adaptation for CBP in RTS Games 543

added by plan adaptation for the first time are considered level one goals, the
goals added within a plan for a first level goal as second goals, and so on, the
maximum number of goals that can be added at level l for a level l − 1 goal is
nl

G = min(G− l, k). The maximum number of goals added is Nmax
G :

Nmax
G =

∑

i=1...G−1

⎛

⎝(nmax)i
∏

j=1...i

nj
G

⎞

⎠ (3)

If k < G and we replace nl
G by k we get an upper bound on Nmax

G , Nmax
G <

Mmax
G :

Mmax
G =

∑

i=1...G−1

(nmax)iki = nmaxk ∗ ((nmax)G−1kG−1 − 1)
(nmaxk − 1)

(4)

Thus the number of goals added by the adaptation module is bounded by
Mmax

G . This is clearly not a tight upper bound. Better upper bounds can be
obtained introducing domain related constraints.

In the case of WARGUS domain, the goals inserted by the plan adapta-
tion module are either to build certain units or buildings or to gather resources.
Consider the term units to refer to all units other than peasants and the term
buildings to refer to all buildings other than farms (peasants and farms need
to be considered separately). For the further analysis we assume that the op-
ponents have not destroyed any buildings. Let n0 be the number of primitive
actions in the completely expanded plan without adaptation. Let b, f , u and p
be the number of buildings, farms, units and peasants inserted by the adaptation
module respectively. Farms are required to train peasants and units, each farm
allows training of four peasants and units. Considering each of the n0 actions
can produce at most one peasant or unit, the number of units trained is at most
n0 + u + p. We know that before executing the plan, the number of farms was
enough for the number of units and peasants we had. Thus, the number of farms
f that the adaptation component will insert must satisfy the following inequality
(because it will not insert more farms than needed): 4f ≤ n0 + u + p.

Now, consider the peasants inserted by the adaptation module. Peasants are
trained to gather resources or build buildings or farms. There are three kinds
of resources in WARGUS:wood, gold and oil. Farms require only two of these
resources(wood and gold), while a building or unit might require any of the three
resources. Farms and buildings also require peasants for building them. Thus, a
building can require 4 peasants - one to build it and three to gather the different
resources. Similarly, a farm or a unit can require 3 peasants. The maximum
number of peasants required by the n0 primitive actions is 4n0. Thus we get
the following inequality (because it will not insert more peasants than needed):
p ≤ 4n0 + 4b + 3f + 3u.

Solving these inequalities gives us: f ≤ (5n0 + 4b+ 4u) and p ≤ (19n0 +16b+
15u). Further, units can only be required by one of the n0 actions, since they

544 N. Sugandh, S. Ontañón, and A. Ram

are not required for building or gathering resources. Thus, u ≤ n0. The number
of goals added is thus O(Ng):

Ng = b + u + f + p ≤ 24n0 + 21b + 20u ≤ 44n0 + 21b (5)

Thus, the number of extra goals added due to plan adaptation is O(21b+44n0).
Notice also that b is bounded by the number of different buildings (other than
farms), because adaptation will never insert duplicate buildings since duplicate
buildings are never required (although it might be convenient to have them, it
is never required). Thus the number of goals added is linearly bounded in the
number of building types and the number of actions which were originally present
in the plan. The analysis presented, provides a bound on the size of the plan
after the adaptation module has finished adapting it, assuming that there are
no goal cycles (easily detected in the case of WARGUS).

4.3 Single Cycle Complexity

In order to have a real-time system, it is important that a single execution cycle
takes a short time. Each cycle of Darmok involves the expansion of open goals
and then execution of actions ready to execute. If the number of open goals is
r and the number of actions ready to execute is e, r plans are retrieved and the
plan dependency graph is generated for these plans. If nmax is the maximum
number of actions in any of the retrieved plans, the complexity for the adapta-
tion of retrieved plans is O(rN(nmax)) (See Theorem 1). While plan execution,
adaptation due to failed preconditions of an action can lead to the addition of
maximum k goals in a single cycle. Thus the total per cycle complexity of the
Darmok planning adaptation module is polynomial, O(rN(nmax) + ke).

5 Experimental Results

To evaluate our plan adaptation techniques, we conducted two sets of experi-
ments turning the plan adaptation on and off respectively. The experiments were
conducted on 12 maps: 11 different variations of the well known map “Nowhere
to run nowhere to hide” (NWTR) and 1 version of “Garden of War” (GoW).
NWTR maps have a wall of trees separating the opponents that introduces a
highly strategic component in the game (one can attempt ranged attacks over
the wall of trees, or prevent the trees to be chopped by building towers, etc.).
GoW maps are large maps with an empty area in the middle where a lot of gold
mines are located. 10 different expert demonstration were used for evaluation;
8 of the expert traces are on maps from NWTR maps while the other 2 expert
traces were for GoW maps. Each one of the expert demonstrations exemplified
different techniques with which the game can be played: fighter’s rush, knights
rush, ranged attacks using ballistas, or blocking the enemy using towers.

We conducted the experiments using different combinations of the traces. We
report the results in 12 games (one per map) using all 10 traces. We also report
the results in 48 games in nine different scenarios where the system learnt from

Real-Time Plan Adaptation for CBP in RTS Games 545

Table 1. Effect of Plan Adaptation on Game Statistics

Adaptation No Adaptation

NT W D L ADS AOS WP W D L ADS AOS WP improvement
1 17 4 27 2158 1514 35.42% 9 7 32 1701 1272 18.75% 88.75%
2 16 5 27 2798 1828 33.33% 15 2 31 1642 1342 31.25% 6.66%
3 18 6 24 1998 1400 37.5% 10 6 32 1633 1491 20.83% 80.00%
4 19 3 26 2343 1745 39.58% 8 4 36 1358 1663 16.67% 137.40%
5 11 6 31 2141 1842 22.91% 7 6 35 1310 1607 14.58% 57.13%
6 14 2 32 1709 1695 29.17% 3 5 40 1475 1788 6.25% 366.72%
7 20 0 28 1941 1448 41.67% 9 6 33 1800 1564 18.75% 122.24%
8 15 3 30 1887 1465 31.25% 6 3 39 1598 1671 12.50% 150.00%
9 21 4 23 2110 1217 43.75% 7 3 38 1449 1681 14.58% 200.07%
10 5 0 7 1533 1405 41.67% 2 0 10 1158 1555 16.67% 150.00%

156 33 255 20618 15559 35.14% 76 67 301 15124 15634 17.12% 105.38%

1, 2, 3, 4, 5, 6, 7, 8 and 9 traces respectively. For conducting these experiments,
for any number of traces, n, we randomly chose four sets containing n traces and
ran our system against the built in AI with each set on all 12 maps.

Table 1 shows the results of the experiments with and without adaptation.
NT indicates the number of traces. For each experiment 6 values are shown:
W, D and L indicate the number of wins, draws and loses respectively. ADS
and AOS indicate the average Darmok score and the average opponent score
(where the “score” is a number that WARGUS itself calculates and assigns to
each player at the end of each game). Finally, WP shows the win percentage.
The right most row presents the improvement in win percentage comparing
adaptation with respect to no adaptation. The bottom row shows a summary of
the results.

The results show that plan adaptation leads to an improvement of the percent-
age of wins as well as the player score to opponent score ratio. An improvement
occurs in all cases irrespective of the number of traces used. When several traces
are used cases belonging to different traces are retrieved and executed, thus,
there is a much greater chance of redundant or missing actions being present.
Our plan adaptation deals with these problems, improving the performance of
Darmok. In some cases the system performs well even without adaptation. This
may be because the cases retrieved “tie in” together as they are and do not
require adaptation. For instance, in the experiment where the system learnt 10
traces, we can see how the system managed to improve performance from 16.67%
wins without adaptation to 41.67% wins with adaptation. Finally, when consid-
ering these numbers, we must take into account that our system is attempting to
play the whole game of WARGUS at the same granularity as a human would
play, and that also results depend on the quality of the demonstration traces
provided to the system. Thus, with better demonstrations (by true experts), the
performance could greatly improve.

546 N. Sugandh, S. Ontañón, and A. Ram

6 Related Work

Case-based planning is the application of CBR to planning, and as such, it is
planning as remembering [2]. CBP involves reusing previous plans and adapting
them to suit new situations. There are several motivations for case-based plan-
ning [10], the main one being that it has the potential to increase the efficiency
with respect to generative planners (although, in general, reusing plans has the
same or even higher complexity than planning from scratch [7]).

One of the first case-based planning systems was CHEF [2], able to build new
recipes based on user’s request for dishes with particular ingredients and tastes.
CHEF contains a memory of past failures to warn about problems and also a
memory of succeeded plans from which to retrieve plans. One of the novel capa-
bilities of CHEF with respect to classical planning systems is its ability to learn.
Each time CHEF experiences a planning failure, it means that understanding
has broken down and something has to be fixed. Thus, planning failures tell
the system when it needs to learn. CHEF performs plan adaptation by a set of
domain-specific rules called TOPs.

Domain-independent nonlinear planning has been shown to be intractable
(NP-hard). PRIAR [4] was designed to address that issue. PRIAR works by
annotating generated plans with a validation structure that contains an expla-
nation of the internal causal dependencies so that previous plans can be reused
by adapting them in the future. Related to PRIAR, the SPA system was pre-
sented by Hanks and Weld [3]. The key highlight of SPA is that it is complete and
systematic (while PRIAR is not systematic, and CHEF is not either complete
nor systematic), but uses a simpler plan representation than PRIAR. Extending
SPA, Ram and Francis [9] presented MPA (Multi-Plan Adaptor), that extended
SPA with the ability to merge plans. The main issue with all these systems is
that they are all based on search-based planning algorithms, and thus are not
suitable for real-time domains, where the system has to generate quick responses
to changes in the environment. A thorough review on plan adaptation techniques
was presented in [5].

7 Conclusions

In this paper we have presented real-time structural plan adaptation techniques
for RTS games. Specifically, our technique divides the problem in two steps:
removal of unnecessary actions and addition of actions to fill gaps in the sequence
of actions. We implemented our algorithm inside the Darmok system that can
play the game of WARGUS. The experiments conducted gave promising results
for the techniques introduced, however our techniques are domain-independent.
Moreover, one of the important aspects of our techniques is that they are efficient
at the same time as effective, so they can be applied for real-time domains in
which other search-based plan adaptation techniques cannot be applied. The
complexity analysis performed shows that the adaptation techniques do not have
a significant overhead and are suitable for real time situations.

Real-Time Plan Adaptation for CBP in RTS Games 547

Our techniques still have several limitations. Currently, our plan adaptation
techniques require a plan to be fully instantiated in order to be adapted, thus we
cannot adapt plans that are still half expanded. As a consequence, the high level
structure of the plan cannot be adapted unless it is fully instantiated. Because
of that, plan adaptation as presented in this paper can only work at the lower
levels of the plan, where everything is instantiated. This could be addressed by
reasoning about interactions between higher level goals, by estimating which are
the preconditions and postconditions of such goals by analyzing the stored plans
in the case-base to achieve those goals. Another line of further research is to
incorporate ideas from MPA [9] in order to be able to merge several plans into
a single plan. This can increase the flexibility of the approach since sometimes
no single plan in the case base can achieve a goal, but a combination will.

References

1. Aha, D., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection
in a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005.
LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

2. Hammond, K.F.: Case based planning: A framework for planning from experience.
Cognitive Science 14(3), 385–443 (1990)

3. Hanks, S., Weld, D.S.: A domain-independednt algorithm for plan adaptation.
Journal of Artificial Intelligence Research 2, 319–360 (1995)

4. Kambhampati, S., Hendler, J.A.: A validation-structure-based theory of plan mod-
ification and reuse. Artificial Intelligence 55(2), 193–258 (1992)

5. Muñoz-Avila, H., Cox, M.: Case-based plan adaptation: An analysis and review.
IEEE Intelligent Systems (2007)

6. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H.,
Murdock, J.W.: Applications of shop and shop2. Intelligent Systems 20(2), 34–41
(2005)

7. Nebel, B., Koehler, J.: Plan modifications versus plan generation: A complexity-
theoretic perspective. Technical Report RR-92-48 (1992)

8. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

9. Ram, A., Francis, A.: Multi-plan retrieval and adaptation in an experience-based
agent. In: Leake, D.B. (ed.) Case-Based Reasoning: Experiences, Lessons, and Fu-
ture Directions. AAAI Press, Menlo Park (1996)

10. Spalazzi, L.: A survey on case-based planning. Artificial Intelligence Review 16(1),
3–36 (2001)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 548–561, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Horizontal Case Representation

Rosina Weber, Sidath Gunawardena, and Craig MacDonald

The iSchool at Drexel, College of Information Science & Technology, Drexel University
{rweber,sidath.gunawardena,craig.macdonald}@ischool.drexel.edu

Abstract. We present a new case representation that seeks to make case-based
reasoning (CBR) more suited to real world applications. We propose a horizon-
tal representation that is composed of two features, one to represent the problem
and one to represent the solution. We also present a similarity metric tailored to
our representation. Rather than parametrizing the distance function with
weights, it requires one parameter that recommends the cardinality of values for
new problems to be solved by the system. Our representation is less restrictive
during case acquisition as it does not constrain how non-experts can populate
cases and it requires less knowledge engineering effort than the traditional
method. We compare our representation to the traditional case representation
and show that it is superior when cases are incomplete. Finally, we illustrate the
effectiveness of our representation in a real world application, where the de-
marcation between problem and solution is blurred.

1 Introduction

In order to increase the widespread adoption of case-based reasoning (CBR) in the
real world, we propose an alternative case representation that facilitates the engineer-
ing of cases. The proposed representation simplifies knowledge acquisition, making it
accessible to users who want to describe experiences, even if they do not understand
CBR. Furthermore, it facilitates the engineering of case-based reasoners as it does not
require features to be identified in advance or that features be weighted.

Let us consider the goal of building a CBR system to help project managers man-
age software development projects. Let us also limit this example to a weighted fea-
ture-vector representation in a flat memory. The traditional way of designing this
system follows a series of steps, e.g., defining the reasoning task, case vocabulary,
case problem and solution, features, relative relevance of features, and indexing vo-
cabulary [1]. Most of these steps require knowledge engineering as they refer to mul-
tiple knowledge containers [2]. Assuming that cases are to be acquired from project
managers, the previously defined case features have to be explained to them and this
explanation has to include allowable values. Alternatively, project managers may
freely describe their experiences and knowledge engineers can later fit them into the
previously defined case features. The latter is prone to incompleteness and misinter-
pretation. For example, mentioning the morale of the developing team may be inter-
preted and used as a feature of the problem description when it could have been
intended as a feature of the solution.

 Horizontal Case Representation 549

We propose an alternative way to design such a system, while maintaining the
main goal of building a CBR system to help project managers manage a software de-
velopment project. The steps to be followed to design the system are limited to pro-
viding a user interface to project managers who have experiences they wish to
describe. This user interface consists of two fields: problem and solution. The guid-
ance given to the project managers, i.e., users who will populate the cases, is to list
terms that describe the main features of the problems and then freely describe the so-
lutions they want to convey. We refer to this form as horizontal case representation.

Horizontal case representation retains the definition of a case presented in [1],
which describes a case as a context and a lesson that teaches something about this
context. This definition is sufficiently flexible that it is able to cope with the idiosyn-
crasies of real world cases. It allows the context to be any kind of problem and some-
thing to be any reasoning task.

Horizontal case representation is less demanding on individual feature-values by
reducing the impact of missing feature values on similarity assessment. Furthermore,
if new features become relevant to represent a case, they are included with no need to
adjust the similarity measure. In a horizontal case representation, terms are grouped in
what we call horizontal features (Figure 1). The traditional way of representing cases
is more commonly presented as a vertical list.

Vertical Features Horizontal Features
Problem Feature1: value1
Problem Feature2: value2
Problem Featuren: valuen
…
Solution Feature1: value1
Solution Featurem: valuem

Problem Feature1:value11,value12,value13,..,value1v

…
Solution Feature1: value11, value12,…, value1s

Fig. 1. Vertical and horizontal features

For the purposes of this paper, we will refer to horizontal case bases, ones whose
cases use horizontal features only. We will refer to vertical cases bases, ones whose
cases use vertical features only. Cases may use one or more horizontal features to
represent either problem or solution. In fact, horizontal features may even be
weighted. However, for our initial analyses, we will study horizontal cases that are
composed of two horizontal features, one to represent the problem and one to repre-
sent the solution.

Our experience has demonstrated that users without knowledge of CBR find cases
with horizontal features easier to populate than cases with vertical ones. Users can
enter any terms they want, with no limits with respect to their quality, specificity, or
number. In this paper, we are now concerned with the implications of this simpler
way of organizing case knowledge.

In the next section, we describe the background work and motivations that led to
this work, and discuss some related work. In Section 3, we propose a method to com-
pute a parameter that is needed to assess similarity in horizontal case bases. This pa-
rameter recommends an ideal cardinality for values to be entered in a new problem,
which is required due to the varying number of values that cases can have in the case

550 R. Weber, S. Gunawardena, and C. MacDonald

base. In Section 4, we compare horizontal case bases with vertical case bases in the
presence and absence of missing values. In Section 5, we discuss additional issues of
horizontal cases when used in the real world. We then conclude with final remarks
and future work.

2 Background and Related Work

As we explore opportunities for implementing CBR in the real world, we identify
challenges that are not usually addressed by theoretical work. In this paper, we are
concerned with case acquisition, case representation, case indexing and retrieval, and
situation assessment in the context of incomplete cases.

Our experience reveals that populating cases is challenging, whether the source of
cases comes either from humans or unstructured sources. When a case base is de-
signed to account for experiences of one reasoning task, design decisions such as the
scope of the reasoning task and the indexing vocabulary become additional elements
to consider while acquiring cases. The engineered indexing vocabulary−typically rep-
resented in cases as feature-value pairs−constitutes a list of required fields when ask-
ing users to populate experiences. It requires users to understand the meaning of each
feature and to know its allowable values. A rigid indexing vocabulary also limits us-
ers who may want to add new values for features, or even new, previously undefined
features. From a human-computer interaction perspective, users should not be pre-
vented from communicating aspects of an experience they consider relevant nor
should they be limited in how to communicate those experiences. When populating
cases in practice, what is required of users is completely different from asking them to
describe experiences. However, it is these experiences that need to be captured, and
that is what makes CBR unique.

As previously introduced, we envision cases as a problem context and a solution
that teaches something about this context [1]. The flexibility stemming from this way
of visualizing a case allows a system to perform multiple tasks. As stated in [1], the
lessons taught in each case are the means by which the goals of the system are deliv-
ered. Thus, the lessons in each case may perform multiple tasks. One of our concerns
is that limiting a case base to one single reasoning task places engineered cases and
their systems apart from real experiences. Humans live and describe experiences as
complete episodes, thus an experience of identifying symptoms of a problem and pre-
scribing a strategy to solve it is always accompanied by some diagnosis. Therefore, it
is reasonable to expect that some users would be interested in reusing prescriptions
while others would prefer reusing diagnoses.

An alternative to task-oriented reasoners has been previously discussed as commu-
nity-oriented case-based reasoners [3]. The concept of a community-oriented system
would define the scope of a system based on its users rather than on one single rea-
soning task.

One of the contexts where this notion became popular is in case-based applications
for knowledge management [4]. Weber and Aha [5] proposed a case representation
for lessons learned that is aligned with Kolodner’s definition in [1]. The proposed
case representation consists of the case problem (indexing elements) with features

 Horizontal Case Representation 551

called applicable task and preconditions; and a case solution (reuse elements) with
features called lesson suggestion and rationale.

Another way of utilizing case bases without limiting the need for multiple reason-
ing tasks is studied by multi CBR, e.g., [6]. Multi CBR is recommended when multi-
ple case bases are already available.

Bergmann and Vollrath [7] have already found situations in which traditional
guidelines to build CBR systems and to reuse cases are not the most adequate. For
this reason, they proposed the notion of generalized cases, making solutions more
accessible to a wider set of problems. These authors have also observed that some-
times the problem and solution distinction is not very clear [7].

One of our main concerns with retrieval performance is the possibility of change in
a domain causing changes in features in an indexing vocabulary. As observed by
Leake and Wilson, such changes “…may render obsolete prior similarity criteria or
cases” [8] pp. 219.

The indexing vocabulary is the basis of a weighing scheme. Weighing schemes are
important so that features with different relative relevance are properly represented
[9]. The problem with a weighted similarity measure is that it requires revision if fea-
tures in the domain change, either by changing their importance or because new ones
need to be added or existing ones need to be removed.

An important issue arising from a horizontal representation relates to the cardinal-
ity of horizontal cases. If we give users one field to describe aspects of an experience,
then we should not limit the number of terms they can enter. Even if a limit were re-
quired from a practical standpoint, this could not be a small limit. Thus, different us-
ers will enter different numbers of terms to describe their experiences. This raises a
problem for similarity assessment as one similarity measure should be able to assess
similarity and assign a similarity score to any combination of target problem and can-
didate cases in the case base. However, horizontal case bases will have cases with
different number of terms and so will the new target problems entered by the users.
Although we choose not to control the varying number of terms in the case base, we
should be able to recommend to the user a desirable number of terms to enter to de-
scribe a new target problem that is likely to promote retrieval of useful cases. In addi-
tion to supporting an accurate retrieval, recommending such a number will also serve
the purpose of guiding users on how to best use the system.

The problem of number of search terms has been studied in other search contexts.
A study of 1,025,910 user queries in 1999 revealed that on average the web query
contains 2.5 terms [10]. This alone discourages the use of case retrieval by the means
of traditional vertical cases, given that problem descriptions with 3 features are hardly
usual. A way to compute an expected number of terms that are likely to promote re-
trieval with high levels of accuracy depending on the characteristics of each case base
is a promising strategy. Moreover, the resulting accuracy when using such a number
should be high. On one hand, it is likely that this number suggests users to enter more
than 2.5 terms, going against the status quo. On the other, longer queries do not nec-
essarily improve web search quality [11], so the improved quality has to be evident.

The variations in number of terms have an effect similar to missing data. Incom-
plete cases have been a concern of many researchers. Some of the work has focused
on incompleteness of problem description, others on the performance of CBR when

552 R. Weber, S. Gunawardena, and C. MacDonald

compared to inductive methods. Incompleteness has always been associated with lack
of reasoning power [12].

McSherry [13] examines the problem of incompleteness from the perspective of in-
teractive CBR, where data may be incomplete due to the inability of users to provide
complete problem descriptions. In this context, he proposes that choices of questions
are given to the users. This may increase the chances that a matching case is found but
does not address the problem of missing values in the case base. Bogaerts and Leake
[14] conduct a comparative study on the use of different methods to retrieve cases
based on incomplete problem descriptions. Those methods rely on strategies to assign
artificial values for unknown features. The proportion of missing features is low be-
cause they only assume missing values in new target problems. Interestingly, given
that in conversational CBR incompleteness is usually a problem in the query, query
length becomes another issue of concern [15].

Focusing on cases in the case base, Auriol et al. [16] have demonstrated that CBR
maintains higher levels of accuracy than inductive methods in the presence of missing
values. Furthermore, a study comparing increasing percentages of missing values in
conversational case libraries has demonstrated the impact of different forms of induc-
tive retrieval in recall and precision [17].

In conclusion, in order to make CBR systems and case retrieval more widely
adopted, it would be useful if some of the existing requirements could be relaxed.
Ideally, it would be desirable to keep the same levels of performance in systems that
could be reasoning-task independent; where cases could be easily captured directly by
humans who live the experiences and/or from experiences as they are available in the
real world (e.g., text); that cases were populated with terms only, without feature-
value pairs, and in any number; that case terms could be added, could disappear, and
change in importance without interfering with system performance; and that CBR
systems were equally reliable in the presence or absence of missing values.

3 Retrieving Horizontal Cases: The RCF

No benefits derived from the horizontal representation can justify any loss in accuracy
when compared to the vertical representation. The assessment of similarity between a
new problem and existing ones in the case base has to produce useful cases. However,
a horizontal case base lacks the vertical features that are used to guide users of CBR
systems to enter a new problem case. Furthermore, the degree of freedom given to
users when populating horizontal cases results in cases that may have different num-
bers of terms. Consequently, we need to know if there is an ideal number of terms
within a horizontal feature to describe a new problem case, such that it can result in
the retrieval of useful cases with a level of accuracy comparable to a vertical repre-
sentation. If this number exists and there is a way to compute it, we can use it to pa-
rametrize the similarity measure in order to normalize it and also to guide users on
how many values they should enter to describe a new problem. This number is the
Recommended Cardinality Factor (RCF).

When RCF is used as a parameter to compute similarity, it bounds the computation
of similarity functions between values from the new problem case and existing cases.
Each value of the problem case is compared against each value in the existing candidate
cases and the results of the functions representing the individual similarities are added

 Horizontal Case Representation 553

until either (a) the number of matches meets or exceeds the RCF or (b) there are no
more terms to match in either the target case or the candidate case. In (a), a similarity of
1.0 is assigned; in (b) the similarity is the number of matches divided by the RCF. In
other words, the RCF is the number of terms that have to match in order to consider two
cases similar.

For example, given an RCF of 3 and a target case with terms fever, nausea, jaun-
dice and vomiting, a candidate case with terms dizziness, fever, nausea, and jaundice
receives a similarity score of 1 since 3 terms match. Similarly, a candidate case with
terms no fever, nausea, and vomiting receives a similarity score of 0.66 since only 2
terms match (2/3 = 0.66).

3.1 Computing the RCF

One of our goals is to be able to compute the RCF so as to communicate it to the us-
ers. This is an important form of guidance for users of the system because it indicates
the ideal number of terms to enter given the current state of the case base.

The first step we took was to observe how different potential values of the RCF influ-
ence accuracy. For this purpose, we tested average accuracy in 4 horizontal case bases
across different percentages of missing values in each (these are described in Table 2
Section 4.1). Our first observation is that as the average number of terms per case de-
creases, so does the RCF that maximizes accuracy; this observation is confirmed by the
correlations in Table 1. The high correlation suggests that an equation derived from these
values may be able to predict the optimal RCF value for different datasets.

Table 1. Correlation between average number of terms per case and RCF that maximizes
accuracy

To find this prediction equation, a linear regression analysis was performed to de-
termine whether or not there is a linear relationship between the average number of
terms per case (TpC) and the optimal RCF, i.e., the value of RCF that maximizes ac-
curacy. Each variable was first transformed with a natural log function (ln) in order to
stabilize the variance and maximize the predictive ability of the regression equation.
A preliminary analysis suggested that the constant term was not statistically signifi-
cant and therefore the following model was used: ݈݁݀݋ܯ: lnሺܴܨܥሻ ൌ ଵߚ lnሺܶܥ݌ሻ . (1)

This regression is significant at the α ൌ 0.001 level and has an associated Rଶ of
0.984, indicating that 98.4% of the variability of the optimal RCF is explained by this
regression. The coefficient (βଵ) is also significant at the α ൌ 0.001 level, which suggests
that lnሺTpCሻ is a strong predictor of lnሺRCFሻ. Since using the natural log function can be
cumbersome, a reverse log transformation was performed and the following equation
was generated: ܴܨܥ ൌ eሺ଴.଼ଷଷൈ୪୬ሺ்௣஼ሻሻ , (2)

Case base 1 Case base 2 Case base 3 Case base 4 Overall
0.977 0.776 0.909 0.99 0.882

554 R. Weber, S. Gunawardena, and C. MacDonald

Fig. 2. Comparing optimal RCF to predicted RCF

where RCF is the optimal RCF value and TpC is the average number of terms per case
in the case base. This equation can now be used to predict the optimal RCF value for
the horizontal representation. Because RCF is a parameter of the case base, it only
needs to be computed again if the case base changes.

Based on these results it was then possible to compute a 90% prediction interval for
the optimal RCF for different numbers of terms per case. These values were used in the
analysis discussed in Section 4. Figure 2 shows the comparison between the optimal
(actual) RCF, the RCF predicted by Equation (2), and the upper and lower bounds of the
90% prediction interval as the average number of terms per case increases.

4 Horizontal Versus Vertical Representation

We hypothesize that, in the presence of missing values, case bases that use horizontal
representations are at least as accurate as the ones that use vertical cases. The metric
we utilize is average accuracy as measured by the leave one out cross validation
(LOOCV) method. Average accuracy is computed as the proportion of correct classi-
fications proposed by the case retrieved with highest similarity score.

4.1 Methodology and Datasets

Four vertical case bases (Table 2) were converted into horizontal case bases by having
their vertical features collapsed into one problem and one solution feature. Each new
horizontal problem feature groups all the values assigned to the original vertical fea-
tures. We now have 8 case bases: 4 vertical and 4 horizontal.

Each case base is then subject to five iterations of random removal of values, cor-
responding to removing approximately 10%, 20%, 30%, 40%, and 50% of the values
in each case base. Therefore, from 8 case bases, we generate another 40, resulting in
48 case bases. The vertical case bases were tested with their original similarity meas-
ures. The similarity measure used for horizontal case bases is explained in Section 3.

0

5

10

15

20

25

0 5 10 15 20 25

RC
F

Average Terms per Case (TpC)

Upper Bound

Optimal RCF

Predicted RCF

Lower Bound

 Horizontal Case Representation 555

Table 2. Case bases

To determine whether or not there is a statistical difference between the accuracy
of the horizontal and vertical case bases, a Wilcoxon signed-rank test was performed.
We chose this method because it is a non-parametric alternative to the paired sample
t-test that is used to compare two related groups of observations without making any
assumptions about their underlying distributions [18].

We emphasize that the selection of the RCF is critical to maximizing accuracy. As
a result, this comparison was only carried out using the accuracy levels of the hori-
zontal case bases corresponding to the RCF values which fell in a 90% confidence
interval for the prediction of the optimal RCF based on Equation (2), derived in Sec-
tion 3.1.

4.2 Results

Based on the results of the Wilcoxon signed-rank test performed separately for each
completeness level over all four case bases, there is no statistical difference between
the traditional vertical representation and the proposed horizontal approach at the
levels from 60% to 90% completeness, confirming our hypothesis. These results show
that only as little as 10% incompleteness is needed to render useless all the engineer-
ing effort to select an indexing vocabulary and represent the relative importance of
features with weights. This also reveals that the proposed method solves the problem
of incomplete cases.

The only statistically significant differences between horizontal and vertical repre-
sentation are at the 50% and 100% levels of completeness. At the 100% level, the
horizontal representation is less accurate than the vertical representation (p-value <
0.01). At the 50% level, the horizontal representation is more accurate than the verti-
cal representation (p-value < 0.001).

At the levels from 60% to 90% completeness, despite not having statistically sig-
nificant difference overall, there do appear to be specific RCF values at which the

Case base Case base 1 Case base 2 Case base 3 Case base 4
of cases 88 20 24 32
of vertical features 23 symbolic 4 numeric +

2 symbolic
8 symbolic 16 binary

Ave # allowable values
per feature, range

4, [2, 4] 5, [3, 8] 2.9, [2, 3] 2.25

problem software
development
projects

air traffic
conditions

preferences software
development
projects

solution feature 1 indicating
success or
failure

1 with 10 plans
to reroute
traffic

1 with 7
vacation
destinations

1 with 7
different
animals

similarity functions All binary 3 binary
3 continuous

All binary All binary

Method to learn weights Gradient
descent

Manually
assigned

Manually
assigned

Uses no
weights

Max weight 0.076 0.381 0.349 0.076
Min weight 0.003 0.048 0.009 0.003

556 R. Weber, S. Gunawardena, and C. MacDonald

Fig. 3. Horizontal (dark) and vertical (light) accuracy with missing values

accuracy of horizontal representation is superior to that of the vertical (see Figure 3
Case base 1). So it can be said that, assuming again that the proper RCF is calculated,
the horizontal representation is at least as accurate as, and sometimes more accurate
than, the vertical representation (where features are represented with different
weights) for completeness levels between 50% and 90%. We should emphasize that
despite the fact that RCF does not take into account that some features may be more
relevant than others, there is no loss of accuracy with the horizontal method.

5 Horizontal Representation in the Real World

We tested the expected benefits of the horizontal representation by designing a system
for a group of users without knowledge of CBR. These users are scientists whose goal
is to help each other reuse research methods and solutions. We worked with them to
design an interface so they could populate cases on their own.

Figure 4 presents an example of a case populated by a research scientist. The ques-
tions in the problem feature and headings in the solution features are there to guide
users to populate experiences adopting the notion that each record will discuss a prob-
lem and knowledge about it, i.e., a solution.

As previously mentioned, there are two consequences for the fact that what users
describe are experiences. First, experiences will not all solve the same reasoning task.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

100% 90% 80% 70% 60% 50%

Case base 1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

100% 90% 80% 70% 60% 50%

Case base 2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000
Case base 3

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000
Case base 4

 Horizontal Case Representation 557

Fig. 4. Real-world case populated by a research scientist

In the example, some cases describe a research activity and an experimental design to
approach it, whereas others describe a solution obtained through a literature review.
Second, experiences may not map into crisply distinct problem-solution pairs. Conse-
quently, we need to learn how to deal with an unclear demarcation between problem
and solution description.

5.1 Problem Only vs. Problem Plus Solution

In the previous sections we tested case bases that were originally engineered to use
vertical cases. Hence, those cases had crisp boundaries between problem and solution.
In this section, we have a case base populated by users who have lived the experi-
ences. Therefore, we use this case base to investigate the suitability of horizontal
cases and the similarity measure described in Section 3 for retrieving cases without
crisp boundaries between problem and solution.

Methodology. In this study we want to investigate whether it is beneficial to use both
problem and solution in the context of retrieving horizontal cases. Because of the un-
clear distinction between problem and solution, we hypothesize that using both prob-
lem and solution features in similarity assessment will be beneficial. We will compare
using Problem Only with Problem plus Solution when retrieving horizontal cases. As
reference of retrieval quality, we will use opinions of users. This study utilizes cases
populated in a period of one year.

To provide a baseline for comparison, we created queries and asked users to assess
retrieval quality. An e-mail survey was distributed to 11 users of the system. The sur-
vey consisted of six items. Each item was composed of one hypothetical query,
constructed from an existing case, along with three additional cases that were pre-
sented as cases retrieved in response to the query. For each retrieved case, the respon-
dents were asked to indicate how satisfied they would be with each if it were given
as a result for the given query. The available responses were: Satisfied, Somewhat
Satisfied, and Not Satisfied. Thus, each user provided 18 similarity assessments of

What is the general research activity? In what contexts does this activity occur?

What is the contribution you learned? Summarize your results.

Investigating detection limit, Bacillus anthracis, risk quantification, detection limit, sensitivity, water

Considering the median detection limit, Real Time PCR with a median lower detection limit of 400
cells/mL and PCR with a lower detction limit of 700 cells/mL are the two most sensitive methods for
detection of B. anthracis in water. The median lower detecetion limit of biosensors is also close to
these two methods with approximately 1100 cells/mL. Approximately 1300 journal articles related
to Bacillus anthracis were screened for papers related to detection method. Approximately 100 of
these articles (focusing on various detection approaches) were chosen for in-depth analysis to
extract the detection limit. The articles were divided into the following 8 methods: Real Time PCR,
PCR, PCR+Microarray, Biosensors, Immunoassay, Electrochemiluminiscence, Raman Spectroscopy,
and Mass Spectrometry. Resulting detection limit vs. type of detection method was plotted to
illustrate the mean, median, and range of detection limit for each method.ction limit, Bacillus
anthracis, risk quantification, detection limit, sensitivity, water

558 R. Weber, S. Gunawardena, and C. MacDonald

query-response pairs (six questions, each with 3 responses) which can be used to as-
sess similarity between the target case and the candidate case used to create that
query-response pair. Two query-response pairs were removed due to the lack of con-
sensus from the experts, leaving 16 query-response pairs per user that provided 176
total assessments of similarity (16 x 11).

The same queries were used to retrieve cases from the system using two methods
for comparison: Problem Only (similarity assessment compares queries with only the
problem feature of the cases) and Problem plus Solution (similarity assessment com-
pares queries with both problem and solution features of the cases).

The number of terms in the problem horizontal feature ranges from 1 to 10 terms,
with an average of 5.6 terms per case. Retrieval is guided by similarity scores com-
puted with method described in Section 3 and using Equation (2) suggests an optimal
RCF of 4.The resulting similarity scores between cases were computed on a scale of 0
to 1. Cases with similarity of less than 0.33 were mapped onto the Not Satisfied cate-
gory. Cases scoring between 0.34 and 0.66 were mapped onto the Somewhat Satisfied
category and cases with similarities falling in the 0.67 to 1.00 range correspond to the
Satisfied category.

Metrics. Because both users and methods being tested produce results in terms of the
labels Satisfied, Somewhat Satisfied, and Not Satisfied, we compare them as alterna-
tive classifiers. Classifiers are typically compared in a 2x2 matrix that compares 2
true classes with 2 hypothesized classes, true and false. Because we use 3 labels, we
adopt a 3x3 confusion matrix to represent 9 possible outcomes (Table 3).

Table 3. Confusion matrix

The 9 outcomes include variations of Satisfied (true) and Not Satisfied (false) con-
sidering “somewhat” as an additional intermediary class. We adopt the ROC chart
method for discrete classifiers [19] for comparison. We extend the formulas (See
equations 3, 4, and 5) for true Satisfied (benefit) rate, false Satisfied (cost) rate, and
accuracy from [19]. The formulas for our 3x3 confusion matrix are as follows where
P, S, and N respectively correspond to total number of Satisfied, Somewhat, and Not
Satisfied.

Benefit rate=TP+TS/(P+S), (3) Cost rate= FP+FPS+FSN/(N+S), (4) Accuracy=TP+TS+TN/(P+S+N), (5).

Results. The ROC chart in Figure 5 illustrates the tradeoff between generating True
Satisfied and True Somewhat (benefit) and False Not Satisfied (cost) of each method.
Any point above the 45o line demonstrates a method that adds value over random
guessing. The best possible performance is at the (0, 1) point, i.e., minimum cost and
maximum benefit. Figure 5 demonstrates that using Problem plus Solution produces a

Hy
po

the
siz

ed

cla
ss

es

True classes
Satisfied Somewhat Satisfied Not Satisfied

Satisfied True Satisfied -TP FP that is true Somewhat-FPS False Satisfied-FP
Somewhat
Satisfied

False Somewhat that is
true Satisfied -FSP True Somewhat-TS

False Somewhat that is
true Not Satisfied-FSN

Not Satisfied False Not Satisfied-FN FN that is true Somewhat-FNS True Not Satisfied-TN

 Horizontal Case Representation 559

result superior to Problem Only. The Problem plus Solution method has a benefit rate
of 0.867, compared to 0.733 for the Problem Only. It also produced greater accuracy:
0.813 compared to 0.688 when using the Problem Only. Figure 5 also shows that both
methods have the same cost rate of 0.5. Since there is no increased cost of using the
solution component as part of the similarity assessment, there is no need to put any
restrictions on when to use it.

Fig. 5. ROC chart for 2 methods

6 Concluding Remarks and Future Work

The value of this work is in introducing an alternative form to represent cases that, in
the presence of missing values, is at least as accurate as or more accurate than the
traditional CBR method. This is a very positive result for an approach that does not
use weights and where cases can be directly populated by humans who have no
knowledge of CBR. The proposed horizontal method includes the benefits listed in
Table 4. For these reasons, we believe that it may help expand the adoption of CBR.

Table 4. Benefits of horizontal case bases

1. Reduced engineering effort for design and maintenance.
2. No indexing vocabulary.
3. No list of features to represent cases.
4. Cases can be populated by users without knowledge of CBR.
5. Cases can be populated from sources as they are available.
6. Cases in one case base can describe different reasoning tasks.
7. Values used to populate cases can be new, removed, and change in importance.
8. Horizontal cases can be combined with vertical cases.
9. Perform equally well in the presence or absence of missing features.

The results shown in Section 4 confirm the benefit in accuracy of representing the

relative importance of some features. This is reflected at the 100% completeness level
where the traditional vertical representation was more accurate than the proposed
horizontal form. What we discovered is that by having as little as 10% of missing
values in the case base, all the effort of identifying an indexing vocabulary and repre-
senting relative relevance with weights would be worthless.

0.000

0.200

0.400

0.600

0.800

1.000

0.000 0.200 0.400 0.600 0.800 1.000

Benefit
Rate

Cost Rate

Problem plus
Solution

Problem Only.

560 R. Weber, S. Gunawardena, and C. MacDonald

Hence, this work informs a novel design decision for CBR systems. When it is
likely that new cases to be populated in a case base will be incomplete, then the de-
signer has the option of selecting horizontal features for case representation.

The horizontal representation does require more comparisons than the vertical.
However, increases in the proportion of missing values in cases increases the effi-
ciency in favor of the horizontal representation as comparisons are only made when
values exist. Also, the RCF bounds the number of comparisons that need to be made,
and this increases at a slower rate than the average number of terms per case, further
improving the efficiency of the horizontal representation. The computation of the
RCF does not influence complexity because it is a function of the average number of
terms per case.

With respect to adaptation, we foresee no major difficulties when using horizontal
representation. For example, when rule-based adaptation is used, then a given value is
to be found rather than a value assigned to a feature-value pair. With respect to simi-
larity, we plan to investigate alternative methods for assessing similarity between
horizontal cases. Ideally, we would like to improve its accuracy to the same level of
vertical cases at 100% completeness.

In the further evaluation of horizontal cases, we would like to examine their poten-
tial influence for textual and interactive CBR. While the textual nature of the features
in the study in Section 5 demonstrates an application of this research in textual CBR,
our tests in Section 4 show that horizontal representations are relevant to CBR far
beyond textual cases.

Acknowledgements

This work is supported in part by the U.S. EPA-Science to Achieve Results (STAR)
Program and the U.S. Department of Homeland Security Programs, Grant #
R83236201. Authors thank the members of the CAMRA community, particularly
users who answered our survey. The usability testing of the search is being conducted
under IRB protocol #16449. Authors also acknowledge use of a dataset from the UCI
repository.

References

[1] Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)
[2] Richter, M.M.: The Knowledge Contained in Similarity Measures. In: Keynote at the 1st

International Conference on Case-Based Reasoning, Sesimbra, Portugal (1995)
[3] Weber, R., Kaplan, R.: Knowledge-Based Knowledge Management. In: Jain, R., Abra-

ham, A., Faucher, C., van der Zwaag, B.J. (eds.) Innovations in Knowledge Engineering,
vol. 4, pp. 151–172. Advanced Knowledge International Pty Ltd., Adelaide (2003)

[4] Althoff, K.-D., Weber, R.O.: Knowledge Management in Case-Based Reasoning. Knowl-
edge Engineering Review 20(3), 305–310 (2005)

[5] Weber, R., Aha, D.W.: Intelligent Delivery of Military Lessons Learned. Decision Sup-
port Systems 34(3), 287–304 (2003)

 Horizontal Case Representation 561

[6] Leake, D.B., Sooriamurthi, R.: Automatically Selecting Strategies for Multi-Case-Base
Reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp.
204–218. Springer, Heidelberg (2002)

[7] Bergmann, R., Vollrath, I.: Generalized Cases: Representation and Steps Towards Effi-
cient Similarity Assessment. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI
1999. LNCS (LNAI), vol. 1701, pp. 195–206. Springer, Heidelberg (1999)

[8] Leake, D., Wilson, D.: When Experience is Wrong: Examining CBR for Changing Tasks
and Environments. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999.
LNCS (LNAI), vol. 1650, pp. 218–232. Springer, Heidelberg (1999)

[9] Aha, D.: Feature weighting for lazy learning algorithms. In: Liu, H., Motoda, H. (eds.)
Feature Extraction, Construction and Selection: A Data Mining Perspective, pp. 13–32.
Kluwer, Norwell (1998)

[10] Spink, A., Wolfram, D., Jansen, M., Saracevic, T.: Searching the web: The public and
their queries. Journal of the American Society for Information Science and Technol-
ogy 52, 226–234 (2001)

[11] Boydell, O., Smyth, B.: Enhancing Case-Based, Collaborative Web Search. In: Weber,
R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 329–343.
Springer, Heidelberg (2007)

[12] Sanders, K.E., Kettler, B.P., Hendler, J.A.: The case for graph-structured representations.
In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 245–254. Springer,
Heidelberg (1997)

[13] McSherry, D.: Interactive Case-Based Reasoning in Sequential Diagnosis. Applied Intel-
ligence 14, 65–76 (2001)

[14] Bogaerts, S., Leake, D.: Facilitating CBR for Incompletely-Described Cases: Distance
Metrics for Partial Problem Descriptions. In: Funk, P., González Calero, P.A. (eds.)
ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 62–76. Springer, Heidelberg (2004)

[15] McSherry, D.: A Generalised Approach to Similarity-Based Retrieval in Recommender
Systems. Artificial Intelligence Review 18, 309–341 (2002)

[16] Auriol, E., Manago, M., Althoff, K.-D., Wess, S., Dittrich, S.: Integrating induction and
case-based reasoning: Methodological approach and first evaluation. In: Haton, J.-P.,
Manago, M., Keane, M.A. (eds.) EWCBR 1994. LNCS, vol. 984, pp. 18–32. Springer,
Heidelberg (1995)

[17] McSherry, D.: Precision and Recall in Interactive Case-Based Reasoning. In: Aha, D.W.,
Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 392–406. Springer, Heidel-
berg (2001)

[18] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
[19] Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Tech Report

HPL-2003-4, HP Laboratories (2003)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 562–572, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Fraud Analysis in Mobile*
Telecommunications Using Case-Based Reasoning

Pedro Almeida1, Marco Jorge1, Luís Cortesão2, Filipe Martins3, Marco Vieira1,
and Paulo Gomes1

1 CISUC, Department of Informatics Engineering, FCTUC, University of Coimbra,
Coimbra, Portugal

2 PT Inovação SA, Aveiro, Portugal
3Telbit SA, Aveiro, Portugal

Abstract. Fraud in mobile telecommunications is a complex and dynamic prob-
lem for Telecom operators. These companies have developed and are exploring
new ways of making the fraud detection process more efficient. Most of these
attempts are based in fraud management systems, capable of detecting fraudu-
lent communications. In this paper, we present a case-based reasoning system
that aids fraud analysts in the classification of potential fraud cases. The system
developed, presents to the analyst the most similar past cases, representing sus-
picious communication episodes that were previously investigated. We also de-
scribe an example of how the system is used.

Keywords: case-based reasoning, telecommunication fraud, fraud detection.

1 Introduction

Mobile telecommunications is a very important business with a broad and large cus-
tomer base. It has become a disputed market with many operators, each one struggling
for its market share. For an operator to increase its profit, it is now more effective to
reduce costs and losses, than trying to increase the market share. The telecommunica-
tions business is a typical target of multiple fraud actions, estimated to affect 3% to
6% of an operator’s gross revenue [1]. Fraud Management Systems (FMS) are essen-
tial for mobile operators to keep fraud occurrences under control, commonly through
a collection of detectors (configured as rules determined by the system administrator)
that search the communication space for abnormalities. When an abnormality is
found, an alarm is raised and a fraud analyst is assigned to investigate the case and
decide if it is indeed fraud or not. However, due to the large customer base and fraud
universe, this approach is becoming impractical and a more automated process is
needed.

Because the telecomm business is heavily based on computers, there is a huge
amount of collected information. This information can be used, in conjunction with
machine learning techniques [2], to aid the fraud analysis process.

* This work was supported by PT Inovação SA, under program IDEIAS 2007.

 Supporting Fraud Analysis in Mobile Telecommunications Using CBR 563

In this work, a case-based reasoning (CBR) [3, 4] approach is used to aid in this
process. CBR allows for a new, unseen case, to be matched, with a certain similarity,
to another case already stored in the case base. The search for similar cases is a pow-
erful tool that can help the analyst, as it aids her/him to infer the fraud status of a
given case using as basis relevant information gathered from other cases. This means
that, when an analyst is investigating a case, s/he can use the overall system memory
to easily and accurately classify the current working case. The main goal of this work
is to devise a system that helps the fraud analyst to take faster and more accurate
decisions and that is fully integrated in the existing FMS, we named it ECA3RL.

Wheeler and Aitken [6] propose a system within a CBR methodological structure for
reducing the number of final-line fraud investigations in the credit approval process. The
use of a weighting matrix in contrast to a flat weighting structure for use in case matching
is investigated, but due to the already filtered data that they had at there disposal no sig-
nificant improvement was found. For the retrieval phase they propose an algorithm based
on the k nearest-neighbour, but despite the retrieval of a constant number (k) of cases
they propose a threshold for the retrieval that only retrieves cases from a specified
neighbourhood, with the possibility of a dynamic modification of the threshold. The rest
of the paper deals with CBR diagnosis for the analysis of the significance of the cases
retrieved. So, a series of algorithms are proposed and tested based on their efficiency.
Their final conclusion is that a multi-algorithmic approach to diagnosis proves to be more
efficient in the classification of large and noisy data sets.

Other works in the area of fraud detection in mobile telecommunications are based
on Data Mining approaches. Burge and colleagues [1] explore fraud detection based
on absolute and differential analysis. Absolute analysis, similar to a general fraud
profile, uses a set of fixed trigger systems, that if activated, raise an alert status which
cumulatively would lead to an investigation. This approach is very effective detecting
extreme fraud cases but weak when the fraud does not stand out of the general usage.
Differential analysis, similar to user profiles, uses behavioural patterns associated
with the mobile telephone comparing its most recent activities with a history of its
usage. Triggers can then be determined for each specific client to detect significant
usage pattern deviation over a small period of time. Nearly all fraud cases demon-
strate a behaviour pattern change over a small period of time. This last approach is
specially precise because a behaviour can be considered anomalous for one user but
regular for another. For example, thirty high rate international calls can be considered
a fraud for an old granny living with her family (who never makes such calls) but a
regular day for an international businessman (who regularly makes such calls). With
this approach it is possible to determine flexible criteria that allows the detection of
subtile frauds only detectable at the customer level.

Weiss [7] focuses the data types when using data mining for fraud detection in mobile
telecommunications. There are three main data types: call detail data - every time a call is
placed on a telecommunications network, descriptive information about the call is saved
as a CDR (call data record); network data - network related data describes the network's
software and hardware status; customer data - includes all customer related data. The
most important data type for fraud detection is call detail data. CDRs are not used di-
rectly for data mining, they represent the individual call level while frauds occur ate the
customer level. To transform them, CDRs associated with a customer must be summa-
rised into a record that describes the customer behaviour. The choice of summary fea-
tures is critical in order to obtain a useful description of the user.

564 P. Almeida et al.

Rosset and colleagues [8] investigate and approach using rules and a modified
C4.5 algorithm. The authors stress that call details alone are not enough to establish
fraud cases (call details are used to determine a general fraud profile or absolute
analysis, described by [1]) and that a user profile or differential analysis like approach
is much more effective. In this phase it is important to recognise individual rule's
characteristics like: high accuracy in cases - most cases found are really fraud; high
coverage of true fraud cases - most fraudulent cases are found; high coverage of true
fraud alerts - fraud cases are detected quickly.

The next section provides an introduction to the theme of fraud in mobile tele-
communications. Then we discuss the ECA3RL system by presenting its various
modules. We also show a typical example of use of the system. This paper then fin-
ishes with related work and some final remarks.

2 Fraud in Mobile Telecommunications

Fraud in mobile telecommunications can be classified under the 3M’s classification [5]:

• Motive - its fundamental objective;
• Means - its nature or form;
• Method - its overall technique.

From the motive standpoint, fraud is classified by its fundamental objective:

• Non-revenue fraud - occurs when a service is used without intent to cover
the costs and without intent to profit. It includes providing no-cost services to
friends or private usage;

• Revenue fraud - occurs when a service is used without intent to cover the
costs but with intent to profit or gain financial benefits. It includes call selling
or PRS fraud (premium rate service) described below.

From the means point of view, fraud can be classified by the nature or form used to
commit it:

• Call selling - consists of selling high rate calls, usually international calls, be-
low their market price, without intention to support their real cost;

• PRS fraud - consists of placing premium rate service calls to inflate the
revenue of that service provider without intention to support the calls real
cost;

• Surfing - usage of a third person’s account without their consent, for exam-
ple, through card cloning;

• Ghosting - refers to obtaining free or cheap rate calls through technical
means of deceiving the network, for example, by manipulating the database
contents;

• Sensitive information disclosure - involves obtaining valuable information
(e.g. VIP client details or access codes) and profiting from it. This fraud is
usually performed internally to the telecom operator;

• Content stealing - consists of obtaining valuable contents (e.g. games, vid-
eos, ringtones) for free, by exploiting the non real-time pre-paid billing sys-
tem (hot-billing) or by avoiding payment of the invoice (post-paid services).

 Supporting Fraud Analysis in Mobile Telecommunications Using CBR 565

When considering the method, fraud can be classified as:

• Subscription - occurs through subscription of services with false credentials
that allow debt accumulation by systematic payment avoidance;

• Technical - consists of exploiting loopholes found in the operator’s plat-
forms;

• Internal - when employees of the operator exploit the system for personal
gain;

• Point of sale - occurs when the dealer manipulates sales figures to increase
the compensations paid by the operator.

3 The ECA3RL System

This section describes the system developed and integrated into the FMS used by the
telecommunications operator. The main objective of this system is to aid the fraud
analyst in the classification process of a potential fraud case. ECA3RL aids the ana-
lyst using a Case-Based Reasoning approach, which presents her/him with similar
fraud cases to the situation being analyzed.

Next, we present how the proposed approach, regarding the various CBR phases: case
representation, indexing, retrieval, ranking, weight learning, and case base maintenance.

3.1 Case Representation

The FMS stores information about analyzed situations. These are cases created by
analysts while they perform their job and analyse alarms triggered by the FMS fraud
detectors when they encounter abnormalities on a client’s account, card or call behav-
iour. Fraud analysts have to decide if the situation is indeed a potential fraud or not.

For the case representation in our system, we had to identify the various attributes
that were located across the FMS. The data used in ECA3RL is mainly demographic,
behavioural and financial data. This data is related to two entities:

• Alerts – generated when a threshold or detector is triggered by a suspi-
cious event. It comprises features like: the creation date, the process used
to identify the alert, the total amount of the call records that originated the
alert, the card age, etc.;

• FMS Cases – the result of the evaluation of a set of alerts by the fraud
analyst. It comprises features like: the creation date, the associated alarms,
the detection process, the fraud type, behaviour profile, postal code,
amount payed, amount unplaced, and other relevant features.

After the identification of the various attributes, we created the case representation
that comprises two parts: a problem description and a solution description. The prob-
lem description comprises several types of features:

• Client’s information – fiscal code, postal code, nationality, etc.
• Behaviour information – consumption profile, payment behaviour, etc.
• Case information – creation date, the way it was detected, the context

that tells if the case relates to a card number or an account number, etc.

566 P. Almeida et al.

• Related cases – past cases which are related to this one.
• Related cards – cards which are in some way related to this case.
• Communication Records (EDRs) – the communication events that origi-

nated this case.
• Alerts – the alerts that originated this case. These are detected by detec-

tion rules, and comprise specific attributes.

The solution description comprises information describing if the case is a fraud
situation or not, what was the motivation in case of fraud, the used method, the fraud
type and if the case is closed or not.

A Case has a unique identifier represented by the attribute Id Case, which links to
the FMS specific situation data. Then, the Problem description represents the various
attributes and helps to define the Case description, and linked to that, we have the
alert or alerts that originated the case. Finally, associated with the Case, there is the
Solution description that defines the classification of the case, that is, if it is a fraud
case or not, and other important information.

There is a second type of cases in the system, which are cases representing alerts.
These cases are extracted directly from the previous representation and correspond to
the Alert representation node. These cases represent specific suspicious events that
can be used to be shown to the analyst as an aid. They can show if a specific type of
alert is associated with fraud cases or not.

3.2 Case Indexing

For obtaining good performance by the system during the retrieval phase, some at-
tributes were used as indexes for the cases. Domain experts have identified eight
attributes that are used as indexes, like the context type (if it is a card or an account),
the client’s profile and others. These attributes are used as indexes, by creating index
structures for each attribute in the database where the classes are stored.

3.3 Case Retrieval

The case retrieval is performed by querying the database. The system then builds a list
of cases that are similar to the target case. For the retrieval of the similar cases, we use
the following algorithm:

 RetrievedCases ← ∅

 FORALL Attributes DO

 Cases ← Get cases with equal Attribute/Value

 RetrievedCases ← RetrievedCases ∪ Cases
 If(#RetrievedCases == 50)

 break

 ENDFORALL

 RETURN RetrievedCases

 Supporting Fraud Analysis in Mobile Telecommunications Using CBR 567

The system searches the database for cases matching the attributes chosen for in-
dexes. This insures that the cases retrieved will be the ones that are most relevant be-
cause of the importance of the indexed attributes, and performance is made efficient.

3.4 Case Ranking

After the retrieval, the system ranks the cases in descending order by the similarity to
the target case. Case similarity is computed using a weighted sum of the attributes
similarity (see formula 1).

()∑
=

×=
n

i
n

CiACiAAtrSimwi
CCCaseSim

1

)2,(),1,(
)2,1(

 .
(1)

Where:

• C1 is the target case;
• C2 is the retrieved case;
• n is the number of attributes being compared;
• i is the index of an attribute of the case;
• wi is the weight associated with attribute i;
• CaseSim is the similarity metric function between two cases, returning a value in

the interval [0,1];
• AtrSim is the similarity metric function between two attributes, returning a value in

the interval [0,1];
• A returns the value of the attribute I of the Case C
• Σwi is 1.

The initial weights associated with the attributes, were compiled by asking the ana-
lysts about the importance of certain attributes in the classification process. We de-
veloped a learning process for adjusting the weights (see section 3.5).

For the AtrSim function different formulas are used depending on the type of at-
tribute. We use logarithmic metrics, similarity matrixes and, in some cases, a simple
condition, that when the values are equal, AtrSim returns 1 and in all other cases 0.
This metrics were defined in accordance with the domain experts. An example of a
logarithmic metric applied to the attribute creation date is:

() ()
⎪
⎩

⎪
⎨

⎧

⇐

>
+−

−⇐
+−

−

Otherwise

CDCDCDCD

0

0
5.3

121log
1

5.3

121log
1

33

 . (2)

Where CD1 and CD2 are, respectively, the creation date in the target case and in the
retrieved case. Other attribute similarity metrics are used, such as, similarity matrixes,
Boolean similarities and others, depending on the type of attribute.

3.4.1 Null Attribute Values
One of the most challenging aspects of this work, was the quality of the data that we
had at our disposal, as there was a lot of missing values in some of the attributes that
defined a Case.

568 P. Almeida et al.

One of the main problems of this lack of data is when the target case has missing
values, as it will lead to wrong results during the ranking of the cases. This way, to try
to solve this issue, we decided that a null value is like an undetermined value. Table 1
presents the action that takes place at the ranking algorithm on the different missing
values situations.

In the first row, the rationale is that the similarity metric should ignore this attrib-
ute and distribute the weight associated with it among all the other attributes (which
are not null). This distribution is performed proportionally to the weights of the other
attributes. So if the weight configuration is: attr1 – 20%; attr2 – 40% and attr3 – 40%,
and if attr2 is null, then the new weight configuration will be: attr1 – 40%; attr2 – 0%
and attr3 – 60%. The same situation happens in the second row, where the reference
case is null, and the similarity metric will ignore it.

Row three represents a situation where there is no value for the similar case attrib-
ute, so the similarity value should be zero, giving more importance to the reference
case attribute. Row four represents a normal situation, where both values exist.

Table 1. Ranking algorithm actions when confronted with missing values

Reference Case Similar Case Action

null value on attribute null value on attribute Proportional distribu-
tion of the attribute’s
weight

null value on attribute Attribute value different from
null

Proportional distribu-
tion of the attribute’s
weight

Attribute value different
from null

null value on attribute AtrSim returns 0

Attribute value different
from null

Attribute value different from
null

AtrSim is calculated
normally

3.4.2 Case Presentation
As previous discussed, the system developed in this project had to be integrated into
an existing FMS. One important requirement was to present the similar cases informa-
tion to the analyst in a very simplified way, so that s/he could easily understand the
similarities between the target case and the retrieved cases.

So, to clearly show the total similarity value of a case in relation to the target case,
colors were used on the cells that display the different values of the attributes of the
similar cases. The color should be shown depending of the value returned by AtrSim
for that attribute.

For AtrSim equal to 0, we use red and for a value equal to 1 we use green, values in
between have a color that will be close to red or green depending of its proximity. In
figure 1 we show a screenshot of the system case retrieval presentation. The alert
retrieval is similar to this process.

 Supporting Fraud Analysis in Mobile Telecommunications Using CBR 569

Fig. 1. Similar Cases screenshot. Data masked due to confidentiality issues.

3.5 Weights Readjustment Mechanism

One of the most critical aspects for the suggestion of relevant similar cases is the
weights that are associated with each attribute. We decided to implement a mecha-
nism to automatically change the weights based on actions done by the analyst during
the operation of the system.

When a list of similar cases is presented to the analyst, we store the cases that were
inspected by him, as the premise that these are the cases that helped him during the
analysis.

After this, the relevant cases are collected, and a readjustment to the weights is
processed. The process used is as follows: for all the relevant cases, we find the at-
tributes that contributed more to the total similarity value, that is, the attributes whose
AtrSim returned a value greater then zero. Next we list the common relevant attributes
from all relevant cases and then compute the adjustment value (∆) using the following
formulas:

∆ = Ω * Θ . (3)

n

CxCCaseSim∑ −
=Ω

)),0(1(
 . (4)

570 P. Almeida et al.

Where Θ is a growth constant, C0 is the reference case, Cx a relevant case, and n the
number of relevant cases.

The adjustment value will be greater, when the relevant cases are more distant to
the reference Case and will be smaller when the relevant cases are closer. We also
increase the weight of the relevant attributes proportionally by adding an adjustment
value, and decrease the non-relevant attributes accordingly. The goal of this mecha-
nism is that after some iterations the weights will converge to optimal values pre-
ferred by the analysts.

3.6 Case Base Maintenance

The learning of new cases consists in the acquisition of more knowledge to the sys-
tem. This is achieved by having quality cases in the case base.

For this learning process, we have to acquire the cases presented in the FMS sys-
tem and maintain our cases database consistent with the FMS. This was achieved by
implementing our own database, which stores the cases. The way we do it is by using

Fig. 2. Context navigation screenshot. Numbers masked due to confidentiality issues.

 Supporting Fraud Analysis in Mobile Telecommunications Using CBR 571

materialized views of the tables that represent a FMS case. Basically a materialized
view is a database engine mechanism that caches a query to the database in the form
of a table. This way the query that we use, that fetches data from several places of the
FMS is stored in a table and updated from time to time. Then, we only have to refresh
our materialized views so that the system will be consistent and updated. Future work
includes improving this phase of the process.

3.7 Context Graph Navigation

The last module implemented in ECA3RL was a navigation system between related
contexts (see figure 2). This module is not related to CBR but also aids the analyst in
determining the classification of a case because it allows him to explore direct rela-
tions between different cases by cards and/or accounts.

This means that an analyst can go from a newly classified fraud case to another case
with the same account number and to the next with the same phone number and infer if
the new case is fraudulent because of the relationship between those fraudulent cases.
The information about the cases relations is already presented in the FMS, so we only
have to query that information and present it in a graph view to the analyst.

4 Example of Use

The fraud analyst uses her/his past experience to investigate current cases. The prob-
lem is when some types of cases have not been investigated by this analyst or when
time fades away memories. This means that the analyst has to redo the work previ-
ously done.

The context navigation feature (see figure 2) provides navigation between directly
linked cases, cards and accounts. This way, the analyst can navigate between related
contexts and try to infer, from that relation, the solution of the current case. This
means that the analyst does not have to remember/know, for example, that account A
has five cards A1, A2, A3, A4 and A5 and that card A5 is related to a fraud case from
another account B.

As the context navigation, the similar cases functionality (see figure 1) supports the
decision of the analyst by providing related incidents. The cases presented by this
functionality are not directly linked to the one in study but are the result of a compari-
son between that one and the rest. For the analyst to understand that similarity, the
system provides the colours seen in the figure. To express differences the system uses
the colour red, while to express similarity uses green. With this colour scheme, the
analyst can easily verify the similarity between the cases on the given attributes and,
if those attributes are significant enough, use the given data to classify the new case.

5 Conclusions

Telecommunications fraud is very dynamic and is becoming very complex to analyze,
so it is important to create reliable automatic processes that enhance as much as pos-
sible the analyst perception of the fraudulent activity and aid in the decision making.
The quality of the data is very critical to this type of study, and even though some

572 P. Almeida et al.

algorithms could sustain some missing values, we concluded that some mechanisms
should be implemented by the FMS to force the analyst to fully introduce the infor-
mation related to fraud into the system.

During the project some lessons were learned, namely that the human factor is de-
cisive in making such a project a success. ECA3RL was no exception, one important
requirement was for the system to be able to justify case similarity, in a easy and
intuitive way. This would be very important for the analysts, because they want to be
sure of the decisions that they take. The similarity colouring mechanism is a simple
one, but a decisive one for the success of the system. Another aspect related to this, is
that the system should provide help, it should not take decision making away from the
analysts.

Comparing our approach with the standard Data Mining approach, this is a new
way of helping the fraud detection processing, taking into account the human factor,
which is not taken by the Data Mining approach, and by making the detection process
more efficient. Though we think that both approaches are complementary and can
make fraud detection more effective.

The system is going to be adapted and integrated in the operational version of the
FMS and will be tested in the real world. Future work with ECA3RL includes getting
feedback from the system usage, and analyzing it. This is specially important for the
weight learning algorithm, in order to define it’s accuracy and learning characteristics.
Other issue that can be further explored is the case base maintenance policy, which
can and must be improved. With the use of the system, the case base will grow, reach-
ing dimensions that can hinder the system performance.

References

1. Burge, P., Shawe-Taylos, J., Cooke, C., Moreau, Y., Preneel, B., Stoermann, C.: Fraud de-
tection and management in mobile telecommunications networks. In: ECSD (1997)

2. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
3. Aamodt, A., Plaza, E.: Case–based reasoning: Foundational issues, methodological varia-

tions, and system approaches. AI Communications 7(1), 39–59 (1994)
4. Kolodner, J.: Case-Based Reasoning. Morgan Kaufman, San Francisco (1993)
5. Cortesão, L., Martins, F., Rosa, A., Carvalho, P.: Fraud management systems in telecom-

munications: a practical approach. In: ICT (2005)
6. Wheeler, R., Aitken, S.: Multiple Algorithms for Fraud Detection. Knowl.-Based

Syst. 13(2-3), 93–99 (2000)
7. Weiss, G.: Data mining in telecommunications (2005)
8. Rosset, S., Murad, U., Neumann, E., Idan, Y., Pinkas, G.: Discovery of fraud rules for tele-

communications challenges and solutions. In: ACM SIGKDD (1999)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 573–586, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting the Presence of Oil Slicks After an Oil Spill

Juan Manuel Corchado and Aitor Mata

Department of Computing Science and Automatic, University of Salamanca,
Plaza de la Merced, s/n, Salamanca, Spain

corchado@usal.es, aitor@usal.es

Abstract. A new predicting system is presented in which the aim is to forecast
the presence or not of oil slicks in a certain area of the open sea after an oil
spill. In this case, the CBR methodology has been chosen to solve the problem.
The system designed to predict the presence of oil slicks wraps other artificial
intelligence techniques such as a Growing Radial Basis Function Networks,
Growing Cell Structures and Fast Iterative Kernel Principal Components
Analysis in order to develop the different phases of the CBR cycle. The pro-
posed system uses information such as sea salinity, sea temperature, wind,
currents, pressure, number and area of the slicks…. obtained from various satel-
lites. The system has been trained using data obtained after the Prestige acci-
dent. Oil Spill CBR system (OSCBR) has been able to accurately predict the
presence of oil slicks in the north west of the Galician coast, using historical
data.

Keywords: Oil spill, Growing Cell Structures, Radial Basis Function, PCA.

1 Introduction

Predicting the behaviour of oceanic elements is a quite difficult task. In this case the
prediction is related with external elements (oil slicks), and this makes the prediction
even more difficult. Open ocean is a highly complex system that may be modelled by
measuring different variables and structuring them together. Some of those variables
are essential to predict the behaviour of oil slicks. In order to predict the future pres-
ence of oil slicks in an area, it is obviously necessary to know their previous positions.
That knowledge is provided by the analysis of satellite images, obtaining the precise
position of the slicks.

The solution proposed in this paper generates, for different geographical areas, a
probability (between 0 and 1) of finding oil slicks after an oil spill. The proposed
system has been constructed using historical data and checked using the data acquired
during the Prestige oil spill, from November 2002 to April 2003. Most of the data
used to develop the proposed system has been acquired from the ECCO (Estimating
the Circulation and Climate of the Ocean) consortium [1]. Position and size of the
slicks has been obtained by treating SAR (Synthetic Aperture Radar) satellite im-
ages[2].

The proposed system is a forecasting Case-Based Reasoning system: the Oil Spill
CBR (OSCBR). A CBR system has the ability to learn from past situations, and to

574 J.M. Corchado and A. Mata

generate solutions to new problems based in the past solutions given to past problems.
Past solutions are stored in the system, in the case base. In OSCBR the cases contain
information about the oil slicks (size and number) as long as atmospheric data (wind,
current, salinity, temperature, ocean height and pressure). OSCBR combines the effi-
ciency of the CBR systems with artificial intelligence techniques in order to improve
the results and to better generalize from past data.

The results obtained with OSCBR approximate to the real process occurred in near
the ninety per cent of the value of the main variables analyzed, which is a quite im-
portant approximation.

In this paper, the oil spill problem is first presented, showing its difficulties and the
possibilities of finding solutions to the problem. Then, OSCBR is explained, giving
special attention to the techniques applied in the different phases of the CBR cycle.
Last, the results are shown and also the future developments that can be achieved with
the system.

2 Oil Spill Problem

After an oil spill, it is necessary to determine if an area is going to be contaminated or
not. To conclude about the presence or not of contamination in an area it is necessary
to know how the slicks generated by the spill behave. The most data available; the
best solution can be given.

Fig. 1. On the left side, a SAR image is shown. On the right side the interpretation of the left
satellite image done by OSCBR.

First, position, shape and size of the oil slicks must be identified. The most precise
way to acquire that information is by using satellite images. SAR images are the most
commonly used to automatically detect this kind of slicks [3]. The satellite images
show certain areas where it seems to be nothing, like zone with no waves; that are the
oil slicks. In figure 1 a SAR image is shown on the left side. There, a portion of the
western Galician coast is shown, as long as some black areas, corresponding to the oil

 Predicting the Presence of Oil Slicks After an Oil Spill 575

slicks. The image on the right side of figure 1 shows the interpretation of the previous
image after treating the data generated by the SAR image. With SAR images it is
possible to distinguish between normal sea variability and slicks. It is also important
to make a distinction between oil slicks and look-alikes. Oil slicks are quite similar to
quiet sea areas, so it is not always easy to discriminate between them. If there is not
enough wind, the difference between the calmed sea and the surface of a slick is less
evident and so, there may be more mistakes when trying to differentiate between an
oil slick and something that it is not a slick. This is a crucial aspect in this problem
that can also be automatically done by a series of computational tools.

Once the slicks are identified, it is also crucial to know the atmospheric and mari-
time situation that is affecting the slick in the moment that is being analysed. Informa-
tion collected from satellites is used to obtain the atmospheric data needed. That is
how different variables such as temperature, sea height and salinity are measured in
order to obtain a global model [4] that can explain how slicks evolve.

2.1 Previous Solutions Given to the Oil Spill Problem

There have been different ways to analyze, evaluate and predict situations after an oil
spill. One approach is the simulation [5], where a model of a certain area is created,
introducing specific parameters (weather, currents and wind) and working along with
a forecasting system. Using this methodology, it is easy to obtain a good solution for a
certain area, but it is quite difficult to generalize in order to solve the same problem in
new zones.

Another way to obtain a trajectory model is to replace the oil spill by drifters [6] com-
paring the trajectory followed by the drifters with the already known oil slicks trajecto-
ries. If the drifters follow a similar trajectory as the one that followed the slicks, then a
model can be created and there will be a possibility of creating more models in different
areas. Another way of predicting oil slicks trajectories is to study previous cases to obtain
a trajectory model for a certain area with different weather situations [7]. Another trajec-
tory model is the created to accomplish the NOAA standards [8], where both the ‘best
guess’ and the ‘minimum regret’ solutions are generated.

2.2 Models

One step over those solutions previously explained are the systems that, combining a
major set of elements, generate response models to solve the oil spill problem.

A different of view is given by complex systems [9] that analyze large data bases
(environmental, ecological, geographical and engineering), using expert systems. This
way, an implicit relation between problem and solution is obtained, but with no direct
connection between past examples and current decisions. Nevertheless arriving at
these kind of solutions requires a great deal of data mining effort.

Once the oil spill is produced there should be contingency models that make a fast
solution possible [10]. Expert systems has also been used, using the stored information
from past cases, as a repository where future applications will find structured informa-
tion. Some other complete models have been created, to integrate the different variables
affecting the spills [11], always trying to get better benefits than the possible costs gen-
erated by all the infrastructure needed to response to a problematic generated situation

576 J.M. Corchado and A. Mata

The final objective of all these systems is to be decision support systems, in order
to help to take all the decisions that need to be taken properly organized. To achieve
that great objective, different techniques have been used, from fuzzy logic [12] to
negotiation with multi-agent systems [13].

3 Oil Spill CBR System – OSCBR

Case-Based reasoning is a methodology [14], and so it has been applied to solve dif-
ferent kind of problems, from health applications [15; 16] to eLearning [17] [18].
CBR has also evolved, being transformed so that it can be used to solve new prob-
lems, becoming a methodology to plan [19], or distributed version [20].

Table 1. Variables that define a case

Variable Definition Unit
Longitude Geographical longitude Degree
Latitude Geographical latitude Degree
Date Day, month and year of the analysis dd/mm/yyyy
Sea Height Height of the waves in open sea m
Bottom pressure Atmospheric pressure in the open sea Newton/m2

Salinity Sea salinity
ppt (parts per
thousand)

Temperature Celsius temperature in the area ºC

Area of the slicks
Surface covered by the slicks present
in the analyzed area

Km2

MeridionalWind Meridional direction of the wind m/s
Zonal Wind Zonal direction of the wind m/s
Wind Strenght Wind strength m/s

Meridional Current
Meridional direction of the ocean
current

m/s

Zonal Current Zonal direction of the ocean current m/s
Current Strenght Ocean current strength m/s

CBR has already been used to solve maritime problems [21] in which different

oceanic variables were involved. In this case, the data collected from different obser-
vations from satellites, is pre-processed, and structured in cases. The created cases are
the keys to obtain the solutions to future problems, through the CBR system. Oil
slicks are detected using SAR images. Those images are processed and transformed to
be used by the system.

Figure 2 shows the graphical user interface of the developed system. In that image
the different components of the application can be seen (maps, prediction, slicks,
studies…) as well as a visualization of an oceanic area with oil slicks and a squared
area to be analyzed.

OSCBR determines the probability of finding oil slicks in a certain area. To gener-
ate the predictions, the system divides the area to be analyzed in squares of approxi-
mately half a degree side. Then the system determines the amount of slicks present in
a square. The squares where the slicks are located are coloured with different grada-
tion depending on the quantity of the squared area covered by oil slicks.

Fig. 2. Graphical user interfac
can be observed here.

The squared zone determ
The values of the different
the value of the possibility
case, which define the prob

In table 1 the structure o
geographical (longitude and
current, sea height, bottom
related with the problem (nu

Once the data is structure
situation stored and that rela
That temporal relationship is
problem is the past case, and
analyzed.

The data used to train th
tween November 2002 and
west of the Galician coast
between 42 and 46 degree
base, the system is ready to
lem situation must be intro
problematic situation are re
chosen from the case base,

Predicting the Presence of Oil Slicks After an Oil Spill

e of the OSCBR system. The different components of the sys

mines the area that is going to be analyzed independen
variables in a square area in a certain moment as long

of finding oil slicks in the following day is what is calle
blem and propose the solution.
of a case is shown. The variables present in a case can
d latitude), temporal (date of the case), atmospheric (wi

m pressure, salinity and temperature) and variables dire
umber and area of the slicks).
ed, it is stored in the case base. Every case has its temp
ates every case with the next situation in the same posit
s what creates the union between problem and solution. T
d the solution is the future case, the future state of the squ

he system has been obtained after the Prestige accident,
d April 2003, in a specific geographical area to the no
t (longitude between 14 and 6 degrees west and latit
es north). When all that information is stored in the c
o predict future situations. To generate a prediction, a pr
oduced in the system. Then the most similar cases to
etrieved from the case base. Once a collection of cases
, they must be used to generate the solution to the curr

577

stem

ntly.
g as
ed a

n be
ind,
ctly

oral
tion.
The
uare

be-
orth
tude
case
rob-
the
are

rent

578 J.M. Corchado and A. Mata

Fig. 3. CBR cycle adapted to the OSCBR system

problem. Growing Radial Basis Functions Networks [22] are used to combine the
chosen cases in order to obtain the new solution.

OSCBR uses both the capabilities of a standard CBR system and the power of arti-
ficial intelligence techniques. As shown in figure 3, every CBR phase uses an artifi-
cial intelligence technique in order to obtain its solution. In figure 3 the four main
phases of the CBR cycle are shown as long as the AI techniques used in each phase.
Those phases with its related techniques are explained next.

3.1 Pre-processing

Historical data collected from November 2002 to april 2003 is used to create the case
base. As explained before, cases are formed by a series of variables. Principal Com-
ponents Analysis (PCA) [23] can reduce the number of those variables and then, the
system stores the value of the principal components, which are related with the origi-
nal variables that define a case. PCA has been previously used to analyse oceano-
graphic data and it has proved to be a consistent technique when trying to reduce the
number of variables.

In this paper Fast Iterative Kernel PCA(FIKPCA), an evolution of PCA, has been
used [24]. This technique reduces the number of variables in a set by eliminating

 Predicting the Presence of Oil Slicks After an Oil Spill 579

those that are linearly dependent, and it is quite faster than the traditional PCA. To
improve the convergence of the Kernel Hebbian Algorithm used by Kernel PCA,
FIK-PCA set ηt proportional to the reciprocal of the estimated eigenvalues. Let λt ∈
ℜr

+ denote the vector of eigenvalues associated with the current estimate of the first r
eigenvectors. The new KHA algorithm sets de ith component of ηt to the files. ሾߟ௧ሿ௜ ൌ ଵሾఒ೟ሿ೔ ఛ௧ାఛ ଴ , (1)ߟ

The final variables are, obviously, linearly independent and are formed by combi-
nation of the previous variables. The values of the original variables can be recovered
by doing the inverse calculation to the one produced to obtain the new variables. The
variables that are less used in the final stored variables are those whose values suffer
less changes during the periods of time analysed (salinity, temperature and pressure
do not change from one day to another, then, they can be ignored considering that the
final result does not depend on them).

Once applied the FIKPCA, the number of variables is reduced to three, having the
following distribution:

Variable_1: -0,560 * long - 0,923*lat + 0,991*s_height +
0,919*b_pressure + 0,992*salinity + 0,990*temp -
0,125*area_of_slicks + 0,80*mer_wind + 0,79*zonal_wind +
0,123*w_strenght + 0,980*mer_current + 0,980*zonal_current +
0,980*c_strength

Variable_2: 0,292*long - 0,081*lat - 0,010*s_height -
0,099*b_pressure - 0,011*salinity - 0,013*temp -
0,021*area_of_slicks + 0,993*merl_wind + 0,993*zonal_wind +
0,989*w_strenght - 0,024*mer_current - 0,024*zonal_current -
0,024*c_strength

Variable_3: 0*long - 0,072*lat + 0,009*s_height +
0,009*b_pressure + 0,009*salinity + 0,009*temp +
0,992*area_of_slicks + 0,006*mer_wind + 0,005*zonal_wind +
0,005*w_strenght - 0,007*mer_current - 0,007*zonal_current -
0,007*c_strength

After applying FIKPCA, the historical data is stored in the case base, and is used to
solve future problems using the rest of the CBR cycle. Storing the principal compo-
nents instead of the original variables implies reducing the amount of memory neces-
sary to store the information in about a sixty per cent which is more important as the
case base grows. The reduction of the number of variables considered also implies a
faster recovery from the case base.

When introducing the data into the case base, Growing Cell Structures [25] are
used. GCS can create a model from a situation organizing the different cases by their
similarity. If a 2D representation is chosen to explain this technique, the most similar
cells (cases in OSCBR) are near one of the other. If there is a relationship between the
cells, they are grouped together, and this grouping characteristic helps the CBR sys-
tem to recover the similar cases in the next phase. When a new cell is introduced in
the structure, the closest cells move towards the new one, changing the overall struc-
ture of the system. The weights of the winning cell, ߱௖, and its neighbours, ߱௡, are

580 J.M. Corchado and A. Mata

changed. The terms ߝ௖ and ߝ௡ represent the learning rates for the winner and its
neighbours, respectively. ݔ represents the value of the input vector.

 ߱௖ሺݐ ൅ 1ሻ ൌ ߱௖ሺݐሻ ൅ ݔ௖ሺߝ െ ߱௖ሻ (2) ߱௡ሺݐ ൅ 1ሻ ൌ ߱௡ሺݐሻ ൅ ݔ௡ሺߝ െ ߱௡ሻ (3)

The pseudocode of the GCS insertion process is shown below:

1. The most similar cell to the new one is found.
2. The new cell is introduced in the middle of the connection

between the most similar cell and the least similar to the
new one.

3. Direct neighbours of the closest cell change their values by
approximating to the new cell and specified percentage of
the distance between them and the new cell.

3.2 Retrieve

Once the case base has stored the historical data, and the GCS has learned from the
original distribution of the variables, the system is ready to receive a new problem.

When a new problem comes to the system, GCS are used once again. The stored
GCS behaves as if the new problem would be stored in the structure, and finds the
most similar cells (cases in the CBR system) to the problem introduced in the system.
In this case the GCS does not change its structure, because it is being used to obtain
the most similar cases to the introduced problem. Only in the retain phase, the GCS
changes again, introducing if it is correct, the proposed solution.

The similarity of the new problem to the stored cases is determined by the GCS
calculating the distance between them. Every element in the GCS has a series of val-
ues (every value corresponds to one of the principal components created after de PCA
analysis) and then the distance between elements is a multi-dimensional distance,
where all the elements are considered to establish the distance between cells.

Then, after obtaining the most similar cases from the case base, they are used in the
next phase. The most similar cases stored in the case base will be used to obtain an
accurate prediction according to the previous solutions related with the selected cases.

3.3 Reuse

Once the most similar cases to the problem to be solved are recovered from the case
base, they are used to generate the solution. The prediction of the future probability of
finding oil slicks in an area is generated using an artificial neural network, with a
hybrid learning system. An adaptation of Radial Basis Functions Networks are used to
obtain that prediction [26]. The chosen cases are used to train the artificial neural
network. Radial Basis Function networks have been chosen because of the reduction
of the training time comparing with other artificial neural network systems, such as
Multilayer Perceptrons. In this case, in every analysis the network is trained, using
only the cases selected from the case base, the most similar to the proposed problem.

Growing RBF networks [27] are used to obtain the predicted future values correspond-
ing to the proposed problem. This adaptation of the RBF networks allows the system to
grow during training gradually increasing the number of elements (prototypes) which
play the role of the centers of the radial basis functions. In this case the creation of the

 Predicting the Presence of Oil Slicks After an Oil Spill 581

Growing RBF must be made automatically, which implies an adaptation of the original
GRBF system. The pseudocode of the growing process and the definition of the error for
every pattern is shown below:

 ݁௜ ൌ ݈ ൗכ݌ ∑ ห|ݐ௜௞ െ ௜௞|ห ,௣௞ୀଵݕ (4)

Where tik is the desired value of the kth output unit of the ith training pattern, yik the
actual values ot the kth output unit of the ith training pattern.

Growing RBF pseudocode:

1. Calculate the error, ei (4) for every new possible prototype.
a. If the new candidate does not belong to the chosen

ones and the error calculated is less than a threshold
error, then the new candidate is added to the set of
accepted prototypes.

b. If the new candidate belongs to the accepted ones and
the error is less than the threshold error, then mod-
ify the weights of the neurons in order to adapt them
to the new situation.

2. Select the best prototypes from the candidates
a. If there are valid candidates, create a new cell cen-

tered on it.
b. Else, increase the iteration factor. If the iteration

factor comes to the 10% of the training population,
freeze the process.

3. Calculate global error and update the weights.
a. If the results are satisfactory, end the process. If

not, go back to step 1.

Once the GRBF network is created, it is used to generate the solution to the pro-
posed problem. The solution will be the output of the network using as input data the
selected cases from the case base.

3.4 Revise

After generating the prediction, it is shown to the user in a similar way the slicks are
interpreted by OSCBR. A set of squared coloured areas appear. The intensity of the
colour corresponds with the possibility of finding oil slicks in that area. The areas
coloured with a higher intensity are those with the highest probability of finding oil
slicks in them.

In this visual approximation, the user can check if the solution is a good one or not.
The system also provides an automatic method of revision that must be, anyway,
checked by an expert user, confirming the automatic revision.

Explanations are used to check the correction of the proposed solution, to justify
the solution. To obtain a justification to the given solution, the cases selected from the
case base are used once again. To create an explanation, a comparison between
different possibilities has been used [28].All the selected cases has its own future
situation associated. If we consider the case and its solution as two vectors, we can
establish a distance between them, calculating the evolution of the situation in the
considered conditions. If the distance between the proposed problem and the solution

582 J.M. Corchado and A. Mata

given is not greater than the distances obtained from the selected cases, then the solu-
tion is a good one, according to the structure of the case base.

Explanation pseudocode:

1. For every selected case in the retrieval phase, the distance
between the case and its solution is calculated.

2. The distance between the proposed problem and the proposed
solution is also calculated.

3. If the difference between the distance of the proposed solu-
tion and those of the selected cases is below a certain
threshold value, then the solution is considered as a valid
one.

4. If not, the user is informed and the process goes back to the
retrieval phase, where new cases are selected from the case
base.

5. If, after a series of iterations the system does not produce a
good enough solution, then the user is asked to consider the
acceptance of the best of the generated solutions.

The distances are calculated considering the sign of the values, not using its abso-
lute value. This decision is easily justified by the fact that is not the same to move to
the north than to the south, even if the distance between two points is the same. If the
prediction is considered as correct it will be stored in the case base, and it can then be
used in next predictions to obtain new solutions.

3.5 Retain

When the proposed prediction is accepted, it is considered as a good solution to the
problem and can be stored in the case base in order to serve to solve new problems. It
will have the same category as the historical data previously stored in the system.

When inserting a new case in the case base, Fast Iterative Kernel PCA is once used
to reduce the number of variables used and to adapt the data generated by the system.
The adaptation is done by changing the original variables into the principal compo-
nents previously chosen by the system.

Obviously, when introducing a new case in the case base, the GCS formed by the
information stored in the case base, also change, to adapt to the new situation gener-
ated. When adapting to the new solution introduced in the case base, the GCS system
grows and improves its capability of generating good results as new knowledge is
introduced in the system.

4 Results

The historical data used to train the system has been obtained from different satellites.
Temperature, salinity, bottom pressure, sea height, wind, currents, number and area
of the slicks, as long as the location of the squared area and the date have been used to
create a case. All these data define the problem case and also the solution case. The
solution to a problem defined by an area and its variables is the same area, but with
the values of the variables changed to the prediction obtained from the CBR system.

 Predicting the Presence of Oil Slicks After an Oil Spill 583

When the OSCBR system has been used with a subset of the data that has not been
previously used to train the system, it has produced encouraging results. The pre-
dicted situation was contrasted with the actual future situation. The future situation
was known, as long as historical data was used to develop the system and also to test
the correction of it. The proposed solution was, in most of the variables, close to 90%
of accuracy.

Table 2. Percentage of good predictions obtained with different techniques

Number of
cases

RBF CBR RBF + CBR OSCBR

100 45 % 39 % 42 % 43 %
500 48 % 43 % 46 % 46 %
1000 51 % 47 % 58 % 64 %
2000 56 % 55 % 65 % 72 %
3000 59 % 58 % 68 % 81 %
4000 60 % 63 % 69 % 84 %
5000 63 % 64 % 72 % 87 %

For every problem, defined by an area and its variables, the system offers nine so-

lutions: the same area, with its proposed variables and the eight closest neighbours.
This way of prediction is used in order to clearly observe the direction of the slicks,
what can be useful in order to determine the coastal areas that will be affected by the
slicks generated after an oil spill.

In table 2 a summary of the results obtained is shown. In this table different tech-
niques are compared. The table shows the evolution of the results along with the in-
crease of the number of cases stored in the case base. All the techniques analyzed
improve its results when increasing the number of cases stored. Having more cases in
the case base, makes easier to find similar cases to the proposed problem and then, the
solution can be more accurate. The “RBF” column represents a simple Radial Basis
Function Network that is trained with all the data available. The network gives an
output that is considered a solution to the problem. The “CBR” column represents a
pure CBR system, with no other techniques included, the cases are stored in the case
bases and recovered considering the Euclidean distance. The most similar cases are
selected and after applying a weighted mean depending on the similarity, a solution s
proposed. The “RBF + CBR” column corresponds to the possibility of using a RBF
system combined with CBR. The recovery from the CBR is done by the Manhattan
distance and the RBF network works in the reuse phase, adapting the selected cases to
obtain the new solution. The results of the “RBF+CBR” column are, normally, better
than those of the “CBR”, mainly because of the elimination of useless data to generate
the solution. Finally, the “OSCBR” column shows the results obtained by the pro-
posed system , obtaining better results that the three previous analyzed solutions.

Table 3 shows a multiple comparison procedure (Mann-Whitney test) used to de-
termine which models are significantly different from the others.

The asterisk indicates that these pairs show statistically significant differences at
the 99.0% confidence level. It can be seen in table 3, that the OSCBR system presents
statistically significant differences with the rest of the models.

584 J.M. Corchado and A. Mata

The proposed solution does not generate a trajectory, but a series of probabilities in
different areas, what is far more similar to the real behaviour of the oil slicks.

Once the prediction is generated and approved, it can be exported to various for-
mats. First an html file can be generated with the images that represent the prediction,
the solution to the problem. Other output formats are “Google related”: the solutions
can be exported to Google Earth and to Google Maps.

Table 3. Multiple comparison procedure among different techniques

 RBF CBR RBF + CBR OSCBR
RBF
CBR *
RBF+CBR = =
OSCBR * * *

5 Conclusions and Future Work

In this paper, the OSCBR system has been explained. It is a new solution for predict-
ing the presence or not of oil slicks in a certain area after an oil spill.

This system used data acquired from different orbital satellites and with that data
the CBR environment was created. The data must be previously classified into the
structure required by the CBR system to store it as a case.

OSCBR uses different artificial intelligence techniques in order to obtain a correct
prediction. Fast Iterative Kernel Principal Component Analysis is used to reduce the
number of variables stored in the system, getting about a 60% of reduction in the size
of the case base. This adaptation of the PCA also implies a faster recovery of cases
from the case base (more than 7% faster than storing the original variables).

To obtain a prediction using the cases recovered from the case base, Growing Ra-
dial Basis Function Networks has been used. This evolution of the RBF networks
implies a better adaptation to the structure of the case base, which is organised using
Growing Cell Structures. The results using Growing RBF networks instead of simple
RBF networks are about a 4% more accurate, which is a good improvement.

Evaluations show that the system can predict in the conditions already known,
showing better results than previously used techniques. The use of a combination of
techniques integrated in the CBR structure makes it possible to obtain better result
than using the CBR alone (17% better), and also better than using the techniques
isolated, without the integration feature produced by the CBR (11% better).

The next step is generalising the learning, acquiring new data to create a base of
cases big enough to have solutions for every season. Another improvement is to cre-
ate an on-line system that can store the case base in a server and generate the solu-
tions dynamically to different requests. This on-line version will include real time
connection to data servers providing weather information of the current situations in
order to predict real future situations.

 Predicting the Presence of Oil Slicks After an Oil Spill 585

References

1. Menemenlis, D., Hill, C., Adcroft, A., Campin, J.M., et al.: NASA Supercomputer Im-
proves Prospects for Ocean Climate Research. EOS Transactions 86(9), 89–95 (2005)

2. Palenzuela, J.M.T., Vilas, L.G., Cuadrado, M.S.: Use of ASAR images to study the evolu-
tion of the Prestige oil spill off the Galician coast. International Journal of Remote Sens-
ing 27(10), 1931–1950 (2006)

3. Solberg, A.H.S., Storvik, G., Solberg, R., Volden, E.: Automatic detection of oil spills in
ERS SAR images. IEEE Transactions on Geoscience and Remote Sensing 37(4), 1916–
1924 (1999)

4. Stammer, D., Wunsch, C., Giering, R., Eckert, C., et al.: Volume, heat, and freshwater
transports of the global ocean circulation 1993–2000, estimated from a general circulation
model constrained by World Ocean Circulation Experiment (WOCE) data. Journal of
Geophysical Research 108(10.1029) (2003)

5. Brovchenko, I., Kuschan, A., Maderich, V., Zheleznyak, M.: The modelling system for
simulation of the oil spills in the Black Sea. In: 3rd EuroGOOS Conference: Building the
European capacity in operational oceanography, p. 192 (2002)

6. Price, J.M., Ji, Z.G., Reed, M., Marshall, C.F., et al.: Evaluation of an oil spill trajectory
model using satellite-tracked, oil-spill-simulating drifters. In: OCEANS 2003. Proceed-
ings, p. 3 (2003)

7. Vethamony, P., Sudheesh, K., Babu, M.T., Jayakumar, S., et al.: Trajectory of an oil spill
off Goa, eastern Arabian Sea: Field observations and simulations, Environmental Pollution
(2007)

8. Beegle-Krause, C.J.: GNOME: NOAA’s next-generation spill trajectory model. In:
OCEANS 1999 MTS/IEEE. Riding the Crest into the 21st Century, vol. 3, pp. 1262–1266
(1999)

9. Douligeris, C., Collins, J., Iakovou, E., Sun, P., et al.: Development ofOSIMS: An oil spill
information management system. Spill Science & Technology Bulletin 2(4), 255–263
(1995)

10. Reed, M., Ekrol, N., Rye, H., Turner, L.: Oil Spill Contingency and Response (OSCAR)
Analysis in Support of Environmental Impact Assessment Offshore Namibia. Spill Science
and Technology Bulletin 5(1), 29–38 (1999)

11. Belore, R.: The SL Ross oil spill fate and behavior model: SLROSM. Spill Science and
Technology Bulletin (2005)

12. Liu, X., Wirtz, K.W.: Decision making of oil spill contingency options with fuzzy com-
prehensive evaluation. Water Resources Management 21(4), 663–676 (2007)

13. Liu, X., Wirtz, K.W.: Sequential negotiation in multiagent systems for oil spill response
decision-making. Marine Pollution Bulletin 50(4), 469–474 (2005)

14. Watson, I.: Case-based reasoning is a methodology not a technology. Knowledge-Based
Systems 12(5-6), 303–308 (1999)

15. Montani, S., Portinale, L., Leonardi, G., Bellazzi, R.: Case-based retrieval to support the
treatment of end stage renal failure patients. Artificial Intelligence in Medicine 37(1), 31–
42 (2006)

16. Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care.
IEEE Intelligent Systems. Special Issue on Ambient Intelligence (2008)

17. Decker, B., Rech, J., Althoff, K.D., Klotz, A., et al.: eParticipative Process Learning-—
process-oriented experience management and conflict solving. Data & Knowledge Engi-
neering 52(1), 5–31 (2005)

586 J.M. Corchado and A. Mata

18. Althoff, K.D., Mänz, J., Nick, M.: Maintaining Experience to Learn: Case Studies on
Case-Based Reasoning and Experience Factory. In: Proc. 6th Workshop Days of the Ger-
man Computer Science Society (GI) on Learning, Knowledge, and Adaptivity (LWA
2005). Saarland University, Germany (2005)

19. Cox, M.T., MuÑOz-Avila, H., Bergmann, R.: Case-based planning. The Knowledge Engi-
neering Review 20(03), 283–287 (2006)

20. Plaza, E., McGinty, L.: Distributed case-based reasoning. The Knowledge Engineering
Review 20(03), 261–265 (2006)

21. Corchado, J.M., Fdez-Riverola, F.: FSfRT: Forecasting System for Red Tides. Applied In-
telligence 21, 251–264 (2004)

22. Karayiannis, N.B., Mi, G.W.: Growing radial basis neural networks: merging supervised
andunsupervised learning with network growth techniques. IEEE Transactions on Neural
Networks 8(6), 1492–1506 (1997)

23. Dunteman, G.H.: Principal Components Analysis. Newbury Park, California (1989)
24. Gunter, S., Schraudolph, N.N., Vishwanathan, S.V.N.: Fast Iterative Kernel Principal

Component Analysis. Journal of Machine Learning Research 8, 1893–1918 (2007)
25. Fritzke, B.: Growing cell structures—a self-organizing network for unsupervised and su-

pervised learning. Neural Networks 7(9), 1441–1460 (1994)
26. Haykin, S.: Neural networks. Prentice Hall, Upper Saddle River (1999)
27. Ros, F., Pintore, M., Chrétien, J.R.: Automatic design of growing radial basis function

neural networks based on neighboorhood concepts. Chemometrics and Intelligent Labora-
tory Systems 87(2), 231–240 (2007)

28. Plaza, E., Armengol, E., Ontañón, S.: The Explanatory Power of Symbolic Similarity in
Case-Based Reasoning. Artificial Intelligence Review 24(2), 145–161 (2005)

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 587–599, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Case Based Interpretation of Soil Chromatograms

Deepak Khemani, Minu Mary Joseph, and Saritha Variganti

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai-600036, India
khemani@iitm.ac.in,{minumj,sarithav}@cse.iitm.ac.in

Abstract. This paper focuses on the application of CBR to soil analysis from
chromatograms. The shape, size and colour of the chromatogram image are hy-
pothesized to contain important information of the mineral content in the soil.
Since chromotogram preparation is cheaper than chemical analysis the goal is to
predict the nutrients from the chromatogram image features in the future rather
than by direct chemical analysis. The method proposed in this paper will be
new, as the current process of chemical analysis of soil is done manually, which
is an expensive, time consuming and laborious process. This method of analysis
will benefit farmers all across the globe, who are looking for innovative means
to obtain their soil characteristics during the process of farming. In this applica-
tion, the key assumption is that – similar chromatograms have similar soil
properties. This paper focuses on the definition of similarity measure and de-
termining the weight model for the feature set needed for the application.

1 Introduction

This paper describes an application1 of case based reasoning (CBR) methodology for
the determination of soil properties. A case base of soil properties associated with
features of chromatograms is constructed, and similar chromatograms are retrieved to
estimate the properties of a new soil sample.

Agricultural productivity is strongly dependant on the choice of the crop that is
best suited for the given soil. While traditionally the best crops in different regions
have evolved over a period of time, there has also been the influence of new crops
being imported from other regions. In addition, the effects of globalization has re-
sulted in certain crops like wheat and rice gaining in prominence due to global popu-
larity, and many crops like cotton are grown because of their increased global
demand. Consequently soil testing has become an important step in the agricultural
cycle. Not only does this allow the farmer to choose a suitable crop, it also allows him
to choose an appropriate fertilizer for growing a specific crop.

Soil testing is usually done in commercial laboratories using sophisticated equip-
ment. The tests are normally carried out to determine the quantities of major nutrients
(NPK) like nitrogen (N), phosphorus (P), and potassium (K), along with others like

1 This work is supported by a grant from the Department of Science and Technology, Govern-

ment of India, and is done in collaboration with the Murugappa Chettiar Research Centre,
Chennai.

588 D. Khemani, M.M. Joseph, and S. Variganti

sulfur, calcium, iron, boron, molybdenum. Other properties that are measured are
acidity, electrical conductivity, organic matter and humus. The process of laboratory
analysis is typically time consuming and expensive. It is generally advised that many
samples should be taken from different locations at each site. In addition the results
do not have high accuracy.

Recently an entirely different approach to determining soil properties has emerged.
This is based on interpretation of a chromatographic image made from a mixture of
the soil solution and a photosensitive chemical like silver nitrate. A sample chroma-
togram is shown in fig 1. Soil scientists claim that the patterns and the colours in the
image contain information about the soil properties [1] & [2]. The circular image has
three distinct regions, known as the inner, the middle and the outer region. The inner
region is said to contain information about the minerals such as nitrogen, sodium,
potassium, and phosphorus; the middle region reveals the presence of organic carbon
and organic matter; and the outer regions tells us about humus.

Outer region

Middle region

Inner region

Fig. 1. A sample chromatogram

The difficulty is that interpreting the chromatogram is not a well defined science

but more of an art. Furthermore the interpretation by humans is only qualitative in
nature, essentially associating colour presences with individual nutrients [1] & [3].
This makes chromatogram interpretation a good candidate for case based reasoning,
with the assumption that similar chromatograms have similar soil properties.

If one can build a case based interpreter of chromatograms, then the new approach
would be an order of magnitude cheaper and much faster than the laboratory analysis
process. A large case base will also give us the opportunity of discovering the associa-
tion between image features and soil properties, and fine tuning the weights to high-
light specific properties.

The rest of this paper describes the CBR application. The high level architecture is
described in the following section. After scanning, the features of chromatograms are
extracted by image processing techniques. A brief discussion on chromatogram fea-
tures and their extraction is described in section 3. Section 4 describes the set of at-
tributes and the similarity measures used. Section 5 describes the implementation and
experimental results, followed by conclusions and discussions in section 6.

 Case Based Interpretation of Soil Chromatograms 589

2 Architecture of the System

The system described here has been built in collaboration with the Murugappa Chet-
tiar Research Centre (MCRC) in Chennai, an organization doing research in innova-
tive methods in farming. The group in MCRC has collected around ten thousand soil
samples from many parts of India. These soil samples have been analyzed by a sister
company in the Murugappa group, E.I.D. Parry, working on soil and fertilizers. At the
same time the MCRC group has prepared chromatograms for all the soil samples.
These chromatograms have been scanned at IIT Madras, where we have also built a
CBR system that stores cases as image features along with soil properties, into a sys-
tem called InfoChrom.

The four major subsystems in this system are: Image Acquisition; Image preproc-
essor and Feature Extractor; CBR engine; and Soil Nutrient Management System as
shown in fig 2.

Im
ag

e
A

cq
ui

si
tio

n

C
B

R
 E

ng
in

e

Soil Nutrient Management System

Soil prop-
erties

Attrib-
ute
Schema

Users
Farmers

Technical
Users

Repository

Im
ag

e
Pr

e-
Pr

oc
es

so
r

an
d

Fe
at

ur
e

E
xt

ra
ct

or

Image
features

Fig. 2. Architecture of the system

Chromatograms were scanned and features of chromatogram image extracted by
image processing algorithms discussed briefly in the next section. This feature set is
stored in Image features table. Soil properties of chromatogram provided by MCRC
are stored in the corresponding table. The case base is the integration of the two ta-
bles. The type and weights of the attributes are stored in the attribute schema. The
CBR engine implements the algorithms required for searching the case base and re-
trieving the most similar cases. The Soil Nutrient Management System integrates the
entire system and provides the user interface. It also accesses other data relating soil
properties to crops to give crop and fertilizer related advice.

590 D. Khemani, M.M. Joseph, and S. Variganti

3 Chromatogram Features Extraction

Image pre-processing is an important step before extracting the features of the image.
Some of our preliminary work was reported in [4]. The first task is detection of the
centre. Once the centre is identified the circular image is converted into a rectangular
one by a Cartesian to polar transformation. This means that the x-axis in the polar
image corresponds to the center, and the y-axis corresponds to the radial direction.
The next stage is the task of segmentation. This is done in stages as reported here. The
polar image is transformed from RGB space to HSV colourspace to identify regions
of chromatogram. First the outer region is separated by HSV based thresholding.
Then the inner and middle regions are separated by colour based segmentation using
HSV colourspace (see [5]). The inner region often contains various sub regions. These
are then separated by a process of colour texture segmentation, adapted from [6].
Fig 3 shows the extracted polar regions from the original circular image.

 (a)

 (b) (c) (d) (e) (f)

Fig. 3. (a) Original chromatogram image (b) Polar image (c) Outer region (d) Middle region (e)
Inner region (f) segmentation of inner regions into sub regions

Finally via edge detection in the HSV colour-space, the spikes at the outer end of
the middle region are highlighted, as shown in fig 4. A left to right scan then counts
the number of spikes as well their average height.

 (a) (b)

Fig. 4. (a) Spikes of the chromatogram (b) Edge detection to identify spikes

 Case Based Interpretation of Soil Chromatograms 591

On the polar image, colour quantization is applied to create bands of uniform col-
our. After the process of colour quantization, we have the dominant colour informa-
tion. This alone will not be sufficient for accurate similarity computation of images
and hence, their spatial locations are also captured vertically i.e., viewed from top to
bottom [8]. Dominant colours and their spatial information are referred as ColourMap
and ColourSequence in this paper. The former describes the distinct colours and the
area they cover, while the latter describes the distinct bands they occur in. Table 1
shows the ColourMap and ColourSequence of chromatogram shown in fig 3.

Table 1. Colour features of the chromatogram shown in fig 3

ColourMap ColourSequence

Red Green Blue Distribution Red Green Blue Width

158 137 119 8262 229 221 196 7

178 163 144 16106 224 205 164 14

229 221 196 82002 194 173 147 11

224 205 164 51603 178 163 144 12

194 173 147 16478 170 155 138 79

170 155 138 72929 229 221 196 119

 224 205 164 51

 194 173 147 8

 170 155 138 7

4 Case Structure and Similarity

The case structure has five components at the highest level as shown in fig 5. These cor-
respond to the three regions - inner, middle and outer – and the ColourMap and the Col-
ourSequence. The inner region may be divided in up to four sub regions. Each of these is
represented by average or quantized colour, width and area. The middle and the outer
regions are treated as single regions. The spikes are represented by average height and
total number, and are part of the middle region. The ColourMap contains information
about the dominant quantized colours, and the area occupied by each. The ColourSe-
quence attribute describes the dominant colours in the order in which they occur. At the
low level each colour is represented by RGB values corresponding to the three primary
colours – red, green and blue. The total number of low level attributes is 153.

4.1 Similarity Measures

The problem description part of the case can be broken down into outer, middle, in-
ner, ColourMap and ColourSequence attributes by aggregation taxonomy as shown in
fig 5. The local similarities for the different attribute types and their aggregation into
global similarity are computed as follows.

592 D. Khemani, M.M. Joseph, and S. Variganti

Attribute
Schema

Area
Width
Colour

No of Spikes

Avg Height
 of spikes

Area4
Width4

Colour1

Distribution1

ColourM

DistributionM

Total Width
of Inner Region

.

.

.

.

.

.

Outer Region

Middle Region

Inner Region

Colour Map

Colour1

Width1

ColourN
WidthN

.

.

. Colour Sequence

Colour4

Area1
Width1
Col-

Area
Width
Colour

Fig. 5. The image attributes form the problem description which has a hierarchical structure

4.1.1 Simple Attributes
For simple attributes, we define a value range DAi = [dmin, dmax] over the domain of
attributes within which attributes takes value. We define the similarity measure for
these attributes as a linear function, i.e., the similarity decreases linearly in the inter-
val [0, dmax-dmin] with the increase of difference between the two values. We define a

 Case Based Interpretation of Soil Chromatograms 593

local similarity function for simple attributes as follows which restricts the similarity
value within the interval [0, 1].

iiii

ii
i

cqcqwhere
dd

cq
featureSim

−=
−

−=

),(
)(

),(
1

minmax
δ

δ
 (1)

4.1.2 Compound Attributes
In our application, compound attributes are colours of outer, middle and inner regions,
and the pattern attributes ColourMap and ColourSequence. A colour is defined by
three primary colours – red, green and blue. ColourMap lists the colours that are
dominant in the chromatogram and their distribution in terms of pixels. ColourSe-
quence lists the order of occurrence of dominant colours present in the chromatogram
when viewed along radial axis from the center. In [8], we have defined the similarity
measure for colour and proposed algorithms for matching the ColourMap and
ColourSequence of the query and case. Local similarity measure between two Col-
ourMaps can be defined as weighted aggregate of similarity of each colours of Col-
ourMap of query against the ColourMap of case. Local similarity between two
ColourSequence is computed by matching corresponding regions in the query and the
case image. The algorithm described in [8] is essentially an efficient version of an
algorithm that would match the two images pixel by pixel. This is possible because of
quantization that leads to bands of pixel with the same RGB values.

4.2 Global Similarity Measure

Global similarity measures are defined by applying an aggregation function to the
local similarity value. In this paper, weighted average aggregation function is used to
compute global similarity between the query and the case.

featurestheofrelevancethedenotesweightwhere

weight

CaseQueryfeatureSimweight
CaseQuerySim

i

i

featuresall

i

iiii

featuresall

i

Σ

×Σ
=

=

=

1

1
),(

),(
 (2)

It might be observed that there is redundancy in the amount of colour information
that is present in the case description. The intention is to do experiments with various
weight combinations to discover the optimal weights. This could be particularly rele-
vant if different features discriminate different soil properties. Then one may want to
build a network of case weights, each combination optimized to retrieve cases with
the most similar specific soil property. The goal is to build a system with high cohe-
sion [9]. By this we mean that “similar” chromatograms are also considered similar
on the solution side. It might be that for each of the target properties a specialized
similarity measure needs to be designed. This is on the future agenda.

4.3 Feature Weighting

Chromatogram features extracted by image processing consists of about 153 attributes.
Preliminary experiments were done to determine the feature relevance by selecting

594 D. Khemani, M.M. Joseph, and S. Variganti

Table 2. Weight sets and their selected feature sets

WeightSets Feature Sets
Set-I Features of outer, middle and inner regions
Set-II Features of outer, middle, inner region and ColourMap
Set-III Features of outer, middle, inner region and ColourSe-

quence
Set-IV Features of outer, middle, total width of inner region,

ColourMap and ColourSequence

different subset of features from feature set and the results of retrieval were analyzed.
We have selected four different weight sets for our experiments which are described in
table 2.

4.4 Retrieval

The scenario of using the case base is as follows. A mobile van equipped with a scan-
ner and a computer visits a village and halts for a few days. Farmers desirous of ana-
lyzing their soil bring samples over to the van. A chromatogram is made and kept on
the scanner. The integrated software system scans the image, calls the image process-
ing for feature extraction, and using the features consults the case base and presents
two sets of properties. One is for the best matching case, and the other averaged over
the five best matching cases.

Preliminary experiments revealed that with 10000 cases the sequential algorithm
would retrieve cases in less than half a minute. Hence the sequential algorithm was
used for retrieval. In fact, the complete processing takes about maximum of three
minutes, of which the major time is spent on image processing.

5 Experimental Results

Preliminary experiments were done on the different subsets of features over a case-
base of 10000 chromatograms to determine their importance by fixing and tuning
weights manually. Two hundred test cases with diverse patterns were selected from
the case-base to experiment with different weight sets. The retrieved sets for four
queries are shown in figure 6 where the first column represents the images of query
and the remaining columns represents the images of best matching case and their
score for the four weight sets, set-I, set-II, set-III and set-IV.

Table 3 shows the soil properties of query case and best case retrieved with the
four different weight sets for query image named KKL0071.

5.1 Analysis of Results

The system was evaluated with one hundred queries using the four different weight
sets. Soil properties for the query sample are computed by taking the average of soil

 Case Based Interpretation of Soil Chromatograms 595

Fig. 6. Retrieval results for 4 queries with different weight sets

properties of the five best retrieved cases. The soil properties computed with different
weight sets are compared against actual soil properties of queries which are known.
The similarity of each retrieved soil property is computed using equation 3. The range
of each property has been computed by inspecting the ten thousand cases and has also
been corroborated by the soil scientists.

range

luecomputedvalueoriginalva
Similarity

−
−= 1 (3)

Figure 7 shows the similarity values between computed soil properties and actual
soil properties over the one hundred queries for each weight sets. Set-II yields the best
results.

596 D. Khemani, M.M. Joseph, and S. Variganti

Table 3. Soil properties of cases retrieved for query KKL0071 in fig 6

Query- KKL0071

Best case properties

Soil
proper-
ties Query

proper-
ties Set-I Set-II Set-III Set-IV

pH 7.8 7.2 7.6 8.06 7.36

EC 0.4 0.23 0.2 0.18 0.04

OrgMtr 1.47 0.1 1.26 0.63 1.57

N 206.5 86.84 176.22 117.29 218.8

P 14.95 10.88 1.81 7.71 12.69

K 158.5 88.11 78.59 78.19 50.14

Ca 764.01 333.6 236.28 135.57 761.16

Mg 147.08 156.37 157.46 207.18 147.26

Na 112.95 97.99 138.02 109.37 122.97

Fe 6.12 7.61 14.69 10.28 5.88

Mn 5.11 11.02 9.26 8.9 4.51

Zn 1.57 0.22 0.11 1.61 1.08

Cu 0.93 2.74 1.54 4.33 1.04

S 1 9.78 10.58 16.21 1

Humus 536.84 72.62 291.88 90.85 272.98

5.2 The User Interface

Fig 8 shows the screen shot of soil composition for a given query, in which best case
and average case soil properties were shown. Also shown on the screen are the query
and the best matching chromatogram images. The average case are in the section
labeled “Composition”. One can also observe two buttons on the screen that say “Soil
Enrichment” and “Crop Advisor”. These initiate the stage of post processing not dis-
cussed here. The first one compares soil properties to the properties required by a
desired crop and determines the type of fertilizer to be added. The second one is to list
the crops that would grow well for the given soil sample. When these procedures are
activated they generate the final printouts to be given as reports to farmers.

 Case Based Interpretation of Soil Chromatograms 597

Similarity Analysis

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01
pH E

c

O
rg

M
tr N P K C
a

M
g

N
a

F
e

M
n Z
n

C
u S

H
um

us

Soil Properties

S
im

il
ar

it
y

Set-I Set-II Set-III Set-IV

Fig. 7. Similarity analysis of soil properties for different weight sets

Fig. 8. Soil Test Report of retrieved case

598 D. Khemani, M.M. Joseph, and S. Variganti

6 Concluding Remarks

The goal of the soil analysis project is to find an alternative method of soil analysis
that is significantly cheaper than the existing chemical analysis being done by com-
mercial labs. Such a possibility has arisen due to the emergence of a new approach to
soil analysis via the interpretation of chromatograms prepared from soil samples.

The current approach to interpreting chromatograms by humans is essentially
qualitative in nature. The aim of this project is to investigate whether quantitative
information can be educed from the chromatogram image. The methodology adopted
is to construct a case base constituting of chromatograms and the properties of the
associated soil samples. Then under the assumption that ‘similar chromatograms have
similar soil properties’ given a new chromatogram the soil properties from the best
matching chromatograms in the case base can be used to estimate the properties of a
query soil sample. Our experiments have been done on a case base of ten thousand
samples, along with fourteen soil properties determined in a commercial lab.

The chromatogram image is represented as a set of features extracted by image proc-
essing algorithms, and it is these features that are used for comparison during retrieval.

The goal of the CBR system is to retrieve similar chromatograms. Experiments are
being carried out to define the similarity function in terms of appropriate weights for
the different features. In the first stage we have used our visual judgment to manually
tune the weights for the system to retrieve similar looking images. This is because it is
visually that our soil scientist counterparts are interpreting soil samples. At the mo-
ment while our visual evaluation of the retrieved chromatograms is very good, the
error rates in the retrieved soil properties can still be improved. While the weights in
Set-4 were visually judged to be better, the property similarity was better using Set-2.
The system has received a very enthusiastic response from farmers and agriculture
scientists in recent demonstrations.

There is also the possibility that while there is more accurate information of soil
properties in the chromatograms, it is not immediately obvious to us visually. Our
future plans are now to tune the weights by a learning algorithm based on the known
soil properties. We plan to do this learning for each of the different soil nutrients,
because they may manifest differently in the soil image. It could then be possible that
a different retrieval system (set of weights) may be deployed for each soil property or
a set of properties internally, while integrating the results into a common output
screen. In doing so we will also be able to identify the features that are associated
with each individual nutrient. We could then formalize this association between im-
age features and soil nutrients in the form of rules. This will finally give us knowl-
edge in a form that can be discussed meaningfully with the soil scientists!

References

1. Pfeiffer, E.E.: Chromatography applied to quality testing, Biodynamic Literature, Wyo-
ming, Island, pp. 1–44 (1984)

2. Perumal, K., Vatsala, T.M.: Utilisation of local alternative materials in cow horn manures
(BD500): A case study on biodynamic vegetable cultivation. Journal of Biodynamic Agri-
culture - Australia 52, 16–21 (2002)

 Case Based Interpretation of Soil Chromatograms 599

3. Bio Dynamic Association of India, http://www.biodynamics.in/chrom.htm
4. Saritha, V., Joseph, M.M., Das, S., Khemani, D.: Chromatogram Image Pre-Processing and

Feature Extraction for Automatic Soil Analysis. In: Proceedings of the International Con-
ference on Computing: Theory and Applications ICCTA 2007, Kolkata, India, March 5-7
(2007)

5. A tutorial on Color Based Segmentation using CIELAB Colorspace,
http://www.mathwork-s.com/products/demos/image/
color_seg_lab/ipexfabric.html

6. Lu, C., Chung, P., Chen, C.: Unsupervised Texture Segmentation Via Wavelet Transform.
Pattern Recognition, 729–742 (1997)

7. A tutorial on Color Quantization,
http://www.mathworks.com/access/helpdesk_r13/help/too-lbox/
images/color5.html

8. Saritha, V., Joseph, M.M., Khemani, D.: Similarity Measures for Colour Patterns, A techni-
cal report, http://aidb.cs.iitm.ernet.in/tech-reports.html

9. Lamontagne, L.: Textual CBR Authoring using Case Cohesion, in TCBR 2006 -Reasoning
with Text. In: Proceedings of the ECCBR 2006 Workshops, pp. 33–43 (2006)

Case-Based Troubleshooting in the Automotive

Context: The SMMART Project

Stefania Bandini1, Ettore Colombo1, Giuseppe Frisoni1, Fabio Sartori1,
and Joakim Svensson2

1 Research Center on Complex Systems and Artificial Intelligence (CSAI)
Department of Computer Science, Systems and Communication (DISCo)

University of Milan - Bicocca
viale Sarca, 336

20126 - Milan (Italy)
Tel.: +39 02 64487913 - fax +39 02 64487839

bandini@csai.disco.unimib.it,
{ettore.colombo,frisoni,sartori}@disco.unimib.it

2 Department of Product Support Systems
Volvo Parts

Gothenburg, Sweden
joakim.u.svensson@volvo.com

Abstract. In this paper we present a case–based troubleshooting tool
developed in the context of the SMMART project. The application aims
at the identification and solution of failures in trucks, exploiting a hybrid
approach based on the integration of CBR, model based reasoning and
fault trees. The case–based module of the final system allows to identify
the most probable part of the truck that is responsible for the failures
(e.g. engine, gearbox, and so on): then, model–based reasoning or fault
trees can be used to detect the real cause of the problem (e.g. an electric
cable in the engine) and to identify the action needed to solve it (e.g.
substitute the cable). The project is a collaboration between the Univer-
sity of Milan–Bicocca and Volvo Trucks.

Keywords: Case–Based Reasoning, Automotive Troubleshooting, In-
dustrial Application of CBR.

1 Introduction

In this paper, we present SMMART (System for Mobile Maintenance Accessible
in Real Time), a research project funded by the European Community1. The
SMMART integrated R&D project started in November 2005 and is planned to
run for 3 years with an overall budget of around 25 millions, co–funded under
the Sixth Framework Programme. Coordinated by TURBOMECA, the project
involves 25 companies and institutions from across Europe. The participants
includes industry leaders (VOLVO, TURBOMECA, EUROCOPTER, SNECMA

1 Project number NMP2-CT-2005-016726.

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 600–614, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Case-Based Troubleshooting in the Automotive Context 601

SERVICES, THALES), Small & Medium Enterprises who contribute 38% to
the project, and 6 research centres. The SMMART project aims at defining a
new integrated concept to answer the maintenance challenges of the transport
industry – aeronautics, road transport, marine transport:

– to reduce the time and cost for scheduled and unscheduled maintenance
inspections of increasingly sophisticated and complex products;

– to remotely provide adequate up–to–date information to assist mobile work-
ers in all their tasks wherever they operate;

– to minimise the cost penalties of unscheduled downtime on large transport
fleets;

– to provide new services: advanced troubleshooting tool, global configuration
control, resources planning tool.

Fig. 1 shows a sketch of the different Work Packages (WP) composing the
project. In particular, this paper focuses on the description of WP 5200 output
that consists of a decision support system for experts involved in the truck
engine troubleshooting process. In our context, troubleshooting can be defined
as the process through which the causes of malfunctions in a product, process
or service are detected and managed. In this sense, troubleshooting differs from
simple diagnosis, because it concerns not only the identification of a problem
emerging from a given set of symptoms, but also the proposal of an opportune
way to solve such problem.

To this aim a Troubleshooting Tool (TTool) has been designed and imple-
mented in the context of the SMMART project, based on the integration of

Fig. 1. The SMMART Project

602 S. Bandini et al.

Fig. 2. The approach adopted in the SMMART Troubleshooting Tool

case–based reasoning (CBR) [1], model–based reasoning [2] and fault tree ap-
proaches [3]. CBR has been already adopted in the past for building trou-
bleshooting or diagnosis systems (see e.g. [4] [5] [6] [7]).

In the context of SMMART, CBR has been used to guide the troubleshooting
tool towards the cause of the truck problem: when a driver recognizes that a
problem arises on his/her vehicle (for example, a light of the control panel turns
on or some unpredictable event happens, such as smoke from the engine, oil loss,
noises during a break and so on) he/she contacts the receptionist of a repair
shop to obtain assistance. The mechanic who receives the truck is responsible
for making a detailed analysis of it by taking account of driver impressions,
testing it and collecting information coming from on-board computers. Then,
he/she has to find the fault, repair it and verify that the problem has been
solved before the truck leaves the shop.

The first step in the decision making process by the mechanic is the identifica-
tion of the most probable faulty component. In fact, a truck can be decomposed
into several parts, named High Level Components (HLCs), each one devoted to
the execution of a specific function. When one or more parts break down, a huge
number of quantitative and qualitative data about the malfunctions can be col-
lected, either from the truck on–board computers (i.e. error codes and alarms) or
from the driver at hand. The main role of the mechanic is to understand which
part of the truck does not work according to the available set of quantitative
and qualitative information.

Then, the mechanic must detect the real cause of malfunctions, which is typ-
ically a small element of the HLC such as an electric cable that is interrupted.
This elementary component is called Root Cause and it can only be detected
through a complete and deep analysis of the HLC based on mechanic experience
or troubleshooting methodologies provided by the component manufacturer.

Case-Based Troubleshooting in the Automotive Context 603

Fig. 2 summarizes a typical troubleshooting session in the SMMART context.
The identification of the HLC is performed by the CBR module of the TTool:
qualitative and quantitative information about the engine trouble are grouped
into an opportune case–structure that is compared with problems solved in the
past (Step 1). The faulty HLC is the solution part of the case structure related
to the current problem: when it is identified, since no automatic adaptation has
been implemented and no further computation is required, the CBR task can
be considered finished. The retrieved HLC is then investigated by either the
MBR tool (i.e. Rodon) or the FT application (i.e. Grade–X) in order to help the
mechanics in the identification of the root cause (Step 2). Also the suggestion
about which method to use is part of the case solution, but the user is free to
refuse it and follows his/her own experience. An evaluation of the solution is
then provided by the mechanic before retaining the case.

The paper is organized as follows: Section 2 briefly introduces the trou-
bleshooting process at Volvo repair shops, focusing on the actors involved; then,
Section 3 describes the CBR application developed in the context of the TTool,
with particular emphasis on the case structure and the retrieval algorithm de-
signed and implemented. Section 4 gives a brief overview on the system imple-
mentation, describing the TTool from the 4R’s cycle [8] point of view as well
as some technical details on how the different modules have been integrated.
Finally, some conclusions and future work are briefly pointed out in Section 5.

2 The SMMART TTool Domain

In this section we will describe how troubleshooting on a truck is performed now
in most official trucks repair shops around Europe and the people involved in this
process. Moreover we will show how the adoption of a CBR based troubleshooting
tool can support speeding up the diagnostic process and decreasing the warranty
costs.

The typical situation starts with a truck driver who goes to the repair shop
because a problem arises on his truck. After a detailed interview with the driver,
a receptionist of the repair shop registers on a form the type of truck, the de-
clared symptoms and the conditions under which the symptoms occurred. The
receptionist is the point of contact between driver and repair shop. The recep-
tionist is a user of the troubleshooting tool and the symptoms’ form is the initial
source of information that describes the digital case. The symptoms form is sent
to the chief mechanic who is the person responsible for diagnosing, repairing and
validating the repair on the truck. Sometimes contact between the driver and a
mechanic may be necessary, in order to refine the truck symptoms description.
Most of the time the chief mechanic himself tests the truck on the road to gain
a better understanfding of the symptoms declared by the driver.

The chief mechanic has great experience of problems with trucks, but does
not usually have a lot of experience with using computer tools, so only a basic
interaction with the troubleshooting tool is required. After a satisfactory defini-
tion of the symptoms set, the mechanic makes an automatic inspection of the

604 S. Bandini et al.

truck: all main truck producers provide their official repair shops with a tool for
collecting the error messages (Fault Codes) generated by the central units (CUs)
installed in the truck. On modern trucks there is a number of CUs connected
with all the electronic components and with a number of sensors that are able to
detect the correct functioning of the controlled parts. When the truck is working
the CUs collect and store all the eventual Fault Codes sent by the components
or the sensors. The mechanic can then analyze them and have more information
on the problems the truck has. The Fault Codes collecting tool will be integrated
into the troubleshooting tool.

A precise symptoms list and a number of coherent Fault Codes are often not
enough for the mechanic to determine easily the root cause of the failure; in
such cases he may erroneously replace components that are not faulty, often
increasing down-time, warranty costs and decreasing the clients level of trust. If
the mechanic is unable to solve the problem, he can eventually call the mother
home helpdesk. The helpdesk technician is an expert on troubleshooting trucks,
so he can support the mechanic in his/her problem solving process. The helpdesk
technician is a user of the troubleshooting tool that can be started up with data
regarding the troubleshooting state defined so far: symptoms description filled by
the receptionist and Fault Codes collected by the mechanic. The support given
by the helpdesk is not always immediate, since the helpdesk technician may
need to contact the expert engineers who have designed the truck to provide
an answer to the calling repair shop. Usually there are different responsible
engineers for different components or subsystems. The engineer is a user of the
troubleshooting tool, since he can browse the information about the case under
examination, including the type of the truck, symptoms, conditions and Fault
Codes, in order to analyze the problem and suggest a probable root cause.

When the mechanic receives an answer that can be tested as a good working
solution to the current case, the process ends, without formal retention of the
experience accumulated from this specific case. However, the mechanic will pos-
sibly remember about this difficult problem, but the reuse of such experience is
left to him and to his ability to find analogies. Moreover no new knowledge is
shared with all other repair shops, since the helpdesk technician must wait for a
meaningful number of similar calls before raising the flag of “possible frequent
fault” to engineers; after the analysis of these cases the company can decide to
circulate a technical report to the official repair shops about this frequent fault.
This will very likely cause loss of time in the involved repair shops which will un-
dergo an analogous test and fail process before to contact the help desk, causing
unnecessary warranty costs for the truck producing company.

A troubleshooting tool that maintains case base of previous problems and
their solutions may support helpdesk technicians to immediately find a similar
case that was previously solved and provide the solution to the calling mechanic,
saving time. Moreover it can support helpdesk technicians and engineers to mon-
itor the occurrence of faults in order to spread out more rapidly the technical
information about them to the repair shops, thus saving time and money.

Case-Based Troubleshooting in the Automotive Context 605

3 SMMART TTool and CBR

The troubleshooting tool allows to exploit and integrate different methods to
solve the mechanic’s problem that is to identify and remove the cause of a truck
engine failure, using a two step–retrieval [9] [10]:

– In the first step, the CBR module is responsible for the identification of the
most probable faulty HLC;

– In the second step, the MBR or FT module is used to detect the root cause
inside the HLC.

The integration of MBR approaches into CBR systems has been already pro-
posed (see e.g. [11]) as a way to guide the adaptation phase: in the context of
the TTool of the SMMART project, MBR of FT methods are used to refine the
retrieved solution rather than revising it. For this reason, we consider the CBR
and MBR and FT paradigms as two distinct entities in the TTool and we focus
the rest of this section on the description of the adopted problem representation,
in the form of a hierarchical case structure [12], and similarity calculus strategy,
based on the K–Nearest Neighbour approach [13] (KNN).

3.1 The Troubleshooting Tool Case Structure

In accordance with the traditional literature on case–based reasoning [8], the
case structure of TTool module consists of three parts, as shown in Fig. 3:

– Case description, containing all the information necessary to characterize the
truck problem; that is the symptoms, fault codes, symptoms conditions and
general information about the truck (the truck model, the type of on–board
computer, and so on);

– Case solution, containing the faulty components of the truck together with
the suggestion of the approach used in order to analyze the HLC and the
root cause;

– Case outcome, which is a comment made by mechanic about the solution
effectiveness (e.g. “The tool suggested MBR for identifying the root cause,
but I preferred FT”)

The most important information in the case description are Symptoms and
Fault Codes. Symptoms are qualitative information about the truck malfunc-
tions: they are synthetic representations of driver impressions about the problem.
Symptoms are represented in a tree structure, in which each subtree is related
to a specific HLC (e.g. Engine, Gearbox, ...). Starting from the HLC, different
levels of detail can be determined, depending on the available knowledge. For
example, as depicted in Fig. 3, three symptoms at Level 1 can be identified for
the Engine, i.e. Engine start, Engine stop and Low power. While further levels of
detail can be specified for both Engine start (i.e. Engine cranks but doesn’t start)
and Engine stop (i.e. Starter motor does not run), this is not true for Low power
because this symptom is the leaf of the subtree it belongs to. This structure is

606 S. Bandini et al.

Case
Structure

Description

Solution

Outcome

Vehicle
Data

General
Context

Symptoms

Fault
Codes

HLC(s)

MID PID FMI

128 21 3

128 21 4

130 12 8

249 18 9

...

HLC Level 1 ... Level n

Engine Engine start
Engine

cranks but
does not run

Engine Low Power

Engine Engine start
Starter motor
does not run

Gearbox

Feature Value
Altitude < 1500

Road Condition ...
Climate ...

Curve density ...

Root Cause Intervention
Electric cable substituted
Electric cable repaired

... ...

Feature Value
Engine type Eng-VE7

Eng. emission ...
Eng. version ...
Transmission ...

MID = Message IDentifier
PID = Parameter IDentifier
FMI = Failure Mode Identifier

HLC = High Level Component
Level 1...n = HLC subtree level

TYPE

Electrical

Electrical

Mechanical or
Electrical

Component
Fault

...

MEANING
Abnormally

High Voltage
Abnormally
Low Voltage

Abnormal
Frequency

Faulty Unit or
Component

...

Fig. 3. The case structure adopted by the CBR module of the TTool

extremely flexible and allows the mechanic to represent in a complete way the
effects of the problem. Moreover, new levels can be added to the structure when
available: at the moment, the maximum number of levels composing a symptom
subtree is 5.

Fault Codes are also organized in a tree, and a Fault Code is characterized
by three fields, which are:

– MID, the Message IDentifier, which specifies the on–board computer gener-
ating the error code; for example, the entries with MID 128 in Fig. 3 identify
the on–board computer monitoring the engine; for this reason, it can be de-
duced that the MID indirectly identifies a HLC;

– PID, the Parameter Identifier, which specifies which component of the on–
board computer has generated the Fault Code; this means that an on–board
computer is characterized by the presence of many sensors, each of them
dedicated to monitoring a specific part of the HLC under control;

– FMI: the Failure Mode Identifier, which specifies the kind of failure detected
by the on–board computer (electrical fault, mechanical fault, and so on).

General Context and Vehicle Data contains information about driving condi-
tions and truck characteristics respectively. These two kinds of information are
not directly related to fault generation, but they can be useful during the simi-
larity calculus. For this reason, they have been included in the case description.

A case’s solution consists of three parts: HLC, the suggestion of the method
to adopt to analyze it and the root cause. It is important to highlight that
a case can consider more than one HLC in its solution. The reason for this
is that the same configuration of case description elements (mainly the set of
symptoms and the set of fault codes) could be caused by more than one faulty

Case-Based Troubleshooting in the Automotive Context 607

HLC. For example, a truck problem could derive from both the Engine and the
Gearbox. The other part of the solution is used to suggest which method between
Model Based Reasoning and Fault Trees to adopt for further investigation of
problem root causes. Thus, the aim of the CBR module is to help the mechanic
in discovering which is the most suitable fault tracing method together with
the starting point from which to apply it rather than the final troubleshooting
solution. In other words, the CBR module supports the mechanic in the correct
and quick application of traditional troubleshooting methods.

Finally, the third part of the solution is the root cause. Although the CBR
module of the TTool is not able to detect it, the application of the suggested
approach between MBR and FT should be. Thus, the result of the MBR or FT
application has been included in the solution to be retained. It is important to
highlight that the root cause related to a previous case might not be useful for
a new one. For example, it could happen that an electric cable substituted in
the past could be simply repaired in the current situation. However, a mechanic
could decide to save time by the application of the past intervention without
any further investigations. In this situation, the indication of the root cause is a
very important information.

3.2 The Troubleshooting Tool Similarity Function

Given the current case Cc, for which no solution is given, the goal of the retrieval
algorithm is to propose a possible solution (i.e. a HLC together with a method
to detect the root cause) by comparing its description with the descriptions of
each case Cp solved in the past and included in the case base.

The similarity among cases is calculated with a composition of sub functions,
as described by the following formula

SIM(Cc, Cp) =
k1 ∗ SIMS + k2 ∗ SIMFC + k3 ∗ SIMV + k4 ∗ SIMGC

k1 + k2 + k3 + k4

where:

– k1, k2, k3 and k4 are configurable weights in (0.0 ... 1.0];
– SIMS, SIMFC , SIMV and SIMGC are in [0.0 ... 1.0].

SIMS is the similarity between the two sets of symptoms of current case and
past case, named Sc and Sp respectively: for each symptom A in the current
case, the algorithm finds the closest symptom B (possibly the same as symptom
A) in the past case, belonging to the same sub–tree, having the HLC name as
its root. For example (see Fig. 4), a symptom Engine cranks but does not run
has ID = (1) → (1) → (1); its HLC is Engine and its sub–tree is the one with
root (1); hence only symptoms belonging to Engine subtree will be considered
in the past case.

The function dist(A,B) gives the minimum number of arcs that separates A
and B in the symptoms tree and it is used for calculating the similarity. Similarity
between symptom A and symptom B is

sim(A, B) = 1− dist(A, B)/dmax

608 S. Bandini et al.

Engine
(1)

Gearbox
(2)HLC

Engine
Start
(1)

Low
Power

(2)

Level 1

Engine
crunks but
does not

run
(1)

Level 2

...

Level 4

Symptom Tree
Cc

dmax = 5

Engine
(1)

Gearbox
(2)

Engine
Start
(1)

Low
Power

(2)

Starter
Motor

does not
run
(2)

Symptom Tree
Cp

Engine
crunks but
does not

run
(1)

Symptom B

Symptom C

Symptom D

Symptom A

dist(A, B) = 2, sim(A, B) = 0.6

dist(A, C) = 3, sim(A,C) = 0.4

dist(A, D) = dmax, sim(A,D) = 0

Engine
cranks but
does not

run
(1)

dist = 0, SIM = 1

Fig. 4. The calculus of similarity between the symptom A of the current case and the
symptoms B, C and D of the past case

where dmax is the constant maximum distance possible between two nodes in
the tree (in the current TTool symptom tree dmax = 5). For example, as shown
in Fig. 4, given A = (1) → (1) → (1): if B = (1) → (1) → (2), dist(A, B) = 2
and sim(A, B) = 0.6; if C = (1) → (2), dist(A,C) = 3 and sim(A,B) = 0.4; if D
= (2) the similarity is 0 because A and D do not belong to the same subtree.

Similarity between symptom A and symptom B is modified by the conditions
under which the symptoms occurred; the algorithm evaluates the degree of sim-
ilarity between the two sets of conditions and modifies the value of sim(A,B)
consequently.

The similarity among symptoms SIMS is the sum of all the sim(A,B) nor-
malized with the number noc of couples of symptoms considered and eventually
penalized if the two cases are different in number of symptoms; for example, if
the current case Cc has two symptoms (sym1, sym2), the past case C1

p has the
same two symptoms (sym1, sym2) while the past case C2

p has three symptoms
(sym1, sym2, sym3), the similarity algorithm gives a higher degree of similarity
to C1

p than to C2
p . The final formula is:

SIMS = (SIMS/noc) ∗ (1 − Penalty)

where Penalty = (#Sc + #Sp − 2∗noc)
#Sc + #Sp

and #Sc, #Sp are the cardinalities of Sc

and Sp.

Case-Based Troubleshooting in the Automotive Context 609

128
(Engine)

130
(Gearbox)MID

(HLC)

21 26PID

 3FMI

Fault Code
Tree
Cc

128
(Engine)

130
(Gearbox)

21 26

4

Fault Code
Tree
Cp

Fault Code B

Fault Code D

Fault Code A

sim(A, B) = 0.9

sim(A,C) = 0.8

sim(A,D) = 0

 3
SIM = 1

12

Fault Code C

26

130
(Gearbox)

Fig. 5. The calculus of similarity between the Fault Code A of the current case and
the Fault Codes B, C and D of the past case

SIMFC is the similarity between the two sets of fault codes (FCs) calculated
on each HCL group of FCs (FCs grouped by high level component): the rela-
tion between FCs and HLCs is given by mapping the MID of each FC to the
HLC name. By doing so, different MIDs (that means FCs coming from different
processing units) can be associated to the same HLC. If a FC does not have
any MID–HLC mapping entry, the FC will be related to a fictitious HLC, called
HLC0: in this way, Fault Codes which cannot be linked directly to a specific
HLC can be compared, with benefits from the final similarity point of view.

When all the Fault Codes of both Cc and Cp have been grouped in the FCc and
FCp sets respectively, the algorithm compares the information they contain: the
similarity sim(A, B) between two Fault Codes belonging to Cc and Cp depends
on their PID and FMI values. Fig. 5 shows the different cases considered by the
algorithm, given A = (128) → (21) → (3): if B = (128) → (21) → (4), sim(A,
B) = 0.9; if C = (128) → (21) → (12), and sim(A, C) = 0.8; if D = (128) →
(26) → (any) the similarity is 0 because A and D don’t belong to the same
processor. The similarity values are fixed and they have been determined with
the collaboration of Volvo Truck experts; the difference between sim(A, B) and

610 S. Bandini et al.

sim(A, C) depends on the fact that A and B belong to the group of electric faults,
while C does not belong to the same set (see Fig. 3). For this reason, although
A and B are different in the FMI component, they are more similar than A and
C. When similarity between two FCs is established, they are removed from the
FC sets of Cc and Cp in order to avoid that they could be considered again in
future iterations. The similarity among fault codes SIMFC is the sum of all the
sim(A, B) normalized with the number noc of couples of fault codes considered
and eventually penalized if the two cases are different in number of fault codes;
The final formula is:

SIMFC = (SIMFC/noc) ∗ (1− Penalty)

where Penalty = (#FCc + #FCp − 2∗noc)
#FCc + #FCp

and #FCc, #FCp are the cardinalities
of FCc and FCp.

SIMV is the similarity between the two vehicle characteristics: each possible
feature involved in vehicle description is linked to a weight. These weights are
used in the computation of the similarity between vehicle descriptions given in
the current case and in the past case.

SIMGC is the similarity between the two general contexts. Since items de-
scribing general contexts are assigned qualitative values (i.e. strings), these values
are preprocessed according to an opportune mapping function to be converted
into integer values.

4 The Troubleshooting Tool

Mechanics and receptionists can use the system developed in the SMMART
project to support their troubleshooting activities. TTool provides the users
with two possible methods for troubleshooting, which are the fault-tree based
and the MBR based. A user can access directly these modules in order to perform
troubleshooting directly on a specific high level component. Moreover, in order
to speed up the identification of the high level components which cause the
misbehaviors of the vehicle, the users can make use of the experiences stored in
the system. The use of CBR in the approach means that the solutions (i.e. the
high level components) of the most similar cases retrieved from the case base
can be proposed as possible and likely solutions of the problem presented in the
current troubleshooting session.

TTool uses three different software modules to implement these functionalities
and moreover a manager to coordinate the entire software system. Hence, the
architecture of the troubleshooting tool, as shown in Fig. 6 is composed by
four modules: the TTool manager coordinates the GUIs and sub–modules of
the system; Grade-X that manages the fault trees and guides users in finding
the root cause that affects an high-level component; Rodon that manages the
high-level-component models involved in the MBR methods and suggests the
root cause as the fault of one of the sub-components; the CBR engine that is
dedicated to the management of the case base and to the retrieval of the past
cases.

Case-Based Troubleshooting in the Automotive Context 611

New
Case

GUI
TTool

Manager

CBR
Engine

Grade-X

Rodon

Retrieve

Retain

Use FT

Use MBR

1 2

3

4
RETAIN

the New Case

Find the current case solution
 (i.e. the root cause)

RETRIEVED
Cases

Fig. 6. The TTool CBR Cycle

Fig. 7 shows a typical use case of TTool: through its Graphical User Interface,
the CBR engine receives the description of the current problems in terms of triage
symptoms, fault codes coming from the on-board computer, general context and
vehicle features. Using the similarity function described in the previous section,
the CBR engine evaluates the similarity of the past cases and proposes the
solution of the most similar case as a possible starting point for further and
more detailed troubleshooting analysis by means of the TTool methods.

Whenever during the troubleshooting a root cause is found in a specific high
level component, the root cause and the method used to identify are stored. Thus,
the description of the solution within the past case contains not only the high
level component, but also the root case and how it was found (i.e. the identifier
of the fault tree or of the model exploited in the past experience). Actually, only
the high level component is used to guide the work of the mechanic. However,
the complete solution is given to the user in order to supply all the information
for every possible consideration. Further analysis of the system during the test
phase should reveal if also the root cause belonging to the past case could likely
be the root cause of the current case.

The CBR engine directly manages the case base of the system and its imple-
mentation in the database. In fact, the CBR engine has in charge the access to
the physical storage device in order to take all the case to be compared with the
current case during the retrieval. Moreover, it is the CBR engine that provides
the functionality to perform the retain phase of the CBR cycle. When the users
find the root causes and add them to the solution description, they can decide
to store the experience in the case base.

The CBR engine is developed on the basis of the software framework CReP
(Case Retrieval Platform). The latter is a Java-based framework that allows de-
velopers to build CBR application in an easy way. In fact, it provides a model

612 S. Bandini et al.

Fig. 7. The TTool Graphical User Interface

and some tools to describe cases, similarity functions on case description parts
and how they must be put together in an aggregation function in order to ob-
tain the global similarity value. CReP is developed by the Artificial Intelligence
Laboratory of the University of Milano–Bicocca.

At the moment, the development phase of the troubleshooting tool is not at
a final stage so that a complete testing of the system would not be useful and
meaninful. However, some parts of the similarity function are fixed and their
analysis and testing has been planned and performed.

The functions designed and implemented for comparing fault codes, symp-
toms, vehicles and general contexts have been tested with sets of virtual cases
designed for this purpose. The term virtual means that they do not come from
real troubleshooting cases but that they have been manually built in order to
stress some specific features of the functions.

For each of the four parts of the case description, a ten–case test set has been
prepared. For instance, the set of cases designed to verify the correct behaviour
of the similarity function for symptoms contain only the part related to the list
of symptoms.

The testing strategy showed that each similarity function gives a value be-
longing to the interval between 0 and 1. The boundary values of this interval are
given when the compared cases are totally different and completely equal respec-
tively. Moreover, two other cases are significant: when one list of the compared

Case-Based Troubleshooting in the Automotive Context 613

cases is empty the result of the comparison is 0; when two cases are compared
and the corresponding lists are both empty, their similarity is 1.

Once the development of the similarity function is finished, another testing
phase will be required in order to test TTool on real cases and verify the actual
quality of the results of the retrieval of the past cases and the effectiveness of
the entire system.

5 Conclusions

In this paper we have presented a troubleshooting tool for the identification
and resolution of failures on trucks. The system is a collaboration between the
University of Milan–Bicocca and Volvo Trucks in the context of the SMMART
project.

This tool is based on the integration of three different modules: a CBR system
to identify the most probable truck component(s) that is (are) responsible for
the failure and two applications based on MBR and Fault Trees respectively to
detect the root causes of the problem and obtain suggestions about what actions
should be taken.

At the moment, the project is in the third and last year of development:
a complete prototype has been developed and tested on a small set of data.
Indeed, the first impressions of the prototype results are good: the integration
of CBR, MBR and FTs allows good coverage of truck failures and the system
can be extended quite easily to include new truck components whenever their
descriptions in terms of symptoms, fault codes, context and vehicle features
become available.

However, an evaluation of the system’s ability to support mechanics in their
decision making process in real troubleshooting sessions is not possible, since
the testing of the system is the main subject of the last year of the project.
The evaluation will be conducted together with Volvo experts in the training
of mechanics working at the repair shop. In particular, it is planned to connect
the case base of the TTool directly to Argus, the training tool adopted by Volvo
during training courses. Argus contains hundreds of troubleshooting session de-
scriptions coming from Volvo repair shop that can be stored in the TTool as
cases, in order to test the effectiveness of the prototype on real data.

References

1. Kolodner, J.: Case Based Reasoning. Morgan Kaufmann Publisher, San Mateo
(CA) (1993)

2. Rayudu, R.K., Samarasinghe, S., Kulasiri, D.: A Comparison of Model–based Rea-
soning and Learning Approaches to Power Transmission Fault Diagnosis, annes, p.
218. IEEE Computer Society, Los Alamitos (1995)

3. Xiang, J., Futatsugi, K., He, Y.: Fault Tree and Formal Methods in System Safety
Analysis. In: Proceedings of 4th International Conference on Computer and in-
formation Technology (CIT 2004), pp. 1108–1115. IEEE Computer Society, Los
Alamitos (2004)

614 S. Bandini et al.

4. Georgin, E., Bordin, F., Loesel, S., McDonald, J.R.: CBR Applied to Fault Diag-
nosis on Steam Turbines. In: Watson, I.D. (ed.) Progress in Case-Based Reasoning,
First United Kingdom Workshop, Salford, UK, January 12, 1995. LNCS, vol. 1020.
Springer, Heidelberg (1995)

5. Lenz, M., Burkhard, H.D., Pirk, P., Auriol, E., Manago, M.: CBR for Diagnosis
and Decision Support. AI Commun. 9(3), 138–146 (1996)

6. Ochi-Okorie, A.S.: Disease Diagnosis Validation in TROPIX Using CBR. Artificial
Intelligence in Medicine 12(1), 43–60 (1998)

7. Portinale, L., Torasso, P., Ortalda, C., Giardino, A.: Using Case-Based Reasoning
to Focus Model-Based Diagnostic Problem Solving. In: Wess, S., Althoff, K.D.,
Richter, M.M. (eds.) Topics in Case-Based Reasoning, First European Workshop,
EWCBR-1993, Kaiserslautern, Germany, November 1-5, 1993. LNCS, vol. 837, pp.
325–337. Springer, Heidelberg (1994)

8. Aamodt, A., Plaza, E.: Case–Based Reasoning: Foundational Issues, Methodolog-
ical Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)

9. Forbus, K., Gentner, D., Law, K.: MAC/FAC: A model of Similarity–based Re-
trieval. Cognitive Science 19(2), 141–205 (1995)

10. Bandini, S., Colombo, E., Sartori, F., Vizzari, G.: Case Based Reasoning and Pro-
duction Process Design: the Case of P-Truck Curing. In: ECCBR – Proceedings.
LNCS, vol. 3155, pp. 504–517. Springer, Heidelberg (2004)

11. Portinale, L., Magro, D., Torasso, P.: Multi–Modal Diagnosis Combining Case–
Based and Model–Based Reasoning: a Formal and Experimental Analysis. Artif.
Intell. 158(2), 109–153 (2004)

12. Bergmann, R., Stahl, A.: Similarity Measures for Object–Oriented Case Repre-
sentations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 25–36. Springer, Heidelberg (1998)

13. Finnie, G.R., Sun, Z.: Similarity and Metrics in Case-Based Reasoning. Interna-
tional Journal of Intelligent Systems 17(3), 273–287 (2002)

Rapid Prototyping of CBR Applications

with the Open Source Tool myCBR

Armin Stahl1 and Thomas R. Roth-Berghofer2

1 German Research Center for Artificial Intelligence (DFKI) GmbH
Image Understanding and Pattern Recognition Department (IUPR)

Armin.Stahl@dfki.de
2 German Research Center for Artificial Intelligence (DFKI) GmbH

Knowledge Management Department
Trippstadter Straße 122, 67663 Kaiserslautern, Germany

Thomas.Roth-Berghofer@dfki.de

Abstract. Although Case-Based Reasoning (CBR) claims to reduce
the effort required for developing knowledge-based systems substantially
compared with more traditional Artificial Intelligence approaches, the
implementation of a CBR application from scratch is still a time consum-
ing task. In this paper we present a novel, freely available tool for rapid
prototyping of CBR applications that focuses on the similarity-based re-
trieval step, like for example case-based product recommender systems.
By providing easy to use model generation, data import, similarity mod-
eling, explanation, and testing functionality together with comfortable
graphical user interfaces, the tool enables even CBR novices to rapidly
create their first CBR applications. Nevertheless, at the same time it
ensures enough flexibility to enable expert users to implement advanced
CBR applications.

1 Introduction

The development of a quite simple Case-Based Reasoning application already
involves a number of steps, such as collecting case and background knowledge,
modeling a suitable case representation, defining an accurate similarity measure,
implementing retrieval functionality, and implementing user interfaces. Com-
pared with other AI approaches, CBR allows to reduce the effort required for
knowledge acquisition and representation significantly, which is certainly one of
the major reasons for the commercial success of CBR applications. Nevertheless,
implementing a CBR application from scratch remains a time consuming soft-
ware engineering process and requires a lot of specific experience beyond pure
programming skills.

Although CBR research has a history of about 20 years now, and in spite of
the broad commercial success of CBR applications in recent years, today only
few CBR software tools for supporting the development process are available.
Software products used for implementing large-scale commercial applications are
typically very complex, consist of various modules, and require quite a long time

K.-D. Althoff et al. (Eds.): ECCBR 2008, LNAI 5239, pp. 615–629, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

616 A. Stahl and T.R. Roth-Berghofer

to get familiar with the various functionalities and configuration possibilities.
Another problem are the high licensing costs of these products and also if the
vendors provide cheap or even free research licences, it is usually impossible
to just download the software without carrying out an annoying registration
procedure. This makes these products little attractive for research, teaching,
small commercial projects, or first feasibility studies.

For these purposes, more easily available and less complex CBR tools are
required. Unfortunately, such solutions are nearly missing today at all. One
exception is the Open Source JColibri1 system, which provides a framework for
building CBR systems based on state-of-the-art Software Engineering techniques
[1]. The key idea of the system is to combine software reuse with the more general
AI paradigm of separating the reasoning algorithms from the domain model.

In this paper we present the novel Open Source CBR tool myCBR2 developed
at the German Research Center for Artificial Intelligence (DFKI). The key mo-
tivation for implementing myCBR was the need for a compact and easy-to-use
tool for building prototype CBR applications in teaching, research, and small
industrial projects with minimal effort. Moreover, the tool should be easily ex-
tendable in order to facilitate the experimental evaluation of novel algorithms
and research results. Many ideas for the implementation of myCBR came from
the old CBR-Works system3 [2] but which is not available any more.

The current version of myCBR still focuses on the similarity-based retrieval
step of the CBR cycle [3], because that is still the core functionality of most
CBR applications. A popular example of such retrieval-only systems are case-
based product recommender systems [4]. While the first CBR systems were often
based on simple distance metrics, today many CBR applications make use of
highly sophisticated, knowledge-intensive similarity measures [5]. On the one
hand, such extremely domain specific similarity measures enable to improve the
retrieval quality substantially. However, on the other hand, they increase the
development effort significantly.

The major goal of myCBR is to minimize the effort for building CBR applica-
tions that require knowledge-intensive similarity measures. Therefore, it provides
comfortable graphical user interfaces for modeling various kinds of attribute-
specific similarity measures and for evaluating the resulting retrieval quality. In
order to reduce also the effort of the preceding step of defining an appropri-
ate case representation, it includes tools for generating the case representation
automatically from existing raw data.

In the next Section we give an overview of the basic concept and system
architecture of myCBR. In Section 3 and 4 we then describe the technical
approaches, how rapid prototyping of CBR applications is supported by myCBR.
In Section 5 we conclude with a summary and an outlook on future plans for
improving and extending myCBR.

1 http://gaia.fdi.ucm.es/projects/jcolibri
2 http://www.mycbr-project.net
3 CBR-Works has been developed at the University of Kaiserslautern in cooperation

with empolis knowledge management GmbH, former tecinno GmbH.

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 617

2 The myCBR Architecture

From its conception, myCBR was designed with improved communication be-
tween the system and the user—knowledge engineer and end-user—in mind. The
novice as well as the expert knowledge engineer is supported during the devel-
opment phase of a myCBR project through intelligent support approaches and
advanced GUI functionality.

The foundation of every CBR system are certain knowledge representation
formalisms required to describe the content of the individual CBR knowledge
containers, namely the vocabulary, the similarity measure, the adaptation knowl-
edge, and the case knowledge [6]. Since knowledge representation is a key issue for
most Artificial Intelligence (AI) Systems, various software tools for supporting
knowledge engineering tasks are already existing today.

One of the most popular and widely used systems is certainly the Java-based
Open Source ontology editor Protégé4 [7]. A major reason for the success of
Protégé is its flexible extensibility by providing a plug-and-play environment
that enables users to add and distribute new modules easily. This makes Protégé
a flexible base for rapid prototyping and application development in various
application domains.

In order to avoid a reinvention of the wheel, we have chosen Protégé as the
modeling platform for myCBR. In our point of view, the use of Protégé brings
two main advantages: First, the effort for implementing data structures and user
interfaces for representing the vocabulary and the case knowledge can be saved.
Second, it allows to add CBR functionality to existing Protégé applications with
minimal effort. Due to the large community of Protégé developers and users, in
the long term this may help to spread the use of CBR technology in other AI
communities.

The basic architecture of myCBR is illustrated in Figure 1. During the devel-
opment phase of an CBR application, myCBR runs as a plug-in within Protégé.
This plug-in consists of the following modules:

Modelling tools: These tools extend the existing functionality of Protégé for
creating domain models and case instances and add the missing functionality
for defining similarity measures.

Retrieval GUI: The retrieval GUI provides powerful features for analyzing the
quality of the defined similarity measures. Moreover, it can also serve as the
user interface of first prototypical CBR applications.

Retrieval engines: For executing the similarity-based retrieval, different re-
trieval engines are provided.

Explainer: A dedicated explanation component provides modelling support in-
formation as well as explanations of retrieval results for quicker roundtrips
of designing and testing (see also Section 4).

After installing and activating the myCBR plug-in, the user interface of Protégé
is extended with additional tabs to access the myCBR modules. Figure 2 shows, for
4 http://protege.stanford.edu/

618 A. Stahl and T.R. Roth-Berghofer

Development
phase

Application
phase

Protégé

Retrieval GUI

(Web) application

Modelling tools

Retrieval
engines Explainer

Retrieval
engines Explainer

XML
files

Fig. 1. The system architecture of myCBR

example, how the myCBR editor for configuring class specific similarity measures
integrates into the Protégé environment consisting of class and slot browsers.

As a result of the modeling and development phase, the complete domain and
similarity model together with the case base can be exported to XML files.

Although the myCBR Protégé plug-in already allows to create a full and
running application, in many projects custom-made user interfaces and an in-
tegration of the CBR system into existing infrastructure is required. For this
purpose, after developing a CBR application using the Protégé plug-in, myCBR
can also be used as a stand-alone Java module, to be integrated in arbitrary ap-
plications, for example, JSP5-based web applications. In this application phase,
the retrieval engines of myCBR just read the XML files generated during the
previous development phase and perform the similarity-based retrieval.

End-users of the final myCBR-enhanced application can be further supported
by providing explanations about the retrieval process.

3 Developing CBR Applications with myCBR

In this section we describe in more detail how myCBR supports rapid prototyp-
ing of CBR applications. This includes the generation of case representations, the
definition of similarity measures, the testing of retrieval and use of explanation
functionality, and finally the implementation of stand-alone applications.

3.1 CSV Data Import and Automatic Model Generation

The starting point of many CBR projects is the collection of initial case data. The
existence of at least some case examples is usually a precondition for modeling
an accurate case representation and corresponding similarity measures.
5 Java Server Pages.

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 619

Fig. 2. The myCBR Protégé plug-in

myCBR is mainly intended for structural CBR applications that make use
of rich attribute-value based or object-oriented case representations. Of course,
since attribute values may also contain large parts of pure text, textual CBR
applications are also supported by myCBR, but are not the main focus of the
system. Although Protégé provides powerful graphical user interfaces for mod-
eling attribute-value based and object-oriented representations, their manual
definition remains a time consuming task. It includes the definition of classes
and attributes (called “slots” in Protégé) and the specification of accurate value
ranges required for a meaningful similarity assessment.

In order to facilitate the definition of case representations, myCBR provides
a powerful CSV6 data import module (see Figure 3.). CSV files are widely used
to store attribute-value based raw data in pure ASCII format. For example, in
the Machine Learning community example data sets are usually exchanged by
using CSV files7. Using the CSV importer, the user has the choice to import
data instances into an existing Protégé data model, or to create a new model
automatically based on the raw data. In the latter case, myCBR generates a
Protégé slot for each data column of the CSV file automatically. In order to
achieve maximal flexibility, the CSV importer provides the following features:

Slot creation: The importer analyzes the whole CSV data in order to deter-
mine accurate value ranges for the slots automatically. For textual data, the
user can specify a threshold on the number of unique values, in order to

6 Comma Separated Values.
7 See, for example, http://archive.ics.uci.edu/ml/

620 A. Stahl and T.R. Roth-Berghofer

Fig. 3. The CVS data importer

control the generation of symbol and string slots. If a data column contains
less unique values than specified, the slot becomes symbolic (with all found
values as allowed symbols), otherwise it will be specified as a string slot.

Model Update: If a domain model is already existing, the CSV importer may
update the model according to the data in the given CSV file. Then missing
slots are created and value ranges of existing slots are updated once the
data contains values that do not fit into the predefined ranges. This can also
be done in a semi-automatic manner in order to investigate the differences
between the data and the existing model in more detail.

Creation of Instances: The user can choose whether he wants to import the
data by creating corresponding Protégé data instances or whether he wants
to create the domain model only.

Specification of Column Separators: Since the use of column separators
(comma, semicolon, etc.) is not standardized in CSV files, the user can spec-
ify the used separator prior to the import. By supporting a second level
separator, myCBR is also able to import set attributes (attributes with mul-
tiple values).

After the CSV data has been imported, the user may further modify the
generated case model (e.g. extend it to an object-oriented representation) in
order to meet the application specific needs. The final case model together with
the case base is stored by myCBR in XML files.

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 621

3.2 Modeling Similarity Measures

After having generated the case representation either by hand or by using the
CSV importer, the main task for creating a CBR application with myCBR is
the definition of an appropriate similarity measure. Here, myCBR follows the
local-global approach which divides the similarity definition into a set of local
similarity measures for each attribute, a set of attribute weights, and a global
similarity measure for calculating the final similarity value. This means, for an
attribute-value based case representation consisting of n attributes, the similarity
between a query q and a case c may be calculated as follows:

Sim(q, c) =
n∑

i=1

wi · simi(qi, ci)

Here, simi and wi denote the local similarity measure and the weight of attribute
i, and Sim represents the global similarity measure. myCBR is also able to deal
with more structured, object-oriented representations and supports suited global
similarity measures as described in [8].

The editor for specifying global similarity measures was already shown in
Figure 2. Besides the use of a weighted sum, the user can also choose another
amalgamation function, i.e. the Euclidean distance. However, the most similar-
ity knowledge is encoded in the attribute specific local similarity measures. For
testing purposes and to ensure high flexibility, for both global and local simi-
larity measures the user can define and manage a set of different measures. The
measures that are currently marked as active are finally used for the retrieval.

In the following sections we give an overview of the various approaches for
modeling local similarity measures depending on the value type of the underlying
attribute.

Similarity Editors for Numeric Attributes. For numerical attributes, the
similarity computation is typically based on a mapping between the distance of
the two values to be compared and the desired similarity value:

simi(qi, ci) = f(d(qi, ci))

This means, the similarity modeling focuses on the definition of an accurate
mapping function f for a given distance function d [5]. For d, myCBR provides
two alternatives, either the absolute difference d(qi, ci) = ci − qi or the quotient
d(qi, ci) = ci

qi
of the two values. The latter one allows to model similarities

depending on a kind of relative distance, however, its application is restricted to
strict positive value ranges.

For modeling the mapping function f , myCBR provides two editing modes.
In the standard mode, the user can choose between some typical and adjustable
functions (e.g. step or asymptotic decreasing functions). In the advanced mode,
arbitrary mapping functions can be linearly approximated by specifying a set of
sampling points. These sampling points can be easily generated and manipulated
by using drag and drop functionality in a graphical editor (see Figure 4).

622 A. Stahl and T.R. Roth-Berghofer

Fig. 4. The advanced similarity editor for numerical attributes

Similarity Editors for Symbolic Attributes. For symbolic attributes, sev-
eral possibilities to model the similarity are supported. The most general and
flexible way is the definition of a similarity table where all pairwise value combi-
nations together with their similarities are enumerated explicitly (see Figure 5a).
In order to make the editing as comfortable as possible, myCBR performs sim-
ilarity highlighting (similarity values are visualized by different cell colors) and
supports multiple cell selection.

However, for larger value sets the definition of similarity tables remains a
time consuming and annoying task. Therefore, myCBR supports more comfort-
able approaches for defining similarities on symbolic values. The first one is the
definition of a total order on symbols which allows to model the similarity like
for numerical values by just using their position in the order. The second and
more sophisticated approach is the arrangement of symbols in a taxonomy by
using comfortable drag and drop functionality (see Figure 5b). Once the tax-
onomy and its application specific meaning is specified, it can be deployed to
perform automatic similarity calculations (for details of this approach see [9]).

The user may start with the order or taxonomy approach to obtain a first
similarity measure very quickly. In order to ensure maximal flexibility, myCBR
supports the refinement of the similarity measure by switching to the table mode.
Now the user may change some of the precalculated similarity values for consid-
ering his application specific needs.

Similarity Editors for String Attributes. Although textual CBR is not the
main focus of the myCBR system, it provides flexible similarity measures for
string processing. First, the user may choose between word or character-based
processing modes. Depending on the selected mode, various approaches and con-
figurations to specify the actual similarity calculation are provided, e.g. exact
and partial matches, trigram matching, or regular expression based comparisons.

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 623

b)b)

a)

Fig. 5. Similarity editors for symbolic attributes: similarity table (a) and taxonomy
editor (b)

Similarity Editors for Set Attributes. Attributes that allow multiple values
(either numerical or symbolic) are a powerful concept for representing weakly
structured knowledge. However, the similarity calculation for such set attributes
is much more complex compared with single values. This concerns the compu-
tation complexity as well as conceptional issues. In general, the semantic of the
comparison of set values is extremely application specific. For example, a set of
values may have a kind of “and” or a kind of “or” semantic. Moreover, the size
of the query and case sets may have different influences on the similarity.

myCBR provides various options to configure similarity measures for set at-
tributes. Depending on the chosen settings, the mapping between query values and
case values is calculated differently. For example, one might want to match each
query value with be best suited case values or vice versa. Moreover, query/case
values that could not be matched to a case/query value (e.g. because the query
contains more values than the case) may have a different impact on the final sim-
ilarity. Once the desired mapping is determined, the final similarity computation
is based on the basic similarity measures defined for the atomic values of the sets.
Depending on the data type, here the previously described editors can be used.

Script-Based and External Similarity Measures. In order to obtain max-
imal flexibility, for all kind of data types two additional similarity modes are
provided:

Script: myCBR includes a Jython8 binding and corresponding editors that allow
the user to write own similaritymeasures in an easy to learn scripting language.

8 Jython is a Java-based scripting languagewith the same syntax thanPython; for details
see http://www.jython.org/Project/index.html

624 A. Stahl and T.R. Roth-Berghofer

External: This similarity mode allows the user to call external programs (e.g.
written in C/C++) for calculating similarities. This can be in particular
useful, if computation intensive calculations are required or if data types not
supported by Protégé are involved (e.g. images). In this case, the underlying
attribute in the case representation may provide an URL to the external
data source used by the external program to access the data.

Dealing with Missing Values. Missing attribute values (either in the query
or in the cases) are always a crucial issue during the similarity computation
because they prevent the computation of regular local similarities. Depending
on the application domain, missing values can have quite different meanings. For
example, in a product recommender system missing query attributes typically
represent “don’t care” statements of the customer, while missing case attributes
correspond to unknown or not existing properties of the products.

In myCBR missing values are always represented as special values. The default
special value is “ undefined ”, however, the user is able to specify own special
values additionally. In order to cover the application specific requirements, the
influence of each special value on the similarity computation can be configured
individually.

3.3 Testing of Retrieval Functionality

The definition of an optimal similarity measure is often a difficult and tricky
task which requires repeatedly testing and fine tuning. For this purpose, myCBR
includes a comfortable graphical user interface for performing retrievals and for
analyzing the corresponding results in detail (see Figure 6). On the right hand
side of the window an overview of the entire retrieval result is shown. In the
center part of the GUI the query is opposed to a configurable number of retrieved
cases. By providing similarity highlighting and explanation functionality (cf.
Section 4), myCBR supports the efficient analysis of the outcome of the similarity
computation.

The current version of myCBR provides two retrieval algorithms, a simple
sequential retrieval and a basic case retrieval net [10].

3.4 Building a Stand-Alone Application

After having created and tested the CBR functionality using the myCBR Protégé
plug-in, one may want to deploy that functionality in the scope of a particular
application without relying on the Protégé framework. A typical use case for
CBR systems are web-based applications, for example, to implement recommen-
dation functionality in e-Commerce applications.

myCBR provides a Java API which allows easy integration of the retrieval
functionality into arbitrary Java applications without requiring a Protégé in-
stallation. Using JSP a few lines of code are sufficient to implement a simple
web-based CBR application with custom-made user interfaces. An example of
such a web-based application is shown in Figure 7.

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 625

Fig. 6. Retrieval result with attribute values sorted in descending order of similarity
values. Note the decreasing highlighting of cells corresponding to local similarity.

During the stand-alone operation of myCBR the XML files generated by the
Protégé plug-in serve as source for obtaining the similarity model, the configura-
tion options, and the case base. If certain maintenance operations are necessary,
the XML files may be updated by using the Protégé plug-in again, or application
specific modules may change the XML files directly, for example, to store new
or to delete obsolete cases.

4 Explanation Functionality

Ease-of-use as well as approachability of any software system is improved by
increasing its understandability, which in turn can be supported by appropriate
explanation capabilities [11]. We follow Schank [12] in considering explanations
the most common method used by humans to support understanding and their
decision making. In everyday human-human interactions explanations are an
important vehicle to convey information in order to understand one another.
Explanations enhance the knowledge of the communication partners in such a
way that they accept certain statements. They understand more, allowing them
to make informed decisions.

This communication-oriented view leads to the following explanation scenario
comprising three participants (Figure 8). First, the originator that is a system
or an agent that provides something to be explained, e.g., the solution to some
problem, a technical device, a plan, a decision etc. In our case, the originator
comprises the modelling tools and the retrieval engines of myCBR. Second, the
user who is the addressee of the explanation. Third, the explainer who presents

626 A. Stahl and T.R. Roth-Berghofer

Fig. 7. A myCBR web demo application (see also http://www.myCBR-project.net)

the explanation to the user. This agent is interested in transferring the intention
of the originator to the user as correct as possible. The explainer chooses the
kind of the explanation [13] and is responsible for the computational aspects
as well as for organising a dialog if needed. Originator and explainer need to
work together rather tightly to improve the communication with the user. The
originator needs to provide the appropriate information in order to allow the
explainer constructing appropriate explanations.

In order to support the communication scenario described above, myCBR
provides two general kinds of explanations: forward and backward explanations.
Forward explanations explain indirectly, presenting different ways of optimizing
a given result and opening up possibilities for the exploratory use of a device or
application. Backward explanations explain the results of a process and how they
were generated. Details and technical aspects of how the explanation component
works are available in [14].

In order to increase transparency of and trust in the retrieval process [15],
myCBR creates an explanation object for each case during similarity calculation.
This tree-like data structure stores global and local similarity values as comments
for each attribute. These retrieval details are presented to the user in the retrieval
GUI (Figure 6) either as tool tips or in abbreviated form along with the case’s
attribute value, e.g., the price of car offer 455 (26,899) is 88% similar to the
requested car price (25,000). Another valuable feature is the option to find the
most similar cases with respect to a single attribute by simply clicking on the
attribute name (row head). In attribute rich cases one might also want to sort
the local similarity values of one case in ascending or descending order. This can
simply be achieved by clicking on the respective case name (column head).

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 627

Fig. 8. Participants in explanation scenario

While developing a CBR system an important question is whether a similarity
measure leads to the appropriate cases for a given query. Forward explanations
(not depicted in the screenshots) help predicting the behavior of the system
during modeling time and explain the interdependencies between the similarity
measure and the case base. For this, a central explanation component analyzes
the case base and gathers statistical information. The distribution of values in
the case base can already be quite helpful and may reveal parts of similarity
measures that are in fact never used (assuming that the case base covers most
of possible queries). Or they reveal missing border cases, which is important for
exception treatment.

5 Conclusion and Outlook

In this paper we have presented a novel, freely available CBR tool that supports
rapid prototyping of advanced retrieval-based CBR applications. By providing
powerful but still easy-to-use model generation, data import, similarity modeling,
explanation, and testing functionality, myCBR enables even CBR novices to
rapidly create their first CBR applications.

Nevertheless, at the same time the support of object-oriented case represen-
tations, advanced similarity editors, various configuration options, integration of
a scripting language, and the possibility to call custom-made external modules
ensures very high flexibility in order to fit also the requirements of expert users
and complex application domains.

In focusing on the similarity-based retrieval step, myCBR differs from the
JColibri system which aims to cover the entire CBR cycle in a flexible way. How-
ever, JColibri does not provide comparable graphical user interfaces for defining
knowledge-intensive similarity measures but requires to program them by hand.
In the future, an integration of both Open Source systems in order to benefit of
the advantages of both might be worth to be considered.

myCBR is still an ongoing project and several extensions of the system are
already planned or are even already under development. In order to facilitate the
work with more structured, object-oriented case representations and to improve
the interoperability with existing IT infrastructure, one of the next steps is the
implementation of an interface for accessing relational database management
systems. This interface will provide an advanced data importer which enables

628 A. Stahl and T.R. Roth-Berghofer

automatic generation of object-oriented case representations similar to the CSV
importer. Moreover, this interface will allow to retrieve cases directly from a
database instead of relying on XML files for storing case bases.

Another planned extension is the implementation of a rule engine for providing
adaptation and completion rules [16]. This would make myCBR to a full-fledged
CBR system beyond pure similarity-based retrieval. Last but not least, we plan
to integrate our approaches to automatically learn similarity measures based on
given user/application feedback [17].

We also encourage other researchers to try out myCBR in their own research
and teaching projects and to contribute to the further development by imple-
menting their own extensions and experimental modules.

Acknowledgements

The authors would like to thank Daniel Bahls, Andreas Rumpf, and Laura Zilles
for their great implementation work and all the valuable discussions during the
development of the myCBR system. This work was partially funded by the fed-
eral state Rhineland-Palatinate under the project ADIB (Adaptive Provision of
Information).

References

1. Bello-Tomás, J., González-Calero, P.A., Dı́az-Agudo, B.: JColibri: An Object-
Oriented Framework for Building CBR Systems. In: Proceedings of the 7th Euro-
pean Conference on Case-Based Reasoning. Springer, Heidelberg (2004)

2. Schulz, S.: CBR-Works - A State-of-the-Art Shell for Case-Based Application
Building. In: Proceedings of the 7th German Workshop on Case-Based Reason-
ing (GWCBR 1999) (1999)

3. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)

4. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. Knowledge Engineering Review 20(3) (2006)

5. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based Rea-
soning, Dissertation.de, vol. 986 (2004)

6. Richter, M.M.: The Knowledge Contained in Similarity Measures. In: ICCBR 1995
(1995)

7. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of Protégé an environment for
knowledge-based systems development. J. Hum.-Comput. Stud. 58(1), 89–123
(2003)

8. Bergmann, R., Stahl, A.: Similarity Measures for Object-Oriented Case Repre-
sentations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488. Springer, Heidelberg (1998)

9. Bergmann, R.: On the Use of Taxonomies for Representing Case Features and Local
Similarity Measures. In: Proceedings of the 6th German Workshop on Case-Based
Reasoning (GWCBR 1998) (1998)

Rapid Prototyping of CBR Applications with the Open Source Tool myCBR 629

10. Lenz, M.: Case Retrieval Nets as a Model for Building Flexible Information Sys-
tems. Ph.D. Thesis, Humboldt University Berlin (1999)

11. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational is-
sues. In: Funk, P., González-Calero, P.A. (eds.) Advances in Case-Based Reasoning,
pp. 389–403. Springer, Heidelberg (2004)

12. Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively.
Lawrence Erlbaum Associates, Hillsdale (1986)

13. Roth-Berghofer, T., Cassens, J., Sørmo, F.: Goals and kinds of explanations in
case-based reasoning. In: Althoff, K.D., Dengel, A., Bergmann, R., Nick, M., Roth-
Berghofer, T. (eds.) WM 2005: Professional Knowledge Management, Kaisers-
lautern, Germany, DFKI GmbH, pp. 264–268 (2005)

14. Bahls, D.: Explanation support for the case-based reasoning tool MYCBR. Project
thesis, University of Kaiserslautern (2008)

15. Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the
knowledge containers of case-based reasoning systems. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer, Heidelberg
(2005)

16. Bergmann, R., Wilke, W., Vollrath, I., Wess, S.: Integrating General Knowledge
with Object-Oriented Case Representation and Reasoning. In: Proceedings of the
4th German Workshop on Case-Based Reasoning (GWCBR 1996) (1996)

17. Stahl, A., Gabel, T.: Using Evolution Programs to Learn Local Similarity Measures.
In: Proceedings of the 5th International Conference on CBR. Springer, Heidelberg
(2003)

Author Index

Almeida, Pedro 562
Arcos, Josep-Llúıs 165, 385
Armengol, Eva 210
Auslander, Bryan 59

Bandini, Stefania 600
Bichindaritz, Isabelle 1
Bogaerts, Steven 74
Bridge, Derek 459
Briggs, Peter 89
Bustard, David 340
Buxton, Bernard F. 518

Campbell, John A. 518
Cerviño Beresi, Ulises 104
Chakraborti, Sutanu 104, 444
Cheng, Weiwei 120
Cojan, Julien 135
Colombo, Ettore 600
Corchado, Juan Manuel 573
Cordier, Amélie 150
Cortesão, Lúıs 562
Craw, Susan 415
Cunningham, Pádraig 18

Davoust, Alan 195
Dial, Scott A. 255
Dı́az-Agudo, Belén 165, 180, 459, 503

Esfandiari, Babak 195

Flórez Puga, Gonzalo 180
Floyd, Michael W. 195
Fornells, Albert 210
Freyne, Jill 18
Frisoni, Giuseppe 600
Fuchs, Béatrice 150

Gabel, Thomas 225
Golobardes, Elisabet 210
Gomes, Paulo 562
Gómez-Mart́ın, Pedro P. 503
González-Calero, Pedro A. 180, 459, 503
Greene, Derek 18
Gunawardena, Sidath 548

Hassan, Sa’adah 340
Hogg, Chad 59
Hüllermeier, Eyke 120, 240

Jorge, Marco 562
Joseph, Minu Mary 587

Kendall-Morwick, Joseph 269
Khemani, Deepak 104, 444, 587

Lamontagne, Luc 474
Lana de Carvalho, Léonardo 150
Leake, David 74, 255, 269, 284
Lee-Urban, Stephen 59
Li, Jingzhou 299
Lieber, Jean 135, 150
Little, Suzanne 312
Lothian, Robert 104

MacDonald, Craig 548
Mackas, Brenan 299
Marling, Cindy 325
Martins, Filipe 562
Massie, Stewart 104, 415, 444
Mata, Aitor 573
McSherry, David 340
Mille, Alain 150
Mishra, Kinshuk 355
Mougouie, Babak 370
Mülâyim, Oğuz 385
Muñoz-Avila, Héctor 59

Nguyen, Quang Nhat 400

Ontañón, Santiago 355, 533
Orecchioni, Amandine 415

Perner, Petra 312, 430
Plaza, Enric 44, 165
Powell, Jay 284
Prabhu, Priyanka 487
Prados Suárez, Belén 240

Raghunandan, M.A. 444
Ram, Ashwin 355, 487, 533
Ravisekar, Bharat 487

632 Author Index

Recio-Garćıa, Juan A. 165, 459
Ricci, Francesco 400
Richter, Michael M. 299
Riedmiller, Martin 225
Romdhane, Houcine 474
Roth-Berghofer, Thomas R. 615
Ruhe, Guenther 299

Sahay, Saurav 487
Salvetti, Ovidio 312
Sánchez-Ruiz, Antonio 503
Sartori, Fabio 600
Schwartz, Frank 325
Shubrook, Jay 325
Silva, Lúıs A.L. 518

Smyth, Barry 18, 89
Stahl, Armin 615
Stauch, Eva 240

Sugandh, Neha 533
Svensson, Joakim 600

Variganti, Saritha 587
Venkatasubramanian, Sundaresan 487
Venkatesh, Anushree 487
Vieira, Marco 562
Vladimirskiy, Ilya 240

Weber, Rosina 548
Wiratunga, Nirmalie 104, 415, 444

	Title Page
	Preface
	Organization
	Table of Contents
	Case-Based Reasoning in the Health Sciences: Why It Matters for the Health Sciences and for CBR
	Introduction
	Health Sciences Domains
	Artificial Intelligence in the Health Sciences
	History
	Impact on Artificial Intelligence
	Impact on Health Sciences

	Case-Based Reasoning in the Health Sciences
	History
	Impact on CBR
	Impact on the Health Sciences

	CBR Versus AI in the Health Sciences
	Synergies with Data Mining and Knowledge Discovery
	Multimodal Architectures

	CBR Versus Statistics in the Health Sciences
	The Role of Statistics in the Health Sciences
	The Role of CBR in the Health Sciences

	Conclusion
	References

	An Analysis of Research Themes in the CBR Conference Literature
	Introduction
	Data Representation
	Co-citation Analysis

	Cluster Analysis Techniques
	Soft Hierarchical Clustering
	Assessing Paper Importance
	Back-Fitting Recent Papers
	Labelling Clusters

	Analysis
	Global Picture
	Analysis of Subgroups

	Conclusion
	References

	Semantics and Experience in the Future Web
	Introduction
	Semantics,UpandDown
	The Network Is the Content (or Vice Versa)
	The Case for Experience
	Found and Lost

	Reusing Other People’s Experiences
	Semantics and Experience
	Forms of Experience
	TheEDIRCycle
	Discussion
	References

	Recognizing the Enemy: Combining Reinforcement Learning with Strategy Selection Using Case-Based Reasoning
	Introduction
	Background
	Domination Game Domain
	HTNbots
	Retaliate
	Game Model

	Algorithm
	Case Features and Similarity Functions
	The CBRetaliate Algorithm

	Evaluation
	Evaluation against CompositeBot
	Evaluation against HTNbots

	Related Work
	Conclusions
	References

	Formal and Experimental Foundations of a New Rank Quality Measure
	Introduction
	Previous Rank Quality Formulations and Their Problems
	The Target Behavior for Rank Quality

	New Rank Quality Definition
	Proof of the Effectiveness of the NewMeasure’s Handling of Ties
	Single Tied Sequence
	Multiple Tied Sequences
	Splitting the \it{k}-Boundary

	Experimental Demonstrations of Rank Quality
	Experimental Examination of Principle
	Experimental Examination of Principle

	Conclusion
	References

	Provenance, Trust, and Sharing in Peer-to-Peer Case-Based Web Search
	Introduction
	Background
	Peer-to-Peer Collaborative Web Search
	Experiences and Cases
	Retrieval and Ranking
	Propagation and Collaboration
	Trust, Promotion and Provenance
	An Example Session
	Discussion

	Evaluation
	Data
	Methodology
	The Evolution of Trust
	Recommendation Quality

	Conclusion
	References

	Visualizing and Evaluating Complexity of Textual Case Bases
	Introduction
	The “Case Base as Image” Metaphor
	Complexity Evaluation Using Compression
	Experimental Results
	Related Work
	Future Work
	Conclusions
	References

	Learning Similarity Functions from Qualitative Feedback
	Introduction
	Problem Setting
	Linear Combination of Local Measures
	Learning Distance Measures and Learning to Rank

	The Learning Algorithm
	Distance Learning as a Classification Problem
	Ensemble Learning
	Monotonicity
	Active Learning

	Experimental Results
	Quality Measures
	Data
	Experiments

	Extensions
	Kernel-Based Learning
	Nonlinear Classification and Sorting

	Related Work
	Summary and Conclusions
	References

	Conservative Adaptation in Metric Spaces
	Introduction
	Adaptation in Case-Based Reasoning
	Principles of CBR and of Adaptation in CBR
	An Adaptation Example

	Metric Space Formalism for Case and Domain Knowledge Representation
	Background
	Case Representation
	Domain Knowledge Representation
	Attribute-Value Representation
	Propositional Logic as a Kind of Attribute-Value Representation
	Formalisation of the Cooking Example Adaptation Problem

	Conservative Adaptation in Metric Space Formalisms
	Belief Revision
	Conservative Adaptation
	Conservative Adaptation in the Cooking Example

	α-Conservative Adaptation: A Less ConservativeAdaptation
	α-Revision
	α--Conservative Adaptation
	α-Conservative Adaptation in the Cooking Example

	Conclusion
	References

	Opportunistic Acquisition of Adaptation Knowledge and Cases — The IakA Approach
	Introduction
	Knowledge Acquisition in CBR
	IakA: InterActive Knowledge Acquisition
	Definitions and Hypotheses
	Mechanisms of the IakA Approach

	IakA-NF: A Prototype Implementing the IakA Approach
	The IakA-NF System
	Experiments

	Discussion
	Conclusion
	References

	Noticeably New: Case Reuse in Originality-Driven Tasks
	Introduction
	Search, Reuse and Plagiarism
	Reuse Techniques
	Tale Generation
	Experiments
	State of the Art
	Conclusions and Future Work
	References

	Experience-Based Design of Behaviors in Videogames
	Introduction
	Modeling Reusable Behaviors
	SoccerBots Example
	CBR for Experience Based Behaviour Design
	Functionality Based Retrieval
	Structure Based Retrieval

	Related Work
	Conclusions and Future Work
	References

	Considerations for Real-Time Spatially-Aware Case-Based Reasoning: A Case Study in Robotic Soccer Imitation
	Introduction
	Case Study: RoboCup Simulation League
	Metrics

	Case Representation and Comparison
	Raw Data Representation
	Histogram Representation
	Fuzzy Histograms
	Empirical Comparison

	Feature Selection
	Experimental Results

	Case Selection through Case-Base Clustering and Prototyping
	Using a Cluster Member
	Creating an Average Case
	Experimental Results

	Related Work
	Conclusions
	References1. Smyth, B.: Case-
	References

	Retrieval Based on Self-explicative Memories
	Introduction
	The Self-explicative Memory of SOMCBR
	Introducing Explanations in the Retrieval Process
	Experiments, Results and Discussion
	Discussion

	Related Work
	Conclusions and Future Work
	References

	Increasing Precision of Credible Case-Based Inference
	Introduction
	Credible Case-Based Inference
	Notation and Outline of CCBI
	Weaknesses of CCBI

	Imprecision in CCBI
	Formalization
	Similarity Measures for High-Precision CCBI
	Modifying Problem Similarity

	Precision-Oriented Tuning of Similarity Measures
	A Framework for Learning Similarity Measures
	Precision-Oriented Error Measures

	Empirical Evaluation
	Proof of Concept
	Benchmark Results

	Conclusion
	References

	Supporting Case-Based Retrieval by Similarity Skylines: Basic Concepts and Extensions�
	Introduction
	Motivation and Background
	Similarity Search and the Similarity Skyline
	The Similarity Skyline
	Skyline Computation

	Refining Similarity Skylines
	Similarity Skyline for Uncertain Data
	Uncertainty Modeling
	Transformation for Fuzzy Attribute Values
	The Dominance Relation for Fuzzy Attribute Values

	Experiments
	Conclusions
	References

	Using Case Provenance to Propagate Feedback to Cases and Adaptations�
	Introduction
	Bidirectional Feedback Propagation
	Estimating Confidence in Adaptation Rules
	Experimental Evaluation of Bidirectional Repair
	Experimental Design
	Comparing Bidirectional Feedback to Prior Methods
	How Case Base Quality Affects Benefits of Provenance-BasedPropagation

	Experimental Evaluation of Adaptation RuleMaintenance
	Experimental Design
	Identifying Problematic Rules
	Using Rule Confidence to Predict Case Confidence

	Related Work
	Conclusion
	References

	Towards Case-Based Support for e-Science Workflow Generation by Mining Provenance
	Introduction
	e-Science and Provenance
	Mining Provenance for Cases
	The User Interface

	Case-Based Support for e-Science Workflow Generation
	Evaluation
	Ability to Produce Relevant Suggestions and Match User Choices
	A Hybrid Method
	Authorship Effects
	Scalability

	Related Work
	Conclusion and Future Work
	References

	Knowledge Planning and Learned Personalization for Web-Based Case Adaptation
	Introduction
	WebAdapt’s Approach
	WebAdapt’s Knowledge
	Knowledge Planning Process
	Knowledge Planning Operators
	Applying Knowledge Planning for Adaptation
	An Example of the Knowledge Planning Process, Suggestionand Explanation Processes
	An Example of the Knowledge Planning Process, Suggestionand Explanation Processes

	Evaluation
	Related Work
	Conclusion
	References

	Cases, Predictions, and Accuracy Learning and Its Application to Effort Estimation
	Introduction
	AQUA
	Terminology and Basics
	AQUA Predictions
	Evaluation Data

	Learning
	The First Learning Process
	The Second Learning Process

	Summary and Outlook
	References

	Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications
	Introduction
	Case-Based Classifiers
	Classification Rule
	Prototype Selection by Chang’s Algorithm
	Feature-Subset Selection and Feature Weighting

	Classifier Construction and Evaluation
	Datasets and Methods for Comparison
	Results
	Discussion
	Future Work and Conclusions
	References

	Case-Based Decision Support for Patients with Type 1 Diabetes on Insulin Pump Therapy
	Introduction
	System Prototype Construction
	Knowledge Acquisition and Representation
	Example Case: Problem of Nocturnal Hypoglycemia
	Reasoning with Cases

	Evaluation and Feedback
	Future Work
	Related Research
	Summary and Conclusion
	References

	Conversational Case-Based Reasoning in Self-healing and Recovery
	Introduction
	Conversational CBR in SHRIEK
	Question Selection and Explanation
	Dialogue Termination and Incomplete Information
	Case Structure and Query Representation
	Autonomous Information Gathering
	Open, Viable, and Competitive Cases

	Knowing When to Stop Asking Questions
	Recognizing When a Problem Has Been Solved
	Recognizing When No Solution Is Possible

	Asking the Right Questions
	Selecting a Target Case
	Selecting the Most Useful Question
	Example Dialogue in Shriek-CBR

	Empirical Study
	Conclusions
	References

	Situation Assessment for Plan Retrieval in Real-Time Strategy Games
	Introduction
	Related Work
	Case-Based Planning and Execution in Wargus
	Situation Assessment for Case Retrieval
	Situation Assessment Applied to Darmok
	Offline Stage
	Online Stage

	Example
	Experimental Evaluation
	Conclusions
	References

	Optimization Algorithms to Find Most Similar Deductive Consequences (MSDC)
	Introduction
	Finding Similar Deductive Consequences
	State-Space Search and dfs MAS

	Alternating Tree of Σ
	Subtrees of Gq∗(Σ)

	Optimization Problems
	${\mathcal OP}$-MSDC(q)
	Tj Constraints
	${\mathcalOP}$-MSDC(q) for Symbolic Domain Theories

	Optimization Algorithms
	Experimental Results
	References

	Understanding Dubious Future Problems
	Introduction
	Exploring Dubious Future Problems
	Exploration
	Exploitation

	Regions of Dubiosity
	Dubiosity Patterns
	Grouping Dubious Future Problems

	Experimentation
	Conclusions and Future Work
	References

	Conversational Case-Based Recommendations Exploiting a Structured Case Model
	Introduction
	The Recommendation Approach
	Case-Based Construction of the User Query Representation
	The Case Model
	Exploiting Past Cases in Building the User Query Representation
	Adaptation of the User Query Representation through the User Critiquing

	Experimental Evaluation
	Quality of the First Recommendation List
	Quality of the Full Recommendation Session

	Conclusions and Future Work
	References

	κ-NN Aggregation with a Stacked Email Representation
	Introduction
	Related Work
	Case Representation for Emails
	Retrieval with Multiple Casebases
	Creating Random Chronological Stratified Trials
	Evaluation and Results
	Email Dataset
	Experimental Design
	Is Using All Attributes Best?
	What Is the Best Way to Combine $Base-Learners$?
	Is a $Meta-Learner$ More Consistent Across Users Than a $Base-Learners$?

	Conclusions and Future Work
	References

	Case-Based Reasoning and the Statistical Challenges
	Introduction
	Case-Based Reasoning
	Similarity
	Organization of Case Base
	Applications
	Meta-learning for Parameter Selection of Data/Signal Processing Algorithms
	Case-Based Image Interpretation
	Incremental Prototype-Based Classification
	Novelty Detection by Case-Based Reasoning

	Conclusion
	References

	Evaluation Measures for TCBR Systems
	Introduction
	Related Work
	Problem and Solution Alignment
	Local Alignment Measures for TCBR
	Case Alignment
	Case Cohesion

	Global Alignment Measure
	Image Metaphor
	Case-Feature Stacking Algorithm
	Stacked Global Alignment Measure

	Evaluation and Experimental Results
	Dataset Preparation
	Evaluation Methodology
	Results with Local and Global Alignment
	Discussion on Evaluation Results

	Conclusions
	References

	CBR for CBR: A Case-Based Template Recommender System for Building Case-Based Systems
	Introduction
	Template-Based Design
	Templates
	Templates for Case-Based Recommender Systems
	Template Recommendation

	Case-Based Template Recommendation
	Cases
	Retrieval-by-Trying
	Entry Points
	Diversity-Enhanced Retrieval for Comparison-Based Recommendation
	Preference-Based Feedback

	Similarity in Case-Based Template Recommendation
	Task Structure Similarity
	Methods Similarity
	Semantic Feature Similarity

	Example
	Evaluation
	Conclusions
	References

	Forgetting Reinforced Cases
	Introduction
	Related Work
	Motivations
	Evaluation of Cases through Reinforcement Learning
	Forgetting Cases Using Reinforcement Values
	Combining Multiple Criteria
	Compacting the Case Base
	Discussion
	References

	$iReMedI$ - Intelligent Retrieval from MedicalInformation
	Introduction
	Related Work
	SystemOverview
	TCBR System Description
	Situation Assessment
	Knowledge Representation
	Retrieval Techniques
	Adaptation

	Experiments and Results
	Gold Standard
	Baseline
	Evaluation Metrics
	Results

	Conclusion
	References

	Adaptation through Planning in Knowledge Intensive CBR
	Introduction
	Using Planning to Adapt Cases
	Planning with Description Logics

	A Domain Example: Case-Based Training
	Case Representation in Description Logics
	APracticalExample
	Related Work
	Conclusions
	References

	Folk Arguments, Numerical Taxonomy and Case-Based Reasoning
	Introduction
	Background to the Work
	Numerical Taxonomy and Its Role

	Frequency Allocation for Shortwave Broadcasting
	Folk Arguments Revisited
	Numerical Taxonomy Revisited
	The Observation and Coding of Argumentation Features
	The Estimation of Similarity of Argumentation Features
	Clustering and Determination of Taxonomies for Argumentation Features

	Evaluation: How the Actual CBR Application Works
	Concluding Remarks
	References

	Real-Time Plan Adaptation for Case-Based Planning in Real-Time Strategy Games
	Introduction
	Case-Based Planning in WARGUS
	Run-Time Plan Expansion and Execution

	Real-Time Case-Based Plan Adaptation
	Plan Dependency Graph Generation
	Removal of Unnecessary Actions
	Adaptation for Unsatisfied Preconditions

	Complexity Analysis
	Complexity of Removal of Unnecessary Actions through Plan Dependency Graph Generation
	Analysis of Adaptation for Unsatisfied Preconditions
	Single Cycle Complexity

	Experimental Results
	Related Work
	Conclusions
	References

	Horizontal Case Representation
	Predicting the Presence of Oil Slicks After an Oil Spill
	Introduction
	Oil Spill Problem
	Previous Solutions Given to the Oil Spill Problem
	Models

	Oil Spill CBR System – OSCBR
	Pre-processing
	Retrieve
	Reuse
	Revise
	Retain

	Results
	Conclusions and Future Work
	References

	Introduction
	Background and Related Work
	Retrieving Horizontal Cases: The RCF
	Computing the RCF

	terms per case increases.4 Horizontal Versus Vertical Representation
	Methodology and Datasets
	Results

	Horizontal Representation in the Real World
	Problem Only vs. Problem Plus Solution

	Concluding Remarks and Future Work
	References

	Supporting Fraud Analysis in Mobile* Telecommunications Using Case-Based Reasoning
	Introduction
	Fraud in Mobile Telecommunications
	The ECA3RL System
	Case Representation
	Case Indexing
	Case Retrieval
	Case Ranking
	Null Attribute Values
	Case Presentation

	Weights Readjustment Mechanism
	Case Base Maintenance
	Context Graph Navigation

	Example of Use
	Conclusions
	References

	Case Based Interpretation of Soil Chromatograms
	Introduction
	Architecture of the System
	Chromatogram Features Extraction
	Case Structure and Similarity
	Similarity Measures
	Simple Attributes
	Compound Attributes

	Global Similarity Measure
	Feature Weighting
	Retrieval

	Experimental Results
	Analysis of Results
	The User Interface

	Concluding Remarks
	References

	Case-Based Troubleshooting in the Automotive Context: The SMMART Project
	Introduction
	The SMMART TTool Domain
	SMMART TTool and CBR
	The Troubleshooting Tool Case Structure
	The Troubleshooting Tool Similarity Function

	The Troubleshooting Tool
	Conclusions
	References

	Rapid Prototyping of CBR Applications with the Open Source Tool myCBR
	Introduction
	The myCBR Architecture
	Developing CBR Applications with myCBR
	CSV Data Import and Automatic Model Generation
	Modeling Similarity Measures
	Testing of Retrieval Functionality
	Building a Stand-Alone Application

	Explanation Functionality
	Conclusion and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

