
Rational Bidding Using Reinforcement Learning
An Application in Automated Resource Allocation

Nikolay Borissov1, Arun Anandasivam1,
Niklas Wirström2, and Dirk Neumann3

1 University of Karlsruhe, Information Management and Systems,
Englerstr. 14, 76131 Karlsruhe

{borissov,anandasivam}@iism.uni-karlsruhe.de
2 Swedish Institute of Computer Science, Box 1263, SE-164 29 Kista, Sweden

niwi@sics.se
3 University of Freiburg, Platz der Alten Synagoge, 79085 Freiburg, Germany

dirk.neumann@vwl.uni-freiburg.de

Abstract. The application of autonomous agents by the provisioning
and usage of computational resources is an attractive research field. Var-
ious methods and technologies in the area of artificial intelligence, statis-
tics and economics are playing together to achieve i) autonomic resource
provisioning and usage of computational resources, to invent ii) compet-
itive bidding strategies for widely used market mechanisms and to iii)
incentivize consumers and providers to use such market-based systems.

The contributions of the paper are threefold. First, we present a frame-
work for supporting consumers and providers in technical and economic
preference elicitation and the generation of bids. Secondly, we introduce
a consumer-side reinforcement learning bidding strategy which enables
rational behavior by the generation and selection of bids. Thirdly, we
evaluate and compare this bidding strategy against a truth-telling bid-
ding strategy for two kinds of market mechanisms – one centralized and
one decentralized.

Keywords: Bid Generation, Reinforcement learning, Service Provision-
ing and Usage, Grid Computing.

1 Self-organized Resource Provisioning and Usage

Grid Computing is becoming more and more popular both as a research field,
and in the industry. Prominent examples are Sun Microsystems’ Network.com,
Salesforce’s force.com, Amazon’s Elastic Compute Cloud (EC2) and its Simple
Storage Service (S3) as well as SimpleDB Service. The companies often offer a
fixed pay-per-use price for static resource configurations, which can lead to inef-
ficient utilization, profit and usability, as it does not reflect the dynamics of the
market supply and demand. Efficient provisioning and usage of computational
resources as well as pricing in a thriving environment like Grid Computing is not
manually manageable. Such processes should be automated with no or minimal

J. Altmann, D. Neumann, and T. Fahringer (Eds.): GECON 2008, LNCS 5206, pp. 73–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 N. Borissov et al.

human interaction. Hence, market mechanism and strategic behavior play an im-
portant role for the design of the environment. Self-organization and automatic
adaptation to the changing market conditions are key prerequisites for efficient
allocation of computational resources [1].

To efficiently allocate consumers’ jobs to providers’ resources is a complex task
where participants’ decisions on resource provisioning and usage are executed on-
line. Moreover, the wide heterogeneity of computational resources, complicates
the process of finding an appropriate set of resources for given consumer’s pref-
erences. Since demand and supply of computational resources fluctuates in the
course of time, information about current and future resource utilization and
prices are often not known a-priori to the participants. In this case consumer
and provider agents try to maximize their utilities by generating bids based on
their valuations and historic experiences [2]. This enables strategic behavior both
on provider and consumer side.

Fig. 1. Self-organized service offering and requesting

This paper is written in the context of the SORMA1 project, with the focus on
components and methodologies that constitutes the SORMA Intelligent Tools.
Figure 1 depicts the approach taken by SORMA for automated provisioning and
usage of computational resources. As illustrated, consumers and providers use
the intelligent tools to generate and submit bids to the Trading Management
component which executes a collection of different market mechanism. When
an agreement has been made, the two parties are informed of this. The process
of submitting and executing the job is exercised by the intelligent tools on the
consumer side and the Economically Enhanced Resource Management (EERM)
on the provider side.

This paper is structured as follows: Section 2 describes components and
methodologies of the Intelligent Tools supporting the automated bidding process.
Section 3 introduces the Truth-Telling strategy, and proposes a novel consumer-
side reinforcement learning bidding strategy – the Q-Strategy. In Section 4 we
evaluate this strategy against the Truth-Telling strategy using two different mar-
ket mechanisms and show the convergence of the proposed Q-Strategy. Section
5 discusses related work and Section 6 concludes this paper.

1 SORMA: Self-Organizing ICT Resource Management, www.sorma-project.org

www.sorma-project.org

Rational Bidding Using Reinforcement Learning 75

2 Automated Bidding

Within this section we investigate the processes of automated bidding
on provider and consumer sides and describe the tools supporting these. In
SORMA, a set of Intelligent Tools are provided, which purpose is to assist con-
sumers and providers by the description of their technical and economic prefer-
ences as well as by the automated generation of bids and offers.

Fig. 2. Intelligent Tools for provider and consumer

Figure 2 shows the intelligent tools for the provider and consumer. In order
to derive and describe their preferences, a consumer uses the Demand Model-
ing and Economic Modeling tools. The Demand Modeling component supports
the consumer by the specification of the technical requirements on resources,
such as CPU, Memory and Storage of her application. For this it offers a GUI
for entering the technical requirements which are formatted in a predefined re-
source description language such as the Job Submission and Description Lan-
guage [3]. Economic modeling allows consumers to describe their economic pref-
erences that will determine their bidding strategies e.g. specifying the valuation
of the required resources, validity of a bid and the preferred bidding strategy.
The Bid Generator is the “intelligent” component that autonomously generates
and places the consumer’s bids on the market. For this purpose it considers the
afore specified consumer preferences and the current state of the market, such as
actual prices. The bid generator is implemented through agents using common
and novel bidding strategies and learning algorithms. The bids are submitted to
the Trading Management component, which implements mechanisms for tech-
nical and economic matching. Similar to demand modeling, Supply Modeling
aids the provider to describe the technical specification of the offered resources.
Within the Business Modeling component, providers have to describe the de-
sired business models, which determine what bidding strategy to be used for
the generation of their offers. For example one part of such a description is

76 N. Borissov et al.

the pricing policy that specifies if the consumer has to pay for booked time-
slots or for the actual usage. As the example indicates, the models specified
by means of this component depend on the implemented market mechanism.
Analogously to the bid generator, the Offer Generator is the component im-
plementing the bidding strategies for the generation of the offers. The offers
are assembled from the technical resource descriptions and the business model
of the respective provider. The offer generation component also submits offers
to the Trading Management. The market mechanisms are implemented within
the Trading Management component, which is a part of the SORMA Economic
Grid Middleware. In the following sections we will focus on the components of
the Intelligent Tools and present them in more detail.

2.1 Preference Elicitation

In order to request computational resources for its application or job, a consumer
has to make some estimations regarding preferred technical resource description,
QoS and a price. On the other side, a provider has to make a price estimation
for its offered resources. These consumer and provider preferences for a spe-
cific application can be either static or dynamic. Static information is collected
once, and can be manually provided by the consumer or provider each time a
resource has to be acquired or offered. These static information may also be
stored in databases enabling intelligent tools to use this information for predict-
ing requirements of applications and services with similar properties. However,
the requirements of a given application are often subject to change as technol-
ogy evolves e.g. consumers’ desired quality of streamed video might increase as
their Internet bandwidth increases. It is thus desirable to dynamically adapt
the resource requirements. In [4] the authors specify a model for Job Valuation
Estimation using evolutionary techniques. The presented approach is based on
the assumption that a consumer who wants to buy a set of resources does not
generally know her exact valuation for them, but has only a rough estimate of
her true valuation. Thus, she decides whether to accept the offer, or to continue
her search and look for alternative offers.

Going through following iterative process steps, the bidding agent can ap-
proximate the results and successively refine its estimate:

1. Initialization: The market participant (consumer, provider) or bidding agent
initially assumes a valuation of vA

0 for an application A based on its resource
specification xA. It is assumed that the current price for each resource is
published by the market mechanism in a price vector p0 ∈ �n

+, and an initial
weight ΘA

0 ∈ N set by the user: vA
0 (ΘA

0 , p0, x
A) = ΘA

0 pT
o xA For each run of

the application j:
2. Bidding: the bidding agent bids on the market according to its estimate

vA
j (ΘA

j , pj , x
A) and selected bidding strategy.

3. Refinement: There are two possible outcomes of the bidding process:
– Successful: The bidding agent obtains the necessary resources and re-

ports this information to the participant. The participant then indicates

Rational Bidding Using Reinforcement Learning 77

whether he is satisfied with the outcome or not, and the bidding agent
refines its estimate.

– Unsuccessful: The bidding agent was not able to obtain the necessary
resources. If the participant indicates that the price was indeed too high,
the bidding agent does not update its estimate. If the user indicates that
he would have preferred to pay that price rather than not getting the
resources (ΘA

j+1 = 0), the bidding agent updates its estimate of vA with
the current price.

The bidding agent will iteratively try to converge its estimate to the participant’s
true valuation and at the same time to assists her in identifying a bid rather than
forcing the participant to directly reveal its valuation.

2.2 Demand Modeling

The Demand Modeling component supports consumers and providers on editing
their estimated preferences – technical requirements on resources, such as CPU,
Memory and Storage, QoS and price. The component implements a GUI for
entering the consumer or provider preferences and generates a XML output in
form of predefined resource description language such as Job Submission and
Description Language [3].

The main parts of this component are:

– User Interface to allow the input of technical resource specifications on con-
sumer and supplier side

– Matchmaking library implementing methods and algorithms for technical
matching of resource requests to offers and

– Service Description Language that is able to express service specifications
traded on the SORMA marketplace

The service description language contains a high-level specification of the service
to be run on the requested resource. To allow different levels of abstraction
and granularity, the resource needs to be technically specified in terms of its
grounding hardware and the required software environment. Together with the
technical specification comes the specification of several non-functional technical
resource properties as for example the quality of service. Beyond that, further
sections like economic parameters, job-specific parameters or possible inter-job
dependencies complete the resource specification.

2.3 Bid and Offer Generator

In the SORMA Grid Market scenario each consumer and provider is configuring
and using the intelligent tools i.e bidding agents in order to use or provide re-
sources with the objective to maximize its own utility, and thus it acts rationally.

The bid and offer generator component is implemented within SORMA’s
Bidding Agent Framework, which core classes and relations are illustrated
in Figure 3. The framework is defined and discussed in more detail in [5].

78 N. Borissov et al.

Fig. 3. Framework for Automated Bidding

According to the framework, a bidding strategy implements the bidding behavior
of the bidding agent, e.g. how, when and what to bid. For this purpose it adopts
learning algorithms to learn from earlier actions and predict future rewards by
selecting a particular price for a given resource description.

Furthermore a strategy profile can be configured with policies, which are de-
fined in a rule description language and executed within a rule engine. Policies
in our case are utility and pricing functions, which are defined externally to
the implementation and thus enable a flexible modification. Through the util-
ity function, the participant specifies the overall objectives as a mathematical
function that is to be maximized by its bidding agent. For a job j, the pricing
policy enables a static specification of a valuation vj or price calculation func-
tion, which is used by the bidding strategy to calculate the bid ṽj ≤ vj , which
is reported to the SORMA Grid Market.

For example, in the case of allocating computational resources for a job ex-
ecution, a common utility function in the scheduling literature minimizes the
weighted completion time w ∗ C of a job, where the weight w represents the im-
portance of a job expressed in some unit. In the economic literature the unit is
often a price or so called valuation. The authors of [6] propose a utility function
ui,j = −wj ∗Ci,j −πi,j , which forces the minimization of the weighted completion
time and payments in their particular machine scheduling mechanism, where the
weight wj is the waiting costs of the job j, Ci,j the reported completion time of
machine i and πi,j the amount to be paid to be scheduled on that machine.

The core classes Bid and Configuration define together the format of
the overall bid message [5]. The bid message contains in the consumer case,
the consumer’s technical and economic preferences and in the provider case, the
provider’s technical and economic description.

3 Bidding Strategy

To implement a strategic behavior on the consumer side, we implemented con-
sumer agents using two rational bidding strategies, a Truth-Telling and a Rein-
forcement Learning bidding strategy. The reinforcement learning bidding

Rational Bidding Using Reinforcement Learning 79

strategy is implemented through the Q-Learning algorithm with epsilon-greedy
selection strategy (see Section 3.2).

3.1 Truth-Telling

In the model of [6], agents do not remember the outcomes of earlier market
interactions but are somewhat “myopic” in the sense that they only consider the
current situation. As shown for the model in [6], without knowledge about the
future, at time r̃j it is a utility maximizing strategy sj for agent j ∈ J to report
its true type tj to the system and to choose the machine i which maximizes
ûj(i|s−j , t̃j , tj).

The Truth-Telling bidding strategy places a bid price, which equal to the
provider’s or consumer’s valuation for a certain resource. Although it is a simple
strategy, truth-telling is essential in case of incentive-compatible mechanisms,
where this strategy guarantees to obtain the optimal pay-offs for consumers no
matter what strategies are adopted by the others. In budget-balanced double-
auction mechanisms, this strategy is not dominant [7].

3.2 Q-Strategy

Our aim is to develop rational agents with learning capabilities which may strate-
gically misreport about their true valuation based on previous experiences. We
refer to these strategies as “rational response strategies”.

Algorithm 1. Q-Strategy: Bid Generation Rule
Require: economicpreferencesofthejob
1: if ε < Stochastic.random(0, 1) then
2: //Explore :
3: scale ∈ (0, 1)
4: price = Stochastic.random(scale ∗ job.getV aluation(), job.getV aluation())
5: else
6: //Exploit :
7: state = State.getState(job)
8: action = qLearner.bestAction(state)
9: if action! = nil then

10: price = action.getBidPrice()
11: else
12: price = job.getV aluation()
13: end if
14: end if

The Q-Strategy consists of two algorithms (see Algorithm 1 and 2). The first
algorithm describes the case where an agent generates a bid (or offer) for a given
configuration of resources it wants to buy (or sell). The second algorithm applies
to the case where an agent receives a number of offers for a given configuration
of resources, and has to select one of them to buy.

80 N. Borissov et al.

Both algorithms are based on a reinforcement learning approach – Q-Learning
[8] with a ε-greedy selection policy [9, 10]. Using this policy, the agent explores
the environment with a probability of ε, by selecting an action randomly, and
exploits its obtained knowledge with probability of 1 − ε, by selecting an action
that has been beneficial in the past. We use the following notation:

– Each job j has a type tj = {rj , dj , vj}, where rj represents the instance
of time when the job was “created”, dj the requested duration and vj its
valuation.

– S is a finite discrete set of states, where each state s is defined by a tuple
{d, v}, such that an agent is in state s = {dj, vj} if it is to bid for a job with
duration dj and valuation vj .

– A is a repertoire of possible actions, where, in the context of this paper each
action a represents the assignment of a specific price to a bid.

– Q(s, a) denotes the expected value of being in state s and taking action a.
– ρ is a mapping from stimuli observed, caused by an action, to the set of real

numbers. Here, we use ρ = −vjCj − πj , where Cj is the time-span between
creation and completion of job j, and πj is the price paid for it.

In other words, the objective is to learn the function Q(s, a), so that, given any
job with a specific duration and valuation, a price ṽ ≤ v can be selected so that
the utility is maximized. However, due to the sizes of the state and action spaces,
and the fact that the environment in which the agent operates is continuously
changing, only a rough estimate of the Q-function is feasible.

As stated earlier, learning is made through exploration of the environment.
After finishing a job, the Q-function, is updated with the new information ac-
cording to the Q-Learning update rule:

Q(st, at) := Q(st, at) + αt(st, at)[ρt + γ max
a

Q(st+1, a) − Q(st, at)] (1)

Here, st is the state defined by the duration and valuation of the job that the
agent bids for at time t, at is the action selected at time t, ρt is the received utility
of the job. The learning rate αt ∈ [0, 1] determines how much weight we give
to newly observed rewards. A high value of αt results in that high importance
is given to new information, while a low value leads to that the Q-function is
updated using small steps. αt = 0 means no learning at all. The discounting
factor γ defines how much expected future rewards affect current decisions. Low
γ → 0 imply higher attention to immediate rewards. With higher (γ → 1) implies
orientation on future rewards, where agents may be willing to trade short-term
loss for long-term gain.

In Algorithm 1, during exploration, the bid is randomly generated within the
interval ps ∈ [s ∗ vj , vj] with s ∈ (0, 1). During exploitation, the bid is retrieved
from the Q-Table, the “best” bid that in the history achieved the highest average
payoff.

In Algorithm 2, during exploration, the strategy selects the “best offer” (max-
imizing its utility) of a resource provider, for which there is no stored information
in the Q-Table. During exploitation it selects the best offer, which maximizes its
utility.

Rational Bidding Using Reinforcement Learning 81

Algorithm 2. Q-Strategy: Offer Selection Rule
Require: economicpreferencesofthejob; provideroffers
1: if ε < Stochastic.random(0, 1) then
2: //Explore :
3: offer = bestOfferForProviderNotStoredInQTable(job, offers);
4: else
5: //Exploit :
6: offer = myopicBestResponse(state,offers);
7: end if

4 Evaluation

Auction and strategy selection are closely connected in the sense that a given
choice of strategy should affect the choice of auction, and vice versa. For example
some bidding strategies perform well in a Continuous Double Auction (CDA),
but not in a Dutch auction. This also implies that the choice of auction to
participate in depends on the available strategies. Other factors to take into
account in auction selection are the market rules, transaction costs, and the
current and average prices in the different auctions.

In this section, we evaluate the Truth-Telling and Q-Learning strategies for
two different types of market mechanisms for allocation of computational re-
sources. The first market mechanism is a decentralized on-line machine schedul-
ing mechanism, called Decentralized Local Greedy Mechanism (DLGM) [6]. The
second one is a centralized continuous double auction (CDA) [11]. The market
mechanisms are implemented within the SORMA Trading Management compo-
nent. The simulation is run on a light version of this component.

As a measure we use the average utility per job received by the consumers.
In the Truth-Telling scenario, this is the same as measuring the common wealth
for this particular strategy, since all players have the same strategy. In the case
of the Q-Learning strategy, however, this is not equivalent, since the behavior of
the players diverge as the players observe different information.

In the case of the decentralized DLGM mechanism,, each time a job arrives
on the consumer side, her bidding agent generates a bid in form of a job type
tj = {rj, dj , vj} (see Section 3) and report this to all providers. Based on this bid,
each provider reports back a tentative completion time and tentative price for
each of its machines. When sufficiently many provider offers have been collected,
the consumer can decide, typically simplistically, which offer to choose. The
providers in the DLGM market do not behave strategically and do not request
compensation for the use of their resources. The payments are divided only
among the consumer agents for compensating the displaced jobs.

In the centralized CDA, consumers and providers submit bids and offers con-
sisting of only a price per time unit, and are matched based on this information.
Providers act strategically, trying to achieve as much money as possible for their
resources. To calculate the price of their bids, they use a ZIP (Zero Intelligence
Plus) agent [12].

82 N. Borissov et al.

In the following section we describe the evaluation settings and simulation
results.

4.1 Evaluation Setting

For each market – CDA and DLGM, and each strategy – Q-Learning and Truth-
Telling, we simulated four different scenarios described by settings 1 through 4
in Table 1. In each scenario there are 50 consumers and 50 providers (each
controlling a single machine). In each of the first three settings, the rate of
which jobs comes in on the consumer side is determined by a Poisson process.
To increase the competition in the market, we successively increased the mean λ
of the Poisson process from λ=.1 (setting 1) to λ=.5 (setting 3). The amount of
jobs for these settings is a direct consequence of these values. For these settings,
the duration of each job is drawn from the normal distribution with a mean
value of 5 hours and a variance s2 of 3.

The fourth setting is based on the logs of a real workload at the LPC (Lab-
oratoire de Physique Corpusculaire) cluster which is a part of the EGEE Grid
environment, and located in Clermont-Ferrand, France [13]. The log contains
244,821 jobs that was sent to the nodes during a period of 10 months starting
from August 2004 through May 2005. We have, however, only extracted jobs
with a duration between one and 24 hours. The LPC log was chosen because it
contains a large variety of jobs with different run-times, numbers of used CPUs,
and varying submit and start times.

Table 1. Simulation settings

Setting Arrival Rate Duration # Jobs # Consumers # Providers

1 Poisson(0.1) max(1, N(5, 3)) 751 50 50
2 Poisson(0.3) max(1, N(5, 3)) 1502 50 50
3 Poisson(0.5) max(1, N(5, 3)) 3004 50 50
4 As in LPC-Log As in LPC-Log 105,578 50 50

4.2 Simulation Results

The results of the simulations are summarized in Table 2. Each line in the table
represents the evaluation of one strategy for one setting. The first two columns
represent the setting used (corresponding to those of Table 1) and the strategy
evaluated. The next two columns represent the average utility μ per job achieved
as well as the standard deviation σ of job budget and actual payment in the
DLGM market, and the last two columns represent the results for the CDA in
the same way.

The results show that the Truth-Telling strategy achieves the highest utility
for all four settings.

The Q-Strategy reproduces a “rational behavior” by the generation of the
bids. More specifically, we assume that rational agents have an incentive to

Rational Bidding Using Reinforcement Learning 83

Table 2. Simulation results

Setting Strategy DLGMμ DLGMσ CDAμ CDAσ

1 Truth-Telling −110, 48 272, 37 −7, 92 ∗ 104 95,33
1 Q-Strategy −174, 74 257, 54 −10, 33 ∗ 104 93, 56
2 Truth-Telling −212, 66 285, 16 −11, 95 ∗ 104 94,13
2 Q-Strategy −392, 42 265, 96 −14, 63 ∗ 104 93, 30
3 Truth-Telling −403, 58 286, 43 −7, 89 ∗ 104 86,74
3 Q-Strategy −901, 18 265, 24 −23, 22 ∗ 104 90, 77
4 Truth-Telling −1104 647, 27 −9, 91 ∗ 104 391,97
4 Q-Strategy −1172 580, 68 −11, 04 ∗ 104 313, 69

understate their true price in relation to their valuation. Due to the fact that
they understate their true price the achieved utility is lower than by the Truth-
Telling strategy. The simulation results showed that bidding truthfully in both
mechanisms can only increase your utility. Understating the truthful valuation in
lower bid results in a poorer “job priority” pj/dj by DLGM and this job can be
displaced by other jobs which have higher priority. By the CDA mechanism, the
price depends on the current demand and supply, bidding a lower price instead
of the truth valuation increases the risk of no allocation by the mechanism.

Like in the DLGM market mechanism, the Truth-Telling strategy in the CDA
market mechanism achieves higher average utility than the Q-Strategy. However,
by the specified CDA market mechanism, the matching is based only on the price
without considering the “priority” of a job as with DLGM, and thus achieves
very low utility compared to DLGM. The origin of this can be searched in the
CDA mechanism itself. First, each agent - provider and consumer - receives all
the bids of the other agents as public information and based on this they adapt
their bid/offer through the implemented bidding strategy. The CDA-provider
agents are also acting strategically and adapting their offered price based on the
received public information. Thus, the matching is based on the price resulting
from the demand and supply and not on the “job priority” as with DLGM.
Secondly, the CDA-provider machine agents do not maintain a priority queue of
the submitted job bids and by an allocation the job is immediately submitted
and executed on the provider machine. A provider submits an offer as soon as
he becomes idle. Thus each time the agents are competing by adapting their job
bids based on the used strategy.

Furthermore we investigated the price convergence of the Q-Strategy itself
using the real workload data of setting 4 (105.578 jobs). Figure 4 shows six
graphs, which represent the time development of the bid for particular classes
of jobs, for six selected consumers and six selected jobs. The selection of the
consumers and their jobs is based on statistical analysis of the output data,
where we selected classes of jobs of different consumers, that have a statistically
high number of generated bids. The minimum number of generated bids per
job-class is 1, the maximal 49 and the average 12.

84 N. Borissov et al.

Fig. 4. Convergence of the bids using Q-Strategy

Each graph shows a valuation of a particular job class, the development of
the bid over the time and the convergence trend of the bid. An interesting result
is that for some cases of jobs with lower “job priority” – pj/dj, the bid does
not converge to the truth-valuation and for jobs with higher priority, bids of the
Q-Strategy converge to the truth-valuation of the specific job type.

5 Related Work

Preference elicitation deals with extraction of user’s preferences for different
combinations of resource configurations and prices. The aim of this methodol-
ogy is to find the best choice of configuration, without explicitly presenting all
possible choices. Two important approaches for job preference estimation are
discussed in the literature – Conjoint Analysis and Analytical Hierarchy Process
[4, 14, 15]. Conjoint analysis estimates the user’s value for a certain attribute
level by performing regression analysis on the user’s feedback to the presented
attribute profiles. In contrast to the conjoint analysis method which aims at de-
termining the value of a certain attribute, the analytical hierarchy process tries
to determine the relative importance of a certain attribute among a set of at-
tributes [16]. The analytical hierarchy process suffers from the large number of
pair-wise comparisons which the user has to perform to generate the matrix from

Rational Bidding Using Reinforcement Learning 85

which the relative weights are computed. With n attributes, the user essentially
has to do n-1 comparisons.

The field of autonomous bidding is explored by many researchers. [17] gives
an overview of the various agents and their strategies used in the trading agent
competition (TAC). The literature described trading agents in stock markets
[18], supply chain management [19] and in various market mechanisms [20, 21].
Since agents are self-interested, they aim to implement a strategic behavior in
order to maximize their utility. In this context the mechanism design and auction
literature investigated various bidding strategies for market-based scheduling
[7, 22, 23, 24].

Phelps elaborated co-evolution algorithms to learn the strategy space for
autonomous bidding by the allocation of resources in market mechanisms. In
his thesis he classified bidding strategies into non-adaptive strategies such as
Truth Telling, Equilibrium-Price and Zero Intelligence, and adaptive strate-
gies – Zero-Intelligence Plus, Kaplan’s Sniping Strategy, Gjerstad-Dickhaut and
Reinforcement-learning[9].

The non-adaptive Zero Intelligence ZI [25] agent ignores the state of the mar-
ket when forming a bid or offer and generates and submits random values drawn
from a uniform distribution, where Zero Intelligence Plus ZIP [12] agents main-
tain a profit margin, a ratio of the trader’s profit to its valuation, that deter-
mines their bid or offer at any time during the trading process. Furthermore
this profit margin adapts to the market conditions using a learning mechanism,
so that the agent can submit bids or offers that remain competitive. GD-agents
store history information about the submitted bids and use a belief function for
the price estimation. FL-agents [21] use fuzzy logic to generate a bid or offer
based on a base price, which is a median of previous prices. Risk-Based agents
[20] perform prediction of expected utility loss resulting from missing out on a
transaction. Kaplan agents [26] define strategic conditions (“juicy offer”, “small
spread” and “timeout”) under which a bid is generated and submitted. [27] in-
troduced a stochastic P -strategy which takes the dynamics and uncertainties of
the auction process. A comparison between some bidding strategy is evaluated
by [28, 29, 30]. Beside auction strategies, [24] discusses utility functions and
strategic negotiations in Grid environments.

The AI literature introduces three main approaches for learning – supervised,
unsupervised, and reward-based learning. These methods are distinguished by
what kind of feedback the critic provides to the learner. In supervised learning,
the critic provides the correct output. In unsupervised learning, no feedback is
provided at all. In reward-based learning, the critic provides a quality assessment
(the ‘reward’) of the learner’s output. A wide summary of common learning
algorithms and decision rules are presented by [11, 29, 31, 32, 33, 34, 35].

6 Conclusions and Outlook

In this paper we have described consumer and provider components supporting
the automated bidding process. We introduced the Q-Strategy as novel consumer

86 N. Borissov et al.

bidding strategy, which implements a rational strategic behavior, and evaluated
it against the Truth-Telling bidding strategy in two different market mechanism.

The Truth-Telling strategy “slightly” outperforms the Q-Strategy in both
markets, but nevertheless it offers properties implementing a rational bidding
behavior and learning capability. We show that it tends to converge to optimal
action values. A common drawback of reinforcement learning algorithms is that
they need some time to learn the environment and start to converge to an optimal
action. To evaluate the properties of the Q-Strategy we need further research and
simulations with different simulation settings and in various mechanisms. Future
work will include its evaluation and analysis in further market mechanisms e.g.
proportional-share [36, 37, 37] and pay-as-bid [38] as well as a comparison against
state-of-the art bidding strategies like ZIP, GD and Kaplan agents.

Moreover, we looked at strategic behavior on consumer side, where truth
telling is supposed to be an optimal bidding strategy in the sense of maximizing
the consumer’s utility. In the next step we are going to introduce strategic behav-
ior on the provider side by extending the DLGM mechanism with payments for
the resource usage. In this case the truth telling strategy could be not optimal.

References

1. Byde, A., Salle, M., Bartolini, C.: Market-based resource allocation for utility data
centers. HP Lab, Bristol, Technical Report HPL-2003-188 (September 2003)

2. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS
1998, and JSSPP 1998. LNCS, vol. 1459. Springer, Heidelberg (1998)

3. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-
sipher, D., Savva, A.: Job Submission Description Language (JSDL) Specification,
Version 1.0. Job Submission Description Language WG (JSDL-WG) (2005)

4. Stoesser, J., Neumann, D.: A model of preference elicitation for distributed market-
based resource allocation. Working paper, University of Karlsruhe (TH) (2008)

5. Borissov, N., Blau, B., Neumann, D.: Semi-automated provisioning and usage of
configurable services. In: 16th European Conference on Information Systems (ECIS
2008), Galway, Ireland (2008)

6. Heydenreich, B., Müller, R., Uetz, M.: Decentralization and Mechanism Design for
Online Machine Scheduling. METEOR, Maastricht research school of Economics
of TEchnology and ORganizations (2006)

7. Phelps, S.: Evolutionary mechanism design. Ph.D. Thesis (July 2007)
8. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
9. Kaelbling, L., Littman, M., Moore, A.: Reinforcement learning: A survey. Arxiv

preprint cs.AI/9605103 (1996)
10. Whiteson, S., Stone, P.: On-line evolutionary computation for reinforcement learn-

ing in stochastic domains. In: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pp. 1577–1584 (2006)

11. Tesauro, G., Das, R.: High-performance bidding agents for the continuous double
auction. In: Proceedings of the 3rd ACM conference on Electronic Commerce, pp.
206–209 (2001)

12. Cliff, D.: Minimal-intelligence agents for bargaining behaviors in market-based en-
vironments. TechnicalReport, Hewlett Packard Labs (1997)

Rational Bidding Using Reinforcement Learning 87

13. Medernach, E., des Cezeaux, C.: Workload analysis of a cluster in a grid environ-
ment. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2005. LNCS, vol. 3834. Springer, Heidelberg (2005)

14. Luce, R., Tukey, J.: Simultaneous conjoint measurement: A new type of fundamen-
tal measurement. Journal of Mathematical Psychology 1(1), 1–27 (1964)

15. Green, P., Rao, V.: Conjoint Measurement for Quantifying Judgmental Data. Jour-
nal of Marketing Research 8(3), 355–363 (1971)

16. Saaty, T.: Axiomatic foundation of the analytic hierarchy process. Management
Science 32(7), 841–855 (1986)

17. Wellman, M., Greenwald, A., Stone, P.: Autonomous Bidding Agents: Strategies
and Lessons from the Trading Agent Competition. MIT Press, Cambridge (2007)

18. Sherstov, A., Stone, P.: Three automated stock-trading agents: Acomparative
study. In: Agent-mediated Electronic Commerce VI: Theories for and Engineering
of Distributed Mechanisms and Systems: AAMAS 2004 Workshop, AMEC 2004,
New York, NY, USA, July 19, 2004, Revised Selected Papers (2006)

19. Stone, P.: Multiagent learning is not the answer. it is the question. Artificial Intel-
ligence (to appear, 2007)

20. Vytelingum, P., Dash, R., David, E., Jennings, N.: A risk-based bidding strategy
for continuous double auctions. In: Proc. 16th European Conference on Artificial
Intelligence, pp. 79–83 (2004)

21. He, M., Leung, H., Jennings, N.: A fuzzy-logic based bidding strategy for au-
tonomous agents in continuous double auctions. IEEE Transactions on Knowledge
and Data Engineering 15(6), 1345–1363 (2003)

22. Reeves, D., Wellman, M., MacKie-Mason, J., Osepayshvili, A.: Exploring bidding
strategies for market-based scheduling. Decision Support Systems 39(1), 67–85
(2005)

23. Li, J., Yahyapour, R.: Learning-based negotiation strategies for grid scheduling. In:
Proceedings of the Sixth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID 2006), vol. 00, pp. 576–583 (2006)

24. Li, J., Yahyapour, R.: A strategic negotiation model for grid scheduling. Journal
International Transactions on Systems Science and Applications, 411–420 (2006)

25. Gode, D., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders:
Market as a partial substitute for individual rationality. The Journal of Political
Economy 101(1), 119–137 (1993)

26. Kaplan, S., Weisbach, M.: The success of acquisitions: Evidence from divestitures.
The Journal of Finance 47(1), 107–138 (1992)

27. Park, S., Durfee, E., Birmingham, W.: An adaptive agent bidding strategy based on
stochastic modeling. In: Proceedings of the third annual conference on Autonomous
Agents, pp. 147–153 (1999)

28. Das, R., Hanson, J., Kephart, J., Tesauro, G.: Agent-human interactions in the
continuous double auction. In: Proceedings of the International Joint Conference
on Artificial Intelligence, vol. 26 (2001)

29. Sherstov, A., Stone, P.: Three automated stock-trading agents: A comparative
study. In: Faratin, P., Rodriguez-Aguilar, J. (eds.) AMEC 2004. LNCS (LNAI),
vol. 3435, pp. 173–187. Springer, Heidelberg (2006)

30. Kearns, M., Ortiz, L.: The penn-lehman automated trading project. Intelligent
Systems, IEEE [see also IEEE Intelligent Systems and Their Applications] 18(6),
22–31 (2003)

31. Stone, P.: Learning and multiagent reasoning for autonomous agents. In: The 20th
International Joint Conference on Artificial Intelligence, pp. 13–30 (January 2007)

88 N. Borissov et al.

32. van den Herik, H.J., Hennes, D., Kaisers, M., Tuyls, K., Verbeeck, K.: Multi-
agent learning dynamics: A survey. In: Klusch, M., Hindriks, K.V., Papazoglou,
M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 36–56. Springer,
Heidelberg (2007)

33. Erev, I., Roth, A.: Predicting how people play games: Reinforcement learning in ex-
perimental games with unique, mixed strategy equilibria. The American Economic
Review 88(4), 848–881 (1998)

34. Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what
is the question? Artificial Intelligence 171(7), 365–377 (2007)

35. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

36. Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.: Tycoon: An imple-
mentation of a distributed, market-based resource allocation system. Multiagent
and Grid Systems 1(3), 169–182 (2005)

37. Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke, J., Plaxton, C.: A
proportional share resource allocation algorithm for real-time, time-shared systems.
In: Proceedings of the 17th IEEE Real-Time Systems Symposium, pp. 288–299
(1996)

38. Sanghavi, S., Hajek, B.: Optimal allocation of a divisible good to strategic buyers.
In: 43rd IEEE Conference on Decision and Control-CDC (2004)

	Rational Bidding Using Reinforcement Learning
	Self-organized Resource Provisioning and Usage
	Automated Bidding
	Preference Elicitation
	Demand Modeling
	Bid and Offer Generator

	Bidding Strategy
	Truth-Telling
	Q-Strategy

	Evaluation
	Evaluation Setting
	Simulation Results

	Related Work
	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

