
The Power of Preemption in Economic
Online Markets�

Lior Amar1, Ahuva Mu’alem2, and Jochen Stößer3

1 Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, 91904 Israel
lior@cs.huji.ac.il

2 Social and Information Sciences Laboratory (SISL), California Institute of
Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA

ahumu@yahoo.com
3 Institute of Information Systems and Management (IISM),

Universität Karlsruhe (TH), Englerstr. 14, 76131 Karlsruhe, Germany
stoesser@iism.uni-karlsruhe.de

Abstract. In distributed computer networks where resources are un-
der decentralized control, selfish users will generally not work towards
one common goal, such as maximizing the overall value provided by the
system, but will instead try to strategically maximize their individual
benefit. This shifts the scheduling policy in such systems – the decision
about which user may access what resource – from being a purely algo-
rithmic challenge to the domain of mechanism design.

In this paper we will showcase the benefit of allowing preemption in such
economic online settings regarding the performance of market mechanisms
by extending the Decentralized Local Greedy Mechanism of Heydenreich
et al. [11]. This mechanism was shown to be 3.281-competitive with re-
spect to total weighted completion time if the players act rationally. We
show that the preemptive version of this mechanism is 2-competitive. As
a by-product, preemption allows to relax the assumptions on jobs upon
which this competitiveness relies. In addition to this worst case analy-
sis, we provide an in-depth empirical analysis of the average case perfor-
mance of the original mechanism and its preemptive extension based on
real workload traces. Our empirical findings indicate that introducing pre-
emption improves both the utility and the slowdown of the jobs. Further-
more, this improvement does not come at the expense of low-priority jobs.

Keywords: Mechanism Design, Online Scheduling, Preemption.

1 Introduction

The aim of this paper is to study the benefit of allowing preemption in economic
online settings. In distributed computer networks where resources are under
� This work has been supported in parts by the EU IST program under grant 034286

“SORMA”. Jochen Stößer was additionally funded by the German D-Grid initiative
under grant “Biz2Grid”.

J. Altmann, D. Neumann, and T. Fahringer (Eds.): GECON 2008, LNCS 5206, pp. 41–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 L. Amar, A. Mu’alem, and J. Stößer

decentralized control, selfish users will generally not work towards one common
goal, such as maximizing the overall value provided by the system, but will
instead try to strategically maximize their individual benefit. This shifts the
scheduling policy in such systems – that is the decision about which user may
access what resource – from being a purely algorithmic challenge to the domain
of mechanism design [17]. In mechanism design, scheduling (or “allocation”)
algorithms are combined with pricing rules so as to align the users’ individual
goals with the designer’s overall goal.

Until recently, only few grid and cluster systems provided preemptive migration
(e.g. [2]), which is the ability of dynamically moving computational jobs across
machines during runtime. The emerging technology of virtualization becomes an
important building block in grids (e.g. [7]). Virtualization provides off-the-shelf
support for virtual machine migration, thus making the use of preemption and mi-
gration more accessible. The power of migration was studied in [1] in the context
of online fair allocations in heterogenous organizational grids: under mild assump-
tions it was shown that several natural fairness and quality of service properties
cannot be achieved without the ability to preempt jobs during runtime.

Our Contribution. In this paper we will showcase the benefit of allowing pre-
emption in economic online settings regarding the performance of online market
mechanisms. Online mechanisms continuously assign jobs to machines as new
jobs enter the system and/or machines become idle. The advantage of online
mechanisms compared to periodic mechanisms is increased responsiveness. On
their downside, however, online mechanisms have to make allocation decisions
with less information and these decisions may prove unfortunate as new infor-
mation (e.g. new jobs) is released. Preemption can mitigate such unfortunate
decisions by allowing the allocation mechanism to suspend a running job in fa-
vor of some more desirable job and to possibly continue this suspended job later
on the same machine.

The results of our paper show that the performance of economic online mech-
anisms can be improved by performing preemptions, which has largely been
neglected in the existing literature on market mechanisms. E.g. the Decentral-
ized Local Greedy Mechanism of Heydenreich et al. [11] was shown to be 3.281-
competitive with respect to total weighted completion time if the players act
rationally. We analytically show that the preemptive version of this mechanism
is 2-competitive. As a by-product, preemption allows to relax the assumptions
on jobs upon which this competitiveness relies. At the core of this paper, we
provide an in-depth empirical analysis of the average case performance of the
original mechanism and its preemptive extension based on real workload traces.
Our empirical findings indicate that introducing preemption improves both the
utility and the slowdown of the jobs. Furthermore, this improvement does not
come at the expense of low-priority jobs.

Structure of this Paper. We introduce the characteristics of job agents and
machines in Section 2. In Section 3, we present an economic online mechanism
by Heydenreich, Müller and Uetz [11] which constitutes the baseline model for

The Power of Preemption in Economic Online Markets 43

our investigation. In Section 4 and at the core of this paper, we show how the
mechanism’s competitive (i.e. worst-case) ratio improves if preemption of jobs
is introduced. In Section 5 we empirically analyze the average case with real
workload traces. Section 6 discusses related work. Section 7 concludes the paper
and points to future work.

2 The Setting

We face the problem of having to schedule a set of jobs with arbitrary release
dates onto n parallel homogeneous machines with the aim of minimizing total
weighted completion time

∑
j∈J wjCj , where J is the set of jobs to be scheduled.

Cj denotes job j’s completion time, i.e. the point in time when j leaves the
system. Job j ∈ J is of type θj = (rj , pj , wj) ∈ R+ ×R+ ×R+, where rj denotes
j’s release date, pj its runtime, and wj is its weight, which can be interpreted as
j’s waiting cost, that is the cost of remaining in the system for one additional
unit of time.

We consider a setting in which each agent submits a single job and we will
thus use the terms “agent” and “job” interchangeably in the remainder of this
paper. While the machines are obedient, the jobs are rational and selfish. Each
job j ∈ J aims at maximizing its individual (ex post) utility

uj(Cj , πj |θj) = −wjCj − πj , (1)

where πj is j’s payment. Job j may decide to strategically misreport about its
type, i.e. it may report θ̃j = (r̃j , p̃j , w̃j) �= (rj , pj , wj) in order to improve its
utility compared to truthful reporting. Obviously, r̃j ≥ rj . Furthermore, p̃j ≥ pj

since any excess runtime can easily be detected and punished by the system. We
henceforth assume that jobs are numbered according to their time of arrival, i.e.
k < j ⇒ r̃k ≤ r̃j .

3 Baseline Model – A Decentralized Local Greedy
Mechanism

Heydenreich et al. [11] examine the setting at hand without preemption, that
is P |rj |

∑
wjCj in the classic notation of Graham et al. [9]. They propose a

Decentralized Local Greedy Mechanism (DLGM) which will be presented now
for the ease of exposition:

Step 1 – Job report: At its chosen release date r̃j , job j communicates w̃j

and p̃j to every machine i ∈ N .

Step 2 – Tentative machine feedback: Based on the received information,
the machines communicate a tentative machine-specific completion time Ĉj(i)
and a tentative payment π̂j(i) to the job. The tentativeness is due to the fact that
later arriving jobs might overtake job j. This leads to a final ex post completion

44 L. Amar, A. Mu’alem, and J. Stößer

time Cj(i) ≥ Ĉj(i) and a final ex post payment πj(i) ≤ π̂j(i) as compensation
payments by overtaking jobs might occur (see Step 3 below).

The local scheduling on each machine follows Smith’s ratio rule [20], which has
been shown to be optimal for 1||

∑
wjCj with one single machine and without

release dates. Jobs are assigned a priority according to their ratio of weight and
processing time: Job j has a higher priority than job k if (1) w̃j/p̃j > w̃k/p̃k or (2)
w̃j/p̃j = w̃k/p̃k and j < k, and is inserted in front of k into the waiting queue
at this machine. For obtaining the tentative completion time, the remaining
processing time of the currently running job and the runtimes of the higher-
prioritized jobs in the queue as well as j’s own runtime have to be added to r̃j .
The tentative payment equals a compensation of utility loss for all jobs which
would be displaced if j was queued at this machine.

Step 3 – Queueing: Upon receiving information about its tentative completion
time and required payment from the machines, job j makes a binding decision
for a machine. j is queued at its chosen machine i according to its priority and
pays w̃k p̃j to each lower ranked job k at this machine.

For evaluating and comparing market mechanisms, we need to define the user
behavior, i.e. the agents’ strategies s, and a metric. We will start with the
former.

Under DLGM, j’s strategy consists of reporting its type and choosing a ma-
chine. Let s̃ be the vector containing the arbitrary strategies of all agents, and let
s̃−j be the vector containing the arbitrary strategies of all agents except j. Given
the tentative machine feedback, let ûj(s, θj) be job j’s tentative utility at time
r̃j . Heydenreich et al. [11] use the concept of myopic best response equilibria in
order to model the behavior of rational and selfish agents:

Definition 1. A strategy profile s = (s1, · · · , sn) is called a myopic best re-
sponse equilibrium if, for all j ∈ J , θj, s̃−j, and all strategies s̃j which j could
play instead of sj,

ûj((sj , s̃−j), θj) ≥ ûj((s̃j , s̃−j), θj). (2)

Theorem 1 (Theorem 9 in [11]). Given the types of all jobs, the strategy
profile where each job j reports θ̃j = θj and chooses a machine which maximizes
its tentative utility ûj(Cj , πj |θj)(i) = −wjĈj(i)− π̂j(i) is a myopic best response
equilibrium under DLGM.

That is, without knowledge about the future and other jobs’ types, each job
maximizes its tentative utility by truthfully reporting its characteristics and
choosing the best available machine. Furthermore, if the player truthfully report
his type, then his ex-post utility equals his tentative utility since whenever the
job’s tentative completion time changes, the job is immediately compensated for
the exact loss of his utility.

Since we now know how agents act in this model, we can evaluate the perfor-
mance of DLGM as regards efficiency. A common metric for a mechanism’s perfor-
mance is its competitive ratio in its strategic equilibrium, in this case the myopic

The Power of Preemption in Economic Online Markets 45

best response equilibrium. In our setting, a mechanism’s competitive ratio is de-
fined as the largest possible ratio of the total weighted completion time generated
by the specific mechanism if all agents play their equilibrium strategy divided by
the theoretical minimum of an omniscient offline mechanism which knows all the
jobs’ true types when making its allocation decisions. We state one of the main
results of Heydenreich et al., as this becomes the baseline for our later analysis:

Theorem 2 (Theorem 10 in [11]). Suppose every job is rational in the sense
that it truthfully reports rj , pj, wj and selects a machine that maximizes its
tentative utility at arrival. Then DLGM is 3.281-competitive for the scheduling
problem P |rj |

∑
wjCj.

This theorem essentially captures DLGM ’s performance without using
preemption.

4 Adding Preemption

We will now examine the impact of introducing preemption to DLGM on the
mechanism’s competitive ratio. We will henceforth refer to this extended DLGM
as Preemptive DLGM or P-DLGM.

We introduce the following notation. Let pj continue to denote j’s total run-
time, but let pj(t) be its remaining runtime at time t. In contrast to DLGM,
P-DLGM uses a dynamic extension of Smith’s ratio rule, i.e. at time t, we order
jobs according to the ratio of their weight and the remaining runtime (w̃j/p̃j(t)).
Hence, let Hj(t) = {k ∈ J | w̃k/p̃k(t) > w̃j/p̃j(t)} ∪ {k ≤ j | w̃k/p̃k(t) =
w̃j/p̃j(t)}, i.e. Hj(t) contains all jobs with higher priority than job j at time t,
including j itself. We further introduce Lj(t) = J \ Hj(t), i.e. the set containing
all jobs with a lower priority than j. We denote j → i if job j is assigned to
machine i. Finally, we denote the actual (ex post) end time of j, i.e. the time
when j leaves the system, by Ej . Consequently, at time r̃j , all jobs k with k < j
and Ek > r̃j are present in the system.

P-DLGM comprises the following three steps:

Step 1 – Job report: At its chosen release date r̃j , job j communicates w̃j

and p̃j to every machine i ∈ N .

Step 2 – Tentative machine feedback: Based on the received information,
the machines communicate a tentative machine-specific completion time and a
tentative payment to the job.

The tentative completion time of job j at machine i is determined as

Ĉj(i) = r̃j + p̃j +
∑

k∈Hj(r̃j)
k→i
k<j

Ek>r̃j

p̃k(r̃j), (3)

i.e. the projected time that job j spends on machine i equals the sum of j’s own
runtime and the remaining runtimes of all jobs which are queued at in front of
j at i at time r̃j .

46 L. Amar, A. Mu’alem, and J. Stößer

The tentative compensation payment of job j at machine i is determined as

π̂j(i) = p̃j

∑

k∈Lj(r̃j)
k→i
k<j

Ek>r̃j

w̃k, (4)

i.e. j’s runtime multiplied by the aggregate weights of all jobs which are dis-
placed at machine i due to the addition of j at time r̃j . This comprises the cur-
rently waiting jobs and, due to allowing preemption, possibly also the currently
running job.

Step 3 – Queueing: Upon receiving information about its tentative completion
time and required payment from the machines, job j makes a binding decision
for a machine. Job j is queued at its chosen machine i according to its priority or
preempts the currently running job – which is then put back into this machine’s
local queue – and pays w̃kp̃j to each lower ranked job k at this machine.

Note that in our extension to the basic DLGM we assume zero preemption cost,
that is jobs can be suspended in negligible time. This is a reasonable assumption
since – in contrast to migrations where jobs are transferred between different
machines over the network (a setting investigated in [1]) – in our mechanism
jobs are suspended on one single machine.

We are now ready to state our main results:

Lemma 1. Given the types of all jobs, the strategy profile where each job j
reports θ̃j = θj and chooses a machine which maximizes its tentative utility
ûj(Cj , πj |θj)(i) = −wjĈj(i) − π̂j(i) is a myopic best response equilibrium under
P-DLGM and its ex post utility equals its tentative utility.

Proof. Due to the dynamic extension to Smith’s ratio rule, the proof to Lemma 1
reduces to the proofs to Theorem 9 in [11] as the dynamic priorities can be
plugged into the latter. Consequently, the proof to this theorem and its support-
ing lemmata and theorems do not change if preemption is introduced. The full
proof will be included the full version of this paper.

Theorem 3. Suppose that every job j plays its myopic best response strategy ac-
cording to Lemma 1. Then P-DLGM is 2-competitive for the scheduling problem
P |rj , pmtn|

∑
wjCj .

Refer to Appendix A for the detailed proof to this theorem.
Note that Megow and Schulz [14] also give an allocation algorithm that is

2-competitive for P |rj , pmtn|
∑

wjCj . However, they do not consider strategic
agents and thus do not give a pricing scheme for this algorithm. Furthermore,
they use static priorities when ordering jobs which are independent of the jobs’
progress and the allocation algorithm is centralized as opposed to our decen-
tralized setting. Most importantly, the latter leads to Megow and Schulz using
migration (i.e. the moving of jobs across machines) whereas P-DLGM only uses
preemption (i.e. suspended jobs are continued on the same machine).

The Power of Preemption in Economic Online Markets 47

One may argue that the bounds in Theorems 2 and 3 relate to different opti-
mization problems. However, exactly this difference – introducing preemption –
is our main point in this paper, which is captured by the following theorem:

Conclusion 1. Suppose that every job j plays its myopic best response strategy
according to Lemma 1. Then preemptions allow us to improve the upper (worst-
case) bound on the objective value

∑
wjCj generated by a market mechanism

from 3.281 to 2.

Proof. Take Theorems 2 and 3 as well as the fact that the objective value ZOPT
pmtn

of the optimal solution to P |rj , pmtn|
∑

wjCj will always be less than or equal to
the objective value ZOPT of the optimal solution to P |rj |

∑
wjCj . Consequently,

if Z is the objective value generated by P-DLGM, then Z ≤ 2ZOPT
pmtn ≤ 2ZOPT .

The performance ratio of the basic DLGM relies on the artificial assumption
that critical jobs, that is jobs with long runtimes, are only released to the system
later in the scheduling process. To achieve this, Heydenreich et al. [11] impose
the restriction rj ≥ αpj , and optimize the performance ratio ρ over α to obtain
ρ = 3.281. With preemption, we cannot only lower this upper bound to ρ = 2,
but additionally we can omit this artificial restriction.

As mentioned above, it was shown in [11] that there is no payment scheme
which can complement DLGM so as to make truthtelling a dominant strategy
equilibrium where revealing the true job type and choosing the best machine is
not only the tentatively optimal strategy but is also optimal from an ex post
perspective. This result applies also for P-DLGM.

Proposition 1. It is not possible to turn P-DLGM into a mechanism with a
dominant strategy equilibrium in which all jobs report truthfully by only modifying
the payment scheme.

Proof. The proof follows from Theorem 14 in [11]. It relies on a simple example
to show that, under DLGM, jobs may improve their ex post completion time by
reporting w̃j < wj , which contradicts weak monotonicity, a necessary condition
for truthfulness [11, 12]. In the example, all jobs arrive at the same time. Con-
sequently, no preemption can occur and this example as well as the supporting
lemmata thus also hold with preemption.

An interesting open question for future research remains: Is there any truthful
mechanism (in dominant strategies) at all for this setting?

5 Empirical Analysis

5.1 Experimental Setup

In the previous section, we have shown that P-DLGM yields a better worst-case
performance than DLGM. In this section, we want to analyze the average case
by means of an empirical analysis based on real workload traces.

48 L. Amar, A. Mu’alem, and J. Stößer

Table 1. Workload traces

Trace Timeframe Jobs (original) Jobs (serialized) CPUs Runtime
Mean (sec.) CV (%)

WHALE Dec’05 – Jan’07 196,417 280,433 3,072 35,658 237
REQUIN Dec’05 – Jan’07 50,442 466,177 1,536 45,674 411

LPC-EGEE Aug’04 – May’05 219,704 219,704 140 3,212 500
DAS2-FS4 Feb’03 – Dec’03 32,626 118,567 64 2,236 961

We have implemented a simulator to study online mechanisms for the schedul-
ing in distributed computing systems. The experimental setup is similar to our
analysis of fairness in economic online scheduling in [1]. We want to evaluate
P-DLGM and DLGM using this previous setting since this will allow us to com-
pare the results of both analyses. We want to check our economic setting here
without “tailoring” a specific setting towards the advantage of P-DLGM. For
the ease of the exposition we describe our setting in the following.

Workload Traces. For our simulations we took four workload traces from
the Parallel Workload Archive [6] (cf. Table 1). All these traces are taken from
homogeneous clusters. The DAS2-FS4 cluster is part of a Dutch academic grid
(http://www.cs.vu.nl/das2/). LPC is a French cluster that is part of the
EGEE grid (http://www.eu-egee.org/). The WHALE and REQUIN traces
are taken from two Canadian clusters (http://www.sharcnet.ca/). We chose
these workloads due to the large number of jobs which will help us to mitigate
stochastic outliers, the availability of technical parameters such as release dates
and runtimes, and because of their relative recentness, as old workloads might
contain outdated applications and utilization patterns. In all of the traces the
CPUs were dedicated, meaning only one job is using each CPU at the same time.1

Parallel jobs (using more than one CPU) are treated as a collection of serial jobs
all with the same weight, release date and runtime. The addition “serialized”
in the job column of Table 1 indicates the number of jobs after converting such
parallel jobs to serial ones.

Table 1 contains descriptive statistics of the jobs in the traces. The homo-
geneity of the jobs within one trace as regards runtime is expressed by reporting
the coefficients of variation (CV) of the runtimes, which normalize the standard
deviation by the mean. The jobs in WHALE and REQUIN have long runtimes
and are rather homogeneous, whereas the jobs in LPC-EGEE and DAS2-FS4
are short on average with DAS2-FS4 being highly heterogeneous.

To analyze the utilization patterns in these traces, we simulated them using
a simple first-in-first-out scheduler. As the results in Figure 2 in Appendix B
illustrate, the WHALE and the REQUIN cluster are highly utilized, a large
number of jobs resides in the waiting queue most of the time. In contrast, the
LPC-EGEE and the DAS2-FS4 clusters only have a small number of peaks in the
waiting queue. The competition among jobs is small and CPUs are frequently
1 Note that we take the actual job characteristics from the traces which have been

measured by the system, not the user estimates.

http://www.cs.vu.nl/das2/
http://www.eu-egee.org/
http://www.sharcnet.ca/

The Power of Preemption in Economic Online Markets 49

idle. To measure the impact of preemption for the LPC-EGEE and the DAS2-
FS4 clusters in more competitive settings, we increase the pressure in these two
workloads and simulate these workloads if only 75% of the original CPUs are
available.

Waiting Cost Model. Essentially, the users’ waiting costs (weights) represent
the users’ valuations for the jobs. To the best of our knowledge, the only empirical
investigation of economic scheduling mechanisms which uses a time-dependent
user valuation model was performed by Chun and Culler [5]. Valuations were
assumed to be bimodal with the majority of jobs having valuations following a
normal distribution with a low mean, and some high valuation jobs with valua-
tions coming from a second normal distribution with a higher mean.

In order to check the validity of our results for two different valuation models,
we chose to simulate all settings for such a bimodal distribution with 80% of
the job weights coming from a normal distribution with mean 30 and standard
deviation 15, and 20% of the job weights coming from a normal distribution with
mean 150 and standard deviation 15.2 Consequently, on average, high-valuation
jobs were assumed to be five times more important than low-valuation jobs.
We additionally ran the simulation settings drawing job weights from a uniform
distribution over [1, 100], i.e. there are 100 priority classes.

Due to space limitations, we will only include the results for the uniform dis-
tribution since the basic effects are more straightforward. However, we included
the results for the bimodal distribution in Appendix C.

Metrics. Since we are investigating economic schedulers, we cannot base our
evaluation on purely technical metrics, based on a single scalar, such as makespan
or the sum of completion times. Instead, we have to develop metrics which
capture the viewpoint of the users and measure the dependency between the
“service” a job receives from the system and its reported valuation.

Total weighted flow time describes the overall system performance and is de-
fined as

∑
j wj(Cj − rj). In contrast to the previous section, for our empirical

analysis we choose to measure the total weighted flow time instead of the total
weighted completion time. First, minimizing completion time is equivalent to
minimizing flow time up to an additive constant of −

∑
j wjrj .3 Second, since

we run traces which cover more than one year of workloads on a per second basis,
this additive constant will be very large and hence might dominate this ratio.
Thus, focussing on the flow time instead of the completion time will help us to
determine the actual difference in system performance for DLGM and P-DLGM.

Utility per priority value describes the utility a job a receives in relation to its
WSPT ratio.4 Total weighted flow time only describes the overall system per-
formance. In contrast, this measure will give us more insights into the impact of

2 Note that we cut negative valuations.
3 The optimal schedules are identical for both metrics. However, schedules that ap-

proximate each metric can differ even if the same approximation ratio is guaranteed.
4 Note that for jobs playing the best myopic strategy of truthful reporting the tentative

utility equals the ex post utility, as shown in Theorem 7(a) in [11].

50 L. Amar, A. Mu’alem, and J. Stößer

performing preemptions on the single jobs’ utility. Which jobs suffer from pre-
emptions, which gain, or do all jobs gain by performing preemptions regardless
of their priority? To capture the utility per WSPT ratio (which is a continuous
random variable), we discretize this value range as follows: We sort all jobs re-
garding their initial WSPT priorities wj/pj. We then divide this sorted list into
100 slices, i.e. the percentile of jobs with the lowest WSPT ratios, the second
percentile and so forth. We will then report the average utility for each percentile
to compare DLGM and P-DLGM.

Bounded slowdown per valuation also reflects the perspective of a single job.
The bounded slowdown of job j is defined as

BSDj =

{
Cj−rj

tj
if tj ≥ 60

Cj−rj

60 else
(5)

This canonical metric is widely used in the Computer Systems Evaluation lit-
erature (e.g. [10, 15]). We take the bounded slowdown instead of the slowdown
because short jobs can easily experience a large slowdown, which does not nec-
essarily reflect a bad service. Intuitively, job j seeks to minimize BSDj. Natu-
rally, in economic schedulers jobs with higher valuations (and smaller run times)
should get smaller (bounded) slowdowns. The rationale for looking at this metric
is that this will give us hints towards the mechanisms’ performance if we consider
other job utility functions as the one introduced above, e.g. if the importance
of the jobs’ waiting costs increases compared to the job payments. Additionally,
the utility function in our setting has many indifference points (a delay of job j
for a one time unit can be compensated with wj). It seems reasonable to assume
that agents have strict preference over these “indifference” points and would like
to finish earlier rather than to be compensated.

5.2 Experimental Results

Table 2 shows the ratio of the total weighted flow time generated by P-DLGM to
the total weighted flow time produced by DLGM for both the uniform and the
bimodal weight distribution. P-DLGM always outperforms DLGM with respect
to this overall performance metric. Consequently, P-DLGM not only improves
upon DLGM in the worst case as shown in the previous section but also in
the average case. Intuitively, the benefit of performing preemptions will increase
(i.e. the ratio will decrease) as the pressure in the system increases, that is as
more jobs compete for the resources. As our results hold for both the uniform
and the bimodal weight distribution, we hypothesize that the overall benefit
of performing preemptions is robust to the assumption about a specific weight
distribution.

However, the results for the total weighted flow time cannot give us any insight
into the impact of performing preemptions on the performance of the individual
jobs. Which jobs benefit and which jobs suffer from this feature? Recall that
P-DLGM uses dynamic priorities, and so the priority of every job is strictly
increasing over time. Additionally, the payments in both mechanisms essentially

The Power of Preemption in Economic Online Markets 51

Table 2. Ratio of the total weighted flow time of DLGM to P-DLGM for the uniform
and the bimodal weight distributions

Trace Uniform dist. Bimodal dist.
WHALE 1.09 1.08
REQUIN 1.06 1.05

LPC-EGEE-75% 1.07 1.07
DAS2-FS4-75% 1.22 1.20

(a) WHALE Utility (b) REQUIN Utility (c) LPC-EGEE-75% Util-
ity

(d) DAS2-FS4-75% Utility (e) WHALE BSD (f) REQUIN BSD

(g) LPC-EGEE-75% BSD (h) DAS2-FS4-75% BSD

Fig. 1. (a)–(d): ratio of the average (negative) utility of DLGM to P-DLGM ; (e)–(h):
average bounded slowdown of DLGM and P-DLGM . W/T indicates the discretized
WSPT percentiles.

increase if the priorities of other jobs in the queue are higher. This might cause
larger payments (and thus smaller utilities) in P-DLGM than those of DLGM.
Figures 1(a), 1(b), 1(c) and 1(d) show the ratio of the average utility per WSPT
priority percentile (see explanation in Subsection 5.1) generated by DLGM to
the average utility produced by P-DLGM (based on the uniform weight distribu-
tion). Since both are always negative, the bigger this ratio, the better P-DLGM

52 L. Amar, A. Mu’alem, and J. Stößer

performs in comparison to DLGM for a given priority range. In our simula-
tions, we see that this ratio is almost always bigger than 1 for all four workload
traces and priority ranges. This shows that P-DLGM almost always outper-
forms DLGM and that essentially all jobs benefit from performing preemptions,
regardless of their WSPT priority.

But how does the ability of preempting jobs impact the jobs’ service level,
as captured by the bounded slowdown? As pointed out above, this will be im-
portant when considering other job utility functions where the waiting costs are
more important. As Figures 1(e), 1(f), 1(g) and 1(h) show, P-DLGM strikingly
outperforms DLGM regarding the bounded slowdown. On average, P-DLGM
yields a lower bounded slowdown (better service) than DLGM across all prior-
ity ranges. Moreover, the bounded slowdown of P-DLGM is almost always close
to 1 (the optimum), besides a small peak in the DAS-FS4 workload. This result
can be explained by the use of the (dynamic) WSPT ratios, which divide the
job weight by the runtime. This generally boosts the priority of small jobs com-
pared to long jobs. Thus, in contrast to the static DLGM, the WSPT ratios in
conjunction with preemptions give us the ability to suspend long jobs in favor of
short jobs. Hence, P-DLGM tends to result in much smaller slowdowns for short
jobs but only slightly larger slowdowns for long jobs, since the slowdown is nor-
malized by the job runtime. From an overall perspective, the average slowdown
will thus be much smaller for P-DLGM than for DLGM.

The results for the bimodal weight distribution closely resemble our results
for the uniform distribution, cf. Figure 3 in Appendix C. As pointed out above,
this suggests that the overall benefit of performing preemptions is robust to the
assumption about a specific weight distribution.

6 Related Work

Online mechanisms can be distinguished into mechanisms which allocate shares
of one or more divisible goods such as bandwidth or computing power
(e.g. [4, 19]) and, similar to our approach, mechanisms which allocate indivisible
machines. As such, strategic behavior of job agents is considered by [8] for the
allocation of bandwidth. The paper elaborates online variants of the prominent
VCG mechanism to induce the job agents to truthfully reveal their valuations
and release dates. [13] studied “Set-Nash” equilibria mechanisms and also showed
that no ex post dominant-strategy implementation can obtain a constant frac-
tion of the optimum. [18] is most similar to the spirit of our paper in that it
addresses the issue of preemption in economic online settings. The objective of
the mechanism is to schedule strategic jobs with deadlines onto one single ma-
chine so as to induce these job agents to truthful reports of their characteristics
and to maximize the overall value returned to the job agents. In [1], we identified
several fairness criteria. We showed that so called economic busy schedulers can
only satisfy these criteria if migration is allowed. We performed extensive nu-
merical experiments with real-world workloads and varying degrees of realistic
migration cost. The experiments showed that the performance of a fair (accord-

The Power of Preemption in Economic Online Markets 53

ing to our criteria) scheduling algorithm is robust to even significant realistic
migration cost.

Additionally many recent results studied the limitations of the dominant strat-
egy approach on various scheduling settings (e.g. [3, 16]). This suggests that other
notions of implementation should be studied. In this paper we study “myopic”
best response where job agents do not have information about the future.

In [5], the authors also find that economic scheduling algorithms improve the
system performance from the users’s viewpoint. They conclude that introducing
a limited preemption model (in which a job is preempted at most once) does not
significantly improve the overall performance. The paper does not give sufficient
details about the simulation setting, e.g. the level of competition in the artificially
generated workloads. More importantly, it only considers overall performance
as opposed to the intimate connection of the individual performance and the
valuation of single jobs as well as the predictability of the service level.

7 Conclusion and Future Work

In this paper, we investigated the benefit of performing preemptions in economic
settings where users have time-dependent valuations. By focusing on Heydenre-
ich et al.’s DLGM mechanism, we have shown that both the worst-case as well
as the average case economic performance of online mechanisms can be signifi-
cantly improved by introducing preemptions. Virtualization technologies provide
off-the-shelf support for virtual machine migration, thus making the use of pre-
emption and migration more accessible. Our results suggest that designers of
distributed systems should make full use of this feature to build in more flexible
and efficient allocation and pricing mechanisms.

A natural extension to preemption is migration, i.e. the moving of jobs across
machines during runtime instead of only the suspension and continuation on
one single machine. Migration will allow for still more efficient mechanisms and
may also help in introducing stronger game-theoretic solution concepts (e.g.
in dominant strategies) in some settings. Additionally it will be interesting to
consider settings in which the machines are paid for executing the jobs. We are
currently building a simulation suite to perform in-depth analyses of potential
mechanisms in realistic settings. Moreover, we are integrating a real grid market
into MOSIX, a cluster and grid management system that supports preemptive
migration [2].

References

1. Amar, L., Mu’alem, A., Stößer, J.: On the importance of migration for fairness in
online grid markets (submitted for publication)

2. Barak, A., Shiloh, A., Amar, L.: An organizational grid of federated mosix clusters.
In: CCGrid 2005 (2005)

3. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. In: SODA 2007 (2007)

54 L. Amar, A. Mu’alem, and J. Stößer

4. Chun, B., Culler, D.: Market-based Proportional Resource Sharing for Clus-
ters.Technical report, Computer Science Division, University of California (2000)

5. Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based clus-
ter batch schedulers. In: CCGrid 2002 (2002)

6. Feitelson, D.: Parallel workloads archive (2008),
http://www.cs.huji.ac.il/labs/parallel/workload/

7. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual
machines. In: ICDCS 2003 (2003)

8. Friedman, E., Parkes, D.: Pricing WiFi at Starbucks: issues in online mechanism
design. In: EC 2003 (2003)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and ap-
proximation in deterministic sequencing and scheduling theory: a survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

10. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for
dynamic load balancing. ACM Trans. Comput. Syst. 15(3), 253–285 (1997)

11. Heydenreich, B., Müller, R., Uetz, M.: Decentralization and mechanism design for
online machine scheduling. In: SWAT 2006 (2006)

12. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of truthful combina-
torial auctions. In: FOCS 2003 (2003)

13. Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring items. In:
SODA 2005 (2005)

14. Megow, N., Schulz, A.: On-line scheduling to minimize average completion time
revisited. Operations Research Letters 32(5), 485–490 (2004)

15. Mu’alem, A., Feitelson, D.: Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP 2 with backfilling. IEEE TPDS 12(6), 529–543
(2001)

16. MuŠalem, A., Schapira, M.: Setting lower bounds on truthfulness. In: SODA 2007
(2007)

17. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, New York (2007)

18. Porter, R.: Mechanism design for online real-time scheduling. In: EC 2004 (2004)
19. Sanghavi, S., Hajek, B.: Optimal allocation of a divisible good to strategic buyers.

In: IEEE CDC (2004)
20. Smith, W.E.: Various Optimizers for Single-Stage Production. Naval Resource Lo-

gistics Quarterly 3, 59–66 (1956)

http://www.cs.huji.ac.il/labs/parallel/workload/

The Power of Preemption in Economic Online Markets 55

A Proof of Theorem 3

Proof. If job j plays a myopic best response strategy (rj , pj, wj), at time rj it
selects the machine i that minimizes

− ûj(i) = wjĈj(i) + π̂j(i) (1)

= wj(rj + pj +
∑

k∈Hj(rj)
k→i
k<j

Ck>rj

pk(rj)) + pj

∑

k∈Lj(rj)
k→i
k<j

Ck>rj

wk. (2)

Let ij be this machine. As a result of the payment scheme, −ûj(ij) exactly
corresponds to the increase of the objective value

∑
k∈J wkCk which is due to

the addition of j. Furthermore, any change in uj(ij) which results from the
assignment of some job k to machine ij after rj , is absorbed by the payment
scheme and uk(ij). Thus the objective value can be expressed as Z =

∑

j∈J

−ûj(ij).

Since jobs are assumed to act rationally when choosing the machine i at which

to queue, we obtain −ûj(ij) ≤ 1
m

m∑

i=1
−ûj(i), and therefore Z ≤

∑

j∈J

1
m

m∑

i=1
−ûj(i).

Hence

1
m

m∑

i=1

−ûj(i) = wj(rj + pj) + wj

m∑

i=1

∑

k∈Hj(rj)
k→i
k<j

Ck>rj

pk(rj)
m

+ pj

m∑

i=1

∑

k∈Lj(rj)
k→i
k<j

Ck>rj

wk

m
, (3)

which can be shortened to

1
m

m∑

i=1

−ûj(i) = wj(rj + pj) + wj

∑

k∈Hj(rj)
k<j

Ck>rj

pk(rj)
m

+ pj

∑

k∈Lj(rj)
k<j

Ck>rj

wk

m
. (4)

By including all jobs instead of only the jobs k for which Ck > rj , and by
considering the total runtime of jobs k ∈ Hj(rj), k < j, we can upper bound
this by

1
m

m∑

i=1

−ûj(i) ≤ wj(rj + pj) + wj

∑

k∈Hj(rj)
k<j

pk(rj)
m

+ pj

∑

k∈Lj(rj)
k<j

wk

m
(5)

≤ wj(rj + pj) + wj

∑

k∈Hj(rj)
k<j

pk

m
+ pj

∑

k∈Lj(rj)
k<j

wk

m
. (6)

Following [11], the summation of the last term over all jobs in J can be
rewritten as

∑

j∈J

pj

∑

k∈Lj(rj)
k<j

wk

m
=

∑

(j,k):
j∈Hk(rj)

k<j

pj
wk

m
=

∑

(j,k):
k∈Hj(rj)

j<k

pk
wj

m
=

∑

j∈J

wj

∑

k∈Hj(rj)
k>j

pk

m
. (7)

56 L. Amar, A. Mu’alem, and J. Stößer

Therefore,

Z ≤
∑

j∈J

wj(rj + pj) +
∑

j∈J

wj

∑

k∈Hj(rj)
k<j

pk

m
+

∑

j∈J

wj

∑

k∈Hj(rj)
k>j

pk

m
(8)

=
∑

j∈J

wj(rj + pj) +
∑

j∈J

wj

∑

k∈Hj(rj)

pk

m
−

∑

j∈J

wj
pj

m
(9)

≤
∑

j∈J

wj(rj + pj) +
∑

j∈J

wj

∑

k∈Hj(rj)

pk

m
. (10)

Let ZOPT
pmtn be the objective value which an omniscient offline mechanism can

achieve for P |rj , pmtn|
∑

wjCj .
Obviously,

∑
j∈J wj(rj + pj) ≤ ZOPT

pmtn.
Furthermore, consider the problem 1||

∑
wjCj for a single machine with speed

m times the speed of any of the identical parallel machines and with the same
jobs all arriving at time zero. Without release dates, we get that Hj(t) = Hj :=
{k ∈ J | w̃k/p̃k > w̃j/p̃j}∪{k ≤ j | w̃k/p̃k = w̃j/p̃j} for all t since p̃j(t) ≤ p̃j, i.e.
the ordering of jobs does not change over time. Since 1||

∑
wjCj is a relaxation of

P |rj , pmtn|
∑

wjCj and
∑

j∈J wj

∑
k∈Hj

pk

m is the objective value of the optimal
solution to 1||

∑
wjCj , we obtain

∑
j∈J wj

∑
k∈Hj(rj)

pk

m ≤ ZOPT
pmtn [14], and thus

Z ≤ 2ZOPT
pmtn.

This proof is close in spirit to the proof to Theorem 10 in [11]. The basic differ-
ences are that we use dynamic WSPT ratios in contrast to the static priorities
used in [11] and that we use different reductions to upper bound the competitive
ratio in the last step of the proof.

B Workloads

(a) WHALE (b) REQUIN (c) LPC-EGEE (d) DAS2-FS4

Fig. 2. Utilization patterns of the workload traces with a FIFO scheduler (Waiting
Jobs, Running Jobs)

The Power of Preemption in Economic Online Markets 57

C Bimodal Weight Distribution

(a) WHALE Utility (b) REQUIN Utility (c) LPC-EGEE-75% Util-
ity

(d) DAS2-FS4-75% Utility (e) WHALE BSD (f) REQUIN BSD

(g) LPC-EGEE-75% BSD (h) DAS2-FS4-75% BSD

Fig. 3. (a)–(d): ratio of the average (negative) utility of DLGM to P-DLGM ; (e)–(h):
average bounded slowdown of DLGM and P-DLGM . Both evaluations are based on
the bimodal weight distribution.

	The Power of Preemption in Economi Online Markets
	Introduction
	The Setting
	Baseline Model -- A Decentralized Local Greedy Mechanism
	Adding Preemption
	Empirical Analysis
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

