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Abstract. Database users may be frustrated by no answers returned when they 
pose a query on the database. In this paper, we study the problem of relaxing 
queries on RDF databases in order to acquire approximate answers. We address 
two problems for efficient query relaxation. First, to ensure the quality of an-
swers, we compute the similarities of relaxed queries with regard to the original 
query and use them to score the potential relevant answers. We also propose the 
algorithm to get most relevant answers as soon as possible. Second, to optimise 
query relaxation process, we characterize a type of unnecessary relaxed queries 
which do not contribute to the final results and propose the method to prune 
them from the query relaxation graph. At last, we implement and experimen-
tally evaluate our approach. 
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1   Introduction 

Several RDF repositories have been developed in recent years such as Jena [1], Ses-
ame [2], rdfDB [3]. Some of them can scale to million triples. With RDF databases 
growing in size and complexity, it becomes impractical to expect the users know 
enough about the contents and the structure of a database. So even when a user has a 
clear idea about the query condition, the database may still return an empty answer. In 
this case, the user has to change the query condition and try it again, which might 
become a “trial-and-error” process. Obviously, database users may be frustrated by 
this tedious process. The database system copes with it by relaxing the query condi-
tion automatically when the query fails to produce answers or enough answers the 
user expects. With query relaxation, the user can get exactly matched and non-exactly 
matched relevant answers.  

A way of retrieving approximate answers is making the query condition more gen-
eral in order to match potential answers. In RDF databases, structures do not come in 
the shape of well-defined schemas but in terms of semantic annotations that confirm 
to a schema called RDF schema (or RDFS ontology), which describes taxonomies of 
classes and properties. To enable relaxation, a query can be generalized to capture 
enough relevant answers using information provided by RDF schema.  

For example, consider that a user wants to retrieve 10 proceedings editors who 
acquired doctoral degree from for University of Queensland (UQ) and work for  
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Swinburne University (Swin) from the given RDF database. The user issues the fol-
lowing SPARQL query [4] on a database: 

PREFIX  rdf:< http://www.w3.org/1999/02/22-rdf-syntax-ns# > 
PREFIX  abc: < http://www.w3.org/abc.owl# > 
SELECT ?X  

 WHERE { 
  ?X  abc:doctoralDegreeFrom  abc:UQ. 
  ?X  abc:worksFor   abc:Swin. 
  ?X  abc:ProceedingsEditorOf  ?Y. 

   ?Y  rdf:type  abc:Proceedings. 
 }      

Fig. 1. A SPARQL Query 

The system should return the exactly matched answers of the query. If no exactly 
matched answers return or the matched answers are not enough (less than 10), the 
system might relax the query condition using information in the RDFS ontology (de-
fined in Fig.1) such as rewriting the condition (?X, doctoralDegreeFrom, UQ) to (?X, 
DegreeFrom, UQ) or (?Y, type, Proceedings) to (?Y, type, Book) for retrieving some 
potential relevant answers. Since the property “DegreeFrom” is more general than 
“doctoralDegreeFrom” and “Book” is the super class of “Proceedings” defined in the 
RDFS ontology. 

 

Fig. 2. A Sample of RDFS Ontology 

From this example, two observations are in order. First, to guarantee the quality of 
answers, it is desirable to score the possible relaxed queries. Second, since several 
ways for relaxing the query condition may be available and the number of relaxations 
is huge, it is necessary to design an efficient relaxation algorithm that controls the 
query relaxation process and get most relevant answers as soon as possible. In this 
paper, we address these problems and make the following contributions: 

(1) We measure the similarity degrees of the relaxed query with regard to the user 
query and use them to score the relevant answers. 



 Computing Relaxed Answers on RDF Databases 165 

(2) We design the algorithm to execute the relaxed queries according to their simi-
larity score and return their answers incrementally. 

(3) We characterize a type of unnecessary relaxed queries which do not contribute 
to the final results and propose the method to prune them from the query re-
laxation graph. 

The remainder of this paper is organized as follows. We give the overview in section 
2. We define the similarities of relaxed queries in section 3. Section 4 describes the 
relaxation algorithm and characterizes a type of unnecessary relaxed queries. Section 5 
discusses related work. Section 6 presents an experimental evaluation of our approach. 

2   Preliminary  

2.1   Data and Query Model 

A triple t(s,p,o) )()( LBIIBI ∪∪××∪∈ is called an RDF triple, where I is a set of IRIs 

(Internationalized URIs), B a set of blank nodes and L a set of literals. In a triple, s is 
called subject, p the property (or predicate), and o the object. RDF triples can be classi-
fied as schema triples (which describe the schema information) and data triples (which 
describe the instance data). In this paper, we consider data model where information is 
represented as a collection of RDF data triples stored in a relational database. 

Each triple can also be represented as a node-arc-node link. The directed arc is the 
predicate and the nodes are its subject and object. A set of such triples is called an RDF 
graph. An RDF query is referred to as an RDF graph pattern, which consists of triple 
patterns. An RDF triple pattern t )()()(),,( LVIVIVIops ∪∪×∪×∪∈ , where V is a 
set of variables disjoint from the sets I, B and L. RDF graph pattern G= (q1, q2,...,qn), 
qi∈ T, where T is a set of triple patterns. Now we define the query model as follows. 

Given a user query Q = (Atom (Q), K), where K is the number of answers that us-
ers desire and Atom (Q) = {<qi, wi>} defines the triple pattern with its weight wi 

(0<wi<1, default value of wi is 1/m, where m is the number of triple patterns). For 
example:  

                     Q= {< q1, 0.2>, < q2, 0.3>, < q3, 0.3>, < q4, 0.2>}  
                    q1= (?X, abc:phdDegreeFrom, abc:UQ) 
                    q2= (?X, abc:worksFor, abc: Swin) 
                    q3= (?X, abc:ProceedingsEditorOf, ?Y) 
                    q4= (?Y, rdf:type Proceedings) 
                   K=10   

2.2   Query Relaxation Model 

Our techniques are based on logical relaxation of query conditions. In [5], the authors 
propose two kinds of relaxation for triple pattern which exploit RDF entailment to 
relax the queries.  

Simple relaxation on triple pattern: Given RDF graphs G1,G2, a map from G1 to G2 
is a function u from the terms (IRIs ,blank nodes and literals) in G1 to the terms in G2, 
preserving IRIs and literals, such that for each triple (s1, p1, o1)∈ G1, we have   (u(s1), 
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u(p1), u(o1))∈ G2. This simple relaxation exploits the RDF simple entailment. AN 
RDF graph G1 simply entails G2, denoted by G1 simple

⇒ G2, if and only if there is a map u 

from G2 to G1:
2

1
12 :

G

G
GG u⎯→⎯ . We call triple pattern t2 the simple relaxation of 

t1, denoted by t1 simple
p t2, if t1 simple

⇒ t2 via a map u that preserves variables in t1. For exam-

ple, there is a map u from the terms of triple pattern (?X, type, ?Y) to (?X, type, Pro-
ceedings) that makes u(“?X”)= “?X”, u(“type”)= “type” and u(“?Y”)= “Proceedings”. 
So (?X, type, Proceedings) can be relaxed to (?X, type, ?Y) by replacing “Proceed-
ings” with “?Y”  and (?X, type, Proceedings)

simple
p (?X, type, ?Y). 

Ontology relaxation on triple pattern: This type of relaxation exploits RDFS en-
tailment in the context of an ontology (denoted by onto). We call G1 RDFs

⇒ G2, if G2 can 

be derived from G1 by iteratively applying rules in groups (A), (B) (sc, sp are 
rdfs:subclassOf and rdfs:subpropertyOf for short): 

 

Group A (Subproperty) (1)
),,(

),,)(,,(
cspa

cspbbspa   (2)  
),,(

),,)(,,(

ybx

yaxbspa  

Group B (Subclass)   (3)
),,(

),,)(,,(
csca

cscbbsca   (4)  
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btypex

atypexbsca  

Let t1, t2 be triple patterns, where t1∉ closure (onto), t2∉ closure (onto). We call t2 
an ontology relaxation of t1, denoted by t1 onto

p t2, if t1
RDFs

onto ⇒∪ t2. It includes relax-

ing type conditions and properties such as: (1) replacing a triple pattern (a, type, b) 
with (a, type, c), where (b, sc, c)∈closure(onto). For example, given the ontology in 
Fig.2, the triple pattern (?X, type, Proceedings) can be relaxed to (?X, type, Book). (2) 
replacing a triple pattern (a, p1, b) with (a, p, b), where (p1, sp, p)∈closure(onto). For 
example, the triple pattern (?X, ProceedingsEditorOf, ?Y) can be relaxed to (?X, 
EditorOf, ?Y).  

Definition 1 (Relaxed Triple Pattern): Given a triple pattern t, t′ is a relaxed pattern 
obtained from t, denoted by t p t′, through applying a sequence of zero or more of the 
two types of relaxations: simple relaxation and ontology relaxation.  

For example, the triple pattern (?X,ProceedingsEditorOf, ?Y)p (?X, Contributer Of , ?Y) 

Definition 2 (Relaxed Query Pattern): Given a query pattern Q (t1, t2,…,tn), Q′ (t1′, 
t2′… tn′) is the relaxation of the Q, denoted by Q p Q′, if there exists at least one pair 
(ti, ti′) that we have ti p ti′. 

Definition 3 (Relevant Answers): A relevant answer to the query Q is defined as a 
match of a relaxed query of Q.   

A user query can be relaxed through replacing a term in the query by a more general 
term or replacing values to variables. For instance, a query Q (shown in Fig.1) has 
relaxed queries such as Q′={(?X, DegreeFrom, UQ),(?X, worksFor, Swin), 
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(?X, ProceedingsEditorOf, ?Y),(?Y, type, Proceedings)}. Q′′={(?X, dotoralDegree-
From, UQ),(?X, worksFor, Swin),(?X, ProceedingsEditorOf, ?Y),(?Y, type, Book)}. 
Obviously, there are many different ways to relax a query and the amount of relaxa-
tions will be large. Returning all answers of these relaxed queries is not desirable. So 
we rank the relaxed queries based on their similarities to the original query and exe-
cute the most similar relaxed queries first in order to achieve most relevant answers. 
Given the user query Q and the relaxed queries Q′, Q′′ of query Q, If Q′ is more simi-
lar to Q than Q′′, then we return the results Q′ prior to the results of Q′′. Thus, the 
query relaxations require measuring the similarities of the relaxed queries with regard 
to the original query.   

3   Similarities of Relaxed Queries 

Since the amount of possible query relaxations may be large, blindly relaxing query 
would not be helpful for getting the most relevant answers. To guarantee the quality 
of answers, it is desirable to measure the similarities of the relaxed query to the user 
query and choose the most similar one to execute on the database first. An RDF query 
is referred to as a graph pattern, which consists of triple patterns. Thus we compute 
the similarities of the relaxed triple patterns and then combine them to compute the 
similarities of the relaxed queries. 

3.1   Similarities of Triple Patterns 

Note that an RDF triple pattern can be represented as a node-arc-node link with two 
nodes (subject, object) and one arc (property). Hence we introduce the similarity 
between nodes as well as arcs and integrate them to define our similarity of the re-
laxed triple patterns. We define a finite set of class names IC and property names IP.  

Similarity between nodes: In the triple pattern q1, if one node (subject or object) is a 
class c1 IC∈ , defined in the RDFS ontology, and it is relaxed to its super class c2 

through ontology relaxation we exploit the notion of the Least Common Ancestor 
(LCA) to compute the similarity of two nodes based on the ontology. The LCA of two 
nodes c1 and c2 in the IS-A hierarchy is the node that is an ancestor of both c1 and c2, 
where depth of a concept node is the maximum length of from the concept to the root 
of the taxonomy. 

)()(
)),((2

),(
21

21
21 cdepthcdepth

ccLCAdepth
ccsim

+
×=  

For example, Sim(“Book”,”Proceedings”)=2×2/(2+3)=0.8. If the node (subject or 
object) in the triple pattern is relaxed to a variable through simple relaxation, we de-
fine the similarity of the two nodes is 0. For example, (?X, type, Proceedings) is re-
laxed by (?X, type, ?W), we have sim(“Proceedings”,“?W”)=0.   

Similarity between arcs: If the property P1∈IP in the triple pattern is relaxed to its 
super property P2 through ontology relaxation, since the hierarchy (sub property rela-
tionship) on properties is also defined in the RDFS ontology, the similarity definition 
on nodes can be transferable to arcs. We have:   
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+
×=  

LCA(p1,p2) indicates the least common super property of p1 and p2. And the depth 
of a property node is the maximum length from the property to the root of the sub 
property taxonomy. 

For example, sim(“proceedingsEditorOf”,“EditorOf”)=2×2/(2+3)=0.8 If the predi-
cate in the triple pattern is relaxed to a variable through simple relaxation, we define 
the similarity of the two arcs as 0. For example, (?X, doctoralDegreeFrom, UQ) is 
relaxed to (?X, ?W, UQ), then we have sim(“doctoralDegreeFrom” , “?W”)=0. 

Similarity of triple patterns: Given a triple q(s, p, o) and its relaxation q′(s′, p′, o′), 
we integrate similarity between nodes and arcs to define the similarity score of the 
relaxed triple patterns as follows:  

                         score(q, q′)= sim(s, s′)+ sim(p, p′)+ sim(o, o′)                    (1) 

3.2   Similarities of Relaxed Queries and Relevant Answers 

Given a query pattern Q (q1, q2,…,qn) and its relaxation Q′ (q1′, q2′,…,qn′), we can 
compute the semantic similarity comScore between them as follows:  

                                ∑
=

×=
n

1i
i )',(w)',(c ii qqscoreQQomScore                              (2) 

Where wi is the weight of triple pattern qi in the query pattern Q. The scoring function 
comScore is monotone in the sense that if Q′ (q1′, q2′,…,qn′) and Q′′ (q1′′, q2′′,…,qn′′) 
are the relaxations of query Q and  score(qi, qi′)≥ score(qi, qi′′), then comScore(Q, 
Q′)≥ comScore(Q, Q′′). 

In general, we can define the score of a relevant answer as the similarity of relaxed 
the query it matches. However, a relevant answer may match the different relaxed 
queries, e.g., (“John”, AuthorOf, “WISE conference”) would match queries (?X, Au-
thorOf, “WISE conference”) and (?X, ContributerOf, “WISE conference”). To deal 
with this situation, we define the score of a relevant answer as follows: 

Definition 4 (Score of a relevant answer): The score of a relevant answer is the 
maximum comScore among all of the relaxed queries it matches. 

4   Query Relaxation Processing 

In this section, we focus on properly relaxing a user query that produces a sequence of 
relaxed queries based on their similarity scores. To achieve it, the query relaxation 
algorithm is presented. We also characterize a type of “unnecessary relaxed queries” 
which do not contribute to the final results and propose the method to prune them. At 
last, the execution algorithm on a database is proposed. 
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4.1   Relaxation Algorithm 

We design the relaxation algorithm that ensures the desired quality of answers. The 
relaxed queries are executed in a sequence based on their similarities with regard to the 
original query. For instance, Fig.1 shows the query Q={(?X, doctoralDegreeFrom, UQ), 
(?X, worksFor, Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type, Proceedings)} and it 
has several relaxed queries, such as: Q1={(?X, DegreeFrom, UQ), (?X, worksFor, 
Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type, Proceedings)}. Q4={(?X, dotoralDe-
greeFrom, UQ), (?X, worksFor, Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type, 
Book)}. Since comScore(Q,Q1)=0.964>comScore(Q,Q4)=0.944 (shown in Fig.3), which 
means that query Q1 is more similar to the user query and hence should be executed 
first. We now present a query relaxation strategy, which selects the next most similar 
relaxed query to execute on the database till enough results are returned. We first con-
struct the relaxation graph and then give the relaxation algorithm based on this graph. 

Ordering the relaxations of triple patterns: Given the user query denoted by Q(q1
(0) 

,q2
(0),…,qn

(0)), we compute the relaxations of each triple pattern and rank them by their 
similarity scores. qi

(0) indicates the original triple pattern and qi
(mi) indicates the mith 

relaxation of triple pattern qi
(0). An example is shown in Table 1. If the original triple 

pattern qi
(0) is relaxed to qi

(mi) , we say that the triple pattern qi
(0) goes forward mi steps. 

Obviously, if mi≤mj , then score(qi
(0),qi

(mi))≥score(qi
(0),qi

(mj)). 

Relaxation Graph: The relaxation graph is a directed graph representing the relaxed 
queries. Each node in the relaxation graph is a relaxed query. Q2 is Q1’s succeeding 
node if the corresponding triple patterns in two queries are same except only one 
triple pattern in Q1 that is relaxed one step to the corresponding triple pattern in Q2. Q1 
is also called Q2’s preceding node. .For instance, Q3(q1

(0) ,q2
(0) ,q3

(1) ,q4
(0)) is Q(q1

(0) 

 

Table 1. Ranking of the relaxed triple patterns of query Q with scores 

q1
(0):(?X,doctoralDeg-

reeFrom, UQ) ; 1 
q2

(0):(?X,worksFor,Swin
); 1 

q3
(0):(?X,Proceedings-

EditorOf, ?Y); 1 
q4

(0)(?Y,type,Proceed-
ings); 1 

q1
(1):(?X, degreeFrom, 

UQ); 0.82 
q2

(1):(?X,worksFor,?W3); 
0.55 

q3
(1):(?X,EditorOf,?Y); 

0.7 
q4

(1)(?Y,type,Book);0.
72 

q1
(2):(?X,doctoralDeg-

reFrom?W1); 0.54 
q2

(2):(?X,?W4,Swin); 0.5 q3
(2):(?X,Cotribute-

rOf,?Y); 0.6 
q4

(2)(?Y,type,Publicat-
ion); 0.65 

     …     …    …   … 

Q(q1
(0) ,q2

(0) ,q3
(0) ,q4

(0))

Q2(q1
(0) ,q2

(1) ,q3
(0) ,q4

(0))Q2Q1(q1
(1) ,q2

(0) ,q3
(0) ,q4

(0)) ) Q3(q1
(0) ,q2

(0) ,q3
(1) ,q4

(0))

Q11(q1
(2) ,q2

(0) ,q3
(0) ,q4

(0)) Q12(q1
(1) ,q2

(1) ,q3
(0) ,q4

(0)) Q13(q1
(1) ,q2

(0) ,q3
(1) ,q4

(0))

0.944
1(q1

(1) q2
(00.964

,q3
(0) ,q4

(0)))
0.865

,q2
(0) ,q3

(1)0.94

0.860.8150.94
Q….. …..0)) Q….. 0)) Q…..

0.944
Q4(q1

(0) ,q2
(0) ,q3

(0) ,q4
(1))

 

Fig. 3. Relaxation graph of query Q 
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q2
(0) ,q3

(0) ,q4
(0))’s succeeding node. An edge from node Q1 to Q2 exists if and only if 

Q2 is Q1’s succeeding node. The relaxed queries can be categorized into different 
levels. For a relaxed query Qj(q1

(m1) ,q2
(m2) ,…,qn

(mn)), if m1+m2+…+mn=h, then Qj is in 
the level h. An example of query relaxation graph is shown in Fig.3. Note that the 
relaxation graph we consider has several interesting properties, which will serve as 
the bases for query relaxation algorithm.      

Property 1. Given a relaxed query Qj(q1
(m1) ,q2

(m2),…,qn
(mn)) and its succeeding nodes 

Qj1(q1
(m1+1),q2

(m2),…,qn
(mn)), Qj2(q1

(m1),q2
(m2+1),…,qn

(mn)),…,Qjn(q1
(m1),q2

(m2),…, qn
(mn+1)), 

we have comScore(Q,Qj)≥ comScore(Q,Qji), i∈ [1, n], and at least one relaxed query 
in level h has higher comScore than all relaxed queries in level h′>h. 

Proof. Let query Qj(q1
(m1),…,qi

(mi),…,qn
(mn)) and Qji(q1

(m1),…,qi
(mi+1),…,qn

(mn)) be the 
relaxations of query Q(q1

(0),q2
(0),…,qn

(0)) where Qji is a succeeding relaxation node of 
Qj, it holds that score(qi

(0),qi
(mi))≥score(qi

(0),qi
(mi+1)). By monotonicity of scoring func-

tion comScore, we have comScore(Q,Qj)≥comScore(Q,Qji). It shows that the com-
Score of one relaxed query is higher than its succeeding nodes. So the relaxation node 
with maximum comScore in level h must has higher comScore than all relaxed queries 
in level h′>h.                                                                                                                  □ 

Property 2. Given the original query Q(q1
(0),q2

(0),…,qn
(0)) , the relaxed query Q′ with 

the hth highest comScore must be in the level h or less.  

Proof. When x=1, the relaxed query with the highest comScore must fall in level 1 
since property 1. We assume that when x=h, it holds that the relaxed query with the 
hth highest comScore falls in level h. When x =h+1, we can find at least one relaxed 
query in level h+1 has higher comScore than all relaxations in level h′>h+1 according 
to property 1. So when x =h+1, we can get h+1 relaxed queries within h+1 level.      □ 

We exploit Property 1 and Property 2 to define the following basic relaxation algo-
rithm that generates the next most similar relaxed queries incrementally. From prop-
erty 2, the relaxed query with the highest comScore must be in the first level. Thus we 
first get the succeeding nodes of the original query and choose the query with the 
highest comScore to execute on the database. If the number of answers is not enough, 
then we choose the next relaxed query with the second highest comScore from the 
first or second level.   

Basic Relaxation Algorithm /* Input: Q(q1
(0) ,q2

(0) ,…,qn
(0)), K the number of results 

required ; Output : Result */ 
 

1      Initial Result= , Candidates= , Processed= ;
2      Insert Q’s succeeding nodes into Candidates;
3      While | Result |<K and |Candidates| >0 do  
4          Select the Qi with the highest comScore from Candiates
5          Insert Qi’s succeeding nodes into Candidates;         
6          R Execute (Qi);      
7          Result Result R;
8          Add Qi to Processed;
9          Remove Qi from Candiates ;  
10     End while 
11     Return Result;  
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For example, the user query Q{(?X, doctoralDegreeFrom, UQ), (?X, worksFor, 
Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type, Proceedings)}(in Fig.1) is executed 
and the query Q’s succeeding relaxed queries Q1-Q4 are added into Candidates. If the 
number of answers is still not enough, we choose the relaxed query Q1{(?X, Degree-
From, UQ), (?X, worksFor, Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type,  
Proceedings)} that has the highest comScore in Candidates and execute it on the da-
tabase. We also add Q1’s succeeding relaxed queries into Candidates, and remove Q1 

from Candidates. This process is repeated till enough answers are acquired or no 
more candidate is left. 

4.2   Pruning Unnecessary Relaxations  

In the basic relaxation algorithm above, when a relaxed query is selected, we add its 
succeeding nodes (relaxations) into Candidates for comparison of next round. How-
ever, the succeeding relaxations may be useless to generate new answers compared to 
the preceding relaxed query and there are unnecessary relaxations. For instance, in 
our running example, the query Q has one of its relaxation Q4{(?X, DegreeFrom, 
UQ), (?X, worksFor, Swin), (?X, ProceedingsEditorOf, ?Y), (?Y, type, Book)}, which 
replaces the term “Proceedings” in query Q to “Book” only. However, this relaxation 
Q4 will not generate new answers compared to the answers of its preceding node 
(query Q). Because the triple (?Y, type, Proceedings) has join dependency with the 
triple pattern (?X, ProceedingsEditorOf, ?Y). In the relaxed query Q4 “Proceedings” is 
relaxed to “Book”, but the domain of property “ProceedingsEditorOf ”is still “Pro-
ceedings” (according to the RDFS ontology defined in Fig.2) and this relaxation will 
generate no new answers compared to the answers previously returned by the query 
Q. The basic algorithm relaxes the classes or properties in the triple patterns of the 
query locally. It fails to consider the join dependency between the triple patterns 
through common variables. Consequently, some relaxed queries may not return new 
answers. There are two cases of unnecessary relaxations that fail to contribute new 
answers, one in generalizing the subject or object term of a triple pattern, while the 
other in generalizing the property.    

We first define the boolean operator “≤”on classes and properties. If class c1 is the 
subclass of c2, we have c1 ≤c2 . Similarly, if property p1 is the sub property of p2, we 
have p1 ≤p2 .We also define the operator “subclass(C) ” which computes the set of sub 
classes of C and “subproperty(P)”, which computes the set of sub properties of P.   

Case 1: Given a query Q {q1,…,qi(?x, type, c1),…,qj(?x, p2, o2) or (s2, p2, ?x),…,qn}, 
its succeeding relaxation Q′ {q1,…,qi′(?x, type, c),…,qj(?x, p2, o2) or (s2, p2, ?x),…,qn} 
is obtained from query Q through replacing class c1 to c, where c1≤c, p2 is a property 
and o2 )( LVI ∪∪∈ ,s2 )( VI ∪∈ . 

)()( 1csubclasscsubclass −=Δω  

If ωξ Δ∈∃  and ξ ≤domain(p2)(or range(p2)), then the relaxed query may have new 

answers generated. Otherwise, the relaxed query has no new answer generated com-
pared to query Q. 
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When generalizing the property of a triple pattern in the query, new answers could 
be obtained through matching the generalized property or its sub properties. Because 
of join dependency between triple patterns, the domain (subject) and range (object) of 
the generalized property or its sub properties may not match with other properties in 
the query. This is formalized as follows:    

Case 2: Given a query Q{q1,…,qi(?x, p1, o1) ,…,qj(?x, pc, o2),…,qn}, its succeeding 
relaxation Q′{q1,…,qi′(?x, p, o1),…,qj(?x, pc, o2),…,qn} is obtained from the query Q 

through replacing the property p1 with p, where p1≤p; pc is a property and 
o1,o2 )( LVI ∪∪∈ . After relaxation, new answers could be added through matching 

the property p or its sub properties. Notice that qi′(?x, p, o1) has join dependency with 
qj(?x, pc, o2) through variable “?x”. If D=subproperty(p)-subproperty(p1) and 

Φ=∩∪
∈

)))((())((( ci
Dp

pdomiansubclasspdomainsubclass
i

, then the relaxed query Q′ 

has no new answer generated. It is straightforward to generalize the method to the 
situation that qi and qj take the form (s1, p1, ?x) and (s2, pc, ?x).  

Now we give the optimised relaxation algorithm, which checks the usefulness of 
new relaxed query and skip those unnecessary relaxed queries. 

Optimised Relaxation Algorithm /* Input: Q(q1
(0) ,q2

(0) ,…,qn
(0)), K the number of 

results required ; Output : Result */ 

1      Initial Result= , Candidates= , Processed= ;
2      Insert Q’s succeeding nodes into Candidates;
3      While | Result |<N and Candidates| >0 do  
4         Select the Qi with the highest comScore from the Candiates;
5         Insert Qi’s succeeding nodes into Candidates;
6         For each of Qi’s preceding nodes Qj in Processed
7            If  Qi is an unnecessary relaxation of Qj then 
8              Goto step 13 
9            End if 

  10         End for 
  11         R Execute (Qi);      
  12         Result Result R;
  13         Add Qi to Processed;
  14         Remove Qi from Candiates ;  
  15     End while   
  16     Return Result

 

5   Related Work 

Hurtado et al. [5] propose an rdf query relaxation method through RDF(s) entailment 
producing more general queries for retrieving potential relevant answers. Our work 
focuses on using heuristic information based on the similarity degree of relaxed que-
ries with regard to the original query to control the relaxation process for ensuring the 
desired cardinality and quality of answers, which is not studied in [5]. 

Answering top-k selection queries is related to our work. Fagin et al. [6, 7] introduce 
a set of novel algorithms, assuming sorted access and/or random access of the objects is 
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available on each attribute. Carey and Kossmann [8] optimise top-k queries when the 
scoring is done through a traditional SQL order by clause, by limiting the cardinality of 
intermediate results. Other works [9, 10, and 11] use statistical information to map top-k 
queries into selection predicates which may require restarting query evaluation when the 
number of answers is less than K.  Natsev et al. [12] introduce the J* algorithm to join 
multiple ranked inputs to produce a global rank. These works define the semantics of 
the relevant answers based on numeric conditions in selection and join predicates, which 
can be quantified as value differences. In contrast, we relax query conditions and rank 
answers based on semantic information provided by RDF ontology.  

Cooperative query answering [13, 14, 15] are designed to automatically relax user 
queries when the selection criteria is too restrictive to retrieve enough answers. Such 
relaxation is usually based on user preferences and values. In contrast, in our work, 
we compute the semantic similarities between the relaxed queries and the original 
query. Efforts have been made to the problem of query relaxation on XML data [16]. 
Amer-Yahia et al. [16] compute approximate answers for weighted patterns by encod-
ing the relaxations in join evaluation plans. The techniques of approximate XML 
query matching are mainly based on structure relaxation and can not be used to han-
dle query relaxation on RDF data directly. 

6   Experiments  

Based on the Lehigh University Benchmark LBUM [17], we generate the dataset 
which contains 6,000k triples. The data is stored in and managed by Mysql 5.0.11. All 
algorithms are implemented using Jena SDB [18] (which provides for large scale 
storage and query of RDF datasets using conventional SQL databases) and run on a 
windows XP professional system with P4 3G CPU and with 512 M RAM. We devel-
oped 5 queries which are shown in Table 2.  

Benefits of the optimised algorithm: In this experiment, we compare the basic relaxa-
tion algorithm and optimised algorithm. We fix the number of answers K=100 and 
performed the 5 queries on the data which contains 6,000k triples. Fig.4 (a) and (b) 
show the relaxation steps and execution time for each query. We use query Q4 as an 
example to illustrate how the optimisation algorithm reduces the relaxation steps. 

Table 2. Queries for experiments 

Q1:(?x,type,TeachingAssitant)(?x,teachingAssistantOf,http://www.Department0.University0/C
ourse3)(?x,mastersDegreeFrom,http://www.Department0.University0.edu) 

Q2:(?x,teacherOf,?z)(?x,ub:worksFor,University0)(?x,type,AssistantProfessor) 

Q3:(?x,advisor,?y)(?y,type,AssistantProfessor)(?y,researchInterest',Research12')(?y,worksFor,h
ttp://www.University0.edu) 

Q4:(?x,advisor,?y)(?y,type,Professor)(?y,worksFor, http://www.University0.edu)

Q5:(?x,type,JournalAticle)(?y,publicationAuthor,?x) (?y,type,Professor) 
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                    Fig. 4. (a). Relaxation Steps                        Fig. 4. (b). Query Response Time      

Query Q4 is relaxed to its relaxation Q4′ through replacing “Professor” to “Person” 
only. In Q4′ the range of property “advisor” is still “Professor”. So only replacing 
“Professor” to “Person” will not generate new answers compared to the answers of 
query Q4 and Q4′ is a unnecessary relaxation to query Q4. Fig.4 (a) and (b) show that 
the optimisation algorithm can reduce the relaxation steps and execution time.   

Efficiency of query relaxation: Fig.4 (b) shows that the running time of 5 queries for 
K=100 relaxed answers. Q5 is the most expensive query. Because the query condition 
of Q5 is more general and with the increase of relaxation steps the relaxation process 
costs much. Q1 is the most efficient one since its query condition is more concrete. It 
takes less running time than Q5, though the relaxation steps of Q1 are less than that of 
Q5. Moreover, our relaxation algorithm can return relevant answers incrementally and 
users can stop the relaxation process at any time when they are satisfied with the an-
swers generated.  

7   Conclusion  

This paper addressed the issue of relaxing the user query on RDF databases and com-
puting most relevant answers. We measured the similarity degrees of the relaxed 
queries with regard to the user query and designed the algorithm to retrieve the most 
relevant answers as soon as possible. We characterized a type of unnecessary relaxed 
queries which do not contribute to the final results and proposed the method to prune 
them from the query relaxation graph. The experiments validated our approach. A 
further optimisation is subject to our future work such as multiple query optimisation 
on a sequence of relaxed queries by reusing the intermediate results of selection or 
join operations.  
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