
N. Jamali et al. (Eds.): CCMMS 2007, MMAS 2006, LSMAS 2006, LNAI 5043, pp. 92–106, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Team Formation Strategies in a Dynamic Large-Scale
Environment

Chris L.D. Jones and K. Suzanne Barber

The University of Texas at Austin
Laboratory for Intelligent Processes and Systems

1 University Station C5000, Austin, TX, 78712-0240
{coldjones,barber}@lips.utexas.edu

Abstract. In open markets and within business and government organizations,
fully autonomous agents may form teams to work on large, multifaceted
problems. Factors such as uncertain information, bounded rationality and
environmental dynamicism can lead to sudden, unforeseen changes in both
solution requirements and team participation. Accordingly, this paper proposes
and examines strategies for team formation strategies in a large-scale, dynamic
environment. Strategies control how agents select problems to work on and
partners to work with. The paper includes an experimental evaluation of the
relative utility of each strategy in an increasingly dynamic environment, and
concludes that a strategy which combines greedy job selection with adaptive
team selection performs best in highly dynamic environments. Alternatively,
greedy job selection combined with selecting smaller teams performs best in
environments with little to no dynamicism.

Keywords: Coalition formation, Task selection, Partner selection, Fault-tolerance,
Dynamic environments, Large-scale environments, Request for Proposal.

1 Introduction

Individual agents and multi-agent systems increasingly represent mature technologies,
capable of competently solving problems in their specific domains and operating with
a high degree of autonomy. Therefore, as computing becomes more ubiquitous and
agents consequently become more pervasive, there is an increasingly high probability
that an agent exists to help solve any given problem.

These trends, combined with the basic Request For Proposal domain described in
[1] suggests the potential for a huge electronic marketplace, where a constant stream
of questions or problems is handled by thousands or millions of humans and self-
interested agents, each taking on different roles such as general contractor or service
provider, each buying or selling skills, expertise, and other services as needed. The
potential for such markets arises within government institutions, the military, and
business corporations as well.

While many job requests submitted to such a market might be trivial, many are
likely to be complex, requiring multiple skills from multiple providers. Furthermore,

 Team Formation Strategies in a Dynamic Large-Scale Environment 93

many of these problems are likely to be novel, undertaken with incomplete
information about the problem and a limited understanding of the solution
requirements, both of which will almost certainly change as the problem is worked
on. Real world problems also occur in dynamic environments, where unexpected
changes occur to both the problem and the personnel involved in solving it.

In this type of market environment, many issues arise. Even given a way to
accurately determine which agents possess what skill set, how can an agent seeking to
maximize its own utility select the best jobs to work on, and the best agents to partner
with? How do the partners available to work on different possible jobs influence
which job an agent should pursue? How should a team of agents be structured to
handle difficulties such as sudden changes to a problem, or defections from the team?
And how can these varying requirements be balanced against each other?

One initial attempt at addressing this combination of factors may be found in [2],
which draws on previous work in the field in areas such as task selection [3, 4, 5],
coalition formation in dynamic environments [6, 7], bottom-up team formation
between autonomous agents [8], and team formation in environments with imperfect
information [9, 1, 10]. This paper therefore continues the work started in [2] and
creates an experimental framework that simulates a decentralized problem-solving
marketplace within a very large organization. More particularly, the paper introduces
a set of strategies for team formation between autonomous agents in a large-scale,
dynamic, decentralized environment, and seeks to determine the relative performance
of different classes of agents utilizing these strategies as the rate of change
(“dynamicism”) of jobs in the environment increases.

This paper is organized as follows. In section two, it discusses related work in the
multi-agent systems community. In section three, it describes several job and team
selection heuristics, and how these heuristics combine to form team formation
strategies in a dynamic environment. In section four, it describes the setup and
parameters of a simulation to test the relative utility of the proposed strategies. In
section five it discloses the results of the simulation, and analyzes those results.
Finally, section six suggests several ideas to expand upon these strategies, and
investigate their utility in different settings.

2 Related Work

Coalition formation has been studied both inside and outside of the multi-agent
systems community for some time. Some research has focused on the formation of
optimal coalitions by a centralized authority, [11] while other research has focused on
the formation of coalitions to solve jobs by a hierarchical structure of agents [3]. Still
further research has been focused coalition formation between selfless agents in a
dynamic [7] or open environment, [5] or between agents willing to delegate their
autonomy to a centralized controller or consensus decisions among groups of agents
[12].

However, such research has limited applicability to decentralized selfish agents,
which may be unwilling or unable to take direction from a centralized authority.
Other work has therefore examined selfish agents operating in various environments.
Research has focused on building coalitions of agents who lack a common view of a

94 C.L.D. Jones and K.S. Barber

coalition’s value, [19] as well as coalitions developed between rationally-bounded
agents, [10] or agents who lack full knowledge about the abilities of potential partner
agents [11]. Others have examined the interaction between agents in market
environments [13]. Such research frequently focuses on relatively small groups of
agents, although still other research has focused on the use of congregations, [14]
adaptive social networks, [15] and even physics-motivated mechanisms to allow large
groups of agents to form large, mutually beneficial coalitions [16]. It should be noted,
however, that such work is frequently focused on only one possible task at a time, or
does not occur in dynamic, unpredictable environments.

In contrast, Klusch and Gerber focus on the formation of coalitions of agents to
work on multiple possible tasks in dynamic environments, by utilizing a simulation-
based scheme to determine the utility of various potential coalitions in a given state of
a dynamic environment [6]. This work allows for complex negotiations between the
different potential partners of a coalition, and takes risk vs. reward considerations into
account when considering different potential coalitions. However, it differs
substantially from the work below in that the coalitions formed are not adaptive once
formed, nor are jobs selected based on the potential teams available to solve a given
job.

Tambe’s work is likewise relevant, wherein selfish agents are collected into a team
by an initial authority, often a human programmer. The agents may then be delegated
by software algorithms into roles which pursue various sub-goals critical to the
overall mission [17]. As will be shown in further detail below, the strategies described
below build on this research by allowing agents to form adaptive teams without the
need for an initial organizing authority.

In addition, Soh and Tsatsoulis have focused on the possibility of hastily-formed
coalitions in response to new problems or events [18]. This research forms the basis
for one of our heuristics for job selection, as will be described in further detail below.

3 Team Formation Strategies

This paper introduces a set of strategies for team formation between fully autonomous
agents in a large-scale, dynamic, unpredictable environment, which is described with
a simple, but widely applicable model similar to that used in [15]. Consider a set of
general tasks T = {Ti}, where 1 ≤ i ≤ α. Each general task Ti represents a type of job
that an agent might carry out: if T is limited to tasks involved in building construction,
for example, T1 might be building a driveway, while T2 might be constructing a roof,
and so on. Each general task Ti is therefore a set of task instances {Tij}, where each Tij
is a specific instance of general task Ti associated with a job Jj, and where each job Jj
is part of a set of jobs J = {Jj}, where 1 ≤ j ≤ β. For example, if T represents the set of
all tasks associated with building a building, and if J is the set of all buildings under
construction, then T11 might be building a driveway at a first building under
construction, T12 might be building a driveway at a second building under
construction, T21 is constructing a roof at the first building, and so on.

Each job Jj in set J contains a potential task instance Tij of every possible task Ti in
T, but only a subset of these tasks need to be completed to finish the job. Again,
returning to the building example, every building in existence could conceivably have

 Team Formation Strategies in a Dynamic Large-Scale Environment 95

a swimming pool, or a loading dock, or a conference room, but in practice factories
and offices rarely have swimming pools, and houses rarely have loading docks.
Accordingly, within each job Jj, task instances Tij are separated into a set of active
task instances ActiveTasksj, all of which must be completed for the job to be finished,
and a set of inactive task instances InactiveTasksj, which are irrelevant to the job’s
completion status. For any job Jj, ActiveTasksj ∪ InactiveTasksj = {Tij} for all i, and
ActiveTasksi ∩ InactiveTasksi = ∅.

Continuing on, a set of skills S = {Si} and a set self-interested of agents A = {Ak}
are introduced, where once again 1 ≤ i ≤ α and 1 ≤ k ≤ χ. Each skill Si is associated
with a general task Ti, and may be used to work on and eventually complete any task
instance Tij in Ti. Furthermore, each agent Ak has an associated set of skills
AgentSkillsk that Ak is capable of doing, where AgentSkillsk is a subset of S. Each
agent Ak has the same number of skills, and each skill in S equally common among
agents in A.

Each task instance Tij has an associated TaskLengthij, where 1 ≤ TaskLengthij ≤ γ.
To complete task instance Tij, an agent Ak must use an appropriate skill Si on the task
instance for TaskLengthij timesteps. Accordingly, function C(Tij) is defined as a value
ranging from 0 to TaskLengthij, and represents the amount of time that one or more
agents have worked on Tij. Different tasks are worth the same amount of credit, but
agents earn rewards proportional to the TaskLengthij of any task instance Tij they have
finished. For example, an agent that completes a task over five timesteps earns five
credit points, while an agent that completes a task over eight timesteps earns eight
credit points.

To simulate the end results of uncertain information, bounded agent rationality and
dynamic, unpredictable environments, jobs in J are dynamic and unpredictable. More
particularly, task instances Tij in Jj are randomly moved between ActiveTasksi and
InactiveTasksi on a periodic basis. This may be best understood as a sudden change to
a job’s solution requirements. For example, despite the best efforts of project
management and requirements engineering, software development projects frequently
change their required functionality in the middle of development, making some
already-completed portions of the project obsolete and requiring new modules to be
built from scratch. Similarly, task instances Tij which are moved from InactiveTasksj
to ActiveTasksj must be done from scratch, while only active task instances which
have been fully completed are immune from being moved to InactiveTasksj.
(Admittedly, it is not unheard-of for fully-completed portions of many different types
of projects to be discarded, but it is also reasonable to argue that work which has been
fully completed is often used in some way, somehow, whereas partially completed
work is often abandoned entirely.) Note that the number and types of tasks that must
be completed for an individual job to be completed is therefore continually changing.

3.1 Agent Strategies

Accordingly, a set of strategies for bottom up team formation between agents in
dynamic environments is defined as follows. A strategy is a combination of a job
selection heuristic that orders potential jobs in J, and a team selection heuristic that
ranks a set of potential teams capable of completing a specific job. More particularly,
self-selected foreman agents from A each utilize a job selection heuristic to select one

96 C.L.D. Jones and K.S. Barber

or more top-ranked jobs from J, depending on if one or more jobs are tied for the top
ranking. This creates a set of jobs P = {Jw}.

For each Jw in P, each foreman agent then generates ε agent teams capable of
solving Jw. More specifically, these agent teams each include the foreman agent which
generated the team, and one or more other agents Ak, such that the combined skills of
all the agents in the team are capable of completing the task instances in ActiveTasksw
of associated job Jw. These teams thus form a set of teams Q = {Teamx}. Furthermore,
each agent Ak in a Teamx is associated with a set AssignedInstanceskw, which, after a
team has been formed, represents the set of task instances Tiw that each agent Ak in
the team is assigned to complete in job Jw. Teams are currently assembled via a semi-
random approach that seeks to satisfy the various solution requirements one at a time,
but nearly any constraint satisfaction solver could also be used. Once Q is generated,
each foreman agent uses a team selection heuristic to select the top-ranked team from
Q, which it then attempts to form through protocols described in further detail below.

The first job selection heuristic is a Greedy heuristic (Eqn. 1) that maximizes the
expected reward from a job Jj. While a naive heuristic would simply choose jobs that
require the greatest amount of work (and thus the greatest amount of associated
reward), the Greedy heuristic takes the dynamicism of the environment into account
by giving double weight to portions of a task that have already been completed,
thereby giving preferential treatment to large jobs that are less likely to undergo
changes before the job is complete.

Greedy heuristic: max
J j ∈J

(TaskLengthij +C(Tij))
Tij ∈AssignedInstanceskj

∑ (1)

The second job selection heuristic is a Lean heuristic (Eqn. 2) that minimizes the
amount of work needed to complete a job, thereby letting agents opportunistically
form teams to quickly solve simpler problems, similar to [22].

Lean heuristic: min
J j ∈J

(TaskLengthij − C(Tij))
Tij ∈AssignedInstanceskj

∑ (2)

Note that these mechanisms stand in contrast to previous work in task selection
under uncertain conditions, such as Hannah and Mouaddib [4], where a problem’s
uncertain elements are explicitly modeled probabilities. Instead, the heuristics
described here operate under any level of uncertainty, from any source. However,
future work is possible where the above heuristics are adaptive based on a known or
suspected level of uncertainty in the environment, or in a specific problem.

The first team selection heuristic is a Null heuristic that does not rank the teams,
but rather keeps teams ordered according to how the strategy’s job selection heuristic
ranked the jobs associated with each team. This effectively randomly selects one of
the teams generated to handle the top-ranked job from P.

The second team selection heuristic is a Fast heuristic (Eqn. 3) that minimizes the
maximum amount of work that any member of a Teamx needs to complete.
Alternatively, the Fast heuristic could be said to minimize the amount of time needed
before the entire team has completed work on associated job Jw.

 Team Formation Strategies in a Dynamic Large-Scale Environment 97

Fast heuristic: minx max
Ak ∈Teamx

(TaskLengthiw − C(Tiw))
Tiw ∈AssignedInstanceskw

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (3)

The third team selection heuristic is a Redundant heuristic (Eqn. 4) that seeks to
maximize the number of redundant skills in Teamx. In other words, the Redundant
heuristic prefers teams with multiple agents capable of working on active task
instances, thereby increasing the ability of a team to deal with the defection of an
agent.

Redundant:

maxx AgentSkillsk ∩ ActiveTasksw

Ak ∈Teamx

∪ (4)

The fourth team selection heuristic is an Auxiliary heuristic that seeks to maximize
the number of auxiliary skills in Teamx. In other words, the Auxiliary heuristic (Eqn.
5) tries to maximize the combined skills of a team that are not immediately applicable
to task instances in ActiveTasksw, thereby increasing the ability of the team to deal
with newly added task instances.

Auxiliary:

maxx AgentSkillsk ∩ InactiveTasksw

Ak ∈Teamx

∪ (5)

Note that, intuitively, the Fast, Redundant, and Auxiliary heuristics each prefer a
greater number of partners in a team, since this increases the amount of work that can
be done in parallel and the number of unused skills for each partner. Alternatively, the
MinPartner heuristic (Eqn. 6) prefers teams with the smallest number of partners,
thereby implicitly using a greater number of skills per partner and thus a greater
amount of potential profit per partner.

MinPartner heuristic: minx |TeamX −1 |[] (6)

Each of these five team selection heuristics is combined with each of the job
selection heuristics for experimental comparisons, as described in further detail
below.

4 Experimental Setup

To evaluate the relative utility of each of the team formation strategies described
above, these strategies are tested in a simulation environment wherein agents compete
to form teams and solve jobs according to the described strategies. More particularly,
a set of agents is divided into ten different classes, each of which contains an identical
number of agents, and each of which implements a different team formation strategy.
By assigning agents credit for completing task instances, the relative utility of each
strategy may be determined by comparing the average amount of credit earned by
each class of agents. Furthermore, by varying the rate of change of the solution
requirements for different jobs (“dynamicism”), the relative performance of these
strategies in a dynamic environment can be determined.

98 C.L.D. Jones and K.S. Barber

Agents in set A operate in a simulation environment that is divided into discrete
timesteps, or rounds. During each round, each agent may coordinate with other agents
in A to form teams, or, if it is part of a team, may work on a task instance associated
with a specific job in J. Each agent in A can belong to, at most, one team at a time,
and each team works on only one job at a time. This is arguably a simplistic
assumption, since real world providers of valuable skills or expertise frequently
multitask between different projects at the same time. However, many problem
solutions require complete focus from the workers involved, or security or other
constraints may require exclusivity. Furthermore, requiring each agent to be part of
only one team at a time allows us to clearly delineate where an agent is making a
contribution. Determining to what degree an agent’s partial efforts require task
reassignments touches on complex multidimensional trust issues [19], and as such is
too complex to be addressed here.

During each round, an agent Ak may work on a job Jj by utilizing a skill Si found in
AgentSkillsk to work on a task instance Tij found in set ActiveTasksj. Each agent
utilizes only one skill in any given round. After Ak has worked on Tij for a given
number of rounds, Tij is completed.

Credit is distributed to agents when a job Jj is completed, which, in turn, occurs
when all task instances in ActiveTasksj are completed. Upon job completion, credit
points for each active, completed task are given to the agent which completed the
task. As described above, these credit points are proportional to the length of the
completed task (e.g. a completed task of length five would give five credit points). No
credit is given for work on task instances that were moved to InactiveTasksj before
completion, or to agents who worked on, but did not finish, a completed task instance.
Accordingly, agents in the simulation may be said to work in a “pay-for-play”
environment, where credit is distributed directly to those who have fully completed a
given job.

Once a job Ji has been completed and paid out its credit, it is removed from J and a
new Jj is created and inserted in J. Each new Jj starts with the same number of task
instances randomly placed in ActiveTasksj, and task instance in the new job must be
completed from scratch.

As described above, the simulation incorporates unpredictability by shuffling task
instances between ActiveTasksj and InactiveTasksj. More particularly, each round a
given percentage of jobs in J are randomly selected to be shuffled. This percentage is
referred to as the dynamicism of the simulation. Each task instance in each selected
job Jj has a random chance of being selected for shuffling between ActiveTasksj and
InactiveTasksi, such that, on average, one task instance per selected job is shuffled.
However, as described above, task instances that have been fully completed cannot be
moved from ActiveTasksj.

4.1 Team Formation

As described above, teams are formed by a foreman agent. The opportunity to act as a
foreman agent is randomly distributed among agents, such that any given round of the
simulation a given percentage of agents will have the opportunity to form teams.
Once the foreman agent has used its associated team formation strategy to select a
potential team Teamx, the foreman sends proposal messages to potential partners in

 Team Formation Strategies in a Dynamic Large-Scale Environment 99

Teamx indicating the AssignedInstanceskw that a potential partner would work on.
Note that, to encourage agents to form teams, |AgentSkillsk| is constant for all k, and
the initial value of |ActiveTasksi| > |AgentSkillsk|.

When these proposal messages are received, each agent ranks the
AssignedInstanceskw it is currently working on (if any) against one or more proposed
AssignedInstanceskw using the job selection heuristic associated with that class of
agent. If the agent finds that its current assigned tasks are preferable to any of the
proposals, it continues working on its current job, and the lack of a response is taken
as a decline message by the foreman which sent the proposal. If the agent receives a
proposal it finds more attractive than its current job assignment, the agent returns an
accept message to the foreman which sent the proposal.

Accordingly, it is noted that agents may stop work on their current assignments at
any time upon receiving a more attractive proposal (or, if they become a foreman
agents, upon finding a more attractive job to work on). This obviously runs counter to
a significant amount of work which his been done in contract negotiation and
breaking contracts [20]. However, such work usually involves complete information,
and/or occurs between a relatively small number of agents. In contrast, the scheme
described here allows for agents which are better able to take advantage of new
opportunities, and better simulates many environments where contracts are largely
nonexistent or unenforceable (i.e. informal task forces and many Internet
transactions). This lack of commitment between agents, combined with the
dynamicism and unpredictability of jobs within the simulation, also makes it desirable
for agents to assemble teams that can survive agent defections and changes in the task
instances required to finish the job.

If the foreman does not receive accept messages back from all potential partners,
the team formation process has failed and the foreman, as well as the agents which
accepted the team proposal, must wait for new team proposals or for their next chance
to be a foreman. If the foreman receives accept messages from all of its potential
partners, the team is successfully formed and the foreman claims Jw, thereby making
it off limits to other teams. Jobs may be claimed only by foremen who have
successfully formed full teams. Note that during this process, other agents may be
attempting to assemble a team to handle the same job, thereby simulating a realistic
“churn” in which a degree of effort is unavoidably lost to competition. Jobs are
claimed by means of a lock mechanism which prohibits “ties” between agents trying
to claim a job.

Once agents have formed Teamx, they begin to work on the task instances
associated with Jw. Non-foreman agents may work on Jw until they have completed all
task instances in AssignedInstanceskw. In contrast, the foreman agent may stay with Jw
until the job is complete, even if the foreman has completed its assigned tasks. While
Jw is incomplete, if a non-foreman agent defects from the job, or a new task instance
is moved into ActiveTasksw set, the foreman is responsible for finding an agent to
work on the new or abandoned task instance. The foreman may therefore assign the
new task instance to the AssignedInstanceskw set of itself or a partner agent, in a
manner similar to the team reformation strategies in [17]. If no team member has the
skill required to handle the new task, the team has failed and dissolves with the job
uncompleted. A new team which later tries to claim the job must begin the job from

100 C.L.D. Jones and K.S. Barber

scratch. It therefore follows that teams must handle defections and new task instances
to be successful.

Furthermore, it should be noted that a balance must be achieved when forming a
new team with regard to the number of agents recruited. Because only one decline
message will prohibit the formation of a new team, or will break an existing team
seeking to recruit an outside member, larger teams are more difficult to form.
Furthermore, team members running the Greedy job selection heuristic are more
likely to defect from a larger team, since, on average, they will be assigned less work
and thus have less opportunity for profit. However, larger teams are better able to
handle agent defections and new task instances within the team, making them more
stable once formed.

Table 1. Experimental parameters

Parameter Value
Number of classes 10
Agents per class 250
Per round chance of agent acting as foreman 1%
Jobs 1000
|T| 20
|AgentSkills| 5
Initial size of |ActiveTasks| 10
Range of TaskLength 1 to 10 rounds
Credit received per round of completed task instance 1
Number of potential teams examined per top-rank
job

15

Dynamicism range 0% to 100%, 25% increment
Number of rounds per simulation 2500
Number of simulations per dynamicism step 20

Experiments were conducted using the basic parameters in Table 1, which were

selected to broadly model a problem-solving market internal to an organization such
as a large corporation or a moderately large number of freelance agents. The
experiments tested all strategies against each other simultaneously to see which
strategies were most successful in a field of heterogeneous agents. More particularly,
a two-factor ANOVA analysis was carried out, and the Fisher LSD method was used
to determine significant differences between different strategies at the same
dynamicism level.

5 Results and Discussion

Figure 1 displays the average credit earned by each agent class at different levels of
dynamicism, along with standard deviation bars for each value. A cursory
examination of the data indicates that the credit earned by each class decreased as the
level of dynamicism in the environment increased, and that while GreedyMinPartners
was the most successful strategy for 0% and 25% dynamicism, GreedyAuxiliary was

 Team Formation Strategies in a Dynamic Large-Scale Environment 101

Fig. 1. Strategy performance as a function of dynamicism

the most successful strategy for all other dynamicism levels. ANOVA analysis (alpha
= .05) indicates that the strategy selection causes statistically significant differences in
the results.

Furthermore, Fisher LSD tests (alpha = .05 for all comparisons below) indicate that
the top-performing strategy for each dynamicism level was statistically significant
from all other strategies, with the exception of 50% dynamicism, where
GreedyAuxiliary and GreedyFast were statistically significant from all other strategies
but not from each other, and 100% dynamicism, where GreedyAuxiliary was
significantly better than all other strategies, save GreedyFast.

Similar results can be seen when examining the aggregate performance of each
team selection heuristic, regardless of the job selection heuristic it was paired with: at

102 C.L.D. Jones and K.S. Barber

0% dynamicism, the MinPartner performed significantly better than all other
heuristics, and better than all but the Null heuristic at 25% dynamicism. At 50%
dynamicism, the Auxiliary heuristic performed significantly better than all other
strategies save the Null heuristic, while at 75%, and 100%, the Auxiliary heuristic
performed significantly better than all heuristics but the Fast heuristic. Comparing the
aggregate performance of the job selection heuristics, the Greedy job selection
heuristic performed significantly better than the Fast heuristic at all dynamicism
levels. Note that this differs from the results found in [2], where credit could
sometimes be earned from unsuccessfully completed jobs.

To better understand these results, it is helpful to know how successful different
classes are at forming teams, as shown in Figure 2 as the ratio between the number of
team formation requests by a foreman and the number of teams successfully formed.
Furthermore, Figure 3 displays the average success rate of formed teams at
completing an assigned job as a function of both agent class and dynamicism level.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

GN GF GR GA GM
P LN LF LR LA LM

P

0

25

50

75

100

Fig. 2. Ratio of teams successfully formed by class and dynamicism level

As can be seen in Figure 2, certain patterns are immediately obvious. Agents using
Lean job selection strategies are significantly more successful at forming teams than
Greedy job selection strategies, except at 0% dynamicism, when job requirements do
not change. This may be due to the fact that, in dynamic environments, a subset of
jobs will have a lower than average number of tasks, which are more attractive to
agents using the Lean job selection heuristic, thereby improving the probability that
these agents will join a team.

Furthermore, agents using the MinPartner team selection heuristic are far more
likely to successfully form a team. As discussed below, this is likely due in part to the
fact that a smaller number of partners means a smaller number of potential rejections,
any one of which can break team formation. In addition, a smaller number of agents
means a higher number of tasks assigned to each agent, and accordingly, a greater
amount of profit for each agent.

 Team Formation Strategies in a Dynamic Large-Scale Environment 103

Fig. 3. Teams successful at completing jobs by class and dynamicism level

Conversely, Figure 3 shows that, although agents which utilize the MinPartners
team selection heuristic are the most successful at forming teams, they are
consistently the least successful agents at forming teams which successfully complete
their assigned jobs. Alternatively, agents which utilize the Fast, Redundant, and
Auxiliary heuristics are consistently the most successful at forming successful teams.
In fact, ANOVA and LSD analysis (alpha = .05) indicates that, although agents
utilizing these three heuristics do not have success rates that are always significantly
different from each other, they are almost always significantly different from agents
using the Null and MinPartner heuristics. Again, as discussed above, this is likely due
to the fact that teams formed according to the Fast, Redundant and Auxiliary
heuristics are more likely to have team members with unused skills that can be used in

104 C.L.D. Jones and K.S. Barber

the event that another team member leaves the team, or a new task is added to the list
of ActiveTasks.

This result suggests that agents which can recognize a team with significant
redundant or adaptable characteristics may be more successful than agents which
cannot. In other words, agents which can recognize a proposed team that has a lower
offered reward but a greater opportunity for success because of its redundant or
auxiliary resources may be able to earn more credit.

It is also noted that, although agents using the Lean job selection heuristic are
significantly more successful at both forming teams and successfully completing jobs,
these agents are generally less successful than agents which use the Greedy job
selection heuristic. This may be in part due to the fact that Lean agents generally
select jobs with far less work involved, and thus earn far less credit per job.
Accordingly, it may be possible to determine under what circumstances a Lean vs.
Greedy job selection heuristic is preferred, or even to find an optimal heuristic which
combines the two considerations, based on environmental characteristics.

6 Conclusions and Future Work

This paper presented a set of strategies for team formation between fully autonomous
agents in a large-scale dynamic environment. Strategies prioritized which jobs and
partners each agent selected, and were composed of a combination of one of two job
selection heuristics and one of five team selection heuristics:

• Greedy job selection, which selects jobs according to profit potential

• Lean job selection, which selects jobs for minimal time to completion

• Null team selection, which defers to the associated job selection heuristic

• Fast team selection, which selects teams for minimal time to completion

• Redundant team selection, which selects teams to best handle partner failures

• Auxiliary team selection, which selects teams most capable of adapting to
new tasks

• Minimum Partner team selection, which selects teams with the fewest
number of partners

The paper then analyzed the relative performance of the strategies, as executed by
different classes of agents, in an experimental test bed. Results indicated that a
strategy combining the Greedy and Auxiliary heuristics performed the best in highly
dynamic environments, while a strategy combining the Greedy and MinPartner
heuristics performed better in environments with low or no dynamicism.

Furthermore, the paper showed that, although agents using the MinPartner heuristic
were more successful at forming teams, these teams were significantly less successful
at completing jobs than teams formed by agents using the Fast, Redundant, and
Auxiliary team selection heuristics.

This paper therefore examined an unpredictable, dynamic domain of independent
heterogeneous agents, and proved which of a given set of strategies for team

 Team Formation Strategies in a Dynamic Large-Scale Environment 105

formation best maximized agent utility in such a domain. These strategies work with
very large groups of agents (>2500) and may potentially be applied to request for
proposal (RFP) environments where teams of autonomous agents continually seek to
solve dynamic problems by forming multi-skilled teams. These market environments
potentially include Internet-wide open markets, and markets internal to large
organizations such as corporations and government agencies.

A number of possible avenues of further investigation suggest themselves. One
possibility is to modify the mechanism by which agents decide between joining
potential teams; agents may be more successful if they can balance the reward a team
offers for membership against that team’s ability to adapt to change. Other potential
work involves determining in what circumstances a Lean job selection heuristic is
preferable to a Greedy job selection heuristic, and potentially finding an optimal
balance between the two.

Acknowledgments. This research is sponsored in part by the Defense Advanced
Research Project Agency (DARPA) Taskable Agent Software Kit (TASK) program,
F30602-00-2-0588. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation
thereon.

References

1. Kraus, S., Shehory, O., Taase, G.: Coalition Formation with Uncertain Heterogeneous
Information. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1–8. ACM Press, New York (2003)

2. Jones, C., Barber, K.: Bottom-up Team Formation Strategies in a Dynamic Environment.
In: AAMAS 2007 Workshop on Coordination and Control in Massively Multiagent
Systems, pp. 60–72. ACM Press, New York (2007)

3. Abdallah, S., Lesser, V.: Organization-Based Cooperative Coalition Formation. In:
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pp. 162–168. ACM Press, New York (2004)

4. Hanna, H., Mouaddib, A.: Task Selection Problem Under Uncertainty as Decision-making.
In: Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1303–1308. ACM Press, New York (2002)

5. Shehory, O., Kraus, S.: Methods for Task Allocation via Agent Coalition Formation.
Artificial Intelligence 101, 165–200 (1998)

6. Klusch, M., Gerber, A.: Dynamic Coalition Formation among Rational Agents. IEEE
Intelligent Systems 17, 42–47 (2002)

7. Nair, R., Tambe, M., Marsella, S.: Team Formation for Reformation. In: Proceedings of
the AAAI Spring Symposium on Intelligent Distributed and Embedded Systems (2002)

8. Rathod, P., desJardins, M.: Stable Team Formation Among Self-Interested Agents. In:
Working Notes of the AAAI 2004 Workshop on Forming and Maintaining Coalitions in
Adaptive Multiagent Systems. AAAI, Menlo Park (2004)

9. Ketchpel, S.: Forming Coalitions in the Face of Uncertain Rewards. In: Proceedings of the
Twelfth National Conference on Artifical Intelligence, pp. 414–419. AAAI, Menlo Park
(1994)

106 C.L.D. Jones and K.S. Barber

10. Sandholm, T., Lesser, V.: Coalitions among Computationally Bounded Agents. Artificial
Intelligence 94, 99–137 (1997)

11. Sen, S., Dutta, P.: Searching for Optimal Coalition Structures. In: Proceedings of the
Fourth International Conference on Multi Agent Systems, pp. 287–292. ACM, New York
(2000)

12. Martin, C.: Adaptive Decision Making Frameworks for Multi-Agent Systems. Ph.D.
Thesis, University of Texas, Austin, TX (2001)

13. Wellman, M., Wurman, P.: Market-Aware Agents for a Multiagent World. Robotics and
Autonomous Systems 24, 115–125 (1998)

14. Brooks, C., Durfee, E., Armstrong, A.: An Introduction to Congregating in Multiagent
Systems. In: Proceedings of the Fourth International Conference on Multi Agent Systems,
pp. 79–86. MIT Press, Cambridge (2000)

15. Gaston, M., desJardins, M.: Agent-Organized Networks for Dynamic Team Formation. In:
Proceedings of the fourth international joint conference on Autonomous Agents and
Multiagent Systems, pp. 230–237. ACM Press, New York (2005)

16. Lerman, K., Shehory, O.: Coalition Formation for Large-Scale Electronic Markets. In:
Proceedings of the Fourth International Conference on Multi Agent, pp. 167–174. MIT
Press, Cambridge (2000)

17. Tambe, M., Pynadath, D., Chauvat, N.: Building Dynamic Agent Organizations in
Cyberspace. IEEE Internet Computing 4, 65–73 (2000)

18. Soh, L., Tsatsoulis, C.: Satisficing Coalition Formation among Agents. In: Proceedings of
the first international joint conference on Autonomous Agents and Multiagent Systems, pp.
1062–1063. ACM Press, New York (2002)

19. Griffiths, N.: Task Delegation using Experience-Based Multi-Dimensional Trust. In:
Proceedings of the fourth international joint conference on Autonomous Agents and
Multiagent Systems, pp. 489–496. ACM Press, New York (2005)

20. Faratin, P., Klein, M.: Automated Contract Negotiation and Execution as a System of
Constraints. MIT, Cambridge (2001)

	Team Formation Strategies in a Dynamic Large-Scale Environment
	Introduction
	Related Work
	Team Formation Strategies
	Agent Strategies

	Experimental Setup
	Team Formation

	Results and Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

