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Abstract. In open markets and within business and government organizations, 
fully autonomous agents may form teams to work on large, multifaceted 
problems. Factors such as uncertain information, bounded rationality and 
environmental dynamicism can lead to sudden, unforeseen changes in both 
solution requirements and team participation. Accordingly, this paper proposes 
and examines strategies for team formation strategies in a large-scale, dynamic 
environment. Strategies control how agents select problems to work on and 
partners to work with. The paper includes an experimental evaluation of the 
relative utility of each strategy in an increasingly dynamic environment, and 
concludes that a strategy which combines greedy job selection with adaptive 
team selection performs best in highly dynamic environments. Alternatively, 
greedy job selection combined with selecting smaller teams performs best in 
environments with little to no dynamicism. 
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1   Introduction 

Individual agents and multi-agent systems increasingly represent mature technologies, 
capable of competently solving problems in their specific domains and operating with 
a high degree of autonomy. Therefore, as computing becomes more ubiquitous and 
agents consequently become more pervasive, there is an increasingly high probability 
that an agent exists to help solve any given problem.  

These trends, combined with the basic Request For Proposal domain described in 
[1] suggests the potential for a huge electronic marketplace, where a constant stream 
of questions or problems is handled by thousands or millions of humans and self-
interested agents, each taking on different roles such as general contractor or service 
provider, each buying or selling skills, expertise, and other services as needed. The 
potential for such markets arises within government institutions, the military, and 
business corporations as well. 

While many job requests submitted to such a market might be trivial, many are 
likely to be complex, requiring multiple skills from multiple providers. Furthermore, 
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many of these problems are likely to be novel, undertaken with incomplete 
information about the problem and a limited understanding of the solution 
requirements, both of which will almost certainly change as the problem is worked 
on. Real world problems also occur in dynamic environments, where unexpected 
changes occur to both the problem and the personnel involved in solving it.  

In this type of market environment, many issues arise. Even given a way to 
accurately determine which agents possess what skill set, how can an agent seeking to 
maximize its own utility select the best jobs to work on, and the best agents to partner 
with? How do the partners available to work on different possible jobs influence 
which job an agent should pursue? How should a team of agents be structured to 
handle difficulties such as sudden changes to a problem, or defections from the team? 
And how can these varying requirements be balanced against each other? 

One initial attempt at addressing this combination of factors may be found in [2], 
which draws on previous work in the field in areas such as task selection [3, 4, 5], 
coalition formation in dynamic environments [6, 7], bottom-up team formation 
between autonomous agents [8], and team formation in environments with imperfect 
information [9, 1, 10]. This paper therefore continues the work started in [2] and 
creates an experimental framework that simulates a decentralized problem-solving 
marketplace within a very large organization. More particularly, the paper introduces 
a set of strategies for team formation between autonomous agents in a large-scale, 
dynamic, decentralized environment, and seeks to determine the relative performance 
of different classes of agents utilizing these strategies as the rate of change 
(“dynamicism”) of jobs in the environment increases. 

This paper is organized as follows. In section two, it discusses related work in the 
multi-agent systems community. In section three, it describes several job and team 
selection heuristics, and how these heuristics combine to form team formation 
strategies in a dynamic environment. In section four, it describes the setup and 
parameters of a simulation to test the relative utility of the proposed strategies. In 
section five it discloses the results of the simulation, and analyzes those results. 
Finally, section six suggests several ideas to expand upon these strategies, and 
investigate their utility in different settings. 

2   Related Work 

Coalition formation has been studied both inside and outside of the multi-agent 
systems community for some time. Some research has focused on the formation of 
optimal coalitions by a centralized authority, [11] while other research has focused on 
the formation of coalitions to solve jobs by a hierarchical structure of agents [3]. Still 
further research has been focused coalition formation between selfless agents in a 
dynamic [7] or open environment, [5] or between agents willing to delegate their 
autonomy to a centralized controller or consensus decisions among groups of agents 
[12].  

However, such research has limited applicability to decentralized selfish agents, 
which may be unwilling or unable to take direction from a centralized authority. 
Other work has therefore examined selfish agents operating in various environments. 
Research has focused on building coalitions of agents who lack a common view of a 
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coalition’s value, [19] as well as coalitions developed between rationally-bounded 
agents, [10] or agents who lack full knowledge about the abilities of potential partner 
agents [11]. Others have examined the interaction between agents in market 
environments [13]. Such research frequently focuses on relatively small groups of 
agents, although still other research has focused on the use of congregations, [14] 
adaptive social networks, [15] and even physics-motivated mechanisms to allow large 
groups of agents to form large, mutually beneficial coalitions [16]. It should be noted, 
however, that such work is frequently focused on only one possible task at a time, or 
does not occur in dynamic, unpredictable environments.  

In contrast, Klusch and Gerber focus on the formation of coalitions of agents to 
work on multiple possible tasks in dynamic environments, by utilizing a simulation-
based scheme to determine the utility of various potential coalitions in a given state of 
a dynamic environment [6]. This work allows for complex negotiations between the 
different potential partners of a coalition, and takes risk vs. reward considerations into 
account when considering different potential coalitions. However, it differs 
substantially from the work below in that the coalitions formed are not adaptive once 
formed, nor are jobs selected based on the potential teams available to solve a given 
job. 

Tambe’s work is likewise relevant, wherein selfish agents are collected into a team 
by an initial authority, often a human programmer. The agents may then be delegated 
by software algorithms into roles which pursue various sub-goals critical to the 
overall mission [17]. As will be shown in further detail below, the strategies described 
below build on this research by allowing agents to form adaptive teams without the 
need for an initial organizing authority. 

In addition, Soh and Tsatsoulis have focused on the possibility of hastily-formed 
coalitions in response to new problems or events [18]. This research forms the basis 
for one of our heuristics for job selection, as will be described in further detail below. 

3   Team Formation Strategies 

This paper introduces a set of strategies for team formation between fully autonomous 
agents in a large-scale, dynamic, unpredictable environment, which is described with 
a simple, but widely applicable model similar to that used in [15]. Consider a set of 
general tasks T = {Ti}, where 1 ≤ i ≤ α. Each general task Ti represents a type of job 
that an agent might carry out: if T is limited to tasks involved in building construction, 
for example, T1 might be building a driveway, while T2 might be constructing a roof, 
and so on. Each general task Ti is therefore a set of task instances {Tij}, where each Tij 
is a specific instance of general task Ti associated with a job Jj, and where each job Jj 
is part of a set of jobs J = {Jj}, where 1 ≤ j ≤ β. For example, if T represents the set of 
all tasks associated with building a building, and if J is the set of all buildings under 
construction, then T11 might be building a driveway at a first building under 
construction, T12 might be building a driveway at a second building under 
construction, T21 is constructing a roof at the first building, and so on. 

Each job Jj in set J contains a potential task instance Tij of every possible task Ti in 
T, but only a subset of these tasks need to be completed to finish the job. Again, 
returning to the building example, every building in existence could conceivably have 
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a swimming pool, or a loading dock, or a conference room, but in practice factories 
and offices rarely have swimming pools, and houses rarely have loading docks. 
Accordingly, within each job Jj, task instances Tij are separated into a set of active 
task instances ActiveTasksj, all of which must be completed for the job to be finished, 
and a set of inactive task instances InactiveTasksj, which are irrelevant to the job’s 
completion status. For any job Jj, ActiveTasksj ∪ InactiveTasksj  = {Tij} for all i, and 
ActiveTasksi ∩ InactiveTasksi = ∅.  

Continuing on, a set of skills S = {Si} and a set self-interested of agents A = {Ak} 
are introduced, where once again 1 ≤ i ≤ α and 1 ≤ k ≤ χ. Each skill Si is associated 
with a general task Ti, and may be used to work on and eventually complete any task 
instance Tij in Ti. Furthermore, each agent Ak has an associated set of skills 
AgentSkillsk that Ak is capable of doing, where AgentSkillsk is a subset of S. Each 
agent Ak has the same number of skills, and each skill in S equally common among 
agents in A. 

Each task instance Tij has an associated TaskLengthij, where 1 ≤ TaskLengthij ≤ γ. 
To complete task instance Tij, an agent Ak must use an appropriate skill Si on the task 
instance for TaskLengthij timesteps. Accordingly, function C(Tij) is defined as a value 
ranging from 0 to TaskLengthij, and represents the amount of time that one or more 
agents have worked on Tij. Different tasks are worth the same amount of credit, but 
agents earn rewards proportional to the TaskLengthij of any task instance Tij they have 
finished. For example, an agent that completes a task over five timesteps earns five 
credit points, while an agent that completes a task over eight timesteps earns eight 
credit points. 

To simulate the end results of uncertain information, bounded agent rationality and 
dynamic, unpredictable environments, jobs in J are dynamic and unpredictable. More 
particularly, task instances Tij in Jj are randomly moved between ActiveTasksi and 
InactiveTasksi on a periodic basis. This may be best understood as a sudden change to 
a job’s solution requirements. For example, despite the best efforts of project 
management and requirements engineering, software development projects frequently 
change their required functionality in the middle of development, making some 
already-completed portions of the project obsolete and requiring new modules to be 
built from scratch. Similarly, task instances Tij which are moved from InactiveTasksj 
to ActiveTasksj must be done from scratch, while only active task instances which 
have been fully completed are immune from being moved to InactiveTasksj. 
(Admittedly, it is not unheard-of for fully-completed portions of many different types 
of projects to be discarded, but it is also reasonable to argue that work which has been 
fully completed is often used in some way, somehow, whereas partially completed 
work is often abandoned entirely.) Note that the number and types of tasks that must 
be completed for an individual job to be completed is therefore continually changing. 

3.1   Agent Strategies 

Accordingly, a set of strategies for bottom up team formation between agents in 
dynamic environments is defined as follows. A strategy is a combination of a job 
selection heuristic that orders potential jobs in J, and a team selection heuristic that 
ranks a set of potential teams capable of completing a specific job. More particularly, 
self-selected foreman agents from A each utilize a job selection heuristic to select one 
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or more top-ranked jobs from J, depending on if one or more jobs are tied for the top 
ranking. This creates a set of jobs P = {Jw}.  

For each Jw in P, each foreman agent then generates ε agent teams capable of 
solving Jw. More specifically, these agent teams each include the foreman agent which 
generated the team, and one or more other agents Ak, such that the combined skills of 
all the agents in the team are capable of completing the task instances in ActiveTasksw 
of associated job Jw. These teams thus form a set of teams Q = {Teamx}. Furthermore, 
each agent Ak in a Teamx is associated with a set AssignedInstanceskw, which, after a 
team has been formed, represents the set of task instances Tiw that each agent Ak in 
the team is assigned to complete in job Jw. Teams are currently assembled via a semi-
random approach that seeks to satisfy the various solution requirements one at a time, 
but nearly any constraint satisfaction solver could also be used. Once Q is generated, 
each foreman agent uses a team selection heuristic to select the top-ranked team from 
Q, which it then attempts to form through protocols described in further detail below.  

The first job selection heuristic is a Greedy heuristic (Eqn. 1) that maximizes the 
expected reward from a job Jj. While a naive heuristic would simply choose jobs that 
require the greatest amount of work (and thus the greatest amount of associated 
reward), the Greedy heuristic takes the dynamicism of the environment into account 
by giving double weight to portions of a task that have already been completed, 
thereby giving preferential treatment to large jobs that are less likely to undergo 
changes before the job is complete.  

Greedy heuristic: max
J j ∈J

(TaskLengthij +C(Tij ))
Tij ∈AssignedInstanceskj

∑      (1) 

The second job selection heuristic is a Lean heuristic (Eqn. 2) that minimizes the 
amount of work needed to complete a job, thereby letting agents opportunistically 
form teams to quickly solve simpler problems, similar to [22]. 

Lean heuristic: min
J j ∈J

(TaskLengthij − C(Tij ))
Tij ∈AssignedInstanceskj

∑       (2) 

Note that these mechanisms stand in contrast to previous work in task selection 
under uncertain conditions, such as Hannah and Mouaddib [4], where a problem’s 
uncertain elements are explicitly modeled probabilities. Instead, the heuristics 
described here operate under any level of uncertainty, from any source. However, 
future work is possible where the above heuristics are adaptive based on a known or 
suspected level of uncertainty in the environment, or in a specific problem. 

The first team selection heuristic is a Null heuristic that does not rank the teams, 
but rather keeps teams ordered according to how the strategy’s job selection heuristic 
ranked the jobs associated with each team. This effectively randomly selects one of 
the teams generated to handle the top-ranked job from P.  

The second team selection heuristic is a Fast heuristic (Eqn. 3) that minimizes the 
maximum amount of work that any member of a Teamx needs to complete. 
Alternatively, the Fast heuristic could be said to minimize the amount of time needed 
before the entire team has completed work on associated job Jw. 
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Fast heuristic: minx max
Ak ∈Teamx

(TaskLengthiw − C(Tiw ))
Tiw ∈AssignedInstanceskw

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 (3) 

The third team selection heuristic is a Redundant heuristic (Eqn. 4) that seeks to 
maximize the number of redundant skills in Teamx. In other words, the Redundant 
heuristic prefers teams with multiple agents capable of working on active task 
instances, thereby increasing the ability of a team to deal with the defection of an 
agent. 

Redundant: 

  
maxx AgentSkillsk ∩ ActiveTasksw

Ak ∈Teamx

∪                      (4) 

The fourth team selection heuristic is an Auxiliary heuristic that seeks to maximize 
the number of auxiliary skills in Teamx. In other words, the Auxiliary heuristic (Eqn. 
5) tries to maximize the combined skills of a team that are not immediately applicable 
to task instances in ActiveTasksw, thereby increasing the ability of the team to deal 
with newly added task instances. 

Auxiliary: 

  
maxx AgentSkillsk ∩ InactiveTasksw

Ak ∈Teamx

∪                    (5) 

Note that, intuitively, the Fast, Redundant, and Auxiliary heuristics each prefer a 
greater number of partners in a team, since this increases the amount of work that can 
be done in parallel and the number of unused skills for each partner. Alternatively, the 
MinPartner heuristic (Eqn. 6) prefers teams with the smallest number of partners, 
thereby implicitly using a greater number of skills per partner and thus a greater 
amount of potential profit per partner.  

MinPartner heuristic:  minx |TeamX −1 |[ ]               (6) 

Each of these five team selection heuristics is combined with each of the job 
selection heuristics for experimental comparisons, as described in further detail 
below. 

4   Experimental Setup 

To evaluate the relative utility of each of the team formation strategies described 
above, these strategies are tested in a simulation environment wherein agents compete 
to form teams and solve jobs according to the described strategies. More particularly, 
a set of agents is divided into ten different classes, each of which contains an identical 
number of agents, and each of which implements a different team formation strategy. 
By assigning agents credit for completing task instances, the relative utility of each 
strategy may be determined by comparing the average amount of credit earned by 
each class of agents. Furthermore, by varying the rate of change of the solution 
requirements for different jobs (“dynamicism”), the relative performance of these 
strategies in a dynamic environment can be determined. 
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Agents in set A operate in a simulation environment that is divided into discrete 
timesteps, or rounds. During each round, each agent may coordinate with other agents 
in A to form teams, or, if it is part of a team, may work on a task instance associated 
with a specific job in J. Each agent in A can belong to, at most, one team at a time, 
and each team works on only one job at a time. This is arguably a simplistic 
assumption, since real world providers of valuable skills or expertise frequently 
multitask between different projects at the same time. However, many problem 
solutions require complete focus from the workers involved, or security or other 
constraints may require exclusivity. Furthermore, requiring each agent to be part of 
only one team at a time allows us to clearly delineate where an agent is making a 
contribution. Determining to what degree an agent’s partial efforts require task 
reassignments touches on complex multidimensional trust issues [19], and as such is 
too complex to be addressed here. 

During each round, an agent Ak may work on a job Jj by utilizing a skill Si found in 
AgentSkillsk to work on a task instance Tij found in set ActiveTasksj. Each agent 
utilizes only one skill in any given round. After Ak has worked on Tij for a given 
number of rounds, Tij is completed.  

Credit is distributed to agents when a job Jj is completed, which, in turn, occurs 
when all task instances in ActiveTasksj are completed. Upon job completion, credit 
points for each active, completed task are given to the agent which completed the 
task. As described above, these credit points are proportional to the length of the 
completed task (e.g. a completed task of length five would give five credit points). No 
credit is given for work on task instances that were moved to InactiveTasksj before 
completion, or to agents who worked on, but did not finish, a completed task instance. 
Accordingly, agents in the simulation may be said to work in a “pay-for-play” 
environment, where credit is distributed directly to those who have fully completed a 
given job.  

Once a job Ji has been completed and paid out its credit, it is removed from J and a 
new Jj is created and inserted in J. Each new Jj starts with the same number of task 
instances randomly placed in ActiveTasksj, and task instance in the new job must be 
completed from scratch.  

As described above, the simulation incorporates unpredictability by shuffling task 
instances between ActiveTasksj and InactiveTasksj. More particularly, each round a 
given percentage of jobs in J are randomly selected to be shuffled. This percentage is 
referred to as the dynamicism of the simulation. Each task instance in each selected 
job Jj has a random chance of being selected for shuffling between ActiveTasksj and 
InactiveTasksi, such that, on average, one task instance per selected job is shuffled. 
However, as described above, task instances that have been fully completed cannot be 
moved from ActiveTasksj. 

4.1  Team Formation 

As described above, teams are formed by a foreman agent. The opportunity to act as a 
foreman agent is randomly distributed among agents, such that any given round of the 
simulation a given percentage of agents will have the opportunity to form teams. 
Once the foreman agent has used its associated team formation strategy to select a 
potential team Teamx, the foreman sends proposal messages to potential partners in 
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Teamx indicating the AssignedInstanceskw that a potential partner would work on. 
Note that, to encourage agents to form teams, |AgentSkillsk| is constant for all k, and 
the initial value of |ActiveTasksi| > |AgentSkillsk|. 

When these proposal messages are received, each agent ranks the 
AssignedInstanceskw it is currently working on (if any) against one or more proposed 
AssignedInstanceskw using the job selection heuristic associated with that class of 
agent. If the agent finds that its current assigned tasks are preferable to any of the 
proposals, it continues working on its current job, and the lack of a response is taken 
as a decline message by the foreman which sent the proposal. If the agent receives a 
proposal it finds more attractive than its current job assignment, the agent returns an 
accept message to the foreman which sent the proposal.  

Accordingly, it is noted that agents may stop work on their current assignments at 
any time upon receiving a more attractive proposal (or, if they become a foreman 
agents, upon finding a more attractive job to work on). This obviously runs counter to 
a significant amount of work which his been done in contract negotiation and 
breaking contracts [20]. However, such work usually involves complete information, 
and/or occurs between a relatively small number of agents. In contrast, the scheme 
described here allows for agents which are better able to take advantage of new 
opportunities, and better simulates many environments where contracts are largely 
nonexistent or unenforceable (i.e. informal task forces and many Internet 
transactions). This lack of commitment between agents, combined with the 
dynamicism and unpredictability of jobs within the simulation, also makes it desirable 
for agents to assemble teams that can survive agent defections and changes in the task 
instances required to finish the job.  

If the foreman does not receive accept messages back from all potential partners, 
the team formation process has failed and the foreman, as well as the agents which 
accepted the team proposal, must wait for new team proposals or for their next chance 
to be a foreman. If the foreman receives accept messages from all of its potential 
partners, the team is successfully formed and the foreman claims Jw, thereby making 
it off limits to other teams. Jobs may be claimed only by foremen who have 
successfully formed full teams. Note that during this process, other agents may be 
attempting to assemble a team to handle the same job, thereby simulating a realistic 
“churn” in which a degree of effort is unavoidably lost to competition. Jobs are 
claimed by means of a lock mechanism which prohibits “ties” between agents trying 
to claim a job.  

Once agents have formed Teamx, they begin to work on the task instances 
associated with Jw. Non-foreman agents may work on Jw until they have completed all 
task instances in AssignedInstanceskw. In contrast, the foreman agent may stay with Jw 
until the job is complete, even if the foreman has completed its assigned tasks. While 
Jw is incomplete, if a non-foreman agent defects from the job, or a new task instance 
is moved into ActiveTasksw set, the foreman is responsible for finding an agent to 
work on the new or abandoned task instance. The foreman may therefore assign the 
new task instance to the AssignedInstanceskw set of itself or a partner agent, in a 
manner similar to the team reformation strategies in [17]. If no team member has the 
skill required to handle the new task, the team has failed and dissolves with the job 
uncompleted. A new team which later tries to claim the job must begin the job from 
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scratch. It therefore follows that teams must handle defections and new task instances 
to be successful.  

Furthermore, it should be noted that a balance must be achieved when forming a 
new team with regard to the number of agents recruited. Because only one decline 
message will prohibit the formation of a new team, or will break an existing team 
seeking to recruit an outside member, larger teams are more difficult to form. 
Furthermore, team members running the Greedy job selection heuristic are more 
likely to defect from a larger team, since, on average, they will be assigned less work 
and thus have less opportunity for profit. However, larger teams are better able to 
handle agent defections and new task instances within the team, making them more 
stable once formed. 

Table 1. Experimental parameters 

Parameter Value 
Number of classes 10 
Agents per class 250 
Per round chance of agent acting as foreman 1% 
Jobs 1000 
|T| 20 
|AgentSkills| 5 
Initial size of |ActiveTasks| 10 
Range of TaskLength 1 to 10 rounds 
Credit received per round of completed task instance 1 
Number of potential teams examined per top-rank 
job 

15 

Dynamicism range 0% to 100%, 25% increment 
Number of rounds per simulation 2500 
Number of simulations per dynamicism step 20 

 
Experiments were conducted using the basic parameters in Table 1, which were 

selected to broadly model a problem-solving market internal to an organization such 
as a large corporation or a moderately large number of freelance agents. The 
experiments tested all strategies against each other simultaneously to see which 
strategies were most successful in a field of heterogeneous agents. More particularly, 
a two-factor ANOVA analysis was carried out, and the Fisher LSD method was used 
to determine significant differences between different strategies at the same 
dynamicism level.  

5   Results and Discussion 

Figure 1 displays the average credit earned by each agent class at different levels of 
dynamicism, along with standard deviation bars for each value. A cursory 
examination of the data indicates that the credit earned by each class decreased as the 
level of dynamicism in the environment increased, and that while GreedyMinPartners 
was the most successful strategy for 0% and 25% dynamicism, GreedyAuxiliary was  
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Fig. 1. Strategy performance as a function of dynamicism 

the most successful strategy for all other dynamicism levels. ANOVA analysis (alpha 
= .05) indicates that the strategy selection causes statistically significant differences in 
the results.  

Furthermore, Fisher LSD tests (alpha = .05 for all comparisons below) indicate that 
the top-performing strategy for each dynamicism level was statistically significant 
from all other strategies, with the exception of 50% dynamicism, where 
GreedyAuxiliary and GreedyFast were statistically significant from all other strategies 
but not from each other, and 100% dynamicism, where GreedyAuxiliary was 
significantly better than all other strategies, save GreedyFast. 

Similar results can be seen when examining the aggregate performance of each 
team selection heuristic, regardless of the job selection heuristic it was paired with: at  
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0% dynamicism, the MinPartner performed significantly better than all other 
heuristics, and better than all but the Null heuristic at 25% dynamicism. At 50% 
dynamicism, the Auxiliary heuristic performed significantly better than all other 
strategies save the Null heuristic, while at 75%, and 100%, the Auxiliary heuristic 
performed significantly better than all heuristics but the Fast heuristic. Comparing the 
aggregate performance of the job selection heuristics, the Greedy job selection 
heuristic performed significantly better than the Fast heuristic at all dynamicism 
levels. Note that this differs from the results found in [2], where credit could 
sometimes be earned from unsuccessfully completed jobs.   

To better understand these results, it is helpful to know how successful different 
classes are at forming teams, as shown in Figure 2 as the ratio between the number of 
team formation requests by a foreman and the number of teams successfully formed. 
Furthermore, Figure 3 displays the average success rate of formed teams at 
completing an assigned job as a function of both agent class and dynamicism level. 
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Fig. 2. Ratio of teams successfully formed by class and dynamicism level 

As can be seen in Figure 2, certain patterns are immediately obvious. Agents using 
Lean job selection strategies are significantly more successful at forming teams than 
Greedy job selection strategies, except at 0% dynamicism, when job requirements do 
not change. This may be due to the fact that, in dynamic environments, a subset of 
jobs will have a lower than average number of tasks, which are more attractive to 
agents using the Lean job selection heuristic, thereby improving the probability that 
these agents will join a team. 

Furthermore, agents using the MinPartner team selection heuristic are far more 
likely to successfully form a team. As discussed below, this is likely due in part to the 
fact that a smaller number of partners means a smaller number of potential rejections, 
any one of which can break team formation. In addition, a smaller number of agents 
means a higher number of tasks assigned to each agent, and accordingly, a greater 
amount of profit for each agent. 
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Fig. 3. Teams successful at completing jobs by class and dynamicism level 

Conversely, Figure 3 shows that, although agents which utilize the MinPartners 
team selection heuristic are the most successful at forming teams, they are 
consistently the least successful agents at forming teams which successfully complete 
their assigned jobs. Alternatively, agents which utilize the Fast, Redundant, and 
Auxiliary heuristics are consistently the most successful at forming successful teams. 
In fact, ANOVA and LSD analysis (alpha = .05) indicates that, although agents 
utilizing these three heuristics do not have success rates that are always significantly 
different from each other, they are almost always significantly different from agents 
using the Null and MinPartner heuristics. Again, as discussed above, this is likely due 
to the fact that teams formed according to the Fast, Redundant and Auxiliary 
heuristics are more likely to have team members with unused skills that can be used in 
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the event that another team member leaves the team, or a new task is added to the list 
of ActiveTasks.  

This result suggests that agents which can recognize a team with significant 
redundant or adaptable characteristics may be more successful than agents which 
cannot. In other words, agents which can recognize a proposed team that has a lower 
offered reward but a greater opportunity for success because of its redundant or 
auxiliary resources may be able to earn more credit. 

It is also noted that, although agents using the Lean job selection heuristic are 
significantly more successful at both forming teams and successfully completing jobs, 
these agents are generally less successful than agents which use the Greedy job 
selection heuristic. This may be in part due to the fact that Lean agents generally 
select jobs with far less work involved, and thus earn far less credit per job. 
Accordingly, it may be possible to determine under what circumstances a Lean vs. 
Greedy job selection heuristic is preferred, or even to find an optimal heuristic which 
combines the two considerations, based on environmental characteristics. 

6   Conclusions and Future Work 

This paper presented a set of strategies for team formation between fully autonomous 
agents in a large-scale dynamic environment. Strategies prioritized which jobs and 
partners each agent selected, and were composed of a combination of one of two job 
selection heuristics and one of five team selection heuristics: 

• Greedy job selection, which selects jobs according to profit potential 

• Lean job selection, which selects jobs for minimal time to completion 

• Null team selection, which defers to the associated job selection heuristic 

• Fast team selection, which selects teams for minimal time to completion 

• Redundant team selection, which selects teams to best handle partner failures 

• Auxiliary team selection, which selects teams most capable of adapting to 
new tasks 

• Minimum Partner team selection, which selects teams with the fewest 
number of partners 

The paper then analyzed the relative performance of the strategies, as executed by 
different classes of agents, in an experimental test bed. Results indicated that a 
strategy combining the Greedy and Auxiliary heuristics performed the best in highly 
dynamic environments, while a strategy combining the Greedy and MinPartner 
heuristics performed better in environments with low or no dynamicism. 

Furthermore, the paper showed that, although agents using the MinPartner heuristic 
were more successful at forming teams, these teams were significantly less successful 
at completing jobs than teams formed by agents using the Fast, Redundant, and 
Auxiliary team selection heuristics. 

This paper therefore examined an unpredictable, dynamic domain of independent 
heterogeneous agents, and proved which of a given set of strategies for team 
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formation best maximized agent utility in such a domain. These strategies work with 
very large groups of agents (>2500) and may potentially be applied to request for 
proposal (RFP) environments where teams of autonomous agents continually seek to 
solve dynamic problems by forming multi-skilled teams. These market environments 
potentially include Internet-wide open markets, and markets internal to large 
organizations such as corporations and government agencies. 

A number of possible avenues of further investigation suggest themselves. One 
possibility is to modify the mechanism by which agents decide between joining 
potential teams; agents may be more successful if they can balance the reward a team 
offers for membership against that team’s ability to adapt to change. Other potential 
work involves determining in what circumstances a Lean job selection heuristic is 
preferable to a Greedy job selection heuristic, and potentially finding an optimal 
balance between the two. 
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