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Abstract. This paper studies market-based mechanisms for coordinated dynamic
task assignment in large-scale agent systems carrying out search and rescue mis-
sions. Specifically, the effect of different auction mechanisms and swapping are
studied. The paper describes results from a large number of simulations.The in-
formation available to agents and their bidding strategies are used as simulation
parameters. The simulations provide insight about the interaction between the
strategy of individual agents and the market mechanism. Performance is evalu-
ated using several metrics. Some of the results include: limiting information may
improve performance, different utility functions may affect the performance in
non-uniform ways, and swapping may help improve the efficiency of assignments
in dynamic environments.

1 Introduction

A number of physical agents are being developed such as robots, small unmanned aer-
ial vehicles (micro-UAVs), and unmanned underwater vehicles (UUVs). Such mobile
physical agents will be useful for many applications including surveillance, search and
rescue, and mine sweeping. This paper focuses on a two dimensional search and rescue
(SR) problem involving pursuer robots and mobile targets. In SR, we assume that the
number of tasks generally exceeds the number of agents; there may be possible tar-
gets in an uncovered area, and the area can be large, allowing for many targets. This
assumption requires each robot agent to serve multiple tasks. Moreover, we assume
that each task requires a different number of multiple robot agents; this simplifies het-
erogenous aspects of target requirements–different types and load of services may be
required–and robot agent capabilities. Thus, efficient methods, which enable coordina-
tion between the robot agents, are required. Note that the SR problem is computationally
intractable. Even a simplified version of the SR problem, namely, the vehicle routing
problem (VRP or truck dispatching problem) is NP-hard [2]. For example, we experi-
ment a case, called “Dense”, that has more than 10500 possible assignments for initial
tasks. Thus, a centralized computation of the global optimum is not feasible.

To address the SR problem, auctions and swapping–both fully distributed and asyn-
chronous–are investigated. Asynchronous auctions have a reasonable computational
and message complexity. By using concurrent and asynchronous auctions, each with
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a limited number of participants, we can reduce the complexity. The computation and
message complexity of each auction grows linearly in the number of the participating
robot agents and tasks. If communication and sensing ranges are bounded, the mecha-
nisms require constant time for each round of auctions. If the ranges are not bounded,
O(n) computation time is required, where n is the number of target and robot agents
combined. However, note that such auctions yield sub-optimal assignments [3].

Our previous work [4, 5], and other similar work [6, 7, 8, 9] experimented the multi-
agent coordination problem in small-scale. However, small-scale experiments, regard-
less of whether using software simulations or physical simulations, can be easily biased
by specific experimental parameters. In small-scale simulations, only a few auctions are
executed and each auction result is affected significantly by the initial positions of robot
agents and tasks, not the mechanisms. On the other hand, in large-scale simulations, a
large number of auctions are executed and the effects of initial positions are reduced.
Besides, smaller-scale simulations have larger variance in the experimental results. An-
other limitation is that the scalability of mechanisms is not established.

These limitations motivate us to run large-scale simulations in which the strategies
and experimental parameters, such as the density of agents, positions of agents, and
utility and requirements of target agents, are varied. Different auction mechanisms
(forward, reverse, forward and reverse, forward and reverse with sealed bids), non-
cooperative heuristic method (N/C), which resembles swarm intelligence [10], as a
control, and swapping are experimented. Different bidding strategies, which weigh the
utility, cost, and popularity of a target, are used. The simulator will be available on our
research group’s web site: http://osl.cs.uiuc.edu .

Experimental parameters such as the robot density, sensing and communication
ranges, and initial positions of robots are varied in order to test the robustness and
characteristics of the mechanisms in different environments. Varying robot density and
initial positions can show the adaptability and the generality of the mechanisms. Obvi-
ously, limiting sensing and communication ranges can provide more scalability in real
applications because the cost of broadcasting to all the agents can be high. Perhaps
more surprisingly, the results suggest that limiting sensing and communication ranges
improves the performance.

In theory, assuming a fixed order of synchronized auctions and static utilities, differ-
ent auction mechanisms (forward, reverse, and forward/reverse) would yield the same
results. However, in this paper, these simplifying assumptions are not met and it is easy
to see how different auction mechanisms may produce different results. The results sug-
gest that sealed-bid auctions based on forward/reverse auctions perform better than the
others (except for the number of messages). Forward/reverse auctions perform better
than the rest of the auctions and result in a lower number of messages. The results also
suggest that reverse auctions do not have any merit over forward auctions, if reverse
auctions are used exclusively.

Two robots may swap tasks in order to reduce the costs for each of them–the side
payments are not considered. Dynamicity of the environment and asynchrony of auc-
tions create the need for swapping. The results suggest that swapping can improve per-
formance although swapping causes additional costs.

http://osl.cs.uiuc.edu
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The rest of this paper is organized as follows. Section 2 describes previous research
on multi-agent coordinations. Section 3 describes the coordination methods studied.
Section 4 describes the simulation results. Section 5 analyzes these results. Finally,
Section 6 discusses the conclusions and directions for future research.

2 Related Work

A number of distributed approaches have been proposed although, in principle, a cen-
tralized approach can provide results that are equal to or better than those of a distributed
approach. However, a centralized approach has a number of drawbacks: a single point
of failure and the need for connected networks. More critically, a centralized approach
is not scalable. Some of distributed approaches use non-market based mechanisms; i.e.,
swarm intelligence [10], which does not involve negotiations and communication, thus,
being extremely scalable. However, it lacks knowledge about the other agents, which
makes it very difficult to accomplish a task that needs multiple agents.

To address this problem, many distributed market based multi-robot coordination
mechanisms have been proposed. Some of these are offline algorithms; i.e., [6]. Ob-
viously, offline algorithms cannot adapt to dynamic environments. Other research has
studied online mechanisms [7, 8].

Prior work has used different degrees of dynamicity of the environment; tasks may
be static, passive, or dynamic. Static tasks do not change their utility or cost: [7, 11, 6].
Passive tasks are modified only by the action of robot agents: [8]. Dynamic tasks change
their utilities or costs by themselves; i.e., tasks are mobile [4]. When tasks are dynamic,
preemption (to change an agent’s attention) and adaptation in real-time become impor-
tant in order to let agents respond to the change of a dynamic environment. In this paper,
as in our previous work [4], we focus on a dynamic environment.

A number of studies have assumed that a task requires only one agent [7, 8, 6]. In
this case, coordination of multiple robot agents for each task is not required. However,
coordination for each task is required if a task needs multiple agents. Some researchers
have studied cases where coordination between agents for each task is beneficial, but
not mandatory and synchronization between agents is not required; i.e., [9]. On the
other hand, in [8], synchronization is required although the system serves only a single
task. Our problem requires both assignment of multiple tasks to agents and synchro-
nized coordination between several agents to complete any given single task. Distrib-
uted multi-robot coordination research related to robot agents that roam a geographic
area has been based on small scale experiments: single task [8], less than 10 agents
[9, 7, 4], and around 10 robot agents [6, 5].

The previous work [4] proposed forward/reverse auctions and swapping for task al-
location with physical agents in dynamic environment. However, the main weakness is
that the experiments were not sufficient–only one execution was carried out for each co-
ordination method in small-scale experiments. Moreover, the effect of bidding strategies
was not examined. In this paper, the problem size is extended to show the scalability of
the algorithm (up to 250 robots and 750 targets), develop and test various mechanisms,
and experiment more concretely with more performance metrics and various experi-
mental parameters. For parameters of the algorithms, the values similar to those in [5],
which are in turn based on [4], and partly on other analysis and estimates, are used.
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3 Methods

This paper makes a number of simplifying assumptions for robot agents. All agents are
located and move unobstructed on a bounded rectangular Euclidean plane. It is further
assumed that the robot agents in a given simulation are homogeneous–i.e., all the robot
agents use the same strategy. Robot agents can observe every target within its sensing
range, and robots notify other robots in their communication range about the observed
targets. However, robot agents do not relay information from other agents. Targets move
around with some predefined patterns. However, robots do not try to predict the pat-
terns; instead they use the current heading and speed of a target to track it. Although
other algorithms–better roaming algorithms, optimal serving positions for targets, better
collision/obstruction avoidance algorithms, and prediction of other agents’ movement–
may improve performance, they are not studied, as their benefits are likely to be mar-
ginal and our purpose is to focus on the effect of global mechanisms for coordination.

The following assumptions about targets are made to simulate the S/R problem,
where each mobile rescuee needs multiple rescuers to be located near the rescuee at
the same time to rescue the rescuee and the rescuee will stop moving once a rescuer
approaches to the rescuee. Thus, in order to be served, a target t requires multiple dedi-
cated robots (≥ reqt > 1) to be present nearby (≤0.2m) at the same time, where reqt is
the requirement of t. t distributes its utility utilt evenly to the robots that serve it, i.e., it
provides utilt/reqt to each robot, where utilt is the utility of t. If the number of robots
exceeds reqt , only the first reqt robot agents receive the payoff.

Each instance of the problem is defined as a mission; a mission is complete when
90% of the target agents have been served. In the previous work [4, 5], a mission is com-
plete when every target agent has been served. However, in large-scale experiments, it
may take too much time to search the last few targets and distort results if the sensing
and communication ranges are bounded; the search for the last few targets, which takes
completely random length of time, has often dominated the mission time with prelimi-
nary experiments. Therefore, in order to compare bounded sensing and communication
ranges and unbounded ranges, we use the 90% metric for every experiment. The num-
ber of targets is assumed to be large enough for each robot to serve multiple times.
Thus, a robot may participate in several auctions in the course of a mission.

3.1 Coordination Methods

Several methods for coordination between agents, including non-interactive methods,
auctions, and swapping, are studied. The first two methods, N/C and forward auction,
which are used as controls in the experiments, are the basic methods of non-market-
based and market-based coordination mechanisms. N/C is a straight-forward approach
without communication. Forward auction is the basic form of auction and it is the
most frequently used auction in the problem domain. Thus, we use N/C and forward
auction as controls. Reverse auction is the opposite approach to forward auction. For-
ward/reverse auction is supposed to accelerate the auction process by converging prices
in both ways: forward and reverse. Then, sealed-bid is added to forward/reverse auction
in order to see the effect of price considerations in agent systems where agents do not
pay the price.
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Non-cooperative Heuristic Method (N/C). With N/C, a robot agent chooses the tar-
get agent that has the largest expected benefit for the robot. The expected profit of
N/C is utilt/reqt − costNC(r,t), where costNC(r, t) is the cost for robot agent r to
serve target t. The cost is the distance and pivoting cost from r to the target t in
N/C. Robot agent changes its target if another target agent becomes more attractive
than the current target.

Forward Auction. A robot agent r bids for the target agent that has the largest ex-
pected profit, where the expected profit is futil(r, t)− cost(r, t)−pricet . cost(r,t) is
a cost function, which is described in Section 3.2 and futil(t) is a utility function,
which is described in Section 3.3. A bidder retracts its bid if the bidder finds an-
other target to be more attractive, which incurs an additional retract bid cost in the
cost function (cost(r,t), which is described later) in order to prevent excessive bid
retractions. Each auction is managed by its corresponding auctioneer. For simplic-
ity, the simulation is implemented to choose one of the bidders as an auctioneer.
However, conceptually, the corresponding target can be assumed to be the auction-
eer because each auction represents a target. An auction for target t is finished if t
has enough bidders (≥ reqt ) after round time and the bidders have confirmed their
bids at the end of the auction.

pricet =
{

min(min bid,max rej bid) , asnt > 0;
max rej bid, otherwise.

(1)

When an auction for a target agent t is started, the auctioneer accepts bids higher
than pricet of Eq. (1). asnt is the number of bidders assigned to target t, min bid is
the lowest bid price among the bidders, and max rej bid is the larger value of the
highest rejected bids and the initial price of t. If asnt > reqt , an assigned robot agent
with bid price min bid is rejected. min bid is then recalculated, and the rejection
procedure is repeated until asnt = reqt . When a bidder is outbid and rejected, it
tries to bid for the current target with the updated conditions if it can bid again.
Otherwise, the agent that has been outbid searches for other targets to bid on.

An auction is stopped after round time, a specified time period from the begin-
ning of the auction. If the auction does not result in a sufficient number of confirmed
bidders, the bidders are released and the auction is paused for a random interval.
The pause interval is a uniform random distribution random(0.1,1.0)× round time
in the experiments. After the pause, the auction restarts. This delay allows the en-
vironment to evolve (e.g. more robots to become free).

Reverse Auction. In contrast to a forward auction, where buyers (robots) increase price
to attract sellers (targets), in reverse auctions sellers (targets) decrease prices to
attract buyers (robots). A reverse auction is implemented by having the auctioneer
cut its target price, assuming that the auctioneer has not received a sufficient number
of bidders during the auction pause. An auctioneer also cuts the target price if a bid
is retracted so that the auctioneer no longer has a sufficient number of bidders.
Robot agent r bids for target t providing the highest expected profit futil(r,t) −
pricet − cost(r, t). Unlike a forward auction, higher bids do not raise target prices.
Eq. (2) shows how target price is discounted. In the experiments, raterev = 0.5 is
used as it performs better than other values tested [4].

pricet = pricet × raterev (2)
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Forward/Reverse Auction (F/R). Using both a forward auction and a reverse auction
in order to reduce auction delay with equivalent auction results has been proposed
by [11, 4]. A forward/reverse auction is implemented by running a forward auction
during normal operations and a reverse auction when the auction is paused or a bid
is retracted.

Sealed-Bid F/R Auction (S/B). Unlike auctions with actual fund transactions, robot
agents do not actually pay anything to win auctions. Because bidders do not pay
anything to win an auction, target price may not be a cost factor. Given this, a
sealed-bid mechanism is implemented based on a forward/reverse auction. Using
a S/B auction, expected profit of target t for robot agent r is futil(r, t)− cost(r,t);
the target price is no more considered. However, a robot agent bids for a target
with a price, which is the expected profit for serving the target, and an auctioneer
determines which bids are to be rejected based on the bid price. As with other
auction methods, the final cut-off price is the kth highest price for a target agent t,
where k agents are required to serve t (reqt = k).

3.2 Cost Function

As we mentioned for the auction methods in Section 3.1, a cost function cost(r,t) is
required to calculate the expected profit of given targets. The cost function calculates
the expected costs that are required for the robot agent to serve the given target. It
includes direct costs such as the cost to move in order to approach the target and indirect
costs such as a penalty for serving a target that already has pursuers in order to avoid
duplicated service.

Eq. (3) shows an abstraction of the cost function, which represents the cost of target
t for robot r. The estimated distance cost for r to pursue t including t’s current veloc-
ity vector is estimated distance(r,t). It also includes A∗ trajectory planner for collision
avoidance and pivoting cost–robots in the experiments need to stop for turning. Unless
t is r’s current bidding target or pursuing target, cost to assign(r, t) assigns additional
cost. If t already has an auction result, in order to give penalty for redundant auctions,
cost redundant auction(t) assigns additional cost. If t is still mobile, cost mobile(t) as-
signs additional cost. If t requires most additional pursuers other than those already
assigned, cost additional pursuers(t) assigns more cost; it is more difficult to coordi-
nate synchronously if more pursuing robots are required. Specific values for the sub-
functions of cost function are discussed in [5].

cost(r,t) = estimated distance(r,t)
+ cost to assign(r,t)
+ cost redundant auction(t)
+ cost mobile(t)
+ cost additional pursuers(t)

(3)

3.3 Utility Functions

Various utility functions, which determines the utility value of a given target, are experi-
mented. Essentially, utility functions determine the bidding strategy of robots; i.e., these
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functions calculate the value of the given target. We examine various utility functions
in order to see the effects of different bidding strategies.

The default (static) utility function directly addresses the pay-off that a robot agent
will receive if the robot agent serves the given target. However, it may be more ef-
ficient if we consider a target that has more bidders to be more valuable in order to
assign higher priorities for auctions that will probably end soon. The other five ‘dy-
namic’ utility functions use the number of bidders and the requirement in order to
consider the auction status. The previous work [4] used the Division utility function,
which is the first dynamic utility function. However, the Division utility function some-
times attracts too many bidders, thus, we try to mitigate the problem with modified
utility functions. Division-Restricted restricts assigning higher priorities for targets that
already have enough bidders. Division-Small restricts the amount of a maximum utility
increase. We also merged the two modified division utility functions by implement-
ing Division-Restricted and Small. Linear shows another approach by addressing the
mechanism of assigning priorities on auctions.

Default (Static). The default utility function for a robot agent r serving a target agent t
is Eq. (4), which is the payoff that each robot receives after serving t. It is also called
the Static utility function because the value never changes; other utility functions
are called the Dynamic utility functions because the values change according to the
status of corresponding auctions.

futil(t) = utilt/reqt (4)

Division. Although the default utility function reflects the exact payoff value of a tar-
get when the target is served and the cost function calculates the cost to serve the
target, it may be not sufficient because the status of an auction is not included. For
example, let’s assume that there are two targets t1 and t2 with reqt1 = reqt2 = 5,
asnt1 = 4, and asnt2 = 1 and a robot agent r needs to choose either t1 or t2. Then, r
may want to prioritize t1 because t1 needs only one more bidder while t2 needs four
more; t2 will probably require more time to settle its auction.

futil(t) =
utilt

reqt − min(asnt ,reqt − 1)
(5)

The division utility function, Eq. (5), is designed to increase futil(t) as asnt

increases and to increase more if asnt is near reqt by dividing reqt −asnt into utilt .
Division-Restricted. The division utility function results in a hoarding problem. Even

if target t already has enough bidders (asnt ≥ reqt ), t’s utility, futil(t), is still boosted
so that t can attract more bidders. This over attraction can increase auction cost
because a target can attract too many bidders; neighbor target agents may suffer
from starvation. In order to mitigate this problem, the utility function, futil(t), uses
the default utility function (boost deactivated) when the bidder is not yet assigned
to t and the target t has enough bidders (asnt ≥ reqt ).

Division-Small. When targets t1 and t2 (reqt1 = 5, asnt1 = 4, reqt2 = 2, asnt2 = 1,
∀t : utilt/reqt = 10) are close to a robot agent r, the utility values of t1 and t2
should be same because both t1 and t2 need only one more robot agent and the two
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targets provide the same utility for each serving robot agent (util/req). However,
division and division-restricted utility functions give the utility values differently;
futil(t1) = 50 and futil(t2) = 20. With Division-Small utility function, a maximum
possible boost ratio is the same regardless of reqt : Eq. (6).

futil(t) =
utilt
reqt

·
(

1 +
1

reqt − min(asnt ,reqt − 1)

)
(6)

Division-Restricted and Small. Division-restricted and division-small are combined.
Linear. In the four division methods, the utility value for a target t is boosted more

when asnt is closer to reqt . However, with Linear utility function Eq. (7), the utility
boost per bidder is constant.

futil(t) = utilt/reqt · (1 + min(asnt ,reqt)/reqt) (7)

3.4 Swapping

The assignments between robot agents and target agents may become obsolete because
there are a series of asynchronous auctions and the targets are moving. Thus, reas-
signment mechanisms may be beneficial. We may address this problem by executing
auctions repeatedly after the initial assignment. However, auction mechanism is an ex-
pensive operation to execute repeatedly because the auction mechanism requires syn-
chronization between asynchronous robot agents and heavy communication costs. On
the other hand, the swapping mechanism, which is a one-to-one negotiation between
robot agents, is a less expensive operation: there are less communication and computa-
tion costs. The swapping mechanism is executed after the auction is complete and both
swapping robot agents have their dedicated targets.

Fig. 1 is an example when the asynchrony of auctions makes swapping attractive. In
Fig. 1, reqt1 = 2, reqt2 = 3, and reqt3 = 1). After r1 and r2 serving t1, r1 and r2 are
assigned to t2 along with r3. r4 is assigned to t3 before t1 is served. r4 could not be
assigned to t2 because there were not a sufficient number of robot agents nearby t2 at
that time; r1 and r2 were serving t1. However, it is obvious that a swap between r2 and
r4 can reduce costs.

Fig. 2 is an example where the dynamicity causes the need for swapping. Here r1
was pursuing t1 and r2 was pursuing t2. However, as t1 and t2 move, the best targets of
r1 and r2 change. If r1 and r2 swap tasks then, the two robot agents can serve targets
with less time and movement distance (fuel consumption).

Fig. 1. Swap by auction asynchrony Fig. 2. Swap by dynamicity
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The robot agent that requests a swap becomes a swapper, which chooses a swappee
that is estimated to maximize the benefit of the swap. A swap should be beneficial for
both swapper and swappee, whose targets are different, to be accepted by the swappee.
A swapper r1 with target t1 sends a swap request to swappee rs with target ts when the
expected benefit EB(r1,rs) > 0 and ∀i : EB(r1,rs) ≥ EB(r1,ri). In Eq. (8), ti is ri’s target
before the swap, and THswap is the swap threshold. The cost function for swapping,
which corresponds to the distance and azimuth difference between r and t, is costs(r, t).

EB(r1,ri) = costs(r1, t1)+ costs(ri,ti)
− costs(r1, ti)− costs(ri, t1)− THswap

(8)

4 Experiments

We have done physical robot experiments in the previous research [4]. Physical experi-
ments enable a more realistic experimental environment, which can be ignored by soft-
ware simulations. However, it is too difficult to setup large-scale physical experiments.
Experiments with a thousand mobile robots require too much time and effort especially
on jobs that are not directly related to the research; i.e., charging and replacing batteries,
fixing and replacing damaged parts, reserving and maintaining a large and appropriate
location, setting a massive number of cameras, and other logistical problems. Thus, we
have implemented a software simulation for large-scale experiments and simulated the
physical robot experiments by importing experimental parameters from the results of
the previous physical experiments.

Fig. 3 shows the user interface of the agent simulator. The simulator shows the move-
ment of robot and target agents, the intention of each robot agent, the status (roaming,
chasing, bidding, serving, and others) of robot and target agents, and the progress of
the system. With the GUI of the simulator, we can see how the mechanisms and the
agents interact in run-time. Mission files (csv-formatted text files) describing initial po-
sitions, utility values, requirements, movement patterns, and coordination mechanisms
are required to run the simulator. The simulator writes log files, which have detailed
experimental results for each mission and can be parsed for statistical analysis.

The simulation is a discrete event simulation with a global clock. Fig. 4 shows the
overview of the simulation architecture. Fig. 5 shows the state diagrams of the major
component agents shown in Fig. 4. The simulator is implemented in C++ and MC++
using Repast.NET and executed on Pentium 4 3.2GHz Prescott with 2GB RAM run-
ning Windows XP Pro. Agents are programmed to behave similarly with the physical
robots (Acroname Garcia/PPRK robots) by importing values from [4]. For example,
robots are programmed to have maximum movement speed of 10cm/sec, maximum ro-
tational speed of 20◦/sec, communication delay of 100ms, service range of 20cm. Each
simulation step represents 50ms; a longer step will not support the communication de-
lay and a shorter step will increase the execution cost of the simulator. We configure
utilt according to the field size so that the expected benefit is positive when a target is
found and utilt/reqt to be constant so that each target has the same utility per serving
robot.
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Fig. 3. The simulator user interface

Fig. 4. Architecture of the simulator

4.1 Experimental Data

Several data sets are experimented with in order to vary simulation parameters as shown
in Table 1. The data set Dense represents a field where each target agent almost always
has enough robot agents nearby so that virtually no coordination between robot agents is
required. Target agents are scattered on the field when a mission starts, and robot agents
are scattered around the center (in about 25% surface of the field). In data set Corner
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(a) Swap agent

(b) Coordination agent (bidder)

(c) Auctioneer agent

Fig. 5. State diagrams of component agents in a robot agent
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Table 1. Simulation data set

Name # Robot # Target Field size Sensing range Communication range

Dense 250 750 40x40 (m) 3 (m) 12 (m)
Corner 50 500 45x45 (m) 3 (m) 12 (m)
Scatter 50 500 45x45 (m) 3 (m) 12 (m)
G.Corner 50 500 45x45 (m) Global Global
G.Scatter 50 500 45x45 (m) Global Global

and G.Corner, robot agents start from a single corner area of the field and the density
of robot agents is lower. In data set Scatter and G.Scatter, robot agents are scattered on
the field with low density as in Corner and G.Corner. In these four lower density cases,
servicing targets is difficult without coordination.

The first three data sets, Dense, Corner, and Scatter, have limited sensing and com-
munication ranges and robot agents can coordinate with other robot agents within their
communication ranges. In the other two data sets, G.Corner and G.Sparse, robots have
global sensing and communication ranges so that each robot has the global knowledge
and the capability to coordinate with any agent on the field. G.Corner has the same
initial positions as Corner and G.Sparse has the same initial positions as Sparse.

A mission (single simulation run) is finished when 90% of the targets are served. We
use the 90% metric because otherwise the results would be distorted by the search for
the last few targets if sensing and communication ranges are bounded as we mentioned
in Section 3. Each execution of a mission takes about 3 hours in data set Dense and
about 1 hour in other data sets with our machines. In simulation time, each mission
takes about 15 minutes in data set Dense and about 30 minutes in other data sets. We
experiment with 15 times of simulation for every combination of 5 coordination meth-
ods, 6 utility functions, and swapping enabled/disabled for each data set. Mission time
(time spent to complete the mission), movement distance (distance covered by robot
agents, which implies the fuel consumption), auction delay, number of messages, and
load imbalance (σ/mean of movement distance) are measured.

4.2 Results

This section describes the experimental results in order to compare various coordina-
tion methods to the controls, such as N/C or forward auction with static(default) utility
functions, swapping versus non-swapping, and local knowledge (bounded sensing and
communication ranges) versus global knowledge. Fig. 6, 7, and 8 show performance
comparisons to controls. Fig. 6 uses forward auction and default(static) utility function
as a control, whose value is 1.0 in the figure, and swapping is disabled in every case of
Fig. 6. Fig. 7 shows relative values when swapping is enabled compared to the cases
without swapping, which is represented as 1.0 in the figure. Fig. 8 shows relative values
when the sensing and communication ranges are bounded compared to the results when
the ranges are not bounded (swapping is disabled in Fig. 8). Capital-I-shaped bars show
confidence intervals. Every confidence interval shows confidence of 95%.
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Fig. 6. Performance comparison to forward auction and default utility function

Fig. 7. Performance of swapping

Fig. 8. Bounded vs. unbounded

N/C and forward auction with dynamic utility functions suffer from deadlock; thus,
they are not represented in the figures–except for load imbalance of N/C. Reverse auc-
tion, when it is used solely, has no merit over forward auction in theory [11] and shows
no better performance in the experiments. Some of the dynamic utility functions with
forward/reverse auction do not complete missions before the simulation time limit;
thus, forward/reverse auction with such utility functions (Division, Division-Small, and
Division-Restricted and Small) are dropped from the statistics.

With data set Dense, N/C finishes missions and performs well. Sealed-bid auction
with default utility function and swapping, which performed best in Dense, has
6.6±3.6% less mission time and 10.5±4.3% less movement distance than N/C. Forward
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auction, F/R auction, and sealed-bid auction with some of dynamic utility functions
(division-restricted and linear) perform worse than N/C in mission time and movement
distance. However, N/C does not perform well in other low density data sets. In Corner,
N/C serves 53% of targets before the time limit; other coordination methods complete
missions in about half of the time limit in Corner. N/C suffers from deadlocks in Scatter
and G.Scatter and is much less efficient than other coordination methods in G.Corner
(80.0±9.3% more mission time and 74.9±3.5% more movement distance than forward
auction with default utility function).

Fig. 6 shows performance comparisons, which are shown by mean values compared
to those of the forward auction and the default utility function. The results suggest that
adding reverse auction to forward auction improves performance; F/R auction improves
performance in every metric: mission time, movement distance, auction delay, number
of messages, and load imbalance. Sealed-bid auction improves performance further ex-
cept for the number of messages. N/C is shown with a load imbalance metric only
because it cannot complete missions in most cases.

Dynamic Utility Functions. Dynamic utility functions with forward auction suffer from
deadlock, which was not observed in the previous research with small-scale experiments
[4]–division utility function was used. Although no deadlock is observed, dynamic util-
ity functions do not perform well with forward/reverse (F/R) auction. This is because
F/R auctions with dynamic utilities suffer from ping-pong bidding, where a bidder alter-
natively bids and retracts (see Section 5 for a detailed explanation). On the other hand,
dynamic utility functions successfully reduce auction delay with S/B auctions except
in the case when the division utility function is used. For example, when the division-
restricted and small utility function is used with S/B auction, auction delay is reduced
46.3% from the default utility function with S/B auction. However, the reduction in
auction delay is often not enough to reduce the mission time because the dynamic util-
ity functions damage auction quality, which is represented by the movement distance
metric–the dynamic utility functions increase the movement distance. Thus, the dy-
namic utility functions provide trade-offs between auction delay and auction quality.
Load imbalance is improved significantly with the dynamic utility functions; the load
imbalance is decreased 67% by the division-restricted with F/R auctions used and 61%
by division-small with S/B auctions.

Swapping. Fig. 7 shows the performance of the swapping method. The swapping per-
formance is shown by the mean values of the performance with swapping divided by
those without swapping. Auction delay is not shown because swapping does not affect
the auction process; robots do not swap while the robots are bidding. The number of
messages is increased (performance deteriorated) by swapping significantly. The num-
ber of messages increases more with the dynamic utility functions (48.7%) than with
the static (9.9%) and the number of swapping increases more with the dynamic (477.6)
than with the static (17.4). In Dense, the number of messages increases up to 77.0%,
which implies that the communication overhead of swapping can be almost as much as
that of an auction. The communication overhead of swapping makes it less efficient as it
can increase not only the number of messages sent, but also the mission time if the com-
munication delays are significant. The negative effect of swapping on the mission time
can be inferred by the result in Fig. 7; even though the movement distance is reduced,
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mission time is not as reduced. Performance improvement is more significant with dy-
namic utility functions, which have poor auction quality compared to the static utility
function. Although the movement distance of the dynamic utility function improves
with swapping, swapping does not make movement distances as short as those obtained
by using the static utility function. Load imbalance is improved with swapping, which
implies that swapping helps load balancing.

Bounded Sensing and Communication Ranges. When the sensing and communica-
tion ranges are bounded, the system is supposed to be more scalable because robot
agents do not need to broadcast to every agent. Besides, practically, observing every
target and communicating with every other robot in real-time is almost impossible in
large-scale systems. Thus, we examined the mechanisms with bounded sensing and
communication ranges. Fig. 8 shows how the system performs if the sensing and com-
munication ranges are bounded by comparing the results of bounded ranges with those
of unbounded ranges.

Using the static utility function, bounding ranges reduces auction delay by 27.9±2.8%
and mission time by 3.5±2.2%. However, the movement distance and the number of
messages increase with bounded ranges. Because each auction has more information
with global knowledge, having longer distances with bounded ranges seems to be natural.
However, having too much information may lead to more delays and damages of the
overall performance as Fig. 8 suggests.

Using the dynamic utility functions, bounding ranges enhances the performance in
the four metrics (except load imbalance) significantly. Bounding ranges can be inter-
preted as filtering objects because greedy algorithms such as auction methods, usually
try to choose targets closer the robots; thus, the probability to coordinate with the ro-
bots far away is relatively low. Load imbalance is increased a little with static utility
and does not have significant differences in overall.

The improvement achieved by various methods in bounded ranges is compared with
the improvement by them in unbounded ranges. The results suggest that bounding
ranges help reduce movement distance and number of messages further except for F/R
auction with static utility when the methods are compared to forward auction with static
utility. This suggests that it is easier to improve performance with bounded ranges. Us-
ing dynamic utility functions, the performance improvement difference from the cases
of unbounded ranges is more significant.

Swapping and Bounded Ranges. Both the number of swaps and the sum of estimated
swapping benefit (ΣEB of Eq.(8)) are larger with bounded ranges using static utility
function. However, using dynamic utility functions, bounding the ranges makes the two
values smaller. Greater number of swapping implies worse quality of auction results.
Thus, we can infer that bounding ranges gives less efficient plans with static utility
function and gives more efficient plans with dynamic utility functions compared to
unbounded ranges; movement distance in Fig. 8 shows the same tendency.

5 Discussion

In this section, we discuss unexpected symptoms observed during the experiments:
deadlocks, unexpected delays in auctions, and other side effects of the mechanisms.
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Most of them were not observed in the previous small-scale experiments. However,
with large-scale experiments, more issues can be observed with the mechanisms and
the variety of the mechanisms is also extended in this paper. Analyzing how such issues
occur, we try to mitigate the issues and show how other versions of the mechanisms
work.

N/C often suffers from deadlock unless the density of robot agents is very high
(as in Dense) or the reqt values are small enough. Fig. 9 shows an example, where
reqt1 = reqt2 = 3. Because each robot agent may find its own best target differently,
this deadlock is not unlocked unless additional robots come in or the targets move so
that the robots may change their targets. However, unless the density of robot agents is
sufficiently high, unlocking does not happen frequently enough to accomplish missions.

Fig. 9. N/C suffering from deadlock

Forward auction with dynamic utility also suffers from deadlock, which is not ob-
served in the previous small-scale experiments [4, 5]. If a target’s price is higher than
its value (utility), the target may not be bidden, which in turn can stop the mission
progress. This happens frequently with dynamic utility functions, as such functions can
cause greater increases in target prices. Table 2 shows an example. This may happen
without dynamic utility function; it is observed in preliminary simulations when targets
moved away too fast and robots could not finish an auction in time. Adding a reverse
auction to a forward auction (F/R) helps in adapting to the dynamic environment, which
prevents such deadlocks, as well as in reducing convergence time.

Table 2. Forward auction and dynamic utility

futil Target price Actions

100 10 r1 bids “10”.
150 10 r2 bids “120”.
200 120 r2 retracts.
150 120 r1 retracts.
100 120 Price is too high.

Adding a reverse auction to a forward auction can alter the assignments when targets
are dynamic or robots have a series of asynchronous auctions–each auction is done
asynchronously with a different duration. The auctions are supposed to have the same
results with a different delay [11]: forward, reverse, and F/R auction. However, if targets
move, their positions, which determines the costs, become different according to each
auction method because the delay varies, which in turn makes the assignments different.
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Even if targets are static, assignments from a second round can be different because
each robot has a series of asynchronous auctions. Fig. 10 shows an example with tar-
gets {a,b,c}, reqa=4, reqb=3, reqc=5, and robots 1 to 8 using different auction meth-
ods (i.e. F/R versus forward); the two auction results are different. Because the system
is asynchronous and distributed, each robot incurs additional costs to wait for other
auctions to converge and other robots to complete their services. In a fully distributed
system with a dynamic environment, such costs can be too high. The properties of a
target changes while robots are sending ”confirmation of convergence”, subsequently,
the robots may need to cancel their confirmations and restart auctions because of the
changes in the environment. As a result, given the dynamicity and asynchrony, distrib-
uted auctions may need to wait indefinitely in order to find an equilibrium. Nonetheless,
adding a reverse auction to a forward auction has the advantage of converging with less
delay and fewer messages. Besides, the results show that the auction quality is slightly
improved. This may be a result of the fact that a faster auction can respond faster in a
dynamic environment.

Fig. 10. Inequivalent of auctions

F/R auction can suffer from ping-pong bidding; a bidder alternatively bids to multiple
targets and auctions are delayed. If a target price fluctuates, bidders may alternatively
bid to different targets without completing an auction. Table 3 shows an example. Ping-
pong bidding usually stops either by another bidder or by a completion of an auction;
however, auctions still suffer from additional delay due to ping-pong bidding. Applying
a cost for retracting a bid mitigates the problem a little. However, as shown on Table 3,
ping-pong bidding still happens with the cost of retracting a bid. If the cost of retracting
a bid is too high or retraction is forbidden, the algorithm cannot adapt to the change

Table 3. Ping-pong bidding

EPt1 pricet1 EPt2 pricet2 Actions

101 10 100 10 r bids t1
10 101 70* 10 r retracts bid
21 80 100 10 r bids t2
9* 80 10 100 t1 discounts
31* 40 10 100 r retracts bid
61 40 30 80 r bids t1
10 101 0* 80 t2 discounts
*: retracting cost applied. EP: expected profit.



60 M. Ham and G. Agha

in the environment; besides, an auction may spend too much time. Ping-pong bidding
happens more frequently with dynamic utility because they cause greater fluctuations
in the target price. With sealed-bid auctions, ping-pong bidding does not occur because
bidders do not see the target price.

Sealed-bid auctions perform best in terms of mission time, movement distance, auc-
tion delay, and load imbalance. Sealed-bid auctions may have disadvantages because
they do not consider the target price as a cost factor, which reflects how others bid; the
more popular a target is, usually the more expensive it is. For better task distribution,
overly popular targets may need to be avoided. However, because robot agents do not
actually pay the price, but incurs a cost such as movement distance and pivoting, the
price may be neglected by the robots.

Dynamic utility functions can distort a target’s utility, which can make assignments
inefficient by exaggerating the value of a target excessively. This makes movement
distance longer than static utility. Fig. 11 shows an example, where reqt1 = 4, reqt2 = 1,
and ∀i : utilti/reqti = 10. If utilt1 is boosted enough to ignore the distances by r1, r2, and
r3, both r4 and r5 bid for t1 although t2 is better. However, although dynamic utility
results in longer movement distance, shorter auction delay may compensate for the
increased movement; e.g., some cases result in shorter mission time. Besides, dynamic
utility functions can reduce load imbalance significantly as Fig. 6 suggests although the
reason is unclear and we need further studies on this issue.

Fig. 11. Distorted utility value with dynamic utility function

A pair of robot agents sometimes repeatedly swap with each other: ping-pong swap-
ping. Swap threshold THswap reduces the frequency of ping-pong swapping. However,
THswap cannot completely eliminate ping-pong swapping and THswap also reduces
the frequency of beneficial swaps. Ping-pong swapping is caused either by collision
avoidance or by the asynchrony and delay of agents. When ping-pong swapping hap-
pens, both mission time and movement distance increase. Even when ping-pong swap-
ping does not happen because of THswap, the initial swap may have already made the
routing plans less efficient. Because some swaps are useless or harmful, the perfor-
mance improvement is not as significant as the sum of EB (refer Eq. (8)) suggests.

6 Conclusion and Future Research

Various auction mechanisms and swapping for distributed multi-robot coordination, and
different bidding strategies in large-scale multi-agent systems are experimented with.
The results suggest that the mechanisms work with dynamic environment in large-scale
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systems and the mechanisms can work with larger-scale systems because the mecha-
nisms perform well with bounded sensing and communication ranges without multi-hop
communications. Table 4 summarizes the results. However, bidding strategies, which
are expressed by utility functions, may include more factors such as the number of po-
tential bidders and the number of available targets nearby (potential utility). Besides,
there is a possibility that it may perform better if robot agents are heterogenous and
have mixed strategies.

Table 4. Summary of strategies

Strategy Results

Coordination method

N/C Deadlock with non-trivial problems
Forward Deadlock with dynamic utility functions
Reverse No merit over Forward
F/R Better than Forward. Ping-pong bidding.
Sealed-bid Best except for the number of messages.

Utility function
Static Shorter movement distance
Dynamic Shorter auction delay. Even workload distribution.

Tradeoff between convergence speed and solution quality

Swapping Performance improved. Ping-pong swapping occurs.

Various simulation parameters are also experimented with: sensing and communica-
tion ranges, robot agent density, and initial positions of robot agents. Table 5 summarizes
the results. However, we may need to experiment further by varying more parameters
such as different field sizes, static targets, and varying target speeds. This may help ver-
ify the characteristics and adaptability of the mechanisms.

Additional metrics such as the number and benefit of effective swaps, number of
ping-pong bids, robot idle dime, and statistics of price-cut may help measure the per-
formance more concretely; thus, we can find how to improve the mechanisms and verify
the conjectures to explain symptoms such as ping-pong bidding and ping-pong swap-
ping. Besides, the reason why dynamic utility improves workload imbalance signifi-
cantly is not clear and further experiments are needed.

Table 5. Summary of simulation parameters

Parameters Results

Sensing and communication ranges
Bounded Auction methods perform better.
Global N/C suffers from deadlock less severely.

Robot agent density
Dense Both N/C and auction methods work.
Sparse N/C fails. Auction methods perform well.

Initial positions of robots
Corner Less performance gap between strategies.
Scattered N/C suffers from deadlock more severely.
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Forward, reverse, and F/R auctions are known to be equivalent under certain restric-
tive assumptions [11]. The assumptions are that the auctions are simultaneous, the tasks
are static, and each agent bids in only one auction (and for a predetermined task). In
this case, the auction is used as an offline tool. In general, the auction methods do not
yield the same results (equilibria) under the looser conditions of this paper: the envi-
ronment is dynamic and a sequence of asynchronous auctions is used. However, it is
possible that the auction methods may result in the same sets of possible assignments
even though they result in different assignments. Proving that the set of possible assign-
ments under different auction methods is the same with asynchronous auctions remains
an open problem. However, even if the set of possible solutions is equal, the problem of
determining the speed of convergence and the likelihood of better solutions is a more
difficult problem. Given the differences that are apparent in the simulations, we conjec-
ture that different auction mechanisms are not equivalent. This question would be much
harder to resolve analytically.
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