
Partial Parsing: Combining Choice with

Commitment

Malcolm Wallace

University of York, UK

Abstract. Parser combinators, often monadic, are a venerable and
widely-used solution to read data from some external format. However,
the capability to return a partial parse has, until now, been largely miss-
ing. When only a small portion of the entire data is desired, it has been
necessary either to parse the entire input in any case, or to break up the
grammar into smaller pieces and move some work outside the world of
combinators.

This paper presents a technique for mixing lazy, demand-driven, pars-
ing with strict parsing, all within the same set of combinators. The
grammar specification remains complete and unbroken, yet only suffi-
cient input is consumed to satisfy the result demanded. It is built on a
combination of applicative and monadic parsers. Monadic parsing alone
is insufficient to allow a choice operator to coexist with the early commit-
ment needed for lazy results. Applicative parsing alone can give partial
results, but does not permit context-sensitive grammars. But used to-
gether, we gain both partiality and a flexible ease of use.

Performance results demonstrate that partial parsing is often faster
and more space-efficient than strict parsing, but never worse. The trade-
off is that partiality has consequences when dealing with ill-formed input.

1 Introduction

Parser combinators have been with us for a long time. Wadler was the first to
notice that parsers could form a monad [12]. Tutorial papers by Hutton and
Meijer [5,6] illustrated a sequence of ever-more sophisticated monadic parsers,
gradually adding state, error-reporting and other facilities. Röjemo [9] intro-
duced applicative1 parsers for space-efficiency, whilst Leijen’s Parsec [7] aimed
for good error messages with both space and time efficiency by reducing the
need for backtracking except where explicitly annotated. Packrat parsing [3]
eliminates backtracking altogether by memoising results (a technique that is
highly space-intensive). Laarhoven’s ParseP [11] also eliminates backtracking,
by parsing alternative choices in parallel. Swierstra et al have shown us how
to do sophisticated error-correction [10], permutation parsing [1], and on-line
results through breadth-first parsing [4], all in an applicative style.

But, aside from the latter work, the particular niche of partial parsing is still
relatively unexplored. A parser, built from almost any of the currently available
1 The applicative functor is now recognised [8] as a structure simpler than a monad.

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 93–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 M. Wallace

combinator libraries, needs to see the entire input before it can return even a
portion of the result. Why is it unusual to be non-strict, demand-driven, par-
tial? Because of the possibility of parse errors. If the document is syntactically
incorrect, the usual policy is to report the error and do no onward processing of
the parsed data — in order to prevent onward processing, we must wait until all
possible errors could have arisen.

Sometimes this is not desirable. Imagine processing a large XML document
that is already known to be well-formed. Why should the program wait until
the final close-tag has been verified to match its opener, before beginning to
produce output? There is also often an enormous memory cost to store the
entire representation of the document internally, where lazy processing could in
many cases reduce the needed live heap space to a small constant.

Even if we do not know for certain that a document is well-formed, it can still
be useful to process an initial part of it. Think too, of an interactive exchange
with a user, or a network communications protocol, where input and output
must be interleaved.

Of course, there is a flip-side to partial processing – the parsed value may itself
be partial, in the sense of containing bottom (undefinedness, or parse errors).
One must be prepared to accept the possibility of notification of a parse-failure
when it would be too late to undo the processing already completed.

Of all the libraries available, only the one by Hughes and Swierstra [4] has al-
ready demonstrated how to achieve partial parsing (they call it ‘online’ parsing).
The framework is applicative in style (rather than monadic) and automatically
analyses the grammar to determine when no further errors or backtracking may
occur over the part of the input that has already been seen. In the absence of
such errors, it becomes possible to return the initial portion of the resultant
data structure with confidence that no other parse is possible. (So in fact, their
partial values do not contain bottoms.)

However, the mechanism they use to implement this scheme is rather complex,
involving polymorphic recursion, and both existential and rank-2 type extensions
to Haskell. Whilst undoubtedly powerful, the scheme is also somewhat hard to
understand, as witnessed by the fact that no parsing library (except the one
which accompanies their paper) has adopted anything like it. The library itself
can be fiendishly difficult to modify, even to add simple primitives found in other
libraries (e.g. the ‘satisfy’ of Figure 2).

This paper presents a simpler, more easily understood, method to achieve
partial parsing. It avoids scary higher-ranked types, instead continuing to rep-
resent parsers in a basic, slightly naive, way. The price to pay is that there is no
automated analysis of the parsers, so the decision on where to be lazy or strict
is left in the hands of the grammar writer.

We first outline some ordinary (strict) monadic parser combinators, then il-
lustrate how a naive conversion to use a lazy sequencing operator is problematic.
An alternative is explored, using a commit -based technique to limit backtrack-
ing, but this too is found to be inadequate. Finally, it is shown that by mixing

Partial Parsing: Combining Choice with Commitment 95

applicative and monadic combinators, the user can gain explicit control over the
lazy or strict behaviour of their parsers.

All the combinator variations described here are freely available in the polyparse
library [14].

1.1 Simple Polymorphic Parsers

An outline of the basic concept and implementation of monadic parsing now
follows, with corresponding code in Figure 1. For a fuller treatment, the reader
is directed to Hutton and Meijer’s comprehensive tutorial [6].

newtype Parser t a = P ([t]→ (Either String a, [t])

instance Functor (Parser t) where
fmap f (P p) = P (λts → case p ts of

(Right val , ts ′)→ (Right (f val), ts ′)
(Left msg , ts ′) → (Left msg , ts ′))

instance Monad (Parser t) where
return x = P (λts → (Right x , ts))
fail e = P (λts → (Left e, ts))
(P p) >>= q = P (λts → case p ts of

(Right x , ts ′) → let (P q ′) = q x in q ′ ts ′

(Left msg , ts ′) → (Left msg , ts ′))

runParser :: Parser t a → [t]→ (Either String a, [t])
runParser (P p) = p

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts → case p ts of

(Left ,)→ q ts
right → right)

next :: Parser t t
next = P (λts → case ts of

[]→ (Left "Ran out of input (EOF)", [])
(t : ts ′)→ (Right t , ts ′))

Fig. 1. Basic parser combinators

The Parser type is parameterised on the type of input tokens, t , and the
type of the result of any given parse, a. A parser is a function from a stream of
input tokens, to the desired result paired with the remaining unused tokens. If
a parse fails, the failed result is reported in the String alternative of the Either
type. Many early combinator libraries used lists of results to represent multiple
ambiguous parses, or failure (if empty). However in practice only the first result is
usually of interest, and the empty list unfortunately gives no helpful information
in case of errors, hence the design choice here to use the Either type.

Parsers are sequenced together using monadic notation, hence the instances
of Functor and Monad . It is clear by inspection of the definition of the sequence
operator (>>=), that it is strict in the result of the first parser – it performs a
case comparison on it.

96 M. Wallace

A parser can be ‘run’ by applying it to some input token list. The runParser
function thus lifts embedded parsers out of the monad, back into some calling
context.

Choice between different parses is expressed by onFail , which tries its second
argument parser only if the first one fails. Note that information may be lost,
since any error message from the first parser is thrown away. We return to this
point later.

Finally, we need a single primitive parser called next , that returns the next
token in the stream.

Higher-level combinators can be defined using the primitives above. For in-
stance, those in Figure 2.

-- One token satisfying a predicate.
satisfy :: (t → Bool)→ Parser t t
satisfy p = do {x ← next

; if p x then return x else fail "Parse.satisfy: failed"}
-- Use ’Maybe’ type to indicate optionality.

optional :: Parser t a → Parser t (Maybe a)
optional p = (fmap Just p) ‘onFail ‘ return Nothing

-- ’exactly n p’ parses precisely n items, using the parser p.
exactly :: Int → Parser t a → Parser t [a]
exactly 0 p = return []
exactly n p = do {x ← p

; xs ← exactly (n − 1) p
; return (x : xs)}

-- Parse a (possibly empty) sequence. Cannot fail.
many :: Parser t a → Parser t [a]
many p = do {x ← p

; xs ← many p
; return (x : xs)} ‘onFail ‘ return []

-- Parse a sequence followed by a terminator.
manyFinally :: Parser t a → Parser t z → Parser t [a]
manyFinally p z = do {xs ← many p

; z
; return xs }

Fig. 2. Higher-level combinators built from primitives

A parser for some particular textual data format is then built from these
combinators, and looks rather like a recursive-descent grammar. The example
in Figure 3 illustrates a grammar for a simplified form of XML. We assume the
input tokens have already been lexed according to XML-like rules, and that error
messages are easily augmented with positional information. Definitions for less
interesting parsers such as name and attribute are omitted.

Partial Parsing: Combining Choice with Commitment 97

data Content = Elem String [Attr] [Content]
| Text String

content = element ‘onFail ‘ text
‘onFail ‘ fail "unrecognisable content"

element = do
{token "<"

; n ← name
; as ← many attribute
; do {token "/>"

; return (Elem n as [])}
‘onFail ‘
do {token ">"

; cs ← manyFinally content (endtag n)
; return (Elem n as cs)}

} ‘onFail ‘ fail "unrecognisable element"

endtag n = do
{m ← bracket (token "</") name (token ">")
; if n ≡ m then return ()
else fail ("tag <" ++ n ++ "> terminated by </" ++ m ++ ">")
}

text = fmap Text stringToken
‘onFail ‘ fail "unrecognisable text"

token t = satisfy (≡ t)

Fig. 3. Example combinator grammar for a simplified XML

1.2 Problems and Limitations

Complete consumption of input. If we only want a small part of the parsed
data, we must still parse the whole thing first. For instance, given the XML
input

<a>hello<c>world</c>

we may wish to extract only the contents of the tag, yet are forced to read
the <c> tag as well! The input could be arbitrarily large, with the fragment of
sole interest close to the beginning. Not only that, but the uninteresting part
of the input must be fully well-formed, which may be too restrictive for some
applications.

One way to avoid complete parsing is to resort to other coding techniques
outside the parsing monad. An example of such a technique is repeatedly calling
runParser on smaller units of the input, tracking unused tokens between calls.
Yet manipulation of the parse state is exactly the tedious boilerplate that the
monad is supposed to hide! Moving outside the monad also leads to a highly
non-modular grammar, requiring much special-case code to deal with the specific
fragments of interest.

Ideally, we would like to keep the original grammar, and just interpret it lazily
in order to return a partial result.

98 M. Wallace

Error messages are often poor. Due to backtracking over choice points, they
rarely point close to the location where the input fails to match the grammar.
Indeed, in the worst case, errors are often reported at the topmost outer-most
layer of the value’s structure, i.e. column 1 of the input.

Using our example XML grammar (Figure 3), the error message from at-
tempting to parse the incorrect input

<a>hello

is not, as one might hope,

"tag terminated by at char 18"

but rather

"unrecognisable content at char 1"

Why? Because failure anywhere inside the inner do-blocks of the grammar is
thrown away by the enclosing nested onFails, which propagate the failure out-
wards, but changing the error message at every stage.

One might wonder whether it suffices to re-write onFail to preserve and accu-
mulate error messages, rather than ignore them? Unfortunately this only leads
to a huge collection of misleading errors, amongst which it is difficult to find the
single accurate one.

Backtracking over choices sometimes leads to inefficiency. Again for the
example incorrect input

<a>hello

despite the fact that we have already found a valid open tag <a> for the ele-
ment branch of the grammar, nevertheless because something further inside the
element is incorrect, this parser necessarily backtracks to the top-level content
parser and attempts to match the non-element case text, on which it is bound
to fail.

The XML example only allows for two choices of outer construct – element or
text, corresponding to the two branches of the resultant Haskell sum type – but
imagine a type and its grammar having a hundred possible different constructors.
A parse failure deep within the first branch could lead to the evaluation of all
of the remaining 99 constructor choices, failing on all of them, before giving up.
Not only is the error message imprecise, but it took much longer than necessary
to deliver it!

1.3 Roadmap

In the following sections, we address some of these limitations of the basic parser
combinators. First, we make a naive attempt at a lazy parsing monad, to illus-
trate the conflict between committing to return a value, yet retaining choice.
Then we examine whether the prevention of backtracking (second and third

Partial Parsing: Combining Choice with Commitment 99

issues above) can not only give better error messages, but also allow a more pre-
cise determination of commitment points, at which partial values can be safely
returned. Finally, we give a full yet simple solution in which lazy and strict
sequencing can be freely mixed.

2 Naive Lazy Monadic Sequencing

It is readily observed that the parser type presented in Figure 1 can either return
an error message, or a polymorphic value, but not both. But for partial parsing,
we want the parser to return the polymorphic value regardless. Any error due to
parse failure could be hidden within the value as an exception, to be triggered
only when the immediate subcomponent containing the error is demanded.

Thus, a naive implementation of a lazy monad (corresponding to the strict one
already given) is to simply erase the Either type constructor, and all Left and
Right value constructors. Any constructions that previously built a Left will
instead throw an exception. Case branches that previously scrutinised a Left
can be omitted, and those that scrutinise a Right now see the contained value
directly – see Figure 4. Furthermore, the sequence operator (>>=) is made lazy by
scrutinising the result of its first operand with a (non-strict) let-binding, rather
than with a case as before (the latter would be strict in the tuple pattern).

Sadly though, this approach leaves us with no way to code the choice operator.
As the very name onFail suggests, the combinator must be able to detect a failure
in its left argument before it can try its right argument. But the naive partial
parser type no longer represents failure explicitly as a value. Instead, it is a
control-flow construct – an exception. One might wonder whether the exception
can be caught and handled within the onFail combinator, but sadly, we are in
the wrong monad! Exceptions can be caught only from the I/O monad, not the
parsing monad.

newtype Parser t a = P ([t]→ (a, [t])

runParser :: Parser t a → [t]→ (a, [t])
runParser (P p) = p

instance Functor (Parser t) where
fmap f (P p) = P (λts → case p ts of

(val , ts ′)→ (f val , ts ′))
instance Monad (Parser t) where

return x = P (λts → (x , ts))
fail e = P (λts → (throwException e, ts))
(P p) >>= q = P (λts → let (x , ts ′) = p ts

(P q ′) = q x
in q ′ ts ′

throwException :: String → a -- throw to enclosing I/O monad

Fig. 4. A futile attempt at a lazy parsing monad

100 M. Wallace

The lesson here is that the early commitment implicit in returning a partial
value, prevents a later choice. So let us examine a different approach, where
commitment is made explicit. By annotating the precise locations in the gram-
mar where commitment is possible, it will remain possible to implement choice
everywhere else.

3 Choice and Commitment

The introduction of explicit commitment is initially motivated by a desire to
improve error reporting. We have already seen how backtracking over choice
points leads to poor error messages. But in addressing this problem, we will
disallow backtracking at defined locations, and therefore also eliminate choice
there too. The hope is that this will enable us to return a partial result at that
same location.

Essentially, parse failures can be divided into two separate classes: recoverable
and unrecoverable. Recoverable errors allow backtracking through any enclosing
choice point; unrecoverable errors should always be reported to the user – they
override any enclosing choice point.

We refine the original parser type to codify the different error classes – see
Figure 5. Instead of the plain Either type, we introduce Result , which gives a
three-valued logic: success, failure, or a committed result. The committed result
is the mechanism used to prevent backtracking. Ultimately there is of course
no semantic difference between a plain success or a committed success. But a
commitment that ends up being a failure cannot be recovered – it must be
reported. By contrast, the choice combinator can throw away an uncommitted
failure, to try some other branch.

Figure 5 shows how the basic monadic machinery is modified for this new
representation. The choice combinator tries alternatives only when errors are
recoverable – after commitment, no alternative is possible, just as surely as if
the result of the first operand were successful.

Finally, we add the new combinator commit , which serves as the primary
mechanism for a grammar-writer to indicate where sufficient tokens have been
seen to be certain that no alternative parse path is possible.

Commit is a kind of dual of the try combinator in Parsec [7]. In Parsec, no
backtracking is allowed normally – it must be explicitly permitted with try. But
in our framework, backtracking is normally the default, except where explicitly
disallowed by commit . Ultimately, they have a similar effect however: the calling
context of try or commit will never be returned to; in both cases, we have
committed to any particular branch that led to the current call, yet are still
willing to try different alternative branches inside the argument to commit .

Commit is similar to the cut operator used by Röjemo’s combinators [9] to
achieve space efficiency. Indeed, it solves the very same space-leak, which is also
identified by Leijen as a primary motivator for developing Parsec [7]. Commit
also bears a strong similarity to the extra-logical ! (cut) operator in Prolog,
which serves to prevent backtracking in its implementation model.

Partial Parsing: Combining Choice with Commitment 101

data Result t a = Success a [t]
| Failure String [t]
| Commit (Result t a)

newtype Parser t a = P ([t]→ Result t a)

runParser :: Parser t a → [t]→ (Either String a, [t])
runParser (P p) = result ◦ p

where
result (Success a ts) = (Right a, ts)
result (Failure e ts) = (Left e, ts)
result (Commit r) = result r

instance Monad (Parser t) where
return x = P (Success x)
fail e = P (Failure e)
(P p) >>= q = P (continue ◦ p)

where continue (Success x ts) = let (P q ′) = q x in q ′ ts
continue (Failure e ts) = Failure e ts
continue (Commit r) = Commit (continue r)

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts → case p ts of

(Failure)→ q ts
r → r)

commit :: Parser t a → Parser t a
commit (P p) = P (Commit ◦ p)

Fig. 5. Parsers with commitment, for better error-reporting

Figure 6 refines the example XML grammar of Figure 3, re-expressing it in
terms of commit . Note the careful placement of commitment after sufficient
tokens have been read to disambiguate the cases. Now, when given the badly-
formed input string

<a>hello

in contrast to the previous attempt, we receive the error message

" terminated by at char 18"

as hoped.2 The endTag parser is responsible for generating the message, and the
nearest enclosing commit (in the second branch of element) is responsible for
ensuring that it (and no other message) is reported.

It is worth noting that one of the commonest sources of bugs in Parsec gram-
mars is that users do not know where to place the try combinator. Parsec
grammars are LL(1) by default, but try is used to permit extra lookahead for
disambiguation. It can be difficult to look at a grammar and count the required
lookahead. This leads to the curious observation that Parsec grammars are not
2 Different implementations of the manyFinally combinator can yield even more de-

tailed error messages.

102 M. Wallace

element = do
{token "<"

; commit (do
{n ← name
; as ← many attribute
; do {token "/>"

; commit (return (Elem n as []))}
‘onFail ‘
do {token ">"

; commit (do {cs ← manyFinally content (endtag n)
; return (Elem n as cs)})}

} ‘onFail ‘ fail "unrecognisable element")
}

Fig. 6. The XML grammar for ‘element’, re-expressed using commit . (Other produc-
tions remain unchanged.)

in fact compositional! When a user plugs two previously-working grammars to-
gether, the combination often turns out not to work as expected, and they resort
to simply sprinkling try into various locations to discover a fix.

By contrast, we believe that the commit approach is superior, because the
lack of a commit will not cause the grammar to fail unexpectedly, merely to be
inefficient or to give unhelpful error messages. In addition, the intuition needed
to place a commit combinator correctly within the grammar is a much lower bar-
rier. It indicates a simple certainty that no alternative parse is possible once this
marked point has been reached. This is easier to verify by inspection than de-
ciding how many tokens of lookahead are required to disambiguate alternatives.

4 How to Be Lazy

Does the form of explicit commitment described above help to achieve partial
results? Sadly the answer is no, at least not directly. Once the parser has emitted
a Commit constructor, it has still not determined whether the result will be a
success or failure. And even if it does turn out to be a success, we do not know
(at the moment of commitment) which constructor of the successful polymorphic
value is going to be returned. Indeed, there is no way to discover it, because the
result of commit is fully polymorphic – by definition the combinator cannot know
anything about the enclosed value’s representation.

Thus, the insight gained is that we need a combinator which, in addition
to explicitly marking the point of commitment to a value, must know enough
about that value to return a portion of it immediately. Commitment must be
parameterised on the thing we are committing to.

Furthermore, some new form of sequencing combinator is required, which
can build a whole value from component parts, but is capable of returning a
partially composed value before the end of the sequence is complete. For this,
we must leave behind the monadic world, especially monadic sequence. Some

Partial Parsing: Combining Choice with Commitment 103

strict sequencing will remain useful, but short of composing multiple monads,
we cannot mix lazy and strict sequences using only the monadic framework.

It turns out that the world of applicative functors [8] is a more convenient
place to find the kind of sequence we want. In particular, functorial apply can
be viewed as a sequencing operator. The correspondence to monadic bind (and
the difference) is clearest when the arguments to apply are flipped:

apply :: Applicative f ⇒ f (a → b)→ f a → f b
flip apply :: Applicative f ⇒ f a → f (a → b) → f b
(>>=) :: Monad m ⇒ m a → (a → m b)→ m b

Some existing parser combinator libraries are based on applicative functors,
rather than monads [4,9]. Apply is less powerful than monadic bind, in the sense
that the former can be implemented in terms of the latter, but not vice versa.
This captures the intuition that apply simply combines functorial values, that
is, the order of evaluation of left and right arguments is not restricted, so one
cannot depend on the other. By contrast, the monadic bind allows the contents
of the functorial value to be examined, named, and used, in the sequel. Thus,
the monadic style allows context-sensitive parsing, whilst the applicative style is
context-free.

There is a straightforward and obvious definition of apply in terms of bind:

pf ‘apply ‘ pa = do {f ← pf ; a ← pa; return (f a)}
but of course this is no good for returning partial results, because as we already
know, the monadic bind is insufficiently partial – that is the problem we are
trying to overcome. Instead, we can define apply to always succeed and return
a result, if its left argument succeeds. For instance, if the value delivered by the
left functorial argument is a partially-applied data constructor, and the right
argument delivers the next component of that constructor, then we can imme-
diately return the constructor portion of the value, before we know whether the
component to be contained within it is fully parse-correct.

In the formulation of Figure 7, we revert to the original Either variant of the
Parser datatype, but could equally have used the Result variant associated with
the commit combinator. The improved error-reporting of the latter is entirely
independent of, and orthogonal to, the issue of partiality. A point of special note
is that the use of the Either type for parsing continues to allow the original
implementation of the choice combinator onFail .

But the key point in this definition of apply is that if the first parser suc-
ceeds, then the whole combined parse succeeds (returns a Right value). Both
failures and successes within the second parser are stripped of their enclosing
Left or Right , and used ’naked’. The new runParser is the place where the Either
wrapper is discarded, leaving just the naked value (or exception).

For illustration, Figure 8 re-expresses the XML grammar once again, this
time in a lazy fashion. Application is of course curried, so chaining many parsers
together is as straightforward in the applicative case as in the monadic case.
Note how a mixture of strict monadic sequence and lazy application is used, and

104 M. Wallace

newtype Parser t a = P ([t]→ (Either String a, [t]))

runParser :: Parser t a → [t]→ (a, [t])
runParser (P p) = convert ◦ p

where convert (Right a, ts) = (a, ts)
convert (Left e, ts) = (throwException e, ts)

infixl 3 ‘apply ‘
apply :: Parser t (a → b)→ Parser t a → Parser t b
(P pf) ‘apply ‘ pa = P (continue ◦ pf)

where
continue (Left e, ts) = (Left e, ts)
continue (Right f , ts) = let (a, ts ′) = runParser pa ts

in (Right (f a), ts ′)

Fig. 7. A parser that mixes monads and applicative functors. (The instances of Monad
and Functor classes, and the implementation of onFail remain exactly as in Figure 1.)

element = do
{token "<"

; return Elem
‘apply ‘ name
‘apply ‘ many attribute
‘apply ‘ (do {token "/>"

; return []}
‘onFail ‘
do {token ">"

; manyFinally content (endtag n)})
} ‘onFail ‘ fail "unrecognisable element"

Fig. 8. The XML ’element’ grammar in lazy form

how easily strict sequence (with the ability to backtrack over choices) sits inside
an enclosing applicative (partial, lazy) sequence.

It is also worth making the point that this revised grammar no longer checks
that XML end tags match their opening tags in advance of returning the prefix of
the element. The check will only occur once the final inner content is demanded
by the context of the parser.

So, now that we have two ways to express sequence with combinators, the
user must develop their grammar to make careful use of lazy or strict sequence
as appropriate. Many of the non-basic combinators must be checked carefully to
ensure that they are sufficiently lazy. For example, if we want exactly (from Fig-
ure 2) to return a lazy list without waiting for all elements to become available,
we must rewrite the earlier definition as follows:

exactly :: Int → Parser t a → Parser t [a]
exactly 0 p = return []
exactly n p = do x ← p

return (x :) ‘apply ‘ exactly (n − 1) p

Partial Parsing: Combining Choice with Commitment 105

5 Evaluation

5.1 Performance

To give a flavour of the performance of lazy partial parsing, we designed a small
number of (slightly artificial) tests using the Xtract tool from the HaXml suite
[13,15]. Xtract is a grep-like utility which searches for and returns fragments
of an XML document, given an XPath-like query string. Because the intention
is to find small parts of a larger document, it is an ideal test case for partial
parsing. The XML parser used by Xtract is switchable between the strict and
lazy variations3.

We created a number of well-formed XML documents of different sizes n (rang-
ing on a logarithmic scale from 10 to 1,000,000) with interesting characteristics:

– linear: the document is a flat sequence of n identical elements enclosed in a
single wrapper element.

<file> <element/> <element/> ... </file>
– nested: the document contains n elements of different types, with element

type i containing a single element of type i + 1 nested inside it, except for
the nth element, which is empty.

<file> <element0>
<element1>

<element2> ...
</element2>

</element1>
</element0>

</file>
– follow: the nested document, followed by a single trivial element, together

enclosed in a wrapper element.
<file> <element0>

<element1> ...
</element0>
<follow/>

</file>

The queries of interest are:

– Xtract "/file/element[0]" linear
Find the first element in the flat sequence of elements.

– Xtract "/file/element[$]" linear
Find the last element in the flat sequence of elements.

– Xtract "//elementn" nested
Find the most deeply nested element(s) in the nesting hierarchy. The dif-
ference between this test and the following one is that this test continues
searching after finding the first result.

3 Software releases HaXml-1.20 and polyparse-1.2 together contain all the test code.

106 M. Wallace

– Xtract "//elementn[0]" nested
Find only the first most deeply nested element in the nesting hierarchy.

– Xtract "/file/follow" follow
Find the single top-level element that follows the large deeply-nested ele-
ment.

The time and memory taken to satisfy each query is given in Tables 1 and 2,
using both the strict and lazy parser variations. In all cases, the lazy parser is
better (both faster, and more space efficient) than the strict parser. For extremely
large documents, where the strict parser often crashes due to stack overflow, the
lazy parser continues to work smoothly. For the cases where the only result is a
small, early, fragment of the full document, laziness reduces the complexity of
the task from linear to constant, that is, it depends on the required distance into
the document, not on the size of the document. Even when the searched element
is at the end of the linear document, the lazy version is orders of magnitude
faster, for large inputs.

The difference between the resources used by the lazy queries for the first vs.
all nested elements is interesting. Taking the first element is almost exactly twice
as fast, and half as space-hungry, as looking for all elements. This corresponds
exactly to the intuition that the latter needs to check all closing tags against
their openers (of which there are equal numbers), whilst the former only needs
to look at the opening tags.

None of this is very surprising of course. Lazy streaming is well-known to
improve the complexity of many algorithms operating over large datasets, often
allowing them to scale to extreme sizes without exhausting memory resources,
where a more strict approach hits physical limitations. One such demonstration
is given in the field of isosurface extraction for visualisation [2], where the pure
lazy solution in Haskell is slower than a rival C++ implementation, only until
very large inputs are considered, beyond which the Haskell overtakes the C++.

5.2 Comparisons

How does lazy parsing fare against other combinator libraries? Parsec claims to
be “industrial-strength” and very fast. In contrast, the combinators presented
here are somewhat simplistic, with no particular tuning for speed. So for com-
parison, we reimplemented our XML parser using Parsec: some selected mea-
surements are incorporated in Table 1. Indeed, Parsec is in general faster than
our strict library, but slower than our lazy library. Depending on the nature of
the test, Parsec’s performance aligns pretty closely to either the strict or lazy
variations. Nevertheless, laziness always wins hugely when it is able to reduce a
linear search to constant time.

The Utrecht combinators claim to be both partial and even faster than Parsec,
so we also attempted to reimplement our XML parser in this framework too, to
take advantage of the laziness. Unfortunately, the Utrecht library is entirely ap-
plicative in nature. Thus, it was not possible to implement the context-sensitive
monadic parser needed for XML. (The accompanying paper [4] does give an il-
lustrative instance of monad, but the real implementation of the library is so far

Partial Parsing: Combining Choice with Commitment 107

Table 1. Time performance results, measured on a twin-core 2.3GHz PowerPC G5,
with 2Gb physical RAM. All timings are best-of-three, measured in seconds by the
unix time command (user+system). The graph plots use a log-log scale. Blank entries
indicate stack overflow.

LINEAR 1ST

N STRICT LAZY PARSEC

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

0.018 0.013 0.017

0.011 0.012 0.012

0.014 0.01 0.017

0.025 0.01 0.03

0.05 0.009 0.064

0.163 0.009 0.177

0.563 0.01 0.558

2.407 0.011 1.795

12.733 0.01 5.471

102.272 0.01 17.685

1001.411 0.009 60.321

0.001 sec

0.035 sec

1.225 sec

42.862 sec

1500.000 sec

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

LINEAR 1ST

strict lazy parsec

LINEAR LAST

N STRICT LAZY PARSEC

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

0.014 0.011 0.011

0.011 0.011 0.013

0.015 0.015 0.017

0.025 0.025 0.028

0.055 0.047 0.065

0.176 0.127 0.186

0.614 0.39 0.579

2.565 1.285 1.853

13.594 4.395 5.907

103.752 15.299 19.182

1005.715 60.389 62.645
0.010 sec

0.197 sec

3.873 sec

76.220 sec

1500.000 sec

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

LINEAR LAST

strict lazy parsec

NESTED ALL + 1ST

N STRICT
ALL

LAZY
ALL

STRICT
1ST

LAZY 1ST

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

0.01 0.011 0.011 0.011

0.012 0.011 0.012 0.01

0.018 0.017 0.016 0.013

0.027 0.026 0.026 0.017

0.068 0.052 0.063 0.031

0.233 0.159 0.218 0.079

0.957 0.52 0.937 0.242

5.348 2.088 5.303 1.097

41.25 10.001 40.839 5.012

400.36 60.854 403.932 31.86

480.729 247.842

0.01 sec

0.15 sec

2.24 sec

33.44 sec

500.00 sec

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

NESTED ALL + 1ST

strict all lazy all
strict 1st lazy 1st

FOLLOW

N STRICT LAZY PARSEC

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

0.01 0.01 0.011

0.012 0.011 0.011

0.016 0.013 0.016

0.027 0.022 0.027

0.061 0.045 0.066

0.219 0.144 0.236

0.907 0.541 0.958

5.043 2.735 4.787

40.813 18.354 34.251

400.88 158.205 302.285

1501.799 2845.978

0.01 sec

0.23 sec

5.48 sec

128.19 sec

3000.00 sec

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

FOLLOW

strict lazy parsec

108 M. Wallace

Table 2. Memory performance results. All measurements are of peak live heap usage,
measured in kilobytes. The graph plots use a log-log scale.

LINEAR 1ST

N STRICT LAZY

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

3.6 7.7

7.7 7.7

120 7.7

423 7.7

1137 7.8

3872 7.8

11664 7.8

38360 7.8

126535 7.8

386172 7.8

12539803 7.8

1.0 Kb

62.2 Kb

3873.0 Kb

241028.5 Kb

15000000.0 Kb

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

LINEAR 1ST

strict
lazy

LINEAR LAST

N STRICT LAZY

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

3.6 7.7

21.9 7.7

130 72

501 213

1389 848

4689 1430

14266 2032

46595 2032

152593 4284

468579 65557

1514577 464335

1.0 Kb

37.6 Kb

1414.2 Kb

53183.0 Kb

2000000.0 Kb

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

LINEAR LAST

strict
lazy

NESTED ALL + 1ST

N STRICT
ALL

LAZY
ALL

STRICT
1ST

LAZY
1ST

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

3.6 7.7 3.6 7.7

14.4 7.7 21.4 7.7

166 69 174 47.4

662 291 653 142

1812 1077 1818 694

6562 2324 6567 1250

19876 7193 19445 4562

59790 23181 57809 13293

204901 74874 205069 48605

654928 235890 650622 143416

792254 498492

1.0 Kb

29.9 Kb

894.4 Kb

26749.6 Kb

800000.0 Kb

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

NESTED ALL + 1ST

strict all lazy all
strict 1st lazy 1st

FOLLOW

N STRICT LAZY

10

32

100

316

1000

3162

10000

31622

100000

316227

1000000

3.7 7.8

30 7.8

169 78.2

596 338

1811 1074

6562 3082

17112 8713

51169 30134

204901 96290

577197 288569

979541
1.0 Kb

31.6 Kb

1000.0 Kb

31622.8 Kb

1000000.0 Kb

10 32 10
0

31
6

10
00

31
62

10
00

0
31

62
2

10
00

00

31
62

27

10
00

00
0

FOLLOW

strict
lazy

Partial Parsing: Combining Choice with Commitment 109

removed from the paper’s simplified presentation that it proved too difficult to
translate.)

6 Conclusion

The main contribution of this paper is a demonstration that partial parsing is
both possible, and convenient, using a framework with a mixture of monadic and
applicative parser combinators. Applicative sequence is used for lazy sequencing,
and monadic bind for strict sequence.

The decision on where a grammar should be strict and where lazy, is left to
the programmer. This differs from the only other extant library to deliver partial
parsing [4], which can automatically analyse the grammar to determine where
laziness is possible.

As expected, the resources needed to partially parse a document depend on
how much of the input document is consumed, not on the total size of the
document. Nevertheless, if the whole document is demanded, it is still cheaper
to parse it lazily than strictly.

However, partial parsing also means that the ability to report parse errors is
shifted from within the parsing framework out to the world of exception handling.

A secondary contribution is the re-discovery of the commit combinator to pre-
vent backtracking and enable both better error-reporting and space-efficiency.
Although commit was previously known [9] to remove a particular space leak
associated with choice, the impact on error-reporting was not so widely appreci-
ated. Parsec’s try, as a dual to commit , is more commonly used for this purpose,
but is rather less useful due to the need for a correct manual analysis of the
grammar for lookahead, and the difficulty of doing this. By contrast, placement
of commit is not required for correctness, only for efficiency, and the manual
analysis involved is easy.

References

1. Baars, A., Löh, A., Swierstra, D.: Parsing permutation phrases. Journal of Func-
tional Programming 14(6), 635–646 (2004)

2. Duke, D., Wallace, M., Borgo, R., Runciman, C.: Fine-grained visualization
pipelines and lazy functional languages. IEEE Transactions on Visualization and
Computer Graphics 12(5), 973–980 (2006)

3. Ford, B.: Packrat parsing: Simple, powerful, lazy, linear time. In: International Con-
ference on Functional Programming, Pittsburgh, October 2002. ACM SIGPLAN,
New York (2002)

4. Hughes, R.J.M., Swierstra, S.D.: Polish parsers, step by step. In: Proceedings of
ICFP, Uppsala, pp. 239–248. ACM Press, New York (2003)

5. Hutton, G.: Higher-order functions for parsing. Journal of Functional Program-
ming 2(3), 323–343 (1992)

6. Hutton, G., Meijer, E.: Monadic parser combinators. Technical Report NOTTCS-
TR-96-4, University of Nottingham (1996)

7. Leijen, D., Meijer, E.: Parsec: Direct style monadic parser combinators for the real
world. Technical Report UU-CS-2001-35, University of Utrecht (2001)

110 M. Wallace

8. McBride, C., Paterson, R.: Applicative programming with effects. Journal of Func-
tional Programming 17(5), 1–13 (2007)

9. Röjemo, N.: Garbage collection and memory efficiency in lazy functional languages.
PhD thesis, Chalmers University of Technology (1995)

10. Swierstra, D.: Combinator Parsers: from toys to tools. ENTCS, vol. 41. Elsevier,
Amsterdam (2001)

11. van Laarhoven, T.: ParseP: software distribution,
http://twan.home.fmf.nl/parsep/

12. Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Marktoberdorf
Summer School on Program Design Calculi, August 1992. NATO ASI Series F:
Computer and systems sciences, vol. 118. Springer, Heidelberg (1992)

13. Wallace, M.: HaXml software distribution, http://haskell.org/HaXml
14. Wallace, M.: Polyparse combinators (2007),

http://www.cs.york.ac.uk/fp/polyparse

15. Wallace, M., Runciman, C.: Haskell and XML: generic combinators or type-based
translation? In: Proceedings of ICFP, Paris. ACM Press, New York (1999)

http://twan.home.fmf.nl/parsep/
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/polyparse

	Partial Parsing: Combining Choice with Commitment
	Introduction
	Simple Polymorphic Parsers
	Problems and Limitations
	Roadmap

	Naive Lazy Monadic Sequencing
	Choice and Commitment
	How to Be Lazy
	Evaluation
	Performance
	Comparisons

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

