Optimal Lambda Lifting in Quadratic Time

Marco T. Morazan and Ulrik P. Schultz

Seton Hall University, South Orange, NJ, USA
morazanm@shu. edu
University of Southern Denmark, Odense, Denmark
ups@mmmi.sdu.dk

Abstract. The process of lambda lifting flattens a program by lifting all
local function definitions to the global level. Optimal lambda lifting com-
putes the minimal set of extraneous parameters needed by each function
as is done by the O(n®) equation-based algorithm proposed by Johns-
son. In contrast, modern lambda lifting algorithms have used a graph-
based approach to compute the set of extraneous parameters needed by
each function. Danvy and Schultz proposed an algorithm that reduced
the complexity of lambda lifting from O(n®) to O(n?). Their algorithm,
however, is an approximation of optimal lambda lifting. Morazén and
Mucha proposed an optimal graph-based algorithm at the expense of
raising the complexity to O(nS). Their algorithm, however, suggested
that dominator trees might be used to develop an O(n2) algorithm. This
article explores the relationship between the call graph of a program, its
dominator tree, and lambda lifting by developing algorithms for succes-
sively richer sets of programs. The result of this exploration is an O(nz)
optimal lambda lifting algorithm.

1 Introduction

The process of lambda lifting flattens a program by lifting all local function
definitions to the global level. In order to perform this program transformation
the free variables of a function, f, and a subset of the free variables transitively
needed by its callees, must be added as formal parameters to f before it can
be lifted to the global level. That is, f must be made scope insensitive before it
can be moved to the global level. Free variables must be explicitly passed to f,
because at runtime the lifted version of f does not have the benefit of a closure
to store the bindings of the free variables. This program transformation tech-
nique is valid for programs using higher-order functions, because the extraneous
parameters are passed to function references (e.g. the site where functions are
passed as arguments) rather than to function calls (e.g. the site where a function
is applied to a set of arguments).

Lambda lifting is important for restructuring functional programs written for
the web [1], for partial evaluators [I], and for efficient compilation [I5]. Further-
more, many abstract machines for functional languages only handle lambda-
lifted programs [T0/T2] making this transformation an important step in several
compilers for functional languages [9/T1]. Lambda lifting and its inverse lambda

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 37 2008.
© Springer-Verlag Berlin Heidelberg 2008

38 M.T. Morazan and U.P. Schultz

dropping [2] are also important for improving the performance of compiled pro-
grams by providing a mechanism through which the number of parameters of a
function can be optimized for the target machine. For example, functions with a
large number of parameters (which are handled poorly by most compilers) can
be transformed to have fewer parameters [2]. Danvy and Schultz also point out
that in the context of teaching, lambda lifting and lambda dropping are useful
by offering different views of programs that help students understand lexical
scoping and block structure [2].

The computation of the set of free variables needed by a lifted function makes
lambda lifting difficult. Modern graph-based approaches [3[14] tackle the prob-
lem by transforming the call graph of a program into a directed acyclic graph
that is used to propagate free variables. The algorithm developed by Danvy and
Schultz [3] improves the complexity of Johnsson’s [8] lambda lifting algorithm
from O(n3) to O(n?). Their algorithm, however, is not optimal because it may
unnecessarily increase the arity of lifted functions. The algorithm developed by
Morazdn and Mucha [14] makes graph-based lambda lifting optimal at the cost
of increasing its complexity to O(n?).

In this article, we first review Johnsson’s (J), Danvy’s and Schultz’s (DS), and
Morazén’s and Mucha’s (MM) lambda lifting algorithms. After this review, we
present a new insight that simplifies the presentation and the implementation of
graph-based lambda lifting by using a depth-first traversal instead of a reversed
breadth-first traversal to propagate free variables. The article then explores the
relationship between call graphs, dominator trees, and lambda lifting. The result
of this exploration is an optimal O(n?) lambda lifting algorithm. Although the
discussion is technically intricate at some points, the resulting algorithm is sim-
ple and elegant. The presentation assumes that all variable names are unique.
Programs for which this does not hold can easily be transformed by generating
a fresh identifier for repeated identifiers [4]. Moreover, since lambda-lifting (as
pointed out earlier) is indifferent to higher-order functions, our presentation only
uses first-order programs as examples. The article ends with some concluding re-
marks and directions of future work. The appendix includes a brief glossary of
the graph terminology used in the article (i.e. tree, dominator tree, and strongly
connected component).

2 Lambda Lifting Algorithms

2.1 Johnsson’s Algorithm

In the J-algorithm, the source program is traversed top-down to compute the
required (i.e. minimal) set of extraneous parameters needed by each function.
For any given function, f, the equation for the required set of free variables of
f, Ry, is given by:

Ry ZFVfU((UgeFEng)mSVf)u 1)

where F'Vy is the set of free variables directly referenced by f, F'Fy is the set of
functions referenced by f, and SVy is the set of variables defined in f’s enclosing

Optimal Lambda Lifting in Quadratic Time 39

(define (f x y)
(define (g...) (.. .x...1...))
(define (h...) (...y...f...))
(define (i...) (...f...))

Fig. 1. First Scheme Pseudo-code Fig. 2. Call Graph

lexical scope. Mutually recursive functions give rise to a system of mutually
recursive equations which is solved by traversing down the parse tree. Once Ry
is known it is used to compute the minimal set of free variables for functions
declared further down the program’s parse tree.

To illustrate how the J-algorithm works using equation ({I) consider the pseudo-
code in Figure[Il At the topmost level of the parse tree the free variables of f are
computed by solving the following equation:

Rf = FVf U ((UgeFFf Rg) ﬂ SVf) .

Since F'Vy = SVy = 0, we may conclude that Ry = 0.
At the next level of the parse tree, the free variables equations to solve are:

Rg = FVg U ((UjEFFgRj) N SVg)
={z} U{R: N {=z,y}}
={z}U{{FV; U ((UjeFFiRj) NSV n{z,y}}
={z} U{0U{R N {z, y}}} N {z,y}}
—{x}U {ou{dn{z,y}}tn {z,y}}

Ry, = FV, U ((UjeFFhRj)ﬁSVH)

={y}U{RyN{z,y}}
={y}u{dn{z,y}}

R, =FV;U((U jeFF; R;)NSV;)
=0U{FV; N {z,y}}
=Qu{dn{z,y}
=pup

=0

Notice that = is not identified as an extraneous parameter needed by h and
that y is not identified as an extraneous parameter needed by ¢ nor i. Further-
more, x is not identified as an extraneous parameter for 7. This occurs, because
the set of extraneous parameters needed by f, an ancestor of g, h, and ¢ in
the program’s parse tree, are computed before the set of extraneous parameters
needed by g, h, and 7. Thus, the members of F'F'y are not explored during the
computation of R, Ry, and R; and do not contribute extraneous parameters to
g, h, and i.

40 M.T. Morazan and U.P. Schultz

The time complexity of the J-algorithm is O(n?), where n is the size of the
program. Briefly, globally there are O(n) equations to solve the transitive closure
problem, which requires O(n) steps of set union operations each taking O(n) per
equation.

2.2 Danvy’s and Schultz’s Graph-Based Lambda Lifting

To perform lambda lifting in quadratic time, a program is represented as a call
graph. Each node in this graph represents a function. An edge from f to g means
that there is a reference to g in the body of f. Mutually recursive functions give
rise to strongly connected components (akin to Johnsson’s mutually recursive
equations). Danvy and Schultz observed that a function, f, in a strongly con-
nected component can be given as extraneous parameters the set of free variables
lexically visible to f found in the union of the free variables of the functions that
constitute the component. Therefore, strongly connected components can be co-
alesced in the call graph of a program to yield a directed acyclic graph that is
traversed in a reversed breadth-first order to propagate free variables between
nodes.

To illustrate the DS-algorithm consider the call graph in Figure @] for the
pseudo-code in Figure[Il In the call graph each node is labeled with the name of a
function. The superscript at the right of each function name is the set of variables
declared by the function that appear in the pseudo-code and the subscript at
the right of each function name is the set of free variables referenced by the
function. The nodes in the call graph form a strongly connected component
and are coalesced yielding a graph with a single node. The union of all the free
variables of the functions in the node (i.e. f, g, h, and) is taken. For each
function, the lexically visible variables in this union become parameters to the
lifted functions. That is, {x,y} are identified as extraneous parameters for g, h,
and 7.

The time complexity of the DS-algorithm is O(n?), where n is the size of the
program. Briefly, the coalesced call graph of size O(n) defines a global order in
which free variables can be linearly propagated through the graph, with each
propagation step performing a set unification of size O(n).

2.3 Morazan’s and Mucha’s Graph-Based Algorithm

Morazan and Mucha observed that using strongly connected components to
propagate free variables may result in an approximation of the required set
of extraneous parameters needed by lifted functions as exemplified by the re-
sults obtained by the J-algorithm and the DS-algorithm for the pseudo-code in
Figure [[I Unnecessary extraneous parameters may be added to lifted functions
for two reasons. The first reason is that functions can be members of a strongly
connected component that contains nested strongly connected components and
that also contains functions defined at different levels in the program’s parse
tree. Suppose r is a function defined at level n in the parse tree of a program
and that there are m disjoint sets of functions (modulo), D; ...D,,, defined

Optimal Lambda Lifting in Quadratic Time 41

(-0 ()—®

Fig. 3. MM-Algorithm Components for the Call Graph in Figure

at any level greater than n (i.e. in the parse tree of the program r is an ances-
tor of these functions) such that r dominates all paths from functions in D; to
functions in Dy, i # j. In such a scenario, r may declare variables that are fred]
for functions in D; that are not needed as extraneous parameters by functions
in D; and viceversa. This may occur, for example, when r is contained in two
independent loops (modulo 7).

The second reason is that a variable, x, declared by r that is free in D; may not
be needed as an extraneous parameter by all the functions in D;. For example,
let 7 and s be members of the same loop such that z is known to be free in s
and is declared by r. The variable x only needs to be carried by successors of s
in the call graph if there is a path, that does not contain r, from s to another
function where x is directly referenced. This follows from the observation that
the successors of s do not need to make x available to any other function if such
a path does not exist. Thus, these successors do not require x as an extraneous
parameter.

The MM-algorithm is an improvement of the DS-algorithm that reduces the
arity of lifted functions by computing the minimal set of extraneous parameters
needed by each lifted function, as is done by the J-algorithm, based on the ob-
servations above. Extraneous parameters are reduced by splitting the strongly
connected components of a call graph that contain functions defined at different
levels in the program’s parse tree into multiple components based on its nested
strongly connected components and by ignoring edges into a dominating func-
tion that are internal to any such component after the split. Splitting strongly
connected components into multiple components guarantees that free variables
local to a component (e.g. declared by the dominating function) do not prop-
agate between nested strongly connected components. Ignoring internal edges
into the dominating function of a nested strongly connected component guaran-
tees that a free variable local to a component is not propagated beyond the last
function that references it in a loop. This occurs, because the removal of such
edges eliminates the loop and, therefore, these functions no longer constitute a
strongly connected component and do not receive the same set of extraneous
parameters.

To illustrate the MM-algorithm once again consider the call graph in Figure 2l
The graph is split into two components displayed in Figure[3l This disconnected
graph is used to propagate free variables between nodes in a reversed breath-
first order. Notice that the dominating ancestor function, f, is a member of two
components which prevents its descendants from unnecessarily contributing free
variables to each other. By ignoring the edges into f in Figure Bl the nested

1 'We call such free variables local to the strongly connected component.

42 M.T. Morazan and U.P. Schultz

(define (f x) /@\
(define (g...) (...1...))
(define (h...) (.. .x...))
(define (i...) (...h...)) @
(..g.h.)) (i)

Fig. 4. Second Scheme Pseudo-code Fig. 5. Call Graph for Figure [

strongly connected components cease themselves to be strongly connected. Dur-
ing the propagation of free variables, y is not unnecessarily propagated to g and
1, and x is not unnecessarily propagated to h and <. Notice that within the loop
formed by {f,g,i} in Figure @ only g requires and receives = as an extraneous
parameter. This algorithm yields the same results as the J-algorithm.

The time complexity of the MM-algorithm is O(n?), where n is the size of the
program. Briefly, strongly connected components must be split O(n) times. For
each split the resulting coalesced call graph is of size O(n) and each propagation
step performs a set unification of size O(n).

3 A Simplifying Insight

The graph-based lambda lifting algorithms developed to date use the reversed
breadth-first ordering of the nodes of an acyclic graph to ensure that a node is
only processed once all of its successors in the call graph have been processed.
Successor nodes must be processed first, because the required set of free vari-
ables of predecessor nodes depends on them. The use of this ordering, however,
requires that special attention be paid to calls from functions appearing late in
the reversed breadth-first ordering to functions appearing early in the reversed
breadth-first ordering.

To illustrate the problem consider the Scheme pseudo-code in Figure @ and
its diamond-shaped call graph in Figure[Bl In this graph the function f declares
x (noted as right superscript) and x is free in h (noted as a right subscript).
The breadth-first ordering of the nodes is: {f, g,h,i}ﬁ. There are no strongly
connected components and, thus, nothing to coalesce. Having an acyclic graph
means that free variables ought to be propagated from callees to callers in a
reversed breadth-first order. For our example that order is: {i,h,g, f}. If free
variables are simply propagated from callees to callers nothing propagates from
1 to g, from h the free variable z propagates to ¢ and nothing propagates to f,
and nothing propagates from ¢ to f. The end result is that z is identified as
a free variable for h and i, but not for g which also needs x as a free variable.
To avoid this pitfall, the DS-algorithm unifies the set of local free variables with
the set of free variables of the immediate successors in the call graph. Thus, x
propagates from 7 to g when g is processed.

2 The breadth-first ordering could also be {f,h,g,i}, but this is irrelevant for our
purposes.

Optimal Lambda Lifting in Quadratic Time 43

We observe that if the graph is acyclic, as is always the case after coalescing
strongly connected components, then a depth-first traversal of the graph can be
used to propagate free variables: every time the process pops back from a node
to its antecessor free variables are propagated. This ensures that all successors
are processed before a caller is processed. For the call graph in Figure B a
depth-first traversal follows the path f — g — ¢ — h. The free variable x is
propagated back through this path from h to ¢ and finally to g. The depth-
first traversal then proceeds down the path f — h and nothing additional is
propagated from h to f before terminating. Although the result is the same
as using the reversed breadth-first ordering, this process is more elegant and
simplifies the implementation of lambda lifting.

Propagation using a depth-first traversal instead of a reversed breadth-first
ordering is still proportional to the number of function calls and the number of
declared variables in the program. This type of traversal does not change the
time complexity of neither the DS-algorithm nor the MM-algorithm.

4 Call Graphs and Dominator Trees

The key lessons that must be highlighted from the previous sections are:

1. J-algorithm: The set of extraneous parameters for an ancestor function in
a parse tree must be known before finalizing the computation of the set of
extraneous parameters for any descendant of this function.

2. DS-algorithm: Lambda lifting can be done using a graph-based approach.
Furthermore, functions in a strongly connected component of a call graph
that do not have references to any free variables local to the component
can be coalesced. These functions all require the same set of extraneous
parameters.

3. MM-algorithm: Dominating functions must not be coalesced with their
dominated functions in order to avoid dominated functions from unneces-
sarily contributing free variables to each other. Furthermore, simple loops
on a dominating function must be dissolved in order to avoid unnecessary
propagation of free variables.

4. New Observation: Once an acyclic graph is obtained for a graph-based
approach a depth-first traversal can be used to simplify the process of prop-
agating free variables.

The MM-algorithm repeatedly computes strongly connected components in
order to avoid the unnecessary propagation of local free variables. The splitting
of a strongly connected component is always done around an ancestor function
that dominates all paths between disjoint sets of functions within the strongly
connected component when the strongly connected component contains func-
tions defined at different levels in the program’s parse tree. This observation
suggests that dominator trees can be used to perform lambda lifting.

A defining property of a dominator tree is that an ancestor function always
appears before its descendants. Thus, a dominator tree tells us for which func-
tions the complete set of free variables must be computed first. For our purposes,

44 M.T. Morazan and U.P. Schultz

(define (f x y z)
(define (g a b)
(define (h ¢ d)
(define (ie) (...h...g...))

(..i.)

CRONONO

Fig. 6. Third Scheme Pseudo-code Fig. 7. Dominator Tree

an interesting feature of the dominator tree of a call graph is that independent
loops dominated by a function are represented as different branches out of the
dominating function which precludes the need to dissolve simple loops. Dom-
inator trees, therefore, can be used as the basis of a graph used to propagate
free variables. Since dominator trees can be computed in linear time [I6], the
need to repeatedly compute strongly connected subcomponents, which makes
the MM-algorithm cubic, can be eliminated to reduce the complexity of lambda
lifting.

The dominator tree, however, does not capture all dependencies between func-
tions needed for lambda lifting. We classify these missing dependencies as vertical
and horizontal dependencies, described in Sections 5 and 6 respectively. Vertical
dependencies capture dependencies arising due to recursion between ancestors
and descendants in the dominator tree. Horizontal dependencies capture depen-
dencies arising between functions that do not have a vertical dependence in the
dominator tree. Vertical dependencies are annotated on the dominator tree and
are used to drive the propagation of free variables throughout the tree. Horizontal
dependencies are added to the dominator tree, which necessitates coalescing the
strongly connected components to obtain a directed acyclic graph. The resulting
coalesced graph is used to propagate free variables.

5 Vertical Function Dependencies

We define a downward vertical dependence as the dependence that exists between
a function and a descendant in the parse tree. At runtime, a call to any local
function, g, must be preceded by calls to g’s ancestors in the parse tree which are
also ancestors of g in the dominator tree of the call graph of the program. Any
extraneous parameters that g contributes to its ancestors can be propagated up
the dominator tree.

We define an upward vertical dependence as the dependence that exists be-
tween a function, g, and a function, f, which is an ancestor of g. The function
g may depend on several of its ancestors in the dominator tree of which we are
interested in the one that has the maximum depth. We define the lowest upward
vertical dependence of g, LDy, as the function with the maximum depth in the

Optimal Lambda Lifting in Quadratic Time 45

(define (fx y z)

(define (g ...) (...x...d...))

(define (h...) (...y...f...))

(define (i ... (...z...f...g...))
Fig. 8. Fourth Sample Scheme Pseudo- Fig. 9. Call Graph and Relevant Vari-
code ables

Fig. 10. Dominator Tree (DT)

dominator tree that g depends on. LDy, if it exists, is the ancestor of g with the
maximum depth that is either called by g or is called from any of ¢’s descendants
in the dominator tree. For example, consider the pseudo-code in Figure [6l The
dominator tree for this code is displayed in Figure[7l Observe that i calls g and h
which are ancestors of 7 in the dominator tree. Since h has the maximum depth,
we have that LD; = h. The function h does not call any of its ancestors, but
it depends on its ancestor g which is called from 4. Since g is the only ancestor
of h that is referenced by any function in the subtree rooted at h, we have that
LDy, = g. Finally, LD, = LDy = () because none of the ancestors of g or f are
referenced by functions in the subtrees of the dominator tree rooted at these
functions.

To start exploring lambda lifting algorithms let us restrict our observations to
the class of programs in which all dependencies are vertical (this restriction will
be removed in the next section). Upward vertical dependence is not captured by
a dominator tree, but can be computed as free variables are propagated up the
dominator tree to identify the extraneous parameters contributed by downward
vertical dependencies. Along with free variables, the set of referenced ancestor
functions is propagated up the dominator tree.

Clearly, all extraneous parameters for g contributed by its descendants will
reach g during an upward propagation. The following theorem establishes that
LD,, if it exists, contains all the extraneous parameters needed by g that are
contributed by its ancestors in the dominator tree.

Theorem 1. The set of extraneous parameters needed by LD, contains all the
extraneous parameters needed by g from its ancestors.

46 M.T. Morazan and U.P. Schultz

Fig.11. DT After Upward Propagation Fig.12. DT After Downward Propagation

Proof. Let DT be the dominator tree for a call graph, CG, and let h be LD,.
Assume x is an ancestor-contributed extraneous parameter needed by g that is
not a member of the set of extraneous parameters needed by h. If x is defined by
an ancestor of h, then x must be a member of the set of extraneous parameters
needed by h which contradicts our assumption. This follows from observing that
h must carry x in order to make it available to g. If x is defined by h or a
descendant of h, then there must exist a path in CG from g to a function where
x 18 a known free variable that does not contain the function that declares x. All
the functions on this path must be descendants of h in the dominator tree which
means that LDy # h. This contradicts our assumption and completes the proof
that x must be a member of the set of extraneous parameters needed by h. Q.E.D

To illustrate how vertical dependencies are used in lambda lifting consider the
pseudo-code in Figure [whose call graph is displayed in Figure @ Figure
displays its dominator tree. Free variables needed by functions due to downward
vertical dependence can be propagated up the dominator tree using a depth-first
traversal. After this is done, the variable z has been propagated from 7 to g. In
addition during this propagation step, the LD; of each function i is computed
by also propagating relevant upward vertical dependencies. LD; is g and LDy,
is f, because for leaves the LD function is the lowest ancestor in the dominator
tree that they directly reference. Nodes pass the set of referenced ancestors back
up the tree along with their free variables. In this manner, LD, becomes f as it
is the ancestor of g with the largest depth that is referenced from a function in
the subtree rooted at g. The result of this step is displayed in Figure [[I]in which
the subscript to the left of each function name is its lowest dependence function.
Finally, free variables need to be propagated down the dominator tree to satisfy
upward vertical dependencies. This propagation proceeds in a breadth-first or-
der propagating to function ¢ the free variables needed by LD;. A breadth-first
order propagation is required to guarantee that the extraneous parameters of
ancestor functions are known before the extraneous parameters of any descen-
dant function are computed (which satisfies the key lesson highlighted from the
J-algorithm). During this step the variable x is propagated from ¢ to i. The
result of this propagation step is displayed in Figure [[2]

Optimal Lambda Lifting in Quadratic Time 47

(7
(7 OEOBERO0
o= O0—0 ©

Fig. 13. Call Graph with Calls Among Fig. 14. Dominator Tree Lacks Some Func-
Siblings tion Dependencies

6 Horizontal Function Dependencies

Lexical scoping restricts the set of functions that may be directly referenced by
any given function to itself, its children, its ancestors, its siblings, and its uncles
in the parse tree. References to itself do not contribute new free variables to the
lifted version of the function. References to ancestors and children are all cap-
tured as vertical dependencies annotated in the dominator tree as described in
the previous section. References to siblings and uncles are references to functions
with which there may be no dominance relation. For example, consider the call
graph in Figure[[3l Assume that f is the parent of g, h, 7, and j in the parse tree.
The dominator tree is displayed in Figure[Tdl Notice that ¢ dominates its sibling j
while there is no dominance relation between g and h despite g having a reference
to h. The dependence of g on h, in fact, is not captured by the dominator tree.

We define a horizontal dependence as a reference to a function that is not an
ancestor or a descendant in the dominator tree (i.e. a reference to a sibling or
an uncle in the parse tree). The free variables of a horizontal dependence must
also be propagated from the callee to the caller. Since horizontal dependencies
are not captured by the dominator tree of a call graph, a dominator tree must
be augmented into a graph to capture horizontal dependencies.

To convert a dominator tree into a graph that captures horizontal depen-
dencies, the dominator tree is augmented with the edges between functions in
the call graph that do not have a vertical dependence. We call this graph an
EDT (Extended Dominator Tree) graph and the new edges are called lateral
edges. If the resulting EDT graph does not contain any cycles then it only has
simple horizontal dependencies. Otherwise, it has complex horizontal dependen-
cies. Clearly, the EDT graph for a program that only has functions with vertical
dependencies is its annotated dominator tree.

First, we highlight some important properties of EDT graphs. Second, we
extend our lambda lifting algorithm to handle the class of programs that have
simple horizontal dependencies. Finally, we extend our lambda lifting algorithm
to handle arbitrary programs that may contain complex horizontal dependencies.

6.1 Important Properties of EDT Graphs

Formally, the set of lateral edges, Ej, in an EDT graph formed from the domi-
nator tree, DT, of a call graph, CG, is defined as:

48 M.T. Morazan and U.P. Schultz

(define (f x)

(define (g ...) (...x...a...b...c...d...))
(define (a...) (...b...))

(define (b ... (...c...d...))

(define (¢ ...) (...g...)

(define (d ...) (...))

Fig. 15. Fifth Scheme Pseudo-code

E ={(f,9) € CG | f and g do not have a dominance relation}.

The set E; endows the EDT graph with important properties outlined by the
following theorems. After establishing the validity of these properties we will
point out their significance for lambda lifting.

Theorem 2. If (f,g) € E;, then the parent of g, pg, in the dominator tree, DT,
dominates f.

Proof. Let G be the EDT graph obtained by only extending DT with the lateral
edge from f to g and let v be the root function of DT. If there is a path in G from
r to g that contains f and that does not contain pg, then p, does not dominate
all paths from r to g. This means that DT can not be the dominator tree which
contradicts our assumption. Q.E.D.

Having established that the parent of the called function for a lateral edge in the
EDT graph dominates the caller, we can now establish that all the ancestors of
the called function dominate the caller. The proof simply exploits the fact that
domination is a transitive property.

Theorem 3. If (f,g) € E;, then all ancestors of g in the dominator tree, DT,
dominate f.

Proof. Theorem [d establishes that the parent of g dominates f. All other ances-
tors of g dominate its parent. Therefore, all of g’s ancestors dominate f. Q.E.D.

The significance of Theorems [2] and [3] for lambda lifting is that the existence
of a lateral edge from f to ¢g in an EDT graph means that LD, if it exists,
dominates f. Therefore, LD, may also be LD;. This occurs when none of the
nodes in the dominator tree path from the parent of g to f are LDy. In addition
to free variables, LD information must be propagated from callees to callers
across lateral edges.

6.2 Simple Horizontal Dependencies

When an EDT graph only has simple horizontal dependencies (i.e. there are
no strongly connected compinents in the EDT graph) it suffices to first propa-
gate free variables and lowest dependence information between functions using

Optimal Lambda Lifting in Quadratic Time 49

o (o)
© @‘@’ @ @@

Fig. 16. Call Graph Fig. 17. Dominator Tree

BN o

Fig. 18. After Depth-First Propagation Fig. 19. After Breadth-First Propagation

a depth-first traversal (akin to propagating up the dominator tree) and then
to propagate free variables in breadth-first order exploiting lowest dependence
information (akin to propagating down the dominator tree). The correctness of
the second propagation follows from observing that free variables are propagated
from callees to callers and from Theorem [] that guarantees lowest dependence
information can safely be propagated across lateral edges.

To illustrate the use of horizontal dependence information in the absence
of strongly connected components consider the pseudo-code in Figure and
its call graph in Figure The dominator tree for this graph is displayed in
Figure [7 Extending the dominator tree with edges between functions that do
not have a vertical dependence results in the original call graph without the
edge from ¢ to g. Figure displays the results of propagating free variables
and LD information after a depth-first traversal. The node representing ¢ has
no successors and, therefore, LD, is g (the lowest ancestor it references). No free
variables propagate between the functions in this step, but LD., g, propagates
to become LD, and LD,. Figure displays the results of propagating free
variables in a breadth-first order by exploiting LD information. Each function
receives the free variables of its LD function. That is, a, b, and ¢ receive .

6.3 Complex Horizontal Dependencies

The augmentation of the dominator tree, however, may lead to an EDT graph
that is no longer acyclic. That is, the resulting graph may contain strongly con-
nected components. This occurs, for example, when two siblings in the dominator

50 M.T. Morazan and U.P. Schultz

oo

Fig. 20. Call Graph Fig. 21. Dominator Tree

())

Fig.22. EDT Graph Fig. 23. Coalesced EDT Graph

tree are mutually recursive. In the presence of strongly connected components,
it no longer suffices to simply propagate free variables and LD information using
a depth-first traversal. The problem is that such a traversal does not guarantee
that all successors of a node are processed first.

Strongly connected components must be coalesced, but as learned from the
MM-algorithm sets of functions that include a dominating function and the
functions it dominates should not be coalesced. That is, functions that have
a vertical dependence should not be coalesced. This observation suggests that
within a strongly connected component only functions at the same level in the
dominator tree can be coalesced together. Notice that a function at level n in
the dominator tree can not declare any variables that are free in other functions
at level n. This means that they do not have a dominance relation and it is
safe to coalesce these functions together, because none of these functions will
unnecessarily contribute free variables to each other.

The goal, therefore, is to coalesce strongly connected components in an EDT
graph without loosing vertical dependence information. To achieve this it is help-
ful to distinguish between two types of edges in an EDT graph. The first kind
of edge is a simple lateral edge which occurs between functions at the same level
of the dominator tree (i.e. edges between siblings in the dominator tree). Any
strongly connected components formed solely by simple lateral edges can be co-
alesced in the EDT graph, because among the siblings in each component there
is no dominating function. If an EDT graph is created by solely adding sim-
ple lateral edges to the dominator tree, then after coalescing strongly connected

Optimal Lambda Lifting in Quadratic Time 51

components the EDT graph is acyclic. Thus, lambda lifting can proceed as de-
scribed in section by making a coalesced node’s free variables the union of
the free variables of the functions in the strongly connected component and by
making the node’s LD function be the maxs(LD,), where g is a function in the
strongly connected component. To illustrate this concept consider the call graph
in Figure 20 Its dominator tree, displayed in Figure 21l reflects the known facts
after its creation: ¢ and h have no known upward vertical dependencies, LD is
f, @ is free in h, and y is free in j. The EDT graph, displayed in Figure 22| is
created by adding the two lateral edges between ¢ and j in the dominator tree.
The strongly connected component formed by {h,i} is coalesced into a node,
say, Z. The set of free variables of Z is {«} and LDy is (). The result of this
transformation is displayed in Figure After the depth-first propagation the
set of free variables of Z is {x,y} and LDz = f. Nothing propagates during the
breadth-first propagation (because f has no free variables). After the propaga-
tion steps, we have that {x,y} are the required free variables for h and i which
is precisely what is needed.

The second kind of edge is an upward lateral edge which exists between func-
tions at different levels of the dominator tree. These edges always occur from a
node for a function, g, at level n to a node for function, f, at level n — 7, where
1 > 1, such that f is not an ancestor of g in the dominator tredd. The existence
of such an edge, means that g needs the free variables of f. Notice, however,
that f may not need all of ¢g’s free variables despite being in the same strongly
connected component. The free variables of g not needed by f are those that
are local to the strongly connected component and that are not lexically visible
nor declared by f. All of these variables must be declared by a function with a
depth greater than or equal to the depth of f in the dominator tree.

Notice that the set of functions in the strongly connected component may
include siblings of f in the dominator tree. The incoming upward lateral edge
to f means that these siblings need the same free variables. This follows from
observing that they all need as free variables the variables declared by common
ancestors in the dominator tree that are free in the strongly connected compo-
nent. Therefore, we have that the siblings of a function in the dominator tree,
like f that has an incoming upward lateral edge, that are in the same strongly
connected component can be coalesced with f without local free variables be-
ing unnecessarily propagated during lambda lifting. Coalescing only siblings in
a strongly connected component preserves vertical dependence information and
provides a directed acyclic graph that can be used to compute the free variables
needed by each function in an arbitrary program.

To illustrate the use of horizontal dependence information in the presence
of strongly connected components created by upward lateral edges consider the
pseudo-code in Figure and its call graph in Figure Its dominator tree
is displayed in Figure The first step is to extend the dominator tree with
simple lateral edges. The resulting graph is displayed in Figure Five simple

3 There can not exist any edges in the other (i.e. downward) direction from f to g in
a dominator tree.

52 M.T. Morazan and U.P. Schultz
(define (f x)
(define (g ...) (...h...))
(d(zﬁrflie (h(c) ()(i{k)l)) . e
efine (j ...) (k...c...l... m...
(define (k a b) (...j...n...0...))) (9) @

(define (n...) (...a...0...)))
(define (0 ...) (...b...i...)))
E:liegine 8 . % E Che))))
efine (1...) (...g...
(define (m ..) (...x...)) O @ ‘@

Fig. 24. Sixth Scheme Pseudo-code. Fig. 25. Call Graph

®
ofole FO F—6

Fig. 26. Dominator Tree Fig. 27. DT with Simple Lateral Edges

(%)
A

lateral edges have been added to extend the dominator tree. These additions
have formed a strongly connected component that contains the functions j and
k. These functions are coalesced to form a new node S. The set of free variables
for S is obtained from the union of the free variables of j and k. The resulting
graph is displayed in Figure The graph in Figure 2§ is now extended with
upward lateral edges. If a function on either side of an edge has been coalesced
then the coalesced node replaces the function. The result of this extension adds
edges from [to g and from o to i. The result is displayed in Figure[29l This graph
now has a strongly connected component formed by {g, h,, S, [, n,o}. Function
¢ has an incoming upward lateral edge and, therefore, it is coalesced with its
siblings h and 7 that are also members of the strongly connected component.
Given that 7, a function with an incoming lateral edge, has been coalesced there
is no need for further action with it. No other functions have an incoming upward
lateral edge which means the graph is now acyclic. The finalized EDT graph is
displayed in Figure B0 in which @ represents the coalesced functions {g, h,i}.
This graph can now be used to propagate free variables and LD information as
done in section

Optimal Lambda Lifting in Quadratic Time 53

(52
O () @ @)

Fig. 28. Graph After First Coalescing Step Fig. 29. Added Upward Lateral Edges

A%
?@@@

O () (@

Fig. 30. Completed EDT Graph After Second Coalescing Step

7 The Algorithm, Complexity, and Correctness

7.1 The New Lambda Lifting Algorithm

The new lambda lifting algorithm builds a directed acyclic EDT graph from
the call graph of a program. Propagation of free variables then proceeds in two
steps: the first using a depth-first traversal and the second using a breadth-first
traversal. The steps in the algorithm can be outlined as follows:

1. Build the call graph, CG, of the program from its parse tree.

2. Build the dominator tree, DT, for CG.

3. Extend DT with simple lateral edges and coalesce strongly connected com-
ponents to obtain an acyclic graph EDT".

4. Extend EDT’ with upward lateral edges and compute strongly connected
components. Coalesce functions that have an incoming upward lateral edge
with their dominator tree siblings that are members of the same component.
The resulting graph is the directed acyclic EDT” graph.

5. Use EDT" to propagate free variables and LD information using a depth-
first traversal.

6. Use EDT" to propagate free variables using L D information using a breadth-
first traversal.

54 M.T. Morazan and U.P. Schultz

7. For each function, f, make f scope insensitive by adding its complete set of
free variables as parameters to f and as arguments to each reference to f.
8. Remove block structure by floating each function to the global level.

7.2 Complexity and Correctness

For a program P, let i be the number of functions, let e be the number of
function calls, let v be the number of variables declared, and let n be the size of
the program (i.e. i + e + v). Step 1 is proportional to O(e +) or simply O(n).
Step 2 is O(n) [I6]. For steps 3 and 4 extending a graph with edges is O(e+i) or
simply O(n). The computation of strongly connected components is O(n) [5l0]
and their coalescing is O(n?). For step 5, the propagation of free variables and
LD information is O(e * (i +v)), or simply O(n?), assuming the union operation
is done in linear time. A similar line of reasoning holds for step 6. Step 7 is
O(v + i+ e) or simply O(n). Finally, step 8 is O(n). This means that optimal
lambda lifting is done in O(n?). Since lambda lifting can generate an output
program of size O(n?), the time complexity of this algorithm is optimal [3].

We have not formally proven the correctness of the presented algorithm and
we only argue informally for its correctness. The correctness of the algorithm
hinges on correctly computing the set of required variables for each function.
The required set of free variables for a function, f, depends on the free variables
f directly references and on a subset of the free variables transitively needed
by the functions f calls. The computation of the latter subset is achieved by
never coalescing a dominating function with any functions it dominates. This
leads to a graph in which the breadth-first propagation in Step 6 completes the
computation of the required free variables of any ancestor function in the parse
tree before any successor function as done in the J-algorithm and prevents free
variables local to a strongly connected component to be unnecessarily propa-
gated. The required set of free variables computed for each function is complete,
because all functional dependencies are captured by the EDT graph. Lateral
and downward vertical dependencies are captured by edges and upward vertical
dependencies are captured by LD information.

8 Concluding Remarks

This article presents an optimal graph-based O(n?) lambda lifting algorithm.
The algorithm is optimal in the sense that it computes the minimal set of free
variables required by each function to make them scope insensitive. The algo-
rithm is also asymptotically optimal, because a lambda lifted program of size
O(n?) is computed in O(n?) steps. The new algorithm is superior to Johnsson’s
and to Morazan’s and Mucha’s algorithms by reducing the complexity of optimal
lambda lifting from O(n?) to O(n?) and it is superior to Danvy’s and Schultz’s
algorithm by being optimal. Nonetheless, this new algorithm owes a great deal
of its creation to these predecessors. Considering that Johnsson’s original algo-
rithm first appeared in 1985, this newest algorithm has been over 20 years in the

Optimal Lambda Lifting in Quadratic Time 55

making. It is, indeed, a tribute to all these algorithms and to the work of the
cited authors from whom we borrowed ideas and inspiration.

Free variables arise in programs due to the nesting of function definitions.
This suggests that identifying free variables may rely heavily on lexical analysis.
The algorithm presented, however, only relies on lexical analysis to identify the
free variables directly referenced by each function and the function dependencies
of each function. Once this lexical information is known, the algorithm builds
and relies on non-lexical elements such as the call graph, the dominator tree,
and sets of free variables. In essence, lambda lifting is not solely an exercise in
lexical analysis.

As part of our future work we are interested in testing the runtime efficiency
of the different algorithms to determine their impact on compilation time. Al-
though compilers only spend a small amount of time on lambda lifting, such test-
ing will determine the practical impact of this work. Future work also includes
the implementation of a closureless functional language that uses applicative-
order evaluation. The main idea behind the design of this new langauge is to
dynamically generate functions that are specialized based on the bindings of its
free variables instead of allocating closures [13]. Lambda lifting identifies for us
the variables that are used to specialize functions.

Acknowledgements

The authors thank Olivier Danvy, Sven-Bodo Scholz, and Barbara Mucha for the
discussions during and after IFL 2005 that initiated us down the path that lead to
the new algorithm presented in this article. Marco T. Morazan also thanks TLTC
at Seton Hall University for the support received through a Faculty Innovation
Grant.

References

1. Consel, C.: A Tour of Schism: A Partial Evaluation System for Higher-Order Ap-
plicative Languages. In: Proc. of the Symp. on Partial Evaluation and Semantics-
Based Program Manipulation, June 1993, pp. 145-154. ACM Press, New York

1993

2.](Danv;, O., Schultz, U.P.: Lambda-Dropping: Transforming Recursive Equations
into Programs with Block Structure. Theoretical Computer Science 248(1-2), 243~
287 (2000)

3. Danvy, O., Schultz, U.P.: Lambda-Lifting in Quadratic Time. Journal of Functional
and Logic Programming 2004(1) (July 2004)

4. Friedman, D.P., Wand, M., Haynes, C.T.: Essentials of Programming Languages.
The MIT Press, Cambridge (2001)

5. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge

1985
6. E}ould), R.: Graph Theory. The Benjamin/Cummings Publishing Company, Inc.
1988

7. 1(\/[&1‘5‘5})lews7 J., Findler, R., Graunke, P., Krishnamurthi, S., Felleisen, M.: Automati-
cally Restructuring Programs for the Web. Automated Software Engineering 11(4),
337-364 (2004)

56

10.

M.T. Morazan and U.P. Schultz

Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations.
In: Proc. of a Conf. on Functional Prog. Lang. and Comp. Arch., pp. 190-203.
Springer, New York (1985)

Johnsson, T.: Target Code Generation from G-Machine Code. In: Fasel, J.H.,
Keller, R.M. (eds.) Graph Reduction: Proceedings of a Workshop at Santa Fé,
New Mexico, New York, NY, pp. 119-159. Springer, Heidelberg (1987)

Jones, S.L.P.: The Implementation of Functional Programming Languages.
Prentice-Hall International Series in Computer Science. Prentice-Hall, Upper Sad-
dle River (1987)

11. Jonmes, S.L.P., Lester, D.: A Modular Fully-lazy Lambda Lifter in HASKELL. Soft-
ware - Practice and Experience 21(5), 479-506 (1991)

12. Jomes, S.L.P., Lester, D.: Implementing Functional Languages: A Tutorial. Prentice
Hall International Series in Computer Science (1992)

13. Morazdn, M.T.: Towards Closureless Functional Languages. In: Arabnia, H. (ed.)
Proc. of the Int. Conf. on Prog. Lang. and Compilers, pp. 57-63. CSREA Press
(2005)

14. Morazén, M.T., Mucha, B.: Improved Graph-Based Lambda Lifting. In: Arabnia,
H. (ed.) Proc. of the Int. Conf. on Prog. Lang. and Compilers, June 2006, pp.
896-902. CSREA Press (2006)

15. Oliva, D.P., Ramsdell, J.D., Wand, M.: The VLISP Verified PreScheme Compiler.
Lisp and Symbolic Computation 8(1-2), 111-182 (1995)

16. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in Linear Time.
SIAM Journal on Computing 28(6), 2117-2132 (1999)

Appendix

Tree. A treeis a connected, directed, and acyclic graph in which there is a node,

called the root, such that there is a path from the root to every other node
in the graph. The root node has no incoming edges and all other nodes have
only one incoming edge. When an edge from node A to node B exists, we
say that A is the parent of B. The depth or level of a node N in a tree rooted
at R is the number of edges in the path from R to N. The ancestors of N
are all the nodes on the path from R to the parent of N. The descendants
of N are all the nodes that are reachable from the subtree rooted at N.

Dominator Tree. In a graph G with root node R, a node N dominates a

node M if every path from R to M must pass through N. The immediate
dominator of a node M is a node N if AK € G: N dominates K and K
dominates M. The dominator tree T of G contains the same set of nodes as
G and has an edge from a node N to a node M when N is the immediate
dominator of M.

Strongly Connected Component. The nodes N; ... N of a directed graph

G form a strongly connected component if for every pair of distinct nodes,
N; and Nj, there is a path from N; to IV; and a path from IV; and ;.

	Optimal Lambda Lifting in Quadratic Time
	Introduction
	Lambda Lifting Algorithms
	Johnsson’s Algorithm
	Danvy’s and Schultz’s Graph-Based Lambda Lifting
	Moraz´an’s and Mucha’s Graph-Based Algorithm

	A Simplifying Insight
	Call Graphs and Dominator Trees
	Vertical Function Dependencies
	Horizontal Function Dependencies
	Important Properties of EDT Graphs
	Simple Horizontal Dependencies
	Complex Horizontal Dependencies

	The Algorithm, Complexity, and Correctness
	The New Lambda Lifting Algorithm
	Complexity and Correctness

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

