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Preface

This volume contains the revised selected papers of the 19th International Sym-
posium on Implementation and Application of Functional Languages (IFL 2007)
held during September 27–29, 2007 in Freiburg, Germany.

IFL brings together researchers active in the area of functional programming,
with an emphasis on the implementation and application of the same. IFL pro-
vides an annual open forum for researchers who wish to present and discuss new
ideas and concepts, work in progress, preliminary results, etc. IFL covers a wide
range of topics from theoretical aspects over language design and implementation
towards applications and tool support.

IFL has been held throughout Europe in The Netherlands, UK, Germany,
Sweden, Spain, Ireland and Hungary. In 2007—for the first time—IFL was co-
located with the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2007) and seven affiliated workshops. IFL 2007 had a record
number of 87 participants from 4 continents giving 44 presentations. These pre-
sentations were organized into 11 sessions on applications, types, contracts, com-
pilation, parallelism, algorithms and data structures, program development, and
foundations. The draft proceedings distributed during the symposium contain
44 papers and abstracts. They were published as Technical Report No. 12-07 of
the Computing Laboratory, University of Kent, UK.

This volume follows the IFL tradition since 1996 in publishing a high-quality
subset of papers presented at the symposium in the Springer Lecture Notes in
Computer Science series. All participants who gave presentations at the sympo-
sium were invited to resubmit revised versions of their contributions after the
symposium. We received 33 papers, each of which was reviewed by 4 members of
the Programme Committee according to normal conference standards. Following
an intensive one-week discussion the Programme Committee selected 15 papers
for this volume.

Since 2002 the Peter Landin Prize has been awarded annually to the authors
of the best paper. For 2007 the Programme Committee was pleased to award
this prestigious prize to Neil Mitchell and Colin Runciman for their paper “A
Supercompiler for Core Haskell”.

IFL 2007 was generously sponsored by the Deutsche Forschungsgemeinschaft
(DFG). The local organizers of the Programming Languages Group of the De-
partment of Computer Science of the University of Freiburg ensured that the
whole event ran smoothly. The Programme Committee members wrote 132 re-
views in a short time frame. The conference management system EasyChair
substantially simplified the work of the Programme Chair and communication
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within the Programme Committee. Last but not least we thank all participants
of IFL 2007 who made it such a successful event.

April 2008 Olaf Chitil
Zoltán Horváth

Viktória Zsók
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Graph Parser Combinators

Steffen Mazanek and Mark Minas

Universität der Bundeswehr, München, Germany
{steffen.mazanek,mark.minas}@unibw.de

Abstract. A graph language can be described by a graph grammar in
a manner similar to a string grammar known from the theory of formal
languages. Unfortunately, graph parsing is known to be computationally
expensive in general. There are quite simple graph languages that crush
most general-purpose graph parsers.

In this paper we present graph parser combinators, a new approach
to graph parsing inspired by the well-known string parser combinators.
The basic idea is to define primitive graph parsers for elementary graph
components and a set of combinators for the construction of more ad-
vanced graph parsers. Using graph parser combinators special-purpose
graph parsers can be composed conveniently. Thereby, language-specific
performance optimizations can be incorporated in a flexible manner.

Keywords: functional programming, graph parsing, parser combinators,
visual languages.

1 Introduction

Graphs are a central data structure in computer science. Among other things,
they are heavily used for modeling and specifying. For instance, we have specified
visual languages using graph grammars [1]. Such graph grammars are used to
define a particular graph language in analogy to string grammars known from
formal language theory.

As in the setting of string grammars we are interested in solving the member-
ship problem (checking whether a given graph belongs to a particular graph lan-
guage) and parsing (finding a corresponding derivation), respectively. However,
while string parsing of context-free languages can be performed in O(n3), e.g.,
by using the well-known algorithm of Cocke, Kasami and Younger [2], graph
parsing is computationally expensive. There are even context-free graph lan-
guages the parsing of which is NP-complete [3]. Thus, a general-purpose graph
parser cannot be expected to run in polynomial time for arbitrary grammars.
The situation can be improved by imposing particular restrictions on the graph
languages or grammars. Anyhow, even if a language can be parsed in polyno-
mial time by a general-purpose parser, a special-purpose parser tailored to the
language is likely to outperform it.

For this reason we propose a different approach to graph parsing: Graph Parser
Combinators. We mainly have been inspired by the work of Hutton and Meijer

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Mazanek and M. Minas

[4] who have proposed monadic parser combinators for string parsing. The idea
of parser combinators is much older, though. The basic principle of a parser
combinator library is that primitive parsers are provided that can be combined
into more advanced parsers using a set of powerful combinators.

The most prominent combinators are the sequence and the choice combinator
that can be used to make parsers resemble a grammar very closely. However,
a wide range of other combinators is also imaginable, e.g., to cover common
patterns like repetition or optionality. Thereby partial results can be composed
in a flexible way. Further application-specific combinators can be added easily.
The non-linear structure of graphs suggests even more interesting patterns worth
an abstraction.

Parser combinators are very popular, because they integrate seamlessly with
the rest of the program and hence the full power of the host language can be
used. Unlike Yacc [5] no extra formalism is needed to specify the grammar.
Another benefit is that parsers are first-class values within the language. For
example, we can construct lists of parsers or pass them as function parameters.
The possibilities are only restricted by the potential of the host language.

Having all these benefits in mind the question arises how parser combinators
can be adopted to graphs. The discussion of this idea is the main contribution of
this paper. We introduce the theoretical background in Sect. 3 and 4. Thereafter,
we propose a framework and a set of graph parser combinators in Sect. 5. Then we
go on to demonstrate the practical use of these combinators by applying them to
a real-world example, namely the visual language VEX (visual expressions). This
example is introduced in Sect. 2 and the corresponding parser is constructed in
Sect. 6. Therewith, we demonstrate that efficient special-purpose graph parsers
can be implemented straightforwardly.

A First Impression

At this point, we provide a toy example to give an impression of what a parser
constructed using our combinators is going to look like.

An important advantage of the combinator approach is that a more opera-
tional description of a language can be given. For example, the language of the
strings {akbkck|k ∈ IN} is not context-free. Hence a general-purpose parser for
context-free languages cannot be applied at all, although parsing this language
actually is very easy: “Take as many a characters as possible, then accept exactly
the same number of b characters and finally accept exactly the same number of
c characters.”

Using PolyParse [6], a well-known and freely-available parser combinator li-
brary for strings maintained by Wallace, a parser for this string language can
be defined as shown in Fig. 1a. The type of this parser determines that there
may be a user-state s (not used in this example), that the tokens have to be
characters and that the result is a number (namely k). The combinator many
applies a given parser multiple times, while collecting the results. If the given
word is not a member of the language one of the calls of exactly fails.
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abc::Parser s Char Int

abc =
do as←many (char ’a’)

let k = length as

exactly k (char ’b’)

exactly k (char ’c’)

return k

(a) String parser

abcG::NGrappa s Char Int

abcG n =
do (n’,as)←chain (dirEdge ’a’) n

let k = length as

(n’’,_)←exactChain k (dirEdge ’b’) n’

exactChain k (dirEdge ’c’) n’’

return k

(b) Graph parser

Fig. 1. Parsers for the string and the graph language akbkck

Note, that the given parser uses the do-notation, syntactic sugar Haskell [7]
provides for dealing with monads. Monads in turn provide a means to simulate
state in Haskell. In the context of parser combinators they are used to hide the
list of unconsumed input. Otherwise all parsers in a sequence would have to pass
this list as a parameter explicitly.

In order to motivate our approach to graph parser combinators we provide
the graph equivalent to the previously introduced string parser abc. Strings
generally can be represented as directed, edge-labeled graphs straightforwardly.
For instance, Fig. 2 provides the graph representation of the string “aabbcc”. A
graph parser for this graph language can be defined using our combinators in
a manner quite similar to the parser discussed above as shown in Fig. 1b. The
main difference between the implementations of abc and abcG is, that we have
to pass through the position, i.e., the node, we currently process.

Fig. 2. The string graph “aabbcc”

Although many details have been omitted here, we hope that the idea behind
graph parser combinators is understandable already. In Sect. 5 we present the
framework and the combinators that can be used to conveniently implement
parsers like abcG.

2 A Running Example: VEX

In this section we introduce the visual language VEX as our running example.
Visual languages and graphs are highly related, because graphs are a very nat-
ural means for describing complex situations at an intuitive level. Graphs in
particular appear to be well suited as an intermediate data structure in visual
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(a) Language elements (b) Example diagram: λx.(y x)

Fig. 3. The visual language VEX

language editors. For instance, in editors generated using the diagram editor
generator DiaGen [1], visual objects and their spatial relations are mapped to
graph components and a graph parser is used to check whether a diagram is a
member of the particular language. This mapping is described in more detail in
the next section.

VEX [8] is a language for the visualization of lambda expressions. Thereby
variable bindings are explicitly defined by lines and not implicitly given by their
names as in normal lambda calculus. In Fig. 3a the basic elements of the language
are depicted. A VEX diagram basically consists of a set of circles, lines and
arrows, whose layout determines the represented lambda term.

In VEX each variable identifier is represented by an empty circle (labeling
text may be contained, however) that is connected by a line to a so-called root
node. A root node is again an empty circle with one or more lines touching it,
leading to all identifiers representing the same variable.

A root node may either be internally tangential to another circle, it then rep-
resents the parameter of a λ-abstraction, or it is not contained in any other circle,
it then denotes a free variable. A circle representing a λ-abstraction contains its
parameter circle and a VEX (sub-)diagram as its body.

Function application is expressed by two circles externally tangent to each
other. An arrow between these circles indicates the direction of application. As
usual application associates to the left. However, a different order of application
can be determined by a particular numbering scheme [8].

In Fig. 3b a syntactically correct VEX diagram is given that represents the
lambda term λx.(y x). We do not want to go into more detail here – [8] provides
a full and more precise description of the syntax. In the following, we use the
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language VEX to clarify the notions of graphs, graph grammars and parsing.
Furthermore, the benefits of our actual parser combinator library are demon-
strated by constructing a special-purpose parser for VEX graphs in Sect. 6.

3 Graphs

Our framework deals with a generalized notion of graphs where edges are allowed
to visit an arbitrary number of nodes. Such graphs are often called hypergraphs.
In this section we give a formal definition of these graphs and Haskell types for
their representation.

Following [3] a graph consists of a set of edges and a set of nodes. An edge is an
atomic item with a fixed number of tentacles, called the type of the edge. It can
be embedded into a graph by attaching each of its tentacles to a node. Directed
graphs are a special case of this notion, i.e., they are graphs whose edges are
distinguished by exactly two tentacles, the first representing the source of the
edge and the second the target, respectively.

Graphs are a flexible modeling concept suitable, e.g., for modeling a large num-
ber of different visual languages [9]. Using VEX as an example we briefly sketch
how syntax analysis for diagrams can be performed. It is usually conducted by
a chain of processing steps. For instance, in DiaGen [1] first a so-called spatial
relationship graph (SRG) is created. This SRG contains a component edge for
every diagram component as well as spatial relationship edges (like contains or
touches) linking these components via their attachment nodes. A simple example
is depicted in Fig. 4.

Fig. 4. Spatial relationship graph of a diagram representing the identity function

We represent edges by a rectangular box marked with a particular label and
nodes by filled black circles. A line between an edge and a node indicates that
the node is visited by that edge. Spatial relationship edges are directed, binary
edges, so that we can represent them as colored arrows in the figure for clarity’s
sake.

In a second step this SRG is transformed to the reduced graph model (or
abstract syntax graph) by the so-called reducer. This step is closely related to
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lexical analysis in a string setting. The reduction of complexity allows more
readable grammars and often reasonably efficient parsers.1 The derivation struc-
ture (if any) yielded by the parser can finally be used for attribute evaluation
and diagram beautification.

In Fig. 5 the reduced graph model

Fig. 5. Graph representation of the VEX
expression of Fig. 3b

of Fig. 3b is shown. Nodes additionally
are labeled with their identifiers. The
free variable root node in the upper
left corner of Fig. 3b, e.g., is mapped
to an edge labeled “freevar”. The ref-
erence of the variable to this root node
is mapped to an edge “bind” that links
the edges “freevar” and “var”.

The small numbers close to the ed-
ges are the tentacle numbers. Without these numbers the image may be am-
biguous, since different tentacles usually play different roles. For instance, the
tentacle with number 1 of “abstr” edges always has to be attached to the body
of the abstraction and the tentacles 1 and 2 of “apply” edges to a function and
its argument, respectively.

Before we provide the Haskell types representing the graph data structures
we have to introduce our graph model more formally. It differs from standard
definitions as found in, e.g., [3] that do not introduce the notion of a context.

Let C be a set of labels and type : C → IN a typing function for C. In
the following, a graph H over C is a finite set of tuples (lab, e, ns), where e is
an edge identifier unique in H , lab ∈ C is an edge label and ns is a sequence
of node identifiers such that type(lab) = |ns| (length of sequence). The nodes
represented by the node identifiers in ns are called incident to edge e. We call
a tuple (lab, e, ns) a context (in analogy to [10], although our graphs are not
inductively defined).

The position of a particular node n in the sequence of nodes within the context
of an edge e represents the tentacle of e that n is attached to. Hence the order
of nodes matters. The same node identifier also may occur in more than one
context indicating that the edges represented by those contexts are connected
via this node.

Note, that our notion of graphs is slightly more restrictive than the usual one,
because we cannot represent isolated nodes. In particular the nodes of H are
implicitly given as the union of all nodes incident to its edges. In fact, in many
graph application areas isolated nodes simply do not occur. For example, in our
context of visual languages diagram components are represented by edges, and
nodes just represent their connection points, i.e., each node is attached to at
least one edge. As we will see, our definition is very advantageous for parsing. In
particular we can transfer the concept of input consumption straightforwardly
by just using contexts as tokens (cf. Sect. 5). So we ignore this issue at the
moment in order to keep the technicalities simple.
1 In case of VEX this reduction is quite complicated. We do not discuss this step here

in detail.
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The following Haskell code introduces the basic data structures for represent-
ing nodes, edges and graphs altogether:

type Node = Int

type Edge = Int

type Tentacle = Int

type Context lab = (lab, Edge, [Node])

type Graph lab = Set (Context lab)

For the sake of simplicity, we represent nodes and edges by integer numbers.
We declare a graph as a set of contexts, where each context represents a labeled
edge including its incident nodes. For instance, the VEX graph given in Fig. 5
can be represented as follows:

data VexLab = AbstrL | ApplyL | VarL | BindL | FreevarL

vg::Graph VexLab

vg = {(AbstrL,0,[1,2]), (ApplyL,1,[2,3,4]), (VarL,2,[4]),

(BindL,3,[4,2]), (VarL,4,[3]), (BindL,5,[3,5]), (FreevarL,6,[5])}

We enumerate the terminal edge labels explicitly as data literals. Using strings
also is perfectly possible, but following our approach the type checker already
excludes some meaningless input. The node numbers occurring in vg correspond
directly to the identifiers given in the figure. The edges are numbered uniquely.

4 Graph Grammars and Parsers

A set of graphs, i.e., a graph language, can be defined using a graph grammar –
an extension of formal language theory to graphs. A widely known kind of graph
grammar are hyperedge replacement grammars (HRG) as described in [3]. Here,
a nonterminal edge of a given graph is replaced by a new graph that is glued to
the remaining graph by fusing particular nodes. Formally, such a HRG G is a
quadruple G = (N, T, P, S) that consists of a set of nonterminals N ⊂ C (i.e.,
labels), a set of terminals T ⊂ C with T ∩N = ∅, a finite set of productions P
and a start symbol S ∈ N . The productions are context-free, i.e., they describe
how a single nonterminal edge can be replaced with a graph.

Unfortunately this notion is not powerful enough to describe VEX; we have
to extend it with so-called embedding rules – special productions that insert
an additional edge into a particular context. Such context-sensitive embedding
rules are needed for the description of many graph languages.

The graph grammar for VEX can be defined as GV = (NV , TV , PV , Vex)
where NV = {Vex, Lambda, Freevar}, TV = {freevar, apply, abstr, var, bind} and
PV contains the productions given in Fig. 6a. By convention we use lower case
letters to label terminal edges; in contrast labels of nonterminal edges start with
a capital letter. The productions are written very similar to BNF known from
string grammars, i.e., left-hand side lhs and right-hand side rhs are separated
by the symbol ::= and several rhs of one and the same lhs can be combined
by vertical bars. Node labels are used to identify corresponding nodes of lhs
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(a) Productions of the grammar (b) Derivation of the graph given in Fig. 5

Fig. 6. The graph language of VEX

and rhs. They act as variables. In order to apply a production they have to be
instantiated with nodes actually occurring in the graph.

As usual the language defined by a grammar is given by all terminal graphs
derivable in an arbitrary number of steps from the start symbol. Note again,
that the grammar of VEX is not context-free, i.e., there are productions with
more than one edge at their lhs, although the graph language is quite simple. In
particular the embedding of the “bind” edge cannot be defined in a context-free
manner. Thus, the derivation is not a tree, but a DAG. The given grammar also
does not ensure that there has to be exactly one “bind” edge connected to each
variable. Such restrictions usually have to be expressed by so-called application
conditions (see, e.g., [1]). A derivation of our example VEX graph (Fig. 5) is
given in Fig. 6b.

A general-purpose graph parser for HRGs gets passed a particular HRG and
a graph as parameters and constructs a derivation tree of this graph according
to the grammar. This can be done, for instance, in a way similar to the well-
known algorithm of Cocke, Younger and Kasami [2] in the context of strings (all
HRGs can be transformed to the graph equivalent of the string notion Chomsky
Normal Form). However, such a parser could not deal with our VEX grammar,
because of the embedding rules.

Another problem regarding this grammar is caused by the “Freevar” produc-
tions. Since the terminal “freevar” edges are not connected in a specific way a
lot of different derivations are possible. It is simply not clear, in which order the
different “freevar” edges have to be derived (although their actual order does
not matter at all). A general-purpose parser usually performs poorly on such
highly ambiguous grammars.
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Having this in mind, we can state, that a general-purpose parser capable of
parsing VEX graphs has to be quite powerful. Hence the language VEX strongly
motivates the construction of a special-purpose parser.

5 A Graph Parser Combinator Library

The main contribution of this paper is the proposal of the combinator approach
to graph parsing. To validate this concept we provide a prototypical implementa-
tion of a respective library in this section. We later demonstrate that therewith
the construction of special-purpose parsers can be greatly simplified.

Our design goals have been:

– Intuitive look and feel, i.e., short training period for people already familiar
with parser combinators.

– Straightforward translation of a grammar to a parser.
– Simple parsers for simple languages even if the grammar of the language is

complicated.2

– Sufficient performance for practically relevant applications.

In implementing our parsers we do not start from scratch. Rather we use
PolyParse [6] as a base: a light-weight monadic parser combinator library already
mentioned in the introduction. PolyParse has in particular appeared to be well-
suited for practical applications. Thus, our approach has the additional benefit
that many users are already familiar with the usage of the proposed framework.

However, we have to adapt the library a little to deal with sets of tokens
rather than lists. The new type Parser can be defined as follows:

newtype Parser s t a = P (s → Set t → (EitherE Error a, s, Set t))

The type parameter t defines the type of the tokens. As a witness of success
the parser returns a value of type a. In addition to the set of tokens, a state of
type s is carried along. For instance, we will need such a state when parsing VEX
to keep track of the root nodes in scope. EitherE is a type similar to Either
that additionally provides support for different gradations of failing.

The existing instance of the type class Monad for the type Parser can be
reused without any changes. Thus, we also

– hide the remaining input,
– keep track of an explicit state, which can be updated while parsing,
– allow further parsers to be parameterized with the results of previous ones

(cf. abcG),
– support the convenient construction of results with return.

However, we cannot reuse several primitive parsers from PolyParse (mainly
next::Parser s t t) since they depend on the first token of the input list,

2 A good example is the language of the string graphs {akbkck|k ∈ IN}. In contrast to
the string language there is a context-free graph grammar describing this language,
however, it is quite complicated despite the simplicity of the language (cf. [3]).
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Table 1. Set-specific primitive parsers and combinators

Name Type Description

aSatisfying (t->Bool)->

Parser s t t

a token satisfying a particular condi-
tion, nondeterministic and consuming

remainingInp Parser s t (Set t) the whole remaining input, not con-
suming

satisfyingInp (t->Bool)->

Parser s t (Set t)

all tokens satisfying a particular condi-
tion, consuming

oneOf [Parser s t a]->

Parser s t a

chooses the first parser in the list that
succeeds

best [Parser s t a]->

Parser s t a

chooses the parser consuming the
largest part of the input successfully

eoi Parser s t () for complete input consumption, other-
wise a correct subgraph is extracted

which is meaningless in the context of sets. Instead we have to add several set-
specific primitive parsers listed in Table 1 (we omit their declarations here, they
are rather technical). The use of the also listed combinator best will become
clear shortly.

Note, that up to now we have not defined any graph-specific combinators.
Indeed our basic framework can be used to parse all kinds of token sets.

After this preparatory work we can define graph-specific combinators quite
conveniently. However, let us first define our basic graph parser type by special-
izing the type Parser. Thereby we choose contexts (as introduced in Sect. 3) as
our token type. The name Grappa is an acronym for graph parsing:

type Grappa s lab a = Parser s (Context lab) a

A main difference between graph parsing and string parsing is that in a graph
setting we normally do not know where to actually start parsing. There is no
such thing as a first token/context. Thus, most of our parsers will need a start
node as a parameter explicitly. For convenience, we define an additional type
NGrappa that hides this node parameter:

type NGrappa s lab a = Node→Grappa s lab a

Most combinators will return a result of type NGrappa. The following function
converts such an NGrappa to a normal Grappa by trying every node of the graph
as a starting point successively.

nGrappaToGrappa::NGrappa s lab a→Grappa s lab a

nGrappaToGrappa ng = do

g←remainingInp

best (map ng (nodes g))

Using remainingInp the current set of tokens, i.e., graph, is queried (but not
consumed). Thereafter the combinator best is used to find the best starting
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node, i.e., the one the largest part of the input can be successfully consumed
from.3 We construct the list of possible parsers by mapping ng to all nodes of the
graph. Of course this function has to be used with care – at least if performance is
an issue. However, its declaration demonstrates how flexibly parser combinators
can be composed.

We further provide a combinator oneOfN for dealing with alternatives based
on type NGrappa.

oneOfN::[NGrappa s lab a]→NGrappa s lab a

oneOfN ngs n = oneOf (map ($n) ngs)

In Table 2 we briefly sketch some of the graph-specific primitive parsers pro-
vided by our library. They are all nondeterministic and consume the context
they return. The parser dirEdge from the introductory example (Fig. 1b) is a
specialization of edge that uses 0 as the incoming and 1 as the outgoing tentacle
number, respectively. Those numbers correspond to source and target of a binary
edge.

Table 2. Some graph-specific primitive parsers

Name Type Description

context (Context l->Bool)->

Grappa s l (Context l)

a context satisfying a particular con-
dition

labContext Eq l=>l->

Grappa s l (Context l)

a context with a particular label

edge Eq l=>l->Tentacle->Tentacle->

NGrappa s l (Node,Context l)

a labeled context connected to the
active node via a particular tentacle
also returning its successor (via the
other, outgoing tentacle)

connLab-

Context

Eq l=>l->[(Tentacle,Node)]->

Grappa s l (Context l)

a labeled context connected to the
given nodes via the given tentacles

We omit the implementation details of the primitive parsers and rather switch
the focus to combinators. A first important combinator is chain, in a sense
the graph equivalent of many. It can be used to parse several successive graphs
connected via intermediary nodes as shown in the figure below.

Therefore, a given NGrappa is applied as long as possible assuring proper
connections between the different parses. As a result the list of the partial results
3 This is an expensive operation. However, the alternative of returning an arbitrary

result is often not meaningful in a graph setting. For instance, the parser abcG would
always succeed immediately returning k = 0.
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is returned. The connecting nodes are especially important, because they have
to be provided as starting points for the parser one at a time. This is realized
by passing through the active node, i.e., the parser has to also return the node
where it stops.

chain::NGrappa s lab (Node,a)→NGrappa s lab (Node,[a])

chain p n = do {

(n’,x)←p n;

(n’’,xs)←chain p n’;

return (n’’,x:xs)

} ‘onFail‘ return (n,[])

The string combinator exactly used in the introduction can be carried over
to graphs quite easily, too:

exactChain::Int→NGrappa s lab (Node,a)→NGrappa s lab (Node,[a])

exactChain 0 p n = return (n,[])

exactChain num p n = do

(n’,x)←p n

(n’’,xs)←exactChain (num-1) p n’

return (n’’,x:xs)

Note, that with chain and exactChain all combinators used in the definition
of our motivating example abcG, i.e., the parser for the string graphs {akbkck|k ∈
IN}, are introduced already.

In addition to these combinators several parser combinators known from string
parsing can be reused for graph parsing straightforwardly, e.g., oneOf. Further-
more, there are some combinators that have to be used with care. Their seman-
tics changes in a graph setting, because they do not maintain proper connections
(unlike strings the order of tokens, i.e., contexts, does not represent a particular
kind of connection anymore). For instance, the combinator many can be used in
the context of graphs just to parse more or less independent subgraphs or star
shapes (when dealing with NGrappas):

star::NGrappa s lab a→NGrappa s lab [a]

star ng = many ◦ ng

Note, that several combinators and associated parsers have to pass through
the active node. In particular parsers for languages of string graphs, therefore,
include some boilerplate code (cf. Fig. 1b). It is common practice to hide this
complexity in an additional state monad. However, practical graph languages
usually are more branched. Due to this property the monadic approach results
in frequent updates of this state. Thus, we prefer passing the active node as a
function parameter explicitly.

There are a lot more combinators imaginable. Our library, e.g., provides fur-
ther combinators for dealing with trees, separators, etc. However, the ones pre-
sented in this section give a good first insight. Furthermore, they are in particular
needed to tackle our example VEX.



Graph Parser Combinators 13

6 Parsing VEX

In this section we construct a parser for the example language VEX using the
combinators defined in the previous section. The purpose of the presentation of
this parser is twofold. First, we demonstrate how the combinators have to be
used. And second, we intend to show that special-purpose graph parsers can be
defined quite straightforwardly.

Our goal is to map a VEX graph to the λ-term it represents. Hence, we define
the type Lambda as the result type of the parser.

data Lambda = Abstr String Lambda |
Apply Lambda Lambda |
Var String

Note, that Lambda is a kind of tree and not a DAG as one might expect,
because variable bindings are resolved by proper naming. Here an additional
advantage of parser combinators shows up. We can compute a useful result
while parsing and need not post-process an intermediate data structure somehow
representing the derivation.

VEX is an example where we really need a parser state. In particular we store
a number used to construct a name for the next fresh variable to be bound
in an abstraction. Moreover, the state contains a lookup table that maps node
numbers to variable names. The type VexState represents these requirements.

type VexState = (Int,[(Node,String)])

The top-level parser vex first consumes all (many) “freevar” edges using the
parser freevar. Thereby the lookup table is extended properly introducing fresh
names for the new variables. We are not interested in the parsing order of the
“freevar” edges. Hence, we commit the intermediate results to prevent backtrack-
ing. Finally, the remaining graph is parsed using the parser lambda.

vex::Grappa VexState VexLab Lambda

vex = do

many (commit freevar)

nGrappaToGrappa lambda

freevar::Grappa VexState VexLab ()

freevar = do

(_,_,[n])←labContext FreevarL

stUpdate (λ(nn,vt)→(nn+1,(n,"v"++show nn):vt))

The parser lambda accepts either an application (apply), an abstraction
(abstr) or a variable (var). All of these subordinated parsers have the same
type.

lambda,apply,abstr,var::NGrappa VexState VexLab Lambda

lambda = oneOfN [apply, abstr, var]

At “apply” edges there are two directions to further process the graph. Both
have to be traversed and must yield a valid subgraph. This is a main difference
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to string parsing where the next token is always predetermined. We deal with
this issue by parsing an application depth-first beginning with its left side. Since
the diagram language VEX does not support sharing of common subexpressions
we can consume recognized input unconditionally anyhow.

apply n = do

(_,_,ns)←connLabContext ApplyL [(0, n)]

l1←lambda (ns!!1)

l2←lambda (ns!!2)

return (Apply l1 l2)

The nodes visited via particular tentacles (here, 1 and 2) are accessed by
using the tentacle number as a parameter to the list index operator (!!). Both
subgraphs have to be parseable with lambda again. The overall result then is
composed by the application of the data constructor Apply to the results yielded
by parsing these subgraphs.

Parsing an abstraction means introducing a new variable in the lookup table
that can be released after parsing its body. The state can be queried and changed
using stGet::Parser s t s and stUpdate::(s->s)->Parser s t (), respec-
tively. These functions are provided by PolyParse for dealing with the user-state.

abstr n = do

(_,_,ns)←connLabContext AbstrL [(0, n)]

oldstate@(nn,vt)←stGet

stUpdate (const (nn+1,(ns!!1,"v"++show nn):vt))

l←lambda (ns!!1)

stUpdate (const oldstate)

return (Abstr ("v"++show nn) l)

Edges labeled “var” represent variables. Additionally, there has to be a “bind”
edge to a node that can be mapped to a variable name via the lookup table. Note,
that it would even be possible to raise the error level, i.e., prevent backtracking,
if there is no corresponding “bind” edge. However, we still backtrack, since we
are also interested in finding correct subgraphs.

var n = do

connLabContext VarL [(0, n)]

(_,_,ns)←connLabContext BindL [(0, n)]

(_,vt)←stGet

case lookup (ns!!1) vt of

Nothing→fail $ show (ns!!1) ++
" out of scope!"

Just v→return (Var v)

The parser for VEX graphs can be called using the function vexParse that
applies the PolyParse function runParser to the initial state (1,[]) and just
returns the result or an error message.

vexParse::Graph VexLab→Either Error Lambda

vexParse = getResult ◦ runParser vex (1,[])

For our example graph vg it succeeds with the result λv2→(v1 v2).
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A Brief Remark on Performance

In [3] it is proved that there are (even context-free) graph languages for which
parsing is NP-complete. These languages, of course, cannot be parsed with our
combinators efficiently. However, there are also languages on which most general-
purpose graph parsers perform poorly, although they can be parsed efficiently.

For instance, even the quite simple language VEX causes a general-purpose
parser to run in exponential time (at least, if it is not tweaked somehow). The
exponent thereby depends on the number of “freevar” edges, since those can be
derived in a lot of different orders (n!). The parser presented previously, however,
is not affected by this issue: We simply have committed to the first result at any
one time. Similar language-specific performance optimizations can be applied to
many languages.

We have also measured the execution time to parse the string graphs akbkck

for several k using a general-purpose parser (also implemented in Haskell). As
already mentioned it is possible to describe this graph language with a HRG. It
turns out that these string graphs can be parsed in polynomial time regarding
this grammar, however, performance is worse than one might expect for such a
simple language.

In contrast, the special-purpose parser presented as a motivating example in
the introduction can be applied to very large graphs. Even if we do not know the
starting node and all nodes have to be tried successively we only get a factor of
3∗k. This still outperforms our general-purpose parser. String graphs are a rather
artificial example, though. We have to conduct a more elaborate performance
comparison in the future.

7 Related Work

To our best knowledge graph parser combinators have not been considered up
to now. So in this section we briefly sketch several related approaches to parsing
in general and dealing with graphs in functional languages.

Besides PolyParse [6] there are other parser combinator libraries that are also
widely-used. For instance, Parsec [11] is well-known for its high performance
and good error reporting capabilities. The main difference between Parsec and
PolyParse is that Parsec is predictive by default only backtracking where an
explicit try is inserted whereas in PolyParse backtracking is the default except
where explicitly disallowed by a commit. We have to gain more experience with
graph parser combinators to judge which approach is better suited in our setting.

In the context of strings the complement of the parser combinator approach
is parser generation. Thereby a grammar is given, e.g., in EBNF from which a
real parser in a particular language can be generated. The tool Happy [12] can
be used to generate such a Haskell parser. However, the advantage of a parser
generator for strings – namely that efficient parsers can be generated for nearly
arbitrary context-free grammars – does not count that much in a graph setting.

At this point we also have to mention the work of Erwig [10], because our
declarations are mainly inspired by his approach. Erwig criticized the imperative
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style of the algorithms described in, e.g., [13] and proposed a new approach:
looking at graphs as inductively defined data types. So he presented a graph
declaration where nodes are added inductively one at a time. Incident edges are
represented as a part of their so-called contexts. Unfortunately his library [14]
does not generalize to hypergraphs and also does not support graph rewriting
and parsing.4

Also highly related are approaches that aim at the combination of functional
programming and graph transformation. At the time of writing a textbook is
work in progress that provides an implementation of the categorical approach
to graph transformation with Haskell [16]. Since graphs are a category a higher
level of abstraction is used to implement graph transformation algorithms. An
even more general framework is provided in [17]. The benefit of this approach is
its generality since it just depends on categories with certain properties. How-
ever, up to now parsers are not considered, so we cannot compare usability and
performance.

8 Conclusion and Further Work

In this paper we have introduced graph parser combinators, a novel approach to
the construction of special-purpose graph parsers. By applying the combinator
approach to the domain of graph parsing we further have demonstrated that this
well-known technique can be used to parse all kinds of non-linear structures.

Graph parsing is highly relevant for real world applications as we have demon-
strated with an example from the domain of visual languages. Here, graph pars-
ing is crucial for the syntactical analysis of diagrams.

Further we have demonstrated that our library can be flexibly used and easily
extended. It allows the construction of graph parsers even for context-sensitive
graph grammars. Since the implementation of our combinators is quite similar
to the more conventional string-based parser combinator libraries Haskell pro-
grammers will be familiar with its usage immediately. In combination with the
implemented general-purpose graph parser (not discussed in this paper) we have
taken an important first step towards a functional graph parsing library.

As we have backed up by examples our library in its present form is perfectly
usable already. Nevertheless a lot of work remains to be done. First of all, we have
to provide a solid theoretical foundation. We particularly have to investigate how
to simplify the process of writing correct parsers using our framework. Therefore,
we need to provide mappings from graph grammar formalisms to parsers on top
of our framework. This would permit the more precise evaluation of graph parser
combinators with respect to power and performance.

Another area of future research is the extension of the set of combinators.
Compared to strings graphs can exhibit many more interesting patterns. And
finally, it would be interesting to see how capabilities for error recovery could be

4 In fact, Erwig discussed termgraph rewriting in [15], however, the presented algo-
rithm is tailored to the problem and cannot be generalized straightforwardly.
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added (like [18] for strings) or how a breadth-first search strategy would affect
the performance.

All in all, we propose the following as an attractive approach to graph parsing:
First, try using a general-purpose graph parser. If it is applicable and reasonably
efficient everything is ok. However, if additional flexibility is needed or perfor-
mance is an issue consider the use of graph parser combinators. The library
presented in this paper permits the rapid construction of special-purpose graph
parsers. Thereby, language-specific performance optimizations can be incorpo-
rated easily.
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Abstract. Refactoring is a technique for improving the design of exist-
ing programs without changing their behaviour. Wrangler is a tool built
at the University of Kent to support Erlang program refactoring; the
Wrangler tool is written in Erlang.

In this paper we present the use of a novel testing tool, Quviq
QuickCheck, for testing the implementation of Wrangler. QuickCheck
is a specification-based testing tool for Erlang. With QuickCheck, pro-
grams are tested by writing properties in a restricted logic, and using
the tool these properties are tested in randomly generated test cases.

This paper first gives overviews of Wrangler and Quviq QuickCheck,
then discusses the various ways in which refactorings can be validated,
and finally shows how QuickCheck can be used to test the correctness of
refactorings in an efficient way.

1 Introduction

Refactoring [7] is a technique for transforming program source code in such a
way that it changes the program’s internal structure and organisation, but not
external behaviour. The key characteristic that distinguishes refactoring from
general code manipulation is its focus on structural change, strictly separated
from changes in functionality. Functionality-preservation requires that refactor-
ings do not introduce (or remove) any bugs. Refactorings typically have two
aspects: program analysis is required to check that certain side-conditions are
met by the program in question in order for the refactoring to preserve behaviour,
and program transformation which carries out the actual program restructuring.
In a slogan: “Refactoring = Condition + Transformation”.

Refactorings can be done manually, but this can be tedious and error-prone
for small programs, and impractical for larger systems. Software tools (“refactor-
ing engines”) can help programmers perform refactorings automatically, and are
available for a variety of languages, including Smalltalk, Java, C#, C++, Haskell,
Erlang, etc. With a refactoring tool, the programmer only needs to select which
part of the program to be refactored and which refactoring to apply, and the
tool will automatically check the side-conditions and apply the transformation
throughout the whole program if the side-conditions are satisfied. Wrangler is
the tool that we are implementing to support refactoring Erlang [1] programs,
and this forms one aspect of ’Formally-Based Tool Support for Erlang Develop-
ment’1 [6], a joint research project between Universities of Kent and Sheffield.
1 FORSE is supported by EPSRC, UK.

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 19–36, 2008.
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Implementing a practical and usable refactoring tool for a real world pro-
gramming language is by no means trivial. A refactoring tool needs to get access
to the program’s syntax and static semantics (possibly including type informa-
tion), to implement different kinds of program analysis and transformation, and
to preserve the comments, and potentially, layout, of the transformed program.
Among other criteria, such as efficiency, usability and completeness, the reliabil-
ity of a refactoring tool is vital for it to be accepted in practice. A bug within a
refactoring tool can introduce bugs in the refactored programs silently, and such
bugs may be impossible to detect statically, if they result in a valid program
which behaves differently from the original.

The correctness of refactorings implemented can be ensured from several
aspects including, but not limited to, a clear specification clarifying the pre-
conditions, transformation rules, and/or post-conditions of each refactoring; a
verification that argues the correctness of the specification, and most impor-
tantly a thorough testing of the refactoring tool. A traditional way of testing
refactoring tools is to create test cases manually. Each test case contains an in-
put program, a refactoring command, and the expected result, which could be
either the refactored version of the input program or the original input program
(along with a failure message) depending on whether the side-conditions are sat-
isfied. Then these tested cases are usually run with a unit testing tool, such as
EUnit [3] for Erlang. Writing test cases manually is tedious and hard to cover
all possible refactoring scenarios. Incomplete test suite potentially leaves bugs
in refactoring tools.

We present the technique of using Quviq QuickCheck [8], a tool developed by
Quviq AB, to automate the testing of Wrangler. Instead of writing small test
programs, we use real-world available Erlang programs as our refactoring input
programs. For example, one of the Erlang programs we have used is Wrangler
itself, which currently contains 25 modules, 20K lines of code in total. Quviq
QuickCheck tests running code against formal specification, using controllable
random test case generation combined with automated test case simplification to
assist error diagnosis. With Quviq QuickCheck, we automate the generation of
refactoring commands and the checking of refactoring outputs. Refactoring com-
mands are generated randomly using the information stored in the annotated
abstract syntax tree (AAST) of the input program. Along with the develop-
ment of each refactoring, we write a collection of properties that the refactoring
should satisfy. Failing to meet one or more of these properties indicates bugs
in the implementation or properties. Each time the testing is run, it generates
100 refactoring commands by default, applies each command to the input pro-
gram, and checks that the properties being tested return true in every case. This
way, we are able to integrate the specification and testing of refactorings very
naturally.

The rest of the paper is structured as follows. In sections 2 and 3, we give
introductions to Wrangler and Quviq QuickCheck. Section 4 gives an overview
of the different ways in which refactoring engines can be tested, and in section 5
we explain our approach to testing Wrangler with QuickCheck, including the
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generation of refactoring commands, and the kind of general properties that we
use to test refactorings. In section 6, as an example, we illustrate the testing of
renaming a function. In section 7, we give an evaluation of our approach; related
work is presented in section 8, and conclusions and future work are given in
section 9.

2 Wrangler – An Erlang Refactorer

Wrangler [11,12] is the tool that we are building to provide support for interac-
tive refactoring of Erlang programs. The current version of Wrangler supports
a number of structural refactorings, including rename an identifier, generalise a
function definition, function extraction, move a function definition between mod-
ules, fold expressions against a function definition, etc, and functionalities for
duplicated code detection. More process structure related refactorings are being
added.

Wrangler is built on top of the Erlang syntax-tools package [14] which
provides a representation of the Erlang AST within Erlang. syntax-tools allows
syntax trees to be augmented with additional information as necessary. The
Wrangler AST representation is annotated with a variety of information:

– Comments in the source code are inserted as attachments to the nodes in
the AST at the appropriate place.

– Each function or variable name is associated with its actual source loca-
tion and the location of its defining occurrence, thus reflecting the binding
structure of the program.

– The start and end location of each syntactic entity in the source code is also
stored in the augmented AST, allowing entities to be located by means of
their position, as well as supporting pretty-printing facilities.

– Category information indicating the kind of syntax phrase the AST node
represents, such as expression, function, pattern and so on is also included
in the tree.

– Finally, free and bound variable information is also attached to the AST
representation of each syntax phrase in the source code.

Wrangler is embedded in the Emacs editing environment; to manage communica-
tion between the refactoring engine and Emacs we make use of the functionalities
provided by Distel [13], an Emacs-based user interface toolkit for Erlang.

To perform a refactoring with Wrangler, the focus of refactoring interest has to
be selected in the editor first. For instance, an identifier is selected by placing the
cursor at any of its occurrences; an expression is selected by highlighting it with
the cursor. Next, the user chooses the refactoring command from the refactor
menu, and inputs the parameter(s) in the mini-buffer if required. The Wrangler
tool checks that the focus item is suitable for the refactoring selected, that the
parameters are valid, and that the refactoring’s side-conditions are satisfied.

If all these checks are successful, Wrangler will then perform the refactoring,
and update the program with the new result, otherwise it will give an error
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message, and abort the refactoring with the input program unchanged. Undo
is supported by Wrangler; applying undo once reverts the program back to its
state immediately before the last refactoring was performed.

Snapshots of Wrangler are given in Figures 1-2 with a particular refactor-
ing scenario showing the generation of function repeat/1. In Figure 1, the
user has selected the expression io:format("Hello\n") in the definition of
repeat/1, has chosen the Generalise Function Definition command from the

Fig. 1. A snapshot of Wrangler

Fig. 2. A snapshot of Wrangler showing the result of generalisation
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Refactor menu, and is just entering a new parameter name A in the mini-buffer.
Then the user would press the Enter Key to perform the refactoring. After the
side-condition checking and program transformation, the result of this refactor-
ing is shown in Figure 2: the new parameter A has been added to the enclosing
function definition repeat/1, which now becomes repeat/2; the highlighted
expression has been replaced with A(); and at the call-site of the generalised
function, the selected expression, wrapped in a fun-expression, is now supplied
to the function call as its first actual parameter. We enclose the selected ex-
pression within a function closure because of its side-effect, so as to ensure that
the expression is evaluated at the proper points. As a design decision, if the
generalised function is exported by the current module, an auxiliary function is
created to ensure that the interface of the module is unchanged, as shown in this
example.

3 Quviq QuickCheck

Quviq QuickCheck is a property-based testing tool, developed from Claessen
and Hughes’ earlier QuickCheck tool for Haskell [4], re-designed for Erlang with
a number of extensions, of which the most significant is an ability to simplify
failing test cases automatically [8].

Quviq QuickCheck provides an API in Erlang that allows users to write prop-
erties that are expected to hold of programs; these properties are themselves
expressed as Erlang source code. QuickCheck also defines a variety of generators
and combining forms for generators by means of which the user can generate
test data of the appropriate type and distribution for their needs.

As an example, consider the standard list reverse function. One property of
this function is expressed thus:

prop_reverse() -> ?FORALL(Xs, list(int()),
list:reverse(list:reverse(Xs))== Xs).

As an abstract property, this says that reversing a list of integers twice has the
result of returning the original list. In QuickCheck, the functions int/0 and
list/1 are both data generators: int/0 generates random integers, and list/1
generates a list of elements generated by its argument. ?FORALL is an Erlang
macro. ?FORALL(X, Gen, Prop) binds X to a value generated by Gen within
the property Prop. The example property will be said to hold in QuickCheck if
list:reverse(list:reverse(Xs))== Xs) holds for all values of Xs generated
by list(int()).

The property is checked by running 100 random test cases generated by the
generators, and reports success if all tests pass this. If any test case fails, the
(first such) failing case will be printed. 100 is the default value of the number of
test cases generated in each run of QuickCheck, and this figure can be customised
by the user.

A failing test case indicates bugs in either the implementation under test or
the written properties. For example, testing the following property
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prop_list_delete()->
?FORALL(I, int(),

?FORALL(List, List(int()),
not (lists:member(I, lists:delete(I, List)))))

against the standard function lists:delete/2 might report

Failed! After 37 tests.
-8
[5, -8, 12, -8, 9]

as lists:delete(I, List) only removes the first occurrence of I in List. Once
a counterexample has been found, the shrinking functionality provided by Quviq
QuickCheck will allow QuickCheck to minimise the failing case as much as pos-
sible. For the above example, the length of the counterexample data will be
reduced, and the output above would be augmented by

Shrinking......(6 times)
-8
[-8,-8]

By writing properties in this style, a QuickCheck user can build up a formal
specification, which is then checked against the implementation by QuickCheck.
The mutual testing of implementation and specification ensures the correctness
of both.

In comparison with traditional automated testing, as provided by systems
such as EUnit [3], which runs the same set of tests repeatedly, QuickCheck allows
the user to run many different tests with little effort, therefore has the potential
to find more bugs. It is, of course, possible to re-run tests simply by re-using a
seed value within the random generation, and so to ensure that regression testing
takes place if required.

The API provided by QuickCheck contains functions for generating both sim-
ple and complex test data, according to distributions described by the user, as
well as macros for writing and testing properties. In the following sections, an
explanation will be given when an API function or macro is used.

4 Validating Refactoring Engines

Refactorings and refactoring engines can be validated in a number of different
ways. In this section we present an overview of the various approaches and their
pros and cons, before explaining our approach in more detail in the next section.

In checking whether the result of a refactoring has preserved behaviour, the
result naturally needs to compile and run without errors; in the remainder of
this section we assume that the results are also checked for being compilable as
well as being tested in various ways we discuss.
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4.1 Regression Testing of Refactored Programs

The most popular means of validating refactorings in current use is to ensure
that refactored code meets all the tests that the original version met. As Object-
Oriented refactoring has been identified as one of the central characteristics of
an extreme programming approach, it is reasonable to assume that the test data
will already be in place, and so the advantage of this approach is that the cost
of testing the refactored code is small. This approach means that the refactored
code has the same warranty as the original code.

The approach has two limitations. First, the coverage of the code is necessarily
partial, and so it is possible that bugs have been introduced in the untested parts
of the code. Also, the testing cost can be higher in cases where the test cases
have themselves to be refactored: for instance, if a function is generalised, then
it is necessary to add an extra datum to the test data for each function call.

4.2 Testing the Old and New Programs

A variant of the previous approach tests the two versions of the program against
each other: on input data taken from an existing test suite, the outputs from
two versions of the program can be compared directly. This approach is lower
cost in the case where there is no pre-existing test data, since it is not necessary
explicitly to state the output values corresponding to the various input data. A
disadvantage is that any framework needs to accommodate the co-existence of
two versions of the code under test.

Neither this nor the previous approach actually checks the structural changes
of the refactored code, and could fail to test that refactorings actually achieve
their purpose. For example, program behaviour preservation can be achieved
even if a malfunctioning refactoring returns the program structurally unchanged
without giving an error message.

4.3 Programs as Data

In contrast to the earlier approaches, it is possible to see the refactoring as a
program, and so to supply it with a set of input programs and the corresponding
output programs that are expect to result. Two variants of the check are possible:

– It is possible to analyse the abstract syntax tree (AST) resulting from the
transformation, and to compare this with the expected result. This neglects
the layout of the refactored program.

– In contrast, it is possible to specify the source code to be expected, with a
given program layout. This is a stronger test than the former; since it not
only prescribes the AST but also its particular layout, but this approach is
appropriate when refactoring code is expected to be laid out in a way that
will make it recognisable to its author.

This was the approach that we used first, using the Haskell package HUnit for
testing HaRe (the Haskell refactorer) [10], and EUnit for testing Wrangler.
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In our experience, the main disadvantage of writing test cases under this
approach is that it is very tedious, and hard to cover all the refactoring scenarios
especially when both the implementation and the test cases are written by the
same people. Hence we did not gain sufficient assurance about the correctness
of the refactorings implemented.

Other variants of this approach involve a degree of random generation; we will
explore our particular approach in the next section, and discuss related work in
section 8.

4.4 Program Verification

Rather than using testing, it is possible to write formal proofs of correctness for
refactoring engines. Two approaches suggest themselves:

– It is possible to produce, program by program, separate proofs of equivalence
between the original and the refactored programs. Such proofs might be
generated by tactic-based proof descriptions, or result from a proof planning
process.

– Alternatively, the formal theorem proved can itself contain a quantifier over
all programs of a certain form (which are the input to the refactoring in ques-
tion). Preliminary work under this approach is to be found in Li’s thesis [9]
and the forthcoming thesis of Sultana [15].

This section has summarised various approaches to validating refactoring en-
gines; we next look at our particular work.

5 Testing Wrangler with QuickCheck

Before adopting QuickCheck as the test engine of refactorings, we used the unit
testing approach, as discussed in the previous section. We concluded that this
mechanism was not ideal, and so to improve the testing of Wrangler, we have
experimented with the idea of using Quviq QuickCheck as the test engine.

Under this approach, a collection of properties are written along with the
implementation of each refactoring. These properties specify the conditions that
must be met by the program after the refactoring, in order for the transformation
to be behaviour-preserving. From the formal specification point of view, these
properties can be viewed as the post-conditions of a refactoring. While there are
some general properties which apply to most of the refactorings, for example,
all the programs after a refactoring must compile successfully, some properties
are particular to individual refactorings, especially those involving structural
changes to the program. Writing properties along with the implementation of
refactorings, we are able to make testing an integral part of the refactoring
development process.

Properties are tested on the refactored version of the input program. While
occasionally we have written a few small input programs to test a particular
case, mostly we use real-world Erlang programs as the testing code base. Before
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the testing of a specific refactoring, the code base could be examined to make
sure that enough refactoring scenarios are covered in the program. For example,
to test a refactoring involving the communication between processes, we should
choose programs that contain substantial process communications; and to test
a refactoring that transforms a tuple to a record, we need to make sure that
tuples and records are reasonably used in the test program. Apart from manual
examination, the collect/1 function provided by Quviq QuickCheck can be
used to analyse the distribution of the test data when the testing is complete;
and the coverage analysis functionalities provided by the standard Erlang release
can be used to analyse how well the code implementing the refactoring is covered
by running the test cases.

Once the test program has been chosen, refactoring commands are automat-
ically generated using the information stored in the annotated abstract syntax
tree (AAST) of the test program. Both the generation of refactoring commands
and the creation of properties make use of the Wrangler infrastructure API.
The API provides programmer access to the infrastructure on which Wrangler
is built. As the infrastructure has been more thoroughly tested, we trust its ro-
bustness in this exercise. Alternatively, we can also test an API function exposed
by the infrastructure using the same approach.

More about the generation of refactoring commands and the creation of prop-
erties are discussed in the following two sub-sections. Following that, as an ex-
ample, testing of the renaming a function refactoring is examined in more detail.

5.1 Generation of Refactoring Commands

In Wrangler, a refactoring command normally contains the refactoring name, the
name of the source file under refactoring, the focus of the refactoring which can
be a location/range in the program source, and some user inputs. For example,
the refactoring renaming a function has the following interface:

rename_fun(FileName, SrcLoc={Line, Col}, NewName, SearchPaths)

where FileName is the name of the file containing the definition of the function
to be renamed; SrcLoc, which is a tuple containing a line and a column number,
represents the location of one of the occurrences of the function name in the
source; NewName is the new function name, and SearchPaths specifies where to
search for those files that could possibly use this function; this is needed when
the function to be renamed is exported by the module in which it is defined.

As another example, the refactoring generalisation of a function definition
has the following interface:

generalise_fun(FileName, Range={StartLoc, EndLoc}, ParName)

where FileName is the name of the source file containing the definition of the
function to be generalised; Range represents the start and end location of the
selected expression in the source, and ParName is the new parameter name. As
this refactoring only affects the current module, SearchPaths is not needed.
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Next, we return to the ‘renaming’ example to explain how refactoring com-
mands can be generated. If a specific file is used as the input program, then the
FileName is fixed, otherwise a file can be randomly chosen from a directory for
each refactoring command. The following function serves to select an Erlang file
from a directory.

gen_filename(Dir) ->
{ok,Files} = file:list_dir(Dir),
ErlFiles = [F|| F <-Files, filename:extension(F)==".erl"],
oneof(ErlFiles).

where the function oneof/1 is a QuickCheck API function which generates a
value using a randomly chosen element of a list of generators; in this example,
all the list elements are constant generators.

Instead of generating source locations using the integer generators provided
by Quviq QuickCheck, the value of SrcLoc is generated based on the location
information stored in the AAST representation of the chosen Erlang file. As
discussed earlier, in the AAST, each occurrence of a function name is associated
with its location in the source, the name of the module in which it is defined, as
well as its defining location in that module.

To generate a source location, we first collect all those locations which are
associated with the occurrences of function names defined in this file, then choose
one from the collection randomly. This way, we can make sure that selected
location points to a function name defined in the current module. In order to
test the case when the user deliberately points to a location in the source which
does not correspond to a function name defined in the module, we can always
add fake locations to the collection of real ones, or make use of QuickCheck’s
fault injection combinators: fault/1 and fault rate/3.

Some refactorings ask the user to input a new name. For example, to rename
a function, the user needs to input the new function name; and to generalise a
function definition, the user has to input a new variable name. To improve the
possibility that a name conflict/shadow occurs, identifier names are generated
from both pre-created fresh names and those used in the refactored program,
since a name conflict/shadow is possible only when the new name is already used
by program.

The following function generates refactoring commands for renaming a func-
tion.

rename_fun_commands(Dir) ->
?LET(FileName, gen_filename(Dir),
{FileName,
oneof(collect_fun_locs(FileName)),
oneof(collect_names(FileName)),
Dir}).

In the above function, Dir specifies where to look for Erlang files to refactor;
?LET is a macro provided by Quviq QuickCheck (?LET(Pat, G1, G2) generates
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a value from G1, binds it to Pat, then generates a value from G2 which may
refer to the variables bound in Pat); function collect fun locs/1 adds all the
locations where a locally defined function name occurs in the selected Erlang
file to a list of default locations; collect name/1 adds all the function names
that occur in the source to a list of pre-created fresh identifiers, and as last, we
assume that Dir is the only directory to search for those files that would possibly
be affected by the refactoring.

Suppose that the testing directory is "c:/wrangler-0.1/test", which has
three Erlang files, the following shows part of the refactoring commands gener-
ated by the above function in one run of QuickCheck.

1% {"test.erl",{3,1},module,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{243,64},halt,"c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{184,48},ordsets,"c:/wrangler-0.1/test"}
1% {"test.erl",{5,39},"DDD","c:/wrangler-0.1/test"}
1% {"refac_qc.erl",{366,30},get_pos,"c:/wrangler-0.1/test"}
1% {"refac_rename_fun.erl",{117,33},purge_module,"c:/wrangler-0.1/test"}

As an example, the first command means to rename the function whose name
occurs at the location: {line: 3, column: 1} in file test.erl to the new name
module, and search the directory "c:/wrangler-0.01/test" for files in which
the function is used, if the function is exported. The percentage at the beginning
of each line shows the proportion of the total represented by the command.

5.2 Properties

Formally specified or not, each refactoring comes with a set of pre-conditions,
which embody when a refactoring can be applied to a program without changing
its meaning; a set of transformation rules which state how the program should be
transformed to fulfil the refactoring while keeping the program’s semantics un-
changed; and a collection of post-conditions which articulate some properties the
program should hold after the refactoring has been done. While the pre-condition
checking and transformation rules are always explicitly implemented, the check-
ing of post-conditions are normally ignored by the developers of refactoring tools
as we assume that the pre-conditions and transformation rules together should
guarantee the post-conditions.

With the QuickCheck testing approach, we can test most of these post-
conditions explicitly. Ideally, one post-condition that applies to any refactoring
is that the input program and its refactored version should have the same seman-
tics; however whether two programs have the same semantics is in general not
decidable. Furthermore, even when the two programs have the same semantics,
the refactor still might not have performed the anticipated structural change to
the program correctly as mentioned before. Therefore, instead of checking two
programs having the same semantics, we test a number of properties that are
decidable.
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There are a couple of basic properties that should hold by all the refactorings:

– first, the refactoring engine should not crash, i.e. the refactorer should not
terminate with an uncaught exception;

– second, if the refactoring has finished without giving an error message, then
the refactored version of the program should compile successfully (Wrangler
only refactors programs that compile).

Many basic refactorings are bi-directional. Given a refactoring that transforms a
program from P to P ′, we can generally find another refactoring that transforms
program P ′ to P . For example, renaming an entity in a program from A to B,
then renaming it back to A, should produce the original program; as another
example, first generalising a function definition over an expression, then spe-
cialising the function on the newly added parameter with the expression should
always produce the original function. This feature of refactoring allows us to
write properties that embody mutual testing of refactorings.

During the implementation of Wrangler, we always try to separate the pre-
condition checking part from the transformation part. One of the benefits of
doing this is that it allows the mutual testing of condition-checking and trans-
formation. For example, performing the transformation with the knowledge that
some of the necessary side-conditions are not satisfied should either make the
refactoring engine crash or violate some post-conditions in the case that the
transformation (apparently) succeeds.

Apart from those general post-conditions that apply to most of refactorings,
each refactoring also has it own particular post-conditions, especially those con-
cerning structural changes of the program, as different refactorings change the
program structure in different ways. For some refactorings, there may also be spe-
cial constraints that should hold during the transformation. For example, some
refactorings are suppose to keep the program’s module interface unchanged;
while others are suppose to keep some particular function interfaces unchanged.
All these constraints can be expressed as QuickCheck properties.

There is no limit on the number of properties one can specify to test a refac-
toring. For complex transformations, instead of writing a small number of very
complex properties, we can always write a collection of simpler properties, each
of which specifies only one aspect or a small step of the transformation. Simpler
properties are easier to understand, maintain and reuse.

In the following section, we again take the renaming a function refactoring as
an example to illustrate how properties can be specified and tested.

6 An Example: Testing Renaming a Function

Renaming a function is one of the most basic, but very useful, refactorings,
supported by almost all the existing refactorers. This refactoring renames a
user-selected function name to a new name and updates all the references to it.
When the renamed function is exported by the module, this refactoring could
potentially affect every module in the program. Suppose the old and new function



Testing Erlang Refactorings with QuickCheck 31

names (with arity) are bar/n and foo/n respectively, then the side-conditions
on renaming a function are as follows.

1. The new name should be a lexically valid function name, otherwise the trans-
formed program will not compile.

2. No binding for foo/n may exist in the same scope. This condition avoids
name conflict in the scope where bar/n is defined, and violating this condi-
tion will result in the transformed program failing to compile.

3. No binding for foo/n may intervene between the binding of bar/n and any of
its uses, and the binding to be renamed must not intervene between existing
bindings and the uses of foo/n.

This condition avoids name capture, and violating this condition will
lead to the binding structure of the program being changed silently. (‘Bind-
ing structure’ here refers to the association of uses of identifiers with their
definitions in a program, and is determined by the scope of the identifiers).

4. Callback functions should not be renamed. Callback functions in Erlang are
generally named by Erlang OTP behaviours, and must be implemented by
the module calling an OTP behaviour. Renaming, or changing the interface
of, callback functions in either single side will break the protocol between
the OTP behaviour and the module calling the OTP behaviour, and make
the program fail to function properly.

To check the correctness of the implementation, we focus on defining properties
depending on whether the refactoring succeeds or not. If the refactoring com-
pletes without giving an error message, we then test the following properties.

– Renaming the new function back to its original name should affect the same
set of Erlang files in the application, and produce the original program except
for variations of layout. This property also implies the condition that the
refactored version of the program should compile without errors.

– The function-level binding structure of the refactored version of the program
should be the same as, or isomorphic to, that of the original program.

Unlike some functional languages that allow nested function definitions,
Erlang has a very straightforward function defining structure. In Erlang, all
named functions are top-level functions. The function-level binding structure
of an Erlang program can be represented as a list of tuples:

B = [{{M1, Loc}, {M2, Id, A}}]

and {{M1, Loc}, {M2, Id, A}} ∈ B if and only if the function name Id, which
occurs in module M1 at location Loc, refers to the function defined in M2

whose name is Id and arity is A. To take the possible program layout change
into account, Loc here is a number reflecting the function name’s textual
occurrence order in the code, instead of the concrete source location.

Suppose the function bar/1 defined in module N is renamed to foo/1,
and the binding structures of the program before and after the refactoring
are B and B′ respectively, then replacing all the occurrences of {N, foo, 1}
in B′ with {N, bar, 1} should produce B.
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qc_rename_fun(Dir) ->
F = ?FORALL(C, (rename_fun_commands(Dir)),
begin
[FileName, SrcLoc, NewName, SearchPaths] = C,

%% backup the current version of the program.
file:copy(FileName, "temp.erl"),

%% get the function name (with arity) to be renamed.
{Mod, FunName, Arity} = pos_to_fun_name(FileName, SrcLoc),

%% calculate the binding structure of the current program.
B1 = fun_binding_structure(FileName),

%% get the name of the callbacks functions if there is any.
CallBacks = get_callback_funs(FileName),

%% apply the refactoring command to the source.
Res = apply(refac_rename_fun, rename_fun, C),
case Res of

%% ChangeFiles contains the names of those files
%% that have been affected by this refactoring.

{ok, ChangedFiles} -> %% refactoring completed successfully.
B2 = fun_binding_structure(FileName), %% new binding structure.

%% get the name of the callback functions if there is any.
CallBacks1 = get_callback_funs(FileName),
C1 = [FileName,NewName, Arity, FunName, SearchPaths],

%% rename the function back to its original name.
%% we cannot use location as it might have been changed.

{ok, ChangedFiles1} = apply(refac_rename_fun, rename_fun_1, C1),
%% property1: renaming in both directions affect the same set of files.

prop1 = ChangedFiles == ChangedFiles1,
%% property2: rename twice should returns to the original file.

Prop2 = pretty_print(FileName) == pretty_print("temp.erl"),
%% property 3: B1 and B2 are isomorphic.
%% rename/3 replaces Mod, FunName, Arity with Mod, NewName, Arity in B1

Prop3 = B2== rename(B1, {Mod, FunName, Arity}, {Mod, NewName, Arity}),
%% property 4: the same set of callback functions.

Prop4 = CallBacks == CallBacks1,
%% recover the original program for the next refactoring command.

file:copy("temp.erl", FileName),
Prop1 and Prop2 and Prop3 and Prop4;

{error,ErrorMsg} -> %% refactoring failed with an error message.
%% carry out the transformation even though the side-conditions
%% do not held; do_rename_fun/4 transforms the program.

_Res = apply(refac_rename_fun, do_rename_fun, C),
case ErrorMsg of

{1, _R1} -> %% failed for side-condition 1;
%% the transformed program should not compile.

file:copy("temp.erl", FileName),
{error, _Reason} = get_AST(FileName), true;

{2, _R2} -> %% failed for side-condition 2;
file:copy("temp.erl", FileName),
{error, _Reason} = get_AST(FileName), true;

{3, _R3} -> %% failed for side-condition 3;
%% the transformed program should compile, but the new
%% binding structure is not isomorphic to the original one.

{ok, _AST} = get_AST(FileName),
B2 = fun_binding_structure(FileName),
file:copy("temp.erl", FileName),
B2 /= rename(B1, {Mod,FunName, Arity},{Mod, NewName, Arity})

end end end),
qc:quickcheck(F).

Fig. 3. The top-level function for testing renaming a function

This property is able to find certain bugs that escape detection by the
previous property. For example, an implementation that renames every oc-
currence of the selected function name irrespective of its semantics will be
found faulty by this property, but not necessarily by the previous property.
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– The programs before and after the refactoring should have the same set of
callback functions if which functions are callback functions has been explic-
itly specified.

If the refactoring fails because one of the side-conditions fails, then the necessity
of the side-condition can also be tested. For example

– Transforming the program when side-condition 1 or 2 does not hold should
produce a program that does not compile.

– Transforming the program when side-condition 3 does not hold should pro-
duce a program that compiles but has a different function-level binding struc-
ture.

A simplified version of the top-level function for testing renaming a function
is given in figure 3. To make it easier to read, we have omitted the part that
handles client modules, however this should not affect the idea expressed by this
function.

7 Evaluation of Approach

A number of other refactorings have been tested using this approach, includ-
ing renaming a variable name, generalisation of a function definition, etc. We
actually started to use Quviq QuickCheck after the first preliminary release of
Wrangler, which was tested on a number of small test cases using EUnit, and
was also manually tested on a large code base.

Even so four bugs were found within the first release of Wrangler in a short
time. All these bugs escaped the pre-release testing due to the incomplete cov-
erage of the testing suite. Among these bugs, one silently changed the binding
structure of the program when the generalisation refactoring is applied, and was
detected by a property we wrote for this refactoring, which states that general-
isation and specialisation are inverse; the other three bugs were all caught by
the very basic properties, for example, one bug caused the refactoring engine
to crash because of an unmatched case clause; and another caused the refac-
tored code fail to compile because of the improper handling of generalisation on
operators.

From our experience so far, the advantages of the QuickCheck approach are
as follows:

– We are able to make the development of refactorings and their testing very
closely integrated. The meaning of each refactoring was further clarified by
the mutual testing of the implementation and the specification.

– Once properties have been written, many different test cases can be run with
very little effort, instead of repeating the same set of test cases every time.
As any Erlang program can serve as the test program, we can run the testing
on as many test programs, especially large programs, as possible.

– Because of the controlled random generation of refactoring commands, and
the large amount of tests we can run, more refactoring scenarios will be
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covered, therefore increasing the possibility of finding more bugs. At this
point, one might think of the exhaustive testing of refactorings. While it is
possible to enumerate all the possible refactoring commands when the input
program is very small, it is not practical with large input programs due to
the huge amount of refactoring commands that could be generated.

– This approach scales well to complex refactorings or composite refactorings.
Testing of a complex refactoring does not necessitate the specification of very
complex properties. Instead, we could write a collection of simple properties,
each of which only tests one aspect of the refactoring. A composite refactor-
ings can usually be decomposed into a series of basic refactorings, and each
of these basic refactorings can be tested separately using this approach. This
also corresponds naturally to the implementation of composite refactorings

While properties can be written separately from the implementation of refac-
torings, these properties normally make use of the infrastructure on which the
refactorings are built, therefore familiarity with the infrastructure is essential for
the testing using this approach.

8 Related Work

A number of case studies regarding to the use of Quviq QuickCheck or its prede-
cessor as the test engine have been done and reported, among which one to test
an industrial implementation of the Megaco protocol, and faults that have not
been detected by other testing techniques were found [2]. This case study also
shows the power of shrinking provided by Quviq QuickCheck, and one example
is that a test case consisting of a sequence of 160 commands was reduced to just
seven. Shrinking of refactoring commands does not make the counterexample
any simpler, therefore plays little role in this case study.

The most closely related work on the automated testing of refactorings is the
approach of Daniel et. al. [5]. The core of this approach is ASTGen, a library
for generating abstract syntax trees (ASTs) for Java programs. ASTGen allows
the developer to write imperative generators whose executions produce abstract
syntax trees (ASTs) for refactoring engines. To test a refactoring, a developer
writes a generator whose execution produces thousands of programs with struc-
tural properties that are relevant for the specific refactoring being tested. Several
kinds of properties (oracles) have also been created to automatically check that
the refactoring engine transformed the generated program correctly. Compared
with this approach, our approach is more lightweight, however a developer does
need to make sure that the testing code base covers enough structure features
and refactoring scenarios for the refactoring under testing.

9 Conclusion

Refactoring tools ought to allow program developers to quickly and safely refac-
tor their program, especially large programs. However, a robust and safe refac-
toring tool is hard to develop, and most refactoring tools still contain bugs even
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after extensive testing. While unit testing does help to find bugs in refactoring
tools, it is tedious to manually write test programs, and the coverage of the test
cases is hard to guarantee, and it is even harder to test refactoring tools on large
systems.

We have explored the idea of using Quviq QuickCheck to automate the testing
of refactorings. In this approach, the correctness of refactorings is tested against
specifications written in Erlang. Once a test program has been chosen, we auto-
mated the generation of refactoring commands and the checking of refactoring
outputs. Within a short time, a number of bugs were found in the first release of
Wrangler using this approach. The pros and cons of this approach is summarised
in section 7.

We envisage exploring a number of further ideas for automated testing of
refactorings using QuickCheck.

– It would be also interesting to generate Erlang programs to be refactored to
see whether more combinations of Erlang constructions that provoke faults
in Wrangler can be found.

– One of the options followed by Daniel et. al. in [5] is to compare the effect
of two refactoring engines, namely Eclipse and NetBeans for Java. We will
explore this option for Wrangler and the refactoring engine built by the
group at Eötvös Loránd University, Budapest [12].

– We have not addressed the behaviour checking of programs; it would nev-
ertheless be possible to extend our work to check the results of refactorings
against their original version using randomly-generated input values.

– We have assumed the correctness of our infrastructure library; it would be
instructive to express and then to test crucial properties of the functions in
this library.

We also intend to provide an API to help the specification of properties in the
context of refactorings, and we would also like to adopt this approach to test
our Haskell refactoring tool, HaRe.
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Abstract. The process of lambda lifting flattens a program by lifting all
local function definitions to the global level. Optimal lambda lifting com-
putes the minimal set of extraneous parameters needed by each function
as is done by the O(n3) equation-based algorithm proposed by Johns-
son. In contrast, modern lambda lifting algorithms have used a graph-
based approach to compute the set of extraneous parameters needed by
each function. Danvy and Schultz proposed an algorithm that reduced
the complexity of lambda lifting from O(n3) to O(n2). Their algorithm,
however, is an approximation of optimal lambda lifting. Morazán and
Mucha proposed an optimal graph-based algorithm at the expense of
raising the complexity to O(n3). Their algorithm, however, suggested
that dominator trees might be used to develop an O(n2) algorithm. This
article explores the relationship between the call graph of a program, its
dominator tree, and lambda lifting by developing algorithms for succes-
sively richer sets of programs. The result of this exploration is an O(n2)
optimal lambda lifting algorithm.

1 Introduction

The process of lambda lifting flattens a program by lifting all local function
definitions to the global level. In order to perform this program transformation
the free variables of a function, f , and a subset of the free variables transitively
needed by its callees, must be added as formal parameters to f before it can
be lifted to the global level. That is, f must be made scope insensitive before it
can be moved to the global level. Free variables must be explicitly passed to f ,
because at runtime the lifted version of f does not have the benefit of a closure
to store the bindings of the free variables. This program transformation tech-
nique is valid for programs using higher-order functions, because the extraneous
parameters are passed to function references (e.g. the site where functions are
passed as arguments) rather than to function calls (e.g. the site where a function
is applied to a set of arguments).

Lambda lifting is important for restructuring functional programs written for
the web [7], for partial evaluators [1], and for efficient compilation [15]. Further-
more, many abstract machines for functional languages only handle lambda-
lifted programs [10,12] making this transformation an important step in several
compilers for functional languages [9,11]. Lambda lifting and its inverse lambda
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dropping [2] are also important for improving the performance of compiled pro-
grams by providing a mechanism through which the number of parameters of a
function can be optimized for the target machine. For example, functions with a
large number of parameters (which are handled poorly by most compilers) can
be transformed to have fewer parameters [2]. Danvy and Schultz also point out
that in the context of teaching, lambda lifting and lambda dropping are useful
by offering different views of programs that help students understand lexical
scoping and block structure [2].

The computation of the set of free variables needed by a lifted function makes
lambda lifting difficult. Modern graph-based approaches [3,14] tackle the prob-
lem by transforming the call graph of a program into a directed acyclic graph
that is used to propagate free variables. The algorithm developed by Danvy and
Schultz [3] improves the complexity of Johnsson’s [8] lambda lifting algorithm
from O(n3) to O(n2). Their algorithm, however, is not optimal because it may
unnecessarily increase the arity of lifted functions. The algorithm developed by
Morazán and Mucha [14] makes graph-based lambda lifting optimal at the cost
of increasing its complexity to O(n3).

In this article, we first review Johnsson’s (J), Danvy’s and Schultz’s (DS), and
Morazán’s and Mucha’s (MM) lambda lifting algorithms. After this review, we
present a new insight that simplifies the presentation and the implementation of
graph-based lambda lifting by using a depth-first traversal instead of a reversed
breadth-first traversal to propagate free variables. The article then explores the
relationship between call graphs, dominator trees, and lambda lifting. The result
of this exploration is an optimal O(n2) lambda lifting algorithm. Although the
discussion is technically intricate at some points, the resulting algorithm is sim-
ple and elegant. The presentation assumes that all variable names are unique.
Programs for which this does not hold can easily be transformed by generating
a fresh identifier for repeated identifiers [4]. Moreover, since lambda-lifting (as
pointed out earlier) is indifferent to higher-order functions, our presentation only
uses first-order programs as examples. The article ends with some concluding re-
marks and directions of future work. The appendix includes a brief glossary of
the graph terminology used in the article (i.e. tree, dominator tree, and strongly
connected component).

2 Lambda Lifting Algorithms

2.1 Johnsson’s Algorithm

In the J-algorithm, the source program is traversed top-down to compute the
required (i.e. minimal) set of extraneous parameters needed by each function.
For any given function, f , the equation for the required set of free variables of
f , Rf , is given by:

Rf = FVf ∪ ((∪g∈FFf
Rg) ∩ SVf ), (1)

where FVf is the set of free variables directly referenced by f , FFf is the set of
functions referenced by f , and SVf is the set of variables defined in f ’s enclosing



Optimal Lambda Lifting in Quadratic Time 39

(define (f x y)
(define (g. . .) (. . .x. . .i. . .))
(define (h. . .) (. . .y. . .f. . .))
(define (i. . .) (. . .f. . . ))

(. . .g. . .h. . .))

Fig. 1. First Scheme Pseudo-code

fx,y

gx hy

i

Fig. 2. Call Graph

lexical scope. Mutually recursive functions give rise to a system of mutually
recursive equations which is solved by traversing down the parse tree. Once Rf

is known it is used to compute the minimal set of free variables for functions
declared further down the program’s parse tree.

To illustrate how the J-algorithm works using equation (1) consider the pseudo-
code in Figure 1. At the topmost level of the parse tree the free variables of f are
computed by solving the following equation:

Rf = FVf ∪ ((∪gεFFf
Rg)

⋂
SVf ) .

Since FVf = SVf = ∅, we may conclude that Rf = ∅.
At the next level of the parse tree, the free variables equations to solve are:

Rg = FVg ∪ ((∪jεFFg
Rj) ∩ SVg)

= {x} ∪ {Ri ∩ {x, y}}
= {x} ∪ {{FVi ∪ ((∪jεFFi

Rj) ∩ SVi)} ∩ {x, y}}
= {x} ∪ {{∅ ∪ {Rf ∩ {x, y}}} ∩ {x, y}}
= {x} ∪ {∅ ∪ {∅ ∩ {x, y}} ∩ {x, y}}
= {x}

Rh = FVh ∪ ((∪jεFFh
Rj) ∩ SVH)

= {y} ∪ {Rf ∩ {x, y}}
= {y} ∪ {∅ ∩ {x, y}}
= {y} ∪ ∅
= {y}

Ri = FVi ∪ ((∪jεFFi
Rj) ∩ SVi)

= ∅ ∪ {FVf ∩ {x, y}}
= ∅ ∪ {∅ ∩ {x, y}
= ∅ ∪ ∅
= ∅

Notice that x is not identified as an extraneous parameter needed by h and
that y is not identified as an extraneous parameter needed by g nor i. Further-
more, x is not identified as an extraneous parameter for i. This occurs, because
the set of extraneous parameters needed by f , an ancestor of g, h, and i in
the program’s parse tree, are computed before the set of extraneous parameters
needed by g, h, and i. Thus, the members of FFf are not explored during the
computation of Rg, Rh, and Ri and do not contribute extraneous parameters to
g, h, and i.



40 M.T. Morazán and U.P. Schultz

The time complexity of the J-algorithm is O(n3), where n is the size of the
program. Briefly, globally there are O(n) equations to solve the transitive closure
problem, which requires O(n) steps of set union operations each taking O(n) per
equation.

2.2 Danvy’s and Schultz’s Graph-Based Lambda Lifting

To perform lambda lifting in quadratic time, a program is represented as a call
graph. Each node in this graph represents a function. An edge from f to g means
that there is a reference to g in the body of f . Mutually recursive functions give
rise to strongly connected components (akin to Johnsson’s mutually recursive
equations). Danvy and Schultz observed that a function, f , in a strongly con-
nected component can be given as extraneous parameters the set of free variables
lexically visible to f found in the union of the free variables of the functions that
constitute the component. Therefore, strongly connected components can be co-
alesced in the call graph of a program to yield a directed acyclic graph that is
traversed in a reversed breadth-first order to propagate free variables between
nodes.

To illustrate the DS-algorithm consider the call graph in Figure 2 for the
pseudo-code in Figure 1. In the call graph each node is labeled with the name of a
function. The superscript at the right of each function name is the set of variables
declared by the function that appear in the pseudo-code and the subscript at
the right of each function name is the set of free variables referenced by the
function. The nodes in the call graph form a strongly connected component
and are coalesced yielding a graph with a single node. The union of all the free
variables of the functions in the node (i.e. f , g, h, and i) is taken. For each
function, the lexically visible variables in this union become parameters to the
lifted functions. That is, {x, y} are identified as extraneous parameters for g, h,
and i.

The time complexity of the DS-algorithm is O(n2), where n is the size of the
program. Briefly, the coalesced call graph of size O(n) defines a global order in
which free variables can be linearly propagated through the graph, with each
propagation step performing a set unification of size O(n).

2.3 Morazán’s and Mucha’s Graph-Based Algorithm

Morazán and Mucha observed that using strongly connected components to
propagate free variables may result in an approximation of the required set
of extraneous parameters needed by lifted functions as exemplified by the re-
sults obtained by the J-algorithm and the DS-algorithm for the pseudo-code in
Figure 1. Unnecessary extraneous parameters may be added to lifted functions
for two reasons. The first reason is that functions can be members of a strongly
connected component that contains nested strongly connected components and
that also contains functions defined at different levels in the program’s parse
tree. Suppose r is a function defined at level n in the parse tree of a program
and that there are m disjoint sets of functions (modulo r), D1 . . .Dm, defined
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fx,y gx i fx,y hy

Fig. 3. MM-Algorithm Components for the Call Graph in Figure 2

at any level greater than n (i.e. in the parse tree of the program r is an ances-
tor of these functions) such that r dominates all paths from functions in Di to
functions in Dj , i 	= j. In such a scenario, r may declare variables that are free1

for functions in Di that are not needed as extraneous parameters by functions
in Dj and viceversa. This may occur, for example, when r is contained in two
independent loops (modulo r).

The second reason is that a variable, x, declared by r that is free in Di may not
be needed as an extraneous parameter by all the functions in Di. For example,
let r and s be members of the same loop such that x is known to be free in s
and is declared by r. The variable x only needs to be carried by successors of s
in the call graph if there is a path, that does not contain r, from s to another
function where x is directly referenced. This follows from the observation that
the successors of s do not need to make x available to any other function if such
a path does not exist. Thus, these successors do not require x as an extraneous
parameter.

The MM-algorithm is an improvement of the DS-algorithm that reduces the
arity of lifted functions by computing the minimal set of extraneous parameters
needed by each lifted function, as is done by the J-algorithm, based on the ob-
servations above. Extraneous parameters are reduced by splitting the strongly
connected components of a call graph that contain functions defined at different
levels in the program’s parse tree into multiple components based on its nested
strongly connected components and by ignoring edges into a dominating func-
tion that are internal to any such component after the split. Splitting strongly
connected components into multiple components guarantees that free variables
local to a component (e.g. declared by the dominating function) do not prop-
agate between nested strongly connected components. Ignoring internal edges
into the dominating function of a nested strongly connected component guaran-
tees that a free variable local to a component is not propagated beyond the last
function that references it in a loop. This occurs, because the removal of such
edges eliminates the loop and, therefore, these functions no longer constitute a
strongly connected component and do not receive the same set of extraneous
parameters.

To illustrate the MM-algorithm once again consider the call graph in Figure 2.
The graph is split into two components displayed in Figure 3. This disconnected
graph is used to propagate free variables between nodes in a reversed breath-
first order. Notice that the dominating ancestor function, f , is a member of two
components which prevents its descendants from unnecessarily contributing free
variables to each other. By ignoring the edges into f in Figure 2, the nested

1 We call such free variables local to the strongly connected component.
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(define (f x)
(define (g. . .) (. . .i. . .))
(define (h. . .) (. . .x. . .))
(define (i. . .) (. . .h. . . ))

(. . .g. . .h. . .))

Fig. 4. Second Scheme Pseudo-code

fx

g hx

i

Fig. 5. Call Graph for Figure 4

strongly connected components cease themselves to be strongly connected. Dur-
ing the propagation of free variables, y is not unnecessarily propagated to g and
i, and x is not unnecessarily propagated to h and i. Notice that within the loop
formed by {f, g, i} in Figure 2 only g requires and receives x as an extraneous
parameter. This algorithm yields the same results as the J-algorithm.

The time complexity of the MM-algorithm is O(n3), where n is the size of the
program. Briefly, strongly connected components must be split O(n) times. For
each split the resulting coalesced call graph is of size O(n) and each propagation
step performs a set unification of size O(n).

3 A Simplifying Insight

The graph-based lambda lifting algorithms developed to date use the reversed
breadth-first ordering of the nodes of an acyclic graph to ensure that a node is
only processed once all of its successors in the call graph have been processed.
Successor nodes must be processed first, because the required set of free vari-
ables of predecessor nodes depends on them. The use of this ordering, however,
requires that special attention be paid to calls from functions appearing late in
the reversed breadth-first ordering to functions appearing early in the reversed
breadth-first ordering.

To illustrate the problem consider the Scheme pseudo-code in Figure 4 and
its diamond-shaped call graph in Figure 5. In this graph the function f declares
x (noted as right superscript) and x is free in h (noted as a right subscript).
The breadth-first ordering of the nodes is: {f, g, h, i}2. There are no strongly
connected components and, thus, nothing to coalesce. Having an acyclic graph
means that free variables ought to be propagated from callees to callers in a
reversed breadth-first order. For our example that order is: {i, h, g, f}. If free
variables are simply propagated from callees to callers nothing propagates from
i to g, from h the free variable x propagates to i and nothing propagates to f ,
and nothing propagates from g to f . The end result is that x is identified as
a free variable for h and i, but not for g which also needs x as a free variable.
To avoid this pitfall, the DS-algorithm unifies the set of local free variables with
the set of free variables of the immediate successors in the call graph. Thus, x
propagates from i to g when g is processed.

2 The breadth-first ordering could also be {f, h, g, i}, but this is irrelevant for our
purposes.
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We observe that if the graph is acyclic, as is always the case after coalescing
strongly connected components, then a depth-first traversal of the graph can be
used to propagate free variables: every time the process pops back from a node
to its antecessor free variables are propagated. This ensures that all successors
are processed before a caller is processed. For the call graph in Figure 5, a
depth-first traversal follows the path f → g → i → h. The free variable x is
propagated back through this path from h to i and finally to g. The depth-
first traversal then proceeds down the path f → h and nothing additional is
propagated from h to f before terminating. Although the result is the same
as using the reversed breadth-first ordering, this process is more elegant and
simplifies the implementation of lambda lifting.

Propagation using a depth-first traversal instead of a reversed breadth-first
ordering is still proportional to the number of function calls and the number of
declared variables in the program. This type of traversal does not change the
time complexity of neither the DS-algorithm nor the MM-algorithm.

4 Call Graphs and Dominator Trees

The key lessons that must be highlighted from the previous sections are:

1. J-algorithm: The set of extraneous parameters for an ancestor function in
a parse tree must be known before finalizing the computation of the set of
extraneous parameters for any descendant of this function.

2. DS-algorithm: Lambda lifting can be done using a graph-based approach.
Furthermore, functions in a strongly connected component of a call graph
that do not have references to any free variables local to the component
can be coalesced. These functions all require the same set of extraneous
parameters.

3. MM-algorithm: Dominating functions must not be coalesced with their
dominated functions in order to avoid dominated functions from unneces-
sarily contributing free variables to each other. Furthermore, simple loops
on a dominating function must be dissolved in order to avoid unnecessary
propagation of free variables.

4. New Observation: Once an acyclic graph is obtained for a graph-based
approach a depth-first traversal can be used to simplify the process of prop-
agating free variables.

The MM-algorithm repeatedly computes strongly connected components in
order to avoid the unnecessary propagation of local free variables. The splitting
of a strongly connected component is always done around an ancestor function
that dominates all paths between disjoint sets of functions within the strongly
connected component when the strongly connected component contains func-
tions defined at different levels in the program’s parse tree. This observation
suggests that dominator trees can be used to perform lambda lifting.

A defining property of a dominator tree is that an ancestor function always
appears before its descendants. Thus, a dominator tree tells us for which func-
tions the complete set of free variables must be computed first. For our purposes,
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(define (f x y z)
(define (g a b)
(define (h c d)

(define (i e) (. . .h. . .g. . .))
(. . .i. . .))

(. . .h. . .))
(. . .g. . .))

Fig. 6. Third Scheme Pseudo-code

f

g

h

i

Fig. 7. Dominator Tree

an interesting feature of the dominator tree of a call graph is that independent
loops dominated by a function are represented as different branches out of the
dominating function which precludes the need to dissolve simple loops. Dom-
inator trees, therefore, can be used as the basis of a graph used to propagate
free variables. Since dominator trees can be computed in linear time [16], the
need to repeatedly compute strongly connected subcomponents, which makes
the MM-algorithm cubic, can be eliminated to reduce the complexity of lambda
lifting.

The dominator tree, however, does not capture all dependencies between func-
tions needed for lambda lifting. We classify these missing dependencies as vertical
and horizontal dependencies, described in Sections 5 and 6 respectively. Vertical
dependencies capture dependencies arising due to recursion between ancestors
and descendants in the dominator tree. Horizontal dependencies capture depen-
dencies arising between functions that do not have a vertical dependence in the
dominator tree. Vertical dependencies are annotated on the dominator tree and
are used to drive the propagation of free variables throughout the tree. Horizontal
dependencies are added to the dominator tree, which necessitates coalescing the
strongly connected components to obtain a directed acyclic graph. The resulting
coalesced graph is used to propagate free variables.

5 Vertical Function Dependencies

We define a downward vertical dependence as the dependence that exists between
a function and a descendant in the parse tree. At runtime, a call to any local
function, g, must be preceded by calls to g’s ancestors in the parse tree which are
also ancestors of g in the dominator tree of the call graph of the program. Any
extraneous parameters that g contributes to its ancestors can be propagated up
the dominator tree.

We define an upward vertical dependence as the dependence that exists be-
tween a function, g, and a function, f , which is an ancestor of g. The function
g may depend on several of its ancestors in the dominator tree of which we are
interested in the one that has the maximum depth. We define the lowest upward
vertical dependence of g, LDg, as the function with the maximum depth in the
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(define (f x y z)
(define (g . . .) (. . .x. . .i. . .))
(define (h . . .) (. . .y. . .f. . .))
(define (i . . . (. . .z. . .f. . .g. . .))

(. . .g. . .h. . .))

Fig. 8. Fourth Sample Scheme Pseudo-
code

fx,y,z

gx hy

iz

Fig. 9. Call Graph and Relevant Vari-
ables

fx,y,z

gx hy

iz

Fig. 10. Dominator Tree (DT)

dominator tree that g depends on. LDg, if it exists, is the ancestor of g with the
maximum depth that is either called by g or is called from any of g’s descendants
in the dominator tree. For example, consider the pseudo-code in Figure 6. The
dominator tree for this code is displayed in Figure 7. Observe that i calls g and h
which are ancestors of i in the dominator tree. Since h has the maximum depth,
we have that LDi = h. The function h does not call any of its ancestors, but
it depends on its ancestor g which is called from i. Since g is the only ancestor
of h that is referenced by any function in the subtree rooted at h, we have that
LDh = g. Finally, LDg = LDf = ∅ because none of the ancestors of g or f are
referenced by functions in the subtrees of the dominator tree rooted at these
functions.

To start exploring lambda lifting algorithms let us restrict our observations to
the class of programs in which all dependencies are vertical (this restriction will
be removed in the next section). Upward vertical dependence is not captured by
a dominator tree, but can be computed as free variables are propagated up the
dominator tree to identify the extraneous parameters contributed by downward
vertical dependencies. Along with free variables, the set of referenced ancestor
functions is propagated up the dominator tree.

Clearly, all extraneous parameters for g contributed by its descendants will
reach g during an upward propagation. The following theorem establishes that
LDg, if it exists, contains all the extraneous parameters needed by g that are
contributed by its ancestors in the dominator tree.

Theorem 1. The set of extraneous parameters needed by LDg contains all the
extraneous parameters needed by g from its ancestors.
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Fig. 11. DT After Upward Propagation
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Fig. 12. DT After Downward Propagation

Proof. Let DT be the dominator tree for a call graph, CG, and let h be LDg.
Assume x is an ancestor-contributed extraneous parameter needed by g that is
not a member of the set of extraneous parameters needed by h. If x is defined by
an ancestor of h, then x must be a member of the set of extraneous parameters
needed by h which contradicts our assumption. This follows from observing that
h must carry x in order to make it available to g. If x is defined by h or a
descendant of h, then there must exist a path in CG from g to a function where
x is a known free variable that does not contain the function that declares x. All
the functions on this path must be descendants of h in the dominator tree which
means that LDg 	= h. This contradicts our assumption and completes the proof
that x must be a member of the set of extraneous parameters needed by h. Q.E.D

To illustrate how vertical dependencies are used in lambda lifting consider the
pseudo-code in Figure 8 whose call graph is displayed in Figure 9. Figure 10
displays its dominator tree. Free variables needed by functions due to downward
vertical dependence can be propagated up the dominator tree using a depth-first
traversal. After this is done, the variable z has been propagated from i to g. In
addition during this propagation step, the LDi of each function i is computed
by also propagating relevant upward vertical dependencies. LDi is g and LDh

is f , because for leaves the LD function is the lowest ancestor in the dominator
tree that they directly reference. Nodes pass the set of referenced ancestors back
up the tree along with their free variables. In this manner, LDg becomes f as it
is the ancestor of g with the largest depth that is referenced from a function in
the subtree rooted at g. The result of this step is displayed in Figure 11 in which
the subscript to the left of each function name is its lowest dependence function.
Finally, free variables need to be propagated down the dominator tree to satisfy
upward vertical dependencies. This propagation proceeds in a breadth-first or-
der propagating to function i the free variables needed by LDi. A breadth-first
order propagation is required to guarantee that the extraneous parameters of
ancestor functions are known before the extraneous parameters of any descen-
dant function are computed (which satisfies the key lesson highlighted from the
J-algorithm). During this step the variable x is propagated from g to i. The
result of this propagation step is displayed in Figure 12.
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Fig. 14. Dominator Tree Lacks Some Func-
tion Dependencies

6 Horizontal Function Dependencies

Lexical scoping restricts the set of functions that may be directly referenced by
any given function to itself, its children, its ancestors, its siblings, and its uncles
in the parse tree. References to itself do not contribute new free variables to the
lifted version of the function. References to ancestors and children are all cap-
tured as vertical dependencies annotated in the dominator tree as described in
the previous section. References to siblings and uncles are references to functions
with which there may be no dominance relation. For example, consider the call
graph in Figure 13. Assume that f is the parent of g, h, i, and j in the parse tree.
The dominator tree is displayed in Figure 14. Notice that i dominates its sibling j
while there is no dominance relation between g and h despite g having a reference
to h. The dependence of g on h, in fact, is not captured by the dominator tree.

We define a horizontal dependence as a reference to a function that is not an
ancestor or a descendant in the dominator tree (i.e. a reference to a sibling or
an uncle in the parse tree). The free variables of a horizontal dependence must
also be propagated from the callee to the caller. Since horizontal dependencies
are not captured by the dominator tree of a call graph, a dominator tree must
be augmented into a graph to capture horizontal dependencies.

To convert a dominator tree into a graph that captures horizontal depen-
dencies, the dominator tree is augmented with the edges between functions in
the call graph that do not have a vertical dependence. We call this graph an
EDT (Extended Dominator Tree) graph and the new edges are called lateral
edges. If the resulting EDT graph does not contain any cycles then it only has
simple horizontal dependencies. Otherwise, it has complex horizontal dependen-
cies. Clearly, the EDT graph for a program that only has functions with vertical
dependencies is its annotated dominator tree.

First, we highlight some important properties of EDT graphs. Second, we
extend our lambda lifting algorithm to handle the class of programs that have
simple horizontal dependencies. Finally, we extend our lambda lifting algorithm
to handle arbitrary programs that may contain complex horizontal dependencies.

6.1 Important Properties of EDT Graphs

Formally, the set of lateral edges, El, in an EDT graph formed from the domi-
nator tree, DT , of a call graph, CG, is defined as:
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(define (f x)
(define (g . . .) (. . .x. . .a. . .b. . .c. . .d. . .))
(define (a . . .) (. . .b. . .))
(define (b . . . (. . .c. . .d. . .))
(define (c . . .) (. . .g. . .))
(define (d . . .) (. . .))

(. . .g. . .))

Fig. 15. Fifth Scheme Pseudo-code

El = {(f, g) ∈ CG | f and g do not have a dominance relation}.

The set El endows the EDT graph with important properties outlined by the
following theorems. After establishing the validity of these properties we will
point out their significance for lambda lifting.

Theorem 2. If (f,g) ∈ El, then the parent of g, pg, in the dominator tree, DT ,
dominates f .

Proof. Let G be the EDT graph obtained by only extending DT with the lateral
edge from f to g and let r be the root function of DT . If there is a path in G from
r to g that contains f and that does not contain pg, then pg does not dominate
all paths from r to g. This means that DT can not be the dominator tree which
contradicts our assumption. Q.E.D.

Having established that the parent of the called function for a lateral edge in the
EDT graph dominates the caller, we can now establish that all the ancestors of
the called function dominate the caller. The proof simply exploits the fact that
domination is a transitive property.

Theorem 3. If (f,g) ∈ El, then all ancestors of g in the dominator tree, DT ,
dominate f .

Proof. Theorem 2 establishes that the parent of g dominates f . All other ances-
tors of g dominate its parent. Therefore, all of g’s ancestors dominate f . Q.E.D.

The significance of Theorems 2 and 3 for lambda lifting is that the existence
of a lateral edge from f to g in an EDT graph means that LDg, if it exists,
dominates f . Therefore, LDg may also be LDf . This occurs when none of the
nodes in the dominator tree path from the parent of g to f are LDf . In addition
to free variables, LD information must be propagated from callees to callers
across lateral edges.

6.2 Simple Horizontal Dependencies

When an EDT graph only has simple horizontal dependencies (i.e. there are
no strongly connected compinents in the EDT graph) it suffices to first propa-
gate free variables and lowest dependence information between functions using
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Fig. 17. Dominator Tree
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Fig. 18. After Depth-First Propagation
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Fig. 19. After Breadth-First Propagation

a depth-first traversal (akin to propagating up the dominator tree) and then
to propagate free variables in breadth-first order exploiting lowest dependence
information (akin to propagating down the dominator tree). The correctness of
the second propagation follows from observing that free variables are propagated
from callees to callers and from Theorem 3 that guarantees lowest dependence
information can safely be propagated across lateral edges.

To illustrate the use of horizontal dependence information in the absence
of strongly connected components consider the pseudo-code in Figure 15 and
its call graph in Figure 16. The dominator tree for this graph is displayed in
Figure 17. Extending the dominator tree with edges between functions that do
not have a vertical dependence results in the original call graph without the
edge from c to g. Figure 18 displays the results of propagating free variables
and LD information after a depth-first traversal. The node representing c has
no successors and, therefore, LDc is g (the lowest ancestor it references). No free
variables propagate between the functions in this step, but LDc, g, propagates
to become LDb and LDa. Figure 19 displays the results of propagating free
variables in a breadth-first order by exploiting LD information. Each function
receives the free variables of its LD function. That is, a, b, and c receive x.

6.3 Complex Horizontal Dependencies

The augmentation of the dominator tree, however, may lead to an EDT graph
that is no longer acyclic. That is, the resulting graph may contain strongly con-
nected components. This occurs, for example, when two siblings in the dominator
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Fig. 21. Dominator Tree
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Fig. 22. EDT Graph
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Fig. 23. Coalesced EDT Graph

tree are mutually recursive. In the presence of strongly connected components,
it no longer suffices to simply propagate free variables and LD information using
a depth-first traversal. The problem is that such a traversal does not guarantee
that all successors of a node are processed first.

Strongly connected components must be coalesced, but as learned from the
MM-algorithm sets of functions that include a dominating function and the
functions it dominates should not be coalesced. That is, functions that have
a vertical dependence should not be coalesced. This observation suggests that
within a strongly connected component only functions at the same level in the
dominator tree can be coalesced together. Notice that a function at level n in
the dominator tree can not declare any variables that are free in other functions
at level n. This means that they do not have a dominance relation and it is
safe to coalesce these functions together, because none of these functions will
unnecessarily contribute free variables to each other.

The goal, therefore, is to coalesce strongly connected components in an EDT
graph without loosing vertical dependence information. To achieve this it is help-
ful to distinguish between two types of edges in an EDT graph. The first kind
of edge is a simple lateral edge which occurs between functions at the same level
of the dominator tree (i.e. edges between siblings in the dominator tree). Any
strongly connected components formed solely by simple lateral edges can be co-
alesced in the EDT graph, because among the siblings in each component there
is no dominating function. If an EDT graph is created by solely adding sim-
ple lateral edges to the dominator tree, then after coalescing strongly connected



Optimal Lambda Lifting in Quadratic Time 51

components the EDT graph is acyclic. Thus, lambda lifting can proceed as de-
scribed in section 6.2 by making a coalesced node’s free variables the union of
the free variables of the functions in the strongly connected component and by
making the node’s LD function be the maxf (LDg), where g is a function in the
strongly connected component. To illustrate this concept consider the call graph
in Figure 20. Its dominator tree, displayed in Figure 21, reflects the known facts
after its creation: i and h have no known upward vertical dependencies, LDj is
f , x is free in h, and y is free in j. The EDT graph, displayed in Figure 22, is
created by adding the two lateral edges between i and j in the dominator tree.
The strongly connected component formed by {h, i} is coalesced into a node,
say, Z. The set of free variables of Z is {x} and LDZ is ∅. The result of this
transformation is displayed in Figure 23. After the depth-first propagation the
set of free variables of Z is {x, y} and LDZ = f . Nothing propagates during the
breadth-first propagation (because f has no free variables). After the propaga-
tion steps, we have that {x, y} are the required free variables for h and i which
is precisely what is needed.

The second kind of edge is an upward lateral edge which exists between func-
tions at different levels of the dominator tree. These edges always occur from a
node for a function, g, at level n to a node for function, f , at level n− i, where
i ≥ 1, such that f is not an ancestor of g in the dominator tree3. The existence
of such an edge, means that g needs the free variables of f . Notice, however,
that f may not need all of g’s free variables despite being in the same strongly
connected component. The free variables of g not needed by f are those that
are local to the strongly connected component and that are not lexically visible
nor declared by f . All of these variables must be declared by a function with a
depth greater than or equal to the depth of f in the dominator tree.

Notice that the set of functions in the strongly connected component may
include siblings of f in the dominator tree. The incoming upward lateral edge
to f means that these siblings need the same free variables. This follows from
observing that they all need as free variables the variables declared by common
ancestors in the dominator tree that are free in the strongly connected compo-
nent. Therefore, we have that the siblings of a function in the dominator tree,
like f that has an incoming upward lateral edge, that are in the same strongly
connected component can be coalesced with f without local free variables be-
ing unnecessarily propagated during lambda lifting. Coalescing only siblings in
a strongly connected component preserves vertical dependence information and
provides a directed acyclic graph that can be used to compute the free variables
needed by each function in an arbitrary program.

To illustrate the use of horizontal dependence information in the presence
of strongly connected components created by upward lateral edges consider the
pseudo-code in Figure 24 and its call graph in Figure 25. Its dominator tree
is displayed in Figure 26. The first step is to extend the dominator tree with
simple lateral edges. The resulting graph is displayed in Figure 27. Five simple

3 There can not exist any edges in the other (i.e. downward) direction from f to g in
a dominator tree.
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(define (f x)
(define (g . . .) (. . .h. . .))
(define (h c) (. . .j. . .k. . .)))
(define (j . . .) (k. . .c. . .l. . .m. . .)))
(define (k a b) (. . .j. . .n. . .o. . .)))
(define (n . . .) (. . .a. . .o. . .)))
(define (o . . .) (. . .b. . .i. . .)))

(define (i . . .) (. . .h. . . ))
(define (l . . .) (. . .g. . . ))
(define (m . . .) (. . .x. . . ))

(. . .g. . .h. . .i. . .)))

Fig. 24. Sixth Scheme Pseudo-code.
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Fig. 25. Call Graph
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Fig. 26. Dominator Tree
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Fig. 27. DT with Simple Lateral Edges

lateral edges have been added to extend the dominator tree. These additions
have formed a strongly connected component that contains the functions j and
k. These functions are coalesced to form a new node S. The set of free variables
for S is obtained from the union of the free variables of j and k. The resulting
graph is displayed in Figure 28. The graph in Figure 28 is now extended with
upward lateral edges. If a function on either side of an edge has been coalesced
then the coalesced node replaces the function. The result of this extension adds
edges from l to g and from o to i. The result is displayed in Figure 29. This graph
now has a strongly connected component formed by {g, h, i, S, l, n, o}. Function
g has an incoming upward lateral edge and, therefore, it is coalesced with its
siblings h and i that are also members of the strongly connected component.
Given that i, a function with an incoming lateral edge, has been coalesced there
is no need for further action with it. No other functions have an incoming upward
lateral edge which means the graph is now acyclic. The finalized EDT graph is
displayed in Figure 30 in which Q represents the coalesced functions {g, h, i}.
This graph can now be used to propagate free variables and LD information as
done in section 6.2.
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Fig. 28. Graph After First Coalescing Step
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Fig. 29. Added Upward Lateral Edges
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Fig. 30. Completed EDT Graph After Second Coalescing Step

7 The Algorithm, Complexity, and Correctness

7.1 The New Lambda Lifting Algorithm

The new lambda lifting algorithm builds a directed acyclic EDT graph from
the call graph of a program. Propagation of free variables then proceeds in two
steps: the first using a depth-first traversal and the second using a breadth-first
traversal. The steps in the algorithm can be outlined as follows:

1. Build the call graph, CG, of the program from its parse tree.
2. Build the dominator tree, DT , for CG.
3. Extend DT with simple lateral edges and coalesce strongly connected com-

ponents to obtain an acyclic graph EDT ′.
4. Extend EDT ′ with upward lateral edges and compute strongly connected

components. Coalesce functions that have an incoming upward lateral edge
with their dominator tree siblings that are members of the same component.
The resulting graph is the directed acyclic EDT ′′ graph.

5. Use EDT ′′ to propagate free variables and LD information using a depth-
first traversal.

6. Use EDT ′′ to propagate free variables using LD information using a breadth-
first traversal.
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7. For each function, f , make f scope insensitive by adding its complete set of
free variables as parameters to f and as arguments to each reference to f .

8. Remove block structure by floating each function to the global level.

7.2 Complexity and Correctness

For a program P , let i be the number of functions, let e be the number of
function calls, let v be the number of variables declared, and let n be the size of
the program (i.e. i + e + v). Step 1 is proportional to O(e + i) or simply O(n).
Step 2 is O(n) [16]. For steps 3 and 4 extending a graph with edges is O(e+ i) or
simply O(n). The computation of strongly connected components is O(n) [5,6]
and their coalescing is O(n2). For step 5, the propagation of free variables and
LD information is O(e∗ (i+ v)), or simply O(n2), assuming the union operation
is done in linear time. A similar line of reasoning holds for step 6. Step 7 is
O(v + i + e) or simply O(n). Finally, step 8 is O(n). This means that optimal
lambda lifting is done in O(n2). Since lambda lifting can generate an output
program of size O(n2), the time complexity of this algorithm is optimal [3].

We have not formally proven the correctness of the presented algorithm and
we only argue informally for its correctness. The correctness of the algorithm
hinges on correctly computing the set of required variables for each function.
The required set of free variables for a function, f , depends on the free variables
f directly references and on a subset of the free variables transitively needed
by the functions f calls. The computation of the latter subset is achieved by
never coalescing a dominating function with any functions it dominates. This
leads to a graph in which the breadth-first propagation in Step 6 completes the
computation of the required free variables of any ancestor function in the parse
tree before any successor function as done in the J-algorithm and prevents free
variables local to a strongly connected component to be unnecessarily propa-
gated. The required set of free variables computed for each function is complete,
because all functional dependencies are captured by the EDT graph. Lateral
and downward vertical dependencies are captured by edges and upward vertical
dependencies are captured by LD information.

8 Concluding Remarks

This article presents an optimal graph-based O(n2) lambda lifting algorithm.
The algorithm is optimal in the sense that it computes the minimal set of free
variables required by each function to make them scope insensitive. The algo-
rithm is also asymptotically optimal, because a lambda lifted program of size
O(n2) is computed in O(n2) steps. The new algorithm is superior to Johnsson’s
and to Morazán’s and Mucha’s algorithms by reducing the complexity of optimal
lambda lifting from O(n3) to O(n2) and it is superior to Danvy’s and Schultz’s
algorithm by being optimal. Nonetheless, this new algorithm owes a great deal
of its creation to these predecessors. Considering that Johnsson’s original algo-
rithm first appeared in 1985, this newest algorithm has been over 20 years in the
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making. It is, indeed, a tribute to all these algorithms and to the work of the
cited authors from whom we borrowed ideas and inspiration.

Free variables arise in programs due to the nesting of function definitions.
This suggests that identifying free variables may rely heavily on lexical analysis.
The algorithm presented, however, only relies on lexical analysis to identify the
free variables directly referenced by each function and the function dependencies
of each function. Once this lexical information is known, the algorithm builds
and relies on non-lexical elements such as the call graph, the dominator tree,
and sets of free variables. In essence, lambda lifting is not solely an exercise in
lexical analysis.

As part of our future work we are interested in testing the runtime efficiency
of the different algorithms to determine their impact on compilation time. Al-
though compilers only spend a small amount of time on lambda lifting, such test-
ing will determine the practical impact of this work. Future work also includes
the implementation of a closureless functional language that uses applicative-
order evaluation. The main idea behind the design of this new langauge is to
dynamically generate functions that are specialized based on the bindings of its
free variables instead of allocating closures [13]. Lambda lifting identifies for us
the variables that are used to specialize functions.
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Appendix

Tree. A tree is a connected, directed, and acyclic graph in which there is a node,
called the root, such that there is a path from the root to every other node
in the graph. The root node has no incoming edges and all other nodes have
only one incoming edge. When an edge from node A to node B exists, we
say that A is the parent of B. The depth or level of a node N in a tree rooted
at R is the number of edges in the path from R to N . The ancestors of N
are all the nodes on the path from R to the parent of N . The descendants
of N are all the nodes that are reachable from the subtree rooted at N .

Dominator Tree. In a graph G with root node R, a node N dominates a
node M if every path from R to M must pass through N . The immediate
dominator of a node M is a node N if 	 ∃K ∈ G: N dominates K and K
dominates M . The dominator tree T of G contains the same set of nodes as
G and has an edge from a node N to a node M when N is the immediate
dominator of M .

Strongly Connected Component. The nodes N1 . . .Nk of a directed graph
G form a strongly connected component if for every pair of distinct nodes,
Ni and Nj , there is a path from Ni to Nj and a path from Nj and Ni.
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Abstract. In this paper we describe the structure of the Essential Haskell
Compiler (EHC) and how we manage its complexity, despite its growth
from essentials to a full Haskell compiler. Our approach splits both lan-
guage and implementation into smaller, manageable steps, and uses spe-
cific tools to generate parts of the compiler from higher level descriptions.

1 Introduction

Haskell is a perfect example of a programming language which offers many fea-
tures improving programming efficiency by offering a sophisticated type system.
As such it is an answer for the programmer looking for a programming language
which does as much as possible of the programmer’s job, while at the same
time guaranteeing program properties like “well-typed programs don’t crash”.
However, the consequence is that a programming language implementation is
burdened by these responsibilities, and consequently becomes quite complex.
Haskell thus also is a perfect example of a programming language for which
compilers are complex. Testimony to this observation is the Glasgow Haskell
Compiler (GHC) [31,32,35,37], which simultaneously incorporates many novel
features, is used as a reliable workhorse for many a functional programmer, and
offers a research platform for language designers. As a result, modifying GHC
requires much knowledge of GHC’s internals.

In this paper we show how we deal with the complexity of compiling Haskell
in the Essential Haskell (EH) Compiler (EHC) [14,15]. EH intends

– to compile full Haskell (the H in EH)
– to offer an implementation in terms of the essential, or desugared, core lan-

guage constructs of Haskell (the E in EH)
– to provide a solid framework for research (i.e., extendable for experimenta-

tion) and education (another interpretation of the E in EH)
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In particular the following areas require attention:

– Implementation complexity. (Section 2) The amount of work a compiler
has to do is a source of complexity. We organise the work as a series of smaller
transformation steps [35,39] between various internal representations.

– Description complexity. (Section 3) The specification of parts of the im-
plementation itself can become complex because low-level details are visible.
We use domain specific languages which factor out such low-level details, so
they are dealt with automatically.

– Design complexity. (Section 4) Experiments with language features are
usually done in isolation. We describe their implementation in isolation, as
a sequence of language variants, building on top of each other.

– Maintenance complexity. (Section 5) Actual compiler source, its docu-
mentation, and its specification tend to become inconsistent over time. We
fight such inconsistencies by avoiding their main cause: duplication. When-
ever two artefacts have to be consistent, we generate them from a common
description.

In the next sections we explain how we deal with each of these complexities.

2 Coping with Implementation Complexity: Transform

EHC is organised as a sequence of transformations between internal representa-
tions of the program being compiled. In order to keep the compiler understand-
able, we keep the transformations simple, and consequently, there are many. This
approach is similar to the one taken in GHC [35,36,38]. All our transformations
are expressed as a full tree walk over the data structure, using a tool for easily
defining tree walks (see Section 3.1). At each step in which the representation
changes drastically we introduce a separate data structure (or “language”). Fig. 1
shows these languages and the transformations between them:

– HS (Haskell) is a representation of the program text as parsed. It is used
for desugaring, name and dependency analysis, and making binding groups
explicit.

– EH (Essential Haskell) is a simplified and desugared representation. It is
used for type analysis and code expansion of class system related constructs.

– Core is a representation in an untyped λ-calculus.
– Grin (Graph reduction intermediate notation) is a representation proposed

by Boquist [12,13] in which local definitions have been made sequential and
the need for evaluation has been made explicit.

– Silly (Simple imperative little language) is a simple abstraction of an im-
perative language with an explicit stack and heap, and functions which can
be called and tail-called.

– C is used here as a universal back-end, hiding the details of the underlying
machine. Primitive functions are implemented here.
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HS EH Core Grin

Silly

C

LLVM

exe
interpreter

Fig. 1. Intermediate languages and transformations in the EHC pipeline

– LLVM (Low level virtual machine) is an imperative language which, other
than C, is intended to be a universal back-end [29]. We have it under con-
sideration as an alternative route to attain executable code.

As can be seen from the figure, the compilation pipeline branches after the
Grin stage, offering different modes of compilation:

– Grin code can be interpreted directly by a simple (and thus slow) interpreter.
– Grin code can be translated to C directly. In this mode, the program is

represented in a custom bytecode format, stored in arrays, and executed by
an interpreter written in C. Its speed is comparable to that of Hugs [1].

– Grin code can be translated to executable code via transformations which
perform global program analysis, and generate optimized Silly code, which
can be further processed through either the C or LLVM route.

The transformations between the languages mentioned above bring the pro-
gram stepwise to a lower level of representation, until it can be executed directly.
Most of the simplification work however is done by the transformations that are
indicated by a loop in Fig. 1, i.e., for which the source and target language are
the same. We strive to have many small transformations rather than a few com-
plicated ones. To give an idea, we list a short description of the more important
of these transformations. Some of these are necessary simplifications, others are
optimisations that can be left out.

– Transformations on the Core language include:
• Cleanup transformations: Eta-reduction, Eliminating trivial applications,

Inline let alias, Remove unnecessary letrec mutual recursion
• Constant propagation and Rename identifiers to unique names
• Lambda lifting, split up in: Full laziness of subexpressions, Lambda/CAF

globals passed as argument, Float lambda expressions to global level
– Transformations on the Grin language include:

• Transformations on separate modules: Alias elimination, Unused name
elimination, Eval elimination, Unboxing, Local inlining

• Transformations based on a global abstract interpretation that deter-
mines possible constructors of actual parameters: Inline eval operation,
Remove dead case alternatives and unused functions, Global inlining
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• Transformations that remove higher-level constructs, such as splitting
complete nodes into their constituent fields.

– Transformations on the Silly language include:
• Shortcut : avoid unnecessary copying of local variables
• Embed : map local variables to stack positions

3 Coping with Description Complexity: Use Tools

Haskell is well suited as an implementation language for compilers, among others
because of the ease of manipulating tree structures. Still, if one needs to write
many tree walks, especially if these involve multiple passes over complicated
syntax trees, the necessary mutually recursive functions tend to become hard to
understand, and contain large pieces of boilerplate code. In the implementation
of EHC we therefore use a chain of preprocessing tools, depicted in Fig. 2.

We use the following preprocessing tools:

– UUAGC (Utrecht University Attribute Grammar Compiler), which enables
us to specify abstract syntax trees and tree walks over them using an at-
tribute grammar (AG) formalism [9,15,16,44].

– Shuffle, which deals with the compiler organisation and logistics of many
different language features, and provides a form of literate programming.

– Ruler, a translator for an even more specialized language than AG, which
enables a high-level specification of type inferencing, generating both AG
code and LATEX documentation [17].

.cag

.rul

.cag .chs

.hs

.exe

ruler

uuagc

ghc

source

intermediate
output

tool

shuffle

.lib
ghc

.ag.ag.ag .ag.ag.ag

.hs.hs.hs .hs.hs.hs .hs.hs.hs

.lib.lib.lib

.exe.exe

Fig. 2. Chain of tools used to build EHC
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In the remainder of this section we elaborate on the rationale of UUAGC
(Section 3.1) and Ruler (Section 3.2). We illustrate their use with example
code, which implements part of a Hindley-Milner type checker. In the section on
UUAGC this is idealized toy code, but in the section on Ruler we show actual
code taken from EHC for the same example. In Section 4 and 5 we continue with
the rationale and use of Shuffle.

3.1 UUAGC, a System for Specifying Tree Walks

Higher-order functional languages are famous for their ability to parameterize
functions not only with numbers and data structures, but also with functions
and operators. The standard textbook example involves the functions sum and
product , which can be defined separately by tedious inductive definitions:

sum [ ] = 0
sum (x : xs) = x + sum xs
product [ ] = 1
product (x : xs) = x ∗ product xs

This pattern can be generalized in a function foldr that takes as additional
parameters the operator to apply in the inductive case and the base value:

foldr op e [ ] = e
foldr op e (x : xs) = x ‘op‘ foldr op e xs

Once we have this generalized function, we can partially parameterize it to obtain
simpler definitions for sum and product , and many other functions as well:

sum = foldr (+) 0
product = foldr (∗) 1
concat = foldr (++) [ ]
sort = foldr insert [ ]
transpose = foldr (zipWith (:)) (repeat [ ])

The idea that underlies the definition of foldr (capturing the pattern of an in-
ductive definition by adding a function parameter for each constructor of the
data structure), can also be used for other data types, and even for multiple
mutually recursive data types. Functions that can be expressed in this way are
called catamorphisms by Bird, and the collective extra parameters to foldr -like
functions algebras [10,11]. Thus, ((+), 0) is an algebra for lists, and ((++), [ ]) is
another. In fact, every algebra defines a semantics of the data structure.

Outside circles of functional programmers and category theorists, an algebra is
simply known as a “tree walk”. In compiler construction, algebras could be very
useful to define a semantics of a language, or bluntly said to define tree walks
over the parse tree. This is not widely done, due to the following problems:

1. Unlike lists, which have a standard function foldr , in a compiler we deal
with (many) custom data structures to describe the abstract syntax of a
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language, so we have to invest in writing a custom fold function first. More-
over, whenever we change the abstract syntax, we need to change the fold
function, and every algebra.

2. Generated code can be described as a semantics of the language, but often
we need an alternative semantics: pretty-printed listings, warning messages,
and various derived structures for internal use (symbol tables etc.). This can
be done in one pass by having the semantic functions in the algebra return
tuples, but this makes them hard to handle.

3. Data structures for abstract syntax tend to have many alternatives, so alge-
bras end up to be clumsy tuples containing dozens of functions.

4. In practice, information not only flows bottom-up in the parse tree, but also
top-down. E.g., symbol tables with global definitions need to be distributed
to the leaves of the parse tree to be able to evaluate them. This can be done
by making the semantic functions in the algebra higher order functions, but
this pushes the handling of algebras beyond human control.

5. Much of the work is just passing values up and down the tree. The essence
of a semantics in the algebra is obscured by lots of boilerplate.

In short: the concepts of catamorphism and algebra apply here, but their encod-
ing in Haskell is cumbersome and becomes prohibitively complex. Many compiler
writers thus end up writing ad hoc recursive functions instead of defining the se-
mantics by an algebra, or even resort to non-functional techniques. Others try to
capture the pattern using monads [33]. Some succeed in giving a concise defini-
tion of a semantics, often using proof rules of some kind, but loose executability.
For the implementation they still need conventional techniques, and the issue
arises whether the program soundly implements the specified semantics.

To save the nice idea of using an algebra for defining a semantics, we use a
preprocessor for Haskell [44] that overcomes the mentioned problems. It is not a
separate language; we can still write auxiliary Haskell functions, and use all ab-
straction techniques and libraries. The preprocessor just allows a few additional
constructs, which are translated into custom fold -like functions and algebras.

We describe the main features of the preprocessor here, and explain why they
overcome the five problems mentioned above. For a start, the grammar of the
abstract syntax of the language is defined in data declarations, which are like a
Haskell data declaration with named fields, except that we do not have to write
braces and commas and that constructor function names need not be unique.
As an example, we show a fragment of EHC that represents a lambda calculus:

data Expr
= Var name :: Name
| Let decl :: Decl body :: Expr
| App func :: Expr arg :: Expr
| Lam arg :: Pat body :: Expr

data Decl
= Val pat :: Pat expr :: Expr

data Pat
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= Var name :: Name
| App func :: Expr arg :: Expr

The preprocessor generates corresponding Haskell data declarations (making
the constructors unique by prepending the type name, like Expr Var), and more
importantly, generates a custom fold function. This overcomes problem 1.

For any desired value we wish to compute from a tree, we can declare a
“synthesized attribute” (the terminology goes back to Knuth [26]). Attributes
can be defined for one or more data types. For example, we can define that
for all three datatypes we wish to synthesize a pretty-printed listing, and that
expressions in addition synthesize a type and a variable substitution map:

attr Expr Decl Pat syn listing :: String
attr Expr syn typ :: Type

varmap :: [(Name,Type)]

In the presence of multiple synthesized attributes, the preprocessor ensures that
the semantic functions combine them in tuples, but in our program we can simply
refer to the attributes by name. The attribute declarations of a single datatype
can even be distributed over the program. This overcomes problem 2.

The value of each attribute needs to be defined for every constructor of every
data type which has the attribute. These definitions of the semantics of the lan-
guage are known as “semantic rules”, and start with keyword sem. An example
is:

sem Expr | Let
lhs.listing = "let " ++ @decl .listing ++ " in " ++ @body .listing

This states that the synthesized listing attribute of a Let expression can be
constructed by combining the listing attributes of its decl and body children and
some fixed strings. The @ symbol in this context should be read as “attribute”,
not to be confused with Haskell “as-patterns”. The keyword lhs refers to the
parent of the children @decl and @body , i.e., the nameless Expr at the left hand
side of the grammar rule. At the left of the = symbol, the attribute to be defined
is mentioned (here the @ symbol may be omitted); at the right, any Haskell
expression can be given. The example below shows the use of a case expression
and an auxiliary function substit , applied to occurrences of child attributes. Also,
it shows how to use the value of leaves (@name in the example), and how to
group multiple semantic rules under a single sem header:

sem Expr
| Var lhs.listing = @name
| Lam lhs.typ = Type Arrow (substit @body .varmap @arg .typ) @body .typ
| App lhs.typ = case @func.typ of

(Type Arrow p b) → substit @arg .varmap b

The preprocessor collects and orders all definitions into a single algebra, replacing
the attribute references by suitable selections from the results of the recursive
tree walk on the children. This overcomes problem 3.
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To be able to pass information downward during a tree walk, we can define
“inherited” attributes. As an example, it can serve to pass an environment (a
lookup table that associates variables to types), which can be consulted when
we need to determine the type of a variable:

attr Expr inh env :: [(Name,Type)]
sem Expr
| Var lhs.typ = fromJust (lookup @name @lhs.env )

The value to use for the inherited attributes can be defined in semantic rules
higher up the tree. In the example, Let expressions extend the environment
which they inherited themselves with the new environment synthesized by the
declaration, in order to define the environment to be used in the body:

sem Expr
| Let body .env = @decl .newenv ++ @lhs.env

The preprocessor translates inherited attributes into extra parameters for the
semantic functions in the algebra. This overcomes problem 4.

In practice, there are many situations where inherited attributes are passed
unchanged as inherited attributes for the children. For example, the environment
is passed down unchanged at App expressions. This can be quite tedious to do:

sem Expr
| App func.env = @lhs.env

arg .env = @lhs.env

Since the code above is trivial, the preprocessor has a convention that, unless
stated otherwise, attributes with the same name are automatically copied. So,
the attribute env that an App expression inherited from its parent, is automati-
cally copied to the children which also inherit an env , and the tedious rules above
can be omitted. This captures a pattern that is often addressed by introducing
a Reader monad [24]. Similar automated copying is performed for synthesized
attributes, so if they need to be passed unchanged up the tree, this does not
need an explicit encoding, nor a Writer monad.

It is allowed to declare both an inherited and a synthesized attribute with
the same name. In combination with the copying mechanisms, this enables us to
silently thread a value through the entire tree, updating it when necessary. Such
a pair of attributes can be declared as if it were a single “threaded” attribute.
A useful application is to thread an integer value as a source for fresh variable
names, incrementing it whenever a fresh name is needed during the tree walk.
This captures a pattern for which otherwise a State monad would be needed.

The preprocessor automatically generates semantic rules in the standard sit-
uations described, and this overcomes problem 5.

3.2 Ruler, a System for Specifying Type Rule Implementations

With the AG language we can describe the part of a compiler related to tree
walks concisely and efficiently. However, this does not give us any means of
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looking at such an implementation in a more formal setting. Currently a formal
description of Haskell, suitable for both the generation of an implementation and
use in formal proofs, does not exist. For EH we make a step in that direction
with Ruler , which allows us to have both an implementation and a type rule
presentation with the guarantee that these are mutually consistent.

With Ruler we describe type rules in such a way that both a LATEX rendering
and an AG implementation can be generated from such a common type rule
description. We demonstrate the use of Ruler by showing Ruler code for the
Hindley-Milner type inferencing of function application App (see previous section
for this and other names for expression terms). We omit a thorough explanation
of the meaning of these fragments, as our purpose here is to demonstrate how we
can describe these fragments with one common piece of Ruler source text. Also
we do not intend to be complete in our description; we point out those parts
corresponding to the distinguishing features of the Ruler system.

From a single source, to be discussed below, Ruler can both generate a LATEX
rendering for human use in technical writing:

v fresh
Γ ; Ck ; v → σk �e e1 : σa → σ � Cf

Γ ; Cf ; σa �e e2 : � Ca
Γ ; Ck ; σk �e e1 e2 : Caσ � Ca

(e.appHM )

and its corresponding AG implementation, for further processing by UUAGC:

sem Expr
| App (func.gUniq, loc.uniq1 )

= mkNewLevUID @lhs.gUniq
func.knTy = [mkTyVar @uniq1 ] ‘mkArrow ‘ @lhs.knTy
(loc.ty a , loc.ty )

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg.tyVarMp ⊕ @ty

The given rule describes the algorithmic typing of a function application in
a standard lambda calculus with the Hindley-Milner type system. The rule in-
volves four judgements: three premises and a conclusion. All judgements but the
one involving the freshness of a type variable have the same structure as these
all relate various properties of expressions: the conclusion about the function
application e1 e2, the premises about the function e1 and argument e2.

Ruler exploits this commonality by means of the scheme of a judgement,
which can be thought of as the type of a judgement:

scheme expr =
holes [node e : Expr , inh valGam : ValGam , inh knTy : Ty

, thread tyVarMp : C, syn ty : Ty ]
judgeuse tex valGam ; tyVarMp.inh; knTy � .."e" e : ty � tyVarMp.syn
judgespec valGam ; tyVarMp.inh; knTy � e : ty � tyVarMp.syn



66 A. Dijkstra, J. Fokker, and S. D. Swierstra

The scheme declaration for expressions expr defines a common framework for
the judgements of each expr term, such as App and Lam (lambda expression):

– holes : names, types and modifiers of placeholders (or holes) for various
properties, such as e and valGam

– judgeuse tex (unparsing): LATEX pretty printing in terms of holes and other
symbols, such as � and �

– judgespec (parsing): concrete syntax for specifying a complete judgement.

Modifiers node, inh, syn, and thread are required when generating an AG
implementation, to be able to turn a rule into an algorithm. The thread modifier
introduces two holes with suffix .inh and .syn, corresponding to an AG threaded
attribute. For a LATEX rendering these modifiers are ignored, but additional
formatting is required to map identifiers to LATEX symbols, for example:

valGam �→ Γ
ty �→ σ

knTy �→ σk

tyVarMp.inh �→ Ck

We omit further discussion of lexical issues.
The rule for function application App now is defined by judgements introduced

with the keyword judge:

rule e.app =
judge tvarvFresh
judge expr = tyVarMp.inh; tyVarMp; (v → knTy)

� eFun : (ty .a → ty)� tyVarMp.fun
judge expr = tyVarMp.fun; valGam ; ty.a

� eArg : ty.a � tyVarMp.arg
−
judge expr = tyVarMp.inh; valGam ; knTy

� (eFun eArg) : (tyVarMp.arg ty)� tyVarMp.arg

For each judgement its scheme is specified (expr in the example). The
judgespec of the corresponding scheme is used to check the concrete syntax
and to bind the holes of the judgement to the concrete values specified by the
judgement. From this rule definition a LATEX rendering can straightforwardly be
generated.

For the generation of an AG implementation we need information as specified
by hole modifiers. In an AG implementation the structure of the tree drives the
choice of which rule to apply. One of the holes needs to correspond to a node
of such a tree; the modifier node specifies which. Other holes correspond to
attributes, which have a direction: top-down (inherited, indicated by modifier
inh) bottom-up (synthesized, indicated by syn) or both (indicated by thread).

The judgement with scheme tvarvFresh is an example of a judgement which
does not fit into a tree structure as required by AG: it does not refer to a node
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hole. For such schemes, called relations, an explicit AG implementation must be
provided. We omit further discussion of relations.

Finally, Ruler also provides support for incremental language specification,
which we discuss in Section 4.

4 Coping with Design Complexity: Grow Stepwise

To cope with the many features of Haskell, EHC is constructed as a sequence of
compilers, each of which adds new features. This enables us to experiment with
non-standard features. Fig. 3 shows the standard and experimental features cur-
rently introduced in each language variant. The sequence is a didactical choice of
increasingly complex features; it is not the development history. Every compiler
in the sequence can actually be built out of the repository.

Each language variant in the sequence is described as a delta with respect to
the previous language. Usually this delta is a pure addition, but other combina-
tions are possible when:

– language features interact
– the overall implementation and individual increments interact: an increment

is described in the context of the implementation of preceding variants,
whereas such a context must anticipate later changes.

Haskell extensions

1 λ-calculus, type checking
2 type inferencing
3 polymorphism
4 higher ranked types, existentials
5 data types
6 kind inferencing kind signatures
7 records tuples as records
8 code generation GRIN
9 class system
10 extensible records
11 type synonyms
12 explicit parameter passing

for implicit parameters *
13 higher order predicates *
14–19 reserved for other extensions *
20 module system
95 class instance deriving *
96 exception handling
97 numbers: Integer, Float, Double
98 IO
99 the rest for full Haskell *

Fig. 3. EH language variants (work in progress is marked by an asterisk ‘*’ )
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Conventional compiler building tools are neither aware of partitioning into
increments nor aware of their interaction. We use a separate tool, called Shuffle,
to take care of such issues. We describe Shuffle in the next section.

For each language variant in the sequence, various artefacts are created, such
as example programs, a definition of the semantics, an implementation, and
documentation. Fig. 4 shows some of these artefacts for some language variants.
The first row shows an example program for each language variant. The second
row shows a description of part of the semantics of the language variants (the
type rule for functional application), by way of the LATEX rendering of the type

↓ Simply typed λ calculus (EH1)

↓ Polymorphic type inference (EH3)

↓ Higher ranked types (EH4)

Implementation →

Semantics →

Example → let id :: a → a
id = λx → x
f :: (∀ a.a → a)→ ...
f = λi → (i 3, i ’x’)

in f id
let id = λx → x
in let (a, b) = (id 3, id ’x’)

in a
let i :: Int

i = 5
in i

v fresh

o; Γ ; Ck ; v → σk �e e1 : → σ � Cf
oinst−lr; Γ ; Cf ; v �e e2 : � Ca
o; Γ ; Ck ; σk �e e1 e2 : σk � Ca

(e.appI1)

v fresh

Γ ; Ck ; v → σk �e e1 : σa → σ � Cf
Γ ; Cf ; σa �e e2 : � Ca

Γ ; Ck ; σk �e e1 e2 : Caσ � Ca
(e.appHM )

Γ ;�→ σk �e e1 : σa → σ
Γ ; σa �e e2 :

Γ ; σk �e e1 e2 : σ
(e.appK)

sem Expr
| App (func.gUniq , loc.uniq1 )

= mkNewLevUID @lhs.gUniq
loc .tvarv = mkTyVar @uniq1
func.knTy = [@tvarv ] ‘mkArrow ‘ @lhs.knTy
( , loc.ty ) = tyArrowArgRes @func.ty
arg .fiOpts = oinst−lr

.knTy = @tvarv
loc .ty = @lhs.knTy

sem Expr
| App (func.gUniq , loc.uniq1 )

= mkNewLevUID @lhs.gUniq
func.knTy = [mkTyVar @uniq1 ] ‘mkArrow ‘ @lhs.knTy
(loc.ty a , loc.ty )

= tyArrowArgRes @func.ty
arg .knTy = @ty a
loc .ty = @arg .tyVarMp ⊕ @ty

sem Expr
| App func.knTy = [Ty Any ] ‘mkArrow ‘ @lhs.knTy

(loc.ty a , loc.ty )
= tyArrowArgRes @func.ty

arg .knTy = @ty a
loc .ty = @ty

Fig. 4. Examples of created artefacts (rows) for various language variants (columns)
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rule generated by Ruler . The third row shows the implementation of this type
rule in the compiler, by way of the AG output generated by Ruler (from the
same source). Example language variants shown in the columns of Fig. 4 are EH1
(simply explicitly typed λ-calculus), EH3 (adding polymorphic type inference),
and EH4 (adding higher-ranked types).

5 Coping with Maintenance Complexity: Generate,
Generate and Generate

For any large programming project the greatest challenge is not to make the
first version, but to be able to make subsequent versions. In order to facilitate
change, the object of change should be isolated and encapsulated. Although
many programming languages support encapsulation, this is not sufficient for
the construction of a compiler, because each language feature influences not
only various parts of the compiler (parser, structure of abstract syntax tree,
type system, code generation, runtime system) but also other artefacts such
as specification, documentation, and test suites. Encapsulation of a language
feature in a compiler therefore is difficult, if not impossible, to achieve.

We mitigate the above problems by using Shuffle, a separate preprocessor.
In all source files, we annotate to which language variants the text is relevant.
Shuffle preprocesses all source files by selecting and reordering those fragments
(called chunks) that are needed for a particular language variant. Source code
for a particular Haskell module is stored in a single “chunked Haskell” (.chs)
file, from which Shuffle can generate the Haskell (.hs) file for any desired variant
(see Fig. 2, where the stacks of intermediate files denote various variants of a
module). Source files can be chunked Haskell code, chunked AG code, but also
chunked LATEX text and code in other languages we use.

Shuffle behaves similar to literate programming tools [27] in that it generates
program source code. The key difference is that with the literate programming
style program source code is generated out of a file containing program text
plus documentation, whereas Shuffle combines chunks for different variants from
different files into either program source code or documentation.

Shuffle offers a different functionality than version management tools: these
offer historical versions, whereas Shuffle offers the simultaneous handling of dif-
ferent variants from a single source.

For example, for language variant 2 and 3 (on top of 2) a different wrapper
function mkTyVar for the construction of the internal representation of a type
variable is required. In variant 2, mkTyVar is equal to the constructor Ty Var :

mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv

However, version 3 introduces polymorphism as a language variant, which
requires additional information for a type variable, which defaults to
TyVarCateg Plain (we do not further explain this):
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mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv TyVarCateg Plain

These two Haskell fragments are generated from the following Shuffle source:

%%[2.mkTyVar

mkTyVar :: TyVarId -> Ty

mkTyVar tv = Ty_Var tv

%%]

%%[3.mkTyVar -2.mkTyVar

mkTyVar :: TyVarId -> Ty

mkTyVar tv = Ty_Var tv TyVarCateg_Plain

%%]

The notation %%[2.mkTyVar begins a chunk for variant 2 with name mkTyVar ,
ended by %%]. The chunk for 3.mkTyVar explicitly specifies to override 2.mkTyVar
for variant 3. Although the type signature can be factored out, we refrain from
doing so for small definitions.

In summary, Shuffle:

– uses notation %%[ . . . %%] to delimit and name text chunks
– names chunks by a variant number and (optional) additional naming
– allows overriding of chunks based on their name
– combines chunks upto an externally specified variant, using an also externally

specified variant ordering.

6 Related Work

Compiler building environments. Various compiler construction environments
exist [4], originally developed some time ago. We mention Cocktail [22,21], Eli
[3,20] and Gentle [5,42]. Of these environments Cocktail provides the most com-
prehensive and best maintained set of tools for lexical analysis, parsing, attribute
grammars and tree transformations. With the exception of Cocktail these envi-
ronments are focussed upon development in C; Cocktail allows codegeneration
for various imperative languages. More specifically for Java, Polyglot [8,34] is an
extensible compiler frontend, with many experimental Java extensions.

In contrast, our toolset is built upon Haskell, and wherever possible exploits
Haskell’s assets such as its strong type system to provide various combinator li-
braries for (e.g.) parsing instead of traditional generator based solutions. Haskell
is also used to specify attribute computations. This allows our tools to be rel-
ative lightweight yet comprehensive. It also strongly ties our tools to Haskell,
which is benificial in our view because of the compact and descriptive nature of
Haskell code fragments.

Tree based systems and Attribute Grammar systems. Computations over abstract
syntax trees and tree transformation form a major part of any compiler; Cocktail
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also incorporates an attribute grammar system, based on work by Kastens [25],
as well as tools for transforming trees. Stratego [45,46] (based on ASF/SDF [2])
is a specialized tool for tree transformations. JastAdd [7,19,23] is an attribute
grammar and tree rewrite system built on top of Java, used to build a Java
compiler [18].

In contrast, our attribute grammar system is also used for the many tree
transformations present in EHC; support for making a modified replica of the
tree being analysed makes this work suprisingly well. Occasionally we miss pat-
tern matching features offered by specialized tree transformation tools, but on
the other hand we are not limited by the sometimes restricted computational
expressiveness offered by these tools.

Declarative specification. Ruler intends to bridge the gap between formal spec-
ifications and their implementation, like Tinkertype [30]. Ott [43] provides a
typerule based frontend, not for an implementation but for various theorem
proving systems. Twelf [6] is a theorem proving system, amongst others used to
ultimately specify ML formally in order to proof type safety. Ruler, on the other
hand, is currently only used as an implementation tool and documentation tool.

Embedded solutions. All tools mentioned sofar are external tools, in the sense
that they generate from a separate specification for a specific implementation
language. Monads often have been used for Haskell embedded attribution, e.g. a
reader monad corresponds directly to inherited attribution. A similar effect can
be accomplished with boilerplate code avoiding approaches [28]. Both approaches
work fine for relatively small examples but do not scale well when separate
computations have to be merged into one, for example when such computations
need each others (intermediate) results.

7 Experiences

Development and debugging. The partitioning into variants is helpful for both
development and debugging. It is always clear to which variant code contributes,
and if a problem arises one can use a previous variant in order to isolate the
problem. Experimentation also benefits because one can pick a suitable variant
to build upon, without being hindered by subsequent variants.

However, on the downside, there are builtin systemwide assumptions, for ex-
ample about how type checking is done. We are currently investigating this issue
in the context of Ruler .

Use in research and education. EHC is constructed as a library and a toplevel
compiler driver (see Fig. 2), facilitating the use of the implementation of EHC
by other programs.

We intend to use the first three language variants (Fig. 3) in our basic course
on compiler construction, thus providing students with a realistic integrated
introduction to language design, compiler implementation, and software engi-
neering. This approach is similar to that in Pierce’s textbook [40], however, in
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contrast we focus on a realistic implementation of full Haskell instead of small
independent implementations of isolated type systems.

Improvements. Although our approach to cope with complexity indeed leads to
the advocated benefits, there is room for improvement:

– Ruler and type rules. With Ruler we generate both AG and LATEX. Ruler
notation, AG, and LATEX have a similar structure. Consequently Ruler does
not hide as much of the implementation as we would like. We are investigat-
ing a more declarative notation for Ruler .

– Loss of information while transforming. With a transformational ap-
proach to different intermediate representations, the relation of later stages
to earlier available information becomes unclear. For example, by desugaring
to a simpler representation, source code of the user program is reordered and
the original source location has to be propagated as part of the AST. Such
information flow patterns are not yet automated.

– High level description and efficiency. Using a high level description
usually also provides opportunities to optimise at a low level. For attribute
grammars a large body of optimisations are available [41], some of which are
finding their way into our AG system.

– Stepwise approach vs. aspectwise approach. EH’s stepwise approach
imposes a fixed order in which language constructs are implemented on top
of each other. Ideally one should be able to arbitrarily combine separate lan-
guage constructs as aspects (independent implementation fragments), but
interaction between language constructs hinders this flexibility. We are in-
vestigating the use of aspects in the context of Ruler .

Status and plans. We are working towards a release of EHC as a Haskell compiler:
variant 99 in the sequence. At the moment, we can compile a prelude and run
programs with a bytecode interpreter. We intend to work on AG optimisations,
on using LLVM [29] as a backend, and on GRIN global transformations.
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Abstract. We present an extension of Haskell, baptized XHaskell, which
combines parametric polymorphism, algebraic data types and type
classes found in Haskell with regular expression types, subtyping and
regular expression pattern matching found in XDuce. Such an extension
proves in particular useful for the type-safe processing of XML data. For
example, we can express XQuery and XPath style features via XHaskell
combinators. We have implemented the system which can be used in
combination with the Glasgow Haskell Compiler.

1 Introduction

Functional programming and XML processing should be a good match. Higher-
order functions and parametric polymorphism equip the programmer with pow-
erful abstraction facilities while pattern matching over algebraic data types pro-
vides for a convenient notation to specify XML transformations. In the Haskell
context, there are a number of tools, for example see [21,29], which provide
support for parsing, generating and transforming XML documents.

Unfortunately, XML processing in Haskell does not provide the same static
guarantees compared to XML processing in domain specific languages such as
XDuce [11] and variants such as CDuce [1]. These languages natively support
regular expression types and (semantic) subtype polymorphism [13] and can thus
give much stronger static guarantees about the well-formedness of programs.
In combination with regular expression pattern matching [12], we can write
sophisticated and concise XML transformations.

Previous work attempts to close the gap between XDuce and Haskell but some
limitations remain. For example, the work in [3] introduces a pre-processor to
provide for regular expression pattern matching. On the down side, the approach
is untyped and only supports lists. The combinator library to generate XML
values introduced in [27] makes use of the Haskell type class system to check for
correctness of constructed values. But neither destruction (pattern matching)
nor subtyping among XML values is supported. There are a number of further
examples [16,17,18] where Haskell’s type extensions are used to encode domain-
specific language extensions. While these works are impressive, they often lead
to less natural programs compared to writing the same in XDuce.
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In this paper, we introduce an extension of Haskell, baptized XHaskell, which
integrates XDuce features such as regular expression types, subtyping and reg-
ular expression pattern matching into Haskell. Closely related to our work is
XMLambda [19,22]. However, our approach is more powerful because we can
express more subtyping relations involving complex types such as (a∗ | b∗). In
addition, we also support the combination of regular expression types and type
classes which to the best of our knowledge has not been studied before. We
could provide the extension via a combinator library but we chose to write a
new front-end (XHaskell type checker and translation scheme to Haskell) which
has the advantage that we can support (domain-specific) type error messages
and optimizations.

Specifically, our contributions are:

– We introduce XHaskell via examples and demonstrate that the combination
of regular expression types with algebraic data types (Section 2), paramet-
ric polymorphism (Section 3) and type classes (Section 4) yields a highly
expressive system. For example, we can express XQuery and XPath style
features via XHaskell combinators.

– We establish sufficient conditions which guarantee that type checking of
XHaskell remains decidable (Section 5).

– We have fully implemented the system which can be used in combination
with the Glasgow Haskell Compiler. We have taken care to provide mean-
ingful type error messages in case the static checking of programs fails. Our
system can possible defer some static checks until run-time (Section 6.1).

– We make use of GHC-as-a-library so that the XHaskell programmer can
easily integrate her programs into existing applications and take advantage of
the many libraries available in GHC. We also provide a convenient interface
to the HaXML parser (Section 6.2).

XHaskell’s static semantics is described in terms of a type-directed type-preserving
translation from XHaskell to a System F style target language. For brevity, we only
give a condensed presentation of the key ideas in Section 5. A complete description
is given an accompanying technical report [25]. Further related work in the context
of Java, C#, ML and XDuce is discussed in Section 7. Section 8 concludes.

2 Regular Expression and Data Types

In XHaskell we can mix algebraic data types and regular expression types. Thus,
we can give a recast of the classic XDuce example also found in [11]. First, we
provide some type definitions.

data AddressBook = ABook (Person*)

data Person = Person Name (Tel?) (Email*)

data Name = Name String

data Tel = Tel String

data Email = Email String

data Entry = Entry (Name,Tel)
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The above extends data type definitions as found in Haskell. The novelty is
the use of regular expression notation on the right-hand sides. In the definition of
AddressBookwe make use of the Kleene star * to describe an address book which
consists of an arbitrary sequence of persons. The regular expression operator ?
is used to define optional types such as Tel?. Thus, each person is described
by a name, an optional telephone number and an arbitrary sequence of email
addresses.

In our current implementation we use Haskell’s pair syntax to describe XHaskell
sequences. We write () to denote the empty sequence and (x, y) to denote sequenc-
ing of x and y. Sequences admit more type equality and subtype relations than
pairs. For example, sequences are associative, that is (x, (y, z)) = ((x, y), z) and
() is the identity among sequences. Sequences subsume pairs and we therefore do
not support Haskell style pairs in XHaskell. On the other hand lists and all other
data types are still available in XHaskell. The main point of XHaskell is to enrich
the Haskell language with additional XDuce features of semantic subtyping and
type-based pattern matching as the following examples shows.

Like in Haskell, we can now write functions which pattern match over the
above data types. The following function (possibly) turns a single person into a
phone book entry.

pToE :: Person -> Entry?

pToE (Person (n:: Name) (t::Tel) (es :: Email*)) = Entry (n,t)

pToE (Person (n:: Name) (t::()) (es :: Email*)) = ()

The novelty is that we can use a combination of Haskell and XDuce style pat-
terns to define function clauses. For example, consider the first pattern (Person
(n:: Name) (t::Tel) (es :: Email*)). Like in Haskell, we can pattern match
over the constructors of an algebraic data type, here Person. In addition, we use
XDuce style type-based regular expression patterns to select only a person which
has a name, a phone number and an arbitrary number of emails. In the body of the
second clause, we use semantic subtyping. The empty sequence value () of type
() is a subtype of (Entry?) because the language denoted by () is a subset of the
language denoted by (Entry?). Hence, we can conclude that the above program
is type correct.

The translation scheme for XHaskell’s additional features is similar in spirit
to the translation of type classes [8]. In target programs, we use a structured
representation of values of regular expression types. For example, we use lists
to represent sequences and sum types such as data Or a b = L a | R b to
represent the regular expression choice operator. Thus, the source definition

data Person = Person Name (Tel?) (Email*)

translates to the target definition

data Person = Person Name (Or Tel ()) [Email]

Some readers may argue why not use the target definition in the first place.
That is, use Haskell instead of XHaskell from the start. But then the programmer
needs to implement subtyping and regular expression pattern matching herself.
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Concretely, in the body of function pToE we must insert some explicit tags, here
L for the first clause and R for the second clause, to ensure that the program
type checks in Haskell. These tags effectively represent (up-cast) coercions and
are automatically inserted by the XHaskell compiler. Similarly, the Haskell pro-
grammer must explicitly translate regular expression pattern matching into plain
Haskell pattern matching. The XHaskell compiler will automatically insert the
(down-cast) coercions, representing the regular expression pattern match, for the
programmer. Hence, XHaskell’s translation scheme resembles the translation of
type classes where specific uses of methods are replaced by concrete type class
dictionaries.

To disambiguate the outcome of matching, we employ the longest match pol-
icy. For instance, the following program removes the longest sequence of spaces
from the beginning of a sequence of spaces and texts.

data Space = Space

data Text = Text String

longestMatch :: (Space|Text)* -> (Space|Text)*

longestMatch (s :: Space*, r :: (Space|Text)*) = r

The sub-pattern (s :: Space*) is potentially ambiguous because it matches
an arbitrary number of spaces. However, in XHaskell we follow the longest match
policy which enforces that sub-pattern (s :: Space*) will consume the longest
sequence of spaces. For example, application of longestMatch to the value
(Space, Space, Text ‘‘Hello’’, Space) yields (Text ‘‘Hello’’, Space).

XHaskell also provides support for XML-style attributes.

data Book = Book {{author :: Author?, year :: Year}}

type Author = String

type Year = Int

findBooks :: Year -> Book* -> Book*

findBooks yr (b@Book{{year = yr’}},bs :: Book*) =

if (yr == yr’)

then (b, findBooks yr bs)

else (findBooks yr bs)

findBooks yr (bs :: ()) = ()

The above program filters out all books published in a specified year. The
advantage of attributes author and year is that we can access the fields within a
data type by name rather than by position. For example, the pattern Book{{year
= yr’}} extracts the year out of a book whereas the pattern b@ allows one to
use b to refer to this book.

Attributes in XHaskell resemble labeled data types in Haskell. But there are
some differences, therefore, we use a different syntax. The essential difference is
that attributes may be optional. For example, Book {{year = 1997}} defines
an author-less book published in 1997. This is possible because the attribute
author has the optional type Author?. In case of
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findGoethe :: Book* -> Book*

findGoethe (b@Book{{author = "Goethe", year = _}},bs :: Book*) =

(b, findGoethe bs)

findGoethe _ = ()

the first clause applies if the author is present and the author is Goethe. The
pattern (b@Book{{author = "Goethe", year = }},bs :: Book*) could be
simplified to (b@Book{{author = "Goethe"}},bs :: Book*) because we don’t
care about the year. In all other cases, i.e. the author is not Goethe, the book
does not have an author at all or the sequence of books is empty, the second
clause applies. Another (minor) difference between attributes in XHaskell and
labeled data types in Haskell is that in XHaskell a attribute name can be used
in more than one data type.

data MyBook = MyBook {{author :: Author?, year :: Year, price :: Int}}

This is more a matter of convenience and relies on the assumption that we
use the attribute in a non-polymorphic context only.

To sum up, XHaskell’s additional features of regular expression subtyping and
pattern matching allow one to write expressive transformations and programs.
The XHaskell programs will be more concise and readable compared to writing
an equivalent program in Haskell.

3 Regular Expression Types and Parametric
Polymorphism

We can also mix parametric polymorphism with regular expressions. Thus, we
can write a polymorphic traversal function for sequences similar to the map
function in Haskell.

mapStar :: (a -> b) -> a* -> b*

mapStar f (x :: ()) = x

mapStar f (x :: a, xs :: a*) = (f x, mapStar f xs)

In the above, we assume that type annotations are lexically scoped. For ex-
ample, variable a in the pattern x::a refers to mapStar’s annotation.

We can now straightforwardly specify a function which turns an address into
a phone book by mapping function pToE over the sequence of Persons.

data Book a = Book a*

type Addrbook = Book Person

type Phonebook = Book Entry

addrbook :: Addrbook -> Phonebook

addrbook (Book (x :: Person*)) = Book (mapStar pToE x)

Notice that the we also support the combination of regular expressions and
parametric data types.

Once we have mapStar it is not too difficult to define filterStar and thus
we can express star-comprehension similar to the way list-comprehension are
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expressed via map and filter in Haskell. Star-comprehension provide for a
handy notation to write XQuery style programs.

Here is re-formulation of the findBooks function using star-comprehension.

findBooks’ :: Year -> Book* -> Book*

findBooks’ yr (bs :: Book*) = [ b | b@Book{{year = yr’}} <- bs, yr == yr’]

Like list-comprehensions, a star-comprehension consists of a sequence of state-
ments. Concretely, the above star-comprehension has two essential statements.
The first statement b@Book{{year = yr’}} <- bs is a generator. For each book
element b in bs, we extract the year of publication attribute and bind it to yr’.
Via the next statement, we then check whether yr is equal to yr’. If this is the
case we return b. In XQuery, the above could be written as follows

declare function findbooks’ ($yr, $bs) {

for $b in $bs

where $b/@year = $yr

return $b

}

where the for-clause iterates through a sequence of books, and the where-clause
filters out those books were published in year $yr.

Parametric polymorphism also poses some challenges. One issue is inference
of type instances of polymorphic functions. For example, consider the following
foldStar function for sequences.

foldStar :: (a -> b -> a)-> a -> b* -> a

foldStar f x (y::()) = x

foldStar f x (y::b, ys::b*) = foldStar f (f x y) ys

We infer the missing pattern annotations, which are f::a->b->a and x::a,
using well-established techniques [9,12]. Thus, we can straightforwardly infer that
foldStar is used at type instance (a -> b -> a)-> a -> b* -> a by applying
standard local inference methods [20]. Similar methods are also applied in other
languages such as GenericJava and C� 2.0. What makes things slightly more
complicated for us is the presence of subtyping.

Let’s consider an example to explain this point in more detail. Suppose we
use foldStar to build more complex transformations. For example, we want to
transform a sequence of alternate occurrences of a’s and b’s such that all a’s
occur before the b’s. We can specify this transformation via foldStar as follows

transform :: (a|b)* -> (a*,b*)

transform xs = foldStar ((\x -> \y -> case y of

(z::a) -> (z,x)

(z::b) -> (x,z)

) :: (a*,b*) -> (a|b) -> (a*,b*))

() xs

We assume that the types of lambda-bound variables are explicitly provided.
See the type annotation in the function body. The challenge here is to infer that
foldStar is used at type instance
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((a*,b*)->(a|b)->(a*,b*))->(a*,b*)->(a|b)*->(a*,b*)

From the types of the arguments and the result type of transform’s annotation
we infer the type

((a*,b*)->(a|b)->(a*,b*))->()->(a|b)*->(a*,b*)

But this type does not exactly match the above type. The mismatch occurs at
the second argument position. Our solution is to take into account subtyping
when checking for type instances. We find that � () ≤ (a∗, b∗) and therefore
the above program is accepted.

A second issue when combining parametric polymorphism and regular expres-
sions is to guarantee that the meaning of programs remains unambiguous. The
following function filters out all a’s out of sequence of a’s or b’s.

filter :: (a|b)* -> b*

filter (x :: b, xs :: (a|b)*) = (x, filter xs)

filter (x :: a, xs :: (a|b)*) = filter xs

filter () = ()

The question is what happens if we use filter at type instance (C|C)* ->
C* where C is some arbitrary type? XHaskell functions are type-checked and
translated independently from any specific use site. This is clearly important to
ensure modularity. The consequence is that we unexpectedly may filter out all C’s
if we apply filter to a sequence of C’s. On the other hand, the monomorphized
version

filterCC :: (C|C)* -> C*

filterCC (x :: C, xs :: (C|C)*) = (x, filterCC xs)

filterCC (x :: C, xs :: (C|C)*) = filterCC xs

filterCC () = ()

will not filter out any C’s at all. To summarize. The issue is that a polymorphic
function used at a monomorphic instance may behave differently compared to
the monomorphized function. To be clear, there are no (type) soundness issues.
A solution is to reject ambiguous uses of filter by checking the instantiation
sites. The instance (C|C)* -> C* is ambiguous whereas the instance (A|B)* ->
B* is clearly fine (that is unambiguous). At the moment, we accept potentially
ambiguous types. We believe that this is acceptable because our main goal is
to strive for expressiveness and soundness without limiting the set of acceptable
programs.

4 Regular Expression Types and Type Classes

XHaskell also supports the combination of type classes and regular expression
types. For example, we can define (*) to be an instance of the Functor class.

instance Functor (*) where

fmap = mapStar
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In our next example we define an instance for equality among a sequence of
types.

instance Eq a => Eq a* where

(==) (xs::()) (ys::()) = True

(==) (x::a, xs::a*) (y::a, ys::a*) = (x==y)&&(xs==ys)

(==) _ _ = False

In our third example, we show how to express a generic set of XPath operations
in XHaskell.

class XPath a b where

(//) :: a -> b -> b*

instance XPath a () where

(//) _ _ = ()

instance XPath a t => XPath a* t where

(//) xs t = mapStar (\x -> x // t) xs

instance (XPath a t, XPath b t) => XPath (a|b) t where

(//) (x::a) t = x // t

(//) (x::b) t = x // t

The operation e1 // e2 extracts all “descendants” of e1 whose type is equiv-
alent to e2’s type.

In our last example, we show that it is very simple to write a pretty-printer
for XML data in XHaskell using type classes and regular expression types.

class Pretty a where

pretty :: a -> [Char]

instance Pretty a => Pretty a* where

pretty xs = foldl (++) [] (mapStar pretty xs)

instance (Pretty a, Pretty b) => Pretty (a|b) where

pretty (x :: a) = pretty x

pretty (x :: b) = pretty x

instance (Pretty a, Pretty b) => Pretty (a,b) where

pretty ((x :: a), (y :: b)) = (pretty x) ++ (pretty y)

instance Pretty () where

pretty _ = ""

instance Pretty [Char] where

pretty x = x

instance Pretty Person where

pretty (Person (n:: Name) (t::Tel?) (es :: Email*)) =

"<person>" ++ pretty n ++ pretty t ++ pretty es ++ "</person>"
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instance Pretty Name where

pretty (Name (s :: [Char])) = "<name>" ++ s ++ "</name>"

instance Pretty Tel where

pretty (Tel (s :: [Char])) = "<tel>" ++ s ++ "</tel>"

instance Pretty Email where

pretty (Email (s :: [Char])) = "<email>" ++ s ++ "</email>"

5 Properties

The meaning of XHaskell is explained via a type-preserving translation scheme
to a System F style target language. The translation of programs is driven by
the type checking process which boils down to checking subtyping among types.
For each pattern we need to check that the pattern type is a subtype of the
incoming type. We also need to check that the type of the function body is a
subtype of the function’s result type.

For concreteness, we give the translation of the earlier filter function. See
Figure 1. We first list the subtype proof obligations which guarantee that the pro-
gram is well-typed. The first function clause gives rise to � (b, (a|b)∗) ≤d1 (a|b)∗
because of the pattern match and � (b, b∗) ≤u1 b∗ because of the function body.
The remaining proof obligations resulting from the second and third function
clause should be clear.

The idea behind our translation scheme is to extract out of each subtype proof
among a proof term (coercion).Specifically, we use up-cast coercions u for the
translation of subtyping and down-cast coercions d for the translation of pattern
matching among parametric regular expression types. A source expression of type
a∗ translates to a target expression of type [a] and (a|b) translates to Or a b. 1

Thus, down-cast coercion d1 emulates the regular expression pattern match in
the first clause and up-cast coercion u3 injects the empty sequence (represented
via the unit type in the target program) into the source type b∗. The full details
of the translation process are described in [25].

To obtain decidable type checking, we must impose the following two restric-
tions:

– We only support non-nested data types.
– Subtyping does not extend to type classes.

We explain both points in more detail below.
We say that a data type (definition) is non-nested iff

1 In fact, we use our “own” list type for the translation of the Kleene star. Otherwise,
we may possibly encounter overlapping instances in the translated program (though
there were none in the source program). For example, the target instance Pretty

[a] resulting from the source instance Pretty a* overlaps with the instance Pretty

[Char]. We can easily avoid such issues by declaring newtype XhsList a = XhsList

[a] and use XhsList a instead of [a]. For convenience, we will stick to standard
Haskell lists in the main text.
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Source program:

filter :: (a|b)* -> b*

filter (x :: b, xs :: (a|b)*) = (x, filter xs)

filter (x :: a, xs :: (a|b)*) = filter xs

filter () = ()

Proof obligations resulting from type checking:

1. � (b, (a|b)∗) ≤d1 (a|b)∗, � (b, b∗) ≤u1 b∗

2. � (a, (a|b)∗) ≤d2 (a|b)∗, � b∗ ≤u2 b∗

3. � () ≤d3 (a|b)∗, � () ≤u3 b∗

Target program:

filter :: [Or a b] -> [b]

filter v =

case (d1 v) of

Just (x,xs) = u1 (x, filter xs)

Nothing ->

case (d2 v) of

Just (x,xs) = u2 (filter xs)

Nothing ->

case (d3 v) of

Just () -> u3 ()

Nothing -> error "non-exhaustive

pattern"

Up-/Down-cast coercions:

d1 :: [Or a b] -> Maybe (b,[Or a b])

d1 [] = Nothing

d1 (x:xs) = case x of

(R y) -> Just (y,xs)

-> Nothing

...

u3 :: () -> [b]

u3 () = []

Fig. 1. Translation of filter

data T a1 ... an = K t1 ... tm | ...

and each occurrence of some data type T ′ in ti, whose associated declaration
T’ a1’ ... ak’ = ... is in a strongly connected component with the above
declaration, is of the form T ′ b1...bk where {b1, ..., bk} ⊆ {a1, ..., an}. We say a
type t is non-nested if it is not composed of any nested data types. For example,
the non-nested definition

data T a = Leaf (Maybe [a]) | Internal (T a) (Maybe Int) (T a)
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is accepted but we reject the nested definition

data T2 a = K (T2 [a])

Nested definitions are problematic because they may lead to non-termination
when checking for subtyping. For example, the subtype proof obligation � T 2 a
≤ T 2 b reduces to � T 2 [a] ≤ T 2 [b] and so on.

For similar reasons, we impose the restriction that subtyping does not extend
to type classes. Recall the declarations

class Eq a where

(==) :: a -> a -> Bool

instance Eq a => Eq a* where ...

Suppose some program text gives rise to Eq (a,a). In our subtype proof
system, we find that

� a∗ → a∗ → Bool ≤u (a, a) → (a, a) → Bool

We apply here the co-/contra-variant subtyping rule for functions which leads to
� (a, a) ≤ a∗. The last statement holds. Hence, we can argue that the dictionary
E for Eq (a, a) can be expressed in terms of the dictionary E′ for Eq a∗ where
E = u E′.

This suggests to refine the type class resolution (also known as context reduc-
tion) strategy. Instead of looking for exact matches when resolving type classes
with respect to instances, we look for subtype matches. Then, resolution of Eq
(a,a) with respect to the above instance yields Eq a. The trouble is that type
class resolution becomes easily non-terminating. For example, Eq a resolves to Eq
a and so on because of � a ≤ a∗. We have not found (yet) any simple conditions
which guarantees termination under a “subtype match” type class resolution
strategy. Therefore, we employ a “exact match” type class resolution strategy
which in our experience is sufficient. Thus, we can guarantee decidability of type
checking.

XHaskell supports type inference in the sense that we exploit local type infor-
mation, for example provided in the form of user annotations, to infer the type
bindings for pattern variables and the type instance at the use site of a poly-
morphic function. We briefly touched on this issue in Section 3. In XHaskell, we
use standard local inference methods [9,12,20]

6 Implementation

We have fully implemented the system as described so far. The XHaskell com-
piler [30] consists of a type checker and translator. We apply the type-directed
translation scheme (sketched in the previous section) and generate Haskell code
which compiles under GHC. In the future, we may want to directly compile to
GHC’s internal GHC’s Core language which is a variant of System F. In the
following, we discuss a number of topics which concern the practicality of our
system.
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6.1 Type Error Support

A challenge for any compiler system is to provide meaningful type error messages.
This is in particular important in case the expressiveness of the type system in-
creases. The XHaskell compiler is built on top of the Chameleon system [26] and
thus we can take advantage of Chameleon’s type debugging infrastructure [23,24]
to provide concise location and explanation information in case of a type error.

The following program has a type error in the function body because the value
x of type (B|A)* is not a subtype of the return type (B|C)*.

data A = A

data B = B

data C = C

f :: (B|A)* -> (B|C)*

f (x :: (B|A)*) = x

The compiler reports the following error.

ERROR: XHaskell Type Error

Expression at:

f (x :: (B|A)*) = x

has an inferred type (B|A)* which is not a subtype of (B|C)*.

Trivial inconsistencies probably arise at:

f :: (B|A)* -> (B|C)*

f (x :: (B|A)*) = x

The error report contains two parts. The first part says that a subtyping error
is arising from the body of function f, namely the expression x. The second part
points out the cause of the type error. We found literal A in x’s inferred type,
which is not part of the expected type. This is a very simple example but shows
that we can provide fairly detailed information about the possible cause of a
type error. Instead of highlighting the entire expression we only highlight sub-
expressions which are involved in the error.

As an extra feature we can post-pone certain type checks till run-time. Let’s
consider the above program again. The program contains a static type error
because the value x of type (B|A)* is not a subtype of (B|C)*. In terms of
our translation scheme, we cannot derive the up-cast coercion among the target
expression because the subtype proof obligation � A ≤ C cannot be satisfied.
But if x only carries values of type B* the subtype relation holds. Hence, there
is the option not to immediately issue a static type error here. For each failed
subtype proof obligation such � A ≤ C we simply generate an “error” case
which then yields for our example the following up-cast coercion.

u :: [Or B A] -> [Or B C]

u (L b:xs) = (L b):(u xs)

u (R a:xs) = error "run-time failure: A found where B or C is expected"

The program type checks now but the translated program will raise a run-time
error if the sequence of values passed to function f consists of an A.



XHaskell – Adding Regular Expression Types to Haskell 87

The option of mixing static with dynamic type checking by “fixing” coercions
is quite useful in case the programmer provides imprecise type information. In
case of imprecise pattern annotations we can apply pattern inference to infer
a more precise type. The trouble is that the standard pattern inference strat-
egy [12] may fail to infer a more precise type as shown by the following contrived
example.

g :: (A,B)|(B,A) -> (A,B)|(B,A)

g (x :: (A|B), y :: (A|B)) = (x,y)

It is clear that either (1) x holds a value of type A and y holds a value of type B,
or (2) x holds a B and y an A. Therefore, the above program ought to type check.
The problem is that pattern inference computes a type binding for each pattern
variable. The best we can do here is to infer the pattern binding {(x : (A|B)), (y :
(A|B))}. But then (x,y) in the function body has type (A|B,A|B) which is not
a subtype of (A,B)|(B,A). Therefore, the above programs fails to type check.

The problem of imprecise pattern inference is well-known [12]. We can offer
a solution by mixing static with dynamic type checking. Like in the example
above, we generate an up-cast coercion u2 out of the subtype proof obligation
� (A|B, A|B) ≤u2 (A, B)|(B, A) where we use “error” cases to fix failed subtype
proofs. This means that application of coercion u2 potentially leads to a run-
time failure (for example, in case we try to coerce (B, B) to (A, B)|(B, A)).
But the case (B, B) never applies because the incoming types is (A, B)|(B, A).
Hence, either case (1) or (2) applies. Hence, for our example there will not be
any run-time failure

For the above example, we additionally need to fix the subtype proof �
(A|B, A|B) ≤ (A, B)|(B, A) resulting from the pattern match check. This check
guarantees that the pattern type is a subtype of the incoming type. Out of each
such subtype proof we compute a down-cast coercion to perform the pattern
match. In case of � A ≤ B the pattern match should clearly fail. We can apply
the same method for fixing up-cast coercions to also fix down-cast coercions.
Each failed subtype proof is simply replaced by an “error” case. The pattern
match belonging to the failed subtype proof � A ≤ B is fixed by generating

\x -> error "run-time failure: we can’t pattern match A against B"

In our case, we fix � (A|B, A|B) ≤ (A, B)|(B, A) by generating

d2 :: Or (A,B) (B,A) -> Maybe (Or A B, Or A B)

d2 (L (a,b)) = Just (L a, R b)

d2 (R (b,a)) = Just (R b, L a)

Notice that there are no “error” and not even any “Nothing” cases because
each of the two components of the incoming type (A, B)|(B, A) fits into the
pattern type (A|B, A|B).

6.2 Integration of XHaskell with GHC and HaXML

One of the critical factor for the acceptance of any language extension is the
availability of library support and how much of the existing code base can be



88 M. Sulzmann and K.Z.M. Lu

re-used. XHaskell makes use of GHC-as-a-library [7] to allow XHaskell program-
mer to access other Haskell modules/libraries. The XHaskell user simply uses
the familiar import syntax and the XHaskell compiler will gather all type in-
formation from Haskell modules/libraries. We had to extend the existing (type-
checking) functionality of GHC-as-a-library to be able to access Haskell type
class instances.

Below is an example which shows how to integrate XHaskell with an existing
code base.

module RSStoXHTML where

import IO -- Haskell IO module

import RSS -- RSS XHaskell module generated by dtdToxhs rss.dtd

import XHTML -- XHTML module generated by dtdToxhs xhtml.dtd

import XConversion -- XHaskell module defining parseXml and writeXml etc

filepath1 = "rss1.xml"

filepath2 = "rss2.xml"

row :: (Link, Title) -> Div

row (Link link, Title title) =

Div ("RSS Item", B title, "is located at", B link)

filter_rss :: Rss -> Div*

filter_rss rss = [ (row (l,t)) | (Item ( (t :: Title)

, (ts :: (Title|Description)*)

, (l :: Link)

, rs )) <- rss/Channel/Item ]

main :: IO ()

main = do (rss1 :: Rss) <- parseXml filepath1

(rss2 :: Rss) <- parseXml filepath2

let filter_rss1 = filter_rss rss1

filter_rss2 = filter_rss rss2

html = Html (Body

(I ("This document is generated by RSStoXHTML converter, \

a program written in XHaskell.")

, Hr, filter_rss1, filter_rss2))

writeXml "myrss.xhtml" html

Our implementation comes with a tool called dtdToxhs which we use here
to automatically generate XHaskell datatypes from the RSS and XHTML DTD
specifications, for example RSS, Link, Title, Div etc. We can then import these
data types into our main application. Another XHaskell module XConversion
provides two functions parseXml :: String -> IO Rss to read and validate
the RSS (XML) document and writeXml :: Xhtml -> IO () to store the
XHTML values into a (XML) file. We read and print from standard I/O. There-
fore, we import the Haskell module IO. We make use of GHC-as-a-library to
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extract type information out of the imported Haskell module IO. We use this
information to type check and translate the XHaskell program parts.

Function filter rss extracts all Item elements out of the RSS document.
For each Item element we call function row to generate an XHTML Div element
which has the title and the link of this item. We make use of XQuery and
XPath-style combinators to extract the immediate child elements of type Item.
The main function finally generates an XHTML document in which part of the
body content is generated using function filter rss. For instance, given the
input file rss1.xml as follows,

<rss>

<channel>

<item>

<title>XHaskell</title>

<link>http://www.comp.nus.edu.sg/~luzm/xhaskell</link>

</item>

</channel>

</rss>

and rss2.xml as follows,

<rss>

<channel>

<item>

<title>Haskell</title>

<link>http://www.haskell.org/</link>

</item>

</channel>

</rss>

executing the program RSStoXHTML yields the following XHTML document,

<html>

<body>

<i>This document is generated by RSStoXHTML converter,

a program written in XHaskell.</i>

<hr/>

<div> RSS Item <b>XHaskell</b>

is located at <b>http://www.comp.nus.edu.sg/~luzm/xhaskell</b>

</div>

<div> RSS Item

<b>Haskell</b> is located at <b>http://www.haskell.org</b>

</div>

</body>

</html>

To provide for easier integration of XHaskell with HaXML legacy code, we
provide two XHaskell library functions toHaXml and fromHaXml to convert data
from its XHaskell type representation to HaXml type representation and vice
versa. Suppose that haxml row is HaXml legacy function which generates a Div
element out of a Link element and a Title element. Then we can redefine the
function row from above as follows.
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import MyHaXmlLib (haxml_row)

row’ :: (Link, Title) -> Div

row’ x = fromHaXml (haxml_row (toHaXml x))

7 Related Work

In the introduction we have already discussed related work in the context of
Haskell. In the context of ML, the work in [4] introduces OCamlDuce which is
a merger of OCaml and XDuce. The focus of OCamlDuce is to develop a type
inference algorithm to infer types for the OCaml components and most of the
XDuce components in a global flow analysis style. The system does not support
the combination of parametric polymorphism and regular expression types.

There are a number of works [6,14,15] which extend Java and C# to guarantee
type-safety of XML transformations. One of the main aspects of these works is
the integration of regular expressions types with the object model in Java and
C#. Close to our work is Cω [2], a language extension of C# to provide first-class
support for the manipulation of semi-structured data. Cω is defined in terms of a
type-preserving translation scheme to C# and supports a more limited subtyping
relation among semi-structured data compared to our system.

A novel feature of our work is the integration of parametric polymorphism
and regular expression. The only prior work we are aware of are is in the context
of XDuce [10,28]. Our system can support a richer set of parametric polymorphic
types involving regular expressions. See the examples in Section 3. A detailed
study of the issues involved in combining parametric polymorphism and regular
expressions is beyond the scope of this paper.

The study of improved type error support in the context of regular expression
types has only attracted little attention. We are only aware of the work in [5]
which proposes a static analysis to check for unused regular expression patterns.
This appears to be orthogonal to our type error diagnosis methods. It would be
interesting to extend the work in [5] to the combination of regular expressions
and data types.

8 Conclusion

We have presented an extension of Haskell which combines parametric polymo-
prhism, algebraic datatype, type class, regular expression types, semantic sub-
typing and regular expression pattern matching. We have fully implemented the
system which can be used in combination of GHC. Our experience so far shows
that the system is highly useful in practice. We also provide for an interface to
GHC and HaXml to make use of existing libraries and legacy code.
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Partial Parsing: Combining Choice with

Commitment

Malcolm Wallace

University of York, UK

Abstract. Parser combinators, often monadic, are a venerable and
widely-used solution to read data from some external format. However,
the capability to return a partial parse has, until now, been largely miss-
ing. When only a small portion of the entire data is desired, it has been
necessary either to parse the entire input in any case, or to break up the
grammar into smaller pieces and move some work outside the world of
combinators.

This paper presents a technique for mixing lazy, demand-driven, pars-
ing with strict parsing, all within the same set of combinators. The
grammar specification remains complete and unbroken, yet only suffi-
cient input is consumed to satisfy the result demanded. It is built on a
combination of applicative and monadic parsers. Monadic parsing alone
is insufficient to allow a choice operator to coexist with the early commit-
ment needed for lazy results. Applicative parsing alone can give partial
results, but does not permit context-sensitive grammars. But used to-
gether, we gain both partiality and a flexible ease of use.

Performance results demonstrate that partial parsing is often faster
and more space-efficient than strict parsing, but never worse. The trade-
off is that partiality has consequences when dealing with ill-formed input.

1 Introduction

Parser combinators have been with us for a long time. Wadler was the first to
notice that parsers could form a monad [12]. Tutorial papers by Hutton and
Meijer [5,6] illustrated a sequence of ever-more sophisticated monadic parsers,
gradually adding state, error-reporting and other facilities. Röjemo [9] intro-
duced applicative1 parsers for space-efficiency, whilst Leijen’s Parsec [7] aimed
for good error messages with both space and time efficiency by reducing the
need for backtracking except where explicitly annotated. Packrat parsing [3]
eliminates backtracking altogether by memoising results (a technique that is
highly space-intensive). Laarhoven’s ParseP [11] also eliminates backtracking,
by parsing alternative choices in parallel. Swierstra et al have shown us how
to do sophisticated error-correction [10], permutation parsing [1], and on-line
results through breadth-first parsing [4], all in an applicative style.

But, aside from the latter work, the particular niche of partial parsing is still
relatively unexplored. A parser, built from almost any of the currently available
1 The applicative functor is now recognised [8] as a structure simpler than a monad.
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combinator libraries, needs to see the entire input before it can return even a
portion of the result. Why is it unusual to be non-strict, demand-driven, par-
tial? Because of the possibility of parse errors. If the document is syntactically
incorrect, the usual policy is to report the error and do no onward processing of
the parsed data — in order to prevent onward processing, we must wait until all
possible errors could have arisen.

Sometimes this is not desirable. Imagine processing a large XML document
that is already known to be well-formed. Why should the program wait until
the final close-tag has been verified to match its opener, before beginning to
produce output? There is also often an enormous memory cost to store the
entire representation of the document internally, where lazy processing could in
many cases reduce the needed live heap space to a small constant.

Even if we do not know for certain that a document is well-formed, it can still
be useful to process an initial part of it. Think too, of an interactive exchange
with a user, or a network communications protocol, where input and output
must be interleaved.

Of course, there is a flip-side to partial processing – the parsed value may itself
be partial, in the sense of containing bottom (undefinedness, or parse errors).
One must be prepared to accept the possibility of notification of a parse-failure
when it would be too late to undo the processing already completed.

Of all the libraries available, only the one by Hughes and Swierstra [4] has al-
ready demonstrated how to achieve partial parsing (they call it ‘online’ parsing).
The framework is applicative in style (rather than monadic) and automatically
analyses the grammar to determine when no further errors or backtracking may
occur over the part of the input that has already been seen. In the absence of
such errors, it becomes possible to return the initial portion of the resultant
data structure with confidence that no other parse is possible. (So in fact, their
partial values do not contain bottoms.)

However, the mechanism they use to implement this scheme is rather complex,
involving polymorphic recursion, and both existential and rank-2 type extensions
to Haskell. Whilst undoubtedly powerful, the scheme is also somewhat hard to
understand, as witnessed by the fact that no parsing library (except the one
which accompanies their paper) has adopted anything like it. The library itself
can be fiendishly difficult to modify, even to add simple primitives found in other
libraries (e.g. the ‘satisfy’ of Figure 2).

This paper presents a simpler, more easily understood, method to achieve
partial parsing. It avoids scary higher-ranked types, instead continuing to rep-
resent parsers in a basic, slightly naive, way. The price to pay is that there is no
automated analysis of the parsers, so the decision on where to be lazy or strict
is left in the hands of the grammar writer.

We first outline some ordinary (strict) monadic parser combinators, then il-
lustrate how a naive conversion to use a lazy sequencing operator is problematic.
An alternative is explored, using a commit -based technique to limit backtrack-
ing, but this too is found to be inadequate. Finally, it is shown that by mixing
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applicative and monadic combinators, the user can gain explicit control over the
lazy or strict behaviour of their parsers.

All the combinator variations described here are freely available in the polyparse
library [14].

1.1 Simple Polymorphic Parsers

An outline of the basic concept and implementation of monadic parsing now
follows, with corresponding code in Figure 1. For a fuller treatment, the reader
is directed to Hutton and Meijer’s comprehensive tutorial [6].

newtype Parser t a = P ([t ]→ (Either String a, [t ])

instance Functor (Parser t) where
fmap f (P p) = P (λts → case p ts of

(Right val , ts ′)→ (Right (f val), ts ′)
(Left msg , ts ′) → (Left msg , ts ′))

instance Monad (Parser t) where
return x = P (λts → (Right x , ts))
fail e = P (λts → (Left e, ts))
(P p) >>= q = P (λts → case p ts of

(Right x , ts ′) → let (P q ′) = q x in q ′ ts ′

(Left msg , ts ′) → (Left msg , ts ′))

runParser :: Parser t a → [t ]→ (Either String a, [t ])
runParser (P p) = p

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts → case p ts of

(Left , )→ q ts
right → right)

next :: Parser t t
next = P (λts → case ts of

[ ]→ (Left "Ran out of input (EOF)", [ ])
(t : ts ′)→ (Right t , ts ′))

Fig. 1. Basic parser combinators

The Parser type is parameterised on the type of input tokens, t , and the
type of the result of any given parse, a. A parser is a function from a stream of
input tokens, to the desired result paired with the remaining unused tokens. If
a parse fails, the failed result is reported in the String alternative of the Either
type. Many early combinator libraries used lists of results to represent multiple
ambiguous parses, or failure (if empty). However in practice only the first result is
usually of interest, and the empty list unfortunately gives no helpful information
in case of errors, hence the design choice here to use the Either type.

Parsers are sequenced together using monadic notation, hence the instances
of Functor and Monad . It is clear by inspection of the definition of the sequence
operator (>>=), that it is strict in the result of the first parser – it performs a
case comparison on it.
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A parser can be ‘run’ by applying it to some input token list. The runParser
function thus lifts embedded parsers out of the monad, back into some calling
context.

Choice between different parses is expressed by onFail , which tries its second
argument parser only if the first one fails. Note that information may be lost,
since any error message from the first parser is thrown away. We return to this
point later.

Finally, we need a single primitive parser called next , that returns the next
token in the stream.

Higher-level combinators can be defined using the primitives above. For in-
stance, those in Figure 2.

-- One token satisfying a predicate.
satisfy :: (t → Bool)→ Parser t t
satisfy p = do {x ← next

; if p x then return x else fail "Parse.satisfy: failed"}
-- Use ’Maybe’ type to indicate optionality.

optional :: Parser t a → Parser t (Maybe a)
optional p = (fmap Just p) ‘onFail ‘ return Nothing

-- ’exactly n p’ parses precisely n items, using the parser p.
exactly :: Int → Parser t a → Parser t [a ]
exactly 0 p = return [ ]
exactly n p = do {x ← p

; xs ← exactly (n − 1) p
; return (x : xs)}

-- Parse a (possibly empty) sequence. Cannot fail.
many :: Parser t a → Parser t [a ]
many p = do {x ← p

; xs ← many p
; return (x : xs)} ‘onFail ‘ return [ ]

-- Parse a sequence followed by a terminator.
manyFinally :: Parser t a → Parser t z → Parser t [a ]
manyFinally p z = do {xs ← many p

; z
; return xs }

Fig. 2. Higher-level combinators built from primitives

A parser for some particular textual data format is then built from these
combinators, and looks rather like a recursive-descent grammar. The example
in Figure 3 illustrates a grammar for a simplified form of XML. We assume the
input tokens have already been lexed according to XML-like rules, and that error
messages are easily augmented with positional information. Definitions for less
interesting parsers such as name and attribute are omitted.
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data Content = Elem String [Attr ] [Content ]
| Text String

content = element ‘onFail ‘ text
‘onFail ‘ fail "unrecognisable content"

element = do
{token "<"

; n ← name
; as ← many attribute
; do {token "/>"

; return (Elem n as [ ])}
‘onFail ‘
do {token ">"

; cs ← manyFinally content (endtag n)
; return (Elem n as cs)}

} ‘onFail ‘ fail "unrecognisable element"

endtag n = do
{m ← bracket (token "</") name (token ">")
; if n ≡ m then return ()
else fail ("tag <" ++ n ++ "> terminated by </" ++ m ++ ">")
}

text = fmap Text stringToken
‘onFail ‘ fail "unrecognisable text"

token t = satisfy (≡ t)

Fig. 3. Example combinator grammar for a simplified XML

1.2 Problems and Limitations

Complete consumption of input. If we only want a small part of the parsed
data, we must still parse the whole thing first. For instance, given the XML
input

<a><b>hello</b><c>world</c></a>

we may wish to extract only the contents of the <b> tag, yet are forced to read
the <c> tag as well! The input could be arbitrarily large, with the fragment of
sole interest close to the beginning. Not only that, but the uninteresting part
of the input must be fully well-formed, which may be too restrictive for some
applications.

One way to avoid complete parsing is to resort to other coding techniques
outside the parsing monad. An example of such a technique is repeatedly calling
runParser on smaller units of the input, tracking unused tokens between calls.
Yet manipulation of the parse state is exactly the tedious boilerplate that the
monad is supposed to hide! Moving outside the monad also leads to a highly
non-modular grammar, requiring much special-case code to deal with the specific
fragments of interest.

Ideally, we would like to keep the original grammar, and just interpret it lazily
in order to return a partial result.
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Error messages are often poor. Due to backtracking over choice points, they
rarely point close to the location where the input fails to match the grammar.
Indeed, in the worst case, errors are often reported at the topmost outer-most
layer of the value’s structure, i.e. column 1 of the input.

Using our example XML grammar (Figure 3), the error message from at-
tempting to parse the incorrect input

<a><b>hello<b/></a>

is not, as one might hope,

"tag <b> terminated by </a> at char 18"

but rather

"unrecognisable content at char 1"

Why? Because failure anywhere inside the inner do-blocks of the grammar is
thrown away by the enclosing nested onFails, which propagate the failure out-
wards, but changing the error message at every stage.

One might wonder whether it suffices to re-write onFail to preserve and accu-
mulate error messages, rather than ignore them? Unfortunately this only leads
to a huge collection of misleading errors, amongst which it is difficult to find the
single accurate one.

Backtracking over choices sometimes leads to inefficiency. Again for the
example incorrect input

<a><b>hello<b/></a>

despite the fact that we have already found a valid open tag <a> for the ele-
ment branch of the grammar, nevertheless because something further inside the
element is incorrect, this parser necessarily backtracks to the top-level content
parser and attempts to match the non-element case text, on which it is bound
to fail.

The XML example only allows for two choices of outer construct – element or
text, corresponding to the two branches of the resultant Haskell sum type – but
imagine a type and its grammar having a hundred possible different constructors.
A parse failure deep within the first branch could lead to the evaluation of all
of the remaining 99 constructor choices, failing on all of them, before giving up.
Not only is the error message imprecise, but it took much longer than necessary
to deliver it!

1.3 Roadmap

In the following sections, we address some of these limitations of the basic parser
combinators. First, we make a naive attempt at a lazy parsing monad, to illus-
trate the conflict between committing to return a value, yet retaining choice.
Then we examine whether the prevention of backtracking (second and third
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issues above) can not only give better error messages, but also allow a more pre-
cise determination of commitment points, at which partial values can be safely
returned. Finally, we give a full yet simple solution in which lazy and strict
sequencing can be freely mixed.

2 Naive Lazy Monadic Sequencing

It is readily observed that the parser type presented in Figure 1 can either return
an error message, or a polymorphic value, but not both. But for partial parsing,
we want the parser to return the polymorphic value regardless. Any error due to
parse failure could be hidden within the value as an exception, to be triggered
only when the immediate subcomponent containing the error is demanded.

Thus, a naive implementation of a lazy monad (corresponding to the strict one
already given) is to simply erase the Either type constructor, and all Left and
Right value constructors. Any constructions that previously built a Left will
instead throw an exception. Case branches that previously scrutinised a Left
can be omitted, and those that scrutinise a Right now see the contained value
directly – see Figure 4. Furthermore, the sequence operator (>>=) is made lazy by
scrutinising the result of its first operand with a (non-strict) let-binding, rather
than with a case as before (the latter would be strict in the tuple pattern).

Sadly though, this approach leaves us with no way to code the choice operator.
As the very name onFail suggests, the combinator must be able to detect a failure
in its left argument before it can try its right argument. But the naive partial
parser type no longer represents failure explicitly as a value. Instead, it is a
control-flow construct – an exception. One might wonder whether the exception
can be caught and handled within the onFail combinator, but sadly, we are in
the wrong monad! Exceptions can be caught only from the I/O monad, not the
parsing monad.

newtype Parser t a = P ([t ]→ (a, [t ])

runParser :: Parser t a → [t ]→ (a, [t ])
runParser (P p) = p

instance Functor (Parser t) where
fmap f (P p) = P (λts → case p ts of

(val , ts ′)→ (f val , ts ′))
instance Monad (Parser t) where

return x = P (λts → (x , ts))
fail e = P (λts → (throwException e, ts))
(P p) >>= q = P (λts → let (x , ts ′) = p ts

(P q ′) = q x
in q ′ ts ′

throwException :: String → a -- throw to enclosing I/O monad

Fig. 4. A futile attempt at a lazy parsing monad
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The lesson here is that the early commitment implicit in returning a partial
value, prevents a later choice. So let us examine a different approach, where
commitment is made explicit. By annotating the precise locations in the gram-
mar where commitment is possible, it will remain possible to implement choice
everywhere else.

3 Choice and Commitment

The introduction of explicit commitment is initially motivated by a desire to
improve error reporting. We have already seen how backtracking over choice
points leads to poor error messages. But in addressing this problem, we will
disallow backtracking at defined locations, and therefore also eliminate choice
there too. The hope is that this will enable us to return a partial result at that
same location.

Essentially, parse failures can be divided into two separate classes: recoverable
and unrecoverable. Recoverable errors allow backtracking through any enclosing
choice point; unrecoverable errors should always be reported to the user – they
override any enclosing choice point.

We refine the original parser type to codify the different error classes – see
Figure 5. Instead of the plain Either type, we introduce Result , which gives a
three-valued logic: success, failure, or a committed result. The committed result
is the mechanism used to prevent backtracking. Ultimately there is of course
no semantic difference between a plain success or a committed success. But a
commitment that ends up being a failure cannot be recovered – it must be
reported. By contrast, the choice combinator can throw away an uncommitted
failure, to try some other branch.

Figure 5 shows how the basic monadic machinery is modified for this new
representation. The choice combinator tries alternatives only when errors are
recoverable – after commitment, no alternative is possible, just as surely as if
the result of the first operand were successful.

Finally, we add the new combinator commit , which serves as the primary
mechanism for a grammar-writer to indicate where sufficient tokens have been
seen to be certain that no alternative parse path is possible.

Commit is a kind of dual of the try combinator in Parsec [7]. In Parsec, no
backtracking is allowed normally – it must be explicitly permitted with try. But
in our framework, backtracking is normally the default, except where explicitly
disallowed by commit . Ultimately, they have a similar effect however: the calling
context of try or commit will never be returned to; in both cases, we have
committed to any particular branch that led to the current call, yet are still
willing to try different alternative branches inside the argument to commit .

Commit is similar to the cut operator used by Röjemo’s combinators [9] to
achieve space efficiency. Indeed, it solves the very same space-leak, which is also
identified by Leijen as a primary motivator for developing Parsec [7]. Commit
also bears a strong similarity to the extra-logical ! (cut) operator in Prolog,
which serves to prevent backtracking in its implementation model.
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data Result t a = Success a [t ]
| Failure String [t ]
| Commit (Result t a)

newtype Parser t a = P ([t ]→ Result t a)

runParser :: Parser t a → [t ]→ (Either String a, [t ])
runParser (P p) = result ◦ p

where
result (Success a ts) = (Right a, ts)
result (Failure e ts) = (Left e, ts)
result (Commit r) = result r

instance Monad (Parser t) where
return x = P (Success x)
fail e = P (Failure e)
(P p) >>= q = P (continue ◦ p)

where continue (Success x ts) = let (P q ′) = q x in q ′ ts
continue (Failure e ts) = Failure e ts
continue (Commit r) = Commit (continue r)

onFail :: Parser t a → Parser t a → Parser t a
(P p) ‘onFail ‘ (P q) = P (λts → case p ts of

(Failure )→ q ts
r → r)

commit :: Parser t a → Parser t a
commit (P p) = P (Commit ◦ p)

Fig. 5. Parsers with commitment, for better error-reporting

Figure 6 refines the example XML grammar of Figure 3, re-expressing it in
terms of commit . Note the careful placement of commitment after sufficient
tokens have been read to disambiguate the cases. Now, when given the badly-
formed input string

<a><b>hello<b/></a>

in contrast to the previous attempt, we receive the error message

"<b> terminated by </a> at char 18"

as hoped.2 The endTag parser is responsible for generating the message, and the
nearest enclosing commit (in the second branch of element) is responsible for
ensuring that it (and no other message) is reported.

It is worth noting that one of the commonest sources of bugs in Parsec gram-
mars is that users do not know where to place the try combinator. Parsec
grammars are LL(1) by default, but try is used to permit extra lookahead for
disambiguation. It can be difficult to look at a grammar and count the required
lookahead. This leads to the curious observation that Parsec grammars are not
2 Different implementations of the manyFinally combinator can yield even more de-

tailed error messages.
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element = do
{token "<"

; commit (do
{n ← name
; as ← many attribute
; do {token "/>"

; commit (return (Elem n as [ ]))}
‘onFail ‘
do {token ">"

; commit (do {cs ← manyFinally content (endtag n)
; return (Elem n as cs)})}

} ‘onFail ‘ fail "unrecognisable element")
}

Fig. 6. The XML grammar for ‘element’, re-expressed using commit . (Other produc-
tions remain unchanged.)

in fact compositional! When a user plugs two previously-working grammars to-
gether, the combination often turns out not to work as expected, and they resort
to simply sprinkling try into various locations to discover a fix.

By contrast, we believe that the commit approach is superior, because the
lack of a commit will not cause the grammar to fail unexpectedly, merely to be
inefficient or to give unhelpful error messages. In addition, the intuition needed
to place a commit combinator correctly within the grammar is a much lower bar-
rier. It indicates a simple certainty that no alternative parse is possible once this
marked point has been reached. This is easier to verify by inspection than de-
ciding how many tokens of lookahead are required to disambiguate alternatives.

4 How to Be Lazy

Does the form of explicit commitment described above help to achieve partial
results? Sadly the answer is no, at least not directly. Once the parser has emitted
a Commit constructor, it has still not determined whether the result will be a
success or failure. And even if it does turn out to be a success, we do not know
(at the moment of commitment) which constructor of the successful polymorphic
value is going to be returned. Indeed, there is no way to discover it, because the
result of commit is fully polymorphic – by definition the combinator cannot know
anything about the enclosed value’s representation.

Thus, the insight gained is that we need a combinator which, in addition
to explicitly marking the point of commitment to a value, must know enough
about that value to return a portion of it immediately. Commitment must be
parameterised on the thing we are committing to.

Furthermore, some new form of sequencing combinator is required, which
can build a whole value from component parts, but is capable of returning a
partially composed value before the end of the sequence is complete. For this,
we must leave behind the monadic world, especially monadic sequence. Some
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strict sequencing will remain useful, but short of composing multiple monads,
we cannot mix lazy and strict sequences using only the monadic framework.

It turns out that the world of applicative functors [8] is a more convenient
place to find the kind of sequence we want. In particular, functorial apply can
be viewed as a sequencing operator. The correspondence to monadic bind (and
the difference) is clearest when the arguments to apply are flipped:

apply :: Applicative f ⇒ f (a → b) → f a → f b
flip apply :: Applicative f ⇒ f a → f (a → b) → f b
(>>=) :: Monad m ⇒ m a → (a → m b) → m b

Some existing parser combinator libraries are based on applicative functors,
rather than monads [4,9]. Apply is less powerful than monadic bind, in the sense
that the former can be implemented in terms of the latter, but not vice versa.
This captures the intuition that apply simply combines functorial values, that
is, the order of evaluation of left and right arguments is not restricted, so one
cannot depend on the other. By contrast, the monadic bind allows the contents
of the functorial value to be examined, named, and used, in the sequel. Thus,
the monadic style allows context-sensitive parsing, whilst the applicative style is
context-free.

There is a straightforward and obvious definition of apply in terms of bind:

pf ‘apply ‘ pa = do {f ← pf ; a ← pa; return (f a)}

but of course this is no good for returning partial results, because as we already
know, the monadic bind is insufficiently partial – that is the problem we are
trying to overcome. Instead, we can define apply to always succeed and return
a result, if its left argument succeeds. For instance, if the value delivered by the
left functorial argument is a partially-applied data constructor, and the right
argument delivers the next component of that constructor, then we can imme-
diately return the constructor portion of the value, before we know whether the
component to be contained within it is fully parse-correct.

In the formulation of Figure 7, we revert to the original Either variant of the
Parser datatype, but could equally have used the Result variant associated with
the commit combinator. The improved error-reporting of the latter is entirely
independent of, and orthogonal to, the issue of partiality. A point of special note
is that the use of the Either type for parsing continues to allow the original
implementation of the choice combinator onFail .

But the key point in this definition of apply is that if the first parser suc-
ceeds, then the whole combined parse succeeds (returns a Right value). Both
failures and successes within the second parser are stripped of their enclosing
Left or Right , and used ’naked’. The new runParser is the place where the Either
wrapper is discarded, leaving just the naked value (or exception).

For illustration, Figure 8 re-expresses the XML grammar once again, this
time in a lazy fashion. Application is of course curried, so chaining many parsers
together is as straightforward in the applicative case as in the monadic case.
Note how a mixture of strict monadic sequence and lazy application is used, and
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newtype Parser t a = P ([t ]→ (Either String a, [t ]))

runParser :: Parser t a → [t ]→ (a, [t ])
runParser (P p) = convert ◦ p

where convert (Right a, ts) = (a, ts)
convert (Left e, ts) = (throwException e, ts)

infixl 3 ‘apply ‘
apply :: Parser t (a → b)→ Parser t a → Parser t b
(P pf ) ‘apply ‘ pa = P (continue ◦ pf )

where
continue (Left e, ts) = (Left e, ts)
continue (Right f , ts) = let (a, ts ′) = runParser pa ts

in (Right (f a), ts ′)

Fig. 7. A parser that mixes monads and applicative functors. (The instances of Monad
and Functor classes, and the implementation of onFail remain exactly as in Figure 1.)

element = do
{token "<"

; return Elem
‘apply ‘ name
‘apply ‘ many attribute
‘apply ‘ (do {token "/>"

; return [ ]}
‘onFail ‘
do {token ">"

; manyFinally content (endtag n)})
} ‘onFail ‘ fail "unrecognisable element"

Fig. 8. The XML ’element’ grammar in lazy form

how easily strict sequence (with the ability to backtrack over choices) sits inside
an enclosing applicative (partial, lazy) sequence.

It is also worth making the point that this revised grammar no longer checks
that XML end tags match their opening tags in advance of returning the prefix of
the element. The check will only occur once the final inner content is demanded
by the context of the parser.

So, now that we have two ways to express sequence with combinators, the
user must develop their grammar to make careful use of lazy or strict sequence
as appropriate. Many of the non-basic combinators must be checked carefully to
ensure that they are sufficiently lazy. For example, if we want exactly (from Fig-
ure 2) to return a lazy list without waiting for all elements to become available,
we must rewrite the earlier definition as follows:

exactly :: Int → Parser t a → Parser t [a ]
exactly 0 p = return [ ]
exactly n p = do x ← p

return (x :) ‘apply ‘ exactly (n − 1) p
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5 Evaluation

5.1 Performance

To give a flavour of the performance of lazy partial parsing, we designed a small
number of (slightly artificial) tests using the Xtract tool from the HaXml suite
[13,15]. Xtract is a grep-like utility which searches for and returns fragments
of an XML document, given an XPath-like query string. Because the intention
is to find small parts of a larger document, it is an ideal test case for partial
parsing. The XML parser used by Xtract is switchable between the strict and
lazy variations3.

We created a number of well-formed XML documents of different sizes n (rang-
ing on a logarithmic scale from 10 to 1,000,000) with interesting characteristics:

– linear: the document is a flat sequence of n identical elements enclosed in a
single wrapper element.

<file> <element/> <element/> ... </file>
– nested: the document contains n elements of different types, with element

type i containing a single element of type i + 1 nested inside it, except for
the nth element, which is empty.

<file> <element0>
<element1>

<element2> ...
</element2>

</element1>
</element0>

</file>
– follow: the nested document, followed by a single trivial element, together

enclosed in a wrapper element.
<file> <element0>

<element1> ...
</element0>
<follow/>

</file>

The queries of interest are:

– Xtract "/file/element[0]" linear
Find the first element in the flat sequence of elements.

– Xtract "/file/element[$]" linear
Find the last element in the flat sequence of elements.

– Xtract "//elementn" nested
Find the most deeply nested element(s) in the nesting hierarchy. The dif-
ference between this test and the following one is that this test continues
searching after finding the first result.

3 Software releases HaXml-1.20 and polyparse-1.2 together contain all the test code.
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– Xtract "//elementn[0]" nested
Find only the first most deeply nested element in the nesting hierarchy.

– Xtract "/file/follow" follow
Find the single top-level element that follows the large deeply-nested ele-
ment.

The time and memory taken to satisfy each query is given in Tables 1 and 2,
using both the strict and lazy parser variations. In all cases, the lazy parser is
better (both faster, and more space efficient) than the strict parser. For extremely
large documents, where the strict parser often crashes due to stack overflow, the
lazy parser continues to work smoothly. For the cases where the only result is a
small, early, fragment of the full document, laziness reduces the complexity of
the task from linear to constant, that is, it depends on the required distance into
the document, not on the size of the document. Even when the searched element
is at the end of the linear document, the lazy version is orders of magnitude
faster, for large inputs.

The difference between the resources used by the lazy queries for the first vs.
all nested elements is interesting. Taking the first element is almost exactly twice
as fast, and half as space-hungry, as looking for all elements. This corresponds
exactly to the intuition that the latter needs to check all closing tags against
their openers (of which there are equal numbers), whilst the former only needs
to look at the opening tags.

None of this is very surprising of course. Lazy streaming is well-known to
improve the complexity of many algorithms operating over large datasets, often
allowing them to scale to extreme sizes without exhausting memory resources,
where a more strict approach hits physical limitations. One such demonstration
is given in the field of isosurface extraction for visualisation [2], where the pure
lazy solution in Haskell is slower than a rival C++ implementation, only until
very large inputs are considered, beyond which the Haskell overtakes the C++.

5.2 Comparisons

How does lazy parsing fare against other combinator libraries? Parsec claims to
be “industrial-strength” and very fast. In contrast, the combinators presented
here are somewhat simplistic, with no particular tuning for speed. So for com-
parison, we reimplemented our XML parser using Parsec: some selected mea-
surements are incorporated in Table 1. Indeed, Parsec is in general faster than
our strict library, but slower than our lazy library. Depending on the nature of
the test, Parsec’s performance aligns pretty closely to either the strict or lazy
variations. Nevertheless, laziness always wins hugely when it is able to reduce a
linear search to constant time.

The Utrecht combinators claim to be both partial and even faster than Parsec,
so we also attempted to reimplement our XML parser in this framework too, to
take advantage of the laziness. Unfortunately, the Utrecht library is entirely ap-
plicative in nature. Thus, it was not possible to implement the context-sensitive
monadic parser needed for XML. (The accompanying paper [4] does give an il-
lustrative instance of monad, but the real implementation of the library is so far



Partial Parsing: Combining Choice with Commitment 107

Table 1. Time performance results, measured on a twin-core 2.3GHz PowerPC G5,
with 2Gb physical RAM. All timings are best-of-three, measured in seconds by the
unix time command (user+system). The graph plots use a log-log scale. Blank entries
indicate stack overflow.

LINEAR 1ST

N STRICT LAZY PARSEC

10
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Table 2. Memory performance results. All measurements are of peak live heap usage,
measured in kilobytes. The graph plots use a log-log scale.
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removed from the paper’s simplified presentation that it proved too difficult to
translate.)

6 Conclusion

The main contribution of this paper is a demonstration that partial parsing is
both possible, and convenient, using a framework with a mixture of monadic and
applicative parser combinators. Applicative sequence is used for lazy sequencing,
and monadic bind for strict sequence.

The decision on where a grammar should be strict and where lazy, is left to
the programmer. This differs from the only other extant library to deliver partial
parsing [4], which can automatically analyse the grammar to determine where
laziness is possible.

As expected, the resources needed to partially parse a document depend on
how much of the input document is consumed, not on the total size of the
document. Nevertheless, if the whole document is demanded, it is still cheaper
to parse it lazily than strictly.

However, partial parsing also means that the ability to report parse errors is
shifted from within the parsing framework out to the world of exception handling.

A secondary contribution is the re-discovery of the commit combinator to pre-
vent backtracking and enable both better error-reporting and space-efficiency.
Although commit was previously known [9] to remove a particular space leak
associated with choice, the impact on error-reporting was not so widely appreci-
ated. Parsec’s try, as a dual to commit , is more commonly used for this purpose,
but is rather less useful due to the need for a correct manual analysis of the
grammar for lookahead, and the difficulty of doing this. By contrast, placement
of commit is not required for correctness, only for efficiency, and the manual
analysis involved is easy.
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Abstract. Existing contract checkers for data structures force programmers to
choose between poor alternatives. Contracts are either built into the functions
that construct the data structure, meaning that each object can only be used with
a single contract and that a data structure with an invariant cannot be viewed as a
subtype of the data structure without the invariant (thus inhibiting abstraction) or
contracts are checked eagerly when an operation on the data structure is invoked,
meaning that many redundant checks are performed, potentially even changing
the program’s asymptotic complexity.

We explore the idea of adding a small, controlled amount of laziness to con-
tract checkers so that the contracts on a data structure are only checked as the
program inspects the data structure. Unlike contracts on the constructors, our lazy
contracts allow subtyping and thus preserve the potential for abstraction. Unlike
eagerly-checked contracts, our contracts do not affect the asymptotic behavior of
the program.

This paper presents our implementation of these ideas, an optimization in our
implementation, performance measurements, and a discussion of an extension to
our implementation that admits more expressive contracts by loosening the strict
asymptotic guarantees and only preserving the amortized asymptotic complexity.

1 Introduction

Assertion-based contracts play an important role in constructing robust software. They
give programmers a technique to express program invariants in a familiar notation with
familiar semantics. Contracts are expressed as program expressions of type boolean.
When the expression’s value is true, the contract holds and the program continues.
When the expression’s value is false, the contract fails, causing the contract checker to
abort the program, identify the violation, and blame the violator. Identifying the faulty
part of the system helps programmers narrow down the cause of the violation and, in a
component-oriented setting, exposes culpable component producers.

Contracts enjoy widespread popularity. For example, contracts are currently the sec-
ond most requested addition to Java.1 In C code, assert statements are particularly popu-
lar, even though they do not have enough information to assign blame properly and thus
are a degenerate form of contracts. In fact, 60% of the C and C++ entries to the 2005
ICFP programming contest [9] used assertions, even though the software was produced
for only a single run.

1 http://bugs.sun.com/bugdatabase/top25 rfes.do, as of Groundhog Day, 2007.

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 111–128, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Despite the popularity of contracts, the state of the art in contract checking for data
structures is poor. In order to use contracts on data structures, programmers are forced
to choose between copied code (and thus doubled maintenance costs) and very poor
performance (often infeasible, as we show). Our contract checker provides a new al-
ternative. It is designed to strike a balance between performance and the amount of
checking, motivated by the desire to avoid changing the asymptotic complexity of op-
erations that have contracts. Our implementation is written in PLT Scheme [13], and is
applicable to other strict languages with immutable data structures.

The next section uses binary search trees to make the programmer’s existing poor
choices plain. Section 3 explains the design of our contract checker and how it limits
the amount of checking performed, in order to recoup tractable performance. Since our
design is partially motivated by performance, we spend Section 4 explaining our imple-
mentation and Section 5 presenting some performance measurements that validate our
design. For example, an experiment on binomial heaps show that eager checking may
cause the program to be 2,000 to 20,000 times slower, while our lazy contract checker
reduces that overhead to a factor between 8 and 10. Section 6 discusses an extension
to our contract checker that relaxes the strict asymptotic complexity requirements; by
giving the contract checker the freedom to preserve only the amortized complexity, we
gain the ability to write more expressive contracts. Section 7 discusses related work and
Section 8 concludes.

2 A Rock and a Hard Place

To see how existing techniques for data structure contracts fail programmers, consider a
binary search tree library (shown in Figure 1) that is built on top of a binary tree library.

(module bt mzscheme
(define-struct node (n left right))
...
(provide (struct node (n left right)) marshal-bt unmarshal-bt))

(module bst mzscheme
(require bt)
;; a Binary Search Tree (bst) is either null or
;; (make-node number[n] bst[left] bst[right])
;; where the numbers in left are less than (or equal to) n
;; and the numbers in right are greater (or equal to) n

(provide find-bst) ;; : bst number → boolean
(define (find-bst t n)

(and (node? t)
(or (= n (node-n t))

(and (< n (node-n t))
(find-bst (node-left t) n))

(and (> n (node-n t))
(find-bst (node-right t) n))))))

Fig. 1. Binary search trees, without contracts
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The binary tree library is left mostly to the reader’s imagination, but a skeleton is shown
in the bt module.2 It exports basic operations on binary trees (marshaling them to and
from disk) and a node record for building and querying the nodes in a binary tree.
In PLT Scheme, records are called structs. The define-struct introduces a new
struct that consists of three fields. It also defines five functions: make-node used to
build new nodes, node? used to recognize node structs, and node-n, node-left, and
node-right used to extract the fields from a node struct. In general, a struct definition
introduces a single maker, a single predicate, and one selector per field. The provide
clause exports the struct and the marshaling functions.

The bst module requires the bt module and defines a binary search tree data struc-
ture in a comment, according to the discipline of How to Design Programs [7]. The
comment specifies that binary search trees have the same shape and use the same node
struct as binary trees, but also have the binary search tree invariant. The programmer
carefully uses the same basic data structure so that the existing library for binary trees
(marshaling and unmarshaling functions in this case) can also be used with binary
search trees. Beyond the data definition, the bst module also provides find-bst, a
function for finding numbers in binary search trees that takes advantage of the binary
search tree invariant to avoid the recursive calls when it is safe to do so.

As the program grows from a little script to a part of a robust application, its author
decides to improve the reliability of the program by writing a checkable contract on the
data structure as shown in Figure 2. The bst? predicate uses the bst-between? helper
function to test whether its input is a binary search tree. The function bst-between?
enforces the binary search tree invariant using two accumulators, a lower and upper
bound on the values in the tree. The accumulators are initially negative and positive
infinity respectively, and as the traversal passes each interior node, the bounds tighten
in the recursive calls.

Finally, the bst? predicate is used in the contracts for the provided functions.3 The
contract on find-bst is an → contract and is written using prefix notation. The last
argument to → is a predicate on the result of find-bst, ensuring that it always produces
booleans. The other two arguments are predicates on the inputs to find-bst, ensuring
that the first argument is a binary search tree and that the second argument is a number.
Similarly, the contract on bst? ensures that it is a predicate function.

Although it may not be obvious at first glance, the binary search tree portion of the
revised library is now completely useless. In particular checking find-bst’s contract
means that the bst? predicate is called on each argument supplied to find-bst in
order to enforce the pre-condition (domain) contract. Since bst? traverses the entire
tree, it ruins the optimization built into the find-bst function, changing the asymptotic
complexity from logarithmic to linear, an exponential slowdown.

This state of affairs leaves the programmer in a bind; both the loss of performance
and the loss of reliability are unacceptable. The conventional solution to this problem
is to hide the raw struct operations behind an opaque module boundary and only export

2 The mzscheme that appears after the module name is the language name of the module.
MzScheme is PLT Scheme’s implementation of the Scheme language.

3 We use the PLT Scheme contract library’s notation [22] throughout. Support for lazy data
structure contracts was added to PLT Scheme’s contract library in v350 (released June 2006).
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(module bst mzscheme
(require (lib "contract.ss"))

;; bst? : any → boolean
(define (bst? t) (bst-between? t −∞ +∞))
(define (bst-between? t low high)

(or (null? t)
(and (node? t)

(number? (node-n t))
(≤ low (node-n t) high)
(bst-between? (node-left t) low (node-n t))
(bst-between? (node-right t) (node-n t) high))))

(define (find-bst t n) ...) ;; as in Figure 1

(provide/contract
[find-bst (→ bst? number? boolean?)]
[bst? (→ any/c boolean?)]))

Fig. 2. Binary search trees, with contracts

operations that guarantee the binary search tree invariants (e.g., self-balancing insert
plus an empty binary search tree). Of course, this non-solution has the problem that a
client of bst module cannot reuse the bt operations on bsts.

A programmer may attempt to work around this by providing new versions of each of
the bt operations that simply unwrap a bst struct, apply the operation, and then rewrap
it. This approach is not desirable for two reasons. Not only must the bst programmer
anticipate all future extensions to the bt library, he must now also verify that none of
the bt operations violate the binary search tree invariant, rather than letting the system
itself ensure the binary search tree invariant holds.

Another solution is to provide injection and projection functions that convert binary
search trees to and from binary trees and, along the way, verify the invariant. This
solution amounts to changing the pre-condition on the find operation to a simple check,
but requiring that programmers rewrite their programs to decide explicitly where to do
the real checks. Worse, it is not always possible to avoid an asymptotic slowdown when
binary search tree operations are interleaved with binary tree operations.

In general, code reuse is enabled by the ability to view a data structure with an
invariant (like the binary search tree) as the same data structure but without the invariant.
Or, put another way, code reuse is hindered by taking that ability away or allowing it
only when accompanied by expensive invariant checks. Thus, the goal of this work is
to provide a form of contract checking that allows programmers to view data structures
with invariants as if they are just the underlying data structures, without any special
action on the part of the programmer and without violating the invariant.

Throughout the remainder of this paper, we continue to use binary search trees as
a motivating example. Nevertheless, our technique applies to many data structures that
have invariants: heaps, self-balancing trees, sorted lists, etc. It is also useful whenever
one wishes to use refinement types (but when a refinement type checker is not strong
enough) such as even-length or non-empty lists, or viewing the result of Scheme’s
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read as having a particular shape. Another particularly fertile ground is a compiler’s
intermediate representation. Well-known intermediate representations like CPS and
A-normal form [12] are easily expressed as contracts over the general expression type,
and compiler authors who take advantage of them can determine which pass of a com-
piler has failed when bad output is produced.

3 Lazy Contract Checking

Our solution to the problem presented above is to introduce a new kind of contract
for data structures to be used with the existing contract combinators in PLT Scheme.
These contracts have the benefit of the contracts in Figure 2, namely they permit the
programmer to use a single value with multiple, different contracts, but instead of ea-
gerly checking the entire data structure when checking a contract, our contracts lazily
check the portions of the data structure that the function inspects, as it inspects them.

Our contracts extend PLT Scheme’s define-struct to define-contract-
struct. It has the same syntactic shape as define-struct, but in addition to in-
troducing a maker, predicate, and selectors, it also introduces a contract constructor. For
example, the declaration

(define-contract-struct node (n left right))

introduces node/dc, the constructor for node dependent contracts. Its shape is

(node/dc [n contract-expr]
[left (n) contract-expr]
[right (n) contract-expr])

where each clause specifies the contract on the respective field. The (n) in the left
and right contract specifications indicates that the contracts for the left and right
fields depend on the value of the n field (the variables in the parenthesis are ordinary
bound variables, but their names must match the names of other fields of the struct;
that is, they may not be α-renamed). In general, the contract on any field may de-
pend on any of the fields before it, but the dependencies must be specified explicitly
by the programmer. Of course, node/dc is just one instance of a contract constructor;
each define-contract-struct declaration introduces its own dependent con-
tract constructor that expects as many fields as there are in the struct.

Using node/dc, the contract for a binary search tree is written as:

;; bounded-bst : number number -> contract
(define (bounded-bst lo hi)
(or/c null?

(node/dc [n (between/c lo hi)]
[left (n) (bounded-bst lo n)]
[right (n) (bounded-bst n hi)])))

(define bst (bounded-bst −∞ +∞))

The or/c contract combinator accepts any number of contracts (or simple predicates)
and checks that at least one of them holds. The between/c contract combinator accepts
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two numbers and returns a contract that matches numbers in those bounds. The con-
tract on the left and right sub-trees of an interior node are built by recursively calling
bounded-bst with different bounds on the values in the tree. The initial contract on a
binary search tree is built by calling bounded-bst with negative and positive infinity.

The remainder of this section explains how dependent struct contracts behave, con-
tinuing to use the binary search trees example.

3.1 Checking During Traversal

The contract checker only checks struct contracts as the program itself inspects the
data structure. To see how this plays out, consider this binary search tree and call to
find-bst.

(define a-bst (make-node 5
(make-node 3
(make-node 1 ...)
(make-node 6 null null))
(make-node 7 ...)))

(find-bst a-bst 4)

The series of diagrams in Figure 3 shows the evolution of the contracts as find-bst
traverses a-bst seaching for 4. To represent the contract on the tree, we draw a box
around the tree and annotate the box with the contract. So, when the tree is first passed
to find-bst, it picks up the binary search tree contract and is labeled “(−∞,+∞)”,
meaning that the elements in the tree must be between −∞ and +∞, corresponding to
the contract obtained by calling (bounded-bst −∞ +∞). The first step find-bst
takes is to examine the top node in the tree. At the point when find-bst first extracts
a field of the top node struct, the contract checker steps in and verifies that the values
of the fields of the node match the contract. Verifying that the number in the tree is
in the appropriate range is a simple check, but to ensure that the subtrees match their
contracts, the contract checker creates new boxes to avoid exploring more of the tree
than the program does, as shown in Figure 3(b).

The labels on the new boxes indicate the new contracts, derived from the binary
search tree invariant (as implemented by bounded-bst). The left sub-tree’s elements
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must be smaller than 5 and the right sub-tree’s elements must be larger than 5. Fig-
ure 3(c) shows the state of the tree after find-bst inspects the left child of the root.
Again, the contract checker verifies that the node’s value is appropriate and creates new
boxes for the sub-trees. At this point in the program, no contract violation is signaled,
because the program has not yet discovered the contract violation lurking one level
down in the tree. Indeed, if the program never explores that part of the tree, a contract
violation will never be signaled. But, because find-bst is searching for a 4, it does
inspect that node, and a contract violation is signaled blaming the caller of find-bst.

3.2 Redundant Contracts

Although the boxes help eliminate much of the redundant work that eager contract
checking would incur, it is still possible to do too much work. In particular, we must
be careful to avoid accumulating multiple, redundant boxes on the same tree. To see
how this happens, imagine that a tree is built up via an insert : bst number →
bst operation that first calls find-bst to see if the value is in the tree and, if so, just
returns the original tree. Consider the effect of these two calls during the evaluation of
(insert (insert a-bst 5) 5). Even though the two calls do not change the tree, a
naive strategy for putting boxes on contracts accumulates surprisingly many new boxes.

Figure 4 shows what would happen for those two calls. Initially, the tree has no con-
tracts, but as soon as it is passed to insert, the binary search tree contract is wrapped
around it, as shown in Figure 4(a). The first thing insert does is pass the tree to
find-bst, along with 5. Since 5 is in the root node of the tree, find-bst triggers
the checking of only the first layer of the contracts, pushing contracts down to the left
and right sub-children, and removing the outer layer of contracts. After that, the first
call to insert returns and its post-condition adds another box around the entire tree
and we are left with the tree shown in Figure 4(b).

As the second call to insert happens, the pre-condition adds another wrapper to the
tree, leaving us with Figure 4(c). When insert calls find-bst, it inspects the top por-
tion of the tree, pushing both of the contracts to its subtrees, and then the post-condition
of insert adds yet another contract outside the tree, leaving us with Figure 4(d).
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To avoid this accumulation, we must be able to detect redundant contracts. In the
case of a binary search tree, we can simply compare the bounds. If the box around a
tree has the same (or tighter) bounds than what the new box would, then we can just
leave the tree alone, relying on the existing contract to guarantee that the new contract
holds.

To detect redundant contracts in general, our contract system supports a partial or-
dering on contracts that is used to compare two contracts to determine if one is stronger
than or equal to the other. The ordering is tied to the particular contracts that our sys-
tem supports. Each contract knows how to compare itself to certain other contracts in
our system; if the contract does not recognize the other one, we avoid unsoundness by
assuming that neither contract is stronger than the other.

As a design principle for our system, we decided that programmers who merely
use contracts should not have the responsibility of specifying the stronger relationships.
Instead, that responsibility should lie with the programmers that implement the contract
combinators (such as between/c, →, or the struct contracts). Accordingly, the stronger
relationships are set in stone once a particular contract combinator has been defined. So
far, this method has worked well enough for us, but we may also eventually investigate
separating the stronger relation definition from the contract combinators and allowing
programmers to extend it.

For between/c contracts, our system treats the one that accepts the same or a nar-
rower range of numbers to be the stronger contract. One contract on a struct is stronger
than another if the contracts on the fields of the first are stronger than the contracts
on the fields of the second. Comparing function contracts uses the usual contra-variant
ordering. To date, simple structural equality of contracts, combined with the bounds
checking of between/c has been sufficient for all of the data structure invariants we
have encountered (including all those in Okasaki’s book [18] and in Cormen, Leiserson
and Rivest [6]).

To exploit our new relation on contracts, we simply avoid adding a new contract if
the contract already on the data structure is stronger than or equal to the new contract.
Note that we do not need to consider blame here, unlike the case when the existent
contract is not stronger; indeed, if two contracts surround a single data structure, the
inner contract is always checked before the outer one, because the inner contract was
placed on the object first. If the contract already on the data structure is stronger than
the new contract, it does not matter who might be blamed if the new contract were to
be violated; the existing contract guarantees it never fails.

Once we avoid adding redundant contracts, calling insert as above (or even arbi-
trarily many more times) would result in the wrappers shown in Figure 4(b). That is,
each sub-tree would only have a single wrapper, no matter how many times insert is
called.

4 Implementation and an Optimization

In our implementation, each contract is represented as a struct that has at least one field.
That field contains a reference to a group of functions specific to that kind of contract
that interpret the values in the other fields. The representation is inspired by the way
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Fig. 5. Contract layouts

objects are represented in class-based object-oriented languages: the record of functions
is like the method table and is shared among every contract of a particular kind. As an
example, Figure 5(a) shows a box-and-line diagram for the result of (between/c −4
5) and (between/c 0 9). Each points to the same record of functions and has two
numbers indicating the range it accepts.

A contract on a struct also has a shared record of contract procedures, but in addition
it has one field per struct field. Each of those fields is either a contract that the contents
of the field must satisfy directly, or it is a function that accepts the values in the other
fields and returns such a contract. As an example, the contract

(node/dc [n (between/c −4 5)]
[left (n) (bounded-bst −4 n)]
[right (n) (bounded-bst n 5)])

is shown in Figure 5(b). The first field is the record of functions. Because the contract
on the n field does not depend on other contracts, the second field of the contract record
is the between/c contract. But, the left and right fields depend on the value of the n
field, so they are functions that consume the n field’s value and produce contracts.

Each contract’s record of functions includes three functions. The first accepts the
contract record and a value and enforces the contract. The second accepts two contracts
and returns a boolean indicating whether the first is stronger than the second or not.
The third function in the contract accepts a contract record and builds a name for the
function to be used in error reporting.

To support lazy data structure contracts, we must not examine the struct’s fields right
away. Accordingly, the checking function for structs merely verifies that the struct’s
type matches, and then pairs the contract with the struct. Later, when a selector is ap-
plied to the struct, the contract is checked. Figure 6 contains a series of box and pointer
diagrams that illustrate this process. The first diagram shows an example binary search
tree, where the nulls representing the empty tree are written mt to clarify the figure.

Figure 6(b) shows the tree paired with a between contract in a node-wrap struct. The
node-wrap struct that holds the pair has a number of extra fields. The first field refers to
the original object, but is also used as flag to indicate if the top row or the bottom row
of fields are active. In the case shown, because that first field contains a reference to a
struct, the top fields are active. Those fields contain a pointer to the contract, and two
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Fig. 6. Evolution of objects during contract checking

names that indicate who is to blame for contract violations. The label pos indicates who
is to be blamed if this contract fails to hold, and neg is only used to support contract
checking of functions that may appear inside this structure. It indicates the name of the
party responsible for inputs to those functions [10,11]. Positive and negative infinity are
written as +inf.0 and -inf.0.

The other fields are used to implement the removal of the boxes described in Sec-
tion 3. In particular, once the contract has been checked we know that it will continue
to hold for all time, because the data structure is immutable. Accordingly, we place the
contracted versions of the fields of the original struct into the bottom row of the node-
wrap, to avoid recomputing them. When that happens, we also change the first field to
#f in order to indicate that the bottom row is active.

Figure 6(c) shows the same tree, but after a selector has been applied to the struct
with the contract, causing the contracts on the fields to be checked. The top node-wrap
struct in this diagram is the same node-wrap struct in the top of diagram (b), but now
the lower fields are active. The second field (in the bottom row) in that structure is 5,
the contracted version of the first field in the original struct. The final two fields are
the contracted versions of the left and right sub-trees. The left sub-tree now has the
contract (bounded-bst −∞ 5), so it is a node-wrap struct whose first field is not
#f. This node-wrap’s top row is active, because its contract has not yet been checked.
Similarly, the right sub-tree now has the unchecked (bounded-bst 5 +∞) contract.
Finally, the fourth diagram shows the tree after all of the contracts have been checked.
At this point, the tree is very similar to the original tree.

Since the top row and the bottom row are never simultaneously active for any given
node-wrap struct, our implementation only has a single set of fields and uses the second
field to indicate how to interpret the remaining fields.

Generally speaking, supporting the stronger relation for contracts is simply a mat-
ter of inspecting the structure of the contracts. For example, seeing if one between/c
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contract is stronger than another amounts to comparing the numbers inside the contract
record. The only exception to this is dependent struct contracts, when the fields actually
are dependent. In that case, the dependent contracts are represented as functions that
accept field values and return ordinary contracts. For example the left field of a node
in the binary search tree contract is represented as the function

(λ (n) (bounded-bst lo n))

To compare such contracts, we exploit some information about the underlying repre-
sentation of procedures in PLT Scheme. Specifically, we compare the contents of the
closures corresponding to those functions (using simple pointer equality on the con-
tents of the closure and the code pointer). In this case, the closure contains the free
variables bounded-bst and lo and thus the closure will match any other closure that
has the same value of lo, which suffices to avoid the redundancy seen in the example
from Figure 4. Since this comparison may fail when standard compiler optimizations
are performed, our implementation communicates with the compiler, telling it not to
optimize these particular closures. So far, we have found this strategy for comparing
contracts to be sufficiently powerful for the programs we have run. The next section
discusses an experiment that demonstrates that our strategy has a significant, positive
impact on the performance of our contract checker.

After some experimentation with our implementation, we discovered that a signif-
icant amount of time is spent in allocation, even with the stronger check in place. In
particular, there is still significant extra allocation because the implementation allocates
a record for each contract combinator. This approach becomes expensive when com-
bined with dependent contract checking, because the allocation of the contracts happens
during the traversal of the data structure. To compensate, we built a “flattening” opti-
mization for lazy contracts that flattens nested contracts together into a single contract,
in order to cut down on the allocation.

As an example, consider this contract:

(or/c null? (between/c 0 +∞))

It accepts either null or positive numbers. Without the optimization, the construction
of this contract requires creating two records, one for the or/c contract and one for
the between/c contract. With the optimization, we can simply create a single record
that stores the bounds and simultaneously checks if the value is null or an appropriate
number. Returning to Figure 5 (b), our optimization would only allocate a single record,
replacing the two separate contract records with a single record for a node-between
contract. Our optimization can also detect recursive contracts, so for the bounded-bst
example, we can eliminate much of the allocation, requiring only a single allocation for
each layer of the tree (to hold the new bounds).

5 Performance

This section presents the results of three experiments we performed on our implementa-
tion. Although these experiments are not conclusive, they do provide some validation of
our contract checker. The first experiment validates the claims from Section 2 by show-
ing that eagerly checking the contracts can be arbitrarily slower than lazily checking



122 R.B. Findler, S.-y. Guo, and A. Rogers

them. The second experiment measures the cost of laziness, in the case that laziness is
superfluous. The third demonstrates how our lazy contract checker behaves for more
realistic applications and provides empirical evidence that it does indeed preserve the
asymptotic complexity of the underlying operations.

We ran all of our experiments using PLT Scheme [13] v3.99.0.13 on a dual core 1.66
GHz Mac mini with 2 gigabytes of memory (although each test ran sequentially and
only a test that disabled the stronger check allocated a significant amount of memory,
discussed in Section 5.3).

5.1 The Cost of Eagerness

As we discussed earlier in this paper, the cost of eagerly checking data structure con-
tracts can be arbitrarily bad. To verify this claim, we ran a simple test with our imple-
mentation. We built a toy program that constructs increasingly larger complete binary
trees, numbers them via an inorder traversal (to satisfy the binary search tree invariant),
and then measures the time it takes to search for each number.

Figure 7 shows the results. The x-axis ranges over the number of elements in the
binary search trees, and the y-axis shows the slowdown as the ratio of the time required
to call find-bst with the the eager contracts to the time to call find-bst with the lazy
contracts. Each point on the graph represents a single run of each program. Even at the
relatively modest size of a 10,000 element binary search tree, eager checking incurs
an overhead that is more than 200 times greater than lazy checking. More worryingly,
however, is the shape of the graph; as the size of the binary search tree increases, so
does the factor of slowdown, meaning that eager checking is slowing down significantly
more than lazy checking as the trees get bigger.
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5.2 The Cost of Laziness

To measure the cost of laziness, we wrote a program that constructs a list of the numbers
from 1 to 100,000. We did not use PLT Scheme’s built-in cons function, because our
contracts only support user-defined structs. Instead, we made a two field struct and
used that for the pairs in the list. Once the list is built, the program applies different
implementations of a contract that specifies that the list is sorted in ascending order,
and then iterates over the list. Since the function always iterates over the entire list,
delaying the contract does not improve the running time. Accordingly, this test helps
us understand the cost of our implementation’s bookkeeping. The right-hand side of
Figure 7 shows those measurements. The height of each bar in the figure is the ratio
of the performance of a particular contract to the performance of the code without any
contracts.

The first four bars show the slowdown of the running time as compared to the ver-
sion without contracts. The first bar (none) just gives a sense of scale; the slowdown
for the version without contracts as compared to itself is 1. The second bar (eager)
shows the slowdown for the eager contract that iterates down the entire list during the
pre-condition checking, the third for the lazy contracts (lazy), and the fourth for lazy
contracts with our flattening optimization (opt). Each bar corresponds to the average
result of five runs. We see that the cost of the lazy contract bookkeeping is about a
factor of 21 for this program, compared to a factor of 1.3 for the eager contract. Our
optimization brings this cost down to a more reasonable factor of 3.0.

For a final experiment to measure the cost of laziness, we also set out to determine
the cost of evaluating the stronger relation. For the program in this section, we know
that no contract is ever going to be applied twice to the same object, so the stronger
relation has no positive effect on the running time. We disabled the code that does that
check and re-ran the tests. The results are shown as the final two bars in Figure 7. They
show that the stronger check does not have a significant cost, when compared to the
cost of the contract checking itself.

5.3 A Realistic Benchmark

For this experiment, we extracted traces of calls to a heap data structure from a col-
league’s vision algorithm [8]. We used four traces that are named after the images we
used when extracting each trace: elephant, elephant-big, bird, and koala. The traces vary
in size: elephant has roughly 22,000 inserts and 5,700 removals of minimum elements,
whereas koala has more than 300,000 inserts and nearly 150,000 removals. We then
coded up a binomial heap, as described in Okasaki’s book [18] and ran the traces with
three variations of the contracts on the heap operations: no contracts, optimized lazy
contracts, and eager contracts. Accordingly, these results represent the times for only
the data structure operations, not the original program that used the heap.

Figure 8(a) shows the slowdown for running the optimized lazy contract checking
on heap operations; note that this chart’s scale is not the same as that in Figure 7. As
you can see, even though the traces vary in size, the overhead is relatively constant,
encouraging us to believe that our contract checker only adds a constant overhead.

Figure 8(b) shows the slowdown for using the eagerly checked contracts on heap
operations. Since these runs take a long time — running the koala trace once requires
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Fig. 8. Binomial heap and binary search tree experiments

about thirty CPU hours — we only ran them three times each. There are two important
features of this chart. First, the scale is significantly different from that of the other
two charts. The overheads are at least 2,000 and can be as bad as 14,400. Second, the
overheads are not close to each other, demonstrating that the eager checking does not
preserve the asymptotic complexity of the program.

We also synthesized traces for binary search trees from the heap traces. We replaced
each heap insertion with a naive binary search tree insertion and replaced each ex-
tract minimum with a lookup of a random element in the tree. Figure 8(c) shows the
slowdown when running the revised traces with the optimized contract checker and, as
before, the overheads are relatively constant.

Finally, we performed one more experiment to test the contribution of the stronger
check. We disabled the stronger check and then re-ran the optimized contract checker in
the binary search tree experiment. Partway through the smallest trace, PLT Scheme had
1.5 gigabytes of resident storage (according to top) and then the machine proceeded
to swap, making very little additional progress. This behavior indicates that a well-
designed stronger relation is a crucial part of making the implementation practical.

6 Preserving Amortized Complexity

Implicit in the strategy of our lazy contract checker is a limitation of its expressive-
ness. In particular, the contract for the unexplored portion of the data structure must be
expressible using only information in the explored portion of the data structure. This
limitation is precisely what allows us to check the contract incrementally and to pre-
serve the asymptotic complexity of the operations in the original program.

While this limitation still permits fairly expressive contracts, there are data structures
with invariants that cannot be expressed. For example, one might wish to ensure that a
binary tree is full, i.e., if the height of the tree is n, there are 2n nodes in the tree. Intu-
itively, the contracts presented so far cannot express this contract because they require
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Fig. 9. Evolution of attributes during tree traversal for a full binary tree

knowledge of the particular height before reaching the leaf nodes. This restriction arises
because the contracts thus far have only been based on values that are propagated
“downwards”, whereas fullness of a binary tree must be expressed with values that
are propagated “upwards” as well. In the jargon of attribute grammars, the former are
inherited attributes while the latter are synthesized attributes.

In order to check this contract, we must relax the strict constraint that contract check-
ing will not affect the asymptotic complexity of the original program’s operations. In
particular, we allow the checker to preserve only the amortized asymptotic complexity
of the program’s operations while checking contracts that depend on the values of syn-
thesized attributes. In order to check the full binary search tree contract, we can wait
until the traversal reaches a leaf node and, at that point, propagate the height values to
nodes on the path to the root.

To get a sense of how this kind of contract is checked, consider Figure 9. This con-
tract has two synthesized attributes: a left height and a right height, denoting the height
of a node’s left and right children. The invariant is that both heights must be equal once
they are known. Like ordinary struct contracts, contracts with attributes are checked
lazily. As in Figure 3, we box the uninspected portions of the tree. Initially, each node
is decorated with two question marks, indicating that the values of the left and right
heights are both unknown. Figure 9(b) shows the state of the tree after inspecting the
two interior nodes. At this point, none of the attribute’s values are known, because none
of the leaf nodes have been discovered. In Figure 9(c), the program inspects the chil-
dren in the rightmost subtree. Since they have no children, their left and right height
attributes are both 1. At this point, because some attribute values have become known,
propagation is triggered, resulting in the right-height attribute of the root becoming
3. Finally, in Figure 9(d), the program inspects the left-most child, triggering propaga-
tion of the left height back to the root, where a contract violation is discovered, because
the left height and right height of the root are not the same.

Our contract system takes care of the propagation and verification of these attributes
as well as determining whether they are known or unknown. The programmer, on the
other hand, must provide the logic of how those attributes are computed and what to do
with them once they are known. In Figure 9, for example, our system takes care of the
boxing and the propagation of the tree heights back up the tree, but it is the program-
mer who determines that those attributes are to be propagated upon discovering leaf
nodes and that both left and right heights must be equal once they are both known. This
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separation allows enough expressiveness to implement more complex contracts than
our motivating example while still preserving the amortized asymptotic complexity.

Since each wrapper has a fixed c number of attributes, the propagation can occur at
most c times, and each node in the tree will be inspected at most c times. Thus, the com-
plexity of the program can only change by the constant factor, c. Because attribute evalu-
ation may propagate an unbounded distance when just a single field is selected, however,
only the amortized complexity of the original operations in the program is preserved.

7 Related Work

The idea of software contracts dates back to the 1970s [19]. In the 1980s, Meyer de-
veloped an entire philosophy of software design based on contracts, embodied in his
object-oriented programming language Eiffel [16]. Nowadays, contracts are available
in one form or another for many programming languages (e.g., C [23], C++ [21],
Haskell [14], Java [15], Perl [5], Python [20], Scheme [22], and Smalltalk [1]).

Although the authors did not make the connection until much of this work had been
done, this work is a direct intellectual descendent of Okasaki’s dissertation [17], where
Okasaki demonstrates that a controlled amount of laziness, in an otherwise strict lan-
guage, makes achieving desired asymptotic bounds tractable. We cannot, however, use
Okasaki’s $ operator directly, because we need fine-grained control over the laziness to
exploit the stronger relation.

From a contracts perspective, our work is anticipated by Chitil, McNeill, and Runci-
man’s and Chitil and Huch’s Lazy Assertions [2,3,4]. They observe that eagerly check-
ing assertions in a lazy setting can introduce non-termination where none should rightly
be. In particular, a strict assertion on an infinite list should not explore the entire list un-
less the program itself explores the entire list. They attempt to preserve laziness in a
lazy world, whereas our work attempts to add laziness to a strict world. Despite starting
from very different foundations, both arrive at the conclusion that laziness for checking
contracts on data structures is necessary. From a technical point of view, we believe
that the stronger relation should carry back to their setting and should help them with
memory use, and that the ideas in Section 6 should also apply to their system.

Hinze, Jeuring, and Löh’s contract checker [14] is also a contract checker for Haskell
(that correctly handles blame), but their checker explores parts of the data structure that
the program does not. For example, the is(sort) example contract in Section 6 of their
paper explores the entire list; a similar contract in our system would not.

Beyond that, there is little other work on checking data structure contracts, except
when using naive strategies. Eiffel, the language most focused on contract checking,
provides no native support for lazy contract checking. Tremblay and Cheston [24] wrote
an algorithms and data structures textbook using Eiffel, but the contracts in their text ei-
ther only partially check the data structure invariants or check them as the data structure
is constructed.

8 What Have We Gained?

In some sense, this work puts data structure contract checking on an even footing with
function-based contract checking. Specifically, when checking a contract on a function,
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violations can go undetected if the function is never called with an input that would
trigger an error. Similarly, consider this (supposed) binary search tree:

(make-node 5
(make-node 7 null null)
(make-node 207 null null))

If find-bst is called with that tree and, say, 6, the contract checker will not discover
the violation. Even worse, if it is called with 7, find-bst will indicate that 7 is not
in the binary search tree, and the contract checker will still fail to detect the violation.
Of course, similar behavior can happen with functions (in fact, this binary search tree
could be encoded as a function to achieve precisely the same behavior) and yet function
contracts enjoy wide-spread use.

We believe that our data structure contracts have the potential to enjoy similar wide-
spread use, for two reasons. First, it is rare for a data structure to be built that will not
eventually be completely explored in a long-running application. Even though the two
calls to find-bst above do not detect the violation, it seems likely that some later call
to find-bst will ask for a number smaller than 5, resulting in a contract violation.

Second, our checker makes checking data structure contracts feasible. As discussed
in Section 5.3, using either the naive strategy of eagerly checking the contracts, or even
avoiding the stronger check makes checking the contracts infeasible, for at least one
realistic program. Intuitively, we expect the naive strategy to fail in general, simply
because the change to the asymptotic complexity incurred by the naive checker is a
tremendous expense.

Fundamentally, the question we ask is how much contract checking can we expect
a program to be able to afford? Our contract checker represents one answer to this
question that does not take into account any a priori knowledge about the program’s
behavior; it provides a maximal amount of contract checking that we can reasonably
expect the program to be able to afford, namely a constant factor.
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Abstract. For the memory intensive task of graph reduction, modern
PCs are limited not by processor speed, but by the rate that data can
travel between processor and memory. This limitation is known as the
von Neumann bottleneck. We explore the effect of widening this bottle-
neck using a special-purpose graph reduction machine with wide, parallel
memories. Our prototype machine – the Reduceron – is implemented us-
ing an FPGA, and is based on a simple template-instantiation evaluator.
Running at only 91.5MHz on an FPGA, the Reduceron is faster than
mature bytecode implementations of Haskell running on a 2.8GHz PC.

1 Introduction

The processing power of PCs has risen astonishingly over the past few decades,
and this trend looks set to continue with the introduction of multi-core CPUs.
However, increased processing power does not necessarily mean faster programs!
Many programs, particularly memory intensive ones, are limited by the rate
that data can travel between the CPU and the memory, not by the rate that the
CPU can process data.

A prime example of a memory intensive application is graph reduction [14],
the operational basis of standard lazy functional language implementations. The
core operation of graph reduction is function unfolding, whereby a function ap-
plication f a1 · · ·an is reduced to a fresh copy of f ’s body with its free variables
replaced by the arguments a1 · · ·an. On a PC, unfolding a single function in
this way requires the sequential execution of many machine instructions. This
sequentialisation is merely a consequence of the PC’s von Neumann architecture,
not of any data dependencies in the reduction process.

In an attempt to improve upon the PC’s overly-sequential approach to func-
tion unfolding, we develop a special-purpose graph reduction machine – the
Reduceron – using an FPGA. Modern FPGAs contain hundreds of independent
memory units called block RAMs, each of which can be accessed in parallel. The
Reduceron cascades these block RAMs to form separate dual-port, quad-word
memories for stack, heap and combinator storage, meaning that up to eight
words can be transferred between two memories in a single clock cycle. Together
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with vectorised processing logic, the wide, parallel memories allow the Reduc-
eron to rapidly execute the block read-modify-write memory operations that lie
at the heart of function unfolding.

The Reduceron is only a prototype machine, based on a simple template-
instantiation evaluator, and the Reduceron compiler performs no optimisation.
Yet the results are promising. The wide implementation of the Reduceron runs
six times faster than a single-memory, one-word-at-a-time version. And running
at 91.5MHz on a Xilinx Virtex-II FPGA, the Reduceron is faster than mature
bytecode implementations of Haskell running on a Pentium-4 2.8GHz PC.

This paper is structured as follows. Section 2 defines the bytecode that the
Reduceron executes, and describes how Haskell programs are compiled down to
it. Section 3 presents a small-step operational semantics of the Reduceron, pin-
pointing the parts of the evaluator that can be executed in parallel. Section 4
describes the FPGA implementation of the Reduceron. Section 5 presents per-
formance measurements, comparisons and possible enhancements. Section 6 dis-
cusses related work, and section 7 concludes.

The source code for the Reduceron implementation is publicly available from
http://www.cs.york.ac.uk/fp/darcs/reduceron2.

2 Compilation from Haskell to Reduceron Bytecode

There are two main goals of our compilation scheme. First, it should allow the
Reduceron to be simple, so that the implementation can be constructed in good
time. To this aim, we adopt the idea of Jansen to encode data constructors as
functions and case expressions as function applications [9]. The result is that all
data constructors and case expressions are eliminated, meaning fewer language
constructs for the machine to deal with. One might expect to pay a price for this
simplicity, yet Jansen’s interpreter is rather fast in practice. It is believed that
one reason for this good performance is that having fewer language constructs
permits a simpler interpreter with less interpretive overhead.

The second goal of our compiler is to expose the parallelism present in se-
quential graph reduction. An earlier version of the Reduceron was based on
Turner’s combinators, so it performed only a small amount of work in each clock
cycle. Our aim is to do lots of work in each clock cycle, so the coarser-grained
supercombinator [8] approach to graph reduction is taken here.

Like Jansen’s interpreter, the graph reduction technique used by the Reduc-
eron is similar to what Peyton Jones calls template instantiation [14]. Peyton
Jones introduces template instantiation as a “simple” first step towards a more
sophisticated machine – the G-machine. In this light, the Reduceron might be
seen as being too far from a “real” functional language implementation to pro-
duce meaningful results. But Jansen’s positive results give good reason to be
open-minded about this.

The remainder of this section describes in more detail the stages of compilation
to get from Haskell programs to Reduceron bytecode. As a running example we
use the following function for computing the factorial of a given integer:

http://www.cs.york.ac.uk/fp/darcs/reduceron2
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fact :: Int -> Int
fact n = if n == 1 then 1 else n * fact (n-1)

We end this section by defining the Reduceron bytecode and showing how
fact looks at the bytecode level.

2.1 Desugaring and Compilation to Supercombinators

The first stage of compilation is to translate the input program to Yhc Core [6]
using the York Haskell Compiler [17]. The result is an equivalent but simplified
program in which expressions contain only function names, function applications,
variables, data constructions, case expressions, let expressions, and literals. All
function definitions are supercombinator definitions. In particular, they do not
contain any lambda abstractions. In our example, fact is already a supercom-
binator, but in Yhc Core its definition becomes:

fact n = case (==) n 1 of
True -> 1
False -> (*) n (fact ((-) n 1))

Here, infix applications have been made prefix, and the if expression has been
desugared to a case.

2.2 Eliminating Data Constructors and Cases

The second stage eliminates all data constructions and case expressions from the
program. First, each data type d of the form

data d = c1 | · · · | cn

is replaced by a set of function definitions, one for each data constructor ci, of
the form

ci v1 · · · v#ci w1 · · · wn = wi v1 · · · v#ci

where #c denotes the number of arguments taken by the constructor c. In words,
each original data constructor ci is encoded as a function that takes as arguments
the #ci arguments of ci and n continuations stating how to proceed depending
on the constructor’s value.

Next, all default alternatives in case expressions are removed. Case expressions
in Yhc Core already have the property that the pattern in each alternative is
at most one constructor deep. So removing case defaults is simply a matter of
enumerating all unmentioned constructors. Now each case expression has the
form

case e of {c1 v1 · · · v#c1 -> e1 ; · · · ; cn v1 · · · v#cn -> en}

and can be straightforwardly translated to a function application

e (λv1 · · · v#c1 -> e1) · · · (λv1 · · · v#cn -> en)



132 M. Naylor and C. Runciman

Since this transformation reintroduces lambda abstractions, the lambda lifter is
reapplied to make all function definitions supercombinators once again. After
this stage of compilation, our factorial example looks as follows:

fact n = (==) n 1 1 ((*) n (fact ((-) n 1)))

2.3 Dealing with Strict Primitives

Further to user-defined algebraic data types, the Reduceron also supports, as
primitives, machine integers and associated arithmetic operators. Under lazy
evaluation, primitive functions, such as integer multiplication, need special treat-
ment because their arguments must be fully evaluated before before they can
be applied. Peyton Jones and Jansen both solve this problem by making their
evaluators recursively evaluate each argument to a primitive. This is an elegant
approach when the evaluator is written in a programming language like Miranda
or C, where the presence of an implicit call stack may be assumed. But FPGAs
have no such implicit call stack, so an alternative solution must be found.

Our solution is to treat primitive values in the same way as nullary construc-
tors of an algebraic data type: they become functions that take a continuation
as an argument. The idea is that the continuation states what to do once the
integer has been evaluated, and it takes the fully evaluated integer as its ar-
gument. Transforming the program to obtain this behaviour is straightforward.
Each two-argument primitive function application is rewritten by the rule

p n m → m (n p)

The factorial function is now:

fact n = 1 (n (==)) 1 (fact (1 (n (-))) (n (*)))

2.4 Reduceron Bytecode

In the final stage of compilation, programs are turned into Reduceron bytecode.
The bytecode for a program is defined to be a sequence of nodes, and the syntax
of a node is defined in Figure 1. In the syntax definition, the meta-variables i
and p range over integers and primitive function names respectively.

An n-ary application node (Ap i) in Reduceron bytecode is a pointer i to
a sequence of n consecutive nodes in memory whose final node is wrapped in
an End marker. To permit sharing in over-saturated applications, the nodes in
an application sequence are stored in reverse order, e.g. f x y would be stored
as y x (End f), and if f x evaluates to z then the application can simply be
updated to y (End z) without relocating it in memory. To illustrate, Figure 2
shows the bytecode of the fact function, as it would appear relative to some
address a in program memory. Each application node in the bytecode is an offset
address, relative to a, the address of the first node of the function’s bytecode.
This first node is always a Start node, and defines the arity and size (number
of words) of the function’s body. The bytecode for a whole program is simply
the concatenation of the bytecodes for each individual function. Each Fun node
is then adjusted to point to the final location of the function in the program.
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node ::= Start i i (first node of a function body: arity and size of function)

| Int i (primitive integer)

| Ap i (application node: a pointer to a sequence of nodes)

| End node (the final node in a node sequence)

| Prim p (primitive function name)

| Fun i (pointer to a function body)

| Var i (variable representing a function argument)

Fig. 1. The syntax of nodes in Reduceron Bytecode

a +1 +2 +3

Start 1 15 Ap 7 Int 1 Ap 5

+4 +5 +6 +7

End (Int 1) Prim (==) End (Var 0) Ap 12

+8 +9 +10 +11

Ap 10 End (Fun a) Ap 14 End (Int 1)

+12 +13 +14 +15

Prim (*) End (Var 0) Prim (-) End (Var 0)

Fig. 2. The bytecode for fact, as it would appear relative to address a in memory

3 An Operational Semantics for the Reduceron

In this section, a semantics for the Reduceron is defined. The are two reasons
for presenting a semantics: first to define precisely how the Reduceron works,
and second to highlight the parts of the reduction process that can be assisted
by special-purpose hardware. The semantics is given as a binary small-step state
transition relation, ⇒, between triples of the form 〈h, s, a〉, where h is the heap,
s is the node stack, and a is the address stack.

In defining the semantics, we model the heap and stacks as lists, and assume
the availability of several common functions on lists. In addition, we write #xs
to denote the length of the list xs and xs[i �→ x] to denote xs with its ith element
replaced by x.

Initially, the heap contains the bytecode of the program, the node stack con-
tains the node Fun 0, where 0 is the address of the function main :: Int, and
the address stack contains the address 0. The final result of a program p is
defined to be r where

〈p, [Fun 0], [0]〉 ⇒� 〈 , [Int r], 〉
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Notice that the main function is a pure (non-monadic) function with no argu-
ments. Currently, Reduceron programs take no input. Furthermore, their output
is a single integer – main is of type Int.

3.1 A Primitive Evaluator

We assume a function P that takes a primitive function name p and two integers,
i and j, and returns a node representing the value of p i j. For example,

P (+) 5 10 = Int 15

and
P (==) 1 1 = Fun true

where true is the address of the function True in the bytecode of the program.

3.2 Semantic Definition

The small-step transition relation ⇒ is defined in Figure 3 and the helper func-
tions inst and unwind are defined in Figure 4. There is one transition rule for
each possible type of node that can appear on top of the stack, as described by
the following paragraphs.

〈h, Int i : x : s, a〉 ⇒ 〈h, x : Int i : s, a〉

〈h, Prim p : Int x : Int y : s, : : r : a〉 ⇒ 〈h[r �→ End z], z : s, r : a〉
where

z = P p x y

〈h, Ap i : s, : a〉 ⇒ unwind i 〈h, s, a〉

〈h, Fun i : s, a〉 ⇒ unwind #h 〈h′, s′, a′〉
where

Start arity size = h !! i

body = take size (drop (i + 1) h)

s′ = drop arity s

r : a′ = drop arity a

h′ = h[r �→ End (Ap #h)]

++ map (inst s #h) body

Fig. 3. Transition rules for the Reduceron
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Primitives. Recall from section 2.3 that primitive applications of the form p a b,
where a and b are unevaluated integers, are transformed to b (a p). Clearly, to
evaluate such an application, b must be evaluated first. This results in the value
of b, of the form Int i, appearing on top of the stack. To deal with such a
situation, the evaluator simply swaps the top two stack elements, resulting in
(a p) b on the stack. Further evaluation yields a p b on top of the stack and then,
after another swap, p a b, where a and b are now fully evaluated, and evaluation
of the primitive application is straightforward.

Once the result of the primitive application has been computed, it must be
written onto the heap, overwriting the the contents of the original application
node b (a p), so that other references to it do not repeat the computation. This is
possible because, as will be explained shortly, a pointer to the original application
is sitting on the address stack.

Applications. When an application node of the form Ap i appears on top of the
stack, it is replaced by the End-terminated sequence of nodes starting at address i
on the heap. Furthermore, the addresses of the nodes in the sequence are pushed
on the address stack, to permit updating the sequence after reduction. Following
Peyton Jones’s terminology, we collectively call these two tasks unwinding.

In an implementation of the Reduceron on a standard PC architecture, each
node in an application sequence is read, one at a time, from the heap and written,
one at a time, to the stack. Furthermore, each node address is computed and
written, again one at a time, onto the address stack.

The definition of the unwind function in Figure 4 highlights the first main
opportunities for hardware-assisted graph reduction. First, the uses of getAp
and ++ illustrate that the nodes being copied are contiguous, so the copying can
be achieved by block transfers in a machine with a wider data bus. Second, the

inst s b (Var i) = s !! i

inst s b (Ap i) = Ap (b + i− 1)

inst s b (End n) = End (inst s b n)

inst s b n = n

unwind i 〈h, s, a〉 = 〈h, reverse ap ++ s, reverse as ++ a〉
where

ap = getAp (drop i h)

as = map (i +) [0 . . . #ap− 1]

getAp (End n : ns) = [n]

getAp (n : ns) = n : getAp ns

Fig. 4. Definitions of inst and unwind
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use of map to compute the node addresses indicates that they can be computed
in parallel. And third, there is no dependency between writing to the node and
address stacks, so the two can be done at the same time in a machine with
parallel memories.

Functions. When a node of the form Fun i is at the top of the stack, the
bytecode starting at address i + 1 on the heap is

1. copied onto the end of the heap (say at address hp),
2. with each variable Var j substituted with the jth argument on the stack,
3. and with each application node, Ap k, relocated to an absolute address, Ap

(hp + k − 1), on the heap.

Subsequently, n nodes are popped off the node and address stacks, where n is
the arity of the function that has just been instantiated. The address r which
is n places from the top of the address stack represents the root of the redex.
The value at r is overwritten with End (Ap hp), so that the reduction is never
repeated. Finally, the node sequence beginning at the address hp is unwound onto
the stack. We refer to this whole collection of operations as function unfolding.

Just as for unwinding, function unfolding on a standard PC architecture re-
quires execution of many sequential instructions to carry out all the necessary
memory manipulations. And again the semantics shows great scope for paral-
lelism. In particular, the use of ++ to copy a potentially large contiguous block
of nodes onto the end of heap, and the use of map to instantiate each node in-
dependently, opens up the possibility for parallelisation on a machine with wide
memory and vectorised processing logic. Since instantiation of a node requires
access to the stack, a parallel evaluator would need to be able to read the stack
and heap at the same time. Further, because the nodes are being copied from one
portion of memory to another, sequentialisation can be reduced by separating
program memory and application node memory, permitting parallel access.

Notice in the semantics that the Fun rule calls unwind. Immediately after a
combinator body is instantiated on the heap, the spine of that body is unwound
from the heap onto the stack. It is much more efficient to instantiate the spine
of the combinator on the heap and the stack in parallel. This idea is related
to the spineless G-machine [2], which, by keeping track of which nodes are not
shared, can often completely bypass construction of the combinator spine on the
heap. So our idea gives the speed benefit of the spineless G-machine without
introducing any complexity, but not the space benefit.

4 Implementation on FPGA

The semantics presented in the previous section suggests that an efficient im-
plementation of the Reduceron can be obtained if wide, parallel memories and
vectorised processing logic are available. A suitable architecture on which to
explore this possibility is the FPGA. FPGA devices are ideal for constructing
custom processing logic and typically contain large arrays of independent block
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RAMs. This section describes our implementation of Reduceron on the FPGA
device available to us, a Xilinx Virtex-II.

To measure of the effect of our proposed optimisations, we implement two
versions of the Reduceron on the Virtex-II: Baseline and Wide. The Wide version
exploits wide, parallel memories and the Baseline version does not.

4.1 Block RAMs

The Virtex-II contains 56 independent 1024 by 18-bit dual-port block RAMs.
Being “dual-port” means that a RAM has two address busses, two data busses
and two write enable signals. Thus two different locations in RAM can be ac-
cessed in a single clock cycle. Furthermore, each port has separate busses for
data input and data output. Thus a value may be written to and read from a
single location on a single RAM port at the same time. The Wide Reduceron
exploits both the dual-port and separate data bus features of block RAMs, and
the Baseline version does not. Both versions of the Reduceron encode bytecode
nodes as 18 bit words, so each RAM location has capacity for a single node.

4.2 Constructing Large Memories from Small Ones

The Baseline Reduceron cascades 48 block RAMs to form a single 48k word
memory; 32k is used as heap and stack memory and 16k is used solely by the
garbage collector (described in section 4.5). Block RAMs are cascaded in the
standard way using a multiplexor to combine the outputs of several memories
into a single output. When cascading a large number of block RAMs the multi-
plexor becomes rather large and its delay becomes significant. To overcome this
inefficiency, a register is placed on the output of the multiplexor. This means
that two clock cycles are needed between writing an address to the address-bus
and reading the resulting value off the data-bus. This overhead is alleviated by
pipelining, whereby a new memory access is scheduled while waiting for the pre-
vious one to complete. But keeping the pipeline primed at all times is difficult,
so some overhead is inevitable. Such overhead is present in both versions of
Reduceron, as we always buffer RAM outputs in a register.

4.3 Quad-Word Memory

To permit wider memory transfers, the Wide Reduceron uses quad-word mem-
ories allowing any four consecutive locations to be read or written in a single
clock cycle. This is not the same as saying that memory locations store 72 bits
rather than 18 – that would imply that only blocks of words beginning at a four
word boundary could be accessed in one cycle. A 72 bit wide memory is easier
to build on the Virtex-II, but a quad-word memory facilitates implementation
of graph reduction since word alignment issues can be ignored. As the method
to implement quad-word memories on FPGA is neither standard nor obvious,
and they cannot be synthesised automatically by existing FPGA design tools, we
give details. Quad-word memories are built out of four separate memories. If each
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Fig. 5. Circuit diagram for a quad-word memory

internal memory is numbered i where i is drawn from [0, 1, 2, 3] then memory i
is used to store locations [i, i + 4, i + 8, . . .] of the quad-word memory. Accessing
four consecutive locations beginning at an address a is then straightforward if
a is a multiple of four, but awkward if it is not. Awkward, but not impossible,
because each of the four consecutive locations, beginning at any address, must
be stored in a different internal memory. The problem is then one of rotating
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Table 1. The parallel, dual-port, quad-word memories of the Wide Reduceron

Memory Capacity (words)
Combinator (program) store 4k
Heap 32k
Node stack 4k
Address stack 4k
Garbage collector scratch-pad 12k

the quad-word input and output data busses so they line up with those of the
internal memories. See Figure 5. The rotateLeft and rotateRight circuits rotate a
given list of inputs by a given number of positions. The increment circuit takes
an address a and a number n, and produces 4 copies of a, the first n of which
are incremented by 1.

Finally, the Wide Reduceron uses quad-word memories that are also dual-port,
so up to eight words to be accessed together.

4.4 Parallel Memories

As well as widening memory, our semantics also suggested that parallel mem-
ories are beneficial, allowing, for example, the stack, heap and combinators to
be accessed at the same time during function unfolding. For this reason, the
Wide Reduceron has five separate memories, each of which is shown in Table 1
alongside its capacity.

4.5 Garbage Collection

For any serious computations to be performed in such a small amount of memory,
a garbage collector is essential. Both versions of the Reduceron use a simple
stop-and-copy two-space garbage collector [5]. In this algorithm, active nodes in
the heap are copied onto an empty scratch-pad. The scratch-pad, which then
contains a compacted copy of the heap, is copied back to the heap again before
reduction continues. Although not the cleverest collector, it has the advantage
of being extremely simple. Furthermore, the algorithm is easily defined to be
iterative so no recursive call stack is needed. Our focus is on optimising the
reduction process rather than exploring advanced garbage collectors.

4.6 Clock-Level Timing Breakdown

Table 2 shows the number of clock cycles taken to execute each transition rule of
the Reduceron. The variable n represents the number of nodes in the body of the
supercombinator being unfolded. Each transition rule requires at least two clock
cycles because memory is buffered to shorten the critical path (see section 4.2).

Unwinding an application always takes two clock cycles as applications are
limited to be a maximum of eight nodes long. The compiler hides this limitation
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Table 2. Clock cycles taken by each Reduceron instruction

Operation Clock cycles
Swap 2
Primitive 3
Unwind 2
Unfold 3 + �n

8
�

by splitting large applications into smaller, nested ones – e.g. f a b c d is equiv-
alent to (f a b) c d.

Another restriction of the implementation is that functions have a maximum
of eight parameters. This is because only eight elements of the stack can be ac-
cessed simultaneously while instantiating a function body. Again, the limitation
can be hidden by the compiler, though our current implementation does not yet
do so.

4.7 Description Language

Both versions of the Reduceron are implemented in Haskell using the Lava li-
brary [4]. Lava allows circuits to be described by normal Haskell functions over
structures of bits (booleans), and can turn such functions into VHDL netlists of
FPGA components that can be synthesised by the Xilinx tool set.

We view the description of the Reduceron circuit as an interesting aspect
of our work. Lava’s functional approach has been found to be suitable, despite
the Reduceron being an irregular, stateful circuit, non-typical of many Lava
applications found in the literature. In particular, we were surprised by how
much of the Reduceron could actually be described by pure (non-monadic) Lava
functions. For example, pure functions are all that are needed to describe the
circuit in Figure 5 and the inst function in Figure 4. To express the stateful
aspects of the circuit we developed a register-transfer monad, similar to the
Recipe monad we define in [11]. Having pure functions as the default description
method is quite appealing: pure functions are typically easy to test and verify;
they result in concise, highly parameterised descriptions; and they naturally
express circuit parallelism. Only when one needs to express intricate control
flow and timing is monadic (sequential) code required.

Unfortunately, although the Reduceron descriptions are quite short, space
does not permit presenting them in this paper.

4.8 Resource Usage

The results of synthesising each version of the Reduceron for the Virtex-II
(XC2V2000-6BF957) using Xilinx ISE 9.1 are shown in Table 3. Concerning clock
frequency: a small, carefully optimised 8-bit processor designed by Xilinx (the
PicoBlaze) can be clocked at 173.6 MHz on the same device. For the Reduceron
to be clocking within a factor of two is acceptable, but suggests room for im-
provement. One problem with our tool flow is that there is no traceability from
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Table 3. Reduceron synthesis results on the Virtex-II (XC2V2000-6BF957)

Baseline Wide Maximum
Number of slices 1530 4874 10752
Number of block RAMs 48 56 56
Clock frequency 94.7 MHz 91.5 MHz (see text)

code written in Lava to the generated netlist, so it is hard to identify the critical
path in the Lava program.

5 Performance

In this section, the impact of the wide memory optimisations is measured by
comparing the Baseline and Wide Reducerons running a range of Haskell pro-
grams. In addition, the potential for special-purpose graph reduction machines
is explored by running the same programs using several Haskell implementations
on a Pentium-4 2.8GHz PC. The PC Haskell implementations are: Hugs (version
May 2006), GHCi (version 6.6), Yhc (latest), Nhc98 (version 1.20), a C imple-
mentation of the Reduceron, and the GHC native code compiler (version 6.6)
with and without optimisations.

5.1 Programs

Due to the restrictions on the Reduceron, the Haskell programs used in our
experiments must: (1) have a maximum heap residency and stack size less than
32k words and 4k words respectively; (2) not take any external input; and (3)
produce a single integer as a result. The programs used are:

1. OrdList. A program to check the property that insertion into a list preserves
ordering for all boolean lists of depth n, applied to n = 11.

2. Perm. A program to find the smallest number in a list of numbers using a
permutation sort, applied to the list containing the numbers 9 down to 1.

3. MSS. A program to compute the maximum segment sum of a list of integers
applied to the list [-150..150].

4. Queens. A function to compute the number of queens that can be placed on
an n-by-n chess board such that no queen attacks any other queen, applied
to n = 10.

5. Adjoxo. An adjudicator for noughts and crosses that determines if one side
can force victory given a partially complete board. The adjudicator is applied
to the empty board.

6. SumPuz. A solver for general cryptarithmetic problems. It is applied to a
range of problems and outputs the total number of solutions to all of them.
(Integer division is not supported on the Reduceron so is implemented by
repeated subtraction.)

7. Sem. A structural operational semantics of the While language [12] applied
to a program that naively computes the number of divisors of 1000. (Divisor
testing is implemented by repeated subtraction.)
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Table 4. Timings of a range programs running on various Haskell implementations

OrdList Perm MSS Queens Adjoxo SumPuz Sem
Hugs 3.68s 2.70s 3.85s 6.50s 14.81s 4.11s 5.49s
Baseline Red. 13.19s 4.15s 7.41s 7.65s 15.92s 8.98s 15.87s
GHCi 4.26s 2.42s 3.24s 6.35s 7.09s 3.39s 5.36s
Yhc 3.59s 1.76s 1.22s 3.06s 3.85s 2.51s 3.81s
PC Red. 3.65s 1.16s 1.96s 2.33s 5.00s 2.77s 4.50s
Nhc98 3.60s 1.46s 1.38s 2.32s 3.12s 2.28s 3.21s
Wide Red. 1.88s 0.58s 2.01s 1.57s 2.70s 1.67s 2.04s
GHC 0.71s 0.28s 0.38s 0.66s 0.86s 0.47s 0.41s
GHC -O2 0.57s 0.19s 0.28s 0.09s 0.30s 0.27s 0.34s

Table 5. Profiles of programs running on the Wide Reduceron

OrdList Perm MSS Queens Adjoxo SumPuz Sem
Unwind 31.4% 33.0% 41.7% 32.1% 37.7% 36.8% 28.9%
Unfold 64.0% 54.7% 24.1% 27.8% 37.8% 37.2% 55.8%
Swap 0.0% 4.7% 5.1% 10.8% 7.8% 6.0% 5.8%
Prim. 0.0% 3.5% 7.6% 12.2% 6.8% 5.2% 4.6%
GC 4.6% 4.1% 21.5% 17.0% 9.9% 14.8% 4.9%

5.2 Observations

See tables 4 and 5 for run times and instruction profiles. On average, the Wide
Reduceron outperforms the Baseline Reduceron by a factor of six. On heavily
arithmetic programs (Queens and MSS) the factor is between three and five,
whereas on heavily applicative programs (OrdList and Sem) it is between seven
and eight. Unfolding benefits most from wider memory. The average factor of six
improvement is significant, but we might have hoped for more considering that
eight consecutive locations can be accessed together on each of the five parallel
memories. Some suggestions to utilise the parallel memory more fully are given
in section 5.4.

On average, the Wide Reduceron (on FPGA) outperforms the Reduceron,
Yhc, and Nhc98 bytecode interpreters (on PC). All of these implementations
share a common frontend, so each interpreter runs the same core Haskell pro-
grams. One of the potential advantages of a bytecode interpreter is that the
bytecode can be made sufficiently abstract to have a concise formal semantics,
offering hope for a mechanically verified Haskell implementation. However, there
is a tension between defining a simple, high-level bytecode and one that is simi-
lar enough to the target machine so as to be efficient. The Reduceron approach
appears to relax this tension; a simple bytecode can be designed without con-
cern for the target machine, and then a machine can be designed to efficiently
execute this bytecode. Interestingly, the PC version of the Reduceron performs
surprisingly well in comparison to Yhc and Nhc98, considering that it is based
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on template instantiation and that Yhc and Nhc98 are G-machine variants. This
reinforces the findings of Jansen [9].

The leading native-code compiler GHC performs many advanced optimisa-
tions. For example, GHC spots that the critical safe function in Queens is
strict, so need not be instantiated on the heap. Similar optimisations might be
used in a future Reduceron implementation, but architectural changes would be
required, e.g. moving from a template instantiation evaluator to an instruction
sequence approach. Excluding Queens and Adjoxo, which both involve signifi-
cant integer operations in a critical loop, and which GHC’s optimisations speed
up by over a factor of two, the Reduceron (on FPGA) runs, on average, 4.85
times slower than GHC -O2 (on PC).

5.3 Increasing Memory Capacity and Clock Frequency

One of the main limitations of the Reduceron is that it only has 32k words of heap
space. This is enough to make an interesting experiment, but too small for any
serious application. However, the limitation might be overcome with improved
hardware, without affecting the existing design significantly. For example, the
Computer Architecture group at York have built the PRESENCE-3 FPGA board
[13] containing a Virtex-5 FPGA and five large, fast RAMs. Since these RAMs
are all accessible in parallel, a wide heap could be obtained using off-chip storage.
Further, the Virtex-5 would offer many more block RAMs, permitting larger
stack and combinator memories on-chip and therefore to be accessed in parallel
as in the existing design.

Another benefit of the Virtex-5 over the Virtex-II is higher performance. The
Xilinx synthesis tool states that our current Reduceron design will run at 160
MHz on the Virtex-5. Identifying and reducing the critical path would yield
further improvements.

5.4 Possible Design Improvements

Currently, the compiler does not attempt to modify the program to take ad-
vantage of the Wide Reduceron’s features. In particular, lambda lifting after
encoding data types as functions usually introduces a new function definition
for each case alternative, breaking function bodies into smaller pieces. While
this is desirable for the PC and Baseline Reducerons, larger function bodies
should play to the strengths of the Wide Reduceron, and might justify direct
support for case expressions and lambda abstractions.

Another limiting factor for memory utilisation is that application nodes are
typically only one to five words in size. In particular, the indirections used to
achieve sharing are only one node wide. Possible solutions include building com-
binator spines directly on top of redex roots, and the use of one-level deep trees
instead of flat sequences for representing applications.

Eventually, multiple Reducerons could be put on a single FPGA to perform
parallel evaluation [7]. The hope is that the flexibility of the FPGA would allow
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for a simple yet effective means of parallel reduction. Another avenue of explo-
ration would be to develop a variant of the ByteString library [3] which exploits
wide memories and vectorised processing logic on the FPGA.

6 Related Work

In the FPCA series of international conferences held between 1981 and 1995,
several papers presented designs of exotic new machines to execute functional
programs efficiently. Some special-purpose, sequential graph reduction machines
were indeed built, including SKIM [16] and NORMA [15]. Unfortunately, at the
time, building such machines was a slow and expensive process, and any perfor-
mance benefit obtained was nullified by the next advancement in stock hardware.
Nowadays, the situation is different: FPGA technology has significantly reduced
the time and expense required to build custom hardware, and is a widespread,
advancing technology in its own right. Furthermore, it appears that users of
stock hardware can no longer expect automatic advances in sequential comput-
ing speed. Another difference compared with the Reduceron is that both SKIM
and NORMA were based on Turner’s combinators and did not attempt to use
wide, parallel memories to increase performance.

A piece of work similar in spirit to the Reduceron is Augustsson’s Big Word
Machine (BWM) [1], although the two have been independently. The BWM is a
graph reduction machine with a wide word size, specifically four pointers long,
allowing wide applications to be quickly built on, and fetched from, the heap.
Like the Reduceron, the BWM has a crossbar switch attached to the stack al-
lowing complex rearrangements to be done in a single clock cycle. The BWM
also encodes constructors and case expressions using functions and applications
respectively. Unlike the Reduceron, the BWM works on an explicit, sequential
instruction stream rather than by template instantiation, and it avoids updat-
ing the heap in some cases where a computation cannot be shared, thus saving
unnecessary heap accesses. Features of the Reduceron not present in the BWM
include (1) separate code and heap memories; (2) machine integer support; (3)
less memory wastage as data need not be aligned on four-pointer boundaries;
and (4) support for building multiple different function applications on the heap
simultaneously. The BWM was never actually built. Some simulations were per-
formed but Augustsson writes “the absolute performance of the machine is hard
to determine at this point” [1].

7 Conclusion

In the introduction we argued that the von Neumann bottleneck impedes the
performance of graph reduction on standard computers, and suggested that the
problem could be overcome by building a special-purpose machine with wide,
parallel memory units. We have explored this very possibility by building a
prototype of such a machine – the Reduceron – using an FPGA. The combination
of wide, parallel memory units and vectorised processing logic on the Reduceron
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gives a factor of six speed-up on average across a range of benchmark programs.
Furthermore, running at 91.5MHz on a Xilinx Virtex-II FPGA, the Reduceron
performs better than interpreted bytecode and often within a small factor of
optimised native-code running on a 2.8GHz Pentium-4 PC. Considering the large
performance advantage of conventional hard processors over soft, FPGA-based
ones for executing C programs [10], and the simplicity of the Reduceron, it would
certainly be an interesting result if, after further work on the Reduceron, Haskell
programs were found to run at comparable speeds on both.

FPGAs have, to a large extent, eliminated the effort and expertise needed to
build custom hardware. They may be viewed as an advancing technology that
continues to offer higher performance, perhaps one day approaching the clock
rates of modern PCs. Or, alternatively, as a tool for rapidly prototyping de-
signs before they are manufactured as efficient, non-programmable ASICs. Both
views, along with the results obtained in this paper, motivate further experi-
ments in the design of special-purpose graph reduction machines using FPGAs.
The hope is that researchers can find simple and elegant yet fast and parallel
reduction methods by side-stepping the constraints and intricacies of standard,
von Neumann, computers.
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Abstract. Haskell is a functional language, with features such as higher
order functions and lazy evaluation, which allow succinct programs. These
high-level features present many challenges for optimising compilers. We
report practical experiments using novel variants of supercompilation,
with special attention to let bindings and the generalisation technique.

1 Introduction

Haskell [17] can be used in a highly declarative manner, to express specifications
which are themselves executable. Take for example the task of counting the
number of words in a file read from the standard input. In Haskell, one could
write:

main = print ◦ length ◦ words =<< getContents

From right to left, the getContents function reads the input as a list of charac-
ters, words splits this list into a list of words, length counts the number of words,
and finally print writes the value to the screen.

An equivalent C program is given in Figure 1. Compared to the C program, the
Haskell version is more concise and more easily seen to be correct. Unfortunately,
the Haskell program (compiled with GHC [25]) is also three times slower than
the C version (compiled with GCC). This slowdown is caused by several factors:

Intermediate Lists. The Haskell program produces and consumes many inter-
mediate lists as it computes the result. The getContents function produces
a list of characters, words consumes this list and produces a list of lists of
characters, length then consumes the outermost list. The C version uses no
intermediate data structures.

Functional Arguments. The words function is defined using the dropWhile
function, which takes a predicate and discards elements from the input list
until the predicate becomes true. The predicate is passed as an invariant
function argument in all applications of dropWhile.

Laziness and Thunks. The Haskell program proceeds in a lazy manner, first
demanding one character from getContents, then processing it with each of
the functions in the pipeline. At each stage, a lazy thunk for the remainder
of each function is created.

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 147–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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int main()

{

int i = 0;

int c, last_space = 1, this_space;

while ((c = getchar()) != EOF) {

this_space = isspace(c);

if (last_space && !this_space)

i++;

last_space = this_space;

}

printf("%i\n", i);

return 0;

}

Fig. 1. Word counting in C

Using the optimiser developed in this paper, named Supero, we can elimi-
nate all these overheads. We obtain a program that performs faster than the C
version. The optimiser is based around the techniques of supercompilation [29],
where some of the program is evaluated at compile time, leaving an optimised
residual program.

Our goal is an automatic optimisation that makes high-level Haskell programs
run as fast as low-level equivalents, eliminating the current need for hand-tuning
and low-level techniques to obtain competitive performance. We require no an-
notations on any part of the program, including the library functions.

1.1 Contributions

– To our knowledge, this is the first time supercompilation has been applied
to Haskell.

– We make careful study of the let expression, something absent from the Core
language of many other papers on supercompilation.

– We present an alternative generalisation step, based on a homeomorphic
embedding [9].

1.2 Roadmap

We first introduce a Core language in §2, on which all transformations are ap-
plied. Next we describe our supercompilation method in §3. We then give a
number of benchmarks, comparing both against C (compiled with GCC) in §4
and Haskell (compiled with GHC) in §5. Finally, we review related work in §6
and conclude in §7.

2 Core Language

Our supercompiler uses the Yhc-Core language [6]. The expression type is given
in Figure 2. A program is a mapping of function names to expressions. Our
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expr = v variable
| c constructor
| f function
| x ys application
| λvs → x lambda abstraction
| let v = x in y let binding
| case x of {p1 → y1 ; ...; pn → yn } case expression

pat = c vs

Where v ranges over variables, c ranges over constructors, f ranges over functions, x
and y range over expressions and p ranges over patterns.

Fig. 2. Core syntax

split (v) = (v , [ ])
split (c) = (c, [ ])
split (f ) = (f , [ ])

split (x ys) = (• •, x : ys)
split (λvs → x) = (λvs → •, x)

split (let v = x in y) = (let v = • in • , [x , y ])
split (case x of {p1→y1 ; ...; pn→yn }) = (case • of {p1→•; ...; pn→•}, [x , y1 , ..., yn ])

Fig. 3. The split function, returning a spine and all subexpressions

Core language is higher order and lazy, but lacks much of the syntactic sugar
found in Haskell. Pattern matching occurs only in case expressions, and all case
expressions are exhaustive. All names are fully qualified. Haskell’s type classes
have been removed using the dictionary transformation [32].

The Yhc compiler, a fork of nhc [22], can output Core files. Yhc can also
link in all definitions from all required libraries, producing a single Core file
representing a whole program.

The primary difference between Yhc-Core and GHC-Core [26] is that Yhc-
Core is untyped. The Core is generated from well-typed Haskell, and is guaran-
teed not to fail with a type error. All the transformations could be implemented
equally well in a typed Core language, but we prefer to work in an untyped
language for simplicity of implementation.

In order to avoid accidental variable name clashes while performing transfor-
mations, we demand that all variables within a program are unique. All trans-
formations may assume this invariant, and must maintain it.

We define the split function in Figure 3, which splits an expression into a pair
of its spine and its immediate subexpressions. The •markers in the spine indicate
the positions from which subexpressions have been removed. We define the join
operation to be the inverse of split, taking a spine and a list of expressions, and
producing an expression.
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supercompile ()
seen := { }
bind := { }
tie ({ }, main)

tie (ρ, x)
if x /∈ seen then

seen := seen ∪ {x }
bind := bind ∪ {ψ(x) = λfv(x)→ drive(ρ, x)}

endif
return (ψ(x) fv(x))

drive (ρ, x)
if terminate(ρ, x) then

(a, b) = split(generalise(x))
return join(a, map (tie ρ) b)

else
return drive(ρ ∪ {x }, unfold (x))

Where ψ is a mapping from expressions to function names, and fv(x) returns the free
variables in x . This code is parameterised by: terminate which decides whether to stop
supercompilation of this expression; generalise which generalises an expression before
residuation; unfold which chooses a function application and unfolds it.

Fig. 4. The supercompile function

3 Supercompilation

Our supercompiler takes a Core program as input, and produces an equivalent
Core program as output. To improve the program we do not make small local
changes to the original, but instead evaluate it so far as possible at compile time,
leaving a residual program to be run.

The general method of supercompilation is shown in Figure 4. Each function
in the output program is an optimised version of some associated expression
in the input program. Supercompilation starts at the main function, and su-
percompiles the expression associated with main. Once the expression has been
supercompiled, the outermost element in the expression becomes part of the
residual program. All the subexpressions are assigned names, and will be given
definitions in the residual program. If any expression (up to alpha renaming)
already has a name in the residual program, then the same name is used. Each
of these named inner expressions are then supercompiled as before.

The supercompilation of an expression proceeds by repeatedly inlining a func-
tion application until some termination criterion is met. Once the termination
criterion holds, the expression is generalised before the outer spine becomes part
of the residual program and all immediate subexpressions are assigned names.
After each inlining step, the expression is simplified using the rules in Figure 5.
There are three key decisions in the supercompilation of an expression:

1. Which function to inline.
2. What termination criterion to use.
3. What generalisation to use.

The original Supero work [13] inlined following evaluation order (with the
exception of let expressions), used a bound on the size of the expression to
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case (case x of {p1 → y1 ; ...; pn → yn }) of alts

⇒ case x of {p1 → case y1 of alts
; ...

; pn → case yn of alts }

case c x1 ...xn of { ...; c v1 ...vn → y ; ...}
⇒ let v1 = x1 in

...
let vn = xn in
y

case v of {...; c vs → x ; ...}
⇒ case v of {...; c vs → x [v / c vs ]; ...}

case (let v = x in y) of alts

⇒ let v = x in case y of alts

(let v = x in y) z
⇒ let v = x in y z

(case x of {p1 → y1 ; ...; pn → yn }) z
⇒ case x of {p1 → y1 z ; ...; pn → yn z }

(λv → x ) y
⇒ let v = y in x

let v = x in (case y of {p1 → y1 ; ...; pn → yn })
⇒ case y of {p1 → let v = x in y1

; ...
; pn → let v = x in yn }

where v is not used in y

let v = x in y
⇒ y [v / x ]
where x is a lambda, a variable, or v is used once in y

let v = c x1 ...xn in y
⇒ let v1 = x1 in

...
let vn = xn in
y [v / c v1 ...vn ]

where v1 ...vn are fresh

Fig. 5. Simplification rules

ensure termination, and performed no generalisation. First we give examples of
our supercompiler in use, then we return to examine each of the three choices
we have made.
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3.1 Examples of Supercompilation

Example 1: Supercompiling and Specialisation

main as = map (λb → b+1) as

map f cs = case cs of
[ ] → [ ]
d : ds → f d : map f ds

There are two primary inefficiencies in this example: (1) the map function
passes the f argument invariantly in every call; (2) the application of f is more
expensive than if the function was known in advance.

The supercompilation proceeds by first assigning a new unique name (we
choose h0 ) to map (λb → b+1) as , providing parameters for each of the free
variables in the expression, namely as . We then choose to expand map, and
invoke the simplification rules:

h0 as = map (λb → b+1) as

= case as of
[ ] → [ ]
d : ds → d+1 : map (λb → b+1) ds

We now have a case with a variable as the scrutinee at the root of the ex-
pression, which cannot be reduced further, so we residuate the spine. When
processing the expression map (λb → b+1) ds we spot this to be an alpha re-
naming of the body of an existing generated function, namely h0 , and use this
function:

h0 as = case as of
[ ] → [ ]
d : ds → d+1 : h0 ds

We have now specialised the higher-order argument, passing less data at run-
time. �

Example 2: Supercompiling and Deforestation
The deforestation transformation [31] removes intermediate lists from a traversal.
A similar result is obtained by applying supercompilation, as shown here. Con-
sider the operation of mapping (∗2) over a list and then mapping (+1) over the
result. The first map deconstructs one list, and constructs another. The second
does the same.

main as = map (λb → b+1) (map (λc → c∗2) as)

We first assign a new name for the body of main, then choose to expand the
outer call to map:
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h0 as = case map (λc → c∗2) as of
[ ] → [ ]
d : ds → d+1 : map (λb → b+1) ds

Next we choose to inline the map scrutinised by the case, then perform the
case/case simplification, and finally residuate:

h0 as = case (case as of
[ ] → [ ]
e : es → e∗2 : map (λc → c∗2) es) of

[ ] → [ ]
d : ds → y+1 : map (λb → b+1) ds

= case as of
[ ] → [ ]
d : ds → (y∗2)+1 : map (λb → b+1) (map (λc → c∗2) ds)

= case as of
[ ] → [ ]
d : ds → (y∗2)+1 : h0 ds

Both intermediate lists have been removed, and the functional arguments to
map have both been specialised. �

3.2 Which Function to Inline

During the supercompilation of an expression, at each step some function needs
to be inlined. Which to choose? In most supercompilation work the choice is
made following the runtime semantics of the program. But in a language with
let expressions this may be inappropriate. If a function in a let binding is inlined,
its application when reduced may be simple enough to substitute in the let body.
However, if a function in a let body is inlined, the let body may now only refer
to the let binding once, allowing the binding to be substituted. Let us take
two expressions, based on intermediate steps obtained from real programs (word
counting and prime number calculation respectively):

let x = (≡) $ 1
in x 1 : map x ys

let x = repeat 1
in const 0 x : map f x

In the first example, inlining ($) in the let binding gives (λx → 1 ≡ x ), which is
now simple enough to substitute for x , resulting in (1 ≡ 1:map (λx → 1 ≡ x ) ys)
after simplification. Now map can be specialised appropriately. Alternatively, ex-
panding the map repeatedly would keep increasing the size of expression until the
termination criterion was met, aborting the supercompilation of this expression
without achieving specialisation.

Taking the second example, repeat can be inlined indefinitely. However, by
unfolding the const we produce let x = repeat 1 in 0 : map f x . Since x is
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only used once we substitute it to produce (0 : map f (repeat 1)), which can be
deforested.

Unfortunately these two examples seem to suggest different strategies for un-
folding – unfold in the let binding or unfold in the let body. However, they do
have a common theme – unfold the function that cannot be unfolded infinitely
often. Our strategy can be defined by the unfold function:

unfold x = head (filter (not ◦ terminate) xs ++ xs ++ [x ])
where xs = unfolds x

unfolds f | f is a function = [ inline f ]
unfolds x = [ join spine (sub |+ (i , y))

| let (spine, sub) = split x
, i ← [0 . . length sub], y ← unfolds (sub !! i)]

where xs |+ (i , x ) = zipWith (λj y → if i ≡ j then x else y) [0 . .] xs

The unfolds function computes all possible one-step inlinings, using an in-
order traversal of the abstract syntax tree. The unfold function chooses the first
unfolding which does not cause the supercompilation to terminate. If no such
expression exists, the first unfolding is chosen.

3.3 The Termination Criterion

The original Supero program used a size bound on the expression to determine
when to stop. The problem with a size bound is that different programs require
different bounds to ensure both timely completion at compile-time and efficient
residual programs. Indeed, within a single program, there may be different ele-
ments requiring different size bounds – a problem exacerbated as the size and
complexity of a program increases.

We use the termination criterion suggested by Sørensen and Glück [24] –
homeomorphic embedding. An expression x is an embedding of y, written x� y,
if the relationship can be inferred by the rules:

dive(x, y)
x� y

couple(x, y)
x� y

s� ti for some i
dive(s, σ(t1, . . . , tn))

σ1 ∼ σ2, s1 � t1, . . . , sn � tn
couple(σ1(s1, . . . , sn), σ2(t1, . . . , tn))

The homeomorphic embedding uses the relations dive and couple. The dive
relation checks if the first term is contained as a child of the second term, while
the couple relation checks if both terms have the same outer shell. We use σ to
denote the spine of an expression, with s1, . . . , sn being its subexpressions. We
test for equivalence of σ1 and σ2 using the ∼ relation, a weakened form of equality
where all variables are considered equal. We terminate the supercompilation of
an expression y if on the chain of reductions from main to y we have encountered
an expression x such that x� y.
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In addition to using the homeomorphic embedding, we also terminate if fur-
ther unfolding cannot yield any improvement to the root of the expression. For
example, if the root of an expression is a constructor application, no further
unfolding will change the root constructor. When terminating for this reason,
we always residuate the outer spine of the expression, without applying any
generalisation.

3.4 Generalisation

When the termination criterion has been met, it is necessary to discard infor-
mation about the current expression, so that the supercompilation terminates.
We always residuate the outer spine of the expression, but first we attempt to
generalise the expression so that the information lost is minimal. The paper by
Sørensen and Glück provides a method for generalisation, which works by taking
the most specific generalisation of the current expression and expression which
is a homeomorphic embedding of it.

The most specific generalisation of two expressions s and t, msg(s, t), is pro-
duced by applying the following rewrite rule to the initial triple (x, {x = s}, {x =
t}), resulting in a common expression and two sets of bindings.⎛

⎝ tg
{x = σ(s1, . . . , sn)} ∪ θ1

{x = σ(t1, . . . , tn)} ∪ θ2

⎞
⎠ →

⎛
⎝ tg[x/σ(y1, . . . , yn)]
{y1 = s1, . . . , yn = sn} ∪ θ1

{y1 = t1, . . . , yn = tn} ∪ θ2

⎞
⎠

Our generalisation is characterised by x �	 y, which produces an expression
equivalent to y, but similar in structure to x.

x �	 σ∗(y), if dive(x, σ∗(y)) ∧ couple(x, y)
let f = λvs → x in σ∗(f vs)
where vs = fv(y)\fv(σ∗(y))

x �	 y, if couple(x, y)
let θ2 in tg
where (tg, θ1, θ2) = msg(x, y)

The fv function in the first rule calculates the free variables of an expression,
and σ∗(y) denotes a subexpression y within a containing context σ∗. The first
rule applies if the homeomorphic embedding first applied the dive rule. The idea
is to descend to the element which matched, and then promote this to the top-
level using a lambda. The second rule applies the most specific generalisation
operation if the coupling rule was applied first. We now show an example where
most specific generalisation fails to produce the ideal generalised version.

Example 3

case putStr (repeat ’1’) r of
(r , ) → (r , ())

This expression (which we name x) prints an infinite stream of 1’s. The pairs
and r ’s correspond to the implementation of GHC’s IO Monad [16]. After several
unrollings, we obtain the expression (named x′):
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case putChar ’1’ r of
(r , ) → case putStr (repeat ’1’) r of

(r , ) → (r , ())

The homeomorphic embedding x�x′ matches, detecting an occurrence of the
case putStr ... expression, and the supercompilation of x′ is stopped. The most
specific generalisation rule is applied as msg(x, x′) and produces:

let a = putChar
b = ’1’
c = λr → case putStr (repeat ’1’) r of

(r , ) → (r , ())
in case a b r of

(r , ) → c r

The problem is that msg works from the top, looking for a common root of
both expression trees. However, if the first rule applied by � was dive, the roots
may be unrelated. Using our generalisation, x �	 x′:

let x = λr → case putStr (repeat ’1’) r of
(r , ) → (r , ())

in case putChar ’1’ r of
(r , ) → x r

Our generalisation is superior because it has split out the putStr application
without lifting the putChar application or the constant ’1’. The putChar applica-
tion can now be supercompiled further in the context of the case expression. �

4 Performance Compared with C Programs

The benchmarks we have used as motivating examples are inspired by the Unix
wc command – namely character, word and line counting. We require the pro-
gram to read from the standard input, and write out the number of elements in
the file. To ensure that we test computation speed, not IO speed (which is usu-
ally determined by the buffering strategy, rather than optimisation) we demand
that all input is read using the standard C getchar function only. Any buffering
improvements, such as reading in blocks or memory mapping of files, could be
performed equally in all compilers.

All the C versions are implemented following a similar pattern to Figure 1.
Characters are read in a loop, with an accumulator recording the current value.
Depending on the program, the body of the loop decides when to increment
the accumulator. The Haskell versions all follow the same pattern as in the
Introduction, merely replacing words with lines, or removing the words function
for character counting.

We performed all benchmarks on a machine running Windows XP, with a
3GHz processor and 1Gb RAM. All benchmarks were run over a 50Mb log file,
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Fig. 6. Benchmarks with C, Supero+GHC and GHC alone

repeated 10 times, and the lowest value was taken. The C versions used GCC1

version 3.4.2 with -O3. The Haskell version used GHC 6.8.1 with -O2. The Supero
version was compiled using our optimiser, then written back as a Haskell file,
and compiled once more with GHC 6.8.1 and -O2.

The results are given in Figure 6. In all the benchmarks C and Supero are
within 10% of each other, while GHC trails further behind.

4.1 Identified Haskell Speedups

During initial trials using these benchmarks, we identified two unnecessary bot-
tlenecks in the Haskell version of word counting. Both were remedied before the
presented results were obtained.

Slow isSpace function. The first issue is that isSpace in Haskell is much more
expensive than isspace in C. The simplest solution is to use a FFI (Foreign
Function Interface) [16] call to the C isspace function in all cases, removing this
factor from the benchmark. A GHC bug (number 1473) has been filed about the
slow performance of isSpace.

Inefficient words function. The second issue is that the standard definition of
the words function (given in Figure 7) performs two additional isSpace tests per
word. By appealing to the definitions of dropWhile and break it is possible to
show that in words the first character of x is not a space, and that if y is non-
empty then the first character is a space. The revised words′ function uses these
facts to avoid the redundant isSpace tests.

4.2 Potential GHC Speedups

We have identified three factors limiting the performance of residual programs
when compiled by GHC. These problems cannot be solved at the level of Core
1 http://gcc.gnu.org/

http://gcc.gnu.org/
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words :: String→ [String ]
words s = case dropWhile isSpace s of

[ ]→ [ ]
x → w : words y

where (w , y) = break isSpace x

words′ s = case dropWhile isSpace s of
[ ] → [ ]
x : xs → (x : w) : words′ (drop1 z)

where (w , z) = break isSpace xs

drop1 [ ] = [ ]
drop1 (x : xs) = xs

Fig. 7. The words function from the Haskell standard libraries, and an improved words′

transformations. We suspect that by fixing these problems, the Supero execution
time would improve by between 5% and 15%.

Strictness inference. The GHC compiler is overly conservative when determining
strictness for functions which use the FFI (GHC bug 1592). The getchar function
is treated as though it may raise an exception, and terminate the program,
so strict arguments are not determined to be strict. If GHC provided some
way to mark an FFI function as not generating exceptions, this problem could
be solved. The lack of strictness information means that in the line and word
counting programs, every time the accumulator is incremented, the number is
first unboxed and then reboxed [19].

Heap checks. The GHC compiler follows the standard STG machine [15] design,
and inserts heap checks before allocating memory. The purpose of a heap check
is to ensure that there is sufficient memory on the heap, so that allocation of
memory is a cheap operation guaranteed to succeed. GHC also attempts to lift
heap checks: if two branches of a case expression both have heap checks, they are
replaced with one shared heap check before the case expression. Unfortunately,
with lifted heap checks, a tail-recursive function that allocates memory only upon
exit can have the heap test executed on every iteration (GHC bug 1498). This
problem affects the character counting example, but if the strictness problems
were solved, it would apply equally to all the benchmarks.

Stack checks. The final source of extra computation relative to the C version are
stack checks. Before using the stack to store arguments to a function call, a test
is performed to check that there is sufficient space on the stack. Unlike the heap
checks, it is necessary to analyse a large part of the flow of control to determine
when these checks are unnecessary. It is not clear how to reduce stack checks in
GHC.
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5 Performance Compared with GHC Alone

The standard set of Haskell benchmarks is the nofib suite [14]. It is divided
into three categories of increasing size: imaginary, spectral and real. Even small
Haskell programs increase in size substantially once libraries are included, so
we have limited our attention to the benchmarks in the imaginary section. All
benchmarks were run with parameters that require runtimes of between 3 and
5 seconds for GHC.

We exclude two benchmarks, paraffins and gen regexps. The paraffins bench-
mark makes substantial use of arrays, and we have not yet mapped the array
primitives of Yhc onto those of GHC, which is necessary to run the transformed
result. The gen regexps benchmark tests character processing: for some reason
(as yet unknown) the supercompiled executable fails.

The results of these benchmarks are given in Figure 8, along with detailed
breakdowns in Table 1. All results are relative to the runtime of a program
compiled with GHC -O2, lower numbers being better. The first three variants
(Supero, msg, spine) all use homeomorphic embedding as the termination cri-
terion, and �	, msg or nothing respectively as the generalisation function. The
final variant, none, uses a termination test that always causes a residuation.
The ‘none’ variant is useful as a control to determine which improvements are
due to bringing all definitions into one module scope, and which are a result of
supercompilation. Compilation times ranged from a few seconds to five minutes.

The Bernouilli benchmark is the only one where Supero is slower than GHC
by more than 3%. The reason for this anomaly is that a dictionary is referred to
in an inner loop which is specialised away by GHC, but not by Supero.

With the exception of the wheel-sieve2 benchmark, our �	 generalisation strat-
egy performs as well as, or better than, the alternatives. While the msg general-
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Table 1. Runtime, relative to GHC being 1

Program Supero msg spine none Size Memory
bernouilli 1.41 1.53 1.58 1.18 1.10 0.97
digits-of-e1 1.03 1.16 1.03 1.06 1.01 1.11
digits-of-e2 0.72 0.72 0.72 1.86 1.00 0.84
exp3 8 1.00 1.00 1.00 1.01 0.99 1.00
integrate 0.46 0.47 0.46 4.01 1.02 0.08
primes 0.57 0.57 0.88 0.96 1.00 0.98
queens 0.79 0.96 0.83 1.21 1.01 0.85
rfib 0.97 0.97 0.97 1.00 1.00 1.08
tak 0.72 1.39 1.39 1.39 1.00 1.00
wheel-sieve1 0.98 1.11 1.42 5.23 1.19 2.79
wheel-sieve2 0.87 0.63 0.89 0.63 1.49 2.30
x2n1 0.58 0.64 1.61 3.04 1.09 0.33

Program is the name of the program; Supero uses the �� generalisation method; msg
uses the msg function for generalisation; spine applies no generalisation operation;
none never performs any inlining; Size is the size of the Supero generated executable;
Memory is the amount of memory allocated on the heap by the Supero executable.

isation performs better than the empty generalisation on average, the difference
is not as dramatic.

5.1 GHC’s Optimisations

For these benchmarks it is important to clarify which optimisations are per-
formed by GHC, and which are performed by Supero. The ‘none’ results show
that, on average, taking the Core output from Yhc and compiling with GHC
does not perform as well as the original program compiled using GHC. GHC
has two special optimisations that work in a restricted number of cases, but
which Supero produced Core is unable to take advantage of.

Dictionary Removal. Functions which make use of type classes are given an addi-
tional dictionary argument. In practice, GHC specialises many such functions by
creating code with a particular dictionary frozen in. This optimisation is specific
to type classes – a tuple of higher order functions is not similarly specialised.
After compilation with Yhc, the type classes have already been converted to
tuples, so Supero must be able to remove the dictionaries itself. One benchmark
where dictionary removal is critical is digits-of-e2.

List Fusion. GHC relies on names of functions, particularly foldr/build [21], to
apply special optimisation rules such as list fusion. Many of GHC’s library func-
tions, for example iterate, are defined in terms of foldr to take advantage of these
special properties. After transformation with Yhc, these names are destroyed, so
no rule based optimisation can be performed. One example where list fusion is
critical is primes, although it occurs in most of the benchmarks to some extent.
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6 Related Work

Supercompilation [29,30] was introduced by Turchin for the Refal language [28].
Since this original work, there have been various suggestions of both termina-
tion strategies and generalisation strategies [9,24,27]. The original supercompiler
maintained both positive and negative knowledge, but our implementation is a
simplified version maintaining only positive information [23].

The issue of let expressions in supercompilation has not previously been a
primary focus. If lets are mentioned, the usual strategy is to substitute all linear
lets and residuate all others. Lets have been considered in a strict setting [8],
where they are used to preserve termination semantics, but in this work all strict
lets are inlined without regard to loss of sharing. Movement of lets can have a
dramatic impact on performance: carefully designed let-shifting transformations
give an average speedup of 15% in GHC [20], suggesting let expressions are
critical to the performance of real programs.

Partial evaluation. There has been a lot of work on partial evaluation [7], where
a program is specialised with respect to some static data. The emphasis is on
determining which variables can be entirely computed at compile time, and
which must remain in the residual program. Partial evaluation is particularly
appropriate for specialising an interpreter with an expression tree to generate
a compiler automatically, often with an order of magnitude speedup, known
as the First Futamura Projection [4]. Partial evaluation is not usually able to
remove intermediate data structures. Our method is certainly less appropriate
for specialising an interpreter, but in the absence of static data, is still able to
show improvements.

Deforestation. The deforestation technique [31] removes intermediate lists in com-
putations. This technique has been extended in many ways to encompass higher
order deforestation [10] and work on other data types [3]. Probably the most prac-
tically motivated work has come from those attempting to restrict deforestation,
in particular shortcut deforestation [5], and newer approaches such as stream fu-
sion [2]. In this work certain named functions are automatically fused together.
By rewriting library functions in terms of these special functions, fusion occurs.

Whole Program Compilation. The GRIN approach [1] uses whole program com-
pilation for Haskell. It is currently being implemented in the jhc compiler [12],
with promising initial results. GRIN works by first removing all functional val-
ues, turning them into case expressions, allowing subsequent optimisations. The
intermediate language for jhc is at a much lower level than our Core language,
so jhc is able to perform detailed optimisations that we are unable to express.

Lower Level Optimisations. Our optimisation works at the Core level, but even
once efficient Core has been generated there is still some work before efficient ma-
chine code can be produced. Key optimisations include strictness analysis and un-
boxing [19]. In GHC both of these optimisations are done at the Core level, using a
Core language extended with unboxed types. After this lower level Core has been
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generated, it is then compiled to STG machine instructions [15], from which assem-
bly code is generated. There is still work being done to modify the lowest levels to
take advantage of the current generation of microprocessors [11]. We rely on GHC
to perform all these optimisations after Supero generates a residual program.

7 Conclusions and Future Work

Our supercompiler is simple – the Core transformation is expressed in just 300
lines of Haskell. Yet it replicates many of the performance enhancements of
GHC in a more general way. We have modified some of the techniques from
supercompilation, particularly with respect to let bindings and generalisation.
Our initial results are promising, but incomplete. Using our supercompiler in
conjunction with GHC we obtain an average runtime improvement of 16% for
the imaginary section of the nofib suite. To quote Simon Peyton Jones, “an
average runtime improvement of 10%, against the baseline of an already well-
optimised compiler, is an excellent result” [18].

There are three main areas for future work:
More Benchmarks. The fifteen benchmarks presented in this paper are not

enough. We would like to obtain results for larger programs, including all
the remaining benchmarks in the nofib suite.

Runtime Performance. Earlier versions of Supero [13] managed to obtain
substantial speed ups on benchmarks such as exp3 8. The Bernouilli bench-
mark is currently problematic. There is still scope for improvement.

Compilation Speed. The compilation times are tolerable for benchmarking
and a final optimised release, but not for general use. Basic profiling shows
that over 90% of supercompilation time is spent testing for a homeomorphic
embedding, which is currently done in a näıve manner – dramatic speedups
should be possible.

The Programming Language Shootout2 has shown that low-level Haskell can
compete with low-level imperative languages such as C. Our goal is that Haskell
programs can be written in a high-level declarative style, yet still perform
competitively.

Acknowledgements. We would like to thank Simon Peyton Jones, Simon Marlow
and Tim Chevalier for help understanding the low-level details of GHC, and
Peter Jonsson for helpful discussions and presentation suggestions.
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Abstract. Type checkers for dependent types need to evaluate user de-
fined functions during type checking. For this, current implementations
typically use an interpreter, which has drawbacks. We show, how at this
stage compiled code can be used for a language with lazy evaluation.

1 Introduction

This article gives an early report on the implementation of Ulysses, a lazy func-
tional language with dependent types. These allow a more detailed specification
of functional behavior than possible in languages without dependent types. But
the increased expressiveness comes at a cost of increased implementation effort.

Ulysses is quite similar to Cayenne [1]. One of the similarities is, that there
is no sharp distinction between terms and types, the only difference is that some
expressions may be used as types while others may not. The consequences of
identifying terms and types are significant: functions can be used not only to
construct the usual terms like natural numbers, lists and so on, but also to
construct types. Hence, we need to evaluate some user defined functions during
type checking time. To circumvent the drawbacks of interpreted code, we use
compilation to native machine code instead, which is complicated by the spe-
cial requirements of evaluation for dependent type checking, namely evaluation
under λ abstractions and case analyses. To our knowledge, this is the first imple-
mentation using compiled code during type checking for a lazy language. Earlier
work exists that is restricted to eager evaluation [2].

In the following, we introduce the language Ulysses (Sect. 2). We adapt former
work on strict languages to the needs of lazy evaluation (Sect. 3), and describe the
necessary compilation technique (Sect. 4) and runtime system (Sect. 5). This leads
to a working system, but we implemented some further improvements (Sect. 6).
We give some notes on implementation details (Sect. 7), a comparison with related
work (Sect. 8) and directions for future research (Sect. 9).

2 A Description of Ulysses

It is common in functional languages to have type constructors which may be
regarded as functions from types to types. In Haskell, for examples, Maybe can
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be applied to the type Integer, yielding a new type Maybe Integer. But the
possibilities to define type constructors are usually restricted to the definition of
parametric algebraic data types. In Ulysses, such restrictions do not exist. It is
possible to write arbitrary functions that take terms to new types. Comparable
with Cayenne, type checking Ulysses programs is not decidable. The user has
to ensure, that no infinite recursions are used in functions at the type level. We
believe that this not a defect of our design, since we expect that in the same
manner that programmers nowadays have to ensure not to write nonterminating
programs, they will be able learn how to implement terminating type level func-
tions. As a debugging aid, it is possible to add a timeout to the type checker,
and to indicate the type expression that caused the lengthy evaluation. The pro-
grammer would have to search for a reason for a nontermination or increase the
amount of time he is willing to wait.

An example for recursive type definitions in Ulysses is shown in Fig. 1.
The syntax is similar to Haskell. Line 2 gives the well known definition of
Peano numbers. Line 1 gives a type declaration for nat, #0 is the type of all
(small) types. More interesting is the definition of vector in Lines 4–6. The first
argument to vector is of type #0, so it is a type by itself. The second argument
is a natural number, and the result type is #0 again, so this function computes
a type when given a term of type nat as an argument. This computed type is
defined by recursion, the base case is shown in Line 5: A vector of length zero can
only be created by the constructor Nil which takes no arguments. Line 6 defines
a vector of length S x to be created by the constructor Cons, which prepends an

1 nat :: #0;

2 nat = data Z | S nat;

3
4 vector :: #0 -> nat -> #0;

5 vector a Z = data Nil;

6 vector a (S x) = data Cons a (vector a x);

7
8 add :: nat -> nat -> nat;

9 add Z b = b;

10 add (S a) b = S (add a b);

11
12 append :: forall a :: #0 .

13 forall n :: nat . vector a n ->

14 forall m :: nat . vector a m ->

15 vector a (add n m);

16 append a Z Nil m vm = vm;

17 append a (S p) (Cons ft rt) m vm =

18 Cons ft (append a p rt m vm)

Fig. 1. Vectors as lists with fixed length
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element of type a (a parameter to our definition) to a vector of length x. So a
value of type vector a n is guaranteed to contain exactly n elements of type a.

Lines 8–10 define the addition of natural numbers as usual. Lines 12–18 give
the definition of the append function for vectors. Using dependent types, its type
declaration gives a good specification of this function. The type can be read as
follows: for any type a, given a natural number n, and a vector containing n
elements of type a, and furthermore a second natural number m together with a
vector of size m, return a vector containing n plus m elements.

In the definition of the recursive case in Lines 17 and 18, the resulting type
vector a (add n m) can be narrowed using the information from the pattern
matching, n must be equal to S p, so we can do the following reductions which
are necessary to type check the right hand side:

vector a (add (S p) m)
�→ vector a (S (add p m))
�→ data Cons a (vector a (add p m))

To perform these reductions, implementations typically use an interpreter
during type checking. But this has several disadvantages:

– Interpreted code has reduced performance compared to compiled code.
– When writing a compiler, an additional interpreter is needed just for type

checking, and when the language is extended later on, two different parts of
code have to be adapted: the compiler as well as the interpreter.

– This gets worse in the presence of even small differences in the semantics of
the interpreter and the compiler: computations giving a different result at
runtime than during type checking will most probably violate type safety.

However, when replacing an interpreter by a compiler in this setting, we have
to keep in mind that the terms that have to be reduced may contain free vari-
ables: in the above reductions, all redexes contain not only the type variable a,
but also two unknown numbers, p and m. Code generated by usual compilers
cannot handle these free variables. Moreover, it is necessary to compute strong
normal forms, while code generated by usual compilers computes only weak head
normal forms. Hence, a compiler for our type checker for dependently typed lan-
guages must cope with evaluation under λ abstraction and case analyses.

Specification of Ulysses. The abstract grammar of Ulysses is shown in the
upper part of Fig. 2. The syntactic category e of expressions contains (in this
order) variables, constructors, applictions, abstractions, type universes, function
types, dependent products and data types. An Ulysses program consists of a
set of declarations (decl), each consisting of a type signature x :: e and a set of
equations defining x (eqx) via pattern matching over several patterns (p).

The lower part of Fig. 2 shows the evaluation rules of Ulysses. Substitut-
ing e for x in e′ is denoted by e′[x/e]. Besides β reductions, equations can be
unfolded when a applicable equation is contained in the program P under con-
sideration, when the function arguments match the corresponding patterns. The
matching relation 	 (not defined here) reduces subexpression if this is necessary
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e ::= x | C | e1e2 | λx.e (1)

| #n | e1 -> e2 | forall x :: e1.e2 (2)

| data (C1 e1,1 . . . e1,l) . . . (Cm em,1 . . . em,k) (3)

decl ::= x :: e eqx
1 . . . eqx

n (4)

eqx ::= x p1 . . . pn = e (5)

p ::= C p1 . . . pn | x (6)

Beta

(λx.e1)e2 �→ e1[x/e2]

Equation

(x p1 . . . pn = b) ∈ P p1 . . . pn �σ e1 . . . en

x e1 . . . en �→ σ(b)

Context
e �→ e′

K[e] �→ K[e′]

K ::= [] | C e1 . . . en [] | Ke | λx.K | e -> K | K-> e (7)

| forall x :: K.e | forall x :: e.K (8)

| data (C1 e1,1 . . . e1,l) . . . K . . . (Cm em,1 . . . em,k) (9)

Fig. 2. Abstract grammar and evaluation of Ulysses programs

Conv
Γ � e :: t1 t1 ↔∗ t2

Γ � e :: t2

Var
x :: t ∈ Γ
Γ � x :: t

Cons

(C t1 . . . tn) ∈ {(C1 e1,1 . . . e1,l), . . . , (Cm em,1 . . . em,k)}
Γ � C :: t1 -> . . . -> tn -> data (C1 e1,1 . . . e1,l) . . . (Cm em,1 . . . em,k)

App
Γ � e1 :: forall x :: t1.t2 Γ � e2 :: t1

Γ � e1e2 :: t2[x/e2]

Abs

Γ, x1 :: t1 � e :: t2[x2/x1]

Γ � λx1.e :: forall x2 :: t1.t2
Univ

Γ � #n :: #n + 1

Forall

Γ � t1 :: #n1 Γ, x :: t1 � t2 :: #n2 m = max(n1, n2)

Γ � forall x :: t1.t2 :: #m

Data

Γ � t1,1 :: #n1,1 . . . Γ � tm,k :: #nm,k m = max(n1,1, . . . , nm,k)

Γ � data (C1 t1,1 . . . t1,l) . . . (Cm em,1 . . . tm,k) :: #m

Fig. 3. Typing rules for Ulysses expressions
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to decide whether a pattern matches an expression, and yields a substitution σ,
which is applied to the right hand side of the defining equation. Reduction takes
place in all evaluation contexts K. While �→defines call by name reduction, our
implementation uses subexpression sharing to implement call by need.

The rules specifying the type system are shown in Fig. 3. For better readabil-
ity, we use two different meta-variables e and t both ranging over expressions,
choosing t when the expression is used as a type. The function space is a spacial
case of the dependent product constructed by forall when the bound variable
is not used in the result type, and hence not shown in the typing rules.

Rule Conv, using the transitive, reflexive and symmetric closure ↔∗of the
reduction relation �→, is the key rule for our work, enforcing evaluation during
type checking.

3 Weak Normalization and Readback

Our approach does not compute strong normal forms of expressions in one big
step. Instead, we use an adopted version of a well known weak head evaluator,
examine the weak head normal forms computed by this evaluator, and extract
remaining redexes. These can then be recursively reduced.

This proceeding is not new, it was introduced by Grégoire and Leroy [2].
However, they restricted their focus on strict evaluation, using the ZAM ab-
stract machine as a weak evaluator. Our work employs lazy evaluation, taking
the spineless tagless g-machine by Peyton Jones [3] as a weak evaluator. The
differences between ZAM and STG machine are quite significant, so transferring
the existing work from strict evaluation to lazy evaluation is nontrivial.

We adopt the definition from [2] of the strong normalization function N to
the needs of the STG machine. This function is defined in terms of two helper
functions. The weak evaluation function V reduces terms to weak head normal
forms, the readback function R scrutinizes the resulting weak head normal form,
extracts remaining redexes, and applies N recursively on unevaluated subterms.

Definition 1. The normalization function N is defined as

N (e) = R(V(e)).

The weak evaluation of Ulysses expressions is done by compiling them first to
STG code and then to native machine code (cf. Sect. 4). This machine code is
executed, and the execution stops when a weak head normal form is reached.
Its structure can then be extracted by interpreting the final machine state (cf.
Sect. 5).

In the following definition, the subexpressions e and ei are machine represen-
tations of expressions, i.e. closure pointers into the heap.

Definition 2. A weak head normal form is given by one of four cases:

v ::= C e1 . . . en (10)
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| x e1 . . . en (11)
| λx . e (12)
| case Σ[ x e1 . . . en ] (13)

Line 10 describes the application of a constructor to n argument expressions
(n = 0 for nullary constructors), while Line 11 denotes a free variable x, again
applied to n arguments (n = 0 for no arguments). Line 12 is a unsaturated
function, i. e. a function expecting at least one additional argument.

The last case, number 13, is encountered when a case distinction is to be made
to implement pattern matching, and the scrutinee is not a constructor term, but
an application of a free variable to zero or more arguments. The context Σ fixes
the continuation for each possible constructor, i. e. the resulting computation
after the case distinction. It is defined as the state of the machine stacks and
registers, according to Sect. 4.3.

Next, we define the readback functionR by case analysis on weak head normal
forms.

Definition 3. The readback function R is defined as

R(C e1 . . . en) = C N (e1) . . . N (en) (14)
R(x e1 . . . en) = x N (e1) . . . N (en) (15)

R(λx . e) = λy .N ((λx . e) y) (y fresh) (16)
R(case Σ[ x e1 . . . en ]) = case x N (e1) . . . N (en) of (17)

{ Ci �xi → N (Σ[ Ci �xi ]) }
(where Ci are the possible constructors
and �xi fresh)

Equation 14 neatly shows the idea of strong normalization by weak evaluation
and readback: When a constructor term has been evaluated, the resulting normal
form again is a constructor term. However, the constructor arguments e1 . . . en

have not necessarily been evaluated in the first step, because we employ lazy
evaluation. Hence, these arguments have to be normalized by N , which results
in their (weak) evaluation and subsequent readback (cf. the definition of N in
Def. 1), which in turn might result in further weak evaluations, and so on.

Equation 15 is completely analogous: when a free variable is applied to zero
or more arguments, we have to normalize these arguments.

In equation 16, evaluation under λ is described. We generate a fresh variable
y, normalize the expression (λx . e) y where y is free, and the resulting normal
form is placed beneath a λ abstraction. This might look complicated at a first
glance, an usual definition would involve substitution, resulting in the normal-
ization of e[x/y] instead of the application (λx . e) y. However, it is important
that the abstraction λx . e given as argument to R remains unchanged on the
right hand side of the definition. Recall that this abstraction is represented by
heap closures of our weak evaluator. It is quite comfortable not being forced to
define substitution on these structures, while it is quite easy to push additional
arguments on a machine stack.
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When evaluation gets stuck because a case analysis of an application of a free
variable cannot be reduced further, we have to evaluate all possible branches
of the analysis, as shown in Def. 17. We generate all possible constructors Ci,
applied to fresh variables �xi according to their arity. Which constructors (and
with which arity) are needed can be deduced from the type of the free variable
x and its arguments. Details to this can be found in Sect. 5.

Every new constructor application is then executed in context Σ, where exe-
cuting an expression e in context Σ, i.e. Σ[e], means entering the closure for e
in the machine state given by Σ (cf. Sect. 5). As mentioned, this context cap-
tures the branches for the case analysis, so each Σ[ Ci �xi ] is normalized to the
corresponding case arm for Ci �xi. Since we use lazy evaluation, the arguments
e1 . . . en may be unevaluated, so we normalize them using N , too.

4 The Spineless Tagless G-Machine

Up to now, we treated the weak evaluation function V fairly abstract. In this
section we describe the spineless tagless g-machine, which we used to imple-
ment a lazy weak evaluator. A more complete description can be found in [3].
Here, we will focus on the aspects of the STG machine that are relevant for our
modifications and the machine state interpretation we detail in Sect. 5.

Every Ulysses expression that has to be normalized is translated to native
machine code in two steps: first, we create STG code, which looks like a restricted
and annotated functional programming language, and from this we generate
target machine assembly code.

4.1 The STG Language

STG code is formed according to the grammar in Fig. 4. We describe a simplified
variant of STG code. The original formulation is prepared for primitive values
to deal e.g. with unboxed integers. Additionally, we do not distinguish recursive
and nonrecursive let bindings, we treat all bindings as recursive.

The first form of STG expressions is a constructor application (Line 18 in
Fig. 4). However, the constructor has to be saturated, i.e. all arguments according
to the arity of the constructor C have to be present. Moreover, the constructor
arguments are restricted to be variables.

A function application (Line 19) is restricted in a similar manner: the function
x and all arguments given have to be variables. No anonymous functions exist in
this intermediate language, they have to be bound globally or locally. Function
applications do not have to be saturated but can be partial.

Local definitions are bound by let expressions (Line 20). Each binding b
associates a so-called lambda form of the syntactic category lf with a name. A
lambda form (Line 23) is annotated with two lists of variables. It abstracts over
the variables y1 . . . ym, defining an m-ary function. The list x1 . . . xn gives the
free variables of the body e, excluding the abstracted variables yi.

Additionally, each lambda form is annotated with an update flag π which can
be u or n. These flags are necessary for the implementation of lazy evaluation,
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e ::= C {x1 . . . xn} (18)

| x {x1 . . . xn} (19)

| let bs in e (20)

| case e of as (21)

bs ::= x1 = lf1; . . . ; xn = lfn (22)

lf ::= {x1 . . . xn} \π {y1 . . . ym} → e (23)

π ::= u | n (24)

as ::= a1; . . . ; an; d (25)

a ::= C {x1 . . . xn} → e (26)

d ::= → e (27)

Fig. 4. Grammar for STG code

where each closure is evaluated only when necessary, but at most once. To ensure
this, closures are overwritten with their weak head normal form after their first
evaluation. However, not every closure has to be overwritten: if the bound ex-
pression already is in weak head normal form (i.e. an abstraction with nonempty
{y1 . . . ym}, or a constructor application), or the compiler can prove that it will
be evaluated only once anyway, the binding is flagged with n to signal that no
update code has to be generated.1 Otherwise, the binding is flagged with u to
cause the generation of update code. For example, in the expression

let compose = {} \n {f g x} →
let gx = {g x} \u {} → g {x}
in f {gx}

in ...

compose is defined in weak head normal form, since it abstracts over f, g and
x, and is flagged with n accordingly. By contrast gx is not in weak head normal
form, g and x are merely free variables, so the flag is u and the closure of gx will
be overwritten as soon as it is evaluated the first time2.

Case analysis (Line 21) can be done on arbitrary expressions, but is restricted
to flat patterns without nesting. The default case is expressed using the pattern
_, matching every expression.

4.2 Translating Ulysses to STG Code

The translation of Ulysses code to the STG language is straight forward. Func-
tion arguments that are not yet simple variables are bound by new local variables.
The same holds for constructor arguments, furthermore we have to saturate

1 Avoiding unnecessary updates enhances efficiency.
2 Of course, each application of compose will create a new closure gx.
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constructors by η expansion: a binary constructor Pair applied to a single
argument x, i.e. Pair x, becomes

let f = {x} \n {y} → Pair x y in f.

Nested patterns from Ulysses definitions are flattened by a well known pattern
matching compiler, as described in [4].

Besides the usual feature set at the term level, we need a representation of
Ulysses types. This is done by introducing a reserved constructor for each
predefined type constructor. The simplest case is the function space, a type
a -> b is translated to the constructor application Fun a b.

The encoding of type universes and data types makes use of unboxed integers.
For instance, we represent #2 by Universe 2, and e.g. data Nothing | Just a
as Data 1 2 a. In the latter case, 1 and 2 are the tags for the constructors
Nothing and Just, and their arity can be seen by the number of boxed values
after the constructor tag, in this case 0 and 1, respectively. Note that this is
the only place where we make use of unboxed integers, as we implemented only
limited support for them in our prototype implementation.

Dependent product types are represented by the reserved constructor Forall,
taking as arguments the representations of argument and result types. To make
the necessary substitutions in the result type possible, we use a technique that
was used already in [5]. The result type is not stored directly, but as a function
taking a member of the argument type to a type representation. The Ulysses

type of the identity function forall t :: #0 . t -> t is thus represented as

let x = {} \n {} → Universe 0;
y = {} \n {t} → Fun t t

in Forall x y

which allows to replace t during type checking with a concrete type by extracting
y from the constructor expression, and applying it to the needed type.

4.3 Executing STG Code on Conventional Machines

STG code can be easily translated to machine code for execution on traditional
hardware. We next give an overview of the memory layout and operational be-
havior of the resulting machine programs.

Our machine state Σ consists of

– a heap which contains closures, each consisting of one code pointer, a se-
quence of pointers to the values of the free variables used in this code, and
two words with meta information about the closure, namely the size, and
whether a variable is bound to an unboxed integer instead of a pointer (only
used for the implementation of the reserved constructor Data, cf. Sect. 4.2),

– a closure register Rclosure, pointing to the currently evaluated closure,
– an argument stack, containing pointers to closures in the heap, for passing

arguments to functions,
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– a continuation stack, holding code pointers, and a tag return register Rtag,
containing a small integer assigned to the individual constructors for the
implementation of case analyses, and

– an update stack of update frames, for bookkeeping closures that have to be
overwritten as soon as they are evaluated to weak head normal form.

Function Application. We implement function calls following the push/enter
model: we push all arguments onto the argument stack, and enter the function.
Entering a function is done in two steps: first, load the address of the function’s
closure into the closure register, and second jump to the function body. Since
the STG language does not allow nested function applications, this is a tail call,
and no return address has to be remembered. So we translate an STG function
application f {x y} to following pseudo assembler code:

push-argument y
push-argument x
enter f

Constructors and Case Analyses. Constructor applications usually occur
as scrutinees within case analyses. When a case expression is evaluated, a re-
turn address is pushed onto the continuation stack. Next, the evaluation of the
scrutinee is started. When the scrutinee is finally evaluated to a constructor
application, the constructor tag is loaded into the tag return register Rtag and
a pointer to a closure containing the constructor arguments is loaded into the
closure register Rclosure. These registers now have to be passed to the code of
the case analysis, so a jump to the topmost code pointer on the continuation
stack is taken. At the jump target, the continuation is removed from the stack,
and the tag is analyzed. The constructor arguments can be accessed through the
closure register. Accordingly, the STG expression

case e1 of { C x y → e2; _ → e3 }

is compiled to the following pseudo assembler:

push-continuation l
� code for e1 �

l: pop-continuation
compare Rtag � tag reserved for C�
jump-if-not-equal d
� code for e2 �

d: � code for e3 �
and a corresponding constructor application C {a b} is translated to3

Rclosure := allocate l, {a b}
l: Rtag := � tag reserved for C�

jump-continuation

3 Here, allocate allocates heap space for a new closure and fills it with the given code
pointer and free variables.
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Local Bindings. For let bindings, we allocate on the heap a closure for each
bound variable. The code pointers of these closures point to the compiled bodies
of the lambda forms. The current values of the free variables, which are pointers
to other closures, are saved into the corresponding closure fields. After that,
evaluation continues with the body of the let expression. Note that due to the
lazy semantics no evaluation of the bound variables is triggered now. A binding
with update flag n as e. g.

let v = {x y} \n {} → e1 in e2

is thus translated to
allocate l, {x y}
� code for e2 �

l: � code for e1 �
When the closure shall be updated after its first evaluation, the code of the

new closure is preceeded by pushing an update frame that contains the current
closure pointer (pointing to the memory location to be overwritten), and the
current argument stack content4. Next, the argument stack is emptied to signal
a necessary update to partial function applications. Thus a binding with update
flag u as e. g.

let v = {x y} \u {} → e1 in e2

is compiled to
allocate l, {x y}
� code for e2 �

l: push-update-frame
empty-argument-stack
� code for e1 �

Accordingly, each function checks whether all expected arguments are present
and, if not, calls a global routine updatePAP (update partial application) that

– overwrites the closure pointed to by the topmost update frame with a par-
tially applied function closure,

– removes the update frame from the update stack,
– restores the argument stack,
– and finally re-enters the current closure.

So we translate

let v = {} \n {x y} → e1 in e2

to the assembly code
allocate l, {x y}
� code for e2 �

l: compare-argument-stack-length 2
jump-if-less updatePAP
� code for e1 �

4 In [3] you can find a description how this can be done by fast pointer manipulations.
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This allows to update closures with function values, but we need to find a
way for constructor values, too. This can be done quite elegant by merging the
update and the continuation stack, pushing update frames and continuation onto
the same stack. Now, we can arrange update frames so that the topmost word
on the stack contains a pointer to a routine updateConstructor that overwrites
the closure pointed to by the update frame with an indirection to the current
closure, removes the update frame, and jumps to the now topmost pointer on the
stack. So a constructor can simply jump to the topmost pointer on the merged
stack, which points either to the update routine or to the case analysis code.

5 Runtime System

Evaluating type expressions to normal forms by running machine code requires
a special runtime system with two main tasks:

– The different weak head normal forms (cf. Def. 2) have to be discriminated,
and their components have to be extracted from the machine state.

– To evaluate under λ and case, we need to generate free variables. They are
carefully designed to fit to the generated machine code, so that we are not
forced to generate special machine code that deviates from traditional STG
compilers and might have poor performance.

5.1 Constructor Expressions

To identify final machine states that constitute constructor expressions we ex-
ploit that each constructor, after loading the tag return register and closure
pointer, just takes a jump to the topmost address on the continuation stack. So,
before we start running any machine code, we just push a special exit continua-
tion on the continuation stack. The corresponding code finds the constructor tag
and arguments via the respective registers, and can return them to the readback
function (cf. Def. 3) for recursive evaluation of the constructor arguments.

5.2 Unsaturated Functions

To recognize unsaturated functions, we utilize the fact that each function starts
evaluation by checking whether enough arguments are present on the stack. If
this check fails, this usually means that an update has to be performed and the
global function update routine is jumped to. When an update frame is found, a
closure is overwritten and additional arguments are restored on the stack. But
if the update stack is empty, we know that the weak head normal form of the
overall expression is an unsaturated function, so we return a λ abstraction to the
readback function, which is responsible for creating a fresh free variable, pushing
it onto the argument stack and reentering the last evaluated closure.

At this point we have introduced an additional check compared to code gen-
erated by traditional compilers using STG intermediate code: when not enough
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function arguments are present on the argument stack, we have to check whether
the update stack is empty. Usually, a restricted top level type ensures that this
does not happen. However, this check occurs only at a single code location in
updatePAP. So it is possible to link this routine during runtime, opposed to
evaluation at type checking time, to a simpler version omitting this check.

5.3 Free Variables

Free variables are the most intricate part of our implementation. They originate
from evaluations under λ abstractions, where they were pushed onto the argu-
ment stack, or evaluations under case, where constructor expressions with free
variables in argument positions were created.

Code generated from STG intermediate code has a distinguishing property
from many other compilation schemes: constructor closures and function clo-
sures are entered in the same way, but execute very different code. While the
former take a jump to a code address left on the continuation stack, the lat-
ter expect arguments on the stack and start some computation. So we need an
implementation of free variables prepared for both scenarios.

But luckily one invariant exists in both cases: entering a free variable means
a weak head normal form has been reached. We just have to find out, whether it
is a free variable application (Def. 2, Line 11) or a case analysis of a free variable
application (Def. 2, Line 13), and collect eventual arguments from the stack.

In our system, we implemented free variables as follows. Each free variable is
represented by a closure on the heap. All free variables share a common code
pointer into the runtime system. Every variable closure contains an identifica-
tion number, to recognize several occurrences of the same variable. Moreover,
every variable is annotated with its type, to allow us to select the right behavior
when it is entered. As a last component, every free variable closure contains a
list of arguments to which it is applied. This list is empty when a fresh variable
is created but, when a closure is updated with a free variable application, some
arguments might have been accumulated. Thus, the implementation of free vari-
ables has no additional cost for code not containing free variables, i.e. we need
no explicit checks before entering closures.

When a free variable is entered, the runtime system starts a loop that in-
terprets the type annotation of the variable in the current machine state. The
following algorithm operates on the entered variable x, the collected arguments
e1 . . . en found in the variable closure, and the type of x applied to e1 . . . en,
also found in the closure. It returns the resulting weak head normal form, which
is a free variable application or a case analysis on a free variable application.

1. if the x applied to e1 . . . en has a function type, then
(a) if there is an argument on the argument stack, then

i. pop this argument, and add it to the accumulated arguments
ii. compute the result type of the variable’s type
iii. restart at 1 interpreting this result type

(b) else, if there is an update frame on the update stack
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i. perform an update, overwriting the destination closure with a free
variable closure containing all arguments accumulated so far and the
type of this application

ii. restore argument and return stack from the update frame
iii. restart at 1

(c) else, the free variable applied to the accumulated arguments constitutes
the weak head normal form that is returned

2. else, if the variable has a data type
(a) if there is a continuation on the continuation stack, then

i. save the current machine state as context Σ
ii. return a case analysis of a free variable application in context Σ, i.e.

case Σ[ x e1 . . . en ]
(b) as in 1b
(c) as in 1c

3. otherwise, the free variable application x applied to e1 . . . en is returned

6 Further Improvements

By now, we have all we need for a fairly efficient type checker for dependent
types. Type expressions can be reduced by the strong evaluation function N .
It uses a weak evaluator V that is implemented using a approved compilation
scheme via STG to assembly code. The results of the weak evaluation can be
extracted from the machine state, and all occurring weak head normal forms can
be distinguished. By passing these evaluation result to the readback function
R, further redexes can be extracted and again passed to our weak evaluator.
However, Ulysses implements two additional improvements.

6.1 Interleaving Type Checking and Evaluation of Types

Instead of reducing all types occurring during type checking in one step to normal
forms, it is beneficial to reduce them in the first step to weak head normal form
only. This weak head normal form is usually a type constructor applied to not
yet normalized type arguments. In this stage, we can check whether the type
constructor matches the syntactic construct to check, e. g. a function type and
a λ abstraction, and reduce the type arguments only when this check succeeds.
When this check fails, e. g. because a λ abstraction shall be checked to have a
data type, the redexes in the arguments of the type do not have to be reduced,
and some amount of unnecessary work can be avoided.

This idea of reduction to weak head normal form interleaved with type check-
ing and recursive further evaluation has been applied in [6], too.

6.2 Detecting Equivalent Types Early

We do type checking only, not considering type inference. So whenever we check
a variable x against a type, x has been declared with some type, and thus can
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(a) τ1: code1
code2

τ2: code1

(b) τ1: code1 code2
code3

code2τ2: code1

Fig. 5. Detecting equal normal forms without evaluation

be found in the type context Γ . Since we delay reduction of type expressions as
long as possible, the type declaration contained in the type context is held only
as a weak head normal form. This has to be compared with the type needed by
the expression surrounding x, which again is a weak head normal form. If we
call the declared type τ1 and the needed type τ2, we could reduce τ1 and τ2 to
normal forms, and compare them for equivalence. But we can do better.

The types τ1 and τ2 are represented as closures in the heap. These closures
evaluate certainly to the same normal form, if they contain the same pointers in
the same places, i. e. the same code pointer and the same pointers for the free
variables (cf. Fig. 5 (a)). Moreover, they also evaluate to the same normal form
if they have the same code pointer, and their free variable pointers are different,
but the respective closures they point to have the same code pointers and the
same variable pointers (cf. Fig. 5 (b)).

Generalizing this pattern, we reach a variant of Park’s bisimilarity (cf. [7]).
The following definition uses the notation ci to access field i in closure c, |c| for
the number of fields of closure c, and ∗p to dereference a pointer.

Definition 4. We call a relation R on closures a bisimulation, iff for each pair
of closures (s, t) ∈ R

1. s0 = t0, i. e. the code pointers are equal, and
2. |s| = |t|, i. e. the closures have same length, and
3. ∀i ∈ {1 . . . |s| − 1} :

(a) si and ti are pointers, and (∗si, ∗ti) ∈ R, or
(b) si and ti are non-pointers, and si = ti.

We can consider τ1 and τ2 to be equal, if there is a bisimulation R such that
(τ1, τ2) ∈ R. Whether such a relation exists can be checked by a single simul-
taneous traversal of both closure graphs of τ1 and τ2. If this traversal reaches
closures with different code pointers, further reductions have to be done.

This notion is appropriate for non-normalizing terms, too. Recursive type
definitions as for example nat = data Z | S nat can be unfolded infinitely,
thus the simple strategy of complete reduction and subsequent equality check is
not successful for this type, while the bisimilarity check allows to deal with it.

7 Notes on the Implementation

The Ulysses system has been implemented in Haskell, and is available at
http://uebb.cs.tu-berlin.de/∼klee/ulysses.

http://uebb.cs.tu-berlin.de/~klee/ulysses
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7.1 The Overall Type Checking Process

The first step during type checking an Ulysses program is a dependency analy-
sis. It has to ensure that functions, which are used in the types of other function
definitions, are type checked before these other definitions. The definitions are
sorted accordingly, whereby mutually recursive definitions are clustered together.
In each cluster, the type declarations are checked first (since they might con-
tain e.g. wrongly typed function applications, too), before each definition is first
checked against the declared type and then compiled to machine code. For com-
pilation, we use Harpy [8], a Haskell library for runtime code generation. It
allows to write x86 machine code into memory buffers, and to directly execute it
without external tools. Without such a tool, the performance gain of compilation
would easily be outweighed by the overhead of e.g. starting a C compiler and
loading the resulting object file for each type declaration.

As soon as type checking is completed, the code of the whole checked Ulysses

file is located in the Harpy code buffer and could be dumped to an object file.
However, this is not yet implemented.

7.2 Copy-on-Write

In Def. 3 Line 17, we had to save the machine state as a context Σ for each case
analysis of a free variable. This is no problem for the registers and stacks, as they
are fairly small. The heap, however, can be quite large, so unnecessary copies
should be avoided when possible. Therefore, we use a copy-on-write approach.
Instead of making a copy of the heap, we use the memory management unit of
the x86 processors to write protect the heap. When the running program tries
to modify the heap, a segmentation violation signal is raised by the operation
system. This is handled by our runtime system making a copy and releasing the
protection of the affected page, so only modified pages have to be copied.

8 Related Work

Our work is a transfer of the approach of Grégoire and Leroy [2,5] from the strict
ZAM abstract machine to the lazy STG machine. Therefore, the readback func-
tion had to be adopted. For free variable applications and constructor applica-
tions, the eager evaluation strategy resulted in completely evaluated constructor
arguments, which can be simply read back by R, while we need a recursive call
to the weak evaluator.

The implementation of free variables is quite different than described in [2].
The main reason for these differences lies in the different underlying abstract ma-
chines, mainly the uniform handling of constructor and function closures which
are both entered, which is quite specific to the STG machine.

In [9] Crégut presents an abstract machine for strong normalization of λ terms.
It differs from ours and Grégoire’s in the missing distinction of weak evaluation
and readback. This might be faster when reducing to normal forms, but precludes
the improvements of Sect. 6.
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Another related line of research is partial evaluation, most closely probably
type-directed partial evaluation introduced by Danvy in [10]. This evaluator gen-
erates constructors expressions not only when free variables are scrutinized in
case expressions, but whenever functions take arguments of disjoint sum types,
introducing additional case analyses. These analyses change the strictness prop-
erties of normalized expressions, even non-strict functions are normalized to
strict functions. This is avoided by our approach of residuating case expressions
only when free variables are analyzed by a case expression stemming from a
pattern matching in the original source code. Moreover for the same reason our
implementation deals better with recursive data types.

The online variant of type-directed partial evaluation [11] introduces the run-
time distinction of static versus dynamic values which is typical for online partial
evaluation, and which is avoided by our implementation of free variables.

9 Conclusion and Future Work

Ulysses is a prototype of a language with dependent types, that uses compiled
code during type checking where interpreters are used traditionally. Even though
it misses some features that constitute a complete programming language, as e. g.
garbage collection and a module system, it shows the feasibility of our approach.

First experiments suggest that the performance gain is as expected when
switching from an interpreted to a compiled system, but further benchmarks
have to be done. The performance can be increased by the possibility of separate
compilation: instead of compiling type level function before every run of the
type checker, a suitable module system would allow us to precompile a module
containing the definitions relevant for the type level of other modules.

Benchmarking is complicated by the fact that it is not at all clear how a
reasonable benchmark for a type checker should look like. We believe that the
slight modifications to the code generation process compared to the classical
STG machine influence performance little.

The bisimilarity check (cf. Sect. 6.2) allows us to deal with infinite recursive
types, but not all type equivalences can be detected this way. While it works
for many types, such as natural numbers, lists and vectors, it needs a great deal
of knowledge of system internals to find the reasons why it does not work in
some circumstances, leading to a nonterminating type check. A topic for future
research is finding a simple criterion which recursive types can be proven equal
by bisimilarity after a finite number of reduction steps. Alternatively, integrating
an explicit fixpoint operator, as in [2], should improve the situation.

Several optimization techniques for STG code are known, two of them, dy-
namic pointer tagging and call pattern specialization, recently improved the
performance of the ghc compiler. While we believe that most of such techniques
can be used in our settings, a closer look is necessary to find possible interactions
with the readback scheme and the interpretation of final machine states, as well
as with the implementation of free variables.
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To be assured that Ulysses is indeed a type safe language, we plan to for-
malize our reduction and readback scheme and prove its correctness.

An interesting opportunity for future research is the application of our tech-
nique to partial evaluation and to proof assistants relying on dependent types,
as e.g. Coq (which was the target of Grégoire’s work [5]), both areas being
equipped with their own specific demands.
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5. Grégoire, B.: Compilation des termes de preuves: un (nouveau) mariage entre Coq
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Abstract. The complexity of lazy evaluation forbids classic debugging
techniques like a simple step-by-step representation of the buggy pro-
gram run. Therefore, most sophisticated tools for finding bugs in lazy
functional programs try to display the run as if the program’s underly-
ing semantics was strict. In order to provide such a strict representation,
current approaches gather a lot of information about the executed pro-
gram.

We utilized a new technique to drastically reduce the amount of gath-
ered data and show how to use the reduced information to implement a
debugging tool which supports declarative debugging as well as a strict
step-by-step tracer.

1 Introduction

The task of designing tools to find bugs in lazy functional programs is demanding.
On one hand, the sophisticated strategy employed by the underlying implemen-
tation enables the programmer to write code at a high level of abstraction. On
the other hand the same sophisticated strategy makes it very hard to under-
stand how a given program is executed step-by-step. Most successful approaches
to debugging solve this problem by collecting enough data to represent the pro-
gram’s execution as if the underlying strategy was strict, which is much easier to
understand. Examples for such approaches are declarative debugging, cf. [5,6],
observations, cf. [4], and redex trailing, cf. [8]. The most comprehensive tool,
HAT [2], supports all three approaches among others.

In order to present information about the program in a simple way, the above
approaches collect data during program execution. This is especially true with
powerful tools, e.g., the HAT system collects megabytes of data in many cases.
In [1], we developed an approach to collect considerably less data and still be
able to provide the user with a strict view on the execution of his program.
The basic idea is that the critical information to replay a lazy computation as
if the underlying semantics was strict is when unneeded redexes are discarded.
Therefore, we only count the number of strict steps between such discarding
steps. We call the resulting list of numbers an oracle. Different debugging tools
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module Example where

import Prelude hiding (length)

length [] = 0

length (_:xs) = length xs

exp = length (take 2 (fiblist 0))

fiblist x = fib x : fiblist (x+1)

fib :: Int -> Int

fib _ = error "this will not be evaluated"

Fig. 1. Example program

can then be realized as strict monadic versions of the original program correctly
consuming the number of steps in an oracle. [1] contains a soundness proof for
this technique and this paper presents the implementation of a debugging tool
based on the oracle technique.

2 Example Sessions

So far, our debugging tool supports two modes. The first is an implementation
of the well known declarative debugging method, described in Section 2.1. The
second is a step-by-step tracer allowing us to follow a program’s execution as if
the underlying semantics was strict, skipping uninteresting sub computations.
In addition, the tool gives some support for finding bugs in programs employing
I/O. This approach to “virtual I/O” is presented along with the step-by-step
mode in Section 2.2.

2.1 Declarative Debugging

Figure 1 shows a small example program containing an intentional error to
demonstrate the declarative debugging mode. The function fiblist creates a
potentially infinite list of delayed calls to function fib. Due to laziness, fib is
never evaluated in our example, so we omit its definition. The infinite list is
cut to the first two elements by a call to function take, which is defined in the
usual way. On top level, function length is applied to count the elements of the
resulting list. It is to be expected that the program returns the number 2.

> :l Example
Example> exp
0

We see that running the program reveals the result 0, which indicates that there
must be a bug somewhere. Therefore, we switch on the debug mode and execute
the program once again.
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Example> :set +d
Example> exp

In the background, our example program and all the modules it depends on are
transformed to new modules such that, e.g., the resulting OracleExample now
depends on OraclePrelude.

Example> exp
processing: OracleExample
up-to-date: OraclePrelude

As we see, our OraclePrelude is still up to date, and is not generated again.
The program resulting from this transformation behaves exactly like the original
program. The only difference is that – as a side effect – it will produce an “oracle”.
Before continuing with the debugging session we take a look at this oracle.

Evaluating exp in OracleExample creates a file in the current directory calles
Example.steps:

$ cat Example.steps
[2,0,1,0,0,23]

These numbers compactly represent the laziness information. If every expression
in the program was evaluated there would have been only a single number. This
number indicates how many steps that evaluation would have taken. The fact
that there are six numbers for this example tells us that five expressions have
been discarded without evaluation. (Two calls to fib, two to (+) and one to
fiblist). For more details about the oracle format, how it is produced and why
it can be utilized to correctly execute the traced program strictly, cf. [1].

The user does not see anything of the oracle or the steps file. Directly after the
steps file has been produced, the debugging tool proceeds by applying a second
transformation on the modules.

up-to-date: StrictPrelude.hs
generating ./StrictExample.hs

The second transformation produces Haskell modules named Strict*.hs. These
Haskell modules contain the definitions to execute the original program with an
underlying strict semantics. The details of this transformation will be presented
in Section 3. Upon completion of the second transformation the actual debugging
session starts.

____ ____ _____
( _ \ (_ _) ( _ ) Believe
) _ < _)(_ )(_)( in
(____/()(____)()(_____)() Oracles
--------type ? for help----------

exp
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Initially, we only see a call to function exp which was the main expression in
our example. Pressing i turns on inspect mode. In inspect mode, the result of
every sub computation is directly shown and can be “inspected” by the user, i.e.,
rated as correct or wrong. Inspect mode therefore corresponds to the declarative
debugging method. But as we will see in the next section, the display of results
of sub computations can be turned on and off at any time. Of course, there is a
help menu available, showing a list of all possible inputs.

After pressing i, the debugger evaluates the expression and displays the result.

exp ~> 0

We expected main to have value 2, but the program returned value 0. Thus, we
enter w (wrong) in order to tell the debugger that the result was wrong. The
debugging tool stores this choice as explained in Section 3. As the value of exp
depends on several function calls on the right hand side of its definition, the tool
now displays the first of these calls in a leftmost, innermost order:

fiblist 0 ~> _ : (_ : _)

The line above shows that the expression fiblist 0 has been evaluated to a list
that has at least two elements. This might be correct, but we are not too sure,
since this result depends strongly on the evaluation context. A “don’t know” in
declarative debugging actually corresponds to the skipping of sub computations
in the step-by-step mode, as described in the next section. We therefore press s
(skip).

take 2 (_ : (_ : _)) ~> [_,_]

Actually, this looks quite good. By entering c (correct) we declare that this sub
computation meets our expectation. Now the following calculation is displayed:

length [_,_] ~> 0

The function length is supposed to count the elements in a list. Since the argu-
ment is a two-element list, the result should be 2, but it is actually 0. By pressing
w we therefore state that this calculation is erroneous. Now the debugger asks
for the first sub computation leading to this result:

length [_] ~> 0

This is also wrong, but for the sake of demonstration we delay our decision. By
pressing the space bar (step into) we move to the sub expressions of length
[_]. We now get to the final question:

length [] ~> 0

The length of an empty list [] is zero, so by pressing c (correct) we state that
this evaluation step is correct. Now we have reached the end of the program
execution, but a bug has not been isolated yet. We have narrowed down the error
to the function call length [_,_], but still there are unrated sub computations
which might have contributed to the erroneous result. The tool asks if the user
wants to restart the debugging session re-using previously given ratings:
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end reached. press ’q’ to abort or any other key to restart.

After pressing <SPACE>, the debugger restarts and asks for the remaining func-
tion calls. There is only one unrated call left within the erroneous sub compu-
tation:

length [_] ~> 0

Now we provide the rating we previously skipped. After entering w (wrong) it is
evident which definition contains the error:

found bug in rule:
lhs = length [_]
rhs = 0

2.2 Step-by-Step Debugging and Virtual I/O

A further interesting advantage of our approach to reexecute the program with a
strict evaluation strategy is the possibility to include “virtual I/O”. During the
execution of the original program, all externally defined I/O-actions with non-
trivial results, i.e., other than IO (), are stored in a special file. These values are
retrieved during the debugging session. In addition, selected externally defined
I/O-actions, e.g., putChar, are provided with a “virtual implementation”. To
show what this means, we demonstrate how the main action of the program found
in Figure 2 is treated by our debugging tool. As described in the previous section,
the program is executed to obtain the oracle in the file IOExample.steps. As
this program contains user interaction, we also have to enter a line. We type abc
for this demonstration. Meanwhile, along with the file containing the oracle, a
file named IOExample.ext is written that contains the sequence of values for
getChar and the number of bytes for their representation in the file.

~/oracle> cat IOExample.ext
3,’a’3,’b’3,’c’4,’\n’

module IOExample where

import Prelude hiding (getLine)

getLine :: IO String

getLine = getChar >>= testEOL

testEOL :: Char -> IO String

testEOL c = if c==’\n’ then return []

else getLine >>= \ cs -> return (c:cs)

main = getLine >>= writeFile "userInput"

Fig. 2. I/O example
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There is no need to identify the different calls to external functions, since I/O-
actions will be executed in the strict version in exactly the same order as in the
original program. This is of course essential for correctness. We now start the
debugging tool, and look at the first two single steps by typing <SPACE> twice.
This is what the tool displays at this point:

main
getLine
getLine ~> getChar >>= testEOL
main ~> (getChar >>= testEOL) >>= writeFile "userInput"
initial action computed. press any key to execute it

In step-by-step mode, we only get to see results when a subcomputation is fin-
ished. The above lines mean that the evaluation of both, getLine and main is
now complete. The results are partial calls of the bind operator (>>=) waiting
for the world, so to speak. We press an arbitrary key to start the action followed
by a <SPACE> to make one more single step and get:

getChar >>= testEOL
getChar

When we hit <SPACE> now, two things happen at once. First, the value ’a’ is
retrieved from the file and, second, a GUI called B.I.O.tope is started, which
represents the virtual I/O environment. B.I.O.tope is told that someone has
typed an a on the console, which is the “virtual I/O-action” we connected with
getChar. The B.I.O.tope window is shown in Figure 3. Meanwhile, on the
console we see the result of the call to testEOL ’a’, which we skip by typing s.

testEOL ’a’ ~> (getChar >>= testEOL) >>= testEOL_lambda ’a’
(getChar >>= testEOL) >>= testEOL_lambda ’a’

Admittedly, the expression testEOL_lambda ’a’ shows that the source code
binding is improvable. Now we wonder, whether or not the current sub compu-
tation is interesting. We type r to have a look at the result and get:

(getChar >>= testEOL) >>= testEOL_lambda ’a’ ~> IO "abc"

Fig. 3. The B.I.O.tope Virtual I/O Environment
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Fig. 4. Files in the B.I.O.tope Virtual I/O Environment

This is fine, so we decide to skip the computation by pressing s. Note, that as
soon as a result is shown, we can also rate the sub computation, i.e., tell the tool
that this result is correct or wrong. This information will then be considered
if we restart the debugging session in inspect mode, cf. Section 2.1. It is also
noteworthy that the virtual I/O commands are never issued twice, even if we
had decided to go into the sub computation instead of skipping it.
The final action of our program is:

writeFile "userInput" "abc"

Executing this action brings another change to the B.I.O.tope as shown in
Figure 4. There we can see the GUI has switched to the file dialog. It contains
a list of files which have been read (R:) or written (W:) during the debugging
session and clicking a file in this list makes the file contents visible as they are
at the current point of the debugging session.

3 Implementation

In this section we present the runtime library StrictSteps.hs and its inter-
action with the programs generated by the transformation introduced in Sec-
tion 2.1. Given the program in Figure 1, the transformation creates a Haskell
program called StrictExample.hs. Each generated module uses the functions
that are exported by the library StrictSteps.hs. It also imports the trans-
formed versions of its original imports. In this case the only such module is
StrictPrelude. Finally, some functions from the original Haskell Prelude are
needed. The module head of StrictExample.hs looks like this:

module StrictExample where

import StrictSteps
import Prelude (Maybe(..),(.),Eq(..),Show(..),Ordering(..),

Either(..),String,Bool(..),Char(..),Float(..))
import qualified Prelude (IO,return,(>>=))
import StrictPrelude
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3.1 Encoding of Oracles

Conceptually, an oracle is a list of decisions. For each function call the oracle
decides whether or not that call is evaluated. This list of decisions is being
consumed while an instrumented program is evaluated according to a leftmost,
innermost strategy. If the next entry of the oracle has value True, the next
reduction step, according to strict evaluation order, will be evaluated. If the
next entry has value False, then the next redex will be skipped and the result
will be replaced by a placeholder value called underscore. In order to represent
the oracle in a compact way, it is encoded as a list of natural numbers. A number
n stands for a list of n entries whose value is True followed by one entry of value
False. That the list is in this compact representation is an implementation detail
which we hide by defining a stack with the usual interface:

type BoolStack = [Integer]
push :: BoolStack -> Bool -> BoolStack
pop :: BoolStack -> (Bool, BoolStack)

The smallest oracle is the one that simply discards the whole expression given.
Therefore an empty BoolStack is constructed according to the following decla-
ration:

empty :: BoolStack
empty = [0]

Reconsider the example program in Figure 1. The oracle produced to evaluate
exp was [2,0,1,0,0,23]. It represents a list containing 31 boolean entries: the
first two entries have value True, then there are two False followed by one True,
then three False and finally 23 True. Having value True, the first entry indicates
that expression exp has to be evaluated. The next entry tells us that the next
leftmost innermost call in Figure 1, i.e., fiblist 0, is also unfolded. The next
two entries have value False and thereby indicate that the leftmost innermost
calls fib x and x+1 must not be evaluated but replaced by an underscore (also
denoted by _) as a placeholder value. Replacing x+1 by _ the next call is fibs
_. This call is then also evaluated whereas the next free expressions, fib _, x+1
and another fibs _ are discarded. The final 23 entries tell us that the remaining
computation is totally strict (and 23 steps long).

3.2 The Representation of underscore

Expressionswhich are not evaluated are replaced by the special value underscore.
Therefore, at least conceptually, every data type has to be augmented with a
new element which represents that special value. From a semantical point of
view, underscore resembles the undefined value ⊥. If we were only interested in
computing the same result with a strict semantics, we could actually represent
underscore by a call to the Haskell function undefined, because discarded
expressions are guaranteed to never be needed in the evaluation. However, we
want the debugging tool to print intermediate results, therefore, we need to be
able to distinguish undefined values from defined ones.
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One option to implement this is to add a new constructor to every data
declaration. However, this would make the inclusion of external functions and
data types much more complicated. In order to, e.g., call (+), we would need to
convert to and from for each argument and the result. In addition, much of the
behavior already provided would have to be duplicated, e.g., the way strings of
characters are shown.

To avoid these further complications we make use of the fact that underscore
is never evaluated outside the display routines. We represent underscore by an
exception.

underscore :: a
underscore = throw NonTermination

Since the oracle that guides the evaluation indicates which expressions are needed
to run the program, it is guaranteed that this value will never be accessed while
the program is being evaluated. It is considered only to print intermediate re-
sults. As printing is an I/O-action the exception can be safely caught whenever
undefined values are processed.

3.3 Representing Values

The debugger must be able to display a textual representation of the arguments
and results of function calls. In order to provide more flexibility for the debugging
tool, we represent expressions in a term structure rather than a simple string.
This makes it possible to, e.g., restrict the depth in which expressions are shown
and enables pretty printing. Therefore, the data type Term is introduced:

data Term = Term String [Term] | Underscore | Fail String

The constructor Term contains the name of the applied symbol and a term
representation of its arguments. As discussed above, Underscore stands for those
expressions, which were not evaluated. Finally, Fail represents exceptions that
occurred during the execution along with an error message. The implementation
of the corresponding mechanism is, however, not finished.

In order to retrieve term representations of a given expression, each data type
has to be an instance of the class ShowTerm:

class ShowTerm a where
showCons :: a -> DebugMonad Term

These instances are automatically generated by the transformation. For example,
the following instance declaration is generated for lists:

instance ShowTerm a => ShowTerm [a] where

showCons [] = return (Term "[]" [])

showCons (x1:x2) = do sx1 <- showTerm x1

sx2 <- showTerm x2

return (Term ":" [sx1,sx2])

The generated instances depend on the generic function showTerm, which is
responsible for catching the exception thrown by underscore:
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showTerm :: ShowTerm a => a -> DebugMonad Term

showTerm x = liftIO (catch (x ‘seq‘ return Nothing) (return . Just)) >>=

maybe (showCons x) (\ e -> case e of

NonTermination -> return Underscore

ErrorCall s -> return (Fail s))

3.4 The Debug Monad

The whole evaluation of the generated program takes place in a monad, the
DebugMonad. This monad is a state monad, managing the following state:

data DebuggerState = DebuggerState { oracle :: BoolStack,
displayMode :: IORef DMode,
skipped :: BoolStack,
unrated :: BoolStack,
stepMode :: StepMode }

oracle contains the part of the oracle that has not yet been consumed.
displayMode contains display options like the verbosity level and the depth

up to which terms should be printed. In addition this field contains a flag
indicating which of the two debugging modes described in Section 2 is active.

skipped, unrated are needed to implement declarative debugging and contain
the information about whether or not a given sub computation has been
marked as correct by the user. Like oracles, skipped and unrated contain
a series of boolean information about expressions occurring in the computa-
tion. They are therefore also implemented as values of type BoolStack. Both
stacks contain a False for each expression that has been rated as correct
and a True for each expression that has not yet been rated by the user. The
difference between both stacks is that skipped holds the ratings of the func-
tions that have already been displayed in the current program run, whereas
unrated holds the ratings of the function calls that have not yet been dis-
played in the current program run. Whenever the end of the computation is
reached without isolating an error, unrated becomes skipped, skipped is
reinitialized as an empty BoolStack, and the debugging session restarts, cf.
Section 3.5 for more details.

In addition to the parts of DebugState described so far, there are three evalua-
tion modes encoded in data type StepMode. In the next subsection these modes
will be described in detail:

data StepMode = StepBackground | StepInteractive | StepCorrect

The monad DebugMonad a is employed to manage the debugger‘s internal
state while evaluating an expression that has result type a.

type DebugMonad a
= StateT DebuggerState (ErrorT (Maybe BugReport) IO) a
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Values of type BugReport are used to report an erroneous program rule which
is represented by two constructor terms, i.e., the call along with the arguments
and the result. The result delivered by the debugger is lifted into monad IO,
because the debugger has to interact with the user via I/O actions while it
evaluates the expression. This monad is transformed by the monad transformer
ErrorT, so that not only the result can be returned, but also the evaluation can
be truncated reporting the location of an error (Just bug) or indicating that
the user has aborted the debugging session (Nothing). As soon as a program
error has been pinned down to a single program rule, the evaluation is truncated
and that program rule is reported to the user. One step further, this monad is
transformed by the monad transformer StateT in order to let the debugger read
and write its state while executing a program.

Manipulation of the oracle within the debug monad‘s state is done by the eval
function which consumes one entry from the current oracle. Depending on the
value of this entry, it either evaluates its argument and returns the result of this
evaluation, or it refrains from evaluating its argument and returns underscore
as a placeholder.

eval :: ShowTerm a => DebugMonad a -> DebugMonad a
eval a = do state <- get

let (orc, needed) = pop (oracle state)
put (state {oracle = orc})
if needed then a else return underscore

All functions are transformed to monadic actions of type DebugMonad. For ex-
ample, the types of the transformed versions of the functions in Figure 1 are:

length :: ShowTerm a => [a] -> DebugMonad Int
exp :: DebugMonad Int
fiblist :: Int -> DebugMonad [Int]
fib :: Int -> DebugMonad Int

In the original program exp is a value of type Int, but in the transformed
program every evaluation takes place in the debug monad. The resulting function
may return a value of type Int or abort yielding a bug report. Similarly, the
transformed version of length is still a function taking two arguments, but now
it yields an operation that has to be executed in the debug monad to retrieve
its result.

The transformation also adds a function main, an action of type IO (). This
action initializes the debugging session by loading the oracle from disk and start-
ing the interactive debug session for the given expression.

Before we can explain some details of how function declarations are trans-
formed, we need to introduce the function that is at the heart of user interaction
with the debugger, called traceFunCall.
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3.5 User Interaction with traceFunCall

The function traceFunCall interfaces the instrumented program with the in-
teractive debugger. Every top level declaration is augmented with a call to this
function, which has the following type signature:

traceFunCall :: ShowTerm a =>
DebugMonad Term -> DebugMonad a -> DebugMonad a

The first argument contains an action to retrieve the term representation of the
function call about to be evaluated, cf. Section 3.3. The second argument is the
function body that has been lifted into the debugging monad as described in
the next section. The class context ShowTerm a => makes sure that the result
can be displayed to the user. Apart from printing information for the user and
waiting for his input, traceFunCall is responsible for correctly manipulating
the two boolean stacks, skipped and unrated, which are part of the monad
state. The way in which these stacks are manipulated depends on the evaluation
mode, which is also part of the debug monad‘s state:

traceFunCall term expr = do
st <- get
case stepMode st of

Depending on the mode, traceFunCall shows one of the following behaviors:

Mode StepCorrect indicates that the computation currently executed was rated
by the user as correct. According to the declarative debugging technique, all its
sub computations are also considered to be correct. Making use of this aspect
of declarative debugging, the two stacks skipped and unrated are implemented
such that they do not contain any information about nested correct sub compu-
tations at all. Therefore, skipped and unrated remain unchanged when a sub
expression is evaluated with mode StepCorrect:

StepCorrect -> eval expr

Mode StepBackground. This mode indicates that only the result of the current
computation should be computed. During the computation of this result there
should be no interaction with the user. Remember that the stacks skipped and
unrated should contain a True for every expression that was not yet marked
as correct by the user, cf. Section 3.4. The stack skipped contains the infor-
mation about the past computation while unrated contains information about
the remaining computation. This invariant is maintained by popping one en-
try from unrated and pushing it to skipped for every evaluation step in mode
StepBackground. Since this operation occurs in more than one place, we defined
the operation restack:

restack :: DebugMonad Bool
restack = do
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st <- get
let (isUnrated,newUnrated) = pop (unrated st)
put st{unrated=newUnrated,

skipped=push isUnrated (skipped st)}
return isUnrated

If the entry popped from unrated indicates that the computation was rated
correct in a previous iteration of the debugging cycle, the evaluation mode is
then switched to StepCorrect.

StepBackground -> do
isUnrated <- restack
unless isUnrated (setStepMode StepCorrect)
eval expr

Mode StepInteractive. All interaction between the user and the debugger
takes place in mode StepInteractive. User interaction will only take place
when the current expression has not yet been rated in a previous iteration of the
debugging cycle. Therefore, the first thing to do is inspect the top value of the
stack unrated while remembering the current state for eventual future reference.
If that value is False the mode is changed to StepCorrect and the expression
is evaluated.

StepInteractive -> do
st <- get
isUnrated <- restack
if isUnrated then do setStepMode StepCorrect

eval expr

Otherwise the current sub computation is executed in mode StepBackground.
After the sub computation is finished the resulting value is displayed and the
user is asked whether it is correct.

else do setStepMode StepBackground
result <- eval expr
userAnswer <- askUserToRate result
case userAnswer of

There are four possibilities for the user to answer:

1. If the user marks the displayed result as correct, the new value of stack
skipped is reset to the old value with an additional False. As described
above, the False indicates that the expression was rated as correct. Fur-
thermore we do not have to keep track of the details of correct sub compu-
tations and can therefore forget about the information in the current value
of skipped. Then traceFunCall returns the computed result.

Correct -> do setSkipped (push False (skipped st))
return result
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2. If the user skips the current function call traceFunCall simply returns the
computed result.

Skip -> return result

3. If the user is not yet sure about the computed results and wants to inspect
the details of the sub computation before rating correct or wrong, he can
step into the sub computation. In this case the old state has to be reset
relocating the top value of stack unrated to skipped.

StepInto -> do put st
restack
eval expr

4. If the user has rated the resulting value as wrong, the debugging session will
confine itself to searching for the bug in the current expression. If it finds a
bug in one of them, then in turn it restricts itself to searching for the bug in
that sub expression. If it does not find a bug in any of its sub expressions, it
is clear that the definition of the currently called function is erroneous, and
the current function call along with its result is reported as the result of the
debugging session.

Wrong -> do put st
debug expr
throw (bugReport term result)

If the debugging tool is in step-by-step mode, cf. Section 2.2, traceFunCall
will not calculate the result of the current function call until the user requests
it. Instead it starts by displaying only the function call and giving the user
an opportunity to move forward to rating its subexpressions without having to
evaluate the expression first.

3.6 Transforming Function Bodies

After having explained all the operations occurring in the transformed programs,
the actual transformation of function bodies is simple. Rather than giving a
formal description of the transformation we prefer to explain the procedure by
example. Reconsider the definition of function fiblist of Figure 1:

fiblist x = fib x : fibs (x+1)

This function is transformed to the following definition:

fiblist :: Int -> DebugMonad [Int]
fiblist x1 = traceFunCall (do sx1 <- showTerm x1

return (Term "fiblist" [sx1]))
(fib x1 >>= \x4 ->
x1 + 1 >>= \x2 ->
fiblist x2 >>= \x3 ->
return (x4 : x3))
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As explained above, each step of the evaluation is controlled by the operation
traceFunCall. This operation takes two arguments. The first argument is an
action to retrieve a representation of the current expression corresponding to
the explanations of Section 3.3. The second argument is the monadic action to
compute the current expression. Note that this monadic action is constructed
in accordance to leftmost, innermost evaluation: first the call to fib is evalu-
ated then (+) and finally fiblist. The oracle information does not consider
constructor calls, so the result is constructed as (x4 : x3).

3.7 Higher Order Functions

Up to now, our debugger supports higher order functions by displaying par-
tial applications. The extension to more sophisticated representations by, e.g.,
collecting a function graph as proposed in [3] seems possible but has not been
implemented yet.

Representing partial applications is not a conceptual extension. The main
problem is to formulate a working instance of class ShowTerm. Primitive data
types like a -> b are augmented with a wrapping constructor that holds, in
addition to the actual value, a term representation.

data Prim a = Prim Term a

The ShowTerm instance is uniformly defined for all primitive types as:

instance showTerm (Prim a) where
showCons (Prim x _) = return x

Because of the transformation to the DebugMonad and the wrapping constructor
Prim the higher order function

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

is transformed to a function of type

foldr :: (ShowTerm a,ShowTerm b) =>
Prim (a -> DebugMonad (Prim (b -> DebugMonad b))) ->
b -> [a] -> DebugMonad b

and the body of foldr is transformed to

foldr x1 x2 x3 = traceFunCall
(do sx1 <- showTerm x1

sx2 <- showTerm x2
sx3 <- showTerm x3
return (Term "foldr" [x1,x2,x3]))

(eval (case x3 of
[] -> return x2
x4:x5 -> do x7 <- apply x1 x4

x6 <- foldr x1 x2 x5
apply x7 x6))
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Note that the (implicit) applications (f x (...)) of the original definition have
been transformed to the explicit calls to an apply function that is defined as
follows:

apply :: Prim (a -> DebugMonad b) -> a -> DebugMonad b
apply (Prim _ f) x = f x

The partial calls corresponding to apply are introduced by functions pcn where
n is the arity of the partially applied function. For example, the expression
(foldr (+) 0 []) is transformed to

foldr (pc2 (Term "+" []) (+)) 0 [])

and the function pc2, responsible for partial calls of arity two, is defined as:

pc2 :: ShowTerm a => Term -> (a -> b -> DebugMonad res) ->
Prim (a -> DebugMonad (Prim (b -> DebugMonad res))

pc2 (Term n xs) f =
Prim (c []) (\ x -> do sx <- showTerm x

return (Prim (c [sx]) (f x)))
where c = Term n . (xs++)

The resulting program needs to contain functions pcn for all occurring arities. Al-
though we have some experience expressing such similar applications by employ-
ing a small set of combinators, we were not able to do so in this application. The
special problem here in comparison to other applications of a combinator approach
is the flow of information. Here we have information going from the arguments to
the call (the argument’s term representation) and also from the call to the argu-
ments (the wrapping with the Prim constructor). Typical problems that can be
solved with combinators have only either way of information flow.

4 Comparison with Related Work

As discussed in Section 1, the state of the art tools to compare with is HAT
[2]. However, a thorough benchmarking comparison is not without difficulties.
HAT was developed for Haskell while b.i.o. is a debugging tool for Curry. Al-
though the semantics of both languages coincide for purely functional programs,
there are still noteworthy differences. For example, the arithmetic used in the
Curry implementation which b.i.o. is part of is defined on pure, i.e. not exter-
nal, data structures. In order to be as comparable as possible we have ported
two Haskell programs, the standard Fibonacci example and one from the NoFib
Haskell Benchmark Suite, to Curry. With our Curry compiler we have trans-
formed those programs into an intermediate language. This intermediate lan-
guage is the usual starting point for the transformations to produce the oracle
and the strict debugging monad described in Section 3. In addition we have re-
translated the intermediate language to Haskell and used Hat on the resulting
programs. All benchmarks represent the average of ten runs and were done on
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Table 1. Benchmark for Trace Recording

Program no tracing HAT b.i.o.

Run-Time Fibonacci 0.18 s 0.8 s 0.3 s

Size of Trace Fibonacci – 14.7 MB 8 B

Run-Time queens 9 2.11 s 30 s 8 s

Size of Trace queens 9 – 250 MB 1.3 MB

a local file system on an AMD Athlon(TM) machine with 1.33Mhz speed and
512MB memory. Table 1 shows the resulting time and space requirements.

The actual usage of the systems to search for bugs is even harder to compare.
The maximal time the user has to wait in our system while inspecting the above
example programs is 9 seconds for Fibonacci and 3 minutes for queens 9.
This is the time it takes the strict version to execute the whole program. This
time is not very expressive for practice, however, as the user typically inspects
intermediate computations. By design, the maximal time is the sum of the time
of all intermediate computations, such that inspecting any sub computation is
considerably quicker. Therefore, we have no idea how to design an objective
benchmark to compare the actual usage of our system with that of HAT.

5 Conclusion and Future Work

We have presented the usage and implementation of a debugging tool utilizing
the oracle technique developed in [1]. Up to now, the debugger features a declara-
tive debugging mode as well as a step-by-step mode corresponding to a leftmost,
innermost evaluation strategy. In addition, a virtual I/O environment gives the
user the opportunity to see side effects issued by the program. Up to now, this
environment features console output and file access. An extension to other often
used I/O actions like IORefs and sockets is straight forward. In extension to the
system as presented at the conference we have added the possibility to desig-
nate trusted functions. We cannot omit transforming trusted functions neither
to produce nor to consume the oracle. But executing trusted function calls in
the strict debug monad is considerably faster, and the user is not bothered with
any details of that execution. Higher order applications of untrusted functions
are, however, displayed as usual even if that application took place inside the
execution of a trusted function.

The main limitation of our approach, in its current state, is the lack of treating
run-time errors. Improving this is clearly important for debugging purposes.

Other room for improvement is of course adding to the list of debugging
features. Many useful techniques are easy to integrate into the framework like
spy points, observations and remembering questions already asked. We plan to
include some of the features described in [7] as well as those provided by HAT
[2], as far as they fit into the framework.
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Abstract. We present a uniqueness type system that is simpler than
both Clean’s uniqueness system and a system we proposed previously.
The new type system is straightforward to implement and add to existing
compilers, and can easily be extended with advanced features such as
higher rank types and impredicativity. We describe our implementation
in Morrow, an experimental functional language with both these features.
Finally, we prove soundness of the core type system with respect to the
call-by-need lambda calculus.

1 Introduction to Uniqueness Typing

An important property of pure functional programming languages is referential
transparency: the same expression used twice must have the same value twice.
This makes equational reasoning possible and aids program analysis, but most
languages do not have this property. For example, in the following C fragment,

int f(FILE* file) {

int a = fgetc(file ); // Read a character from ’file ’

int b = fgetc(file );

return a + b;

}

it is understood that a and b can have different values, even though we are
applying the same function (fgetc) to the same input (file). Although the
input is syntactically identical, the structure denoted by file is modified by
each call to fgetc (the file pointer is advanced)—fgetc has a side effect.

In this example there would be no problem with referential transparency if
there was only a single reference to file. A side effect on a variable (file)
is okay as long as that variable is never used again: it is okay for a function to
modify its input if the input is not shared. Referential transparency then trivially
holds because the same expression never occurs more than once.

Uniqueness typing takes advantage of this observation to add side effects
to a functional language without sacrificing referential transparency. The same
function f implemented in a functional language using uniqueness typing gives
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f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file1

in (a + b, file2)

Rather than just returning the read character, fgetc returns a pair consisting
of the read character and a new file, file1. Although file0 and file1 point
to the same file on disk, they are conceptually and syntactically different, and
thus it is clear that a and b may have different values. The uniqueness type
system guarantees that fgetc is never applied to an argument which is used
again (shared). For example, the type checker would reject

f file0 = let (a, file1) = fgetc file0

(b, file2) = fgetc file0

in (a + b, file0)

Sharing information is recorded as an attribute on the type of a term. This
attribute is either • for unique (guaranteed not to be shared) or × for non-
unique (may or may not be shared). For instance, File• is the type of files that
are guaranteed not to be shared, and the type of fgetc might be

fgetc :: File• ×−→ (Char×, Fileu)v

The attribute on the arrow means that the function fgetc itself is non-unique
(Sect. 4.2). The uniqueness variable u on the result means that it is up to the
programmer to decide if they want to treat it as unique or shared (Sect. 6).

2 Contributions of This Paper

The type system we present in this paper is based on that of the programming
language Clean [1,2]. However, Clean’s type system has a number of drawbacks.

– Types and attributes are regarded as two different entities, which limits
expressiveness and impedes adding uniqueness typing to existing compilers.

– Types often involve implications between uniqueness attributes. For exam-
ple, the function const has type

const :: tu ×−→ sv w−→ tu, [w ≤ u]
const x y = x

The constraint [w ≤ u] denotes that if u is unique, then w must be unique (u
implies w).1 The need for this constraint will be explained in Sect. 4.2, but
the presence of these constraints complicates the work of the type checker
(the heart of the typechecker is a unification algorithm, and unification can-
not deal with inequalities) and makes extending the type system to support
modern features such as arbitrary rank types difficult.

1 Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes a implies b,
whereas here u ≤ v denotes v implies u. Usage here conforms to Clean conventions.
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– Clean distinguishes between non-unique terms, unique terms (which are
unique now but may become non-unique later), and necessarily unique terms
(which must remain unique forever). Moreover, Clean’s type system has a
subtyping relation between unique and non-unique terms. Both these fea-
tures make the type system unnecessarily complicated.

In this paper, we make the following contributions.

– Section 3 shows that we can regard uniqueness attributes as type construc-
tors of a special kind. This increases the expressive power of the type system
and simplifies the presentation and implementation of uniqueness typing.

– Section 4 presents the type system proper and shows how to avoid inequal-
ity constraints by allowing arbitrary boolean expressions as uniqueness at-
tributes. This facilitates extending the type system with advanced features
and enables the use of unification to solve relations between attributes.

– Section 6 shows how to avoid subtyping. We argued a similar point in a
previous paper [3] but unfortunately the approach in that paper requires a
second uniqueness attribute on the function arrow, offsetting the advantage
of removing subtyping. Our new approach does not have this disadvantage.

– Section 7 describes our implementation in Morrow. Morrow supports higher
rank types and impredicativity, but adding support for uniqueness typing to
Morrow required only a few changes to the compiler. This provides strong
evidence for our claim that retrofitting uniqueness typing to an existing
compiler, and extending uniqueness typing with advanced features, becomes
straightforward using the techniques in this paper. As far as the authors are
aware, this is also the first substructural type system to have these features.

– Finally, we prove soundness of our type system in Sect. 8 with respect to the
call-by-need lambda calculus [4].

3 Attributes Are Types

In this section, we show that we can regard types and attributes as one syn-
tactic category. This simplifies both the presentation and implementation of a
uniqueness type system and increases the expressive power of the type system.

If we regard types and attributes as distinct, we need type variables and at-
tribute variables, and we need quantification (∀) over type variables and attribute
variables. In addition, the status of arguments to algebraic datatypes (such as
List a) is unclear: are they types, attributes, or types with an attribute?

These issues are clarified when we regard types and attributes as a single
syntactic category. Thus Int and Bool are types, and so are • (unique) and ×
(non-unique). We regard Int× as syntactic sugar for the application of a special
type constructor Attr to two arguments, Int and ×. There are no values of type
×, nor are there values of type Int, because Int is lacking a uniqueness attribute
(there are however values of type Int×).

Types that do not classify values are not a new concept. For example, they
arise in Haskell as type constructors such as the list type constructor ([]). We
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Kind language
κ ::= kind

T base type
U uniqueness attribute
∗ base type together with a uniqueness attribute
κ1 → κ2 type constructors

Type constants
Int, Bool :: T base type
→ :: ∗ → ∗ → T function space
•, × :: U unique, non-unique
∨, ∧ :: U → U → U disjunction, conjunction
¬ :: U → U negation
Attr :: T → U → ∗ combine a base type and attribute

Syntactic conventions
tu ≡ Attr t u

a
u−→ b ≡ Attr (a→ b) u

Fig. 1. The kind language and some type constructors with their kinds

can make precise which types do and do not classify values by introducing a
kind system [5]. Kinds can be regarded as the “types of types”. By definition,
the kind of types that classify values is denoted by ∗. In Haskell, we have Int
:: *, Bool :: *, but [] :: * → *. The idea of letting the language of vanilla
types and additional properties coincide is not new either (e.g., [6,7]), but as far
as the authors are aware it is new in the context of substructural type systems.

Since we do not regard Int as a type classifying values, its kind cannot be ∗
in our type system. Instead, we introduce two new kinds, T and U , classifying
“base types” and uniqueness attributes. Since Attr combines a base type and
an attribute into a type of kind ∗, its kind is T → U → ∗. The kind language
and some type constructors along with their kinds are listed in Fig. 1. At this
point it is useful to introduce the following convention.

(Syntactic convention.) Type variables2 of kind T and U will be de-
noted by t, s and u, v. Type variables of kind ∗ will be denoted by a, b.

One advantage of treating attributes as types is that we can use type variables to
range over base types, uniqueness attributes or types with an attribute, simply
by varying the kind of the type variable. This gives more expressive power when
defining algebraic data types. For example, we can define:

newtype X a = MkX a

newtype Y t = MkY t×

newtype Z u = MkZ Intu

2 Strictly speaking, these are meta variables, not object language type variables. Our
core language does not include universal quantification.
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e ::= expression
x� variable (used once)
x⊗ variable (used more than once)
λx · e abstraction
e e application

τk ::= type
ck constant
τ(k′→k) τk′ type application

Fig. 2. Expression and type language for the core system

The type of a constructor argument must have kind ∗; hence, the first datatype is
parameterized by an attributed type (a type of kind ∗), the second by a base type
(a type of kind T ), and the third by a uniqueness attribute (a type of kind U).
The kinds of X, Y and Z are therefore ∗ → T , T → T and U → T , respectively.
The codomain is T in all cases, since X Int× still lacks an attribute; (X Int×)•

on the other hand is a unique X containing a non-unique Int. So, assuming
(5 :: Int×), we have (MkX 5 :: Xu Int×), (MkY 5 :: Yu Int) and (MkZ 5 :: Zu ×).

In Clean, we can only define the first of these three datatypes, so we have
gained expressive power. What is more, although we have used syntactic con-
ventions to give a visual clue about the kinds of the type variables, the kinds of
these types can automatically be inferred by the kind checker, so the expressive
power comes at no cost to the programmer.

There are two possible variations to the kind system we propose. We could
treat Int× as the application of (Int :: U → ∗) to (× :: U), or as the (postfix)
application of (× :: T → ∗) to (Int :: T ), avoiding the need for Attr. We prefer
distinguishing between T , U and ∗, but if the reader feels otherwise they should
feel free to read T as syntactic sugar for (U → ∗), or U as syntactic sugar for
(T → ∗). In all three variations only types of kind ∗ are inhabited, as usual.

4 Removing Constraints

In this section we show that by allowing arbitrary boolean expressions3 as
uniqueness attributes (reading “true” for unique and “false” for non-unique)
we can recode implications between uniqueness attributes as equalities. This
makes the type system so similar to the classical Hindley/Milner type system
that standard type inference algorithms can be applied and modern extensions
such as arbitrary rank types can be incorporated without much difficulty.

The expression language and type language are defined in Fig. 2 (types have
been indexed by their kind k). Both are almost entirely standard, except that
we assume that a sharing analysis has annotated variable uses with � or ⊗. A
variable x marked as x� is used only once within its scope; a variable marked
as x⊗ is used more than once. The typing rules are listed in Fig. 3. The typing
relation takes the form

Γ � e : τ |fv
3 Although the typing rules only use disjunctions between uniqueness attributes, more

complicated expressions can be introduced when unifying two boolean expressions.
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Γ, x : tu � x� : tu|x:u
Var

�
Γ, x : t× � x⊗ : t×|x:×

Var
⊗

Γ, x : a � e : b|fv fv ′ = x fv

Γ � λx · e : a
�

fv′
−−−→ b|fv′

Abs

Γ � e1 : a
u−→ b|fv1 Γ � e2 : a|fv2

Γ � e1 e2 : b|fv1 ∪ fv2

App

Fig. 3. Typing rules for the core lambda calculus

which reads as “in environment Γ , expression e has type τ ; the attributes on
the types of the free variables in e are fv”. Both Γ and fv are mappings from
term variables to types; the only difference is that Γ maps variables to types
of kind ∗ and fv maps variables to types of kind U (in other words, to unique-
ness attributes). The typing rule for abstraction uses fv to determine whether a
function needs to be unique (this is discussed in more detail in Sect. 4.2).

The rules are similar to the Hindley/Milner rules, except that they main-
tain some extra information about uniqueness. The underlying base system is
unchanged, so that uniqueness typing can be seen as an “add-on”.

4.1 Variables

We need to distinguish variables that are used once in their scope and variables
that are used multiple times. The rule for variables that are used only once
(Var

�) is identical to the normal Hindley/Milder rule, and we simply look up
the type of the variable in the environment. Note that even when a variable is
used only once, that does not automatically make its type unique. For example,
there is only one use of x in the identity function:

id x = x�

but when a shared term is passed to id, it will still be shared when it is returned
from id. On the other hand, if a variable is used more than once (rule Var

⊗),
its type must be non-unique (shared).

4.2 Partial Application

Dealing correctly with partial application is probably the most subtle aspect of
uniqueness typing. We will demonstrate the problem using a simple example.
Temporarily ignoring the attributes on arrows, the type of dup is

dup :: t× → (t×, t×)u

dup x = (x⊗, x⊗)

Since dup duplicates its argument, it only accepts non-unique arguments. The
type checker can easily recognize that dup duplicates x because there is more
than one use of x in the function body, which is therefore marked as ⊗. However,
what if we rewrite dup as
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dup ’ x = (\f -> (f⊗ ⊥, f⊗ ⊥)) (const x�)

Now there is only one reference to x, which is therefore marked as �. Still
ignoring the attributes on arrows, the function const is defined as

const :: tu → sv → tu

const x y = x

It would therefore seem that the type of dup’ is

dup ’ :: tu → (tu, tu)v

But that cannot be correct, because this type of dup’ tells us that if we pass a
single unique t to dup’, it will return a pair of two unique ts. However, the full
type of const in our type system is

const :: tu ×−→ sv u−→ tu

If you pass in a unique t, you get a unique function from s to t: a function that
can only be used once. Conversely, if you use a partial application of const
more than once, the argument to const must be non-unique. The type of dup’
is therefore

dup ’ :: t× ×−→ (t×, t×)u

Reassuringly, this is the same type as the type of dup. In general, a function
must be unique (and can be applied only once) if it has any unique elements in
its closure (the environment that binds the free variables in the function body).

4.3 Abstraction and Application

The rule for abstractions is the same as the Hindley/Milner rule, except that
we must determine the value of the attribute on the arrow. As discussed in
Sect. 4.2, a function must be unique if it has any unique elements in its closure.
The closure of a function λx · e consists of the free variables in the body e of
the function, minus x. The attributes on the free variables in the body of the
function are recorded in fv ; using fv ′ = x fv (domain subtraction) to denote fv
with x removed from its domain, we use the disjunction

∨
fv ′ of all the attributes

in the range of fv ′ as the uniqueness attribute on the arrow (recall that we treat
uniqueness attributes as boolean expressions).

The rule for application is the normal one, except that we collect the free
variables. The attribute on the arrow is ignored (we can apply both unique and
shared functions).

4.4 Encoding Constraints

In general, we can always recode a type of the form

. . .�u . . .�v . . . , [u ≤ v]

using a disjunction
. . .�u∨v . . .�v . . .
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This faithfully models the implication: when v is unique, u∨v reduces to unique,
but when v is non-unique, u∨v reduces to u. For example, in Clean the function
fst that extracts the first element of a pair has the type

fst :: (tu, sv)w → tu, [w ≤ u]
fst (x, y) = x

which we can recode as

fst :: (tu, sv)w∨u → tu

However, in many cases we can do slightly better. For example, suppose the
typing rule for pairs is

Γ � e1 : a|fv Γ � e2 : b|fv
Γ � (e1, e2) : (a, b)u|fv

Pair

then for every derivation of e :: (a, b)•, there is also a derivation of e :: (a, b)×

(because the typing rule leaves the attribute on the pair free). That means that
we can simplify the type of fst to

fst ’ :: (tu, sv)u → tu

The only pairs accepted by fst but rejected by fst’ are unique pairs, but
since the type checker will never infer a pair to be unique (but always either
non-unique or polymorphic in its uniqueness), that situation will never arise.
We took advantage of the same principle in the rule for abstraction, where we
recoded a type

. . .
u−→ . . . , [u ≤ v, u ≤ w, . . .]

as
. . .

v∨w∨...−−−−−→ . . .

This will force some functions to be non-unique which would otherwise be poly-
morphic in their uniqueness, but that cannot cause any type errors: the rule
for function application ignores the uniqueness attribute on the function, and
non-unique functions can be used multiple times.

5 Boolean Unification

One advantage of removing constraints from the type language is that standard
inference algorithms (such as algorithm W [8]) can be applied without any mod-
ifications. The inference algorithm will depend on a unification algorithm, which
must be modified to use boolean unification when unifying two terms of kind U .
Suppose we have two terms g and h

g :: t• ×−→ . . . h :: tu∨v

Should the application g h be allowed? If so, we must be able to unify u∨ v ! •.
This equation has many solutions, such as [u �→ •, v �→ v], [u �→ u, v �→ •], or
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unify0 :: BooleanAlgebra a => a -> [Var] -> (Subst a, a)

unify0 t [] = ([], t)
unify0 t (x : xs) = (st ∪ se, cc)

where st = [x �→ se t0 ∨ (x ∧ se (¬t1))]
(se, cc) = unify0 (t0 ∧ t1) xs
t0 = [x �→ 0] t
t1 = [x �→ 1] t

Fig. 4. Boolean unification (unify t � 0)

[u �→ •, v �→ •]. (Recall that attributes are boolean expressions.) However, none
of these solutions is most general, and it is not obvious that the equation u∨v ! •
even has a most general unifier, which means we would lose principal types.
Fortunately, unification in a boolean algebra is unitary [9]. In other words, if a
boolean equation has a solution, it has a most general solution. In the example,
one most general solution is [u �→ u, v �→ v ∨ ¬u].

There are two well-known algorithms for unification in a boolean algebra,
known as Löwenheim’s formula and successive variable elimination [9,10]. For
our core system either algorithm will work, but when arbitrary rank types are
introduced and we need to use skolemization [11], only the second is practical.4

Temporarily using the more common 0 for false (not unique) and 1 for true
(unique), to unify two terms p and q it suffices to unify t = (p∧¬q)∨(¬p∧q) = 0.
This is implemented by unify0, shown in Fig. 4, which takes a term t in a boolean
algebra a and the list of free variables in t as input, and returns a substitution
and the “consistency condition”, which will be zero if unification succeeded.

6 On Subtyping

In this section we compare our approach to subtyping with that of Clean [2] and
to that of our previous paper on the topic [3]. Consider again the function dup:

dup :: t× ×−→ (t×, t×)u

dup x = (x, x)

In Clean dup has the same type, but that type is interpreted differently. Clean’s
type system uses a subtyping relation: a unique type is considered a subtype of
a non-unique type. That is, we can pass in something that is unique (such as a
unique Array) to a function that is expecting a non-unique type (such as dup).

The fact that a unique array can become non-unique is an important feature
of a uniqueness type system. A non-unique array can no longer be updated,
4 Löwenheim’s formula maps any unifier to a most general unifier, reducing the prob-

lem of finding an MGU to finding a specific unifier. For the two-element boolean
algebra that is easy, but it is more difficult in the presence of skolem constants. For
example, assuming that uR and vR are skolem constants, and w is a uniqueness
variable, the equation uR ∨ vR � w has a trivial solution [w �→ uR ∨ vR], but we can
no longer guess this solution by instantiating all variables to either true or false.
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but can still be read from. However, adding subtyping to a type system leads
to considerable additional complexity, especially when considering a contravari-
ant/covariant system with support for algebraic data types (such as Clean’s). It
becomes simpler when considering an invariant subtyping relation, but we feel
that subtyping is not necessary at all.

In our previous paper, we argued that the type of dup should be

dup :: tu uf−−→
×

(t×, t×)v

The (free) uniqueness variable on the t in the domain of the function indicates
that we can pass unique or non-unique terms to dup. Since it is always possible to
use a uniqueness variable in lieu of a non-unique attribute, an explicit subtyping
relation is not necessary.

But there is a catch. As we saw in Sect. 4.2, functions with unique elements
in their closure must be unique, and must remain unique: they should only be
applied once. In Clean, this is accomplished by regarding unique functions as
necessarily unique, and the subtyping is adjusted to deal with this third notion
of uniqueness: a necessarily unique type is not a subtype of a non-unique type.
Hence, we cannot pass functions with unique elements in their closure to dup.

Unfortunately, when dup gets the type from our previous paper it can be
used to duplicate functions with unique elements in their closure. Therefore we
introduced a second attribute on the function arrow, indicating whether the
function had any unique elements in its closure. The typing rule for application
enforced that functions with unique elements in their closure (second attribute)
were unique (first attribute). That means that functions with unique elements
in their closure can be duplicated, but once duplicated can no longer be applied.

This removed the need for subtyping, but that advantage was offset by the
additional complexity introduced by the second uniqueness attribute on arrows:
the additional attribute made types more difficult to read (especially in the case
of higher order functions).

An important contribution of the current paper is the observation that this
additional complexity can be avoided if we are careful when assigning types to
library functions. For example, a function that returns a new empty array should
get the type

newArray :: Int
×−→ Arrayu

rather than

newArray :: Int
×−→ Array•

Similarly, the function that clears all elements of an array should get the type

resetArray :: Array• ×−→ Arrayu

rather than

resetArray :: Array•
×−→ Array•

An Array that is polymorphic in its uniqueness can be passed to resetArray
as easily as it can be passed to dup (of course, a shared array still cannot be
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passed to resetArray). If we are careful never to return a unique array from a
function, we will always be able to share arrays. We still do not have an explicit
subtyping relation but we get the same functionality: the subtyping is encoded
in the type of Array, rather than in the type of dup.

Not all functions should be so modified. For example, many functions with
side effects in Clean have a type such as

fun :: · · · → (World• → World•)

where the World is a token object representing the world state. It never makes
sense to duplicate the world, which can be enforced by returning a unique World
(rather than a World which is polymorphic in its uniqueness).

It may seem that a disadvantage of our approach is that we can no longer
take advantage of more advanced sharing analyses. For example, given

isEmpty :: Arrayu ×−→ Bool×

shrink , grow :: Array• ×−→ Arrayu

sharing analysis has been applied correctly to the following definition [2]:
f arr = if isEmpty arr⊗ then shrink arr� else grow arr�

Even though there are three uses of arr within f, only one of the two branches
of the if-statement will be executed. Moreover, the condition is guaranteed to
be evaluated before either of the branches, and the shared (⊗) annotation on
arr means that the array will not be modified when the condition is evaluated.

However, this example uses arr at two different types: Array× within the con-
dition and Array• within both branches. This works in Clean because Array• is
a subtype of Array×. In our previous proposal [3], this works because a unique
term can always be considered as a non-unique term. In our new proposal how-
ever, this program would be rejected (since Array• does not unify with Array×).

However, we can take advantage of the fact that we have embedded our
core system in an advanced type system that supports first class polymorphism
(Sect. 7). We want to use a polymorphic value (arr :: ∀u.Fileu) at two differ-
ent types within a function: the classic example of a higher rank type [11]. Our
example above typechecks if we provide the following type annotation:

f :: ∀v. (∀u. Arrayu)
×−→ Arrayv

The function f now demands that the array that is passed in is polymorphic in
its uniqueness. That is reasonable when we consider that we are using the array
at two different types in the body. Moreover, since we regard all unique objects
as necessarily unique, it is also reasonable that we cannot pass in a truly unique
array to f.

Of course there is a trade-off here between simplicity (and ease of understand-
ing) of the type system on the one hand and usability on the other. Since the
user must provide a type annotation in order for the definition of f to typecheck,
the type system has arguably become more difficult to use. However, this case is
rare enough that the additional burden on the programmer is small, and a case
can be made that it is useful to require a type annotation as it is non-obvious
why the function definition is accepted.
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7 Implementation in Morrow

We have integrated our type system in Morrow, an experimental functional lan-
guage developed by Daan Leijen.5 Morrow’s type system is HMF [12], which is a
Hindley/Milner-like type system that supports first class polymorphism (higher
rank types and impredicativity). As such, it is an alternative to both Boxy Types
[13] and MLF [14]. However, unlike boxy types, it is presented as a small logical
system which makes it easier to understand, and at the same time it is much
simpler than MLF. Although HMF is quite a good fit with our type system, we
have also experimented with integrating it into other type systems. For example,
we we have a prototype implementation of a variant on the type system of this
paper that uses the arbitrary rank type system from [11].

As it turns out, the implementation of our type system in Morrow is agreeably
straightforward. This provides strong evidence for our claim that adding unique-
ness typing to an existing compiler, and more importantly, extending uniqueness
typing with advanced features such as higher rank types and impredicativity,
poses little difficulty when using the techniques from this paper.

We outline the most important changes we had to make to Morrow:

– We modified the kind checker to do kind inference for our new kind system
(mostly a matter of changing the kinds of type constants)

– We implemented sharing analysis, annotating variables with information on
how often they are used within their scope (once or more than once)

– We modified the rules for variables and abstraction, so that shared variables
must be non-unique, and abstractions become unique when they have unique
elements in their closure. To be able to do the latter, all the typing rules had
to be adapted to return the fv structure from Sect. 4. Variables that are used
at a polymorphic uniqueness (a type of the form ∀u.tu for some t) must be
treated as if they were unique for the purposes of fv .

– Let bindings had to be adapted to remove the variables bound from fv .
Moreover, the type of every binding in a recursive binding group must be
non-unique (as is standard in a uniqueness type system [2]).

– Most of the work was in modifying the types of the built-in functions and
the kinds of the built-in types, and adding the appropriate type constants
(such as Attr) and kind constants (T , U). However, all of these changes were
local and did not affect the rest of the type checker.

– Unification had be adapted to do boolean unification, as explained in Sect. 5.
In addition, it is necessary to simplify boolean expressions, so that for ex-
ample tu∨× is simplified to tu. This is important because if no simplification
is used the boolean expressions can quickly get complicated. Fortunately, we
can use an independent module for boolean unification and simplification.
When unifying a ! b, it suffices to check the kinds of a and b, and if they
are U , to call the boolean unification module. Therefore, boolean unification
does not in any way complicate the unification algorithm of the type checker.

5 Unfortunately we cannot currently make the source available due to licensing issues.
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– Morrow uses System F (with pattern matching) as its typed internal lan-
guage. Although the “attributes are types” approach of Sect. 3 means that
the internal language does not need to change, Morrow also includes a Sys-
tem F type checker to ensure that the various phases of the compiler generate
valid code. This type checker had to be adapted in a similar way to the main
type checker.

The majority of these changes were local (did not require any significant refac-
toring of the compiler), and none of the changes were complicated. The fact
that we can treat both vanilla types and uniqueness attributes as types (of dif-
ferent kinds) really helped: modifying the kind checker was straightforward, we
got the additional expressive power described in Sect. 3 virtually for free, we did
not have to introduce an additional universal quantifier for uniqueness attributes
(and thus avoided having to modify operations on types such as capture avoiding
substitution or pretty-printing), etc.

8 Soundness

To prove soundness, we use a slightly modified (but equivalent) set of typing
rules.6 Rather than giving different typing rules for variables marked as used
once or used more than once, we do not mark variables at all but enforce that
unique variables are used at most once by splitting the environment into two
in rule App. Non-unique variables can still be used more than once because
the context splitting operation collapses multiple assumptions about non-unique
variables (rule Split

×). This presentation of the type system is known as a
substructural presentation because some of the structural rules (in this case,
contraction) do not hold. The presentation style we have used, using a context
splitting operation, is based on that given in [15], where it is attributed to [16].

The soundness proof for a type system states that when a program is well-
typed it will not “go wrong” when evaluated with respect to a given semantics.
We are interested in a lazy semantics; often the call-by-name lambda calculus is
used as an approximation to the lazy semantics, but it is not hard to see that we
will not be able to prove soundness with respect to the call-by-name semantics.
For example, consider

(\x. (x, x)) (f y)

In the call-by-name semantics, this term evaluates to

(f y, f y)

But when we allow for side effects, these two terms have a different meaning. In
the first, we evaluate f y once and then duplicate the result; in the second, we
evaluate f y twice (and so have the potential side effect of f twice). Accordingly,
the types of both terms in a uniqueness type system are also different. In the
6 The syntax-directed presentation using sharing marks is easier to understand and

more suitable for type inference. However, it is not usable for a soundness proof. Such
a distinction between a syntax-directed and a logical presentation is not uncommon,
and has been used before in the context of uniqueness typing [2].
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Term language
e ::= x | λx · e | e e term
A ::= λx · e | let x = e in A answer
E ::= [] |E e | let x = e in E | let x = E0 in E1[x] evaluation context

Syntactic convention
(let x = e1 in e2) ≡ (λx · e2) e1

Evaluation rules
�→ is the smallest relation that contains Value, Commute, Assoc and is closed under
the implication M �→ N implies E[M ] �→ E[N ].
(Value) let x = λy · e in E[x] �→ {(λy · e)/x}E[x]
(Commute) (let x = e1 in A) e2 �→ let x = e1 in A e2

(Assoc) let y = (let x = e in A) in E[y] �→ let x = e in let y = A in E[y]

Substructural typing rules

Γ, x : tu � x : tu|x:u
Var

Γ, x : a � e : b|fv fv ′ = x fv

Γ � λx · e : a
�

fv′
−−−→ b|fv′

Abs

Γ � e1 : a
u−→ b|fv1 Δ � e2 : a|fv2

Γ ◦Δ � e1 e2 : b|fv1◦fv2

App

Context splitting

∅ = ∅ ◦ ∅ Split
∅ Γ = Γ1 ◦ Γ2

Γ, x : t× = (Γ1, x : t×) ◦ (Γ2, x : t×)
Split

×

Γ = Γ1 ◦ Γ2

Γ, x : t• = (Γ1, x : t•) ◦ Γ2
Split

•
1

Γ = Γ1 ◦ Γ2

Γ, x : t• = Γ1 ◦ (Γ2, x : t•)
Split

•
2

Fig. 5. Call-by-Need Semantics

first, f may or may not be unique, and must have a non-unique result (because
the result is duplicated). In the second, f cannot be unique (because it is applied
twice) and may or may not return a unique result.

Traditionally [2] a graph rewriting semantics is used to prove soundness, but
this complicates equational reasoning. Fortunately, it is possible to give an al-
gebraic semantics for lazy evaluation. Launchbury’s natural semantics for lazy
evaluation [17] is well-known and concise, but is a big-step semantics which
makes it less useful for a soundness proof. The call-by-need semantics by Maraist
et al. [4] is slightly more involved, but is a small-step semantics and fits our needs
perfectly. The semantics is shown in Fig. 5.

Unfortunately, due to space limitations we can only give a summary of the
proof here. A full formal proof, written using the Coq proof assistant, can be
found in a separate technical report [18].
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Theorem 1 (Progress). Suppose e is a closed, well-typed term (∅ � e : τ |fv
for some τ and fv ). Then either e is an answer or there exists some e′ such that
e �→ e′.

Proof. The easiest way to prove progress is to prove a weaker property first:
for every term e, e is an answer, there exists some e′ such that e �→ e′, or
e = E[x] for some x. This weaker property can be proven by a complete structural
induction on e; the proof is laborious but not difficult. To prove progress using the
weak progress property, we just need to rule out the last possibility. However,
if e = E[x] for some x, and ∅ � e : τ |fv , then we must have x ∈ ∅, which is
impossible. "#

The proof of preservation is more involved and we can only give a brief outline
here. The main lemma that we need to be able to prove preservation is the
substitution lemma:

Lemma 1 (Substitution). If Γ, x : a
�

fv2−−−→ b � e1 : τ |fv1,x:
�

fv2
, x is free in

e1, and Δ � λy · e2 : a
�

fv2−−−→ b|fv2 , then Γ ◦Δ � {(λy · e2)/x} e1 : τ |fv1◦fv2
.

The proof is by induction on Γ, x : a
�

fv2−−−→ b � e1 : τ |fv1,x:
�

fv2
and is not trivial.

The essence of the proof is that if (λx · e1)(λy · e2) is well-typed, then either x
occurs once in e1, in which case we can substitute λy · e2 for x without difficulty,
or x occurs more than once in e1. In that case, x must have a non-unique type,
which means that λy · e2 must be non-unique, and therefore the function cannot
have any unique elements in its closure—or equivalently, that e2 be typed in an
environment where every variable has a non-unique type. Since Δ = Δ ◦Δ if all
assumptions in Δ are non-unique, this means that we can type the result term
even when λy · e2 is duplicated.

Armed with the substitution lemma, we can prove preservation:

Theorem 2 (Preservation). If Γ � e : τ |fv and e �→ e′ then Γ � e′ : τ |fv .

Proof. By induction on e �→ e′. The cases for Commute, Assoc, and the three
closure rules (one for each of the non-trivial evaluation contexts) are reasonably
straightforward. The case for Value relies on the substitution lemma. "#

A full formalization of the calculus extended with (let-bound or first-class) poly-
morphism is future work.

9 Related Work

There is a large body of related work; we can only discuss the most relevant.
There are two recent papers on uniqueness typing: Harrington [19] presents a

categorical semantics for a uniqueness type system like Clean’s, and Hage et al.
[20] present a generic type system that can be instantiated to support either
sharing analysis or uniqueness typing.
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In both systems all unique terms can be coerced to non-unique terms. As
observed in Sect. 6 it is possible to allow this, but one must be careful with
partially applied functions which may have unique elements in their closure.

In the type system from Hage et al., functions with unique elements in their
closure must be unique; however, these functions can then be coerced to be non-
unique and can be applied an arbitrary many times; no special provision is made
to prohibit this. Thus, it is possible to define a function dup! of type

dup! :: t• → (t•, t•)v

dup! x = (\f -> (f ⊥, f ⊥)) (const x)

The authors suggest that the problem may be remedied by introducing an ad-
ditional attribute on arrows, like we suggested in our previous paper (see also
Sect. 6)—and they adopt this solution in a later paper [21]. It remains to be
seen whether a similar solution to the one we propose in the current paper is
possible for their system. The central thesis of their paper is a duality between
uniqueness typing and sharing analysis, and it is not clear whether this duality
is preserved when removing subtyping.

Harrington suggests a different solution to the problem of partial application.
Two distinct sorts of functions are introduced: ones that can have unique ele-
ments in their closure (of type a � b) and ones that cannot (of type a ⇒ b).
Functions of type a ⇒ b do not pose any problems and can safely be applied
many times (and potentially return unique results).

Functions with unique elements in their closure can also be applied multiple
times, but their result must be non-unique if they are applied more than once.
While this means that it is no longer possible to define dup!, this approach
is not sufficient to guarantee referential transparency. For example, consider a
function closeFile which returns a boolean indicating whether the file was
already closed:

closeFile :: File• ×−→ Bool×

In Harrington’s system, the following program would be accepted
f file = (\g. g ⊥, g ⊥) (\x. closeFile file)

even though it is not referentially transparent (it would be rejected in our type
system). It is accepted because the closeFile always returns a non-unique
result, and hence the restriction that functions that are used more than once
must return a non-unique result makes no difference (and hence is not enough to
guarantee referential transparency). It may be difficult to modify Harrington’s
system to adopt a solution similar to the one we propose: subtyping between
unique and non-unique terms is fundamental to Harrington’s formalization.

Uniqueness typing is often compared to linear (or affine) logic [22]. Although
both linear logic and uniqueness typing are substructural logics, there are im-
portant differences. In linear logic, variables of a non-linear type can be coerced
to a linear type (dereliction). Harrington phrases it well: in linear logic, “linear”
means “will not be duplicated” whereas in uniqueness typing, ”unique” means
“has not been duplicated”. According to Wadler: “Does this mean that linear-
ity is useless for practical purposes? Not completely. Dereliction means that we
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cannot guarantee a priori that a variable of linear type has exactly one pointer
to it. But if we know this by other means, then linearity guarantees that the
pointer will not be duplicated or discarded” [22, Sect. 3].

However, some systems based on linear logic (such as [23]) are much closer to
uniqueness typing than to linear logic, and these systems could benefit equally
from the techniques presented in this paper (attributes as types, boolean expres-
sions for attributes).

Finally, Guzmán’s Single-Threaded Polymorphic Lambda Calculus [24] has
similar goals to uniqueness typing, but is considerably more complicated. Much
of this complexity comes from trying to support a “strict let” construct where
unique (or “single-threaded”) terms can be used multiple times at a non-unique
(multiple-threaded) type. A detailed discussion of this problem is beyond the
scope of this paper; see for example [25, Sect. 9.4] or [26].

10 Conclusions

By treating uniqueness attributes as types of a special kind U , the presentation
and implementation of a uniqueness type system is simplified, and we gain ex-
pressiveness in the definition of algebraic datatypes. We can recode attribute
inequalities (implications between uniqueness variables) as equalities if we al-
low for arbitrary boolean expressions as uniqueness attributes. This makes type
inference easier (unification cannot deal with inequalities, but can deal with
equalities between boolean expressions). Finally, no explicit subtyping relation
is necessary if we are careful when assigning types to library functions: we require
that unique terms must never be shared, and make sure that functions never re-
turn unique terms (but rather terms that are polymorphic in their uniqueness).

Together these observations lead to an expressive yet simple uniqueness type
system, which is sound with respect to the call-by-need lambda calculus. The sys-
tem can easily be extended with advanced features such as higher rank types and
impredicativity. We have integrated our type system in Morrow, an experimen-
tal programming language with an advanced type system. The implementation
required only minor changes to the compiler, providing strong evidence for our
claim that retrofitting our type system to existing compilers is straightforward.

Acknowledgements. We thank Daan Leijen, Paul Levy and Adam Megacz for
various insightful discussions, and Arthur Charguéraud for his generous assis-
tance with the formal proof in Coq, which uses the proof engineering technique
devised by him and others [27].
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Abstract. Tabular expressions are a multidimensional structured nota-
tion for complex mathematical definitions of relations or functions. They
have been found useful for documenting imperative programs by stating
the function or relation that describes the black-box behaviour of those
programs. Tools are needed to increase the practicality of this approach
to documentation. In order to create tools to check and evaluate tabular
expressions, we have investigated functional programming as an imple-
mentation paradigm that reflects the semantics of these mathematical
expressions faithfully. We explain why and how the restriction to to-
tal functions improves the semantic correspondence substantially, and
describe the basic design and capabilities of our total functional pro-
gramming tools for tabular expressions. We demonstrate the practical
advantages of totality by giving examples for the especially easy and ef-
fective application of well-known code transformation techniques to total
functional programs.

1 Introduction

1.1 Context

Our research group is developing methods of producing practical reference doc-
umentation for software products and components. Our document contents are
defined by a relational model in which each document is required to be a repre-
sentation of a specified relation. In effect, we are using mathematical descriptions
of relations to provide specifications and descriptions of programs written in con-
ventional programming languages.

Key to making these documents readable is a multidimensional form of ex-
pressions, which we call tabular expressions or just tables. These parse complex
expressions into arrays of simpler expressions allowing readers to “look up” the
information that they seek without understanding the whole expression.

Tools that check and evaluate these expressions would be very useful when
these methods are applied and we are looking for effective and efficient imple-
mentations of such tools.
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1.2 This Work

This paper reports on our experiences with applying the functional program-
ming paradigm to the construction of tools for tabular expressions. Functional
programming is a natural choice because

1. The tasks of checking and evaluating tabular expressions are typical exam-
ples of side-effect-free processing and interpretation of structured data.

2. The formal semantic model of tabular expressions, as presented to some
degree in the earlier work [1] and more generically in the forthcoming [2], is
given largely in terms of functions.

3. The intended application of these expressions is software documentation us-
ing a relational model [3] but for most applications, the relations are suf-
ficiently represented by their characteristic predicate, i.e., a boolean-valued
total function.

Note that this does not include direct support for existential problems,
such as search queries or relational composition.

Our intent is to give a reference implementation of the formal model that is
not only executable, but also mirrors the intended semantics and the model’s
theoretical properties faithfully. We show that our goals can almost, but not
quite, be achieved by using a universal functional language. We explain where
conventional functional programming falls short, and propose an alternative. A
shorter report on an earlier stage of this work can be found in [4].

1.3 Related Work

This is not the first time that the relation between tabular expressions and
functional programming has been noticed or exploited. In [5], Kahl presents an
inductive approach to tables of certain regular types that is compositional in
table content and semantics at the same time. He provides an implementation
of table constructors and inductive interpretation in Haskell, and correspond-
ing formal proofs in the proof system Isabelle. Because of the restricted set of
constructors, his theory is compact and elegant.

Our current work is intended to implement the more generic table model of
[2], that allows all constructs of a certain mathematical base language to be used
freely in content and semantics of tables. This paper discusses the requirements
of such a generic view, and presents preliminary results from the approach we
have taken.

2 Example Tabular Expressions

We shall use a simple tabular expression taken from [6] as the running example
for explaining the basic usage of tables and the services we expect from an
evaluation tool.
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Table 1. Power Conditioning (Specification)

PwrCnd(Prev : bool ; Power , Kin , Kout : real) : bool ≡

Power ≤ Kout Kout < Power < Kin Power ≥ Kin

false Prev true

The tabular expression depicted as Table 1 is a small, but real example.1

It specifies a family of sensor control functions of a nuclear reactor shutdown
system. As some of the status monitoring logic is only applicable when the re-
actor is operating near its maximum output power level, some sensors need to
be “conditioned in” (activated) above a certain power level, and “conditioned
out” (deactivated) below. To avoid jitter (many changes separated by very short
intervals), an artificial hysteresis effect is introduced by setting the threshold
for conditioning in (Kin) slightly higher than that for conditioning out (Kout).
In between the two, the previous state (Prev ) is maintained. A graph illustrat-
ing some change of power over time is depicted in figure 1. The relevant state
transitions and their effects on the output signal are marked.

t

Kout

Kin

Power

PwrCnd

© effective

• suppressed

Fig. 1. Power Conditioning (Example Graph)

Table 2 shows a more complex tabular expression. It specifies a software used
for testing notebook keyboards in terms of a function. Given a sequence T of
keystrokes, the function N yields the next expected keystroke or a test verdict
(pass or fail). The empty sequence is denoted . The auxiliary functions r and
p yield the last keystroke and the subsequence before the last keystroke, respec-
tively. L is the total number of keys to test. Esc is the number of the escape key.
The two-dimensional organization is crucial for accessing relevant information

1 Although we have chosen the simplest possible real example to illustrate these expres-
sions, many much more complex tables were used in the inspection of the Darlington
Nuclear Power Generation Station described in [6].
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Table 2. A Two-Dimensional Function Table with Auxiliary Predicates

N(T ) ≡
T =

T �=
N(p(T ))=1 1<N(p(T ))<L N(p(T ))=L

keyOK (T ) 2 N(p(T ))+1 Pass

¬keyOK (T )∧

¬keyesc(T )∧

pkeyOK (T )

N(p(T ))−1 N(p(T ))−1
¬pkeyOK (T )∧

pkeyesc(T )∧
ppkeyOK (T )

¬pkeyOK (T )∧
pkeyesc(T )∧
¬ppkeyOK (T )

1 N(p(T )) N(p(T ))

¬pkeyOK (T )∧
¬pkeyesc(T )

1 1 N(p(T )) N(p(T ))

keyesc(T )∧

¬pkeyesc(T )
N(p(T )) N(p(T ))

pekeyesc(T )

pkeyesc(T )∧
¬pekeyesc(T )

Fail Fail Fail

keyOK (T ) ≡ r(T ) = N(p(T ))

keyesc(T ) ≡ r(T ) = Esc

pkeyOK (T ) ≡ keyOK (p(T ))

pkeyesc(T ) ≡ keyesc(p(T ))

ppkeyOK (T ) ≡ pkeyOK (p(T ))

pekeyesc(T ) ≡ N(p(p(T ))) = Esc

quickly; e.g., the bottom row states that pressing the escape key twice in an
error situation, and only doing so, aborts the test.

2.1 Meaning of a Tabular Expression

The concrete syntax for Table 1 in print is deceivingly straightforward; for mul-
tidimensional, irregular or simply huge tables, there may not be such an obvious
graphical representation.2 Hence the mathematical table model only represents
the abstract syntax of the content of the table as an indexed set (aka family or
map) of grids. Each grid is in turn an indexed set of cells, each of which contains
a (conventional or nested tabular) expression. A table type complements the
content to make the tabular expression semantically self-contained. The table
type, which may be shared by many similar tables, comprises
2 The layout shown in Table 2, for example, is the final product of thorough analysis

and skillful documentation.
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1. an evaluation term, i.e., an algorithm for evaluating the table’s content,
depending on a valuation of free variables,

2. a restriction predicate, i.e., a well-formedness condition that a table’s content
must satisfy for the evaluation algorithm to be applicable.

The table type is an integral part of the table expression. One can consider it as
an instance of dynamic typing, or as semantically rigorous meta-data.

The given example table is a one-dimensional instance of the n-dimensional
normal function table type:

1. It contains two grids of three cells each.
(a) The upper grid is called a header grid that contains predicate expres-

sions.
(b) The lower grid is called a main grid that contains value expression (also

of type bool in this case).
2. To evaluate the table, choose an index to the header grid, such that

(a) the selected predicate expression evaluates to true,
(b) then evaluate only the cell of the main grid at the same index.
For more than one dimension, one index for each header grid would be chosen
independently, determining one coordinate of the selected cell of the main
grid.

3. The table is well-formed, if
(a) there is a single main grid and one header grid (per dimension),
(b) the index set of the main grid is the Cartesian product of the index sets

of the header grids (in one dimension, both are equal), and
(c) each header grid partitions the set of possible variable valuations.

See [1,5,7,8] (in chronological order) for more exact definitions of the normal
function table type and other types of tabular expressions.

Figure 2 shows the content of Table 1 as a data term modelling its abstract
syntax. The two-layered structure of grids and cells is represented by nested
lists of key-value pairs. The index keys 0 for the main grid, 1 for the header grid
and ’a’, ’b’, ’c’ for the columns have been chosen arbitrarily. The boxes indicate
that some translation of the cell expressions has to take place, see section 5.2.
Implementing the table type, as specified above and based on this model, in
a functional language is left as an exercise to the reader. See section 5.4 for a
suggested interface.

�
�����

�
0,

��
’a’, false

�
,
�
’b’, Prev

�
,
�
’c’, true

��	
,�

1,

��
’a’, Power ≤ Kout

�
,
�
’b’, Kout < Power < Kin

�
,
�
’c’, Power ≥ Kin

��	


�����

Fig. 2. Abstract Syntax of Table 1
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2.2 Tool Requirements

We expect an evaluation tool to enable us to

1. evaluate a tabular expression for a given variable valuation, by applying the
evaluation term specified by the table’s type to its content,

2. check the restriction predicate, distinguishing two parts for practical reasons:
(a) clauses that do not depend on variable values but rather on the table

shape (called the static restriction), to be checked universally for the
table’s content,

(b) clauses that do depend on variable values (called the dynamic restric-
tion), to be checked specifically for the table’s content and a given vari-
able valuation,

all with reasonable efficiency.
We do not expect an evaluation tool to support checking dynamic restrictions

universally for all possible variable valuations, thus proving that the table speci-
fies a well-defined function. This is a task for a theorem proving system, and may
involve much more complex computations. In [6], based on earlier work [9], the
authors show how a flaw in the specified table has been discovered by the auto-
matic theorem prover PVS: the header cells are only a partition of the valuation
space, if the (intuitive, but unstated) assertion Kout < Kin holds. Otherwise,
the first and third columns overlap, and the table does not specify a function.

3 The Logic Behind Tabular Expressions

If tabular expressions are to be used for describing real problems, they must
be able to deal with partial functions. Partial functions can lead to undefined
expressions, and there are many ways to handle undefinedness in logic, e.g., by
having three or more truth values.

The meaning of partial functions in tabular expressions here is the one defined
in [10]. It was chosen to give the simplest possible expressions in the table cells.
It can be summarized as follows:

1. There is a special undefined value (∗), distinct from all proper values of
interest. This value is assigned to the application of a partial function to
arguments outside its domain.

2. The domain of partial functions never contains ∗. This implies that the result
of a partial function is ∗ whenever one of its arguments is ∗, i.e., functions
are strict. In other words, a partial function is treated as if it were a total
function whose range includes ∗.

3. Predicates are treated differently from functions. A primitive predicate is
simply false if any of its arguments is ∗. By λ-abstraction and negation,
composite predicates can be built that do not have this property, but are still
total Boolean-valued functions. Consequently, the truth value of a formula
is always true or false , but never ∗. I.e., predicates are non-strict.
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Note that (=) is considered a primitive predicate, so (by the third rule) the
seemingly trivially true predicate expression f(x) = f(x) is not true if x is out-
side the domain of f . On the other hand, the equation f(x) = y is logically
equivalent to F (x, y) where F is the characteristic predicate for f . It has been
argued in [10] and later work that this interpretation of partial functions is par-
ticularly concise and useful for writing software descriptions and specifications
in the tabular notation.

This semantic decision has consequences for the construction of an effective
universal evaluation algorithm for tabular expressions. The intuitively appeal-
ing representation of ∗ by the element ⊥ of standard domain-theoretic semantics
does not work as intended: Since ⊥ is also assigned to expressions that cannot be
evaluated effectively, e.g., a nonterminating recursive function application, writ-
ing a program that would evaluate arbitrary predicates in the formalism becomes
as hard as solving the halting problem, i.e., impossible without restrictions.

1. The pragmatic solution is to use a universal language to implement the
model, accepting some semantic deviations. It is impossible to preclude un-
determined predicate expressions in this case; so the responsibility is placed
on the programmer to find the appropriate termination arguments.

2. The rigorous solution is to use a restricted language with the “right” se-
mantics to implement the model. If we have to decide whether an expression
evaluates to ∗, it has to be an proper value in a calculus of total functions.
The advantage of this approach is that properties of the implementation are
closely related to (and not much more complex to prove than) properties of
the formal model. The price is that one has to obey the restrictions of the
implementation language.

4 Total Functional Programming

In [11], Turner expresses similar, albeit more fundamental concerns regarding the
relation of universal functional programming calculi and mathematical functions:

The driving idea of functional programming is to make programming
more closely related to mathematics. [. . . ] The existing model of func-
tional programming [. . . ] is compromised to a greater extent than is com-
monly recognized by the presence of partial functions.

He strives for a language that abolishes partial functions, but retains as much
as possible of the notational ease of Miranda or Haskell.

A quite different approach to total functions is taken by total function calculi
in the style of Martin-Löf’s type theory [12] or Coquand’s “Calculus of Con-
structions” (CC) [13]. These are closely connected to higher-order logic (via
the Curry-Howard isomorphism), a fact that is exploited in constructive proof
systems like Coq.

We have chosen a “middle road”, employing a rigorous explicit type system
like the latter, but focusing on computation (rather than logic) like Turner.
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The result is FCN3, the design and implementation of a practical high-level
intermediate language for pure total functions. Like other total languages, it is
characterized by the absence of general recursion: The syntax forbids recursive
definitions, and the type system forbids fixpoint operators.

The type system of FCN is the pure System Fω. It differs from the well-
known weaker System F [14] or the even weaker Hindley-Milner system by the
presence of type-level functions, and from the stronger CC by the absence of
value-dependent types. The detailed properties and relations of these type sys-
tems can be found in [15], but are not essential to understanding the following
sections.

5 Functional Programming Techniques Applied

Limited space prohibits the detailed description of the FCN language. The fol-
lowing subsections can provide only a brief illustration of how our requirements
have been mapped successfully onto features of the purely functional paradigm.
The following sections demonstrate that total functional programming is not
only semantically adequate for our domain of application, but that its benign
properties can be exploited in general, in a number of straightforward and effec-
tive ways.

5.1 Partial Functions

The logical rules concerning partial functions and total predicates can be imple-
mented in a completely explicit way using a simple error monad [16].

1. For each type A, a dubious type A? is defined to contain one additional
element:

type A? = A + {∗}

Readers familiar with Haskell will easily recognize this construction as the
Maybe functor.

2. A partial function f : A � B is represented as a total function f ′ : A → B?.
Consider another partial function g : B � C, totalized as g′ : B → C?. The
composition g′ ◦ f ′ is not type-correct, so a canonical transformation

bind : ∀B, C. (B → C?) → (B? → C?)

is inserted.4 It satisfies the strictness law

bind(B)(C)(g′)(x) =

{
∗ if x = ∗
g′(x) if x 	= ∗

3 Functional Core Notation.
4 Cf. Haskell’s (=<<).
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such that the composition of total functions bind(g′)◦f ′ correctly implements
the composition of partial functions g◦f . The operation bind can be extended
to the functorial operation of (?) to deal with total functions:

lift : ∀B, C. (B → C) → (B? → C?)

3. For primitive predicates, a different canonical transformation

prim : ∀A. (A → bool ) → (A? → bool)

is used to compose them with partial functions. It satisfies the non-strictness
law

prim(A)(p)(x) =

{
false if x = ∗
p(x) if x 	= ∗

Apart from reflecting the intended semantics precisely, this approach has sev-
eral additional benefits:

1. Algebraic simplification laws that do not hold for the original implicit nota-
tion are restored. These include the aforementioned tautology f(x) = f(x),
as well as general β-reduction.

2. A single boolean-valued function f : A → bool can be re-used to define both a
partial function and a total predicate, by exchanging lift(A)(f) : A? → bool?
and prim(A)(f) : A? → bool .

3. Unlike in the original, untyped first-order approach of [10], there is no am-
biguity which symbols are primitive predicates and thus subject to the non-
strictness rule: they are explicitly qualified with prim .

5.2 Cells and Variables

Tabular expressions are used to define functions and relations, hence they are
likely to contain (free) variables. In a language with first-order functions, the
grid structure of a table and the functionality of individual cells can be separated
cleanly by closure conversion, aka lambda lifting: The open expression in each
cell is turned into a function of the table’s variables, which can then be stored
in a data structure. In the given example table, the effect is that the phrase

λPrev : bool ;Power , Kin , Kout : real . · · ·

is prepended to each cell expression. A variable valuation then takes the form of
an argument vector that is passed uniformly to all cells of the table.

To keep expressions simple, we take the liberty to apply another, more invasive
transformation, namely a tuple conversion. Instead of lifting each free variable to
an individual function argument, we provide a single valuation record argument,
here invariably called x, and assume the existence of suitable selector functions
to extract variable values. By this transformation, e.g., the topmost leftmost cell
of the example table becomes the closed unary predicate

λx : X.Power(x) ≤ Kout(x)

where X is a suitable product or record type.
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5.3 Data Types and Recursion

It is well-known that algebraic data types can be represented in pure λ-calculus
by the Church encoding. However, because of efficiency issues (some access op-
erations slow down from O(1) to O(n), where n is the total size of the data
structure), they have never been considered seriously for practical purposes.5

Intermediate languages, but also theoretical calculi are therefore usually ex-
tended with primitive data type constructs, e.g., see [18]. Church encoding is
also not suitable to be used directly in a strongly typed language based on the
Hindley-Milner type system, which is too weak to assign useful types to Church-
encoded data. E.g., the following innocuous Haskell function becomes ill-typed,
if Haskell’s built-in list type is replaced by a Church-encoded one:

foo l = l ++ [sum l ]

Figure 3 shows the full Haskell program. It is not typeable, because a variable
in the monomorphic type of argument l is unified with both List α and α by its
two uses. This weakness is not shared by System F -like type systems.

nilC f e = e
consC h t f e = f h (t f e)
foldC f e l = l f e
sumC = foldC (+) 0
appC = foldC consC
singletonC = (‘consC ‘ nilC )
foo l = appC l (singletonC sumC l)

Fig. 3. Chuch-Encoding of Lists in Haskell

For an intermediate language that is to accommodate not only evaluation, but
also symbolic reasoning about functions in a variety of target systems, efficiency
is a minor concern compared with the purity and simplicity of the semantic
foundation. Hence we consider definitions of the usual data types and their
operations in terms of Church-encoded pure functions perfectly acceptable in
the context of FCN.

The theoretical advantages of the Church encoding over other representations
are

1. that its operations can be typed in a type system of pure functions,
2. that it implements primitive recursion on a data type simultaneously with

the construction of data items, and
3. that it is a natural representation for partial evaluation and theorem proving.

As an example, consider the recursive definition of lists of elements of some type
A and its constructor operations:

5 With the outstanding and very recent exception of the SAPL interpreter [17].
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List = λA. ∀B. (A → B → B) → B → B

nil : ∀A.List(A)
cons : ∀A. A → List(A) → List(A)

The constructors are implemented by the following functions:6

nil = λA. λB. λ f. λ e. e

cons = λA. λh. λ t. λB. λ f. λ e. f(h)
(
t(B)(f)(e)

)
with nil(A) denoting the list of zero As, and cons(A)(h)(t) the list of As with
first element h and rest list t. That this definition effectively supports primitive
recursion can be seen by considering the following function (Haskell experts will
recognize it as foldr by its type signature)

fold : ∀A, B. (A → B → B) → B → List(A) → B

fold = λA. λB. λ f. λ e. λ l. l(B)(f)(e)

and it is straightforward to verify that the associated laws hold:

fold(A)(B)(f)(e)(nil ) = e

fold(A)(B)(f)(e)
(
cons(h)(t)

)
= f(h)

(
fold(A)(B)(f)(e)(t)

)
Since FCN is a domain-specific language, the question whether primitive re-

cursion provides sufficient computational power should be answered by surveying
the application domain. The calculations that make up a typical table evalua-
tion term or restriction predicate deal with finding or counting elements (cells)
in a data structure (grid) that have a specific property. These are ideal appli-
cations of primitive recursion. None of the table types described in [2] involve
any operations for which a primitively recursive form is not easily found. Be-
sides, we doubt that a table type definition involving non-primitively recursive
functions would be considered good practice of formal documentation by soft-
ware engineers, because such a definition would also impede the human reader’s
understanding.

An FCN program can be transformed in various ways during translation to
an executable target language to compensate the inefficiency of the Church-
encoding:

1. By replacing all constructors and deconstructors, and thus the effective rep-
resentation of data items, by primitive implementations available in the tar-
get language. The purity of the functional code is lost in translation, if the
target language allows nondeterminism or side effects.

2. By replacing the original Church-encoding with a more efficient variant, as
in [17]. The resulting code is still purely functional, but not typeable, and
may require explicit recursion.

6 Technically, type checking in System F requires explicit declaration of the types
of all λ-bound variables. They have been omitted here to make the example more
human-readable.
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Some data types, most notably floating point numbers, are supported by vir-
tually any target language, but far too cumbersome to Church-encode. If these
are needed, one can give abstract declarations of their access functions (giving
types, but no implementation) in FCN, and resolve them to primitive implemen-
tations in each supported target language. The disadvantage of this solution is
that generic support for evaluation and theorem proving is lost.

5.4 Program Specialization

By virtue of its type system, the FCN language has the strong normalization
property: All programs have a unique β-normal form, and every sequence of β-
reductions reaches this normal form in finitely many steps. As a useful corollary,
a FCN program that is run in interpreted or compiled form terminates. This is
only part of the story, because we usually do not require functional languages to
perform reductions under a λ-abstraction at run-time. But strong normalization
implies also that any partial evaluation, that is performed at compile-time and
involves such reductions under λ-abstraction, terminates. This allows the trans-
formation of FCN programs using vastly more aggressive reduction strategies
than possible in compilers for non-normalizing languages.

λ-abstraction and application are the only primitive constructs of FCN, and
β-reduction is the only semantic operation. Hence it subsumes a variety of trans-
formations that appear under different names in code optimization literature,
most notably inlining, constant folding, constant propagation, copy propagation,
loop unrolling and dead code elimination. A straightforward, brute-force applica-
tion of beta-reduction without any binding-time analysis [19] yields a surprisingly
effective partial evaluator that exploits the potential for specialization inherent
in tabular expressions to a high degree.

Consider the following record type that represents tabular expressions:

Table =

⎧⎪⎪⎨
⎪⎪⎩

content : Content
statrest : Content → bool
dynrest : Content → X → bool
eval : Content → X → R?

⎫⎪⎪⎬
⎪⎪⎭

The first component is the table content, i.e., a two-level data structure contain-
ing cells. The remaining three components comprise the table type. The type
parameter X is the type of variable valuations, and R is the range type of the
function described by this table. Since the table type components are given as
functions of arbitrary content, there seems to be little potential for specializa-
tion. But since we are only interested in one point of each of these functions, we
can find a more specific representation:

Table ′ =

⎧⎪⎪⎨
⎪⎪⎩

content : Content
statrest : bool
dynrest : X → bool
eval : X → R?

⎫⎪⎪⎬
⎪⎪⎭
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A simple mapping applies the universal table type components to the spe-
cific content and creates starting points for partial evaluation, leaving only the
variable valuation as run-time input.

compile : Table → Table ′

compile(T ) =

⎧⎪⎪⎨
⎪⎪⎩

content = content(T )
statrest = statrest(T )

(
content(T )

)
dynrest = dynrest(T )

(
content(T )

)
eval = eval (T )

(
content(T )

)
⎫⎪⎪⎬
⎪⎪⎭

Several auxiliary phases have been added to complement partial evaluation in
an optimizing whole-program compiler.

1. The access operations of several simple and ubiquitous data types are exempt
from inlining to allow for the replacement of their representation, as discussed
in section 5.3.

2. Since these operations are no longer handled by β-reduction, a programmable
term rewriter has been added. The specification of elimination rules (e.g., the
previously given rules for fold) for non-inlined operations yields a controlled
form of δ-reduction.

Note that in the general, non-total case, rewriting applications of strict
functions is problematic and usually requires a termination proof for the
arguments. In the domain of total functions, there is no such problem.

3. A final phase of common subexpression elimination, or β-expansion, is ap-
plied to clear up the inevitable duplication of code.

Applying the whole-program compiler to the example table results in the
inlining of 147 auxiliary functions, 788 β-reductions and 1586 rewrite rule ap-
plications. A specialized program P equivalent to the following pseudo-code is
obtained, minor technical details aside.

1. The static restriction, which states that the index set of the main grid is the
product of index sets of the header grids, is evaluated completely.

statrest(P ) = true

2. The dynamic restriction, which states that each header grid partitions the
space of variable valuations, is specialized to a check that the three header
cells (A, B, C) cover all cases and are pairwise disjoint.

dynrest(P ) = λx.

let A = Power (x) ≤ Kout(x)
B = Kout(x) < Power (x) < Kin(x)
C = Power (x) ≥ Kin(x)

in (A ∨B ∨ C) ∧ ¬
(
(A ∧B) ∨ (A ∧C) ∨ (B ∧ C)

)
3. The evaluation term is specialized to the computation of the selected index

I in the header grid, and the selection of the corresponding cell F of the
main grid.
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eval(P ) = λx.

let A = Power (x) ≤ Kout(x)
B = Kout(x) < Power (x) < Kin(x)
C = Power (x) ≥ Kin(x)
I = if A then 0

else if B then 1
else if C then 2
else ∗

F = if I = 0 then λx. true
else if I = 1 then λx.Prev (x)
else if I = 2 then λx. false
else λx. ∗

in F (x)

The separation of these two steps seems slightly redundant in one dimension,
but is quite natural in the general, multi-dimensional case.

This code is significantly simpler that the pair of abstract syntax and table type
implementation it has been derived from.

Note that all computations that need to iterate over a data structure by a
primitively recursive operation are evaluated at compile-time. It can be shown
that this is a general property of the normal function table type, and also of
some other common table types described in [2]. This eliminates the need for
loops or recursion in the evaluation, and for induction in symbolic reasoning.

6 Tool Support

6.1 Programming System

Programming in FCN is supported by tools, most notably a parser, type checker,
interpreter and compiler. All of these are implemented in Java. The compiler
produces Java code that runs on the JVM, together with a small runtime library.
Figure 4 shows a compiled version of the example table. It is controlled by a

Fig. 4. Power Conditioning (Simulation Screenshot)
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GUI that is derived directly from the function signature, and will be generated
automatically by a future version of the tools.

We have considered the possibility of compiling FCN to another high-level
functional language to leverage the efficiency of mature compilers and run-time
systems. We have chosen not to do so, because
1. the mapping to a type system that is weaker with respect to polymorphism,

e.g. that of standard Haskell, is difficult to automate,
2. interoperation of the generated code with the other existing tools for tabular

expressions (all implemented in Java) would become difficult, and
3. we have not found efficiency to be problematic, especially compared with

symbolic reasoning tools.

A library of about 1000 lines of FCN code defines the ubiquitous basic types
and operations: booleans, natural and integer numbers, tuples, lists, monads,
etc., all in terms of Church encoding.

A second level of library code, about 500 lines of FCN, defines the table model
in terms of standard functional data structures and operations, as well as some
common table types, including the multi-dimensional normal function table type
used in the example, and reusable (polymorphic, higher-order) components for
such table types. This library will be extended in the future to support other
table types.

A tabular expression is simply data structured according to the model, con-
taining functions at the cell level. Evaluation and restriction checking are com-
pletely generic operations, because all semantic information is explicit in the
“type” part of the table data.

Tabular expressions that describe software behaviour can be “animated” with
compiled FCN code to produce simulations, test oracles or prototypes.

6.2 Documentation as Input

The FCN language, with its focus on higher-order functions, its strongly formal
type system and absence of “syntactic sugar”, is designed deliberately as an
intermediate representation facilitating semantically safe interchange of tabular
expressions. It is not, however, intended to be used as an input format for the
software engineering practitioner.

The design of our table tool collection is organized around a central docu-
mentation repository or server, called the kernel, that provides peripheral input,
output and analysis tools with access to tabular expressions via an API or ex-
change file format.

The FCN programming system currently supports the import of tabular ex-
pressions in a file format based on OpenMath [20], a common XML-encoded
abstract syntax notation for mathematical expressions. The import translation
deals automatically with several concerns that have to be addressed explicitly
at the FCN level:
1. Free variables in table cells are detected and λ-lifting is performed.
2. Computations with partial functions are lifted to the monadic level, inserting

bind , lift and prim where appropriate.
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3. Simple patterns of recursive definition are recognized and replaced by appli-
cations of a primitive recursion operator. This is still work in progress.

6.3 Total Functions and Theorem Proving

There is ongoing work [21] to represent the formal model of tabular expressions
as a theory in the proving system PVS. This would complement the services of
the evaluation tools by allowing to prove properties of tables universally for a
class of variable valuations.

Because of the close similarity between the calculi of total functions and the
higher-order logic of PVS, and because of the explicit treatment of partiality
issues in the FCN implementation, large parts of the table model’s design carry
over to PVS directly. The FCN type checker has proved a valuable tool for quick
consistency checking in the design process, helping to keep consistency proof
obligations in the PVS theory tractable. Furthermore, the specialization of a
table by partial evaluation

1. compensates the many layers of indirection and generic auxiliary functions
in the table model library and

2. unrolls recursive operations that would otherwise require inductive reason-
ing,

thus greatly enhancing the scalability of symbolic reasoning about tables.

7 Conclusion

The work described in this paper is an experimental use of functional program-
ming in the creation of software engineering tools. The approach has provided a
formulation of the mathematical model of tabular expressions that can reflect se-
mantics precisely, but is also directly and effectively executable. The strict type
system has proven a valuable consistency check. The features of functional pro-
gramming that are supposed to support abstraction and reuse in functional pro-
gramming, namely parametric polymorphism and higher-order functions, have
found essential use, e.g., as primitive recursion operators and monadic liftings.

We have also found the notion of total functional programming, that is looked
upon with some scepticism by most of the community, to be quite feasible for
this specific application. The absence of general recursion does not impede the
construction or interpretation of tables unduly. The pervasive use of recursion
operators even encourages a point-free programming style.7

The absence of infinite reduction sequences greatly simplifies the implemen-
tation of both run-time and compile-time evaluation strategies. A safe and effec-
tive technique for improving run-time control flow by means of laziness analysis
will be described in a forthcoming paper. The implementation of a partial eval-
uator for exhaustive compile-time program simplification has been extremely
7 An obvious benefit from the viewpoint of the functional programmer, but of ques-

tionable merit for the software engineer.
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straightforward, compared to the vast amount of sophisticated partial evaluation
strategies and heuristics for Turing-complete languages found in literature.

Finally, we have found that an underlying calculus of total functions greatly
reduces the impedance mismatch between the implementation of a formalism and
its formalization in a proof system, making it attractive in general for projects
that involve both evaluation and verification.
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an R5RS Scheme to C Compiler
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Abstract. The semantics of some dynamic programming languages, in-
cluding Python, JavaScript, and R5RS Scheme, make it hard for a com-
piler to inline predefined procedures without compromising the semantics
of the language. In the case of Scheme, many existing compilers can only
achieve good execution speed by assuming that variables bound to pre-
defined procedures are never mutated. This paper presents a speculative
inlining approach which is portable and achieves good performance while
fully conforming to the semantics of Scheme. It has been implemented
in a mature Scheme to C compiler and we report on its performance on
a large benchmark suite, both in execution speed and code size.

1 Introduction

Functional abstraction is useful for designing modular programs but the proce-
dure call mechanism which implements the abstraction barrier has a run time
cost for setting up parameters, directing the control flow to and from the proce-
dure, and returning any results to the caller. The compiler can reduce the cost
by inlining the procedure at the call site in the caller. This eliminates the need
for the call/return control flow instructions, and it uncovers additional oppor-
tunities for optimization because the copy of the procedure body placed at the
call site can be specialized for the actual parameters of that call.

We distinguish two kinds of inlinable procedures: predefined procedures pro-
vided by the language (e.g. sqrt and map), and user procedures whose defini-
tion must be given explicitly in the program. This classification covers language
support operations, such as arithmetic, I/O, memory allocation and method dis-
patch, by treating them as inlinable predefined procedures. This paper addresses
the problem of inlining predefined procedures in the R5RS Scheme language [11].

Some aspects of Scheme make inlining predefined procedures tricky. According
to the semantics of Scheme the evaluation of (+ x y) decomposes into these
steps: get the values of the variables +, x, and y, respectively t1, t2, and t3,
then check that t1 is a procedure, and then call t1 with the parameters t2 and
t3. This usually adds x and y because the global variable + is initially bound
to the addition procedure. During program execution it is possible to bind the
variable + to a non-procedure value or to a different procedure, for example
(set! + list). After this assignment, the expression (+ x y) will in fact call
the predefined procedure list and thus construct a two element list. This form

O. Chitil et al. (Eds.): IFL 2007, LNCS 5083, pp. 237–253, 2008.
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of late binding may be surprising, but it is sometimes useful as explained in
Section 2. This problem is not specific to Scheme; indeed Python [14], JavaScript
[2] and other scripting languages implement this form of late binding.

Predefined global variables may be mutated at run time in any part of the pro-
gram, at the read-eval-print loop, in modules loaded dynamically using the pre-
defined load procedure, and in S-expressions constructed and evaluated at run
time by the predefined eval procedure. To achieve a better static analysis of pro-
grams, a Scheme compiler could adopt a static linking model by forbidding dy-
namic loading and eval, and not offering an interactive read-eval-print loop. This
would allow a whole program analysis to determine conservatively that a given
predefined variable is never mutated. Although this simplifies procedure inlining,
it reduces the system’s flexibility and it deviates from the Scheme semantics.

A popular alternative approach is the use of command-line flags and non-
standard program annotations to force the compiler to assume the predefined
variables contain their initial bindings. For example, the (standard-bindings)
annotation of Gambit-C [3], the --prim flag of PLT Scheme’s compiler [6], and
the “benchmark mode” of Scheme48 [10]. This assumption is so common that
it is the default compilation mode of CHICKEN [15], and the only compilation
mode of Bigloo [13] which are both Scheme to C compilers.

Another aspect of Scheme which hinders the inlining of predefined procedures
is the generic nature of fundamental operations such as + and equal?. Scheme
supports a rich set of numerical types (infinite precision integers, rational, real,
and complex) and the notion of exactness. Consequently most predefined pro-
cedures for performing arithmetic operations have non-trivial definitions which
dispatch on the type and exactness of its arguments, type check the arguments,
check for overflows, raise exceptions when appropriate, perform memory alloca-
tion, and so on. For space reasons it is unreasonable to fully inline arithmetic
procedures. This is problematic because many programs need to do simple arith-
metic on small exact integers for counting or indexing vectors.

To alleviate this problem many systems extend Scheme with a fixnum numer-
ical type, which is a fixed-width exact integer type typically a few bits less than
the natural word size of the machine, and procedures to operate on fixnums,
such as fx+ to add two fixnums, fx< to compare two fixnums, etc. Fixnum op-
erations usually have a simple definition and they are fast because they do not
require boxing and unboxing, and they have few special cases (overflow checking
is typically the only special case). Some systems also provide a flonum numerical
type, which is a fixed-precision inexact real type typically represented as a boxed
machine floating point number. It is reasonable to inline fixnum and flonum op-
erations because they take roughly the same space as a general procedure call.

The handling of fixnums and flonums varies considerably between systems,
most notably in the width of fixnums and the handling of overflows (some systems
detect fixnum overflows and signal an error, while others silently wraparound).
For this reason it is difficult to write portable and fast programs even across
systems that support fixnums and flonums. Moreover, fixnums cannot be used
in applications where the computations result in bignum integers that exceed
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the fixnum range even though most of the time the computations are within the
fixnum range (financial calculations, number theoretic algorithms, etc).

A final concern in Scheme to C compilers, as considered here, is the high cost
for implementing procedure calls. In order to correctly implement tail-calls the
C code generated cannot in general directly translate Scheme calls into C calls.
This is due to the fact that the global call graph of the program is partially
known when a module is compiled (because of separate compilation, dynamic
loading of modules, eval and mutation). Moreover, when compiling to C, some
compilation techniques such as runtime code generation cannot be used.

To address these problems we have designed a speculative inlining algorithm
which fully obeys the semantics of R5RS Scheme and does not rely on any
program annotations, although it can take advantage of annotations to further
improve performance. This algorithm has been integrated into the Gambit-C
Scheme to C compiler. With no annotations, some programs approach the speed
of hand tuned code with annotations and fixnum/flonum specific operations.

This paper describes the speculative inlining algorithm, how it integrates into
the Gambit-C Scheme compiler and its performance. Section 2 explains situa-
tions where mutation of predefined global variables is useful. Section 3 discusses
aspects of Gambit-C’s compiler which interact with the speculative inlining al-
gorithm which is described in detail in Section 4. Finally Section 5 reports on
the performance both in execution speed and code space.

2 Mutation of Predefined Global Variables

The ability to mutate predefined global variables is consistent with Scheme’s
minimalistic philosophy. Using a single namespace for procedures and values
(a “Lisp1” [7]) is conceptually simpler than using two namespaces (a “Lisp2”).
Disallowing mutation of predefined global variables would increase the language’s
complexity by adding a special class of global variables. Moreover, mutation of
predefined global variables is useful, as shown in the following examples.

Debugging – Scheme programs are often structured as a set of procedures
defined at top-level. These procedures are bound to global variables and each
call references the appropriate variable to get the procedure to call. Tracing calls
to these procedures can be done by setting the variable to a new procedure which
calls the old one and also displays the arguments and result of the call. This can
be achieved by defining and using a trace macro as shown in Figure 1 (a).

Defining new types – There are no constructs in R5RS Scheme to define new
types. Portable programs must represent new types using a predefined type, usu-
ally vectors. New types defined this way are not distinct because they cannot be
distinguished from other new types and the vector used for their representation.
A common solution is to use a unique tag at the head of the vector to iden-
tify the type unambiguously from other new types. Moreover, the vector? type
predicate must be redefined to distinguish plain vectors from vectors representing
the new types. Figure 1 (b) shows how a 2D point type can be defined.
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> (define-syntax trace
(syntax-rules ()

((trace var)
(set! var (wrap ’var var)))))

> (define (wrap var proc)
(lambda args

(let ((r (apply proc args)))
(write (cons var args))
(display " ==> ")
(write r)
(newline)
r)))

> (define (f n) (* (+ n 1) (+ n 2)))
> (trace f)
> (trace +)
> (f 10)
(+ 10 1) ==> 11
(+ 10 2) ==> 12
(f 10) ==> 132
132

(a) Debugging

(define old-vector? vector?)

(define (instance? obj tag)
(and (old-vector? obj)

(>= (vector-length obj) 1)
(eq? (vector-ref obj 0) tag)))

(define pt (list ’pt)) ; unique tag
(define (make-pt x y) (vector pt x y))
(define (pt? obj) (instance? obj pt))
(define (pt-x p) (vector-ref p 1))
(define (pt-y p) (vector-ref p 2))

(set! vector?
(lambda (obj)
(and (old-vector? obj)

(not (pt? obj)))))

(pt? (make-pt 11 22)) ⇒ #t
(vector? (make-pt 11 22)) ⇒ #f

(b) Defining new types

Fig. 1. Predefined global variable mutation examples

Overloading – Overloading of predefined procedures can be achieved easily
with mutation. For example, append can be extended to allow concatenation
of strings by setting the append variable to a procedure which either calls the
append or string-append procedures depending on the type of the arguments.

Some scripting languages based on interpreters also support the redefinition
of primitive functions. Figure 2 shows simple examples for the JavaScript and
Python languages. In both cases the variable abs, whose initial binding is the
function computing the absolute value, is modified to contain a different function.

Math.abs = Math.sqrt
alert(Math.abs(25)) // prints "5"

(a) JavaScript

abs = hex
print abs(25) # prints "0x19"

(b) Python

Fig. 2. JavaScript and Python examples

3 The Gambit-C System

3.1 System Architecture

The Gambit-C system [3] is a Scheme to C compiler based implementation of
R5RS Scheme designed to be very portable while achieving good execution speed
when programs are compiled.

A large part of the runtime system (roughly 50 kLOC), including the inter-
preter, debugger, bignum library, and all predefined procedures, is written in
Scheme. The compiler is also written in Scheme (roughly 25 kLOC). The rest of
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the system (roughly 40 kLOC), including the garbage collector, operating system
interface, and foreign function interface is written in portable C.

Many macros which abstract away from the specifics of the platform are de-
fined in the gambit.h header file: the use of the gcc C compiler and its ex-
tensions, the machine’s natural word size and endianness, the width of each
numeric type, the definition of virtual machine instructions, the representation
of objects, etc. This header file plays a key role in the compilation process. The
C files produced by the Gambit-C compiler are entirely composed of calls to
macros defined in gambit.h. This allows a very late binding of the behavior of
the generated code. Indeed, a C file produced by the Gambit-C compiler on a
given machine does not have to be changed when it is compiled on a machine
with a different C compiler, a different operating system, or different endianness
and word size (for practical reasons the word size is currently limited to 32 and
64 bits). Porting to an unconventional C compiler typically only requires small
changes to gambit.h.

Gambit-C supports separate compilation. In particular the runtime system’s
Scheme code is contained in 9 modules which are separately compiled. The mod-
ules of the runtime system and of the user can be statically linked to form an
executable program. A running program can also load user modules dynamically
and possibly more than once, to simplify debugging. Moreover, because the in-
terpreter is written in Scheme [4], interpreted code and compiled code can freely
call each other without compromising the Scheme semantics.

To implement tail-calls and continuations, Scheme calls cannot be translated
directly into C calls. The runtime system manages a stack of Scheme continua-
tion frames explicitly and independently from the C stack. The C code generated
by the compiler is partitionned into a number of host C procedures. Depending on
system build options, there is either a single host C procedure per Scheme mod-
ule (single host mode) or one host C procedure per top-level Scheme procedure
in the module (multiple host mode). Each host procedure contains a number of
control points, which can either be procedure entry points or continuation return
points. Trampolines are used to allow arbitrary jumps to a destination control
point without C stack growth. Host procedures are only called from a dedicated
dispatcher procedure. To jump to control point P , the current host returns to
the dispatcher which then calls the host procedure containing P (i.e. the depth
of the C call chain is never more than two). Upon entry to the host, a switch
statement or a computed goto, if gcc is used, jumps to P in the host. There
are a few optimizations to this basic approach which exploit locality, i.e. when
P is in the same host. Regardless of the compilation mode and optimizations,
calls to predefined procedures in the runtime are expensive because they neces-
sarily require a non-local jump from the user program. The high cost of calling
predefined procedures makes speculative inlining particularly attractive.

3.2 Extensions to Scheme

Gambit-C supports several extensions to R5RS Scheme. Some of the notable
extensions are preemptive multithreading and a foreign function interface.
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Low-Level Procedures. Many low-level procedures meant primarily for the
implementation of the runtime system are provided. These procedures typically
perform a simple operation and are unsafe because they do not validate their
arguments. For this reason, they are given an easily recognized name that is
outside the standard Scheme identifier syntax (i.e. they cannot be found in an
R5RS conformant program). These low-level procedures have names that begin
with two hash signs. Here are a few examples:

– ##fx+ is the procedure which performs addition of fixnums. It does not check
that the arguments are fixnums and whether there is a fixnum overflow.

– ##fx+? is the procedure which performs addition of fixnums and checks for
fixnum overflow. False (#f) is returned on overflow, otherwise the sum (a
fixnum) is returned. It does not check that the arguments are fixnums.

– ##car is a procedure which extracts a pair’s car field. It does not check that
the argument is a pair.

– ##cons is the low-level procedure constructing pairs.

The duplication that occurs for ##cons (which is identical to cons) and other
low-level procedures is motivated by the need to easily distinguish internal low-
level procedures from the procedures normally accessed by the user. This is
convenient for the binding annotations explained in the next section.

User Annotations. User annotations allow the programmer to force the com-
piler to assume certain properties about the code. This is useful when the
programmer has knowledge that can help the compiler optimize the program.
Annotations are specified inside the declare form. It is the programmer’s re-
sponsibility to ensure that these annotations are correct; the compiler does not
verify them. The declare form can appear anywhere a definition can appear. A
declare at top-level has a lexical scope that extends until the end of the file. For
a local declare, the lexical scope extends to the end of the enclosing binding
form. Here is a typical use of user annotations:

(declare

(standard-bindings) (extended-bindings) (block) (fixnum) (not safe))

(define z 0)

(define (iota n) (if (= n z) ’() (##cons n (iota (- n 1)))))

The (standard-bindings) annotation asserts that a reference to a global vari-
able predefined in R5RS will result in the corresponding predefined procedure.
In other words in iota the calls to = and - will call the R5RS predefined pro-
cedures with those names. The (extended-bindings) annotation is similar but
applies to Gambit-C extended procedures, such as ##fx+, ##cons, etc.

The (block) annotation asserts that all global variables defined in this file are
only mutated in this file. Any global variable defined in a file and not mutated in
that file can thus be treated like a constant. This enables constant propagation of
global variables (e.g. replacing z in iota with 0), jump destination determination
and inlining of user procedures defined at top-level (e.g. determining that the
call to iota is a self-recursion).
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The (fixnum) annotation asserts that all arguments and results of arithmetic
procedures are fixnums. The (not safe) annotation tells the compiler that it is ac-
ceptable to generate unsafe code that could crash the program if some type checks
fail. These two annotations in conjunction with the (standard-bindings) anno-
tation allow the compiler to replace in iota the calls to = and - with unsafe calls
to the fixnum specific procedures ##fx= and ##fx- respectively.

With carefully chosen annotations, programs can be made to run very fast,
but at the price of safety. This is unacceptable in many situations. Moreover,
annotations are brittle and are high maintenance. A small change in the program
or in the dataset may invalidate the current set of annotations, but it is tedious
and error-prone for the programmer to determine which ones.

In designing the speculative inlining algorithm, our goal was to improve the
speed of execution without requiring that the programmer resort to annotations
that are unsafe or otherwise change the semantics of the language (which includes
all annotations described in this section).

3.3 Compiler Architecture

The compiler follows a conventional architecture. The source code is parsed
and macros are expanded to produce an abstract-syntax tree (AST), which is
transformed and annotated by subsequent passes. The AST is then traversed to
generate the code for the Gambit Virtual Machine [5]. Low-level optimizations
are then performed on this intermediate representation (dead code and common
code elimination, instruction reordering, jump cascade removal, etc.) and finally
it is expanded into C code in the form of calls to macros defined in gambit.h. The
AST after all transformations is optionally pretty-printed as an S-expression.

The AST can represent expressions with no source code equivalent. Specifi-
cally, there is an AST node type representing procedure constants. These nodes
are generated to refer to the procedure objects that exist at run time. Both pre-
defined procedures and user procedures (but not closures) can be denoted. For
example, the AST corresponding to this source code:

(let () (declare (standard-bindings)) (cons 11 22))

is transformed into an AST representing a call to a procedure constant denoting
the predefined procedure cons (i.e. there is no longer a reference to the global
variable cons). We use a box to denote procedure constants in the new AST:

(let () (declare (standard-bindings)) (cons 11 22)) → (’ cons 11 22)

Note that X → Y will be used to mean “AST X is transformed into AST
Y ”, where X and Y are external representations of ASTs possibly containing
procedure constants. The different passes which transform the AST are briefly
explained below. They are executed in the order of presentation.

Assignment Conversion. This pass introduces cells for local variables (includ-
ing parameters) that are mutated. An assignment to a local variable is replaced
with a mutation of the corresponding cell. This simplifies the implementation of
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closures and continuations which share mutated local variables. The remaining
passes can assume that local variables are never mutated.

Beta Reduction. This pass performs simple beta reductions of the code. The
following transformations are done.

– Constant and copy propagation: When it is known that a variable V is
never mutated and V is bound to X which is either a constant or a variable
that is never mutated, references to V are replaced with X . For example:
(let ((x 5)) (let ((y x)) (+ y y))) → (+ 5 5)
(let () (declare (standard-bindings)) +) → ’ +

– Constant folding: When a constant predefined procedure is called, and all
the arguments are constants of the correct type, and the procedure does not
have side-effects, the call is replaced by a constant equal to the compile-time
application of the procedure to the arguments. For example:

(’ + 5 5) → 10

There are subtle semantic issues which hinder constant folding. Calls to
predefined procedures which allocate their result (e.g. list and append) are
not constant folded because this would not preserve the uniqueness of the
result (in the sense of eq?). Specifically, in Scheme:

(eq? (list 5) (list 5)) 	= (eq? ’(5) ’(5))

Because the target platform is not known at the time of the Scheme compila-
tion, constant folding is tricky for procedures whose meaning is dependent on
the target platform. This is specifically a problem for the fixnum operations
because the width of a fixnum depends on the target machine’s word size
(30 bit fixnums on 32 bit machines, and 62 bit fixnums on 64 bit machines).
An exact integer that does not fit in a 30 bit fixnum and that fits in a 62
bit fixnum is a bignum on 32 bit machines and a fixnum on 64 bit machines.
So the ##fixnum? procedure, which tests if its argument is a fixnum, is only
constant folded when its argument is small enough to fit in a 30 bit fixnum
or larger than fits in a 62 bit fixnum:

(’ ##fixnum? 123) → #t
(’ ##fixnum? 1000000000000) is not constant folded
(’ ##fixnum? 2305843009213693952) → #f

Constant folding is also performed on conditional expressions, that is the if,
and, and or special forms. For example:

(if (and #f (f 2)) 123 (g 3)) → (g 3)

– Inlining of user procedures: When it is known that a given variable V
is never mutated and V is bound to a lambda-expression, calls to V are
replaced by calls to a copy of the lambda-expression. As an additional con-
dition, the size of the new call (measured in number of nodes in the AST)
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must not be larger that a certain factor F of the size of the original call in
the source code. By default F is 3, but the programmer can modify this with
the (inlining-limit F) user annotation. For example:

(let ((f (lambda (x) (+ x x)))) (f 5)) → (+ 5 5)

To improve the effectiveness of these beta reductions, processing generally
starts at the leaves of the AST and progresses towards the root. For binding
forms, the bound values are processed before the body. Finally, the top-level
procedures are processed in the reverse order of their dependencies. If procedure
f contains a call to procedure g, which contains a call to procedure h, then h is
processed first, then g, and then f.

Lambda Lifting. This pass transforms local user procedures using the lambda
lifting transformation [9]. This eliminates the creation of closures for lambda-
expressions bound to local variables when these local variables are only refer-
enced in the operator position of calls. The lambda-expressions are modified
so that they take their free variables as explicit parameters. All calls to these
variables are also modified to pass the value of the free variables.

4 Speculative Inlining

Speculative inlining of predefined procedures is performed as an AST transfor-
mation pass just before assignment conversion.

4.1 Basic Approach

Our approach capitalizes on the high likelihood that predefined global variables
contain the corresponding predefined procedure. When a predefined procedure is
speculatively inlined, the inlined code must be guarded by a run time binding test
to verify that the variable is indeed bound to the expected predefined procedure.

If the binding test fails, the inlined code is not appropriate and a normal
procedure call using the global variable must be performed. For correct handling
of tail-calls, this call must be a tail-call with respect to the original call.

If the binding test succeeds, the inlined code is executed. In the ideal case
this code will perform the work required of the predefined procedure and return
the required result. It is possible however that the inlined code encounters an
exceptional case, such as an argument of the wrong type, or a complex case
that would be too space inefficient to handle inline (such as a fixnum arithmetic
operation overflowing into the bignum range). We will call these conditions the
inlining conditions of the procedure. When the inlining conditions do not hold
the execution can fall back to a normal procedure call. We require that the
inlined code only perform side-effects after verifying the inlining conditions. As
an example, here is the speculative inlining of car:
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(f (car (g 5))) → (f (let ((x (g 5)))
(if (and (’ ##eq? car ’ car )

(’ ##pair? x))

(’ ##car x)
(car x))))

Falling back to a normal procedure call is not only correct, it ensures that the
behavior of a call to a predefined procedure is the same, except for execution
speed, whether the procedure is inlined or not: the same exceptions are raised,
the same continuation is used, etc. The inlining is purely a compiler optimization
that is transparent to the programmer.

4.2 Inlining Scheme’s Numeric Procedures

The inlining of Scheme’s numeric procedures is problematic because most nu-
meric operations are generic, they can accept several numeric types, and can
accept mixed types. In Gambit-C, there are five representations for numbers:
exact integers are represented with fixnums and bignums, exact rationals are
represented as pairs of exact integers, inexact reals are represented as flonums
(64 bit IEEE 754 floating point number), and complex numbers are represented
as pairs of reals. Except for fixnums, these representations are memory allocated.

If we take addition as an example, the algorithm for adding two numbers
depends on the representation of the numbers to add. It is necessary to dispatch
on the type of both arguments to determine how to proceed. In the Gambit-C
runtime all 25 cases are laid out to avoid needless representation conversions.

It is unreasonable to inline this much code routinely. Instead, the most likely
case must be handled inline, with the less likely cases handled by the fall back.
But what constitutes a likely case depends on the nature of the computation.
There is a large class of algorithms which process small exact integers (e.g. count-
ing and indexing vectors). On the other hand, scientific applications usually
perform the bulk of their computations with inexact reals. The other numeric
types (exact rationals and complex numbers) are less useful to handle inline in
Gambit-C because the algorithms operating on them are complex and often re-
quire procedure calls (e.g. computing the GCD for normalizing rational results).

Consequently, there are two cases that are interesting to handle inline: when
all the arguments are fixnums, and when all the arguments are flonums. A set
of 5 user annotations is provided to allow the programmer to specify which case
is most likely, and which cases to inline:

– (mostly-fixnum): The fixnum case is more likely and is inlined.
– (mostly-flonum): The flonum case is more likely and is inlined.
– (mostly-fixnum-flonum): The fixnum case is more likely than the flonum

case, but both are likely and are inlined. The fixnum case is checked first.
– (mostly-flonum-fixnum): The flonum case is more likely than the fixnum

case, but both are likely and are inlined. The flonum case is checked first.
– (mostly-generic): The numeric procedures are not inlined.
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These annotations are purely advisory. They affect the performance of the
code but do not compromise the Scheme semantics. The following example shows
the speculative inlining of + when the user annotation (mostly-fixnum-flonum)
is in effect:

(let () (declare (mostly-fixnum-flonum)) (f (+ (g 2) (h 3))))
→
(f (let ((x (g 2)) (y (h 3)))

(if (’ ##eq? + ’ + )

(if (and (’ ##fixnum? y) (’ ##fixnum? x))
(or (’ ##fx+? x y) (+ x y))
(if (and (’ ##flonum? y) (’ ##flonum? x))

(’ ##fl+ x y)
(+ x y)))

(+ x y))))

In the resulting AST, the ##fx+? predefined procedure is used to perform the
fixnum addition and overflow check. If the global variable + does not have its
standard binding, or a fixnum overflow is detected, or the arguments are not
both fixnum or both flonums, then a normal call to + is performed. The common
code elimination optimization of the compiler will generate compact code by
merging all three calls to +.

4.3 Inlining Recursive Procedures

The following recursive predefined procedures on lists are speculatively inlined:
assq, memq, map, and for-each. Both assq and memq are worth inlining because
many Scheme programs rely on them, their definitions are short, and they do
not need to call procedures that are not easily inlined (assv, assoc, memv, and
member are not inlined because they call eqv? and equal? whose definitions are
considerably more complex than eq? which is called by assq and memq).

To avoid too much code expansion, the higher-order procedures map and
for-each are only inlined when they are passed two arguments: the procedure
argument and list. They are worth inlining not only because many Scheme pro-
grams rely on them but because the inlined code exposes optimization opportu-
nities at the call to the procedure argument which can often avoid an expensive
general call. If the procedure argument is a user procedure in the same file then a
direct jump to the procedure can be performed (and without a parameter count
if it does not take a rest parameter). The procedure argument is also a candidate
for inlining, whether it is a user procedure or predefined procedure.

4.4 Interaction with Beta Reduction Pass

Implementing speculative inlining as an AST transformation has the advantage
that subsequent transformations can further optimize the inlined code. In par-
ticular, the beta reduction pass may simplify the inlined code through constant
propagation and constant folding. Consider a slight variation on the previous
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example, where the second argument to + is the constant 1. The speculative
inlining of +, followed by constant propagation will give:

(let () (declare (mostly-fixnum-flonum)) (f (+ (g 2) 1)))
→
(f (let ((x (g 2)))

(if (’ ##eq? + ’ + )

(if (and (’ ##fixnum? 1) (’ ##fixnum? x))
(or (’ ##fx+? x 1) (+ x 1))
(if (and (’ ##flonum? 1) (’ ##flonum? x))

(’ ##fl+ x 1)
(+ x 1)))

(+ x 1))))

The calls (’ ##fixnum? 1) and (’ ##flonum? 1) will then be constant folded
to #t and #f respectively, allowing both ands and the if guarding the flonum
case to be constant folded:

(f (let ((x (g 2)))
(if (’ ##eq? + ’ + )

(if (’ ##fixnum? x)
(or (’ ##fx+? x 1) (+ x 1))
(+ x 1))

(+ x 1))))

The constant propagation transformation can also make use of user annotations
to further improve the code. If we add the annotation (standard-bindings) to
the previous example, the code at the end of the AST transformations will be:

(f (let ((x (g 2)))
(if (’ ##fixnum? x)

(or (’ ##fx+? x 1) (+ x 1))
(+ x 1))))

5 Evaluation

5.1 Experimental Setup

To evaluate the effectiveness of the speculative inlining approach, we compiled sev-
eral Scheme benchmarks using the Gambit-C compiler with various user annota-
tions. We are interested in measuring the impact of our approach on the execution
speed and also on the code size. We used Gambit-C version 4.2.3 built with the
configure options --enable-single-host --enable-char-size=1 and, for com-
parison, Bigloo version 3.0d built with the configure option --benchmark=yes.All
tests were performed on a Linux workstation (2 GHz Dual Core AMD Opteron
with 16 GB SDRAM) and gcc 4.0.2 was used.

Version 4.2.3 of Gambit-C supports the speculative inlining of 101 R5RS
predefined procedures, and 128 Gambit-C specific predefined procedures. The
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speculative inlining is performed on all the type predicates (e.g. pair?, null?),
most of the R5RS numeric procedures (e.g. +, -, *, /, =, <, quotient, max, sqrt),
all the case-sensitive character comparison procedures (e.g. char=?), pair, string
and vector constructor, accessor and mutator procedures (e.g. cons, cadr,
string-length, vector-set!), miscellaneous procedures (e.g. not,values, eq?),
and the recursive procedures assq, memq, map, and for-each.

The benchmarks contain programs representative of typical Scheme applica-
tions. There are 41 benchmarks in all. The largest are: scheme (Scheme inter-
preter in Scheme, 1 kLOC), slatex (Scheme to LaTeX formatter, 2.3 kLOC),
nucleic (scientific application [8], 3.5 kLOC) and compiler (Scheme compiler,
11.7 kLOC).

To determine the size of the code generated by the Gambit-C compiler, we
measured the size of the machine code produced by the C compiler and sub-
stracted the code size for an empty program. We did not measure the size of
the program’s data because it could not easily be isolated from the data of the
Gambit-C runtime. The data size should not vary much between settings.

The benchmarks were also run with Bigloo to compare the execution time with
a high-performance Scheme compiler. We used the Bigloo compiler options -O6
-copt -O3 -copt -fomit-frame-pointer and no explicit type information was
used in the source code. This mode gives a semantics that is close to R5RS, but
does not fully conform to it because it assumes that none of the predefined global
variables are mutated and it does not check for arithmetic overflow.

For both Gambit-C and Bigloo, we set the same initial heap size when exe-
cuting the compiled program (10 MB), and strings were represented using one
byte per character.

Given our goal of achieving the best execution speed without compromising
the Scheme semantics, one set of trials with Gambit-C avoided the annota-
tion (standard-bindings), but we tried each of the numeric user annotations:
(mostly-fixnum), (mostly-flonum), etc. The (mostly-fixnum-flonum) case
is used as the baseline because it corresponds to the default when the program-
mer does not supply any user annotations. Another set of trials was done with
those user annotations combined with (standard-bindings), in violation of
the R5RS Scheme semantics. This is useful to evaluate the cost of the run time
binding test.

We also tried the benchmarks with the set of user annotations that achieve the
best speed which we call unsafe mode. That is the (not safe), (block), and
(standard-bindings) user annotations were used, in addition to benchmark
specific annotations for arithmetic (either (fixnum) or (flonum) as appropriate
for the benchmark).

In addition, a trial was done with the speculative inlining transformation
disabled. This situation approximates the Gambit-C compiler before the specu-
lative inlining transformation was added. This trial and those using speculative
inlining are the only ones which do not violate the Scheme semantics.

In all trials using Gambit-C, the inlining of user procedures was disabled. As
a result the programs run slower than they would normally. This is particularly
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noticeable for the unsafe mode where loop unrolling and data structure accessor
inlining can boost performance relative to the baseline by 13% on average. This
was done to avoid side effects of the user procedure inliner which would add noise
to the code size measurements. Bigloo performs automatic inlining of primitives
and user procedures.

5.2 Experimental Results

The results are given in Table 1. For each combination of benchmark and compi-
lation mode, the execution time and code size are given and the code size is un-
derlined. Lower values are better. To simplify comparison, all measurements are
relative to the baseline (i.e. speculative inlining with (mostly-fixnum-flonum)
but without (standard-bindings)). A value of 1 means the same time or space
as the baseline. For lack of space in the table the columns for the baseline are
omitted since they contain 1 everywhere for time and space. Moreover we omit
the columns for (mostly-flonum-fixnum) because the time and space were
within a few percent of the columns for (mostly-fixnum-flonum). The table is
ordered by increasing speedup of the baseline mode compared to the speculative
inlining disabled mode.

By examining the speculative inlining disabled column we see that the bench-
marks always execute faster with speculative inlining than without. The geo-
metric mean speedup is 6.14, but in several cases the speedup is more than 10,
and over 20 for sum. The code size is on average 79% larger when speculative
inlining is used, and up to 4.5 times the size for fft. Overall we view these
results positively since among the compilation modes which do not violate the
R5RS semantics, speculative inlining is consistently faster while the code size is
typically not unreasonably large.

If we now compare the (mostly-fixnum) and (mostly-flonum) modes with
speculative inlining we see that the execution time for the (mostly-fixnum) case
is better in general but worse on benchmarks which are floating point intensive
(nucleic, ray, fibfp, mbrot, sumfp and pnpoly). The ratio can be up to 10
times in favor of (mostly-flonum) for sumfp and up to 21 times in favor of
(mostly-fixnum) for sum (the same computation as sumfp but performed using
small integers). In terms of code size the (mostly-flonum) case is normally
better, by about 5% on average. This is probably due to the absence of an
overflow check when operating on flonums.

Interestingly, fft, which uses a mix of operations on fixnums and flonums,
is about the same speed with (mostly-fixnum) and (mostly-flonum). This
is explained by the fact that there is an equal number of fixnum and flonum
operations, so the same number of non-local jumps result whether the fixnum
case or the flonum case is inlined. The execution speed improves by a factor of
over 5 when (mostly-fixnum-flonum) or (mostly-flonum-fixnum) are used.
Considering all benchmarks these compilation modes give the best execution
speed; 1.34 times faster than with (mostly-fixnum) on average and 2.19 times
faster than with (mostly-flonum) on average. The (mostly-fixnum-flonum)
mode gives marginally better performance which is why Gambit-C uses it as
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Table 1. Relative execution time and relative code size (underlined) for various com-
pilation modes; baseline is speculative inlining and (mostly-fixnum-flonum)

R5RS semantics obeyed R5RS semantics violated
Speculative inlining (standard-bindings) Unsafe Big-

Program disabled + fix + flo + fix + flo + fix-flo mode loo

dynamic 1.54 .62 1.00 1.00 1.05 1.00 .96 .63 1.02 .63 .96 .63 .81 .29 .25

slatex 1.54 .61 .93 .96 .88 .90 .80 .60 .83 .56 1.01 .61 .74 .20 .45

ctak 1.75 .91 1.00 .97 1.55 .98 .90 .79 1.45 .75 .89 .81 .83 .48 55.03

fibc 2.23 .84 .99 .96 2.26 .95 .96 .80 2.24 .80 .96 .85 .71 .35 13.78

conform 2.78 .73 .98 1.00 .96 1.02 .87 .64 .89 .70 .87 .64 .60 .34 .21

compiler 2.99 .69 .99 .94 1.47 .90 .87 .67 1.34 .65 .87 .70 .52 .24 .29

scheme 3.77 .74 1.00 1.00 1.25 .97 .95 .71 1.16 .68 .92 .71 .69 .27 .43

nucleic 3.84 .54 2.48 .81 1.00 .82 2.34 .61 .87 .63 .90 .73 .34 .17 .87

ray 3.96 .47 3.32 .70 .99 .74 3.08 .49 .94 .58 .95 .71 .44 .21 1.24

maze 4.55 .55 1.02 .84 2.57 .70 .92 .53 2.49 .49 .92 .59 .34 .16 .40

paraffins 4.97 .38 1.00 .73 1.04 .72 .96 .44 .99 .42 .95 .53 1.00 .12 1.06

deriv 5.14 .54 1.00 1.00 1.16 1.04 .80 .56 .93 .61 .80 .56 .67 .26 1.23

perm9 5.34 .57 .99 .92 3.85 .83 .95 .53 3.73 .47 .93 .60 .85 .16 .80

matrix 5.36 .58 1.01 .90 2.39 .86 .86 .54 2.18 .53 .86 .62 .71 .28 .72

dderiv 5.48 .58 .98 1.00 1.13 1.03 .81 .58 .95 .60 .82 .58 .61 .28 .82

fibfp 5.70 .57 5.69 .61 1.02 .98 5.53 .49 1.00 .79 .93 .84 .64 .17 2.78

lattice 5.92 .69 .98 .99 .99 1.00 .83 .64 .84 .64 .82 .65 .71 .35 .32

graphs 6.17 .57 1.03 .91 2.31 .86 .91 .63 2.22 .61 .94 .66 .67 .23 .94

earley 6.20 .47 1.03 .90 2.89 .78 .89 .53 2.77 .43 .96 .55 .78 .17 .72

peval 6.43 .57 1.00 .96 1.03 .94 .76 .50 .81 .50 .76 .51 .49 .23 .31

divrec 6.44 .72 1.00 1.00 1.06 .89 .87 .64 .91 .55 .87 .64 .52 .16 .85

simplex 6.78 .36 1.99 .71 3.52 .55 1.92 .45 3.40 .35 .91 .52 .44 .11 .61

primes 6.94 .66 1.01 .99 3.18 .91 .89 .66 3.10 .55 .89 .68 .75 .16 1.11

cpstak 6.95 .81 1.01 .96 5.29 .92 .92 .74 5.18 .72 .93 .77 .84 .36 2.71

browse 7.16 .61 .97 .99 1.01 .98 .82 .50 .86 .46 .83 .51 .68 .19 .37

fib 7.37 .56 .93 .91 7.29 .69 .86 .65 7.03 .52 .93 .76 .38 .13 .62

tak 7.51 .67 1.00 .96 5.68 .86 .88 .65 5.70 .59 .89 .69 .34 .18 .50

mazefun 8.25 .66 .97 .98 5.70 .92 .89 .63 5.40 .59 .92 .66 .51 .24 .77

nboyer 8.30 .57 .98 .98 1.26 .94 .72 .42 .98 .41 .72 .42 .64 .21 .48

mbrot 9.18 .31 7.82 .55 2.37 .49 7.63 .39 2.28 .33 .95 .55 .57 .12 3.15

takl 9.30 .77 1.00 1.00 1.01 .94 .65 .66 .60 .59 .65 .66 .23 .17 .13

triangl 9.68 .48 .97 .88 6.69 .68 .93 .60 6.50 .42 .93 .60 .32 .14 .53

sumfp 9.70 .60 9.81 .55 1.03 .90 9.21 .45 .97 .78 .87 .89 .80 .10 4.75

diviter 9.75 .70 1.00 1.00 1.06 .89 .74 .62 .78 .53 .75 .62 .68 .16 1.09

sboyer 10.46 .57 .98 .98 1.30 .95 .67 .42 .96 .41 .66 .42 .57 .23 .35

destruc 11.16 .47 1.06 .85 6.84 .69 .86 .41 6.62 .34 .87 .41 .67 .12 1.05

fft 12.32 .22 5.14 .65 5.11 .46 5.04 .47 4.83 .33 .89 .61 .28 .05 2.03

pnpoly 12.85 .39 6.84 .70 3.80 .55 6.75 .50 3.56 .37 .89 .61 .23 .08 4.78

puzzle 13.29 .40 .98 .73 8.69 .65 .78 .52 8.25 .47 .83 .57 .35 .10 1.71

nqueens 14.12 .40 .96 .64 7.01 .65 .76 .33 6.54 .34 .76 .40 .52 .08 .83

sum 20.63 .64 .96 .84 21.05 .70 .75 .63 20.25 .51 .71 .79 .29 .07 1.68

geom. mean 6.14 .56 1.34 .86 2.19 .82 1.17 .56 1.99 .53 .87 .62 .54 .18 .94
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the default compilation mode. The code size is consistently bigger than with
(mostly-fixnum) and (mostly-flonum), but by only 16-22% on average.

The cost of the run time binding tests can be evaluated by looking at the column
for the (standard-bindings) + (mostly-fixnum-flonum) compilation mode.
This mode generally yields code that is faster than the baseline, by about 13% on
average. This mode also generally yields more compact code than the baseline,
38% smaller on average. Our view is that this is an acceptable cost for the run
time binding tests which are required for conformance to the Scheme semantics.

The unsafe mode column indicates that with hand tuned user annotations
and unsafe code, programs can run considerably faster, by a factor of about
2 on average but in some cases 4 times faster than the baseline (and even 8
times faster when user procedure inlining is enabled). Moreover the code is over
5 times more compact because there remains very few procedure calls in the
code (and consequently fewer return points, continuation frame allocations and
setup, stack overflow checks, etc. which all contribute to the total code). This
shows in our view that speculative inlining does not completely eliminate the
need for unsafe user annotations when very high performance and compact code
are required. However, speculative inlining does contribute to lessen the urgency
to resort to user annotations and promote a more maintainable coding style.

Finally, we can see that the performance of Gambit-C with speculative inlining
is reasonably good in absolute terms. It is about 6% slower than Bigloo on
average and about 21% slower when we ignore the call/cc intensive benchmarks
ctak and fibc.

6 Related Work and Conclusion

Inlining has been used in other dynamically-typed programming languages to im-
prove performance. Most notable is the compiler for Self [1], an object-oriented
dynamically-typed programming language, which uses message inlining to speed
up message sends by reducing the frequency of method lookups. On the first ex-
ecution of the messsage send, a normal method lookup is performed to find the
correct method to call based on the type of the receiving object. The message
send is then backpatched to jump directly to this method and the type of the re-
ceiving object is saved. On subsequent message sends the method will be called if
the type of the new receiving object is the same, otherwise the system reverts to
a new method lookup and backpatch. Selective recompilation of the program is
used when method definitions are changed. All of this requires a complex system
architecture, the presence of the compiler in the runtime system, and runtime
code generation. More recently the Java HotSpot VM [12] has used a similar
inlining-with-recompilation approach and a complex runtime architecture.

Our approach is in comparison much simpler and can be applied in situations
where runtime code generation is not an option such as in compilers which
generate C code, in memory constrained systems, and embedded systems where
the code must be stored in read-only memory. With an extensive experimental
evaluation using a mature Scheme system, we have shown that our approach can
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be used to correctly implement the R5RS semantics while achieving execution
speeds comparable to other Scheme compilers which attain high-performance by
violating the R5RS semantics.
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Abstract. The specification and resolution of non-trivial domain con-
straints has become a well-recognised measure for improving the stability
of large software systems. In this paper we propose an approach based
on partial evaluation which tries to prove such constraints statically as
far as possible and inserts efficient dynamic checks otherwise.

1 Introduction

Resolving domain constraints for operations on arrays is known to be a challeng-
ing task. The central challenge is that one of the most frequently used operations,
array selection, has value constraints which are, in general, undecidable. In the
context of array languages, such as APL [1], J [2] or SaC [3], which support
generic operations on n-dimensional arrays, the challenge is even greater, because
these languages treat the rank and shape of an array, at least conceptually, as
part of the array value.

In APL, conformance checks are purely dynamic. This design decision has
a considerable run-time impact, as noted in [4]. In order to avoid the overhead
due to dynamic checks, several other approaches have been developed that try
to resolve these requirements statically. However, the undecidable nature of the
problem forces these approaches to restrict the expressiveness of the language
in one way or the other. Some approaches are based on restricted forms of
dependent types, such as the indexed types proposed by Zenger in [5] or the
type system of DML [6]. Other approaches rely on a strict separation of arrays
and indices and force all indices to be defined in a rather restricted manner only.
This enables languages such as Zpl [7] or Chapel [8] to in many cases avoid
run-time checks.

In this paper, we propose a hybrid approach. Rather than restricting ei-
ther the language or the compiler to programs whose constraints can be stati-
cally resolved, we make the compiler resolve and eliminate as many constraints
as possible and check the unresolved ones at run-time. For many straightfor-
ward programs this yields the same static safety as do strongly typed systems.
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Dynamic checks remain only for those computations that rely on more complex
index calculations.

The central idea of our approach is to use partial evaluation as a constraint
resolution mechanism. In a first step, all domain constraints are explicitly in-
serted into the program. At that stage, programs are very similar to programs
that contain contracts, as first proposed in the context of Eiffel [9,10]. In fact,
our proposed approach facilitates a seamless integration of arbitrary contracts,
as found in several modern languages from the object-oriented domain, e.g.,
Java [11,12] and Python [13].

Subsequently, partial evaluation is applied, with the intent of safely eliminat-
ing as many dynamic checks as possible. A detailed analysis of remaining checks
allows the programmer to decide if the level of static guarantees is sufficient for
the application given. If not, further partial evaluation can be applied, or the
program can be re-written in a way so that static resolution becomes feasible. As
a nice side-effect, those checks that remain until run-time have been minimised
with respect to the actual checks being performed.

We demonstrate this approach in the context of the functional array language
SaC. A prototype implementation is included in the current beta release of the
SaC compiler1. Since the existing compiler for SaC already supports powerful
mechanisms for partial evaluation as part of its type system and as part of its
optimisation cycle, this implementation required only moderate effort.

The main contributions of this paper are:

– a partial-evaluation-based approach towards static domain guarantees,
– a discussion of the implications of some of the design alternatives for a prac-

tical implementation of the proposed approach,
– an outline of a formal transformation scheme for the core language SaCλ

that introduces explicit domain constraints in a contract-like style, and
– an outline of a formal proof of the semantic soundness of this transformation.

The paper is structured as follows. Section 2 identifies some of the challenges of
the proposed approach. Section 3 gives a brief introduction to SaCλ, a stripped-
down functional array programming language which has similar syntax and se-
mantics to SaC but is better suited for formal reasoning. Using SaCλ, Section 4
explores the design space of representing constraints explicitly by contracts.
Section 5 discusses different means to insert contracts into the code. A formal
presentation of the chosen approach is given in Section 6. Section 7 gives a brief
discussion of how partial evaluation is used to resolve contracts. Related work is
discussed in Section 8 before Section 9 concludes.

2 Challenges of the Contract Approach

Although the approach to use explicit contracts and to eliminate these by means
of partial evaluation seems to be rather straightforward it turns out that a prac-
tical implementation of it poses several challenges which need to be addressed.
1 The compiler is available for download at http://www.sac-home.org/

http://www.sac-home.org/
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Our implementation as part of the SaC project (http://www.sac-home.org/)
revealed the following challenges.

Feedback of the verification process. As laid out in the introduction, one
of the primary motivations of this work is to obtain static guarantees about
the good behaviour of a program. Due to the hybrid nature of the proposed
approach, any residual program may be left with unresolved conformity checks.
If we still want the programmer to benefit from successfully inferred guarantees,
it is essential to provide the programmer with feedback which distinguishes those
parts of the program that could be checked statically from those where errors may
still occur at run-time. While the identification of potentially unsafe program
regions comes almost for free in approaches based on tailor-made inferences, in
the proposed approach this requirement poses a challenge. Since we start out
from a ”blind“ insertion of contracts which are, hopefully, optimised away later,
we need to make sure that remaining run-time checks can still be related to the
original program, even after program optimisation.

Efficient checking at run-time. As pointed out in [4], the elimination of
redundant run-time checks can have a vast impact on the overall run-time be-
haviour of generic array programs. Therefore, we need to make sure that the
amount of checking that happens at run-time is reduced as much as possible.
For example, a program that contains an element-wise addition of two arrays A
and B and an element-wise subtraction of these should not check more than once
that their shapes are identical. Apart from such reuses of entire constraints, we
also expect the system to partially evaluate constraints and minimise the actual
checking required. One example for such a situation is the selection operation: in
generic array programming, selections require that the length of the index vector
matches the rank of the array to be selected from and that each component of
the index vector is in the proper range of indices for the corresponding array
axis. While the former usually can be ensured statically, the latter sometimes
has to be postponed until run-time. In those cases, we expect only the value
checks to remain in the optimised program.

Stepwise improvements for separately compiled code. Static verification
of contracts is often rendered impossible if separate compilation is required.
Being based on partial evaluation, we expect our approach to be well-suited for
separate compilation without a loss of checking efficiency. Rather than starting
out from scratch, it should be possible to take a pre-compiled library version
of any program and to further eliminate potentially remaining run-time checks
whenever enough information of the calling context becomes available.

Constraint unaware optimisation. One of the main problems of high-level
program optimisation is that most optimisations need to carefully observe all
domain constraints involved. If these cannot be statically proved, a conservative
approach must be taken; this often inhibits application of such optimisations. In
the intended setting it should nevertheless be possible to apply such optimisa-
tions. For this to be possible, we have to ensure that any outstanding dynamic
checks are properly preserved.

http://www.sac-home.org/
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The solution we develop throughout the remainder of this paper tries to tackle
all these challenges. Discussions of individual design decisions try to relate their
impact on the challenges identified here.

3 SaCλ

SaCλ is a functional language inspired by SaC, comprising only the bare essen-
tials of SaC that are needed for a functional array language; its syntax closely
resembles that of SaC. However, we have modified it to a λ-calculus style, in
order to ease comprehension by a functional-programming audience.

Program ⇒ [ FunId = λ Id[ , Id ]* .Expr ; ]*
main = Expr ;

Expr ⇒ [ [ Id [ , Id ]* ] ]

| FunId ( Id [ , Id ]* )

| Prf ( Id [ , Id ]* )

| if Id then Expr else Expr

| let Id [ , Id ]* = Expr in Expr

| Const

| Id

Prf ⇒ shape | dim | sel | modarray

| add SxS | add SxA | add AxS | add AxA

| eq SxS | eq SxA | eq AxS | eq AxA

| ...

Fig. 1. The syntax of SaCλ

Note that the version of SaCλ used in this paper differs from versions pre-
sented in earlier papers: We focus on built-in primitive functions rather than
higher-level constructs like the with-loop [3]. Figure 1 shows the syntax of SaCλ.
A program consists of a set of mutually recursive function definitions and a desig-
nated main expression. Essentially, expressions are either constants, variables or
function applications. Since SaC, at present, neither supports higher-order func-
tions nor nameless functions, all abstractions (function definitions) are explicitly
user-defined. Function applications are written in C-style, i.e., with parenthe-
ses around arguments, rather than around entire applications of functions. To
simplify the formal presentation in later sections of this paper, we restrict the
arguments to be identifiers rather than arbitrary expressions. However, a trans-
formation of unrestricted programs into this restricted form is straight-forward.

SaCλ provides a few built-in array operations, referred to as primitive func-
tions (Prf). Among these are shape and dim for computing an array’s shape and
dimensionality (rank), respectively. A selection operation, sel, is also provided;
it takes two arguments: an index vector, specifying the element to be selected,
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and an array from which to select. As its dual, SaCλ provides a modarray
operation which computes a new array from an existing one by altering a single
element only; it takes three arguments: a template array, the index position at
which the result array is supposed to be different from the template array and
the value to which the referenced element of the array is to be set. These basic
array operations are complemented by element-wise extensions of arithmetic and
relational operations, such as addition (add) and equality (eq), respectively, with
similar semantics to those of APL and J. We differentiate between two different
kinds of arguments to these binary operations: Array arguments, denoted by the
letter A, and scalar arguments, represented by the letter S. This leads to a total
of four versions of each binary operation, one for each combination of argument
classes. To differentiate between these, we use the suffices SxS, SxA, AxS and AxA.

The versions defined on arguments of the same kind, i.e., SxS and AxA, com-
pute by applying the operation element wise to each pair of corresponding el-
ements of the two arguments. Binary operations with non-matching argument
classes, i.e., SxA and AxS, compute by applying the operation to each element of
the array argument and the single scalar argument.

We can formalize the semantics of SaCλ by a standard big-step operational
semantics for λ-calculus-based applicative languages as defined in several text-
books, e.g., [14]. As a unified representation for n-dimensional arrays, we use
pairs of vectors < [ s1, . . . , sn], [ d1, . . . , dm] > where the vector [ s1, . . . , sn]
denotes the shape of the array, i.e., its extent with respect to the n individ-
ual axes, and the vector [ d1, . . . , dm] contains all elements of the array in a
row-major linearized form.

The first two evaluation rules of Figure 2 show how scalars as well as vectors
are transformed into the internal representation. The rule Vect requires that all
elements have the same shape to ensure shape consistency in the overall result.

The semantics of let expressions is formalized by the third rule. We use the
standard substitution function e[v/α] which substitutes all free occurrences of
variable α within the expression e by an expression v.

The next two rules describe the semantics of function definition and appli-
cation. To allow for recursive function definitions, we use an explicit fix-point
operator fix in conjunction with the substitution function described above. For
each function definition, rule LetRec substitutes all applied occurences within
the remainder of the program by an application of fix to the function name
and definition. The corresponding definition of function application is given by
rule Ap. It differs from the standard rule for applicative languages only by the
additional substitution of recursive function applications within the function
body by an explicit fix operator. We use e[vi/αi]ni=1 to denote the sequence of
substitutions e[v1/α1] · · · [vn/αn].

Rule Main gives the semantics of the main expression of a program. A formal
definition of conditionals in SaCλis given by the rules IfTrue and IfFalse.

The next four rules formalize the semantics of the main primitive operations
on arrays: dim, shape, sel and modarray. There are two aspects of the Sel rule
to be observed: first, we require the selection index to be of the same length as
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the shape of the array to be selected from. This ensures scalar values as results.
Second, the selection index must be within the bounds of the array argument,
i.e., each element ij of the index vector needs to be non-negative and less than
the corresponding element sj of the shape vector of the array argument. Finally,
the selection requires a transformation of the index vector into a scalar offset l
into the linearized form of the array. The sum of products used here reflects the
row-major linearization we have chosen.

The rule Modarray imposes the same restrictions on the index vector and
the array argument of the modarray operation. Additionally, we require that
the third argument to modarray is a scalar value. This is to ensure that the

Const :
n → < [], [n] >

Vect :
∀i ∈ {1, . . . , n} : ei → < [ s1, . . . , sm], [ di

1, . . . , di
p] >

[ e1, . . . , en] → < [ n, s1, . . . , sm], [ d1
1, . . . , d1

p, . . . , dn
1 , . . . , dn

p ] >

Let :

e → < [ s1, . . . , sn], [ d1, . . . , dm] >
eb[< [ s1, . . . , sn], [ d1, . . . , dm] >/α] → < [ s′1, . . . , s′k], [ d′

1, . . . , d′
l] >

let α = e in eb → < [ s′1, . . . , s′k], [ d′
1, . . . , d′

l] >

LetRec :
p[fix f λα1, . . ., αn.e/f ] → < [ s1, . . . , sn], [ d1, . . . , dm] >

f = λα1, . . ., αn.e
p → < [ s1, . . . , sn], [ d1, . . . , dm] >

Ap :

∀i ∈ {1, . . . , n} : ei → < [ si
1, . . . , si

ni
], [ di

1, . . . , di
mi

] >
e[< [ si

1, . . . , si
ni

], [ di
1, . . . , di

mi
] >/αi]

n
i=1[fix f λα1, . . ., αn.e/f ]

→ < [ s1, . . . , sn], [ d1, . . . , dm] >

fix f λα1, . . ., αn.e( e1, . . ., en)

→ < [ s1, . . . , sn], [ d1, . . . , dm] >

Main :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

main = e → < [ s1, . . . , sn], [ d1, . . . , dm] >

IfTrue :
ep → < [], [ true] > et → < [ s1, . . . , sn], [ d1, . . . , dm] >

if ep then et else ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

IfFalse :
ep → < [], [ false] > ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

if ep then et else ee → < [ s1, . . . , sn], [ d1, . . . , dm] >

Dim :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

dim( e) → < [], [n] >

Shape :
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

shape( e) → < [ n], [ s1, . . . , sn] >

Fig. 2. An operational semantics for SaCλ
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Sel :

iv → < [ n], [ i1, . . . , in] >
e → < [ s1, . . . , sn], [ d1, . . . , dm] >

sel( iv, e) → < [], [ dl] >

where l =
nP

j=1

(ij ∗
nQ

k=j+1

sk) + 1

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

ModArray :

iv → < [ n], [ i1, . . . , in] >
ed → < [ s1, . . . , sn], [ d1, . . . , dm] >

ev → < [], v >

modarray( iv, ed, ev) → < [ s1, . . . , sn], [ d′
1, . . . , d′

m] >

where d′
l =

8<
:

v if l =
nP

j=1

(ij ∗
nQ

k=j+1

sk) + 1,

dl otherwise.

⇐⇒ ∀k ∈ {1, . . . , n} : 0 ≤ ik < sk

Add SxS :

e1 → < [], d1 >
e2 → < [], d2 >

add SxS( e1, e2) → < [], [ d1 + d2] >

Add AxS :

e1 → < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 → < [], d >

add AxS( e1, e2) → < [ s1, . . . , sn], [ d1
1 + d, . . . , d1

m + d] >

Add AxA :

e1 → < [ s1, . . . , sn], [ d1
1, . . . , d1

m] >
e2 → < [ s1, . . . , sn], [ d2

1, . . . , d2
m] >

add AxA( e1, e2) → < [ s1, . . . , sn], [ d1
1 + d2

1, . . . , d1
m + d2

m] >

Fig. 2. (continued)

modarray operation results in a homogeneous array, i.e., that the replaced value
and replacing value are of the same shape.

Element-wise extensions of standard operations, such as the arithmetic and
relational operations, are demonstrated by the example of the rules for addition
(add SxS, add AxS and add AxV). We have left out the rule for the SxA variant,
as it is symmetrical to the AxS variant.

Whereas add SxS and add AxS can be applied to any pair of scalar values or
an array of arbitrary shape as first argument and any scalar value as second argu-
ment, respectively, we require the arguments of add AxA to be of the same shape.

4 Representing Constraints as Contracts

In this Section, we will discuss different approaches to representing constraints
as explicit contracts in SaCλ. As a first step, we have to identify the implicit
constraints of the primitive functions built into SaCλ. To begin with, consider
the following application of the binary primitive function add_AxS:
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...��� R = ������	( A, v)


�...

where A and v are defined in the surrounding context. From rule add AxS in
Figure 2, we can deduce that the second argument needs to evaluate to a scalar
value. Thus, the above application of add_AxS has the following constraint:

1. v is required to evaluate to a scalar value

This constraint is an example for a constraint on the dimensionality of an array,
i.e., static knowledge of the dimensionality of the second argument to add_AxS
suffices to evaluate this constraint statically.

For an application of add_AxA like
...��� R = �������( A, B)


�...

where A and B are given by the surrounding context, we get a different class of
constraints. As rule add AxA in Figure 2 shows, the following constraint needs
to hold in order for the application to be evaluated:

2. A and B evaluate to values of the same shape

In contrast to constraint 1 above, constraint 2 requires static shape knowledge
of both arguments, more precisely, static knowledge of shape equalities.

Similarly, constraints for add_SxS, add_SxA and the remaining binary op-
erations can be derived. Finally, we need to derive constraints for sel and
modarray operations. As an example, consider the following applications of sel
and modarray:
...��� B = �
������ ( A, iv, v)


� ��� w = ���( B, iv)


�...

where A, iv and v are defined in the surrounding context.
As for the previous examples, by looking at the semantic rules defined in

Figure 2, we can deduce the following implicit constraints for the application of
modarray:

3. the length of iv needs to match the dimensionality of A
4. iv is required to be non-negative
5. each element of iv needs to be smaller than the corresponding value of the

shape vector of A
6. v should be a scalar value

For the application of sel we get:

7. the length of iv is required to match the dimensionality of B
8. iv needs to be non-negative
9. each element of iv is required to be smaller than the corresponding value of

the shape vector of B
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Constraints 3 and 7 are constraints on the shape of arguments of a primitive
function, similar to constraint 2 shown in the previous example. However, con-
straints 4 and 8, and 5 and 9 are constraints that depend on the value of an
argument, i.e., these can only be statically decided if the value of the corre-
sponding arguments are known at compile time.

Having identified the constraints for the built-in functions of SaCλ, as a next
step we need to encode these as SaCλ expressions. In the following, we will
explore the design space and discuss three different means to express contracts
in SaCλ.

Reusing Existing Primitive Functions. A straightforward approach would
be to directly encode the constraints using existing SaCλ built-in functions. For
example, constraint 1 can be encoded by the following expression:

���	�	( �
�( v), 0)

However, although a direct encoding complies with our goal to only require
minimal implementation work, it has its drawbacks. Firstly, using existing built-
in functions requires potentially multiple nested expressions. As an example,
consider an implementation of constraint 2:
all( ������( �����( A), �����(B)))

where all is the element-wise logical and operation on arrays. Here, express-
ing one constraint as an explicit contract requires four primitive operations. If
performed for each primitive function in a program, this leads to a major code
explosion.

Secondly, using existing primitive functions may lead to a non-terminating
code transformation. In the example above, eq_AxA requires its two arguments
to be of the same shape. Thus, inserting a contract to ensure that two expressions
evaluate to arrays of the same shape yields the same constraint again.

Finally, as discussed in Section 2, it is essential to be able to give suitable
feedback about which constraints remain to be checked at run-time to the pro-
grammer. However, by reusing existing primitive functions to express contracts,
the latter become indistinguishable from user written code.

Tailor-Made Functions. To circumvent code explosion and to make contracts
easily distinguishable from user-written expressions, we chose to express the con-
straints of each primitive function via dedicated built-in functions. These func-
tions are tailor-made to express contracts, so they can be designed in such a way
that they do not have any constraints apart from those they assert. This resolves
the potential termination problem of a corresponding code transformation.

As an example, we could define a new primitive function ensure_add_AxA
which ensures that all constraints for an application of add_AxA hold. The con-
tract for constraint 2 can then be encoded as:
ensure_add_AxA ( A, B)

where A and B are the arguments to the corresponding application of add_AxA.
However, using a single function to encode a set of constraints might hinder par-
tial evaluation. As an example, consider using a single primitive function, e.g.,
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ensure_modarray, for applications of the modarray operation. Here, different
constraints require different levels of static knowledge. For example, constraint
3 requires only static knowledge of the dimensionality of one argument, whereas
constraint 6 requires static knowledge of the shape and even value of one argu-
ment. Thus, although in principal some constraints could be statically decided,
using this coarse grained approach, a partially static decision cannot be expressed
in the code. The partial evaluator can only either evaluate all constraints stati-
cally, or leave all checks for evaluation at run-time.

Fine-Grained Tailor-Made Functions. To combine the strengths of both
approaches presented so far, without adopting their weaknesses, we propose a
third approach. To limit code explosion and ease the extraction of suitable feed-
back, we use dedicated primitive functions to express contracts. As we noted,
this ensures the termination of a corresponding code transformation. In contrast
to the second approach, we define one primitive function for each constraint in-
stead of defining one function per set of constraints. This allows us to statically
evaluate parts of the constraints of a primitive function.

To put the third approach into action, we need to add the following five
additional primitive functions. For constraints 1 and 3, we add:

is scalar, which evaluates to true if its argument is a scalar value and to false
otherwise.

The shape-dependent constraint 2 can be expressed using:

same shape, which evaluates to true if its two arguments have the same shape
and to false otherwise.

To express constraints 3 and 7, 4 and 8, and 5 and 9, respectively, we add the
following primitive functions:

shape matches dim, which evaluates to true if the length of its first argument,
i.e., the shape at position 0, matches the dimensionality of the second, oth-
erwise it evaluates to false.

non neg val which evaluates to true if all elements of its first argument are
non-negative, otherwise to false.

val lt shape, which evaluates to true if each element of the first argument is
smaller than the corresponding element of the shape of the second argument,
otherwise it evaluates to false.

Using the above functions, we can now insert explicit contracts for implicit con-
straints of primitive functions into the code.

5 Inserting Contracts for Primitive Functions

So far, we have discussed different means to express the contracts resulting from
constraints of primitive functions in SaCλ. However, to make use of these con-
tracts, we furthermore need to insert them into the code. A viable solution with
respect to the challenges laid out in Section 2 thereby needs to meet the following
criteria:
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1. The contracts need to safeguard the corresponding primitive functions such
that the primitive function is only evaluated if the contracts hold. Otherwise,
the program should terminate with an error.

2. Contracts should be accessible to the existing partial evaluator and optimi-
sations. In particular, knowledge gained by evaluating contracts should be
propagated as far as possible.

3. Optimisations should profit from knowledge gained by contracts, i.e., optimi-
sations should not need to be aware of the constraints of primitive functions.

In the following, we will present three different approaches to insert contracts
into the code and discuss their suitability with respect to the above criteria.

Contracts by Conditionals. As a first approach, we consider wrapping ap-
plications of primitive functions into conditionals. For example, the following
SaCλ expression:
...��� R = ������	( A, v)


�...

where A and v are defined in the surrounding context, can be transformed into:
...��� R = 
� ( 
�������� ( v)) ���� ������	( A, v)

���� ⊥

�...

We use the symbol ⊥, denoted bottom, to represent an explicit program termi-
nation. In the above example, the application of add_AxS is only evaluated if the
application of is_scalar to v evaluates to true, i.e., if v evaluates to a scalar
value. Otherwise, the program terminates. Thus, using conditionals clearly fulfils
the first criterion.

However, with respect to the second criterion, the above solution is not opti-
mal. The result of evaluating the predicate of the conditional, is_scalar(v), is
only available within the scope of the conditional, i.e., its then and else branch.
Optimisations on, or partial evaluation of, expressions containing v within the
body of the surrounding let expression cannot exploit this additional knowl-
edge. Although this situation could be mitigated by wrapping the entire let
expression instead of the application of add_AxS inside the conditional, such a
transformation is not straightforward.

Weaving Contracts into the Dataflow. Another way to introduce contracts
into the code is to weave them into the dataflow. That is, instead of using the
tailor-made contract functions as predicates, redefine those functions so that, if
the constraint holds, they return the argument for which they assert the con-
straint; otherwise, they terminate the evaluation. Thus, if all constraints hold,
the program evaluates as expected. If one of the constraints is violated, the
evaluation terminates with an error.

As an example, reconsider the application of add_AxS given above. Using the
dataflow approach, the code can be extended by contracts as follows:
...��� v’ = 
�������� ( v)


� ��� R = ������	( A, v’)


�...
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In the above example, the application of is_scalar guards the consecutive ap-
plication of add_AxS. Therefore, like the previous approach, weaving constraints
into the dataflow fulfils the first criterion. Moreover, other than the first ap-
proach, it fulfils the second criterion, as well. As the result of evaluating v and
asserting the constraint is bound to a new identifier v’, we now have an explicit
handle to the additional knowledge gained by evaluating the contract. To make
this knowledge available within the body of the surrounding let expression, it
suffices to substitute all occurrences of v in the body by v’, a well understood
and simple transformation.

Finally, we have to assess criterion three. Consider the following excerpt from
a SaCλ expression:
...��� B = �
������ ( A, iv, v)


� ��� w = ���( iv, B)


�...

where A, iv and v are defined in the surrounding context. In the above code, we
first compute a new array B by replacing the value at position iv with v. In the
consecutive application of sel, we then select this value again and bind the result
to the identifier w. Under the assumption that the applications of modarray and
sel are safe, we know statically that w equals v and therefore can simplify the
above code to the following expression:
...��� B = �
������ ( A, iv, v)

...��� w = v


�...

If B is not referenced in the body of the surrounding let expression, we can
furthermore remove the application of modarray, as its result is not needed
anymore.

The above example might look artificial but in the setting of SaC, i.e., a
language with a high level of abstraction and the presence of sophisticated opti-
misations, expressions like the one presented here are surprisingly common.

For the above transformation to be semantic preserving, we have to ensure
that the constraints of the applications of modarray and sel hold. For example,
if iv is an invalid index into array A, the non-optimised version will fail, whereas
the fully optimised version would succeed, thereby computing the wrong result.

As demanded by the third criterion, inserting explicit contracts should allow
us to blindly apply this optimisation, without checking any constraints. Consider
the following transformation:
...��� v1 = 
�������� ( v)


� ��� iv1 = �
��������� ( iv)


� ��� iv2 = ���������������
�( iv1 , A)


� ��� iv3 = ������������( iv2 , A)


� ��� B = �
������ ( A, iv3 , v1)


� ��� iv4 = �
��������� ( iv3)


� ��� iv5 = ���������������
�( iv4 , B)


� ��� iv6 = ������������( iv5 , B)


� ��� w = ���( iv6 , B)


�...



266 S. Herhut et al.

In this setting, our primitive optimisation cannot be applied, as the sel oper-
ation uses an index vector different from the one used in the modarray opera-
tion. However, many of the above contracts can be statically evaluated. Firstly,
we statically know that iv1 is non-negative. Therefore, iv2 and iv3 are non-
negative, as well. Thus, we can deduce that the application of non_neg_val to
iv3 is the identity function. Secondly, we know that the shape of B is equal to the
shape of A, as B is computed from A using a shape-preserving modarray operation.
Therefore, the second application of shape_matches_dim and val_lt_shape, re-
spectively, return the identity of their first argument. By combining this static
knowledge, we can deduce that iv6 equals iv3 and simplify the above code as
follows:

...��� v1 = 
�������� ( v)


� ��� iv1 = �
��������� ( iv)


� ��� iv2 = ���������������
�( iv1 , A)


� ��� iv3 = ������������( iv2 , A)


� ��� B = �
������ ( A, iv3 , v1)


� ��� w = ���( iv3 , B)


� ...

Now, our simple optimisation can be applied again. On first glance this is safe,
as the explicit contracts guard the consecutive applications of modarray and
sel. However, by replacing the application of sel by v1, we might remove the
last reference to B, which will, should iv3 not be used anywhere else, turn the
modarray operation and the corresponding contracts into dead code. With these
contracts being eliminated the optimised program will produce the wrong result
if the definition of B becomes dead code.

As the above example shows, just weaving the contracts into the dataflow
does not suffice to meet the third criterion.

Using Explicit Evidence. To allow for a naive application of optimisations
like the one shown above without sacrificing semantic soundness, we have to
ensure that inserted contracts cannot be removed as a result of an optimisation,
as long as the result of a corresponding application of a primitive function con-
tributes to the overall result. For the above example, this means that we have
to ensure that the contracts for the application sel stay intact. More precisely,
we have to ensure that the contracts of sel are not removed, even if no further
use of B exists.

To achieve this, we propose the use of explicit evidence that a contract is
fulfilled. We then explicitly check this evidence before using the result of an
application of a primitive function. Thereby, the contracts will remain intact,
even if the computation as such has been removed, as long as the computation’s
result is used.

We implement this by extending the primitive functions used for expressing
contracts with a further Boolean return value. If a contract holds, the primitive
function additionally returns true. Otherwise the evaluation terminates. To tie
the evidence to the result of an application of a primitive function, we introduce
a further primitive function:
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after guard, which takes two or more arguments, is the identity in its first
argument, if all consecutive arguments evaluate to true; otherwise, it termi-
nates evaluation.

As an example of its use, consider the extended version of the above example:
...��� v1, e1 = 
�������� ( v)


� ��� iv1 , e2 = �
��������� ( iv)


� ��� iv2 , e3 = ���������������
�( iv1 , A)


� ��� iv3 , e4 = ������������( iv2 , A)


� ��� B = �
������ ( A, iv3 , v1)


� ��� B1 = ����������� ( B, e1, e2, e3, e4)


� ��� iv4 , e5 = �
��������� ( iv3)


� ��� iv5 , e6 = ���������������
�( iv4 , A)


� ��� iv6 , e7 = ������������( iv5 , A)


� ��� w = ���( iv6 , B1)


� ��� w1 = ����������� ( w, e5, e6, e7)


�...

Here, the result of the application of modarray is tied to the corresponding
contracts using the evidence returned by the contracts and an application of
after_guard. Similarly, the result of the application of sel is guarded. Applying
the same reasoning as in the previous approach, we can reduce the number of
contracts as follows:
...��� v1, e1 = 
�������� ( v)


� ��� iv1 , e2 = �
��������� ( iv)


� ��� iv2 , e3 = ���������������
�( iv1 , A)


� ��� iv3 , e4 = ������������( iv2 , A)


� ��� B = �
������ ( A, iv3 , v1)


� ��� B1 = ����������� ( B, e1, e2, e3, e4)


� ��� w = ���( iv3 , B1)


� ��� w1 = w


�...

Note that the second application of after_guard has been replaced by its
first argument, as we statically know that the corresponding evidence evaluates
to true.

In the above setting, our simple optimisation cannot be applied as long as
the evidence of the application of modarray cannot be statically evaluated to
true. However, if the remaining after_guard vanishes, thereby enabling our
optimisation, we can be sure that the optimisation can safely be applied as all
contracts have been statically evaluated. Thus, this extended dataflow represen-
tation fulfils all three critera.

6 A Formal Definition

In the following, we describe the approach developed in the previous sections
more formally. We first give the semantics of the added primitive functions. As
a second step, we formalise the transformation scheme that inserts contracts
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same shape :

e1 → < [ s1, . . . , si], [ d1
1, . . . , d1

k] >
e2 → < [ s1, . . . , si], [ d2

1, . . . , d2
l ] >

same shape( e1, e2) →
< [ s1, . . . , si], [ d1

1, . . . , d1
k] >,

< [ s1, . . . , si], [ d2
1, . . . , d2

l ] >,
< [], true >

after guard :
e → v ∀i ∈ {1, . . . , n} : ei → < [], true >

after guard( e, e1, . . ., en) → v

Fig. 3. Semantic rules for the additional built-in functions same shape and after guard

into the code. Using these definitions, we finally sketch out a proof that the
transformation is semantic-preserving.

Due to space limitations, we concentrate in our presentation on the function
add_AxA and the corresponding contracts. However, an extension to all primitive
functions is straightforward.

Figure 3 shows the semantic rules for the primitive functions same_shape and
after_guard. As described informally in Section 5, same_shape is the identity
on its first two arguments and returns true as its third result only if the shapes of
its arguments match. Otherwise, the evaluation gets stuck and ultimately fails.
Similarly, after_guard is the identity on its first argument only if all other
arguments evaluate to true.

To formally describe the insertion of contracts discusses in Section 5, we use
the code transformation scheme C sketched out in Figure 4. Basically, it replaces
all occurrences of add_AxA with the corresponding guarded expression. Note that
Id′A, Id′B, IdE , Id′R denote fresh variables that have no free occurrences within
the body expression e.

In order to propagate knowledge gained from evaluating contracts, we fur-
thermore substitute the arguments of same_shape by its results within the body
expression. This substitution is performed using the environment E. Whenever
we need to substitute an identifier, we add a pair (Id, Id′) to the environment,
where Id is the identifier to be substituted and Id′ denotes the substitute. Rule
Id performs this substitution. The lookup function is defined in the usual way:

(add AxA) C

�
let IdR = add AxA( IdA, IdB)

in e
, E

�

�

let Id′
A, Id′

B, IdE = same shape( C�IdA, E�, C�IdB , E�)
in let Id′

R = add AxA( Id′
A, Id′

B)

in let IdR = after guard( Id′
R, IdE)

in C�e, E ++ < (IdA, Id′
A), (IdB , Id′

B) >�
(Id) C�Id, E� � lookup( Id, E)

Fig. 4. Transformation scheme for inserting explicit contracts for applications of the
primitive function add AxA
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lookup(Id, E) returns the most recent substitute for Id in E, if one exists. Oth-
erwise, it returns Id.

Using these definitions, we can now sketch out a proof that the code trans-
formation C is semantic-preserving.
Theorem 1. C is sound with respect to the semantics of SaCλ

Proof. From the semantics definition in Figures 2 and 3 we can see that it suffices
to show that

e1 → < s, d1 > e2 → < s, d2 >

let a, b, e = same shape( e1, e2)
in let r = add AxA( a, b)
in after guard( r, e)

→ < s, d1 + d2 >

For the application of after_guard we know that

< s, d1 + d2 > → < s, d1 + d2 > < [], true > → < [], true >

after guard( < s, d1 + d2 >, < [], true >) → < s, d1 + d2 >

Similarly, for add_AxA we can deduce

< s, d1 > → < s, d1 > < s, d2 > → < s, d2 >

add AxA( < s, d1 >, < s, d2 >) → < s, d1 + d2 >

Finally, we can deduce from rule same shape that:

e1 → < s, d1 > e2 → < s, d2 >

same shape( e1, e2) → < s, d1 >, < s, d2 >, < [], true >

By applying the standard semantics of let, we yield the required deduction. q.e.d.

7 Constraint Resolution by Partial Evaluation

We have implemented the transformation sketched out in Figure 4 as part of our re-
search compiler sac2c. First evaluations have shown that the presented representa-
tion integrates well with our existing optimisations. In essence, only few extensions
to some of our standard optimisations, e.g., Constant Folding, were required in
order to be able to statically resolve a large proportion of the contracts. Most of the
other optimisations integrated in our compiler, such as CommonSubexpression

Elimination and Dead Code Removal (for an overview see [3]), contribute to
the constraint resolution without any modification.

The key drivers behind these optimisations appear to be our existing shape
and dimensionality inference mechanisms. To gather static shape knowledge,
we use the shape inference that is part of the SaC type-system [3]. In short,
the SaC type-system statically infers array shapes where possible but resorts
to subtyping-based type-weakening where a fully static approach would be un-
decidable. We enrich this information with shape and dimensionality equalities
inferred by further symbolic analyses [15,16].
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Table 1. Quantitative results of inserting explicit contracts into the Livermore For-

tran kernels
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no-opt
all 985 274 125 655 224 217 890 310 377 184 299 472 885 695
val.-dep. 596 174 84 412 144 140 546 196 236 120 188 296 536 430

opt
all 125 103 95 123 98 95 200 194 202 89 101 136 166 146
val.-dep. 87 72 67 86 69 67 137 133 138 63 71 94 114 101

resolved all 87.3 62.4 24.0 81.2 56.3 56.2 77.5 37.4 46.4 51.6 66.2 71.2 81.2 79.0
in % val.-dep. 85.4 58.6 20.2 79.1 52.1 52.1 75.0 32.1 41.5 47.5 62.2 68.2 78.7 76.5

Due to the tight integration of these techniques, it is difficult to attribute the
effects to individual optimisations. Even a quantification of the overall effect is
intricate for our current prototype, as the constraint insertion is not implemented
näıvely but utilises the inferred type information already.

Keeping these limitations in mind, we have performed a quantitative analysis
of the number of inserted and resolved explicit contracts using the Livermore
Loops [17] to gain preliminary insights into the effectiveness of our approach.

The Livermore Loops are a collection of Fortran kernels from real-world
numerical applications which have been used in a performance comparison be-
tween Sisal and Fortran [18]. For our experiments, we have used the SaC

implementation that is available as part of the compiler distribution. For all
measurements, we have used revision 15670 of the developer version of sac2c.
To measure the number of inserted contracts, we have compiled the different
kernels using the compiler options -noOPT -doDCR -doINL -doDFR -maxspec
0 -check c. These disable all but the bare essential optimisations, i.e., dead

code removal, function inlining and dead function removal. Further-
more, we have disabled function specialisation to minimize the static shape
knowledge available to the type system. The last option enables the insertion of
constraints as explicit contracts as described in this paper. To measure the num-
ber of primitive functions used for explicit contracts in the intermediate code
after optimisations, we have used the built-in optimisation statistics of sac2c.
The results are given in Table 1, aggregated over all primitive functions (first
row) and only those that depend on values (second row).

In a second run, we have compiled the same programs using the compiler
options -maxlur 3 -check c. The first option limits the loop unrolling op-
timisation built into sac2c to ensure that the loops contained in the source code
are not eliminated. The number of primitive functions remaining in the code
after all optimisations is shown in the third and fourth row of Table 1.

As an indicator for the effectiveness of our approach, we have computed the
difference between the first and second run in percent (cf. row five and six of
Table 1). As can be seen, we were able to resolve an average of 62.7% of the
inserted contracts statically. Taking only the value-dependent contracts into ac-
count, we are still able to resolve an average of 59.2% statically.
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Currently, our symbolic optimisations are focused on shape and dimension-
ality information. We therefore would have expected the difference between the
overall resolution ratio and that for value-dependent contracts to be more pro-
nounced. However, as our non-näıve insertion process eliminates many shape-
and dimensionality-dependent contracts before inserting them, the results are
biased. An in-depth quantitative analysis of our approach remains future work.

8 Related Work

Our work is similar to dependent type systems like indexed types [5] or the
approaches used in Zpl [7] and Chapel [8], in that we try to prove shape and
value dependent constraints statically. However, instead of using a sophisticated
type system and imposing restrictions on the use of indices, we utilise explicit
constraints and partial evaluation. Furthermore, our approach allows dynamic
checks to remain in the generated code when static analysis does not permit all
constraints to be satisfied statically.

Hybrid type checking [19] also facilitates static constraint satisfaction, while
supporting dynamic checks when those cannot be satisfied. In contrast to the
work presented here, the author proposes to drive type inference as far as possi-
ble, and only introduce dynamic checks when it gets stuck. Our approach starts
out with blindly inserted dynamic checks and then tries to evaluate these stat-
ically. This allows us to use existing partial evaluation techniques instead of
enriching our type inference system.

A similar approach has been proposed by Xu for the lazy functional lan-
guage Haskell [20]. ESC/Haskell uses symbolic evaluation combined with
counter-example guided unrolling to statically prove user-defined pre- and post-
conditions. In contrast to the approach presented here, ESC/Haskell mainly
focusses on debugging whereas we additionally aim at enhancing program run-
times and simplifying the implementation of optimisations.

The idea of explicit evidence as used by our dataflow representation is used
in [21] as well. However, the authors deal with a low-level byte-code that has al-
ready been verified and enriched with dynamic checks by a compiler. In their pa-
per, they focus on retaining these checks across program optimisations, whereas
we furthermore exploit contracts for static guarantees and try to minimise the
number of runtime checks.

9 Conclusions

This paper demonstrates how compiler-inserted contracts, in conjunction with
partial evaluation and other optimisation techniques, can be used to obtain static
conformity guarantees similar to those that can be expressed by dependent types
or variants thereof.

The effectiveness of our approach arises from insertion of carefully designed
evidence-gaining predicates into the data flow and from use of evidence guards
on the function results. Due to the explicit encoding as part of the program



272 S. Herhut et al.

code, this evidence is accessible to the existing partial evaluator and further
optimisations. In particular, we can use the existing optimisations to remove
many redundant conformity checks and are able to substantially simplify the
implementation of several symbolic optimisations within the compiler itself.

As the experience from our prototypical implementation shows, the proposed
approach can be implemented with minimal effort. The presented transforma-
tion to insert contracts is straight-forward and contract resolution comes nearby
for free. Only minor extensions to the Constant Folding implementation
are required. Apart from minimising the implementation effort, reusing existing
optimisations comes with a further benefit: Future enhancements to existing op-
timisations as well as the addition of further optimisations automatically benefit
contract checking.

In this paper, we focus our presentation on checking domain constraints for
built-in functions. However, we believe the approach is far more versatile. The
concept of explicit evidence-carrying variables equally well applies to contracts
for user-defined functions. This brings the properties of our system close to that
of more strongly typed systems based on various forms of dependent types: for
many programs, we can give static soundness guarantees with respect to certain
domain requirements. In those cases where we cannot give these guarantees,
we can clearly identify the program parts where unresolved constraints remain.
Then, it is up to the user to decide whether further program optimisation should
be applied or the dynamic contract checks should remain.

It remains as future research to investigate whether such a general purpose
optimisation mechanism is capable of resolving more complex constraints in an
effective way. In particular, it would be interesting to compare its effectiveness
with that obtained by dedicated resolution systems such as Epigram [22].
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