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Abstract. We study the approximability of the MAX k-CSP problem
over non-boolean domains, more specifically over {0, 1, . . . , q−1} for some
integer q. We extend the techniques of Samorodnitsky and Trevisan [19]
to obtain a UGC hardness result when q is a prime. More precisely,
assuming the Unique Games Conjecture, we show that it is NP-hard to
approximate the problem to a ratio greater than q2k/qk. Independent of
this work, Austrin and Mossel [2] obtain a more general UGC hardness
result using entirely different techniques.

We also obtain an approximation algorithm that achieves a ratio of
C(q) ·k/qk for some constant C(q) depending only on q, via a subroutine
for approximating the value of a semidefinite quadratic form when the
variables take values on the corners of the q-dimensional simplex. This
generalizes an algorithm of Nesterov [16] for the ±1-valued variables. It
has been pointed out to us [15] that a similar approximation ratio can
be obtained by reducing the non-boolean case to a boolean CSP.

1 Introduction

Constraint Satisfaction Problems (CSP) capture a large variety of combinatorial
optimization problems that arise in practice. In the MAX k-CSP problem, the in-
put consists of a set of variables taking values over a domain(say {0, 1}), and a set
of constraints with each acting on k of the variables. The objective is to find an
assignment of values to the variables that maximizes the number of constraints
satisfied. Several classic optimization problems like 3-SAT, Max Cut fall in to the
general framework of CSPs. For most CSPs of interest, the problem of finding
the optimal assignment turns out to be NP-hard. To cope with this intractability,
the focus shifts to approximation algorithms with provable guarantees. Specifi-
cally, an algorithm A is said to yield an α approximation to a CSP, if on every
instance Γ of the CSP, the algorithm outputs an assignment that satisfies at
least α times as many constraints as the optimal assignment.
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Apart from its natural appeal, the study of the MAX k-CSP problem is inter-
esting for yet another reason. The best approximation ratio achievable for MAX
k-CSP equals the optimal soundness of a PCP verifier making at most k queries.
In fact, inapproximability results for MAX k-CSP have often been accompanied
by corresponding developments in analysis of linearity testing.

Over the boolean domain, the problem of MAX k-CSP has been studied ex-
tensively. For a boolean predicate P : {0, 1}k → {0, 1}, the MAX k-CSP (P)
problem is the special case of MAX k-CSP where all the constraints are of the
form P (l1, l2, . . . , lk) with each literal li being either a variable or its negation.
For many natural boolean predicates P , approximation algorithms and match-
ing NP-hardness results are known for MAX k-CSP (P)[11]. For the general MAX
k-CSP problem over boolean domain, the best known algorithm yields a ratio of
Ω( k

2k ) [3], while any ratio better than 2
√

2k/2k is known to be NP-hard to achieve
[5]. Further if one assumes the Unique Games Conjecture, then it is NP-hard to
approximate MAX k-CSP problem to a factor better than 2k

2k [19].
In this work, we study the approximability of the MAX k-CSP problem over

non-boolean domains, more specifically over {0, 1, . . . , q − 1} for some integer q,
obtaining both algorithmic and hardness results (under the UGC) with almost
matching approximation factors.

On the hardness side, we extend the techniques of [19] to obtain a UGC hard-
ness result when q is a prime. More precisely, assuming the Unique Games Con-
jecture, we show that it is NP-hard to approximate the problem to a ratio greater
than q2k/qk. Except for constant factors depending on q, the algorithm and the
UGC hardness result have the same dependence on of the arity k. Independent
of this work, Austrin and Mossel [2] obtain a more general UGC hardness result
using entirely different techniques. Technically, our proof extends the Gowers
Uniformity based approach of Samorodnitsky and Trevisan [19] to correlations
on q-ary cubes instead of the binary cube. This is related to the detection of
multidimensional arithmetic progressions by a Gowers norm of appropriately
large degree. Along the way, we also make a simplification to [19] and avoid the
need to obtain a large cross-influence between two functions in a collection with
a substantial Uniformity norm; instead our proof works based on large influence
of just one function in the collection.

On the algorithmic side, we obtain a approximation algorithm that achieves
a ratio of C(q) · k/qk with C(q) = 1

2πeq(q−1)6 . As a subroutine, we design an al-
gorithm for maximizing a positive definite quadratic form with variables forced
to take values on the corners of the q-dimensional simplex. This is a generaliza-
tion of an algorithm of Nesterov [16] for maximizing positive definite quadratic
form with variables forced to take {−1, 1} values. Independent of this work,
Makarychev and Makarychev [15] brought to our notice a reduction from non-
boolean CSPs to the boolean case, which in conjunction with the CMM algo-
rithm [3] yields a better approximation ratio for the MAX k-CSP problem. Using
the reduction, one can deduce a q2(1 + o(1))k/qk factor UG hardness for MAX
k-CSP for arbitrary positive integers q, starting from our UG hardness result for
primes q.
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1.1 Related Work

The simplest algorithm for MAX k-CSP over boolean domain is to output a
random assignment to the variables, thus achieving an approximation ratio of
1
2k . The first improvement over this trivial algorithm, a ratio of 2

2k was obtained
by Trevisan [20]. Hast [9] proposed an approximation algorithm with a ratio
of Ω( k

log k2k ), which was later improved to the current best known algorithm
achieving an approximation factor of Ω( k

2k ) [3].
On the hardness side, MAX k-CSP over the boolean domain was shown to be

NP-hard to approximate to a ratio greater than Ω(22
√

k/2k) by Samorodnitsky
and Trevisan [18]. The result involved an analysis of a graph-linearity test which
was simplified subsequently by H̊astad and Wigderson [13]. Later, using the
machinery of multi-layered PCP developed in [4], the inapproximability factor
was improved to O(2

√
2k/2k) in [5].

A predicate P is approximation resistant if the best optimal approximation
ratio for MAX k-CSP (P) is given by the random assignment. While no pred-
icate over 2 variables is approximation resistant, a predicate over 3 variables
is approximation resistant if and only if it is implied by the XOR of 3 vari-
ables [11,21]. Almost all predicates on 4 variables were classified with respect to
approximation resistance in [10].

In recent years, several inapproximability results for MAX k-CSP problems
were obtained assuming the Unique Games Conjecture. Firstly, a tight inap-
proximability of Θ

(
k
2k

)
was shown in [19]. The proof relies on the analysis of

a hypergraph linearity test using the Gowers uniformity norms. Hastad showed
that if UGC is true, then as k increases, nearly every predicate P on k variables
is approximation resistant [12].

More recently, optimal inapproximability results have been shown for large
classes of CSPs assuming the Unique Games Conjecture. Under an additional
conjecture, optimal inapproximability results were obtained in [1] for all boolean
predicates over 2 variables. Subsequently, it was shown in [17] that for every CSP
over an arbitrary finite domain, the best possible approximation ratio is equal
to the integrality gap of a well known Semidefinite program. Further the same
work also obtains an algorithm that achieves the best possible approximation
ratio assuming UGC. Although the results of [17] apply to non-boolean domains,
they do not determine the value of the approximation factor explicitly, but only
show that it is equal to the integrality gap of an SDP. Further the algorithm
proposed in [17] does not yield any approximation guarantee for MAX k-CSP
unconditionally. Thus neither the inapproximability nor the algorithmic results
of this work are subsumed by [17].

Austrin and Mossel [2] obtain a sufficient condition for a predicate P to be
approximation resistant. Through this sufficiency condition, they obtain strong
UGC hardness results for MAX k-CSP problem over the domain {1, . . . , q} for
arbitrary k and q. For the case when q is a prime power, their results imply a
UGC hardness of kq(q − 1)/qk. The hardness results in this work and [2] were
obtained independently and use entirely different techniques.
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1.2 Organization of the Paper

We begin with background on the Unique Games conjecture, Gowers norm, and
influence of variables in Section 2. In Section 3, we present a linearity test that
forms the core of the UGC based hardness reduction. We prove our inapproxima-
bility result (for the case when q is a prime) by a reduction from Unique Games
in Section 4. The proof uses a technical step bounding a certain expectation by
an appropriate Gowers norm; this step is proved in Section 5. Finally, we state
the algorithmic result in Section 6, deferring the details to the full version [6].

2 Preliminaries

In this section, we will set up notation, and review the notions of Gower’s uni-
formity, influences, noise operators and the Unique games conjecture. Hence-
forth, for a positive integer n, we use the notation [n] for the ring Z/(n) =
{0, 1, . . . , n − 1}.

2.1 Unique Games Conjecture

Definition 1. An instance of Unique Games represented as Γ = (X ∪ Y, E, Π,
〈R〉), consists of a bipartite graph over node sets X ,Y with the edges E between
them. Also part of the instance is a set of labels 〈R〉 = {1, . . . , R}, and a set of
permutations πvw : 〈R〉 → 〈R〉 for each edge e = (v, w) ∈ E. An assignment A
of labels to vertices is said to satisfy an edge e = (v, w), if πvw(A(v)) = A(w).
The objective is to find an assignment A of labels that satisfies the maximum
number of edges.

For sake of convenience, we shall use the following stronger version of Unique
Games Conjecture which is equivalent to the original conjecture [14].
Conjecture 1. For all constants δ > 0, there exists large enough constant R such
that given a bipartite unique games instance Γ = (X ∪ Y, E, Π = {πe : 〈R〉 →
〈R〉 : e ∈ E}, 〈R〉) with number of labels R, it is NP-hard to distinguish between
the following two cases:
– (1 − δ)-satisfiable instances: There exists an assignment A of labels such that

for 1 − δ fraction of vertices v ∈ X , all the edges (v, w) are satisfied.
– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-

fraction of the edges E.

2.2 Gowers Uniformity Norm and Influence of Variables

We now recall the definition of the Gowers uniformity norm. For an integer d � 1
and a complex-valued function f : G → C defined on an abelian group G (whose
group operation we denote by +), the d’th uniformity norm Ud(f) is defined as

Ud(f) := E
x,y1,y2,...,yd

⎡

⎢
⎢
⎣

∏

S⊆{1,2,...,d}
|S| even

f

(

x +
∑

i∈S

yi

)
∏

S⊆{1,2,...,d}
|S| odd

f

(

x +
∑

i∈S

yi

)
⎤

⎥
⎥
⎦ .

(1)
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where the expectation is taken over uniform and independent choices of x, y0, . . . ,

yd−1 from the group G. Note that U1(f) =
(

E
x
[f(x)]

)2
.

We will be interested in the case when the group G is [q]R for positive integers
q, R, with group addition being coordinate-wise addition modulo q. G is also
closed under coordinate-wise multiplication modulo q by scalars in [q], and thus
has a [q]-module structure. For technical reasons, we will restrict attention to
the case when q is prime and thus our groups will be vector spaces over the
field Fq of q elements. For a vector a ∈ [q]k, we denote by a1, a2, . . . , ak its k
coordinates. We will use 1,0 to denote the all 1’s and all 0’s vectors respectively
(the dimension will be clear from the context). Further denote by ei the ith basis
vector with 1 in the ith coordinate and 0 in the remaining coordinates. As we shall
mainly be interested in functions over [q]R for a prime q, we make our further
definitions in this setting. Firstly, every function f : [q]R → C has a Fourier
expansion given by f(x) =

∑
α∈[q]R f̂αχα(x) where f̂α = E

x∈[q]R
[f(x)χα(x)] and

χα(x) =
∏R

i=1 ωαixi for a qth root of unity ω.
The central lemma in the hardness reduction relates a large Gowers norm

for a function f , to the existence of an influential coordinate. Towards this, we
define influence of a coordinate for a function over [q]R.

Definition 2. For a function f : [q]R → C define the influence of the ith coor-
dinate as follows:

Infi(f) = E
x
[Varxi [f ]] .

The following well known result relates influences to the Fourier spectrum of the
function.

Fact 1. For a function f : [q]R → C and a coordinate i ∈ {1, 2, . . . , R},

Infi(f) =
∑

αi �=0,α∈[q]R
|f̂α|2 .

The following lemma is a restatement of Theorem 12 in [19].

Lemma 1. There exists an absolute constant C such that, if f : [q]m → C is a
function satisfying |f(x)| � 1 for every x then for every d � 1,

Ud(f) � U1(f) + 2Cd max
i

Infi(f)

2.3 Noise Operator

Like many other UGC hardness results, one of the crucial ingredients of our
reduction will be a noise operator on functions over [q]R. We define the noise
operator T1−ε formally below.

Definition 3. For 0 � ε � 1, define the operator T1−ε on functions f : [q]R → C

as:
T1−εf(x) = E

η
[f(x + η)]
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where each coordinate ηi of η is 0 with probability 1 − ε and a random element
from [q] with probability ε. The Fourier expansion of T1−εf is given by

T1−εf(x) =
∑

α∈[q]R
(1 − ε)|α|f̂αχα(x)

Here |α| denotes the number of non-zero coordinates of α. Due to space con-
straints, we defer the proof of the following lemma(see [6]).

Lemma 2. If a function f : [q]R → C satisfies |f(x)| � 1 for all x, and g =
T1−εf then

∑R
i=1 Infi(g) � 1

2e ln 1/(1−ε)

3 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX k-CSP is identical to the best
soundness of a PCP verifier for NP that makes k queries. This follows easily by
associating the proof locations to CSP variables, and the tests of the verifier to
k-ary constraints on the locations. In this light, it is natural that the hardness
results of [18,5,19] are all associated with a linearity test with a strong soundness.
The hardness result in this work is obtained by extending the techniques of [19]
from binary to q-ary domains. In this section, we describe the test of [19] and
outline the extension to it.

For the sake of simplicity, let us consider the case when k = 2d − 1 for some
d. In [19], the authors propose the following linearity test for functions F :
{0, 1}n → {0, 1}.

Complete Hypergraph Test (F, d)

– Pick x1, x2, . . . , xd ∈ {0, 1}n uniformly at random.
– Accept if for each S ⊆ [r], F (

∑
i∈S xi) =

∑
i∈S F (xi).

The test reads the value of the function F at k = 2d − 1 points of a random
subspace(spanned by x1, . . . , xd) and checks that F agrees with a linear function
on the subspace. Note that a random function F would pass the test with prob-
ability 2d/2k, since there are 2d different satisfying assignments to the k binary
values queried by the verifier. The following result is a special case of a more
general result by Samorodnitsky and Trevisan [19].

Theorem 1. [19] If a function F : {0, 1}n → {0, 1} passes the Complete Hy-
pergraph Test with probability greater than 2d/2k + γ, then the function f(x) =
(−1)F (x) has a large dth Gowers norm. Formally, Ud(f) � C(γ, k) for some
fixed function C of γ, k.

Towards extending the result to the domain [q], we propose a different linearity
test. Again for convenience, let us assume k = qd for some d. Given a function
F : [q]n → [q], the test proceeds as follows:
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Affine Subspace Test (F, d)

– Pick x,y1,y2, . . . ,yd ∈ [q]n uniformly at random.
– Accept if for each a ⊆ [q]d,

F
(
x +

d∑

i=1

aiyi

)
=

(
1 −

d∑

i=1

ai

)
F (x) +

d∑

i=1

aiF
(
x + yi

)

Essentially, the test queries the values along a randomly chosen affine sub-
space, and tests if the function F agrees with an affine function on the subspace.
Let ω denote a q′th root of unity. From Theorem 4 presented in Section 5, the
following result can be shown:

Theorem 2. If a function F : [q]n → [q] passes the Affine Subspace Test with
probability greater than qd+1/qk + γ, then for some q’th root of unity ω �= 1,
the function f(x) = ωF (x) has a large dq’th Gowers norm . Formally, Udq(f) �
C(γ, k) for some fixed function C of γ, k.

The above result follows easily from Theorem 4 using techniques of [19], and the
proof is ommited here. The Affine Subspace Test forms the core of the UGC
based hardness reduction presented in Section 4.

4 Hardness Reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX k-CSP
over a domain of size q when q is prime for every k � 2. Let d be such that
qd−1 + 1 � k � qd. Let us consider the elements of [q] to have a natural order
defined by 0 < 1 < . . . < q − 1. This extends to a lexicographic ordering on
vectors in [q]d. Denote by [q]d<k the set consisting of the k lexicographically
smallest vectors in [q]d. We shall identify the set {1, . . . , k} with set of vectors in
[q]d<k. Specifically, we shall use {1, . . . , k} and vectors in [q]d<k interchangeably
as indices to the same set of variables. For a vector x ∈ [q]R and a permutation
π of {1, . . . , R}, define π(x) ∈ [q]R defined by (π(x))i = xπ(i).

Let Γ = (X ∪ Y, E, Π = {πe : 〈R〉 → 〈R〉|e ∈ E}, 〈R〉) be a bipartite
unique games instance. Towards constructing a k-CSP instance Λ from Γ , we
shall introduce a long code for each vertex in Y. Specifically, the set of variables
for the k-CSP Λ is indexed by Y × [q]R. Thus a solution to Λ consists of a set of
functions Fw : [q]R → [q], one for each w ∈ Y.

Similar to several other long code based hardness results, we shall assume
that the long codes are folded. More precisely, we shall use folding to force the
functions Fw to satisfy Fw(x + 1) = F (x) + 1 for all x ∈ [q]R. The k-ary con-
straints in the instance Λ are specified by the following verifier. The verifier uses
an additional parameter ε that governs the level of noise in the noise operator.
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– Pick a random vertex v ∈ X . Pick k vertices {wa|a ∈ [q]d<k} from N(v) ⊂
Y uniformly at random independently. Let πa denote the permutation
on the edge (v, wa).

– Sample x,y1,y2, . . . ,yd ∈ [q]R uniformly at random. Sample vectors
ηa ∈ [q]R for each a ∈ [q]d<k from the following distribution: With prob-
ability 1 − ε, (ηa)j = 0 and with the remaining probability, (ηa)j is a
uniformly random element from [q].

– Query Fwa

(
πa(x +

∑
j ajyj + ηa)

)
for each a ∈ [q]d<k. Accept if the

following equality holds for each a ∈ [q]d<k.

Fwa

(
πa(x +

d∑

j=1

ajyj + ηa)
)

=
(
1 −

d∑

j=1

aj

)
Fw0

(
π0(x + η0)

)

+
d∑

j=1

ajFwej

(
πej(x + yj + ηej)

)

Theorem 3. For all primes q, positive integers d, k satisfying qd−1 < k � qd,
and every γ > 0, there exists small enough δ, ε > 0 such that

– Completeness: If Γ is a (1−δ)-satisfiable instance of Unique Games, then
there is an assignment to Λ that satisfies the verifier’s tests with probability
at least (1 − γ)

– Soundness: If Γ is not δ-satisfiable, then no assignment to Λ satisfies the
verifier’s tests with probability more than qd+1

qk + γ.

Proof. We begin with the completeness claim, which is straightforward.
Completeness. There exists labelings to the Unique Game instance Γ such
that for 1 − δ fraction of the vertices v ∈ X all the edges (v, w) are satisfied. Let
A : X ∪ Y → 〈R〉 denote one such labelling. Define an assignment to the k-CSP
instance by Fw(x) = xA(w) for all w ∈ Y.

With probability at least (1 − δ), the verifier picks a vertex v ∈ X such
that the assignment A satisfies all the edges (v, wa). In this case for each a,
πa(A(v)) = A(wa). Let us denote A(v) = l. By definition of the functions Fw,
we get Fwa(πa(x)) = (πa(x))A(wa) = xπ−1

a (A(wa)) = xl for all x ∈ [q]R. With
probability at least (1 − ε)k, each of the vectors ηa have their lth component
equal to zero, i.e (ηa)l = 0. In this case, it is easy to check that all the constraints
are satisfied. In conclusion, the verifier accepts the assignment with probability
at least (1 − δ)(1 − ε)k. For small enough δ, ε, this quantity is at least (1 − γ).

Soundness. Suppose there is an assignment given by functions Fw for w ∈ Y
that the verifier accepts with probability greater than qd+1

qk + γ.
Let z1, z2, . . . , zk be random variables denoting the k values read by the veri-

fier. Thus z1, . . . , zk take values in [q]. Let P : [q]k → {0, 1} denote the predicate
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on k variables that represents the acceptance criterion of the verifier. Essentially,
the value of the predicate P (z1, . . . , zk) is 1 if and only if z1, . . . , zk values are
consistent with some affine function. By definition,

Pr[ Verifier Accepts ] = E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[
P (z1, . . . , zk)

]
� qd+1

qk
+ γ

Let ω denote a qth root of unity. The Fourier expansion of the function P : [q]k →
C is given by P (z1, . . . , zk) =

∑
α∈[q]k P̂αχα(z1, . . . , zk) where χα(z1, . . . , zk) =

∏k
i=1 ωαizi and P̂α = E

z1,...,zk

[P (z1, . . . , zk)χα(z1, . . . , zk)]. Notice that for α = 0,

we get χα(z1, . . . , zk) = 1. Further,

P̂0 = Pr[ random assignment to z1, z2, . . . , zk satisfies P ] =
qd+1

qk

Substituting the Fourier expansion of P , we get

Pr[ Verifier Accepts ] =
qd+1

qk
+

∑

α�=0

P̂α E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[
χα(z1, . . . , zk)

]

Recall that the probability of acceptance is greater than qd+1

qk +γ. Further |P̂α| �
1 for all α ∈ [q]k. Thus there exists α �= 0 such that,

∣∣
∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd
E
ηa

[
χα(z1, . . . , zk)

]∣∣
∣ � γ

qk

For each w ∈ Y, t ∈ [q], define the function f
(t)
w : [q]d → C as f

(t)
w (x) =

ωtFw(x). For convenience we shall index the vector α with the set [q]d<k instead
of {1, . . . , k}. In this notation,

∣
∣
∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd
E
ηa

[ ∏

a∈[q]d<k

f (αa)
wa

(
πa(x +

d∑

i=1

aiyi + ηa)
)]∣∣

∣ � γ

qk

Let g
(t)
w : [q]d → C denote the smoothened version of function f

(t)
w . Specifically,

let g
(t)
w (x) = T1−εf

(t)
w (x) = Eη[f (t)

w (x + η)] where η is generated from ε-noise
distribution. Since each ηa is independently chosen, we can rewrite the above
expression,

∣
∣∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd

[ ∏

a∈[q]d<k

g(αa)
wa

(
πa(x +

d∑

i=1

aiyi)
)]∣∣∣ � γ

qk
.

For each v ∈ X , t ∈ [q], define the function g
(t)
v : [q]d → C as g

(t)
v (x) =

Ew∈N(v)[g
(t)
w (πvw(x))]. As the vertices wa are chosen independent of each other,

∣∣
∣ E

v∈X
E

x,y1,...,yd

[ ∏

a∈[q]d
<k

g(αa)
v

(
x +

d∑

i=1

aiyi
)]∣∣

∣ � γ

qk
.
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As α �= 0, there exists an index b ∈ [q]d<k such that αb �= 0. For convenience let

us denote c = αb. Define κ = 2−Cdq
(

γ
2qk

)2dq

where C is the absolute constant
defined in Lemma 1.

For each v ∈ X , define the set of labels L(v) = {i ∈ 〈R〉 : Infi(gc
v) � κ}.

Similarly for each w ∈ Y, let L(w) = {i ∈ 〈R〉 : Infi(gc
w) � κ/2}. Obtain

a labelling A to the Unique Games instance Γ as follows : For each vertex
u ∈ X ∪ Y, if L(u) �= φ then assign a randomly chosen label from L(u), else
assign a uniformly random label from 〈R〉.

The functions g
(c)
w are given by g

(c)
w = T1−εf

(c)
w where f

(c)
w is bounded in ab-

solute value by 1. By Lemma 2, therefore, the sum of its influences is bounded by
1

e ln 1/(1−ε) . Consequently, for all w ∈ Y the size of the label set L(w) is bounded
by 2

κe ln 1/(1−ε) . Applying a similar argument to v ∈ X , |L(v)| � 1
κe ln 1/(1−ε) .

For at least γ/2qk fraction of vertices v ∈ X we have,

∣∣
∣ E
x,y1,...,yd

[ ∏

a∈[q]d<k

g(αa)
v

(
x +

d∑

i=1

aiyi
)]∣∣

∣ � γ

2qk

We shall refer to these vertices as good vertices. Fix a good vertex v.
Observe that for each u ∈ X ∪ Y the functions g

(t)
u satisfy |g(t)

u (x)| � 1 for
all x. Now we shall apply Theorem 4 to conclude that the functions g

(t)
v have

a large Gowers norm. Specifically, consider the collection of functions given by
fa = g

(αa)
v for a ∈ [q]d<k, and fa = 1 for all a /∈ [q]d<k. From Theorem 4, we get

min
a

Udq(g(αa)
v ) �

( γ

2qk

)2dq

.

In particular, this implies Udq(g(c)
v ) �

(
γ

2qk

)2dq

. Now we shall use Lemma 1 to
conclude that the function gv has influential coordinates. Towards this, observe
that the functions f

(t)
w satisfy f

(t)
w (x + 1) = f

(t)
w (x) · ωt due to folding. Thus for

all t �= 0 and all w ∈ Y, Ex[f (t)
w (x)] = 0. Specifically for c �= 0,

U1(g(c)
v ) =

(
E
x
[g(c)

v (x)]
)2

=
(

E
w∈N(v)

E
η

E
x
[f (c)

w (x + η)]
)2

= 0

Hence it follows from Lemma 1 that there exists influential coordinates i with

Infi(g
(c)
v ) � 2−Cdq

(
γ

2qk

)2dq

= κ. In other words, L(v) is non-empty. Observe
that, due to convexity of influences,

Infi(g(c)
v ) = Infi( E

w∈N(v)
[g(c)

w ]) � E
w∈N(v)

Infπvw(i)([g(c)
w (x)]) .

If the coordinate i has influence at least κ on g
(c)
v , then the coordinate πvw(i) has

an influence of at least κ/2 for at least κ/2 fraction of neighbors w ∈ N(v). The
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edge πvw is satisfied if i is assigned to v, and πwv(i) is assigned to w. This event
happens with probability at least 1

|L(u)||L(v)| � (eκ ln 1/(1 − ε))2/2 for at least
κ/2 fraction of the neighbors w ∈ N(v). As there are at least (γ/2qk) fraction
of good vertices v, the assignment satisfies at least (γ/2qk)(eκ ln 1/(1 − ε))2κ/4
fraction of the unique games constraints. By choosing δ smaller than this fraction,
the proof is complete.

Since each test performed by the verifier involve k variables, by the standard
connection between hardness of MAX k-CSP and k-query PCP verifiers, we get
the following hardness result conditioned on the UGC.

Corollary 1. Assuming the Unique Games conjecture, for every prime q, it is
NP-hard to approximate MAX k-CSP over domain size q within a factor that is
greater than q2k/qk.

Using the reduction of [15], the above UG hardness result can be extended from
primes to arbitrary composite number q.

Corollary 2. [15] Assuming the Unique Games conjecture, for every positive
integer q, it is NP-hard to approximate MAX k-CSP over domain size q within
a factor that is greater than q2k(1 + o(1))/qk.

5 Gowers Norm and Multidimensional Arithmetic
Progressions

The following theorem forms a crucial ingredient in the soundness analysis in
the proof of Theorem 3.

Theorem 4. Let q � 2 be a prime and G be a Fq-vector space. Then for all
positive integers � � q and d, and all collections {fa : G → C}a∈[	]d of �d

functions satisfying |fa(x)| � 1 for every x ∈ G and a ∈ [�]d, the following
holds:

∣
∣∣
∣
∣
∣

E
x,y1,y2,...,yd

⎡

⎣
∏

a∈[	]d
fa(x + a1y1 + a2y2 + · · · + adyd)

⎤

⎦

∣
∣∣
∣
∣
∣
� min

a∈[	]d

(
Ud	(fa)

)1/2d�

(2)

The proof of the above theorem is via double induction on d, �. We first prove
the theorem for the one-dimensional case, i.e., d = 1 and every �, 1 � � < q
(Lemma 3). This will be done through induction on �. We will then prove the
result for arbitrary d by induction on d.

Remark 1. Green and Tao, in their work [8] on configurations in the primes,
isolate and define a property of a system of linear forms that ensures that the
degree t Gowers norm is sufficient to analyze patterns corresponding to those lin-
ear forms, and called this property complexity (see Definition 1.5 in [8]). Gowers
and Wolf [7] later coined the term Cauchy-Schwartz (CS) complexity to refer to
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this notion of complexity. For example, the CS-complexity of the q linear forms
x, x+y, x+2y, . . . , x+(q−1)y corresponding to a q-term arithmetic progression
equals q − 2, and the U q−1 norm suffices to analyze them. It can similarly be
shown that the CS-complexity of the d-dimensional arithmetic progression (with
qd linear forms as in (2)) is at most d(q − 1) − 1. In our application, we need a
”multi-function” version of these statements, since we have a different function
fa for each linear form x+ a · y. We therefore work out a self-contained proof of
Theorem 4 in this setting.

Towards proving Theorem 4, we will need the following lemma whose proof is
presented in the full version[6].

Lemma 3. Let q � 2 be prime and �, 1 � � � q, be an integer, and G be a
Fq-vector space. Let {hα : G → C}α∈[	] be a collection of � functions such that
|hα(x)| � 1 for all α ∈ [�] and x ∈ G. Then

∣
∣
∣
∣
∣∣

E
x,y1

⎡

⎣
∏

α∈[	]

hα(x + αy1)

⎤

⎦

∣
∣
∣
∣
∣∣
� min

α∈[	]

(
U 	(hα)

) 1
2� . (3)

Proof of Theorem 4: Fix an arbitrary �, 1 � � � q. We will prove the result
by induction on d. The base case d = 1 is the content of Lemma 3, so it remains
to consider the case d > 1.

By a change of variables, it suffices to upper bound the LHS of (2) by
(
Ud	(f(	−1)1)

)1/2d�

, and this is what we will prove. For α ∈ [�], and y2, y3, . . . ,

yd ∈ G, define the function

gy2,...,yd
α (x) =

∏

b=(b2,b3,...,bd)∈[	]d−1

f(α,b)(x + b2y2 + · · · + bdyd) . (4)

The LHS of (2), raised to the power 2d	, equals

∣
∣∣
∣∣ E

y2,...,yd

E
x,y1

[ ∏

α∈[�]

gy2,...,yd
α (x + αy1)

]∣
∣∣
∣∣

2d�

�

⎛

⎝ E
y2,...,yd

∣∣
∣
∣ E

x,y1

∏

α∈[�]

gy2,...,yd
α (x + αy1)

∣∣
∣
∣

2�
⎞

⎠

2(d−1)�

�
∣
∣∣
∣ E

y2,...,yd

U �(gy2,...,yd

�−1 )
∣
∣∣
∣

2(d−1)�

(using Lemma 3)

=
∣∣
∣∣ E

y2,...,yd

E
x,z1,...,z�

[ ∏

S⊆{1,2,...,�}
gy2,...,yd

�−1

(
x +

∑

i∈S

zi

)] ∣∣
∣∣

2(d−1)�

Defining the function

Hz1,...,z�

b (t) :=
∏

S⊆{1,2,...,	}
f(	−1,b)

(
t +

∑

i∈S

zi

)
(5)
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for every b ∈ [�]d−1 and z1, . . . , z	 ∈ G, the last expression equals
∣
∣
∣
∣ E

z1,...,z�

E
x,y2,...,yd

[ ∏

b=(b2,...,bd)∈[	]d−1

Hz1,...,z�

b

(
x + b2y2 + · · · + bdyd

)] ∣
∣
∣
∣

2(d−1)�

which is at most

E
z1,...,z�

⎡

⎣
∣
∣
∣∣ E

x,y2,...,yd

[ ∏

b=(b2,...,bd)∈[	]d−1

Hz1,...,z�

b

(
x + b2y2 + · · · + bdyd

)] ∣
∣
∣∣

2(d−1)�
⎤

⎦ .

(6)

By the induction hypothesis, (6) is at most E
z1,...,z�

[
U (d−1)	

(
Hz1,...,z�

(	−1)1

) ]
. Re-

calling the definition of Hz1,...,z�

b from (5), the above expectation equals

E
z1,...,z�

E
x,{z′

j
}

1�j�(d−1)�

⎡

⎢
⎣

∏

S⊆{1,2,...,�}
T ⊆{1,2,...,(d−1)�}

f(	−1)1

(
x +

∑

i∈S

zi +
∑

j∈T

z′j
)
⎤

⎥
⎦

which clearly equals Ud	(f(	−1)1).

6 Approximation Algorithm for MAX k-CSP

On the algorithmic side, we show the following result:

Theorem 5. There is a polynomial time algorithm that computes a 1
2πeq(q−1)6 ·

k
qk factor approximation for the MAX k-CSP problem over a domain of size q.

The algorithm proceeds along the lines of [3], by formulating MAX k-CSP as a
quadratic program, solving a SDP relaxation and rounding the resulting solution.
The variables in the quadratic program are constrained to the vertices of the q-
dimensional simplex. Hence, as a subroutine, we obtain an efficient procedure
to optimize positive definite quadratic forms with the variables forced to take
values on the q-dimensional simplex. Let Δq denote the q-dimensional simplex,
and let Vert(Δq) denote the vertices of the simplex. Formally,

Theorem 6. Let A = (a(k)(l)
ij ) be a positive definite matrix where k, l ∈ [q] and

1 � i, j � n. For the quadratic program Γ , there exists an efficient algorithm
that finds an assignment whose value is at least 2

π(q−1)4 of the optimum.

QuadraticProgram Γ

Maximize
∑

ij

a
(k)(l)
ij x

(k)
i · x(l)

j

Subject to xi = (x(0)
i , x

(1)
i , . . . , x

(q−1)
i ) ∈ Vert(Δq) 1 � i � n

The details of the algorithm are presented in the full version[6]. It has been
pointed out to us that a Ω(q2k/qk)-approximation for MAX k-CSP can be ob-
tained by reducing from the non-boolean to the boolean case [15].
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