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Abstract. Let H be a graph, and let CH(G) be the number of (sub-
graph isomorphic) copies of H contained in a graph G. We investigate
the fundamental problem of estimating CH(G). Previous results cover
only a few specific instances of this general problem, for example, the
case when H has degree at most one (monomer-dimer problem). In this
paper, we present the first general subcase of the subgraph isomorphism
counting problem which is almost always efficiently approximable. The
results rely on a new graph decomposition technique. Informally, the new
decomposition is a labeling of the vertices generating a sequence of bi-
partite graphs. The decomposition permits us to break the problem of
counting embeddings of large subgraphs into that of counting embed-
dings of small subgraphs. Using this, we present a simple randomized
algorithm for the counting problem. For all decomposable graphs H and
all graphs G, the algorithm is an unbiased estimator. Furthermore, for
all graphs H having a decomposition where each of the bipartite graphs
generated is small and almost all graphs G, the algorithm is a fully poly-
nomial randomized approximation scheme.

We show that the graph classes of H for which we obtain a fully
polynomial randomized approximation scheme for almost all G includes
graphs of degree at most two, bounded-degree forests, bounded-width
grid graphs, subdivision of bounded-degree graphs, and major subclasses
of outerplanar graphs, series-parallel graphs and planar graphs, whereas
unbounded-width grid graphs are excluded.

1 Introduction

Given a template graph H and a base graph G, we call an injection ϕ between
vertices of H and vertices of G an embedding of H into G if ϕ maps every edge
of H into an edge of G. In other words, ϕ is an isomorphism between H and
a subgraph (not necessarily induced) of G. Deciding whether such an injection
exists is known as the subgraph isomorphism problem. Subgraph isomorphism is
an important and general form of pattern matching. It generalizes many interest-
ing graph problems, including Clique, Hamiltonian Path, Maximum Matching,
and Shortest Path. This problem arises in application areas ranging from text
processing to physics and chemistry [1,2,3,4]. The general subgraph isomorphism
problem is NP-complete, but there are various special cases which are known to
be fixed-parameter tractable in the size of H [5].
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In this work, we consider the related fundamental problem of counting the
number of copies of a template graph in another graph. By a copy of H in
G we mean any, not necessarily induced subgraph of G, isomorphic to H . In
general the problem is #P-complete (introduced by Valiant [6]). The class #P
is defined as {f : ∃ a non-deterministic polynomial time Turing machine M such
that on input x, the computation tree of M has exactly f(x) accepting leaves}.
Problems complete for this class are presumably very difficult, especially since
Toda’s result [7] implies that a call to a #P-oracle suffices to solve any problem
in the polynomial hierarchy in polynomial time.

Fixed-parameter tractability of this counting problem has been well-studied
with negative results for exact counting [8] and positive results for some special
cases of approximate counting [9]. In this paper, we are interested in the more
general problem of counting copies of large subgraphs. Exact counting is pos-
sible for very few classes of non-trivial large subgraphs. Two key examples are
spanning trees in a graph, and perfect matchings in a planar graph [10]. A few
more problems such as counting perfect matchings in a bipartite graph (a.k.a.
(0-1) permanent) [11], counting all matchings in a graph [12], counting labeled
subgraphs of a given degree sequence in a bipartite graph [13], counting combi-
natorial quantities encoded by the Tutte polynomial in a dense graph [14], and
counting Hamilton cycles in dense graphs [15], can be done approximately. But
problems like counting perfect matchings in general graphs are still open.

Since most of the other interesting counting problems are hopelessly hard to
solve (in many cases even approximately) [16], we investigate whether there exists
a fully polynomial randomized approximation scheme (henceforth, abbreviated
as fpras) that works well for almost all graphs. The statement can be made
precise as: Let Gn be a graph chosen uniformly at random from the set of
all n-vertex graphs. We say that a predicate P holds for almost all graphs if
Pr[P(Gn) = true] → 1 as n → ∞ (probability over the choice of a random
graph). By fpras we mean a randomized algorithm that produces a result that is
correct to within a relative error of 1 ± ε with high probability (i.e., probability
tending to 1). The algorithm must run in time poly(n, ε−1), where n is the
input size. We call a problem almost always efficiently approximable if there is a
randomized polynomial time algorithm producing a result within a relative error
of 1 ± ε with high probability for almost all instances.

Previous attempts at solving these kinds of problems have not been very
fruitful. For example, even seemingly simple problems like counting cycles in
a random graph have remained open for a long time (also stated as an open
problem in the survey by Frieze and McDiarmid [17]). In this paper we present
new techniques that can not only handle simple graphs like cycles, but also major
subclasses of more complicated graph classes like outerplanar, series-parallel,
planar etc.

The theory of random graphs was initiated by Erdős and Rényi [18]. The most
commonly used models of random graphs are G(n, p) and G(n, m). Both models
specify a distribution on n-vertex graphs. In G(n, p) each of the

(
n
2

)
edges is

added to the graph independently with probability p and G(n, m) assigns equal
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probability to all graphs with exactly m edges. Unless explicitly stated otherwise,
the default model addressed in this paper is G(n, p).

There has been a lot of interest in using random graph models for analyzing
typical cases (beating the pessimism of worst-case analysis). Here, we mention
some of these results relevant to our counting problem (see the survey of Frieze
and McDiarmid [17] for more). One of the most well-studied problem is that
of counting perfect matchings in graphs. For this problem, Jerrum and Sinclair
[19] have presented a simulation of a Markov chain that almost always is an
fpras (extended to all bipartite graphs in [11]). Similar results using other ap-
proaches were obtained later in [20,21,22,23]. Another well-studied problem is
that of counting Hamiltonian cycles in random digraphs. For this problem, Frieze
and Suen [24] have obtained an fpras, and later Rasmussen [21] has presented
a simpler fpras. Afterwards, Frieze et al. [25] have obtained similar results in
random regular graphs. Randomized approximation schemes are also available
for counting the number of cliques in a random graph [26]. However, there are
no general results for counting copies of an arbitrary given graph.

1.1 Our Results and Techniques

In this paper, we remedy this situation by presenting the first general subcase of
the subgraph isomorphism counting problem which is almost always efficiently
approximable. For achieving this result we introduce a new graph decomposition
that we call an ordered bipartite decomposition. Informally, an ordered bipartite
decomposition is a labeling of vertices such that every edge is between vertices
with different labels and for every vertex all neighbors with a higher label have
identical labels. The labeling implicitly generates a sequence of bipartite graphs
and the crucial part is to ensure that each of the bipartite graphs is of small size.
The size of the largest bipartite graph defines the width of the decomposition.
The decomposition allows us to obtain general results for the counting problem
which could not be achieved using the previous methods. It also leads to a
relatively simple and elegant analysis. We will show that many graph classes
have such decomposition, while at the same time many simple small graphs (like
a triangle) may not possess a decomposition.

The actual algorithm itself is based on the following simple sampling idea
(known as importance sampling in statistics): let S = {x1, . . . , xz} be a large
set whose cardinality we want to estimate. Assume that we have a randomized
algorithm A that picks each element xi with non-zero known probability pi.
Then, the function Count (Fig. 1) produces an estimate for the cardinality of S.
The following proposition shows that the estimate is unbiased, i.e., E[Z] = |S|.

Proposition 1. The Function Count is an unbiased estimator for the cardinal-
ity of S.

Proof. It suffices to show that each element xi has an expected contribution of
1 towards |S|. This holds because on picking xi (an event that happens with
probability pi), we set Z to the inverse probability of this event happening.
Therefore, E[Z] =

∑
i pi · 1

pi
= |S|.
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Function Count: Assume pi > 0 for all i and
�z

i=1 pi ≤ 1
If some element xi is picked by A then output Z = 1

pi

Else output Z = 0

Fig. 1. Unbiased estimator for the cardinality of S

Similar schemes of counting have previously been used by Hammersley [27] and
Knuth [28] in other settings. Recently, this scheme has been used by Rasmussen
for approximating the permanent of a (0-1) matrix [21], and later for approxi-
mately counting cliques in a graph [26]. A variant of this scheme has also been
used by the authors to provide a near linear-time algorithm for counting perfect
matchings in random graphs [29,23]. This is however the first generalization of
this simple idea to the general problem of counting graph embeddings. Another
nice feature of such schemes is that they also seem to work well in practice [30].

Our randomized algorithm will try to embed H into G. If the algorithm suc-
ceeds in finding an embedding of H in G, it outputs the inverse probability of
finding this embedding. The interesting question here is not only to ensure that
each embedding of H in G has a positive probability of being found but also
to pick each embedding with approximately equal probability to obtain a low
variance. For this purpose, the algorithm considers an increasing subsequence of
subgraphs H̄1 ⊂ H̄2 ⊂ · · · ⊂ H̄� = H of H . The algorithm starts by randomly
picking an embedding of H̄1 in G, then randomly an embedding of H̄2 in G con-
taining the embedding of H̄1 and so on. It is for defining the increasing sequence
of subgraphs that our decomposition is useful.

The algorithm is always an unbiased estimator for CH(G). The decomposition
provides a natural sufficient condition for the class of algorithms based on the
principle of the function Count to be an unbiased estimator. Additionally, if the
base graph is a random graph from G(n, p) with constant p and if the template
graph has an ordered bipartite decomposition of bounded width, we show that
the algorithm is an fpras. The interesting case of the result is when p = 1/2.
Since the G(n, 1/2) model assigns a uniform distribution over all graphs of n given
vertices, an fpras (when the base graph is from G(n, 1/2)) can be interpreted as
an fpras for almost all base graphs. This result is quite powerful because now to
prove that the number of copies of a template graph can be well-approximated
for most graphs G, one just needs to show that the template graph has an ordered
bipartite decomposition of bounded width.

The later half of the paper is devoted to showing that a lot of interesting graph
classes naturally have an ordered bipartite decomposition of bounded width. Let
Ck denote a cycle of length k. In this extended abstract, we show that graphs of
degree at most two, bounded-degree forests, bounded-width grid (lattice) graphs,
subdivision of bounded-degree graphs, bounded-degree outerplanar graphs of
girth at least four, and bounded-degree [C3, C5]-free series-parallel graphs, planar
graphs of girth at least 16 have an ordered bipartite decomposition of bounded
width. Using this we obtain the following result (proved in Theorems 3 and 4).
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Theorem 1 (Main Result). Let H be a simple graph where each connected
component is one of the following: graph of degree at most two, bounded-degree
tree, bounded-width grid, subdivision of a bounded-degree graph, bounded-degree
C3-free outerplanar graph, bounded-degree [C3, C5]-free series-parallel graph, or
planar graphs of girth at least 16. Then, for almost all graphs G, there exists an
fpras for estimating the number of copies of H in G.

Even when restricted to graphs of degree at most two, this theorem recovers
most of the older results. It also provides simpler, unified proofs for (some of)
the results in [20,21,22,24]. For example, to count matchings of cardinality k one
could use a template consisting of k disjoint edges. Similarly, to count all cycles
of length k the template is a cycle of that length. By varying k and boosting the
success probability, the algorithm can easily be extended to count all matchings
or all cycles. This provides the first fpras for counting all cycles in a random
graph (solving an open problem of Frieze and McDiarmid [17]). We omit further
discussion of this problem.

For template graphs coming from the other classes, our result supplies the
first efficient randomized approximation scheme for counting copies of them in
almost all base graphs. For example, it was not known earlier how to even obtain
an fpras for counting the number of copies of a given bounded-degree tree in a
random graph. For the simpler graph classes the decomposition follows quite
straightforwardly, but for graph classes such as subdivision, outerplanar, series-
parallel, and planar, constructing the decomposition requires several new ideas.
Even though our techniques can be extended to other interesting graph classes,
we conclude by showing that our techniques can’t be used to count the copies
of an unbounded-width grid graph in a random graph.

2 Definitions and Notation

Let Q be some function from the set of input strings Σ∗ to natural numbers.
A fully polynomial randomized approximation scheme for Q is a randomized
algorithm that takes input x ∈ Σ∗ and an accuracy parameter ε ∈ (0, 1) and
outputs a number Z (a random variable depending on the coin tosses of the
algorithm) such that,

Pr[(1 − ε)Q(x) ≤ Z ≤ (1 + ε)Q(x)] ≥ 3/4,

and runs in time polynomial in |x|, ε−1. The success probability can be boosted
to 1 − δ by running the algorithm O(log δ−1) times and taking the median [31].

Automorphisms are edge respecting permutations on the set of vertices, and
the set of automorphisms form a group under composition. For a graph H , we
use aut(H) to denote the size of its automorphism group. For a bounded-degree
graph H , aut(H) can be evaluated in polynomial time [32]. Most of the other
graph-theoretic concepts which we use, such as planarity are covered in standard
text books (see, e.g., [33]).

Throughout this paper, we use G to denote a base random graph on n vertices.
The graph H is the template whose copies we want to count in G. We can assume
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without loss of generality that the graph H also contains n vertices, otherwise
we just add isolated vertices to H . The number of isomorphic images remains
unaffected. Let 	 = 	(H) denote the maximum degree of H .

For a graph F , we use VF and EF to denote its vertex set and edge set,
respectively. Furthermore, we use vF = |VF | and eF = |EF | for the number of
vertices and edges. For a subset S of vertices of F , NF (S) = {v ∈ VF −S : ∃u ∈
S such that (u, v) ∈ EF } denotes the neighborhood of S in F . F [S] denotes the
subgraph of F induced by S. We use CH(G) to denote the number of copies
of H in G. Let LH(G) = CH(G) · aut(H) denote the number of embeddings
(or labeled copies) of H in G. For a random graph G, we will be interested in
quantities E[CH(G)2] and E[CH(G)]2.

Our algorithm is randomized. The output of the algorithm is denoted by Z,
which is an unbiased estimator of CH(G), i.e., CH(G) = EA[Z] (expectation over
the coin tosses of the algorithm). As the output of our algorithm depends on
both the input graph, and the coin tosses of the algorithm, we use terms such as
EG [EA[Z]]. Here, the inner expectation is over the coin-tosses of the algorithm,
and the outer expectation is over the graphs of G(n, p). Note that EA[Z] is a
random variable defined on the set of graphs.

Because of space constraints proofs are omitted from the following presenta-
tion; all omitted proofs can be found in [34].

3 Approximation Scheme for Counting Copies

We define a new graph decomposition technique which is used for embedding
the template graph into the base graph. As stated earlier our algorithm for em-
bedding works in stages and our notion of decomposition captures this idea.

Ordered Bipartite Decomposition. An ordered bipartite decomposition of
a graph H = (VH , EH) is a sequence V1, . . . , V� of subsets of VH such that:

① V1, . . . , V� form a partition of VH .
② Each of the Vi (for i ∈ [�] = {1, . . . , �}) is an independent set in H .
③ ∀i ∃j such that v ∈ Vi implies NH(v) ⊆

(⋃
k<i Vk

)
∪ Vj .

V i−1

�
j<i Uj

= Ui

= Vi

Property ③ just states that if a neighbor of a vertex
v ∈ Vi is in some Vj (j > i), then all other neighbors of
v which are not in V1 ∪ · · · ∪ Vi−1, are in Vj . Property
③ will be used in the analysis for random graphs to
guarantee that in every stage, the base graph used for
embedding is still random with the original edge prob-
ability. Let V i =

⋃
j≤i Vj . Define Ui = NH(Vi) ∩ V i−1.

Ui is the set of neighbors of Vi in V1 ∪· · ·∪Vi−1. Define
Hi to be the subgraph of H induced by Ui∪Vi. Let EHi
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denote the edge set of graph Hi. The width of an ordered bipartite decomposition
is the size (number of edges) of the largest Hi.

The Ui’s will play an important role in our analysis. Note that given a Uj, its
corresponding Vj has the property that Vj ⊇ NH(Uj) − V j−1. Hereafter, when
the context is clear, we just use decomposition to denote an ordered bipartite
decomposition. In general, the decomposition of a graph needn’t be unique. The
following lemma describes some important consequences of the decomposition.

Lemma 1. Let V1, . . . , V� be a decomposition of a graph H = (VH , EH). Then,
the following assertions are true. (i) Each of the Ui is an independent set in H
(Hi is a bipartite graph). (ii) The edge set EH is partitioned into EH1 , . . . , EH�

.

Every graph has a trivial decomposition satisfying properties ① and ②, but the
situation changes if we add property ③ (C3 is the simplest graph which has no de-
composition). Every bipartite graph though has a simple decomposition, but not
necessarily of bounded width. Note that the bipartiteness of H is a sufficient con-
dition for it to have an ordered bipartite decomposition, but not a necessary one.

We will primarily be interested in cases where the decomposition is of bounded
width. This can only happen if 	 is a constant. In general, if 	 grows as a
function of n, no decomposition could possibly have a bounded width (	/2 is
always a trivial lower-bound for the width). For us the parameter � plays no role.

Algorithm Embeddings(G,H)

Initialize X ← 1, Mark(0) ← ∅, ϕ(∅) ← ∅
let V1, . . . , V� denote an ordered bipartite decomposition of H
for i ← 1 to � do

let Gf ← G[VG − Mark(i − 1) ∪ ϕ(Ui)]
compute Xi (the number of embeddings of Hi in Gf with Ui mapped by ϕ)
pick an embedding u.a.r. (if one exists) and use it to update ϕ
if no embedding exists, then set Z to 0 and terminate
X ← X · Xi

Mark(i) ← Mark(i − 1) ∪ ϕ(Vi)
Z ← X/aut(H)
output Z

The input to the algorithm Embeddings is the template graph H together
with its decomposition and the base graph G. The algorithm tries to construct a
bijection ϕ between the vertices of H and G. Vi represents the set of vertices of
H which get embedded into G during the ith-stage, and the already constructed
mapping of Ui is used to achieve this. For a subset of vertices S ⊆ VH , ϕ(S)
denotes the image of S under ϕ. If X > 0, then the function ϕ represents an
embedding of H in G (consequence of properties ① and ②), and the output X
represents the inverse probability of this event happening. Since every embedding
has a positive probability of being found, X is an unbiased estimator for the
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number of embeddings of H in G (Proposition 1), and Z is an unbiased estimator
for the number of copies of H in G.

The actual procedure for computing the Xi’s is not very relevant for our
results, but note that the Xi’s can be computed in polynomial time if H has a
decomposition of bounded width. In this case the algorithm Embeddings runs
in polynomial time.

3.1 FPRAS for Counting in Random Graphs

Since the algorithm Embeddings is an unbiased estimator, use of Chebyshev’s
inequality implies that repeating the algorithm O(ε−2

EA[Z2]/EA[Z]2) times and
taking the mean of the outputs results in a randomized approximation scheme
for estimating CH(G). From here on, we abbreviate CH(G) as C. The ratio
EA[Z2]/EA[Z]2 is commonly referred to as the critical ratio.

We now concentrate on showing that for random graphs the algorithm is
an fpras. A few of the technical details of our proof are somewhat similar to
previous applications of this sampling idea, such as that for counting perfect
matchings [21,23]. The simpler techniques in these previous results, however,
are limited to handling one edge per stage (therefore, working only when H
is a matching). Our algorithm embeds a small sized subgraph at every stage.
The key for obtaining an fpras is to guarantee that the factor contributed to
the critical ratio at every stage is very small (which is now involved because it
is no longer a simple ratio of binomial moments as in [21,23]). Adding this to
the fact that we can do a stage-by-stage analysis of the critical ratio (thanks to
the decomposition property which ensures the graph stays essentially random),
provides the ingredients for the fpras.

The analysis will be done for a worst-case graph H under the assumption that
the sizes of the bipartite graphs Hi’s are bounded by a universal constant w, and
a random graph G. Here, instead of investigating the critical ratio, we investigate
the much simpler ratio EG [EA[Z2]]/EG [EA[Z]]2, which we call the critical ratio
of averages. We use the second moment method to show that these two ratios
are closely related. For this purpose, we take a detour through the G(n, m)
model. The ratio E[C2]/E[C]2 plays an important role here and for bounding
it we use a recent result of Riordan [35]. The result (stated below) studies the
related question of when a random graph G is likely to have a spanning subgraph
isomorphic to H .

In the following, N is used to denote
(
n
2

)
. We say an event holds with high

probability (w.h.p.), if it holds with probability tending to 1 as n → ∞.

Theorem 2. (Riordan [35]) Let H be a graph on n vertices. Let eH = αN =
α(n)N , and let p = p(n) ∈ (0, 1) with pN an integer. Suppose that the following
conditions hold: αN ≥ n, and pN, (1 − p)

√
n, npγ/	4 → ∞, where

γ = γ(H) = max
3≤s≤n

{max{eF : F ⊆ H, vF = s}/(s − 2)}.

Then, w.h.p. a random graph G ∈ G(n, pN) has a spanning subgraph isomorphic
to H.
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The quantity γ is closely related to twice the maximum average degree of a
subgraph of H . The idea behind the proof is to use Markov’s inequality to
bound Pr[C = 0] in terms of E[C] and V ar[C]. The main thrust lies in proving
that E[C2]/E[C]2 = 1 + o(1). Now by just following Riordan’s proof, we obtain
the following result.

Proposition 2. Let H be a graph on n vertices. Let eH = αN = α(n)N , and
let p = p(n) ∈ (0, 1) with pN an integer. Let ν = max{2, γ}. Suppose that the
following conditions hold: pN, npν/	4 → ∞ and α3Np−2 → 0. Then, w.h.p.
a random graph G ∈ G(n, pN) satisfies E[C2]/E[C]2 = 1 + o(1). In particular,
if H is a bounded-degree graph on n vertices. Then, w.h.p. a random graph
G ∈ G(n, Ω(n2)) satisfies E[C2]/E[C]2 = 1 + o(1).

Note that some of the conditions in Proposition 2 are rephrased from Theo-
rem 2. These are the conditions in the proof of Theorem 2 that are needed for
bounding E[C2]/E[C]2. We will be interested in bounded-degree graphs H . For
a bounded-degree graph H , both 	 and γ are constants. Additionally, we will
be interested in dense random graphs (where the conditions of Proposition 2
are satisfied). Interpreting Proposition 2 in the G(n, p) model by using known
results for asymptotic equivalence between G(n, m) and G(n, p) models (e.g., see
Proposition 1.12 of [36]) yields

Lemma 2. Let H be a bounded-degree graph on n vertices. Let ω = ω(n) be
any function tending to ∞ as n → ∞, and let p be a constant. Then, w.h.p. a
random graph G ∈ G(n, p) satisfies C ≥ E[C]/ω.

Remark: Since C is fairly tightly concentrated around its mean, a rudimentary
approximation for C is just E[C] = n!peH

aut(H) (as vH = n). However, this naive
approach doesn’t produce for any ε > 0, an (1 ± ε)-approximation for C (see,
e.g., [21,20,24,26]).

Using the above result we investigate the performance of algorithm Embed-
dings when G is a random graph. In this extended abstract, we don’t try to
optimize the order of the polynomial arising in the running time analysis. Even
though for simple template instances such as matchings or cycles, one could
easily determine the exact order. The proof idea is to break the critical ratio
analysis of the large subgraph into a more manageable critical ratio analysis of
small subgraphs.

Theorem 3 (Main Theorem). Let H be a n-vertex graph with a decomposi-
tion of width w (a constant). Let Z be the output of algorithm Embeddings, and
let p be a constant. Then, w.h.p. for a random graph G ∈ G(n, p) the critical
ratio EA[Z2]/EA[Z]2 is polynomially bounded in n.

Summarizing: if H has a decomposition of bounded width w, then for almost all
graphs G, running the algorithm Embeddings poly(n)ε−2 times and taking the
mean, results in an (1±ε)-approximation for C. Here, poly(n) is a polynomial in
n depending on w and p. Since each run of the algorithm also takes polynomial
time (as H has bounded width), we get an fpras.
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s1 s1 s1

Fig. 2. Decomposition of a cycle, tree, and grid. The graphs are actually undirected.
The arrows just connect the vertices of Ui to their neighbors in Vi. All out-neighbors
of a vertex are in the same Vi, and all in-neighbors of a vertex are in the same Ui.

4 Graphs with Ordered Bipartite Decomposition

We divide this section into subsections based on the increasing complexity of
the graph classes. Some of the later graph classes include the ones that will be
covered earlier. We will prove the following result in this section.

Theorem 4. Let H be a graph where each connected component is one of the fol-
lowing: graph of degree at most two, tree, bounded-width grid, subdivision graph,
C3-free outerplanar graph, [C3, C5]-free series-parallel graph, or planar graph of
girth at least 16. Then, there exists an ordered bipartite decomposition of H. Fur-
thermore, if H has bounded degree, then the decomposition has bounded width.

Decompositions of subdivision graphs, [C3, C5]-free series-parallel graphs are
omitted in this extended abstract (see [34]). From now onwards, we concen-
trate on connected components of the graph H . If H is disconnected a de-
composition is obtained by combining the decomposition of all the connected
components (in any order). We will abuse notation and let H stand for both
the graph and a connected component in it. 	 is the maximum degree in
H . For constructing the decomposition, the following definitions are useful,
U i =

⋃
j≤i Uj , V

i =
⋃

j≤i Vj , and Di = V i − U i.

4.1 Some Simple Graph Classes

We start off by considering simple graph classes such as graphs of degree at most
two (paths and cycles), trees, and grid graphs. Fig. 2 illustrates some examples.

– Paths: Let H represent a path (s1, . . . , sk+1) of length k = k(n). Then the
decomposition is, Vi = {si} for 1 ≤ i ≤ k + 1.

– Cycles: First consider the cycles of length four or greater. Let s1, . . . , sk be
the vertices of a cycle H of length k = k(n) enumerated in cyclic order. In
the decomposition, V1 = {s1}, V2 = {s2, sk}, and Vi = {si} for 3 ≤ i ≤ k−1.
Cycles of length three (triangles) don’t have a decomposition, but can easily
be handled separately (see [34]). Actually, if H = H1 ∪ H2, where graphs
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H1 and H2 are disjoint, H1 has a decomposition of bounded width, and H2
consists of a vertex disjoint union of triangles, then again, there exists an
fpras for estimating C. This also completes the claim for graphs of degree at
most two in Theorem 1.

– Trees: For a tree H , V1 = {s1}, where s1 is any vertex in H . For i ≥ 2, let
Ui be any vertex from Di−1, then Vi is the set of neighbors of this vertex
which are not in V i−1. Intuitively, Vi is the set of children of the vertex in
Ui, if one thinks of H as a tree rooted at s1. The width of the decomposition
is at most 	.

– Grids: Let w0 be the width of the grid graph H . Set V1 = {s1}, where s1 is
any corner vertex in H . Later on, Vi is the set of all vertices which are at a
lattice (Manhattan) distance i from s1. Since for each i, there are at most w0
vertices at distance i from from s1, the sizes of the Vi’s are bounded if w0 is
bounded. Consequently, the width of the decomposition is bounded if w0 is
bounded. This construction also extends to higher dimensional grid graphs.

4.2 Outerplanar Graphs

A graph is outerplanar if it has a planar embedding such that all vertices are on
the same face. Let H be a C3-free outerplanar graph. The idea behind the de-
composition is that vertices in Ui partitions the outer face into smaller intervals,
each of which can then be handled separately.

Before we formally describe the decomposition, we need some terminology. Let
s1, . . . , sk be the vertices around the outer face with k = k(n) (ordering defined
by the outerplanar embedding). For symmetry, we add two dummy vertices
s0, sk+1 without neighbors and define U1 = {s0, sk+1}, and V1 = {s1} (the
dummy vertices play no role and can be removed before running the algorithm
Embeddings). For i ≥ 1, two vertices sj0 , sj1 with j0 < j1, define a stage i
interval if sj0 , sj1 ∈ U i, but for j0 < l < j1, sl /∈ U i. If the interval is defined it
is the sequence of vertices between sj0 , sj1 (including the endpoints). Let ai be
a median vertex of I ∩ V i (median based on the ordering), where I is a stage
i interval. Define Ui+1 as the smallest subset of V i containing {ai} and also
NH(NH(Ui+1) − V i) ∩ V i. Define Vi+1 as NH(Ui+1) − V i. We now argue that
this is indeed a decomposition. Consider a stage i interval I, with sj0 , sj1 as the
defining end points, and ai as the median of I ∩ V i.

Lemma 3. For every i ≥ 1, there is a stage i interval I with Ui+1 ⊆ I and
|Ui+1| ≤ |I ∩ V i| ≤ 2	.

The properties ① and ③ of the decomposition are guaranteed by the construction.
Lemma 3 implies that the width of the decomposition is most 2	2. Property ②

holds because there are no triangles in H .

4.3 Planar Graphs

Define a thread as an induced path in H whose vertices are all of degree 2 in H .
A k-thread is a thread with k vertices. Let H be a planar graph of girth at least
16. We first prove a structural result on planar graphs.
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Lemma 4. Let H be a planar graph of minimum degree 2 and girth at least 16,
then H always contains a 3-thread.

In order to define a decomposition, we define a 3-thread partition X1, . . . , Xc of
a planar graph H as a partition of VH such that each Xi satisfies

Xi =
{

{ai}, where ai is a degree 0 or 1 vertex in H [VH −
⋃

j<i Xj ], or
{ai, bi, ci}, where ai, bi, ci form a 3-thread in H [VH −

⋃
j<i Xj ].

Remember that for a subset of vertices S of H , H [S] denotes the subgraph
of H induced by S. By Lemma 4, every planar graph with girth at least 16
has a 3-thread partition. As earlier, we say, a vertex is selected if we add it
to some Vk. Set i = 1. Using the 3-thread partition (which can be constructed
using Lemma 4), a decomposition of a planar graph of girth at least 16 can be
constructed by repeating the following procedure until all vertices are selected.

i. Find the largest index l such that Xl contains a vertex zl which has not yet
been selected, but is adjacent to an already selected vertex.

ii. Define Ui = NH(zl) ∩ Di−1 and Vi = NH(Ui) − V i−1.
iii. Increment i.

Lemma 5. Let H be a planar graph of girth at least 16. Then the above proce-
dure finds a decomposition of H of width at most 2	.

5 Negative Result for Ordered Bipartite Decomposition

As mentioned earlier only graphs of bounded degree have a chance of having
a decomposition of bounded width. So a natural question to ask is whether all
bounded-degree graphs with a decomposition have one of bounded width. In this
section, we answer this question negatively by showing that every unbounded-
width grid graph fails to satisfy this condition. For simplicity, we will only con-
sider

√
n × √

n grid graphs, but our proof extend to other cases as well.
Let H = (VH , EH) be a

√
n ×

√
n grid graph with VH = {(i, j) : 0 ≤ i, j ≤√

n−1} and EH = {((i, j), (i′, j′)) : i = i′ and |j−j′| = 1 or |i−i′| = 1 and j =
j′}. We now show that any decomposition of H has a width of at least

√
n. Let

V1, . . . , V� be any decomposition of H . Consider any 2×2 square of H defined by
vertices a, b, c, d. The two neighbors a, b of the vertex c with the smallest label
l always have the same label l′ > l. The fourth vertex d has any label l′′ with
l′′ ≥ l and l′′ �= l′. We define a new graph H ′ = (VH , EH′ ) on the same set of
vertices by putting the edge (a, b) into EH′ . Note that all vertices in a connected
component have the same label thus are chosen together.

Let HD be a class of graphs on vertex set VH with exactly one diagonal in
every 2 × 2 square (and no other edges). That is any graph HD = (VH , ED)
from HD has for every (i, j) with 0 ≤ i, j ≤

√
n − 2 exactly one of the edges

((i, j), (i + 1, j + 1)), ((i, j + 1), (i + 1, j)) in ED and no other edges are in ED.
Note that H ′ ∈ HD. The following theorem shows that any graph HD ∈ HD has
the property that there is a connected component touching top and bottom or
left and right, which in turn implies the desired result.
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Theorem 5. There exists a connected component of HD that contains at least
one vertex from every row or at least one vertex from every column. Therefore,
there exists no decomposition of a

√
n ×

√
n-grid graph H of width

√
n − 1.
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