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Abstract. We consider testing directed graphs for being Eulerian in the orienta-
tion model introduced in [15]. Despite the local nature of the property of being
Eulerian, it turns out to be significantly harder for testing than other properties
studied in the orientation model. We show a non-constant lower bound on the
query complexity of 2-sided tests and a linear lower bound on the query complex-
ity of 1-sided tests for this property. On the positive side, we give several 1-sided
and 2-sided tests, including a sub-linear query complexity 2-sided test for general
graphs. For special classes of graphs, including bounded-degree graphs and ex-
pander graphs, we provide improved results. In particular, we give a 2-sided test
with constant query complexity for dense graphs, as well as for expander graphs
with a constant expansion parameter.

1 Introduction

Property testing deals with the following relaxation of decision problems: Given a prop-
erty P , an input structure S and ε > 0, distinguish between the case where S satisfies
P and the case where S is ε-far from satisfying P . Roughly speaking, an input S is
said to be ε-far from satisfying a property P if more than an ε-fraction of its values
must be modified in order to make it satisfy the property. Algorithms which distinguish
with high probability between the two cases are called property testers or simply testers
for P . Furthermore, a tester for P is said to be 1-sided if it never rejects an input that
satisfies P . Otherwise, the tester is called 2-sided. We say that a tester is adaptive if
some of the choices of the locations for which the input is queried may depend on
the returned values (answers) of previous queries. Otherwise, the tester is called non-
adaptive. Property testing normally deals with problems involving a very large input or
a costly retrieval procedure. Thus, the number of queries of input values, rather than the
computation time, is considered to be the most expensive resource.
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Property testing has been a very active field of research since it was initiated by
Blum, Luby and Rubinfeld [5]. The general definition of property testing was formu-
lated by Rubinfeld and Sudan [25], who were interested mainly in testing algebraic
properties. The study of property testing for combinatorial objects, and mainly for la-
belled graphs, began in the seminal paper of Goldreich, Goldwasser and Ron [12]. They
introduced the dense graph model, where the graph is represented by an adjacency ma-
trix, and the distance function is computed accordingly. For comprehensive surveys on
property testing see [24,8].

The dense graph model is in a sense too lenient, since for n-vertex graphs, the dis-
tance function allows adding and removing o(n2) edges, regardless of the number of
actual edges in the graph. Thus, many interesting properties, such as connectivity in
undirected or directed graphs, are trivially testable in this model, as all the graphs are
close to satisfying the property. In recent years, researchers have studied several alter-
native models for graph testing, including the bounded-degree graph model of [13], in
which a sparse representation of sparse graphs is considered, and the general density
model (also called the mixed model) of [21] and [17]. In these models, the distance
function allows edge insertions and deletions whose number is at most a fraction of the
number of the edges in the original graph.

Property testing of directed graphs has also been studied in the context of the above
models [1,3]. Here we continue the study of testing properties of directed graphs in the
orientation model, which started in [15] and followed in [14] and [7]. In this model, an
underlying undirected graph G = (V, E) is given in advance, and the actual input is an

orientation
−→
G of G, in which every edge in E has a direction. Our testers may access

the input using edge queries. That is, every query concerns an edge e ∈ E, and the
answer to the query is the direction of e in

−→
G . An orientation

−→
G of G is called ε-close

to a property P if it can be made to satisfy P by inverting at most an ε-fraction of the
edges of G, and otherwise

−→
G is said to be ε-far from P .

Note that the distance function in the orientation model naturally depends on the
size of the underlying graph and is independent of representation details. Moreover,
the testing algorithm may strongly depend on the structure of the underlying graph.
The model is strict in that the distance function allows only edge inversions, but no
edge insertions or deletions. On the other hand, we assume that our algorithms have a
full knowledge of the underlying graph, whose size is roughly the same as the input
size. Viewing the underlying graph as a parameter that the testing algorithm receives in
advance, we say that the orientation model is an example of a massively parameterized
model. Other examples of massively parameterized models appear in [20], where the
property is represented by a known bounded-width branching program, in [9], where
the input is a vertex-coloring of a known graph, and in other works.

In this paper we consider the property of being Eulerian, which was presented in [14]
as one of the natural orientation properties whose query complexity was still unknown.
A directed graph

−→
G is called Eulerian if for every vertex v in the graph, the in-degree of v

is equal to its out-degree. An undirected graph G has an Eulerian orientation
−→
G if and

only if all the degrees of G are even. Such an undirected graph is called Eulerian also.
Throughout the paper we assume that our underlying undirected graph G is Eulerian.
We note that it is common to require an Eulerian graph to be connected. However, we
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may ignore this requirement, as all our algorithms and proofs work equally well whether
G is connected or not. Moreover, as G is given as a parameter, its connectivity can be
tested in a preprocessing stage.

Eulerian graphs and Eulerian orientations have attracted researchers since the dawn
of graph theory in 1736, when Leonard Euler published his solution for the famous
“Königsberg bridge problem”. Throughout the years, Eulerian graphs have been the
subject of extensive research (e.g. [23,18,26,19,6,2]; see [10,11] for an extensive sur-
vey). Aside from their appealing theoretic characteristics, Eulerian graphs have been
studied in the context of networking [16] and genetics [22].

Testing for being Eulerian in the orientation model is equivalent to the following
problem. We have a known network (e.g. a communication network or a transportation
system) where every edge can transport a unit of “flow” in both directions. Our goal is
to know whether the network is “balanced”, or far from being balanced, where being
balanced means that the number of flows entering every node in the network is equal to
the number of flows exiting it. To examine the network, we detect the flow direction in
selected individual edges, and this is deemed to be the expensive operation.

The main difficulty in testing orientations for being Eulerian arises from the fact that
an orientation might have a small number of unbalanced vertices, and each of them with
a small imbalance, and yet be far from being Eulerian. This is since trying to balance
an unbalanced vertex by inverting some of its incident edges may violate the balance
of its balanced neighbors. Thus, we must continue to invert edges along a directed path
between a vertex with a positive imbalance and a vertex with a negative imbalance.
We call such a path a correction path. A main component of our work is giving upper
bounds for the length of the correction paths. We note that Babai [2] showed that the
ratio between the diameter of digraphs and the diameter of their underlying undirected
graphs is Ω(n1/3) for an infinite family of Eulerian graphs.

Our upper bounds are based on three “generic” tests, one 1-sided test and two 2-
sided tests. Instead of receiving ε as a parameter, the generic tests receive a parameter
p, which stands for the number of required correction paths in an orientation that is far
from being Eulerian. We hence call these tests p-tests. We later derive ε-tests from the
p-tests by proving two lower bounds for p. The first one gives an efficient test for dense
graphs and the second one gives an efficient test for expander graphs. Finally, we show
how to use variations of the expander tests for obtaining a 1-sided test and a 2-sided test
for general graphs, using a decomposition (“chopping”) procedure into subgraphs that
are roughly expanders. The 2-sided test that we obtain this way has a sub-linear query
complexity for every graph. Unfortunately, our chopping procedure is adaptive and has
an exponential computational time in |E|. All of our other algorithms are non-adaptive
and their computational complexity is of the same order as their query complexity.

On the negative side, we provide several lower bounds. We show that any 1-sided test
for being Eulerian must use Ω(m) queries for some graphs. For bounded-degree graphs,
we use the toroidal grid to prove non-constant 1-sided and 2-sided lower bounds. These
bounds are noteworthy, as bounded-degree graphs have a constant size witness for not
being Eulerian, namely the edges incident with one unbalanced vertex. In contrast, the
st-connectivity property, whose witness must include a cut in the graph, is testable with
a constant number of queries in the orientation model [7]. In other testing models there
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Table 1. Upper bounds

Result 1-sided tests 2-sided tests

Graphs with large d O
�

Δm
ε2d2

�
min

� �O �
m3

ε6d6

�
, �O �√

Δm
ε2d2

��
α-expanders
(Section 4)

O
�

Δ log(1/ε)
αε

�
min

��O	�
log(1/ε)

αε

�3



, �O �√
Δ log(1/ε)

αε

��
General graphs

(Section 6)
O
�

(Δm log m)2/3

ε4/3

�
min

� �O �
Δ1/3m2/3

ε4/3

�
, �O �

Δ3/16m3/4

ε5/4

��

Table 2. Lower bounds

Result 1-sided tests 2-sided tests

General graphs (Section 2) Ω(m) —

Bounded-degree graphs, non-adaptive tests Ω(m1/4) Ω
��

log m
log log m

�
Bounded-degree graphs, adaptive tests Ω(log m) Ω(log log m)

are known super-constant lower bounds also for properties which have constant-size
witness, e.g., [4] prove a linear lower bound for testing whether a truth assignment
satisfies a known 3CNF formula. However, most of these bounds are for properties that
have stronger expressive power than that of being Eulerian.

Tables 1 and 2 summarize our upper and lower bounds, respectively. Here and through-
out the paper, we set n = |V | and m = |E|, let Δ be the maximum vertex-degree in G,
and set d

def= m/n. The tilde notation hides polylogarithmic factors. Due to space limita-
tions, our upper bounds for dense graphs and lower bounds for bounded-degree graphs
are omitted from this version, and most of the proofs are given as sketches.

2 Preliminaries and the 1-Sided Lower Bound

In this section we introduce basic definitions, notations and lemmas to be used in the
sequel. Throughout the paper, we assume a fixed and known underlying graph G =
(V, E) which is Eulerian, that is, for every v ∈ V , the degree deg(v) of v is even. Given

an orientation
−→
G = (V,

−→
E ) and a vertex v ∈ V , let indeg−→

G
(v) denote the in-degree

of v with respect to
−→
G and let outdeg−→

G
(v) denote the out-degree of v with respect to

−→
G . We define the imbalance of v in

−→
G as ib−→

G
(v) def= outdeg−→

G
(v) − indeg−→

G
(v). In the

following, we sometimes omit the subscript
−→
G whenever it is obvious from the context.

We say that a vertex v ∈ V is a spring in
−→
G if ib−→

G
(v) > 0. We say that v is a drain in

−→
G if ib−→

G
(v) < 0. If ib−→

G
(v) = 0 then we say that v is balanced in

−→
G . We say that

−→
G is

Eulerian if all its vertices are balanced. Since all the vertices of G are of even degree,
there always exists some Eulerian orientation

−→
G of G.

Given a set U ⊆ V , let:
E(U) def= {{u, v} ∈ E | u, v ∈ U} and

−→
E (U) def= {(u, v) ∈ −→

E | u, v ∈ U},

∂U
def= {{u, v} ∈ E | u ∈ U, v /∈ U} and

−→
∂ U

def= {(u, v) ∈ −→
E | u ∈ U, v /∈ U}.
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Given two disjoint sets U, W ⊆ V , let E(U, W ) def= {{u, w} ∈ E | u ∈ U, w ∈ W}
and

−→
E (U, W ) def= {(u, w) ∈ −→

E | u ∈ U, w ∈ W}.

Lemma 1. Suppose that
−→
H is a knowledge graph that does not contain invalid cuts.

Then
−→
H is extensible to an Eulerian orientation

−→
G = (V,

−→
EG) of G. That is,

−→
EH ⊆ −→

EG.

Consequently, a witness that an orientation
−→
G is not Eulerian must contain at least half

of the edges of some invalid cut with respect to
−→
G .

Proof sketch. We extend the knowledge graph to an orientation of the entire graph by
orienting the edges one by one. In each step we prove using counting arguments that if
a certain orientation of an edge would invalidate one of the cuts, then orienting it in the
other direction would not invalidate any of the other cuts. ��

Theorem 2. There exists an infinite family of graphs for which every 1-sided test for
being Eulerian must use Ω(m) queries.

Proof. For every even n, let Gn
def= K2,n−2, namely, the graph with a set of vertices

V = {v1, . . . , vn} and a set of edges E = {{vi, vj} | i ∈ {1, 2}, j ∈ {3, . . . , n}}.

Clearly, Gn is Eulerian and n = Ω(m). Consider the orientation
−→
Gn of Gn in which all

the edges incident with v1 are outgoing and all the edges incident with v2 are incoming.
Clearly,

−→
Gn is 1

2 -far from being Eulerian. According to Lemma 1, every 1-sided test
must query at least half of the edges in some unbalanced cut (because otherwise it would
clearly not obtain an invalid cut in the knowledge graph). However, one can easily see
that every cut which does not separate v1 and v2 is balanced, while every cut which
separates v1 and v2 is of size n − 2 = Ω(m). ��
Let

−→
G be an orientation of G. Given a subgraph

−→
H = (VH ,

−→
EH) of

−→
G (that is, a

directed graph where VH ⊆ V and
−→
EH ⊆ −→

E ) we define
−→
G←−

H

def= (V,
−→
E←−

H
) to be the

orientation of G derived from
−→
G by inverting all the edges of

−→
H . Namely,

−→
E←−

H
=

−→
E \−→

EH ∪ {(v, u) ∈ (VH)2 | (u, v) ∈ −→
EH}. We say that

−→
H is a correction subgraph of−→

G if
−→
G←−

H
is Eulerian. Note that in such a case,

−→
G is |−→EH |/m-close to being Eulerian.

Since we assume that G is Eulerian, there exists some correction subgraph
−→
H for any−→

G . Furthermore, it is not difficult to show that any correction subgraph
−→
H of

−→
G has an

acyclic subgraph which is also a correction subgraph of
−→
G . Let S be the set of springs

in
−→
G and let T be the set of drains in

−→
G . We say that a directed path

−→
P = 〈u0, . . . , uk〉

in
−→
G is a spring-drain path if u0 ∈ S and uk ∈ T . It is easy to show that for any

correction subgraph
−→
H of

−→
G , u0 is a spring in

−→
H and uk is a drain in

−→
H .

Lemma 3. If
−→
G is not Eulerian then any acyclic correction subgraph

−→
H of

−→
G is a

union of p = 1
4

∑
u∈V |ib(u)| edge-disjoint spring-drain paths.

Proof sketch. Suppose that
−→
G is not Eulerian and let

−→
H be an acyclic correction sub-

graph of
−→
G . By definition, if we invert all the edges of

−→
H in

−→
G then we obtain an

Eulerian orientation of G. It can easily be seen that, since
−→
G is not Eulerian,

−→
H con-

tains a spring-drain path. We thus invert the edges of
−→
H along one spring-drain path at a
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time, until we obtain an Eulerian orientation. One can see that
−→
H is thus decomposed to

the inverted paths. The value of p is computed by noting that by inverting a spring-drain
path, we reduce the sum

∑
u∈V |ib(u)| by exactly four. ��

Let p be some positive number. If every correction subgraph of an orientation
−→
G

is a union of at least p disjoint spring-drain paths, we say that
−→
G is p-far from being

Eulerian. An algorithm is called a p-test for being Eulerian if it accepts an Eulerian
orientation with probability at least 2/3 and rejects a p-far orientation with probabil-
ity at least 2/3. Similarly to ε-tests, if a p-test accepts every Eulerian orientation with
probability 1 then it is called 1-sided, and otherwise it is called 2-sided.

Given β > 0, we say that a vertex v is β-small if deg(v) ≤ β and β-big if deg(v) >

β. An orientation
−→
G is called β-Eulerian if all the β-small vertices in V are balanced in−→

G . Note that for β ≥ Δ,
−→
G is β-Eulerian if and only if

−→
G is Eulerian. All our lemmas

and observations for Eulerian orientations may be adapted to β-Eulerian orientations. In
particular, we can show that modifying an orientation

−→
G to become β-Eulerian requires

inverting edges along at least 1
4

∑
u∈V,deg(u)≤β |ib(u)| spring-drain paths in which at

least one of the spring and the drain is β-small. We call such paths β-spring-drain paths.
An algorithm is called a (p, β)-test for being Eulerian for some positive number p if it

accepts a β-Eulerian orientation with probability at least 2/3 and rejects an orientation
that is p-far from being β-Eulerian with probability at least 2/3. As usual, a (p, β)-
test is said to be 1-sided if it accepts every β-Eulerian orientation with probability 1.
Otherwise, the test is said to be 2-sided.

3 Generic Tests

We present a p-test and two (p, β)-tests for being Eulerian. In later sections we devise

several lower bounds on p for every orientation
−→
G that is ε-far from being Eulerian,

thus obtaining corresponding upper bounds on the tests below.
We begin with a simple 2-sided p-test whose query complexity is independent of the

maximum degree Δ. The algorithm uses probabilistic methods, as well as the charac-
terization of p given given in Lemma 3, in order to detect an unbalanced vertex with
high probability. To simplify notation, we denote δ

def= p
4m .

Algorithm 4. SIMPLE-2(
−→
G, p):

– Repeat 4
δ times independently:

– Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in
−→
E by u and the end vertex of e in

−→
E by v.

– Query 16 ln(12/δ)
δ2 edges incident with u uniformly and independently and reject

if the sample contains at least (1 + δ)8 ln(12/δ)
δ2 outgoing edges.

– Accept if the input was not rejected earlier.

Lemma 5. SIMPLE-2 is a 2-sided p-test for being Eulerian with query complexity

Õ
( 1

δ3

)
= Õ

(
m3

p3

)
.
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We next give a simple 1-sided (p, β)-test, which has a better query complexity than
SIMPLE-2 for Δ � m2

p2 ln(m
p ). Note that the test checks only β-small vertices for

being unbalanced.

Algorithm 6. GENERIC-1(
−→
G, p, β):

1. Repeat ln 3 m
p times independently:

• Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in
−→
E by u and the end vertex of e in

−→
E by v.

• If deg(u) ≤ β then query all the edges {u, w} ∈ E and reject if u is unbalanced.
2. Repeat ln 3 m

p times independently:
• Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in−→
E by u and the end vertex of e in

−→
E by v.

• If deg(v) ≤ β then query all the edges {w, v} ∈ E and reject if v is unbalanced.
3. Accept if the input was not rejected by the above.

Lemma 7. GENERIC-1 is a 1-sided (p, β)-test for being Eulerian with query com-

plexity O
(

βm
p

)
. In particular, for β = Δ, GENERIC-1 is a 1-sided p-test with query

complexity O
(

Δm
p

)
.

We conclude this section with a 2-sided (p, β)-test, which gives better query complexity
than GENERIC-1 for β 
 log2 m and better query complexity than SIMPLE-2 for p �
m√
β

. The main idea of the algorithm is to perform roughly O((log β)2) testing stages,
each designed to detect unbalanced β-small vertices whose degree and imbalance lie in
a certain interval. In the following, log denotes the logarithm with base 2.

Algorithm 8. MULTISTAGE-2(
−→
G, p, β):

For i = 1, . . . , �log β� − 1, do:

1. Let Vi
def= {u ∈ V | deg(u) ∈ [2i, 2i+1) } and ni

def= |Vi|.
2. Let j = �i/2�. If 2j · ni > 2p

(log β)2 then:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and indepen-
dently.
• For every sampled vertex u, query all the edges incident with u, and reject if
u is unbalanced.

3. For every j ∈ {�i/2� + 1, . . . , i − 1} such that 2j · ni > 2p
(log β)2 do:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and indepen-
dently.
• For every sampled vertex u, query qij = 256 · ln( 6(log β)2 xij) · 22(i−j)

edges adjacent to u, uniformly and independently, and reject if the absolute
difference between the number of incoming and outgoing edges in the sample
is at least qij

4·2i−j .
Accept if the input was not rejected earlier.
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Lemma 9. MULTISTAGE-2 is a 2-sided (p, β)-test for being Eulerian with query com-

plexity Õ
(√

β m
p

)
. In particular, for β = Δ, it is a 2-sided p-test for being Eulerian

with query complexity Õ
(√

Δ m
p

)
.

4 Testing Orientations of Expander Graphs

In this section we show how to apply our generic tests for expander graphs. A graph
G = (V, E) is called an α-expander for some α > 0, if it is connected and for every
U ⊆ V such that 0 < |E(U)| ≤ m/2 we have |∂U | ≥ α|E(U)|. Note that while the

diameter of G is O(log(1+α) m), the “oriented-diameter” of
−→
G is not necessarily low,

even if we assume that the orientation is Eulerian, as was shown by [2].
In the following, log(k)

b (x) denotes the k-nested logarithm with base b of x, i.e.,

log(1)
b (x) def= logb(x) and log(k+1)

b (x) def= logb(log(k)
b (x)) for any natural k ≥ 1.

Lemma 10. Let G be an Eulerian α-expander and let k ≥ 1 be a natural number such
that log(k−1)

(1+α/2) m ≥ log(1+α/2)
( 4

ε

)
. Then: (1) Every non-Eulerian orientation

−→
G of G

contains a spring-drain path of length at most 	k
def= 2·log(k)

(1+α/2) m+2·log(1+α/2)
( 4

ε

)
;

(2) Every orientation
−→
G of G that is ε-far from being Eulerian is pk-far from being

Eulerian for pk
def= εm

�k
.

Proof sketch. We prove the lemma by induction on k. In each inductive step, we use
the known bounds of 	k and pk to bound 	k+1 and pk+1 in an iterative manner. To
prove Item 1 of the lemma for k = 1, let

−→
G be a non-Eulerian orientation of

−→
G .

Consider a BFS traversal of
−→
G starting from the set S of springs. For every i ≥ 0,

let Li be the ith level of the traversal, where L0 = S, and let U<i
def=

⋃
0≤j<i Lj and

U≥i
def=

⋃
j≥i Lj . For every i > 0, let fi be the number of directed edges going from

Li−1 to Li. Let L� be the first level that contains a drain. By the expander property of
G, for every i > 0 while |E(U<i)| ≤ m/2 we have |∂(U<i)| ≥ α|E(U<i)|. Note that
for every i ≤ 	, the set U<i contains no drains, and all the directed edges that exit it
are from Li−1 to Li. Hence, for every 0 < i ≤ 	 while |E(U<i)| ≤ m/2, we have
fi > 1

2 |∂(U<i)| > α
2 |E(U<i)| and therefore |E(U<i+1)| >

(
1 + α

2

)
|E(U<i)|. By

induction, we have |E(U<i)| >
(
1 + α

2

)i−1
f1 ≥

(
1 + α

2

)i−1
for every 0 < i ≤ 	 for

which |E(U<i)| ≤ m/2.
Now, if for every 0 < i ≤ 	 we have |E(U<i)| ≤ m/2, then clearly, |E(U<�)| >

(
1 + α

2

)�−1
, and hence 	 = 	1 < log(1+α/2) m. Otherwise, let r > 0 be the minimal

index for which |E(U<r)| > m/2. Using similar arguments to the above, we show that

|E(U≥i−1)| >
(
1 + α

2

)�−i+1 |E(U≥�)| ≥
(
1 + α

2

)�−i+1
for every r ≤ i ≤ 	, which

yields 	1 < 2 · log(1+α/2) m.

To prove Item 2 of the lemma for k = 1, let
−→
G be an orientation of G that is ε-far

from being Eulerian. While
−→
G is not Eulerian, choose a shortest spring-drain path in−→

G and invert all its edges. By Item 1, every chosen spring-drain path is of length at
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most 	1. Let
−→
H be the union of the paths inverted. Clearly,

−→
H is a correction subgraph

of
−→
G . As

−→
G is ε-far from being Eulerian,

−→
H contains at least εm edges, and thus

it is necessarily a union of at least p1 = εm
�1

disjoint spring-drain paths. By Lemma

3, every correction subgraph of
−→
G contains the same number of disjoint spring-drain

paths, which completes the base case.
Assuming that the lemma holds for some natural k ≥ 1, the proof of the lemma for

k + 1 is very similar to that of the base case. However, we now know that f1 ≥ pk

and |E(U≥�)| ≥ pk, and so we use our known lower bound for pk (instead of 1 in the
base case). Item 1 is now proved using standard arithmetics, as well as the condition
log(k)

(1+α/2) m ≥ log(1+α/2)
( 4

ε

)
. The proof of Item 2 is the same as for the base case. ��

Lemma 11. Let G be an Eulerian α-expander. Let
−→
G be an orientation of G that is

ε-far from being Eulerian. Then
−→
G is p-far from being Eulerian for p = Ω

(
αεm

log( 1
ε )

)
.

Proof sketch. The proof considers the first natural number k such that the condition of
Lemma 10 does not apply, namely log(k)

(1+α/2) m < log(1+α/2)
( 4

ε

)
. The proof is similar

to that of Lemma 10 for smaller k’s. However, since log(k)
(1+α/2) m is sufficiently small,

we are able to give the stated upper bound, which is independent of k. ��
Substituting the lower bound for p of Lemma 11 in Lemmas 5, 7, and 9, we obtain

the following theorem. Note that for a constant α, the query complexity of SIMPLE-2
depends only on ε.

Theorem 12. Let G be an α-expander (for some α > 0) with m edges and maximum
degree Δ. Then:

1. SIMPLE-2
(−→

G, Ω
(

αεm
log(1/ε)

))
is a 2-sided ε-test for being Eulerian with query

complexity Õ

((
log(1/ε)

αε

)3
)

.

2. GENERIC-1
(−→

G,Ω
(

αεm
log(1/ε)

)
, Δ

)
is a 1-sided ε-test for being Eulerian with query

complexity O
(

Δ log(1/ε)
αε

)
.

3. MULTISTAGE-2
(−→

G, Ω
(

αεm
log(1/ε)

)
, Δ

)
is a 2-sided ε-test for being Eulerian with

query complexity Õ
(√

Δ log(1/ε)
αε

)
.

5 Testing Orientations of “Lame” Directed Expanders

In this section we discuss a variation of the expander test, which will serve us in Section
6 for devising tests for general graphs. Given an orientation

−→
G of G, we now test a

subgraph
−→
G [U ] of

−→
G , induced by a subset U ⊆ V . We refer to the edges in E(U) as the

internal edges of
−→
G [U ], and denote mU

def= |E(U)|. We say that
−→
G [U ] is Eulerian if and

only if all the vertices in U are balanced in
−→
G . We say that

−→
G [U ] is β-Eulerian if and

only if all the β-small vertices in U are balanced in
−→
G . Note that these definitions rely
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also on the edges in ∂U , which we will henceforth call external edges. We assume that
the orientations of all the external edges are known, and furthermore, we use a distance
function that does not allow inverting external edges. Namely, we will say that

−→
G [U ] is

ε-close to being Eulerian if and only if it has a correction subgraph of size at most εmU

which includes only internal edges. Otherwise, we say that
−→
G [U ] is ε-far from being

Eulerian. Note that we can view the external edges as comprising a knowledge graph
(see Section 2). We always assume that all the cuts in

−→
G are valid with respect to the

orientation
−→
∂ U of the external edges. This condition ensures that

−→
G [U ] can be made

Eulerian (or β-Eulerian) by inverting internal edges only.
We will be interested in induced subgraphs

−→
G [U ] that are “lame directed expanders”.

Formally, given a subset U ⊆ V and a parameter β > 0, we say that a cut (A, B) of
U is a β-cut of U if |E(B)| ≥ |E(A)| ≥ β. Given α, β > 0, we say that the subgraph
−→
G [U ] of G is an (α, β)-expander if for every β-cut (A, B) of U :

|E(A, B)| −
∣
∣
∣|
−→
E (V \ U, A)| − |−→E (A, V \ U)|

∣
∣
∣ ≥ 2α|E(A)|. (1)

Lemma 13. Let α, β, ε > 0 be parameters and let U ⊆ V be such that
−→
G [U ] is an

(α, β)-expander. Denote mU
def= |E(U)| and ΔU

def= max{deg(u) | u ∈ U}. Assume
that the external edges of U are known and do not induce an invalid cut. Then:

1. There exists a 1-sided ε-test for whether
−→
G [U ] is Eulerian, GEN-1(

−→
G [U ], α, β, ε),

whose query complexity is O
(

ΔU log mU

εα + β·min{β,ΔU}
ε

)
.

2. There exists a 2-sided ε-test for whether
−→
G [U ] is Eulerian, MULTI-2(

−→
G [U ], α, β, ε),

whose query complexity is Õ

(√
ΔU log mU

εα + β·
√

min{β,ΔU}
ε

)

.

Proof sketch. GEN-1 is based on at most two calls to GENERIC-1 (Algorithm 6) and
MULTI-2 is based on at most two calls to MULTISTAGE-2 (Algorithm 8). The para-
meters in these calls are computed by analyzing two possible cases in which

−→
G [U ] is

ε-far from being Eulerian.
In the first case,

−→
G [U ] is ε

2 -far from being 2β-Eulerian, which means that we need

to invert many 2β-spring-drain paths in
−→
G [U ] in order to make it 2β-Eulerian. Using

an analysis similar to that used in the proof of Lemma 10 (with our condition for lame
expansion instead of the condition for undirected expansion), we obtain a lower bound

p′ = Ω
(

εmU

log mU/α+β

)
for the number of these 2β-spring-drain paths. Thus, to take care

of this case we call GENERIC-1 or MULTISTAGE-2 to test whether
−→
G [U ] is (p′, 2β)-

Eulerian. Note that p′ differs from our bound for expander graphs in the addition of β
to the denominator, which indicates an addition of β to the upper bound on the length
of a correction path. This arises from the fact that the lame expansion condition applies
only for β-cuts, and thus, it might not apply in the first and last β BFS layers.

As for the second case, if
−→
G [U ] is ε-far from being Eulerian, but ε

2 -close to being

2β-Eulerian, we consider a 2β-Eulerian orientation
−→
G ′[U ] that is ε

2 -close to
−→
G [U ].

Clearly,
−→
G ′[U ] is ε

2 -far from being Eulerian. However, since it is 2β-Eulerian, we can
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show that it can be made Eulerian by inverting edges along paths between β-big springs
and β-big drains. We next use a similar analysis as for Lemma 10. However, since the
spring and drain in each of our paths are 2β-big, it can be seen that all the cuts between

our BFS layers are β-cuts, and thus, we obtain a lower bound p′′ = Ω
(

εmU

log mU /α

)

for the number of spring-drain paths. Hence, to take care of the second case, we call
GENERIC-1 or MULTISTAGE-2 to test whether

−→
G [U ] is p′′-Eulerian (namely, we use

β = ΔU ).
The correctness of our algorithms now follows from Lemmas 7 and 9. The query

complexity bounds are obtained from these lemmas, noting also that the second case
discussed above is only possible for β < ΔU

2 . ��

6 General Tests Based on Chopping

We provide a 1-sided test and a 2-sided test as follows. Given an orientation
−→
G of G,

we show how to decompose
−→
G into a collection of (α, β)-expanders with a relatively

small number of edges that are outside the (α, β)-expanders, called henceforth external
edges. We will find this “chopping” adaptively while querying external edges only. If
we do not find a witness showing that

−→
G is not Eulerian during the chopping procedure,

then we sample a few (α, β)-expanders and test them using GEN-1 or MULTI-2 (see
Lemma 13), obtaining a 1-sided test or a 2-sided test respectively.

Lemma 14 (The chopping lemma). Given an orientation
−→
G as input and parameters

α, β > 0, we can either find a witness showing that
−→
G is not Eulerian, or find non-

empty induced subgraphs
−→
G i = (Vi,

−→
E i =

−→
E (Vi)) of

−→
G (where i = 1, . . . , k for some

k), which we call (α, β)-components (or simply components), that satisfy the following:

1. The vertex sets V1, . . . , Vk of the components are mutually disjoint.
2. |−→E i| ≥ β for i = 1, . . . k.

3. All the components
−→
G i are (α, β)-expanders.

4. The total number of external edges satisfies |−→E \
⋃

i=1,...,k

−→
E (Vi)|=O(αm2 log m/β).

During the chopping procedure, we query only external edges, i.e., edges that are not in
any component Gi. The query complexity is in the same order also if we find a witness
that

−→
G is not Eulerian.

Proof sketch. The chopping procedure proceeds as follows. At first, we define
−→
G =−→

G [V ] as our single component. Then, at each step, we decompose a component
−→
G [U ]

into two separate components
−→
G [A] and

−→
G [B], if (A, B) is a β-cut of U and Inequality

(1) above does not apply. When decomposing, we query the edges of the cut (A, B) and
mark them as external edges. Note that we need not query any additional edges to decide
on cutting a component, as all the required information is given by the underlying graph
G and by the orientation of the external edges that were queried in previous steps. After
each stage, we check whether the orientations of the edges queried so far invalidate
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any of the cuts in the graph (see Section 2), in which case we conclude that
−→
G is not

Eulerian and return the invalid cut.
The procedure terminates once there is no cut of any component that satisfies the

chopping conditions. The components are clearly disjoint throughout the procedure.
Since we only chopped components across β-cuts, every final component contains at
least β edges. Moreover, note that a component is always chopped by the procedure
unless all its β-cuts satisfy Inequality (1). Hence, if the algorithm terminates without
finding a witness that

−→
G is not Eulerian, then every Gi is an (α, β)-expander. It remains

to prove the upper bound for the number of external edges and the query complexity of
the chopping procedure.

Suppose that the chopping procedure has not found a witness that
−→
G is not Eulerian.

Consider a component U and a β-cut (A, B) of U whose edges were queried in some
step of the lemma. Using the chopping criterion and the fact that all the cuts in the
knowledge graph are valid, we obtain

min
{
|−→E (A, B)|, |−→E (B, A)|

}
< α|E(A)|. (2)

We refer to the edges in the minimal cut among
−→
E (A, B) and

−→
E (B, A) as rare edges,

and to the edges in the other direction as common edges. We then prove that the total
number of rare external edges is O(αm log m), by “charging” a cost of α on every edge
e ∈ E(A). The proof uses Inequality (2) and the fact that, by definition, |E(A)| ≤
|E(B)|. To complete the proof of the upper bound, we show that the ratio between
the number of common edges and the number of rare edges is O(m/β). This is done

by observing that the multigraph defined by the components
−→
G i is Eulerian, and so

decomposable into edge-disjoint directed cycles. Every cycle contains at least one rare
edge because the subgraph of common edges is acyclic. The proof follows since the
number of components is O(m/β). Finally, it is easy to see that the query complexity
is not larger in the case where the procedure terminates after finding an invalid cut. ��

Algorithm 15. CHOP-1(
−→
G, ε, α, β):

1. Use Lemma 14 (the chopping lemma) for finding (α, β)-components
−→
G1, . . . ,

−→
Gk

and querying their external edges, or reject and terminate if an invalid cut is found
in the process.

2. Sample 3 ln 3/ε (α, β)-components
−→
G i randomly and independently, where the

probability of selecting a component
−→
G i in a sample is proportional to mi

def=
|E(Vi)|.

3. Test every selected component
−→
G i using GEN-1(

−→
G i, α, β, ε/2) (see Lemma 13).

Reject if the test rejects for at least one of the components selected.
4. Accept if the input was not rejected by any of the above steps.

Theorem 16. CHOP-1 is a 1-sided test for being Eulerian with query complexity

O
(

αm2 log m
β + Δ log m

ε2α + β·min{β,Δ}
ε2

)
. In particular, for α = (Δ log m)1/3

(εm)2/3 and β =
(εm log m)2/3

Δ1/3 , the query complexity is O
(

(Δm log m)2/3

ε4/3

)
.
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Finally, we obtain a similar 2-sided test, CHOP-2, by replacing the calls to GEN-1
in Step 3 of CHOP-1 with calls to MULTI-2 and using slightly different constants.

Theorem 17. CHOP-2 is a 2-sided test for being Eulerian with query complexity

O
(

αm2 log m
β

)
+ Õ

(√
Δ log m
ε2α + β·

√
min{β,Δ}

ε2

)

. In particular, if Δ ≤ (εm)4/7, then,

for α = Δ1/6

(εm)2/3 and β = (εm)2/3

Δ1/6 , the query complexity is Õ
(

Δ1/3m2/3

ε4/3

)
= Õ

(
m6/7

ε8/7

)
.

If (εm)4/7 < Δ ≤ m, then, for α = Δ5/16

(εm)3/4 and β = Δ1/8√εm, the query complexity

is Õ
(

Δ3/16m3/4

ε5/4

)
= Õ

(
m15/16

ε5/4

)
.

7 Concluding Comments and Open Problems

We have shown a test with a sub-linear number of queries for all graphs. However,
excepting the special cases of dense graphs and expander graphs, this should be only
considered as a first step for this problem.

The procedure of our general test is surprisingly involved considering the problem
statement. The question arises as to whether we can reduce the computational complex-
ity from exponential to polynomial in m. Also, to make the test truly attractive, most
of the calculations should be performed in a preprocessing stage, where the amount of
calculations done while making the queries should ideally be also sub-linear in m.

Related to the preprocessing question is the unresolved question of adaptivity. We
would like to think that a sub-linear query complexity non-adaptive test also exists for
all graphs. Other adaptive versus non-adaptive gaps, such as the one concerning the
2-sided lower bounds, need also be addressed.
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