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Abstract. We exhibit an explicit function f : {0,1}n → {0,1} that can be com-
puted by a nondeterministic number-on-forehead protocol communicating
O(logn) bits, but that requires nΩ(1) bits of communication for randomized
number-on-forehead protocols with k = δ · logn players, for any fixed δ < 1.
Recent breakthrough results for the Set-Disjointness function (Sherstov, STOC
’08; Lee Shraibman, CCC ’08; Chattopadhyay Ada, ECCC ’08) imply such a
separation but only when the number of players is k < log logn.

We also show that for any k = A log logn the above function f is computable by
a small circuit whose depth is constant whenever A is a (possibly large) constant.
Recent results again give such functions but only when the number of players is
k < log logn.

1 Introduction

Number-on-forehead communication protocols are a fascinating model of computation
where k collaborating players are trying to evaluate a function f : ({0,1}n)k → {0,1}.
The players are all-powerful, but the input to f is partitioned into k pieces of n bits
each, x1, . . . ,xk ∈ {0,1}n, and xi is placed, metaphorically, on the forehead of player i.
Thus, each player only sees (k − 1)n of the k · n input bits. In order to compute f , the
players communicate by writing bits on a shared blackboard, and the complexity of the
protocol is the number of bits that are communicated (i.e., written on the board). This
model was introduced in [CFL83] and has found applications in a surprising variety of
areas, including circuit complexity [HG91, NW93], pseudorandomness [BNS92], and
proof complexity [BPS07].

In this model, a protocol is said to be efficient if it has complexity logO(1) n. Cor-
respondingly, Pcc

k , RPcc
k , BPPcc

k and NPcc
k are the number-on-forehead communication

complexity analogs of the standard complexity classes [BFS86], see also [KN97]. For
example, RPcc

k is the class of functions having efficient one-sided-error randomized
communication protocols. One of the most fundamental questions in NOF communi-
cation complexity, and the main question addressed in this paper, is to separate these
classes. In [BDPW07], Beame et al. give an exponential separation between random-
ized and deterministic protocols for k ≤ nO(1) players (in particular, RPcc

k �= Pcc
k for
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k ≤ nO(1)). The breakthrough work by Sherstov [She07, She08a] sparked a flurry of ex-
citing results in communication complexity [Cha07, LS08, CA08] which gave an expo-
nential separation between nondeterministic and randomized protocols for k < loglogn
players (in particular, NPcc

k �⊂ BPPcc
k for k < log logn). Our main result is to improve

the latter separation to larger values of k.

Theorem 1 (Main Theorem; NPcc
δ logn �⊂ BPPcc

δ logn). For every fixed δ < 1, sufficiently

large n and k = δ · logn, there is an explicit function f : ({0,1}n)k → {0,1} such that: f
can be computed by k-player nondeterministic protocols communicating O(logn) bits,
but f cannot be computed by k-player randomized protocols communicating no(1) bits.

We note that the number of players k = δ · logn in the above Theorem 1 is state-of-
the-art: it is a major open problem in number-on-forehead communication complexity
to determine if every explicit function on n bits can be computed by k = log2 n players
communicating O(logn) bits. We also note that Theorem 1 in particular implies an
exponential separation between nondeterministic and deterministic protocols (hence,
NPcc

k �⊂ Pcc
k for k = δ logn players). Similar separations follow from [BDPW07], but

only for non-explicit functions.
We also address the challenge of exhibiting functions computable by small (un-

bounded fan-in) constant-depth circuits that require high communication for k-player
protocols, which is relevant to separating various circuit classes (see, [HG91, RW93]).
Previous results [Cha07, LS08, CA08] give such functions for k < loglogn. We offer
a slight improvement and achieve k = A log logn for any (possibly large) constant A,
where the depth of the circuit computing the function depends on A.

Theorem 2 (Some constant-depth circuits require high communication). For every
constant A > 1 there is a constant B such that for sufficiently large n and k := A loglogn
there is a function f : ({0,1}n)k → {0,1}which satisfies the following: f can be computed
by circuits of size nB and depth B, but f cannot be computed by k-player randomized pro-
tocols communicating no(1) bits.

1.1 Techniques

In this section we discuss the technical challenges presented by our theorems and how we
have overcome them, building on previous work. An exposition of previous works and of
some of the ideas in this paper also appears in the survey by Sherstov [She08b]. For con-
creteness, in our discussion we focus on separating nondeterministic from deterministic
(as opposed to randomized) protocols, a goal which involves all the main difficulties.

Until very recently, it was far from clear how to obtain communication lower bounds
in the number-on-forehead model for any explicit function f with efficient nondeter-
ministic protocols. The difficulty can be described as follows. The standard method
for obtaining number-on-forehead lower bounds is what can be called the “correlation
method” [BNS92, CT93, Raz00, VW07].1 This method goes by showing that f has

1 This method is sometimes called the “discrepancy method.” We believe that lower bound
proofs are easier to understand when presented in terms of correlation rather than discrepancy,
cf. [VW07].
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exponentially small (2−nΩ(1)
) correlation with efficient (deterministic) protocols, and

this immediately implies that f does not have efficient protocols (the correlation is
w.r.t. some probability distribution which in general is not uniform). The drawback of
this method is that, although for the conclusion that f does not have efficient proto-
cols it is clearly enough to show that the correlation of f with such protocols is strictly
less than one, the method actually proves the stronger exponentially small correlation
bound. This is problematic in our setting because it is not hard to see that every function

that has an efficient nondeterministic protocol also has noticeable (≥ 2− logO(1) n) corre-
lation with an efficient (deterministic) protocol, and thus this method does not seem
useful for separating nondeterministic from deterministic protocols.

In recent work, these difficulties were overcome to obtain a surprising lower bound
for a function with an efficient nondeterministic protocol: the Set-Disjointness func-
tion [LS08, CA08]. The starting point is the work by Sherstov [She08a] who applies
the correlation method in a more general way for the 2-player model in order to over-
come the above difficulties. This generalized correlation method is then adapted to han-
dle more players (k � 2) in [LS08, CA08]. The high-level idea of the method is as
follows. Suppose that we want to prove that some specific function f does not have
efficient protocols. The idea is to come up with another function f ′ and a distribution
λ such that: (1) f and f ′ have constant correlation, say f and f ′ disagree on at most

1/10 mass of the inputs with respect to λ , and (2) f ′ has exponentially small (2−nΩ(1)
)

correlation with efficient protocols with respect to λ . The combination of (1) and (2)

easily implies that f also has correlation at most 1/10 + 2−nΩ(1)
< 1 with efficient pro-

tocols, which gives the desired lower bound for f . This method is useful because for
f ′ we can use the correlation method, and on the other hand the correlation of f with
efficient protocols is not shown to be exponentially small, only bounded away from 1
by a constant. Thus it is conceivable that f has efficient nondeterministic protocols, and
in fact this is the case in [LS08, CA08] and in this work.

Although a framework similar to the above is already proposed in previous papers,
e.g. [Raz87, Raz03], it is the work by Sherstov [She08a] that finds a way to suc-
cessfully apply it to functions f with efficient nondeterministic protocols. For this,
[She08a] uses two main ideas, generalized to apply to the number-on-forehead set-
ting in [Cha07, LS08, CA08]. The first is to consider a special class of functions
f := Lift(OR,φ) with efficient nondeterministic protocols. These are obtained by com-
bining the “base” function OR on m bits with a “selection” function φ as described next.
It is convenient to think of f = Lift(OR,φ) as a function on (k + 1)n bits distributed
among k + 1 players as follows: Player 0 receives an n-bit vector x, while Player i, for
1 ≤ i ≤ k, gets an n-bit vector yi. The selection function φ takes as input y1, . . . ,yk and
outputs an m-bit subset of {1, . . . ,n}. We view φ as selecting m bits of Player 0’s input
x, denoted x|φ(y1, . . . ,yk). Lift(OR,φ) outputs the value of OR on those m bits of x:

Lift(OR,φ)(x,y1, . . . ,yk) := OR(x|φ(y1, . . . ,yk)).

The second idea is to apply to such a function f := Lift(OR,φ) a certain orthogo-
nality principle to produce a function f ′ that satisfies the points (1) and (2) above. The



374 M. David, T. Pitassi, and E. Viola

structure of f = Lift(OR,φ)(x,y1, . . . ,yk) is crucially exploited to argue that f ′ satisfies
(2), and it is here that previous works require k < loglogn [Cha07, LS08, CA08].

So far we have rephrased previous arguments. We now discuss the main new ideas
in this paper.

Ideas for the proof of Theorem 1. To prove Theorem 1 we start by noting that regardless
of what function φ is chosen, Lift(OR,φ) has an efficient nondeterministic protocol:
Player 0 simply guesses an index j that is one of the indices chosen by φ (she can do
so because she knows the input to φ ) and then any of the other players can easily verify
whether or not x j is 1 in that position. In previous work [LS08, CA08], φ is the bitwise
AND function, and this makes Lift(OR,φ) the Set-Disjointness function. By contrast,
in this work we choose the function φ uniformly at random and we argue that, for almost
all φ , Lift(OR,φ) does not have efficient randomized protocols, whenever k is at most
δ logn for a fixed δ < 1.

The above argument gives a non-explicit separation, due to the random choice of
φ . To make it explicit, we derandomize the choice of φ . Specifically, we note that the
above argument goes through as long as φ is 2k-wise independent, i.e. as long as φ
comes from a distribution such that for every 2k fixed inputs ȳ1, . . . , ȳ2k ∈ ({0,1}n)k the

values φ(ȳ1), . . . ,φ(ȳ2k
) are uniform and independent (over the choice of φ ). Known

constructions of such distributions [ABI86, CG89] only require about n · 2k = nO(1)

random bits, which can be given as part of the input. Two things should perhaps be
stressed. The first is that giving a description of φ as part of the input does not affect the
lower bound in the previous paragraph which turns out to hold even against protocols
that depend on φ . The second is that, actually, using 2k-wise independence seems to add
the constraint k < 1/2(logn); to achieve k = δ logn for every δ < 1 we use a distribution
on φ that is almost 2k-wise independent [NN93].

Ideas for the proof of Theorem 2. To prove Theorem 2 we show how to implement the
function given by Theorem 1 by small constant-depth circuits when k is A loglogn for
a fixed, possibly large, constant A. In light of the above discussion, this only requires
computing a 2k-wise independent function by small constant-depth circuits, a problem
which is studied in [GV04, HV06]. Specifically, dividing up φ in blocks it turns out that
it is enough to compute 2k-wise independent functions g : {0,1}t → {0,1}t where t is
also about 2k. When k = A log logn, g is a (2k = logA n)-wise independent function on
logA n bits, and [HV06] shows how to compute it with circuits of size nB and depth B
where B depends on A only – and this dependence of B on A is tight even for almost
2-wise independence. This gives Theorem 2. Finally, we note that [HV06] gives explicit
(a.k.a. uniform) circuits, and that we are not aware of an alternative to [HV06] even for
non-explicit circuits.

Organization. The organization of the paper is as follows. In Section 2 we give neces-
sary definitions and background. We present the proof of our main result Theorem 1 in
two stages. First, in Section 3 we present a non-explicit separation obtained by select-
ing φ at random. Then, in Section 4 we derandomize the choice of φ in order to give
an explicit separation and prove Theorem 1. Finally, in Section 5 we prove our results
about constant-depth circuits, Theorem 2.
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2 Preliminaries

Correlation. Let f ,g : X → R be two functions, and let μ be a distribution on X . We
define the correlation between f and g under μ to be Corμ( f ,g) := Ex∼μ [ f (x)g(x)].
Let G be a class of functions g : X → R (e.g. efficient communication protocols). We
define the correlation between f and G under μ to be Corμ( f ,G) := maxg∈G Corμ( f ,g).
Note that, whenever G is closed under complements, which will always be the case in
this paper, this correlation is non-negative. Whenever we omit to mention a specific
distribution when computing the correlation, an expected value or a probability, it is to
be assumed that we are referring to the uniform distribution, which we denote by U.

Communication Complexity. In the number-on-forehead (NOF) multiparty communi-
cation complexity model [CFL83], k players are trying to collaborate to compute a func-
tion f : X1 × . . .×Xk → {−1,1}. For each i, player i knows the values of all of the inputs
(x1, . . . ,xk) ∈ X1 × . . .×Xk except for xi (which conceptually is thought of as being placed
on Player i’s forehead). The players exchange bits according to an agreed-upon protocol,
by writing them on a public blackboard. A protocol specifies what each player writes as
a function of the blackboard content and the inputs seen by that player, and whether the
protocol is over, in which case the last bit written is taken as the output of the protocol.
The cost of a protocol is the maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A randomized protocol
is a distribution on deterministic protocols such that for every input a protocol selected
at random from the distribution errs with probability at most 1/3. In a nondeterministic
protocol, an initial guess string is written on the blackboard at the beginning of the
protocol (and counted towards communication) and the players are trying to verify that
the output of the function is −1 (representing true) in the usual sense: There exists
a guess string where the output of the protocol is −1 if and only if the output of the
function is −1. The communication complexity of a function f under one of the above
types of protocols is the minimum cost of a protocol of that type computing f . In line
with [BFS86], a k-player protocol computing f : ({0,1}n)k → {−1,1} is considered to
be efficient if its cost is at most poly-logarithmic, logO(1) n. Equipped with the notion of
efficiency, one has the NOF communication complexity classes BPPcc

k and NPcc
k that

are analogues of the corresponding complexity classes.

Definition 1. We denote by Π k,c the class of all deterministic k-player NOF communi-
cation protocols of cost at most c.

The following immediate fact allows us to derive lower bounds on the randomized
communication complexity of f from upper bounds on the correlation between f and
the class Π k,c [KN97, Theorem 3.20].

Fact 3. If there exists a distribution μ such that Corμ( f ,Π k,c) ≤ 1/3 then every ran-
domized protocol (with error 1/3) for f must communicate at least c bits.

In order to obtain upper bounds on the correlation between f and the class Π k,c, we use
the following result, which is also standard. Historically, it was first proved by Babai,
Nisan and Szegedy [BNS92] using the notion of discrepancy of a function. It has since
been rewritten in many ways [CT93, Raz00, FG05, VW07]. The formulation we use
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appears in [VW07], except that in [VW07] one also takes two copies of x; it is easy to
modify the proof in [VW07] to obtain the following lemma.

Lemma 1 (The standard BNS argument). Let f : X ×Y1 ×·· ·×Yk → R. Then,

CorU( f ,Π k+1,c)2k ≤ 2c·2k ·E (y0
1,...,y0

k)∈Y1×···×Yk

(y1
1,...,y1

k)∈Y1×···×Yk

⎡
⎣
∣∣∣∣∣∣
Ex∈X

⎡
⎣ ∏

u∈{0,1}k

f (x,yu1
1 , . . . ,yuk

k )

⎤
⎦
∣∣∣∣∣∣

⎤
⎦ .

We later write y for (y1, . . . ,yk).
Degree. The ε-approximate degree of f is the smallest d for which there exists a multi-
variate real-valued polynomial g of degree d such that maxx | f (x)− g(x)| ≤ ε . We will
use the following result of Nisan and Szegedy; see [Pat92] for a result that applies to
more functions.

Lemma 2 ([NS94]). There exists a constant γ > 0 such that the (5/6)-approximate
degree of the OR function on m bits is at least γ ·

√
m.

The following key result shows that if a function f has ε-approximate degree d then
there is another function g and a distribution μ such that g is orthogonal to degree-d
polynomials and g has correlation ε with f . Sherstov [She08a] gives references in the
mathematics literature and points out a short proof by duality.

Lemma 3 (Orthogonality Lemma). If f : {0,1}m → {−1,1} is a function with ε-
approximate degree d, there exist a function g : {0,1}m → {−1,1} and a distribution μ
on {0,1}m such that:

(i) Corμ(g, f ) ≥ ε; and
(ii) ∀T ⊆ [m] with |T | ≤ d and ∀h : {0,1}|T | → R, Ex∼μ [g(x) ·h(x|T)] = 0,

where x|T denotes the m bits of x indexed by T .

3 Non-explicit Separation

In this section we prove a non-explicit separation between nondeterministic and ran-
domized protocols. As mentioned in the introduction, we restrict our attention to an-
alyzing the communication complexity of certain functions constructed from a base
function f : {0,1}m → {−1,1}, and a selection function φ . The base function we will
work with is the OR function, which takes on the value -1 if and only if any of its input
bits is 1.

We now give the definition of the function we prove the lower bound for, and then
the statement of the lower bound.

Definition 2 (Lift). Let φ be a function that takes as input k strings y1, . . . ,yk and out-
puts an m-element subset of [n]. Let f be a function on m bits. We construct a lifted
function Lift( f ,φ) as follows. On input (x ∈ {0,1}n,y1, . . . ,yk), Lift( f ,φ) evaluates φ
on the latter k inputs to select a set of m bits in x and returns the value of f on those m
bits. Formally,

Lift( f ,φ)(x,y1, . . . ,yk) := f (x|φ(y1, . . . ,yk)),
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where for a set S = {i1, . . . , im} ⊆ [n], x|S denotes the substring xi1 · · ·xim of x indexed
by the elements in S, where i1 < i2 < .. . < im.

The inputs to Lift( f ,φ) are partitioned among k + 1 players as follows: Player 0 is
given x and, for all 1 ≤ i ≤ k, Player i is given yi.

The following is the main theorem proved in this section.

Theorem 4. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large
n, for k = δ · logn, and for m = nε , the following holds. There is a distribution λ such
that if we choose a random selection function φ : ({0,1}n)k →

([n]
m

)
, we have:

Eφ [Corλ (Lift(OR,φ),Π k+1,nα
)] ≤ 1/3.

3.1 Overview of the Proof

We obtain our lower bound on the randomized communication complexity of the func-
tion Lift(OR,φ) using an analysis that follows [CA08]. In their paper, Chattopadhyay
and Ada analyze the Set-Disjointness function, and for that reason, their selection func-
tion φ must be the AND function. In our case, we allow φ to be a random function.
While our results no longer apply to Set-Disjointness, we still obtain a separation be-
tween randomized and nondeterministic communication (BPPcc

k and NPcc
k ) because, no

matter what selection function is used, Lift(OR,φ) always has an efficient nondeter-
ministic protocol.

At a more technical level, the results of [CA08] require k < loglogn because of the
relationship between n (the size of player 0’s input) and m (the number of bits the base
function OR gets applied to.) For their analysis to go through, they need n > 22k ·mO(1).
In our case, n = 2k · mO(1) is sufficient, and this allows our results to be non-trivial for
k ≤ δ logn for any δ < 1.

As mentioned earlier, we will start with the base function OR on m input bits, m =
nε � n. We lift the base function OR in order to obtain the lifted function Lift(OR,φ).
Recall that Lift(OR,φ) is a function on (k + 1)n inputs with small nondeterministic
complexity, and is obtained by applying the base function (in this case the OR func-
tion) to the selected bits of Player 0’s input, x. We want to prove that for a random φ ,
Lift(OR,φ) has high randomized communication complexity.

We start with a result of Nisan and Szegedy [NS94] who prove a lower bound on
the approximate degree of the OR function. By Lemma 3 this implies that there exists
a function g (also on m bits) and a distribution μ such that the functions g and OR are
highly correlated over μ and, furthermore, g is orthogonal to low-degree polynomials.
Now we lift the function g in order to get the function Lift(g,φ), and we define λ to be a
distribution over all (k + 1)n-bit inputs that chooses the yi’s uniformly at random and x
also uniformly at random except on the bits indexed by φ(y1, . . . ,yk) which are selected
according to μ . Since g and OR are highly correlated with respect to μ , it is not hard
to see that the lifted functions Lift( f ,φ) and Lift(g,φ)are also highly correlated with
respect to λ . Therefore, to prove that Lift( f ,φ) has low correlation with c-bit protocols
it suffices to prove that Lift(g,φ) has. To prove this, we use the correlation method.
This involves bounding the average value of Lift(g,φ) on certain k-dimensional cubes
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(cf. Lemma 1). For this, we need to analyze the distribution of the 2k sets that arise
from evaluating φ on the 2k points of the cube. Specifically, we are interested in how
much these 2k sets are “spread out,” as measured by the size of their union. If the
sets are not spread out, we use in Lemma 4 the fact that g is orthogonal to low-degree
polynomials to bound the average value of Lift(g,φ) on the cubes. This step is similar to
[She07, Cha07, LS08, CA08]. The main novelty in our analysis is that since we choose
φ at random, we can prove good upper bounds (Lemma 6) on the probability that the
sets are spread out.

3.2 Proof of Theorem 4

Let m := nε for a small ε > 0 to be determined later. Combining Lemma 2 and 3, we
see that there exists a function g and a distribution μ such that:

(i) Corμ(g,OR) ≥ 5/6; and
(ii) ∀T ⊆ [m], |T | ≤ γ

√
m and ∀h : {0,1}|T | → R, Ex∼μ [g(x)h(x|T )] = 0.

Define the distribution λ on {0,1}(k+1)n as follows. For x,y1, . . . ,yk ∈ {0,1}n, let

λ (x,y1, . . . ,yk) :=
μ(x|φ(y1, . . . ,yk))

2(k+1)n−m
,

in words we select y1, . . . ,yk uniformly at random and then we select the bits of x in-
dexed by φ(y1, . . . ,yk) according to μ and the others uniformly.

It can be easily verified that Corλ (Lift(g,φ),Lift(OR,φ)) = Corμ(g,OR) ≥ 5/6.
Consequently, for every φ and c,

Corλ (Lift(OR,φ),Π c) ≤ Corλ (Lift(g,φ),Π c)+ 2 ·Pr
λ

[Lift(OR,φ) �= Lift(g,φ)]

≤ Corλ (Lift(g,φ),Π c)+ 1/6, (1)

where in the last inequality we use that Corλ (Lift(OR,φ),Lift(g,φ)) = Eλ [Lift(OR,φ) ·
Lift(g,φ)] ≥ 5/6. Therefore, we only have to upper bound Corλ (Lift(g,φ),Π c), and
this is addressed next. We have, by the definition of λ and then Lemma 1:

Corλ (Lift(g,φ),Π c)2k
= 2m·2k

CorU(μ(x|φ(y1, . . . ,yk))g(x|φ(y1, . . . ,yk),Π c)2k

≤ 2(c+m)2k
Ey0,y1

⎡
⎣

∣∣∣∣∣∣
Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|φ(yu1
1 , . . . ,yuk

k ))g(x|φ(yu1
1 , . . . ,yuk

k ))

⎤
⎦

∣∣∣∣∣∣

⎤
⎦ , (2)

for every φ .
Our analysis makes extensive use of the following notation.

Definition 3. Let S = (S1, . . . ,Sz) be a multiset of m-element subsets of [n]. Let the
range of S, denoted by

⋃
S, be the set of indices from [n] that appear in at least one set

in S. Let the boundary of S, denoted by ∂S, be the set of indices from [n] that appear in
exactly one set in the collection S.

For u ∈ {0,1}k, define Su = Su(y0,y1,φ) = φ(yu1
1 , . . . ,yuk

k ). Let S = S(y0,y1,φ) be
the multiset (Su : u ∈ {0,1}k). We define the number of conflicts in S to be q(S) :=
m ·2k −|⋃S|.
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Intuitively, |⋃S| measures the range of S, while m2k is the maximum possible value for
this range. We use the following three lemmas to complete our proof. The first Lemma 4
deals with the case where the multiset S has few conflicts. In this case, we argue that
one of the sets Su ∈ S has a very small intersection with the rest of the other sets, which
allows us to apply Property (ii) of g and μ to obtain the stated bound. A variant of
Lemma 4 appears in [CA08].

Lemma 4. For every y0,y1 and φ , if q(S(y0,y1,φ)) < γ ·√m ·2k/2, then

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su(y0,y1,φ))g(x|Su(y0,y1,φ))

⎤
⎦ = 0.

Lemma 5 gives a bound in terms of the number of conflicts in S which only uses the
fact that μ is a probability distribution. A slightly weaker version of this lemma ap-
peared originally in [CA08]. Independently of our work, Chattopadhyay and Ada have
subsequently also derived the stronger statement we give below.

Lemma 5. For every y0,y1 and φ :

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su(y0,y1,φ))

⎤
⎦ ≤ 2q(S(y0,y1,φ))

2m·2k .

Lemma 6 is the key place where we exploit the fact that φ is chosen at random to obtain
an upper bound on the probability of having a given number of conflicts in S.

Lemma 6. For every q > 0 and uniformly chosen y0,y1,φ :

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q] ≤
(

m3 ·22k

q ·n

)q

.

We defer the proofs of Lemmas 4, 5 and 6 to the Appendix. We now complete the
proof of our Theorem 4. Using Equation 2, Lemmas 4, 5 and 6, along with standard
derivations that we defer to the Appendix, we obtain that, for a uniformly chosen φ ,

Eφ [Corλ (Lift(g,φ),Π c)]2
k
≤ 2c·2k · ∑

q≥γ
√

m2k/2

(
2 ·m3 ·22k

q ·n

)q

.

Furthermore, using q ≥ γ
√

m2k/2, k = δ logn where δ < 1, and taking m = nε for a
sufficiently small ε , we get,

Eφ [Corλ (Lift(g,φ),Π c)]2
k
≤ 2c·2k · ∑

q≥γ
√

m2k/2

(
1
2

)q

≤ 2c·2k+1−γ
√

m2k/2 ≤ 22k(c−nΩ(1)).

Therefore, when c is a sufficiently small power of n we have Eφ [Corλ (Lift(g,φ),Π c)] ≤
1/6. Combining this with Equation (1), completes the proof of Theorem 4.
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4 Explicit Separation

In this section we prove our main Theorem 1. We proceed as follows. First, we prove
a derandomized version of Theorem 4 from the previous section. This derandomized
version is such that the distribution on φ can be generated using only n random bits
r. Then, we observe how including the random bits r as part of the input gives an
explicit function for the separation, thus proving Theorem 1. As we mentioned in the
introduction, the idea is that the only property of the distribution over φ that the previous
construction was using is that such a distribution is 2k-wise independent. That is, the
evaluations of φ at any 2k points, fixed and distinct, are jointly uniformly distributed,
over the choice of φ (cf. the proof of Lemma 6). The most straightforward way to obtain
explicit constructions from our previous results is thus to replace a random φ with a 2k-
wise independent distribution, and then include a description of φ as part of the input.
However, this raises some technicalities, one being that the range of our φ was a size-m
subset of [n], and it is not immediate how to give constructions with such a range. We
find it more simple to use a slightly different block-wise approach as we describe next.

We think of our universe of n bits as divided in m := nε blocks of b := n1−ε bits each,
where as before ε is a sufficiently small constant. We consider functions φ(y1, . . . ,yk)
whose output is a subset of [n] that contains exactly one bit per block. That is, φ(y1, . . . ,
yk) ∈ [b]m. The building block of our distribution is the following result about almost
t-wise independent functions. We defer its proof to the Appendix. We say that two
distributions X and Y on the same support are ε-close in statistical distance if for every
event E we have |Pr[E(X)]− Pr[E(Y )]| ≤ ε .

Lemma 7 (almost t-wise independence; [NN93]). There is a universal constant a > 0
such that for every t,b (where b is a power of 2) there is a polynomial-time computable
map

h : {0,1}t ×{0,1}a·t·logb → [b]

such that for every t distinct x1, . . . ,xt ∈ {0,1}t , the distribution (h(x1;r), . . . ,h(xt ;r)) ∈
[b]t , over the choice of r ∈ {0,1}a·t·logb, is (1/b)t -close in statistical distance to the
uniform distribution over [b]t .

We now define our derandomized distribution on φ . This is the concatenation of m of
the above functions using independent random bits, a function per block. Specifically,
for each of the m blocks of b bits, we are going to use the above function h where
t := k ·2k · (1+ logb). Jumping ahead, the large input length t is also chosen so that the
probability (over the choice of the y’s) that we do not obtain 2k distinct inputs drops
down exponentially with 2k, which is needed in the analysis. On input y1, . . . ,yk and
randomness r, we break up each yi in m blocks and also r in m blocks. The value of φ
in the j-th block depends only on the j-th blocks of the yi’s and on the j-th block of r.

Definition 4 (Derandomized distribution on φ , given parameters n, m = nε , b =
n1−ε , k = δ · logn; and a universal constant from Lemma 7). Let l := 2k · (1+ logb),
t := l · k. We define

φ : {0,1}m·t ×{0,1}m·a·t·logb → [b]m

as follows. On input (y1, . . . ,yk) ∈ {0,1}m·t and randomness r ∈ {0,1}m·a·t·logb, think of
each yi ∈ {0,1}m·l as divided in m blocks of l bits each, i.e. (yi = (yi)1 ◦ · · ·◦ (yi)m), and
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r as divided in m blocks of a · t · logb bits each, i.e. (r = r1 ◦ · · · ◦ rm). The j-th output of
φ in [b] is then

φ(y1, . . . ,yk;r) j := h((y1) j, . . . ,(yk) j︸ ︷︷ ︸
l·k=t bits

; r j︸︷︷︸
a·t·logb bits

) ∈ [b].

The distribution on φ is obtained by selecting a uniform r ∈ {0,1}m·a·t·logb and then
considering the map (y1, . . . ,yk) → φ(y1, . . . ,yk;r) ∈ [b]m.

Note that, in the above definition, the input length of each yi is m · l which up to poly-
logarithmic factors is nε ·2k = n1−Ω(1), for a sufficiently small ε depending on δ .

Theorem 5. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large
n, k := δ · logn, and m = nε , the following holds.

There is a distribution λ such that if φ : {0,1}m·t → [b]m is distributed according to
Definition 4 we have:

Eφ [Corλ (Lift(OR,φ),Π k+1,nα
)] ≤ 1/3.

Proof. The proof follows very closely that of Theorem 4. A minor difference is that
now the yi’s are over m · l bits as opposed to n in Theorem 4, but the definition of the
distribution λ in Theorem 4 immediately translates to the new setting – λ just selects
the yi’s at random. The only other place where the proofs differ is in Lemma 6, which is
where the properties of φ are used. Thus we only need to verify the following Lemma.

Lemma 8. For every q > 0 and φ distributed as in Definition (4):

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q] ≤
(

m2 ·22k

q ·b

)q

=
(

m3 ·22k

q ·n

)q

.

We defer its proof to the Appendix, and we prove the main Theorem of this work.

Theorem 1 (Main Theorem; NPcc
δ logn �⊂ BPPcc

δ logn). (Restated.) For every fixed δ <

1, sufficiently large n and k = δ · logn, there is an explicit function f : ({0,1}n)k → {0,1}
such that: f can be computed by k-player nondeterministic protocols communicating
O(logn) bits, but f cannot be computed by k-player randomized protocols communicat-
ing no(1) bits.

Proof. Let f (x,(y1,r),y2, . . . ,yk) := OR(x|φ(y1, . . . ,yk;r)), where φ is as in Definition
4. We partition an input (x,(y1,r),y2, . . . ,yk) as follows: Player 0 gets x, Player 1 gets
the pair (y1,r), where r is to be thought of as selecting which φ to use, and player
i > 1 gets yi. Let p be the distribution obtained by choosing r uniformly at random, and
independently (x,y1, . . . ,yk) according to the distribution λ in Theorem 5.

It is not hard to see that f has a nondeterministic protocol communicating O(logn)
bits: We guess a bit position i and then the player that sees (y1,r),y2, . . . ,yk verifies that
the position i belongs to φ(y1, . . . ,yk;r), and another player verifies that xi = 1.
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To see the second item observe that:

Corp( f ,Π k+1,nα
) = max

π∈Π k+1,nα
Er[E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]]

≤ Er[ max
π∈Π k+1,nα

E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]] ≤ 1/3,

where the last inequality follows by Theorem 5. Again, the claim about randomized
communication follows by standard techniques, cf. Fact 3.

To conclude, we need to verify that we can afford to give r as part of the input
without affecting the bounds. Specifically, we need to verify that |(y1,r)| ≤ n. Indeed,
|(y1,r)| ≤ m · l + O(m · t · logb) = m ·2k(1 + logb)+ O(m ·2k(1 + logb)k · logb) which
is less than n when k = δ logn for a fixed δ < 1, m = nε for a sufficiently small ε , and
n is sufficiently large (recall b ·m = n, and in particular b ≤ n.)

As is apparent from the proofs, and similarly to previous works [She08b], our lower
bound Theorems 4 and 5 hold more generally for any function of the form Lift( f ,φ)
for an arbitrary base function f . The communication bound is then expressed in terms
of the approximate degree of f . In our paper, we focused on f = OR for concreteness.
However, also note that the choice of f = OR is essential in Theorem 1 in order for
Lift( f ,φ) to have a cheap nondeterministic protocol.

5 Communication Bounds for Constant-Depth Circuits

In this section we point out how Theorem 5 from the previous section gives us some new
communication bounds for functions computable by constant-depth circuits. Specifi-
cally, the next theorem, which was also stated in the introduction, gives communication
bounds for up to k = A · loglogn players for functions computable by constant-depth cir-
cuits (whose parameters depend on A), whereas previous results [Cha07, LS08, CA08]
require k < log logn.

Theorem 2 (Someconstant-depthcircuitsrequirehighcommunication). (Restated.)
For every constant A > 1 there is a constant B such that for sufficiently large n and
k := A loglogn there is a function f : ({0,1}n)k → {0,1} which satisfies the following:
f can be computed by circuits of size nB and depth B, but f cannot be computed by
k-player randomized protocols communicating no(1) bits.

Proof. Use the function from the proof of Theorem 1. This only requires computing
(2k = logA n)-wise independent functions on logO(A) n bits. (As mentioned before, al-
though Theorem 5 uses the notion of almost t-wise independence, for small values of
k, such as those of interest in the current proof, we can afford to use exact t-wise in-
dependence, i.e. set the distance from uniform distribution to 0). Such functions can be
computed by circuits of size nB and depth B, for a constant B that depends on A only.
To see this, one can use the standard constructions based on arithmetic over finite fields
[CG89, ABI86] and then the results from [HV06, Corollary 6]. Equivalently, “scale
down” [HV06, Theorem 14] as described in [HV06, Section 3].



Separations between Nondeterministic and Randomized Multiparty Communication 383

It is not clear to us how to prove a similar result for k = ω(loglogn). This is because our
approach would require computing almost (2k = logω(1) n)-wise independent functions
on logω(1) n bits by nO(1)-size circuits of constant depth, which cannot be done (even
for almost 2-wise independence). The fact that this cannot be done follows from the
results in [MNT90] or known results on the noise sensitivity of constant-depth circuits
[LMN93, Bop97].

We point out that Theorem 2 can be strengthened to give a function that has corre-

lation 2−nΩ(1)
with protocols communicating no(1) bits. This can be achieved using the

Minsky-Papert function instead of OR (cf. [She07, Cha07]).
Finally, Troy Lee (personal communication, May 2008) has pointed out to us that the

analogous of our Theorem 2 for deterministic protocols can be easily obtained from the
known lower bound for generalized inner product (GIP) [BNS92]. This is because it is
not hard to see that for every constant c there is a circuit of depth B = B(c) and size nB

that has correlation at least exp(−n/ logc n) with GIP – just compute the parity in GIP
by brute-force on blocks of size logc n – but on the other hand low-communication k-
party protocols have correlation at most exp(−Ω(n/4k)) with GIP [BNS92]. However,
this idea does not seem to give a bound for randomized protocols or a correlation bound,
whereas our results do.
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