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Abstract. This paper studies how to optimally embed a general met-
ric, represented by a graph, into a target space while preserving the
relative magnitudes of most distances. More precisely, in an ordinal em-
bedding, we must preserve the relative order between pairs of distances
(which pairs are larger or smaller), and not necessarily the values of
the distances themselves. The relaxation of an ordinal embedding is the
maximum ratio between two distances whose relative order is inverted
by the embedding. We develop polynomial-time constant-factor approx-
imation algorithms for minimizing the relaxation in an embedding of an
unweighted graph into a line metric and into a tree metric. These two
basic target metrics are particularly important for representing a graph
by a structure that is easy to understand, with applications to visualiza-
tion, compression, clustering, and nearest-neighbor searching. Along the
way, we improve the best known approximation factor for ordinally em-
bedding unweighted trees into the line down to 2. Our results illustrate
an important contrast to optimal-distortion metric embeddings, where
the best approximation factor for unweighted graphs into the line is
O(n1/2), and even for unweighted trees into the line the best is Õ(n1/3).
We also show that Johnson-Lindenstrauss-type dimensionality reduction
is possible with ordinal relaxation and �1 metrics (and �p metrics with
1 ≤ p ≤ 2), unlike metric embedding of �1 metrics.

1 Introduction

The maturing field of metric embeddings (see, e.g., [IM04]) originally grew out of
the more classic field of multidimensional scaling (MDS). In MDS, we are given a
finite set of points and measured pairwise distances between them, and our goal
is to embed the points into some target metric space while (approximately) pre-
serving the distances. Originally, the MDS community considered embeddings
� Supported in part by NSF under grant number ITR ANI-0205445.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 21–34, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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into an �p space, with the goal of aiding in visualization, compression, clustering,
or nearest-neighbor searching; thus, the focus was on low-dimensional embed-
dings. An isometric embedding preserves all distances, while more generally,
metric embeddings trade-off the dimension with the fidelity of the embeddings.

But the distances themselves are not essential in nearest-neighbor searching
and many contexts of visualization, compression, and clustering. Rather, the
order of the distances captures enough information; in order words, we only need
an embedding of a monotone mapping of the distances into the target metric
space. The early MDS literature considered such embeddings heavily under the
terms ordinal embeddings, nonmetric MDS, or monotone maps [CS74, Kru64a,
Kru64b, She62, Tor52].

While the early work on ordinal embeddings was largely heuristic, there has
been some work with provable guarantees since then. Define a distance matrix
to be any matrix of pairwise distances, not necessarily describing a metric. Shah
and Farach-Colton [SFC04] have shown that it is NP-hard to decide whether
a distance matrix can be ordinally embedded into an additive metric, i.e., the
shortest-path metric in a tree. Define the ordinal dimension of a distance matrix
to be the smallest dimension of a Euclidean space into which the matrix can be
ordinally embedded. Bilu and Linial [BL04] have shown that every matrix has
ordinal dimension at most n − 1. They also applied the methods of [AFR85] to
show that (in a certain well-defined sense) almost every n-point metric space
has ordinal dimension Ω(n). It is also known that ultrametrics have ordinal
dimension exactly n − 1 [ABD+].

While ordinal embeddings and ordinal dimension provide analogs of exact
isometric embedding with monotone mapping, Alon et al. [ABD+] introduced an
ordinal analog of distortion to enable a broader range of embeddings. Specifically,
a metric M ′ is an ordinal embedding with relaxation α ≥ 1 of a distance matrix M
if αM [i, j] < M [k, l] implies M ′[i, j] < M ′[k, l]. In other words, the embedding
must preserve the relative order of significantly different distances. Note that
in an ordinary ordinal embedding, we must respect distance equality, while in
an ordinal embedding with relaxation 1, we may break ties. The goal of the
ordinal relaxation problem is to find an embedding of a given distance matrix
into a target family of metric spaces while minimizing the relaxation. Here we
optimize the confidence with which ordinal relations are preserved, rather than
the number of ordinal constraints satisfied (as in [Opa79, CS98, SFC04]).

Our results. We develop polynomial-time constant-factor approximation algo-
rithms for minimizing the relaxation in an embedding of an unweighted graph
into a line metric and into a tree (additive) metric. These two basic target met-
rics are particularly important for representing a graph by a structure that is
easy for humans to understand, with applications to visualization, compression,
clustering, and nearest-neighbor searching.

Our 10/3-approximation for unweighted graphs into the line (Section 3) illus-
trates an important contrast to optimal-distortion metric embeddings, where the
best approximation factor for unweighted graphs into the line is O(n1/2), and
even for unweighted trees into the line the best is Õ(n1/3) [BDG+05]. This result
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significantly generalizes the previously known 3-approximation for minimum-
relaxation ordinal embedding of unweighted trees into the line [ABD+]. Along
the way, we also improve this result to a 2-approximation. The main approach
of our algorithm is to embed the given graph G into the line with additive
distortion at most 4α (2α from expansion and 2α from contraction), where α is
the minimum relaxation of an ordinal embedding of G into a tree. We show that
this embedding has (multiplicative) ordinal relaxation at most 4α, a property
not necessarily true of multiplicative distortion. When G is a tree, we show that
the embedding is contractive, and thus we obtain a 2-approximation. For general
graphs G, we modify the embedding by contracting certain distances to improve
the (asymptotic) approximation factor to 10/3.

Our 27-approximation for unweighted graphs into trees (Section 4) is in fact
an approximation algorithm for both minimum-relaxation ordinal embedding
and minimum-distortion metric embedding. We show that lower bounds on the
ordinal relaxation (which are also lower bounds on metric distortion) provide
new insight into the structure of both problems. Our result improves the best
previous 100-approximation for metric distortion, and is also the first illustration
that relaxation and distortion are within constant factors of each other in this
context. The main approach of our algorithm is to construct a supergraph H of
the given graph G such that (1) G can be embedded into H with distortion at
most 9α, where α is the minimum relaxation of an ordinal embedding of G into
a tree, and (2) H can be embedded into a spanning tree of H with distortion
at most 3. The resulting embedding of distortion 27 α is a 27-approximation for
both distortion and relaxation.

In each context where we obtain constant-factor approximations, e.g., or-
dinally embedding unweighted graphs into the line, it remains open to prove
NP-hardness or inapproximability of minimizing relaxation.

Another topic of recent interest is dimensionality reduction. The famous
Johnson-Lindenstrauss Theorem [JL84] guarantees low-distortion reduction to
logarithmic dimension for arbitrary �2 metrics, but recently it was shown that the
same is impossible without significant distortion for �1 metrics [BC05, LN04] (de-
spite their usefulness and flexibility for representation). In contrast, we show in
Section 5 that arbitrary �1 metrics can be ordinally embedded into logarithmic-
dimension �1 space with relaxation 1+ε for any ε > 0. More generally, our analog
of the Johnson-Lindenstrauss Theorem applies to �p metrics with 1 ≤ p ≤ 2. We
show that this result in fact follows easily from a combination of known results:
the monotone property of ordinal embeddings, power transformations for mak-
ing metrics Euclidean, the Johnson-Lindenstrauss Theorem, and Dvoretzky-type
results to return to the desired �p space [FLM77, Ind07].

2 Definitions

In this section, we formally define ordinal embeddings and relaxation (as in
[ABD+]) as well as the contrasting notions of metric embeddings and distortion.
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Consider a finite metric D : P ×P → [0, ∞) on a finite point set P—the source
metric—and a class T of metric spaces (T, d) ∈ T where d is the distance function
for space T—the target metrics. An ordinal embedding (with no relaxation) of
D into T is a choice (T, d) ∈ T of a target metric and a mapping φ : P → T
of the points into the target metric such that every comparison between pairs
of distances has the same outcome: for all p, q, r, s ∈ P , D(p, q) ≤ D(r, s) if and
only if d(φ(p), φ(q)) ≤ d(φ(r), φ(s)). Equivalently, φ induces a monotone function
D(p, q) �→ d(φ(p), φ(q)). An ordinal embedding with relaxation α of D into T is
a choice (T, d) ∈ T and a mapping φ : P → T such that every comparison
between pairs of distances not within a factor of α has the same outcome: for all
p, q, r, s ∈ P with D(p, q) > α D(r, s), d(φ(p), φ(q)) > d(φ(r), φ(s)). Equivalently,
we can view a relaxation α as defining a partial order on distances D(p, q), where
two distances D(p, q) and D(r, s) are comparable if and only if they are not
within a factor of α of each other, and the ordinal embedding must preserve this
partial order on distances.

We pay particular attention to contrasts between relaxation in ordinal embed-
ding relaxation and distortion in “standard” embedding, which we call “metric
embedding” for distinction. A contractive metric embedding with distortion c of
a source metric D into a class T of target metrics is a choice (T, d) ∈ T and
a mapping φ : P → T such that no distance increases and every distance is
preserved up to a factor of c: for all p, q ∈ P , 1 ≤ D(p, q)/d(φ(p), φ(q)) ≤ c.
Similarly, we can define an expansive metric embedding with distortion c with
the inequality 1 ≤ d(φ(p), φ(q))/D(p, q) ≤ c. When c = 1, these two notions co-
incide to require exact preservation of all distances; such an embedding is called
a metric embedding with no distortion or an isometric embedding. In general,
c∗ = c∗(D, T ) denotes the minimum possible distortion of a metric embedding
of D into T . (This definition is equivalent for both contractive and expansive
metric embeddings, by scaling.)

3 Constant-Factor Approximations for Embedding
Unweighted Graphs and Trees into the Line

In this section we give an asymptotically 10/3-approximation algorithm for
minimum-relaxation ordinal embedding of the shortest-path metric of an un-
weighted graph into the line. This result shows a sharp contrast from metric
embedding, where the best known polynomial-time approximation algorithm for
unweighted graphs into the line achieves an approximation ratio of just O(n1/2),
and even for unweighted trees into the line the best is Õ(n1/3) [BDG+05]. Along
the way, we give a 2-approximation algorithm for minimum-relaxation ordinal
embedding of unweighted trees into the line, improving on the 3-approximation
of [ABD+].

Let G = (V, E) be the input unweighted graph. Suppose that there exists an
ordinal embedding h of G into the line R with relaxation α. Let u and v be the
vertices in G that h maps onto the leftmost and rightmost points, respectively,
in the line. In other words, h(u) and h(v) are the minimum and maximum values
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taken by h. The algorithm guesses the vertices u and v, i.e., repeats the following
procedure for all possible pairs of vertices u and v.

For a given guess of u and v, the algorithm computes an (arbitrary) shortest
path P from u to v in G, say visiting vertices u = v0, v1, v2, . . . , vδ = v. Then it
computes the Voronoi partition of the vertices V = V0 ∪ V1 ∪ · · · ∪ Vδ where the
sites are the vertices v0, v1, . . . , vδ of the path P , i.e., for each i ∈ {0, 1, . . . , δ}
and for each x ∈ Vi, DG(x, vi) = min{DG(x, vj) | vj ∈ P}. In particular, vi ∈ Vi.
This partition defines a function f : V → R by f(x) = i for x ∈ Vi. This
function will turn out to be a good embedding if G is a tree, but it will need
further refinement for general graphs. We begin by deriving some properties of f .

Lemma 1. For any i ∈ {0, 1, . . . , δ} and any x ∈ Vi, we have α ≥ DG(x, vi),
and if G is a tree, we have α ≥ DG(x, vi) + 1.

Proof. Suppose for contradiction that some vertex x ∈ Vi has α < DG(x, vi).
Consider the ordinal embedding h of G into R with relaxation α. By construction,
h(v0) ≤ h(x) ≤ h(vδ), so some j with 0 ≤ j < δ has h(vj) ≤ h(x) ≤ h(vj+1). By
assumption, DG(x, vj) ≥ DG(x, vi) > α = α DG(vj , vj+1) = α. By definition of
relaxation, |h(x) − h(vj)| > |h(vj) − h(vj+1)|, contradicting that h(vj) ≤ h(x) ≤
h(vj+1).

If G is a tree, we have the property that |DG(x, vj) − DG(x, vj+1)| = 1. By
construction, both DG(x, vj) and DG(x, vj+1) are at least DG(x, vi), and hence
the larger is at least DG(x, vi) + 1 > α + 1. The rest of the proof for trees is as
above. �

Lemma 2. For any two vertices x1 and x2 in G, we have

DG(x1, x2) − 2α ≤ |f(x1) − f(x2)| ≤ DG(x1, x2) + 2α,

and if G is a tree, we have

DG(x1, x2) − 2(α − 1) ≤ |f(x1) − f(x2)| ≤ DG(x1, x2) + 2(α − 1).

Proof. Suppose x1 and x2 are in Vi1 and Vi2 , respectively. By Lemma 1,
DG(x1, vi1 ) ≤ α and DG(x2, vi2) ≤ α. By the triangle inequality, DG(x1, x2) ≤
DG(x1, vi1 ) + DG(vi1 , vi2) + DG(vi2 , x2) ≤ α + |f(x1) − f(x2)| + α. We also
have |f(x1) − f(x2)| = DG(vi1 , vi2) ≤ DG(vi1 , x1) + DG(x1, x2) + DG(x2, vi2) ≤
α+DG(x1, x2)+α. If G is a tree, we can replace each α with α−1 by Lemma 1
and obtain the stronger inequalities. �

Next we show the efficiency of f as an ordinal embedding for trees, improving
on the 3-approximation of [ABD+]:

Theorem 1. There is a polynomial-time algorithm which, given an unweighted
tree T that ordinally embeds into the line with relaxation α, computes an ordinal
embedding with relaxation 2α − 1.

Proof. We prove that the function f defined above is an ordinal embedding with
relaxation 2α − 1.
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First we claim that, for any two vertices x and y, we have |f(x) − f(y)| ≤
DT (x, y). Because T is a tree, there is a unique simple path Q from x to y.
Suppose x and y belong to Vi and Vj , respectively. If i = j, then f(x) = f(y),
and the claim is trivial. Otherwise, Q must be the simple path from x to vi to
vj (along P ) to y. Therefore the length of Q is at least |i− j| = |f(x)− f(y)|. In
other words, the embedding f does not increase the distance between x and y.

Next let x1, x2, x3, x4 be vertices of T with DT (x1, x2)/DT (x3, x4) > 2α − 1.
It remains to show that |f(x1) − f(x2)| > |f(x3) − f(x4)|. Because α ≥ 1 and
DT (x3, x4) ≥ 1, we have DT (x1, x2) > (2α−1)DT (x3, x4) ≥ 2α−2+DT (x3, x4).
By Lemma 2, we have |f(x1) − f(x2)| ≥ DT (x1, x2) − 2α + 2, which is greater
than DT (x3, x4). Above we proved that DT (x3, x4) ≥ |f(x3)− f(x4)|. Therefore
|f(x1) − f(x2)| > |f(x3) − f(x4)|. �
Before we define our embedding for general unweighted graphs, we prove a final
property of f :

Lemma 3. For any ε > 1/α, any vertex x, and any vertices y1 and y2 adjacent
to x, we have either min{f(y1), f(y2)} > f(x)−α(1+ε) or max{f(y1), f(y2)} <
f(x) + α(1 + ε).

Proof. Suppose for contradiction that there is a vertex x with neighbors y1
and y2 for which f(y1) ≤ f(x) − α(1 + ε) and f(x) ≤ f(y2) − α(1 + ε). Thus
|f(y1) − f(y2)| ≥ 2α(1 + ε). But DG(y1, y2) ≤ 2, so by Lemma 2 we conclude
|f(y1) − f(y2)| ≤ 2 + 2α, which is a contradiction for ε > 1/α. �
Finally we can define our ordinal embedding g : V → R for a general unweighted
graph G = (V, E), for any ε > 0:

g(x) =

⎧
⎨

⎩

f(x) − α/3 if x has a neighbor y in G with f(y) ≤ f(x) − α(1 + ε),
f(x) + α/3 if x has a neighbor y in G with f(y) ≥ f(x) + α(1 + ε),
f(x) otherwise.

By Lemma 3, the embedding g is well-defined. It remains to bound its relaxation.

Lemma 4. For any two vertices x1 and x2 in G, we have

DG(x1, x2) − 8α/3 ≤ |g(x1) − g(x2)| ≤ DG(x1, x2) + 8α/3.

Proof. By construction, |g(x) − f(x)| ≤ α/3 for any vertex x. By Lemma 2,

DG(x1, x2) − 2α − 2α/3 ≤ |g(x1) − g(x2)| ≤ DG(x1, x2) + 2α + 2α/3. �
Lemma 5. For any ε > 3/(2α) and any edge e = (x, y) in G, we have |g(x) −
g(y)| ≤ (4/3 + ε)α.

Proof. Without loss of generality, suppose that f(x) ≤ f(y). By Lemma 2,
|f(x) − f(y)| ≤ 1 + 2α. If f(x) < f(y) − α(1 + ε), then g(x) = f(x) + α/3
and g(y) = f(y) − α/3. In this case, we have

|g(x) − g(y)| = |f(x) − f(y)| − 2α/3 ≤ 2α + 1 − 2α/3 ≤ (4/3 + ε)α

for α ≥ 1/ε.
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It remains to consider the case f(x) ≤ f(y) + (1 + ε)α. Observe that g(x)
is equal to one of the values f(x) − α/3, f(x), and f(x) + α/3. There are also
three cases for g(y). So there are nine cases to consider. But the claim is clearly
true for eight of them. The only case for which the claim is nontrivial is when
g(x) = f(x) − α/3 and g(y) = f(y) + α/3.

In this case, we have |g(x) − g(y)| = |f(x) − f(y)| + 2α/3. By definition of g,
we conclude that there is a vertex x′ adjacent to x in G such that f(x′) ≤
f(x) − (1 + ε)α. Similarly, there is a vertex y′ adjacent to y for which we have
f(y′) ≥ f(y) + (1 + ε)α. Thus f(y′) − f(x′) ≥ (2 + 2ε)α. But we know that
DG(x′, y′) ≤ 3, and |f(x′)−f(y′)| must be at most 3+2α, which is a contradiction
for ε > 3/(2α). Therefore this case does not occur, and the claim is true for all
nine cases. �

Lemma 6. The ordinal embedding g has relaxation (10/3 + ε)α + 1 for ε >
3/(2α).

Proof. Consider x1, x2, x3, x4 ∈ V for which DG(x1, x2)/DG(x3, x4) > (10/3 +
ε)α + 1. It suffices to show that |g(x1) − g(x2)| > |g(x3) − g(x4)|. We consider
two cases.

First suppose that DG(x3, x4) > 1. Then

DG(x1, x2) − DG(x3, x4) > [(10/3 + ε)α + 1 − 1]DG(x3, x4) > 20α/3.

By Lemma 4, |g(x1) − g(x2)| ≥ DG(x1, x2) − 8α/3 and |g(x3) − g(x4)| ≤
DG(x3, x4) + 8α/3. Thus

|g(x1)−g(x2)|−|g(x3)−g(x4)| ≥ [DG(x1, x2)−8α/3]− [DG(x3, x4)+8α/3] ≥ 1.

Therefore |g(x1) − g(x2)| > |g(x3) − g(x4)|.
In the second case, there is an edge between vertices x3 and x4. We also know

that DG(x1, x2) > (10/3 + ε)α + 1. By Lemma 5, |g(x3) − g(x4)| ≤ (4/3 + ε)α.
It suffices to prove that |g(x1) − g(x2)| > (4/3 + ε)α. By Lemma 2, |f(x1) −
f(x2)| ≥ DG(x1, x2) − 2α > (4/3 + ε)α. If |g(x1) − g(x2)| ≥ |f(x1) − f(x2)|, the
claim is true. On the other hand, if |f(x1) − f(x2)| > (2 + ε)α, then because
|g(x1) − g(x2)| ≥ |f(x1) − f(x2)| − 2α/3, we have |g(x1) − g(x2)| > (4/3 + ε)α.
So we can suppose that |g(x1) − g(x2)| < |f(x1) − f(x2)| and that |f(x1) −
f(x2)| ∈ [(4/3 + ε)α, (2 + ε)α]. Without loss of generality, we can suppose that
f(x1) < f(x2), and consequently f(x2) ∈ [f(x1) + (4/3 + ε)α, f(x1) + (2 + ε)α].
Because |g(x1) − g(x2)| < |f(x1) − f(x2)|, and by the symmetry between x1
and x2, we can suppose that g(x1) = f(x1) + α/3 and g(x2) ≤ f(x2).

We conclude that there exists a vertex x5 for which e = (x1, x5) ∈ E(G)
and f(x1) + (1 + ε)α ≤ f(x5) ≤ f(x1) + 2α. As a consequence, DG(x5, x2) ≥
DG(x1, x2)−1 > (10/3+ε)α and f(x5) ∈ [f(x1)+(1+ε)α, f(x1)+2α]. Therefore
|f(x5) − f(x2)| ≤ α. But this inequality contradicts that |f(x5) − f(x2)| ≥
DG(x5, x2) − 2α ≥ (4/3 + ε)α. We conclude that |g(x1) − g(x2)| > (4/3 + ε)α,
which completes the proof. �
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Substituting ε = 3/(2α) + δ/α in Lemma 6, we obtain the following result:

Theorem 2. For any δ > 0, there is a polynomial-time algorithm which, given
an unweighted graph that ordinally embeds into the line with relaxation α, com-
putes an ordinal embedding with relaxation (10/3)α + 5/2 + δ

4 Constant-Factor Approximation for Embedding
Unweighted Graphs into Trees

In this section, we develop a 27-approximation for the minimum-relaxation ordi-
nal embedding of an arbitrary unweighted graph into a tree metric. Specifically,
we give a polynomial-time algorithm that embeds a given unweighted graph G
into a tree with (metric) distortion at most 27 αG, where αG is the minimum
relaxation needed to ordinally embed G into a tree. Because the relaxation of
an embedding is always at most its distortion [ABD+, Proposition 1], we obtain
the desired 27-approximation for minimum relaxation. Furthermore, because the
optimal relaxation is also at most the optimal distortion, the same algorithm is
a 27-approximation for minimum distortion. This result improves substantially
on the 100-approximation for minimum-distortion metric embedding of an un-
weighted graph into a tree [BIS07]. Furthermore, we obtain that the minimum
possible distortion cG is Θ(αG) for any graph G, a property which is not true in
many other cases [ABD+].

4.1 Lower Bound for Ordinal Embedding of Graphs into Trees

We start with a lower bound on the minimum relaxation needed to embed a
graph with a special structure into any tree.

Theorem 3. Any graph G has αG ≥ 2l/3 if there are two vertices u and v and
two paths P1 and P2 between them with the following properties:

1. P1 is a shortest path between u and v; and
2. there is a vertex w on P1 whose distance to any vertex on P2 is at least l.

Proof. Suppose that G can be ordinally embedded into a tree T with relaxation
less than 2l/3. Let u = v1, v2, . . . , vm = v be the vertices of the path P1 in G.
By Property 2, we have m ≥ 2l because u and v are also two vertices on P2.
Note that in addition to u and v, P1 and P2 may have more vertices in common.
Let vi be mapped onto v′i in this embedding, v′i ∈ V (T ). Let P ′ be the unique
path between v′1 and v′m in T . Also suppose that xi is the first vertex on path
P ′ that we meet when we are moving from v′i to v′m. Note that such a vertex
necessarily exists because v′m is a vertex on P ′ which we meet during our path
in T , and there might be more vertices like v′m. According to this definition, xi

is a vertex on P ′, and the vertices v′1 = x1, x2, . . . , xm = v′m are not necessarily
distinct. Let k be the maximum distance between two vertices x and y in T over
all pairs (x, y) with the property that their representatives in G are adjacent.
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Because there is exactly one path between any pair of vertices in T , we know
that, if xi 	= xi+1, then the vertex xi lies in the (shortest) path between v′i and
v′i+1 in T . Consequently, we have dT (v′i, v

′
i+1) = dT (v′i, xi) + dT (xi, v

′
i+1) where

dT (a, b) is the distance between a and b in T . Note that by definition of k, for
any i where xi 	= xi+1, the sum of these two terms is at most k. This means
that either dT (v′i, xi) or dT (xi, v

′
i+1) is at most k/2. We use this fact frequently

in the rest of proof.
Let w be the ith vertex on P1. Equivalently, let w be vi. In order to complete

our proof, we consider two cases. At first, suppose that xi−l/3 = xi−l/3+1 =
· · · = xi = xi+1 = · · · = xi+l/3. In this case, let i1 and i2 be respectively the
minimum and maximum numbers for which we have xi1 = xi = xi2 . We prove
that either dT (v′i1 , xi1) or dT (xi1 , v

′
i1−1) is at most k/2. If i1 = 1, then we have

xi1 = v′i1 and consequently dT (xi1 , v
′
i1

) = 0. Otherwise, we have xi1 	= xi1−1
and therefore we deduce that either dT (v′i1 , xi1 ) or dT (xi1 , v

′
i1−1) is at most k/2.

According to the symmetry of the case, we also have that either dT (v′i2 , xi2 ) or
dT (xi2 , v

′
i2+1) is at most k/2. Note that xi1 = xi2 . Finally we conclude that there

exist j1 ∈ {i1−1, i1} and j2 ∈ {i2, i2+1} such that dT (v′j1 , v
′
j2 ) ≤ k/2+k/2 = k.

Note that the distance between vj1 and vj2 is at least 2l/3 in G. Because there
are two adjacent vertices in G such that their distance in T is k, we can say that
the relaxation is at least 2l/3

1 = 2l/3.
Now we consider the second and final case. In this case, There exists a vertex

j1 ∈ {i+1−l/3, i+2−l/3, . . . , i−1+l/3} such that we have either xj1 	= xj1−1 or
xj1 	= xj1+1. Using each of these inequalities, we reach the fact that there exists
j2 ∈ {j1 − 1, j1, j1 + 1} for which we have dT (v′j2 , xj1 ) ≤ k/2. We define some
similar terms for path P2. Let u = u1, u2, . . . , um′ = v be the vertices of the path
P2 in graph G. Let ui is mapped onto u′

i in this embedding, u′
i ∈ V (T ). Suppose

that yi is the first vertex on path P ′ that we meet when we are moving from u′
i

to u′
m. We know that either xj1 	= v′1 or xj1 	= v′m. Without loss of generality,

suppose that xj1 	= v′1. Now we know that y1 = v′1 lies before xj1 on path P ′, and
ym′ = v′m does not lie before xj1 on this path. Therefore there exists a number
j3 for which yj3 lies before xj1 on P ′, and yj3+1 does not lie before xj1 on the
path. Therefore xj1 occurs in the (shortest) path between u′

j3 and u′
j3+1 in T . In

the other words, we have dT (u′
j3

, u′
j3+1) = dT (u′

j3
, xj1) + dT (xj1 , u

′
j3+1) ≤ k. We

can say that either dT (u′
j3 , xj1) or dT (xj1 , u

′
j3+1) is at most k/2. Suppose that

dT (u′
j3

, xj1 ) is at most k/2. The proof in the other case is exactly the same.
Finally we reach the inequality dT (v′j2 , u

′
j3

) ≤ dT (v′j2 , xj1 ) + dT (xj1 , u
′
j3

) ≤
k/2 + k/2 = k. Note that the distance between vj2 and w = vi is at most l/3
in G, and therefore the distance between vj2 and uj3 which is a vertex on path
P2 is at least l − l/3 = 2l/3 in G. Again we can say that there are two adjacent
vertices in G such that their distance in T is k, and therefore the relaxation is
at least (2l/3)/1 = 2l/3. �

4.2 27-Approximation Algorithm

In this section we embed a given graph G into a tree with distortion (and hence
relaxation) at most 27 αG. We find the embedding in two phases. At first, we
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construct graph H from the given graph G only by adding some edges to G.
Then we propose an algorithm which finds a spanning tree of H like T . Next,
we prove that the distortion of embedding G into H is at most O(αG). We also
prove that the embedding H into T has distortion at most 3. Therefore the
distortion of embedding G into T is O(αG).

Let G be the given graph. We construct H as follows. Choose an arbitrary
vertex v, and run a breadth-first search to find a tree Tv rooted at v in which
the distance between each vertex and v is equal to their distance in G. The ver-
tices of G occur in different levels of Tv. The ith level of this tree, Li, consists
of vertices whose distance to v is i. We have L0 = {v} and V (G) =

⋃n−1
i=0 Li.

In constructing H from G, we add an edge between two vertices u1 and u2 if
and only if u1 and u2 are in the same level such as Li or in two consecutive
levels such as Li and Li+1, and there is a path between u1 and u2 that does
not use the vertices of levels L0, L1, . . . , Li−1. In the other words, there exists
a path between u1 and u2 in graph G[V −

⋃i−1
j=0 Lj ] where G[X ] is the sub-

graph of G induced by vertex set X . Using Lemma 3, we prove the following
lemma.

Lemma 7. The distortion of embedding G into H is at most 9 αG.

Proof. Because we only add edges to G to form H , the distance between vertices
does not increase. Therefore this metric embedding is contractive. The distortion
of the embedding is thus maxu,v∈V (G)=V (H) dG(u, v)/dH(u, v). We also know
that this maximum is equal to max(u,v)∈E(H) dG(u, v)/dH(u, v) because, if we
know that the distance between two vertices adjacent in H is at most k in G,
then the distance between every pair of vertices in G is at most k times their
distance in H . Therefore we just need to prove that, for each edge (u1, u2) that
we add, the distance between u1 and u2 in G is at most 9 αG. In the rest of
proof, when we talk about the distance between two vertices or a path between
them, we consider all of them in graph G. Note that u1 and u2 are either in the
same level such as Li or in two consecutive levels Li and Li+1, and there is a
path P1 between them which uses only vertices in levels Li, Li+1, . . .. Consider
a shortest path P2 between u1 and u2. There is also a unique path P3 between
u1 and u2 in the breadth-first-search tree rooted at v. Note that these paths are
not necessarily disjoint. Let l be the length of P2. We prove that l ≤ 9 αG. We
consider two cases.

First suppose that there is a vertex in P2 like w that is in
⋃i−l/6

j=0 Lj. For

i < l/6,
⋃i−l/6

j=0 Lj is empty. The distance between w and any vertex in P1 is
at least l/6 because the distance between v and w is at most i − l/6, and the
distance between v and any vertex in P1 is at least i. Applying Lemma 3 to P2
as the shortest path, P1 as the other path, and vertex w, G cannot be ordinally
embedded into any tree with relaxation less than 2

3 · l
6 = l/9. Therefore 9 αG ≥ l.

In the second case, all vertices of the path P2 are in
⋃n−1

j=i+1−l/6 Lj, including
the vertex in the middle of P2. Let w be the vertex in the middle of the P2.
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Because P2 is a shortest path, the distance between w and u1 and u2 is at least
l−1
2 . We assert that the distance between w and any vertex in the path P3 is

at least l/6. Consider a vertex in P3 like x. If x is in
⋃i+1−l/3

j=0 Lj , the distance
between w and x is at least (i+1− l/6)− (i+1− l/3) = l/6. Otherwise because
of the special structure of path P3, the distance between x and at least one of
the vertices u1 and u2 is at most i + 1 − (i + 1 − l/3 + 1) = l/3 − 1. Because
the distance between w and both u1 and u2 is at least l−1

2 , we can say that
the distance between w and x is at least l−1

2 − (l/3 − 1) ≥ l/6. Again applying
Lemma 3 to P2 as the shortest path, P3 as the other path, and vertex w, G
cannot be ordinally embedded into any tree with relaxation less than 2

3 · l
6 = l/9.

Therefore 9 αG ≥ l. �

Now we are going to find a spanning tree T of H with distortion at most 3.
Before proposing the algorithm, we mention some important properties of H .

The subgraph G[Li] of H induced by vertices in level Li is a union of some
cliques. In fact, if there are two edges (a, b) and (b, c) in G[Li], then there must
be a path between a and b in G that uses only vertices in

⋃n−1
j=i Lj, and also

a path between b and c in G which uses only vertices in
⋃n−1

j=i Lj . Therefore
there exists a path between a and c in G that uses only vertices in

⋃n−1
j=i Lj .

Consequently we must have added an edge between a and c in constructing H
from G. Because the connectivity relation in each level is transitive, each level
is a union of some cliques. There is another important property of H . For any
a, b ∈ Li+1 and c ∈ Li, if b is adjacent to both a and c in H , then there must be
an edge between a and c in H . The claim is true because of the special definition
of edges in H . Therefore, for each clique in level Li+1, there exists a vertex in
Li that is adjacent to all vertices of that clique.

Now we find the tree T as follows. For any i > 0 and any clique C in level Li,
we just need to find a vertex vC in Li−1 that is adjacent to all vertices in C,
and then add all edges between vertex vC and the vertices in C into the tree.
Actually this tree is a breadth-first-search tree in graph H .

Lemma 8. The distortion of embedding H into T is at most 3.

Proof. It is clear that we obtain a spanning tree T . The embedding is expansive
because T is a subgraph of H . In order to bound the distortion of this embedding,
we must prove that, for each edge (x, y) in H , the distance between x and y is
at most 3 in T . There are two kinds of edges in H : the edges between vertices in
the same level and edges between vertices in two consecutive levels. If x and y
are in the same level Li, then they are connected to a vertex z in Li−1 in tree T .
Therefore their distance in tree T is 2. Otherwise, suppose that x is in Li and y
is in Li−1. Vertex x is connected to a vertex z in Li−1 in tree T . If z = y, then
the claim is clear. If y 	= z, then by definition, there is an edge between y and z
in H , and they are also in the same level Li−1. Therefore the distance between
y and z in T is 2, and consequently the distance between x and y is 3 in T . �
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Combining Lemmas 7 and 8, we obtain the following result:

Theorem 4. There is a polynomial-time algorithm that embeds a given graph
G into a tree with distortion at most 27 αG.

5 Dimensionality Reduction in �1

In this section, we prove that dimensionality reduction in �1, and indeed any
�p space with 1 ≤ p ≤ 2, is possible with ordinal embeddings of logarithmic
dimension and relaxation 1 + ε. This result sharply contrasts metric embedding
distortion, where any embedding of an �1 metric of distortion c requires nΩ(1/c2)

dimensions in �1 [BC05, LN04].

Theorem 5. Any �p metric with 1 ≤ p ≤ 2 can be embedded into O(ε−4 lg n)-
dimensional �p space with ordinal relaxation 1 + ε, for any ε > 0 and positive
integer p.

Proof. First we take the (p/2)th power of the pairwise distances in the given
�p metric D. The resulting metric D′ is an �2 metric [Sch38, WW75]; see also
[MN04]. Also, because x �→ xp/2 is a monotone function, D′ is an ordinal embed-
ding of D (without relaxation). Next we apply Johnson-Lindenstrauss �2 dimen-
sionality reduction [JL84] to obtain an d = O((log n)/δ2)-dimensional �2 metric
D′′ with 1+δ distortion relative to D′. Finally, we can embed this d-dimensional
�2 metric into O(d/δ2)-dimensional �p space D′′′ with distortion 1 + δ relative
to D′′ [FLM77]; see also [Ind07, JS03]. [Is [FLM77] the right reference for
O(1/δ2) dimension blowup?] Thus D′′′ is an O((log n)/δ4)-dimensional �1
metric with distortion (1 + δ)2 relative to D′.

We claim that D′′′ is an ordinal embedding of D with relaxation at most
1 + ε for any desired ε > 0 and a suitable choice of δ. Suppose we have two
distances D[p, q] and D[r, s] with D[p, q]/D[r, s] ≥ 1+ε for a desired ε > 0. Then
D′[p, q]/D′[r, s] = D′[p, q]2/p/D′[r, s]2/p = (D′[p, q]/D′[r, s])2/p ≥ (1 + ε)2/p ≥
1 + (2/p)ε. Thus, if we choose δ < min{ 2

3ε/p, 1}, then the distortion of D′′′

relative to D′ is (1 + δ)2 ≤ 1 + 3δ < 1 + (2/p)ε ≤ D′[p, q]/D′[r, s], so the
embedding preserves the order of distances D′′′[p, q] > D′′′[r, s]. Therefore the
relaxation of D′′′ relative to D is at most 1 + ε as desired. The dimension of the
D′′′ embedding is O((log n)/δ4) = O((log n)/ε4). �

This approach is pleasingly simple in its use of prior results as black boxes. By
more involved arguments, it may be possible to improve the dependence on ε in
the number of dimensions by directly analyzing with a modification of Johnson-
Lindenstrauss [JL84] and avoiding the use of [FLM77].
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