
Santa Claus Meets Hypergraph Matchings

Arash Asadpour1,�, Uriel Feige2, and Amin Saberi3

1 Stanford University, Stanford CA 94305, USA
asadpour@stanford.edu

2 Weizmann Institute, Rehovot 76100, Israel
uriel.feige@weizmann.ac.il

3 Stanford University, Stanford CA 94305, USA
saberi@stanford.edu

Abstract. We consider the problem of max-min fair allocation of indi-
visible goods. Our focus will be on the restricted version of the problem
in which there are m items, each of which associated with a non-negative
value. There are also n players and each player is only interested in some
of the items. The goal is to distribute the items between the players such
that the least happy person is as happy as possible, i.e. one wants to
maximize the minimum of the sum of the values of the items given to
any player. This problem is also known as the Santa Claus problem [3].
Feige [9] proves that the integrality gap of a certain configuration LP,
described by Bansal and Sviridenko [3], is bounded from below by some
(unspecified) constant. This gives an efficient way to estimate the opti-
mum value of the problem within a constant factor. However, the proof
in [9] is nonconstructive: it uses the Lovasz local lemma and does not
provide a polynomial time algorithm for finding an allocation. In this pa-
per, we take a different approach to this problem, based upon local search
techniques for finding perfect matchings in certain classes of hypergraphs.
As a result, we prove that the integrality gap of the configuration LP is
bounded by 1

5 . Our proof is nonconstructive in the following sense: it
does provide a local search algorithm which finds the corresponding allo-
cation, but this algorithm is not known to converge to a local optimum
in a polynomial number of steps.

1 Introduction

Resource allocation problems, i.e. allocating limited resources to a number of
players while satisfying some given constraints, have been studied extensively in
computer science, operations research, economics, and the mathematics litera-
ture. Depending on whether the resource is divisible or not one can distinguish
two main types of such problems. The divisible case has been considered mostly
by combinatorists and measure theorists in the past century under the title of
“Cake Cutting” problems [16,5]. On the other hand, the indivisible resource al-
location problems have been mostly the focus of algorithmic lines of research. In
� The first and third authors were supported through NSF grants 0546889 and 0729586

and a gift from Google.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 10–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Santa Claus Meets Hypergraph Matchings 11

such problems, often the set of resources R consists of m items. There is also a
set P of n players. Each player i has a value function fi : 2S → IR. For the sake
of simplicity we define vij = fi({j}). The goal is to partition the set of items to
subsets S1, S2, · · · , Sn and allocate each part to one of the players such that a
certain objective function is optimized.

Depending on the objective functions, various indivisible resource allocation
problems can be considered. For example, the problem of maximizing social
welfare arises when we want to maximize

∑
i fi(Si). See [6,8,10,17] for recent

progress on this problem.
Minimizing the makespan is another example of indivisible resource alloca-

tion problems in which the goal is to minimize maxi fi(Si) and fi’s are linear
functions, i.e. fi(Si) =

∑
j∈Si

vij . Lenstra, Shmoys and Tardos [15] provide a
2-approximation algorithm and also prove that the problem is hard to approxi-
mate within a factor of 1.5. Approximation ratios better than 2 are known for
some very special cases of this problem [7].

Another interesting trend in indivisible resource allocation is Max-min fair
allocation problems. Here, we aim to maximize mini fi(Si) while fi’s are still lin-
ear functions. Although very similar at the first glance, this problem has turned
out to be fundamentally different from minimizing the makespan and the tech-
niques that are known to be useful there fail to give non-trivial results here.
Most notably, the assignment LP used in [15] yields an additive approximation
of maxij vij [4]. It can be used to find a solution of value at least OPT−maxij vij ,
where OPT is the value of the optimal solution. Unfortunately, it offers no
approximation guarantee in the most challenging cases of the problem when
OPT ≤ maxij vij .

Bansal and Sviridenko [3] studied this problem under the name of the Santa
Claus problem, where Santa wants to distribute some presents among some kids
and his goal is to do this in such a way that the least happy kid is as happy as
possible. They considered a certain type of linear programming relaxation of the
problem (known as configuration LP that we will explain shortly), and showed
that it can be used to find a solution with value at least OPT/n. They also
showed that the integrality gap of this LP is no better than O(1/

√
n). Asadpour

and Saberi [2] showed how to round the solution of configuration LP to get a
solution with value at least Ω(OPT/

√
n(log n)3).

Our focus here will be on a special case of the Max-min fair allocation problem,
known as restricted assignment problem, in which each item j has an inherent
value vj and a set of players to which the item can be assigned. In other words,
for each such player i, the value of vij is vj and for all other players it is 0.
Bezakova and Dani [4] showed that this problem is hard to approximate within
a factor better than 1

2 . (In fact, this is also the best hardness result known
for the general problem.) Bansal and Sviridenko [3] showed that it is possible
to round the values of the configuration LP and get a feasible solution with
value Ω(OPT log log log n/ log log n). Recently, Feige [9] proved that the optimal
value of the configuration LP is in fact within a constant factor of OPT. Al-
though [9] does not give a polynomial time algorithm to find a constant factor

12 A. Asadpour, U. Feige, and A. Saberi

approximation solution, it does provide a constant factor estimation for the op-
timal value of the problem1. This is due to the fact that the configuration LP
can be solved (up to arbitrary precision) in polynomial time, and its value is an
upper bound on OPT. The main result of this paper can be summarized as the
following:

Theorem 1. In the restricted assignment problem, there is a polynomial time
algorithm that estimates the optimal value of max-min allocation problem within
a factor of 1

5 − ε, where ε > 0 is an arbitrarily small constant.

The polynomial time algorithm referred to in the above theorem is simply the
configuration LP. The proof of the 1

5 estimation factor will follow from our
proof that the optimal value of the configuration LP is at most 5OPT. There
is a small loss of ε in the estimation factor because the known polynomial time
algorithms [3] solve the configuration LP up to any desired degree of accuracy,
but not necessarily exactly.

Our proof of Theorem 1 transforms the problem into a problem of finding
a perfect matching in certain hypergraphs. We design a local search algorithm
that finds such a perfect matching. It is inspired by the techniques of [11] which
will be discussed in Sect.2. This method can be viewed as a generalization of
Hungarian method [14] to the domain of hypergraphs.

Comparing our results to those in [9], our result has the advantage of providing
an explicit bound (of 1

5) on the integrality gap of the configuration LP. Also, our
proof technique suggests an algorithmic approach to round the solution of the
configuration LP. While in [9] multiple applications of the Lovasz local lemma
are used, here we introduce a local search algorithm and prove that it ends up
in a solution with value at least OPT

5 . Although we cannot bound the running
time within a polynomial, it puts the problem in the complexity class PLS2 and
proposes the open question of whether this local search (or a modified version
of it) converges in polynomial time to an appropriate solution.

1.1 The Configuration LP

Fix a real number t and suppose that we want to see if it is possible to do the
allocation in such a way that each player i receives a bundle of items Si with
fi(Si) ≥ t. For any bundle S of items, let xiS be the indicator 0/1 variable,
representing if the whole bundle S is allocated to person i (in this case xiS will
be 1) or not (xiS = 0). To provide a bundle with value at least t for every person,
we need to solve the following integer program:

1 We emphasize that all the results related to the hardness of approximation remains
valid even for estimating the optimal value of the problem.

2 The complexity class PLS consists of problems for which, given any input instance
there exists a finite set of solutions and an efficient algorithm to compute a cost for
each solution, and also a neighboring solution of lower cost provided that one exists.
Then the problem is to find a solution, namely a local optimum, that has cost less
than or equal to all its neighbors. For more information, see [12].

Santa Claus Meets Hypergraph Matchings 13

– Every player only accepts bundles with value at least t; ∀i : xiS = 0 whenever
fi(S) < t.

– Every player receives one bundle; ∀i :
∑

S xiS = 1.
– Every item is allocated to at most one player: ∀j :

∑
i,S|j∈S xiS ≤ 1.

– xiS ∈ {0, 1} for every player i and bundle S.

The configuration LP is the relaxation of the above integer program. The last
constraint is replaced by xiS ≥ 0

If the LP is feasible for some t0, then it is also feasible for all t ≤ t0. Let optLP
be the maximum of all such values of t (it can be shown that such maximum
exists). Every feasible allocation is a feasible solution of configuration LP. Hence
optLP ≥ OPT. The value of optLP and a feasible solution to the configuration
LP of value optLP can be approximated within any desired degree of accuracy
in polynomial time, as shown in [3].

In this paper we show that any fractional solution of configuration LP corre-
sponding to optLP can be rounded (though not necessarily in polynomial time)
to an integral solution whose value is within a constant factor of optLP. We
provide two versions of our proof. In Section 2 we show how this result can be
deduced by combining (in a blackbox manner) a previous intermediate result of
Bansel and Sviridenko [3] with a theorem of Haxell [11]. In Section 3 we provide
our main result which is basically a local search that finds an integral solution
with value at least optLP

5 . The proof in Section 3 is inspired by the results of
Section 2, but is presented in a self contained way. It circumvents the use of the
intermediate result of [3], and extends the proof technique of [11] in certain ways.
Any of the two sections 2 and 3 can be read and understood without needing to
read the other section.

2 Matchings in Hypergraphs

Let H = (V, E) be a hypergraph. A matching in H is a set of pairwise disjoint
edges. We denote by ν(H) the maximum size of a matching in H. A matching is
called perfect if any vertex appears in exactly one of its edges. Unlike the case for
matchings in graphs, the problem of finding a perfect matching in hypergraphs is
NP-complete. (A well known special case of this problem is the NP-hard problem
of 3-dimensional matching. Note that 3-dimensional matching can also be cast as
a special case of finding a perfect matching in a bipartite hypergraph, a problem
that we shall describe below.) There are some sufficient conditions known for
the existence of perfect matchings in hypergraphs. See for example [1] and [13].
Some of these sufficient conditions are not computable in polynomial time.

Here, we focus on the problem of finding a maximum matching in bipartite
hypergraphs. A hypergraph H = (V, E) is called bipartite if the ground set V is
the disjoint of sets U and V , and every E ∈ E satisfies |E ∩ U | = 1. A perfect
matching in a bipartite hypergraph is defined as a matching that saturates all
the vertices in U . A transversal for hypergraph H is a subset T ⊆ V with the
property that E ∩ T
= ∅ for every E ∈ E . Let τ(H) denote the minimum size

14 A. Asadpour, U. Feige, and A. Saberi

of a transversal of H. For a subset C ⊆ U , we write EC = {F ⊆ V : {c} ∪ F ∈
E for some c ∈ C}, and let HC be the hypergraph (V, EC). The following theorem
is proved by Haxell in [11].

Theorem 2. (Haxell [11]) Let H = (U ∪ V, E) be a bipartite hypergraph such
that for every E ∈ E we have |E∩V | ≤ r−1, and also τ(HC) > (2r−3)(|C|−1)
for every C ⊆ U . Then ν(H) = |U |.

When r = 2, H becomes a graph, and Haxell’s theorem reduces to Hall’s theorem.
The proof of Theorem 2 as described in [11] is not constructive.

2.1 A Constant Integrality Gap

In this section, we will consider a combinatorial conjecture (which is by now
a theorem, by the results of [9]) which is equivalent up to constant factors to
the restricted assignment problem, and prove it via Theorem 2. It reveals the
intuition behind the relation between the restricted assignment problem and
matchings in hypergraphs. Also, it is through this transformation that our local
search appears.

Bansal and Sviridenko proved that if the following conjecture is true for some
β, then it can be shown that the integrality gap of configuration LP relaxation
for the restricted assignment problem is Ω(β).

Conjecture (by Bansal and Sviridenko [3]): There is some uni-
versal constant β > 0 such that the following holds. Let C1, · · · , Cp be
collections of sets, Ci = {Si1, · · · , Sil} for i = 1, · · · , p, where each set Sij

is a k-element subset of some ground set and each element appears in at
most l sets Sij . Then there is a choice of some set Si,f(i) ∈ Ci for each
i = 1, · · · , p, and a choice S′

i ⊆ Si,f(i) with the property that |S′
i| ≥ βk

and that each element occurs in at most one set in {S′
1, · · · , S′

p}.

For every value k, it is not hard to see that the conjecture is true when
β = 1/k. Feige [9] shows that the conjecture is true for some small enough
universal constant β, for all values of k. Here, using Theorem 2 we prove that it
is true even for β = 1

5 . (For every k ≥ 3, our value of β is the largest number
satisfying two constraints. Namely, that (1 − β) ≥ 2β, which will be needed in
the proof of Theorem 3, and that βk is an integer. Hence , β = 1/3 when k is
divisible by 3, but might be as small as 1

5 for k = 5.)

Theorem 3. Conjecture 2.1 is true for any β ≤ �k/3�
k

Proof. Consider the following bipartite hypergraph H = (U ∪ V, E). Here, V =⋃
i,j Si,j and U = {a1, a2, · · · , ap}. Also E = {S∪{ai} : S ⊆ Si,j for some j, |S| =

βk}. Note that here r = βk + 1. By the construction of H, it is enough to prove
that H has a perfect matching (i.e. a matching with size |U |). We will do so by
showing that H satisfies the conditions of Theorem 2.

Consider an arbitrary C ⊂ U and a transversal set T in HC . Because T is a
transversal set in HC , it must have some intersection with all the edges in HC .

Santa Claus Meets Hypergraph Matchings 15

But edges in HC correspond to all subsets S of V with βk elements such that for
some j and ai ∈ C it holds that S ⊆ Si,j . It means that for any such i and j, at
least (1−β)k elements of Si,j should be in T . (In fact, the number of elements of
Si,j in T should be at least (1 − β)k + 1, but the extra +1 term does not appear
to have a significant effect on the rest of the proof, so we omit it.)

Now, consider a bipartite graph G = (V ′, E) such that V ′ = U ′ ∪ T where
U ′ =

⋃
i∈C{ai,1, · · · , ai,l} and E = {{ai,j, q} : q ∈ Si,j}. By the above discussion,

deg(v) ≥ (1 − β)k, for all v ∈ U ′. Hence, |E| ≥ (1 − β)k|C|l. Also by the
assumption of the conjecture, deg(v) ≤ l for all v ∈ V ′. Hence |E| ≤ l|T |.
Therefore,

l|T | ≥ (1 − β)k|C|l.
Thus, |T | ≥ (1 − β)k|C| = 1−β

β (r − 1)|C|. Picking any β ≤ 1/3, we have
|T | ≥ 2(r − 1)|C| which means that τ(HC) > (2r − 3)(|C| − 1) for every C ⊆ U .
This completes the proof. ��

3 A 1
5-approximate Solution through a Local Search

In this section we prove that the integrality gap of the configuration LP is no
worse than 1

5 .
Given a feasible solution {xiS} to the configuration LP, we modify it as follows.

To simplify notation, scale values of all items so that we can assume that t = 1.
Recall that vij ∈ {0, vj}. Call an item j fat if vj > 1

5 and thin it vj ≤ 1
5 .

(The value of 1
5 is taken with hindsight, being the largest value p satisfying

2(p + p) ≤ 1 − p, needed later in the proof of Lemma 1.) For every fat item j,
change vj so that vj = 1. Now modify the LP solution so as to make it minimal,
by restricting players to choose bundles that are minimally satisfying for the
player – dropping any item from the set reduces its value below 1. This can be
achieved in polynomial time by dropping items from sets whenever possible. We
are now left with an LP solution that uses only two types of sets:

– Fat sets. These are sets that contain only a single fat item and nothing else.
– Thin sets. These are sets that contain only thin items.

We call such a solution to the LP a minimal solution.
Construct a bipartite hypergraph based on the modified LP solution. The

U side are the players. The V side are the items. For every player i put in
hyperedges associated with those sets for which xiS > 0 as follows. If S = {j} is
a fat set, include the hyperedge {i, j}. If S is a thin set, then for every minimal
subset S′ ⊂ S of value at least 1

5 (minimal in the sense that dropping any item
from S′ reduces its value below 1

5), put in the hyperedge {i, S′}. Observe that
by minimality, S′ has weight at most 2

5 .

Theorem 4. Given any minimal solution to the configuration LP, the bipartite
hypergraph constructed above has a perfect matching (namely, a matching in
which all vertices of U are covered).

16 A. Asadpour, U. Feige, and A. Saberi

We note that Theorem 4 implies that there is an integer solution of value at
least 1

5 , since every player can get either a fat set (that contains an item of value
more than 1

5), or a part of a thin set of value at least 1
5 .

Our proof of Theorem 4 is patterned a proof of [11], with some changes. The
most significant of these changes is the use of Lemma 1.

For a set W of edges, we use the notation WU to denote the vertices of U that
are covered by W , and WV to denote the vertices of V that are covered by W .

Proof. The proof is by induction on U . For |U | = 1, the theorem is obviously true
(since the hypergraph has at least one edge). Hence assume that the theorem is
true for |U | = k, and prove for |U | = k + 1.

Denote the vertices of U by {u0, . . . uk}. By the inductive hypothesis, there is
a matching of size k involving all U vertices except for u0. (This is true because
by removing u0 from the hypergraph and all its edges, one obtains a hypergraph
which corresponds to a minimal solution to an LP with one less player.) Pick
an arbitrary such matching M . We present an algorithm that transforms this
matching into a new matching of size k + 1. The algorithm is in some respects
similar to the known algorithm for constructing matchings in bipartite graphs.
It constructs an alternating tree in an attempt to find an alternating path. In
the graph case, when such a path is found, the matching can be extended. In
the hypergraph case, the situation is more complicated, and hence the proof will
not provide a polynomial upper bound on the number of steps required until
eventually the matching is extended.

In our alternating tree, there will be two types of edges. Edges of type A are
edges that we try to add to the matching (A stands for Add). Edges of type B
will be existing matching edges (hence B ⊂ M) that intersect edges of type A,
and hence block us from adding edges of type A to the matching (B stands for
Block). Every root to leaf path will be an alternating sequence of edges of type
A and B.

The A edges will be numbered in the order in which they are added to the
alternating tree. Hence their names will be a1, a2, . . ., and these names are rela-
tive to a currently existing alternating tree (rather than being names that edges
keep throughout the execution of the algorithm). For every i ≥ 1, we associate
with edge ai an integer mi ≥ 1 that will correspond to the number of B edges
that block ai. The strict positivity of mi implies that |B| ≥ |A|.

Initially one needs to pick the first edge for the alternating tree. Pick an
arbitrary edge e such that eU = u0. Let m1 denote the number of edges from M
that eV intersects. If m1 = 0, then terminate, because the edge e can be added
to M , obtaining a perfect matching. If m1 > 0, rename e as a1, add a1 to A,
and add the m1 matching edges that intersect a1 to B.

Let i ≥ 2 and assume that the alternating tree already contains i − 1 edges
of type A (named as a1, . . . , ai−1), and at least i − 1 edges of type B. We now
pick an edge e such that eU ∈ (A ∪ B)U and eV does not intersect (A ∪ B)V .
The following lemma shows that such an edge must exist.

Santa Claus Meets Hypergraph Matchings 17

Lemma 1. Let H(U, V, E) be the hypergraph associated with a minimal solution
to the configuration LP. Then given any alternating tree as described above, there
always is an edge e such that eU ∈ (A∪B)U and eV does not intersect (A∪B)V .

Proof. Let � denote the number of vertices of U in the alternating tree. Each
hyperedge corresponds in a natural way either to a fat set or to (part of) a thin
set. Let Af (At, respectively) denote the collection of A edges in the alternating
tree that correspond to fat sets (thin sets, respectively), and similarly for Bf

and Bt with respect to B edges in the alternating tree. Observe that in an
alternating tree necessarily |Af | + |At| = |A| < � and |Bf | + |Bt| = |B| < �.
Moreover, |Af | = |Bf | = |(Af ∪ Bf)V |, because every fat edge of A contains
exactly one vertex in V , this vertex is contained only in fat edges, and hence
this fat edge is intersected by exactly one fat edge in B.

Consider now the restriction of the minimal solution to the LP to the set of
players P represented by the � vertices of (A ∪ B)U . Let Sf be the collection of
fat sets and St be the collection of thin sets. Let α =

∑
i∈P, S∈Sf

xiS denote the
total weight assigned by this restricted solution to fat sets, and let β = � − α =∑

i∈P, S∈St
xiS denote the total weight assigned by this restricted solution to

thin sets. If α > |(Af ∪ Bf)V | then it must be the case that some fat set has
positive weight in the restricted solution but is not part of the alternating tree.
In this case, this fat set can contribute a hyperedge to the alternating tree. Hence
it remains to deal with the case that α ≤ |Af |. In this case, 2β ≥ |At|+ |Bt|+2.
The hyperedges in the alternating tree that correspond to thin sets each take up
value at most 2

5 . Hence even after removing all items appearing in the alternating
tree, the sum of weights multiplied by respective remaining value of thin sets in
the LP is

∑

i∈P, S∈St

xiS

∑

j∈S\(At∪Bt)

vij >
β

5

This means than at least one thin set must have retained a value of at least
1
5 . Hence, this thin set can contribute a hyperedge to the alternating tree. ��

Pick an arbitrary hyperedge e satisfying Lemma 1 and let mi denote the number
of edges of M that e intersects. If mi > 0, we call this an extension (the alter-
nating tree grew larger), rename e as ai, add ai to A, and add the mi matching
edges that intersect ai to B.

We now describe what to do when mi = 0. If eU = u0, add edge e to the
matching M , and terminate. If eU
= u0, then let e′ be the unique edge in B for
which eU = e′U . Let aj (here necessarily we will have j < i) be the unique edge
in A that intersects e′. In the matching M , replace the matching edge e′ by the
matching edge e. Note that this still gives a valid matching of size k, because by
construction, e does not intersect any edge of M except for sharing its U side
vertex with e′, which is removed from M . Update mj by decreasing it by 1. If
the new value of mj is still positive, this step ends. However, if mj = 0, then the
above procedure is repeated with j replacing i (in particular, aj will also become
part of the matching M). Because j < i, the number of times the procedure can

18 A. Asadpour, U. Feige, and A. Saberi

be repeated is finite, and hence eventually the step must end. We call such a
step a contraction (the alternating tree becomes smaller).

This completes the description of the algorithm. Observe that the algorithm
terminates only when we extend the matching M by one more edge. Hence it
remains to show that the algorithm must terminate.

To see this, consider the evolution of vector m1, m2, . . . , mj . For simplicity
of the argument, append at the end of each such vector a sufficiently large
number (|M |+1 would suffice). We call the resulting vector the signature of the
alternating tree. We claim that the signatures of any two alternating trees are
distinct. This is because ordering the signatures by the time in which they were
generated sorts them in decreasing lexicographic order. For extension steps, this
follows from the fact that we appended |M | + 1 at the end of the respective
vector. For contraction steps, this follows from the fact that mj decreases.

Since
∑

i mi ≤ |M | and mi > 0 (whenever mi is defined), the number of
possible signatures is 2|M| (there is a one to one correspondence between these
vectors and choices of after which items to place delimiters in a sequence of |M |
items), and hence the algorithm cannot have infinite executions. ��

The proof of Theorem 4 implicitly provides a local search algorithm to find
an integral solution with value 1

5 . Its basic objects are the alternating trees. A
basic step is that of adding an edge to the tree, resulting in either an extension
step or a contraction step. The measure of progress of the local search is via the
lexicographic value of the corresponding signature. Given a matching with |M | <
n edges (an allocation to M players), it will be extended after at most 2|M| steps.
Hence starting with the empty matching it takes at most

∑n−1
|M|=0 2|M| < 2n local

search steps uptil a perfect matching is found. This corresponds to allocating
disjoint bundles of value at least optLP/5 to all players. Noting that optLP is
at least as large as the optimal solution, the following theorem is established.

Theorem 5. After 2n local moves, our algorithm finds a feasible integral 1
5 -

approximate allocation.

4 Open Directions

Characterizing the best possible approximation ratio for the max-min allocation
problem is still open, both for the restricted assignment version and for the
general version of the problem. We list here some research questions that are
suggested by our work.

1. Integrality gap. We showed that the integrality gap of the configuration LP
for the restricted assignment problem is no worse than 1/5. It was previously
known to be no better than 1/2 (in particular, this follows from the NP-
hardness result of [4]). Narrow the gap between these two bounds.

2. Complexity of local search. Our proof is based on a local search procedure.
Can a locally optimal solution with respect to this local search be found in
polynomial time? Is finding such a solution PLS-complete? These questions

Santa Claus Meets Hypergraph Matchings 19

apply also to similar local search procedures that find a perfect matching in
hypergraphs satisfying the conditions of Theorem 2.

3. Approximation algorithms. Provide an approximation algorithm (that ac-
tually finds an allocation) with a constant approximation ratio for the re-
stricted assignment problem.

4. Hypergraph matchings. Can the proof techniques used in our paper be used
also for other problems? For example, can our approach be employed to
prove that the integrality gap of configuration LP for general max-min fair
allocation problem is Θ(1√

n
) (saving a log3 n factor compared to [2])?

Acknowledgements

Part of this work was performed at Microsoft Research, Redmond, Washington.

References

1. Aharoni, R., Haxell, P.: Hall’s theorem for hypergraphs. Journal of Graph The-
ory 35, 83–88 (2000)

2. Asadpour, A., Saberi, A.: An Approximation Algorithm for Max-Min Fair Alloca-
tion of Indivisible Goods. In: Proceedings of the ACM Symposium on Theory of
Computing (STOC) (2007)

3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the ACM
Symposium on Theory of Computing (STOC) (2006)

4. Bezakova, I., Dani, V.: Allocating indivisible goods. SIGecom Exchanges (2005)
5. Brams, S.J., Taylor, A.D.: Fair division: from Cake Cutting to Dispute Resolution.

Cambridge University Press, Cambridge (1996)
6. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-

rial auctions with submodular bidders. In: Proceedings of Symposium on Discrete
Algorithms (SODA) (2006)

7. Ebenlendr, T., Krcal, M., Sgall, J.: Graph Balancing: A Special Case of Scheduling
Unrelated Parallel Machines. In: Proceedings of Symposium on Discrete Algorithms
(SODA) (2008)

8. Feige, U.: On maximizing welfare when utility functions are subadditive. In: Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC) (2006)

9. Feige, U.: On allocations that maximize fairness. In: Proceedings of Symposium on
Discrete Algorithms (SODA) (2008)

10. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: Proceedings of Foundations of Computer Science
(FOCS) (2006)

11. Haxell, P.E.: A Condition for Matchability in Hypergraphs. Graphs and Combina-
torics 11, 245–248 (1995)

12. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search?
Journal of Computer and System Sciences 37, 79–100 (1988)

13. Kessler, O.: Matchings in Hypergraphs. D.Sc. Thesis, Technion (1989)
14. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research

Logistic Quarterly 2, 83–97 (1955)

20 A. Asadpour, U. Feige, and A. Saberi

15. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, Series A (1993)

16. Steinhaus, H.: The problem of fair division. Econometrica (1948)
17. Vondrak, J.: Optimal approximation for the Submodular Welfare Problem in the

value oracle model. In: Proceedings of the ACM Symposium on Theory of Com-
puting (STOC) (2008)

	Santa Claus Meets Hypergraph Matchings
	Introduction
	The Configuration LP

	Matchings in Hypergraphs
	A Constant Integrality Gap

	A $\frac{1}{5}$-approximate Solution through a Local Search
	Open Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

