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Abstract. A long-standing conjecture in Combinatorial Optimization
is that the integrality gap of the Held-Karp LP relaxation for the Asym-
metric Traveling Salesman Problem (ATSP) is a constant. In this paper,
we give a simpler LP relaxation for the ASTP. The integrality gaps of
this relaxation and of the Held-Karp relaxation are within a constant
factor of each other. Our LP is simpler in the sense that its extreme
solutions have at most 2n − 2 non-zero variables, improving the bound
3n − 2 proved by Vempala and Yannakakis for the extreme solutions of
the Held-Karp LP relaxation. Moreover, more than half of these non-zero
variables can be rounded to integers while the total cost only increases
by a constant factor.

We also show that given a partially rounded solution, in an extreme
solution of the corresponding LP relaxation, at least one positive variable
is greater or equal to 1/2.

Keywords: ATSP, LP relaxation.

1 Introduction

The Traveling Salesman Problem (TSP) is a classical problem in Combinatorial
Optimization. In this problem, we are given an undirected or directed graph
with nonnegative costs on the edges, and we need to find a Hamiltonian cycle of
minimum cost. A Hamiltonian cycle is a simple cycle that covers all the nodes
of the graph. It is well known that the problem is in-approximable for both
undirected and directed graphs. A more tractable version of the problem is to
allow the solution to visit a vertex/edge more than once if necessary. The problem
in this version is equivalent to the case when the underlying graph is a complete
graph, and the edge costs satisfy the triangle inequality. This problem is called
the metric-TSP, more specifically Symmetric-TSP (STSP) or Asymmetric-TSP
(ATSP) when the graph is undirected or directed, respectively. In this paper, we
consider the ATSP.
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Notation. In the rest of the paper, we need the following notation. Given a directed
graph G = (V, E) and a set S ⊂ V , we denote the set of edges going in and out of
S by δ+(S) and δ−(S), respectively. Let x be a nonnegative vector on the edges of
the graph G, the in-degree or out-degree of S (with respect to x) is the sum of the
value of x on δ+(S) and δ−(S). We denote them by x(δ+(S)) and x(δ−(S)).

An LP relaxation of the ATSP was introduced by Held and Karp [9] in 1970.
It is usually called the Held-Karp relaxation. Since then it has been an open
problem to show whether this relaxation has a constant integrality gap. The
Held-Karp LP relaxation can have many equivalent forms, one of which requires
a solution x ∈ R

|E|
+ to satisfy the following two conditions: i) the in-degree and

the out-degree of every vertex are at least 1 and equal to each other, and ii) the
out-degree of every subset S ⊂ V −{r} is at least 1, where r is an arbitrary node
picked as a root. Fractional solutions of this LP relaxation are found to be hard
to round because of the combination of the degree conditions on each vertex
and the connectivity condition. A natural question is to relax these conditions
to get an LP whose solutions are easier to round. In fact, when these conditions
are considered separately, their LP forms integral polytopes, thus the optimal
solution can be found in polynomial time. However, the integrality gap of these
LPs with respect to the integral solutions of the ATSP can be arbitrarily large.
Another attempt is to keep the connectivity condition and relax the degree
condition on each vertex. It is shown recently by Lau et al. [15] that one can find
an integral solution whose cost is at most a constant times the cost of the LP
described above, furthermore it satisfies the connectivity condition and violates
the degree condition at most a constant. The solution found does not satisfy the
balance condition on the vertices, and such a solution can be very far from a
solution of the ATSP.

Generally speaking, there is a trade-off in writing an LP relaxation for a
discrete optimization problem: between having “simple enough” LP to round
and a “strong enough” one to prove an approximation guarantee. It is a major
open problem to show how strong the Held-Karp relaxation is. And, as discussed
above, it seems that all the simpler relaxations can have arbitrarily big integrality
gaps. In this paper, we introduce a new LP relaxation of the ATSP which is as
strong as the Help-Karp relaxation up to a constant factor, and is simpler. Our
LP is simpler in the sense that an extreme solution of this LP has at most 2n−2
non-zero variables, improving the bound 3n − 2 on the extreme solutions of the
Held-Karp relaxation. Moreover, out of such 2n − 2 variables, at least n can be
rounded to integers. This result shows that the integrality gap of the Held-Karp
relaxation is a constant if and only if our simpler LP also has a constant gap.

The new LP. The idea behind our LP formulation is the following. Consider the
Held-Karp relaxation in one of its equivalent forms:

min cexe

Sbjt: x(δ+(S)) ≥ 1 ∀S ⊂ V − {r} (Connectivity condition)

x(δ+(v)) = x(δ−(v)) ∀v ∈ V (Balance condition)
xe ≥ 0.

(1)
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Our observation is that because of the balance condition in the LP above, the
in-degree x(δ+(S)) is equal to the out-degree x(δ−(S)) for every set S . If one
can guarantee that the ratio between x(δ+(S)) and x(δ−(S)) is bounded by a
constant, then using a theorem of A. J. Hoffman [10] about the condition for
the existence of a circulation in a network, we can still get a solution satisfying
the balance condition for every node with only a constant factor loss in the total
cost. The interesting fact is that when allowed to relax the balance condition,
we can combine it with the connectivity condition in a single constraint. More
precisely, consider the following fact. Given a set S ⊂ V − {r}, the balance
condition implies x(δ+(S)) − x(δ−(S)) = 0, and the connectivity condition is
x(δ+(S)) ≥ 1. Adding up these two conditions, we have:

2x(δ+(S)) − x(δ−(S)) ≥ 1.

Thus we can have a valid LP consisting of these inequalities for all S ⊂ V − {r}
and two conditions on the in-degree and out-degree of r. Observe that given
a vector x ≥ 0, the function f(S) = 2x(δ+(S)) − x(δ−(S)) is a submodular
function, therefore, we can apply the uncrossing technique as in [11] to investigate
the structure of an extreme solution. We introduce the following LP:

min cexe

Subject to: 2x(δ+(S)) − x(δ−(S)) ≥ 1 ∀S ⊂ V − {r}
x(δ+(r)) = x(δ−(r)) = 1
xe ≥ 0.

(2)

This LP has exponentially many constraints. But because 2x(δ+(S))−x(δ−(S))
is a submodular function, the LP can be solved in polynomial time via the
ellipsoid method and a subroutine to minimize submodular setfunctions.

Our results. It is not hard to see that our new LP (2) is weaker than the Held-
Karp relaxation (1). In this paper, we prove the following result in the reverse
direction. Given a feasible solution x of (2), in polynomial time we can find a
solution y feasible to (1) on the support of x such that the cost of y is at most
a constant factor of the cost of x. Furthermore, if x is integral then y can be
chosen to be integral as well. Thus, given an integral solution of (2) we can find
a Hamiltonian cycle of a constant approximate cost. This also shows that the
integrality gaps of these two LPs are within a constant factor of each other. In
section 3, we show that our new LP is simpler than the Held-Karp relaxation.
In particular, we prove that an extreme solution of the new LP has at most
2n − 2 non-zero variables, improving the bound 3n − 2 proved by Vempala and
Yannakakis [17] for the extreme solutions of the Held-Karp relaxation. We then
show how to round at least n variables of a fractional solution of (2) to integers.
And finally, we prove the existence of a big fractional variable in an extreme
point of our LP in a partially rounded instance.

Note that one can have a more general LP relaxation by adding the Balance
Condition and the Connectivity Condition in (1) with some positive coefficient
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(a, b) to get: (a + b)x(δ+(S)) − bx(δ−(S)) ≥ a. All the results will follow, except
that the constants in these results depend on a and b. One can try to find a and
b to minimize these constants. But, to keep this extended abstract simple, we
only consider the case where a = b = 1.

Related Work. The Asymmetric TSP is an important problem in Combinator-
ial Optimization. There is a large amount of literature on the problem and its
variants. See the books [8], [16] for references and details. A natural LP relax-
ation was introduced by Held-Karp [9] in 1970, and since then many works have
investigated this LP in many aspects. See [8] for more details. Vempala and
Yannakakis [17] show a sparse property of an extreme solution of the Held-Karp
relaxation. Carr and Vempala [4] investigated the connection between the Sym-
metric TSP (STSP) and the ATSP. They proved that if a certain conjecture on
STSP is true then the integrality gap of this LP is bounded by 4/3. Charikar et
al. [3] later refuted this conjecture by showing a lower bound of 2 for the inte-
grality gap of the Held-Karp LP, this is currently the best known lower bound.
On the algorithmic side, a log2 n approximation algorithm for the ATSP was
first proved by Frieze et al. [6]. This ratio is improved slightly in [2], [12]. The
best ratio currently known is 0.842 log2 n [12].

Some proofs of our results are based on the uncrossing technique, which was
first used first by László Lovász [5] in a mathematical competition for university
students in Hungary. The technique was later used successfully in Combinatorial
Optimization. See the book [13] for more details. In Approximation Algorithms,
the uncrossing technique was applied to the the generalized Steiner network
problem by Kamal Jain [11]. And it is recently shown to be a useful technique
in many other settings [7,14,15].

2 The Integrality Gaps of the New LP and of the
Held-Karp Relaxation Are Essentially the Same

In this section, we prove that our LP and the Held-Karp relaxation have inte-
grality gaps within a constant factor of each other. We also show that given an
integral solution of the new LP (2), one can find a Hamilton cycle while only
increasing the cost by a constant factor.

Theorem 1. Given a feasible solution of the Held-Karp relaxation (1), we can
find a feasible solution of (2) with no greater cost. Conversely, if x is a solution
of (2) then there is a feasible solution y of (1) on the support of x, whose cost
is at most a constant times the cost of x. Moreover, such a y can be found in
polynomial time, and if x is integral then y can also be chosen to be an integral
vector.

The second part of this theorem is the technical one. As discussed in the intro-
duction, at the heart of our result is the following theorem of Alan Hoffman [10]
about the condition for the existence of a circulation in a network.



A Simple LP Relaxation for the ATSP 211

Lemma 1 (Hoffman). Consider the LP relaxation of a circulation problem on
a directed graph G = (V, E) with lower and an upper bounds le ≤ ue on each
edge e ∈ E:

x(δ+(v)) = x(δ−(v)) ∀v ∈ V

le ≤ xe ≤ ue ∀e ∈ E.
(3)

The LP is solvable if and only if for every set S :
∑

e∈δ+(S)

le ≤
∑

e∈δ−(S)

ue.

Furthermore, if le, ue are integers, then the solution can be chosen to be integral.
��

Given a solution x of our new LP, we use it to set up a circulation problem.
Then, using Lemma 1, we prove that there exists a solution y to this circulation
problem. And this vector is a feasible solution of the Help-Karp relaxation. Before
proving Theorem 1, we need the following lemmas:

Lemma 2. For a solution x of (2) and every set S � V , the in-degree x(δ+(S))
and the out-degree x(δ−(S)) are at least 1

3 .

Proof. Because of symmetry, we assume that r /∈ S. Since x is a solution of (2),
we have: 2x(δ+(S))−x(δ−(S)) ≥ 1. This implies x(δ+(S)) ≥ 1

2 + 1
2x(δ−(S)) > 1

3 .
We now prove that x(δ−(S)) ≥ 1

3 . If S = V −{r}, then because of the LP (2)
the out-degree of S is 1, which is of course greater than 1

3 . Now, assume S is a
real subset of V − {r}, let T = V − {r} − S 	= ∅.

To make the formula easy to follow, we use the following notation. Let α, β
be the total value of the edges going from S to r and T respectively. See
Figure 1. Thus, the out-degree of S is x(δ−(S)) = α + β. We denote the to-
tal value of the edges going from r to S by a, and the total value of edges from
T to S by b. Due to (2), the in-degree and out-degree of r is 1, therefore the
total value of edges from r to T is 1 − a and from T to r is 1 − α.

Now, from 2x(δ+(T )) − x(δ−(T )) ≥ 1, we have 2(1 − a + β) − (1 − α + b).
Therefore

2β + α ≥ 2a + b.

And 2x(δ+(S)) − x(δ−(S)) ≥ 1 is equivalent to 2(a + b) − (α + β) ≥ 1, which
implies

(a + b) ≥ (α + β) + 1
2

.

Combine these two inequalities:

2β + α ≥ 2a + b ≥ a + b ≥ α + β + 1
2

.

Thus we have 2β + α ≥ α+β+1
2 . From this, 4β + 2α ≥ α + β + 1 and 3β + α ≥ 1.

Hence, 3(β + α) ≥ 3β + α ≥ 1. Therefore

α + β ≥ 1
3
.
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1 − a

a

b

r

α

β

S T

1 − α

Fig. 1. Out-degree and in-degree of the set S

This inequality is what we need to prove. ��
The next lemma shows that for any S, the ratio between its out-degree and
in-degree is bounded by a constant.

Lemma 3. Given a solution x of (2), for any S � V ,

1
8
x(δ−(S)) ≤ x(δ+(S)) ≤ 8x(δ−(S)).

Proof. Because of symmetry, we can assume that r /∈ S. From the inequality
2x(δ+(S)) − x(δ−(S)) ≥ 1 we have:

x(δ−(X)) < 2x(δ+(X)). Therefore
1
8
x(δ−(S)) ≤ x(δ+(S)).

To show the second inequality, we observe that when S = V −{r}, its out-degree
is equal to its in-degree, thus we can assume that S is a real subset of V − {r}.
As in the previous lemma, let T = V −S−{r} 	= ∅. We then apply the inequality
2x(δ+(T )) − x(δ−(T )) ≥ 1 to get the desired inequality.

First, observe that S and T are almost complements of each other, except
that there is a node r with in and out degrees of 1 outside S and T . Thus, the
out-degree of S is almost the same as the in-degree of T and vice versa. More
precisely, using the same notation as in the previous lemma, one has x(δ+(S))−
x(δ−(T )) = a − (1 − α) ≤ 1. Therefore x(δ+(S)) ≤ x(δ−(T )) + 1.

By symmetry, we also have: x(δ+(T )) ≤ x(δ−(S)) + 1.
Now, 2x(δ+(T )) − x(δ−(T )) ≥ 1 implies:

1 + x(δ−(T )) ≤ 2x(δ+(T )).

Using the relations between the in/out-degrees of S and T , we have the following:

x(δ+(S)) ≤ 1 + x(δ−(T )) ≤ 2x(δ+(T )) ≤ 2(x(δ−(S)) + 1).

But because of the previous lemma, x(δ−(S)) ≥ 1
3 . Therefore

x(δ+(S)) ≤ 2(x(δ−(S)) + 1) ≤ 8x(δ−(S)).

This is indeed what we need to prove. ��



A Simple LP Relaxation for the ATSP 213

Note: We believe the constant in this lemma can be reduced if we use a more
careful analysis.

We are now ready to prove our main theorem:

Proof (Proof of Theorem 1). First, given a solution y, if y(δ+(r)) = y(δ−(r)) = 1,
then y is also a feasible solution of (2). When y(δ+(r)) = y(δ−(r)) ≥ 1, we can
short-cut the fractional tour to get the solution satisfying the degree constraint
on r: y(δ+(r)) = y(δ−(r)) = 1 without increasing the cost. This solution is a
feasible solution of (2).

We now prove the second part of the theorem. Given a solution x of (2),
consider the following circulation problem:

min ceye

sbt. y(δ+(v)) = y(δ−(v))∀v ∈ V

3xe ≤ ye ≤ 24xe.

For every set S ⊂ V , Lemma 2 states that the ratio between its in-degree and
its out-degree is bounded by 8. Therefore

∑

e∈δ+(S)

3xe ≤
∑

e∈δ−(S)

24xe.

Using Lemma (1), the above LP has a solution y, and y can be chosen to be
integral if x is integral. We need to show that y is a feasible solution of the
Held-Karp relaxation. y satisfies the Balance Constraint on every node, thus we
only need to show the Connectivity Condition. Because y ≥ 3x, for every cut S
we have :

y(δ+(S)) ≥ 3x(δ+(S)) ≥ 1.

The last inequality comes from Lemma 2. We have shown that given a feasible
solution x of the new LP, there exists a feasible solution of the Held-Karp relax-
ation 1 whose cost is at most 24 times the cost of x. This completes the proof
of our theorem. ��

3 Rounding an Extreme Solution of the New LP

In this section, we show that an extreme solution of our LP contains at most 2n−
2 non-zero variables (Theorem 2). And at least n variables of this solution can be
rounded to integers (Theorem 3). Finally, given a partially rounded solution, let
x be an extreme solution of the new LP for this instance. We show that among
the other positive variables, there is at least one with a value greater or equal
to 1/2 (Theorem 4).

Theorem 2. The LP (2) can be solved in polynomial time, and an extreme
solution has at most 2n − 2 non-zero variables.
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Proof. First, observe that given a vector x ≥ 0, fx(S) = 2x(δ+(S))−x(δ−(S)) is
a submodular function. To prove this, one needs to check that fx(S) + fx(T ) ≥
fx(S ∪ T ) + fx(S ∩ T ). Or more intuitively: fx(S) = x(δ+(S)) + (x(δ+(S)) −
x(δ−(S))) is a sum of two submodular functions, thus fx is also a submodular
function.

The constraints in our LP is fx(S) ≥ 1∀S ⊂ V − {r} and x(δ+(r)) =
x(δ−(r)) = 1. Thus with a subroutine to minimize a submodular function, we
can decide whether a vector x is feasible to our LP, and therefore the LP can be
solved in polynomial time by the ellipsoid method.

Now, assume x is an extreme solution. Let S, T be two tight sets, i.e., fx(S) =
fx(T ) = 1. Then, it is not hard to see that if S ∪ T 	= ∅ then both S ∪ T and
S ∩ T are tight. Furthermore, the constraint vectors corresponding to S, T, S ∪
T, S∩T are dependent. Now, among all the tight sets, take the maximal laminar
set family. The constraints corresponding to these sets span all the other tight
constraints. Thus x is defined by 2 constraints for the root node r and the
constraints corresponding to a laminar family of sets on n − 1 nodes, which
contains at most 2(n− 1)− 1 sets. However, the constraint corresponding to the
set V − r is dependent on the two constraints of the node r, therefore we have
at most 2 + 2(n − 1) − 1 − 1 = 2n − 2 independent constraints. This shows that
x has at most 2n − 2 non-zero variables. ��
We prove the next theorem about rounding at least n variables of a fractional
solution of our new LP (2).
Theorem 3. Given an extreme solution x of (2), we can find a solution x̃ on
the support of x. Thus x̃ contains at most 2n − 2 non-zero edges such that it
satisfies the constraint 2x̃(δ+(S)) − x̃(δ−(S)) ≥ 1 ∀S ⊂ V − {r}, and it has
at least n non-zero integral variables. Furthermore, the cost of x̃ is at most a
constant times the cost of x.

Proof. x is a solution of (2). Due to Theorem 1, on the support of x, there exists
a solution y of (1) whose cost is at most a constant times the cost of x. Because
y satisfies y(δ+(v)) = y(δ−(v)) ≥ 1 for every v ∈ V , y is a fractional cycle cover
on the support of x. Recall that a cycle cover on directed graph is a Eulerian
subgraph (possibly with parallel edges) covering all the vertices. However, we
can find an integral cycle cover in a directed graph whose cost is at most the
cost of a fractional solution. Let z be such an integral solution. Clearly, z has at
least n non-zero variables, and the cost of z is at most the cost of y which is at
most a constant times the cost of x.

Next consider the solution w = x + 3
2z. For every edge e where ze > 0, we

have we = xe + 3
2ze > 3

2 . Round we to the closest integer to get the solution x̃.
Clearly, x̃ has at most 2n − 2 non-zero variables and at least n non-zero integral
variables. We will show that the cost of x̃ is at most a constant times the cost
of x, and that x̃ satisfies 2x̃(δ+(S)) − x̃(δ−(S)) ≥ 1 ∀S ⊂ V − {r}.

Rounding each we to the closest integer will sometimes cause an increase in we

of at most 1/2. But, because we only round the value we when the corresponding
ze ≥ 1, and note that z is an integral vector, the total increase is at most half
the cost of z which is at most a constant times the cost of x.
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Consider a set S ⊂ V −{r}. We have 2x(δ+(S))−x(δ−(S)) ≥ 1. Let k be the
total value of the edges of z going out from S, that is k = z(δ+(S)) = z(δ−(S)).
This is true because z is a cycle cover. Hence, when adding w := x + 3

2z, we
have:

2w(δ+(S)) − w(δ−(S)) = 2x(δ+(S)) − x(δ−(S)) +
3
2
(2z(δ+(S)) − z(δ−(S))).

Therefore,

2w(δ+(S)) − w(δ−(S)) ≥ 1 +
3
2
k. (4)

Now, x̃ is a rounded vector of w on the edges where z is positive. For the set S,
there are at most 2k such edges, at most k edges going out and k edges coming
in. Rounding each one to the closest integer will sometimes cause a change at
most 1

2 on each edge, and thus causes the change of 2w(δ+(S)) − w(δ−(S)) in
at most k(2.12 − (− 1

2 )) = 3
2k. But, because of (4), we have :

2x̃(δ+(S)) − x̃(δ−(S)) ≥ 1

which is what we need to show. ��

Our last theorem shows that there always exists a “large” variable in an extreme
solution in which some variables are assigned fixed integers.

Theorem 4. Consider the following LP which is the corresponding LP of (2)
when some variables xe, e ∈ F are assigned fixed integral values. xe = ae ∈ N

for e ∈ F .

min cexe

sbt. 2x(δ+(S)) − x(δ−(S)) ≥ 1 ∀S : r 	∈ S.

x(δ+(r)) = r1

x(δ−(r)) = r2 (r1, r2 ∈ N)
xe = ae ∀e ∈ F

xe ≥ 0.

(5)

Given an extreme solution x of this LP, let H = {e ∈ E − F |xe > 0}. If H 	= ∅,
then there exists an e ∈ H such that xe ≥ 1

2 .

Proof. Let L be the laminar set family whose corresponding constraints together
with two constraints on the root node r determine the value of {xe|e ∈ H}
uniquely. As we have seen in the proof of Theorem 2, one can see that such an L
exists, and |L| is at least |H |. Assume all the values in {xe|e ∈ H} is less than a
half. We assign one token to each edge in H . If we can redistribute these tokens
to the sets in L and the constraints on the root r such that each constraint gets
at least 1 token, but at the end there are still some tokens remaining, we will
get a contradiction to prove the theorem.

We apply the technique used in [11] and the other recent results [14], [15],
[1]. For each e ∈ H , we distribute a fraction 1 − 2xe of the token to the head
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of the edge, a fraction xe of the token to the tail and the remaining xe to the
edge itself. See Figure 2. Because 0 < xe < 1

2 , all of these values are positive.
Given a set S in L, we now describe the set of tokens assigned to this set.
First, we use the following notation: for a set T , let E(T ) be the set of edges
in {xe|e ∈ E − F} that have both endings in T . Now, let S1, .., Sk ∈ L be the
maximal sets which are real subsets of S. The set of tokens that S gets is all
the tokens on the edges in E(S) − (E(S1) ∪ ... ∪ E(Sk)) plus the tokens on the
vertices in S − (S1 ∪ ... ∪ Sk). Clearly, no tokens are assigned to more than one
set. The constraint on the in-degree of r gets all the tokens on the heads of edges
going into r, and the constraint on the in-degree of r gets all the tokens on the
tails of edges going out from r.

1 − 2x

r

x

x

S

S1

S2 S3
1

1

1

-1

-2

0
0

2
u

v

Fig. 2. Tokens distributed to S

Consider now the equalities corresponding to the set S, S1, ..., Sk. If we add
the equalities of S1, S2, ..., Sk together and subtract the equality on the set S we
will get an linear equality on the variables {xe|e ∈ H}:

∑

e∈H

αexe = an integer number.

It is not hard to calculate αe for each type of e. For example, if e connects Si

and Sj , i 	= j then αe = 1, if e connects from vertex outside S to a vertex in
S − (S1 ∪ ... ∪ Sk) then αe = −2, etc. See Figure 2 for all other cases.

On the other hand, if we calculate the amount of tokens assigned to the set
S, it also has a linear formula on {xe|e ∈ H}:

∑

e∈H

βexe + an integer number.
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We can also calculate the coefficient βe for every e. For example, if e connects
Si and Sj , i 	= j then the edge e is the only one that gives an amount of tokens
which is a function of xe, and it is exactly xe. Thus βe = 1. Consider another
example, e = u → v where u ∈ S − (S1 ∪ ... ∪ Sk) and v ∈ S3. See Figure 2.
Then only the amounts of tokens on the edge uv and the node u depend on xe.
On the edge uv, it is xe and, on the node u, it is xe plus a value not depending
on xe. Thus βe = 2 in this case.

It is not hard to see that the coefficient αe = βe∀e ∈ H . Thus the amount
of tokens S gets is an integer number, and it is positive, thus it is at least 1.
Similarly, one can show that this fact also holds for the constraints on the root
node r.

We now show that there are some tokens that were not assigned to any set.
Consider the biggest set in the laminar set family L , it has some non-zero edges
going in or out but the tokens on this edge is not assigned to any constraint.
This completes the proof. ��

Acknowledgment. The author thanks Tamás Király, Éva Tardos and László
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