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Preface

This volume contains the papers presented at the 11th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2008) and the 12th International Workshop on Randomization and
Computation (RANDOM 2008), which took place concurrently at the MIT (Mas-
sachusetts Institute of Technology) in Boston, USA, during August
25-27,2008. APPROX focuses on algorithmic and complexity issues surrounding
the development of efficient approximate solutions to computationally difficult
problems, and was the 11th in the series after Aalborg (1998), Berkeley (1999),
Saarbriicken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), and Princeton (2007). RANDOM is
concerned with applications of randomness to computational and combinatorial
problems, and was the 12th workshop in the series following Bologna (1997),
Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006),
and Princeton (2007).

Topics of interest for APPROX and RANDOM are: design and analysis of ap-
proximation algorithms, hardness of approximation, small space, sub-linear time,
streaming, algorithms, embeddings and metric space methods, mathematical
programming methods, combinatorial problems in graphs and networks, game the-
ory, markets, economic applications, geometric problems, packing, covering,
scheduling, approximate learning, design and analysis of randomized algorithms,
randomized complexity theory, pseudorandomness and derandomization, random
combinatorial structures, random walks/Markov chains, expander graphs and
randomness extractors, probabilistic proof systems, random projections and em-
beddings, error-correcting codes, average-case analysis, property testing, compu-
tational learning theory, and other applications of approximation and randomness.

The volume contains 20 contributed papers, selected by the APPROX Pro-
gram Committee out of 42 submissions, and 27 contributed papers, selected by
the RANDOM Program Committee out of 50 submissions.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees:

APPROX 2008

Matthew Andrews, Bell Labs
Timothy Chan, University of Waterloo
Julia Chuzhoy, Toyota Technological Institute at Chicago

Uriel Feige, Weizmann Institute
Ashish Goel, Stanford University (Chair)
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Elad Hazan, IBM Almaden Research Center

Stefano Leonardi, Sapienza University of Rome
Aranyak Mehta, Georgia Institute of Technology
Vahab Mirrokni, Massachusetts Institute of Technology
Kamesh Munagala, Duke University

Adi Rosen, Laboratoire de Recherche en Informatique
David Shmoys, Cornell University

Adrian Vetta, McGill University

Jan Vondrak, Princeton University

David Williamson, Cornell University

RANDOM 2008

Nir Ailon, Google Research

Tugkan Batu, University of Pennsylvania

Petra Berenbrink, Simon Fraser University

Harry Buhrman, University of Amsterdam

Amin Coja-Oghlan, University of Edinburgh

Anna Gal, University of Chicago

Yuval Ishai, Technion-Israel Institute of Technology
David Kempe, University of Southern California

Adam Klivans, University of Texas at Austin

Ronitt Rubinfeld, Massachusetts Institute of Technology (Chair)
Alex Samorodnitsky, The Hebrew University of Jerusalem
Martin Strauss, University of Michigan

Amir Shpilka, Technion-Israel Institute of Technology
Eric Vigoda, Georgia Institute of Technology

David Woodruff, IBM Almaden Research Center

We would also like to thank the external subreferees:

Scott Aaronson, Alexandr Andoni, Nikhil Bansal, Boaz Barak, Omer Barkol,
Luca Becchetti, Eli Ben-Sasson, Petra Berenbrink, Ivona Bezakova, Julia
Boettcher, Andrej Bogdanov, Vincenzo Bonifaci, Chandra Chekuri, Zhi-Zhong
Chen, Ken Clarkson, Colin Cooper, Mary Cryan, Artur Czumaj, Anirban Das-
gupta, Ned Dimitrov, Irit Dinur, Debora Donato, Petros Drineas, Philippe
Duchon, Michael Elkin, Robert Elsaesser, Funda Ergun, Vitaly Feldman, El-
dar Fischer, Thomas Friedetzky, Toshihiro Fujito, Konstantinos Georgiou, Anna
Gilbert, Andreas Goerdt, Fabrizio Grandoni, Dan Gutfreund, Prahladh
Harsha, Piotr Indyk, Kazuo Iwama, Satyen Kale, Mihyun Kang, Adriana Kara-
giozova, Marek Karpinski, Tordanis Kerenidis, Sanjeev Khanna, Guy Kindler,
Swastik Kopparty, James Lee, Troy Lee, David Liben-Nowell, Satya Lokam,
Shachar Lovett, Mohammad Mahdian, Konstantin Makarychev, Russell Mar-
tin, Arie Matsliah, Dieter van Melkebeek, Daniele Micciancio, Alantha New-
man, Ofer Neiman, Rolf Niedermeier, Jelani Nelson, Jeff Phillips, Yuval Rabani,
Luis Rademacher, Anup Rao, Ran Raz, Bruce Reed, Oded Regev, Heiko Roglin,
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Approximating Optimal Binary Decision Trees

Micah Adler! and Brent Heeringa?

! Department of Computer Science, University of Massachusetts, Amherst, 140 Governors
Drive, Amherst, MA 01003
micah@cs.umass.edu
2 Department of Computer Science, Williams College, 47 Lab Campus Drive, Williamstown,
MA 01267
heeringa@cs.williams.edu

Abstract. We give a (Inn + 1)-approximation for the decision tree (DT) prob-
lem. An instance of DT is a set of m binary tests 7' = (T4, ..., T ) and a set of
nitems X = (X1,..., X,). The goal is to output a binary tree where each inter-
nal node is a test, each leaf is an item and the total external path length of the tree
is minimized. Total external path length is the sum of the depths of all the leaves
in the tree. DT has a long history in computer science with applications ranging
from medical diagnosis to experiment design. It also generalizes the problem of
finding optimal average-case search strategies in partially ordered sets which in-
cludes several alphabetic tree problems. Our work decreases the previous upper
bound on the approximation ratio by a constant factor. We provide a new analysis
of the greedy algorithm that uses a simple accounting scheme to spread the cost
of a tree among pairs of items split at a particular node. We conclude by showing
that our upper bound also holds for the DT problem with weighted tests.

1 Introduction

We consider the problem of approximating optimal binary decision trees. Garey and
Johnson [8] define the decision tree (DT) problem as follows: given a set of m binary
tests T = (T4,...,T,,) and a set of n items X = (Xi,...,X,,), output a binary
tree where each leaf is labeled with an item from X and each internal node is labeled
with a test from 7. If an item passes a test it follows the right branch; if it fails a test
it follows the left branch. A path from the root to a leaf uniquely identifies the item
labeled by that leaf. The depth of a leaf is the length of its path from the root. The
total external path length of the tree is the sum of the depths of all the leaves in the
tree. The goal of DT is to find a tree which minimizes the total external path length. An
equivalent formulation of the problem views each item as an m-bit binary string where
bit 7 is 1 if the item passes test 7; and O otherwise. We use instances of this type when
discussing DT throughout this paper and denote them using the set of items X. If no
two strings in X are identical, every feasible solution to DT has n leaves. In this paper
we always assume the input is a set of unique strings since finding duplicate strings is
easily computable in polynomial time. Decision trees have many natural applications
(see and references therein) including medical diagnosis (tests are symptoms)
and experiment design (tests are experiments which determine some property). In fact,
Hyafil and Rivest showed that DT was NP-complete precisely because “of the large

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 1@ 2008.
(© Springer-Verlag Berlin Heidelberg 2008



2 M. Adler and B. Heeringa

amount of effort that [had] been put into finding efficient algorithms for constructing
optimal binary decision trees” [[L1]].

In this paper, we give a polynomial-time (Inn+1)-approximation for the decision tree
problem. This improves the upper bound on the approximation ratio given by Kosaraju et
al. [12] by a constant factor. More importantly, our work provides a substantially different
analysis of the greedy algorithm for building decision trees. We employ an accounting
scheme to spread the total cost of the tree among pairs of items split at internal nodes.
The result is an elementary analysis that others may find of independent interest. In fact,
our techniques have already been extended to the DT problem with weighted items [4].
We also consider the problem with weights associated with the tests (in contrast to the
items) and show that the (Inn + 1)-approximation remains intact.

1.1 Prior and Related Work

DT generalizes the problem of finding optimal search strategies in partially ordered
sets when one wishes to minimize the average search time (assuming each item is
desired with equal probability) as opposed to minimizing the longest search time [J3].
The latter case corresponds to finding minimal height decision trees. This problem is
known to have matching upper and lower bounds (O(logn) and 2(log n) respectively)
on the approximation ratio [2,[3/15]. However these results do not generally apply to
DT because of the difference in the definition of cost. Additionally, DT generalizes
several Huffman coding problems including numerous alphabetic tree problem (2.

The name decision tree also refers to a similar but subtly different problem which
we call ConDT (for consistent decision tree) that is extremely hard to approximate. The
input to ConDT is a set of n positive / negative labeled binary strings, each of length m,
called example@. The output is a binary tree where each internal node tests some bit ¢
of the examples, and maps the example to its left child if 7 is a 0 and its right child if ¢ is
a 1. Each leaf is labeled either TRUE or FALSE. A consistent decision tree maps each
positive example to a leaf labeled TRUE and each negative example to a leaf labeled
FALSE. The size of a tree is the number of leaves. ConDT seeks the minimum size tree
which is consistent with the examples.

Alekhnovich et. al. [[[l] show it is not possible to approximate size s decision trees by
size s* decision trees for any constant k& > 0 unless NP is contained in DTIME[2"]
for some € < 1. This improves a result from Hancock et. al. [9] which shows that
no 2'°g’ S-approximation exists for size s decision trees for any ¢ < 1 unless NP is
quasi-polynomial. These results hold for s = 2(n).

Our results demonstrate that DT and ConDT — although closely related — are quite
different in terms of approximability: ConDT has no ¢ In n-approximation for any con-
stant ¢ (unless P = NP) whereas our results yield such an approximation for DT for
¢ > 1. Also, we show that the lower bounds on learning decision trees of the ConDT
type hold when minimizing total external path length instead of minimum size. Note
that tree size is not an insightful measure for DT since all feasible solutions have n
leaves. Thus, it is the difference in input and output, and not the difference in measure,
that accounts for the difference in approximation complexity.

! Many papers take m to be the number of examples and take n to be the number of bits.



Approximating Optimal Binary Decision Trees 3

Moret [14] views DT and ConDT as unique instances of a general decision tree
problem where each item is tagged with k possible labels. With DT there are always
k = n labels, but only one item per label. With ConDT, there are only two labels,
but multiple items carry the same label. It appears then that labeling restrictions play a
crucial role in the complexity of approximating decision trees.

DT shares some similarities with set cover. Since each pair of items is separated exactly
once in any valid decision tree, one can view a path from the root to a leaf as a kind of
covering of the items. In this case, each leaf defines a set cover problem where it must
cover the remaining n — 1 items using an appropriate set of bits or tests. In fact, our
analysis is inspired by this observation. However, in the decision tree problem, the n set
cover problems defined by the leaves are not independent. For example, the bit at the
root of an optimal decision tree appears in each of the n set cover solutions, but it is
easy to construct instances of DT for which the optimal (independent) solutions to the n
set cover instances have no common bits. More specifically, one can construct instances
of DT where the n independent set cover problems have solutions of size 1, yielding a
decision tree with cost ©(n?) but where the optimal decision tree has cost O(n logn).
Hence, the interplay between the individual set cover problems appears to make the DT
problem fundamentally different from set cover. Conversely, set cover instances naturally
map to decision tree instances, however, the difference in cost between the two problems
means that the optimal set cover is not necessarily the optimal decision tree.

The min-sum set cover (MSSC) problem is also similar to DT. The input to MSSC
is the same as set cover (i.e., a universe of items X and a collection C of subsets of X),
but the output is a linear ordering of the sets from 1 to |C|. If f(z) gives the index of
the first set in the ordering that covers = then the cost of the ordering is > f(%).
This is similar, but not identical to the cost of the corresponding DT problem because
the covered items must still be separated from one another, thus adding additional cost.
Greedily selecting the set which covers the most remaining uncovered items yields a
4-approximation to MSSC [3/16]. This approximation is tight unless P=NP. As with set
cover, we can think of DT as n instances of MSSC, but again, these instances are not
independent so the problems inherent in viewing DT as n set cover problems remain
when considering DT as n instances of MSSC.

In the following section we describe and analyze our approximation algorithm for
DT. We then extend this analysis to the problem where weights are associated with
the tests (but not the items). In Section 3] we show that the lower bounds on learning
ConDTs hold for total external path length. Finally, we conclude with a discussion of
some open problems including the gap between the upper and lower bounds on the
approximation ratio.

2 Approximating DT

Given a set of binary m-bit strings .S, choosing some bit ¢ always partitions the items
into two sets S° and S where S° contains those items with bit i = 0 and S* contains
those items with ¢ = 1. A greedy strategy for splitting a set S' chooses the bit ¢ which
minimizes the difference between the size of S° and S'. In other words, it chooses
the bit which most evenly partitions the set. Using this strategy, consider the following
greedy algorithm for constructing decision trees of the DT type given a set of n items X :
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GREEDY-DT(X)
ifxX =10
then return NIL
else Let i be the bit which most evenly partitions X into X and X*
Let 7" be a tree node with left child left[T"] and right child right [T’
left[T] «+ GREEDY-DT(X?)
right[T] «+ GREEDY-DT(X")
return 7’

~N NN R W -

Fig. 1. A greedy algorithm for constructing decision trees

A straightforward implementation of this algorithm runs in time O(mn?). While the
algorithm does not always give an optimal solution, it does approximate it within a
factor of Inn + 1.

Theorem 1. [f X is an instance of DT with n items and optimal cost C* then GREEDY-
DT(X) yields a tree with cost at most (Inn + 1)C*

Proof. We begin with some notation. Let 7 be the tree constructed by GREEDY-DT
on X with cost C. An unordered pair of items {x, y} (hereafter just pair of items) is
separated at an internal node S if = follows one branch and y follows the other. Note
that each pair of items is separated exactly once in any valid decision tree. Conversely,
each internal node S defines a set p(S) of pairs of items separated at S. That is

p(S) = {{z,y}|{z,y} is separated at S}

For convenience we also use S to denote the set of items in the subtree rooted at
S.Let ST and S~ be the two children of S such that |[ST| > |S~|. Note that |S| =
|ST| 4 |S~|. The number of sets to which an item belongs equals the length of its path
from the root, so the cost of 7 may be expressed as the sum of the sizes of each S:

c=>3"1s

SeT

Our analysis uses an accounting scheme to spread the total cost of the greedy tree
among all unordered pairs of items. Since each set .S contributes its size to the total cost
of the tree, we spread its size uniformly among the |S™||S™| pairs of items separated at

S. Let ¢, be the pair cost assigned to each pair of items {x, y} where
1 n 1
Coy = L
YISh] 1S

and S, separates x from y. Note that the greedy choice minimizes c,,. We can now
talk about the cost of a tree node S by the costs associated with the pairs of items
separated at S. Summing the costs of these pairs is, by definition, exactly the size of .S:

> e = 157571 (jgu + 1goy) = 18

{z,y}€n(S)
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Because two items are separated exactly once, C is exactly the sum of the all pair costs

C = Z Cay-

{z,y}

Now consider the optimal tree 7 for X. If Z is an internal node of 7* then we also
use Z to denote the set of items that are leaves of the subtree rooted at Z. Following our
notational conventions, we let Z* and Z~ be the children of Z such that |Z 1| > |Z 7|
and |Z| = |Z | + |Z~|. The cost of the optimal tree, C*, is

= > 17 ()

ZeT*

Since, every feasible tree separates each pair of items exactly once, we can rearrange
the greedy pair costs according to the structure of the optimal tree:

C=> > ey )

ZeT* {z,y}ep(2)

If Z is a node in the optimal tree, then it defines |Z7||Z ~| pairs of items. Our goal
is to show that the sum of the ¢, associated with the |Z7||Z | pairs of items split
at Z (but which are defined with respect to the greedy tree) total at most a factor of
H(|Z|) more than |Z| where H(d) = Z?:I 1/i is the d** harmonic number. This is
made precise in the following lemma:

Lemma 1. For each internal node Z in the optimal tree:
> ey <|ZIH(12)
{z,y}en(2)
where each c, is defined with respect to the greedy tree T .

Proof. Consider any node Z in the optimal tree. For any unordered pair of items {z, y}
split at Z, imagine using the bit associated with the split at Z on the set S, separating
x from y in the greedy tree. Call the resulting two sets Sf; and Sf; respectively. Since
the greedy split at S, minimizes c,,,, we know

S S S T T
st T ism) S 1820 sz S s n 24 TS n 2|
Hence 1 1
oy < . 3
2 s D e oze T s,z ©)

{z,y}ep(Z) {z,y}ep(Z)

One interpretation of the sum in (B) views each item z in Z ™ as contributing

1
veZ- |Sey N Z~|
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to the sum and each node y in Z~ as contributing

1

$€Z+‘5&yr]Z+|
to the sum. For clarity, we can view Z as a complete bipartite graph where the items in
Z* are one set of nodes and the items in Z~ is the other set. Letting by, = 1/(|(Szy N
Z~|)and by, = 1/(|Szy N ZT|) we can think of every edge (z,y) where z € Z* and
y € Z~ as having two costs: one associated with = (b.,) and the other associated with
Yy (byz). Thus, the cost of Z is at most the sum of all the b,, and by, costs. We can
bound the total cost by first bounding all the costs associated with a particular node. In
particular, we claim:

Claim. For any x € ZT we have

1
Ebng < H(|Z~
Yy ‘sgyrwzuw — (‘ D
yezZ—

yezZ—

Proof. If Z~ has d items then let (y1,...,yq) be an ordering of Z~ in reverse order
from when the items are split from x in the greedy tree (with ties broken arbitrarily).
This means item y; is the last item split from z, y4 is the first item split from z, and
in general yg_;,1 is the ¢! item split from z. When v, is split from 2 there must be
at least |Z~| items in Sy, — by our ordering the remaining items in Z~ must still be
present — so Z~ C Sy,,. Hence by, the cost assigned to x on the edge (x,yq), is
atmost 1/|(Z7)| and in general, when y; is separated from x there are at least ¢ items
remaining from Z~, so the cost b,,, assigned to the edge (, y;) is at most 1/¢. This
means, forany z € ZT

> bey SH(ZT))

yeEZ ™
which proves the claim. O

We can use the same argument to prove the analogous claim for all the items in Z~.
With these inequalities in hand we have

1 1 _ _
Y s nzel TS, nzo S ZHHIZ7D+1271H(ZY)
{zytep(z) 7MY i
<|Z*|H(|1Z]) + |1z~ |H(|Z])
=|Z|H(|Z])  (since |ZF|+|Z~| =|Z]))
O

Substituting this result into the initial inequality completes the proof of the theorem.

Y Y < Y 12H(Z) < Y |ZIH(0) = Hm)C* < (lnn +1)C

ZeT* {z,y}ep(Z) ZeT™ ZeT™
O
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2.1 Tests with Weights

In many applications, different tests may have different execution costs. For example, in
experiment design, a single test might be a good separator of the items, but it may also
be expensive. Running multiple, inexpensive tests may serve the same overall purpose,
but at less cost. To model scenarios like these we associate a weight w(k) with each
bit k& and without confusion take w(.S) to be the weight of the bit used at node S. We
call this problem DT with weighted tests (in contrast to the DT problem with weighted
items). In the original problem formulation, we can think of each test as having unit
weight, so the cost of identifying an item is just the length of the path from the root to
the item. When the tests have non-uniform weights, the cost of identifying an item is
the sum of the weights of the tests along that path. We call this the path cost. The cost of
the tree is the sum of the path costs of each item. When all the tests have equal weight,
we choose the bit which most evenly splits the set of items into two groups. In other
words, we minimize the pair cost c,,,. With equal weights, the cost of an internal node
is just its size |.S|. With unequal weights, the cost of an internal node is the weighted
size w(S)|S|, so assuming S separates 2 from y the pair cost becomes

w(S) n w(S)

s+ s @

and our new greedy algorithm recursively selects the bit which minimizes this quantity.
This procedure yields a result equivalent to Theorem [l for DT with weighted tests. A
straightforward implementation on this algorithm still runs in time O(mn?).

Theorem 2. The greedy algorithm which recursively selects the bit that minimizes
Equationdyields a (Inn + 1)-approximation to DT with weighted tests.

Proof. Following the structure of the proof for Theorem [I]leads to the desired result.
The key observation is that choosing the bit that minimizes Equation ] yields the in-

equality
1 1
<w(z)( ). 5
v <wO\|5,, 024 V15,0 2| ®
Since the weight term w(Z) may be factored out of the summation

1 1
w(Z) E +

ey N ZF ey N2~

{z.y}ep(2) [Sey 0 Z7] 82y 0 27

we can apply the previous claim and the theorem follows:
>y v < Y w(Z)|Z|H(n) < (Inn+ 1)C*
ZeT™ {m,y}ép(Z) ZeT™
Here C* =, 7. w(Z)|Z]| is the cost of the optimal tree. O

Another natural extension to DT considers the problem with weighted items. Here, one
weights each path length by the weight of the item which defines the path. Recently,
Chakaravarthy et al. [4] extended our analysis to the DT problem with weighted items.
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3 Hardness of Approximation for ConDT under Total External
Path Length

Alekhnovich et. al. [1]] showed it is not possible to approximate size s decision trees by
size s* decision trees for any constant & > 0 unless NP is contained in DTIME[2™]
for some € < 1. Decision tree here refers to trees of the ConDT type and the measure
is tree size. In this section we show that these hardness results also hold for ConDT
under minimum total external path length. Our theorem relies on the observation that
if I is an instance of ConDT with minimum total external path length s then I has
minimum tree size at least £2(+/s). If it didn’t, a tree of smaller size would have smaller
total external path length, a contradiction. The case where minimum total external path
length s corresponds to minimum size {2(,/s) is a cascading tree; that is, a tree with
exactly one leaf at each depth save the deepest two.

Theorem 3. If there exists an s® approximation for some constant k > 0 to decision
trees with minimum total external path length s then NP is contained in DTIME [2™ ]
for some € < 1.

Proof. Let I be an instance of ConDT with minimum total external path length s = 2.

It follows that I has minimum tree size at least £2(r). Now, if an s* approximation
did exist for some k then there would exist an £2(r2¥) = r¥ approximation for some
constant k£’ for ConDT under minimum tree size; a contradiction. O

4 Open Problems and Discussion

Our primary result in this paper is a (In n+ 1)-approximation for the decision tree prob-
lem. The most prominent open problem is the gap between the upper and lower bounds
on the approximation ratio of DT. The best lower bound on the approximation ratio in
the unweighted items case is 2 — € for any € > 0 (modulo P#NP) [4]. This improves
upon the no PTAS result from [10]. However, when the input has arbitrary weights on
the items, then the lower bound on the approximation ratio becomes 2(logn).

Unfortunately, the 2(logn) lower bound of Laber and Nogueira for decision
trees of minimal height also does not apply to our problem. This is because height
mirrors the notion of size in set cover problems.

Amplifying the 2 — e gap using techniques from [9] for ConDT does not work for DT.
There, one squares an instance of ConDT, applies an a-approximation, and recovers a
solution to the original instance which is a /«-approximation. Repeating this procedure
yields the stronger lower bound. This does not work for DT because the average path
length only doubles when squaring the problem, so solving the squared problem with
an a-approximation and recovering a solution to the original problem simply preserves
(and unfortunately does not improve) the approximation ratio. The hardness results
from [I]] rely on the construction of a binary function which is difficult to approximate
accurately when certain instances of a hitting-set problem have large solutions. These
techniques do not appear to work for DT either.
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The analysis of the greedy algorithm is also not known to be tight. We only know

of instances where the approximation ratio of the greedy algorithm is not better than

]

o8y of optimal [ZI12].

log logn
Finally, we leave as an open question the problem of approximating DT with both

arbitrary item weights and arbitrary test weights.

Acknowledgments. We thank the anonymous reviewers for their insightful and helpful
comments.
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Abstract. We consider the problem of max-min fair allocation of indi-
visible goods. Our focus will be on the restricted version of the problem
in which there are m items, each of which associated with a non-negative
value. There are also n players and each player is only interested in some
of the items. The goal is to distribute the items between the players such
that the least happy person is as happy as possible, i.e. one wants to
maximize the minimum of the sum of the values of the items given to
any player. This problem is also known as the Santa Claus problem [3].
Feige [9] proves that the integrality gap of a certain configuration LP,
described by Bansal and Sviridenko [3], is bounded from below by some
(unspecified) constant. This gives an efficient way to estimate the opti-
mum value of the problem within a constant factor. However, the proof
in [9] is nonconstructive: it uses the Lovasz local lemma and does not
provide a polynomial time algorithm for finding an allocation. In this pa-
per, we take a different approach to this problem, based upon local search
techniques for finding perfect matchings in certain classes of hypergraphs.
As a result, we prove that the integrality gap of the configuration LP is
bounded by é Our proof is nonconstructive in the following sense: it
does provide a local search algorithm which finds the corresponding allo-
cation, but this algorithm is not known to converge to a local optimum
in a polynomial number of steps.

1 Introduction

Resource allocation problems, i.e. allocating limited resources to a number of
players while satisfying some given constraints, have been studied extensively in
computer science, operations research, economics, and the mathematics litera-
ture. Depending on whether the resource is divisible or not one can distinguish
two main types of such problems. The divisible case has been considered mostly
by combinatorists and measure theorists in the past century under the title of
“Cake Cutting” problems [I6/5]. On the other hand, the indivisible resource al-
location problems have been mostly the focus of algorithmic lines of research. In

* The first and third authors were supported through NSF grants 0546889 and 0729586
and a gift from Google.
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such problems, often the set of resources R consists of m items. There is also a
set P of n players. Each player i has a value function f; : 25 — IR. For the sake
of simplicity we define v;; = f;({j}). The goal is to partition the set of items to
subsets S, Ss,- -+, 5, and allocate each part to one of the players such that a
certain objective function is optimized.

Depending on the objective functions, various indivisible resource allocation
problems can be considered. For example, the problem of mazimizing social
welfare arises when we want to maximize ), f;(S;). See [GIS[I0I7] for recent
progress on this problem.

Minimizing the makespan is another example of indivisible resource alloca-
tion problems in which the goal is to minimize max; f;(5;) and f;’s are linear
functions, i.e. f;(S;) = Zje s, Vij. Lenstra, Shmoys and Tardos [15] provide a
2-approximation algorithm and also prove that the problem is hard to approxi-
mate within a factor of 1.5. Approximation ratios better than 2 are known for
some very special cases of this problem [7].

Another interesting trend in indivisible resource allocation is Max-min fair
allocation problems. Here, we aim to maximize min; f;(.S;) while f;’s are still lin-
ear functions. Although very similar at the first glance, this problem has turned
out to be fundamentally different from minimizing the makespan and the tech-
niques that are known to be useful there fail to give non-trivial results here.
Most notably, the assignment LP used in [15] yields an additive approximation
of max;; v;; []. It can be used to find a solution of value at least OPT —max;; v;j,
where OPT is the value of the optimal solution. Unfortunately, it offers no
approximation guarantee in the most challenging cases of the problem when
OPT S maxi; Uiy .

Bansal and Sviridenko [3] studied this problem under the name of the Santa
Claus problem, where Santa wants to distribute some presents among some kids
and his goal is to do this in such a way that the least happy kid is as happy as
possible. They considered a certain type of linear programming relaxation of the
problem (known as configuration LP that we will explain shortly), and showed
that it can be used to find a solution with value at least OPT/n. They also
showed that the integrality gap of this LP is no better than O(1/+/n). Asadpour
and Saberi [2] showed how to round the solution of configuration LP to get a
solution with value at least 2(OPT//n(logn)?).

Our focus here will be on a special case of the Max-min fair allocation problem,
known as restricted assignment problem, in which each item j has an inherent
value v; and a set of players to which the item can be assigned. In other words,
for each such player ¢, the value of v;; is v; and for all other players it is 0.
Bezakova and Dani [4] showed that this problem is hard to approximate within
a factor better than ; (In fact, this is also the best hardness result known
for the general problem.) Bansal and Sviridenko [3] showed that it is possible
to round the values of the configuration LP and get a feasible solution with
value 2(OPTlogloglogn/loglogn). Recently, Feige [9] proved that the optimal
value of the configuration LP is in fact within a constant factor of OPT. Al-
though [9] does not give a polynomial time algorithm to find a constant factor
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approximation solution, it does provide a constant factor estimation for the op-
timal value of the problenEl. This is due to the fact that the configuration LP
can be solved (up to arbitrary precision) in polynomial time, and its value is an
upper bound on OPT. The main result of this paper can be summarized as the
following:

Theorem 1. In the restricted assignment problem, there is a polynomial time
algorithm that estimates the optimal value of max-min allocation problem within
a factor of é — €, where € > 0 is an arbitrarily small constant.

The polynomial time algorithm referred to in the above theorem is simply the
configuration LP. The proof of the é estimation factor will follow from our
proof that the optimal value of the configuration LP is at most 50OPT. There
is a small loss of € in the estimation factor because the known polynomial time
algorithms [3] solve the configuration LP up to any desired degree of accuracy,
but not necessarily exactly.

Our proof of Theorem [ transforms the problem into a problem of finding
a perfect matching in certain hypergraphs. We design a local search algorithm
that finds such a perfect matching. It is inspired by the techniques of [I1] which
will be discussed in SectZl This method can be viewed as a generalization of
Hungarian method [14] to the domain of hypergraphs.

Comparing our results to those in [9], our result has the advantage of providing
an explicit bound (of é) on the integrality gap of the configuration LP. Also, our
proof technique suggests an algorithmic approach to round the solution of the
configuration LP. While in [9] multiple applications of the Lovasz local lemma
are used, here we introduce a local search algorithm and prove that it ends up

in a solution with value at least OPT . Although we cannot bound the running
time within a polynomial, it puts the problem in the complexity class PLYE and
proposes the open question of whether this local search (or a modified version
of it) converges in polynomial time to an appropriate solution.

1.1 The Configuration LP

Fix a real number ¢ and suppose that we want to see if it is possible to do the
allocation in such a way that each player i receives a bundle of items S; with
Ji(S;) > t. For any bundle S of items, let z;s be the indicator 0/1 variable,
representing if the whole bundle S is allocated to person ¢ (in this case x;5 will
be 1) or not (x;5 = 0). To provide a bundle with value at least ¢ for every person,
we need to solve the following integer program:

1 'We emphasize that all the results related to the hardness of approximation remains
valid even for estimating the optimal value of the problem.

2 The complexity class PLS consists of problems for which, given any input instance
there exists a finite set of solutions and an efficient algorithm to compute a cost for
each solution, and also a neighboring solution of lower cost provided that one exists.
Then the problem is to find a solution, namely a local optimum, that has cost less
than or equal to all its neighbors. For more information, see [12].
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— Every player only accepts bundles with value at least ¢; Vi : x;5 = 0 whenever
fz(S) < 1.

— Every player receives one bundle; Vi : ) 4 x5 = 1.

— Every item is allocated to at most one player: Vj : Zi,SljeS xis < 1.

— x;5 € {0,1} for every player ¢ and bundle S.

The configuration LP is the relaxation of the above integer program. The last
constraint is replaced by x;5 > 0

If the LP is feasible for some tg, then it is also feasible for all ¢ < ty. Let optLLP
be the maximum of all such values of ¢ (it can be shown that such maximum
exists). Every feasible allocation is a feasible solution of configuration LP. Hence
optLP > OPT. The value of optLP and a feasible solution to the configuration
LP of value optLP can be approximated within any desired degree of accuracy
in polynomial time, as shown in [3].

In this paper we show that any fractional solution of configuration LP corre-
sponding to optLP can be rounded (though not necessarily in polynomial time)
to an integral solution whose value is within a constant factor of optLP. We
provide two versions of our proof. In Section 2l we show how this result can be
deduced by combining (in a blackbox manner) a previous intermediate result of
Bansel and Sviridenko [3] with a theorem of Haxell [I1]. In Section Bl we provide
our main result which is basically a local search that finds an integral solution
with value at least optsLP. The proof in Section B is inspired by the results of
Section 2 but is presented in a self contained way. It circumvents the use of the
intermediate result of [3], and extends the proof technique of [I1] in certain ways.
Any of the two sections 2l and [B] can be read and understood without needing to
read the other section.

2 Matchings in Hypergraphs

Let H = (V,€) be a hypergraph. A matching in H is a set of pairwise disjoint
edges. We denote by v(H) the maximum size of a matching in H. A matching is
called perfect if any vertex appears in exactly one of its edges. Unlike the case for
matchings in graphs, the problem of finding a perfect matching in hypergraphs is
NP-complete. (A well known special case of this problem is the NP-hard problem
of 3-dimensional matching. Note that 3-dimensional matching can also be cast as
a special case of finding a perfect matching in a bipartite hypergraph, a problem
that we shall describe below.) There are some sufficient conditions known for
the existence of perfect matchings in hypergraphs. See for example [I] and [I3].
Some of these sufficient conditions are not computable in polynomial time.
Here, we focus on the problem of finding a maximum matching in bipartite
hypergraphs. A hypergraph H = (V, ) is called bipartite if the ground set V' is
the disjoint of sets U and V', and every E € & satisfies |ENU| = 1. A perfect
matching in a bipartite hypergraph is defined as a matching that saturates all
the vertices in U. A transversal for hypergraph H is a subset T" C V with the
property that ENT # () for every E € £. Let 7(H) denote the minimum size
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of a transversal of H. For a subset C' C U, we write Ec = {F CV : {cJUF €
& for some ¢ € C}, and let H¢ be the hypergraph (V, E¢). The following theorem
is proved by Haxell in [IT].

Theorem 2. (Haxell [11]) Let H = (U UV, &) be a bipartite hypergraph such
that for every E € € we have |[ENV| < r—1, and also 7(H¢) > (2r—3)(|C|—1)
for every C CU. Then v(H) = |U].

When r = 2, 'H becomes a graph, and Haxell’s theorem reduces to Hall’s theorem.
The proof of Theorem [2] as described in [I1] is not constructive.

2.1 A Constant Integrality Gap

In this section, we will consider a combinatorial conjecture (which is by now
a theorem, by the results of [9]) which is equivalent up to constant factors to
the restricted assignment problem, and prove it via Theorem Pl It reveals the
intuition behind the relation between the restricted assignment problem and
matchings in hypergraphs. Also, it is through this transformation that our local
search appears.

Bansal and Sviridenko proved that if the following conjecture is true for some
0B, then it can be shown that the integrality gap of configuration LP relaxation
for the restricted assignment problem is 2(3).

Conjecture (by Bansal and Sviridenko [3]): There is some uni-
versal constant 3 > 0 such that the following holds. Let Cy,---,C), be
collections of sets, C; = {S;1,- -+, Su} fori =1,---,p, where each set S
is a k-element subset of some ground set and each element appears in at
most [ sets S;;. Then there is a choice of some set S; ¢;) € C; for each
i=1,---,p, and a choice S] C S; (;) with the property that |Sj| > gk
and that each element occurs in at most one set in {S7,---, S, }.

For every value k, it is not hard to see that the conjecture is true when
B = 1/k. Feige [9] shows that the conjecture is true for some small enough
universal constant (3, for all values of k. Here, using Theorem [2l we prove that it
is true even for § = é (For every k > 3, our value of 3 is the largest number
satisfying two constraints. Namely, that (1 — 3) > 2, which will be needed in
the proof of Theorem Bl and that Sk is an integer. Hence , 5 = 1/3 when k is
divisible by 3, but might be as small as é for k=5.)

Theorem 3. Conjecture 21 is true for any 8 < L%?’J
Proof. Consider the following bipartite hypergraph H = (U UV, ). Here, V =
Ui ; Sijand U = {a1, a2, -+, ap}. Also & = {SU{a;} : S C 5; ; for some j,[5| =
Bk}. Note that here r = Sk + 1. By the construction of H, it is enough to prove
that H has a perfect matching (i.e. a matching with size |U|). We will do so by
showing that H satisfies the conditions of Theorem

Consider an arbitrary C' C U and a transversal set T in H¢. Because T is a

transversal set in H¢, it must have some intersection with all the edges in H¢.
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But edges in He correspond to all subsets S of V' with Sk elements such that for
some j and a; € C it holds that S C 5; ;. It means that for any such ¢ and j, at
least (1 — )k elements of S; ; should be in T'. (In fact, the number of elements of
S;,j in T should be at least (1 — )k + 1, but the extra +1 term does not appear
to have a significant effect on the rest of the proof, so we omit it.)

Now, consider a bipartite graph G = (V’, E) such that V' = U’ UT where
U'=Uectain, -+ a1} and E = {{a; j,q} : ¢ € S; j}. By the above discussion,
deg(v) > (1 — B)k, for all v € U'. Hence, |E| > (1 — B)k|C|l. Also by the
assumption of the conjecture, deg(v) < [ for all v € V'. Hence |E| < I|T].
Therefore,

I0T| > (1= B)k|C|L.

Thus, [T| > (1 — B)k|C| = ', (r — 1)|C|. Picking any 8 < 1/3, we have
|T'| > 2(r — 1)|C| which means that 7(H¢) > (2r — 3)(|C| — 1) for every C C U.
This completes the proof. a

3 A ;-approximate Solution through a Local Search

In this section we prove that the integrality gap of the configuration LP is no
worse than é

Given a feasible solution {z;s} to the configuration LP, we modify it as follows.
To simplify notation, scale values of all items so that we can assume that ¢t = 1.
Recall that v;; € {0,v;}. Call an item j fat if v; > | and thin it v; < !
(The value of 51) is taken with hindsight, being the largest value p satisfying
2(p+p) < 1—p, needed later in the proof of Lemma[ll) For every fat item j,
change v; so that v; = 1. Now modify the LP solution so as to make it minimal,
by restricting players to choose bundles that are minimally satisfying for the
player — dropping any item from the set reduces its value below 1. This can be
achieved in polynomial time by dropping items from sets whenever possible. We
are now left with an LP solution that uses only two types of sets:

— Fut sets. These are sets that contain only a single fat item and nothing else.
— Thin sets. These are sets that contain only thin items.

We call such a solution to the LP a minimal solution.

Construct a bipartite hypergraph based on the modified LP solution. The
U side are the players. The V side are the items. For every player i put in
hyperedges associated with those sets for which z;s > 0 as follows. If S = {j} is
a fat set, include the hyperedge {7,7}. If S is a thin set, then for every minimal
subset S’ C S of value at least é (minimal in the sense that dropping any item
from S reduces its value below 51))7 put in the hyperedge {i,S’}. Observe that
by minimality, S’ has weight at most ?.

Theorem 4. Given any minimal solution to the configuration LP, the bipartite
hypergraph constructed above has a perfect matching (namely, a matching in
which all vertices of U are covered).
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We note that Theorem [El implies that there is an integer solution of value at
least é, since every player can get either a fat set (that contains an item of value
more than é), or a part of a thin set of value at least é

Our proof of Theorem Hlis patterned a proof of [IT], with some changes. The
most significant of these changes is the use of Lemma [l

For a set W of edges, we use the notation Wy to denote the vertices of U that
are covered by W, and Wy to denote the vertices of V' that are covered by W.

Proof. The proof is by induction on U. For [U| = 1, the theorem is obviously true
(since the hypergraph has at least one edge). Hence assume that the theorem is
true for |[U| = k, and prove for |U| =k + 1.

Denote the vertices of U by {uo,...u;}. By the inductive hypothesis, there is
a matching of size k involving all U vertices except for ug. (This is true because
by removing ug from the hypergraph and all its edges, one obtains a hypergraph
which corresponds to a minimal solution to an LP with one less player.) Pick
an arbitrary such matching M. We present an algorithm that transforms this
matching into a new matching of size k 4+ 1. The algorithm is in some respects
similar to the known algorithm for constructing matchings in bipartite graphs.
It constructs an alternating tree in an attempt to find an alternating path. In
the graph case, when such a path is found, the matching can be extended. In
the hypergraph case, the situation is more complicated, and hence the proof will
not provide a polynomial upper bound on the number of steps required until
eventually the matching is extended.

In our alternating tree, there will be two types of edges. Edges of type A are
edges that we try to add to the matching (A stands for Add). Edges of type B
will be existing matching edges (hence B C M) that intersect edges of type A,
and hence block us from adding edges of type A to the matching (B stands for
Block). Every root to leaf path will be an alternating sequence of edges of type
A and B.

The A edges will be numbered in the order in which they are added to the
alternating tree. Hence their names will be ay, as, .. ., and these names are rela-
tive to a currently existing alternating tree (rather than being names that edges
keep throughout the execution of the algorithm). For every i > 1, we associate
with edge a; an integer m; > 1 that will correspond to the number of B edges
that block a;. The strict positivity of m; implies that |B| > |A].

Initially one needs to pick the first edge for the alternating tree. Pick an
arbitrary edge e such that ey = ug. Let m; denote the number of edges from M
that ey intersects. If m; = 0, then terminate, because the edge e can be added
to M, obtaining a perfect matching. If my > 0, rename e as a1, add a; to A,
and add the m; matching edges that intersect a; to B.

Let ¢ > 2 and assume that the alternating tree already contains ¢ — 1 edges
of type A (named as ay,...,a;—1), and at least i — 1 edges of type B. We now
pick an edge e such that ey € (AU B)y and ey does not intersect (AU B)y .
The following lemma shows that such an edge must exist.
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Lemma 1. Let H(U,V, E) be the hypergraph associated with a minimal solution
to the configuration LP. Then given any alternating tree as described above, there
always is an edge e such that ey € (AUB)y and ey does not intersect (AUB)y .

Proof. Let ¢ denote the number of vertices of U in the alternating tree. Each
hyperedge corresponds in a natural way either to a fat set or to (part of) a thin
set. Let Ay (Ay, respectively) denote the collection of A edges in the alternating
tree that correspond to fat sets (thin sets, respectively), and similarly for By
and B; with respect to B edges in the alternating tree. Observe that in an
alternating tree necessarily [As| + [A;] = |A| < € and |Bf| + |B| = |B| < ¢.
Moreover, |Af| = |Bf| = |(Af U Bf)v|, because every fat edge of A contains
exactly one vertex in V, this vertex is contained only in fat edges, and hence
this fat edge is intersected by exactly one fat edge in B.

Consider now the restriction of the minimal solution to the LP to the set of
players P represented by the ¢ vertices of (AU B)y. Let Sy be the collection of
fat sets and S; be the collection of thin sets. Let oo = ZieP, ses; Tis denote the
total weight assigned by this restricted solution to fat sets, and let § =/ — «a =
D ic p, ses, Tis denote the total weight assigned by this restricted solution to
thin sets. If @ > [(Ay U By)y| then it must be the case that some fat set has
positive weight in the restricted solution but is not part of the alternating tree.
In this case, this fat set can contribute a hyperedge to the alternating tree. Hence
it remains to deal with the case that o < |A¢|. In this case, 25 > |A;| + | Be| + 2.
The hyperedges in the alternating tree that correspond to thin sets each take up
value at most g Hence even after removing all items appearing in the alternating
tree, the sum of weights multiplied by respective remaining value of thin sets in

the LP is
Z Xis Z Vij > §

i€P, SeSt JES\(A;UBy)

This means than at least one thin set must have retained a value of at least
é. Hence, this thin set can contribute a hyperedge to the alternating tree. O

Pick an arbitrary hyperedge e satisfying Lemma/[Il and let m; denote the number
of edges of M that e intersects. If m; > 0, we call this an extension (the alter-
nating tree grew larger), rename e as a;, add a; to A, and add the m; matching
edges that intersect a; to B.

We now describe what to do when m; = 0. If ey = ug, add edge e to the
matching M, and terminate. If ey # ug, then let €’ be the unique edge in B for
which ey = ef;. Let a; (here necessarily we will have j < i) be the unique edge
in A that intersects ¢’. In the matching M, replace the matching edge ¢’ by the
matching edge e. Note that this still gives a valid matching of size k, because by
construction, e does not intersect any edge of M except for sharing its U side
vertex with e/, which is removed from M. Update m; by decreasing it by 1. If
the new value of mj is still positive, this step ends. However, if m; = 0, then the
above procedure is repeated with j replacing ¢ (in particular, a; will also become
part of the matching M). Because j < ¢, the number of times the procedure can
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be repeated is finite, and hence eventually the step must end. We call such a
step a contraction (the alternating tree becomes smaller).

This completes the description of the algorithm. Observe that the algorithm
terminates only when we extend the matching M by one more edge. Hence it
remains to show that the algorithm must terminate.

To see this, consider the evolution of vector mq,ms,..., m;. For simplicity
of the argument, append at the end of each such vector a sufficiently large
number (|M|+ 1 would suffice). We call the resulting vector the signature of the
alternating tree. We claim that the signatures of any two alternating trees are
distinct. This is because ordering the signatures by the time in which they were
generated sorts them in decreasing lexicographic order. For extension steps, this
follows from the fact that we appended |M| + 1 at the end of the respective
vector. For contraction steps, this follows from the fact that m; decreases.

Since ) ,m; < |M| and m; > 0 (whenever m; is defined), the number of
possible signatures is 2/ (there is a one to one correspondence between these
vectors and choices of after which items to place delimiters in a sequence of | M|
items), and hence the algorithm cannot have infinite executions. O

The proof of Theorem [ implicitly provides a local search algorithm to find
an integral solution with value é Its basic objects are the alternating trees. A
basic step is that of adding an edge to the tree, resulting in either an extension
step or a contraction step. The measure of progress of the local search is via the
lexicographic value of the corresponding signature. Given a matching with |M| <
n edges (an allocation to M players), it will be extended after at most 2™ steps.
Hence starting with the empty matching it takes at most an\;ﬁ:o 2IMI < 97 Jocal
search steps uptil a perfect matching is found. This corresponds to allocating
disjoint bundles of value at least optLP/5 to all players. Noting that optLP is
at least as large as the optimal solution, the following theorem is established.

Theorem 5. After 2™ local moves, our algorithm finds a feasible integral é—
approximate allocation.

4 Open Directions

Characterizing the best possible approximation ratio for the max-min allocation
problem is still open, both for the restricted assignment version and for the
general version of the problem. We list here some research questions that are
suggested by our work.

1. Integrality gap. We showed that the integrality gap of the configuration LP
for the restricted assignment problem is no worse than 1/5. It was previously
known to be no better than 1/2 (in particular, this follows from the NP-
hardness result of [4]). Narrow the gap between these two bounds.

2. Complexity of local search. Our proof is based on a local search procedure.
Can a locally optimal solution with respect to this local search be found in
polynomial time? Is finding such a solution PLS-complete? These questions
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apply also to similar local search procedures that find a perfect matching in
hypergraphs satisfying the conditions of Theorem

Approzimation algorithms. Provide an approximation algorithm (that ac-
tually finds an allocation) with a constant approximation ratio for the re-
stricted assignment problem.

. Hypergraph matchings. Can the proof techniques used in our paper be used

also for other problems? For example, can our approach be employed to

prove that the integrality gap of configuration LP for general max-min fair

allocation problem is ©( \/ln) (saving a log® n factor compared to [2])?
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Abstract. This paper studies how to optimally embed a general met-
ric, represented by a graph, into a target space while preserving the
relative magnitudes of most distances. More precisely, in an ordinal em-
bedding, we must preserve the relative order between pairs of distances
(which pairs are larger or smaller), and not necessarily the values of
the distances themselves. The relaxation of an ordinal embedding is the
maximum ratio between two distances whose relative order is inverted
by the embedding. We develop polynomial-time constant-factor approx-
imation algorithms for minimizing the relaxation in an embedding of an
unweighted graph into a line metric and into a tree metric. These two
basic target metrics are particularly important for representing a graph
by a structure that is easy to understand, with applications to visualiza-
tion, compression, clustering, and nearest-neighbor searching. Along the
way, we improve the best known approximation factor for ordinally em-
bedding unweighted trees into the line down to 2. Our results illustrate
an important contrast to optimal-distortion metric embeddings, where
the best approximation factor for unweighted graphs into the line is
O(n'/?), and even for unweighted trees into the line the best is O(n'/?).
We also show that Johnson-Lindenstrauss-type dimensionality reduction
is possible with ordinal relaxation and ¢; metrics (and ¢, metrics with
1 < p < 2), unlike metric embedding of ¢1 metrics.

1 Introduction

The maturing field of metric embeddings (see, e.g., [[M04]) originally grew out of
the more classic field of multidimensional scaling (MDS). In MDS, we are given a
finite set of points and measured pairwise distances between them, and our goal
is to embed the points into some target metric space while (approximately) pre-
serving the distances. Originally, the MDS community considered embeddings
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into an ¢, space, with the goal of aiding in visualization, compression, clustering,
or nearest-neighbor searching; thus, the focus was on low-dimensional embed-
dings. An isometric embedding preserves all distances, while more generally,
metric embeddings trade-off the dimension with the fidelity of the embeddings.

But the distances themselves are not essential in nearest-neighbor searching
and many contexts of visualization, compression, and clustering. Rather, the
order of the distances captures enough information; in order words, we only need
an embedding of a monotone mapping of the distances into the target metric
space. The early MDS literature considered such embeddings heavily under the
terms ordinal embeddings, nonmetric MDS, or monotone maps [CS74l, [Kru64al
Kru64b, She62, Tors3).

While the early work on ordinal embeddings was largely heuristic, there has
been some work with provable guarantees since then. Define a distance matriz
to be any matrix of pairwise distances, not necessarily describing a metric. Shah
and Farach-Colton [SEC04] have shown that it is NP-hard to decide whether
a distance matrix can be ordinally embedded into an additive metric, i.e., the
shortest-path metric in a tree. Define the ordinal dimension of a distance matrix
to be the smallest dimension of a Euclidean space into which the matrix can be
ordinally embedded. Bilu and Linial have shown that every matrix has
ordinal dimension at most n — 1. They also applied the methods of [AFR&5] to
show that (in a certain well-defined sense) almost every n-point metric space
has ordinal dimension {2(n). It is also known that ultrametrics have ordinal
dimension exactly n — 1 [ABDT].

While ordinal embeddings and ordinal dimension provide analogs of exact
isometric embedding with monotone mapping, Alon et al. introduced an
ordinal analog of distortion to enable a broader range of embeddings. Specifically,
a metric M’ is an ordinal embedding with relazation o > 1 of a distance matrix M
if aMT[i,j] < MIk,l] implies M'[i, j] < M'[k,l]. In other words, the embedding
must preserve the relative order of significantly different distances. Note that
in an ordinary ordinal embedding, we must respect distance equality, while in
an ordinal embedding with relaxation 1, we may break ties. The goal of the
ordinal relaxation problem is to find an embedding of a given distance matrix
into a target family of metric spaces while minimizing the relaxation. Here we
optimize the confidence with which ordinal relations are preserved, rather than

the number of ordinal constraints satisfied (as in [CS98, [SEC04]).

Our results. We develop polynomial-time constant-factor approximation algo-
rithms for minimizing the relaxation in an embedding of an unweighted graph
into a line metric and into a tree (additive) metric. These two basic target met-
rics are particularly important for representing a graph by a structure that is
easy for humans to understand, with applications to visualization, compression,
clustering, and nearest-neighbor searching.

Our 10/3-approximation for unweighted graphs into the line (Section B) illus-
trates an important contrast to optimal-distortion metric embeddings, where the

best approximation factor for unweighted graphs into the line is O(nl/ %), and
even for unweighted trees into the line the best is O(n'/?) [BDGT05]. This result
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significantly generalizes the previously known 3-approximation for minimum-
relaxation ordinal embedding of unweighted trees into the line [ABDT]. Along
the way, we also improve this result to a 2-approximation. The main approach
of our algorithm is to embed the given graph G into the line with additive
distortion at most 4« (2« from expansion and 2« from contraction), where « is
the minimum relaxation of an ordinal embedding of G into a tree. We show that
this embedding has (multiplicative) ordinal relaxation at most 4«, a property
not necessarily true of multiplicative distortion. When G is a tree, we show that
the embedding is contractive, and thus we obtain a 2-approximation. For general
graphs GG, we modify the embedding by contracting certain distances to improve
the (asymptotic) approximation factor to 10/3.

Our 27-approximation for unweighted graphs into trees (Section ) is in fact
an approximation algorithm for both minimum-relaxation ordinal embedding
and minimum-distortion metric embedding. We show that lower bounds on the
ordinal relaxation (which are also lower bounds on metric distortion) provide
new insight into the structure of both problems. Our result improves the best
previous 100-approximation for metric distortion, and is also the first illustration
that relaxation and distortion are within constant factors of each other in this
context. The main approach of our algorithm is to construct a supergraph H of
the given graph G such that (1) G can be embedded into H with distortion at
most 9a, where « is the minimum relaxation of an ordinal embedding of G into
a tree, and (2) H can be embedded into a spanning tree of H with distortion
at most 3. The resulting embedding of distortion 27 a is a 27-approximation for
both distortion and relaxation.

In each context where we obtain constant-factor approximations, e.g., or-
dinally embedding unweighted graphs into the line, it remains open to prove
NP-hardness or inapproximability of minimizing relaxation.

Another topic of recent interest is dimensionality reduction. The famous
Johnson-Lindenstrauss Theorem guarantees low-distortion reduction to
logarithmic dimension for arbitrary £s metrics, but recently it was shown that the
same is impossible without significant distortion for ¢; metrics [BCO5L [LN04] (de-
spite their usefulness and flexibility for representation). In contrast, we show in
Section [B] that arbitrary £; metrics can be ordinally embedded into logarithmic-
dimension ¢; space with relaxation 14¢ for any € > 0. More generally, our analog
of the Johnson-Lindenstrauss Theorem applies to £, metrics with 1 < p < 2. We
show that this result in fact follows easily from a combination of known results:
the monotone property of ordinal embeddings, power transformations for mak-
ing metrics Euclidean, the Johnson-Lindenstrauss Theorem, and Dvoretzky-type

results to return to the desired ¢, space [FLMT77, Ind07].

2 Definitions

In this section, we formally define ordinal embeddings and relaxation (as in
[ABDT]) as well as the contrasting notions of metric embeddings and distortion.
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Consider a finite metric D : Px P — [0, 00) on a finite point set P—the source
metric—and a class T of metric spaces (T, d) € 7 where d is the distance function
for space T—the target metrics. An ordinal embedding (with no relazation) of
D into 7 is a choice (T,d) € T of a target metric and a mapping ¢ : P — T
of the points into the target metric such that every comparison between pairs
of distances has the same outcome: for all p,q,r,s € P, D(p,q) < D(r,s) if and
only if d(¢(p), #(q)) < d(p(r), #(s)). Equivalently, ¢ induces a monotone function
D(p,q) — d(¢(p), ¢(q)). An ordinal embedding with relaxation « of D into T is
a choice (T,d) € 7 and a mapping ¢ : P — T such that every comparison
between pairs of distances not within a factor of a has the same outcome: for all
p,q,7, 8 € Pwith D(p,q) > a D(r,s), d(é(p), #(q)) > d(¢(r), ¢(s)). Equivalently,
we can view a relaxation « as defining a partial order on distances D(p, q), where
two distances D(p,q) and D(r,s) are comparable if and only if they are not
within a factor of « of each other, and the ordinal embedding must preserve this
partial order on distances.

We pay particular attention to contrasts between relaxation in ordinal embed-
ding relaxation and distortion in “standard” embedding, which we call “metric
embedding” for distinction. A contractive metric embedding with distortion ¢ of
a source metric D into a class 7 of target metrics is a choice (T,d) € 7 and
a mapping ¢ : P — T such that no distance increases and every distance is
preserved up to a factor of ¢: for all p,q € P, 1 < D(p,q)/d(¢(p),d(q)) < c.
Similarly, we can define an ezpansive metric embedding with distortion ¢ with
the inequality 1 < d(¢(p), ¢(q))/D(p,q) < c. When ¢ = 1, these two notions co-
incide to require exact preservation of all distances; such an embedding is called
a metric embedding with no distortion or an isometric embedding. In general,
c¢* = ¢*(D,T) denotes the minimum possible distortion of a metric embedding
of D into 7. (This definition is equivalent for both contractive and expansive
metric embeddings, by scaling.)

3 Constant-Factor Approximations for Embedding
Unweighted Graphs and Trees into the Line

In this section we give an asymptotically 10/3-approximation algorithm for
minimum-relaxation ordinal embedding of the shortest-path metric of an un-
weighted graph into the line. This result shows a sharp contrast from metric
embedding, where the best known polynomial-time approximation algorithm for
unweighted graphs into the line achieves an approximation ratio of just O(n'/?),
and even for unweighted trees into the line the best is O(n'/?) [BDGT05]. Along
the way, we give a 2-approximation algorithm for minimum-relaxation ordinal
embedding of unweighted trees into the line, improving on the 3-approximation
of [ABD].

Let G = (V, E) be the input unweighted graph. Suppose that there exists an
ordinal embedding h of GG into the line R with relaxation a. Let v and v be the
vertices in G that h maps onto the leftmost and rightmost points, respectively,
in the line. In other words, h(u) and h(v) are the minimum and maximum values
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taken by h. The algorithm guesses the vertices w and v, i.e., repeats the following
procedure for all possible pairs of vertices u and v.
For a given guess of u and v, the algorithm computes an (arbitrary) shortest

path P from u to v in G, say visiting vertices u = vg, v1,va, ...,vs = v. Then it
computes the Voronoi partition of the vertices V.=V, UV, U---U Vs where the
sites are the vertices v, v1,...,vs of the path P, i.e., for each i € {0,1,...,6}

and for each x € V;, Dg(z,v;) = min{D¢(z,v;) | v; € P}. In particular, v; € V;.
This partition defines a function f : V. — R by f(z) = i for x € V;. This
function will turn out to be a good embedding if G is a tree, but it will need
further refinement for general graphs. We begin by deriving some properties of f.

Lemma 1. For any i € {0,1,...,6} and any = € V;, we have o > D¢g(z,v;),
and if G is a tree, we have a > Dg(z,v;) + 1.

Proof. Suppose for contradiction that some vertex = € V; has o < Dg(x,v;).
Consider the ordinal embedding h of G into R with relaxation a.. By construction,
h(vo) < h(z) < h(vs), so some j with 0 < j < 6 has h(v;) < h(z) < h(vj+1). By
assumption, Dg(x,v;) > Dg(z,v;) > o = a Dg(vj,vj41) = a. By definition of
relaxation, |h(z) — h(v;)| > |h(vj) — h(vj41)], contradicting that h(v;) < h(z) <
h(vjt1)-

If G is a tree, we have the property that |D¢(z,v;) — Dg(x,vj41)] = 1. By
construction, both D¢ (x,v;) and Dg(x,vj41) are at least De(z, v;), and hence
the larger is at least Dg(x,v;) +1 > o+ 1. The rest of the proof for trees is as
above. O

Lemma 2. For any two vertices x1 and xs in G, we have
Dg(w1,32) = 20 < [f(21) = f(22)| < Da(a1,22) + 20,
and if G is a tree, we have
Dg(z1,22) — 2(a — 1) < |f(21) — f(22)| < Dg(z1,22) + 2(ar — 1).

Proof. Suppose x1 and xe are in Vi, and V;,, respectively. By Lemma [II
Dg(x1,v5,) < @ and Dg(x2,v;,) < a. By the triangle inequality, D¢ (1, 22) <
De(z1,vi,) + Da(vig, viy) + Da(viy, 2) < o+ |f(x1) — f(x2)| + a. We also
have |f(z1) — f(x2)| = Dg(vi,,viy) < Da(viy, 1) + Dg(w1, 22) + Da(@2,viy) <
a+ Dg(x1,22) +a. If G is a tree, we can replace each o with « — 1 by Lemmal/Il
and obtain the stronger inequalities. O

Next we show the efficiency of f as an ordinal embedding for trees, improving
on the 3-approximation of [ABD¥]:

Theorem 1. There is a polynomial-time algorithm which, given an unweighted
tree T' that ordinally embeds into the line with relaxation a, computes an ordinal
embedding with relaxation 2a — 1.

Proof. We prove that the function f defined above is an ordinal embedding with
relaxation 2a — 1.
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First we claim that, for any two vertices x and y, we have |f(x) — f(y)] <
Dy(z,y). Because T is a tree, there is a unique simple path @ from z to y.
Suppose = and y belong to V; and Vj, respectively. If ¢ = j, then f(x) = f(y),
and the claim is trivial. Otherwise, () must be the simple path from x to v; to
vj (along P) to y. Therefore the length of @ is at least |i — j| = |f(z) — f(y)|. In
other words, the embedding f does not increase the distance between x and y.

Next let x1, x2, x3, x4 be vertices of T with Drp(xy1,x2)/Dr(xs, x4) > 200 — 1.
It remains to show that |f(x1) — f(z2)| > |f(z3) — f(z4)]. Because v > 1 and
Dy (zs,x4) > 1, we have Dy (z1,x2) > (2a—1)Dp(23,24) > 2a—2+ Dp(x3, 24).
By Lemma 2] we have |f(z1) — f(22)| > Dr(z1,22) — 2a + 2, which is greater
than Dr(z3,24). Above we proved that Dp(z3,x4) > |f(23) — f(x4)]. Therefore

([l

[f (1) = f(z2)| > | f(23) = f(za)]-

Before we define our embedding for general unweighted graphs, we prove a final
property of f:

Lemma 3. For anye > 1/«, any vertex x, and any vertices y1 and y2 adjacent

to x, we have either min{ f(y1), f(y2)} > f(x) —a(l+¢) or max{f(y1), f(y2)} <
flz)+a(l+e).

Proof. Suppose for contradiction that there is a vertex x with neighbors y;
and yo for which f(y1) < f(x) — a(l +¢) and f(x) < f(y2) — (1 4+ €). Thus
[f(y1) — f(y2)| > 2a(1 + €). But Dg(y1,y2) < 2, so by Lemma [l we conclude
|f(y1) — f(y2)| <2+ 2a, which is a contradiction for € > 1/a. O

Finally we can define our ordinal embedding g : V' — R for a general unweighted
graph G = (V, E), for any € > 0:

f(x) — /3 if x has a neighbor y in G with f(y) < f(x) — a(1l + ¢),
g(z) =< f(x)+ «/3 if x has a neighbor y in G with f(y) > f(z) + a(1 + €),
f(x) otherwise.

By Lemmaf3] the embedding g is well-defined. It remains to bound its relaxation.
Lemma 4. For any two vertices x1 and xs in G, we have
D¢ (x1,29) — 8a/3 < |g(z1) — g(x2)] < D (x1,x2) + 8ar/3.
Proof. By construction, |g(z) — f(z)| < a/3 for any vertex x. By Lemma [2]
De(z1,22) —2a — 20/3 < |g(z1) — g(22)| < Dg(z1,22) + 2+ 20/3. O

Lemma 5. For any € > 3/(2a) and any edge e = (z,y) in G, we have |g(x) —
9()| < (4/3+e)a.

Proof. Without loss of generality, suppose that f(z) < f(y). By Lemma [2]

[f(z) = fy)l < 1420 If f(z) < f(y) — a(l +¢), then g(z) = f(z) + o/3
and ¢g(y) = f(y) — «/3. In this case, we have

l9(x) —g9(W)| = |f(z) = f(¥)| —20/3 <20 +1—2a/3 < (4/3 +¢€)a
for a > 1/e.
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It remains to consider the case f(z) < f(y) + (1 4+ ). Observe that g(x)
is equal to one of the values f(x) — a/3, f(x), and f(z) + «/3. There are also
three cases for g(y). So there are nine cases to consider. But the claim is clearly
true for eight of them. The only case for which the claim is nontrivial is when
g9(z) = f(z) —a/3 and g(y) = f(y) + /3.

In this case, we have |g(z) — g(y)| = |f(z) — f(y)| + 2a/3. By definition of g,
we conclude that there is a vertex z’ adjacent to z in G such that f(z') <
f(x) — (1 + ¢)a. Similarly, there is a vertex y’ adjacent to y for which we have
fW) > fly) + (1 4+ e)a. Thus f(y') — f(2') > (2 + 2¢)a. But we know that
De(2,y") < 3,and |f(2')— f(y')] must be at most 3+2«, which is a contradiction
for € > 3/(2«x). Therefore this case does not occur, and the claim is true for all
nine cases. ]

Lemma 6. The ordinal embedding g has relazation (10/3 + e)a + 1 for ¢ >

3/(2a).

Proof. Consider z1,x2,23,24 € V for which Dg(x1,22)/Da(zs,z4) > (10/3 +
e)a + 1. It suffices to show that |g(z1) — g(z2)| > |g(x3) — g(x4)|. We consider
two cases.

First suppose that Dg(xs3,24) > 1. Then

Dg(z1,22) — Dg(xs,xq) > [(10/3 + e)a+ 1 — 1] Dg(x3, 24) > 20c/3.

By Lemma E |g(x1) — g(x2)| > Dg(z1,x2) — 8a/3 and |g(z3) — g(xa)] <
D¢ (x3,24) + 8c/3. Thus

l9(z1) —g(22)| = |g(x3) —g(x4)| > [De (w1, 22) —8/3] = [De (3, 24) +80/3] > 1

Therefore |g(z1) — g(z2)| > lg(z3) — g(w1)l.

In the second case, there is an edge between vertices x3 and x4. We also know
that Dg(x1,x2) > (10/3 +¢)a + 1. By Lemmaldl |g(z3) — g(z4)| < (4/3 + €)a.
It suffices to prove that |g(x1) — g(z2)] > (4/3 + €)a. By Lemma 2 |f(z1) —
F(2)] = Da(w1,22) — 20 > (4/3+ 2. 1 [g(a1) — glw2)] > |f(z1) — £(22)], the
claim is true. On the other hand, if |f(z1) — f(z2)] > (2 + ¢)«, then because
l9(@1) — g(w2)| = |f(@1) — f(2)] — 20/3, we have |g(z1) — g(z2)| > (4/3 + £)ar
So we can suppose that [g(x1) — g(z2)| < |f(x1) — f(z2)| and that |f(z1) —
f(z2)] € [(4/3 + €)a, (2 + €)a]. Without loss of generality, we can suppose that
f(z1) < f(x2), and consequently f(x2) € [f(z1) + (4/3+€)ev, f(21) + (2+€)a].
Because |g(z1) — g(z2)] < |f(xz1) — f(z2)], and by the symmetry between xq
and x2, we can suppose that g(z1) = f(z1) + a/3 and g(x2) < f(x2).

We conclude that there exists a vertex x5 for which e = (z1,25) € E(G)
and f(z1) + (1 +e)a < f(xs) < f(x1) + 2a. As a consequence, Dg(x5,x2) >
De(z1,22)—1 > (10/3+¢)aand f(x5) € [f(x1)+(14¢)a, f(x1)+2a]. Therefore
|f(z5) — f(xz2)] < a. But this inequality contradicts that |f(x5) — f(z2)| >
Dg(xs5,22) — 2a > (4/3 + €)a. We conclude that |g(z1) — g(z2)| > (4/3 + €)a,
which completes the proof. (I
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Substituting £ = 3/(2a) + ¢/« in Lemma [6 we obtain the following result:

Theorem 2. For any § > 0, there is a polynomial-time algorithm which, given
an unweighted graph that ordinally embeds into the line with relaxation «, com-
putes an ordinal embedding with relazation (10/3)a+5/2 46

4 Constant-Factor Approximation for Embedding
Unweighted Graphs into Trees

In this section, we develop a 27-approximation for the minimum-relaxation ordi-
nal embedding of an arbitrary unweighted graph into a tree metric. Specifically,
we give a polynomial-time algorithm that embeds a given unweighted graph G
into a tree with (metric) distortion at most 27 ag, where ag is the minimum
relaxation needed to ordinally embed G into a tree. Because the relaxation of
an embedding is always at most its distortion m Proposition 1], we obtain
the desired 27-approximation for minimum relaxation. Furthermore, because the
optimal relaxation is also at most the optimal distortion, the same algorithm is
a 27-approximation for minimum distortion. This result improves substantially
on the 100-approximation for minimum-distortion metric embedding of an un-
weighted graph into a tree [BISO7]. Furthermore, we obtain that the minimum
possible distortion ¢ is @ () for any graph G, a property which is not true in
many other cases

4.1 Lower Bound for Ordinal Embedding of Graphs into Trees

We start with a lower bound on the minimum relaxation needed to embed a
graph with a special structure into any tree.

Theorem 3. Any graph G has ag > 21/3 if there are two vertices u and v and
two paths Py and Py between them with the following properties:

1. Py is a shortest path between u and v; and
2. there is a vertex w on Py whose distance to any vertex on Py is at least .

Proof. Suppose that G can be ordinally embedded into a tree T' with relaxation
less than 21/3. Let u = vy, v,...,v, = v be the vertices of the path P, in G.
By Property 2, we have m > 2] because u and v are also two vertices on Ps.
Note that in addition to v and v, P; and P> may have more vertices in common.
Let v; be mapped onto v, in this embedding, v, € V(T'). Let P’ be the unique
path between v} and v/, in T'. Also suppose that x; is the first vertex on path
P’ that we meet when we are moving from v} to v],. Note that such a vertex
necessarily exists because v/, is a vertex on P’ which we meet during our path
in T, and there might be more vertices like v/,,. According to this definition, x;
is a vertex on P’, and the vertices v] = x1, 2, ..., %, = v, are not necessarily
distinct. Let k£ be the maximum distance between two vertices x and y in T" over
all pairs (x,y) with the property that their representatives in G are adjacent.
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Because there is exactly one path between any pair of vertices in T', we know
that, if @; # 11, then the vertex x; lies in the (shortest) path between v} and
vj,, in T. Consequently, we have dr(vj,v;,,) = dr(vj, x;) + dr(x;,vj ) where
dr(a,b) is the distance between a and b in T'. Note that by definition of &, for
any 1 where z; # x;41, the sum of these two terms is at most k. This means
that either dr(vj,x;) or dr(z,vi,,) is at most k/2. We use this fact frequently
in the rest of proof.

Let w be the ith vertex on P;. Equivalently, let w be v;. In order to complete
our proof, we consider two cases. At first, suppose that x;_;/3 = x;_j/341 =

© =Ty = Tig1 = -+ = Tyyyy3. In this case, let 43 and 42 be respectively the
minimum and maximum numbers for which we have z;, = x; = x;,. We prove
that either dr(vj, , ;) or dr(wi,, v, ) is at most k/2. If 4; = 1, then we have
x;, = v;, and consequently dr(z;,,v; ) = 0. Otherwise, we have x;, # i 1
and therefore we deduce that either dr(vj,, x;,) or dr(zs,,v;, ;) is at most k/2.
According to the symmetry of the case, we also have that either dr(vj,,z;,) or
dr(,,vj, 1) is at most k/2. Note that x;, = x;,. Finally we conclude that there
exist j1 € {i1—1,41} and ja € {ia,42+1} such that dr (v}, J2) <k/2+k/2=
Note that the distance between v;, and vj, is at least 2{/3 in G. Because there
are two adjacent vertices in G such that their distance in T is k, we can say that
the relaxation is at least 211/3 =2l/3.

Now we consider the second and final case. In this case, There exists a vertex
J1€{i+1-1/3,i+2—1/3,...,i—1+1/3} such that we have either z;, # x;, _1 or
xj, # Tj,+1. Using each of these inequalities, we reach the fact that there exists
J2 € {j1 — 1,j1,51 + 1} for which we have dr(v},,z;,) < k/2. We define some
similar terms for path Ps. Let u = uy, us, ..., U, = v be the vertices of the path
P, in graph G. Let u; is mapped onto «} in this embedding, u; € V(T'). Suppose
that y; is the first vertex on path P’ that we meet when we are moving from )
to ul,. We know that either z;, # v] or x;, # v/,. Without loss of generality,
suppose that z;, # v]. Now we know that y; = v] lies before z;, on path P’, and
Ym: = v}, does not lie before x;, on this path. Therefore there exists a number
js for which y;, lies before x;, on P’, and y;,4+1 does not lie before x;, on the
path. Therefore z;, occurs in the (shortest) path between v and v/, ; in T. In
the other words, we have dT( wi i) = dr(u ;3,%) +dr(zj,,w) ) <k We
can say that either dr(u’,,x;,) or dr(zj,,u}, ;) is at most k/2. Suppose that
dr(uj,,xj,) is at most k / 9. The proof in the other case is exactly the same.

Fmally we reach the inequality dr(vj,,u),) < dr(v ]2733]1) + dT(le,uB) <
k/2 4 k/2 = k. Note that the distance between v;, and w = v; is at most [/3
in G, and therefore the distance between v;, and u;, which is a vertex on path
Py is at least [ — /3 = 2[/3 in G. Again we can say that there are two adjacent
vertices in GG such that their distance in T is k, and therefore the relaxation is
at least (21/3)/1 = 21/3. O

4.2 27-Approximation Algorithm

In this section we embed a given graph G into a tree with distortion (and hence
relaxation) at most 27 a. We find the embedding in two phases. At first, we
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construct graph H from the given graph G only by adding some edges to G.
Then we propose an algorithm which finds a spanning tree of H like T'. Next,
we prove that the distortion of embedding G into H is at most O(ag). We also
prove that the embedding H into T has distortion at most 3. Therefore the
distortion of embedding G into T' is O(ag).

Let G be the given graph. We construct H as follows. Choose an arbitrary
vertex v, and run a breadth-first search to find a tree T, rooted at v in which
the distance between each vertex and v is equal to their distance in . The ver-
tices of G occur in different levels of T,. The ith level of this tree, L;, consists
of vertices whose distance to v is i. We have Ly = {v} and V(G) = U?;Ol L;.
In constructing H from G, we add an edge between two vertices u; and ug if
and only if u; and uy are in the same level such as L; or in two consecutive
levels such as L; and L;;1, and there is a path between w; and us that does
not use the vertices of levels Lo, L1,...,L;—1. In the other words, there exists
a path between u; and ug in graph G[V — U;;é L;] where G[X] is the sub-
graph of G induced by vertex set X. Using Lemma [3, we prove the following
lemma.

Lemma 7. The distortion of embedding G into H is at most 9 ag.

Proof. Because we only add edges to G to form H, the distance between vertices
does not increase. Therefore this metric embedding is contractive. The distortion
of the embedding is thus max, ,cv(@)=v(m) da(u,v)/dm(u,v). We also know
that this maximum is equal to max(, .epm) da(u,v)/dm(u,v) because, if we
know that the distance between two vertices adjacent in H is at most k£ in G,
then the distance between every pair of vertices in G is at most k times their
distance in H. Therefore we just need to prove that, for each edge (u1,u2) that
we add, the distance between u; and us in G is at most 9 ag. In the rest of
proof, when we talk about the distance between two vertices or a path between
them, we consider all of them in graph G. Note that u; and usy are either in the
same level such as L; or in two consecutive levels L; and L;y1, and there is a
path P; between them which uses only vertices in levels L;, L;1,.... Consider
a shortest path P, between u; and us. There is also a unique path Ps between
uy1 and ug in the breadth-first-search tree rooted at v. Note that these paths are
not necessarily disjoint. Let [ be the length of P,. We prove that [ < 9ag. We
consider two cases. ‘

First suppose that there is a vertex in P, like w that is in U;;lo/6 L;. For

i<1/6, U;;lo/ 6 L; is empty. The distance between w and any vertex in P is
at least [/6 because the distance between v and w is at most i — [/6, and the
distance between v and any vertex in Pj is at least 7. Applying Lemma [B] to P»
as the shortest path, P; as the other path, and vertex w, G' cannot be ordinally
embedded into any tree with relaxation less than g . é =1/9. Therefore 9 ag > 1.

In the second case, all vertices of the path P are in U;’L:_i{%lfl /6 Lj; including
the vertex in the middle of P,. Let w be the vertex in the middle of the Ps.
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Because P is a shortest path, the distance between w and u; and us is at least
151. We assert that the distance between w and any vertex in the path Pj is
at least 1/6. Consider a vertex in Py like z. If z is in |J'T5 /% L;, the distance
between w and x is at least (i+1—1/6) — (i+1—1/3) =1/6. Otherwise because
of the special structure of path Ps3, the distance between x and at least one of
the vertices uy and ug is at most ¢ +1 — (i +1—1/3+4+ 1) = 1/3 — 1. Because
the distance between w and both u; and wus is at least 151, we can say that
the distance between w and z is at least 151 —(1/3—1) > 1/6. Again applying
Lemma [B] to P, as the shortest path, P; as the other path, and vertex w, G
cannot be ordinally embedded into any tree with relaxation less than g . é =1/9.

Therefore 9 ag > .

Now we are going to find a spanning tree T of H with distortion at most 3.

Before proposing the algorithm, we mention some important properties of H.
The subgraph G[L;] of H induced by vertices in level L; is a union of some

cliques. In fact, if there are two edges (a,b) and (b, c¢) in G[L;], then there must

be a path between a and b in G that uses only vertices in U;l;ll L;, and also

a path between b and ¢ in G which uses only vertices in U?;Z.l L;. Therefore

there exists a path between a and ¢ in G that uses only vertices in U;:il Lj.
Consequently we must have added an edge between a and ¢ in constructing H
from G. Because the connectivity relation in each level is transitive, each level
is a union of some cliques. There is another important property of H. For any
a,b € L;y1 and ¢ € L;, if b is adjacent to both a and ¢ in H, then there must be
an edge between a and ¢ in H. The claim is true because of the special definition
of edges in H. Therefore, for each clique in level L;;1, there exists a vertex in
L; that is adjacent to all vertices of that clique.

Now we find the tree T" as follows. For any ¢ > 0 and any clique C' in level L;,
we just need to find a vertex ve in L;_q that is adjacent to all vertices in C,
and then add all edges between vertex vo and the vertices in C' into the tree.
Actually this tree is a breadth-first-search tree in graph H.

Lemma 8. The distortion of embedding H into T is at most 3.

Proof. 1t is clear that we obtain a spanning tree 7. The embedding is expansive
because T' is a subgraph of H. In order to bound the distortion of this embedding,
we must prove that, for each edge (z,y) in H, the distance between x and y is
at most 3 in T'. There are two kinds of edges in H: the edges between vertices in
the same level and edges between vertices in two consecutive levels. If z and y
are in the same level L;, then they are connected to a vertex z in L;_; in tree T
Therefore their distance in tree T is 2. Otherwise, suppose that z is in L; and y
isin L;_1. Vertex z is connected to a vertex z in L;_1 in tree T. If z = y, then
the claim is clear. If y # z, then by definition, there is an edge between y and z
in H, and they are also in the same level L;_;. Therefore the distance between
y and z in T is 2, and consequently the distance between z and y is 3in 7. [
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Combining Lemmas [ and [, we obtain the following result:

Theorem 4. There is a polynomial-time algorithm that embeds a given graph
G into a tree with distortion at most 27 ag.

5 Dimensionality Reduction in ¢,

In this section, we prove that dimensionality reduction in ¢;, and indeed any
£, space with 1 < p < 2, is possible with ordinal embeddings of logarithmic
dimension and relaxation 1+ e. This result sharply contrasts metric embedding
distortion, where any embedding of an ¢; metric of distortion ¢ requires nf(/ <)

dimensions in ¢; [BCO5] [LN04].

Theorem 5. Any £, metric with 1 < p < 2 can be embedded into O(=*1gn)-
dimensional £, space with ordinal relazation 1 + €, for any € > 0 and positive
mteger p.

Proof. First we take the (p/2)th power of the pairwise distances in the given
¢, metric D. The resulting metric D’ is an f5 metric [Sch38, [WWT5]; see also
[MNO4]. Also, because 2 — xP/? is a monotone function, D’ is an ordinal embed-
ding of D (without relaxation). Next we apply Johnson-Lindenstrauss ¢5 dimen-
sionality reduction [JL84] to obtain an d = O((logn)/6%)-dimensional ¢ metric
D" with 1+ 6 distortion relative to D’. Finally, we can embed this d-dimensional
5 metric into O(d/6?%)-dimensional £, space D"’ with distortion 1 + ¢ relative
to D" [ELMTT]; see also [Ind07, [JSO3]. [Is [FLMT77] the right reference for
O(1/6%) dimension blowup?] Thus D" is an O((logn)/§*)-dimensional ¢;
metric with distortion (1 + §)? relative to D'.

We claim that D"’ is an ordinal embedding of D with relaxation at most
1 4 € for any desired ¢ > 0 and a suitable choice of §. Suppose we have two
distances DIp, q] and D[r, s] with D[p, q]/D]r, s] > 1+¢ for a desired € > 0. Then
D'lp, )/ D'lr, 8] = D'lp, a7/ D'lr, sf27 = (D'lp,q)/D'fr, s)?/P > (1 +2)?/p >
1+ (2/p)e. Thus, if we choose § < min{3e/p,1}, then the distortion of D"’
relative to D’ is (1 + 6)2 < 1+ 35 < 1+ (2/p)e < D'[p,q]/D'[r,s], so the
embedding preserves the order of distances D"'[p,q] > D"[r, s]. Therefore the
relaxation of D’ relative to D is at most 1+ ¢ as desired. The dimension of the
D" embedding is O((logn)/6*) = O((logn)/e*). O

This approach is pleasingly simple in its use of prior results as black boxes. By
more involved arguments, it may be possible to improve the dependence on € in
the number of dimensions by directly analyzing with a modification of Johnson-
Lindenstrauss [JL.84] and avoiding the use of [FLMTT].
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Connected Vertex Covers in Dense Graphs
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Abstract. We consider the variant of the minimum vertex cover prob-
lem in which we require that the cover induces a connected subgraph.
We give new approximation results for this problem in dense graphs, in
which either the minimum or the average degree is linear. In particular,
we prove tight parameterized upper bounds on the approximation
returned by Savage’s algorithm, and extend a vertex cover algorithm
from Karpinski and Zelikovsky to the connected case. The new algorithm
approximates the minimum connected vertex cover problem within a
factor strictly less than 2 on all dense graphs. All these results are
shown to be tight. Finally, we introduce the price of connectivity for the
vertex cover problem, defined as the worst-case ratio between the sizes
of a minimum connected vertex cover and a minimum vertex cover. We
prove that the price of connectivity is bounded by 2/(1 + ) in graphs
with average degree en, and give a family of near-tight examples.

Keywords: approximation algorithm, vertex cover, connected vertex
cover, dense graph.

1 Introduction

The Connected Vertex Cover Problem (CVC) is the variant of Vertex Cover
(VC) in which we wish to cover all edges with a minimum-size set of vertices that
induce a connected subgraph. The problem was first defined in 1977 by Garey
and Johnson [I], who showed it to be NP-Hard even when restricted to planar
graphs with maximum degree 4. Although CVC has been known since long, it
has received far less attention than VC until the recent years. Most previous
results are in the field of approximation and fixed-parameter tractability.
Regarding approximation algorithms, the first constant ratio is due to Carla
Savage [2], who showed that the internal nodes of any depth-first search tree
provide a 2-approximation for VC. Such a set of nodes always induces a con-
nected subgraph, and, since the minimum connected vertex cover is always at
least as large as the minimum vertex cover, the approximation ratio also ap-
plies to CVC. No better constant approximation ratio is known, and recent
results [3] have shown that the problem is NP-hard to approximate within less

* This work was partially supported by the Actions de Recherche Concertées (ARC)
fund of the Communauté francaise de Belgique.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 35 2008.
© Springer-Verlag Berlin Heidelberg 2008
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than 10v/5 — 21 ~ 1.36. Another recent inapproximability result is the APX-
hardness of CVC in bipartite graphs [].

The constant ratio of 2 has recently been improved for several restricted classes
of graphs. Escoffier et al. [4] have shown that CVC is polynomial in chordal
graphs, admits a PTAS for planar graphs, and can be approximated within 5/3
for any class of graphs for which VC is polynomial.

Approximation results have also been proposed in the field of parallel com-
puting. Fujito and Doi [5] have proposed two parallel 2-approximation algo-
rithms. The first one is an NC algorithm running in time O (log2 n) using
O (A?(m +n)/logn) processors on an EREW-PRAM, and the second one an
RNC algorithm running in O (logn) expected time using O (m + n) processors
on a CRCW-PRAM (with n, m and A standing for the number of vertices, the
number of edges, and the maximum degree, respectively).

Several FPT algorithms have also been proposed [G[7I§], where the parameter
is either the size of the optimum or the treewidth.

Density parameters such as the number of edges m and the minimum degree
6 have been used as parameters for approximation ratios (see [QTOTTIT2IT3] for
VC and [I4/15] for DOMINATING SET and other problems). Most often, these
ratios are expressed as functions of the normalized values of these parameters,
namely m* = m/(}) and 6* = §/n. Currently, the best parameterized ratios
for VC with parameters m* and 6* are 2/(2 — /1 —m*) and 2/(1 + 6%) [,
when only one parameter is allowed. Imamura and Iwama [12] later improved the
2/(2—+/1 — m*) result, by generalizing it to depend on both m* and A* = A/n.

Our Results. We present the first parameterized approximation ratios for CVC,
with parameters m* and 6*. We first analyze Savage’s algorithm, and prove
ratios of min {2,1/(1 — /1 — m*)} and min {2,1/8*}. We then present a variant
of Karpinski and Zelikovsy’s algorithm which provides better ratios, namely
2/(2 =1 —=m*) and 2/(1 + 6*), and runs in time O (n®) when m* or §* are
constant, against the O (n2) complexity of Savage’s algorithm. A summary of
these results appears in Fig. [Il

Finally, we introduce a new graph invariant, the price of connectivity for VC,
defined as the maximum ratio between the sizes of the optimal solutions of CVC
and VC. We prove an upper bound of 2/(1 + m™*) for the price of connectivity,
and present a family of nearly tight graphs.

Connected variants of classical covering problems such as VC and DoMiI-
NATING SET have recently found renewed interest, with many applications in
wireless and ad-hoc networks among which fault location [16], wireless network
design [I7], broadcasting [18] and virtual backbone construction [19]. In such dis-
tributed settings, connectivity is a crucial issue, and the question of determining
its price arises naturally.

Notations. We denote by o and 7 the sizes of the optimal solutions of CVC
and VC respectively. We denote by m the number of edges in the graph, by
6 its minimum degree, and by « the size of its maximum stable set. We use
the * notation to denote normalized values of the graph parameters: 7% = 7/n,
o* =o/n,m* =m/(}), 5" =é/n and o = a/n.
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We use the classical notations K,, I, and C, for, respectively, a clique, a
stable set and a cycle. We define the join A x B of two graphs A and B as the
graph having the edges and vertices of A and B, as well as all possible edges
joining both sets of vertices. Finally, we call weakly dense and strongly dense
graphs those for which, respectively, m* and 6* is a constant. Throughout the
sequel, OPT will denote an optimal solution and 3 the approximation ratio.

2 Savage’s Algorithm

In 1982, Carla Savage [2] proposed a simple combinatorial algorithm that pro-
vides a 2-approximation to VC. It simply returns the internal nodes of an ar-
bitrary depth-first search tree. As this algorithm returns always a connected
solution, and o > 7, the 2-approximation is also valid for CVC.

Our first lemma provides lower bounds for o.

Lemma 1. The following lower bounds hold.

a*zl—\/l—m*+(9(;> (1)
oF > 6 (2)

Proof. We consider the first bound. In any graph, since at least (g‘) edges are
missing, we have m < (3) — (%), hence m* <1— a2+ 0 (). Isolating a* yields
o <v/1—m*+ O (}). Reverting to the normalized vertex cover 7* = 1 — a*
yields 7% > 1 — /1 —m* + O (}L) As 0 > 7, we obtain the desired result:
o >1—yV1-m*+0(}).

The same kind of reasoning holds for bound (@)). In any graph, since a vertex
in a maximum stable set has at most n — a neighbors, we have 6 <n —a =T,

thus 7% > 6*. As 0 > 7, we obtain the desired result: o* > 6*. O
The upper bounds on the ratio now follow immediately:

Theorem 1. Savage’s algorithm approzimates CVC within a factor of

2 if m* < 3 1
1 ifm o Toll) (weak density) (3)
V1 +o(1) otherwise.
2 if6* < 5 +0(1) .
strong densit 4
{51* +o0(1l) otherwise. ( g v @

Proof. Since the ratio of 2 is known from Savage’s result, and the value of n — 1
is the worst possible for any heuristic solution, we trivially have the following

bound:
-1 2 if n
min{z,” }: . (5)
o "% otherwise.
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Normalizing, we get a bound of min {2, 0*4_(19 (1) } Plugging inequalities ()

and (@) immediately yields:

1 _ 1 1 o)
= o
or T 1-V1-m*+0(}) 1-vi-m
1 1 1
= +o(1)

<
o T e +o(L) e

We can now easily compute when the minimum is 2:

1 3
1 2 * 1
1—\/1—m*+0()> <:>m<4+o()
and L 1
6*+0(1)>2 = 6*<2—|—0(1) . 0

It should be noted that Theorem [ applies to any 2-approximation algorithm for
CVC, as its proof nowhere relies on the specific algorithm being used.

We define the complete split graph 1, o as the join of a clique K,,_, and a
stable set I,. The following lemma expresses the result of Savage’s algorithm on
complete split graphs.

Lemma 2. Let H be a worst-case solution returned by Savage’s algorithm. Then

N n
n—1 if a <

2(n — «) otherwise.

[H (n,a) | = {

Proof. Case 1: a < 7. One possible execution of the algorithm starts from a
vertex in the clique, alternatively takes a vertex from the stable set and from
the clique, then ends by taking all the remaining vertices in the clique. This
execution yields a path of n vertices, hence a solution of size n — 1 (by removing
the last vertex).

Case 2: a > 7. The worst possible execution of the algorithm starts from a
vertex in the stable set, then alternatively takes a vertex from the clique and
from the stable set. This induces a path of 2(n —a) + 1 vertices, hence a solution

of size 2(n — «). O
Theorem 2. The bounds of theorem[d are tight.
Proof. We show that 1, o are tight examples for both bounds @) and ().

Optimum. 7(1p o) is trivially n — «, and the corresponding optimal solution is

the clique K,_,. Since this optimal solution is connected, we have o (¢.o) =

T (Yn.o) = n — a. Combining this result with the result of Lemma [ yields
2 ifa>7 2 if 0¥ < 5 +0(1)

B (¥n.a) {Z:; {01* +O (}L) otherwise. (6)

otherwise.
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Bound [@ Since (§) edges are missing from ¢, o, we have m(ino) = (5) —
(5)- Isolating o and normalizing yields o* (¢5,,0) = /1 —m* + O (). Finally,
plugging o* =1—a*=1—+1-m*+0O (}L) into bound l6l immediately yields
bound Bl

Bound [}} Tt is easy to see that ¢ (o) = n — @ = o. Hence, plugging o* = §*
into bound [l immediately yields bound E a

This algorithm runs in time O (m), hence O (n?) for fixed m*. In the next
section, we improve the approximation ratio at the expense of an increase in
time complexity.

3 A Variant of Karpinski and Zelikovsky’s Algorithm

Karpinski and Zelikovsky [9] proposed two approximation algorithms that ensure
asymptotic approximation ratios of | _36* and , \/f_m* respectively. However,
they do not always return a connected solution. We propose two variants of their
algorithms for CVC, with the same asymptotic approximation factors.

The analysis relies on the following result.

Lemma 3. Any solution H to CVC that consists of

- a set Hi C OPT of size e1n,

- a 2-approximation Hy of CVC in G[V — Hy| obtained with Savage’s algorithm,
- an additional set Hs of ean vertices, with |Hy| > |Hs)|,

approzimates CVC within a factor of

2
14+e —e

Proof. We compute the approximation ratio:

|H| _ [Hi[ +[Ho| +[Hs| /

= = th OPT" = OPT — H; .

=10pr| = m|+j0Pr] M !

Note that OPT" is a vertex cover of G[V — H;], and that Hs is a 2-approximation

of VC in G[V — Hy| (as Savage’s algorithm also 2-approximates VC). Hence
|Hz| < 27(G[V — Hi]) < 2|OPT’| and therefore |OPT’| > |Hz|/2. This yields

Hy| + |H2| + |H. ein + |Ha| 4 ean
g < I+ [H| 4 [Hs| _en+ |Ho| +ean 7)

|Hy| + |f;2| ern + \172(2\

Differentiating () shows that it grows with |Hs| when €; > €. Plugging the
maximum possible value |Hz| = n(1 — €1 — €2) into (@) yields

2

< . O
A< 14+€6—€
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Algorithm 1. A connected vertex cover algorithm for strongly-dense graphs

1: procedure P(W) > with W CV
2: for all vertex v € W do

3: res(v) — {v} UN(v)

4: for all connected components C of G[V — {{v} U N(v)}| do

5: Find a vertex ¢ € C that has a neighbor in N(v)

6: Let Savage(c) be the result of Savage’s algorithm in C, starting from ¢
7 res(v) < res(v) U Savage(c)

8: end for

9: end for

10: Umin < argminyew |res(v)|

11: return res(Vmin )

12: end procedure
13: return P(V)

The algorithm of Karpinsky and Zelikovsky makes use of the trivial observation
that if a vertex does not belong to a vertex cover, then all its neighbors do. Thus
for each vertex v, it constructs the vertex cover made of the set N (v) of neighbors
of v, and of a 2-approximation on the remaining induced subgraph. Algorithm[I]
implements this strategy. To ensure that the returned vertex cover induces a
connected graph, we choose to start the execution of Savage’s algorithm with a
vertex that is connected to N(v).

Theorem 3. Algorithm[d] approximates CVC within a factor of 14_26*.

Proof. Tt is easy to see that the algorithm returns a connected solution: {v U
N(v)} is connected, so are the 2-approximations computed in each component
C, each of which are connected to N(v) by their starting vertex c¢. Note that
vertex ¢ always exists since the graph is connected.

Furthermore, the returned solution has size at most |res(v’)|, for some vertex
v' ¢ OPT. Since v' ¢ OPT, we have N(v') C OPT. Thus Lemma [3 can be
applied to res(v’), with |Hy| = [N(v')| > 6*n and |Hs| = |{v'}| = 1, which
immediately yields the desired result. a

The second algorithm is based on the idea of choosing a set of vertices W C V of
size at least pn all vertices of which have degree at least pn for some well-chosen
constant p. Then either W C OPT, or there exists a vertex w in W such that
N(w) € OPT. In either case, a set of size at least pn is included in OPT, and
one can try them all. This original idea of Karpinski and Zelikovsky [9] does
not always return a connected solution. In particular, if all vertices of W are
in OPT, additional operations are needed, as W does not necessarily induce a
connected subgraph. We show that connectivity can be achieved by adding a
small set X of carefully chosen vertices (lines [T0HIZ).

The analysis of Algorithm [Z relies heavily on the following lemma, which has
been proved in [9].

Lemma 4 ([9]). Let p=1—+/1—m*, and let W be the set of pn vertices with
highest degree. Then every vertex of W has degree at least |W|.
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Algorithm 2. A connected vertex cover algorithm for weakly-dense graphs
tpe—1—+y/1-—m*
: Let W be the set of pn vertices with highest degree
Cy — P(W) > with P(-) the procedure defined in Algorithm [T
Cb — M/
for all connected components C' of G[V — W] do
Find a vertex ¢ € C that has a neighbor in W
Let Savage(c) be the result of Savage’s algorithm in C, starting from ¢
Cy — C2 U Savage(c)
: end for
X —0
: while G[W U X] is not connected do
Find a vertex v in V — W that is adjacent to the largest number of connected
components of G[W U X]
13: X — X U{v}
14: end while
152 CQ «— 02 @] X
16: return the set of minimum size among C7 and C»

PN Wy

—_ ==
N = O ©

Lemma 5. There exists a set X of size O(logn) such that GIW U X] is con-
nected. Such a set is computed in lines [T0HTF]

Proof. We construct X by iteratively choosing a vertex that connects the largest
number of remaining connected components.

Let v; be an arbitrary vertex of the ith connected component of G[W]. Let
k; be the size of this component, and k the total number of components. By
Lemma M the degree of v; is at least |W/|, thus v; has at least |W| — k; + 1
neighbors in V' — W. Summing, we get

k
SNW—ki+1=(k—1)|W|+k .
i=1

Hence, by the pigeonhole principle there exists a vertex v € V. — W that is
connected to the following number of components:

(k=DW[+k _(k=Dpn+k _ . p k P
T S R I R S N

We can thus add v to the set X and iterate this argument. Each time a new
vertex is added to X, the number of connected components in G[W U X| shrinks
by a constant factor 1 — | , = 1112: . And since the initial number of connected
components is at most ||, we have

X| < log 1y (IW]) < log 1y (pn) = Ologn) .
1-2p 1-2p
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Note again that step [0l of the algorithm can always be done, otherwise the graph
would not be connected.

Theorem 4. Algorithm[Q approximates CVC within a factor of 2_\/f_m*.

Proof. Two cases can occur. If W contains a vertex v ¢ OPT, in which case the
proof is identical to that of Theorem [l by plugging |Hi| = |[N(v)| > |[W] and
|H3| =1 into Lemma [3

On the other hand, if W C OPT, we can again apply Lemma [l with |H;| =
|[W] and, by Lemma[5 |Hs| = O(logn). The condition |Hs| < |Hi| required by
Lemma [3 holds asymptotically, and we have e = O(logn)/n —, . 0. Hence
the approximation factor is 2/(1 + €1 — €2) —n—o00 2/(2 — V1 — m*). |

Theorems Bl and B now enable us to state the main corollary:

Corollary 1. CVC is approzimable within a factor strictly less than 2 in
strongly and weakly dense graphs.

Note that Algorithms [ and I run in time O (nm), hence O (n®) when m* is
fixed.

Theorem 5. The bounds of Theorems[3d and[] are tight.

Proof. Tightness is witnessed by the following family of graphs: v, . =
Ky—20-1 X (K7 X Cy,) (the join of a clique and a “wheel”, see Fig. [Il). We
first show that o(vy,o) = n — a and that both algorithms return n — 1 on v, 4.
The ratio then follows naturally.

Optimum. One can easily check that taking the clique K, _2,—_1, the center K;
of the wheel, and every other vertex of the cycle Cs, yields a connected vertex
cover of size n — «, and that any smaller set would necessarily leave at least one
edge uncovered.

Algorithm [ If vertex v is in the clique or at the center of the wheel, then
{{v} UN(v) = V} and |res(v)| = n — 1. If on the other hand v is in the cycle
Chq, Savage’s algorithm is applied in line [0 to only one path Ps,_3, yielding
[res(v)] =n — 1.

Algorithm [2 We have |C1] = n — 1 for the same reasons as above. Since o* >
1—+/1—m*+0(1) (inequality [l), W contains at least the clique and the center
of the wheel and hence already induces a connected subgraph. In the worst case,
V — W is therefore a path, which implies |Cs| = n — 1.

Ratio. Since only the vertices of the cycle Cy,, have degree less than n—1, we have
8(Vn,a) = n — 2a. Furthermore, v, o, has all possible edges except the (22”“) — 2
edges missing from the cycle Caq, hence m(vy.o) = (5) —2(5) + 2a. Solving the
given expressions of 6(vy, o) and m(v, o) for a and inserting the results into our
ratio of (n — 1)/(n — «) yields the bounds of Theorems [B] and [ O

The family of graphs described in the above proof also provide tight examples
for the original algorithms of Karpinski and Zelikovsky [9], provided they use
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Algorithm Ratio Tight graphs

ratio

Savage’s algorithm

curve form
4 curve for § - . wn,a

0 0.25 0.5 0.75 1
parameter

ratio

Algorithms [I] and

curve for

curve for §
0 0.25 0.5 0.75 1
parameter

Fig. 1. A comparison of the ratios and tight graphs of Savage’s algorithm, Algorithm [
and Algorithm 2 The second column compares the asymptotic approximation bounds
as functions of parameters m* and §* respectively, while the third column illustrates
tight families of graphs for these bounds.

Savage’s algorithm as a subroutine for the 2-approximation phase. This result
is new, as the original article did not adress the issue of tightness. Figure [Tl
summarizes the results of Sects. 2l and 3

A natural question to ask is wether we can use Theorem [I] to boost the ap-
proximation ratio of Algorithms [Il and 2 This is not immediately applicable,
since we cannot guarantee that the subgraphs G[V — {{v} U N(v)}] (in Algo-
rithm[I) and G[V — W] (in Algorithm [) remain dense. Nevertheless, Imamura
and Iwama [12] managed to apply the idea of Karpinski and Zelikovsky recur-
sively, and obtained a randomized algorithm with a better ratio, depending on
both parameters m* and A (maximum degree). We believe this can be done for
CVC as well and leave it as future work.

While we have shown that VC and CVC can both be approximated within
the same ratio, as a function of m™* or 6*, this does not settle the question of the
price of connectivity, defined as the ratio between the optimal solutions of the 2
problems.

4 The Price of Connectivity

In the previous section, we showed that CVC is as well approximable as VC in
dense graphs. The question of the maximum ratio between the connected vertex
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cover and the vertex cover then arises naturally, and is particularly relevant in
networking applications for which connectivity is a crucial issue. This notion
of price of connectivity is general and can similarly be defined for many graph
covering problems.

4.1 Upper Bound

We denote by T an arbitrary optimal vertex cover, by I =V —T the associated
maximum stable set, by k the number of connected components in the subgraph
induced by T, and by err the difference ¢ — 7. Finally, we denote by S the
additional vertices in a smallest connected vertex cover containing 7', with size
s=15].

Our first lemma expresses a simple relationship between err, s and k.
Lemma 6. err<s < k.

Proof. The first inequality, err < s, is straightforward as any s strictly smaller
than err would imply the existence of a connected vertex cover of size smaller
than o. The second inequality, s < k, follows from the fact that, since S is a
stable set, each one of its vertices necessarily decreases the number of connected
components of T' by at least one. O

Our second lemma provides an upper bound on the degrees of the vertices in
the maximum stable set 1.

Lemma 7. FEvery vertex of I is connected to at most k—s—+1 different connected
components of T.

Proof. By contradiction, suppose that some vertex v in I were connected to at
least k—s+2 connected components of T', then TU{v} has at most k—(k—s+1) =
s—1 connected components, hence the smallest subset X of I that contains v and
such that T'U X is connected has size at most s —1, contradicting the minimality
of S. O

The last lemma bounds the number of edges by a function of (n, T, k, s).

Lemma 8. The following upper bound holds for m:

mS(T §+1>+(H—T)(T—s+1). (8)
Proof. Let Ey be the set of edges inside G[T] and E; the set of edges between
T and I. We bound the size of each set separately.

Clearly, F; is maximized when all the connected components in T" are cliques.
Furthermore, since the total number of edges in those cliques involves a sum of
squares, it is maximized with one big clique of size 7 — k 4+ 1 and k& — 1 isolated
vertices, by the concavity of the function 2. Hence |E;| < (T*’;“).
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We now consider Ey. As each vertex v in I is connected to at most k — s+ 1
connected components of T' (Lemma [7), there are at least s — 1 such connected
components that v is not connected to, hence at least s — 1 vertices of T that
v is not connected to. Hence v cannot have more than 7 — (s — 1) =7 — s+ 1
neighbors in 7. Multiplying this upper bound of 7 — s + 1 by n — 7, the size of
I, yields |Es| < (n—7)(T — s+ 1). |

Finally, Theorem [ follows from first expressing bound[§las a function of (n, 3, 1),
then bounding with respect to 7.

Theorem 6. The ratio between the sizes of a minimum connected vertex cover
and a minimum vertex cover in a graph with at least m”* (;) edges is at most
1 fm* +o(1).

Proof. Starting from the result of Lemma [§

<T—k+1

<
m 2

>+(n—7')(7'—s+1),

we can see that the bound is a decreasing function of both ¢ and s. We therefore
maximize it by taking the smallest possible values for k and s. These values are
s =err and k = err + 1, by Lemma [6l This yields:

m < (T _2‘3”> +(n—1)(r —err+1). 9)

We define § as the ratio o/7. Since err = o — 7, we have err/7 = [ — 1 and
err = 7( — 1). Plugging this into our last inequality yields:

m < <T(22_ﬂ)> +(n—7)(1(2-75)+1). (10)

We now maximize the above expression with respect to 7. Differentiating
bound (I0) with respect to 7 yields a unique maximum at

_ _n_ 4—-0 n
T 282-6) 8

Plugging our optimal 7, into [0l yields

+ O (1) for each fixed S.

Topt - 2 -
m < < (22 5)) + (N — Topt ) (Topt (2 — ) + 1) = " (22ﬂ 2 +0(n).
Hence ) 5
m* < gﬂ+0(l) and ﬂ§1+m*+0(1).
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4.2 Tightness

We now describe a family of graphs whose ratio almost matches the bound of
Theorem [0 Let G, 5, with (n — x) a multiple of 3, be the graph composed of a
clique of size x and (n — x)/3 paths P, all endpoints of which are totally joined
to the clique. Figure 2(a)] illustrates G16.4.

% 1.4] \\‘

M|
0 0.2 0.4 0.6 0.8 1
density
Upper bound
Ratio of the Gnx family

(a) The graph Gie,4 (b) A comparison of the upper
bound 2/(1 +m*) with the ratio
of the class Gp,»

Fig. 2. Nearly tight examples

The minimum vertex cover consists of the clique of size x and the center of
each path, and hence has size z + (n — x)/3 = (n + 22)/3. On the other hand,
the minimum connected vertex cover consists of the same vertices, augmented
with one extra vertex per path, and hence has size x4 2(n —x)/3 = (2n+ z)/3.
We therefore have 3(G,, ) = fﬁgi

We express this bound as a function of the density m*. The graph G,, ; has
(g) edges in the clique, = - 2(n — x)/3 edges between the paths and the clique,

and 2(n — x)/3 edges in the paths. Hence

[z r-2(n—xz) 2(Mn-z) 2nzx 2 Tr n
m(G"’w)_<2)+ 3 T3 3 6 6 3

Normalizing yields

o 4 * %2 1
m*(Gmw):m(CjL’ ): o +(’)< >, where 2* =z/n .
(5) 3 n
Solving the above second-order equation for z* yields z* = 2 4+ /4 — 3m* +
0 (1), of which only the solution z* = 2 —+/4 — 3m* 40 (1) must be kept in order
to have z* in [0, 1].
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Plugging this value for z* into our previous expression for 3, it can be checked
that y
2n+x 44 2m* + 4 —3m*
ﬂ(Gn,m) = = *
n+ 2x 3+4m
This new bound is very close to the previous one, as shown by Fig. 2(b)}In fact,
the difference between the old and new ratios does not exceed 1.6% of the latter.

+o(1)
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Abstract. For every fixed v > 0, we give an algorithm that, given an
n-vertex 3-uniform hypergraph containing an independent set of size yn,
finds an independent set of size n*’ *) | This improves upon a recent re-
sult of Chlamtac, which, for a fixed € > 0, finds an independent set of
size n° in any 3-uniform hypergraph containing an independent set of
size (4 — €)n. The main feature of this algorithm is that, for fixed 1, it
uses the ©(1/4?)-level of a hierarchy of semidefinite programming (SDP)
relaxations. On the other hand, we show that for at least one hierarchy
which gives such a guarantee, 1/ levels yield no non-trivial guaran-
tee. Thus, this is a first SDP-based algorithm for which the approxima-
tion guarantee improves indefinitely as one uses progressively higher-level
relaxations.

1 Introduction

Semidefinite Programming (SDP) has been one of the key tools in the devel-
opment of approximation algorithms for combinatorial optimization problems
since the seminal work of Goemans and Williamson [12] on MAXCUT. For a
number of problems, including MAXCUT [12], MAX-3SAT [16,29], and Unique
Games [6], SDPs lead to approximation algorithms which are essentially opti-
mal under certain complexity-theoretic assumptions [I3[I8]. Howeve, for a host
of other problems, large gaps between known hardness of approximation and
approximation algorithmic guarantee persist.

One possibility for improvement on the approximation side is the use of so-
called SDP hierarchies. In general, Linear Programming (LP) and SDP hier-
archies give a sequence of nested (increasingly tight) relaxations for an integer
(0—1) program on n variables, where the nth level of the hierarchy is equivalent
to the original integer program. Such hierarchies include LS and LS, (LP and
SDP hierarchies, respectively), proposed by Lovdsz and Schrijver [22], a stronger
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LP hierarchy proposed by Sherali and Adams [26], and the Lasserre [2I] SDP
hierarchy (see [20] for a comparison).

SDP hierarchies have been studied more generally in the context of optimiza-
tion of polynomials over semi-algebraic sets [8l[23]. In the combinatorial optimiza-
tion setting, there has been quite a large number of negative results [2,[T}25] 28]
[TTL5]. This body of work focuses on combinatorial problems for which the quality
of approximation (integrality gap) of the hierarchies of relaxations (mostly LS,
LS, , and more recently Sherali-Adams) is poor (often showing no improvement
over the simplest LP relaxation) even at very high levels.

On the other hand, there have been few positive results. For random graphs,
Feige and Krauthgamer [9] have shown that @(logn) rounds of LS, give a tight
relaxation (almost surely) for Maximum Independent Set (a quasi-polynomial
time improvement). De la Vega and Kenyon-Mathieu [2§] showed that one ob-
tains a polynomial time approximation scheme (PTAS) for MAXCUT in dense
graphs using Sherali-Adams. SDP hierarchies at a constant level (where one can
optimize in polynomial time) were used recently by Chlamtac [7], who exam-
ined the use of the Lasserre hierarchies for Graph Coloring and for Maximum
Independent Set in 3-uniform hypergraphs. However, Chlamtac [7] used only the
third level of the Lasserre hierarchy, whereas we exploit increasingly higher levels
to get better approximation guarantees.

Our focus is on Maximum Independent Set in 3-uniform hypergraphs. k-
uniform hypergraphs are collections of sets of size k (“hyperedges”) over a vertex
set. An independent set is a subset of the vertices which does not fully contain
any hyperedge. The first SDP-based approximation algorithm for this problem
was given by Krivelevich et al. [19], who showed that for any 3-uniform hyper-
graph on n vertices containing an independent set of size yn, one can find an
independent set of size f)(min{n7 n®=3}). This yielded no nontrivial guarantee
for v < é Subsequently, it was shown by Chlamtac [7] that the SDP rounding
of [19] finds an independent set of size £2(n°) whenever v > } —¢, for some fixed
€ > 0, if one uses the third level of the Lasserre SDP hierarchy.

We improve upon [7] by giving two algorithms with a non-trivial approxima-
tion guarantee for every v > 0. In 3-uniform hypergraphs containing an inde-
pendent set of size yn, both algorithms find an independent set of size > n* ),
Our result is novel in that for every fixed v > 0, the approximation guarantee
relies on the ©(1/4?)-level of an SDP hierarchy (which can be solved in time
nO/ 72))7 and thus gives an infinite sequence of improvements at increasingly
high (constant) levels.

For the first of the two hierachies we use, we also show that this guarantee
cannot be achieved using a fixed constant level by giving a sequence of integrality
gaps. The second hierarchy we consider, the Lasserre hierarchy, allows us to give
a slightly better approximation guarantee, by use of an SDP rounding algorithm
which uses vectors in the higher levels of the SDP relaxation (in contrast to the
approach in [7], where the rounding algorithm was identical to that of [19], and
the analysis only relied on the ezistence of vectors in the second and third level).
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Note the discrepancy between our result, and the corresponding problem for
graphs, where Halperin et al. [I4] have shown how to find an independent set of
size nf() for some f(7) = 3y — O(7?) when the graph contains an independent
set of size yn.

The rest of the paper is organized as follows. In Section [2] we define the
SDPs used in the various algorithms, and discuss some useful properties of these
relaxations. In section Bl we describe a simple integrality gap, followed by a
description of the various algorithms and their analyses. Finally, in Section [4]
we discuss the possible implications of this result for SDP-based approximation
algorithms.

2 SDP Relaxations and Preliminaries

2.1 Previous Relaxation for MAX-IS in 3-Uniform Hypergraphs

The relaxation proposed in [I9] may be derived as follows. Given an independent
set I C V in a 3-uniform hypergraph H = (V, E), for every vertex i € V let
x; = 1if i € I and z; = 0 otherwise. For any hyperedge (i,j,0) € E it follows
that z; + z; + x; € {0,1,2} (and hence |z; + x; +2; — 1| < 1). Thus, we have
the following relaxation (where vector v; represents x;, and vy represents 1:
MAX-KNS(H)

Maximize 3, [Jo;]* s.t. vf =1 (1)
VieV vy v =wv; v (2)
V(i,4,1) € B lvi +vj + v —vol* <1 (3)

2.2 Hypergraph Independent Set Relaxations Using LP and SDP
Hierarchies

The Sherali-Adams Hierarchy. The Sherali-Adams hierarchy [26] is a se-
quence of nested linear programming relaxations for 0 — 1 polynomial programs.
These LPs may be expressed as a system of linear constraints on the variables
{yr | I C [n]}. To obtain a relaxed (non-integral) solution to the original prob-
lem, one takes (y{l}, Y{2ys-- s y{n})

Suppose {zf} is a sequence of n random variables over {0,1}, and for all
I C [n] we have y; = E[[[,c; ;] = Pr[Vi € I : 7 = 1]. Then by the inclusion-
exclusion principle, for any disjoint sets I, J C [n] we have

ur-s N ()W lyup = Pr((Vie Iiaf =1) A (¥j € T : 2t = 0)] > 0.

J'CJ

In fact, it is not hard to see that the constraints y; _; > 0 are a necessary and
sufficient condition for the existence of a corresponding distribution on {0, 1}
variables {x}}. Thinking of the intended solution {z}} as a set of indicator
variables for a random independent set in a hypergraph H = (V, E) motivates
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the following hierarchy of LP relaxations (assume k > max{|e| | e € E'}):
1S3 (H)

yp =1 (4)

VI,JCVst.InJ=0and [TUJ <k > (-DMYlyup >0  (5)
J'CJ

Vee £ y.=0 (6)

Note that if {y; | |I| < k} satisfy IS}*(H), then for any set of vertices
S C V of size k, there is a distribution over independent sets in H for which
Pr[Vi € I :i € ind. set] = y; for all subsets I C S.

The Lasserre Hierarchy. The relaxations for maximum hypergraph indepen-
dent set arising from the Lasserre hierarchy [21] are equivalent to those arising
from the Sherali-Adams with one additional semidefiniteness constraint:

(yrug)r,s = 0.

We will express these constraints in terms of the vectors {v;|I C V} arising
from the Cholesky decomposition of the positive semidefinite matrix. In fact,
we can express the constraints on {vr} in a more succinct form which implies
the inclusion-exclusion constraints in Sherali-Adams but does not state them

explicitly:
ISy*(H)
vg =1 (7)
I, I, ), || <kand ITUJ=T"UJ = v-vy=vp- vy (8)
Yec B v2=0 (9)

For convenience, we will henceforth write v;, _;

instead of v, . ;.3. We will
denote by MAX-ISE4$(H) the SDP

s

Maximize ), wil|? s.t. {vr}s satisfy ISE*(H).

Since for any set S of size k all valid constraints on {v; | I C S} are implied
by ISk (H), this is, for all k > 3, a tighter relaxation than that of [19].

As in the Sherali-Adams hierarchy, for any set S C V' of size k, we may think
of the vectors {v; | I C S} as representing a distribution on random 0 — 1
variables {z} | i € S}, which can also be combined to represent arbitrary events
(for example, we can write V(zy=0)V(as=0) = Up — vgi,;3)- This distribution is
made explicit by the inner-products. Formally, for any two events &1, & over the
values of {z} | i € S}, we have vg, - ve, = Pr[&1 A &].

Moreover, as in the Lovasz-Schrijver hierarchy, lower-level relaxations may be
derived by “conditioning on =} = o;” (for o; € {0,1}). In fact, we can condition
on more complex events. Formally, for any event & involving ky < k variables
for which ||vg, || > 0, we can define

def
velg, = vengo/ve s

and the vectors {vi|g | [I| <k — ko} satisfy ISk_p, (H).
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An Intermediate Hierarchy. We will be primarily concerned with a hier-
archy which combines the power of SDPs and Sherali-Adams local-integrality
constraints in the simplest possible way: by imposing the constraint that the
variables from the first two levels of a Sherali-Adams relaxation form a positive-
semidefinite matrix. Formally, for all k& > 3 and vectors {vg} U {v; | i € V} we
have the following system of constraints:

ISp™(H)
yr | || < k} s.t. (10)
VI, JCV I |J <1 vr-vy=vyrus (11)
{yr} satisfy IS? (H) (12)

As above, we will denote by MAX-ISP*™(H) the SDP

Maximize ), lvill® s.t. {vg} U {v;} satisfy ISE™(H).

2.3 Gaussian Vectors and SDP Rounding

Recall that the standard normal distribution has density function \/1%6_5”2/ 2 A

random vector ¢ = ((1, - . ., () is said to have the n-dimensional standard normal
distribution if the components (; are independent and each have the standard
normal distribution. Note that this distribution is invariant under rotation, and
its projections onto orthogonal subspaces are independent. In particular, for any
unit vector v € R", the projection ¢ - v has the standard normal distribution.
We use the following notation for the tail bound of the standard normal

distribution: N (x) def fxoo \/1%6_2’2 dt. The following property of the normal dis-

tribution ( [10], Chapter VII) will be crucial.

—s2/2

Lemma 1. For s >0, we have ! (! — 13)6_52/2§N(s)§ e

Vor \s s

This implies the following corollary, which is at the core of the analysis of many
SDP rounding schemes:

1
\/27'rs

Corollary 1. For any fized constant r > 0, we have N(ks) = O(N(s)~).

3 Integrality Gap and Algorithms

3.1 A Simple Integrality Gap

As observed in [26/[7], MAX-KNS(H) > 7 for any hypergraph H (even the com-
plete hypergraph). In this section we will show the necessity of using increasingly
many levels of the SDP hierarchy MAX-IS™ to yield improved approximations,
by demonstrating a simple extention of the above integrality gap:

Theorem 1. For every integer k > 3 and any 3-uniform hypergraph H, we have
MAX-ISj*™ > kiln.
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Proof. Suppose V(H) = [n] and let vg,u1,...,u, be n+ 1 mutually orthogonal
unit vectors. For every i € V let v; = kilv@—i—\/kil — (k_ll)gui, and yg;) = kil.

Let yp = 1 and for every pair of distinct vertices i, € V' let yy; ;3 = (k_ll)g. For
all sets I CV s.t. 3<|I| <k, let yy = 0.

It is immediate that constraint (1)) and the Sherali-Adams constraint (@) are
satisfied. Since y; = 0 for all sets I of size 3, Sherali-Adams constraint (B is also
satisfied. To verify Sherali-Adams constraints (B)), it suffices to show, for any set
S C [n] of size k, a corresponding distribution on 0 — 1 variables {z} | i € S}.
Indeed, the following is such a distribution: Pick a pair of distinct vertices i, j € S
uniformly at random. With probability 2(kk_ 1) set z; =z = 1 and for all other
l €9, set zj = 0. Otherwise, set all z; = 0. O

3.2 The Algorithm of Krivelevich, Nathaniel and Sudakov

We first review the algorithm and analysis given in [19]. Let us introduce the

following notation: For all I € {0,1,...,[logn]}, let T} f {i eV |1l/logn <

vill> < (1+1)/logn}. Also, since ||vs]|* = vy - v;, we can write v; = (vg - vi)vg +
V/Vp - vi(1 — vg - v;)u;, where u; is a unit vector orthogonal to vy. They show the
following two lemmas, slightly rephrased here:

Lemma 2. If the optimum of KNS(H) is > vn, there exists an index | >
ylogn —1 s.t. |Ty| = 2(n/log® n).

Lemma 3. For index | = [logn and hyperedge (i,j,k) € E s.t. i,j,k € Ty,
constraint B) implies

i+ + wi]|* < 3+ (3= 68)/(1 = B) + O(1/ logn). (13)

Note that constraint ([3) becomes unsatisfiable for constant 3 > 2/3. Thus, for
such 3, if KNS(H) > fn, one can easily find an independent set of size 2(n).
Using the above notation, we can now describe the rounding algorithm in [19],
which is applied to the subhypergraph induced on Tj, where [ is as in Lemma

KNS-Round(H, {u;},t)

— Choose ¢ € R™ from the n-dimensional standard normal distribution.

— Let V¢ (t) def {i | ¢-u; > t}. Remove all vertices in hyperedges fully

contained in V¢(t), and return the remaining set.

The expected size of the remaining independent set can be bounded from
below by E[|V;(¢)|] — 3E[|[{e € E : e C V¢(t)}|], since each hyperedge contributes
at most three vertices to V¢ (t). If hyperedge (i, 7, k) is fully contained in Ve (¢),

then we must have ¢ - (u; +u; + ug) > 3t, and so by Lemma ] ¢ - HZ;Z;L’Z” >

(v/(3=37)/(2 = 37)—O(1/logn))t. By Corollary[[] and linearity of expectation,
this means the size of the remaining independent set is at least

Q(N(tyn) — O(N ()E=50/C=5) | By,
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Choosing t appropriately then yields the guarantee given in [19]:

Theorem 2. Given a 3-uniform hypergraph H on n vertices and m hyperedges
containing an independent set of size > yn, one can find, in polynomial time,
an independent set of size 2(min{n,n3=37/m2=37}).

Note that m can be as large as £2(n?), giving no non-trivial guarantee for v < é
Chlamtac [7] showed that when the vectors satisfy IS5#(H), the same rounding
algorithm does give a non-trivial guarantee (nf) for v > 1 — ¢ (for some fixed
e > 0). However, it is unclear whether this approach can work for arbitrarily
small v > 0.

Let us note the following Lemma which was implicitly used in the above
analysis, and which follows immediately from Corollary [l First, we introduce
the following notation for hyperedges e along with the corresponding vectors

{u; | i € e}:
def
ale) = \e|(|el\71) Dice E]Ee\{i} Ui - Uy

Lemma 4. In algorithm KNS-Round, the probability that a hyperedge e is fully
contained in V¢ (t) is at most O(N (t)lel/A+(el=Dale))),

3.3 Improved Approximation Via Sherali-Adams Constraints

Before we formally state our rounding algorithm, let us motivate it with an
informal overview.

Suppose ||v;||> = v for all i € V. A closer examination of the above analysis
reveals the reason the KNS rounding works for v > % : For every hyperedge e € F
we have a(e) < 0. Thus, the main obstacle to obtaining a large independent set
using KNS-Round is the presence of many pairs 4,5 with large inner-product
u; - uj. As we shall see in section B4, we can use higher-moment vectors in
the Lasserre hierarchy to turn this into an advantage. However, just using local
integrality constraints, we can efficiently isolate a large set of vertices on which
the induced subhypergraph has few hyperedges containing such pairs, allowing
us to successfully use KNS-Round.

Indeed, suppose that some pair of vertices ig,jo € V with inner-product
Vig * Vjg = +2/2 participates in many hyperedges. That is, the set S = {k €
V| (i,4,k) € E} is very large. In that case, we can recursively focus on the
subhypergraph induced on S;. According to our probabilistic interpretation of
the SDP, we have Pr[z; =z =1] > 72 /2. Moreover, for any k € S the event
“zj, =17 is disjoint from the event “z} = xj = 17. Thus, if we had to repeat
this recursive step due to the existence of bad pairs (ig, jo), - - -, (is, js), then the
events “xj =z} =17 would all be pairwise exclusive. Since each such event has
probability 2(7?), the recursion can have depth at most O(1/~?%), after which
point there are no pairs of vertices which prevent us from using KNS-Round.

We are now ready to describe our rounding algorithm. It takes an n-vertex
hypergraph H for which MAX-IS™(H) > yn, where k = 2(1/~%) and {v;} is
the corresponding SDP solution.
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H-Round(H = (V, E),{v;},7)

1. Let n = |V| and for all 4,5 € V, let I'(4, j)def{kEV\(zd, k) € E}.

2. If for some i,5 € V s.t. v; - v; > 42/2 we have |I'(i, j)| > {n!~vivi/2},
then find an ind. set using H-Round(H |y, {vk | k€ I'(3,7)}, 7).

3. Otherwise,
(a) Define unit vectors {w; | i € V'} s.t. for all 7,5 € V' we have

w; - wj = ), (u; - uj) (outward rotation).

(b) Let ¢ be s.t. N(£) = n~(=7"/16) and return the independent set

found by KNS-Round(H, {w; | i € V'},t).

Theorem 3. For any constant v > 0, given an n-vertex 3-uniform hypergraph

= (V, E), and vectors {v;} satisfying ISm/lx (H) and ||Jvi]|* = ~| < 1/logn
(for all vertices i € V'), algorithm H-Round finds an independent set of size
Qn*/32) in H in time O(n®+2/7%).

Combining this result with Lemma [2 (applying Theorem [ to the induced sub-
hypergraph H|r,), we get:

Corollary 2. For all constant v > 0, there is a polynomial time algorithm
which, given an n-vertex 3-uniform hypergraph H cogtaining an independent
set of size > vyn, finds an independent set of size £2(n7"/32) in H.

Before we prove Theorem [3] let us first see that algorithm H-Round makes only
relatively few recursive calls in Step [, and that when Step [BH is reached, the
remaining hypergraph still contains a large number of vertices.

Proposition 1. For constant v > 0, n-vertex hypergraph H = (V, E), and vec-
tors {v;} as in Thereom [3:

1. Algorithm H-Round makes at most 2/~v? recursive calls in Step .
2. The hypergraph in the final recursive call to H-Round contains at least \/n
vertices.

Proof. Let (i1,J1),-..,(is,js) be the sequence of vertices (i,7) in the order
of recursive calls to H-Round in Step 2l Let us first show that for any s’ <
min{s,2/v%} we have

Zvil * Uy, S 1. (14)
=1

Indeed, let T' = U{i1, 51 | 1 <1 < s'}. Since vectors {v;} satisfy ISfln/ij;2 (H), and
|T| < 25" < 4/+2, there must be some distribution on independent sets S C T
satisfying Pr[k, k' € S| = vy, - v for all pairs of vertices k, k" € T. Note that
by choice of vertices i, j;, we have iy,,ji, € I'(i,,ji,) for all I < l. Thus, the
events “ij, j; € S” are pairwise exclusive, and so

ZU”- s =PrEl<s i, eS <1
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Similarly, if s’ < min{s,2/7? — 1}, then for any k € ﬂlgs, I'(i;,7;) we have

Z‘f;l vi, - vj, + vk - v, < 1. However, by choice of i, j;, we also have le;l Vi, -
vj, +og v > |8'[7?/2+~—(1/logn). Thus, we must have s < 2/42—1, otherwise
letting k = i3/,2 above, we would derive a contradiction. This proves part 1.
For part 2, it suffices to note that the number of vertices in the final recursive
call is at least nI1=vu /2 and that by @) we have [[(1 — v, - v;,/2) >
1721)“'1)%/22%. (]

We are now ready to prove Theorem [3.

Proof (of Theorem [3). For the sake of simplicity, let us assume that for all
vertices i € V, |Jvg]|* = 4. Violating this assumption can adversely affect the
probabilities of events or sizes of sets in our analysis by at most a constant
factor, whereas we will ensure that all inequalities have at least polynomial slack
to absorb such errors. Thus, for any 7,7 € V, we have

v v = Y2+ (v = yP)u - uj. (15)

For brevity, we will write v; - v; = ;5 for all 4,5 € V (note that all 6,; € [0, 1]).
Moreover, we will use the notation «(e) introduced earlier, but this time in the
context of the vector solution {w; }:

ale) = ; Z w; - W
i,j€e
1<J

The upper-bound on the running time follows immediately from part 1 of
Proposition[Il. By part 2 of Proposition[I], it suffices to show that if the condition
for recursion in Step [@ of H-Round does not hold, then in Step BB, algorithm
KNS-Round finds an independent set of size 2(N (t)n) = Q(n”z/m) (where n is
the number of vertices in the current hypergraph).

Let us examine the performance of KNS-Round in this instance. Recall that
for every i € V, the probability that i € V;(¢) is exactly N(t). Thus, by linearity
of expectation, the expected number of nodes in V¢ (¢) is N(¢)n. To retain a large
fraction of V¢ (t), we must show that few vertices participate in hyperedges fully
contained in this set, that is E[|[{i € e | e € EAe C V¢(t)}|] = o(N(¢)n). In
fact, since every hyperedge contained in V¢(t) contributes at most three vertices,
it suffices to show that E[|{e € E | e C Vc(¢)}|] = o(N(¢t)n). We will consider
separately two types of hyperedges, as we shall see.

Let us first consider hyperedges which contain some pair ¢, j for which 6;; >
~v/2. We denote this set by E;. We will assign every hyperedge in E to the
pair of vertices with maximum inner-product. That is, for all 7,7 € V, define
I'i(i,j) ={k e I'(i,j) | O, 0;x <6;;}. By (I0), for all ¢, j € V and k € I\ (i, )
we have
v _ Oy =) _ iy

04 W) = oy gy S 9g (16)

Ol(i,j,k) S w; - wWj; =
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Now, by our assumption, the condition for recursion in Step @ of H-Round was
not met. Thus, for all 4,j € V s.t. 6;; > /2, we have

T4 ()] < TG )| <m0 72, (17)
By linearity of expectation, we have
E[{e € Ey | e C Vc(t) ZPreCVC
ecE
Z O(N (t)%/(1+2ale))y by Lemma [4
€€E+

Z Z O 3/(1+ 12 LJ’Y)) by dm)

1,J€V kel (i,5)
0:5>7/2

By (), this gives

El{e€ B |e CVe®} < > On! 20w N(1)*/ (1F15057)

i,jEV
0i5>7/2

= N(t) Z O(nl—%9ij’YN(t)(2—ﬁ9ij7)/(1+%9v¢ﬂ))
i,J€V
0ij>/2

= N(t) Z O(nlf%Oinf(lf%72)(27T1291j7)/(1+%29iﬂ))
i,jEV
0;;>7/2

<N Z O (=207~ (1= 5057 (2= 130:57)/ (1+150:57)

n,jeV
0;5>/2

1 ~ 5 92 2 1
=N — _*91,_7'7 /(I+150:57)
(t)n Z O(n 96 12 )
i,jEV
0i5>/2

< N(t)nO(n~ 557" /04337y = o(N(t)n).

We now consider the remaining hyperedges E_- = E\ Ey ={e € E | Vi,j €
e:6;; <~v/2}. By (@), and by definition of {w;}, we have

~2
< — 18
SOEE. (15)
for every hyperedge e € E_. Thus we can bound the expected cardinality of
E_nN{eCV:(t)} as follows:

E[l{ec E_ | e C V,(t) ZPreCVC

ecE

< Z O 3/(1+2a(e))) by Lemma[4
ecE_
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Z O (2 2a( e))/(1+2a(e)))
eckE_

< N(#)nPO(N (t) 221+ 2a7")/ (=1 27%)) by (@3)

By our choice of ¢, this gives

Efl{e € B- | e € ()} < N(H)O(n? (=)= 5090/ 0140
— (t)O( (373 — 327/ Q=7= 47 )) o(N(t)n).

This completes the proof. O

3.4 A Further Improvement Using the Lasserre Hierarchy

Here, we present a slightly modified algorithm which takes advantage of the
Lasserre hierarchy, and gives a slightly better approximation guarantee. As be-
fore, the algorithm takes an n-vertex hypergraph H for which MAX-ISEas(H) >
yn, where k = 2(1/4?) and {v;}; is the corresponding SDP solution.

H-Round™(H = (V, E), {v; | |I| < k},7)

1. Let n = |V| and let [ = 7'logn — 1 be as in Lemma [ (where 7/ > 7).
If v/ > 2/3 + 2/ logn, output T;.
2. Otherwise, set H = H|p,, and v =~
3. If for some 4,5 € 1} s.t. pij = v; -v; > 72 /2 we have
|[(i,7)| > {n'=Pii}, then find an independent set using
H-Round (H ). {v1]: ova: o | 1 € L(0.3). 1]  k—2}.7/(1- pyy).
4. Otherwise,
(a) Define unit vectors {w; | i € V'} s.t. for all 7,7 € V' we have
w; - wj = [} (w; - u;) (outward rotation).
(b) Let ¢ be s.t. N(t) = n~(=7"/8)_ and return the independent set
found by KNS-Round(H, {w; | i € V'},t).

For this algorithm, we have the following guarantee:

Theorem 4. For any constant v > 0, given an n-vertex 3-uniform hypergraph

= (V,E) for which MAX—ISI{;/&(SSWZ)(H) > wyn and vectors {vr} the correspond-

ing solution, algorithm H-Round™® finds an independent set of size Q(n»ﬂ/s) mn
H in time O(n3+8/37).

We will not prove this theorem in detail, since the proof is nearly identical to
that of Theorem [3. Instead, we will highlight the differences from algorithm H-
Round, and the reasons for the improvement. First of all, the shortcut in step[dl
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(which accounts for the slightly lower level needed in the hierarchy) is valid since
(as can be easily checked) constraint (B) cannot be satisfied (assuming (B) holds)
when [|v]|%, [|v; |12, [Joe||* > 2/3.

The improvement in the approximation guarantee can be attributed to the
following observation. Let {(i1,71), .-, (is,Js)} be the pairs of vertices chosen
for the various recursive invocations of the algorithm in Step Bl Then in the
probabilistic interpretation of the SDP solution, we have carved an event of
probability p = p;,;, + ...+ ps j. out of the sample space, and thus the SDP
solution is conditioned on an event of probability 1— p. Hence, the hypergraph in
the final call contains n, > Q(nl’p) vertices, and the SDP value is v,n, where
v > v/(1 — p). Thus one only needs to show that assuming the condition in
Step Bldoes not hold, the call to KNS-Round in Step Eblreturns an independent
set of size at least )

n!® > /B > /8,

The proof of this fact is identical to the proof of Theorem Bl

4 Discussion

Theorem Bl together with the integrality gap of Theorem [ demonstrate that
the hierarchy of relaxations MAX-ISI gives an infinite sequence of improved
approximations for higher and higher levels k. We do not know if similar in-
tegrality gaps hold for the Lasserre hierarchy, though we know that at least
the integrality gap of Theorem [ cannot be lifted even to the second level in
the Lasserre hierarchy. In light of our results, we are faced with two possible
scenarios:

1. For some fixed k, the kth level of the Lasserre hierarchy gives a better ap-
proximation than MAX-IS[™™ for any (arbitrary large constant) [, or

2. The approximation curve afforded by the kth level Lasserre relaxation gives
strict improvements for infinitely many values of k.

While the second possibility is certainly the more exciting of the two, a result
of either sort would provide crucial insights into the importance of lift-and-
project methods for approximation algorithms. Recently Schoenebeck [27] has
produced strong integrality gaps for high-level Lasserre relaxations for random
3XOR formulas, which rely on properties of the underlying 3-uniform hypergraph
structure. It will be very interesting to see whether such results can be extended
to confirm the second scenario, above.

Finally, we note that the existence of provably improved approximations at
infinitely many constant levels of an SDP hierarchy is surprising in light of the
recent work of Raghavendra [24]. One implication of that work is that if the
Unique Games Conjecture [I7] is true, then for every k-CSP, the kth level of a
mixed hierarchy (such as MAX-IS™X) suffices to get the best possible approx-
imation (achievable in polynomial time). Our result, when combined with the
work of Raghavendra [24], does not refute the Unique Games Conjecture (es-
sentially, since the guaranteed optimality of the relaxations in [24] is only up
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to any arbitrary additive linear error). However, it may help shed light on the
characteristics of combinatorial optimization problems which stand to benefit
from the use of lift-and-project techniques.
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Abstract. Given a set of points in the plane, and a sweep-line as a
tool, what is best way to move the points to a target point using a
sequence of sweeps? In a sweep, the sweep-line is placed at a start position
somewhere in the plane, then moved orthogonally and continuously to
another parallel end position, and then lifted from the plane. The cost of a
sequence of sweeps is the total length of the sweeps. Another parameter of
interest is the number of sweeps. Four variants are discussed, depending
whether the target is a hole or a pile, and whether the target is specified
or freely selected by the algorithm. Here we present a ratio 4/m ~ 1.27
approximation algorithm in the length measure, which performs at most
four sweeps. We also prove that, for the two constrained variants, there
are sets of n points for which any sequence of minimum cost requires
3n/2 — O(1) sweeps.

1 Introduction

Sweeping is a well known and widely used technique in computational geometry.
In this paper we make a first study of sweeping as an operation for moving a set
of points. The following question was raised by Pawet Zyliiski [4]:

There are n balls on a table. The table has a hole (at a specified point).
We want to sweep all balls to the hole with a line. We can move the balls
by line sweeping: all balls touched by the line are moved with the line in
the direction of the sweep. The problem is to find an optimal sequence of
sweeps which minimizes the total sweeping distance covered by the line.

Although the above problem is quite natural, it does not seem to have been
studied before. We note an obvious application to robotics, in particular, to the
automation of part feeding and to nonprehensile part manipulation [I]. Imagine
a manufacturing system that produces a constant stream of small identical parts,
which have to be periodically cleared out, or gathered to a collection point by a
robotic arm equipped with a segment-shaped sweeping device [I]. Here we study

* Supported in part by NSF CAREER grant CCF-0444188.
** Supported in part by NSF grant DBI-0743670.
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Fig. 1. A sweep of cost (length) x

an abstraction of such a scenario, when the small objects and the target are
abstracted as points.

We now introduce some definitions to make the problem more precise. We refer
to Figure[Il A set S of n points in the plane is given. In a sweep, the sweep-line
is placed at a start position somewhere in the plane and is moved orthogonally
and continuously to another parallel end position. All points touched by the line
are moved with the line in the direction of the sweep. Then the line is lifted
from the plane. Note that several points can merge during a sweep, and that
merged points are subsequently treated as one point. A sweeping sequence for S
is a sequence of sweeps that move all points in S to a target point. The cost of
a sweeping sequence is the total length of its sweeps. As it will be evident from
our Theorem [3] the sweep-line as a tool can be conveniently replaced by a finite
sweep-segment of length twice the diameter of the point set.

We consider several variants of the sweeping problem, by making two distinc-
tions on the target. First, the target can be either a hole or pile: if the target is a
hole, then a point stays at the target once it reaches there, i.e., the point drops
into the hole; if the target is a pile, then a point can still be moved away from
the target after it reaches there. While it makes no difference for our algorithms
whether the target is a hole or a pile (i.e., our algorithms are applicable to both
variants), this subtle difference does matter when deriving lower bounds. Second,
the target is either constrained to be a specified point or unconstrained (an ar-
bitrary point freely selected by the algorithm). The four possible combinations,
constrained versus unconstrained (C or U) and hole versus pile (H or P), yield
thus four variants of the sweeping problem: CH, CP, UH, and UP.

Our main results are the following: although there exist sets of n points that
require {2(n) sweeps in any optimal solution (Section [B] Theorem [2]), constant-
factor approximations which use at most 4 sweeps can be computed in linear or
nearly linear time (Section 2] Theorem [Il). We also present some initial results
and a conjecture for a related combinatorial question (Section @ Theorem [3),
and conclude with two open questions (Section [Hl).

We now introduce some preliminaries. A sweep is canonical if the number of
points in contact with the sweep-line remains the same during the sweep. The
following lemma is obvious.
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Lemma 1. Any sweep sequence can be decomposed into a sweep sequence of the
same cost, consisting of only canonical sweeps. In particular, for any point set
S, there is an optimal sweep sequence consisting of only canonical sweeps.

Proof. Let |S| = n. A non-canonical sweep can be decomposed into a sequence of
at most n canonical sweeps in the same direction and of the same total cost. O

Throughout the paper, we use the following convention: if A and B are two
points, AB denotes the line through A and B, AB denotes the ray starting from
A and going through B, AB denotes the line segment with endpoints A and B,
and |AB| denotes the length of the segment AB.

2 A Four-Sweep Algorithm

In this section, we present a four-sweep algorithm applicable to all four variants
CH, CP, UH, and UP.

Theorem 1. For any of the four variants CH, CP, UH, and UP of the sweep-
ing problem (with n points in the plane),

(I) A ratio V2 approzimation that uses at most 4 sweeps can be computed in
O(n) time;

(IT) A ratio 4/7 ~ 1.27 approzimation that uses at most 4 sweeps can be com-
puted in O(nlogn) time.

Proof. We consider first the constrained variant, with a specified target o. Let
S be the set of n points, and let S” = S U {o}. We next present two algorithms.

(I) Algorithm A1. Choose a rectilinear coordinate system woy whose origin
is o (of arbitrary orientation). Compute a minimal axis-parallel rectangle @
containing S’. Denote by w and h its width and height respectively, and assume
w.l.o.g. that h < w. Perform the following (at most four) sweeps: (i) sweep from
the top side of @ to the z-axis; (ii) sweep from the bottom side of @ to the
x-axis; (iil) sweep from the left side of @ to the y-axis; (iv) sweep from the right
side of @ to the y-axis. Figure [2] illustrates the execution of the algorithm on a
small example.

Analysis. Clearly, the algorithm gives a valid solution, whose total cost is
ALG = w + h. Let OPT be the cost of an optimal solution. We first argue
that the approximation ratio of our algorithm is at most 2; we then improve this
bound to v/2.

We first show that OPT > w. Let p and ¢ be the two extreme points of S’
with minimum and maximum z-coordinates. Assume first that p,q € S. Let p’
and ¢’ be the projection points of p and ¢ on the x-axis throughout the execution
of the sweep sequence. Put wy = |p’o|, and wy = |oq¢’|. Note that after the sweep
sequence is complete, p’ and ¢’ coincide with the origin o. Further note that
every sweep brings either p’ or ¢’ closer to o, but not both. Finally, observe that
to bring p’ to o requires a total sweep cost of at least wq, and similarly, to bring
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(@)

Fig. 2. Running the four-sweep algorithm

¢’ to o requires a total sweep cost of at least wq. Therefore the total sweep cost
is at least wy + wo = w, thus OPT > w. Since the total sweep cost is

ALG =w +h < 2w < 2- OPT,

the ratio 2 follows when p,q € S. The case when o is one of the two extreme
points p and ¢ is completely analogous.

We now argue that OPT > (w + h)/v/2. Let X be an arbitrary sequence
consisting of k sweeps which solves the given instance S. For i =1,... k let x;
be the cost of the ith sweep, and «; € [0, 27) be its direction. Write z = Zle ;.
Indeed, the ith sweep of cost x; can reduce the current semi-perimeter of Q
by at most v/2z;. Here the points in S are considered moving, so S’, and its
enclosing rectangle @ change continuously as an effect of the sweeps. Since the
semiperimeter of ) drops from w + h to 0, by summing over all sweeps, we get
that in any sweep sequence for S of total cost =,

k
V2 =v2) m>w+h,

i=1

thus
ALG =w+h < V2-OPT,

and the approximation ratio v/2 follows.

(IT) Algorithm A2. First compute a minimum perimeter rectangle )y contain-
ing S’. This takes O(nlogn) using the rotating calipers algorithm of Toussaint
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[3]. Let now zoy be a rectilinear coordinate system in which Qg is axis-aligned.
Let w and h be its width and height respectively. Then perform the four sweeps
as in Algorithm Al.

Analysis. Assume w.l.o.g. that w+h = 1. For g € [0,7/2), let Q(8) denote the
minimum perimeter rectangle of orientation 3 containing S’; i.e., one of the sides
of Q() makes an angle § with the positive direction of the z-axis. Let w(/) and
h(3) denote the initial values of the width and height of Q(5) respectively. Note
that [0,7/2) covers all possible orientations 3 of rectangles enclosing S’.

As in the proof of the ratio v/2 approximation ratio, recall that for any i €
{1,...,k}, the ith sweep of cost x; can reduce the current semi-perimeter of
Q(p) by at most z;1/2. In fact we can be more precise by taking into account
the direction of the sweep: the reduction is at most

;i (| cos (i — B)] + [ sin (o — B)]).
Since X solves S, by adding up the reductions over all sweeps i € {1,...,k}, we
must have—since w(8) + h(3) > 1, for every § € [0, 7/2):

k

> i (Jcos (a; = B)] + |sin (a; — B)]) > 1. (1)

i=1

We integrate this inequality over the f-interval [0, 7/2]; z; and «; are fixed,
and each term is dealt with independently. Fix ¢ € {1,...,k}, and write o = o
for simplicity. Assume first that o € [0,7/2). A change of variables yields

/2
/0 (I cos (o — B)| + | sin (a — B)]) dB

a+tm/2
/ (|cos B + |sing) dg

a7 /2

/2
/ (cos B+ sin ) dF + / (—cos 8 +sin3) dg
o /2

+ (—sin B — cos )

/2

= (sin 8 — cos 3)
= (1l —sina+cosa)+ (—cosa+sina+ 1) = 2.

a+tm/2

™

Let
atm/2
G(a) = / (| cos B + | sin 3]) dj3.
Tt is easy to verify that G(a) = G(a + 7/2) for any a € [0,27), hence the inte-

gration gives the same result, 2, for any «; € [0,27), and for any i € {1,...,k}.
Hence by integrating () over [0, 7/2] yields

k
T T
2 g axz> > , or x> .
(z‘_o 2 4



68 A. Dumitrescu and M. Jiang

Since this holds for any valid sequence, we also have OPT > 7. Recall that
ALG = w+ h = 1, and the approximation ratio 4/ follows.

To extend our results to the unconstrained variant requires only small changes
in the proof. Instead of the minimum semi-perimeter rectangle(s) enclosing
S’ = Su{o}, consider the minimum semi-perimeter rectangle(s) enclosing S. All
inequalities used in the proof of Theorem [ remain valid. We also remark that
the resulting algorithms execute only two sweeps (rather than four): from top

to bottom, and left to right, with the target being the lower-right corner of the
enclosing rectangle. a

2.1 A Lower Bound on the Approximation Ratio of Algorithm A2

It is likely that the approximation ratio of our four-sweep algorithm is slightly
better than what we have proved: we noticed that for both cases, when h is large
and when h is small relative to w, our estimates on the reduction are slightly
optimistic. However, the construction we describe next, shows that the ratio of
our four-sweep algorithm cannot be reduced below 1.1784 (for either variant).

Perhaps the simplest example to check first is the following. Take the three
vertices of a unit (side) equilateral triangle as our point set. For the constrained
variant, place the target at the triangle center: the optimal cost is at most v/3
by 3 sweeps (in fact, equality holds, as shown in the proof of Theorem [3)), while
the four-sweep algorithm uses 1 + V 3/2. The ratio is about 1.077.

We now describe a better construction that gives a lower bound of about
1.1784; see Figure Bl Place n points uniformly (dense) on the thick curve C
connecting B and C'. For the constrained variant, place the target at point B. The
curve is made from the two equal sides of an obtuse isosceles triangle with sharp
angles a = arctan(1/2) ~ 26.565°, then “smoothed” around the obtuse triangle
corner. AABC is an isosceles triangle with sides AB = AC = /5 and BC = 4,
with altitude AD = 1, and with angles /ABC = /ACB = « = arctan(1/2). E
and F' are two points on AB and AC, respectively, such that DE 1 AB and
DF 1 AC.

The curve C consists of the two segments BE and C'F' and a curve Cy connect-
ing I/ and F', defined as follows. For an arbitrary point G on Cy, / ADG = 3 < «,
the length of the segment DG is

1
\
\ \

B! D T C

Fig. 3. A continuous convex curve that gives a lower bound of about 1.1784 on the
approximation ratio of Algorithm A2
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|DG| = f(6) =4cosa+4sina —4cos S — 2sin 3.

Observe that 4sina — 2 cosa = 0 holds by the definition of a, hence

d
s

where the derivative reaches zero at E and F' (when 8 = «). So C is a continuous
convex curve. For a rectangle that circumscribes the curve C with one side tan-
gent to Cp at point G, its width and height are | BC| cos 3 and |[DG|+|CD|sin 3,
respectively. Hence its semi-perimeter is

f(B) =4sinf3 —2cosff < 4sina—2cosa =0,

|BC|cos 3+ |DG| + |CD|sin 3
=4cosf+ (dcosa+4sina —4cosff — 2sin ) + 2sinf

=4cosa + 4sina.

Therefore the semi-perimeter of a minimum rectangle with orientation g,
where 0 < (8 < «, that encloses C is a constant: 4cosa + 4sina. Since the
length of Cy is

2 f(ﬂ)dﬂ:Q/ (4cosa+4sina — 4cos 8 — 2sin B)dgs
B=0 B=0

= 8(cosa + sin ) + 2(—4sin 5 + 2 cos ()

0
= 8(cos v + sina)a + 2(—4sina + 2 cosa — 2)
=38

(cosa +sina)a — 4,

and since |BE| = |CF| = 2cosa, the length of C is 8(cosa + sina)a — 4 +
4 cos . The ratio of the minimum semi-perimeter and the curve length is (after
simplification by 4, and using the values cosa = 2/v/5, sina = 1/V/5, a =
arctan(1/2))

4cosa+ 4sina 3

. = =1.1784....
8(cosa +sina)a —4+4cosa Garctan(1/2) — /5 + 2

This gives a lower bound of 1.1784 on the approximation ratio of Algorithm A2,
which holds for all four variants.

3 Point Sets for the Constrained Variants That Require
Many Sweeps

In this section we show that some point sets require many sweeps in an optimal
solution, i.e., the number of sweeps is not just a constant. In what follows, the
target is constrained to a specified point, and may be either a hole or a pile, i.e.,
we refer to both constrained variants CH and CP.
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(a) (b)

Fig.4. A construction with three points A, B, and C (black points) forming a unit
equilateral triangle and n — 3 arbitrary points (white points) on the edge BC. The
target is at the point B. Initially: A = Ag, B = By, C' = Co. (a) An optimal sweeping
sequence. (b) Some properties of optimal sweeping sequences are illustrated.

Theorem 2. For the two constrained variants CH and CP, and for any n, there
are sets of n points for which any optimal sweeping sequence consists of at least
3n/2—O(1) sweeps.

We now proceed with the proof of Theorem 2l We refer to Figure @(a). Our set
S consists of three points A, B, and C' (black points) forming a unit equilateral
triangle and n — 3 points (white points) arbitrary placed on the edge BC. The
target is at the point B. For convenience, we place AABC' initially with B at
the origin and BC along the x axis. In what follows, we refer to the intermediate
positions of the moving points: input points from the set S (such as 4, B, C, D,
etc.) or other auxiliary points (such as E and F') during a sequence of sweeps.
When the intermediate position of a point does not coincide with its original
position, we avoid the possible ambiguity by adding a subscript 0 to the label of
the original position. For example, the two labels A and Ag in the figure refer
to the intermediate and the original positions, respectively, of the same point
A. Initially, we have A = Ay, B = By, C = Cy. We will show in Lemma ] that
B = By (that is, B remains stationary) during any optimal sequence; this is
evident for the CH variant, but not so for the CP variant.

Define three rays: a ray ra from A in the 37 /2 direction, a ray rp from B
in the 7/6 direction, and a ray r¢ from C' in the 57/6 direction. The three
rays from A, B, and C' initially intersect at a single point O = Oy, the center
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of NAyByCy. We will show below that this concurrency property is maintained
throughout any optimal sweeping sequence for S. We now define six special types
of sweeps:

Type A: A is moved in the direction AO. B and C are not moved.
Type BC: B and C' are moved together in the direction OA. A is not moved.
Type B: B is moved in the direction BO. A and C are not moved.
Type AC: A and C' are moved together in the direction OB. B is not moved.
Type C: C' is moved in the direction CO. A and B are not moved.
Type AB: A and B are moved together in the direction OC. C is not moved.

We note that, for the CH variant, the three types involving B, namely types
BC, B, and AB are in fact not used, since point B will remain at the hole
throughout any sweeping sequence.

For each of the six types, each moved point (among A, B, and C') is moved
for a distance equal to the sweep length, that is, the moved point is on the
sweep-line during the sweep. If a sweeping sequence consists of only sweeps of
the six special types, then it can be easily verified (by induction) that the three
rays from A, B, and C still intersect at a single point O after each sweep; see
Figure H(b).

The three segments AygOgy, ByOy, and CyOqy determine two parallelograms
ApOoBoEy and CyO¢ByFy (each is a rhombus with two 60° angles), as shown
in Figure B(b). We now observe some properties of sweeps of the three types
A, C, and AC. Consider how a sweep changes the two parallelograms AOBFE
and COBF, initially AgO¢BoEy and CyOg By Fy: a sweep of type A reduces the
two sides AO and BE; a sweep of type C reduces the two sides CO and BF
a sweep of type AC reduces the three sides AE, CF, and OB (note that the
side OB is shared by the two parallelograms). During any sweeping sequence of
the three types A, C, and AC, the point A always remains inside the rhombus
ApOpByEy, and point C' inside the rhombus CyOgByFy.

Lemma 2. The optimal cost for S is /3. Moreover, any optimal sequence for S
consists of only sweeps of the three special types A, C', and AC, with a subtotal
cost of \/3/3 for each type.

Proof. We first show that the optimal cost for S is at most /3. We refer to
Figure [d(a) for a sweeping sequence of n — 1 alternating steps: (i) one sweep of
type AC (the white arrow); (ii) two sweeps, one of type A and the other of type
C' (the black arrows). Each step, except the first and the last, merges C' with a
white point, in sequential order from right to left. The total number of sweeps
in this sequence is (3n — 3)/2 when n is odd, and is (3n — 4)/2 when n is even.
The total cost of this sequence is |AgOg| + |BoOo| + [CoOo| = 3 - v/3/3 = V/3.
We next show that the optimal cost for S is at least v/3. Consider an optimal
sequence for S. Assume w.l.o.g. that the sequence is canonical. We construct
three paths, from the three points Ay, By, and Cj to a single point, such that
their total length is at most the cost of the sequence. Each sweep in the sequence
that moves one or two of the three points A, B, and C corresponds to an edge
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in one of the three paths, with the sweep length equal to the edge length: (i) if a
sweep moves only one of the three points, then the corresponding edge extends
the path from that point, along the sweep direction; (ii) if a sweep moves two of
the three points, then the corresponding edge extends the path from the third
point, along the opposite sweep direction. We note that, for the three points
A, B, and C, each three-point sweep is useless, and each two-point sweep is
equivalent to a one-point sweep in the opposite direction, in the sense that the
resulting triangles AABC are congruent. When the three points finally meet at
the target, the three paths also end at a single point (which could be different
from the target).

The total length of the three paths is at least the total length of a Steiner tree
for the three points Ag, By, and Cy. It is well known [2] that the minimum Steiner
tree for the three points Ay, By, and Cjy is unique, and consists of exactly three
edges of equal length v/3/3, from the three points to the center Oy of AAgByCo.
It follows that the optimal cost for S is at least v/3. Together with the matching
upper bound achieved by the sequence illustrated in Figure @l(a), we have shown
that the optimal cost for S is exactly v/3.

The uniqueness of the minimum Steiner tree for the three points Ag, By, and
Cy implies that every sweep in the optimal sequence must be of one of the six
special types, with a subtotal cost of [AgOg| = |BoOo| = |CoOo| = /3/3 for
each of the three groups: A and BC, B and AC, and C' and AB. To complete
the proof, we next show that sweeps of the three types B, AB, and BC never
appear in the optimal sequence. Consider the two possible cases for the target:

1. The target is a hole, that is, a point stays at the target once it reaches there.
Since B is already at the target, it must stay there. So this case is obvious,
as noted after our definition of the six types.

2. The target is a pile, that is, a point can be moved away from the target
after it reaches there. Although B is already at the target, it can still be
moved away. The only sweeps that move B are of the three types B, AB,
and BC'. Such sweeps all have a positive projection in the direction Bﬁ, and
can only move B away from the target (and cannot move it back); therefore
they cannot appear in the optimal sequence.

This completes the proof of Lemma O

Let D be the rightmost white point. Figure dl(b) shows the initial position of D.
Later in Lemma [ we will prove that D remains at its initial position until it is
merged with C. In Lemma[3 however, we don’t make any assumption of D being
at its original position. Let DS and DT be two rays from D with directions 7/6
and —7/6, respectively.

Lemma 3. Consider an optimal sweeping sequence. If C' is moved above the

line DS or below the line DT, then C remains either above DS or below DT
until either C or D coincides with the target.

Proof. We refer to Figure @l(b). Assume w.l.o.g. that the sweeping sequence is
canonical. Consider each remaining sweep in the sequence after C is at a position
above DS or below DT
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Type C. Consider two cases: C' is above DS or below DT.

1. C is above DS. If D is not moved, then C' is moved further above DS.
If both C' and D are moved (when CD L CO), then they are moved for
the same distance in the same direction, and C' remains above DS.

2. C' is below DT. Since DT is parallel to the sweep direction 0?7 C
remains below DT,

Type AC. Consider two cases: C' is above DS or below DT.

1. C'isabove DS. Since DS is parallel to the sweep direction OB , C' remains
above DS.

2. C is below DT. If D is not moved, then C is moved further below DT.
If both C' and D are moved, then they are moved for the same distance
in the same direction, and C' remains below DT.

Type A. Note that C' may be both above DS and below DT. We divide the
two cases in an alternative way without overlap: C is either (i) above DS
and not below (i.e., above or on) DT or (ii) below DT.

1. C is above DS and not below DT. Then C' is above D. Since C' is not
moved, D is not moved either. So C remains above DS and not below
DT.

2. C'is below DT. Since DT is parallel to C'O, D is above CO. The sweep
may move A down to O and correspondingly move D down until it is on
the horizontal line through O, but no further. So D remains above C'O,

and C remains below DT.
O

Lemma 4. In any optimal sequence, each white point is not moved until it is
merged with C, in sequential order from right to left.

Proof. Assume w.l.o.g. that the sweeping sequence is canonical. Lemma [l shows
that the sweeps in any optimal sequence are of the three types A, C, and AC.
Let o1 be the first sweep that moves a white point, and let D be the first white
point moved. If the sweep o1 is of type A, then A would be moved below the x
axis (recall that in a sweep of type A the sweep-line always goes through A), and
any subsequent sweep that moves A, of type A or AC, would move A further
below the x axis and never to B. This contradicts the validity of the sequence.
Therefore o1 must be of type C or AC.

We claim that C' must be merged with the rightmost white point D before
the sweep o1. We will prove the claim by contradiction. Suppose the contrary.

Our proof by contradiction is in two steps: In the first step, we will show that
C is either above DS or below DT at the beginning of sweep 1. In the second
step, we will show that the assumed optimal sequence is not valid.

First step. The sweep-line of o1 goes through Dy during the sweep. Since o1
is of type C or AC, C' is also on the sweep-line of 1. Consider two cases for the
relation between Dy and D:

1. Dy # D (Dq is to the left of D on the z axis). Then every point on the
sweep-line, including C| is either above DS or below DT
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2. Dy = D. Then every point on the sweep-line, except D, is either above DS
or below DT'. Since C'is not merged with D before oy, C' is either above DS
or below DT.

In either case, C' is either above DS or below DT.

Second step. From Lemma [3] C' remains either above DS or below DT until
either C' or D coincides with the target. This, as we will show in the following,
implies that the sweeping sequence is not valid. Consider the two possible cases
for the target as either a pile or a hole:

1. The target is a pile, that is, a point can be moved away from the target after
it reaches there. Then C' remains either above DS or below DT even after
either C' or D reaches the target. It follows that C' and D never merge, and
hence cannot end up together at the target. Therefore the sweeping sequence
is not valid.

2. The target is a hole, that is, a point stays at the target once it reaches there.
Let 09 be a sweep in the sequence that moves D to the target. We consider
the three possible cases for the type of oa:

Type AC. The sweep-line of o9 goes through the two points A and C. As D
is moved to the point B by o2, both parallelograms AOBE and COBF
shrink to the point B, that is, both A and C' are moved to the target
together with D. Then A, C, and D must have been merged even before
the sweep oy. This is impossible because C' is above DS or below DT
until either C' or D reaches the target.

Type C. It follows by the same argument (the parallelogram COBF shrinks
to the point B) that C' and D are merged before the sweep o2, which is
again impossible.

Type A. It follows by the same argument (the parallelogram AOBE shrinks
to the point B) that A and D are merged before the sweep o2, above the
line BO. This is impossible because D cannot be moved above BO: a
sweep of type AC does not change the distance from D to BO; a sweep
of type A can only move D further below BO; a sweep of type C' can
move D to BO but not above BO, since C' itself cannot be moved above
BO.

In each case, D cannot be moved to the target. Therefore the sweeping
sequence is not valid.

We have shown that the sequence is not valid with the target as either a pile or
a hole. By contradiction, this proves our original claim that C' must be merged
with D before the sweep o7.

As soon as C' is merged with D, we can consider D as deleted. The point
set now reaches a configuration similar to the original configuration: the two
points B and C are on the x axis with all the (unmoved) white points between
them, and A alone is above the = axis. But now we have one less white point.
Repeating the argument in the preceding paragraphs inductively completes the
proof of Lemma [l O
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We are now in position to finalize the proof of Theorem[2l We have shown that in
an optimal sequence, C' must be merged with the white points one by one from
right to left. Since the sweeps are not along the x axis, each of the n — 3 white
point requires at least one sweep to be merged. The total number of sweeps in
the sequence is at least n— O(1). We obtain a tighter estimate (that matches our
previous sweep sequence for S) as follows. Between two consecutive merges, C'
has to be moved to the left by alternating sweeps of types AC' and C. Between
two sweeps of type AC, since C' is moved by a sweep of type C, A must also
be moved by a sweep of type A, to make AC' 1. OB for the next sweep of type
AC'. Therefore each merge requires either one sweep of type AC' or two sweeps
of types A and C, in an alternating pattern as shown in Figure @l(a). The total
number of sweeps in the sequence is at least 3n/2 — O(1). This completes the
proof of Theorem

4 A Combinatorial Question for the Unconstrained
Variants

The following related question suggests itself: What is the maximum cost re-
quired for sweeping a planar point set of unit diameter to a single point? Note
that the target point is unconstrained, and can be either a hole or a pile. Define

PH = sSup igl{f cost(X), for the variant UH,
S

and
pp = sup i&f cost(X), for the variant UP,
s

where S ranges over all finite planar point sets of unit diameter, and X ranges
over all sweeping sequences for S. We give estimates on the two numbers py and
pp in the following theorem:

Theorem 3. 1.73 ~ /3 < pr < pp < 2.

Proof. Any sweeping sequence for the UP variant is also a sweeping sequence for
the UH variant, so we have pg < pp. We first prove the upper bound pp < 2.
Let S be an arbitrary finite planar set with unit diameter. Let p and ¢ be two
points in S at unit distance. Then S is contained in a rectangle with width 1
(parallel to the line pg) and height at most 1. A sweep along the width and a
sweep along the height reduce the rectangle to a single point (the pile), at a cost
of at most 2.

We next prove the lower bound py > v/3. Let T be an equilateral triangle with
unit side. Let X* be an optimal sequence of canonical sweeps for the three vertices
of T'. Using the same idea as in the proof for Lemma [l we construct three paths,
from the three vertices of T' to a common point, such that their total length is
at most the cost of X ™. It follows that the cost of X* is at least the total length
of a minimum Steiner tree for the three vertices, which is v/3 [2]. Note that our
analysis for this case is tight: three sweeps along the edges of the minimum Steiner
tree clearly reduce the equilateral triangle T to a single point. a
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The reader can observe that a weaker lower bound py > 7/2 ~ 1.57 follows from
our result in Theorem [I] applied to a set of n points uniformly distributed on a
circle (for large n). We think the upper bound in Theorem B]is best possible, for
instance, in the same case of n points uniformly distributed on a circle of unit
diameter, for n going to infinity:

Congecture 1. pg = pp = 2.

5 Concluding Remarks

Besides Conjecture [II two interesting questions (for any of the four variants)
remain open:

(1) What is the complexity of the sweeping problem? Is there a polynomial time
algorithm for generating an optimal sweeping sequence?

(2) Can the number of sweeps in an optimal solution be always bounded by a
polynomial in n? i.e., is there always an optimal solution with a polynomial
number of sweeps?

Acknowledgment. We are grateful to Pawel Zyliriski for sharing his dream prob-
lem with us.
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Abstract. We study the approximability of the MAX k-CSP problem
over non-boolean domains, more specifically over {0, 1,...,g—1} for some
integer q. We extend the techniques of Samorodnitsky and Trevisan [19]
to obtain a UGC hardness result when ¢ is a prime. More precisely,
assuming the Unique Games Conjecture, we show that it is NP-hard to
approximate the problem to a ratio greater than ¢*k/¢". Independent of
this work, Austrin and Mossel [2] obtain a more general UGC hardness
result using entirely different techniques.

We also obtain an approximation algorithm that achieves a ratio of
C(q)-k/q" for some constant C(q) depending only on g, via a subroutine
for approximating the value of a semidefinite quadratic form when the
variables take values on the corners of the g-dimensional simplex. This
generalizes an algorithm of Nesterov [16] for the +1-valued variables. It
has been pointed out to us [I5] that a similar approximation ratio can
be obtained by reducing the non-boolean case to a boolean CSP.

1 Introduction

Constraint Satisfaction Problems (CSP) capture a large variety of combinatorial
optimization problems that arise in practice. In the MAX k-CSP problem, the in-
put consists of a set of variables taking values over a domain(say {0,1}), and a set
of constraints with each acting on k of the variables. The objective is to find an
assignment of values to the variables that maximizes the number of constraints
satisfied. Several classic optimization problems like 3-SAT, Max Cut fall in to the
general framework of CSPs. For most CSPs of interest, the problem of finding
the optimal assignment turns out to be NP-hard. To cope with this intractability,
the focus shifts to approximation algorithms with provable guarantees. Specifi-
cally, an algorithm A is said to yield an « approximation to a CSP, if on every
instance I' of the CSP, the algorithm outputs an assignment that satisfies at
least o times as many constraints as the optimal assignment.
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Apart from its natural appeal, the study of the MAX k-CSP problem is inter-
esting for yet another reason. The best approximation ratio achievable for MAX
k-CSP equals the optimal soundness of a PCP verifier making at most & queries.
In fact, inapproximability results for MAX k-CSP have often been accompanied
by corresponding developments in analysis of linearity testing.

Over the boolean domain, the problem of MAX k-CSP has been studied ex-
tensively. For a boolean predicate P : {0,1}* — {0,1}, the MAX k-CSP (P)
problem is the special case of MAX k-CSP where all the constraints are of the
form P(lq,ls,...,1;) with each literal [; being either a variable or its negation.
For many natural boolean predicates P, approximation algorithms and match-
ing NP-hardness results are known for MAX k-CSP (P)[L1]. For the general MAX
k-CSP problem over boolean domain, the best known algorithm yields a ratio of
2( %) [3], while any ratio better than 2% /2* is known to be NP-hard to achieve
[5]. Further if one assumes the Unique Games Conjecture, then it is NP-hard to
approximate MAX k-CSP problem to a factor better than gf [19).

In this work, we study the approximability of the MAX k-CSP problem over
non-boolean domains, more specifically over {0,1,...,¢— 1} for some integer g,
obtaining both algorithmic and hardness results (under the UGC) with almost
matching approximation factors.

On the hardness side, we extend the techniques of [19] to obtain a UGC hard-
ness result when ¢ is a prime. More precisely, assuming the Unique Games Con-
jecture, we show that it is NP-hard to approximate the problem to a ratio greater
than ¢?k/q*. Except for constant factors depending on ¢, the algorithm and the
UGC hardness result have the same dependence on of the arity k. Independent
of this work, Austrin and Mossel [2] obtain a more general UGC hardness result
using entirely different techniques. Technically, our proof extends the Gowers
Uniformity based approach of Samorodnitsky and Trevisan [19] to correlations
on g-ary cubes instead of the binary cube. This is related to the detection of
multidimensional arithmetic progressions by a Gowers norm of appropriately
large degree. Along the way, we also make a simplification to [19] and avoid the
need to obtain a large cross-influence between two functions in a collection with
a substantial Uniformity norm; instead our proof works based on large influence
of just one function in the collection.

On the algorithmic side, we obtain a approximation algorithm that achieves
a ratio of C(q) - k/q¢* with C(q) = 2ﬂeq(1(171)6. As a subroutine, we design an al-
gorithm for maximizing a positive definite quadratic form with variables forced
to take values on the corners of the ¢g-dimensional simplex. This is a generaliza-
tion of an algorithm of Nesterov [16] for maximizing positive definite quadratic
form with variables forced to take {—1,1} values. Independent of this work,
Makarychev and Makarychev [15] brought to our notice a reduction from non-
boolean CSPs to the boolean case, which in conjunction with the CMM algo-
rithm [3] yields a better approximation ratio for the MAX k-CSP problem. Using
the reduction, one can deduce a ¢?(1 + o(1))k/q" factor UG hardness for MAX
k-CSP for arbitrary positive integers ¢, starting from our UG hardness result for
primes q.
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1.1 Related Work

The simplest algorithm for MAX k-CSP over boolean domain is to output a
random assignment to the variables, thus achieving an approximation ratio of
21k . The first improvement over this trivial algorithm, a ratio of 22k was obtained
by Trevisan [20]. Hast [9] proposed an approximation algorithm with a ratio
of Q(log’jﬁk), which was later improved to the current best known algorithm

achieving an approximation factor of £2( ;) [3].

On the hardness side, MAX k-CSP over the boolean domain was shown to be
NP-hard to approximate to a ratio greater than 2(22V* /2%) by Samorodnitsky
and Trevisan [I8]. The result involved an analysis of a graph-linearity test which
was simplified subsequently by Hastad and Wigderson [I3]. Later, using the
machinery of multi-layered PCP developed in [4], the inapproximability factor
was improved to O(2V2k/2%) in [5].

A predicate P is approximation resistant if the best optimal approximation
ratio for MAX k-CSP (P) is given by the random assignment. While no pred-
icate over 2 variables is approximation resistant, a predicate over 3 variables
is approximation resistant if and only if it is implied by the XOR of 3 vari-
ables [LTI21]. Almost all predicates on 4 variables were classified with respect to
approximation resistance in [10].

In recent years, several inapproximability results for MAX k-CSP problems
were obtained assuming the Unique Games Conjecture. Firstly, a tight inap-
proximability of © (2’1) was shown in [I9]. The proof relies on the analysis of
a hypergraph linearity test using the Gowers uniformity norms. Hastad showed
that if UGC is true, then as k increases, nearly every predicate P on k variables
is approximation resistant [12].

More recently, optimal inapproximability results have been shown for large
classes of CSPs assuming the Unique Games Conjecture. Under an additional
conjecture, optimal inapproximability results were obtained in [I] for all boolean
predicates over 2 variables. Subsequently, it was shown in [I7] that for every CSP
over an arbitrary finite domain, the best possible approximation ratio is equal
to the integrality gap of a well known Semidefinite program. Further the same
work also obtains an algorithm that achieves the best possible approximation
ratio assuming UGC. Although the results of [I7] apply to non-boolean domains,
they do not determine the value of the approximation factor explicitly, but only
show that it is equal to the integrality gap of an SDP. Further the algorithm
proposed in [I7] does not yield any approximation guarantee for MAX k-CSP
unconditionally. Thus neither the inapproximability nor the algorithmic results
of this work are subsumed by [L7].

Austrin and Mossel [2] obtain a sufficient condition for a predicate P to be
approximation resistant. Through this sufficiency condition, they obtain strong
UGC hardness results for MAX k-CSP problem over the domain {1,...,q} for
arbitrary k& and ¢. For the case when ¢ is a prime power, their results imply a
UGC hardness of kq(q — 1)/q". The hardness results in this work and [2] were
obtained independently and use entirely different techniques.
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1.2 Organization of the Paper

We begin with background on the Unique Games conjecture, Gowers norm, and
influence of variables in [Section 2. In [Section 3| we present a linearity test that
forms the core of the UGC based hardness reduction. We prove our inapproxima-
bility result (for the case when ¢ is a prime) by a reduction from Unique Games
in [Section 4l The proof uses a technical step bounding a certain expectation by
an appropriate Gowers norm; this step is proved in [Section 5. Finally, we state
the algorithmic result in[Secfion 6 deferring the details to the full version [6].

2 Preliminaries

In this section, we will set up notation, and review the notions of Gower’s uni-
formity, influences, noise operators and the Unique games conjecture. Hence-
forth, for a positive integer n, we use the notation [n] for the ring Z/(n) =
{0,1,...,n—1}.

2.1 Unique Games Conjecture

Definition 1. An instance of Unique Games represented as I' = (X UY, E, 11,
(R)), consists of a bipartite graph over node sets X,Y with the edges E between
them. Also part of the instance is a set of labels (R) = {1,..., R}, and a set of
permutations myy @ (R) — (R) for each edge e = (v,w) € E. An assignment A
of labels to vertices is said to satisfy an edge e = (v,w), if Tpw(A(V)) = A(w).
The objective is to find an assignment A of labels that satisfies the mazimum
number of edges.

For sake of convenience, we shall use the following stronger version of Unique
Games Conjecture which is equivalent to the original conjecture [14].

Conjecture 1. For all constants 6 > 0, there exists large enough constant R such
that given a bipartite unique games instance I' = (X UV, E, Il = {7, : (R) —
(R) : e € E}, (R)) with number of labels R, it is NP-hard to distinguish between
the following two cases:

— (1 — 6)-satisfiable instances: There exists an assignment A of labels such that
for 1 — ¢ fraction of vertices v € X, all the edges (v, w) are satisfied.

— Instances that are not ¢-satisfiable: No assignment satisfies more than a 6-
fraction of the edges E.

2.2 Gowers Uniformity Norm and Influence of Variables

We now recall the definition of the Gowers uniformity norm. For an integer d > 1
and a complex-valued function f : G — C defined on an abelian group G (whose
group operation we denote by +), the d’th uniformity norm Uy(f) is defined as

vin= = | ] d}f(wzyi) I d}f<x+zyi)

TYLY25¥d | gog icS SC{1,2,..., €S
[s| even |s| od
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where the expectation is taken over uniform and independent choices of x, yo, . . . ,
2
Yq—1 from the group G. Note that U(f) = (]E[f(m)]) .
x

We will be interested in the case when the group G is [¢]* for positive integers
q, R, with group addition being coordinate-wise addition modulo ¢. G is also
closed under coordinate-wise multiplication modulo ¢ by scalars in [¢], and thus
has a [¢]-module structure. For technical reasons, we will restrict attention to
the case when ¢ is prime and thus our groups will be vector spaces over the
field F, of ¢ elements. For a vector a € [g]*, we denote by ay,as,...,a its k
coordinates. We will use 1,0 to denote the all 1’s and all 0’s vectors respectively
(the dimension will be clear from the context). Further denote by e; the i** basis
vector with 1 in the i** coordinate and 0 in the remaining coordinates. As we shall
mainly be interested in functions over [¢g]® for a prime ¢, we make our further
definitions in this setting. Firstly, every function f : [¢]® — C has a Fourier
expansion given by f(z) = >_,c(yr faXa(x) where fo = e]l[i]ﬁ[f(x)xa(x)} and

x€[q]tt

Xo(z) = [, w*® for a ¢ root of unity w.

The central lemma in the hardness reduction relates a large Gowers norm
for a function f, to the existence of an influential coordinate. Towards this, we
define influence of a coordinate for a function over [g]®.

Definition 2. For a function f : [q] — C define the influence of the it" coor-
dinate as follows:
Inf;(f) = E[Var,, [f]] .

x

The following well known result relates influences to the Fourier spectrum of the
function.

Fact 1. For a function f : [q]* — C and a coordinate i € {1,2,..., R},
Wfy(f)= Y |fal*-
a;#0,a€[q] R
The following lemma is a restatement of Theorem 12 in [19].

Lemma 1. There exists an absolute constant C' such that, if f : [¢|™ — C is a
function satisfying |f(x)| <1 for every x then for every d > 1,

UU(f) < U(S) + 2% max T (f)

2.3 Noise Operator

Like many other UGC hardness results, one of the crucial ingredients of our
reduction will be a noise operator on functions over [g]*. We define the noise
operator T7_. formally below.

Definition 3. For(0 < ¢ < 1, define the operator Ty _. on functions f : [¢q|® — C
as:

Ticf(x) = ]E[f(x +1)]
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where each coordinate n; of n is 0 with probability 1 — € and a random element
from [q] with probability e. The Fourier expansion of Ti_.f is given by

Tlfsf(x) = Z (1 - E)IQ‘faXa(x)

aclq]?

Here |a| denotes the number of non-zero coordinates of «. Due to space con-
straints, we defer the proof of the following lemma(see [6]).

Lemma 2. If a function f : [q]F — C satisfies |f(x)] < 1 for all z, and g =
Tl_ff then ZzR;l Inf@(g) < 2eln 1}(1—6)

3 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX k-CSP is identical to the best
soundness of a PC'P verifier for N P that makes k queries. This follows easily by
associating the proof locations to CSP variables, and the tests of the verifier to
k-ary constraints on the locations. In this light, it is natural that the hardness
results of [I8IBIIY] are all associated with a linearity test with a strong soundness.
The hardness result in this work is obtained by extending the techniques of [19]
from binary to g-ary domains. In this section, we describe the test of [I9] and
outline the extension to it.

For the sake of simplicity, let us consider the case when k = 2¢ — 1 for some
d. In [I9], the authors propose the following linearity test for functions F :
{0,1}" — {0,1}.

Complete Hypergraph Test (F, d)

— Pick 21, 29,...,24 € {0,1}"™ uniformly at random.
— Accept if for each S C [r], F(3_ ;cq®i) = D icq F(xi).

The test reads the value of the function F at k = 2% — 1 points of a random
subspace(spanned by 1, ..., x4) and checks that F agrees with a linear function
on the subspace. Note that a random function F would pass the test with prob-
ability 29/2%, since there are 2¢ different satisfying assignments to the k binary
values queried by the verifier. The following result is a special case of a more
general result by Samorodnitsky and Trevisan [19].

Theorem 1. [I9] If a function F : {0,1}" — {0,1} passes the Complete Hy-
pergraph Test with probability greater than 2¢/2F + ~, then the function f(x) =
(—=1)F®) has a large d" Gowers norm. Formally, U(f) > C(v,k) for some
fized function C of v, k.

Towards extending the result to the domain [¢], we propose a different linearity
test. Again for convenience, let us assume k = ¢? for some d. Given a function
F : [q]" — [q], the test proceeds as follows:
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Affine Subspace Test (F,d)

— Pick x,y1,¥2,-..,¥d € [¢J" uniformly at random.

— Accept if for each a C [¢]¢,

F(x+§:aiyi) = (1 —Zai)F(x) +zd:aiF(X+Yi)

i=1

Essentially, the test queries the values along a randomly chosen affine sub-
space, and tests if the function F' agrees with an affine function on the subspace.
Let w denote a ¢'th root of unity. From [Theorem 4] presented in the
following result can be shown:

Theorem 2. If a function F : [q]" — [q] passes the Affine Subspace Test with
probability greater than q?t'/q¢* + ~, then for some q’th root of unity w # 1,
the function f(x) = w"® has a large dg’th Gowers norm . Formally, U%(f) >
C(v,k) for some fized function C of v, k.

The above result follows easily from [Theorem 4] using techniques of [19], and the
proof is ommited here. The Affine Subspace Test forms the core of the UGC
based hardness reduction presented in [Section 4l

4 Hardness Reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX k-CSP
over a domain of size ¢ when ¢ is prime for every k& > 2. Let d be such that
%1 +1 < k < ¢ Let us consider the elements of [g] to have a natural order
defined by 0 < 1 < ... < ¢ — 1. This extends to a lexicographic ordering on
vectors in [g]?. Denote by [g]Z, the set consisting of the k lexicographically
smallest vectors in [¢]?. We shall identify the set {1, ..., k} with set of vectors in
[q]2,. Specifically, we shall use {1,...,k} and vectors in [g]%, interchangeably
as indices to the same set of variables. For a vector x € [¢]f and a permutation
7 of {1,..., R}, define m(z) € [g]* defined by (7(x)); = @)

Let I' = (X UY,E, Il = {r. : (R) — (R)le € E},(R)) be a bipartite
unique games instance. Towards constructing a k-CSP instance A from I', we
shall introduce a long code for each vertex in ). Specifically, the set of variables
for the k-CSP A is indexed by ) x [¢]®. Thus a solution to A consists of a set of
functions F, : [¢]® — [q], one for each w € Y.

Similar to several other long code based hardness results, we shall assume
that the long codes are folded. More precisely, we shall use folding to force the
functions F,, to satisfy F,(x + 1) = F(x) + 1 for all x € [¢]®. The k-ary con-
straints in the instance A are specified by the following verifier. The verifier uses
an additional parameter ¢ that governs the level of noise in the noise operator.
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— Pick a random vertex v € X. Pick k vertices {wa|a € [¢]2,} from N(v) C
Y uniformly at random independently. Let 7, denote the permutation
on the edge (v, wa).

— Sample x,y1,y2,-..,yd € [g]"* uniformly at random. Sample vectors
Na € [q)® for each a € [¢]4, from the following distribution: With prob-
ability 1 — ¢, (7a); = 0 and with the remaining probability, (7a); is a
uniformly random element from [q].

— Query F,, (Wa(x + >, a5y5 + na)) for each a € [g]¢,. Accept if the

R

following equality holds for each a € [g]Z,.

d d
Fu, (Wa(x + Z a;y; + na)) = (1 - Z %)Fwo (WO(X + 770))
j=1 j=1
d
+Ya;Fu, (Wej (x+y;+ nej))
j=1

Theorem 3. For all primes q, positive integers d, k satisfying ¢@~' < k < ¢%,
and every v > 0, there exists small enough 6, > 0 such that

— COMPLETENESS: If I' is a (1 —6)-satisfiable instance of Unique Games, then
there is an assignment to A that satisfies the verifier’s tests with probability
at least (1 — )

— SOUNDNESS: If I' is not 6-satisfiable, then no assignment to A satisfies the

verifier’s tests with probability more than qqk + 7.

Proof. We begin with the completeness claim, which is straightforward.

Completeness. There exists labelings to the Unique Game instance I' such
that for 1 — 6 fraction of the vertices v € X all the edges (v, w) are satisfied. Let
A: X UY — (R) denote one such labelling. Define an assignment to the k-CSP
instance by Fy,(x) = 2 4(y) for all w € Y.

With probability at least (1 — §), the verifier picks a vertex v € X such
that the assignment A satisfies all the edges (v,wa). In this case for each a,
Ta(A(v)) = A(wa). Let us denote A(v) = [. By definition of the functions F,,,
we get Fu, (Ta(2)) = (Ta(2)) A(wa) = Trot(A(wa)) = @ for all z € [q]. With
probability at least (1 — ¢)¥, each of the vectors 7, have their I component
equal to zero, i.e (a); = 0. In this case, it is easy to check that all the constraints
are satisfied. In conclusion, the verifier accepts the assignment with probability
at least (1 — 8)(1 — ¢)*. For small enough 6, e, this quantity is at least (1 — 7).
Soundness. Suppose there is an assignment given by functions F, for w € )
that the verifier accepts with probability greater than qzzl + .

Let 21, 22, ..., 2zx be random variables denoting the k values read by the veri-
fier. Thus 21, ..., 2, take values in [¢]. Let P : [¢]* — {0,1} denote the predicate
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on k variables that represents the acceptance criterion of the verifier. Essentially,
the value of the predicate P(z1,...,2x) is 1 if and only if z1,..., z; values are
consistent with some affine function. By definition,

d+1

q
g T

Pr[ Verifier Accepts |= E = E E E [P(Zh . -,Zk)} >

VEX wa€N (V) X,¥1,--,Yd Na q

Let w denote a ¢*" root of unity. The Fourier expansion of the function P : [q]F —
C is given by P(z1,...,25) = Zae[q]k wXa (21, .-y 2K) where xa(21,...,25) =
H’-czl w¥% and Py = K [P(21,-..,2k)Xa(21,- - -, zk)]. Notice that for o = 0,

1
Zlyees Rk

we get Xa(z1,...,25) = 1. Further,

; d+1
Py = Pr[ random assignment to z1, 29, . .., 2, satisfies P] = 4 .
q
Substituting the Fourier expansion of P, we get
d+
Pr[ Verifier Accepts | =1 i + Z Py E E E [Xa(zlv e Zk)
q veX waeN( ) X:¥15--,¥d Na

Recall that the probability of acceptance is greater than QZZI +7. Further | P, | <
1 for all a € [g]*. Thus there exists a # 0 such that,

E E E E[xa(zl,...,z;c)]b 1
VEX wa€N (V) X,¥15--:¥d Na q
For each w € Y,t € [q], define the function POl [¢]¢ — C as £ (x) =

w!f» (@) For convenience we shall index the vector a with the set [g]2, instead

of {1,...,k}. In this notation,

d
E E E E [ H fl(f:*‘)(wa(x-i-ZaiYi +77a))” 2= Jk

VEX wa €N (V) X,¥15--,¥d Na °
B aclqlZ, =1

Let gg ). [¢]? — C denote the smoothened version of function f&t). Specifically,
let gg) () = Ti- 8f(t)( ) = E, (t)(x + n)] where n is generated from e-noise
distribution. Since each 7, is independently chosen, we can rewrite the above
expression,

d
E { H gl aa) Ta(x + Zaiyi))} ’ > ;; .
»Yd =1

vEX wa €N (v) X;)’l’
ac(q]e,

For each v € X,t € [q], define the function g [¢]¢ — C as gqgt)(x) =
Euen) [gz(f) (mow(2))]- As the vertices wa are chosen independent of each other,

d
E { IT o& X"‘Zai}’i)H > l :
Y i=1 4

veEX X,yl’
ae[q]d,
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d

As a # 0, there exists an index b € [¢]2

such that ayp, # 0. For convenience let
dq

2
us denote ¢ = ayp,. Define k = 2~ (ng) where C' is the absolute constant

defined in [Cemma 1l

For each v € X, define the set of labels L(v) = {i € (R) : Inf;(¢5) > k}.
Similarly for each w € Y, let L(w) = {i € (R) : Inf;(¢5) > x/2}. Obtain
a labelling A to the Unique Games instance I' as follows : For each vertex
u € XUY, if L(u) # ¢ then assign a randomly chosen label from L(u), else
assign a uniformly random label from (R).

The functions g£5 ) are given by gq(,f ) = T . &C) where f&c) is bounded in ab-
solute value by 1. By[Lemma 2, therefore, the sum of its influences is bounded by
eln 1/1(175). Consequently, for all w € Y the size of the label set L(w) is bounded

by ) Applying a similar argument to v € X, |L(v)| <

2 1
relnl/(1—e kelnl/(1—g)"

For at least y/2¢"* fraction of vertices v € X we have,

d
E { H g,(f‘*‘)(x—kZaiyi)H = 221/'“

X3 ¥Y1;5--¥d X
ae[‘]]ik i=1

We shall refer to these vertices as good vertices. Fix a good vertex v.

Observe that for each u € X U )Y the functions gq(f) satisfy \gz(f)(x)| < 1 for
all z. Now we shall apply Mheorem 4 to conclude that the functions g have
a large Gowers norm. Specifically, consider the collection of functions given by
fa=g\* forac [q]2,, and fa =1 for all a ¢ [¢]2,. From [[heorem 4], we get

da( (cn) v 244
1 l q Qa > .

244
In particular, this implies qu(gf)c)) > (23k) . Now we shall use [Lemma 1] to
conclude that the function g, has influential coordinates. Towards this, observe
that the functions fff ) satisfy fg)(x +1) = l(f)(m) -wt due to folding. Thus for

all t # 0 and all w € Y, E,[f{ (z)] = 0. Specifically for ¢ # 0,

U6 = (Elo@N) = (B BEFO@+m)]) =0

x weN(v) N x
Hence it follows fromw that there exists influential coordinates 7 with
2
Infi(gq()c)) > Z*Cd‘I(ng) = k. In other words, L(v) is non-empty. Observe

that, due to convexity of influences,

Infy(¢f?) =Inf;( E [¢) < E Infr,0)([98(2)]) -
weN (v) weN (v)

If the coordinate ¢ has influence at least x on gf)c)7 then the coordinate m,.,,(7) has

an influence of at least x/2 for at least x/2 fraction of neighbors w € N(v). The
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edge 7y, 18 satisfied if 4 is assigned to v, and 7y, (4) is assigned to w. This event
happens with probability at least |L(u)‘1‘L(U)| > (exIn1/(1—¢))?/2 for at least
#/2 fraction of the neighbors w € N(v). As there are at least (7/2¢") fraction
of good vertices v, the assignment satisfies at least (7/2¢")(exIn1/(1 —¢))?k/4
fraction of the unique games constraints. By choosing 6 smaller than this fraction,
the proof is complete.

Since each test performed by the verifier involve k variables, by the standard
connection between hardness of MAX k-CSP and k-query PCP verifiers, we get
the following hardness result conditioned on the UGC.

Corollary 1. Assuming the Unique Games conjecture, for every prime q, it is
NP-hard to approximate MAX k-CSP over domain size q within a factor that is
greater than ¢*k/q".

Using the reduction of [15], the above UG hardness result can be extended from
primes to arbitrary composite number q.

Corollary 2. [14] Assuming the Unique Games conjecture, for every positive
integer q, it is NP-hard to approximate MAX k-CSP over domain size q within
a factor that is greater than ¢*k(1 + o(1))/q".

5 Gowers Norm and Multidimensional Arithmetic
Progressions

The following theorem forms a crucial ingredient in the soundness analysis in

the proof of[Theorem J.

Theorem 4. Let ¢ > 2 be a prime and G be a Fy-vector space. Then for all
positive integers £ < q and d, and all collections {fa : G — Clacge of e
functions satisfying |fa(z)| < 1 for every x € G and a € [(]?, the following
holds:

. 1 2df
E H fa(@ + a1y1 + azys + -+ + aqya) | | < min (U¥(fa)) /
T,Y1,Y2,5--Yd ae[(]d
ac[(]4
(2)

The proof of the above theorem is via double induction on d,f. We first prove
the theorem for the one-dimensional case, i.e., d = 1 and every £, 1 < / < g
(Cemma ). This will be done through induction on ¢. We will then prove the
result for arbitrary d by induction on d.

Remark 1. Green and Tao, in their work [§] on configurations in the primes,
isolate and define a property of a system of linear forms that ensures that the
degree t Gowers norm is sufficient to analyze patterns corresponding to those lin-
ear forms, and called this property complezity (see Definition 1.5 in [§]). Gowers
and Wolf [7] later coined the term Cauchy-Schwartz (CS) complexity to refer to
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this notion of complexity. For example, the CS-complexity of the ¢ linear forms
x, x4y, x+2y,...,x+(¢— 1)y corresponding to a ¢g-term arithmetic progression
equals ¢ — 2, and the U9~! norm suffices to analyze them. It can similarly be
shown that the CS-complexity of the d-dimensional arithmetic progression (with
q? linear forms as in (g)) is at most d(q — 1) — 1. In our application, we need a
"multi-function” version of these statements, since we have a different function
fa for each linear form x + a-y. We therefore work out a self-contained proof of
[Theorem 4]in this setting.

Towards proving we will need the following lemma whose proof is
presented in the full version[f].

Lemma 3. Let ¢ > 2 be prime and ¢, 1 < £ < ¢, be an integer, and G be a

Fg-vector space. Let {hq : G — C}ocra be a collection of £ functions such that
q [

|ha(z)| < 1 for all a € [{] and x € G. Then

1
E | [] hele+am)|| < mi[rél] (U (ha)) . (3)
T,Y1 ae
a€ll]

Proof of Fix an arbitrary ¢, 1 < ¢ < gq. We will prove the result
by induction on d. The base case d = 1 is the content of S0 it remains
to consider the case d > 1.

By a change of variables, it suffices to upper bound the LHS of (B) by

1/24¢

(Udé(f(g,1)1)> , and this is what we will prove. For a € [¢], and y2, 3, ...,
ya € G, define the function

gy (x) = H f(mb)(x +boya + -+ baya) - (4)
b:(b2,b3,...,bd)€[€]d_l

The LHS of (B), raised to the power 2%, equals

gdt v o(d=1)¢
E E {Hgé’f """ yd(m+ay1)} <| E |E guz Ve (1 + ayy)
vor v man Loy varva |2 e
old—1)e
<| B OUgYv) (using Lemma 3)
Y2,esYa
Q(d=1)

Defining the function
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for every b € [£]9! and z1,..., 2 € G, the last expression equals
o(d—1)¢
E E { 1T Hye (x+b2y2+"'+bdyd):|
o L (b, ba) e[
which is at most
o(d—1)¢

E E { 1T Hybe (x+b2y2+"'+bdyd):|

Zlyees Rl z,Y2,

Y oba,.o ba) €[04
(6)

By the induction hypothesis, (@) is at most . E z{ yld=1)t (H(Zg;”l')’fz) } Re-

calling the definition of Hy"* from (H), the above expectation equals

E E H f(Z—l)l(I-l-ZZi-l-ZZ;)

21,020 @ {z}} : :
J SC{1,2,...,£} S T
1<i<(d—1)e | 7C{1,2,...,(d—1)¢} € €

which clearly equals U‘M(f(g_l)l).

6 Approximation Algorithm for MAX k-CSP

On the algorithmic side, we show the following result:

Theorem 5. There is a polynomial time algorithm that computes a 27req(%]71)6

qkk factor approximation for the MAX k-CSP problem over a domain of size q.
The algorithm proceeds along the lines of [3], by formulating MAX k-CSP as a
quadratic program, solving a SDP relaxation and rounding the resulting solution.
The variables in the quadratic program are constrained to the vertices of the ¢-
dimensional simplex. Hence, as a subroutine, we obtain an efficient procedure
to optimize positive definite quadratic forms with the variables forced to take
values on the g-dimensional simplex. Let A, denote the g-dimensional simplex,
and let Vert(4,) denote the vertices of the simplex. Formally,

Theorem 6. Let A = (a; )(l)) be a positive definite matriz where k,l € [q] and
1 < 4,5 < n. For the quadmtzc program I, there exists an efficient algorithm
that finds an assignment whose value is at least W(q31)4 of the optimum.

QuadraticProgram I
Maximize Za(k Oy (l)

Subject to X; = (x(O),xQ), . 71'2(-(1_1)) e Vert(4,) 1<i<n

K2 K2

The details of the algorithm are prebented in the full version[6]. It has been
pointed out to us that a §2(¢?k/q")-approximation for MAX k-CSP can be ob-
tained by reducing from the non-boolean to the boolean case [15].
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Abstract. We consider the deadline problem and budget problem of the
nonlinear time-cost tradeoff project scheduling model in aseries-parallel ac-
tivity network. We develop fully polynomial time approximation schemes
for both problems using K-approximation sets and functions, together with
series and parallel reductions.
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1 Introduction

Project scheduling with time-cost tradeoff decisions plays a significant role in
project management. In particular, discrete time-cost tradeoff models with dead-
line or budget constraints are important tools for project managers to perform
time planning and budgeting for their projects. As a result, efficient and effective
solution procedures for such models are highly attractive to those practitioners.
Unfortunately, these models are computationally intractable, and constructing
near-optimal polynomial-time heuristics for them is highly challenging. In this
paper, we develop fully polynomial time approximation schemes (FPTASs) for
an important class of time-cost tradeoff problems in which the underlying project
network is series-parallel (see Section M for a discussion of how our results can
be applied to problems with “near-series-parallel” networks).

Time-cost tradeoff problems in series-parallel networks have applications not
only in project management. Rothfarb et al. [I1] and Frank et al. [5] have applied
the time-cost tradeoff model to natural-gas pipeline system design and central-
ized computer network design, respectively. In their applications, the underlying
network is a tree network, which is a special kind of series-parallel network, and
they proposed an (exponential time) enumeration method for their problems.

Consider the following time-cost tradeoff model for project scheduling: There
is a (directed acyclic) project network of nm activities in activity-on-arc rep-
resentation. Associated with each activity ¢ are two nonincreasing functions

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 91 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. An activity time-cost tradeoff example

fi i Ty — ZT and g; : C; — Z7T, where fi(t;) is the cost incurred when the
activity time is ¢;, g;(c¢;) is the activity time when an amount ¢; of monetary
resource is spent on the activity, 7; = {t,,t,+1,...,t;} C ZT is the set of all
possible time duration of activity i, C; = {¢;,¢;+1,...,¢&} C Z* is the set of
all possible cost consumption of activity i, and Z% is the set of all nonnegative
integers. For example, if f; is the function depicted in Figure[L(a)] then g; is the
function depicted in Figure Here, we assume that all activity times and
costs are integer-valued.

Denote the activities as 1,2,...,n. Let ¢(t1,t2,...,t,) denote the total du-
ration of the project (i.e., the length of the longest path in the network) when
the time duration of activity ¢ is ¢; for i = 1,2, ..., n. We are interested in two
different variants of the problem: (i) given a deadline d, determine ¢y, to, ..., &,
so that ¢(t1, t2, . ,tn) S d and that fl(tl) + fz(tg) + -+ fn(tn) is minimized,
and (ii) given a budget b, determine c1,ca,..., ¢, so that ¢ +ca+ -+ ¢, <D
and that ¢(g1(c1),g2(¢c2), ..., gn(cy)) is minimized. We refer to the first problem
as the deadline problem and the second problem as the budget problem. In the
deadline problem, we assume, for simplicity, that for each activity ¢, function
fi can be evaluated in constant time (i.e., for any given ¢t € T;, f;(t) can be
determined in constant time). In the budget problem, we assume, for simplicity,
that for each activity 7, function g; can be evaluated in constant time. However,
our FPTASs remain valid as long as f; and g; can be evaluated in an amount of
time which is polynomial in the input size of the problems.

Note that in our model the time-cost tradeoff function of an activity can be any
nonincreasing function (with nonnegative integer domain and range). Thus, our
model is a generalization of the traditional “discrete” time-cost tradeoff model,
which is defined in such a way that every activity ¢ has m(:) alternatives, of
which alternative j requires t(i,j) € Z* time units and ¢(i,j) € ZT cost units
(j = 1,2,...,m(i)). De et al. [3] have shown that both the deadline problem
and the budget problem are NP-hard in the strong sense for the discrete time-
cost tradeoff model when the underlying project network is a general directed
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acyclic network. This implies that both the deadline and budget problems of
our model are strongly NP-hard as well. Thus, it is unlikely that there exists
an FPTAS for either problem. In fact, developing polynomial-time approxima-
tion algorithms for the discrete time-cost tradeoff model is a challenging task.
Skutella [T2] has developed a polynomial-time algorithm for the budget problem
with performance guarantee O(log!), where [ is the ratio of the maximum dura-
tion and minimum nonzero duration of any activity. However, as pointed out by
Deineko and Woeginger [4], unless P=NP, the budget problem does not have a
polynomial-time approximation algorithm with performance guarantee strictly
less than g

When the underlying network is series-parallel, the deadline problem and the
budget problem become “more tractable.” Although the deadline and budget
problems in a series-parallel project network remain NP-hard in the ordinary
sense [3], they can be solved in pseudo-polynomial time by dynamic program-
ming [39]. However, to the best of our knowledge, no known polynomial-time
approximation scheme has been developed for these problems. Note that a series-
parallel network can be reduced to a single-arc network efficiently via a sequence
of simple series and parallel reduction operations [I3]. In what follows, we will
make use of series and parallel reductions, together with the K-approximation
sets and functions introduced by Halman et al. [7], to develop FPTASs for the
deadline and budget problems in series-parallel networks.

To simplify the discussion, we only consider the case where the problem is
feasible. Note that it is easy to detect feasibility of the problem. The budget
problem is feasible if and only if >, ¢i(¢;) < b. The feasibility of the deadline
problem can be detected by setting all activity times to their lower limits, solving
the problem by the standard critical path method, and comparing the resulting
project completion time with the deadline d.

To simplify our analysis, we expand the domains of functions f; and g; to
{0,1,...,U} for each activity 4, where U = max;{max{t;,¢;}}. We can do so
by defining f;(t) = M for t = 0,1,...,¢, — 1, defining f;(¢t) = fi(;) for t =
t; + 1,t; +2,...,U, defining g;(¢c) = M for ¢ = 0,1,...,¢; — 1, and defining
gi(c) = gi(¢;) for c=¢; +1,¢;,+2,...,U, where M is a large integer. (Note: It
suffices to set M = max{)>_, fi(t;),>,; gi(c;)} +1.)

Throughout the paper, all logarithms are base 2 unless otherwise stated.

2 K-Approximation Sets and Functions

Halman et al. [7] have introduced K-approximation sets and functions, and used
them to develop an FPTAS for a stochastic inventory control problem. Halman
et al. [6] have applied these tools to develop a general framework for constructing
FPTASSs for stochastic dynamic programs. In this section we provide an overview
of K-approximation sets and functions. In the next section we will use them to
construct FPTASs for our time-cost tradeoff problems. To simplify the discus-
sion, we modify Halman et al.’s definition of the K-approximation function by
restricting it to integer-valued functions.
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Let K > 1, and let ¢ : {0,1,...,U} — Z* be an arbitrary function. We say
that ¢ : {0,1,...,U} — Z* is a K -approzimation function of  if (z) < i(z) <
Ki(z) for all z =0,1,...,U. The following property of K-approximation func-
tions is extracted from Proposition 4.1 of [6], which provides a set of general
computational rules of K-approximation functions. Its validity follows directly
from the definition of the K-approximation function.

Property 1. For i =1,2,let K; > 1,let ¢; : {0,1,...,U} — ZT be an arbitrary
function, let ¢; : {0,1,...,U} — Z* be a K;-approximation function of v;, and
let o, 3 € ZT. The following properties hold:

Summation of approximation: aaby + By is a max{ K1, Ko }-approximation func-
tion of apy + Bs.

Approximation of approximation: If 1o = 1; then 1), is a K1 Ko-approximation
function of ;.

Let K > 1. Let » : {0,1,...,U} — Z7T be a nonincreasing function and
S = (ki1,ke,..., k) be an ordered subset of {0,1,...,U}, where 0 = k; < ko <
-+ <k, = U. We say that S is a K-approzimation set of ¢ if p(k;) < Ko(kjt1)
for each j = 1,2,...,r — 1 that satisfies k;41 — k; > 1. (The term used in [6]
is weak K-approzimation set of ¢.) Given ¢, there exists a K-approximation
set of ¢ with cardinality O(logj U), where U is any constant upper bound
of maxy—o,1,.. v{e(z)}. Furthermore, this set can be constructed in O((l +
7(¢))logg UlogU) time, where 7(¢) is the amount of time required to eval-
uate ¢ (see Lemma 3.1 of [@]).

Given ¢ and a K-approximation set S = (k1, ke, ..., k) of p, a K-approxima-
tion function of ¢ can be obtained easily as follows (Definition 3.4 of [6]): Define
¢:{0,1,...,U} — Z* such that

o(x) = @(k;) for kj <x <kjpq and j=1,2,...,r—1,

and that
o(kr) = (k).

Note that p(x) < ¢(z) < Kp(z) for & = 0,1,...,U. Therefore, ¢ is a nonin-
creasing K-approximation function of ¢. We say that ¢ is the K-approzimation
function of ¢ corresponding to S.

3 Series and Parallel Reductions

Two-terminal edge series-parallel networks (or simply “series-parallel networks”)
are defined recursively as follows [I3]: (i) A directed network consisting of two
vertices (i.e., a “source” and a “sink”) joined by a single arc is series-parallel.
(ii) If two directed networks G; and Gy are series-parallel, then so are the
networks constructed by each of the following operations: (a) Two-terminal
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(a) series reduction

u v u v
T T

o [ = *——o
S~ 7 max{s ¢}

(b) parallel reduction

Fig. 2. Series and parallel reductions

series composition: Identify the sink of Gy with the source of Gs. (b) Two-
terminal parallel composition: Identify the source of G; with the source of G»
and the sink of G; with the sink of Gs.

As mentioned in Section[I], a series-parallel network can be reduced to a single-
arc network via a sequence of series and parallel reduction operations. A series
reduction is an operation that replaces two series arcs by a single arc, while a
parallel reduction is an operation that replaces two parallel arcs by a single arc
(see Figure 2). In a project network, a reduction of two series activities with
time duration ¢ and t” will result in a single activity with time duration ¢’ +¢",
while a reduction of two parallel activities with time duration ¢’ and ¢ will result
in a single activity with time duration max{t’,¢"’}. For example, given a series-
parallel activity network depicted in Figure 3(a), we can perform a sequence
of series/parallel reductions as shown in Figure 3(b). The resulting network
consists of a single activity with duration 20, which is equal to the minimum
project completion time of the original activity network. Thus, for a given series-
parallel project network of n activities, it takes only n—1 series/parallel reduction
operations to reduce it to a single-activity network. However, when there are
time-cost tradeoff decisions for the activities, the integration of the two time-
cost tradeoff functions during a series/parallel reduction operation becomes a
challenge if we want to perform the computation efficiently. In the following
subsections, we explain how to apply series and parallel reductions, together
with K-approximation sets and functions, to develop FPTASs for the deadline
and budget problems.

Note that series-parallel graphs have tree-width 2 (see [10], where “tree-width”
was first introduced). It is known that many optimization problems on low
tree-width graphs admit dynamic programs, which often lead to efficient ex-
act/approximation algorithms that are unlikely to exist if the graphs were gen-
eral [I]. Our paper goes along this line of research.

3.1 The Deadline Problem

For a given error tolerance e € (0, 1], our approximation algorithm for the dead-
line problem can be described as follows:
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(a) Given activity network
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(b) Series and parallel reductions

Fig. 3. An example
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Step 1: Let K =1+ ; .

Step 2: For each activity 7, obtain a K-approximation set S; of f;, and obtain
the K-approximation function fi of f; corresponding to .S;.

Step 3: Select any pair of series or parallel activities i1 and is.

Case (a): If i and iy are series activities, then perform a series reduction to
replace these two activities by an activity 7. Obtain a K-approximation
set S; of f,;, where

filt) = min )+ fut=}) )

t/€{0,1,....t}N(Ss; U{t—= | €S,

Obtain the K-approximation function f, of f; corresponding to S; (i.e.,
obtain and store the values of {fi(t) | t € S;} in an array arranged in
ascending order of t).

Case (b): If iy and i» are parallel activities, then perform a parallel
reduction to replace these two activities by an activity i. Obtain a
K-approximation set S; of f;, where

filt) = fir (8) + fir (2)- (2)

Obtain the K-approximation function f; of f; corresponding to S;.
Step 4: If the project network contains only one activity i, then the approxi-
mated solution value is given by f;,(d). Otherwise, return to Step 3.

We first discuss Case (a) of Step 3. Suppose that we allocate ¢ time units to a
pair of series activities i1 (along arc « — v) and iy (along arc v — w); that is, we
allow these two activities to spend no more than a total of ¢ time units. Then,
the merged activity ¢ (along with merged arc u — w, as shown in Figure 2(a)),
which has a duration of ¢, will incur a cost of

filt) =, min {F () + fult = 1)), (3)

where f;, (') and fi,(t — t') are the costs of the original activities ¢; and iz if
they are allocated ' and ¢ —t’ time units, respectively. Suppose we do not know
the exact time-cost tradeoff functions f;, and f;, of these two activities, but
instead we have: (i) a nonincreasing K *~!-approximation function f;, of f;, and a
nonincreasing K *~!-approximation function f;, of f;,, where k and ¢ are positive
integers, and (ii) a K-approximation set S;, of fij and the K-approximation
function fij of fij corresponding to S;; for j = 1,2. Then, we obtain fi using
equation (]). We first show that f; is a nonincreasing function.

Property 2. f; defined in () is a nonincreasing function.

Proof: Consider any t € {0,1,...,U—1}. Then f;(t) = f;, (t*) + fi,(t — t*) for
some t* € {0,1,...,t}N(S;; U{t—z |z € Si,}). We have t* € S;, ort—t* € S,
(or both). If t* € S;,, then t* € {0,1,...,¢6,t+1}N(S;, U{t+1—z |z € 5, }),
which implies that
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Ift—t* € S,,, thent*+1 € {t+1—x |z € S;, } C{0,1,....t, 41 }N(S;, U{t+1—z |
x € S;,}), which implies that

filt+1) < fi 0"+ 1) + fia (0 =) < fur (1) + fuu(t = 17) = filt),
Therefore, f; is nonincreasing. a
The following property is modified from Theorem 4.1 of [G].

Property 3. Let f; and f; be the functions defined in (F) and (), respectively.
Then, f; is a K™k approximation function of f;.

Proof: Consider any fixed ¢t € {0,1,...,U}. Let

t" =arg min {le )+ fin(t =)}
(with ties broken arbitrarily). Let

t** = arg min {Ffi, (@) + it — 1)}

t'€{0,1,...,t}N(S;; U{t—x | z€Siy })

(with ties broken arbitrarily). We have

Filt) = fur () 4 fia (0 =17) = fir (8) 4 fin (0=177) = i, (%) + fir (t—17) = [i(t).

(4)
Because f;, is the K-approximation function of f;, corresponding to S, , there
exists o € Sy, such that to <t* and f;, (to) = fi, (t*) This implies that f;, (to) <
K.]Fil(t*) < kail(t*) Note that fw(t - tO) < flz(t - t*) < Kﬁé(t - t*) <
K*fi,(t — t*). Thus,

sz( ) = fi1(t**) + fiQ(t - t**) f
<ka11(t*)+K€fl2(t_ )

( ) + fiz(t - tO)
<K max{k),@} fz(t) (5)

Combining (@) and (@) yields the desired result. O

In Case (a) of Step 3, S; is a K-approximation set of f;. Due to Property [, S;
is well defined. Function f; is the (nonincreasing) K-approximation function of
fi corresponding to S;. By approximation of approximation (Property [II), fi is
a nonincreasing K™{%¢}+1_approximation function of f;. The amount of time
required to evaluate f;(t) for each t is

T(ﬁ) = O((lslll + |512|)(T(fl1) + T(fw)))
Note that -
|S'Ll| = O(logK U)v
i, = O(logg U),

and

7(fi,) = O(log i, |)
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for j = 1,2 (because the values of {fij t) |t e Sij} are stored in an array
arranged in ascending order of ¢, for any t = 0,1,..., U, it takes only O(log|S;,|)
time to search for the value of fij (t)). Thus, T(fl) < O(logy Uloglogy U), and
therefore the time required for constructing S; is O((1+ 7(fi)) logx UlogU) <
O(log? Ulog U loglogy U).

Next, we discuss Case (b) of Step 3. Suppose that we allocate ¢ time units to
a pair of parallel activities 71 and i5; that is, we allow each of these two activities
to spend no more than ¢ time units. Then, the merged activity, which has a
maximum duration of ¢, will incur a cost of

filt) = fi, () + fir (1), (6)

where f;,(t) and f;,(t) are the costs of the original activities i1 and ia, respec-
tively. Suppose we do not know the exact time-cost tradeoff functions f;; and
fi,, but instead we have: (i) a nonincreasing K*~!-approximation function f;,
of f;, and a nonincreasing K*~!-approximation function f;, of fi, where k
and £ are positive integers, and (ii) a K-approximation set S;, of f” and the
K-approximation function ﬁ7 of ﬁ7 corresponding to S;; for j = 1,2. Then, fil
is a K*-approximation function of f;,, and fiz is a K‘-approximation function
of flé .

By summation of approximation (Property), fi defined in @) isa K max{h,C}
approximation function of f;. Clearly, fi is nonincreasing. Let S; be a K-approx-
imation set of f;, and fl be the (nonincreasing) K-approximation function of f;
corresponding to S;. By approximation of approximation (Property [I), fi is
a Kmax{k0+1_anproximation function of f;. The amount of time required to
evaluate f; is

7(fi) = O(7(fi,) + 7(fi,)) = O(log|Si, | + log | S, |) < O(loglog U).

The amount of time required to construct S; is O ((1+7(f;)) logy Ulog U), which
is dominated by the running time for constructing S; in the series reduction case.

Let f*(d) denote the optimal total cost of the project for a given deadline
d. We now analyze how close f;,(d) is to f*(d). Note that after performing r
series/parallel reduction operations (0 < r < n—1), the project network has n—r
activities, namely 1,49, ..., %,—,. Associated with each activity ¢; is a function
fij, which is a K% -approximation function of fi; for some positive integer ;.
We define Z;:lr B; as the approzimation level of this project.

Before performing any series/parallel reduction, the project has an approxi-
mation level n. Since max{k, £} +1 < k + ¢, neither a series reduction operation
nor a parallel reduction operation will increase the approximation level of the
project. Hence, at the end of the solution procedure, the approximation level of
the project is at most n, which implies that fio is a K™-approximation of f*.
Recall that K =14 . Because (14, )" <1+ ¢, we conclude that fio(d) is a
(1 + e)-approximation solution to the deadline problem.

Finally, we analyze the running time of the approximation algorithm. Step 2
obtains a K-approximation set and function for each activity. The running
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time of this step is dominated by that of the series/parallel reduction opera-
tions in Step 3. The construction of S; in each series/parallel reduction takes
O(log% Ulog U loglog, U) time. Thus, the running time of the entire solution
procedure is O(nlogh Ulog U loglog, U).Since log, U < Kl—l log, U (because
logy, K > K—1forl < K < 2),therunningtimeis()(f§ log® Ulog Ulog(" logU)).
Therefore, our solution scheme is an FPTAS.

3.2 The Budget Problem

We now consider the budget problem. Let ¢g*(b) denote the optimal duration
of the project for a given budget b. Suppose we allocate ¢ units of monetary
resources to a pair of series activities ¢; (along arc u — v) and 2 (along arc
v — w). Then, the merged activity 7 (along the merged arc u — w), which has
a budget of ¢, will have a duration of

gi(e) = min {g;, () +gi,(c =)}, (7)
where g;, (¢/) and g;,(c— ') are the activity times of the original activities i1 and
i9 if they are allocated monetary resources of ¢’ and ¢— ¢/, respectively. Let g;, be
a nonincreasing K *~!-approximation function of g;,, and Ji, be a nonincreasing
K -approximation function of g;,. Let S;, be a K-approximation set of g;,,
and g;, be the K-approximation function of g;; corresponding to S;; (j = 1,2).
Then, §;, is a K*-approximation function of g;,, and g;, is a K‘-approximation
function of g;,. Following the same argument as in Section[31], we define function
g; such that for t =0,1,...,U,

_ . /
Gi(c) = vetoran B e {9, () + Gin(c = N}

By Properties @ and B g; is a nonincreasing K™} _approximation function
of g;. Let S; be a K-approximation set of g;, and g; be the (nonincreasing)
K-approximation function of g; corresponding to S;. Then, §; is a nonincreas-
ing Kmax{kO+1_approximation function of g;, and S; can be constructed in
O(log% Ulog U loglog, U) time.

Now, suppose that we allocate ¢ units of monetary resources to a pair of parallel
activities 41 and io. Then, the merged activity will have an activity time of

gile) =, min  {max{gi(¢'), gis(c— )} }. (8)

c’=0,1,...,c

We define function g; such that for t =0,1,...,U,

gi(c) = min ax c—c¢ ,
5i(e) ¢ €{0,1,....c}N(S; U{e—z | mGSiz}){ {96(¢):gia( )}}
with S;,, Si,, Gi,, and §;, having the same definitions as before. Using the same
argument as in the proofs of Properties 2l and Bl we can show that g; is a nonin-
creasing K™k _approximation function of g;. Let S; be a K-approximation
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set of g;, and §; be the K-approximation function of g; corresponding to S;. Then,
G; is a Kmax{k+1_approximation function of g;, and S; can be constructed in
O(log% Ulog U loglog U) time.

Similar to the deadline problem, we determine an approximation solution
to the budget problem by first obtaining a K-approximation set S; and the
K-approximation function of f; corresponding to S; for each activity ¢, and
then applying series and parallel reductions recursively until the project is re-
duced to a single activity ig. The solution value is given by g;,(b), which is a
K™-approximation of §*(b). Let K =1+  , where 0 < e < 1. Then, g;,(b) is a
(1 + €)-approximation solution to the budget problem, and the running time of
the solution procedure is O(’éj log® Ulog U log(" log U)) Therefore, our solution
scheme is an FPTAS.

4 Concluding Remarks

We have developed FPTASs for both the deadline and budget problems. Note
that although these FPTASs generate solutions with relative errors bounded by
€, the actual relative error of a solution is affected by the sequence of series
and parallel reduction operations. For example, consider the deadline problem
with only four activities i1, i, 43,74 arranged in series, where ¢; is the immediate
predecessor of ;11 (j = 1,2,3). At the beginning of the solution procedure,
we obtain a K-approximation set and a K-approximation function for each of
these activities. Suppose we perform series reductions in the following sequence:
(i) merge i1 and ip to form a new activity 412; (ii) merge 12 and i3 to form a
new activity 4123; and (iil) merge 4123 and i4 to form a network with a single
activity ig. Then, step (i) generates a KZ2-approximation function filz of fi,,-
Step (ii) generates a K3-approximation function f;,, of f;,,,. Step (iii) generates
a K*-approximation function fio of fi,-

Now, suppose we perform the series reductions in another sequence: (i) merge
i1 and 72 to form a new activity i12; (ii) merge i3 and i4 to form a new activity
i34; and (iil) merge 12 and i34 to form a network with a single activity ig. Then,
step (i) generates a K2-approximation function f;,, of f;,,. Step (ii) generates a
K?2-approximation function fy,, of fi,,. Step (iii) generates a K3-approximation
function fio of fi,. Hence, this sequence of series reduction operations yields a
better approximation than the previous one.

Our FPTAS for the deadline problem uses only the “primal” dynamic program
in @) and [@). It not only approximates the value of the optimal solution f*(d)
for the deadline problem, but also stores an approximation of the function f* over
the entire domain {0,1,...,d} in a sorted array of size O(" logU). Therefore,
for any integer x € {0,1,...,d}, only O(log(" logU)) additional time is needed
to determine the approximated value of f*(z).

We note that it is also possible to approximate the deadline and budget prob-
lems using the traditional “scaling and rounding the data” approach. On one
hand, for doing so one needs to use the “dual” dynamic program (e.g., recur-
sions (@) and (8) for the deadline problem). On the other hand, by applying
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the elegant technique of Hassin [8], it is possible to reduce the logU term in
the running time to loglog U. This is done by performing binary search in the
log domain and rounding/scaling g;(c) in (@) and () for every value ¢ where
these functions are computed. Unlike our approach, approximating f*(z) for
any additional z will require the same running time.

Our solution method can be extended to non-series-parallel project networks.
However, the running time of the approximation algorithm will no longer be
polynomial. To tackle non-series-parallel project networks, besides series and
parallel reductions, we also make use of node reduction. Any two-terminal di-
rected acyclic network can be reduced to a single arc via series, parallel, and
node reductions (see [2]). A node reduction operation can be applied when the
node concerned has either in-degree 1 or out-degree 1. Suppose node v has in-
degree 1. Let u — v be the arc into v, and v — wy, v — ws, ..., v — wy be the
arcs out of v. Then a node reduction at v is to replace these k + 1 arcs by arcs
u — Wi, U — Wa, ..., U — wg. The case where v has out-degree 1 is defined sym-
metrically. In our deadline and budget problems, such a node reduction implies
a decomposition of the problem into m(i) separate problems, where m(i) is the
number of time-cost alternatives of the activity ¢ corresponding to arc u — wv.
In each decomposed problem, we obtain the time-cost tradeoff functions for arcs
u — wi, 4 — Wa, ..., 4 — Wi by adding the time duration and activity cost
of u — v to the time-cost tradeoff functions of v — wi, v — wa, ..., v — wg,
respectively. Bein et al. [2] have developed an efficient method for determining
the minimum number of node reductions in order to reduce the given project
network to a single activity. They refer to this minimum number of node reduc-
tions as reduction complexity. Therefore, a discrete time-cost tradeoff problem
in a non-series-parallel project network can be decomposed into m" time-cost
tradeoff problems with series-parallel networks, where m = max;{m(i)} and h
is the reduction complexity. If h is bounded by a constant (i.e., the network is
near-series-parallel) and m is bounded by a polynomial of the problem input
size, then making such a decomposition and applying the algorithms presented
in Section Bl will give us an FPTAS for the problem.

Note that the computational complexity of this decomposition method in-
creases exponentially as the reduction complexity increases. Hence, this method
is practical only if h is small. As mentioned in Section [II for general non-series-
parallel project networks, it is very difficult to obtain an e-approximation algo-
rithm for the time-cost tradeoff problem (for example, the budget problem does
not even have a polynomial-time approximation algorithm with performance
guarantee better than g unless P=NP).
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Abstract. This paper presents new, polynomial time algorithms for Bin
Packing and Euclidean TSP under fized precision. In this model, integers
are encoded as floating point numbers, each with a mantissa and an ex-
ponent. Thus, an integer ¢ with 4 = @;2" has mantissa a; and exponent
t;. This natural representation is the norm in real-world optimization. A
set of integers I has L-bit precision if max;er a; < 2&. In this framework,
we show an exact algorithm for Bin Packing and an FPTAS for Euclid-
ean TSP which run in time poly(n) and poly(n + log 1/¢), respectively,
when L is a fixed constant. Our algorithm for the later problem is exact
when distances are given by the L; norm. In contrast, both problems
are strongly NP-Hard (and yield PTASs) when precision is unbounded.
These algorithms serve as evidence of the significance of the class of fixed
precision polynomial time solvable problems. Taken together with algo-
rithms for the Knapsack and Pm||Cmax problems introduced by Orlin
et al. [I0], we see that fixed precision defines a class incomparable to
polynomial time approximation schemes, covering at least four distinct
natural NP-hard problems.

1 Introduction

When faced with an NP-complete problem, algorithm designers must either set-
tle for approximation algorithms, accept superpolynomial runtimes, or identify
natural restrictions of the given problem that are tractable. In the last cate-
gory we find numerous weakly NP-hard problems, which have pseudo-polynomial
algorithms that solve them in time polynomial in the problem size and the mag-
nitude of the numbers in the problem instance, and are thus polynomial in the
problem size when the number magnitudes are polynomial in the problem size.
A more recent development is that of fized parameter tractability, another way
of responding to the hardness of specific problem instances. In this paper, we
explore fized precision tractability. While pseudo-polynomial algorithms aim at
problems whose numbers are integers of bounded size, we consider the case of
floating point numbers that have bounded mantissas but arbitrary exponents.
We consider such an exploration natural for a variety of reasons:
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1. Floating point numbers are the norm in real-world optimization. They reflect
the fact that practitioners seem to need effectively unlimited ranges for their
numbers but recognize that they must tolerate limited precision. It is thus
worth developing a complexity theory aligned with these types of inputs.

2. Conversely, from a complexity perspective, it remains unclear exactly why
certain problems become easy in the pseudo-polynomial sense. Is it because
the magnitude of those numbers is limited, or because their precision is?
The pseudo-polynomial characterization bounds both, so it is not possible
to distinguish.

3. As observed by Orlin et al. [I0], a fixed-precision-tractable algorithm yields a
inverse approximation algorithm for the problem, taking an arbitrary input
and yielding an optimal solution to an instance in which the input numbers
are perturbed by a small relative factor (namely, by rounding to fixed pre-
cision). This is arguably a more meaningful approximation than a PTAS or
FPTAS that perturbs the value of the output.

Orlin et al., while introducing the notion of fixed precision tractability, gave
fixed precision algorithms for Knapsack and Three Partition. But this left open
the question of how general fixed-precision tractability might be. Knapsack and
Three Partition are some of the “easiest” NP-complete problems, both exhibiting
trivial fully polynomial approximation schemes. It was thus conceivable that
fixed-precision tractability was a fluke arising from these problems’ simplicity.

In this paper we bring evidence as to the significance of the fixed precision
class, by showing that Bin Packing and Euclidean TSP are both fixed precision
tractable. This is interesting because neither of them is known to have a fully
polynomial approximation scheme. Orlin et al. showed that, conversely, there are
problems with FPTASs that are not fixed precision tractable. We therefore see
that fixed precision defines a class incomparable to FPTASs, covering at least 4
distinct natural NP-hard problems.

In order to demonstrate these results it is necessary for us to introduce some
new, natural solution techniques. If all our input numbers have the same expo-
nent, then we can concentrate on the mantissas of those numbers (which will
be bounded integers) and apply techniques from pseudo-polynomial algorithms.
The question is how to handle the varying exponents. We develop dynamic pro-
grams that scale through increasing values of the exponents, and argue that once
we have reached a certain exponent, numbers with much smaller exponents can
be safely ignored. This would be trivial if we were seeking approximate solu-
tions but takes some work as we are seeking exact solutions. We believe that our
approach is a general one to developing fixed-precision algorithms.

2 Background

In this section we give an overview of generally related previous work. Then
we review the L-bit precision model to which our algorithms apply. Finally, we
present relevant work on Bin Packing and Euclidean TSP, the problems for which
we give algorithms in Sections [B] and @l
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2.1 Approximation Algorithms, Fixed Parameter Tractability, and
Inverse Optimization

When faced with an NP-Hard optimization problem, the first option is most
often the development of an approximation algorithm. If the best solution for an
instance I of some minimization problem P has objective value OPT(I), then
an a-approximation algorithm for P is guaranteed for each instance I to return
a solution with an objective value of no more than o - OPT(I). Previous work
in this area is vast, and we refer the interested reader to Vazirani [12] for a wide
overview of the field. The best one can hope for in this context is a polynomial
time approximation scheme, a polynomial time algorithm which can provide a
(1 + €)-approximation for P, for any e. If the running time of such an algorithm
is polynomial in 1/e, it is referred to as fully polynomial, and we say that P has
an FPTAS. If the running time is polynomial only when ¢ is fixed, we say that
P has an PTAS.

Another way in which NP-Hard problems can be approached is through fixed
parameter tractability [6]. Here, a problem may have an algorithm that is expo-
nential, but only in the size of a particular input parameter. Given an instance I
and a parameter k, a problem P is fixed parameter tractable with respect to k if
there is an (exact) algorithm for P with running time O(f(|k|) - |I|¢), where |z|
gives the length of x, f depends only on |k|, and ¢ is a constant. Such problems
can be tractable for small values of k. For example, Balasubramanian et al. [3]
show it is possible to determine if a graph G = (V, E) has a vertex cover of size
kin O(|V|k + (1.324718)*k?) time. The problem is thus tractable when the size
of the vertex cover is given as a fixed parameter.

Inverse optimization, introduced by Ahuja and Orlin [I], is closer to the L-
bit precision regime we work in. Consider a general minimization problem over
some vector space X, min{cx : z € X}. If this problem is NP-Hard, an a-
approximation algorithm can return a solution x* such that sz;cm < a. Inverse
optimization instead modifies the cost vector. That is, it searches for a solution
x’ and cost vector ¢’ close to ¢ (in, for example, Lo, distance) so that min{c'z :
x € X} = a’. The tightness of this approximation is then measured based on the
distance from ¢’ to c. This analysis can be more natural for some problems. In Bin
Packing, for example, a standard approximation algorithm requires more bins
than the optimal algorithm, while an inverse approximation algorithm requires
an equal number of larger bins. All fixed precision tractable problems can be
translated into this framework via rounding.

2.2 L-Bit Precision

Our algorithms apply to the L-bit precision model introduced by Orlin et al. [10].
Problems in this model have their integer inputs represented in a nonstandard
encoding. Each integer i is encoded as the unique pair (m, z) such that i = m-2%,
and m is odd. Following terminology for floating point numbers, we refer to
m as the mantissa and x as the exponent of i. A problem instance has L-bit
precision with respect to some subset M C I of its integer inputs (encoded as
above) if, V(m,x) € M,m < 2F. Each (m,z) € M can then be represented with
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O(L +logx) bits. An algorithms runtime is then computed in relation to the
total size T of its input, with numbers encoded appropriately. Two settings for
L are considered. When L is constant, instances have fized precision, and when
L = O(logT), they have logarithmic precision.

Orlin et al. show polynomial time algorithms for fixed and logarithmic preci-
sion instances of the Knapsack problem. They show the same for Pm||Ciyax, the
problem of scheduling jobs on m identical machines so as to minimize the maxi-
mum completion time. The precision here is with respect to item values and job
lengths, respectively. The algorithms work by reducing the problem to finding
the shortest path on an appropriate graph. Such paths can take exponential time
to find in the general case, but can be computed efficiently under L-bit precision.
Our algorithms use similar techniques. We note that both of these problems are
known to be NP-Complete, and also to support FPTASs.

The paper also demonstrates a polynomial time algorithm for the 3-partition
problem when all numbers to be partitioned have fixed precisionﬂ These in-
stances can be reduced to integer programs with a linear number of constraints
and a fixed number of variables, which in turn can be solved in linear time.
Finally, a variant of the Knapsack problem is shown that supports an FPTAS,
but is NP-Complete for even 1-bit precision. The problem, Group Knapsack,
allows items to have affinities for other items, so that item x can be placed in
the Knapsack if and only if item y is also packed. Thus, items with different
exponents can express affinity for each other, essentially reconstructing items of
arbitrary precision.

2.3 Bin Packing

Bin packing is a classic problem in combinatorial optimization. The problem
dates back to the 1970s and there are an enormous number of variants. We
restrict ourselves to the original one-dimensional version. Here we are given a set
of nitems {x1, z2, ...z, }, each with a size s(x;) € [0, 1]. We must pack each item
into a unit capacity bin By, without overflowing it — that is, Yk, >, cp, s(z:) < 1.
Our goal is to pack the items so that the number of bins used, K, is minimized.

Bin packing is NP-Complete, and extensive research has been done on approx-
imation algorithms for the problem in various settings (see Coffman et al. [5] for
a survey). The culmination of this work is the well-known asymptotic PTAS
of de la Vega and Lueker [7], which handles large items with a combination of
rounding and brute force search, and then packs small items into the first bin in
which they fit. There is a key difference between this and all other worst case ap-
proximation algorithms for Bin Packing and the algorithm we show in Section [Bl
While both run in polynomial time, the former guarantee that they can pack
any set of items into a number of bins that is almost optimal. Our algorithm
guarantees that for a specific class of instances, namely those whose items have
fixed-precision sizes, it can pack items into ezactly the optimal number of bins.

! Note that this is the problem of grouping 3n numbers into n 3-tuples with identical
sums, not splitting them into three groups having the same sum, which is a special
case of Pm||Cmax.
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2.4 FEuclidean TSP

The Euclidean TSP is a special case of the well-known Traveling Salesman Prob-
lem. The goal of the TSP is to find the minimum cost Hamiltonian cycle on a
weighted graph G = (V, E). That is, to find a minimum weight tour of the graph
(starting from an arbitrary vertex) that visits every other vertex exactly once be-
fore returning to the starting vertex. Determining whether a Hamiltonian cycle
exists in a graph is one of the original twenty-one problems that Karp shows to
be NP-Complete [§], and it follows immediately that TSP is NP-Complete. In-
deed, this reduction implies that no polynomial time algorithm can approximate
general instances TSP to within any polynomial factor unless P=NP.

One special case of the TSP that can be approximated is metric TSP. Here
there is an edge between each pair of vertices, and edge weights are required to
obey the triangle inequality. A simple 2-approximation for metric TSP can be
shown using a tour that “shortcuts” the cycle given by doubling every edge in a
minimum spanning tree and using the resulting Eulerian tour. The best known
approximation ratio for metric TSP is 3/2, and comes from Christofides [4], who
augments the minimum spanning tree more wisely than doubling each edge.

Euclidean TSP, finally, is then a further restriction of metric TSP. Vertices
are taken to be points in Euclidean space (throughout this paper, we restrict
ourselves to the plane), and there is an edge between each pair of vertices with
weight equal to their Euclidean distance. Despite this restriction, the problem re-
mains strongly NP-Hard [I1]. Arora [2] gives what is then the best possible result
(unless P = NP), a PTAS, for Euclidean TSP. His algorithm combines dynamic
programming with the use of a newly introduced data structure, the randomly
shifted quadtree, which has since found wide use in computational geometry.
Our algorithm for fixed-precision Euclidean TSP uses a similar combination of
recursion and brute force, but takes advantage of structural properties implied
by the nature of our narrower class of inputs.

3 Bin Packing

L
In this section we present an n9*") time algorithm for L-bit precision instances
of Bin Packing.

3.1 Preliminaries

We consider a version of Bin Packing that is slightly modified from that discussed
in Section 2l We take the following decision problem: given a set of n items
S = {u1,uz,...up}, each with a size s(u;) € N, and integers K and C, can
the set S be packed into K bins of capacity C'? In the standard way, one can
use an algorithm for this decision problem to solve its optimization analog by
performing a binary search for the minimum feasible value of K. We find it
convenient to consider S to be a set of item sizes, rather than items themselves,
and refer to it in this way throughout the remainder of this section.
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We consider the precision of an instance with respect to the set of items S.
Thus, we consider an instance of Bin Packing to have L-bit precision if for all
u=m2%c S,m < 2.

3.2 The Algorithm

Here, in broad strokes, is a nondeterministic algorithm A (that is, .4 can mag-
ically make correct guesses) for this problem. A runs in rounds, and is only
allowed to pack items that are currently in a special reservoir R. It also main-
tains bin occupancies in a set O, such that o € O gives the current occupancy
of (that is, the total size of the items in) the kth bin. Rounds proceed as follows.
At the start of each round, A moves some items from S into R. Then, it guesses
which items in R to pack, and which bins to pack them into. Finally, A updates
the occupancy of bins that received items in the round, and performs certain
bookkeeping on R. After the final round, A reports success if and only if R is
empty and all bins have occupancy less than C.

We now describe these steps in detail. Afterwards, we demonstrate how they
can be implemented efficiently. We initialize R to be empty, and all bins to have
occupancy zero. In round x, we move the subset of items S, C S from S to R,
where S, contains all items in S with exponent z. In the packing step, for each
size mantissa m € {1,3,...2Y — 1}, we guess which bins will be packed with an
odd number of items of size m2*. We place exactly one item of size m2® into
each such bin, removing it from R and updating O.

We note the following property of the algorithm as presented so far.

Property 1. After round x, for all m, the remaining number of items of size m2®
that should be packed into any bin k is even.

In light of Property [l our bookkeeping procedure is to merge each pair of items
of size m2% in R, creating a single item of size m2%!. Because we know that
all of these items will be packed in pairs and that the size of the merged item
is the sum of the sizes of its two constituents, this merging will not effect fea-
sibility. By induction, this will mean that after round z there are no items of
exponent less than x remaining in either S or R. After this step, A proceeds to
round z + 1. The final round occurs when both S and R are empty, at which
point all items have been packed. The following lemma bounds the number of
rounds.

Lemma 1. If a round x is skipped when both S, and R are empty, then A runs
at most n rounds.

3.3 Analysis

We start by showing that the state of A can be represented compactly. This
state can be described completely by the current round (which also dictates the
items remaining in S), the items in R, and the bin occupancy O, so we represent
such a state as {R,O,xz}. We have already seen that z has at most n possible
values. By design, every item in R at the start of round z has exponent exactly
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x. Thus, we can represent R by storing a count of the number of objects with
L—

each mantissa. Expressed in this way, R has a total of O(n? 1) possible values.

The following lemma shows that O can also be represented compactly.

Lemma 2. Consider a bin occupancy oy at the start of round x. Then rounding
ok up to the next integer multiple of 2% does not affect the feasible executions of A.

Proof. Let ox be equal to o rounded up to the next integer multiple of 2%, and
consider two bins with these occupancies. Let e = C' — o and epr = C' — oy be
the space remaining in each bin. Then we have that

o) = |2+
2¢]  L2w
We conclude the proof by noting that all items remaining to be packed (in

both R and S) have exponent at least z, so that any set of remaining items can
be packed into bin k if and only if it can be packed into bin &’.

At the start of round =z, each bin is occupied by at most one item of each
size that has exponent less than xz. At this point, we thus have for each k,

op < ZZ:O fo:—ll w2¥ < 22147 This fact coupled with Lemma B yields that
O can also be represented by counting the number of bins of size a - 2%, for
a € [0,22F). As there are at most n bins, the number of distinct O can then be
bounded by O(n*").

Now, consider a graph with nodes for each possible state {R,O,xz}. Let us
place a directed edge between {R, O, 2} and {R’, O’, z+ 1} if it possible for A to
begin round x+ 1 with reservoir R’ and bin occupancy O’ having started round x
with reservoir R and occupancy OB Then we can implement A by searching for
a path between {{},{},0} and {{}, O*, xmax} in this graph (where O* satisfies
all o, < C for all o, € O*). The following lemma states that we can test if an
edge should be inserted efficiently.

Lemma 3. Given two algorithm states S; = {R,O,x} and So = {R', 0, x+1},

it is possible to determine if A can transition from Sy to So in time O(n .ptd L).

Proof. Consider the following packing problem: given a set of n items Y, and a
set of w bins with occupancies U and capacities ) (we allow bins with different
capacities), is there a feasible packing of Y into the partially occupied U? We
note that if all bin capacities are upper bounded by v, then this problem can be
easily solved by dynamic programming in time O(nw??).

It should be clear that asking if a transition is possible between S; and S5 can
be represented as an instance of this problem. We first take Y = RU S, — R/,
noting that we may need to ‘unmerge’ some items in R’ in order to subtract
them, but that this is easy to do. Initial bin occupancies U are then given by
O. Bin capacities @ are given by O’, as this set describes the occupancy bins
should have at the start of round = + 1.

? We may also need some edges between states {R, O, z} and {R',0’,z'}, where 2’ #

z + 1. However, this only happens when rounds are skipped, and these edges are
trivial to calculate.
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We have one caveat here. As described above, the items in Y all have exponent
2% but the occupancies in O’ are represented as multiples of 2!, Thus, an
occupancy o}, = (2i — 1)2%T! € O considered as a capacity ¢, € @ may need to
be incremented by 2*. Letting C[z] be the xzth bit of our original capacity C, we
can simply let g, = o}, + C[z]2".

Finally, we would like our capacities to have a small upper bound, so that the
dynamic programming is efficient. Since all of the numbers here are multiples
of 2%, we scale them down by this factor before running the dynamic program-
ming. This gives us a maximum bin capacity of v = 22¢72, Thus we can test

whether there should be an edge between S; and Sy in time O(nw22L+2> =
O(n -ptd L).

We can now state our main theorem.

Theorem 1. There is an no(4L) time algorithm for L-bit instances of Bin
Packing.

Proof. The Running time of A is dominated by constructing the edges in the

L
state space graph. There are nX4%) of these edges, and each takes nX4") time
to test for inclusion.

4 Euclidean TSP

In this section we present an FPTAS for L-bit instances of Euclidean TSP, which
L
provides an (1 + €)-approximation in time n4") . log1/e.

4.1 Preliminaries

The version of the Euclidean TSP we consider is the following. Given a set of
vertices V' = {(z,)} on the plane[] what is the shortest tour that visits each
point exactly once, when edge lengths are given by the Lo distance between
two endpoints? We consider the precision of an instance with respect to the
coordinates of its points in the following manner. We say an instance of Euclidean
TSP has precision L if for every ((my, ), (my,x,)) € V, max{m,,m,} < 2L,
and both m, and m, are odd. Equivalently, all points in V' must lie along a series
of axis-aligned squares S@Q. centered on the origin, with side length z = i - 27,
and all i < 2%, See Figure 1 for an example.

While we would like to show an exact algorithm for fixed-precision instances
of Euclidean TSP, that goal is frustrated by the fact that the problem is not
known to be in NP. Specifically, there are no known polynomial time algorithms
for comparing the magnitude of sums of square roots. Thus, given two tours with
square-root edge lengths, we have no efficient way to decide which is shorter.
Instead, we provide an algorithm that achieves a (1 4 ¢)-approximation with a

3 We use = to denote the z-axis of the plane in order to avoid confusion with the
exponent of a fixed precision integer.
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Fig. 1. The initial squares SQ1,SQ2, Fig. 2. If the edges of W, are given
SQ3,5Q4,5Qs and SQs on which as above, then D, = {0 : {vs,v6},1 :
points of a 2-bit precision Euclidean {(v1,v4), (v7,v8)}}. All remaining ver-
TSP instance can lie tices (v2 and v3) then have degree two.

runtime dependence on e that is only O(log1/¢). We do this by rounding edge
lengths to the nearest multiple of 2l°8¢l. Going forward we assume that this
rounding has been done.

For simplicity, we rescale the edge lengths and present our algorithm as an
exact algorithm taking integral edge lengths in addition to the set of vertices V.
We also give our bounds assuming that we can do operations on edge lengths in
constant time. At the end of the section, we reintroduce the approximate nature
of our result and the O(log 1/¢) cost of doing operations on edge lengths. Note
that this problem with radicals does not arise when edge lengths are given by the
L1 norm, and in this case the above rounding and approximation is unnecessary.

4.2 The Algorithm

Again, we begin by giving an overview of an algorithm 55 which solves the prob-
lem, and follow with an analysis of its efficiency. Like A discussed in the previous
section, B is nondeterministic and runs in rounds. In each round, B considers
points lying on a single SQ. (as described above), in increasing order of side
length. The algorithm maintains an edge set W, and for each vertex v consid-
ered in a round, the algorithm guesses all edges in an optimal tour connecting v
to previously processed vertices. After the last round, when all points lying on
the outermost square are processed, W will contain edges that form an optimal
tour of V. The intuition underlying our algorithm is similar to that of Arora [2].
Because points lie along a series of SQ,, and z is fixed precision, we expect few
edges to cross these squares, as cheaper tours may be constructed by ‘shortcut-
ting’ such in-out edges. This allows a dynamic programming formulation that
keeps as its state the entry and exit points of these squares, and gathers the
(rare) crossing edges.
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More formally, let T" be an edge set that forms an optimal tour of V. We
define T, C T to be the subset of edges in T" with both endpoints on or inside
SQ.. Assume that the points in V' lie on a series of squares with side length
21 < 29 < ... < Zmax (clearly, there are at most n such squares). Then in round
x, B will add the edges in T,, — T, , to W.

We use the following construction to implement B. We define D, = d(Wy)
to be an augmented degree sequence of the vertices in V induced by the edges
present in W at the start of round 2. We note that T, is composed of disjoint
paths; our augmentation is to record in D, the endpoints of these paths (in
pairs). See Figure 2 for an example. This information is necessary to check for
the presence of premature cycles, as we will see later. We then create a graph
Ggeq with all possible D, as vertices. We add a directed transition edge with
weight w between D, and D, if there is an edge set S, with cumulative weight
w such that D, +d(S;) = Dyy1. We further require that adding S, to D, does
not create any cycles, save when x+1 = xy,ax. For each pair (D, D,41), we keep
only the lightest such transition edge, and annotate it with the set S,. From this
graph, we can recover T' by taking the union of the S, attached to a shortest
path between Dy = (0,0,...,0) and D =1(2,2,...,2).

ZTmax

4.3 Analysis

We now show that the number of vertices in Ggeq is bounded, and that we can
efficiently construct its edge set. We begin with the following lemma, whose proof
appears in Appendix [Al

Lemma 4. Consider a L-bit precision set of vertices V' on the plane. Then for
all z, any optimal tour of V' will cross SQ, at most O(4L) times.

We now consider the number of distinct feasible values of D,, for a fixed =x.
Clearly, all points outside of S@Q, have degree zero. By Lemmal[d, we know that
at most O(4L) of the remaining vertices have a degree that is less than two.
Thus D, can be represented compactly by listing the vertices in this set, their
degree, and all path endpoints (that is, pairings of degree one vertices). This

gives a bound of n™*") on the number of distinct values.

What remains is to demonstrate that for each pair of degree sequences (D,
D;41), the minimum weight edge set S, whose addition to D, yields Dg41
(and no cycles) can be computed in polynomial time. We note that all edges
in S, have at least one endpoint on SQ),,. We refer to edges with exactly one
endpoint on 5@, as single edges, and those with both endpoints on SQ., as
double edges. For each point v strictly inside SQ._, we must add D,41(v)—D,(v)
single edges incident to v. We enumerate all nA4") possible non-cycle-inducing
sets S5 of single edges, and claim that given such a set, the minimum weight
non-cycle-inducing set of double edges S¢ can be computed in polynomial time.

Lemma 5. Let D, and D, be degree sequences as described above. Let S5 be
a non cycle inducing set of single edges. Then the minimum weight non-cycle-
inducing set of double edges S& satisfying D, + d(S3) + d(S%) = D1 can be
constructed in time n94").
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Proof. All possible S¢ can be enumerated as follows. Consider any point v along
SQ., with D,y1[v] = D.[v] + d(S2)[v] + 1. The edges in S?¢ that v can reach
form a path consisting of connected segments of the perimeter of SQ., . This
path cannot cross itself (for if this is the case, then there is a less expensive
tour that does not include this crossing), so there can be at most one segment
on each side of §Q,,. We can enumerate the starting and ending vertex of each
segment, giving the path starting from a single vertex O(n®) possibilities. By

Lemma[7, there are at most n4") possible starting vertices. Finally, for each
set of paths, we spend O(n) time to check that no cycles have been created and
that the degree sequence induced is correct.

We can now give our main lemma.

Lemma 6. There is ann®*") time ezact algorithm for L-bit precision instances
of Euclidean TSP with integral edge lengths.

Proof. Our runtime is dominated by the time to construct Ggey. By Lemma [1]
we have at most n4") possible edges in Ggey. By Lemmal[d, the cost to check
each edge is nA4").

We conclude by relaxing our constraints on edge lengths.

Theorem 2. There is an FPTAS for L-bit instances of Fuclidean TSP that
achieves an (1 + €)-approzimation in time nA4") log1/e.

5 Conclusion

We have given algorithms demonstrating that two natural problems, bin-packing
and Euclidean TSP, are polynomial time solvable when their input numbers are
given in fixed precision. We have therefore offered further evidence that the
class of fixed-precision tractable NP-hard problems is a meaningful class worthy
of further study. Several additional observations arise regarding this class:

1. As argued in the introduction, fixed-precision tractability seems orthogonal
to pseudo-polynomial tractability. There are problems, such as Knapsack,
that have both pseudo-polynomial and fixed precision algorithms. Others,
such as Group Knapsack, have pseudo-polynomial algorithms but do not
have fixed-precision algorithms. Conversely, while bin-packing and Euclidean
TSP do not have fully polynomial approximation schemes, our algorithms
show them to be fixed precision tractable, but only when the number of
mantissa bits is fized (note that if we could handle a logarithmic number of
bits of precision, we would have a pseudo-polynomial algorithm).

2. Just how large is this class of fixed-precision tractable problems? Fixed pre-
cision tractability seems fragile, in a way the pseudo-polynomial algorithms
are not. Add some polynomial size integers and you get another; add two
low-precision numbers with different exponents and you suddenly have a high
precision number. Does this fragility mean that few problems are tractable
in this way?
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Work by Korte and Schrader [9] shows a tight connection between pseudo
polynomial algorithms and fully polynomial approximation schemes—
problems that have one tend to have the other, in a formalizable sense.
There is a similar coupling between algorithms with (non-fully) polynomial
approximation schemes, and algorithms that can be solved by brute force
enumeration when they are limited to a few input “types.” Is there a simi-
lar connection between fixed-precision tractability and, for example, inverse
approximation as defined by Orlin? One direction is obvious (as is the case
for FPTAS and pseudo-polynomial algorithms) but the other is not clear.
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Geometric Proofs

Lemma 7. Consider a L-bit precision set of vertices V' on the plane. Then for
all z, any optimal tour of V' will cross SQ, at most O(4L) times.

Proof. An edge crosses S@Q. if it has exactly one endpoint strictly outside SQ..
We refer to the set of crossing edges as @), breaking it into two distinct subsets
@1 and @2 such that Q1 U Q2 = @. Edges in @; have an endpoint on SQ..,
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SQZ’

Fig. 3. This is an example ’brute force’ tour that will cover all points in Q1. We take
2z’ < 3z. Note that the horizontal distance between the vertical edges can be arbitrarily
small.
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Fig. 4. The solid lines between points exist in Q2. The dashed line indicates that there
is a path from a to e that does not go through b,c,d, or f. This edge is guaranteed
(modulo permutations on vertex labels) to exist, because there are no other diagonal
edges between these vertices in QQ2, by definition.

2 < zq < 3z, and edges in ()2 have an endpoint on SQ,, 3z < zp. In what follows
we show that [Q1] < 94" and |Q2] < 192, and the claim follows immediately.

We can construct a tour that replaces edges in ()1 with (shortcutting) the
construction shown in Figure 3. Each S@Q., is toured via edges with total weight
624, while each edge in Q1 with an endpoint on SQ., has length at least z,/2%.
Since there are at most 3 - 21! squares between SQ. and SQs., this gives an
upper bound of 9 - 4% on the size of Q;.
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t1 \ l2 SQ3z

/7 \

a b

Fig. 5. We have that len(ab) < v/2zand len(t1t2) < z/2. Also, both len(t1a) and len(2b)
are at least 2z. Thus we can replace {(a,d), (b,d)} with {(a,b), (d,t1), (t1,t2), (t2,€)},
and end up with a shorter tour without adding any cycles.

Now, assume that |@Q2| > 192. Then there must be a segment along the
perimeter of SQs. of length z/2 that is intersected by 8 edges in Q2. Then
there are distinct vertices H = {a,b,c,d, e, f} as in Figure 4 such that the set
{(a,e)(a, f), (b,d), (b, f), (c,d), (c,e)} intersected with Q2 is empty. Thus, there
must be v1 € (a,b,¢) and vo € (d,e, f) such that there is a path from v; to
v is neither direct nor passes through any other vertices in H. This in turn
induces a graph like that found in Figure 5, where without loss of generality
v1 = a and v2 = e. Here, we can replace the edges {(a,d), (b,e)} with edges
{(a,b), (d,t1), (t1,12), (t2,€)} for a shorter tour, contradicting the assertion that
|Q2] > 192.
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Abstract. We study approximation algorithms, integrality gaps, and
hardness of approximation, of two problems related to cycles of “small”
length k in a given graph. The instance for these problems is a graph
G = (V, F) and an integer k. The k-Cycle Transversal problem is to find
a minimum edge subset of I that intersects every k-cycle. The k-Cycle-
Free Subgraph problem is to find a maximum edge subset of F without
k-cycles.

The 3-Cycle Transversal problem (covering all triangles) was studied by
Krivelevich [Discrete Mathematics, 1995], where an LP-based 2-approxi-
mation algorithm was presented. The integrality gap of the underlying
LP was posed as an open problem in the work of Krivelevich. We re-
solve this problem by showing a sequence of graphs with integrality gap
approaching 2. In addition, we show that if 3-Cycle Transversal admits a
(2 —¢)-approximation algorithm, then so does the Vertex-Cover problem,
and thus improving the ratio 2 is unlikely. We also show that k-Cycle
Transversal admits a (k — 1)-approximation algorithm, which extends the
result of Krivelevich from k& = 3 to any k. Based on this, for odd k& we
give an algorithm for k-Cycle-Free Subgraph with ratio 2’“,;13 = ; + 4,9176;
this improves over the trivial ratio of 1/2.

Our main result however is for the k-Cycle-Free Subgraph problem with

even values of k. For any k = 2r, we give an {2 (rf T rzr-n) 75)—approxi—
mation scheme with running time e~ ?(*/)poly(n). This improves over
the ratio Q(nil/r) that can be deduced from extremal graph theory. In
particular, for k = 4 the improvement is from £2(n~/2) to 2(1/n~1/37¢).

Similar results are shown for the problem of covering cycles of length
< k or finding a maximum subgraph without cycles of length < k.

1 Introduction

In this work, we study approximation algorithms, integrality gaps, and hardness
of approximation, of two problems related to cycles of a given “small” length &
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A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 118}131] 200s.
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(henceforth k-cycles) in a graph. The instance for each one of these problems is
an undirected graph G = (V, E) and an integer k. The goal is:

k-Cycle Transversal:
Find a minimum edge subset of E that intersects every k-cycle.

k-Cycle Free Subgraph:
Find a maximum edge subset of E without k-cycles.

Note that k-Cycle Transversal and k-Cycle-Free Subgraph are complementary
problems, as the sum of their optimal values equals |E| = m; hence they are
equivalent with respect to their optimal solutions. However, they differ substan-
tially when considering approximate solutions. Also note that for k& = O(logn)
the number of k cycles in a graph can be computed in polynomial time, c.f.,
[3], and that it is polynomial for any fixed k. The k-Cycle Transversal problem
is sometimes referred to as the “k-cycle cover” problem (as one seeks to cover
k-cycles by edges). We adapt an alternative name, to avoid any mixup with an
additional problem that has the same name — the problem of covering the edges
of a given graph with a minimum family of k-cycles.

We will also consider problems of covering cycles of length < k or finding
a maximum subgraph without cycles of length < k. We will elaborate on the
relation of these problems to our problems later. Most of our results extend
to the case when edges have weights, but for simplicity of exposition, we con-
sider unweighted and simple graphs only. We will also assume w.l.o.g. that G is
connected.

1.1 Previous and Related Work

Problems related to k-cycles are among the most fundamental in the fields of
Extremal Combinatorics, Combinatorial Optimization, and Approximation Al-
gorithms, and they were studied extensively for various values of k. See for ex-
ample [BII2T7ARITOT2ATTTTATOIHNE] for only a small sample of papers on
the topic. 3-Cycle Transversal was studied by Krivelevich [12]. Erdés et al. [6] con-
sidered 3-Cycle Transversal and 3-Cycle-Free Subgraph and their connections to
related problems. Pevzner et al. [I8] studied the problem of finding a maximum
subgraph without cyles of lengt < k in the context of computational biology,
and suggested some heuristics for the problem, without analyzing their approxi-
mation ratio. However, most of the related papers studied k-Cycle-Free Subgraph
in the context of extremal graph theory, and address the maximum number of
edges in a graph without k-cycles (or without cycles of length < k). This is
essentially the k-Cycle-Free Subgraph problem on complete graphs. In this work
we initiate the study of k-Cycle-Free Subgraph in the context of approximation
algorithms on general graphs.

As the state of the art differs substantially for odd and even values of k, we
consider these cases separately. But for both odd and even k, note that k-Cycle
Transversal is a particular case of the problem of finding a minimum transversal
in a k-uniform hypergraph (which is exactly the Hitting-Set problem). Thus a
simple greedy algorithm which repeatedly removes a k-cycle until no k-cycles
remain, has approximation ratio k.
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0dd k: For k-Cycle Transversal, an improvement over the trivial ratio of k was
obtained for k = 3 by Krivelevich [12]. Let Cy(G) denote the set of k cycles in
G, and let 7*(G) denote the optimal value of the following LP-relaxation for
k-Cycle Transversal:

min ) . p e (1)
St Y e e > 1 VO € Cr(G)
Te >0 Vee F

Theorem 1 (Krivelevich [12]). 3-Cycle Transversal admits a 2-approzimation
algorithm, that computes a solution of size at most 27*(QG).

For odd values of k, k-Cycle-Free Subgraph admits an easy 1/2-approximation
algorithm, as it is well known that any graph G has a subgraph without odd
cycles (namely, a bipartite subgraph) containing at least half of the edges (such
a subgraph can be computed in polynomial time). In fact, the problem of com-
puting a maximum bipartite subgraph is exactly the Max-Cut problem, for which
Goemans and Williamson [9] gave an 0.878-approximation algorithm. Note how-
ever that the solution found by the Goemans-Williamson algorithm has size at
least 0.878 times the size of an optimal subgraph without odd cycles at all, and
the latter can be much smaller than the optimal subgraph without k-cycles only.

Even k: For k-Cycle Transversal with even values of k£ we are not aware of any
improvements over the trivial ratio of k. For k-Cycle-Free Subgraph with even k, it
is no longer the case that G has a k-cycle free subgraph containing at least half of
the edges. The maximum number ex(n, Cy,) of edges in a graph with n nodes and
without cycles of length k& = 27 has been extensively studied. This is essentially
the 2r-Cycle-Free Subgraph problem on complete graphs. This line of research in
extremal graph theory was initiated by Erdés [5]. The first major result is known
as the “Even Circuit Theorem”, due to Bondy and Simonovits [4], states that
any undirected graph without even cycles of length < 27 has at most O(rnl‘H/ ™)
edges. This bound was subsequently improved. To the best of our knowledge,
the currently best known upper bound on ex(n, Cs,.) due to Lam and Verstraéte
[15] is %nlﬂ/r + 27" n. We note that the best lower bounds on ex(n, Cay) are as
follows. For r = 2,3, 5 it holds that ex(n, Cs,.) = @(n'*1/7). For other values of
7, the existence of a 2r-cycle-free graph with ©(n'*1/") has not been established,

and the best lower bound known is ex(n,Cy,) = 2 (n1+3k723+s> where ¢ = 0

if r is odd and e = 1 if r is even; we refer the reader to [I6] for a summary
of results of this type. All this implies that on complete graphs (a case which
was studied extensively), the best known ratios for 2r-Cycle-Free Subgraph are:

constant for r = 2,3,5, and {2 (n7i+6"'723+6> otherwise. For general graphs, the
bound ex(n,Cs,) = O (nlﬂ/r) implies an £2(n~'/")-approximation by taking a
spanning tree of G as a solution. In particular, for £k = 4, the approximation
ratio is £2(1/y/n), and no better approximation ratio was known for this case.
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1.2 Our Results

Our main result is for the k-Cycle-Free Subgraph problem on even values of k. It
can be summarized by the following theorem:

Theorem 2. For k = 2r, k-Cycle-Free Subgraph admits an 2 (n_ P _E) -

approzimation scheme with running time 6_9(1/5)po|y(n). In particular, 4-Cycle-
Free Subgraph admits an 2(1/n~/3=%)-approzimation scheme.

For dense graphs, we obtain better ratios that are close to the ones known for
complete graphs. Proof of the following statement will appear in the full version
of this paper.

Theorem 3. Let G = (V, E) be a graph with n nodes and at least en® edges.
Then G contains a 2r-cycle-free subgraph with at least € - ex(n,Ca,.) edges.

On the negative side, the only hardness of approximation result we obtain (again
proof will appear in the full version of this paper) is APX-hardness. Thus for
even values of k there is a large gap between the upper and lower bounds we
present. Resolving this large gap is an intriguing question left open in our work.

Our next results are for odd k. Krivelevevich [12] posed as an open question
if his (upper) bound of 2 on the integrality gap of LP () is tight for k = 3.
We resolve this question, and in addition show that the ratio 2 achieved by
Krivelevich for k = 3 is essentially the best possible.

Theorem 4

(i) If 3-Cycle Transversal admits a 2 — & approximation ratio for some positive
universal constant € < 1/2, then so does the Vertex-Cover problem.

(ii) For any e > 0 there exist infinitely many undirected graphs G for which the
integrality gap of LP (@) with k = 3 is at least 2 — ¢.

We note that Theorem [] holds also for any & > 4. We also extend the 2-
approximation algorithm of Krivelevich [12] for 3-Cycle Transversal to arbitrary
k which is odd, and use it to improve the trivial ratio of 1/2 for k-Cycle-Free
Subgraph.

Theorem 5. For any odd k the following holds:

(i) k-Cycle Transversal admits a (k — 1)-approzimation algorithm.
(ii) k-Cycle-Free Subgraph admits a (% + 4k1_6 -approximation algorithm.

Some remarks are in place: Theorem [ is valid also for digraphs, for any value
of k. Our results can be used to give approximation algorithms for the problem of
covering cycles of length < &, or finding a maximum subgraph without cycles of
length < k. For k = 3 we have for both problems the same ratios as in Theorem[Bl
For k > 4, the problem of covering cycles of length < k admits a k-approximation
algorithm (via the trivial reduction to the Hitting Set problem). For the problem
of finding a maximum subgraph without cycles of length < k, we can show
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the ratio £2(n~'/3-¢) for any k. For k > 6 this follows from extremal graph
theory results mentioned, while for k = 4,5 this is achieved by first computing
a bipartite subgraph G’ of G with at least |E|/2 edges, and then applying on G’
the algorithm from Theorem [ for 4-cycles.

1.3 Techniques

The proof of Theorem [ is the main technical contribution of this paper. Our
algorithm for k-Cycle-Free Subgraph with k& = 2r consists of two steps. In the
first step we identify in G a subgraph G’ which is an almost regular bipartite
graph with the property that G and G’ have approximately the same optimal
values. The construction of G’ can be viewed as a preprocessing step of our
algorithm and may be of independent interest for other optimization problems
as well. In the second step of our algorithm, we use the special structure of G’ to
analyze the simple procedure that first removes edges at random from G’ until
only few k-cycles remain in G’, and then continues to remove edges from G’
deterministically (one edge per cycle) until G’ becomes k-cycle free.

The proof of Theorem [f(i) gives an approximation ratio preserving reduction
from Vertex-Cover on triangle free graphs to 3-Cycle Transversal. It is well known
that breaking the ratio of 2 for Vertex-Cover on triangle free graphs is as hard as
breaking the ratio of 2 on general graphs. The proof of Theorem [ii) uses the
same reduction on graphs G that on one hand are triangle free, but on the other
have a minimum vertex-cover of size (1 — o(1))n. Such graphs exist, and appear
in several places in the literature; see for example [7].

The proof of part (i) of Theorem [l is a natural extension of the proof of
Krivelevich [12] of Theorem [Il Part (ii) simply follows from part (i).

Theorems 2 @ and Bl are proved in Sections 2] B, and @l respectively.

2 Proof of Theorem

In what follows let opt(G) be the optimal value of the k-Cycle-Free Subgraph
problem on G. We start by a simple reduction which shows that we may assume
that our input graph G is bipartite, at the price of loosing only a constant in
the approximation ratio. Fix an optimal solution G* to k-Cycle Free Subgraph.
Partition the vertex set V' of G randomly into two subsets, A and B, each of size
n/2, and remove edges internal to A or B. In expectation, the fraction of edges
in G* that remain after this process is 1/2. With probability at least 1/3 the
fraction of edges in G* that remain is at least 1/4; here we apply the Markov
inequality on the fraction of edges inside A and B.

Assuming that the input graph G is bipartite, our algorithm has two steps.
In the first step, we extract from G a family G of subgraphs G; = (A4; + B;, E;),
so that either: one of these subgraphs has a “f-semi-regularity” property (see
Definition [ below) and a k-cycle-free subgraph of size close to opt(G) or we
conclude that opt(G) is small. In the latter case, we just return a spanning tree
in G. In the former case, it will suffice to approximate k-Cycle-Free Subgraph on
G; € G, which is precisely what we do in the second step of the algorithm.
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Definition 1. A subset A of nodes in a graph is 0-semi-regular if Ay < 60 -da
where Aa and da denote the maximum and the average degree of a node in A,
respectively. A bipartite graph with sides A, B is 0-semi-regular if each of A, B
1s 0-semi-regular.

We will prove the following two statements that imply Theorem

Lemma 1. Let k = 2r. For any bipartite instance G of k-Cycle-Free Subgraph
there exists an algorithm that in e~©1/=)poly(n) time finds a family G of at most
2e2/% subgraphs of G so that at least one of the following holds:

(i) G contains an n> -semi-regular bipartite subgraph G; of G so that opt(G;) =
2(/%)opt(G).

(ii) opt(G) = O (ne=%*).

Lemma 2. k-Cycle-Free Subgraph on bipartite 0-semi-reqular instances G =
(A4 B,E) and k = 2r admits an 2 <(9T(A|B) “(5:—11)>1>—appmwimation
ratio in (randomized) polynomial time.

Let us show that Lemmas [[l and 2] imply Theorem [2] for bipartite graphs. We
first compute the family G as in Lemma/[Il Then, for each G; € G we compute a
k-cycle-free subgraph H; of G; using the algorithm from Lemma[P], with § = n?®.
Let H be the largest among the subgraphs H; computed. If H has more than n
edges, we output H. Else, we return a spanning tree in G.

2.1 Reduction to #-Semi-Regular Graphs (Proof of Lemma [)

Let G = (A+ B, E) be a bipartite connected graph, let £ > 0 be a small constant,
let n = |A| + |B|, and let 8 = n®. For simplicity of exposition we will assume
that § and ¢ = 1/e are integers.

We define an iterative process which partitions a subgraph G’ = (A’ + B, E')
of G with A’ C A and B’ C B into at most £ = 1/¢ subgraphs so that at
least one of the sides in each subgraph is #-semi-regular. Specifically, the family
F(G', A) is defined as follows. Partition the nodes in A’ into at most ¢ sets A;,
where A; consists of nodes in A’ of degree in the range [9j7 Gj“). The family
F(G', A) consists of the graphs G; = G' — (A’ — A;) (namely, G; is the induced
subgraph of G’ with sides A; and B’). Note that A; is a f-semi-regular node set
in Gj, but G may not be #-semi-regular. In a similar way, the family F(G’, B)
is defined. Since the the union of the subgraphs in F(G’, A) is G’, and since
|F(G', A)] = 1/e, there exists G” € F(G', A) so that opt(G”) > ¢ - opt(G’);
a similar statement holds for F(G’, B). For a family G of subgraphs of G let
F(G,A) =U{F(G,A): G €G} and F(G,B) =U{F(G,B):G €g}.

Define a sequence of families of subgraphs of G as follows. Gy = {G}, G; =
F(Go,A), Go = F(Gy1, B), and so on. Namely, G; = F(G;—1,A) if 7 is odd and
G, = F(Gi_1, B) if i is even. The following statement is immediate.

Claim. There exists a sequence of graphs {G; = (A; + Bi,Ei)}?iO so that for
every i: G; € G;, G; C G;_1, and opt(G;) > ¢ - opt(Gi—1).
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We now study the structure of the graphs GG;. We show that the average degree
in G; is rapidly decreasing when i is increasing, until one of the G;’s is #2-semi-
regular.

Claim. For every i, either G, is #%-semi-regular, or at least one of the following
holds:

e if 7 is even then dy
e if 7 is odd then dp

<da,,, /0, where dy, is the average degree of A; in Gj;
<dp,,, /0, where dp, is the average degree of B; in Gj.

42
42
Proof. Suppose that ¢ is even; the proof of the case when ¢ is odd is similar.
In Giy1 € Giy1, the maximum degree Ay, , of A;1 is at most 6 times the
average degree da,,, of Aj11. If G2 is not 6? regular, then Ap i 2 02 da,-
However, the maximum degree in A; 2 is A, < An,,, <0da,,,. This implies
that da, ., < dA,;+1/9-

i+2 i+1
All in all, we conclude that for some i < 2/e, G; is #?-semi-regular and sat-
isfies opt(G;) > e'opt(G); or Gy/. has constant average degree and satisfies

opt(Gy/e) > e2/2opt(G). The latter implies that opt(G) = O(~?/*n).

2.2 Algorithm for #-Semi-Regular Graphs (Proof of Lemma B)

Let G = (A + B, E) be a bipartite 6-semi-regular graph. Let d4 be the average
degree of nodes in A, and dp be the average degree of nodes in B. Let m =
da|A| = dg|B| = \/dadp|A||B| be the number of edges in G. Our algorithm
builds on the following two results (the first is by A. Naor and Verstraéte [I7]).

Theorem 6 ([I7]). The mazimum number of edges in a bipartite graph G =
(A + B, E) without cycles of length k = 2r is:

(2r =3) [(AIBI)* + Al +|BI| ifris odd

(2r — 3) [|A|5|B|?f A+ |B|] if T is even

Lemma 3. The number of k-cycles in G is at most m92T—1df471d’;371.

Proof. Consider picking k = 2r distinct nodes in G, r from A and r from B,
uniformly at random. Denote the nodes ay,as,...,a, € A and by,...,b. € B.
We analyze the probability that (a1, b1, a9,bs,...,a.,b.,a1) is a k cycle in G. In
our analysis, our random choices are made according to the order of the cycle
at hand, i.e., we first pick a1, then by, then as, and so on. As a; has degree at
most 0d 4, the probability that by is adjacent to a; is at most 6d 4 /| B|. Similarly,
as by has degree at most #dp, the probability that as is adjacent to by is at
most Odp /|A|. Continuing this line of argument, it is not hard to verify that the
probability that (a1, b1, a2,bs,...,a,,br,a1) is a k cycle in G is at most

dndy !
|A|"=1|B|"

The number of k-tuples (a1, b1,as,bs, ..., a.,b.) in G is bounded by |A|"|B|".
Thus the number of k-cycles in G is at most 62"~ d7d7; | A| = m@> —'dy 'dy .

927’—1



Approximating Maximum Subgraphs without Short Cycles 125

We now present our algorithm for k-Cycle Free Subgraph. In our analysis, we
assume w.l.o.g. that |A| > |B|. We also assume that |A| and |B| are sufficiently
large with respect to 6. Namely we assume that |A||B| > (166)2. Otherwise,
the subgraph consisting of a single edge adjacent to v for each node v € A, will
suffice to yield an approximation ratio of 2(1/6) which will equal £2(n~=%¢) in
our final setting of parameters. Theorem[d implies that

opt(G) < 4r((|A||B|) "= +|Al)

for any r. We now consider two cases: the case in which (]A||B )2+1 > |A]

and thus opt(G) < 8r(|A||B )T;rl; and the case in which (|A||B )2+1 < |A] and
thus opt(G) < 8r|A|. In the later case, the subgraph consisting of a single edge
adjacent to v for each node v € A will suffice to yield an approximation ratio of
Q2(1/r). We now continue to study the case in which opt(G) < 8r(|A||B|) =" .

Consider the following random process in which we remove edges from G. Each
edge will be removed from G independently with probability p to be defined later.
Denote the resulting graph by H. Denote by ¢ = 1 — p the probability that an
edge is not removed.

Claim. As long as mq > 16, with probability at least ; the subgraph H satisfies:

e The number of edges in H is at least mgq/2.
e The number of k cycles in H is at most 4q2’”m92“1d’;1d%_1.

Proof. The expected number of edges in H is mq > 16. Thus, using the Cher-
noff bound, the number of edges in H is at least half the expected value with
probability > 3/4. In expectation, the number of k-cycles in H is at most
¢*rm0? —1d’*d; ' With probability at least 3/4 (Markov) the number of k-
cycles in H will not exceed 4 times this expected value.

We now set, ¢ such that the number of k-cycles in H is at most é the number of
edges in H. Namely, we set ¢ to satisfy 4q27'm92’"_1d2_1d’j3_1 < mgq/4. Then:

¢ =16210(dadp) 1.

With this setting of parameters and our assumption that |A||B| > 1602, we have
that mq > 16 and Claim[22 holds. Thus, we may remove an additional single
edge from each remaining k-cycle in H to obtain a k-cycle-free subgraph with at
least mq/4 edges. This is the graph our algorithm will return. To conclude our
proof, we now analyze the quality of our algorithm.

We consider 2 cases. Primarily, consider the case that m < 8r(|A||B]) 2" .
This implies that (|A||B|dadp)> < 8r(|A||B )T;rl, which in turn implies that
dadp < 6412(JA||B|) . Using the fact that opt(G) < m we obtain in this case
an approximation ratio of

mq

q 1 1 )
> 1= - >0 -
dopt(G) 4 (e(dAdB)wll ) (0(64r2|A||B|) oG

_g( Lo )
(1Al Bl) G
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The second case is analyzed similarly. Assuming m > 87“(|A||B|)T2+r1 we get

that dadp > 64r2(|A||B|)+. Using the fact that opt(G) < 8r(|A||B|)"'2t1
obtain in this case an approximation ratio of

we

1

mq > (|A||B|dAdj5z)é _0 (dAdB)Q(Qr—l)

dopt(G) — 1 1 = onild 3
32r(|A||B]) 2r -162r-10(dadp)2r—1 r(|A||B])2r

o 1)
Or(|AlB[) =1

3 Proof of Theorem

Given an instance J = (V;, Ej) of Vertex-Cover, construct a graph G = (V, E)
for the 3-Cycle Transversal instance by adding to J a new node s and the edges
{sv : v € Vj}. Clearly, every edge uv € E; corresponds to the 3-cycle Cy, =
{us, sv,uv} in G.

Suppose that J is 3-cycle-free. Then the set of 3-cycles of G is exactly {Cyy :
uv € Ej}. The following statement implies that w.l.o.g. we may consider only
3-cycle transversals that consist from edges incident to s.

Claim. Suppose that J is 3-cycle-free. Let F' be a 3-cycle transversal in G and
let v € FNE;. Then F —uv+ su is also a 3-cycle transversal in G. Thus there
exists a 3-cycle transversal F' C {sv:v € V;} in G with |F’'| < |F]|.

Proof. The only 3-cycle in G that is covered by the edge uv is C,,. This cycle
is also covered by the edge su.

Claim. Suppose that J is 3-cycle-free. Then U C V; is a vertex-cover in J if|
and only if, the edge set Fy = {su:u € U} is a k-cycle transversal in G.

Proof. We show that if U C V; is a vertex-cover in J then Fy is a 3-cycle
transversal in G. Let Cy, be a 3-cycle in G. As U is a vertex-cover, u € U or
v e U. Thus su € Fy or sv € Fy. In both cases, Cy, N Fy # 0.

We now show that if Fy; is a 3-cycle transversal in G, then U is a vertex-cover
in J. Let uv € E;. Then Cy, is a 3-cycle in G, and thus su € Fy; or sv € Fy.
This implies that u € U or v € U, namely, the edge uv is covered by U.

From the claims above it follows that an a-approximation for 3-Cycle Transversal
on GG implies an a-approximation for Vertex-Cover on 3-cycle-free graphs J. Now
we prove (for completeness, as we did not find an appropriate reference):

Claim. Any approximation algorithm with ratio a > 3/2 for Vertex-Cover on 3-
cycle-free graphs implies an a-approximation algorithm for Vertex-Cover
(on general graphs).
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Proof. Suppose that there is an a-approximation algorithm for Vertex-Cover on
3-cycle-free graphs. Let J be a general graph, and let opt(J) be the size of
its minimum vertex cover. Consider the following two phase algorithm. Phase 1
starts with an empty cover F}, and repeatedly, for every 3-cycle C' in J, adds the
nodes of C' to F; and deletes them from .J. Note that any vertex-cover contains
at least two nodes of C, which implies a “local ratio” of 2/3. Let J; be the
triangle free graph obtained after Phase 1. In Phase 2 use the a-approximation
algorithm (for 3-cycle-free graphs) to compute a vertex-cover Fy of Js. The

statement follows since: opt(J) > 2|Fy| 4 opt(.J2) > 2|Fy| + |I;2| > |F1|Z|F2|.

We now prove part (i) of the theorem, namely, that for £ = 3 the integrality
gap of [0) is at least 2 — e. We will use the fact that for any € > 0, there exist
infinitely many graphs J = (V, E;) which are 3-cycle-free and have minimum
vertex-cover of size at least |V;|(1 — 5). Such graphs appear in various places in
the literature. For example see Theorem 1.2 in [7] in which 3-cycle-free graphs .J
with independence number at most [V;| are presented. For such graph J, the
minimum k-cycle cover in the corresponding graph G has size at least |V |(1-3).
On the other hand, the solution z, = 1/2 if e is incident to s and 2. = 0 otherwise
is a feasible solution to LP () on G with value |V;|/2. Hence the integrality gap
is at least (11723) =2—c.

Theorem [ easily extends to arbitrary k > 4. We use the same construction
as for the case k = 3, but in addition subdivide every edge of J by k — 3 nodes
(and do not make any assumptions on J). Hence every edge uv € F is replaced
by a path P,, of the length k& — 2, and Cy, = Py, + su + sv is a k-cycle in
G. Since k > 4, G has no other k-cycles, namely, the set of k-cycles in G is
{Cuv = Puy + su+ sv : uv € Ej}. The rest of the proof of this case is identical
to the case k = 3, and thus is omitted.

4 Proof of Theorem

To prove Theorem [l we prove two theorems that consider a more general setting
of a family F of subgraphs of G which are not necessarily k-cycles, nevertheless
each subgraph C € F is of size < k. We need some definitions. Let G be a graph
and let F be a family of subgraphs (edge subsets) of G. For a subgraph H of G,
let F(H) be the restriction of F to subgraphs of H; H is F-free if F(H) = (). An
edge set F' that intersects every member of F is an F-transversal. We consider
the following two problems, that generalize the problems k-Cycle-Free Subgraph
and k-Cycle Transversal. The instance of the problems is a graph G = (V, E') and
a family F of subgraphs of G. The goal is:

F-Transversal: Find a minimum size F-transversal.
F-Free Subgraph: Find a maximum size F-free subgraph of G.

For F = Cix(G), we get the problems k-Cycle Transversal and k-Cycle Free
Subgraph, respectively. Let 7x(H) denote the optimal value of the following LP-
relaxation for F-Transversal on H:
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min - pp) Te (2)
st Y eccTe > 1 VC € F(H)
ZTe >0 Ve € E(H)

An edge of H is F-redundant if no member of F(H) contains it; e.g., if F =
Cr(G), then an edge of H is F-redundant if it is not contained in any k-cycle of
H. We prove:

Theorem 7. Suppose that any subgraph H of G admits a polynomial time algo-
rithm that: (i) Solves LP @) for H; (ii) Finds F-redundant edges of H ; (iii) Finds
an F(H)-transversal of size at most |E(H)|- (k —1)/k. Then there exist a poly-
nomial time algorithm that finds an F(G)-transversal of size < (k—1) - 7x(G).

To prove Theorem [f(ii) we connect the approximation of F-Free Subgraph and
F-Transversal by the following theorem:

Theorem 8. Suppose that for any graph G with m edges there ezist a polynomial
algorithm that finds an F(G)-free subgraph of size > Bm, and that F-Transversal
admits an a-approrimation algorithm. Then k-Cycle-Free Subgraph admits an
af/(a+ [ — 1)-approzimation algorithm.

Let us now show that Theorem [1 implies Theorem [B(i) and that Theorem
implies Theorem [l(ii). Let G be a graph with m edges. As was mentioned, it
is not hard to find in G a subgraph with at least m/2 edges and without odd
cycles. For Theorem [Bi), it is easy to see that this setting obeys the conditions
of Theorem [ hence we obtain a (k — 1)-approximation for F-Transversal in this
case. For Theorem BI(ii), we apply Theorem [§ with 3 = 1/2 and o = k — 1. The
ratio obtained is af/(a+ 8 —1) = (k—1)/(2k —3) = j + ,,' ;. We now prove
Theorems [ and [ (in Sections B0l and [£2] respectively).

4.1 Proof of Theorem [7]
The algorithm is as follows:

Initialization: H «— G; F| < (.

Phase 1:

While for an optimal solution = to @) xz. > 1/(k — 1) for some e € E(H) do:
Fy— Fi+e H— H—e.

EndWhile

Phase 2:

- Remove all F(H)-redundant edges from H. Denote the resulting graph by Ho.

- Compute an F(Hj)-transversal Fy of size at most |E(Hs)| - (k —1)/k.

Return Fy U Fy.

Under the assumptions of the Theorem, all steps can be implemented in poly-
nomial time. It is also easy to see that the algorithm returns a feasible solution.
We now analyze the approximation ratio. We start with a simple claim followed
by our key Lemma.



Approximating Maximum Subgraphs without Short Cycles 129

Claim. Let H be the graph obtained after Phase 1 of our algorithm and let x.
be an optimal solution to LP [@) on H. Then z. = 0 for every F(H )-redundant
edge e in H. Thus the restriction of z to Hs is also an optimal solution to LP
(IZ) on HQ.

Proof. Let e be an F(H )-redundant edge. Assume for sake of contradiction that
e > 0. We can now reduce the value of the LP solution by zeroing out z.. The
new solution is still valid, as e is F(H)-redundant and thus does not appear in
the first family of constraints of ({2]).

Let Hy be obtained from H by removing all F(H )-redundant edges. Then the
restriction of x to Hs is an optimal solution to (2] since any LP solution for Ho
can be extended to one for H by setting z. = 0 for every F(H )-redundant edge e.

Using the claim above, we may assume that the subgraph Hs has an optimal
solution = to (@) in which x. < 1/(k — 1) (for all e € E(Hz)).

Lemma 4. Let Hy be a subgraph of G without F-redundant edges and let x be
an optimal solution to LP ). If xz. < 1/(k — 1) for every e € E(Hsz) then
T (Hy) > |E(Hy) | /k.

Proof. Let vi-(H2) = 77(H>2) denote the optimal value of the dual LP:

max ) ¢z Yo 3)
st Y os.yo <1 Ve € E(Hy)
yc > 0 VC € F(Ha)

Let x and y be optimal solutions to [2)) and to [@l), respectively. Consider two
cases, after noting that the primal complementary slackness condition is:

>0 = Y yo=1 (4)
C>e

Case 1: z, > 0 for every e € E(Hs).
In this case 7x(H) > |E(H2)|/k, since from ) we get:

B(H2) = > 1= > ye= Y |Clye< > hyo=hkvr(Hz)=krr(H).

e€E(Hs) e€E C3e CEF(Hy) CEF(Hy)

Case 2: x5 = 0 for some f € E(H>).

Since Hy has no F-redundant edges, there is C' € F(H3) so that f € C. Since
xy =0, we have > .,z > 1. Since |C — f| < k — 1, there exists e € C' — f
so that . > 1/(k — 1). A contradiction.

We now bound the value of |Fi| and |F3| with respect to 73(G). We start with
some notation. Let HY = G be the starting point of our algorithm. Let H' be
graph obtained from H° by the removal of e; after the first round of Phase 1.
Similarly, for the i’th round of Phase 1, let H? be the graph obtained from H*~!
by the removal of e;. Let H = H' be the graph obtained after Phase 1 of our
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algorithm (here ¢ denotes the number of rounds in Phase 1). It is not hard to
verify that 72(H™') > 75(H") + x,. Here z., is obtained from the optimal
solution to H~!. This implies that 75(G) > 75(H) + Y\_1 ..

Now to bound |Fi| and |F|. First notice that |Fy| < (k — 1) Zl 1 Te, . Re-
call that H, is the graph obtained in Phase 2 from H by removing all F(H)-
redundant edges. It also holds that, |Fy| < |FE(Hs2)| - (k — 1)/k. By Lemma [
T5x(Hy) > |E(Hz)|/k. Hence

Tr(Hz) T |E(H2)|/k
As by Claim 1] 75 (H) = 75(H») we have that

[Fu| + [Fo] < (k- —i—er, < (k- 1D)715(G),
which concludes our proof.

4.2 Proof of Theorem [§

In what follows let opt be the optimal solution value of the F-Free Subgraph
problem on G. We choose the better result F from the following two algorithms:

Algorithm 1: Find an F(G)-free subgraph of size > fm.
Algorithm 2: Find an F(G)-transversal I of size < o times an optimal F(G)-
transversal, and return G — I.

Algorithm 1 computes a solution of size > (m. Algorithm 2 computes a
solution of size > m — a(m — opt). The worse case is when these lower bounds
coincide: fm = m —a(m — opt) which implies opt = m(a+ 8 — 1)/a. This gives
the ratio m(a+5"11)/a = a+6 ,- Formally, [F| > max{#m,m — a(m — opt)}.
Consider two cases:

Case 1: fm > m — a(m — opt), so opt < m(a +  — 1)/a. Then

|El S sm pm _ ap

opt “opt ~ (a+B8-1)/a a+p-1"
Case 2: m — a(m — opt) > fm, so m/opt < a/(a+ F —1). Then
|F|>m—a(m—opt): —(a—1)~m>a—(a—1)- ! _ af

opt — opt opt — a+B-1 a+p8-1"

In both cases the ratio is bounded by fﬂ which concludes our proof.

p-17

5 Open Problems

For k-Cycle Transversal, we have ratios k — 1 for odd values of k and k for even
values of k. However, the best approximation threshold we have is 2. Closing
this gap (even for k = 4,5) is left open.
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For k-Cycle-Free Subgraph, we have ratios 2/3 for k = 3 and n~ /3¢ for k = 4.

The best approximation threshold we have is APX-hardness. Hence, we do not
even know if our ratio of 2/3 for k = 3 is tight. Our result for k¥ = 3 actually
establishes a lower bound of 2/3 on the integrality gap for the natural LP for
3-Cycle-Free Subgraph, but the best upper bound we have is only 3/4. Finally, in
our opinion, the most challenging open question is closing the huge gap for the
case k = 4.
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Deterministic 7/8-Approximation for the Metric
Maximum TSP
(Extended Abstract)
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Abstract. We present the first 7/8-approximation algorithm for the
maximum traveling salesman problem with triangle inequality. Our al-
gorithm is deterministic. This improves over both the randomized algo-
rithm of Hassin and Rubinstein [2] with expected approximation ratio of
7/8 — O(n~Y?) and the deterministic (7/8 — O(n~/?))-approximation
algorithm of Chen and Nagoya [1].

In the new algorithm, we extend the approach of processing local
configurations using so-called loose-ends, which we introduced in [4].

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively
researched problems in computer science and arise in a variety of applications.
In its classical version, given a set of vertices V' and a symmetric weight function
w: V? — Rsg satisfying the triangle inequality one has to find a Hamiltonian
cycle of minimum weight.

There are several variants of TSP, e.g. one can look for a Hamiltonian cy-
cle of minimum or maximum weight (MAX-TSP), the weight function can be
symmetric or asymmetric, it can satisfy the triangle inequality or not, etc.

In this paper, we are concerned with the MAX-TSP variant, where the weight
function is symmetric and satisfies the triangle inequality. This variant is often
called the metric MAX-TSP.

MAX-TSP (not necessarily metric) was first considered by Serdyukov in [5],
where he gives a i—approximation. Next, a Z—approximation algorithm for the
metric case was given by Kostochka and Serdyukov [3]. Hassin and Rubinstein [2]
used these two algorithms together with new ideas to achieve a randomized
approximation algorithm with expected approximation ratio of (; —O(n=1/?)).
This algorithm has later been derandomized by Chen and Nagoya [1], at a cost
of a slightly worse approximation factor of (7 — O(n~1/%)).

In this paper, we give a deterministic ;—approximation algorithm for metric
MAX-TSP. Our algorithm builds on the ideas of Serdyukov and Kostochka, but

* This research is partially supported by a grant from the Polish Ministry of Science
and Higher Education, project N206 005 32/0807.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 132 2008.
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is completely different from that of Hassin and Rubinstein. We apply techniques
similar to those used earlier in [4] for the directed version of MAX-TSP with
triangle inequality.

1.1 Closer Look at Previous Results

Classic undirected MAX-TSP algorithm of Serdyukov [5] starts by constructing
two sets of edges of the input graph G: a maximum weight cycle cover € and a
maximum weight matching M, and then removing a single edge from each cycle
of € and adding it to M. It can be shown that we can avoid creating cycles
in M, so in the end we get two sets of paths: €’ and M’. These sets can be
extended to Hamiltonian cycles arbitrarily. Since we started with a maximum
weight cycle cover and a maximum weight matching, we have w(€’') + w(M') >

w(C) + w(M ) > 5OPT. It follows that the better of the two cycles has weight
at least 3OPT. Here we used two standard inequalities: w(€) > OPT and
w(M) > %OPT The latter only holds for graphs with even number of vertices.
The case of odd number of vertices needs separate treatment.

Serdyukov’s algorithm works for any undirected graph, with weight function
not necessarily satisfying the triangle inequality. However, if this inequality is
satisfied, we can get a much better algorithm. Kostochka and Serdykov observed
the following useful fact (see e.g. [2] for a proof).

Lemma 1 (Kostochka, Serdyukov [3]). Let G = (V, E) be a weighted com-
plete graph with a weight function w : E — R>q satisfying the triangle inequality.
Let € be a cycle cover in G and let Q = {e1,...,eje|} be a set of edges with ex-
actly one edge from each cycle of C. Then the collection of paths C\ @Q can be
extended in polynomial time to a Hamiltonian cycle H with

el

w(H) > w(@) = > wle;)/2.

i=1

Kostochka and Serdyukov [3] propose an algorithm which starts by finding a
maximum weight cycle cover € and then applies the above lemma with @) con-
sisting of the lightest edges of cycles in €. Since all cycles have length at least
3, the welght of the removed edges amounts to at most Jw(€), so we regain at
least w(€), which leads to 5-approximation. (Note that if it happens that all
the cycleb in € have length at least 4 we get 7—approx1mat10n)

2  Owur Approach

Similarly to Serdykov’s algorithm (as well as that of Hassin and Rubinstein), our
algorithm starts by constructing a maximum weight cycle cover € and maximum
weight matching M. In our reasoning we need the inequality w(M) > 3OPT,
which holds only for graphs with even number of vertices. In the remainder of
this paper we only consider such graphs. Our results can be extended to graphs
with odd number of vertices, we defer the details to the full version of the paper.
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In all previous algorithms edges are moved from the cycle cover C to the
matching M. We do not follow this approach. Instead, we remove some edges
from € and add some edges to M. The edges added to M are not necessarily the
edges removed from €. In fact, they might not even be cycle edges in C. All we
need to guarantee is that their total weight is sufficiently large compared to the
weight loss in C.

Here is how it works. Let min(C;) be the lightest edge of a cycle C; € €. Since
removing a single edge from each C; and then joining the resulting paths using
Lemma [T results in the weight loss equal to half the weight of the removed edges,
it should be clear that we should remove min(C;) from each C;. The weight loss
is then ), w(min(C;))/2.

We are going to describe an iterative process of adding edges to a collection
of paths P, initially equal to M. Edges will be added in phases, each phase
corresponds to a single cycle C; € C. After finishing the phase corresponding to
C; we will call C; processed. The edges added in the phase corresponding to C;
will usually, but not necessarily belong to C; or at least connect vertices of Cj;.
Their total weight will also be directly related to w(C;) and w(min(C;)). Let
(o, B) % C; = aw(C;) 4+ Pw(min(C;)). The following Lemma shows why this is a
useful definition:

Lemma 2. If during processing the cycles in C, we can add edges of total weight
at least Y o ceola,1/2) x C; to M, then we get a (3/4 + «/2)-approzimation
algorithm.

Proof. Let Hy be the Hamiltonian cycle obtained from € by using Lemma [Tl and
let Hs be the cycle obtained from M by processing all cycles of € and patching
the resulting collection of paths into a Hamiltonian cycle. Then

w(Hy) +w(Hy) > |w(€) = w(min(C;))/2

i

+

+ > (3/2+ a)OPT,

w(M) + aw(C) + Zw(min(C’i))/Q

so the heavier of the two cycles is a (3/4 + a/2)-approximation.

In the remainder of the paper, we show that this can be done for « = 1/4,
yielding a 7/8-approximation.

2.1 Skeleton of the Algorithm

A graph P is sub-Hamiltonian if it is a family of disjoint paths or a Hamiltonian
cycle (i.e. it can be extended to a Hamiltonian cycle). Let P be a family of
disjoint paths. We say that set of edges S is allowed w.r.t. P, if S is disjoint
from P and the edge sum of P and S is sub-Hamiltonian. We call an edge e
allowed w.r.t P if {e} is allowed w.r.t. P. If an edge is not allowed, we call it
forbidden.
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In the algorithm presented below, we maintain a sub-Hamiltonian graph P
satisfying the following invariant.

Invariant 1. For any vertex v, if degp(v) = 2 then the cycle v belongs to has
been already processed.

Consider a phase of our algorithm and let C' be the cycle that is still unprocessed.
In this situation a set S of edges will be called a support of C' if S is allowed
w.r.t. P, and after adding S to P (and thus making C' processed) Invariant [l is
satisfied.

The following is the skeleton of the algorithm, that we will develop in the
remainder of the paper.

Algorithm 2.1. MAIN ALGORITHM
Let M be a heaviest matching and € a heaviest cycle cover in G.
Let Hy be the Hamiltonian cycle obtained from € by using Lemma [l
P:=M
Mark all cycles in C as unprocessed.
for each unprocessed cycle C' in C do
Find S, a support of C' of large weight.
P:=PUS
Mark C' as processed.
Arbitrarily patch P to a Hamiltonian cycle Ho.
: Return the heavier of H; and Hs.

—_

2.2 Loose-Ends

When considering a cycle C;, we are going to extend P by adding some edges
connecting the vertices of C;. Ideally we would like to add n;/2 new edges, where
n; is the length of C;. However, this is not always possible, because some of the
cycles have odd length and n;/2 is not an integer. Instead we are going to use
the idea of loose-ends introduced in [4].

A loose-end is a vertex v, for which degp(v) = 1 even though the cycle it
belongs to is already processed. A vertex v of cycle C' € € becomes a loose-end
if no edge adjacent to v is added to P when C' is processed. This vertex can be
connected with some other vertex at a later stage and cease being a loose-end.

Consider two odd-length cycles C; and C5, say both of length 5. When we
process C1, we can only add 2 edges to M, and some vertex v € (7 is not an
endpoint of any of these edges, so it becomes a loose-end. Later, when we process
Cs, we can add 3 edges to M, by connecting one of Cy’s vertices with v. Using
the triangle inequality, we can guarantee that this edge has large weight. So in
this case we get a little less weight from C4 and a little more weight from C5. It
is important to process cycles in order that guarantees that the weight lost when
processing the earlier cycles (the ones that give loose-ends) is dominated by the
weight gained when processing the later cycles (the ones that use loose-ends).
We will show that the algorithm can determine this order.
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Let S be a support of C' in some phase of the algorithm. We will say that S
is a k-support if after adding it to P (and thus processing cycle C') the number
of loose-ends increases by at least k (k could be negative here).

In the following section we describe in detail how the cycles are processed in
our algorithm. For even-length cycles we construct heavy O-supports, and for
odd-length cycles we construct both (—1)-supports and (+1)-supports.

When constructing (—1)-supports, we need to assume that at least one loose-
end is available. Unfortunately, just one loose-end may be insufficient to guar-
antee the existence of a (—1)-support. This could happen if the loose-end u is
connected to C, the cycle being processed, by a path in P. In that case, adding
an edge between u and a vertex of C' to P may create a cycle in P. This is accept-
able only if that cycle is Hamiltonian (in particular, C' would have to be the last
cycle processed). Luckily, it turns out that two loose-ends are always sufficient
to avoid creating such short cycles. Thus, when describing a (—1)-support for
each odd cycle we will consider two situations: when there are two loose-ends,
and when there is exactly one loose-end but the algorithm is in the last (i.e.
|C|-th) phase.

3 Processing Cycles

In this section we consider an arbitrary phase of the algorithm and we describe
supports of unprocessed cycles. The construction of a support of such a cycle
C may depend on the number of loose-ends and the way the collection P of
paths constructed so far interacts with C, in particular on which edges of C are
forbidden etc.

The following observations will be used in many of our proofs.

Observation 1. Let C' be an unprocessed cycle and let M C E(C') be a match-
ing. Let C be any cycle in P U M. Then if C' contains an allowed edge of M, it
contains at least two allowed edges. Also, if C contains a forbidden edge of M,
it contains exactly one edge of M. O

Observation 2. In any phase of the algorithm and for any unprocessed cycle
C, forbidden edges with both endpoints in C' form a matching. O

Consider an unprocessed cycle C'. A set of edges S will be called a semi-support
of C' when P U S contains vertices of degree at most 2, and after adding S to P
(and thus making C processed) Invariant [l is satisfied. If after adding S to P
the number of loose-ends increases by k be will also call S a k-semi-support (k
may be negative).

Note that the only difference between a semi-support and a support is that
after adding a semi-support to P we may get a non-Hamiltonian cycle in P.
The following lemma, similar to the Kostochka-Serdyukov technique, will be
used to convert a semi-support M to a support S without losing much weight.
The weight loss in this process depends on how the weight of M is distributed
between allowed and forbidden edges, on the weight of allowed edges of M that
belong to cycles in P U M, etc.
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Fig. 1. Breaking the cycles in the proof of Lemma/[3l Dashed edges are lighter than the
corresponding solid edges. Crossed-out edges are the edges removed from the cycles.

Lemma 3. Consider any phase of the algorithm and let C' be an unprocessed

cycle. Let M be a k-semi-support of C. Assume there is a vertex xo & V (M),

such that xo is a loose-end or xg € V(C). Moreover, assume P U M contains

cycles (possibly of length 2) C1,...,Cy. For eachi, 1 <i < g, lete; be any edge in

MNC;. Let Q ={e1,...,eq} and let D = J, C;. Finally, let us partition edges in

M into two sets: F' containing forbidden edges, and A containing allowed edges.
Then one can find S, a k-support of C, such that

(i) w(S) = w(M \ Q)+ Ju(Q),
(ii) w(S) > w(A\ D) + Fw(AN D)+ Lw(F).

Proof. Denote the ends of e; by 1 and y; in such a way that xgy; is heavier than
zox1. Note that w(zoy1) = max{w(zoz1), w(zoy1)} > 3 (w(zez1) + w(zoyr)) >
%w(el), where the last step follows from the triangle inequality. Moreover, by
replacing ey by xgy; we break the cycle C7 and x; becomes a loose-end. We can
proceed in this way for all cycles, i.e., for every i = 1,...,q the ends of e; are

labelled x; and y; so that
w(zioys) = Lwe). (1)

Let S=M\{e;|i=1,...,¢} U{xs—1y; | i =1,...,q}. Clearly, PU S does not
contain cycles hence it is sub-Hamiltonian. Also, observe that there are only 2
vertices, namely z¢ and x, whose degrees differ in graphs PUM and PUS. Since
degpugzo = 2 and degp gy = 1, after adding S to P (and thus processing
(') Invariant [ is still satisfied, and so S is a support. Also note that xy is a
loose-end in PUM and it is not a loose-end in P U .S, while z, is not a loose-end
in PUM and it is a loose-end in P U S. It follows that S is a k-support.

Now let us bound the weight of S. By (@), w(S) > w(M\ Q)+ jw(Q), which is
claim (i). To prove (ii), in each cycle C; we choose the lightest edge e; in M NC;
and we assume @ consists of these edges. Notice that F' C @ (by Observation[I])
and also A\ D C M \ @, so by (i) we have,

w(S) = w(M\Q)+w(Q) = wA\D)+w((AND\Q)+ ,w(ANQ)+ jw(F). (2)

By Observation [I, and since @ consists of the lightest edges in cycles, w((A N
D)\ Q) > %w(A N D). Then w((AND)\ Q)+ %w(A NQ)=w((AND)\ Q)+
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2w((A ND)NQ) = ,w(AND)\ Q)+ w(A NnD) > 4w(A N D). By plugging
it into ([2) we get (i )

3.1 Even Cycles

Lemma 4. Let C be an unprocessed 4-cycle and assume that there is at least
one loose-end. Then there is a 0-support of C' of weight > (47 2) *C.

Proof. We consider two cases:

Case 1. FE(C) has at most one forbidden edge. We partition E(C) into two
matchings, My and Ms. W.lo.g. assume M; does not contain forbidden edges.
Let S; and Sy be the supports corresponding to M; and My by Lemma Bl and
let S be the heavier of them. Following the notation from Lemma [3 define Ay,
As (Fy, F») as the sets of allowed (resp. forbidden) edges of M;, Ms. Let Dy,
D5 be the sets of edges of F(C) that belong to cycles in P U M; or P U M,
respectively. Alsolet A= A1 U Ay, F=F,UF; and D = Dy U Ds.

Notice that by inequality (ii) of Lemma Bl applied to M;, i = 1,2 we get
w(Si) > w(A; \ D;) + 3w(A; N D;) + jw(F;). Summing up the two 1nequahtleb
yields

w(S) > %(w(Sl) + w(S2)) > %w(A \ D)+ gw(A ND)+ Allw(F) (3)

Let us first assume that P U M; contains a cycle C. By Observation [l both
allowed edges of M; are in C. So either both chords of C' are forbidden or both
edges of My are. Since we assumed that F(C) has at most one forbidden edge,
it is the chords of C' that are forbidden. It now follows from Observation [ that
both edges of M; are allowed, so A = C. From @) we get w(S) > 3w(A) =
gw(C) > (47 2)*C’

Hence, we may assume that P U M; contains no cycle. It follows that Dy =10,
SO |A\D| > 2. From (B) we get w(S) > 2w(A\D)—|— w(AﬁD) 41 w(F) >
}l(w(A\D)+w(AﬁD)+w(F))+ w(A\ D) > (C’)+ w(A\D) > (,, é)*C
where the last inequality follows from |A\ D| 2 2.

U1 o U1 V4 U1 Vg
| | | |
I I I I
ue” L | | e | U
! | ! | ! | ! |
5 5 2 3 1’2 s3 2 3
Sl SQ S?, S4

Fig. 2. Supports in Case 2 of the proof of Lemma [

Case 2. F(C) has two forbidden edges. Denote the vertices of C' by v1,...,v4 in
the order they appear on C' and assume w.l.o.g. that v1vy and vgvy are forbidden.
Let u be a loose-end. Consider four edge sets S1 = {uwvy, vavs}, So = {uve, v1v4},
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S3 = {uvyg, vavs}, and Sy = {uwvs,vivs}. Note that these sets are allowed since
for any 4, edges of S; belong to a single path in P U S; (ending in vy, v3, v1 and
vy respectively). It follows that all S; are 5upportb and we choose S, the heaviest
of them. Then w(S) > , ZZ 1w( ) > 4 [2w(vavs) + 2w(vive) + (w(uvy) +
w(uve)) + (w(uvs) + w(uvy))] > [2’(1](1}21}3) + 2w(v1v4) + w(v1v2) + w(v3vy)],
where the last step follows from trlangle inequality. Hence w(S) > iw(C) —+
slw(v2v3) +w(vivg)] > (5, 5) * C.

Lemma 5. Let C be an unprocessed even-length cycle, |C| > 6, and assume that
there is at least one loose-end. Then there is a 0-support of C' of weight at least

(1,3)*C.

Proof. We partition E(C') into two matchings, My and Mo, let S7 and S2 be the
supports corresponding to M7 and Ms by Lemma [B] and let S be the heavier of
these supports. We follow all the definitions from the beginning of the proof of
the previous lemma to obtain inequality (BI)

From that inequality we get w(S) > w(A) + jw(F) = jw(C) + jw(A). It
follows that w(S) > (3, 5) * C if |A] > 4.

Since by Observationlwe have |A| > |C|/2, the only case we need to consider
is that of |C| = 6 and |A| = 3. W.l.o.g. M7 = A and My = F. Let Q bet the set of
the lightest edges from each cycle in PUM; or PUMa>, one edge from each cycle.
There is at most one such cycle in P U My, since by Observation [Il each such
cycle has to contain at least two edges It follows that |A\ Q| > 2. By inequality
(i) in Lemma Bl we get w(S) > J (w(S1) + w(Ss)) > Jw(E(C)\ Q)+ jw(Q) =
Jw(B(O)\ Q) + jw(C) = 4w(A \ Q)+ jw(C) = (}, 3) *C, as required.

3.2 Triangles
For any cycle C, by max(C') we denote the heaviest edge in C.

Lemma 6. For any unprocessed triangle C, there is a (+1)-support of C' of
weight at least (3, 5)  C — w(max(C)).

Proof. Let x,y,z be the vertices of C' and assume w.l.o.g. that both zz and
yz are allowed. Let S consist of the heavier of the edges xz, yz. Clearly, S is a
support and w(S) > %(w(axz)—kw(yz)) > Jw(0)+ j (w(zz)+w(yz)) — jw(zy) >

(4,2)*0 4w(33y) (4,2)*0 4w(max(0))

Lemma 7. Let C' be an unprocessed triangle and assume that there are two
loose-ends. Then there is a (—1)-support of C of weight at least (},1)x C +

Low(max(C)). e

Proof. Let z, y, z bet the vertices of C' and let u and v be the loose-ends. We
consider 2 cases:

Case 1. Both loose-ends are connected to C' by paths, say u is connected to x
and v to y. Note that in this case all edges of C' are allowed. Let S1 = {zy, zv}
and Sy = {zy,zv}. Note that after adding any of these sets to P, both added
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Fig. 3. Supports in Case 1 of the proof of Lemma [7] Gray lines denote the paths
connecting loose-ends with C.

edges lie on a single path that ends in u (see Figure Bl), so P remains sub-
Hamiltonian. Hence both S7 and Ss are supports of C'. The heavier of them
has weight max{w(zy) + w(zv), w(zy) + w(zv)} > J(w(zy) + w(zy) + w(zv) +
w(zv)) > é(w(xy) +w(zy) + w(zz)) > }lw(C’) + éw(min(C)) + }lw(maX(C')) =
(1,3)*C+ jw(max(C)).

Case 2. At least one loose-end, say u, is not connected to C' by a path in
P. W.lLo.g. assume that both zz are yz allowed. Let S; = {zz,yu} and Sy =
{yz, zu}. Note that adding S; to P does not create a cycle. Indeed, yu does not
belong to a cycle because yu belongs to a path that ends in a vertex different
from x, y or z. Also zz does not belong to a cycle because it was allowed before
adding it to P. Similar reasoning shows that adding Ss to P does not create
a cycle. Hence both S7 and Sy are supports. Similarly to the previous case we
get max{w($1), w(S2)} > 2 (w(@z) + w(yu) + w(yz) + w(zw)) > (1, 1) * C +
Jw(max(C)).

Observation 3. Let C be an unprocessed odd cycle in the last phase of the
algorithm and assume that there is exactly one loose-end w. Then u is connected
by a path in P to a vertex z € C and E(C) contains exactly ||E(C)|/2] forbidden
edges and none of them is adjacent to z. a

Lemma 8. Let C' be an unprocessed triangle in the last phase of the algorithm
and assume that there is exactly one loose-end u. Then there is a (—1)-support

of C of weight at least (}, ) C + jw(max(C)).

Proof. Let x,y, z denote the vertices of C'. By Observation [ cycle C' contains
a forbidden edge — assume w.l.o.g. it is zy — and wu is connected in P by a
path to z. Let S1 = {zz,yu} and Se = {yz,zu}. Clearly, zz and yu are in the
same cycle in P U Sy and it is a Hamiltonian cycle. Hence, S7 is a support of C,
and similarly Ss. We pick the heavier of these cycle (its weight can be estimated
similarly as in the proof of Lemma [1]).

3.3 5-Cycles

Lemma 9. Let C be an unprocessed 5-cycle with at most one forbidden edge.
Then there is a (+1)-support of weight at least (1/4,1/2) C.
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Proof. Let vq,...,vs be the vertices of C' in the order they appear on C' and
assume w.l.o.g. that v1vs is the lightest edge in E(C).

Let My = {viva,v3vs} and My = {vavs, v4vs}. Let S7 and Sa be the supports
corresponding to My and My by Lemma Bl and let S be the heavier of them.
Also, assume all definitions leading to inequality (B]) in the proof of Lemma [4l

We consider three cases:

Case 1. wvyvs is forbidden. Then vjvy belongs to a path in P U M; (ending in
vs5), hence vivy € D. By Observation [l then also vsvy & D, so My N D = (). By
symmetry, also M2 N D = (). Hence A \ D= A By inequality (ii) in Lemma [
we get w(S) > L(w(Sy) + w(Ss)) > Ssw(A) > 5 - 5w(C) = gw(C) > }lw(C) +

imin(C)>(}l,§)*C’ N

Case 2. One of the matchings, say Mj, contains a forbidden edge. Hence the
other edge of M; is allowed and by Observation [M it does not belong to D.
Also note that at least one of the edges e of M5 has a vertex in common with
the forbidden edge from M;j. It follows that e does not lie on a cycle in My U
P, because it lies on a path that ends with the forbidden edge from M;. By
Observation [I the other edge of My cannot lie on a cycle either. Altogether,
this gives |[A\ D| > 3.
Using inequality @) we get w(S)

Aw(C\{v1vs})+ jw(A\D)+ jw(AND)

Lw(4\ D) + w(AN D) + fu(F) >
LW (C\{Ulvs})Jr w(vyvs) = (4,2)*0

Case 3. There are no forbidden edges in E(C). Suppose P U M; contains a
cycle. Then the chords vyv3 and vovy are forbidden. It follows that the edges of
My belong to a path in P U My (one ending in v1), so they cannot lie on a cycle
in PUMs5. We conclude that at least one of PUM; and PU M, does not contain
cycles, and so |A\ D| > 2.

Using inequality (BI) we get w(S) > (A\D)+ w(AﬁD) = 8w(A)+ w(A\
D) >3- tw(C)+ ;min(C) = jw(C) + J,w(C) 4+ ; min(C) > (3, )*C

>
>

Lemma 10. Let C be an unprocessed 5-cycle with two forbidden edges. Let e be
any of the two forbidden edges of C. Then there is a (+1)-support of C' of weight
at least (), 5) xC — jw(e).

Proof. Let vy,...,vs be the vertices of C' in the order they appear on C' and
assume w.l.o.g. that vivs and vovs the forbidden edges of C' and e = vyvs. Let
M; = {v1v2,v304} and My = {wvavs,v4v5} and assume the notation from the
proof of the previous lemma.

Note that the edges of M; belong to a path in P U M; ending in vs, hence
M1 N D = (. It follows that |A\ D| > 2. Using inequality @) we get w(S) >
% (A\D)+ w(AﬂDH— w(F) > i(w(A\D)—kw(AﬂD)—kw(F))%—}lw(A\D) =
Eu(C\ {e}) Tw(A\ D) = Lw(C\ {e}) + L min(C) = (1, 1) C = Lu(e).

Lemma 11. Let C' be an unprocessed 5-cycle with two forbidden edges and as-
sume that there are two loose-ends. Let e denote any of the two forbidden edges
of C. Then there is a (—1)-support of C' of weight at least (}, 5)* C + jw(e).
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Proof. Label the vertices of C' as in the proof of the previous lemma. Observe
that since there are at least two loose-ends, at least one of them, call it u, is not
connected by a path to C' in P.

Let My = {v1v2,v3v4,v5u} and My = {uvy, vavs, v4vs}, let Sy and Sy be the
supports corresponding to M and My by Lemma Bl and let S be the heavier of
them.

Note that the edges of M; belong to a path in P U M; (the one ending in
u), hence P U M; does not contain cycles and we have S; = M. Also, neither
uv1 nor v4vs belong to a cycle in P U M,y. Of course vovs belongs to a 2-cycle in
P U Ms.

By inequality (i) in LemmaBlwe get w(S) > 5 (w(S1)+w(S2)) > 3 [w(viva) +
w(v3vy) +w(vsu) + w(uvy) + w(vgvs)] + jw(vavs). Using the triangle inequality
gives w(S) > J[w(viva) + w(vzvs) + w(v1vs) + w(vavs)] + sw(vavs) > Jw(C) +
3 min(C) + jw(vivs) > (4, 3) *C + jw(e).

Lemma 12. Let C be an unprocessed 5-cycle in the last phase of the algorithm
and assume that there is exactly one loose-end u. Let e be any of the two forbidden
edges of E(C). Then there is a (—1)-support of C' of weight at least (}1, é) *C' +
1

qw(e).

Proof. Label the vertices of C' as in Lemma[l0l By ObservationBl u is connected
in P to vq by a path.

Let S1 = {viva, v3v4, v5u}, So = {uvy, vavy, v3v5} and S3 = {uwvy, vavs, V34 }.
One may check that for any ¢ = 1,2, 3, S5; is a support and in particular P U S;
is a Hamiltonian cycle. Let S be the heaviest of these supports.

Denote w(vavs) + w(vzvs) + w(vavs) +w(vsvs) by X. Then w(S) > Jw(S1) +
Jw(S2) + jw(S3) = S (w(vive) + w(vsvs) + wlvsu) + w(uvr)) + 1 X,

By triangle inequality (used twice), X > 2w(vovs). By symmetry, X >
2w(vqvs). Hence, X > w(vavs) + w(vavs). Let us apply triangle inequality one
more time: w(vsu) + w(uvy) > w(vivs).

Putting it all together we get w(S) > I (w(vive) + w(vsvs) + w(vivs)) +
H(w(vavs) + wlvaws)) > (1, 1)« C + Jw(e).

3.4 0Odd Cycles of Length at Least 7

Lemma 13. Let C be an unprocessed odd cycle of length at least 7. Then there

is a (4+1)-support of weight at least (}1, %) *C.

Proof. Let |C| = 2k + 1, k > 3. We enumerate vertices in V(C) so that C =
VoU1V3 . . . Vag—1V2k V0, both vov1 and vovey are allowed and w(vov1) > w(vovak).
Consider two subsets of E(C): My = {vyvai41 | 0 < i < k—1} and My =
{v2i41v2i42 | 0 < ¢ < k — 1}. In other words we partition E(C') \ {vovzi} into
two matchings.

Let Cy,...,C)p be all cycles in P U M; and Let Cpy1,...,C, be all cycles in
PU M. Similarly as in Lemmal[3] let D = |J]_, C; and we partition edges in M7 U
M into two sets: F' containing forbidden edges, and A containing allowed edges.
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Further, let us choose for each cycle C;, i = 1,...,¢q, some edge ¢; in C; N E(C)
and let @ = {e1, ..., eq}. Since by Observation[Ileach cycle C; that contains vyvq
contains also another edge from A, we assume w.l.o.g. that vov; € Q.

Using Lemma [B] we obtain supports 57, S2. Let S be the heavier of these
supports. Then w(S) > 1 (w(S1) + w(Ss)). Using Lemma [ we obtain supports
S1, Sz. Let S be the heavier of these supports. Then w(S) > J(w(S1) +w(S2)).

By inequality (i) in Lemma B w(S) > Jw((My U M)\ Q) + jw(Q) =
Tw(E(C) \ {vovar}) + w((My U M) \ Q). Since vov1 € @ and w(vovy) >
w(vovar), w(S) = Jw(BE(C)) + jw((My U M) \ (Q U {vgu1})). As F C Q,
(M7 U M)\ (QU {wov1}) = (A\ {vov1}) \ @ and hence

w(S) Z Jw(E(C)) + jw((A\ {vorr}) \ Q) (4)

It follows that |(A\ {vov1}) \ Q] > 2 implies w(S) > (1/4,1/2)x C.

First assume there are k forbidden edges in E(C'). Then one of the matchings,
say M, contains only allowed edges (and the other matching contains all the
forbidden edges of C'). Note that in P U M; all edges of M7 belong to a path
with one end in wvoy. It follows that M; = S; and S1 N Q = (. It follows that
ANQ = 0 and hence (A \ {vov1}) \ Q contains at least k — 1 > 2 edges, as
required.

Now assume there are at most k—1 forbidden edges in F(C). Then |A| > k+1.
By Observation[l] [A\ Q| > [I‘gl]. It follows that [(A\ {vov1})\ Q| > [l’;w -1
For |A| > 5, we get [Igll] -1>2

Hence we are left with the case |A| < 4. Since |A] > k+1, k < 3. So k = 3,
|A| =4 and |F| = 2. We consider two subcases.

Case 1. vsvg is forbidden. Then v4vs is allowed and after adding the matching
containing v4vs to P, v4vs is on a path ending in vg, hence vqvs does not belong
to any C;. Hence the three remainig edges in A belong at most one cycle C;, so
|[AN Q| <1 and further [(A\ {vov1}) \ Q| > 2, as required.

Case 2. v5vg is allowed. If F' = {vovs, v4v5}, one of the matchings, namely Mo,
contains only allowed edges. Moreover, these edges belong to a path in P U M,
(ending in vg), so My = Sy and Sy N Q = 0. There is just one allowed edge
in M7 and hence it cannot belong to a cycle C;. It follows that @ = F and
hence |(A\ {vov1}) \ @] > 3. The case F = {vjva,v3v4} is symmetric. Finally,
assume F' = {v1v2,v4v5}. By Observation[ll in P U M; and P U M there are
at most 2 cycles with edges from A. If P U M; contains such cycle, then vgvs is
forbidden. However, then P U Mj contains no such cycle. Hence [ANQ| < 1 and
[(A\ {vov1}) \ Q| > 2, as required.

4 Ordering the Cycles

4.1 Basic Setup

Based on the results from the previous section, we can see that every cycle C'
belongs to one of three categories:
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even cycles: C has a 0-support of weight (}, ;) = C, if there exists at least one
loose-end.
good odd cycles: C has a (+1)-support of weight at least (}, 5) * C — that

is the case if C' is an odd cycle of length > 7 or a 5-cycle with at most one
forbidden edge.

bad odd cycles: C has a (+1)-support of weight smaller than (}1, é) * C, and
it also has a (—1)-support of weight greater than (}, })*C, but only if there
exist at least two loose-end or it is the last cycle processed — that is the
case for all 3-cycles and for 5-cycles with two forbidden edges.

Remark 1. Notice that a good odd cycle might become bad when other cycles
are processed, if it is initially a 5-cycle with zero (or one) forbidden edges and
two (one, resp.) of its allowed edges becomes forbidden.

We say that a cycle C' is k-processed, if it is processed using a k-support. The
general order of processing the cycles consists of 4 stages:

(1) as long as there exists a good odd cycle, (+1)-process it,

(2) (+1)-process bad odd cycles until the number of loose-ends is greater or
equal to the number of remaining bad odd cycles,

(3) 0O-process even cycles,

(4) (—1)-process the remaining odd cycles.

When we use the above processing order all the assumptions of previous sec-
tion’s lemmas are satisfied. In particular in stage 3, there exists at least one
loose-end, so we can process the even cycles. This is because we can assume
that € contains at least one triange, otherwise already the Kostochka-Serdyukov
algorithm gives 7/8-approximation.

It is clear that we are getting enough weight from cycles processed in stages
1 and 3. We also gain some extra weight in stage 2 and lose weight in stage 4.
We want to select the cycles to be processed in stage 2 in such a way that the
overall weight of edges added during stages 2 and 4 is at least > ;(}, }) » Ci,
where the sum is over all cycles processed in these stages.

4.2 Ordering Bad Odd Cycles

Let us first define certain useful notions. For any bad odd cycle C, let B_;(C)
(B4+1(C)) be the lower bound on the weight of the (—1)-support ((+1)-support),
as guaranteed by the appropriate lemma in the previous section. Suppose that
C; is the set of bad odd cycles processed in stage i, i = 2,4. If we use previous
section’s lemmas to lowerbound the weight of all edges added in stages 2 and 4,
we are going to get

Z B 1(C) + Z B_1(C),

cee, ceey
and we need to show that Gy and G4 can be chosen so that the value of this

expression is at least
> (hy)+e

CeauUly
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For every bad odd cycle C there exists a non-negative number, which we call

the loose-end value for C and denote LEV(C') such that

B1(C) > (}1, é)*C —LEV(C) and B_41(C) > (}1, é) *C' +LEV(C).
Note, that this number is equal to iw(e), where e is the heaviest edge of C' if C'
is a triangle, or the heavier of the two forbidden edges of C' if C' is a bad 5-cycle.

The reason why we call this number the loose-end value for C' is that it is
essentially the price at which C' should be willing to buy /sell a loose-end. In this
economic analogy, the cycles that are (41)-processed are selling loose-ends to
the cycles that are (—1)-processed. If we can make every cycle trade a loose-end
at a preferred price (LEV or better), the weight of a support of any cycle C
together with its profit/loss coming from trading a loose-end adds up to at least
(1>3) = C. But it is obvious how to make every cycle trade a loose-end at a
preferred price! It is enough to make the cycles with smallest LEV sell loose-
ends (process them in stage 2), and make the remaining cycles buy loose-ends
(process them in stage 4).

Note here, that some bad odd cycles will get loose-ends for free from good odd
cycles processed in stage 1. Since we assume that the total number of vertices
in the graph is even, the number of the remaining bad odd cycles is also even,
and so they can be divided evenly into sellers and buyers.

Using Lemma 2] we get

Theorem 1. Metric MAX-TSP problem can be 7/8-approximated for graphs
with even number of vertices.

This can be extended to graphs with odd number of vertices, at a cost of increas-
ing the running time by a factor of O(n*), we omit the details in this extended
abstract.
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Abstract. In the Survivable Network Design Problem (SNDP) one seeks
to find a minimum cost subgraph that satisfies prescribed node-connecti-
vity requirements. We give a novel approximation ratio preserving reduc-
tion from Directed SNDP to Undirected SNDP. Our reduction extends and
widely generalizes as well as significantly simplifies the main results of
[6]. Using it, we derive some new hardness of approximation results, as
follows. We show that directed and undirected variants of SNDP and of
k-Connected Subgraph are equivalent w.r.t. approximation, and that a
p-approximation for Undirected Rooted SNDP implies a p-approximation
for Directed Steiner Tree.

1 Introduction

Let kg (u,v) (possibly u = v) denote the maximum number of pairwise internally-
disjoint wv-paths in a graph H. Let x(H) = min{rg(u,v) : (u,v) € V x Viu #
v} be the connectivity of H. The following is a fundamental problem in Network
Design:

Survivable Network Design Problem (SNDP)

Instance: A graph G = (V, E), edge costs {c(e) : e € E}, and requirements
r(u,v) on V. x V.

Objective: Find a minimum cost spanning subgraph H = (V, I) of G so that

kg (u,v) > r(u,v)  forall u,v e V. (1)

This formulation includes well known problems such as Steiner Tree/Forest,
Min-Cost k-Flow, and others. If r(u,v) = k for all w,v € V then we get the
k-Connected Subgraph problem, which seeks a minimum cost spanning subgraph
H with k(H) > k. In the Rooted SNDP there is s € V so that if r(u,v) > 0
then: u = s for directed graphs, and u = s or v = s for undirected graphs. In
{0, k}-SNDP, requirements are either 0 or k; {0,1}-SNDP is the Steiner Forest
Problem, and Rooted {0, 1}-SNDP is the Steiner Tree Problem. See a survey in [7]
for various types of SNDP problems. The following known statement (c.f., [7])
shows that undirected SNDP problems cannot be much harder to approximate
than the directed ones.

* This research was supported by The Open University of Israel’s Research Fund
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Proposition 1. A p-approximation algorithm for Directed SNDP implies a
2p-approximation algorithm for Undirected SNDP.

The reduction in Proposition [Il is very simple: just apply the p-approximation
algorithm on the ”bidirected” instance, and return the underlying graph of the
directed solution computed.

Following the classification of cost types of [7], we assume that the input
graph G to an SNDP instance is complete. The case of {0,1}-costs gives the
augmentation problems when we seek to augment a graph Gy (formed by edges
of cost 0 in G) by a minimum size edge-set F' (any edge is allowed) so that Go+ F
satisfies the requirements. The case of {1, co}-costs gives the min-size subgraph
problems: edges in G have unit costs, while edges not in G have cost cc.

Most undirected variants of {0,1}-SNDP are substantially easier to approx-
imate than the directed ones. For example, Undirected Steiner Tree/Forest ad-
mits a constant ratio approximation algorithm, while the directed variants are
not known to admit even a polylogarithmic approximation ratio. Specifically,
Dodis and Khanna [2] showed that Directed Steiner Forest is at least as hard
to approximate as Label-Cover. By extending the construction of [2], Kortsarz,
Krauthgamer, and Lee [0] showed a similar hardness result for Undirected {0, k}-
SNDP; the same hardness is valid even for {0, 1}-costs, see [9]. The currently
best known approximation lower bound for Directed Steiner Tree is logz_s n [,
while the best known approximation ratio is n¢/e3 [I].

So far, there was no unifying hardness result indicating that the inverse to
Proposition [l is also true, namely, that Undirected SNDP is at least as hard to
approximate as Directed SNDP. We will give such a reduction, which looks sur-
prisingly simple, after it is found. Our reduction transforms a directed instance
on n nodes with costs in the range C' into an undirected instance with n’ = 2n
nodes and costs in the range ¢’ = C U {0}; hence if the range C includes 0
costs, we have C' = C’. Every requirement 7(u,v) transforms into the require-
ment ' (u,v’) = r(u,v) + n = r(u,v) + n’/2. We note that the reduction does
not preserves metric costs (because we add edges of cost zero), and transforms
small requirements into large requirements. However, in several cases, it has
the advantage of preserving the "type” of requirements and costs; see [7] for a
classification of SNDP problems w.r.t. costs and requirements. In particular, we
obtain the following results:

Theorem 1. The following holds for any range of costs that includes the zero
costs:

(i) A p-approxzimation for Undirected SNDP implies a p-approzimation for Di-
rected SNDP.

(i) A p-approximation for Undirected k-Connected Subgraph implies a
p-approximation for Directed k-Connected Subgraph.

(iii) A p-approzimation for Undirected {0, k}-SNDP implies a p-approximation
for Directed Steiner Forest.

(iv) A p-approzimation for Undirected Rooted {0, k}-SNDP implies a p-approxi-
mation for Directed Steiner Tree.
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To illustrate the power and the limitations of our result, we list and discuss some
specific consequences. Note that Theorem [Iis true for {0, 1}-costs. This fact is
however redundant for the problems in parts (ii) and (iii), since for {0, 1}-costs
the directed versions in parts (ii) and (iii) are known to be “easier” than the
undirected ones. Specifically, for {0, 1}-costs we have:

— Directed k-Connected Subgraph with {0, 1}-costs is in P [4], while the com-
plexity status of the undirected variant is unknown.

— Directed Steiner Forest with {0, 1}-costs admits an O(logn)-approximation
[8], while the undirected variant is unlikely to admit a polylogarithmic ap-
proximation [9].

Dodis and Khanna [2] showed by a relatively simple proof that Directed Steiner

Forest cannot be approximated within 0(21055175") for any fixed € > 0, unless
NP C quasi-P. Thus part (iii) immediately implies the main result of [6]:

Corollary 1 ([6]). Undirected {0, k}-SNDP does not admit an O(2'°8" ") ap-
proximation for any fized € > 0, unless NP C quasi-P.

In [9] it is proved that the same hardness result holds even for {0, 1}-costs, for
both directed and undirected graphs (for large values of k). It seems that this
result of [9] cannot be deduced from our work, as the proof of the directed case
is essentially the same as that of the undirected one.

It was already observed by A. Frank [3] long time ago by an easy proof that
Directed Rooted {0, 1}-SNDP with {0, 1}-costs is at least as hard as the Set-Cover
problem. Hence from part (iv) we obtain the following hardness result, which
proof required considerable effort in [6] and in [I0].

Corollary 2 ([6,10]). Undirected Rooted {0, k}-SNDP with {0, 1}-costs cannot
be approximated within C'lnn for some C > 0, unless P=NP.

Now we give two new results. Combining part (ii) with Proposition[Il we obtain:

Corollary 3. Directed and undirected variants of SNDP and of k-Connected
Subgraph are equivalent (up to a constant factor) w.r.t. approzimation.

Finally, we can combine part (iv) with the hardness result of Halperin and
Krauthgamer [5] for Directed Steiner Tree to obtain:

Corollary 4. There exists a constant C' > 0 so that Undirected Rooted {0, k}-
SNDP does not admit a C'log®> ¢ n approzimation for any fived € > 0, unless NP
has quasi-polynomial Las-Vegas algorithms.

The hardness in part (iv) however seems “stronger” than the one in Corollary [l
as currently no polylogarithmic approximation is known for Directed Steiner Tree.
We also note that the statements in Corollaries[I] - @ are valid even for instances
when we are only interested to increase the connectivity by 1 between pairs
with requirement k, namely, when G contains a subgraph Gy of cost 0 with
kGo(u,v) =k —1 for all u,v € V with r(u,v) = k.



Inapproximability of Survivable Networks 149

2 The Reduction

Definition 1. Let H = (V,I) be a directed graph. The bipartite (undirected)
graph of H is obtained by adding a copy V' of V and replacing every directed
edge ab € I by the undirected edge ab’, where b’ denotes the copy of b in V'.

The key observation is the following.

Fig. 1. The construction in Lemma [T} edges in M are shown by thin lines

Lemma 1. Let H = (V + V', I') be an undirected graph obtained by adding to
the bipartite graph of a directed graph H = (V, 1) edge sets of cliques on each of
V and V', and the matching M = {aa’ : v € V'} (see Figure[l). Then:

kp (u,v') = kg (u,v) +n Yu,v eV . (2)

Proof. Let k = kp(u,v) and k' = kg (u,v’). We may assume that wv ¢ I;
otherwise the same proof applies on G — uv. Note that then n > k + 2 if u # v.

We prove that k' > k+n by showing that H' contains k+n pairwise internally-
disjoint uv’-paths. Assuming u # v, we will show 2k + 2 paths of the length 2
each, and the rest n — k — 2 paths of the length 3 each. Consider a set IT of k
pairwise internally-disjoint uv-paths in H.

The length 2 paths are as follows:

e The two paths u — v — v and u —v — 0.
e The k paths u — w’ — v’ for any edge uw belonging to some path in IT.
e The k paths u — w — v’ for any edge wv belonging to some path in IT.

The length 3 paths are as follows:

e A path u —a— b — ' for every edge ab belonging to some path in IT and
not incident to wu,v.
e A path u —a — a’ — v’ for every node a not belonging to any path in IT.
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It is easy to see that these paths are pairwise internally-disjoint, and we now
count their number. Excluding w,v’, every node of H' appears as an internal
node in exactly one of these paths. The number of internal nodes in the paths
of length 2 is 2k 4+ 2. Hence the number of internal nodes in the length 3 paths
is (2n —2) — (2k 4+ 2) = 2(n — k — 2). As each of the length 3 paths has exactly
2 internal nodes, their number is n — k — 2. Hence the total number of paths is
(2k+2)+ (n—k—2) =n+k, as claimed.

Now consider the case u = v. In this case, we have only 2k paths of the length
2 each, but there is one path of the length 1, namely, the edge vv’. So we have
a total of 2k + 1 paths. The total number of internal nodes in these paths is 2k.
We can form length 3 paths that use as internal nodes all the other 2n — 2 — 2k
nodes, in the same way as for the case u # v. So, the number of length 3 paths
is n—1—k. This gives a total of (2k+ 1)+ (n—k —1) = n+k paths, as claimed.

To prove that k > k' —n we show that H contains & — n pairwise internally-
disjoint uv-paths. A uv’-path of length 3 in H' is an M -path if its internal edge
belongs to M; in the case u = v, the single edge vv’ is also considered as an
M-path.

Consider a set IT" of k’ pairwise internally-disjoint uv’-paths in H' with max-
imum number of M-paths. From the structure of H', we may assume that every
path in I’ has length 2 or 3, or that it is the edge vv’ in the case u = v. Note
that every node of H' belongs to some path in IT’. Otherwise, if say a € V' does
not belong to some path in II’, then by replacing the path in I’ containing a’
by the M-path u — a — a’ — v’ the number of M-paths in II’ increases by 1; a
similar argument applies if there is a’ € V' that does not belong to some path
in IT'.

Fig. 2. Tllustration to the proof of Lemma [Tl

We claim that there exists a sequence a1, ..., aq of nodes in V' satisfying (see
Figure 2)):
(i) u—aj —v" and v — ay — v’ belong to II';
(ii) u — a;—1 — a;’ —v' belongs to I’ for every i = 2,...,¢q;

(iii) ua;’ ¢ I' and a;—1v" ¢ I’ for every i =2,...,q.
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Such a sequence can be constructed as follows. Note that « has at least &' —n
neighbors in V/ — «/ in the paths in II’, since v has n neighbors in V + u'.
We choose one such neighbor a;’ of u. Since every node belongs to some path
in IT’, there must be a non M-path containing a;. If this paths has length 2,
namely, if it is u — a3 — v’, we are done. Otherwise, this path has length 3, say
u — a; — ay’ — v'. Note that as’ cannot be a neighbor of u, since otherwise we
could replace these two paths by the two paths u —as’ — v and u —ay; —ay’ — v’
to increase the number of M-paths by 1. So, we can continue this process until
at some iteration ¢ a path u — a, — v’ of length 2 is found.

Now we observe that a sequence above defines the uv-path u—a; —as—---—a,
in H. As u has at least k¥’ — n neighbors in ¥V’ — u/, we can form k' — n such
sequences, which gives a set of k' — n pairwise internally-disjoint paths in H.

Corollary 5. k(H') = k(H) +n for H,H' as in Lemmal[l
Proof. Let k = k(H). By Lemma/[I] it is sufficient to show that:

o ry(u,v), kg (u,v') >k+n forall u,v € V.
o iy (v,v)>k+nforallveV.

We prove that kg (u,v) > k+n; the proof that kg (u’,v") > k+n is identical.
We may again assume that uv ¢ I. A set of k + n pairwise internally-disjoint uv
paths in H' is as follows. There are n — 1 internally-disjoint uv-paths in H' —V".
Another path is u—u’ —v' —v. We now show additional k paths using nodes from
V' —{u/,v'} only. Let A be the set of neighbors of u and B the set of neighbors
of v in V' — {u/,v'}. We have |A|,|B| > k, since H is k-connected, and since
uv ¢ I. There are |A N B| uv-paths of the length 2 each through AN B, and
min{|A — B|,|B — A|} uv-paths of the length 3 each through (AU B) — (AN B).
Hence we have |[AN B| + min{|A — B|,|B — A|} > k pairwise internally-disjoint
uv-paths through V' — {u/,v'}, as claimed.

We prove that kg (v,v") > k + n. The key point here is that kg (v,v) > k,
namely, that in H there are at least k pairwise internally-disjoint paths from v
to itself. Otherwise, by Menger’s Theorem, there is a set C' with |C| =k — 1 so
that H — C has no path from v to itself. This implies that either V = C + v so
|V| =k, or that H — C' is not strongly connected. In both cases, we obtain the
contradiction k(H) < k — 1. Thus by Lemma [[l we have kg (v,0") = kg (v,v) +
n > k 4+ n, as claimed.

Given an instance Z = (G = (V, E), ¢, r) of Directed SNDP with n = |V, con-
struct an instance 7' = (G’ = (V + V', E’),,r’) of Undirected SNDP as follows.
G’ is as in Lemma [Tl keeping costs of edges in E, and with zero costs of other
edges in E’. The requirements are r'(u,v’) = n + r(u,v) for (u,v) € V. xV,
and ' (u,v) or r'(u',v") can be any integer between 0 and n otherwise. Every
directed edge in E has a (unique) appearance in E’; so we identify a directed
edge in E with the corresponding undirected edge in E’. This establishes a bi-
jective correspondence between edge subsets I C E and edge subsets I’ C E’
containing F' — F, namely, I' = I + (E’ — E). From Lemma [I] and Corollary [l
we get the following statement, which implies Theorem [l
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Corollary 6. ([l holds for H = (V,I),r if, and only if, (M) holds for H' =
(V 4+ V', I'),r". Furthermore, k(H') = k(H) + n, namely, H is k-connected if,
and only if, H' is (k + n)-connected.

Corollary[@limplies that H = (V, I) is a feasible solution to instance Z if, and only
if, H' = (V, I') is a feasible solution to the constructed instance Z’; furthermore,
e(I) = (I'), since I' is obtained from I by adding edges of cost 0. In particular,
we obtain that the optimal solution values for Z and for Z’ coincide. This is
so both for SNDP and for k-Connected Subgraph. Thus if H' = (V' I’) is a p-
approximate solution for Z’, then H = (V, 1) is a p-approximate solution for Z.
Even if the approximation ratio p is given in terms of n (and is non-decreasing
in n), then we get an O(p)-approximation for Z, since |V'| = 2|V| > |V].

As when transforming 7 to 7', the requirement are shifted by the additive
term n = n'/2, Directed Steiner Forest is transformed into Undirected {0, k}-
SNDP, while Directed Steiner Tree is transformed into Undirected Rooted {0, k}-
SNDP, where k = n//2 + 1. Furthermore, an instance for k-Connected Subgraph
is transformed into an instance of k’-Connected Subgraph, where k' = k + n/2.

Finally, note that since the only change in the range of the costs when trans-
forming 7 to Z’" was adding edges of cost 0, then the ranges of costs of Z and 7'
coincide, provided 0 costs are in the range of 7.

The proof of Theorem [I] is now complete.
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Abstract. In the field of robust optimization, the goal is to provide
solutions to combinatorial problems that hedge against variations of the
numerical parameters. This constitutes an effort to design algorithms
that are applicable in the presence of uncertainty in the definition of
the instance. We study the single machine scheduling problem with the
objective to minimize the weighted sum of completion times. We model
uncertainty by replacing the vector of numerical values in the description
of the instance by a set of possible vectors, called scenarios. The goal is
to find the schedule with minimum value in the worst-case scenario.

We first show that the general problem is intractable by proving that it
cannot be approximated within O(log! ¢ n) for any € > 0, unless NP has
quasi-polynomial algorithms. We then study more tractable special cases
and obtain an LP based 2-approximation algorithm for the unweighted
case. We show that our analysis is tight by providing a matching lower
bound on the integrality gap of the LP. Moreover, we prove that the
unweighted version is NP-hard to approximate within a factor less than
6/5. We conclude by presenting a polynomial time algorithm based on
dynamic programming for the case when the number of scenarios and
the values of the instance are bounded by some constant.

1 Introduction

In classical optimization problems, it is often assumed that the parameters of the
instances are precisely defined numerical values. In many cases, however, such a
precise definition is impossible due to inadequate knowledge on the side of the
decision maker. The necessity to provide algorithms for minimizing the cost in
uncertain environments lead to the fields of stochastic and robust optimization.

In stochastic optimization [], it is assumed that we have knowledge of the
probability distribution of the data and the goal is to find a solution that min-
imizes the expected cost. Robust optimization [3I15] can be considered as the
worst-case counterpart of the stochastic optimization. In a robust optimization
problem, we have a set of possible configurations of the numerical parameters
of the problem, and the goal is to find a solution that minimizes the cost in a
worst-case scenario for the given solution. In the following we will focus on this
latter approach.

Within robust optimization, two common ways of modeling uncertainty are
interval data and discrete scenarios. In the case of interval data the vector of
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numerical parameters in the description of the instance is replaced by a vector
of intervals, one for each parameter. On the other hand, in the case of discrete
scenarios the vector of numerical parameters is replaced by a set of vectors, each
of them corresponding to a different scenario. An advantage of this model is
that, whereas in the case of interval data the fluctuations of the different nu-
merical parameters are implicitly assumed to be independent, the use of discrete
scenarios allows the implementation of dependencies among parameters.

Several objective functions for robust minimization[] problems have been pro-
posed in literature (see e.g. the book by Kouvelis & Yu [I5]). In the absolute
robustness approach, the goal is to minimize the maximum among all feasible
solutions and all scenarios. This is often referred to as the “min-max” version of
the problem. In the robust deviation approach, the goal is to minimize the max-
imum deviation from optimality among all feasible solutions and all scenarios.
Recent examples of these two families of approaches can be found in [TJI2/9].

In this paper we investigate the min-max version of the following classical
scheduling problem. There is a set N = {1,...,n} of n jobs to be scheduled on a
single machine. The machine can process at most one job at a time. Each job j
is specified by its length p; and its weight w;, where p; and w; are nonnegative
integers. Jobs must be processed for p; time units without interruptions on the
machine. The goal is to find a schedule (i.e. permutation = : N — {1,...,n})
such that the sum Z;‘L:1 w;Cj, where C} is the time at which job j completes in
the given schedule, is minimized. In standard scheduling notation (see e.g. Gra-
ham et al. [I0]), this problem is known as 1|| > w;C;. Smith [22] gave a simple
polynomial time algorithm for this problem, by showing that scheduling jobs in
non-decreasing order of the ratio of their processing time to their weight is op-
timal: given a set of n jobs with weights w; and processing times p;, 1 < j < n,
schedule the jobs such that 7(z) < m(j) if and only if p; /w; < p;/w;. When there
are precedence constraints among jobs, then the problem becomes N P-hard [16].
Several 2-approximation algorithms are known for this variant [TOTTIGIEITT], as
observed in [7], all of them can be seen as obtained by rounding a linear relax-
ation of an integer program formulation ILP due to Potts [I8]. The integrality gap
of ILP is known [5] to be 2, and understanding if a better than 2-approximation
algorithm exists is considered an outstanding open problem in scheduling the-
ory (see e.g. [2I]). In this paper we consider the robust version of this classical
scheduling problem, as defined below.

Definition 1. In the robust scheduling problem, we are given a set of jobs
N = {1,...,n} and a set of scenarios S = {si1,...,8m} where s; =
(it .. pSi wit, . o ws) for s, € S. A feasible schedule is a permutation w
of the jobs and the problem is to find a permutation 7 of the jobs such that

7* = min max g w'Cl(m) |,
T ;€S 4 73
JEN
Si . Si
where C7(T) = 3 jre N () <) P

! The definition for robust maximization problems are analogous.
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Whereas 1|| >~ w;C} is polynomial time solvable in the case of a single scenario,
Kouvelis & Yu [I5] prove that the robust version is weakly NP-complete even
for the case of two scenarios and unit processing times.

In this paper we take on the task of studying the approximability of the
robust variant. We show that, unless NP has quasi-polynomial algorithms, it
cannot be approximated within factor O(long n) in polynomial time, for any
€ > 0. Moreover, under P # N P, we show that it remains hard to approximate
within 6/5 even if we assume that processing times, or alternatively weights, are
equal to one and do not vary across the scenarios.

Then, we study the natural generalization of the ILP due to Potts [18] for the
robust version. We provide a lower bound on the integrality gap and a matching
upper bound for the special case where processing times or, alternatively, weights
do not vary across the scenarios. Interestingly, the upper bound can be extended
to include precedence constraints, and we obtain the same performance guar-
antee, namely a 2-approximation, as for the single scenario case. Proving good
hardness of approximation results for 1|prec| )" w;C; is a long standing open
problem in scheduling theory. In contrast, for the robust variant, we show that
it is NP-hard to approximate within a factor less than 6/5.

We conclude by presenting a polynomial time algorithm based on dynamic
programming for the case that the number of scenarios and the values of the
instance are bounded by some constant.

2 Hardness of the Robust Scheduling Problem

2.1 Inapproximability Result for the General Problem

Here, we show that the general problem with non-constant number of scenarios
has no O(log! ¢ n)-approximation algorithm for any & > 0, unless NP has quasi-
polynomial algorithms. The hardness result is obtained by reducing the following
version of the Label Cover problem to the scheduling problem.

Definition 2. The Label Cover problem L(V,W,E,[R],{0vw}(ww)cE) 5 de-
fined as follows. We are given a regular bipartite graph with left side vertices
V', right side vertices W, and set of edges E C V x W. In addition, for every
edge (v,w) € E we are given a map oy : [R] — [R]. A labeling of the instance
18 a function  assigning a set of labels to each wvertex of the graph, namely
0:VUW — 2Bl A labeling ¢ satisfies an edge (v, w) if

Jda € £(v),3b € L(w) : oy w(a) =b.

A total-labeling is a labeling that satisfies all edges. The value of a Label Cover
instance, denoted val(L), is defined to be the minimum, over all total-labelings,
of max,cvuw [€(x)].

Observe that the variant of the Label Cover problem that is considered assumes
that an edge is covered if, among the chosen labels, there exists a satisfying pair
of labels. The following hardness result easily follows from the hardness result
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for the max version by using the “weak duality” relationship between the two
versions (see e.g. [2]).

Theorem 1. There exists a constant v > 0 so that for any language L in NP,
any input w and any R > 0, one can construct a labeling instance L, with
|w|C0°8 B) yertices, and label set of size R, so that: If w € L,val(L) = 1 and
otherwise val(L) > RY. Furthermore, L can be constructed in time polynomial
m ils size.

We prove the following theorem by presenting a reduction from the label cover
problem.

Theorem 2. There exists a constant v > 0 so that for any language L in NP,
any input w, any R > 0 and for g < RY, one can, in time O(|w|°9 108 &) . RO(9))
construct a robust scheduling instance that has optimal value 1 + o(1) if w € L
and optimal value g otherwise.

Proof. Given a Label Cover instance L(V, W, E, [R], {0v,w } (v,u)c E), We construct
a robust scheduling instance I. Before giving a more formal definition of the
reduction, we first give the intuition behind it.

For € VUW let R, C [R] be the possible labels of z. For each (v,w) € E,
let R, € R, X R,, contain all pairs of labels of v and w that satisfy the map
Ovws 1.6, Ry = {(a,b) € Ry X Ry : b =0y 4(a)}.

Clearly, for any feasible label cover ¢ there is at least one pair (a,b) from
R, such that a € ¢(v) and b € {(w), and we say that (a,b) covers (v,w). In
order to have a “corresponding” situation in the scheduling instance I, we define
for each (v,w) € E a set J¥v) = {Jl(v’w),JQ(U’w), . .7J,(LZ”1:)} of nyw = |Rowl
jobs. Let us consider some total ordering ry . : Ryw — {1,...,74w} of the
pairs in R, .. In any feasible schedule of the jobs from J (vw) there exists an
i=1,...,Mw, such that Ji(:_’lw) is scheduled before Ji(”’w) (assume ¢ + 1 equal
to 1 when i = n, ), otherwise we would have a cycle in that schedule. The

reduction that we are going to present will associate this situation (job Ji(:_’lw)

scheduled before Ji(v’w)) to the case where the i'" pair in R, is in the label
cover, i.e. 1, (i) covers edge (v, w). Then, for each 2 € VUW, a set of scenarios

is defined such that the maximum value of them counts (up to g) the number of
different labels of x. A precise description of the reduction is given below.

Jobs. The jobs of instance I are the union of all jobs U(v,w)EE Jww),

Ordering Scenarios. Let m = |E| andlet 7 : E — {1,...,m} be some order of
the edges. For each 7 : 1 < i < m, we have a scenario that sets the weights of
the jobs in J™ @ to m and the processing time of the jobs in Ujsi g 6)
to m. The purpose of these scenarios is to ensure that any optimal schedule
will schedule the jobs in the order

JTW L g L g ), (1)
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Counting Scenarios. For each v € V, let E, C E denote the set of edges
incident to v. For each tuple ((v,wn),..., (v,wy)) € E, X --- X E, of pairwise
different edges, for each tuple (a1, ...,aq) € RU x -+ X R, of pairwise different
labels, and for each tuple (by,...,bg) € Ry, X -+ % Rw( so that o, .,)(a;) =

) . v,W1),...,(V,wg) } .
b; fori =1,..., g, we have a different scenario S(a bl) agiby)’ Each scenario

S((:ﬂll))((zwg)) represents the situation in which label (a;, b;) covers edge
) ) g9°vg

(v, w;) and the number of different labels of v is at least g. This label cover

(partial) solution corresponds to the scheduling solutions a&ﬂll))’;_”:((’;’ﬁ))

that schedule job J,E’j;;"” before J,(f’w'i), where h = 7,4, (a;,b;), for each
i =1,...,g9. The value of these schedules is made larger than g by setting
the processing time of J,Si’iw) equal to m?™(*%) and the weight of J,gv’wi)
equal to 1/m27’(“*“’i), for each i = 1,..., g, and zero all the others. Observe
that the processing times and weights have been picked in such a way that
jobs in J™ () only contrlbute a negligible amount to the weighted comple-
tion time of JObS in J© 'G) for i < j. This defines weights and processing
times of scenarios for every v € V. In a symmetric way we define scenarios
S((:iﬁ))(&"qlgj), for every w € W, to count the number of labels that are
assigned to w.

The total number of scenarios is at most |E| — 1+ 2|E|9 - RY - RY and the
total number of jobs is at most |E|- R?. As |E| = |w|?U°8 ) the total size of
the robust scheduling instance is O(|w|®91°& #) . RO(9)),

Completeness Analysis. By Theorem [I], there exists a feasible labeling of £
that assigns one label to each vertex. Let £ be such a labeling and consider a
schedule o of I that respects ([Il) and such that, for each element (v,w) € E, the
jobs in J () are scheduled as follows: for h = 1, . nv w, if h =17y (E(v), L(w))
then job Jh ") ig scheduled before J}(L”’w) otherwise J ) is before Jhiqlu This
gives a feablble schedule. Moreover, since only one label is asblgned to each vertex,
it is easy to see that the value of any scenario is at most 1 + o(1).

Soundness Analysis. Consider a schedule o of I. Define a labeling ¢ as follows:

L) ={a: 1thiqlu <J(vw) for some h = 7y 4, (a,b),w € W and b € R, }
l(w) ={b: fJ}(LH) J}(L”w)forbomeh—rvw( ,b),v €V and a € R,}

As at least one scenario for each edge will have value 1, £ is a feasible labeling
of L. Furthermore, by Theorem [II, there exists a vertex x € V U W so that
|¢(x)] > g, and this implies that there is a scenario of value g. Indeed, if z € V
let (x) = {au,...,aq} be the set of g labels assigned to x, and let (b1, . ..,by) and
(wi,...,wy) be such that JF(LZ_’Y’) =< J}(Lx’w) with h = r4 4,(ai, b;). Then scenario

S((jllzll))((i;”;g)) has been constructed to have value g according to this schedule.

The same holds when z € W.
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By setting g = O(log®n) (and R = O(log®¥) n)), where |w| = n and ¢ > 1 any
large constant, we obtain that the input size is equal to s = n@glog ). RO(9) —
nO(logc n-log log n) (IOg n)O(log” n) _ nO(log"'M n) _ 20(10gc+1+é n)7 for any arbitrarily
small 6§ > 0. It follows that g = O(log s)<+1+s = O(log s)'~¢, for any arbitrarily
small € > 0.

Theorem 3. For every € > 0, the robust scheduling problem cannot be approz-
imated within ratio O(logl_e s), where s is the input size, unless NP has quasi-
polynomial algorithms.

2.2 Inapproximability for Unit-Time/Unweighted Case

We now restrict the above problem to the case where the processing times do not
vary across scenarios. We note that this case is symmetric to the one where the
processing times may vary across scenarios while the weights are common. We
show that, if the number of scenarios is unbounded, the robust scheduling prob-
lem is not approximable within 6/5 even for the special case that all processing
times are equal to one.

Our reduction is from the E3-Vertex-Cover problem, defined as follows. Given
a 3-uniform hypergraph G = (V, E) (each edge has size 3), the E3-Vertex-Cover
problem is to find a subset S C V that “hits” every edge in G, i.e. such that for all
e € E,enS # (. Dinur et al. [8] showed that it is NP-hard to distinguish whether
a k-uniform hypergraph has a vertex cover of weight ( kil + ¢)n from those whose
minimum vertex cover has weight at least (1 — €)n for an arbitrarily small € > 0.

Given a 3-uniform hypergraph G(V, E), we construct a robust scheduling in-
stance as follows.

— For every vertex v; € V we create a job ¢ € N with p; = 1.
— For every hyperedge e = {v§,v5,v5} € E we create a scenario s, defined by

se _ {1 , if v; € {vf, 05, v5}

w; .
v 0, otherwise.

Given the size of a minimum vertex cover ¢, one can calculate upper and
lower bounds on the optimal value of the corresponding scheduling instance, as
follows: given a schedule, i.e., a permutation 7 of the jobs, we can define a vertex
cover solution VC by letting

VC = {v; | v; covers an edge not covered by {v;|m(j) < (i)} }.

Let v; € VC be the vertex in VC that is scheduled last, i.e., any v; € VC
with ¢ # j satisfies 7(i) < 7(j). As v; was added to VC, it covers an edge, say
e = {vj, vk, v}, with 7(j) < m(k) and 7(j) < w(l). Furthermore, since |VC| > ¢
we have that 7(j) > ¢ and hence 7(k) + () > (¢+ 1) + (¢ + 2). It follows that
there is an s € S with value at least

LB(c)=c+(c+1)+(c+2)>3c

which is thus also a lower bound on min maéc(val(w, s)).
T SE
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For the upper bound, consider the schedule where we schedule ¢ jobs corre-
sponding to a minimum vertex cover first. Observe that a scenario in which the
last of these ¢ jobs has weight one takes its maximal value if the other two jobs
of the corresponding edge are scheduled last, yielding

UB(c)=c+(n—1)+n<c+2-n.

Using the inapproximability results of Dinur et al. [§] we get the following gap
for the robust scheduling problem:
LB((1 —¢)n) (I1—-¢en-3 6

> =_—c
UB((;*, +¢)n) = (3+en+2-n 5

for some ¢’ > 0 that can be made arbitrarily small. As the unit-time and un-
weighted robust scheduling problem are symmetric, this yields the following
theorem.

Theorem 4. It is NP-hard to approximate the unit-time/unweighted robust
scheduling problem within a factor less than 6/5.

Assuming the Unique Games Congecture [13], the inapproximability result for
Ek-uniform Vertex Cover improves to a gap of k — ¢ [I4]. A similar reduction
from 2-uniform hypergraphs (i.e. graphs) using the same bounds as above yields
an inapproximability gap of 4/3.

Finally, we note that an easy numerical analysis shows that, in both cases,
the inapproximability results cannot be improved by changing the uniformity of
the hypergraphs in the vertex cover problems considered.

3 An LP-Based Approximation Algorithm and Integrality
Gap

In this section, we consider the special case that processing times do not vary
among scenarios, i.e. for every i € N we have p;' = ... = pi™ = p;. Note that
this is symmetric to the case that processing times may vary across scenarios
while weights are common. Inspired by Potts [I8] integer linear program (ILP)
formulation of 1|prec| > w;C;, we formulate the robust scheduling problem with
common processing times as follows:

min ¢
dopiwit > by pawit <t 1<k<m
JEN (i,j)EN?
0ij + 0 =1 (i,j)6N2

8ij + 6+ 6 21 (i,j,k) € N

bi; € {0,1}  (i,5) € N?
The variables, ¢;; for (i,j) € N 2 are called ordering variables with the natural
meaning that job ¢ is scheduled before job j if and only if 6;; = 1. The LP
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relaxation of the above ILP is obtained by relaxing the constraint é;; € {0,1}
to 6;; > 0. We will show that the resulting LP has an integrality gap of 2.

Consider the following family of instances, consisting of n jobs and an equal
number of scenarios. The (scenario-independent) processing times are set to
pj =1, j € N. The weights of the jobs in scenario s; are defined as follows:

1,ifj=k
Sk __ ?
Wi = {O , otherwise ’ jen.

It is easy to see that setting
Sij=1/2, 1<ij<n, i#j

yields a feasible solution. For this solution, all scenarios assume the same objec-
tive value 1 +1
pj+26ijpi:1+(n—1)'2 = n2
i#]
which therefore equals the objective value of this solution. This gives an upper
bound on the value of the optimal solution.

On the other hand, for any feasible integral solution, there is a scenario sy, for
which the job j is scheduled last. This scenario has value w* - C; = n. Thus the
integrality gap of the above presented LP with n scenarios is at least 2n/(n+1),
which tends to 2 as n tends to infinity.

We now provide a 2-approximation algorithm based on the above LP-relaxation,
thus showing that the analysis of the integrality gap is tight.

Given a solution of the LP, let
Ci=pj+ > bipi
i#£]
be the fractional completion time of job j. Assume, without loss of general-

ity, that C; < ... < C,. We will use the following property to derive a 2-
approximation algorithm.

Lemma 1 (Schulz [20]). Given a solution of the above LP, with C; < ... < C,
the following inequality holds

- 1Y
CjZQ;pi

This property can be used to derive a simple 2-approximation algorithm: sched-
ule the jobs in non-decreasing order of C;. The integral completion time is

Since every completion time increases by at most a factor of 2, we have a 2-
approximate solution.
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It is worth noting that the above analysis holds also for the case that there are
precedence constraints among the jobs, a significant generalization of this prob-
lem. For instance, in the single scenario case, 1|prec|)  w;C; is NP-complete
whereas 1|| > w;C}; is polynomial time solvable. We summarize with the follow-
ing theorem.

Theorem 5. The robust version of 1|prec| > w;C; has a polynomial time 2-
approximation algorithm when the processing times or, alternatively, the weights
of the jobs do not vary among the scenarios.

4 A Polynomial Time Algorithm for Constant Number of
Scenarios and Constant Values

In this section we assume that the number of scenarios m as well as the weights
and processing times are bounded by some constant. Given an instance I of the
robust scheduling problem, let W be the maximum weight and P the maximum
processing time occurring in the description of I. We present a polynomial time
algorithm that solves this problem. In fact, we are going to solve the related
multi-criteria scheduling problem. This result carries over to our problem by use
of Theorem 1 in Aissi et. al. [I].

In the context of multi-criteria optimization, given two vectors v,w € NF,
v # w, k > 0, we say that v dominates w, if v; < w; for all 1 <i < k. A vector
that is not dominated is called efficient. Analogously, given a set of vectors S,
a subset S’ C S is called an efficient set if there is no pair (v,v'),v € S,v" € §’
such that v dominates v’. The goal in multi-criteria optimization is to find a
maximal efficient set of solutions.

For a fixed set of scenarios S = {s1,...,8m}, we define the multivalue of a
schedule 7 by val(r) = (val(w,s1),...,val(m, s,,)). Furthermore, we call a =
((w1,p1)y oy (Wi, pm)) with 1 < w; < W, 1 < p; < W a job profile, and
let p(a) = (p1,...,pm) and similarly w(«) = (wq,...,w.). Note that, since
we assumed that P.,WW and m are all bounded by a constant, there can only
be a constant number of different job profiles. Let aq,...,ar be the differ-
ent job profiles that occur in instance I. We can now identify I by the tuple
((a1y... k), (n1,...,nk)) where n; is the number of jobs with profile a; oc-
curring in I. We will present a dynamic programming approach for solving the
min-max scheduling problem with a constant number of scenarios and constant
values in polynomial time.

4.1 Polynomial Time Algorithm

Consider a k-dimensional dynamic programming table DPT of size (n1 + 1) x
(ng +1) X ... x (ng +1). Each cell of this table represents a subinstance I’ of I,
where the coordinates of the cell encode the number of jobs of the correspond-
ing profile that are present in I’ (for instance, the cell (1,0,4) represents the
subinstance of I that contains one job of type a; and four jobs of type as). We
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denote the number of jobs in an instance represented by a cell ¢ = (¢, ..., ck)
by n(c) = Zle ¢;. Each of these cells will accommodate an efficient set M, of
multivalues of schedules in which only the jobs of the subinstance are considered
(note that since the maximum value in any scenario is bounded, there can only
be a polynomial number of different efficient vectors). Since the cell (nq,...,ng)
represents the whole instance, filling in the last cell of the table would allow
us to solve the multi-criteria scheduling problem, and thus also the min-max
scheduling problem.

We initialize the table by filling in the cells whose coordinates sum up to one,
i.e. the cells ¢ = (¢1,...,c,) with n(c) = 1, as follows: for ¢, = 1 add to M, the
multivalue of the schedule consisting of a single job with profile c;. We continue
filling in the rest of the cells in order of increasing n(c) in the following manner.

Consider the cell ¢ with coordinates (c1,...,cx) and let T = {(c],....¢}) |
n(c’) =n(c)—1, ¢, > ¢;—1}. In other words, T, contains those cells representing
subinstances that result by removing one job from I.. Note that, since we fill
in the table in order of increasing n(c), all cells in T, have been filled in at this
point. For each ¢’ € T, with ¢; — ¢, = 1, add to the set M, the multivalues of
the schedules that result from the schedules in M, by adding a job of profile oy
in the end of the schedule. More formally, for each ' with val(n’) € M., add
val(m) to M., with m defined as follows:

7(j) = 7'(j) for 1 <j < n(c) and w(n(c)) = .

Given val(7’), the multivalues of these schedules can easily be computed by:

k
val(m) = val(7') + w(ay) - Z ci - plai)

Note that only the multivalue of 7’ is needed in the above calculations, not 7’
itself.

We conclude the computation for cell ¢ by replacing M. by Red(M.), which
retains only the efficient elements of M..

Lemma 2. For every cell ¢ of the table DPT, the set M, is a mazximal efficient
subset of the set of all multivalues achieved by scheduling the jobs of I..

Proof. We need to show that for every cell ¢ of the table DPT and every mul-
tivalue val(r), where 7 is a schedule of I, either

e val(m) € M., or
e Ju € M., such that v < val(m)

Suppose, towards contradiction, that this is not the case, and let ¢ be a cell
with minimal n(c) that does not satisfy the above condition. Thus, there is a
schedule 7 of the instance I. with val(r) ¢ M. and for any v € M, there is
an | € {1,...,k} with val(w); < v;. Clearly, this can only happen for n(c) >
2. Let ay be the profile of the job scheduled last in 7 and let ¢’ be the cell
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with coordinates (c1,ca,...,¢cf—1,¢f — 1,¢p41,...,¢x). Furthermore, let 7’ be
the schedule derived from 7 by omitting the last job. The multivalue of 7 is
val(m) —w(ay)- Zle ¢;-p(ay). If there were a v € M, such that val(v) < val(n’),
then val(m) would be dominated by v + w(ay) - Zf:l ¢i - p(a;). Thus, for every
v € M, there is an [ € {1,...,k} such that v; > val(s'), and thus ¢’ does
not satisfy the above property either. Since n(¢’) < n(c), this contradicts the
minimality of c.

It is easy to see that the initialization of the table, as well as the computations
of val(m) can be done in polynomial time. Furthermore, since (n?- P - W)? is
an upper bound on the value of any schedule in any scenario, there can be at
most (n? - P- W)™ efficient vectors in any stage of the computation. The size
of the dynamic programming table is bounded by n* and for each computation
of a cell, at most k cells need to be considered. Moreover, the operator Red can
be implemented in time (n?- P-W)*™ by exhaustive comparison. Thus, a single
cell can be filled-in in time k(n?- P-W)?™ 4 (n?- P-W)*™ and the whole table
in time n* - (k- (n?- P-W)?™ + (n?- P-W)*™). The number of different profiles
k is bounded by (P - W)™, which is a constant. Thus our algorithm runs in time
O(n®™+tW™P™) "ie. polynomial in n.
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Streaming Algorithms for k-Center Clustering
with Outliers and with Anonymity
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Abstract. Clustering is a common problem in the analysis of large data
sets. Streaming algorithms, which make a single pass over the data set
using small working memory and produce a clustering comparable in cost
to the optimal offline solution, are especially useful. We develop the first
streaming algorithms achieving a constant-factor approximation to the
cluster radius for two variations of the k-center clustering problem. We
give a streaming (4-+¢)-approximation algorithm using O (e *kz) memory
for the problem with outliers, in which the clustering is allowed to drop
up to z of the input points; previous work used a random sampling
approach which yields only a bicriteria approximation. We also give a
streaming (6 + ¢)-approximation algorithm using O(e™'In(¢™ )k + k?)
memory for a variation motivated by anonymity considerations in which
each cluster must contain at least a certain number of input points.

Keywords: clustering, k-center, streaming, outliers, anonymity.

1 Introduction

Clustering is a common problem arising in the analysis of large data sets. For
many applications in document and image classification [BIGII3ITEITE] and data
mining, clustering plays a central role [5]. In a typical clustering problem, we have
a set of n input points from an arbitrary metric space (with a distance function
satisfying the triangle inequality) and wish to partition the points into k clusters.
We select a center point for each cluster and consider the distance from each
point to the center of the cluster to which it belongs. In the k-center problem,
we wish to minimize the maximum of these distances, while in the k-median
problem, we wish to minimize their sum. In this paper we focus on k-center
clustering, since it is an important problem for which a variety of approaches
have been presented. Hochbaum and Shmoys [I4] and Gonzalez [I0] developed
algorithms that achieve a factor 2 approximation in the cluster radius. This is
the best possible since one can show by a reduction from the dominating set
problem that it is NP-hard to approximate k-center with factor 2 — € for any
e > 0.
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In the analysis of extremely large data sets, it is not possible to hold the entire
input in memory at once. Thus, we consider the streaming or incremental model
in which the algorithm reads input points one by one and maintains a valid
clustering of the input seen so far using a small amount of working memory. (We
contrast such algorithms with offline algorithms that use memory polynomial in
the size of the input.)

Charikar, Chekuri, Feder and Motwani [5] introduced the incremental model
for the k-center problem and gave a very elegant “Doubling Algorithm” that
achieves a factor 8 approximation using only O(k) memory. The result is slightly
surprising, since it is not obvious at all how to do this incrementally. The key
idea is to maintain a lower bound on the radius of an optimal solution. For
example, after £ + 1 input points have been presented, examining the closest
pair of points gives us an obvious lower bound on the optimal radius, since at
least two of these points must belong to the same cluster.

The key focus of this paper is to deal with outliers, an issue originally raised
in [7]. Data is often noisy and a very small number of outliers can dramatically
affect the quality of the solution if not taken into account, especially under the
k-center objective function, which is extremely sensitive to the existence of points
far from cluster centers. The formal definition of the problem is as follows: group
all but z points into k clusters, minimizing the radius of the largest cluster. An
offline factor 3 approximation for the outlier version was developed [7]; it greedily
chooses clusters of a certain radius so as to cover as many new input points with
each cluster as possible. The factor 3 assumes that we can enumerate all center
points in the metric space that the optimal clustering is allowed to use. If not, the
algorithm is easily modified to produce a clustering that uses only input points
as centers but has radius at most 4 times that of an optimal clustering with unre-
stricted centers[] The same paper also considered the k-median objective function
and developed a bicriteria algorithm: if there exists a solution of cost C' that drops
z outliers, it finds one of cost at most O(C') that drops at most O(z) outliers. More
recently, a polynomial time algorithm has been developed for k-medians that de-
livers a solution of cost O(C') while dropping only z outliers [§].

The offline algorithm for k-center clustering with outliers is not easily adapted
to the streaming model because it relies on the ability to count the input points
that would be covered by a potential cluster, which is difficult to implement
without having the entire data set in memory. In general, dealing with outliers
in the streaming model is quite tricky because we have no way to know, as
points arrive, which should be clustered and which are outliers. This problem
was first considered by Charikar, O’Callaghan and Panigrahy [6], who developed
a streaming-model bicriteria approximation for the k-center problem (see also
[12]). Their approach is based on taking a random sample of the data set that
is small enough to fit in memory and running the offline algorithm [7] on the
sample. They then prove that, with high probability, the set of clusters found
for the sample is also a good solution for the entire data set. This construction
preserves the radius approximation factor of the underlying offline algorithm

1 We simply expand the disks G; to radius 2r and the disks E; to radius 4r.
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(3 or 4) but increases the number of outliers to (1 + €)?z. The sample has size
roughly O(e2kn/z), where n is the data set size. Therefore, the sampling ap-
proach is good when z is linear in n and a slight increase in the number of
outliers is acceptable; otherwise, it requires an unreasonable amount of memory.

We present a streaming algorithm for k-center clustering with outliers that
is in several ways complementary to that of [6]. Our deterministic algorithm
is based on the Doubling Algorithm [5] and also uses the offline algorithm for
outliers [7] as a subroutine. It increases the radius approximation factor to 3+ ¢
or 4+¢ but meets the outlier bound z exactly; as far as we are aware, it is the first
streaming constant-factor approximation with the latter property. Our algorithm
uses O(e~'kz) memory, so it is suitable when z is small and an additional slight
increase in the cluster radius is acceptable.

Agarwal et al. [I] present an algorithm for shape-fitting with outliers that may
be applicable to k-center clustering, and Badoiu et al. [4] present a sampling-
based streaming k-center algorithm that uses coresets. However, both techniques
work only in Euclidean spaces R?; furthermore, the first requires multiple passes
over the input and the second has running time exponential in k.

Other recent applications of k-center clustering (with and without outliers)
for the purposes of anonymity are considered in [2], but the algorithms given
there do not work in the streaming model. We present a streaming (6 + €)-
approximation algorithm for the k-center clustering problem with a lower bound
b on the number of points per cluster. The precise requirement is that it must be
possible to allocate each input point to a center within the appropriate radius
so that each center gets at least b points, i.e., centers cannot meet the bound by
sharing points.

2 Improving Streaming Algorithms by Parallelization

In this section, we develop a parallelization construction that improves the ap-
proximation factor of the Doubling Algorithm to 2 4 € while increasing the run-
ning time and memory usage by a factor of O(e~* In(e~1)) B We first generalize
the Doubling Algorithm to a “Scaling Algorithm” based on a parameter a > 1
that maintains a lower bound r on the radius of the optimal cluster and raises
it by a factor of exactly a at a time. As it reads points, this algorithm keeps
centers separated by at least 2ar and ensures that every input point seen so far
is within nr = (202/(ov — 1))r of a center. Let r* denote the optimal radius,
and let rg be half the least distance between two of the first &+ 1 distinct input
points, which is used to initialize r.

Naively, the Scaling Algorithm is an n-approximation because it gives us a
solution with radius within a factor 7 of its own lower bound r, and we minimize
n = 8 by choosing a = 2. But observe that if »* = 1.9y, we get lucky: the
algorithm cannot raise r to 2ry because 2r( is not a lower bound on r*, so it is

? Sudipto Guha independently discovered a similar construction [IT] based on Gonza-
lez’s algorithm [I0]; it also yields a streaming (2 + €)-approximation algorithm for
k-center clustering.
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obliged to return a solution with radius at most 8ry, which is only a factor of
about 4.2 from optimal.

To ensure that we always get lucky in this way, we run m instances of the Scaling
Algorithm in parallel (feeding each input point to each instance) with interleaved
sequences of r values. Specifically, we initialize the r value of the ith instance (i = 1,
...,m)to a(i/m)_lro so that the instance takes on the r values at“'(i/m)_lrm where
t = 0,1,.... Consequently, any desired r of the form al/™ =1y for a positive
integer j will eventually be taken on by some instance. Letting j be the smallest
integer greater than mlog, (r*/ro), we have a//™ry > r*, so the instance that
takes r = al9/™ =1y will be unable to raise r again and thus will return a solution
whose radius R is at most na7/™ =155 And by our choice of j, alU=1/Mpq < p*,
so R < nat/™~1p* Therefore, by taking the best solution produced by any of the
m instances, we achieve a factor (n/«) %/« approximation.

Substituting the expression for 7, the approximation factor of the parallelized
algorithm becomes 2(1+1/(a—1))%/c. Now, we want « large to make 1/(cv—1)
small; intuitively, with larger «, accounting for previous rounds across an increase
of r costs less in the Scaling Algorithm’s approximation factor. We also want
m large to keep /o close to 1. Letting a = O(e~!) and m = O(e !In(e7 1))
gives a factor of 2 4 €. This approximation factor is essentially the best we can
hope for since the best offline algorithms [T4IT0] are 2-approximations, but there
may be a better construction that uses less time and memory. We will apply the
same parallelization construction to the streaming-model clustering algorithms
described in the following sections.

2.1 Suitability of Parallelized Algorithms

The original model of Charikar et al. [5] requires that a clustering algorithm
maintain a single clustering of the input points read so far and modify it only
by merging clusters. This model has the advantage that a forest describing the
merges can be incrementally written to secondary storage; the forest can later
be traversed to enumerate the input points in any desired output cluster without
a second pass over the entire input. Parallelized algorithms do not fit this model
because they maintain many clusterings and do not choose one until the end.
(This is why they do not contradict the lower bound of 1+ V/2 on the approxima-
tion factor in [5].) Writing out a forest for each of the many partial clusterings
under consideration may be impractical. However, parallelized algorithms are
still useful when the goal is only to produce statistics for each output cluster
(along with the centers themselves) because the statistics can be maintained
independently for each partial clustering.

3 Clustering with Outliers

In this section, we develop a streaming algorithm for k-center clustering with z
outliers that achieves a constant factor approximation to the cluster radius using
O(kz) memory. We then parallelize it to a (4 + €)-approximation using O(e~'kz)
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memory. The essential difficulty in designing a deterministic streaming algorithm
for clustering with outliers is that it is dangerous to designate an input point
as a cluster center and start forgetting nearby points because they could all be
outliers and the center might be needed to cover points elsewhere. Our algorithm
overcomes the difficulty by delaying the decision as long as necessary. Specifically,
it accumulates input points (remembering all of them) until it sees z 4+ 1 points
close together. These cannot all be outliers, so it creates a cluster for them and
only then can safely forget any later points that fall in that cluster.
The algorithm’s state consists of:

— some number ¢ < k of stored cluster centers, each of which carries a list of
z 4+ 1 nearby “support points” from which it was originally formed;

— some “free points” that do not fall into existing clusters but cannot yet be
made into new clusters because they might be outliers; and

— a lower bound r on the optimal radius, as in the Doubling Algorithm.

The algorithm ensures that clusters of radius nr at the ¢ stored centers cover
all forgotten points, and it checks after processing each input point that it can
cover all but at most z of the free points with & — ¢ additional clusters of radius
nr. Thus, whenever the algorithm encounters the end of the input, it can produce
a solution with radius nr. The algorithm is based on parameters «, (3, and 7,
which we will choose later to optimize the approximation factor; for the proof
of correctness to hold, these parameters must satisfy some constraints that we
will state as they arise.

The algorithm is designed so that, whenever its partial solution with radius nr
becomes invalid, it can establish a new lower bound ar on the optimal radius,
raise r by a factor of «, and adapt the partial solution to the new value of
r; this process is repeated until the validity of the partial solution is restored.
Furthermore, we will show that the algorithm will never store more than O(kz)
free points at a time, establishing the memory requirement.

As in the Doubling Algorithm [5], we need a certain separation between centers
in order to raise r. To this end, we say that two distinct centers conflict if some
support point of the first is within distance 2ar of some support point of the
second.

Algorithm 3.1 (Clustering with outliers). Peek at the first k+2+1 distinct
input points, initialize r to half the least distance between any two of those
points, and start with no cluster centers and no free points. Then read the input
points in batches. Batches of size kz appear to give the best trade-off between
running time and memory usage, but a different size can be used if desired.
For each batch, add the points as free points and then perform the following
procedure:

1. Drop any free points that are within distance nr of cluster centers.

2. If some free point p has at least z+1 free points within distance fr (including
itself), then add p as a cluster center, choosing any z + 1 of the free points
within distance Br as its support points, and repeat from step [Il If no such
p exists, proceed to the next step.
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Let ¢ be the number of stored cluster centers. Check that ¢ < k and that
at most (k — £)z + z free points are stored. Run the 4-approximation offline
algorithm for k-center clustering with outliers (see the Introduction) to at-
tempt to cover all but at most z of the free points using k — ¢ clusters of
radius nr. If the checks and the offline algorithm both succeed, processing of
the current input batch is complete. Otherwise, set r < ar and continue to
the next step.

. Unmark all the stored centers and then process them as follows: while there

exists an unmarked center ¢, mark ¢ and drop any other centers that conflict
with ¢ with respect to the new value of r. When a center is dropped, its
support points are forgotten. (Note that once a center ¢ is marked, it cannot
later be dropped on account of another center ¢’ because ¢’ would already
have been dropped on account of ¢.) Repeat from step [

When the end of the input is reached, return clusters of radius nr at the stored
centers plus the clusters found by the last run of the offline algorithm. O

Figure[llshows an intermediate state of the algorithm on a data set with k& = 3 and
z = 4. The algorithm is storing ¢ = 2 cluster centers ¢; and c2, and each center has
z+1 = 5 support points (including itself), which are within fr of it. Several other
input points within distance nr of the centers have been forgotten. The algorithm

k=3,2=14

Key
@ cluster center
~— cluster boundary
+ 7 ~ support boundary
[J support point
X forgotten input point
O free point
- offline algm’s cluster

Fig. 1. Example of clustering with outliers
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is also storing seven free points, including f7, which would be converted to a cluster
center if there were just one more free point inside circle w; but as it stands, the
algorithm cannot rule out the possibility that all four of the points in w are outliers.
The offline algorithm found the cluster I" (centered at f7), which covers all but
2 < z of the free points; if we combine it with the stored centers, we have a valid
clustering of radius nr for the input points seen so far.

Notice that the three support points A are just far enough from the support
points B to avoid a conflict. If they were any closer, then the optimal solution
could conceivably cover all six points with a single cluster of radius ar and leave
the remaining four support points as outliers, and the proof of correctness of the
algorithm’s decision to set r < ar (see Lemma below) would fail.

Suppose several free points arrive inside I" but outside w. The current clus-
tering covers these points, but if the algorithm allowed them to accumulate
indefinitely, it would violate the O(kz) memory bound. Thus, when the number
of free points exceeds (k — £)z + z = 8, the algorithm raises r on the following
logic: in the optimal solution, two clusters are busy covering support points of
the stored centers, and there is no way a third cluster of radius ar containing
at most z = 4 points can cover all the free points with at most 4 outliers. (If
there were a potential third cluster of more than 4 points, the algorithm would
already have recognized it in step 21) Once r is raised, the support points A and
B conflict, so one of the centers ¢;, ¢o subsumes the other in step [l

Lemma 3.2. The algorithm maintains the following invariants:

(a) Every time step [1] completes, the remaining free points are at least distance
nr from cluster centers.

(b) Each stored center has z + 1 support points within distance Br of it.

(¢) No two stored cluster centers conflict.

(d) Every input point the algorithm has read so far either is a free point or is
covered by a cluster of radius nr at a stored center.

(e) The optimal clustering for the input points the algorithm has read so far
requires a radius of at least r.

Proof. is obvious. is checked when a center is added and remains true
when r increases.

To prove we place the constraint n > 2« + 3 on our later choice of the
parameters. With this constraint, addition of a center ¢ in step 2l preserves the
invariant. For if s; is a support point of an existing center ¢y, then s; is within
0r of ¢1, which is at least nr from ¢’s support points (since they were previously
free points). By the triangle inequality, s; is at least distance nr — Br > 2ar
from ¢’s support points, so no conflict results. Furthermore, temporary conflicts
created by an increase in r are removed in step @l

Each point the algorithm reads is initially a free point, so the algorithm endan-
gers invariant only when it drops free points or centers. Free points dropped
in step [ are covered by stored centers, so they do not break the invariant. Steps
and [ effectively drop some clusters while expanding the remaining ones to
radius nar; we must show that any input point that was covered by a dropped
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cluster before the change is covered by an expanded cluster afterwards. To this
end, we constrain n + 2a2 4+ 23 < na. Let 79 and r; = arg denote the old and
new values of r, respectively. Consider an input point p that was covered by a
dropped center ¢, meaning that it was within distance nry of c. ¢ was dropped
when a conflicting center ¢’ was marked. The support points causing the conflict
were within distance 2ar; of each other and distance (rg of their respective
centers, so the distance from p to ¢’ is at most

nro + Bro + 2ary + Bro = (n+ 202 + 208)ro < narg = nr.

Thus, p is covered by ¢/, and the invariant holds.

Invariant is established by the initial setting of r because one of the k
clusters of the optimal solution must cover two of the first k£ + z + 1 distinct
input points. To show that increases in r maintain the invariant, we will show
that, if step Blis reached and the optimal clustering C* for the input read so far
has radius less than ar, then the algorithm does not set r < ar.

Let ¢ be a stored cluster center. C* cannot designate all z 4+ 1 of ¢’s support
points as outliers, so some cluster ¢* € C* must cover one of ¢’s support points;
we say that ¢* bites c. No two stored cluster centers conflict, so no cluster of C'*
(having diameter less than 2ar) can bite two of them; thus, each stored cluster
center is bitten by a different cluster of C*. In particular, this means ¢ < k.
Similarly, by invariant and our assumption that 7 > 2a+ (3, no cluster of C*
can both bite a stored cluster center and cover a free point. Finally, we constrain
B > 2a; then no cluster of C* can cover z + 1 or more free points because, if it
did, each of those free points would be within distance Br of all the others and
they would have become the support points of a cluster center in step

Now, at least ¢ of the clusters of C* are devoted to biting stored cluster
centers, so at most k — £ clusters can cover free points; let F™* be the set of these
clusters. In order for C* to be a valid solution for the input read so far, F* must
be a valid clustering of all but at most z of the free points. But we showed that
each of the at most k — ¢ clusters in F'* covers at most z free points, so there
can be at most (k — £)z + z free points in total. Finally, the offline algorithm is
a 4-approximation, so if we assume that 1 > 4, the existence of F* with radius
less than ar guarantees that the offline algorithm will find a clustering of radius
nr. The result is that r is not raised, as desired. O

Theorem 3.3. The algorithm produces a wvalid clustering of radius nr using
O(kz) memory and O(kzn+(kz)?log P) time, where P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. Validity of the clustering: The first set of ¢ clusters covers all input points
except the free points by Lemma and the second set of k—/ clusters covers
all but at most z of the free points. Thus, together, the k clusters cover all but
at most z of the input points.

Memory usage: At any time, the algorithm remembers ¢(z + 1) support points
(including the centers), at most (k — ¢)z + z free points from before the current
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batch, and at most kz free points from the current batch. This is a total of at
most (2k + 1)(z + 1) points, and the working storage needed to carry out the
steps is constant per point.

Running time: At the beginning of a batch, we perform step [l exhaustively in
O(k?z) time. We identify potential centers in step Bl by maintaining a count for
each free point p of the free points within distance fr of p. Each time we add
or drop a free point, which happens at most O(kz) times per batch, we perform
a scan of the other free points to update their counts (this takes O(kz) time).
When we convert a free point ¢ to a center, we identify its support points and
the free points to be dropped in step [[l on the same scan that drops c itself as
a free point. The offline algorithm in step Bl runs in O((kz)?) time using its own
set of distance-nr/2 counts; we charge a successful run of the offline algorithm,
which ends a batch, to that batch and a failed run to the resulting increase in
r. In step @ we have O(k) centers (k from the previous batch and at most one
per z + 1 of the O(kz) free points), so we test each of the O(k?) pairs of centers
for a conflict in O(2?2) time; this takes O((kz)?) time, which we charge to the
increase in r. Now, there are O(n/kz) batches and O(log P) increases in r, and
each batch or increase is charged O((kz)?) time, giving the desired bound. O

The construction in Section 2] yields an m-instance parallelized algorithm with
approximation factor (n/a)%/a. We wish to choose the parameters to minimize
this factor. We have the constraints:

n>2a+f3 (1)
na217+2a2+2ﬂ (2)
B> 2a (3)
n> 4o (4)

Setting « = 4, § = 8, and n = 16 satisfies the constraints and gives an ap-
proximation factor of 4'+(1/7) so we can achieve a (4 + €)-approximation with
m = O(e~1). The memory usage and running time of the parallelized algorithm
increase by a factor of m to O(e " 1kz) and O(e~!(kzn + (kz)?log P)). Note that
two things limit the approximation performance: that of the offline algorithm
via (@), and the constraints (@) and () that limit what an optimal cluster can
do. Thus, an improvement in the approximation factor of the offline algorithm
will not carry through to the streaming algorithm unless it comes with a corre-
spondingly better way to analyze optimal clusters.

3.1 Improvement Using a Center-Finding Oracle

There is a (3+ ¢)-approximation version of the streaming algorithm, correspond-
ing to the 3-approximation offline algorithm, when the metric space comes with
a center-finding oracle. Given a positive integer j, a distance x, and a point set
S, the oracle returns a point p having at least j points of S within distance z
or announces that no such p exists in the metric space. Such an oracle may be
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impractical to implement in high-dimensional spaces, but when one is available,
we can use it to improve the algorithm.

In step Bl instead of looking for potential centers among the free points, we
invoke the oracle with « = fGr, j = z+ 1, and S being the current set of free
points, and we add the resulting point (if any) as a center. Now, when the oracle
fails, we know there is no cluster of radius Or centered anywhere that covers
more than z free points, so we can relax constraint @) to 8 > «a. In step B
we substitute the 3-approximation offline algorithm, choosing centers using the
oracle, and hence relax constraint {@]) to n > 3a. With the modified constraints,
we choose a = =5 and 1 = 15 to achieve a (3 + €)-approximation with the
same O(e~1kz) memory usage; the running time depends on that of the oracle.

4 Clustering with Anonymity

For the problem of k-center clustering with a lower bound b on the number of
points per cluster, we present a construction based on the parallelized Scaling
Algorithm of Section [2] that achieves a (6 + €)-approximation. Applications of
this problem for anonymity are considered by Aggarwal et al. [2].

Algorithm 4.1 (Clustering with anonymity). Let 6 = ¢/2. First run the
m-instance parallelized Scaling Algorithm with m chosen to achieve a (2 + §)-
approximation, but modify it to keep a count of how many input points “belong”
to each center under an assignment of each point to a center within distance (2 +
6)r of it. (The algorithm does not store this assignment explicitly, but we use it
in the proof of correctness.) When an existing center catches a new input point,
the center’s count is incremented, and when centers are merged, their counts are
added. The Scaling Algorithm returns a lower bound r on the radius of the optimal
k-center clustering of the input, a list of k preliminary centers c1, ..., ¢, and the
number n; of input points belonging to each preliminary center c;.

If n; > b for all 7, the preliminary centers ¢; constitute a solution within factor
2+ 6 of the optimal and we are done. Otherwise, we merge some centers using a
scheme resembling the offline algorithm for k-center clustering with anonymity
[2]. Given a merging radius R, the scheme works as follows. Initialize all prelim-
inary centers to inactive; then, while there exists a preliminary center ¢ that has
no active center within distance 2R, activate c. Next, attempt to allocate each
input point p (belonging to a preliminary center ¢) to an active center within
distance 2R + (2 + é)r of ¢ in such a way that each active center gets at least b
input points. To do this, construct a bipartite graph on the sets P of preliminary
centers and A of currently active centers with an edge of infinite capacity con-
necting a node x € P to a node y € A if their distance is at most 2R+ (2 + 6)r.
Add a source s with an edge of capacity n; to each ¢; € P and a sink ¢ with an
edge of capacity b from each ¢; € A, and compute a max flow from s to ¢. If this
flow saturates all edges entering ¢, it represents a valid allocation of the input
points, which the merging scheme returns.

We attempt the merging scheme for various values of R in a binary search
(which need only consider values of the form d/2 and (d — (2 + 6)r)/2 for
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intercenter distances d) and keep the successful allocation with the smallest
value of R. The algorithm returns a clustering consisting of the active centers
under this allocation with radius (4 4+ 26)r + 2R. 0

Theorem 4.2. The algorithm produces a clustering with at least b points per
cluster whose radius is at most 6 + € = 6 + 26 times that of the optimal such
clustering.

Proof. Every input point p belongs to a preliminary center ¢ within distance
(2+6)r of it and is allocated to an active center ¢’ within distance 2R+ (2+ 6)r
of ¢, so p is within distance (4 4+ 26)r + 2R of ¢/. The algorithm’s clustering
consists of the active centers, so the clustering covers every input point at radius
(4 4 26)r + 2R by virtue of the active center to which the point is allocated.
Furthermore, each active center is allocated b points within distance (4426)r+2R
of it. Therefore, the algorithm’s clustering is valid. We must show that it is a
(6 + 26)-approximation.

Let r* be the radius of the optimal clustering, and consider an execution of
the merging scheme with R > r*. Active centers are separated by more than
2R > 2r* by construction, so each lies in a different optimal cluster. We now
claim that there exists an allocation of the form sought by the merging scheme,
namely the allocation A that gives each input point to the unique active center (if
any) lying in its optimal cluster. Let p be an input point; since optimal clusters
have diameter 27, A gives p to an active center ¢ within distance 2r* of it. At the
end of the Scaling Algorithm, p belonged to a center ¢/ within distance (24 8)r,
so the distance between ¢ and ¢’ is at most 2r* 4+ (2 + 6)r < 2R+ (2+ 6)r. Thus,
the merging scheme could legally allocate p (as counted by ¢’) to ¢. This is true
of every input point p, so the claim is established. Consequently, the merging
scheme must succeed whenever R > r*.

Thus, when the algorithm takes the smallest R for which the merging scheme
succeeds, it will take an R < r*. (The algorithm might consider not r* itself
but a slightly smaller value of R for which the merging scheme makes all the
same decisions and therefore still must succeed.) The Scaling Algorithm ensures
that r is a lower bound on r*, i.e., r < r*. Combining these two inequalities, the
radius (4 + 26)r + 2R of the algorithm’s clustering is at most 6 + 26 times the
optimal radius r*, as desired. a

Theorem 4.3. The algorithm runs in O(m(kn+k?log P)+k3logk) time using
O(mk+k?) memory, where m = O(e~*In(e~1)) and P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. We use the simple O(k)-memory implementation of the Scaling Algorithm
that stores only the centers; it performs each of the O(log P) scalings in O(k?)
time and otherwise processes each point in O(k) time for a total running time
of O(kn + k?log P). Parallelization multiplies these bounds by m. The running
time of the second phase is dominated by the max flow computation, which
is done O(log k) times because there are O(k?) possible values for R. Using the
relabel-to-front algorithm, each max flow invocation takes O(k?) time and O(k?)
memory. The desired bounds follow. a
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(4+26)r + 2R

Fig. 2. Example of clustering with anonymity, with b = 3

The example in Figure 2should help clarify the argument and motivate the final
radius of (4 4 26)r + 2R. We have two preliminary clusters ¢; and co of radius
(2 + 6)r with ny = 5 and ny = 1. The Scaling Algorithm decided to make the
points A belong to ¢; even though they are actually much closer to co, perhaps
because co was not created until after they were read. Suppose we activate ¢o in
the merging scheme. All we know about it is that it is in some optimal cluster of
diameter 2r* that contains b input points. For example, suppose b = 3 and there
is an optimal cluster centered at ¢* (not an input point) that contains ¢ and
the points A. In order to guarantee that we can successfully allocate three points
to ca whenever R > r*, we must make all input points within distance 2R of cg
(here the points A) available for allocation to it. But these points could belong to
a different center (here ¢;) that is another (24 6)r away, so to be sure of catching
them, we must allow ¢s to take points belonging to centers up to 2R+ (2 4 6)r
away. However, the algorithm knows only that the five points belonging to ¢y
are within (2 4 6)r of it; it knows nothing else about where they lie. In allowing
co to take points from ¢; to ensure that it has access to the points A, we are
also opening the possibility of it taking the points B, which are (4 + 26)r + 2R
away; there is no obvious way to avoid this. Thus, we set the radius of the final
clustering to (4 + 26)r + 2R to make sure the clustering is valid. (For example,
if b = 6, the algorithm might return a clustering consisting of a single cluster
centered at ¢y containing all six points, which would need radius (44 26)r+2R.)

The best-known offline algorithm [2], which essentially performs the allocation
phase without the perturbation caused by the initial Scaling Algorithm phase,
achieves an approximation factor of 2. Whether there is a streaming algorithm
with a factor closer to 2 is an open problem.

4.1 Computing Per-cluster Statistics

Suppose that we wish to compute some statistics about the points allocated to
each cluster as well as the center itself. In most cases, the algorithm can be
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extended to compute the statistics without a second pass over the input. For
example, consider a medical application in which each input point represents
a person who may or may not have a certain disease, and suppose we want to
know what percentage of the people in each cluster have the disease. The first
phase already maintains a count of people belonging to each center, and we can
maintain a second count of people with the disease in the same way. When we
allocate the people belonging to a preliminary center in the second phase, we
simply allocate the people with the disease in the same proportion. For example,
suppose 100 people belong to a preliminary center ¢; and 11 of them have the
disease; if we allocate 30 of these 100 people to an active center co, we assume
that 3.3 of them have the disease. In effect, we are allocating to ¢y 30% of each
individual who belongs to ¢;. The fractionality of the allocation may appear silly
but does not really harm the statistics.

In the same way, if we want the average height of the people in each cluster,
we can maintain a “total height” value for each center, allocate height values
in proportion to people, and then divide the total height allocated to a cluster
by the number of people allocated to it. We can even compute several statistics
on the same run. In full generality, if each input point comes with a vector of
real-number weights, we can compute a total-weight vector for each cluster and
divide by the number of points if we desire averages.

5 Conclusions

It is probably possible to combine our techniques for clustering with outliers
and with anonymity to obtain an algorithm for the problem with both outliers
and anonymity (albeit with a worse approximation factor), but we have not
investigated this. One obvious open problem is to find an algorithm for the
outlier problem with better running time and memory usage than our approach
or the sampling approach of [6], particularly for the case where neither z nor
n/z is small, or to prove a lower bound on the amount of memory needed.

If we are allowed multiple passes over the input, we can use a scaling-style
algorithm to determine the optimal radius up to a constant factor on the first
pass and then bound it more tightly on each subsequent pass by testing multiple
guesses in parallel. By spreading the work across passes, we achieve the same
approximation factor with a much smaller number of parallel instances. (The
basic Hochbaum-Shmoys method [I4] works naturally for guess-checking in the
streaming model, but the offline algorithm for outliers [7] does not; one could
instead use a cut-down guess-checking version of our outlier algorithm.) Devel-
oping a better algorithm that fully exploits multiple passes to achieve the same
approximation factor using even less memory is another open problem.

Acknowledgment. The authors are grateful to Sudipto Guha for useful
discussions.
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Abstract. In this paper, we propose a general framework for designing
fully polynomial time approximation schemes for combinatorial optimiza-
tion problems, in which more than one objective function are combined
into one using any norm. The main idea is to exploit the approximate
Pareto-optimal frontier for multi-criteria optimization problems. Using
this approach, we obtain an FPTAS for a novel resource allocation prob-
lem, for the problem of scheduling jobs on unrelated parallel machines,
and for the Santa Claus problem, when the number of agents/machines is
fixed, for any norm, including the lo-norm. Moreover, either FPTAS can
be implemented in a manner so that the space requirements are polyno-
mial in all input parameters. We also give approximation algorithms and
hardness results for the resource allocation problem when the number of
agents is not fixed.

1 Introduction

Consider the following resource allocation problem. There are m agents, and
n resources, which are to be distributed among the agents. Each resource is
assumed to be unsplittable; that is, a resource can be allocated to only one
of the agents. However, agents may need to access resources assigned to other
agents as well. The cost incurred by agent i, if it needs to access resource k
from agent j, is c};. We assume that the ¢j; are non-negative integers, and that
ck = 0. The goal is to have a fair allocation of the resources among the agents;
in other words, the maximum cost of an agent is to be minimized.

A practical setting where such a resource allocation problem can arise is page
sharing in a distributed shared memory multiprocessor architecture [I]. In this
architecture, the shared memory is distributed among different processors (also
referred to as nodes), and each node contains a part of the shared memory
locally. Typically, accessing the local memory is faster than accessing the remote
memory. Every physical page in this architecture is allocated to a fixed node,
which is referred to as the home node of the page. Also, there cannot be more
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than one copy of a page in the system. Suppose each node knows in advance the
number of accesses it will need to make to a page. The total delay, or latency,
faced by a node is the sum of latencies over all the pages it needs to access.
Suppose the latency between node ¢ and j is ¢;;, and the number of times node ¢
needs to access page k is a;;. If page k is stored in node j, then the cost of
accessing page k for node 7 will be cfj = tijai,. The performance of the system
is governed by the node having maximum total latency. Thus, the objective is to
allocate pages among the nodes in an offline fashion so that the maximum total
latency over all the nodes is minimized.

We present an FPTAS for this resource allocation problem when the number
of agents is fixed. There are many standard techniques for obtaining approxima-
tion schemes for combinatorial optimization problems. They include rounding of
the input parameters (e.g. [2I3I4]), and shrinking the state space of dynamic pro-
grams [5]. We propose a novel framework for designing approximation schemes.
The idea behind the new procedure is to treat the cost of each agent as a sep-
arate objective function, and to find an approximate Pareto-optimal frontier
corresponding to this multi-objective optimization problem. Safer et al. ﬂﬁlﬂ give
necessary and sufficient conditions for the existence of fully polynomial time ap-
proximation schemes in multi-criteria combinatorial optimization. Papadimitriou
and Yannakakis [9] propose an efficient procedure to construct an approximate
Pareto-optimal frontier for discrete multi-objective optimization problems, and
we use their procedure in constructing the approximation scheme for the resource
allocation problem.

A closely related problem is the Santa Claus problem [TO/TIIT2]. In this prob-
lem, each agent has a utility corresponding to each resource allocated to it, and
the objective is to allocate the resources among the agents so that the minimum
utility over all the agents is maximized. Our problem is different from the Santa
Claus problem in that there is a cost associated with accessing each resource an
agent does not get, instead of having a utility for each resource it gets. Using
the above framework, we obtain the first FPTAS for the Santa Claus problem
with a fixed number of agents.

Another closely related problem is scheduling jobs on unrelated parallel ma-
chines to minimize the makespan, also referred to in the literature as the
Rm||Ciax problem. There are m machines and n jobs, and each job is to be
scheduled on one of the machines. The processing time of job k& on machine i is
pir- The objective is to minimize the makespan, that is the time at which the last
job finishes its execution. Our procedure yields the first FPTAS for this problem
that has space requirements that are polynomial in all the input parameters.

The resource allocation problem is NP-hard even when there are only two
agents, and strongly NP-hard when the number of agents is variable (see the
proof of NP-hardness in the Appendix). It remains strongly NP-hard for the
special case of uniform costs, in which for each agent ¢ and each resource k, c?j =
cF for all agents j # 4. In this paper, we give a 2-approximation algorithm for

! This paper is a combined version of two earlier working papers by Safer and

Orlin [7I8].
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the uniform cost case. The algorithm makes use of the well-known technique of
parametric linear programming and rounding, which has been successfully used
in obtaining approximation algorithm for scheduling problems in the past [3].
Our rounding procedure, however, differs from the one given in [3]; it is more
similar to the one used by Bezakova and Dani [12] for the Santa Claus problem.

Our results: The results in this paper can be summarized as follows.

1. Approzimation schemes. We present a general framework for designing ap-
proximation schemes for problems with multiple objective functions combined
into one using norms or other functions. We illustrate the versatility of this
scheme by applying it to the resource allocation problem, the Rm||Cryax prob-
lem, and the Santa Claus problem. An interesting byproduct is that, by a careful
implementation of the FPTAS, the space requirements can be made polynomial
in all the input parameters. Previously, all FPTASes for the Rm| |Cinax problem
had space complexity exponential in the number of machines. This settles an
open question raised by Lenstra et al. [3].

2. A 2-approximation algorithm. We propose a 2-approximation algorithm for
the resource allocation problem with an arbitrary number of agents, for the
special case of uniform costs, in which each agent incurs the same cost to access
a resource from another agent, irrespective of the agent the resource is allocated
to. This is achieved by solving a linear programming relaxation of the problem,
and then rounding the fractional solution.

3. Hardness of approzimation. We show that the general resource allocation prob-
lem cannot be approximated within a factor better than 3/2 in polynomial time,
unless P=NP. We achieve this by giving an approximation preserving reduction
from the R||Cmax problem to the resource allocation problem. In [3], it had
been shown that the former problem cannot be approximated better than 3/2 in
polynomial time, unless P=NP, hence a similar result holds for the resource allo-
cation problem, too. This reduction also establishes a direct connection between
the resource allocation problem and the R||Cihax scheduling problem.

Related work: Lenstra et al. [3] presented a 2-approximation algorithm for the
R| |Cmax problem, based on a linear programming relaxation and rounding. For
the case of a fixed number of machines, Horowitz and Sahni [2] gave the first
FPTAS, which, however, has exponential space requirements. Lenstra et al. [3]
derived a PTAS for this problem, which has better space complexity. In their
paper, the authors mentioned that, “An interesting open question is whether
this result can be strengthened to give a fully polynomial approximation scheme
for fixed values of m, where the space required is bounded by a polynomial in the
input size, m, and 1/e (or, even better, log(1/¢)).” We settle this open question
in the affirmative in this paper. Azar et al. [I3] gave an FPTAS for this problem
for fixed m for any l,-norm, but they do not analyze the space complexity of
their approximation scheme.

The Santa Claus problem was first studied by Lipton et al. [I1]. Bezakova
and Dani [12] proposed a linear factor approximation algorithm for this problem,
which is based on a linear programming relaxation and rounding; our rounding
procedure is similar to the rounding procedure used in their paper. Bansal and
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Sviridenko [I0] obtained a tighter approximation algorithm for the restricted
assignment version of the problem, where each resource can be allocated to only
a subset of the agents, and each such agent has the same utility for that resource.
As of now, no FPTAS has been proposed for the Santa Claus problem with a
fixed number of agents.

The focus of this paper will be mainly on the resource allocation problem, since
this problem was our original motivation for taking up this study. We will refer
to the Rm/||Chax problem and the Santa Claus problem whenever our techniques
for the resource allocation problem also apply to these two problems. We begin by
giving an integer programming formulation of the resource allocation problem.
Let x;, be a variable which is 1 if the kth resource is given to agent 7, otherwise
it is 0. Then the total cost incurred by agent 4 is Y7, D270, k2. An integer

ij
programming formulation of the resource allocation problem is given by

min S
n m
s.t. ZZcfjxjk <S8 fori=1,...,m,
k=1 j=1
m
foik:l fork=1,...n,
i=1

i, € {0,1} fori=1,....m, k=1,...,n.

2 An FPTAS for a Fixed Number of Agents

In this section, we give an FPTAS for the resource allocation problem with a
fixed number of agents. We first discuss a polynomial-time procedure to compute
an approximate Pareto-optimal frontier for general multi-objective optimization
problems. We then show that using the approximate Pareto-optimal frontier,
we can get an approximate solution for the resource allocation problem. Sub-
sequently, we use this technique for obtaining an FPTAS for the Rm||Cpax
problem and the Santa Claus problem as well, and then extend it to the case of
general [,-norms, other norms, and beyond.

2.1 Formulation of the FPTAS

An instance 7 of a multi-objective optimization problem IT is given by a set of m
functions f1,..., fim- Each f; : X — Ry is defined over the same set of feasible
solutions, X. Let |7| denote the binary-encoding size of the instance 7. Assume
that each f; takes values in the range [2~7(7D 2P(I7D] for some polynomial p. We
first define the Pareto-optimal frontier for multi-objective optimization problems.

Definition 1. Let 7 be an instance of a multi-objective optimization problem.
A Pareto-optimal frontier (with respect to minimization), denoted by P(7), is a
set of solutions x € X, such that there is no ' € X such that f;(z') < fi(z) for
all i with strict inequality for at least one i.
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In other words, P(7) consists of all undominated solutions. In many cases, it may
not be tractable to compute P(w) (e.g., determining whether a point belongs to
the Pareto-optimal frontier for the two-objective shortest path problem is NP-
hard), or the number of undominated solutions can be exponential in |7| (e.g.,
for the two-objective shortest path problem [I4]). One way of getting around this
problem is to look at an approximate Pareto-optimal frontier, which is defined
below.

Definition 2. Let 7 be an instance of a multi-objective optimization problem.
For e > 0, an e-approximate Pareto-optimal frontier, denoted by P.(7), is a set
of solutions, such that for all x € X, there is ' € P.(w) such that fi(z') <
(1+¢€)fi(x), for all i.

In the rest of the paper, whenever we refer to an (approximate) Pareto-optimal
frontier, we mutually refer to both its set of solutions and their vectors of objec-
tive function values.

Papadimitriou and Yannakakis [9] showed that whenever m is fixed, there
is always an approximate Pareto-optimal frontier that has polynomially many
elements.

Theorem 1 (Papadimitriou and Yannakakis [9]). Let 7 be an instance of
a multi-objective optimization problem. For any € > 0 and for fired m, there is
an e-approximate Pareto-optimal frontier P.(m) whose cardinality is bounded by
a polynomial in || and 1/e.

Let us consider the following optimization problem:

minimize g(z) = max f;(v), zeX. (1)

i=1,....,m

We show that if an approximate Pareto curve can be constructed in polynomial
time, then there is an FPTAS to solve this min-max problem.

Lemma 1. There is at least one optimal solution x* to [Il) such that z* € P(r).

Proof. Let & be an optimal solution of (). Suppose fi(#) is the maximum
among all function values for Z; that is, fip(z) > fi(2) for all ¢ = 1,...,m.
Suppose & ¢ P(w). Then there exists 2’ € P(w) such that f;(a’) < fi(Z) for i =
1,...,m. Therefore, f;(z’) < fi(&) for all ¢, that is max;—1, _m fi(z") < fu(2),
or g(2') < ¢g(%). Thus 2’ minimizes the function g and is in P(7). O

Lemma 2. Let & be a solution in P.(m) that minimizes g(xz) over all points
x € P.(m). Then & is a (1 + €)-approzimate solution of [d); that is, g(z) is at
most (1 + €) times the value of an optimal solution to ().

Proof. Let z* be an optimal solution of () that is in P(w). By the definition of
e-approximate Pareto-optimal frontier, there exists 2’ € P.(r) such that f;(a’) <
(I+¢)fi(z*), for all i = 1,...,m. Therefore g(z’') < (1 + €)g(z*). Since & is a
minimizer of g(z) over all solutions in P.(r), g(%) < g(2’) < (1 +€)g(z*). O
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From these two lemmas, we get the following theorem regarding the existence of
an FPTAS for solving ().

Theorem 2. Suppose there is an algorithm that computes P.(m) in time poly-
nomial in |w| and 1/€ for a fized value of m. Then there is an FPTAS for solving
the min-mazx optimization problem ().

Thus, the only thing we are left with is to find a polynomial-time algorithm for com-
puting an approximate Pareto-optimal frontier. Papadimitriou and Yannakakis [9]
give a necessary and sufficient condition under which such a polynomial-time algo-
rithm exists.

Theorem 3 (Papadimitriou and Yannakakis [9]). Let m be fized, and let
€, ¢ > 0 be such that (1 — €')(1+¢) = 1. One can determine a P.(7) in time
polynomial in |r| and 1/¢ if and only if the following ‘gap problem’ can be solved
in polynomial-time: Given an m-vector of values (v1,...,vy), either

(i) return a solution x € X such that fi(xz) <wv; for alli=1,...,m, or

(ii) assert that there is no x € X such that fi(x) < (1—€)v; foralli=1,...,m.

We sketch the proof because our approximation schemes are based on it.

Proof. Suppose we can solve the gap problem in polynomial time. An approx-
imate Pareto-optimal frontier can then be constructed as follows. Consider the
box in R™ of possible function values given by {(vy,...,vy,) : 27PU7) <4 <
2°(71) for all i}. We divide this box into smaller boxes, such that in each dimen-
sion, the ratio of successive divisions is equal to 1 + €, where €/ = /1 + € — 1.
For each corner point of all such smaller boxes, we call the gap problem. Among
all solutions returned by solving the gap problems, we keep only those solu-
tions that are not Pareto-dominated by any other solution. This is the required
P.(7). Since there are O((p(|x|)/€)™) many smaller boxes, this can be done in
polynomial time.

Conversely, suppose we can construct P.(7) in polynomial time. To solve
the gap problem for a given m-vector (vq,...,v,), if there is a solution point
(fi(x),..., fm(x)) in P.(7) such that f;(z) < v; for all 4, then we return .
Otherwise we assert that there is no z € X such that f;(z) < (1 — €')v; for all
1=1,...,m. a

Thus, we only need to solve the gap problem to get a (1+¢)-approximate solution
for the min-max problem. This is accomplished in a manner similar to that given
in [9]. Our description here is with respect to minimization problems; a similar
description for maximization problems can be found in [9].

We restrict our attention to the case when X C {0, 1}%, since many combinato-
rial optimization problems can be framed as 0/1-integer programming problems.
Further, we consider linear objective functions; that is, f;(z) = Z;l:l a;;xj, and
each a;; is a non-negative integer. Suppose we want to solve the gap problem for
the m-vector (v1, ..., vy). Let r = [d/€']. We first define a “truncated” objective
function. For all j = 1,...,d, if for some 7, a;; > v;, we set £; = 0, and drop the
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variable x; from each of the objective functions. Let V' be the index set of the
remaining variables. Thus, the coefficients in each objective function are now less
than or equal to v;. Next, we define a new objective function f;(z) = >_,cy a;;7;,
where aj; = [a;;r/v;]. In the new objective function, the maximum value of a
coefficient is now r. For x € X, the following two statements hold.

— If f/(z) <r, then f;(x) <w;.
= If fi(x) <wv;(1—¢€), then f/(z) <r.

Therefore, to solve the gap problem, it suffices to find an # € X such that f/(x) <
r, for i = 1,...,m, or assert that no such z exists. Since all the coefficients of
f1(x) are non-negative integers, there are r + 1 ways in which f/(z) < r can be
satisfied. Hence there are (r+1)" ways overall in which all inequalities f/(x) <r
can be simultaneously satisfied. Suppose we want to find if there is an z € X
such that f/(z) = b; for i = 1,...,m. This is equivalent to finding an = such
that >°0" M1 fl(z) = S°7 M 1b;, where M = dr + 1 is a number greater
than the maximum value that f/(x) can take.

Given an instance 7 of a multi-objective linear optimization problem over
a discrete set X, the exact version of the problem is: Given a non-negative
integer C and a vector (cq,...,cq) € Z‘L does there exist a solution x € X such

that Z;l:l cjr; =C?

Theorem 4. Suppose we can solve the exact version of the problem in pseudo-
polynomial time, then there is an FPTAS for solving ().

Proof. The gap problem can be solved by making at most (r 4+ 1)™ calls to the
pseudo-polynomial time algorithm, and the input to each call has numerical val-
ues of order O((d?/e)™*1). Therefore, all calls to the algorithm take polynomial
time, hence the gap problem can be solved in polynomial time. The theorem
now follows from Theorems 2l and O

Now we give a pseudo-polynomial time algorithm for solving the exact version of
the resource allocation problem for a fixed number of agents. The exact version
for resource allocation is this: Given an integer C, does there exist a 0/1-vector x
such that >, 377 | cjrajx = C, subject to the constraints that Y 7"z = 1
for k = 1,...,n, and zj, € {0,1}? The exact problem can be viewed as a
reachability problem in a directed graph. The graph is an (n+ 1)-partite directed
graph; let us denote the partitions of this digraph by Vjp, ..., V,. The partition
Vo has only one node, labeled as vy o (the source node), all other partitions have
C' +1 nodes. The nodes in V; for 1 <+ < n are labeled as v; g, ..., v;,c. The arcs
in the digraph are from nodes in V; to nodes in V; 1 only, for 0 <i <mn — 1. For
alle € {c1,i41,- -+, Cm,i+1}, there is an arc from v; ; t0 Vi1 j1c, if j+¢ < C. Then
there is a solution to the exact version if and only if there is a directed path from
the source node vy, to the node v, ¢. Finding such a path can be accomplished
by doing a depth-first search from the node vy o. The corresponding solution for
the exact problem (if it exists) can be obtained using the path found by the
depth-first search algorithm.
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Thus, the above pseudo-polynomial algorithm implies the following theorem.

Theorem 5. There is an FPTAS for the resource allocation problem with a fized
number of agents.

2.2 Space Complexity of the FPTAS

A straightforward implementation of the above algorithm will have substantial
storage requirements. The bottleneck for space requirements appears at two
places: one is storing the approximate Pareto-optimal frontier, and the other
is in solving the exact problem. However, by a careful implementation of the
algorithm, the storage requirements can be reduced significantly. We give an
outline below for a space-efficient implementation of the above algorithm.

1. We do not need to store all the corner points of the smaller boxes into which
the region of possible objective function values has been divided. By simply
iterating over the corner points using loops, we can cover all the corner points.

2. We also do not need to store the approximate Pareto-optimal frontier, as it
is sufficient to store the current best solution obtained after solving each gap
problem.

3. When solving the exact problem using the depth-first search algorithm, we do
not need to generate the whole graph explicitly. The only data we need to store in
the execution of the depth-first search algorithm are the stack corresponding to
the path traversed in the graph so far (the path length is at most n), and the coef-
ficients of the modified objective function. There are mn coeflicients that need to
be stored, and the maximum magnitude of each coefficient is O((m?n?/e)™*1),
thus the space complexity of the FPTAS is O(m?nlog (mn/e)).

Thus, we have the following theorem.

Theorem 6. There is an FPTAS for the resource allocation problem whose
space requirements are polynomial in m, n and log (1/€).

2.3 An FPTAS for Scheduling on Unrelated Parallel Machines and
the Santa Claus Problem

Recall the Rm||Chax scheduling problem defined in the introduction. There are
m machines and n jobs, and the processing time of job k on machine i is p;x.
The objective is to schedule the jobs to minimize the makespan. The m objective
functions in this case are given by fi(x) = >} _, pik®ik, and the set X is given by
Yot wik = Lforeach k =1,...,n, and z;;, € {0,1}. The Santa Claus problem is
similar to this scheduling problem, except that the objective here is to maximize
the minimum execution time over all the machines.

The exact version of the Rm||Cpax problem and the Santa Claus problem
is the same as that for the resource allocation problem, and hence we get an
FPTAS for either problem for fixed m. For the Rm||Cyax problem, we obtain
the first FPTAS that has space requirements which are polynomial in m, n
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and log (1/¢€), whereas all the previously obtained FPTASes for this problem
had space complexity exponential in m. For the Santa Claus problem, we give
the first FPTAS for a fixed number of agents. We therefore have the following
theorem.

Theorem 7. There are FPTASes for the Rm||Cpax problem and the Santa
Claus problem with a fized number of agents whose space requirements are poly-
nomial in n, m, and log (1/€).

2.4 FPTAS for Any Norm

The above technique for obtaining an FPTAS in fact can be extended to include
any norm used for combining the different objective functions. More generally,
let h: R — Ry be any function that satisfies

(i) h(y) < h(y') for all y,y" € RT such that y; <y foralli =1,...,m, and

(ii) h(Ay) < Ah(y) for all y € R} and A > 1.

Consider the following generalization of the optimization problem given by (I):
minimize g(z) = h(f(zx)), reX. (2)

Then Lemma [I and [ can be easily generalized as follows.
Lemma 3. There is at least one optimal solution x* to [@)) such that z* € P(r).

Lemma 4. Let I be a solution in P.(w) that minimizes g(x). Then & is a (1+€)-
approzimate solution of ([@); that is, g(Z) is at most (1 + €) times the optimal

value of ().

These two lemmata then imply that the technique given in this section can be
used to obtain an FPTAS for 2]). The only difference is in selecting the solution
from the approximate Pareto-optimal frontier: we have to choose the solution
which is the best according to the given h. Thus we have the following theorem.

Theorem 8. There is an FPTAS for the resource allocation problem, the prob-
lem of scheduling jobs on wunrelated parallel machines, and the Santa Claus
problem with fized m when the objectives for the different agents/machines are
combined into one using a function h that satisfies (1) and (ii). Moreover, this

algorithm can be made to Tun with space requirements that are polynomial in m,
n, and log (1/¢).

3 A 2-Approximation Algorithm for the Uniform Cost
Case

Recall that in the case of the resource allocation problem with uniform costs, for
each agent ¢ and each resource k, ci?j = cF for all j # i, and ¢k = 0. Let Ax(s)
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denote the set of all agents such that if resource k is allocated to an agent in
this set, the cost that any other agent will have to pay to access resource k is no
more than s.

We will consider a parametric linear programming relaxation of the problem,
in which we have the constraint that no agent has a cost of more than s in
the relaxed solution. For each resource k, we consider only the agents in the set
Ap(s) as possible candidates for allocating that resource. We show that if this
parametric linear program has a feasible solution, then an extreme point of the
feasible set of the linear program can be rounded to an integer solution in which
each agent has cost no more than 2s.

Theorem 9. Fors € Z,, consider the following set of linear inequalities, which
we denote by LP(s):

Z Z cwxjk<s fori=1,....m, (3a)

k=1j €A (s)
Z Tip = 1 fork=1,...,n, (3b)
1€AL(s)
ik >0 fork=1,....n, i€ Ag(s). (3c)

Suppose LP(s) has a feasible solution, then, for the case of uniform costs, one
can find x& € {0,1} in polynomial time such that

Z Z cfjacfkg% fori=1,...,m, (4a)
k=1j€Ak(s)
Z ol =1 fork=1,....,n. (4b)
i€ AL (s)

Proof. Let 2" be an extreme point of the non-empty polytope defined by the
inequalities of LP(s). Let v be the total number of variables defining the system
LP(s). There are v+m+n inequalities in LP(s). Since LP(s) has v variables, at
any extreme point of this polytope, at least v linearly independent inequalities
will be satisfied with equality. Hence, at most m + n inequalities will not be
satisfied with equality. Therefore, it follows from (Bd) that at most m+n variables
will have a non-zero value.

Consider the bipartite graph G in which one of the partitions has nodes cor-
responding to each agent, and the other partition has nodes corresponding to
each resource. There is an edge between agent i and resource k in G if 5P > 0.
In this graph, the number of edges is less than or equal to the number of nodes.
For the R||Ciax problem, which has a similar integer programming formulation,
Lenstra et al. [3] showed that each connected component of G also has the prop-
erty that the number of edges is less than or equal to the number of nodes. This
result holds here as well.
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We now construct an integral solution 2 by rounding the fractional solution.
Let G’ be a connected component of G. The rounding is performed in two stages.
In the first stage, the following two operations are performed on G’ repeatedly,
in the given order.

1. For all resource nodes k such that in G’, exactly one edge, say (i, k), is
incident to it, we set mf,‘; = 1, and remove all such resource nodes and the
edges incident to these nodes from G’.

2. For all agent nodes i such that there is exactly one edge, say (i, k), incident
to it, we set zZ = 0, and remove all such agent nodes and all the edges
incident to these nodes from G’.

The first stage of rounding ends when the above two operations can no longer
be performed. Let the resulting subgraph after the first stage of rounding be
G”. Note that in the first stage, whenever we are deleting a node, we are also
deleting at least one edge from the graph. Hence after the first stage, the number
of edges is still less than or equal to the number of nodes in G”. For the second
stage, there are three possibilities.

1. There are no nodes corresponding to resources in G'. This means that all
resources in this subgraph have already been allocated to some agent. In this
case we are done for G”.

2. There are some nodes corresponding to resources in G”, but there are no
edges incident to these resource nodes. That is, some of the resources in
G’ have not yet been assigned to any of the agents. In this case, each such
resource is assigned to one of the agents to which it was incident before the
starting of the rounding procedure.

3. If both the above cases do not hold, then each node in G” has at least two
edges incident to it. Since the number of edges is less than or equal to the
number of nodes, this component is actually a cycle, and the number of agent
nodes is the same as the number of resource nodes. In this component, there
is now a perfect matching between the agent nodes and the resource nodes.
We find any perfect matching in this component, and for each matching edge
(i, k) we set xﬁc = 1. All the remaining variables corresponding to G’ whose
values have not been determined yet, are assigned the value zero.

This rounding procedure is performed on each connected component of G
to get a 0/1-solution z®. Note that =% satisfies the constraint (L), since each
resource is allocated to exactly one of the agents. Also, for each agent i, there
is at most one resource, say r(¢), for which the LP solution was fractional, and
in the integral solution that resource was not allocated to i, but was instead
allocated to agent i’ € A,(;)(s). This is because in the first stage of rounding,
an agent node is deleted only when there is just one resource node in the graph
to which it remains incident to, and hence it does not get that resource. And in
the second stage, in the third case, there will be exactly one resource to which
an agent is incident to, but that resource is not allocated to the agent.
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For an agent i, define a partition of the Iesources into R’ and R'>O as follows:
Lo ={k:ak —O} and R, = {k: 5P > 0}. For all i € {1,...,m},

n
Z Z ijxﬁv: Z Z czxijr Z Z wajk

k=1jeAk(s) kERL | jEAL(S) keRL  jE€AL(s)
k. .LP kR
= > X dul+ X X (52)
keRL, j€Ak(s) keRL ( jEAL(s)
k .LP k LP
S S dHr Y Y dared? o
kERL | jEAL(S) keRL , jEAL(s)
_ k  .LP (1)
*Z Z ciyTik + Cir
k=1j€AL(s)
< s+s=2s. (5¢)

The equality in (Ba) follows from the fact that for each resource k, > JEAR(s) xfkp
=2 e Ax(s) xf}g = 1, and also because we are dealing with the case of uniform
costs. The inequality in (Eb) holds because for each agent 7, there is at most one

resource 7(i) such that xLP() > 0, but 2 "y = 0. And finally, the inequality
in (Bd) is true by the definition of the set Ar(i)( ), Z-( ) < s, and (Ba). O

To get a 2-approximation algorithm for the problem that runs in polynomial
time, one starts by choosing a trivial lower and upper bound on the optimum
value of the objective function. The lower bound can be min {ck }, and the upper
bound can be mn max {c :}. Then, by adopting a binary search procedure, one
can find the minimum 1nteger value of s, say s*, for which LP(s) is feasible,
and get a corresponding vertex z" of the non—empty polytope in polynomial
time by using the ellipsoid algorithm [I5]. Clearly, s* is a lower bound on the
optimal objective function value of the resource allocation problem. Using the
above rounding procedure, one can obtain a rounded solution whose value is
at most 2s*. We therefore obtain a 2-approximation algorithm for the resource
allocation problem with uniform costs.

4 Hardness of Approximation

In this section, we give a hardness of approximation result for the resource
allocation problem with general costs.

Theorem 10. There is no polynomial-time algorithm that yields an approrima-
tion ratio smaller than 3/2 for the resource allocation problem, unless P=NP.

Proof. We prove this by a reduction from the problem of scheduling jobs on
unrelated parallel machines (R||Cpax), which cannot have a better than 3/2-
approximation algorithm, unless P=NP [3].
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Consider an instance of the R||Cax problem with m machines and n jobs,
where the processing time of job k on machine ¢ is p;i. Let pmax = max{pi}.
We construct a corresponding instance of the resource allocation problem as
follows. There are 2m agents and n resources. For i,j € {1,...,m},i # j, let
c?j = NPmax + 1, and cf)mﬂ» = pir. All other cost coefficients are zero. Then, in
any optimal allocation of resources in the resource allocation problem, all the
resources will be distributed among the agents m + 1,...,2m. It is easy to see
that if there is an optimal solution of the R||Ciax instance in which job k is
allocated to machine m(k), there is a corresponding optimal solution for the
resource allocation problem in which resource k is allocated to agent m + m(k),
and vice-versa. Also, the optimal objective function value of both instances will
be the same.

Thus, if the resource allocation problem could be approximated better than
3/2 in polynomial time, then so can the R||Cpax problem, which is impossible,
unless P=NP [3]. |
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Appendix

Lemma 5. The resource allocation problem with uniform costs is NP-hard for
two agents, and strongly NP-hard in general.

Proof. The proof of NP-hardness for the two-agents case is by reduction from
PARTITION [I6]. Consider an instance of PARTITION given by a set A of n el-
ements, where element a € A has size s(a) € Z,. We construct an instance
of the resource allocation problem with two agents and n resources as follows:
cfy = 5 = s(a) for each a € A, and ¢ = 0 for ¢ = 1,2. Then, A can be
partitioned into two sets of equal size if and only if the optimal solution for the
given resource allocation problem has cost ) . 4 s(a)/2.

The strong NP-hardness proof for the general case is by a reduction from
3-PARTITION [I6]. Let an instance of this problem be given by the set A =

{ai,...;a3m}, with > ., s(a) = mB. The corresponding instance of the re-
source allocation problem is constructed as follows: There are m agents, and 3m
resources. For each agent i, c?j =s(ag) for k =1,...,3m;5 = 1,...,m,i # j,

and cf. = 0. Then the answer to the 3-PARTITION instance is “Yes” if and only if
the optimal solution to the given resource allocation problem has cost (m —1)B.
O
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Abstract. We study the directed minimum latency problem: given an n-
vertex asymmetric metric (V, d) with a root vertex r € V, find a spanning
path originating at r that minimizes the sum of latencies at all vertices
(the latency of any vertex v € V is the distance from r to v along the
path). This problem has been well-studied on symmetric metrics, and the
best known approximation guarantee is 3.59 [3]. For any lo;n < e <1,
we give an nP1/9) time algorithm for directed latency that achieves an
approximation ratio of O(p - Z; ), where p is the integrality gap of an LP
relaxation for the asymmetric traveling salesman path problem [1315].
We prove an upper bound p = O(y/n), which implies (for any fixed ¢ >
0) a polynomial time O(n'/?T¢)-approximation algorithm for directed
latency.

In the special case of metrics induced by shortest-paths in an un-
weighted directed graph, we give an O(log2 n) approximation algorithm.
As a consequence, we also obtain an O(log? n) approximation algorithm
for minimizing the weighted completion time in no-wait permutation
flowshop scheduling. We note that even in unweighted directed graphs,
the directed latency problem is at least as hard to approximate as the
well-studied asymmetric traveling salesman problem, for which the best
known approximation guarantee is O(logn).

1 Introduction

The minimum latency problem [I706JT4l2] is a variant of the basic traveling
salesman problem, where there is a metric with a specified root vertex r, and
the goal is to find a spanning path starting from r that minimizes the sum
of arrival times at all vertices (it is also known as the deliveryman problem or
traveling repairman problem). This problem can model the traveling salesman
problem, and hence is NP-complete. To the best of our knowledge, all previous
work has focused on symmetric metrics— the first constant-factor approximation
algorithm was in Blum et al. [2], and the currently best known approximation
ratio is 3.59 due to Chaudhuri et al. [3]. In this paper, we consider the minimum
latency problem on asymmetric metrics.

Network design problems on directed graphs are often much harder to approxi-
mate than their undirected counterparts— the traveling salesman and Steiner tree
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© Springer-Verlag Berlin Heidelberg 2008
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problems are well known examples. The currently best known approximation ra-
tio for the asymmetric traveling salesman problem (ATSP) is O(logn) [9I7], and
improving this bound is an important open question. On the other hand, there
is a 1.5-approximation algorithm for the symmetric TSP.

The orienteering problem is closely related to the minimum latency problem
that we consider— given a metric with a length bound, the goal is to find a
bounded-length path between two specified vertices that visits the maximum
number of vertices. Blum et al. [I] gave the first constant factor approxima-
tion for the undirected version of this problem. Recently, Chekuri et al. [4] and
the authors [I5] independently gave O(log2 n) approximation algorithms for the
directed orienteering problem.

1.1 Problem Definition

We represent an asymmetric metric by (V,d), where V is the vertex set (with
[V =n)and d : V xV — Ry is a distance function satisfying the triangle
inequality. For a directed path (or tour) m and vertices u,v, d™(u,v) denotes
the distance from u to v along 7; if v is not reachable from w along 7, then
d™(u,v) = oo. The directed minimum latency problem is defined as follows:
given an asymmetric metric (V,d) and a root vertex r € V, find a spanning
path m originating at r that minimizes ) ., d"(r,v); the quantity d™(r,v) is
the latency of vertex v in path w. Another possible definition of this problem
would require a tour covering all vertices, where the latency of the root r is
defined to be the distance required to return to r (i.e. the total tour length);
note that in the previous definition of directed latency, the latency of r is zero.
The approximability of both these versions of directed latency are related as
below (the proof is deferred to the full version).

Theorem 1. The approzimability of the path-version and tour-version of di-
rected latency are within a factor 4 of each other.

In this paper, we work with the path version of directed latency.

For a directed graph G = (V,E) and any S C V, we denote by §7(5) =
{(u,v) € EJu € S, v &S} the arcs leaving set S, and §~(5) = {(u,v) € E |
u g S, v e S} the arcs entering set S. When dealing with asymmetric metrics,
the edge set E is assumed to be V' x V unless mentioned otherwise. Given an
asymmetric metric and a special vertex r, an r-path (resp. r-tour) is any directed
path (resp. tour) originating at r.

Asymmetric Traveling Salesman Path (ATSP-path). The following prob-
lem is closely related to the directed latency problem. In ATSP-path, we are
given a directed metric (V,d) and specified start and end vertices s,¢ € V. The
goal is to compute the minimum length s — ¢ path that visits all the vertices.
It is easy to see that this problem is at least as hard to approximate as the
ATSP (tour-version, where s = ¢). Lam and Newmann [I3] were the first to
consider this problem, and they gave an O(y/n) approximation based on the
Frieze et al. [9] algorithm for ATSP. This was improved to O(logn) in Chekuri
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and Pal [5], which extended the algorithm of Kleinberg and Williamson [I2]
for ATSP. Subsequently Feige and Singh [7] showed that the approximability of
ATSP-tour and ATSP-path are within a constant factor of each other. We are
concerned with the following LP relaxation of the ATSP-path problem.

min ) de -z,
s.t.
(6T (u) =2z(6 (u)) VueV —{s,t}
2(5%(s)) = 287 (1)) = 1
(ATSP — path) x(6~(s)) = z(6F(t)) =0
z(67(8) > 2 V{u} CSCV\{s}, YueV
T, >0 Y arcs e

The most natural LP relaxation for ATSP-path would have a 1 in the right-
hand-side of the cut constraints, instead of g as above. The above LP further
relaxes the cut-constraints, and is still a valid relaxation of the problem. The
precise value in the right-hand-side of the cut constraints is not important: we
only require it to be some constant strictly between ; and 1.

1.2 Results and Paper Outline

Our main result is a reduction from the directed latency problem to the asymmet-
ric traveling salesman path problem (ATSP-path) [13/5], where the approxima-
tion ratio for directed latency depends on the integrality gap of an LP relaxation
for ATSP-path. We give an n©(1/¢) time algorithm for the directed latency prob-
lem that achieves an approximation ratio of O(p - ") (for any | ! < e < 1),
where p is the integrality gap of an LP relaxation for the ATSP-path problem.
The best upper bound we obtain is p = O(y/n) (Section [B); however we con-
jecture that p = O(logn). In particular, our result implies a polynomial time
O(n'/?*€)-approximation algorithm (any fixed ¢ > 0) for directed latency. We
study the LP relaxation for ATSP-path in Section Bl and present the algorithm
for latency in Section 2l Our algorithm for latency first guesses a sequence of
break-points (based on distances along the optimal path) and uses a linear pro-
gram to obtain an assignment of vertices to segments (the portions between
consecutive break-points), then it obtains local paths servicing each segment,
and finally stitches these paths across all segments.

We also consider the special case of metrics given by shortest paths in an un-
derlying unweighted directed graph, and obtain an O(log® n) approximation for
minimum latency in this case (SectionH]). This algorithm is essentially based on
using the directed orienteering algorithm [T5/4] within the framework for undi-
rected latency [I0]. On the hardness side, we observe that the directed latency
problem (even in this ‘unweighted’ special case) is at least as hard to approxi-
mate as ATSP, for which the best known ratio is O(logn).

We note that ideas from the ‘unweighted’ case, also imply an O(log2 n) ap-
proximation algorithm for minimizing weighted completion time in the no-wait
permutation flowshop scheduling problem [20/T8]- this can be cast as the latency
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problem in a special directed metric. We are not aware of any previous results
on this problem.

2 The Directed Latency Algorithm

For a given instance of directed latency, let m denote an optimal latency path,
L = d(m) its length, and Opt its total latency. For any two vertices u, v € V, recall
that d™(u,v) denotes the length along path 7 from u to v; note that d™(u,v) is
finite only if w appears before v on path 7. The algorithm first guesses the length
L (within factor 2) and [ = [!] vertices as follows: for each i = 1,--- 1, v; is the
last vertex on m with d™(r,v;) < n'e ﬁ We set vy = r and note that v; is the last
vertex visited by 7. Let F' = {vg, v1,---,v;}. Consider now the following linear
program (M LP):

s.t.

246 (u)) = 24 (67 (u)) Vu € V\{vi,vit1}, Vi=0,---,1—1

26T () = 246 (vig1)) =1 Vi=0,---,1—1

2467 (v;)) = 24(6T (0i41)) =0 Vi=0,---,1—1

24(67(9)) > v, V{u} C S CV\{v}, YueV\F
Vi=0,-.- -1

S de - zi(e) < e L Vi=0,---,1—1

Sioyh > 1 YueV\F

2 e) >0 Varcse, Vi=0,---,1—1

yl >0 Yue V\F, Yi=0,---,1-1

Basically this LP requires one unit of flow to be sent from v; to v,y (for all
0 <i <1—1) such that the total extent to which each vertex w is covered (over
all these flows) is at least 1. In addition, the i-th flow is required to have total
cost (under the length function d) at most n(+1e. L Tt is easy to see that this
LP can be solved in polynomial time for any guess {v;}\_,. Furthermore the
number of possible guesses is O(n'/¢), hence we can obtain the optimal solution
of (M LP) over all guesses, in n°(*/¢) time.

Claim 1. The minimum value of (M LP) over all possible guesses of {vi}\_, is
at most 2n° - Opt.

Proof: This claim is straightforward, based on the guesses from an optimal
path. Recall that 7 is the optimal latency path for the given instance. One of
the guesses of the vertices {v; é:o satisfies the condition desired of them, namely
each v; (for i =1, -+ ,1) is the last vertex on 7 with d™(s,v;) < n’%. For each
1=20,---,1 —1, define O; to be the set of vertices that are visited between v;
and v; 41 in path 7. Let 2° denote the (integral) edge values corresponding to
path 7 restricted to the vertices O; U {v;,v;11}; note that the cost of this flow
d- 2" < d™(r,vipq) < nl+Del Also set yi = 1 for u € O; and 0 otherwise,
for all i = 0,---,1 — 1. Note that each vertex in V '\ {v;}!_, appears in some
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set O;, and each z* supports unit flow from v; to all vertices in O;; hence this
(integral) solution {z%,y"}!Z} is feasible for (M LP). The cost of this solution is
Sentel 0, < nfL 4 nf Y nicl - 0;] < 2n° - Opt, since [Og| < n,
L < Opt, and each vertex u € O; (for i = 1,--- ,1 — 1) has d"(r,u) > n'* L.

We now assume that we have an optimal fractional solution {z%,3°}.Z} to
(MLP) over all guesses (with objective value as in Claim [I]), and show how to
round it to obtain v; — v; 41 paths for each i = 0,--- ;[ — 1, which when stitched
give rise to one r-path having a small latency objective. We say that a vertex
u is well-covered by flow z* if i, > |,. We partition the vertices V' \ F into two
parts: V; consists of those vertices that are well-covered for at least two values of
i € 10,1], and V4 consists of all other vertices. Note that each vertex in V3 is cov-
ered by some flow z? to the extent at least Z. We first show how to service each of
V1 and V5 separately using local paths, and then stitch these into a single r-path.

Splitting off: A directed graph is called Eulerian if the in-degree equals the out-
degree at each vertex. In our proofs, we make use of the following ‘splitting-off’
theorem for Eulerian digraphs.

Theorem 2 (Frank [8] (Theorem 4.3) and Jackson [11]). Let D = (U +
r,A) be an Eulerian directed multi-graph. For each arc f = (r,v) € A there
exists an arc e = (u,r) € A so that after replacing arcs e and f by arc (u,v),
the directed connectivity between every pair of vertices in U is preserved.

Note that any vector Z of rational edge-capacities that is Eulerian (namely
2(6~(v)) = (6T (v)) at all vertices v) corresponds to an Eulerian multi-graph
by means of a (sufficiently large) uniform scaling of all arcs. Based on this cor-
respondence, one can use the above splitting-off theorem directly on fractional
edge-capacities that are Eulerian.

2.1 Servicing Vertices V3

We partition V; into I parts as follows: U; (for ¢ = 0,---,1 — 1) consists of those
vertices of V; that are well-covered by 2% but not well-covered by any flow 27 for
j > i. Each set U; is serviced separately by means of a suitable ATSP solution
on U;U{v;} (see Lemmalll): this step requires a bound on the length of back-arcs
from Uj;-vertices to v;, which is ensured by the next claim.

Claim 2. For each vertez w € U;, d(w,v;) < 8L-n'L.

Proof: Let j < i — 1 be such that yj > 41[; such an index exists by the
definition of V7 and Uj;. In other words, arc-capacities z7 support at least iz flow
from w to vj41; so 41- 27 supports a unit flow from w to vj41. Thus d(w,vj41) <
4l(d - 27) < 41 - n(JH)Eﬁ. Note that for any 0 < k < [, z* supports a unit
flow from vy to vry1; hence d(vg,vpy1) < d- 2P < n(’““)eﬁ. Now, d(w,v;) <

) © ‘
d(w7 Uj+1) + Z;c:j+1 d(w97 Uk+1) < 4lﬁ Z;:j nkt1)e < 81 - nZeﬁ.
We now show how all vertices in U; can be covered by a v;-tour.

Lemma 1. For each i = 0,---,1 — 1, there is a poly-time computable v;-tour
covering vertices Uy, of length O( 612 ntDelogn - ﬁ)
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Proof: Fix ani € {0,---,l — 1}; note that the arc capacities 2* are Eulerian
at all vertices except v; and v;11. Although applying splitting-off (Theorem [2])
requires an Eulerian graph, we can apply it to 2¢ after adding a dummy (v;y1,v;)
arc of capacity 1, and observing that flows from v; or flows into v;+1 do not use
the dummy arc. So using Theorem [lon vertices V' \ (U; U{v;, v;+1}) and triangle
inequality, we obtain arc capacities « on the arcs induced by U; U{v;, v;41} such
that: d-a < d- 2" < p0FDe. L and o supports gy}, > ;; flow from v; to u
and from u to v;41, for every u € U;. Below we use B to denote the quantity
nlithe . ﬁ Consider adding a dummy arc from v; 41 to v; of length B in the
induced metric on U; U{v;, v;41}, and set the arc capacity a(v;41,v;) on this arc
to be 1. Note that « is Eulerian, has total cost at most 2B, and every non-trivial
cut has value at least min{y! : u € U;} > 411. So scaling « uniformly by 41, we
obtain a fractional feasible solution to ATSP on the vertices U;U{v;, v; 41} (in the
modified metric), having cost at most 8- B. Since the Frieze et al. [9] algorithm
computes an integral tour of length at most O(log n) times any fractional feasible
solution (see Williamson [I9]), we obtain a v;-tour 7 on the modified metric of
length at most O(llogn)- B. Since the dummy (v;+1,v;) arc has length B, it may
be used at most O(llogn) times in 7. So removing all occurrences of this dummy
arc gives a set of O(llogn) v; — v; 41 paths in the original metric, that together
cover U;. Ignoring vertex v;41 and inserting the direct arc to v; from the last
U; vertex in each of these paths gives us the desired v;-tour covering U;. Finally
note that each of the arcs to v; inserted above has length O(l - n) L = O(l) - B
(from Claim [)), and the number of arcs inserted is O(llogn). So the length of
this v;-tour is at most O(llogn) - B+ O(1?logn) - B = O( Anli+Yelogn - L.

2.2 Servicing Vertices V5

We partition vertices in V5 into Wy, - - -, W;_1, where each W; contains the ver-
tices in V5 that are well-covered by z°. As noted earlier, each vertex u € W;
in fact has y, > 3 > 2. We now consider any particular W; and obtain a
v; — vi+1 path covering the vertices of W;. Vertices in W; are covered by a frac-
tional v; — v, 41 path as follows. Splitting off vertices V' \ (W; U {v;,vi41}) in
the fractional solution z* gives us edge capacities 8 in the metric induced on
W; U{v;, viy1}, such that: 5 supports at least g flow from v; to u and from u to
vi41 for allw € Wi, and d- 8 < d- z* (this is similar to how arc-capacities o were
obtained in Lemma 2.T]). Note that § is a fractional feasible solution to the LP
relaxation (AT'SP — path) for the ATSP-path instance on the metric induced
by W; U {v;, vi41} with start-vertex v; and end-vertex v;41. So if p denotes the
(constructive) integrality gap of (AT'SP — LP), we can obtain an integral v;-v;41
path that spans W; of length at most p(d - 8) < p(d - 2) < pn(+DeL This re-
quires a polynomial time algorithm that computes an integral path of length at
most p times the LP value; However even a non-constructive proof of integrality
gap p’ implies a constructive integrality gap p = O(p'log n), using the algorithm
in Chekuri and Pal [5]. So we obtain:

Lemma 2. For each i = 0,---,l — 1, there is a poly-time computable v;-v;11
path covering W; of length at most p - n(i“)eﬁ.
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2.3 Stitching the Local Paths

We now stitch the v;-tours that service V4 (Lemma[I) and the v; — v;41 paths
that service Vo (Lemma[2), to obtain a single r-path that covers all vertices. For
each i =0, ---,l—1, let m; denote the v;-tour servicing U;, and let 7; denote the
v; — vi+1 path servicing W;. The final r-path that the algorithm outputs is the
concatenation 7" = wg 7o 71 - - - W—1-7;—1. From Lemmas[land 2] it follows that
for all 0 < <1—1, d(m) < O(% logn) - ntVeL and d(r;) < O(p) - nlHDeL,
So the length of 7* from r until all vertices of U; U W; are covered is at most
O(p+ % logn) -nlHDel (ase > Q(loén)). This implies that the total latency of
vertices in U;UW; along path 7* is at most O(p+ % logn)-nl+De L. (W] +|Uy)).
Moreover, the contribution of each vertex in U; (resp., W;) to the LP objective
is at least ), - n(FTDeL (resp., 2 - n(i+DeL) Thus the contribution of U; UW; to
the LP objective is at least j, -n(+Del . (JW;|+|U;|). Using the upper bound on
the latency along 7 for U; UW;, and summing over all ¢, we obtain that the total
latency along 7* is at most O(!p+ ) logn) times the optimal value of (M LP).
From Claim [I it now follows that the latency of 7* is O( 1p + 613 logn)ne - Opt.

Theorem 3. For any £2(

algorithm for directed latency, that runs in time n©(/€) | where p is the integrality
gap of the LP (ATSP — path). Using p = O(y/n), we have a polynomial time
O(né“) approximation algorithm for any fixed € > 0.

1Ogn) <€ <1, thereis an O(p‘HOg" €)-approximation

We prove the bound p = O(y/n) in the next section. A bound of p = O(logn)
on the integrality gap of (ATSP — path) would imply that this algorithm is a
quasi-polynomial time O(log* n) approximation for directed latency.

Remark: The (AT'SP — path) rounding algorithm in Section B can be modified
slightly to obtain (for any 0 < 6 < 1), an (O(n®logn), | ;]) bi-criteria approwi-
mation for ATSP-path. This implies the following generalization of Theorem [Bl

)y <e<1and0<§<1, there is an n®/9) time

algorithm for directed latency, that computes Léj paths covering all vertices,

(logn €+§)

Corollary 1. For any $2(, !

logn

having a total latency of O -n - Opt, where Opt is the minimum latency
of a single path covering all the vertices.

3 Bounding the Integrality Gap of ATSP-Path

We prove an upper bound of O(y/n) on the integrality gap p of the linear relax-
ation (AT'SP — path) (c.f. Section[[T]). Even for the seemingly stronger LP with
1 in the right-hand-side of the cut constraints, the best bound on the integrality
gap we can obtain is O(y/n): this follows from the cycle-cover based algorithm
of Lam and Newmann [I3]. As mentioned in Chekuri and Pal [5], it is unclear
whether their O(log n)-approximation can be used to bound the integrality gap
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of such a linear program. In this section, we present a rounding algorithm for the
weaker LP (AT'SP —path), which shows p = O(y/n). Our algorithm is similar to
the ATSP-path algorithm of Lam and Newmann [I3] and the ATSP algorithm
of Frieze et al. [9]; but it needs some more work as we compare the algorithm’s
solution against a fractional solution to (AT'SP — path).

Let = be any feasible solution to (AT'SP — path). We now show how z can
be rounded to obtain an integral path spanning all vertices, of total length
O(y/n)(d - x). Let N denote the network corresponding to the directed metric
with the cost of each arc equal to its metric length, and an extra (¢, s) arc of cost
0. The capacity of this extra (t, s) arc is set to 3, and all other capacities are set
to co. The rounding algorithm for x is as follows.

1. Initialize the set of representatives R «— V' \ {s,t}, and the current integral
solution o = ().
2. While R # 0, do:

(a) Compute a minimum cost circulation C in N[R U {s,¢}] that sends at
least 2 units of flow through each vertex in R (note: C can be expressed
as a sum of cycles).

(b) Repeatedly extract from C all cycles that do not use the extra arc (¢, s),
to obtain circulation A C C. Let R' C R be the set of R-vertices that
have degree at least 1 in A.

(c) Let B =C\ A; note that B is Eulerian and each cycle in it uses arc (¢, s).

(d) If |R'| > /n, do:

i. Set 0 — o U A.
ii. Modify R by dropping all but one R’-vertex from each strong com-
ponent of A.

(e) If |[R'| < y/n, do:

i. Take an Euler tour on B and remove all (at most 3) occurrences of
arc (t,s) to obtain s-t paths Py, Py, Ps.

ii. Restrict each path Pj, Py, P to vertices in R\ R’ by short-cutting
over R'-vertices, to obtain paths }517 1’527 P.

iii. Take a topological ordering s = wy,ws, -+ ,w;, = t of vertices (R '\
R') U {s,t} relative to the arcs P, U P, U Ps.

iv. Set 0 — o U{(wj,w;q1):1<j<h-—1}

v. Repeat for each vertex u € R’: find an arc (w,w’) € o such that
x supports é flow from w to v and from u to w’, and modify o +
(0 (w,w))'U {(w, ), (1, )},

vi. Set R « 0.

3. Output any spanning s-t walk in o.

We now show the correctness and performance guarantee of the rounding
algorithm. We first bound the cost of the circulation obtained in Step Bal during
any iteration.

Claim 3. For any R C V \ {s,t}, the minimum cost circulation C computed in
step [2d has cost at most 3(d - ).
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Proof: The arc values = define a fractional s — ¢t path in network N. Extend
x to be a (fractional) circulation by setting z(¢t,s) = 1. We can now apply
splitting-off (Theorem () on each vertex in V' \ R, to obtain capacities x’ in
network N[RU{s, t}], such that every pairwise connectivity is preserved and (by
triangle inequality) d - 2’ < d - z. Note that the extra (¢,s) arc is not modified
in the splitting-off steps. So z’ supports g flow from s to each vertex in R; this
implies that 32’ is a feasible fractional solution to the circulation instance solved
in step 2al (note that 2/(¢,s) remains 1, so solution 3z’ satisfies the capacity
of arc (t,s)). Finally, note that the linear relaxation for circulation is integral
(c.f. Nemhauser and Wolsey [16]). So the minimum cost (integral) circulation
computed in step 2al has cost at most 3d - 2’ < 3d - x.

Note that each time step 2dlis executed, |R| decreases by at least /n/2 (each
strong component in A has at least 2 vertices); so there are at most O(y/n) such
iterations and the cost of o due to additions in this step is O(y/n)(d - z) (using
Claim [3]). Step 2dis executed at most once (at the end); the next claim shows
that this step is well defined and bounds the cost incurred.

Claim 4. In step there exists a topological ordering w1, -+ ,wy of (R\
R U{s,t} w.r.t. arcs PLUPyU Ps. Furthermore, {(w;, wj11): 1 <j<h—1} C
P UP,U Ps.

Proof: Note that any cycle in P, U P, U Ps is a cycle in B that does not use
arc (t, s), which is not possible by the definition of B (every cycle in B uses arc
(t,s)); so PLUP,UPs is acyclic. It is clear that if P,UP,UP; contains a cycle, so
does Py U P> U P3 (each path P; is obtained by short-cutting the corresponding
path P;). Hence Py U Py U Py is also acyclic, and there is a topological ordering
of (R\ R')U{s, t} relative to arcs P, U P, U P;. We now prove the second part of
the claim. In circulation C, each vertex of R has at least 2 units of flow through
it; but vertices R\ R’ are not covered (even to an extent 1) in the circulation A.
So each vertex of R\ R’ is covered to extent at least 2 in circulation B, and hence
in P; U P, U Ps. In other words, each vertex of R\ R’ appears on at least two of
the three s — ¢t paths Py, Py, P5. This also implies that (after the short-cutting)
each R\ R’ vertex appears on at least two of the three s — ¢ paths Pi, Py, P;.
Now observe that for each consecutive pair (w;,wjt1) (1 < j < h —1) in the
topological order, there is a common path Py (for some k = 1,2, 3) that contains
both w; and w; . Furthermore, in Py, w; and w;y; are consecutive in that
order (otherwise, the topological order would contain a back arc!). Thus each
arc (wj,wj1) (for 1 < j < h—1)is present in P; U P, U P3, and we obtain the
claim.

We also need the following claim to bound the cost of insertions in step

Claim 5. For any two wvertices v’ ,u” € V, if Nu',u";2) (resp. Mu",u';x))
denotes the maximum flow supported by x from u' to u'’ (resp. v’ to u'), then
A/ u"yx) + A ulsx) > ).
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Proof: If either v/ or v” is in {s,t}, the claim is obvious since for every vertex
v, o supports g flow from s to v and from v to t. Otherwise {s,t,u/,u"} are
distinct, and define capacities Z as:

. [ ®(v1,v9) for arcs (vi,v2) # (t, )
B(vr,v2) = { 1 for arc (vi,v2) = (¢,8)

Observe that & is Eulerian; now apply Theorem[]to Z and split-off all vertices
of V except T = {s,t,u/,u”}, and obtain capacities y on the arcs induced on T.
We have A(t1, ta;y) = A(t1,to; @) for all t1,t2 € T. Note that since neither ¢ nor s
is split-off, their degrees in y are unchanged from &, and also y(t, s) > &(t,s) = 1.
Since the out-degree of ¢ in & (hence in y) is 1 and y; s > 1, we have y(t,u') =
y(t,u”) = 0 and y(t, s) = 1. The capacities y support at least > flow from s to u';
so y(s,u') +y(u”,u') > . Similarly for u”, we have y(s,u”) +y(u/,u”) > %, and
adding these two inequalities we get y(u/, u”)+y(u”, u')+(y(s, u')+y(s, u")) > 3.
Note that y(s,u’) + y(s,u”) < y(6T(s)) = #(67(s)) = 1 (the degree of s is
unchanged in the splitting-off). So y(u’,u”) + y(u”,u’) > }. Since y is obtained
from & by a sequence of splitting-off operations, it follows that & supports flows
corresponding to all edges in y simultaneously. In particular, the following flows
are supported disjointly in Z: F; that sends y(u/,v”) units from v’ to u”, Fo
that sends y(u”, v') units from u” to v/, and F3 that sends y(t,s) = 1 unit from
t to s. Hence the flows F; and F» are each supported by & and do not use the
extra (t,s) arc (since (61 (t)) = Z(¢,s) = 1). This implies that the flows 77 and
F> are both supported by the original capacities = (where z(¢,s) = 0). Hence
A/ u"s ) + A" o5 z) > y(u!,u”) + y(u u) > 5.

From Claim @ we obtain that the cost addition in step 2e(iv) is at most
d(Py)+d(Py)+d(Ps) < d(Py)+d(P)+d(Ps) < 3(d-x) (from Claim [3)). We now
consider the cost addition to o in step Claim B implies that for any pair of
vertices u’,u” € V, x supports ; flow either from v’ to u” or from u” to u’. Also
for every vertex u,  supports 2 flow from s to v and from u to t. Since o always
contains an s —t path in step there is always some position along this s —¢
path to insert any vertex u € R’ as required in step Furthermore, the cost
increase in any such insertion step is at most 12(d - ). Hence the total cost for
inserting all the vertices R’ into o is at most 12|R'|(d - z) = O(v/n)(d - ). Thus
the total cost of o at the end of the algorithm is O(y/n)(d - z). Finally note that
o is connected (in the undirected sense), Eulerian at all vertices in V'\ {s,¢} and
has outdegree 1 at s. This implies that ¢ corresponds to a spanning s — ¢ walk.
This completes the proof of the following.

Theorem 4. The integrality gap of (ATSP — path) is at most O(y/n).

4 Unweighted Directed Metrics

In the special case where the metric is induced by shortest paths in an un-
weighted directed graph, we obtain an improved approximation guarantee for
the minimum latency problem. This draws on ideas from the undirected latency
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problem, and the O(log® n) approximation ratio for directed orienteering (5]
and []). The directed orienteering problem is as follows: given a starting vertex
r in an asymmetric metric and length bound L, find an r-path of length at most
L covering the maximum number of vertices. We note that the reduction from
ATSP to directed latency also holds in unweighted directed metrics, and the
best known approximation ratio for ATSP even on this special class is O(logn).
Here we show the following.

Theorem 5. An a-approximation algorithm for directed orienteering implies an
O(a+7~) approzimation algorithm for the directed latency problem on unweighted
digraphs, where v is the best approrimation ratio for ATSP. In particular there
is an O(log®n) approzimation.

Let G = (V, A) denote the underlying digraph that induces the given metric, and
r the root vertex. We first argue (Section L)) that if G is strongly connected,
then there is an O(a)-approximation algorithm. Then we show (Section FL2)) how
this can be extended to the case when G is not strongly connected.

4.1 G Is Strongly Connected

In this case, the distance from any vertex to the root r is at most n = |V]|.
The algorithm and analysis for this case are identical to those for the undirected
latency problem [2ITOJ3]. Details are deferred to the full version.

Remark: This ‘greedy’ approach does not work in the general directed case since
it is unclear how to bound the length of back-arcs to the root r (which is required
to stitch the paths that are computed greedily). In the undirected case, back-
arcs can be easily bounded by the forward length, and this approach results in
a constant approximation algorithm. In the unweighted strongly-connected case
(considered above), the total length of back-arcs used by the algorithm could be
bounded by roughly n? (which is also a lower bound for the latency problem).
By an identical analysis, it also follows that there is an O(«a)-approximation for
the directed latency problem on metrics (V,d) with the following property: for
every vertex v € V, the back-arc length to r is within a constant factor of the
forward-arc length from r, i.e. d(v,7) < O(1) - d(r,v). As a consequence, we
obtain an O(a) = O(log® n) approximation for no-wait flowshop scheduling with
the weighted completion time objective (n is the number of jobs in the given
instance); this seems to be the first approximation ratio for the problem. The
no-wait flowshop problem can be modeled as a minimum latency problem in an
appropriate directed metric [20JI8], with the property that all back-arcs to the
root r have length 0; hence the above greedy approach applies.

4.2 G Is Not Strongly Connected

In this case, we show an O( + [)-approximation algorithm, where v is the ap-
proximation guarantee for ATSP and [ is the approximation guarantee for the
minimum latency problem on unweighted strongly-connected digraphs. From
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Section 1l 8 = O(«), where « is the approximation ratio for directed orien-
teering. Consider the strong components of GG, which form a directed acyclic
graph. If the instance is feasible, there is a Hamilton path in G from r; so we
can order the strong components of G as Cq,---,C} such that » € Cy and
any spanning path from r visits the strong components in that order. For each
1 <4 <1, let n; = |C;], and pick an arbitrary vertex s; € C; as root for each
strong component (setting sq = r).

Lemma 3. There exists a spanning r-path ° having latency objective at most
7-Opt such that 7* = 711 - (81, 82) - T2 - (82, 83) -+ - (81—1, 81) - 71, where each T; (for
1 <1 <1)is an s;-tour covering all vertices in C;.

Proof: Consider the optimal latency r-path P*: this is a concatenation P -
Py --- P, of paths in each strong component (P; is a spanning path on C;). For
each 1 <7 <, let Lat(P;) denote the latency of vertices C; just along path P;,

and D; = Z;;ll d(P;) be the distance traversed by P* before P;. Then the total

latency along P* is Opt = Ziﬂ(ni - D; + Lat(F;)).

For each 1 < i <[, let 7; denote a spanning tour on C};, obtained by adding
to P; the direct arcs: from s; to its first vertex and from its last vertex to s;.
Each of these extra arcs in 7; has length at most n; — 1 (since C; is strongly
connected), and d(P;) > n; — 1 (it is spanning on C;); so d(7;) < 3d(F;). Let
Lat(7;) denote the latency of vertices C; along 7;; from the above observation we
have Lat(7;) < n; - (n; — 1) 4+ Lat(P;). Now we obtain 7* as the concatenation
T1-(81,82) T2+ (8¢—1, ;) - 71 Note also that for any 1 < i <I1—1, d(s;,si+1) <
n; + ni+1. So the latency in 7% of vertices C; is:

ni - Y5 (d(y) + d(sj, 5541)) + Lat(r)
<n;- Z;;ll(3d(13]) +mn; +nj41) +ni- (n; — 1) + Lat(5)
< STL(3A(Py) + 2n5) + nf + g - (ng — 1) + Lat(Py)
<ng - YL TA(P)) +n? g (ng — 1) + Lat(P,)
< 7Tn;- D; +2n? + Lat(P;)

The last inequality follows from the fact that Lat(P;) > n?/2 (P; is a path
on n; vertices in an unweighted metric). So the total latency of 7* is at most
75 (ni- D+ Lat(P;)) = 7- Opt.

The algorithm for directed latency in this case computes an approximately mini-
mum latency s;-path for each C; separately (using the algorithm in Section [T]);
by adding the direct arc from the last vertex back to s;, we obtain C;-spanning
tours {o;}._;. We now use the following claim from [Z] to bound the length of
each tour o;.

Claim 6 ([2]). Given C;-spanning tours o; and w;, there exists a poly-time
computable tour o} on C; of length at most 3 - d(m;) and latency at most thrice
that of o;.
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Proof: Tour o} is constructed as follows: starting at s;, traverse tour o; until a
length of d(7r;), then traverse tour m; from the current vertex to visit all remaining
vertices and then return to s;. Note that tour m; will have to be traversed at
most twice, and so the length of o} is at most 3d(m;). Furthermore, the total
latency along o) for vertices visited in the o; part is at most Lat(o;) (the latency
along o;). Also the latency along o/ of each vertex v visited in the m; part is at
most 3d(m;), which is at most thrice its latency in ¢;. Hence the total latency
along o} is at most 3 - Lat(oy).

This implies that by truncating o; with a y-approximate TSP on C;, we obtain
another spanning tour o} of length 3v - L; and latency 3 - Lat(o;) (where L; is
length of the minimum TSP on C;). The final r-path is the concatenation of
these local tours, m = o} - (s1,82) - 0 - - (81-1, 81) - 0.

Claim 7. The latency of r-path w is at most O(vy + 3) - Opt.

Proof: Consider the near-optimal r-path 7* given by Lemma[Bl For 1 < i </,
let Opt; denote the latency of the Cj-spanning tour 7;, and D; = Z;;ll(d(T]) +
d(sj,sj4+1)) denote the length of 7* before C;. Then the total latency of 7* can
be written as Zé:l(ni -D; + Opt;) < 7- Opt.

Now consider the r-path 7 output by the algorithm. The s;-tour 7; is a feasible
solution to the minimum latency instance on Cj; so the latency of tour o; is at
most 3 - Opt;, since we use a F-approximation for each such instance. So for each
1 < i < I, the truncated tour o} has latency Lat(o) < 38 - Opt;, and length
d(o}) < 3vL;. Again, the latency of 7 can be written as Zézl(ni - D!+ Lat(0})),
where D} = Z;;ll (d(o%)+d(sj, 55+1)) is the length of 7 before C;. So the latency
of vertices C; in 7 is:

ni - 321 (d(0)) + d(s;, 5541)) + Lat(o)
<n;- 23;11(37 -Lj+d(sj,sj+1)) + 38 - Opt;
<n - Y051 (3y - d(7y) + d(sg, 8541)) + 360pt;
< 3yn; - Y052 (d(75) + d(sg, 5541)) + 360pt;
= 3yn,; - D; + 360pt;
< 3(y + ) (ni - Di + Opt,)

So the total latency of 7 is at most 3(y+03) Zé:l(nrbi—l-Opti) < O(v+/)-Opt.

Theorem [B] now follows.
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Abstract. A long-standing conjecture in Combinatorial Optimization
is that the integrality gap of the Held-Karp LP relaxation for the Asym-
metric Traveling Salesman Problem (ATSP) is a constant. In this paper,
we give a simpler LP relaxation for the ASTP. The integrality gaps of
this relaxation and of the Held-Karp relaxation are within a constant
factor of each other. Our LP is simpler in the sense that its extreme
solutions have at most 2n — 2 non-zero variables, improving the bound
3n — 2 proved by Vempala and Yannakakis for the extreme solutions of
the Held-Karp LP relaxation. Moreover, more than half of these non-zero
variables can be rounded to integers while the total cost only increases
by a constant factor.

We also show that given a partially rounded solution, in an extreme
solution of the corresponding LP relaxation, at least one positive variable
is greater or equal to 1/2.

Keywords: ATSP, LP relaxation.

1 Introduction

The Traveling Salesman Problem (TSP) is a classical problem in Combinatorial
Optimization. In this problem, we are given an undirected or directed graph
with nonnegative costs on the edges, and we need to find a Hamiltonian cycle of
minimum cost. A Hamiltonian cycle is a simple cycle that covers all the nodes
of the graph. It is well known that the problem is in-approximable for both
undirected and directed graphs. A more tractable version of the problem is to
allow the solution to visit a vertex/edge more than once if necessary. The problem
in this version is equivalent to the case when the underlying graph is a complete
graph, and the edge costs satisfy the triangle inequality. This problem is called
the metric-TSP, more specifically Symmetric-TSP (STSP) or Asymmetric-TSP
(ATSP) when the graph is undirected or directed, respectively. In this paper, we
consider the ATSP.
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Notation. Inthe rest of the paper, we need the following notation. Given a directed
graph G = (V, E) and aset S C V', we denote the set of edges going in and out of
S by 6T (S) and 6~ (9), respectively. Let x be a nonnegative vector on the edges of
the graph G, the in-degree or out-degree of S (with respect to z) is the sum of the
value of z on 67 (5) and 6~ (5). We denote them by (6 (S)) and (6~ (5)).

An LP relaxation of the ATSP was introduced by Held and Karp [9] in 1970.
It is usually called the Held-Karp relaxation. Since then it has been an open
problem to show whether this relaxation has a constant integrality gap. The
Held-Karp LP relaxation can have many equivalent forms, one of which requires
a solution z € RLEI to satisfy the following two conditions: i) the in-degree and
the out-degree of every vertex are at least 1 and equal to each other, and %) the
out-degree of every subset S C V —{r} is at least 1, where r is an arbitrary node
picked as a root. Fractional solutions of this LP relaxation are found to be hard
to round because of the combination of the degree conditions on each vertex
and the connectivity condition. A natural question is to relax these conditions
to get an LP whose solutions are easier to round. In fact, when these conditions
are considered separately, their LP forms integral polytopes, thus the optimal
solution can be found in polynomial time. However, the integrality gap of these
LPs with respect to the integral solutions of the ATSP can be arbitrarily large.
Another attempt is to keep the connectivity condition and relax the degree
condition on each vertex. It is shown recently by Lau et al. [15] that one can find
an integral solution whose cost is at most a constant times the cost of the LP
described above, furthermore it satisfies the connectivity condition and violates
the degree condition at most a constant. The solution found does not satisfy the
balance condition on the vertices, and such a solution can be very far from a
solution of the ATSP.

Generally speaking, there is a trade-off in writing an LP relaxation for a
discrete optimization problem: between having “simple enough” LP to round
and a “strong enough” one to prove an approximation guarantee. It is a major
open problem to show how strong the Held-Karp relaxation is. And, as discussed
above, it seems that all the simpler relaxations can have arbitrarily big integrality
gaps. In this paper, we introduce a new LP relaxation of the ATSP which is as
strong as the Help-Karp relaxation up to a constant factor, and is simpler. Our
LP is simpler in the sense that an extreme solution of this LP has at most 2n — 2
non-zero variables, improving the bound 3n — 2 on the extreme solutions of the
Held-Karp relaxation. Moreover, out of such 2n — 2 variables, at least n can be
rounded to integers. This result shows that the integrality gap of the Held-Karp
relaxation is a constant if and only if our simpler LP also has a constant gap.

The new LP. The idea behind our LP formulation is the following. Consider the
Held-Karp relaxation in one of its equivalent forms:
min cexe
Shjt: z(67(S)) > 1VS CV —{r} (Connectivity condition)
(6T (v)) = 2(6~ (v)) Yo € V' (Balance condition)
T, > 0.

(1)
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Our observation is that because of the balance condition in the LP above, the
in-degree x(67(S5)) is equal to the out-degree z(6§7(59)) for every set S . If one
can guarantee that the ratio between x(67(S)) and z(67(S)) is bounded by a
constant, then using a theorem of A. J. Hoffman [I0] about the condition for
the existence of a circulation in a network, we can still get a solution satisfying
the balance condition for every node with only a constant factor loss in the total
cost. The interesting fact is that when allowed to relax the balance condition,
we can combine it with the connectivity condition in a single constraint. More
precisely, consider the following fact. Given a set S C V — {r}, the balance
condition implies (67 (S)) — 2(67(S)) = 0, and the connectivity condition is
z(6%(9)) > 1. Adding up these two conditions, we have:

22(6%(S)) — 2(67(S)) > 1.

Thus we can have a valid LP consisting of these inequalities for all S C V — {r}
and two conditions on the in-degree and out-degree of r. Observe that given
a vector & > 0, the function f(S) = 2z(6%(5)) — 2(67(9)) is a submodular
function, therefore, we can apply the uncrossing technique as in [I1] to investigate
the structure of an extreme solution. We introduce the following LP:

Subject to: 230(6*(5)) —z(67(S8)>1vScV —{r}
2(67(r) = (67 (r)) =

ze > 0.

2)

—

This LP has exponentially many constraints. But because 2z(6%(S)) —z(67(S))
is a submodular function, the LP can be solved in polynomial time via the
ellipsoid method and a subroutine to minimize submodular setfunctions.

Our results. It is not hard to see that our new LP () is weaker than the Held-
Karp relaxation (). In this paper, we prove the following result in the reverse
direction. Given a feasible solution = of (2], in polynomial time we can find a
solution y feasible to (Il) on the support of = such that the cost of y is at most
a constant factor of the cost of x. Furthermore, if x is integral then y can be
chosen to be integral as well. Thus, given an integral solution of (2)) we can find
a Hamiltonian cycle of a constant approximate cost. This also shows that the
integrality gaps of these two LPs are within a constant factor of each other. In
section 3, we show that our new LP is simpler than the Held-Karp relaxation.
In particular, we prove that an extreme solution of the new LP has at most
2n — 2 non-zero variables, improving the bound 3n — 2 proved by Vempala and
Yannakakis [I7] for the extreme solutions of the Held-Karp relaxation. We then
show how to round at least n variables of a fractional solution of (@) to integers.
And finally, we prove the existence of a big fractional variable in an extreme
point of our LP in a partially rounded instance.

Note that one can have a more general LP relaxation by adding the Balance
Condition and the Connectivity Condition in ({l) with some positive coefficient



210 T. Nguyen

(a,b) to get: (a+b)z(67(S)) —bx(67(S)) > a. All the results will follow, except
that the constants in these results depend on a and b. One can try to find a and
b to minimize these constants. But, to keep this extended abstract simple, we
only consider the case where a = b = 1.

Related Work. The Asymmetric TSP is an important problem in Combinator-
ial Optimization. There is a large amount of literature on the problem and its
variants. See the books [§], [16] for references and details. A natural LP relax-
ation was introduced by Held-Karp [9] in 1970, and since then many works have
investigated this LP in many aspects. See [§] for more details. Vempala and
Yannakakis [I7] show a sparse property of an extreme solution of the Held-Karp
relaxation. Carr and Vempala [4] investigated the connection between the Sym-
metric TSP (STSP) and the ATSP. They proved that if a certain conjecture on
STSP is true then the integrality gap of this LP is bounded by 4/3. Charikar et
al. [3] later refuted this conjecture by showing a lower bound of 2 for the inte-
grality gap of the Held-Karp LP, this is currently the best known lower bound.
On the algorithmic side, a log, n approximation algorithm for the ATSP was
first proved by Frieze et al. [6]. This ratio is improved slightly in [2], [I2]. The
best ratio currently known is 0.842log, n [12].

Some proofs of our results are based on the uncrossing technique, which was
first used first by Ldszlé Lovdsz [5] in a mathematical competition for university
students in Hungary. The technique was later used successfully in Combinatorial
Optimization. See the book [I3] for more details. In Approximation Algorithms,
the uncrossing technique was applied to the the generalized Steiner network
problem by Kamal Jain [IT]. And it is recently shown to be a useful technique

in many other settings [7UT4UT5].

2 The Integrality Gaps of the New LP and of the
Held-Karp Relaxation Are Essentially the Same

In this section, we prove that our LP and the Held-Karp relaxation have inte-
grality gaps within a constant factor of each other. We also show that given an
integral solution of the new LP (2), one can find a Hamilton cycle while only
increasing the cost by a constant factor.

Theorem 1. Given a feasible solution of the Held-Karp relaxzation {dl), we can
find a feasible solution of (@) with no greater cost. Conversely, if x is a solution
of (@) then there is a feasible solution y of [) on the support of x, whose cost
1s at most a constant times the cost of x. Moreover, such a y can be found in
polynomial time, and if x is integral then y can also be chosen to be an integral
vector.

The second part of this theorem is the technical one. As discussed in the intro-
duction, at the heart of our result is the following theorem of Alan Hoffman [10]
about the condition for the existence of a circulation in a network.
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Lemma 1 (Hoffman). Consider the LP relazation of a circulation problem on
a directed graph G = (V, E) with lower and an upper bounds l. < ue on each
edge e € E:

(6T (v) =267 (v)) Yo eV
le <ze <wue Ve€FE.

3)
The LP is solvable if and only if for every set S :

Z loe < Z Ue.

e€6+(S) e€s—(S)

Furthermore, if l., ue are integers, then the solution can be chosen to be integral.
O

Given a solution x of our new LP, we use it to set up a circulation problem.
Then, using Lemma [, we prove that there exists a solution ¥ to this circulation
problem. And this vector is a feasible solution of the Help-Karp relaxation. Before
proving Theorem [Il we need the following lemmas:

Lemma 2. For a solution x of (@) and every set S C V, the in-degree z(6F(9))
and the out-degree x(57(S)) are at least }.

Proof. Because of symmetry, we assume that r ¢ S. Since z is a solution of ({2)),
we have: 2z(67(S)) —2(67(S)) > 1. This implies 2(61(S)) > 5+ 52(67(5)) > 5.

We now prove that #(67(S)) > 3. If S = V — {r}, then because of the LP (&)
the out-degree of S is 1, which is of course greater than :1,) Now, assume S is a
real subset of V. — {r}, let T =V —{r} — S # 0.

To make the formula easy to follow, we use the following notation. Let a,
be the total value of the edges going from S to r and T respectively. See
Figure [[l Thus, the out-degree of S is (67 (S)) = a + 8. We denote the to-
tal value of the edges going from r to S by «a, and the total value of edges from
T to S by b. Due to @), the in-degree and out-degree of r is 1, therefore the
total value of edges from r to T is 1 — @ and from T to 7 is 1 — a.

Now, from 2x(67(T)) — (6~ (T)) > 1, we have 2(1 —a + ) — (1 — a + b).
Therefore

20+ a>2a+b.

And 2x(67(S)) — (6 (S)) > 1 is equivalent to 2(a + b) — (o + ) > 1, which
implies

(a+p3)+1
b) > .
(@+p)z "7
Combine these two inequalities:
1
2B+a>2a+b>a+b> O‘+§+ .

Thus we have 25 + o > a+g+1. From this, 43+ 2a > a+ G+ 1and 30+ a > 1.
Hence, 3(8 + a) > 38 + a > 1. Therefore

1
> .
a+ﬁ73
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g

Fig. 1. Out-degree and in-degree of the set .S

This inequality is what we need to prove. O
The next lemma shows that for any S, the ratio between its out-degree and
in-degree is bounded by a constant.

Lemma 3. Given a solution x of @), for any S CV,

1
8

Proof. Because of symmetry, we can assume that r ¢ S. From the inequality
22(61(S)) — (67 (S)) > 1 we have:

2(87(5)) < x(67(8)) < 8x(67(9))-

2(67 (X)) < 2z2(67(X)). Therefore ;x(é_ (9)) < 2(67(9)).

To show the second inequality, we observe that when S = V — {r}, its out-degree
is equal to its in-degree, thus we can assume that S is a real subset of V — {r}.
As in the previous lemma, let T'=V —S —{r} # (). We then apply the inequality
22(6T(T)) —x(6—(T)) > 1 to get the desired inequality.

First, observe that S and T are almost complements of each other, except
that there is a node r with in and out degrees of 1 outside S and T'. Thus, the
out-degree of S is almost the same as the in-degree of T" and vice versa. More
precisely, using the same notation as in the previous lemma, one has z(67(5)) —
2(67(T)) = a— (1 —«a) < 1. Therefore x(67(S)) < z(6—(T)) + 1.

By symmetry, we also have: z(67(T)) < 2(67(S)) + 1.

Now, 2z(67(T)) — x(6~(T)) > 1 implies:

14+ 2(67 (1)) < 2z(6™7(T)).
Using the relations between the in/out-degrees of S and T, we have the following:
z(87(8)) < 14 a(67(T)) < 2(67(T)) < 2(x(67(5)) + 1).
But because of the previous lemma, (67 (5)) > 3. Therefore
2(67(8)) < 2(x(87(5)) +1) < 8x(67(9)).

This is indeed what we need to prove. a
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Note: We believe the constant in this lemma can be reduced if we use a more
careful analysis.
We are now ready to prove our main theorem:

Proof (Proof of Theorem[). First, given a solution y, if y(67(r)) = y(6~(r)) = 1,
then y is also a feasible solution of [@). When y(67(r)) = y(6~(r)) > 1, we can
short-cut the fractional tour to get the solution satisfying the degree constraint
on r: y(6+(r)) = y(6~(r)) = 1 without increasing the cost. This solution is a
feasible solution of (2.

We now prove the second part of the theorem. Given a solution z of (2,
consider the following circulation problem:

min ceYe
sbt. y(6T(v)) =y(6~ (v))Vv e V
3. < ye < 24x,.

For every set S C V, Lemma [Z] states that the ratio between its in-degree and
its out-degree is bounded by 8. Therefore

Z 3xe < Z 24x,.

ecét(9) ecs—(9)

Using Lemma (), the above LP has a solution y, and y can be chosen to be
integral if x is integral. We need to show that y is a feasible solution of the
Held-Karp relaxation. y satisfies the Balance Constraint on every node, thus we
only need to show the Connectivity Condition. Because y > 3z, for every cut S
we have :

y(57(5)) > 32(67(S)) > 1.

The last inequality comes from Lemma 2l We have shown that given a feasible
solution = of the new LP, there exists a feasible solution of the Held-Karp relax-
ation [Il whose cost is at most 24 times the cost of x. This completes the proof
of our theorem. O

3 Rounding an Extreme Solution of the New LP

In this section, we show that an extreme solution of our LP contains at most 2n—
2 non-zero variables (Theorem[Z). And at least n variables of this solution can be
rounded to integers (Theorem [B]). Finally, given a partially rounded solution, let
x be an extreme solution of the new LP for this instance. We show that among
the other positive variables, there is at least one with a value greater or equal
to 1/2 (Theorem HI).

Theorem 2. The LP (3) can be solved in polynomial time, and an extreme
solution has at most 2n — 2 non-zero variables.
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Proof. First, observe that given a vector x > 0, f,(S) = 22(67(S)) —x(67(S)) is
a submodular function. To prove this, one needs to check that f,(S) + f(T) >
f(SUT)+ f(SNT). Or more intuitively: f,(S) = x(67(S)) + (x(67(S)) —
z(67(9))) is a sum of two submodular functions, thus f; is also a submodular
function.

The constraints in our LP is f,(S) > 1VS C V — {r} and z(6"(r)) =
(67 (r)) = 1. Thus with a subroutine to minimize a submodular function, we
can decide whether a vector z is feasible to our LP, and therefore the LP can be
solved in polynomial time by the ellipsoid method.

Now, assume z is an extreme solution. Let S, T' be two tight sets, i.e., f,(S) =
f=(T) = 1. Then, it is not hard to see that if SUT # () then both S UT and
S NT are tight. Furthermore, the constraint vectors corresponding to S,7,.5 U
T,SNT are dependent. Now, among all the tight sets, take the maximal laminar
set family. The constraints corresponding to these sets span all the other tight
constraints. Thus x is defined by 2 constraints for the root node r and the
constraints corresponding to a laminar family of sets on m — 1 nodes, which
contains at most 2(n — 1) — 1 sets. However, the constraint corresponding to the
set V — r is dependent on the two constraints of the node r, therefore we have
at most 24+ 2(n —1) — 1 — 1 = 2n — 2 independent constraints. This shows that
x has at most 2n — 2 non-zero variables. O

We prove the next theorem about rounding at least n variables of a fractional
solution of our new LP (2)).

Theorem 3. Given an extreme solution x of (@), we can find a solution T on
the support of x. Thus T contains at most 2n — 2 non-zero edges such that it
satisfies the constraint 2z(67(S)) — £(67(S)) > 1 VS C V — {r}, and it has
at least n non-zero integral variables. Furthermore, the cost of T is at most a
constant times the cost of x.

Proof. x is a solution of ([2]). Due to Theorem/[I] on the support of z, there exists
a solution y of ([Il) whose cost is at most a constant times the cost of z. Because
y satisfies y(67(v)) = y(6~(v)) > 1 for every v € V, y is a fractional cycle cover
on the support of x. Recall that a cycle cover on directed graph is a Fulerian
subgraph (possibly with parallel edges) covering all the vertices. However, we
can find an integral cycle cover in a directed graph whose cost is at most the
cost of a fractional solution. Let z be such an integral solution. Clearly, z has at
least n non-zero variables, and the cost of z is at most the cost of y which is at
most a constant times the cost of x.

Next consider the solution w = x + gz For every edge e where z. > 0, we
have w, = x. + gze > g Round w, to the closest integer to get the solution .
Clearly, Z has at most 2n — 2 non-zero variables and at least n non-zero integral
variables. We will show that the cost of Z is at most a constant times the cost
of x, and that 7 satisfies 22(67(S)) — 2(6(9)) > 1 VS CV — {r}.

Rounding each w, to the closest integer will sometimes cause an increase in w,
of at most 1/2. But, because we only round the value w, when the corresponding
ze > 1, and note that z is an integral vector, the total increase is at most half
the cost of z which is at most a constant times the cost of z.
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Consider a set S C V — {r}. We have 2z(67(S)) —z(6(S)) > 1. Let k be the
total value of the edges of z going out from S, that is k = z(67(S)) = z(67(5)).
This is true because z is a cycle cover. Hence, when adding w := x + gz, we
have:

2w(87(5)) —w(67(S)) = 22(87(S)) — (67 (5)) + 3(22(5+(5)) —2(87(5)))-

Therefore,
2w(67(S)) — w(6~(S)) > 1+ 2k )

Now, 7 is a rounded vector of w on the edges where z is positive. For the set .5,
there are at most 2k such edges, at most k edges going out and k edges coming
in. Rounding each one to the closest integer will sometimes cause a change at
most 3 on each edge, and thus causes the change of 2w(67(S5)) — w(6~(9)) in
at most k(2.5 — (—3)) = 5k. But, because of (@), we have :

28(67(5)) —2(67(8)) > 1
which is what we need to show. O

Our last theorem shows that there always exists a “large” variable in an extreme
solution in which some variables are assigned fixed integers.

Theorem 4. Consider the following LP which is the corresponding LP of (3)
when some variables x.,e € I are assigned fized integral values. r. = a, € N
foree F.

min c.x.
sbt. 2z(67(S)) —z(67(S)) >1VS:r¢gS.
2(6"(r)) =11
z(6~(r)) =r2 (r1,m2 €N)
Te =a, Ve € F
Te > 0.

Given an extreme solution x of this LP, let H = {e € E — F|z. > 0}. If H # (),
then there exists an e € H such that x. > é

Proof. Let L be the laminar set family whose corresponding constraints together
with two constraints on the root node r determine the value of {z.|le € H}
uniquely. As we have seen in the proof of Theorem 2] one can see that such an £
exists, and |£] is at least |H|. Assume all the values in {z.|e € H} is less than a
half. We assign one token to each edge in H. If we can redistribute these tokens
to the sets in £ and the constraints on the root r such that each constraint gets
at least 1 token, but at the end there are still some tokens remaining, we will
get a contradiction to prove the theorem.

We apply the technique used in [I1] and the other recent results [14], [I5],
[I]. For each e € H, we distribute a fraction 1 — 2z, of the token to the head
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of the edge, a fraction x. of the token to the tail and the remaining z. to the
edge itself. See Figure 2l Because 0 < z, < %, all of these values are positive.
Given a set S in £, we now describe the set of tokens assigned to this set.
First, we use the following notation: for a set 7', let E(T") be the set of edges
in {z.le € E — F} that have both endings in 7. Now, let Si,..,Sk € £ be the
maximal sets which are real subsets of S. The set of tokens that S gets is all
the tokens on the edges in E(S) — (E(S1) U ... U E(Sk)) plus the tokens on the
vertices in S — (S1 U ... U Sk). Clearly, no tokens are assigned to more than one
set. The constraint on the in-degree of r gets all the tokens on the heads of edges
going into r, and the constraint on the in-degree of r gets all the tokens on the
tails of edges going out from 7.

1—2x

[

Fig. 2. Tokens distributed to S

Consider now the equalities corresponding to the set S, 51, ..., Sk. If we add
the equalities of S1, 59, ..., S together and subtract the equality on the set S we
will get an linear equality on the variables {z.|e € H}:

g QeT. = an integer number.
ecH

It is not hard to calculate a, for each type of e. For example, if e connects S;
and S; , ¢ # j then a. = 1, if e connects from vertex outside S to a vertex in
S — (S1U...USg) then o, = —2, etc. See Figure 2 for all other cases.

On the other hand, if we calculate the amount of tokens assigned to the set
S, it also has a linear formula on {z.|e € H}:

g Bexe + an integer number.
ecH
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We can also calculate the coefficient 3. for every e. For example, if e connects
S; and S; , i # j then the edge e is the only one that gives an amount of tokens
which is a function of z., and it is exactly x.. Thus 8. = 1. Consider another
example, e = u — v where u € § — (S1 U ...U Sk) and v € S5. See Figure 2
Then only the amounts of tokens on the edge uv and the node u depend on ..
On the edge wv, it is . and, on the node u, it is x. plus a value not depending
on x.. Thus 8. = 2 in this case.

It is not hard to see that the coefficient o, = (.Ve € H. Thus the amount
of tokens S gets is an integer number, and it is positive, thus it is at least 1.
Similarly, one can show that this fact also holds for the constraints on the root
node r.

We now show that there are some tokens that were not assigned to any set.
Consider the biggest set in the laminar set family £ , it has some non-zero edges
going in or out but the tokens on this edge is not assigned to any constraint.
This completes the proof. a

Acknowledgment. The author thanks Tamaéas Kirdly, Eva Tardos and Lész16
Végh for numerous discussions.
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Abstract. Given a graph H = (V, F') with edge weights {w(e) : e € F'},
the weighted degree of a node v in H is Y {w(vu) : vu € F}. We give
bicriteria approximation algorithms for problems that seek to find a mini-
mum cost directed graph that satisfies both intersecting supermodular
connectivity requirements and weighted degree constraints. The input to
such problems is a directed graph G = (V, E), edge-costs {c(e) : e € E},
edge-weights {w(e) : e € E}, an intersecting supermodular set-function
fonV, and degree bounds {b(v) : v € V'}. The goal is to find a minimum
cost f-connected subgraph H = (V| F') (namely, at least f(S) edges in
F enter every S C V) of G with weighted degrees < b(v). Our algorithm
computes a solution of cost < 2 - opt, so that the weighted degree of
every v € V is at most: 7b(v) for arbitrary f and 5b(v) for a 0, 1-valued
f; 2b(v) + 4 for arbitrary f and 2b(v) + 2 for a 0, 1-valued f in the case of
unit weights. Another algorithm computes a solution of cost < 3-opt and
weighted degrees < 6b(v). We obtain similar results when there are both
indegree and outdegree constraints, and better results when there are
indegree constraints only: a (1,4)-approximation algorithm for arbitrary
weights and a polynomial time algorithm for unit weights. Finally, we
consider the problem of packing maximum number k of edge-disjoint
arborescences so that their union satisfies weighted degree constraints,
and give an algorithm that computes a solution of value at least |k/36].

1 Introduction

1.1 Problem Definition

In many Network Design problems one seeks to find a low-cost subgraph H
of a given graph G that satisfies prescribed connectivity requirements. Such
problems are vastly studied in Combinatorial Optimization and Approximation
Algorithms. Known examples are Min-Cost k-Flow, b-Edge-Cover, Min-Cost Span-
ning Tree, Traveling Salesperson, directed/undirected Steiner Tree, Steiner Forest,
k-Edge/Node-Connected Spanning Subgraph, and many others. See, e.g., surveys
in [T6ARITOT2].

In Degree Constrained Network Design problems, one seeks the cheapest
subgraph H of a given graph G that satisfies both prescribed connectivity re-
quirements and degree constraints. One such type of problems are the matching/
edge-cover problems, which are solvable in polynomial time, c.f., [16]. For other

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 219 2008.
© Springer-Verlag Berlin Heidelberg 2008
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degree constrained problems, even checking whether there exists a feasible so-
lution is NP-complete, hence one considers bicriteria approximation when the
degree constraints are relaxed.

The connectivity requirements can be specified by a set function f on V, as
follows.

Definition 1. For an edge set or a graph H and node set S let 65 (S) (69(S))
denote the set of edges in H leaving (entering) S. Given a set-function f on
subsets of V and a graph H = (V, F), we say that H is f-connected if

1637 (S)] = £(S)  for all SC V. (1)

Several types of f are considered in the literature, among them the following
known one:

Definition 2. A set function f on V is intersecting supermodular if for any
X, YCV, XNY #0

fXO)+fY) < fXNY)+f(XUY) . (2)

We consider directed network design problems with wetighted-degree constraints.
For simplicity of exposition, we will consider mainly out-degree constraints, but
our results easily extend to the case when there are also in-degree constraints,
see Section [6l The problem we consider is:

Directed Weighted Degree Constrained Network (DWDCN)
Instance: A directed graph G = (V, E), edge-costs {c(e) : e € E}, edge-weights
{w(e) : e € E}, set-function f on V, and degree bounds {b(v) : v € V'}.
Objective: Find a minimum cost f-connected subgraph H = (V, F) of G that
satisfies the weighted degree constraints

w(bg(v)) <bv) forallveV . (3)

We assume that f admits a polynomial time evaluation oracle. Since for
most functions f even checking whether DWDCN has a feasible solution is NP-
complete, we consider bicriteria approximation algorithms. Assuming that the
problem has a feasible solution, an («, 3)-approximation algorithm for DWDCN
either computes an f-connected subgraph H = (V) F) of G of cost < « - opt
that satisfies w(ép (v)) < B-b(v) for all v € V, or correctly determines that the
problem has no feasible solution. Note that even if the problem does not have
a feasible solution, the algorithm may still return a subgraph that violates the
degree constraints ([B]) by a factor of 5.

A graph H is k-edge-outconnected from r if it has k-edge-disjoint paths from
r to any other node. DWDCN includes as a special case the Weighted De-
gree Constrained k-Outconnected Subgraph problem, by setting f(S) = k for
all ) £S5 CV —r, and f(S) = 0 otherwise. For k = 1 we get the Weighted De-
gree Constrained Arborescence problem. We also consider the problem of packing
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maximum number k of edge-disjoint arborescences rooted at r so that their union
H satisfies ([3]). By Edmond’s Theorem, this is equivalent to requiring that H is
k-edge-otconnected from r and satisfies ([B]). This gives the following problem:

Weighted Degree Constrained Maximum Arborescence Packing (WDCMAP)

Instance: A directed graph G = (V, E), edge-weights {w(e) : e € E}, degree
bounds {b(v) :v €V}, and r € V.

Objective: Find a k-edge-outconnected from r spanning subgraph H = (V| F') of
G that satisfies the degree constraints (3) so that & is maximum.

1.2 Our Results

Our main results are summarized in the following theorem. For an edge set I, let
x(l) = > .c;x(e). Let opt denote the optimal value of the following natural LP-
relaxation for DWDCN that seeks to minimize ¢ - z over the following polytope P;:

2(§7(S)) > f(S) forall§#SCV

Z z(e)w(e) < b(v) forallv eV
e€ép(v)
0<z(e) <1 foralle e £

Theorem 1. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f-connected graph of cost < 2opt so that the
weighted degree of every v € V is at most: Tb(v) for arbitrary f and 5b(v) for
a 0, 1-valued f; for unit weights, the degree of every v € V is at most 2b(v) + 4
for arbitrary f and 2b(v) + 2 for a 0,1-valued f. The problem also admits a
(3,6)-approzimation algorithm for arbitrary weights and arbitrary intersecting
supermodular f.

Interistingly, we can show a much better result for the case of indegree constraints
only (for the case of both indegree and outdegree constraints see Section [{]).

Theorem 2. DWDCN with intersecting supermodular f and with indegree con-
straints only, admits a (1,4)-approzimation algorithm for arbitrary weights, and
a polynomial time algorithm for unit weights.

Theorem [ has several applications. Bang-Jensen, Thomassé, and Yeo [1] conjec-
tured that every k-edge-connected directed graph G = (V, E) contains a span-
ning arborescence H so that |6 (v)| < |6g(v)|/k + 1 for every v € V. Bansal,
Khandekar, and Nagarajan [2] proved that even if G is only k-edge-outconnected
from r, then G contains such H so that |6y (v)| < |6¢(v)|/k + 2. We prove
that for any ¢ < k, G contains an {-outconnected from r spanning subgraph H
which cost and weighted degrees are not much larger than the ”expected” values
¢(G) - (¢/k) and wg(v) - (£/k). In particular, one can find an arborescence with
both low weighted degrees and low cost.
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Corollary 1. Let Hy = (V, F) be a k-outconnected from r directed graph with
costs {c(e) : e € F'} and weights {w(e) : e € F'}. Then for any ¢ < k the graph Hj,
contains an C-outconnected from r subgraph H; so that c¢(Hy) < c(Hy) - (2¢/k)
and so that for all v € V: w(ém,(v)) < w(dn, ()) - (7¢/k), and w(bm,(v)) <
w(bm, (v))(5/k) for € =1; for unit weights, |6, (v)| < |6m, (v)|-(2¢/k)+2. There
also exists Hy so that ¢(Hy) < c(Hy) - (3¢/k) and w(ém,(v)) < w(bm, (v))- (6¢/k)
forallveV.

Proof. Consider the Weighted Degree Constrained ¢-Outconnected Subgraph prob-
lem on Hj, with degree bounds b(v) = w(éy, (v)) - (¢/k). Clearly, z(e) = £/k for
every e € F is a feasible solution of cost ¢(Hy) - (¢/k) to the LP-relaxation
min{c -z : © € Ps} where f(S) = £ forall ) # S CV —r, and f(S) =0
otherwise. By Theorem [l our algorithm computes a subgraph Hy as required.

Another application is for the WDCMAP problem. Ignoring costs, Theorem [
implies a “pseudo-approximation” algorithm for WDCMAP that computes the
maximum number k of packed arborescences, but violates the weighted degrees.
E.g., using the (3, 6)-approximation algorithm from Theorem[dl we can compute
a k-outconnected H that violates the weighted degree bounds by a factor of 6,
where k is the optimal value to WDCMAP. Note that assuming P#NP, WDCMAP
cannot achieve a 1/p-approximation algorithm for any p > 0, since deciding
whether k£ > 1 is equivalent to the Degree Constrained Arborescence problem,
which is NP-complete. We can however show that if the optimal value k is not
too small, then the problem does admit a constant ratio approximation.

Theorem 3. WDCMAP admits a polynomial time algorithm that computes a
feasible solution H that satisfies @) so that H is | k/36|-outconnected from r.

Proof. The algorithm is very simple. We set o' (v) < b(v)/6 for all v € V and
apply the (3, 6)-approximation algorithm from Theorem [l The degree of every
node v in the subgraph computed is at most 6b'(v) < b(v), hence the solution is
feasible. All we need to prove is that if the original instance admits a packing
of size k, then the new instance admits a packing of size |k/36]. Let H) be an
optimal solution to WDCMAP. Substituting ¢ = |k/36] in the last statement
of Corollary M and ignoring the costs we obtain that Hj, contains a subgraph
H, which is f-outconnected from r so that w(ém, (v)) < w(ém, (v)) - (6¢/k) <
w(bm, (v))/6 < b(v)/6 for all v € V, as claimed.

We note that Theorem Bl easily extends to the case when edges have costs; the
cost of the subgraph H computed is at most the minimum cost of a feasible
k-outconnected subgraph.

1.3 Previous and Related Work

Fiirer and Raghavachari [6] considered the problem of finding a spanning tree
with maximum degree < A, and gave an algorithm that computes a spanning
tree of maximum degree < A + 1. This is essentially the best possible since
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computing the optimum is NP-hard. A variety of techniques were developed in
attempt to generalize this result to the minimum-cost case — the Minimum Degree
Spanning Tree problem, c.f., [IBIITI3]. Goemans [7] presented an algorithm that
computes a spanning tree of cost < opt and with degrees at most b(v) + 2 for
all v € V, where b(v) is the degree bound of v. An optimal result was obtained
by Singh and Lau [I7]; their algorithm computes a spanning tree of cost < opt
and with degrees at most b(v) + 1 for all v € V. The algorithm of Singh and
Lau [I7] uses the method of iterative rounding. This method was initiated in a
seminal paper of Jain [9] that gave a 2-approximation algorithm for the Steiner
Network problem. Without degree constraints, this method is as follows: given
an optimal basic solution to an LP-relaxation for the problem, round at least
one entry, and recurse on the residual instance. The algorithm of Singh and Lau
[I7] for the Minimum Bounded Degree Spanning Tree problem is a surprisingly
simple extension — either round at least one entry, or remove a degree constraint
from some node v. The non-trivial part usually is to prove that basic fractional
solution have certain ”sparse” properties.

For unit weights, the following results were obtained recently. Lau, Naor, Sal-
vatipour, and Singh [I3] were the first to consider general connectivity require-
ments. They gave a (2, 2b(v)+3)-approximation for undirected graphs in the case
when f is skew-supermodular. For directed graphs, they gave a (4dopt, 4b(v)+6)-
approximation for intersecting supermodular f, and (8opt, 86(v)+6)-approxima-
tion for crossing supermodular f (when () holds for any X,Y that cross).
Recently, in the full version of [I3], these ratios were improved to (3opt, 3b(v)+5)
for crossing supermodular f, and (20pt, 2b(v) + 2) for 0, 1-valued intersecting su-
permodular f. For the latter case we obtain the same ratio, but our proof is
simpler than the one in the full version of [I3].

Bansal, Khandekar, and Nagarajan [2] gave for intersecting supermodular f
a (; - opt, [?(_”21 + 4)-approximation scheme, 0 < ¢ < 1/2. They also showed,
that this ratio cannot be much improved based on the standard LP-relaxation.
For crossing supermodular f [2] gave a (3 -opt, [l;(_”;] +4+ fmax)-approximation
scheme. For the degree constrained arborescence problem (without costs) [2] give
an algorithm that computes an arborescence H with |6y (v)| < b(v) + 2 for all
v € V. Some additional results for related problems can also be found in [2].

For weighted degrees, Fukunaga and Nagamochi [5] considered undirected net-
work design problems and gave a (1, 4)-approximation for minimum spanning
trees and a (2,7)-approximation algorithm for arbitrary weakly supermodular
set-function f.

2 Proof of Theorem (I

During the algorithm, F' denotes the partial solution, I are the edges to add to
F, and B is the set of nodes on which the outdegree bounds constraints are still
present. The algorithm starts with F' = (), B = V and performs iterations. In
any iteration, we work with the ”residual problem” polytope P;(I, F,B) (a >1
is a fixed parameter):



224 7. Nutov

z(87(S)) > £(S) — [62(S)| forall) #S CV
Z z(e)w(e) <b(v) —w(bp(v))/a  forallv e B
e€é(v)
0<z(e) <1 forallee I

Recall some facts from polyhedral theory. Let x belong to a polytope P C R™
defined by a system of linear inequalities; an inequality is tight (for z) if it
holds as equality for z. © € P is a basic solution for (the system defining) P
if there exist a set of m tight inequalities in the system defining P such that
x is the unique solution for the corresponding equation system; that is, the
corresponding m tight equations are linearly independent. It is well known that
if min{c- 2 : x € P} has an optimal solution, then it has an optimal solution
which is basic, and that a basic optimal solution for {c-z : x € Py(I,F, B)} can
be computed in polynomial time, c.f., [13].

Note that if « € P¢(I, F, B) is a basic solution so that 0 < x(e) < 1 for all
e € I, then every tight equation is induced by either:

e cut constraint x(57(S)) > f(S) — |62(9)| defined by some set ) £ S C V
with f(S) — [62(9)] > 1.

o degree constraint -, cs () z(e)w(e) < b(v) —w(ép(v))/e defined by some
node v € B.

A family F of sets is laminar if for every 5,5’ € F, either SN S’ = 0, or
S c 8 or S c S. We use the following statement observed in [I3] for unit
weights, which also holds in our setting.

Lemma 1. For any basic solution x to Py(I,F,B) with 0 < z(e) < 1 for all
e € 1, there exist a laminar family L on'V and T C B such that x is the unique
solution to the linear equation system:

2(87"(S)) = £(S) — 85 ()] forall S € L
Z z(e)w(e) =bv) —w(dr(v))/a  forallveT
ees1(v)

where f(S) — [6%(S)| > 1 for all S € L. In particular, |L| + |T| = |I| and the
characteristic vectors of §7(S) for all S € L are linearly independent.

Proof. Let F = {0 # S CV : 2(6%(S)) = f(S) — [67(S)| > 1}, (i.e., the tight
sets) and T' = {v € B : 3_ 5, (,) (e)w(e) = b(v) —w(ép(v))/a} (ie., the tight
nodes in B). For F' C F let span(F’) denote the linear space generated by the
characteristic vectors of §7(S), S € F'. Similarly, span(T") is the linear space
generated by the weight vectors of §7(v), v € T'. In [9] (see also [I4]) it is proved
that a maximal laminar subfamily £ of F satisfies span(L) = span(F). Since
x € Py(I,F,B) is a basic solution, and 0 < z(e) < 1 for all e € I, |I|] is at most
the dimension of span(F) U span(T) = span(L) U span(T'). Hence repeatedly
removing from T a node v so that span(L) Uspan(T — v) = span(L) U span(T)
results in £ and T as required.
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Definition 3. The polytope P;(I, F,B) is (a, A)-sparse for integers o, A > 1 if
any basic solution x € Py(I,F,B) has an edge e € I with z(e) = 0, or satisfies
at least one of the following:

x(e)
|61 (v)|

We prove the following two general statements that imply Theorem [Tk

1/a  for somee eI (4)

>
<A for somev € B (5)

Theorem 4. If for any I, F the polytope P¢(I,F,B) is (o, A)-sparse (if non-
empty), then DWDCN admits an («,a + A)-approzimation algorithm; for unit
weights the algorithm computes a solution F' so that ¢(F) < a-opt and |6 (v)| <
ab(v)+A—1 forallveV.

Theorem 5. Ps(I, F,B) is (2,5)-sparse and (3,3)-sparse for intersecting su-
permodular f; if f is 0,1-valued, then P;(I,F,B) is (2,3)-sparse.

3 The Algorithm (Proof of Theorem M)

The algorithm perform iterations. Every iteration either removes at least one
edges from I or at least one node from B. In the case of unit weights we assume
that all the degree bounds are integers.

Algorithm for DWDCN with intersecting supermodular f
Initialization: F — 0, B—V, [ — E —{vu € E : w(vu) > b(v)}.
If Py(I,F, B) = 0, then return "UNFEASIBLE” and STOP.
While I # () do:

1. Find a basic solution « € P¢(I, F, B).

2. Remove from I all edges with z(e) = 0.

3. Add to F' and remove from I all edges with z(e) > 1/a.

4. Remove from B every v € B with |6;(v)| < A.
EndWhile

Lemma 2. DWDCN admits an («a,a + A)-approzimation algorithm if every
polytope Py(I, F, B) constructed during the algorithm is (o, A)-sparse; further-
more, for unit weights, the algorithm computes a solution F' so that ¢(F') < a-opt
and |6p(v)| < ab(v)+ A =1 for allveV.

Proof. Clearly, if Pf(I,F,B) = ) at the beginning of the algorithm, then the
problem has no feasible solution, and the algorithm indeed outputs "INFEA-
SIBLE”. It is also easy to see that if P¢(I,F,B) # () at the beginning of the
algorithm, then Py(I, F, B) # () throughout the subsequent iterations. Hence if
the problem has a feasible solution, the algorithm returns an f-connected graph,
and we need only to prove the approximation ratio. As for every edge added we
have z(e) > 1/a, the algorithm indeed computes a solution of cost < « - opt.
Now we prove the approximability of the degrees. Consider a node v € V.
Let F’ be the set of edges in 6p(v) added to F while v € B, and let F” be
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the set of edges in I leaving v at Step 3 when v was excluded from B. Clearly,
bp(v) € F'UF”. Note that at the moment when v was excluded from B we had

w(F') < a (b(v) -y m(e)w(e))

ecF”

In particular, w(F") < ab(v). Also, |F”| < A and thus w(F") < |F"] - b(v) <
Ab(v). Consequently, w(6r(v)) < w(F")+w(F") < ab(v)+ Ab(v) = (a+A)b(v).

Now consider the case of unit weights. We had [F'| < « (b(v) — Y o 2(€))
when v was excluded from B. Moreover, we had z(e) > 0 for all e € F”, since
edges with z(e) = 0 were removed at Step 2, before v was excluded from B.
Hence if F” # 0 then |F’| < ab(v), and thus |F| < |F/| + |F"| < ab(v) + A.
Since all numbers are integers, this implies |F| < ab(v) + A — 1. If F” = 0,
then |F| = |F'| < ab(v) < ab(v) + A — 1. Consequently, in both cases |F| <
ab(v) + A —1, as claimed.

4 Sparseness of P¢(I, F, B) (Proof of Theorem [5)

Let £ and T be as in Lemma [l Define a child-parent relation on the members
of L+ T as follows. For S € £ or v € T, its parent is the inclusion minimal
member of £ properly containing it, if any. Note that if v € T and {v} € L,
then {v} is the parent of v, and that no members of T has a child. For every
edge uv € I assign one tail-token to u and one head-token to v, so every edge
contributes exactly 2 tokens. The number of tokens is thus 2|7].

Definition 4. A token contained in S is an S-token if it is not a tail-token of
an edge vu leaving S so that v ¢ T (so a tail-token of an edge vu leaving S is
an S-token if, and only if, ve T).

Recall that we need to prove that if « € P¢(I, F, B) is a basic solution so that
0 < z(e) < 1forallee I, then there exists e € I with z(e) > 1/« or there exists
v € B with |6;(v)| < A. Assuming this is not so, we have:

The Negation Assumption:
- 167(S)] > a+1 forall S € L;
-6r(w)| > A+ 1forallveT.

We obtain the contradiction |I| > |£] + |T| by showing that for any S € £ we
can assign the S-tokens so that every proper descendant of S in £ + T gets 2
S-tokens and S gets at least 3 S-tokens. Except the proof of (2, 3)-sparseness of
0, 1-valued f, our assignment scheme will be:

The (2, + 1)-Scheme:
- every proper descendant of S in £ + T gets 2 S-tokens;
- S gets a+ 1 S-tokens.

Initial assignment:
For every v € T, assign the |6;(v)| tail-tokens of the edges in é;(v).
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The rest of the proof is by induction on the number of descendants of S in L.
If S has no children/descendants in £, it has at least [67"(S)| > a+1 head-tokens
of the edges in §7(S). We therefore assume that S has in £ at least one child.
Given S € L with at least one child in £, let C' be the set of edges entering some
child of S, J the set of edges entering S or a child of S but not both, and D the
set of edges that enter a child of S and their tail is in 7N .S but not in a child
of S. Formally:

C = J{6/"(R) : Ris a child in £ of S}
J = (87*(8) = C)U (C = 67"(9))
D={e=vueC-6"(S):veT}.

Lemma 3. Let S € L and suppose that 0 < z(e) < 1 for all e € E. Then
|J| > 2, and every edge e € J — D has an endnode that owns an S-token that is
not an R-token of any child R of S in L.

Proof. C' = 61"(S) contradicts linear independence, hence one of the sets 57 (S)—
C,C — 6(S) is nonempty. If one of these sets is empty, say §2*(S) — C = 0,
then x(C) — z(67*(S)) must be a positive integer. Thus |C' — §7*(S)| > 2, as
otherwise there is an edge e € C' — §%"(S) with z(e) = 1. The proof of the case
C — §"(S) = 0 is identical. The second statement is straightforward.

4.1 Arbitrary Intersecting Supermodular f

For (2,5)-sparseness the Negation Assumption is [§7(S)| > 3 for all S € £, and
[67(v)| > 6 for all v € T'. We prove that then the (2, 3)-Scheme is feasible. First,
for every v € T, we reassign the |67 (v)| tail-tokens assigned to v as follows:

- 3 tokens to v;

- 1/2 token to every edge in 67(v) (this is feasible since |67(v)| > 6).

Claim. If S has at least 3 children in £, then the (2, 3)-Scheme is feasible.

Proof. By moving one token from each child of S to S we get an assignment as
required.

Claim. If S has exactly 2 children in £ then the (2, 3)-Scheme is feasible.

Proof. S can get 2 tokens by taking one token from each child, and needs 1 more
token. If there is e € J — D then S can get 1 token from an endnode of e, by
Lemma [ Else, |D| = |J| > 2. As every edge in D owns 1/2 token, S can collect
1 token from edges in D.

Claim. If S has exactly 1 child in £, say R, then the (2, 3)-Scheme is feasible.

Proof. S gets 1 token from R, and needs 2 more tokens. We can collect |J —
D|+|D|/2+|T' N (S — R)| S-tokens that are not R-tokens, from edges in J and
from the children of S in T, by Lemma [B] and our assignment scheme. We claim
that |J — D|+|D|/24|T'N (S — R)| > 2. This follows from the observation that
if |J—D| <1then|T'N(S—R)|>1,andif |J— D| =0 then |D|=|J| > 2, by
Lemma Bl



228 7. Nutov

It is easy to see that during our distribution procedure no token was assigned
twice. For "node” tokens this is obvious. For 1/2 tokens on the edges, this follows
from the fact that each time we assigned a 1/2 token of an edge, both endnodes
of this edge were inside S, as this edge was connecting the two children of S.

For (3, 3)-sparseness the Negation Assumption is |§7(S)| > 4 for all S € £ and
[67(v)| > 4 for all v € T. In this case we can easily prove that the (2,4)-Scheme
is feasible. If S has at least 2 children in £, then by moving 2 tokens from each
child to S we get an assignment as required. If S has exactly 1 child in £, say
R, then S gets 2 tokens from R, and needs 2 more tokens. If D = ) then S can
get 2 tokens from endnodes of the edges in J. Else, S has a child in T, and can
get 2 tokens from this child.

4.2 Improved Sparseness for 0,1-Valued f

Here the Negation Assumption is |6¢%(S)| > 3 for all S € £ and |6;(v)| > 4 for all
v € T. Assign colors to members of £ + T as follows. All nodes in 7" are black;
S € Lisblack if SNT # @, and S is white otherwise. We show that given S € L,
we can assign the S-tokens so that:

The (2,3, 4)-Scheme
- every proper descendant of S gets 2 S-tokens;
- S gets at least 3 S-tokens, and S gets 4 S-tokens if S is black.

As in the other cases, the proof is by induction on the number of descendants
of S in £. If S has no descendants in £, then S gets [67*(S)| > 3 head tokens
of the edges in §7*(S9); if S is black, then S has a child in 7' and S gets 1 more
token from this child.

Lemma 4. If J = D then S has a child in T or at least 2 black children in L.

Proof. Otherwise, all edges in J must have tails in 7'N R for some child R of S,
and every edge that enters S also enters some child of S. Thus §2*(R) C §7*(S),
and since z(67(R)) = z(6™(9)) = 1, we must have §?*(R) = 62(S). This
contradicts linear independence.

Claim. If S has in L+ T at least 3 children, then the (2,3, 4)-Scheme is feasible.

Proof. S gets 3 tokens by taking 1 token from each child; if S is black, then one
of these children is black, and S can get 1 more token.

Claim. If S has in £ exactly 2 children, say R, R, then the (2,3, 4)-Scheme is
feasible.

Proof. If S has a child v € T, then we are in the case of Claim 2] If both R, R’
are black, then S gets 4 tokens, 2 from each of R, R’. Thus we assume that S
has no children in 7', and that at least one of R, R’ is white, say R’ is white. In
particular, S is black if, and only if, R is black. Thus S only lacks 1 token, that
does not come directly from R, R’. By Lemma [ there is e € J — D, and S can
get a token from an endnode of e, by Lemma [3]
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Claim. If S has in £ exactly one child, say R, then the (2, 3, 4)-Scheme is feasible.

Proof. Suppose that TN (S — R) = (. Then S is black if, and only if, R is black.
Thus S needs 2 S-tokens not from R. As every edge in D has tail in TN (S — R)
and head in R, D = so |J — D| = |J| > 2, and thus S can get 2 S-tokens from
endnodes of the edges in J, by Lemma [3l

If there is v € T N (S — R), then S can get 1 token from R, 2 tokens from
v, and needs 1 more token. We claim that there is e € §7(S) — §7*(R), and
thus S can get the head-token of e. Otherwise, 67*(S) C §i*(R), and since
z(60(S)) = x(67(R)) = 1, we obtain §7*(S) = §*(R), contradicting linear
independence.

This finishes the proof of Theorem [l and thus also the proof of Theorem [T is
complete.

5 Indegree Constraints only (Proof of Theorem [2])

Here we prove Theorem [2] Consider the following polytope P}”(I ,F, B):

z(67(8)) > £(S) — |67(S)| forall) £S CV
Z z(e)w(e) < b(v) — w(8¥ (v)) forallv € B
e€sin (v)
0<z(e) <1 foralle e I

Theorem 6. P}"(LRB) is (1, 3)-sparse for intersecting supermodular f. For
unit weights and integral indegree bounds, any basic solution of P}" (I,F,B) al-
ways has an edge e with x(e) = 1.

In Lemma [I we have a set 7" of nodes corresponding to tight in-degree con-
straints. We prove that if z € P}"(I ,F, B) is a basic solution so that z(e) > 0
for all e € I, then there exists e € I with x(e) = 1 or there exists v € T with
|69 (v)| < 3. Otherwise, we must have:

The Negation Assumption:
- |6(S)| > 2 for all S € L;
- |68 (v)| > 4 for all v € T,

Assuming Theorem [l is not true, we show that given S € L, we can assign
the S-tokens so that (here token is an S-token if it is not a tail-token of an edge
leaving S):

The (2,2)-Scheme:
S and every proper descendant of S in £ + T gets 2 S-tokens.

The contradiction |I| > |£| + |T™| is obtained by observing that if S is an
inclusion maximal set in £, then there are at least 2 edges entering S, and their
tail-tokens are not assigned, since they are not S’-tokens for any S’ € L.
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Initial assignment:
For every v € T, we assign the 4 tail-tokens of some edges in 6% (v).

The rest of the proof is by induction on the number of descendants of S, as
before. If S has no children/descendants, it contains at least |§2(S)| > 2 head-
tokens, as claimed. If S has in £+ T at least one child v € T, then S gets 2
tokens from this child.

Thus we may assume that S has at least 1 child in £ and no children in 7.
Let J be as in Lemma[3] so |J| > 2. One can easily verify that S can collect 1
S-token from an endnode of every edge in J. Thus the (2,2)-Scheme is feasible.

For the case of unit weights (and integral degree bounds), we can prove that
any basic solution to P}"(I ,F, B) has an edge e with z(e) = 1. This follows
by the same proof as above, after observing that if v € T is a child of S €
L, then & (v) # §™(S9), as otherwise we obtain a contradiction to the linear
independence in Lemma [[l Thus assuming that there are at least 2 edges in I
entering any member of £ + T, we obtain a contradiction in the same way
as before, by showing that the (2,2)-Scheme is feasible. Initially, every minimal
member of £+ T gets 2 tail-tokens of some edges entering it. In the induction
step, any S € L can collect at least 2 S-tokens that are not tokens of its children,
by Lemma

Remark: Note that we also showed the well known fact (c.f., [L6]), that if there
are no degree constraints at all, then there is an edge e € I with xz(e) = 1.

6 The Case of Both Indegree and Outdegree Constraints

Here we describe the slight modifications required to handle the case when there
are both indegree and outdegree constraints. In this case, in Lemma [Il we have
sets T and T™ of nodes corresponding to tight out-degree and in-degree con-
straints, respectively. Let S € £ and suppose that S has in £+ T+ T a unique
child v € T™ (possibly S = {v}).

Arbitrary weights: For arbitrary weights, we can show that an appropriate poly-
tope has sparseness (a, A, A™) = (2,5,4), in the same way as in Section EIl
The Negation Assumption for v € T™ is [§i*| > 5, and we do not put any to-
kens on the edges leaving v (unless their tail is in T'). Even if §2(S) = 67 (v)
(note that in the case of arbitrary weights this may not contradict linear in-
dependence), the head-tokens of at least 5 edges entering v suffice to assign 2
tokens for v and 3 tokens to S. Hence in this case the approximation ratio is
(a,a+ A a+ A™) = (2,7,6). In a similar way we can also show the sparseness
(a, A, A™™) = (3,3,4), and in this case the ratio is (3,6, 7).

Unit weights: In the case of unit weights, we must have 67*(S) # §"(v), as
otherwise the equations of S and v are linearly dependent. Hence in this case,
it is sufficient to require |62 > 4, and the sparseness is (a, A, A™) = (2,5, 3).
Consequently, the approximation is (« - opt, ab(v) + A — 1, abi™(v) + A™ — 1) =
(2 opt, 2b(v) + 4,20 (v) + 2).
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0, 1-valued f: In the case of 0, 1-valued f, we can show that the corresponding
polytope has sparseness (a, A, A™) = (2,3, 4), in the same way as in Section 2
The negation assumption for a node v € T is |6"| > 5; a member in £
containing a node from 7" only is not black, unless it also contains a node from
T. Hence in this case the approximation ratio is (o, + A, a + A™) = (2, 5,6).
If we have also unit weights, then §7*(S) # 67 (v), as otherwise we obtain a
contradiction to the linear independence; hence for unit weights we can obtain
sparseness (o, A, A™) = (2,3, 3), and the ratio (o - opt, ab(v) + A — 1, ab™(v) +
A — 1) = (2 opt, 2b(v) + 2,20 (v) + 2).

Summarizing, we obtain the following result:

Theorem 7. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f-connected graph H of cost < 2 - opt so that
the weighted (degree,indegree) of every v € V is at most (Tb(v),6b™ (v)) for
arbitrary f, and (5b(v), 66 (v)) for 0, 1-valued f. Furthermore, for unit weights,
the (degree,indegree) of everyv € V is at most (2b(v)+4, 2b™(v)+2) for arbitrary
f, and (2b(v) + 2, 26" (v) + 2) for a 0, 1-valued f.
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Abstract. Inthe (k, \)-subgraph problem, we are given an undirected graph G =
(V, E) with edge costs and two parameters k and \ and the goal is to find aminimum
cost A\-edge-connected subgraph of G with at least k nodes. This generalizes sev-
eral classical problems, such as the minimum cost k-Spanning Tree problem or k-
MST (whichis a (k, 1)-subgraph), and minimum cost A-edge-connected spanning
subgraph (which is a (|[V (G)[, \)-subgraph). The only previously known results
on this problem show that the (k, 2)-subgraph problem has an O(log? n)-
approximation (even for 2-node-connectivity) and that the (k, \)-subgraph prob-
lem in general is almost as hard as the densest k-subgraph problem [12]. In this
paper we show that if the edge costs are metric (i.e. satisfy triangle inequality),
like in the k-MST problem, then there is an O(1)-approximation algorithm for
(K, \)-subgraph problem. This essentially generalizes the k-MST constant factor
approximability to higher connectivity.

1 Introduction

Network design is a central topic in combinatorial optimization, approximation algo-
rithms, and operations research. A fundamental problem in network design is to find a
minimum cost subgraph satisfying some given connectivity requirements between ver-
tices. Here by a network we mean an undirected graph together with non-negative costs
on the edges. For example, with a connectivity requirement A = 1 between all the ver-
tices, we have the classical minimum spanning tree problem. For larger values of ),
i.e. finding minimum cost A-edge-connected spanning subgraphs, the problem is APX-
hard. These are special cases of the more general problem of survivable network design
problem (SNDP), in which we have a connectivity requirement of r,,, between every
pair u, v of vertices. Even for this general setting there is a 2-approximation algorithm
by Jain [11]].

A major line of research in this area has focused on problems with connectivity
requirements where one has another parameter &, and the goal is to find a subgraph
satisfying the connectivity requirements with a lower bound k on the total number of
vertices. The most well-studied problem in this class is the minimum k-spanning tree
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A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 233 2008.
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problem, a.k.a. k-MST. In this problem, we have to find a minimum cost connected
subgraph spanning at least k-vertices. The approximation factor for this problem was
improved from v/k and O(log? k) in down to O(logn) in and to a constant
in and recently to 2 [10]. The algorithm of can be used to obtain a constant
approximation for the slightly more general setting in which we have a set of nodes 7',
called terminals, and the goal is to find a minimum cost connected subgraph containing
at least k£ terminals. This is known as the k-Steiner tree problem. The problem of k-
TSP, in which one has to find a minimum cost TSP tour containing at least k£ nodes, can
be approximated using very similar technique. We note that in all these problems, the
input graph is assumed to be complete and the edge cost function is metric, i.e. satisfies
triangle inequality. Most of these problems are motivated from their applications in
vehicle routing or profit maximization with respect to a given fixed budget. For example,
suppose that we have a battery operated robot and the goal is to find the minimum
battery charge required to travel a sequence of at least k£ nodes in a given graph such
that the total length of the tour can be travelled in a single battery charge. See [2l6] for
similar problems.

Recently, Lau et al. [12] considered a very natural common generalization of both
the k-MST problem and minimum cost A-edge-connected spanning subgraph prob-
lem, which they called the (k, \)-subgraph problem. In this problem, we are given
a graph G = (V, E) with a (not necessarily metric) cost function ¢ : £ — RT
on the edges, a positive integers k, and a connectivity requirement A > 1; the goal
is to find a minimum cost A-edge-connected subgraph of G with at least & vertices.
We should point out that we are not allowed to take more copies of an edge than are
present in the graph. Otherwise, a 4-approximate solution can be computed by taking
a 2-approximate k-MST solution 7', and then taking A copies of 7. It is easy to ob-
serve that the (k, A)-subgraph problem contains, as special cases, the minimum cost
A-edge-connected spanning subgraph problem (it becomes the (|V(G)], A)-subgraph
problem), and the £-MST problem (which becomes the (&, 1)-subgraph problem). Lau
et al. present an O(log? n)-approximation for (%, 2)-subgraph and show that for
arbitrary values of \, (k, \)-subgraph is almost as hard as the k-densest subgraph prob-
lem!]. In the k-densest subgraph problem, one has to find a subgraph with k£ nodes in
a given graph G that has the largest number of edges. Despite considerable attempts,
the best known approximation algorithm for this problem has ratio O(n 5 ~€) for some
fixed ¢ > 0 [8]]. Chekuri and Korula [5] have recently (and independently of [12])
shown that an algorithm similar to the one in yields an O(log2 n)-approximation
for the (k, 2)-subgraph problem even if we want a 2-node-connectivity requirement in
the solution.

In light of the result of [[12] on the hardness of (k, \)-subgraph for arbitrary values of
A and general cost functions, it is natural to try to obtain good approximation algorithms
for the class of graphs where the edge cost function is metric, i.e. satisfies triangle
inequality. Remember that the constant factor approximation algorithms for k-MST
and k-TSP are on graphs with metric cost function. Our main result of this paper is the
following theorem:

! The extended abstract version claimed an O(log® n)-approximation but the proof was inaccu-
rate. The full version has the improved result with a complete proof.
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Theorem 1. Given a (complete) graph G with metric costs on the edges and two pa-
rameters k, \, there is an O(1)-approximation algorithm for finding a (k, \)-subgraph
in G.

Our algorithm is combinatorial and uses ideas from for metric-cost subset node-
connectivity problem as well as the algorithm for k-Steiner tree [ZI10/T4]. The constant
factor we obtain is relatively large (between 400 and 500), however, most of our efforts
have been to show that the problem has a constant factor approximation rather than
trying to obtain the best possible ratio.

The organization of the paper is as follows. We start by some definitions and prelim-
inary bounds used throughout paper in the next section. For the ease of exposition, we
first present an algorithm that finds a A-edge-connected subgraph with at least k — \/7
nodes whose cost is at most O(0PT). In Section 3] we show how to extend this solution
to a feasible solution to the (k, \)-subgraph problem while keeping the total cost still
bounded by O(0PT). We finish the paper with some concluding remarks.

2 Preliminaries

As mentioned earlier, we assume we are given a (complete) graph G = (V, E), with
a cost function ¢ : E — RT on the edges that satisfies triangle inequality, and two
positive integers k and A > 1. For every subgraph F' C G, we use ¢(F’) to denote the
total cost of the edges in F. Throughout, G* C G denotes the optimum solution and
OPT = ¢(G™) denotes the cost of the optimum solution. We will use two lower bounds
on OPT in the analysis of our algorithm. These lower bounds were used earlier in [4] for
the problem of minimum cost subset k-node-connectivity. The first lower bound comes
from the cost of a minimum spanning tree of the G*, which we call it 7. Considering
the cut-constraint IP formulation of MST, it is easy to see that /2\ ZeeT* ce < OPT. The
second lower bound comes from the minimum cost subgraph that has minimum degree
at least A. Note that in a A\-edge-connected subgraph, every vertex has degree at least \.
For any \-edge-connected subgraph F' C G and any vertex u € F we let S, (F') to be
the set of \ nearest neighbors of w in F" and s,,(F) be ) Su(F) Cuv- Clearly, for any
A-edge-connected subgraph F' C G and any vertex u € F: s,(G) < s,(F). We often
use 5, and s, instead of S, (G) and s, (G), respectively, unless the graph is different
from G. Itis easy to see that J >, v Su < 5 > - Su(G*) < OPT. Thus, if T is a
minimum spanning tree of G*, then we obtain the following two lower bounds for OPT:
(i) 3 Y uer Su < OPT, and (ii) § >, 7. ce < OPT, and in particular:

; Zsu+;\ Zce§20PT. (1)

u€T™ e€T*
In our algorithm we will use these two lower bounds frequently, often without referring
to them.

We present an algorithm for a modified version of the problem in which along with
G, k, and \, we are also given a vertex € G as the root which we are told belongs to
the optimum solution G* and among all the vertices in G* it has the smallest value s,,.
Clearly if we can solve this rooted version, then we can try every vertex as the root and
return the minimum solution among all as the final answer.
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Ravi et al [14] showed that any «-approximation for k-MST implies a 2a-
approximation for k-Steiner tree. Therefore, together with Garg’s algorithm [10], we
have a 4-approximation for k-Steiner tree. In fact, we can have a 4-approximation al-
gorithm for the rooted version of the problem, in which a specific vertex r is given as
the root and the goal is to find a minimum cost rooted at r Steiner tree containing at
least k terminals. Our algorithm will use the best known approximation algorithm for
finding a minimum cost rooted k-Steiner tree problem; let us denote the approximation
ratio of this algorithm by p (by the argument above, we know that p < 4). We denote
this approximation algorithm by ST-Alg.

3 Obtaining a Low Cost (k — O(\), A)-Subgraph

Observe that to have \-edge-connectivity, we must have & > X\ + 1. We start by pre-
senting an algorithm that returns a A\-edge-connected subgraph (containing root r) that
has at least & — \/7 nodes and whose cost is within constant factor of OPT. Our al-
gorithm is influenced by the work of Cheriyan and Vetta [4]] for minimum cost subset
k-node-connectivity.

3.1 Overview of the Algorithm

The main idea of the algorithm is as follows. We create a new graph G'(V U V', E’)
from G by creating a new (dummy) vertex v’ (in V) for each vertex v € G and E' =
E U {uu|u € V}. Each edge uu’ € E’ has weight s,,. For every other edge in G’
(that also exists in G) we multiply its weight by A. Suppose that 7 is an optimum
(rooted at r) k-Steiner tree of G’ with terminal set V/. We show that ¢(7*) < 40PT.
We can obtain an approximation of 7%, call it T, by running the ST-Alg. Let us assume
that T C G is the tree obtained from 7" by deleting the dummy vertices and for ease of
exposition, suppose that 7* and T are binary trees. For simplicity, suppose that all these
sets S, (for u € T)) are disjoint and let us assume that vy, . . . ,up (Withp = k/(A + 1))
have the smallest s,, values among all the nodes in T". Our next steps would be to obtain
a A-edge-connected subgraph by selecting v; and S, (for 1 < ¢ < p) and forming a
(A + 1)-clique on each to get A\-edge connectivity among themselves. The cost of each
of these cliques will be at most As,,, for 1 < i < p, and since p ~ k/\ the total
cost of all the cliques is at most X = » _7 s,. Considering each of these cliques
as a big “blub”, we need to establish \-edge connectivity among these blubs. For that
we need to find a tree with the blubs being the nodes and for each edge in the tree
between two blubs we add about A edges between the cliques corresponding to the
blubs to maintain A-edge-connectivity. We can use the structure of T itself to establish
a tree over these blubs. Roughly speaking, the total cost of all the A edges between
the blubs will be at most O()) times the edges in 7' (using triangle inequality) which
is Y = O(A)_ 7 ce). Noting that X +Y < O(c(T")) implies that we will have
a solution within constant factor of the optimum. The main difficulty here will be the
possible (or lack of) intersections between S, and S,, for two vertices u,v € T'. A lot of
details have been skipped over in this overview and are explained in the next subsection.
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3.2 Details of the Algorithm

We build the graph G’ from G as described above and compute an approximate (rooted)
k-Steiner tree with terminal set V/ = {v’|v € V(G)} and root r’ (copy of r) using the
ST-Alg. Let’s call this tree T”.

Lemma 1. ¢(T") < 4pOPT.

Proof. Consider the optimal solution G* to the (k, A)-subgraph problem on G and let
T* be a MST of G* (we assume that » € T*). Then T = T* U {uv’ € G'|u € T*} is
clearly a Steiner tree in G’ containing at least k terminals with total cost at most 40PT
(using the bound in () for 7*). The lemma follows by observing that the ST-Alg (for

k-Steiner tree) has approximation ratio p.

Without loss of generality, we can assume that 7" has exactly k terminals, as if it has
more we can safely delete them. Let Ty C G be the tree obtained from 77 C G’ by
deleting the dummy nodes (i.e. the nodes in V') and V; be the vertex set of Tp. Note
that by Lemmal[Ik

AD et Y su < dpopr 2)

ecTy wu' €T’

We should also point out that V might have some vertices v € V' (and therefore v € T")
but v’ & T’. We obtain another tree 7y = (V1, F1) C G from Tj with the following
properties: (i) Vi C Vg, (ii) ¢(Th) < 2¢(Tp), and (iii) for every vertex v € Vi, the
corresponding vertex v’ € G’ belongs to T”. To do this, we duplicate every edge of Ty
and do an Eulerian walk of Tp; now shortcut over every vertex v € Ty with v' & T".
It is easy to see that we are left with a tree 77 whose cost is at most 2¢(Tp) and every
vertex v € T} has its copy v in T". Also, property (iii) implies that 7% has exactly k
vertices. Thus:

Lemma 2. V; C Vy, with |[V1| = k and ¢(T1) < 2¢(Tp).

Suppose that we have an ordering of the vertices of 17, say v; = r,va,..., Vg, such
that s,, < sy, < -+ < 5y, Note that although 7 has the smallest s,, value among all
vertices u € G, it is not necessarily the case in 7. Foreach 1 < i < k, let u; = S;f .
We call S, the ball of v; and the core of S,,,, denote by B,,, is the set of nodes in S,
with distance at most 2, to v;. By a simple averaging argument, one can easily show
that | B,,| > \/2. We partition the nodes of T} into two sets of active and inactive nodes
using the following procedure to cluster the balls. Initially, all the nodes of T} are active
and we have S = () (S will contain the centers of active balls). Foreach 1 < i < k,
if v; is active and there is no v; € & (with j < 4) such that ¢;; < 4p; + 215 then add
v; to S and make all the nodes in .S, inactive (except v; itself). Note that .S, might
include some vertices not in 77. So at the end, for every two active nodes v;,v; € S
(with j < 7) we have ¢;; > 4p; + 245 and B, N B,, = (. Now for every value of
1 <@ < k such that v; is active but v; € S, there exists a j < 4 such that v; € S and
cij < 4p; + 2. Let j* be the smallest such index and define p(i) = j*, meaning that
v; 18 assigned to ball Svj* . So each active node v; is either the center of an active ball
(and it belongs to S) or is assigned to a ball S,,(; with p(i) € S, and all the remaining
nodes (that are inside the balls with centers in S) are inactive. Thus:
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Lemma 3. Every core B,,, for v; € S, is disjoint from any other B, (with v; € S,
j #i)and|By,| > 3

For every value of ¢, consider the union of active nodes v; and their ball Svj (ifv; €38),
for all 7 < 4, and define this set of vertices U;, i.e.

U; = {active nodes v; with j <i}U | ] S,,. 3)

acli\'evj.j < 1,
€S

v

Let ¢* < k be the smallest index such that |U;~
from the definition of U; and the choice of 7*:

> k — A/7. It is easy to see that

6 .
; and

Lemmad4. k — .

€ S and S.,. has at
least /7\ + 2 vertices not in U« _1.

The solution of our algorithm will be a graph on vertex set U;«.

Let Va2 be the set of active nodes in S with index at most *. We compute a tree
Ty = (Va, E3) starting from Tp as follows. Duplicate every edge in T, and find an
Eulerian tour. Shortcut all the edges that go through vertices that were deleted while
computing 7 from Tp or those vertices of T} that are not in V5. The cost of 15 is clearly
at most 2¢(7}), using triangle inequality. Also, it only contains a subset of vertices of
Ty, namely V5. Thus:

Lemma 5. Vo C V; and ¢(T3) < 2¢(Tp).

Note that 75 is in fact a path, so the maximum degree of every vertex in 75 is at most 2.
The next steps of the algorithm would be to make a (A 4 1)-clique over S,,, U {v; }, for
each v; € Ty which are precisely those v; € S with ¢ < ¢*. For each active node v; € S,
we connect v; to all the A vertices in S,(;). It is easy to observe that each ball S, with
v; € S together with all the active nodes assigned to it will form a A-edge-connected
subgraph. The final step is to make good connectivity between these balls. For that, we
look at every edge v;v; € T5; note that both v;, v; € S. Leta = |S,, ﬁ So, | We add an
arbitrary matching (of size A — a) between the A — a vertices in S, — and Sy; —Su;-
The full description of the algorithm, is given in FlgureEl and Flgurea illustrates the
approximate Steiner tree computed and the balls around the active nodes and some of
the edges added to make the graph A-edge-connected.

3.3 Analysis of Algorithm

It is easy to see that H contains exactly those active nodes v; with i < 7* as well as all

the nodes in Uv_</* cs Sy, s which is exactly set U;«. Thus, by Lemmaldt

Lemma6. k — > < |H| < k+ % andif |H| > k then at the iteration in which vy~ is
addedto H, S,,. U {v;+} adds at least /7\ + 2 new vertices to H.

In the remaining of this subsection we show that H has the required connectivity while
its cost is bounded by O(OPT).
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[

Build graph G’ = (V' UV, E’) by starting from G and creating a new vertex u’ for every
u € G and adding the edge uu’ to G'; define ¢,/,, = s., and the cost of every other edge
in G’ (that also belongs to (7) is multiplied by .

2 Compute an approximate k-Steiner tree 7" (using ST-Alg) with terminals V.

3 Compute tree T4 = (Vi, E1) from T (as described) which only consist of vertices v s.t.
v eT.

4 Compute the clustering of active balls S; let 7* be the first index such that the union of
active nodes v; (and their ball S,, if it belongs to S), for all ¢ < ¢*, is at least k — \/7,
and let Vo = {v; € S|i < i*}.

5 Compute a tree 7> = (V2, E2) out of Tp s.t. ¢(712) < 2¢(Tv); we first duplicate edges in
Tb, find a Eulerian tour, and shortcut all the edges that go through vertices not in V5.

6 Let H be an empty graph on vertex set consisting of union of all active nodes v; with
i<i*.andl, .5 B,

7 foreach active node v; with i < i* do

8 if v; € S then

9 Add v; and every u € S, to H as well as every edge uwv, withu,v € S,, U {vz}
10 else
11 Add v; to H and every edge uv;, with u € Sp(i)
12 end
13 end

14 foreach edge v;v; € T do

15 Add an arbitrary matching of size A — [Sy; NSy, | from Sy, — Sy, to Sy; — Sy, in H
16 end

17 return H

Fig.1. Algorithm 1, which is an approximation algorithm for low cost (k — A/7, X)-subgraph

Lemma 7. Solution H returned by the algorithm is \-edge-connected.

Proof. For every v € H, let us define the hub for v, denoted by h(v), to be (i) v itself
ifv € S, (i) p(¢) if v = v; is an active node but not in S, and (iii) vy € S if vy is the
first vertex added to S with v € S,,. Observe that the set of hub nodes are precisely
the nodes in S with index at most ¥, which is the same as the set of nodes of T5. First
it is easy to see that each v has A-edge connectivity to its hub (for case (iii) we have
made a clique out of h(v) and all the vertices in its ball including v, and for case (ii)
v is adjacent to X vertices in the clique made from the ball of 4(v)). So it is enough to
show that we have A\-edge-connectivity between the hub vertices. For any two adjacent
vertices v;, v; € Ty, the matching edges added between the balls of v; and v; (together
with possible nodes in S, N S,,) establish A-edge-connectivity between v; and v;. By
transitivity, we have A-edge-connectivity between any pair of nodes v;, v; € T5.

Lemma 8. The cost of edges of H added in line 15 is at most 8pOPT.

Proof. Let v;v; be an edge in T, thus v;,v; € S. For any edge xy with z € S, and
Yy € Svj that we add in line 15: ¢y < cgo; + Cyy0; + Cojy- Since the matching added
between the balls of v; and v; has size at most A, the cost of this matching is at most
ACyv; + Sy, + Sy;. Noting that the degree of each vertex v; € T is at most 2, there
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@  Other vertices

O active nodes without balls <« Mmatching edges
ball edges
B active nodes with balls = steiner tree edges

Added in Line 11

Added in Line 15

Fig.2. A sample showing how the edges between the balls of active nodes are added and how
the active nodes without a ball are connected to the balls of other active nodes

are at most two vertices like v; with v;v; € T5 for which we have to add a matching
between the balls of S, and Sv].. So the total cost of all the edges added in line 15 is
at most: A ZeeTz Ce +2 ZU'ETz Sy, Using Equation (2)) and noting that Vo C V; and
c(Ts) < 2¢(Ty) (by Lemma3), the total cost of the edges added in line 15 is at most
2AY er, Ce 200 e, Svs < 8pOPT.

In order to bound the cost of the edges added in lines 9 and 11 we need the following
lemma.

Lemma 9. For every v; € S, with i > 2, (that is every node in S except the root
r = v1) and every node vj € Ty with cy,,; < 2p; such that v; became inactive once
we added v; to S: p1; < 2.

Proof. If i < j (i.e. v; was considered before v;) then clearly s,, < s,, and therefore
ti < 5. Now suppose that ¢ > j. It means that v; was an active node but not in S at
the time v; was examined. This can happen only if there is £ < j with vy € S and

Cuv vy, < 4/14] + 2/145 4)

On the other hand, since v; was not inactivated by vy:

Cozuy > 4pti + 21 (5)

Using triangle inequality:

C’U,;’U@ S C’Ui’Uj + C’Uj’U@' (6)
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Combining (@), B), and (6D, together with the assumption that c,,,;, < 2y; implies
that: 4p; + 2pp < Cyup < Copuy + Cojop < 205 + 4ag + 24003 therefore p; < 2p; as
wanted.

Lemma 10. The cost of edges of H added in lines 9 and 11 is at most (2 + 28p)OPT.

Proof. We will charge the cost of the edges added to H to the vertices incident to
them (at the time those edges and vertices are added) and show that the total charge
is bounded by O(0PT). To achieve this goal, we make sure that for every vertex v; €
H NTy, the charge assigned to v; is no more than 7s,, and for every vertex u € H — T}
(which implies it is added by adding S, for some v;<;« € S), the charge assigned to u
is no more than 2s,,. We consider the following cases.

Case 1: First consider an active node v;<;+ ¢ S;so i > 2 and we have added vertex
v; to H plus every edge uv; with u € S),(;) in line 11. Let us assume p(i) = j*. Note
that ¢y, < Cuvje F Cojvja - So the total cost of edges added at line 11 (for adding vertex
v; to H) is at most )\Cw;j* + Su,.. By definition of j*: ¢y, < 4p; + 2p;~. Noting
that Spe < Suy (and therefore 1~ < p;), the total cost of edges added for v; is at most
6 p; + Sy, < Tsy,. We charge this cost to v;.

Case 2: Now consider an active node v; € S for which we add all the vertices in
Sy;U{v; } to H and make a (A+1)-clique on these vertices in line 9. For any two vertices
z,y € Sy, U{vi}: ey < sz + Couyy. Since each vertex x is incident with A edges in
this clique, the total cost of the edges of the clique is at most A Zy es,, Coy = ASy; -
Now we show how to pay for this cost by charging the vertices in S,, U {v;}.

Sub-case 2a: In this sub-case we assume 7 = 1, i.e. the case of v; = r. In this case,
we are adding A new vertices in S, in line 9 at a cost of at most As,,. Assume that
vy, U5, s, .. ., v}, are the vertices of the optimum solution where v] = v, = r. Without
loss of generality, and using the assumption that vj = r has the smallest sy value
among all the nodes in the optimum solution we assume that s, < Sv, < ... < Suf -
Using the first lower bound given for OPT in the previous section: > ", ., . Sy, < 20PT.
Thus, using the fact that k > A + 1: As, < Zl<i<k Syr < 20PT. So if we charge the
root by 20PT, we can pay for the cost of edges added for the ball of the root in line 9.

Sub-case 2b: In this sub-case we consider other active nodes v; € S with i > 2 that are
added (in line 9). As mentioned earlier, the total cost of the edges of the clique added in
line 9 is at most As,,. We will charge this cost to the vertices in B,,. Using Lemma 3]
there are at least A\/2 nodes in B,, (the core of S,) that do not belong to any B, for
v; € § with j # 1. So the vertices in B, that we charge the total cost of As,, to, are
not charged any cost in a different core. We can pay for this (at most) As,,, cost if we
charge every node in B,, by 2s,, and that is what we do. Remember that we want to
ensure that for every vertex v; € H N T1, the total charge for it is no more than 731)],.
For every vertex v; € B,, N T} that we charge 2s,,, if j > 1 then clearly the charge
2s,, assigned to v; is no more than 7s,,. Butif j < ¢, it means that v; was de-activated
when adding v; to S; in this case the charge of 2s,, which is assigned to it is upper
bounded by 4s,, for the following reason. Note that c,;,, < 2u; (by definition of core
B,,); so using Lemma B} p; < 2p;, which implies s,, < 2s,,. Thus the total charge
assigned to v; is bounded by 2s,, < 45Uj.
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Hence, the charge for every node v; € HNT} (¢ > 2) analyzed in Cases (1) and (2b)
is at most 7s,, and the charge of every node v € H —T7, which means u € S, for some
active node v;<;- € S, is at most 2s,,,; i.e. the property we required at the beginning of
the lemma holds. We show the total charge is at most O(OPT), which together with the
charge of root, which is 20PT, is still O(OPT).

Let H be H — (S,, U {v1}) — (Su,. U{v;+}), and |H| = €. By definition of i*:
(< k- ’7\ — 1. We define a one-to-one function 7 from the vertices of H to vertices
Va,...,ve41 in T in the following way: every vertex v; € H N T is mapped to itself
(therefore the charge assigned to v; is at most 7s,(,,)). Every other vertex u € H-Ti,
which is added in line 9 by adding S,,, U {v;} (for some v;<;~_1 € S), is mapped to a
vertex v;>; € T to which no other vertex of H is mapped to already (in this case the
charge assigned to u is at most 2s,,, which is at most 2s,(,)). Thus, the total charge

assigned to the vertices in H is at most:

TN s ST D s, ™

2<i<+1 2<i<k—\/7

where the inequality follows from the fact that ¢ < k — ? — 1. Noting that +* < k — ’7\,
the total charge of the nodes in .S, U {v;- } is at most

Aspe SASu, ) ST > S, ®)
k—X\/7<i<k

Using Equations (7)) and (8)), together with the bound of 20PT for the charge of v in
Sub-case 2b, the total charge of the nodes in H is at most

20PT + 7 Z Su, + 7 Z Sy, < 20PT + 7 Z Su, -
2<i<k—A/7 k—X/T<i<k 1<i<k

Using Equation (@) and the fact V; C Vj: 721<i<k 5y, < 28pOPT. Thus, the total
charge of the nodes in H is at most (2 + 28p)OPT.

Theorem 2. Algorithm I (in Figure[l) returns a graph of size at least k — ? which is
A-edge-connected and has cost at most (2 + 36p)OPT.

Proof. By Lemmal@and Lemmal[Zl H is a A-edge-connected graph with at least & — 2

nodes. Using Lemmas[§ and[IQk ¢(H) < 8pOPT + (2 + 28p)OPT = (2 + 36p)OPT.

-3

4 From Size k — O()) to Size k

As mentioned in the previous section, graph H computed by Algorithm 1 has at least
k — A\/7 vertices and has non-empty intersection with G* (at least root r belongs to
both). If | H| > k then we are done. Otherwise, we in this section show how to augment
H to have at least k vertices without loosing its edge-connectivity. For every vertex
u € G\ H, let the distance of u to H, denoted by d(u, H), be the cost of the cheapest
edge from u to a vertex in H. We compute two different graphs H; O H and Hy O H
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1 If |[H| < k then compute H; and Ho as described below. If H; = H then return Hs.
Otherwise, return the one with the smallest cost among H; and Ho.

2 Hi:

3 Start with H1 = H.

4 If there is a vertex u € G'\ H such that S,, contains at least A/7 vertices in G\ H

then:

5 Find such a vertex u € G\ H with the smallest s, + d(u, H) value.

6 If S, N H = () then find the cheapest edge from w to a vertex in H, say v. Add
all the edges from w to the A nearest neighbors of v in H;.

7 Add all the vertices in Sy, U {u} to H; (if they do not already belong to H1)
and make S, U {u} a clique by adding all the necessary edges to Hj.

8 Ho:

9 Start with Ho = H.
10 Find a minimum weight matching M of size k — |H| between G\ H and H, let Y’
be the set of vertices in G\ H that participate in this matching.
11 Add each y € Y to H and all the edges between y to the A closest neighbors of
M(y)in H.

Fig.3. Algorithm 2, which augments H (the result of Algorithm 1) to have at least & vertices

that are \-edge-connected and return whichever has at least k£ nodes and the least cost.
The description of the algorithm is given in Figure 3l

Figure @ shows how graphs Hy and Hy are built from expanding H. To perform
line 10 of the algorithm, we can use one of the known minimum weighted (bipartite)
matching algorithms or a minimum cost flow algorithms (see [13]]). In what follows we
show that both H; and H, are A-edge-connected and at least one of them has at least k
vertices and cost at most O(OPT).

Lemma 11. If Hy # H then it is \-edge connected and has at least k vertices. Also,
Hs is M-edge-connected and has at least k vertices.

Proof. By the description of Algorithm 2 (in Figure[3)), if H; # H then we have added
at least A\/7 new vertices (belonging to S, U {u}) to H, so the size will be at least k
(given that |H| > k — A\/7). For Ho, we add the vertices of Y and |Y| = k — |H]|,
so |Ha| = k. For \-edge-connectivity, note that H was originally A-edge-connected. If
H, # H then we have added a vertex u together with S,,. The vertices in S, U{u} form
a clique, so are A-edge-connected among themselves. Also, if S, N H = (), u is A\-edge
connected to some vertex v € H by the A\ edges added between u and the A nearest
neighbors of v (in H). By transitivity, this implies the A-edge connectivity of H;. For
the connectivity of Hs, every new vertex y € Y is connected to at least A vertices in H
which makes it A-edge connected to all the vertices in H.

Lemma 12. [f H is the solution of Algorithm 1, then the solution of Algorithm 2 has
cost at most max{120PT + 3¢(H ), 130PT + 2¢(H)}.

Proof. We prove this by considering the following two cases.
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I G\H o G\H

Fig. 4. Constructing H; (in the left picture) and Ho (in the right picture)

Case 1: |G*\H| < \/3

In this case we show that cost of Hj is at most O(OPT). Every vertex u € G*\H
is connected, in G*, to at least 2)\/3 vertices in G* N H and (by a simple averaging
argument) the distance of « to at least A/3 of them is at most 35, (G*)/\ (recall that
54, (G™) is the sum of distances from w to its A closest neighbors in G*). Therefore there
is a matching M between G*\ H and G* N H such that d(u, M(u)) < 3s,(G*)/ for
every u € G*\H, and |M| = |G*\H| > k — |H| = | M|, where M is the matching we
find in the algorithm. Since M is a minimum weight matching:

iy <einy < Y su@y< ©)
ueG*\H

where we use the lower bound of 3 -\ y 5u(G™) < 3-,c - 5u(G™) < 20PT. Con-
necting u to the A nearest neighbors of M (u) costs at most A-d(u, M (u)) 4 sp¢) (H),
by triangle inequality. Thus, if ¢(M ) and ¢(H ) denote the cost of edges of matching M
and graph H, respectively, the total cost of the edges added in line 11 is at most:

> (Ad(u, M(u) + saru) (H)) < A e(M) + 2¢(H)
ueG*\H
< 60PT + 2¢(H)

where the first inequality follows from the fact that U, e\ 7 Sn(u) (H) counts every
edge of H at most twice and, therefore, its cost is at most twice as much as the cost of
H. Thus, ¢(Hs) < 3¢(H) + 6OPT.

Case 2: |G*\H| > \/3

In this case (again by an averaging argument) there is a set Y of A/6 vertices in G*\ H
such that s, < 120PT /A foreach y € Y (Otherwise, the remaining at least \/6 vertices
would have total s value more than \/6 X 120pPT/\ > 20 PT which is a contradiction).
If every vertex in Y is connected, in G*, to at least 2 /6 vertices in G* N H then, with
an argument similar to the previous case, we can upper bound the cost of H; by:
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c(Hs) < c(H —&-AZdy, ) + 2¢(H)
yey

</\Z ~"+3c

yey

=6Zsy—|—3c(H)

yey

A 120pT
<67 . H
<6 6 N + 3c¢(H)
= 120PT + 3¢(H),

where the 2nd inequality follows from the fact that Y has A\/6 nodes and each y € Y
has at least \/3 neighbors in G* N H.

Otherwise, let y € Y be a vertex such that S, has more than 4)\/6 > \/7 vertices
in G*\ H. In this case we show that Hy # H and ¢(H;) = O(0PT). First we claim
that the clique on vertices S, U {y} costs at most A - s, < 120PT. The reason is, for
each pair u, v € Sy: cyp < Cuy + Cyo. Since edge uy participates in A such inequalities,
we get that the total cost of the clique is at most As,, and because each vertex y € Y
has s, < 120pT/\, we get the upper bound of 120pPT. Furthermore, since H N G*
is non-empty (at least € H), y must have distance at most OPT/\ to some vertex
v € H (because there are at least A edge disjoint paths between y and v and the cost
of each is at least ¢, by the triangle inequality). Thus, with an argument similar to the
previous case, it costs at most Acy, + 5, (H) < OPT+c(H) to connect y to the A nearest
neighbors of v in H. So the cost of building the clique on .S, U {y} and connecting y to
the A nearest neighbors of v in H is at most 130PT + ¢(H ). This implies that H; will
have at least k vertices and costs at most 130PT + 2¢(H )

Combining the two Algorithms 1 (in Figure[Tl) and 2 (in Figure[3), and using Lemmas[12]
and [Tl and TheoremP]we have an algorithm that returns a A-edge connected subgraph
on at least k vertices with cost at most max{120PT + 3c(H), 130PT + 2¢(H)} <
3(2 + 36p)0PT + 120PT = (18 + 108p)OPT. Thus, we have the following theorem
which is essentially Theorem /I

Theorem 3. There is a polynomial time algorithm for the (k, \)-subgraph problem on
graphs with metric edge costs which has approximation factor at most 18 + 108p, with
p < 4 being the best approximation factor for the k-Steiner tree problem.

5 Concluding Remarks

In this paper, we proved that the (&, \)-subgraph problem with metric costs has a poly-
nomial time O(1)-approximation algorithm. However, the approximation ratio of our
algorithm is relatively large (between 400 and 500). Although it is very likely that one
can achieve an approximation ratio close to 100 using the same algorithm by fine tun-
ing the parameters, getting a small constant factor approximation seems challenging,
for general values of \.
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For general cost functions, the only known results on this problem (that we are aware
of) are the papers which prove that the (k,2)-subgraph problem (on general
graphs) has O(log2 n)-approximation, even if we require 2-node-connectivity in the
solution (instead of 2-edge-connectivity). Even for the special case of A = 3, there is
no known non-trivial approximation algorithm or lower bound (hardness result).

Acknowledgments. The second author thanks Joseph Cheriyan for some initial dis-
cussions on the problem.
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Budgeted Allocations in the Full-Information
Setting*
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Abstract. We build on the work of Andelman & Mansour and Azar, Birn-
baum, Karlin, Mathieu & Thach Nguyen to show that the full-information
(i.e., offline) budgeted-allocation problem can be approximated to within
4/3: we conduct a rounding of the natural LP relaxation, for which our al-
gorithm matches the known lower-bound on the integrality gap.

1 Introduction

Sponsored-search auctions are a key driver of advertising, and are a topic of
much current research (Lahaie, Pennock, Saberi & Vohra [I0]). A fundamen-
tal problem here is online budgeted allocation, formulated and investigated by
Mehta, Saberi, Vazirani & Vazirani [I2]. Recent work has also focused on the
offline version of this basic allocation problem; we improve on the known results,
demonstrating a rounding approach for a natural LP relaxation that yields a
4/3-approximation, matching the known integrality gap. We also show that in
the natural scenario where bidders’ individual bids are much smaller than their
budgets, our algorithm solves the problem almost to optimality.

Our problem is as follows. We are given a set U of bidders and a set V'
of keywords. Each bidder 7 is willing to pay an amount b; ; for keyword j to be
allocated to them; each bidder ¢ also has a budget B; at which their total payment
is capped. Our goal is to assign each keyword to at most one bidder, in order
to maximize the total payment obtained. This models the problem of deciding
which bidder (if any) gets to be listed for each keyword, in order to maximize
the total revenue obtained by, say, a search engine. That is, we want to solve the
following integer linear program (ILP), where z; ; is the indicator variable for
keyword j getting assigned to bidder ¢: maximize  ; ., min{B;, > ;cy bij@i;},
subject to Y. x; ; <1 for each j, and x; ; € {0,1} for all (4, j). (It is easy to see
that the “min” term can be appropriately rewritten in order to express this as
a standard ILP.)

Known results. This N P-hard problem has been studied by Garg, Kumar
& Pandit, who presented an (1 + v/5)/2 ~ 1.618-approximation algorithm for

* Research supported in part by NSF ITR Award CNS-0426683 and NSF Award
CNS-0626636. Part of this work was done while the author was on sabbatical at the
Network Dynamics and Simulation Science Laboratory of the Virginia Bioinformatics
Institute, Virginia Tech.
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the problem [§]. (As usual, for our maximization problem, a p-approximation
algorithm, for p > 1, is a polynomial-time algorithm that always presents a so-
lution of value at least 1/p times optimal; in the case of randomized algorithms,
the ezpected solution-value should be at least 1/p times optimal.) In addition
to other results, Lehmann, Lehmann & Nisan [I1] have developed a greedy 2-
approximation algorithm for this problem. Now, the natural LP relaxation for
the problem is obtained by relaxing each z; ; to lie in [0, 1], in the above ILP. An-
delman & Mansour [2] presented a rounding algorithm for this LP that achieves
an approximation of e/(e — 1) ~ 1.582; this was improved — for a more general
problem — by Feige & Vondrak to e/(e — 1) — ¢, for an e that is about 10~*
[6]. More recently, Azar, Birnbaum, Karlin, Mathieu & Thach Nguyen [3] have
improved the approximation ratio to 3/2. There are also two interesting special
cases of the problem: the uniform case, where each j has a price p; such that
b;; € {0,p;} for all i, and the case where all the budgets B; are the same. Two
additional results are obtained in [2]: that the integrality gap of the above LP-
relaxation is at least 4/3 even for the first (i.e., uniform) special case, and that
the second special case can be approximated to within 1.39. See, e.g., [12, [, [
for online versions of the problem.

Our results. We build on the work of [2 [3] and show how to round the LP
to obtain an approximation of 4/3: note from the previous paragraph that this
meets the integrality gap. Anna Karlin (personal communication, March 2008)
has informed us that Chakrabarty & Goel have independently obtained this
approximation ratio, as well as improved hardness-of-approximation results — a
preprint of this work is available [5]. We also present two extensions in Section 3t
(a) the important special case where each bidder’s bids are much smaller than
their budget [12,[4] can be solved near-optimally: if, for some € € [0,1], b; ; < €-B;
for all (7, ), our algorithm’s approximation ratio is 4/(4 — ¢); and (b) suppose
that for some A > 1, we have for all (7, 7, ;) that if b; ; and b; j are nonzero, then
bi ; < A-b; . For this case, our algorithm yields a better-than-4/3 approximation
if A < 2. In particular, if A = 1, our algorithm has an approximation ratio of
(V2+1)/2 ~1.207.

2 The Algorithm and Analysis

We will round the natural LP-relaxation mentioned in Section I Our algo-
rithm is randomized, and can be derandomized using the method of conditional
probabilities.

Observe that for the original (integral) problem, setting

bi’j = min{bi,j, BZ} (].)
keeps the problem unchanged. Thus, we will assume
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Notation. When we refer to the load on a bidder ¢ w.r.t. some (fractional)
allocation x, we mean the sum }_; b; jx; ;; note that we do not truncate at B;
in this definition.

Suppose we are given some feasible fractional allocation x; of course, the case
of interest is where this is an optimal solution to the LP, but we do not require it.
It is also immediate that the following assumption is without loss of generality:

if b@j = 0, then T = 0. (3)

As in [3], we may assume that the bipartite graph (with (U, V') as the partition)
induced by those x; ; that lie in (0,1), is a forest F. This can be effected by
an efficient algorithm, such that the resulting fractional objective-function value
equals that of the original value that we started with [3]. This forest F' is the
structure that we start with; we show how to round those z;; in F'. We are
motivated by the approaches of [II, I3, [7]; however, our method is different,
especially in step (P2) below. Each iteration is described next.

2.1 TIteration s, s >1

Remove all (i, 7) that have already been rounded to 0 or 1; let F be the current
forest consisting of those x; ; that lie in (0,1). Choose any maximal path P =
(wo, w1, ...,wg) in F; we will now probabilistically round at least one of the
edges in P to 0 or 1. For notational simplicity, let the current x value of edge
et = (wi—1,we) in P be denoted y;; note that all the y; lie in (0, 1). We will next
choose values z1, 29, . . ., z; probabilistically, and update the x value of each edge
et = (wi—1,w) to y; + 2. Suppose we initialize some value for z1, and that we
have chosen the increments z1, 29, ..., 2, for some ¢ > 1. Then, the value 2441
(corresponding to edge e;+1 = (w¢, wi+1)) is chosen as follows:

(P1) If wy € V (i.e., is a keyword), then z;11 = —z; (i.e., we retain the total
assignment value of wy);

(P2) if wy € U (i.e., is a bidder), then we choose z;+1 so that the load on wy
remains unchanged (recall that in computing the load, we do not truncate
at By,); i.e., we set 241 = —buw, w,_1%t/bw,,wer, Which ensures that the
incremental load by, w,_, 2t + buw,,w,y1 2641 15 zero. (Since Ty, w, ., is nonzero
by the definition of F, by, w,,, is also nonzero by (B); therefore, dividing by
buw, w,,, 15 admissible.)

Observe that the vector z = (21, 29, ..., 2;) is completely determined by z1,
the path P, and the matrix of bids b; more precisely, there exist reals ¢1, co, . .., ¢
that depend only on the path P and the matrix b, such that

Vt, Zt = CtZ1. (4)

We will denote this resultant vector z by f(z1).
Now let i be the smallest positive value such that if we set z; := p, then all the
x values (after incrementing by the vector z as mentioned above) stay in [0, 1],
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and at least one of them becomes 0 or 1. Similarly, let v be the smallest positive
value such that if we set z; := —+, then this “rounding-progress” property holds.
(It is easy to see that p and v are strictly positive, since all the y; lie in (0, 1).)
We now choose the vector z as follows:

(R1) with probability /(1 + 7), let z = f(u);
(R2) with the complementary probability of u/(1+ ), let z = f(—~).

2.2 Analysis

It Z = (Z1,%Z2,...,7Z) denotes the random vector z chosen in steps (R1) and
(R2), the choice of probabilities in (R1) and (R2) ensures that E[Z;] = 0. So,
we have from (@) that

vt, E[Z,] = 0. (5)

The algorithm clearly rounds at least one edge permanently in each iteration
(and removes all such edges from the forest F'), and therefore terminates in poly-
nomial time. We now analyze the expected revenue obtained from each bidder
1, and prove that it is not too small.

Let LZ(-S) denote the load on bidder ¢ at the end of iteration s; the values LZ(-O)
refer to the initial values obtained by running the subroutine of [3] that obtains
the forest F'. Property (P2) shows that as long as i has degree at least two in
the forest F, LES) stays at its initial value LEO) with probability 1. (Recall that
whenever we refer to F' etc., we always refer to its subgraph containing those
edges with z values in (0, 1); edges that get rounded to 0 or 1 are removed from
F.) In particular, if ¢ never had degree one at the end of any iteration, then its
final load equals LEO) with probability one, so the expected approximation ratio
for ¢ is one. So, suppose the degree of i came down to one at the end of some
iteration s. Let the corresponding unique neighbor of ¢ be j, let 8 = b; ;, and
suppose, at the end of iteration s, the total already-rounded load on ¢ and the
value of z; ; are @ > 0 and p € (0, 1) respectively. Note that j, a, 5 as well as p

are all random variables, and that LZ(-S) = a + Op; so,

Prla+ 8p=L" =1.

Fix any 7, «, 8 and p that satisfy o + Op = LEO); all calculations from now on
will be conditional on this fixed choice, and on all random choices made up to
the end of iteration s. Property (@) and induction on the iterations show that
the final load on ¢ (which is now a random variable that is a function of the
random choices made from iteration s + 1 onward) is:

«, with probability 1 — p; and « + 3, with probability p. (6)

Let B = B; for brevity. Thus, the final expected revenue from ¢ is (1 — p) -
min{«, B} + p-min{a+ 3, B}; the revenue obtained from ¢ in the LP solution is
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min{a+ fp, B}. So, by the linearity of expectation, the expected approximation
ratio is the maximum possible value of

min{«a + Gp, B}
(1 —p)-min{a, B} + p-min{a + 3, B}

It is easily seen that this ratio is 1 if &« > B or if a + 8 < B. Also note from (2))
that g < B. Thus, we want the minimum possible value of the reciprocal of the
approximation ratio:

(1-pla+pB

" min{a + @p, B}’ (™)

subject to the constraints
pel0,1; o, < B; a+ 2> B. (8)

(Of course, we assume the denominator of () is nonzero. In the case where it is
zero, it is easy to see that so is the numerator, in which case it follows trivially
that (1 —p)a+ pB > (3/4) - min{«a + fp, B}.)

We consider two cases, based on which term in the denominator of r is smaller:

Case I: a+ Op < B. Here, we want to minimize

T:(l—p)a+pB. )
a+fGp
Keeping all other variables fixed and viewing « as a variable, r is minimized when
a takes one of its extreme values, since r is a non-negative rational function of
a. From our constraints, we have B — § < o < B — (p. Thus, r is minimized
at one of these two extreme values of a. If &« + § = B, then r = 1. Suppose
a = B — (Bp. Then,

(1-p)a+pB
— . 1
. (10)
Since
a=B~-fp>B(1-p), (11)
we have ) 5
= UTPREPE S s,

which attains a minimum value of 3/4 when p = 1/2.

Case II: o + Op > B. We once again fix all other variables and vary «a; the
extreme values for o« now are « = B — Bp (with § = B) and a = B. In the
former case, the argument of Case I shows that r > 3/4; in the latter case, r is
easily seen to be 1.

This completes the proof that our expected approximation ratio is at most 4/3.
Also, it is easy to derandomize the algorithm by picking one of the two possible
updates in each iteration using the method of conditional probabilities; we will
describe this in the full version. Thus we have the following theorem:
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Theorem 1. Given any feasible fractional solution to the LP-relaxation of the
offline budgeted-allocation problem with the truncations {) done without loss of
generality, it can be rounded to a feasible integer solution with at least 3/4-th
the value of the fractional solution in deterministic polynomial time. Therefore,
the offline budgeted-allocation problem can be approzimated to within 4/3 in
deterministic polynomial time.

3 Extensions

The following two extensions hold.

3.1 The Case of Bids Being Small w.r.t. Budgets

Here we consider the case where for some e € [0, 1], we have for all 4, that
bij < eB;. The only modification needed to the analysis of Section is that
() now becomes “a = B— (Bp > B(1—ep)”, and that the function to minimize
is (1—p)- (1 —ep)+p instead of (1 —p)? + p. This is again minimized at p = 1/2,
giving r > 1—¢/4. Thus, the approximation ratio in this case is at most 4/(4 —e¢).

3.2 The Case of Similar Bids for Any Given Bidder

We now study the case where for each 7, all its nonzero bids b; ; are within some
factor A of each other, where 1 < A < 2. Note that different bidders can still
have widely-differing bid values.

Consider the analysis of Section In the trivial case where o = 0, it easily
follows from (@) that the approximation ratio for machine 7 is 1. So suppose
a > 0; then the additional constraint that

B < a (12)

must hold, by our assumption about the bid-values.

By a tedious proof along the lines of Section 22] it can be shown that we get
a better-than-4/3 approximation if A < 2. We will present the calculation-details
in the full version. For now, we just focus on the case where A = 1. Recall that
we aim to minimize r from (), subject to (8) and the constraint (I2), i.e., « > 3.
Let us first argue that if the minimum value of r is smaller than 1, then a = 3
at any minimizing point. To see this, assume for a contradiction that there is a
minimizing pair («, 8) with o > 3, and observe that we may make the following
three sets of assumptions w.l.o.g.: (i) if « =0 or a + 8 = B, then r = 1: so, we
may assume that o > 0 and a«+ 5 > B; (ii) if 5 = B, then a > 8 = B = [ and
we are done, so we can assume 3 < B; (iii) if p = 0, then r = 1, so we can take
p > 0. Now, if we perturb as a:= o — ¢ and 8 := [+ §/p for some tiny positive
6, then we stay in the feasible region and get a smaller value for r from (), a
contradiction. So, we can take o = (3, and have from (8) that « = > B/2.

We repeat the case analysis of Section In Case I, the extreme value
a = B/2 gives r = 1. The other extreme value is « = B — p = B — ap,
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i.e., « = B/(1+p). So, the r of (I0) becomes (1 —p)/(1+p)+ p, whose minimum
value is 2(v/2 — 1). Similarly in Case II. Thus, r > 2(v/2 — 1), and taking the
reciprocal, we see that the approximation ratio is (v/2 + 1)/2 ~ 1.207.
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Abstract. In this paper we will consider tight upper and lower bounds
on the weight of the optimal matching for random point sets distributed
among the leaves of a tree, as a function of its cardinality. Specifically,
given two n sets of points R = {ri,...,rn} and B = {b1,...,b,} dis-
tributed uniformly and randomly on the m leaves of A-Hierarchically
Separated Trees with branching factor b such that each of its leaves is
at depth 6, we will prove that the expected weight of optimal matching
between R and B is O(v/nb Y r_, (v/bA)F), for h = min(é, log, n). Using a
simple embedding algorithm from R? to HSTs, we are able to reproduce
the results concerning the expected optimal transportation cost in [0, 1]¢,
except for d = 2. We also show that giving random weights to the points
does not affect the expected matching weight by more than a constant
factor. Finally, we prove upper bounds on several sets for which showing
reasonable matching results would previously have been intractable, e.g.,
the Cantor set, and various fractals.
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1 Introduction

The problem of computing a large similar common subset of two point sets arises
in many areas of computer science, ranging from computer vision and pattern
recognition, to bio-informatics [2I12/4]. Most of the recent related work concerns
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ing correspondences between two point sets in R? subject to minimization of a
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distance measure. In comparison, less attention has been devoted to extremal
matching problems related to random point sets, such as: Presented with two
random point sets, how do we expect matching weight to vary with data set size?

Perhaps the most seminal work in extremal random matching is the 1984
paper of Ajtai, Komlés and Tusnddy [I] presenting a very deep and impor-
tant result which has found many applications since then. Considering two
sets of points X,, and Y,, chosen uniformly at random in [0,1]?, with |X,,| =
|| = n, they determined (asymptotic) bounds on the sequence {EM}, where
M is the optimal matching weight, or transportation cost between X,, and Y,:
M = min, ), [|Xs — Y5(;)||2 where o runs through all the possible permutations
on [n]. Shortly after Ajtai et al., Leighton and Shor [§] addressed the problem
of 2-dimensional grid matching, analyzing the maximum cost of any edge in
the matching instead of the sum. Shor and Yukich [I4] extended this minimax
grid matching result to dimensions greater than two. Shor [I3] applied the AKT
result to obtain bounds on the average case analysis of several algorithms. Tala-
grand [I5] introduced the notion of majorizing measures and as an illustration
of this powerful technique derived the theorem of Ajtai et al. Rhee and Tala-
grand [9] have explored upward matching (in [0, 1]?): the case where points from
X must be matched to points of Y that have greater 2- and y-coordinates. They
have also explored a similar problem in the cube [I0]. In [I6] Talagrand gave
insight to exact behavior of expected matching weight for dimensions d > 3 for
arbitrary norms.

In this paper we will introduce the random matching problem on hierarchically
separated trees. The notion of a hierarchically (well-)separated tree (HST) was
introduced by Bartal [3]. A A-HST is a rooted weighted tree with two additional
properties: (1) edge weights between nodes and their children are the same for any
given parent node, and (2) the ratio of incident edge weights along a root-leaf path
is A (so edges get lighter by a factor of A as one approaches leaves). We primarily
consider balanced trees, i.e., trees in which the branching factor of all nodes other
than the leaves is an integer b, and in which every leaf is at depth . Using the
notion of balanced \-HST, we can state the first contribution of this manuscript
on the expected transportation cost of optimal matching EMy(R, B):

Theorem 1. Let T = T(b,6,\) be a balanced HST, and R and B two ran-
domly chosen n-element submultisets of the set of leaves of T and define h =
min (6, log, n). Then there exist positive constants K1 and Ko such that

h h
K1vVbn» (VOAF < EMr(R, B) < Kovin Y (VoA
k=1 k=1

Theorem [l will also allow us easily to approach and duplicate the upper-bound
results of optimal matching for point sets distributed in [0,1]¢ found in the
literature (see [7]), with a slightly loose result in the single (and most interesting)
case of d = 2. Since we use crude approximations of [0,1]¢ by HSTs, we cannot
expect much more.

On the other hand, this method is general enough to attack the randomized
matching problem in general for finite metric spaces. It can always give upper
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bounds (by using Theorem Bl or Corollary [Il). If the metric space is sufficiently
symmetric (e.g., fractals), one can get reasonable lower bounds by applying the
theorem of Fakcharoenphol et al. ([5]) on approximating a finite metric space
by HSTs. We further extend the upper bound of the transportation cost to the
case of weighted point sets. This model is commonly used in texture mapping in
computer vision ( see [T1]).

The final application of the newly developed machinery will include extending
upper-bound matching results to finite approximations of certain fractals. We
generalize Theorem [T for non-uniformly distributed point sets and for subtrees
of balanced trees as well.

2 The Upper and Lower Bounds for Matching on HSTs

In this section, our modus operandi will be to prove upper- and lower bounds
for the weight of the matching problems on HSTs. The trees considered in this
paper are a somewhat restricted variation of HSTs defined as follows:

Definition 1. Let b,6 be positive integers and 0 < X\ < 1 be a real number. We
call a rooted tree T a balanced (b, 6, \)-HST, if every edge incident on the root has
unit weight, every edge not incident on the root has weight \ times the weight
of the edge immediately closer to the root, every non-leaf node has the same
number of children (which we will call the branching factorb), and every leaf has
the same depth 6.

We remark that having the same depth 6 for every leaf of T' can be assumed
without loss of generality, and as we will see, in several cases the branching factor
is naturally bounded.

Given a balanced HST T, let R = {r1,...,r,} and B = {by, ..., b, } respectively
denote the multisets of n red and n blue points chosen among the leaves of T. We
define a matching between R and B as a one-to-one mapping o between them.
The weight of the optimal matching (optimal transportation cost) with respect
to T will be defined as M (R, B) = min, (ZKK” dr(r;, ba(i)))7 where dp(r, b)
is the length of the path between leaves containing points r and b in T'. Note
that M7 (R, B) is the Earth Mover’s Distance of R and B on the metric defined
by T. For a pair of points (r,b) matched under a mapping ¢ and belonging to
distinct leaves u, and wup in T, we will say the matched pair (r,b) results in a
transit at vertex v, if v is an ancestor of both wu, and wu; and the path between
u, and up passes through v. We will also use 7, to denote the total number of
transits at vertex v in an optimal matching between R and B. Any red-blue pair
that is mapped under a matching o at a leaf of T' contributes no weight to the
transportation cost. For a vertex v let §(v) denote its level in the tree, that is,
the number of edges on the path from r to v. Observe that the weight of the
optimal matching can be restated as follows:

6—1
Mp(R,B)=)_ > 7,5kb-1), (1)

k=0v:6(v)=k
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where S(i,7) = 2N + AL 4+ ...+ M) < O\ for 0 < i < j <6—1, and
Cr=>" >0 M.

Our goal is to estimate tight bounds on the expected optimal transportation
cost EMp(R, B) for randomly chosen R and B. Throughout the paper we will
denote the standard deviation of a random variable X by DX. The following
pair of observations will be useful in the proof of Theorem [k

Observation 1. Given a balanced (b, 6, \)-HST tree T, and a multiset R of n
red points and a multiset B of m blue points distributed among the leaves of T,
we have Mrp(R,B) < min(n,m)S(1,9).

Lemma 1. Let X be the sum of a finite number of independent bounded random
variables. Then E|X — EX| = O(DX).

We omit the details, but comment that to show the upper bound of Lemma [I],
one can repeatedly use Chebyshev’s inequality, while the lower bound is the
consequence of Holder’s inequality.

The process of randomly and uniformly choosing the leaves of a balanced
HST T with branching factor b to host the points in R and B can be stated as
follows: starting from the root, choose a child of the current vertex uniformly at
random among its b children; if the new vertex is not a leaf, repeat this random
selection process. Otherwise, this leaf is our random choice. We will distribute
the “random” sets R and B among the leaves of T' by repeating this procedure
independently for every point of RUB. It is obvious that this procedure results in
two random submultisets of the set of leaves of T'. For an arbitrary vertex v € T,
let R, and B,, respectively, denote the cardinality of the set of red (respectively,
blue) points that when distributed reach their host leaves in T on a path from
the root through v. In particular, R; is the number of red points assigned to the
leaf [, and B is the number of blue points assigned to .

Next, we will estimate the number of transits, 7., at the root r of a star
(HST-) tree T with b leaves L = {u1,u2,...,up} when n red and n blue points
are distributed randomly among the elements of L. Let X,, = R, — B,, for the
leaf u. Then ) ., X, =0 and

Ty = Z max{X,,0} = — Z min{X,,0}.

ueL uel

It follows that > ., |Xu| =23, ., max{X,,0}, and hence

1
Er, =, > E[X.|.
u€eL
Observe that X, is the combination of 2n independent indicator random vari-

ables
n n

i=1 j=1

where R, (j) = 1 if and only if the j*" red points reaches leaf u; we define B, (j)
similarly. Hence, EX,, = 0, and Lemma[llcan be applied. Setting 3 = (1/b—1/b%),
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it is an easy exercise to verify that DR, (j) = DB, (j) = v/ forevery 1 < j < n,
and hence DX = /2n4. In summary, we have

Lemma 2. There exist positive constants c1 and ca such that c1by/nB < Er,. <
coby\/nf3 for a star T with root r on b leaves, when n red and n blue points are
distributed randomly and uniformly among its leaves.

We note that Lemma 2] proves Theorem [l when § = 1. We need a generalization
of the above, when ) _; (R, — By) = A # 0. In this case there will be |A|
points which will remain unmatched in the star tree. The number of transits at

r is easily seen to be
1
-y (S ).

ueL

whereby we get

Lemma 3. The expected number of transits at root r of a star with leaf set L is

uel uel

Next, we present the proof of Theorem [ for two randomly chosen n-element
submultisets R and B among the leaves of a balanced (b,6,\)-HST T. The
following simple combinatorial lemma is crucial for the proof.

Lemma 4. Let R, B and T be as above, and let k > 1. Then Ty_1, the total
number of transits at level k — 1 is

1 1
T ST SR T St
§(v)=k—1 §(u)=k S(u')=k—1

The lemma follows easily by induction on the depth of the tree; we omit the
details. 0

Now we are ready to prove our main result.

Proof of Theorem [l Since My (R, B) is a finite sum (see Equation[l]), we can
restate it as the sum of the expectation at each level of the tree T, i.e.,

EMy(R,B) = Z Z E7,0(Cy\F).

k=0wv:6(v)=k
Applying Lemma [ we get
5—1
EMp(R,B) =Y OCNIE | Y [Xul— > [Xul
k=0 §(u)=k S(u')=k—1

Therefore, it suffices to compute E|X,| for every u € T. Notice that we are in
a situation very similar to that of the star tree. At level k& we have b* vertices,



Optimal Random Matchings on Trees and Applications 259

hence the expected number of transits at level k is b*E|X,|, where u is an

arbitrary vertex at level k. Let [ = blk (1-— blk ). Applying Lemma [l we get that

the expected number of transits at level k is of order

T = V" /n(by/ By — /Br-1).

Simple calculation shows that

R ﬁlb < T, < 26%/2v/nb.

This will allow us to conclude that

5—1 51
KiVbn ) (AWh)* < EMy(R, B) < KV Y (AWb)*. (2)
k=0 k=0
If 6 < log,n then the above proves Theorem [ So, assume that 6§ > log, n.
In this case there is at least one vertex w such that 6(w) = log, n. Then using
Observation [, the expected transportation cost of the matching for the subtree
T, rooted at w can be bounded as

Mr,, (Ru, Bw) < min(| Ry |, |Buw[)S(6(w), 6).

Therefore, we get the following upper bound for the expected matching length
in T,:

(Ru, Bw) < CAN8" > " Pr(R,, = k) x k
k=0

oy F
k=0

< eC/\)\logb n

EMr,

w

Here we used the fact that if §(w) = log, n then R,, has a Poisson distribution.
Observing that there are b* vertices at level k, we have

log, n—1

EMT(RaB) < Kg\/bn Z ()\\/b)k + GC)\n)\IOgbn_
k=0

Now we are in a position to estimate the precise upper bound on EMy (R, B).
We will consider three distinct cases, depending on the value of v/bA:
Case I: If Vb < 1 then A% "™ < n=1/2 and hence, neCy\8" < eCxy/n.
Since in this case ), _, (AVb)F is a constant, we get the desired upper bound.
Case II: If v/bA = 1 we will have

log, n—1

Z (AWb)* = log, n,

k=0

and \°g: " = n=1/2 which again gives us the upper bound of the theorem.
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Case III: If vb) > 1 then

log, n—1
‘ k __ n()\\/b)logbn -1 _ n log, n
Vi3 = v T = ot

which implies the desired upper bound.

The lower bound of Theorem [ follows trivially from the fact that truncating
the lower bound of the sum in (2] (which has only non-negative elements) at the
log, n-th term will result in the desired lower bound. O

An important generalization emerges when the points of R and B are not nec-
essarily uniformly distributed among the leaves of T'. Given any non-leaf vertex
of T' we can distribute the red and blue points among its children according to
an arbitrary probability distribution. Conversely, it is easy to see that given any
probability distribution on the leaves one can find appropriate probabilities for
every non-leaf vertex of T in order to arrive at the desired distribution of the
red and blue points at the leaf-level. This gives rise to the following theorem:

Theorem 2. Let T'=T(b,6,\) be a balanced HST, and P a probability distrib-
ution on the leaves of T. Let R and B be two n-element submultisets of the set
of leaves of T chosen randomly and independently from P. Then there exists a
positive constant K3 (depending only on \) such that

6—1
EMr(R,B) < K3Vbn » (VDA

k=0

Sketch of the proof. The proof follows the same line of argument as The-
orem [I] except that in addition we use the following elementary inequality: if
ai,as,...,a; €10,1], > a; <1 then

S Vaill—a) <0/ @i/t - Y aift).

1<i<t

Applying the above inequality we can perform the following balancing algo-
rithm: First, we make the probability of choosing an arbitrary child of the root
equal to the reciprocal of the number of its children; that is, we choose uniformly
among the children of the root. Then we repeat the above for all the subtrees
originating from these children. Proceeding top-down, at the end we achieve
that every leaf of the tree has the same chance to be chosen, moreover, we never
decreased the expected number of transitions at any intermediate vertex. This
implies the theorem. (I

We also note the following consequence of Theorem 2] which follows by choosing
certain edge probabilities to be 0.

Corollary 1. If T' is an arbitrary subtree of a balanced (b,6,\)-HST T, then
the expected optimal transportation cost on T’ is upper bounded by the expected
optimal transportation cost on T.
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Observe that one cannot expect any reasonable general lower bound in the case
of a non-uniform distribution or for subtrees: if the subtree 7" is a path, the
transportation cost is zero.

3 The Case of Matching in [0, 1]¢

As a first application of the theory we developed in Section 2l we reproduce
the results of [7] concerning the expected optimal transportation cost in the d-
dimensional unit cube. We remark that for finding nearest neighbors in Euclidean
space, Indyk and Thaper [6] used similar ideas for approximating the
d-dimensional unit cube with HSTs.

We begin by presenting the general idea for approximating [0,1]? by a bal-
anced HST. The number of iterations of this process will be the depth ¢ of the
tree. In the ;' step we construct a grid G; with 274 cells, each cell having an
edge length of 277. G; is a refinement of G;_; for every j: we obtain the cells
of G; by dividing each cell of G;_; into 2% subcells of equal volume. We stop
when j = 6. The tree is going to have 2/¢ vertices at level j, with each vertex
corresponding to a cell of G;. A vertex v at level j will be adjacent to a ver-
tex w at level j 4 1 if and only if the cell of v in G; contains the cell of w in
G+1. The weight of edge (v, w) will be 2!77. Clearly, the construction will result
in a balanced (2¢,6,1/2)-HST. Moreover, the resulting HST will dominate the
distances of the lattice points of Gs: the Euclidean distance of any two lattice
points is no greater than their distance in the HST. Finally, we will approximate
a set of points in [0,1]¢ by discretizing the point set: we assign every point to
the available lattice point that is closest to it.

We will first consider the case of the unit interval, i.e., d = 1:

Proposition 1. Given n red points and n blue points distributed uniformly at
random on [0,1], the expected weight of an optimal matching is O(y/n).

Proof: We approximate the [0, 1] interval with an equidistant set of O(n?) lat-
tice points, as is described above. We will approximate this metric space by
a balanced (2,2logn,1/2)-HST T whose leaves are the lattice points. The dis-
cretization overhead associated with approximating the red and blue points with
the leaves is no more than the cost of moving each point to the nearest leaf, i.e.,
2n-1/(2n) = 1. Applying Theorem [M with parameters b = 2 and A = 1/2, results
in the desired bound. ]
In the plane our HST technique offers loose results. Ajtai et al. [I] showed that
the expected weight of the optimal matching in [0, 1]? is ©(y/nlogn). In Propo-
sition 2l we use Theorem [Il to obtain the bound of O(y/nlogn).

Proposition 2. Let B = {b;}}_, and R = {r;}}'_, be sets of blue and red points
distributed uniformly at random in [0,1]* and let M,, be the expected weight of
an optimal matching of B against R. Then EM,, = O(y/nlogn).

Proof: As discussed in the general process, we construct the 2-dimensional grid,
then the balanced (4,1/2,2log, n)-HST T'. The discretization overhead associ-
ated with approximating the red and blue points with the leaves of T' is again
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negligible for 6 > 2log, n. Applying Theorem [l with parameters b = 4 and
A =1/2, we get the upper bound of O(y/nlogn). O

We now jump to real dimension 3 and above, showing (Proposition [3]) that
expected weight of optimal matching is O(n(?=1/4),

Proposition 3. Let B = {b;}!", and R = {r;}}'_, be sets of blue and red points
distributed uniformly at random in [0,1]%, d > 3, and let M,, be the expected
weight of an optimal matching of B against R. Then EM, = O(n(4=1/d),

Proof: As before, we construct a sufficiently dense grid. Its lattice points will
be used to aproximate the real vectors of [0,1]¢. The finite metric space of the
lattice points will be dominated by a balanced HST T = T'(2¢, 31ogya n,1/2). We
are now in a position to apply Theorem [[l with parameters b = 2¢ and A = 1/2,
from which will follow the bound of O(n(@=1/d), O

Observe that for d # 2, our seemingly crude approximations by HSTs result in
tight bounds up to a constant factor (see e.g., [1]).

4 Optimal Matching for Weighted Point Sets

In this section we will estimate the expected weight of the optimal weighted
matching for point sets R = {rq,...,m,} and B = {b1,...,b,} distributed uni-
formly and at random among the leaves of an HST T'. We assume that every leaf u
of T is associated with a randomly and independently chosen mass m(u) € [0, 1].
Then the total transportation cost is defined to be

MT’m(R, B) = mina Z dT (7’,‘7 ba(i)) min{m(ri), m(bg(l))}

1<i<n

We will use the following folklore result: if 2 and y are chosen randomly and
independently from [0, 1], their expected distance E|z — y| is 1/3.

Theorem 3. Let T = T'(b,6,\) be a balanced HST with set of leaves L, and
R and B two randomly chosen n-element submultisets of L. Let m : L — [0,1]
be a function with values drawn randomly and independently, and define h =
min (8, log, n). Then there exist positive constants K4 and Ky such that

h h
KyVbn Y (VOA)* < EMp (R, B) < KsvVin Y (VoA

k=1 k=1

Sketch of the proof. The proof follows the same line of arguments as Theo-
rem [Il except that when computing the expected transportation cost, one has
to multiply the number of transitions not only by the edge weight of T" but also
by the expected mass which is to be moved. Since this latter number is 1/3 on
the average and was chosen independently from the distribution of the points,
the theorem is proved. O
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5 The Case of Finite Approximation of Fractals

The machinery developed in Section Plis general enough to use for matching on
a finite approximation of a self-similar set. The notion of a finite approximation
of fractals is best explained through an example. Recall that the Cantor set is
formed by repeatedly removing the open middle third of each line segment in a
set of line segments, starting with [0, 1]. If we stop this process after « iterations,
we will refer to the resulting set as the a-approximation of the Cantor set.

Next, consider sets R = {r1,...,m,} and B = {b1,...,b,} of red and blue
points respectively, distributed uniformly at random on the é-approximation of
the Cantor set, with 6 > 2logn. We are interested in the expected weight of
an optimal matching between R and B. We can think of the §-approximation
of the Cantor set as being embedded into a balanced (2,4,1/3)-HST T over
the unit interval. We have b = 2, since at every step we double the number of
subintervals, and A = 1/3, because the length of these subintervals shrink by a
factor of 1/3. The discretization overhead associated with approximating the red
and blue points with the leaves is no more than the cost of moving each point
to the nearest leaf 2n - 1/(2n) = 1. We can apply Theorem [I] with parameters
b=2and A =1/3, and conclude that EM7 (R, B) = O(y/n).

The tree metric of T'(2,46,1/3) dominates the Euclidean metric on the Can-
tor set. Therefore, the expected optimal matching weight of n blue and n red
points distributed randomly on the Cantor set is no heavier than the same points
distributed on [0, 1] itself. We have proved the following

Theorem 4. Let R = {ry,...,r,} and B = {b1,...,b,} be sets of red and blue
points distributed uniformly and at random in the d-approrimation of the Cantor
set process with 6 > 2logn. Then the expected weight of an optimal matching
between R and B is O(y/n).

Next, we consider the log; n-approximation of a Sierpinski triangle. Here a bal-
anced HST with branching factor b = 3, A = 1/2, and depth 6 (6§ > 2logsn)
dominates the Euclidean metric, and provides a good approximation after dis-
cretization. As with the Cantor set, we can prove the following about the Sier-
pinski triangle:

Theorem 5. Let R = {ry,...,r,} and B = {b1,...,b,} be sets of red and blue
points distributed uniformly and at random in the interior of the §-approximation
of a Sierpinski triangle for 6 large enough. Then the expected weight of an optimal
matching between R and B is O(y/n).

Note the lack of the logn factor in the upper bound. The expected optimal
matching weight in a triangle would be O(y/nlogn) by the result of Ajtai et al.

As a final example for the application of Theorem [Il on fractals, we will con-
sider the Menger sponge. A Menger sponge results from recursively dividing the
unit cube into 3% = 27 sub-cubes, removing the middle cube on each face and
the cube in the center, then recursing on each sub-cube. To find an upper bound
on the expected weight of matchings on the Menger sponge, consider a balanced
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HST T with A = 1/3 (the diameter decreases by a factor of 1/3 at every re-
cursion step), branching factor b = 20, and depth § > 3logy,n (this depth is
sufficiently large to provide good approximation in the discretization). Because
T is dominating, we can state the following upper bound:

Theorem 6. Let R = {ry,...,r,} and B = {b1,...,b,} be sets of red and blue
points distributed uniformly and at random in the interior of the 3logy,n- ap-
prozimation of a Menger sponge. Then the expected weight of an optimal match-
ing between R and B is O(n'~198203),

6 Conclusions

In this paper we presented a tight bound on the expected weight of transporta-
tion cost for matching of points on balanced HSTs. We extended our upper
bounds for subtrees of balanced HSTs, and for non-uniform distributions. Using
low-distortion embedding of R? to HSTs, we reproduce the results concerning
the expected optimal transportation cost in the [0,1]%, except for the case of
d = 2 for which we have a discrepancy of a factor of \/logn. We also proved up-
per bounds on several sets for which showing reasonable matching results would
previously have been intractable. By existing approximation theorems for finite
metric spaces, we could give bounds on the expected transportation cost in any
finite metric space. We plan to consider the analogues of other related matching
problems, such as upright matchings.
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Abstract. A distribution D on a set S C prv e-fools polynomials of
degree at most d in N variables over Z, if for any such polynomial P,
the distribution of P(x) when z is chosen according to D differs from
the distribution when x is chosen uniformly by at most € in the ¢; norm.
Distributions of this type generalize the notion of e-biased spaces and
have been studied in several recent papers. We establish tight bounds
on the minimum possible size of the support S of such a distribution,
showing that any such S satisfies

(o) - logp
S|>ec - | +p].
Slza ( log(l)
This is nearly optimal as there is such an S of size at most

(*¥)* logp+p

Cc2 - 2

€

1 Introduction

Let P be a polynomial in /N variables over Z, of degree at most d. Let D be
a distribution over a set S of vectors from Zé,v , and denote by Uy the uniform

distribution on Zé,v . The distribution D is an e-approzimation of Uy with respect

to P if
>

a€Zyp

Pr [P(z) =a]— Pr [P(z)=ad]l <e

z~D r~Upn
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We say that S (with the distribution D) is an (e, N, d)-biased space if it is an
e-approximation with respect to any polynomial on N variables of degree at most
d. Note that D is not necessarily a uniform distribution over its support .S.

The case d = 1 is known as e-biased spaces. Many works deal with such
spaces, including efficient constructions, lower bounds and applications (see, for

example, [BEIBIZITETTITI) and their references).

Luby et al. [I5] gave an explicit construction for the general case, but the size

of their sample space S is 220(\/log<N/E)) even for the case d = 2. They used it

to construct a deterministic approximation algorithm to the probability that a
given depth-2 circuit outputs a certain value on a random input.

Bogdanov [8] gave better constructions that work for fields of size at least
poly(d,log N, i) Bogdanov and Viola [I0] suggested a construction for general
fields. The construction is the sum of d copies of €/-biased spaces, and the sam-
ple size is N - f(e,d,p) for some function f. However, the analysis of their
construction relies on the so called “Inverse Gowers Conjecture” which was re-
cently shown to be false [I4]. Lovett [13] proved unconditionally for p = 2 that
the sum of 2 copies of €’-biased spaces fools polynomials of degree d (where ¢’
is exponentially small in ¢€), thus giving an explicit construction of size (f)ZO(d).
Later, Viola [20] proved that the sum of d copies is sufficient. This yields an ex-

plicit construction of size OZ i 4 using the best known constructions of e-biased
spaces. Recently, Bogdangv et. al. [9] showed how to fool width-2 branching
programs using such distributions.

Here we study the minimum possible size of (e, N, d)-biased spaces. Bogdanov
and Viola [I0] observed that for p = 2 and ¢ < 274 every such space is of size

at least (). Their argument is very simple: The set of polynomials of degree

at most d forms a linear space of dimension Z?:o (];[) > (]c\l[) If S is of size
less than (]C\l[) then there is a non-zero polynomial P such that P(z) = 0 for
every x € S, and since every non zero polynomial is not zero with probability
at least 27 (as follows, for example, by considering the minimal distance of the
Reed-Muller code of order d) we get the desired bound. However, their bound
doesn’t depend on € and, for small values of ¢, is far from optimal and also from
the known bound for e-biased space, which is nearly optimal for d = 1. Our
main contribution is a nearly tight lower bound on the size of such spaces as a
function of all four parameters €, N,d and p. Note that as spaces of this type can
be useful in derandomization, where the running time of the resulting algorithms
is proportional to the size of the space, it is interesting to get a tight bound for
their smallest possible size.

Theorem 1. There exists an absolute constant c1 > 0 such that for every d < %

and e > d-p‘é\rrz, every (€, N,d)-biased space over Z, has size at least

max {01 . (é\fi)dlogp , p(1— e)}

6210g(i)
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We also observe that this bound is nearly tight by proving the following simple
statement:

N

Proposition 1. There is an absolute constant ca > 0 so that for every d < |,

3N \d
there is an (e, N, d)-biased space over Z, of size at most cs - Ca) elfgpﬂ).
The proofs are described in the next section; for completeness, we include some of
the details in the appendix. The final section contains some concluding remarks.
Throughout the proofs we omit all floor and ceiling signs whenever these are not

crucial.

2 Proofs

In this section we present the proofs of our results. The proof of our main result,
Theorem [TI, lower bounding the size of an (¢, N, d)-biased set, is given in Section
2T The proof of the upper bound (Proposition ) is in Section 222

2.1 Lower Bound

First we observe that a bound of p(1 — ¢€) follows easily as otherwise the distribu-
tion doesn’t fool every polynomial P for which P(z) is the uniform distribution
(for example, all the linear polynomials). Let N be the number of variables and
let d be the degree of the polynomial. Assume for simplicity that N = nd, where
n is an integer. For every ¢ > 1 define the set of variables S; = {z; 1, ..., Tin}
A monomial over Z, is called d-partite if it has the form [[,_,.,%;;,, and a
polynomial over Z,, is called d-partite if it is a sum of d-partite monomials. Note
that d-partite polynomials are homogeneous polynomials of degree d.

Let P, 4 be the uniform distribution on the set of d-partite polynomials. A
random element in P, 4 is a sum of d-partite monomials, where every one of the
possible n¢ monomials has a random coefficient selected uniformly and indepen-
dently from Z,,.

An assignment to the variables {z;} is non-trivial if there is an i such that z; #
0. Similarly, if vy, vs,...,v, € V for some vector space V', a linear combination
>, @;v; is non-trivial if there is i such that a; # 0. For a prime p, a polynomial
P over 7Z,, is 0-balanced if

>

a€Zyp

{z: P(z) = a}| 1 <s

pN Pl

A polynomial is balanced if it is 0-balanced. We have the following key lemma:

Lemma 1. The probability ¢(n,d) that a random element from P, 4 isd-p~ 2 -
balanced is at least

1= p=(DADTHEIZI @ T ) 5 1 (DT
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Proof: We apply induction on d. For d = 1, as every non-trivial linear polyno-
mial is balanced, we have ¢(n,1) =1 —p~", and the statement holds. Assuming
that the statement is valid for d, we prove it for d+ 1. A random (d + 1)-partite
polynomial P can be represented as Z?:l x1,;P;, where for every i, P; is a ran-
dom polynomial (distributed uniformly and independently over P, q) over the
sets of variables S, .53, ..., Sq11. Denote the set {P;} of polynomials by P. We
use the following claim:

Claim 1. With probability at least 1 —p_(g')LHH‘Q(7’3)“2?;01(7’3)i(n42 1) over the
choice of polynomials in P, there is a subset B C P of size at least ', such that
for any non-trivial choice of {c;}, the polynomial ) p. .y i P; is d-p~ 2 -balanced.
Proof: Let By := (. In the i’th step, we consider the polynomial P;. If P; as
well as all its combinations with elements from B;_1 are d-p~ 2 -balanced, we set
B; := B;—1J{P;}, otherwise we call the step bad and let B; := B;_1. After the
last polynomial, set B := B,,. We want to bound the probability that there are
more than 7 bad steps. Consider a certain step 7 and assume that [B; 1| < 7.
Since P; is a random polynomial, the sum of P; with every fixed polynomial
is uniformly distributed over the set P, 4. By the induction hypothesis, it is
d - p~2-balanced with probability at least 1 — p_(g)d“('S)dfl‘*Z?;tJQ(g)i("22 +n)
By the union bound, the probability that the step is bad is at most

—(3) 42D THEE () (Y )

n/2p )

p
We bound the probability that there are more than 7 bad steps. For d = 2 the

probability is at most
(Z) (p”/2 -Jf”)n/2 <p (3,
2
For d > 3, we have:

<n) (pn/2 (AT ?;5(;)1‘("f+n))”/2

n

2
< p (DTHAHHHTES (B +m),

The claim follows.

Assume that the condition of the claim holds, and without loss of generality
assume that { Py, Py, ..., P,/2} € B. Let P’ = Z?z/? x1,;P;. By Claim[ for every
non-trivial assignment of the variables {1 ;}, the obtained polynomial is d-p~ 2-
balanced. The probability that the assignment of the variables {z;;} is trivial
is p~ 2. Therefore, P’ is 6-balanced, where

S<p 24d-p:=(d+1)-p 2. (1)

We use this fact to prove that the polynomial P is (d + 1) - p~ 2 -balanced.
For every assignment of the variables from (J,;c 4, Si; P reduces to a linear
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polynomial, which depends only on the variables from S;. Denote by p(P) (re-
spectively, p(P’)) the probability over the assignments of U2§i§d+1 S; that P
(respectively, P’) reduces to a trivial linear polynomial. Clearly p < u/ and p is
an upper bound on the imbalance of P. Therefore, it is sufficient to prove that
' is bounded by (d+1)-p~2. To this end, note that whenever P’ is reduced to
a constant polynomial it is actually reduced to the zero polynomial. Therefore,
as the bias of P’ is bounded by (d + 1) - p~ 2, the lemma follows.

We construct a set of polynomials @ as follows. Let

1 N

1= ond)) ~ 12 (ag)" T4y,
For every 1 < ¢ < r let ¢; be a polynomial distributed uniformly and inde-
pendently over P, 4. Denote by ) the set of all non-trivial combinations of
{(h; o QT}-

By the union bound and by Lemma [ with positive probability all the ele-
ments of @ are d - p~2-balanced. Fix @ to be such a set. It follows also that
the vectors ¢1, o, ..., ¢ are linearly independent (otherwise @ contains the zero
vector, which is not d - p~ 2 -balanced). Therefore, |Q| > plaa)? =4 T =1

The following lemma is due to Alon [2]:

r =log, ( Y=t 1,

Lemma 2 ([2]). There exists an absolute positive constant ¢ so that the follow-
ing holds. Let B be an n by n real matriz with b; ; > % for alli and |b; ;| < € for
all i # j where !, <e< 411. Then the rank of B satisfies

2y/n

clogn
k(B) > .
raEB) 2 20 (1)

Here we need the following complex variant of the lemma:

Lemma 3. There exists an absolute positive constant c¢ so that the following
holds. Let C' be an n by n complex matriz with |c; ;| > é for alli and |c; ;| < €
for all i # j where 2\1/71 <e< 411. Then the rank of C satisfies

rank(C) > clogn .
©) €2 log(i)
We give the proof of this lemma in the appendix. For completeness we also
reproduce there the proof of Lemma P]
We are now ready to prove Theorem M

Proof of Theorem [l Suppose that W is an (e, N, d)-biased space, and that
W = {wy,wa, ..., wn }, Prw;] = t;. Define a |Q|-by-m complex matrix U whose
rows are indexed by the elements of () and whose columns are indexed by the
elements of W. Set U, .,, = (£,)7W)\/t;, where &, is a primitive root of unity of
order p and the value of g(w;) is computed over Z,. Note that by our choice of
@ and the definition of an (e, N, d)-biased space, for every ¢ € Q:

1> (&)™)t <etdopi < 2e
1=1
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Also, obviously:
> oti=1
i=1

For every two distinct polynomials ¢1, g2 € @, the polynomial ¢; — g2 is also
in @, and for every w; we have

(é:p)(qlffIz)(wi) _ (fp)ql(“”) . (fp)*qz(wi)'
Set A = UU*. For every distinct q1, g2 € Q@ we have:

Ag 0| = IZ &) 1)) ;] < 2e.

All the diagonal entries in A are 1. Since the rank of U is at most m the rank of
A is also at most m. By Lemma [3t

log|Q _  (39)"logp

> k(A) > ¢ -
2 rankA) 2 0 (1) Z T log ()

The desired result follows.

2.2 Upper Bound

Here we prove the simple upper bound:

Proof of Propostion [ Let R C Z]]DV be a random set of size m = 2
3N \d
) I;g ®FP  We bhound the probability that for a given polynomial P, the

uniform distribution on R is not an e-approximation with respect to P.

Let L C Zyp, and let pur, =m ), ., Precy, [p(z) = a] be the expected number
of vectors from R such that P evaluates to elements from L. By the Chernoff
bounds (see, e.g., [6], Appendix A), we have:

em \2
Pr[ Pr [P(z) € L] — Pr [P(z) € L] > ¢| < e ") /2 < gme®/2,
R ‘zcU, z€R

By the union bound over all 27 possible sets L, the probablhty that the uni-
form distribution on R is not an e-approximation is at most e~"¢ */24p,

The number of normalized monomials of degree at most d is exactly the number
of ways to put d identical balls in N + 1 distinct bins, and is bounded by

(d+dN) - (e(Nd—i— d))d . (35)01
Therefore the total number of polynomials of degree at most d is at most
pCa)" = 9% logp,
By applying the union bound, with high probability the uniform distribution

on R is an e-approximation with respect to any polynomial on N variables with
degree at most d, and the theorem follows.



272 N. Alon, I. Ben-Eliezer, and M. Krivelevich
3 Concluding Remarks

For p < (3), the ratio between the lower and upper bounds is c- (2¢)? log ( i) for
some constant c. In particular, for fixed d the ratio is ©(log (!)). This matches
the ratio between the best known upper and lower bounds in the case d = 1 that
corresponds to e-biased spaces.

Our bound is valid only for e > d - p~2¢. As noted in [2], for e < P2 every
e-biased space must be essentially the whole space (even for d = 1). It may be
interesting to close the gap between p*g] and d - p’gi. In a recent joint work
with Tali Kaufman, we could actually replace the probabilistic construction with
an explicit set of polynomials with smaller bias. Using this construction, we can
extend our result for every value of €. The details will appear in the final version
of this paper.

Recently, Schechtman and Shraibman [I8] proved a strengthening of Lemma[2l
They showed that under the conditions of Lemma [ if A is also positive-
semidefinite then we need only an upper bound on the values of non-diagonal
entries, instead of an upper bound on their absolute values. In our case, for p = 2
the matrix A is positive semidefinite, and we can thus relax the conditions and
establish a similar lower bound for the size of the support of any distribution in
which no polynomial attains the value zero with probability bigger by €/2 than
the probability it attains it in the uniform distribution. That is, for p = 2 the
lower bound for the size of the distribution holds, even if there is no lower bound
on the probability that each polynomial attains the value zero.

Lemma/[Il can also be formulated in the language of error correcting codes. For
given N and d, it states that every Reed-Muller code with parameters N and d
contains a dense linear subcode in which every nontrivial codeword is balanced.

Recently, Dvir and Shpilka [I2] gave an efficient encoding and decoding pro-
cedures for the construction of sum of d copies of e-biased spaces.

Acknowledgements. We thank Avi Wigderson, Shachar Lovett and Tali Kaufman
for fruitful discussions.
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A A Complex Variant of Lemma

In this section we reproduce the proof of Lemma 2 (omitting the final detailed
computation) as given in [2], and also prove Lemma [3

We start with the following lemma from which Lemma 2l will follow:

Lemma 4. There exists an absolute positive constant c¢ so that the following
holds. Let B be an n by n real matriz with b;; = 1 for all i and |b; ;| < € for all
i£g.If \/1“ <e<1/2, then

rank(B) > logn.

~ e2log(1/e)
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We need the following well known lemma proved, among other places, in [I1], [1].

Lemma 5. Let A = (a; ;) be an n by n real, symmetric matriz with a;; =1 for
all © and |a; ;| < € for all i # j. If the rank of A is d, then

d> "
T 14+ (n—-1)€
In particular, if € < \/ then d > n/2.
Proof: Let \,..., )\, denote the eigenvalues of A, then their sum is the trace

of A, which is n, and at most d of them are nonzero. Thus, by Cauchy-Schwartz,
St A7 > d(n/d)* = n?/d. On the other hand, this sum is the trace of A'A,
which is precisely >, ; a?’j < n+n(n —1)e2. Hence n + n(n — 1)e2 > n?/d,
implying the desired result.

Lemma 6. Let B = (b; ;) be an n by n matriz of rank d, and let P(x) be an
arbitrary polynomial of degree k. Then the rank of the n by n matriz (P(b; ;))
is at most (kzd). Moreover, if P(x) = x* then the rank of (P(b;;)) is at most

ktd—1

k)

Proof: Let v; = (vlvj)?zl,vQ = (vgj);‘ 1s-+->Vd = (vdj);‘:l be a basis of
the row-space of B. Then the vectors (v’flj vg"; vsdj)] 1, where ki, ko, ..., kq

range over all non-negative integers whose sum is at most k, span the rows of
the matrix (P(b;;)). In case P(z) = ¥ it suffices to take all these vectors cor-
responding to kq, ko, ..., kg whose sum is precisely k.

Proof of Lemma @ We may and will assume that B is symmetric, since
otherwise we simply apply the result to (B + B')/2 whose rank is at most twice
the rank of B. Put d = rank(B). If € < 1/n® for some fixed § > 0, the result
follows by applying LemmaBl to a [ 5| by | } | principal submatrix of B. Thus
we may assume that € > 1/n® for some fixed, small § > 0. Put k = Lngég(f/e 1

= | .2 ] and note that n’ < n and that €* < \/1n,. By Lemma [ the rank of
the n’ by n’ matrix (b ;); j<n is at most (“1%) < ("D Yk On the other hand,
by Lemma [ the rank of this matrix is at least n’/2. Therefore

e(k+d) k> n' 1L 1 |
k T2 2ne
and the desired result follows by some simple (though somewhat tedious) ma-
nipulation, which we omit.

Proof of Lemma [2l Let C'= (¢; ;) be the n by n diagonal matrix defined by
¢ii = 1/b;; for all i. Then every diagonal entry of C'B is 1 and every off-diagonal
entry is of absolute value at most 2¢. The result thus follows from Lemma [4]
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Proof of Lemma[3l Let P be an n by n diagonal matrix defined by p; ; = 1/¢;;
and set D = C'P. Then every diagonal entry of D is 1 and every off-diagonal en-
try is of absolute value at most 2e. Set D’ = (D+D*)/2. Then D’ is a real matrix
and rank(D’) < 2 - rank(D). The desired result follows by applying Lemma @l
to D'.



Derandomizing the Isolation Lemma and Lower Bounds
for Circuit Size

V. Arvind and Partha Mukhopadhyay

Institute of Mathematical Sciences
C.LT Campus,Chennai 600 113, India
{arvind, partham}@imsc.res.in

Abstract. The isolation lemma of Mulmuley et al is an important
tool in the design of randomized algorithms and has played an important role
in several nontrivial complexity upper bounds. On the other hand, polynomial
identity testing is a well-studied algorithmic problem with efficient randomized
algorithms and the problem of obtaining efficient deterministic identity tests has
received a lot of attention recently. The goal of this paper is to compare the isola-
tion lemma with polynomial identity testing:

1. We show that derandomizing reasonably restricted versions of the isolation
lemma implies circuit size lower bounds. We derive the circuit lower bounds
by examining the connection between the isolation lemma and polynomial
identity testing. We give a randomized polynomial-time identity test for non-
commutative circuits of polynomial degree based on the isolation lemma.
Using this result, we show that derandomizing the isolation lemma implies
noncommutative circuit size lower bounds. For the commutative case, a
stronger derandomization hypothesis allows us to construct an explicit mul-
tilinear polynomial that does not have subexponential size commutative cir-
cuits. The restricted versions of the isolation lemma we consider are natural
and would suffice for the standard applications of the isolation lemma.

2. From the result of Klivans-Spielman we observe that there is a ran-
domized polynomial-time identity test for commutative circuits of poly-
nomial degree, also based on a more general isolation lemma for linear
forms. Consequently, derandomization of (a suitable version of) this isola-
tion lemma implies that either NEXP ¢ P/poly or the Permanent over Z
does not have polynomial-size arithmetic circuits.

1 Introduction

We recall the Isolation Lemma [MVV87]. Let [n] denote the set {1,2,--- ,n}. Let U
be a set of size n and F C 2V be any family of subsets of U. Let w : U — ZT be a
weight function that assigns positive integer weights to the elements of U. For T' C U,
define its weight w(7T") as w(T') = >, ., w(u). Then Isolation Lemma guarantees that
for any family of subsets F of U and for any random weight assignment w : U — [2n],
with high probability there will be a unique minimum weight set in F.

Lemma 1 (Isolation Lemma). [MVVS7] Let U be an universe of size n and F be any
family of subsets of U. Let w : U — [2n] denote a weight assignment function to
elements of U. Then,

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 276 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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. . . . . 1
Prob,, [ There exists a unique minimum weight set in F] > o

where the weight function w is picked uniformly at random.

In the seminal paper Mulmuley et al apply the isolation lemma to give a
randomized NC algorithm for computing maximum cardinality matchings for general
graphs (also see [ARZ99]). Since then the isolation lemma has found several other ap-
plications. For example, it is crucially used in the proof of the result that NL € UL/poly
and in designing randomized NC algorithms for linear representable matroid
problems [[NSVO94]. It is also known that the isolation lemma can be used to prove the
Valiant-Vazirani lemma that SAT is many-one reducible via randomized reductions to
USAT.

Whether the matching problem is in deterministic NC, and whether NL C UL are
outstanding open problems. Thus, the question whether the isolation lemma can be
derandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argument that the isolation lemma
can not be derandomized, in general, because there are 22" set systems JF. More for-
mally, the following is observed in [Agr07].

Observation 1. The Isolation Lemma can not be fully derandomized if we
allow weight functions w : U — [n€] for a constant ¢ (i.e. weight functions with a
polynomial range). More precisely, for any polynomially bounded collection of weight
assignments {w; }jc[ne1] with weight range [n°|, there exists a family F of [n] such that
forall j € [n°], there exists two minimal weight subsets with respect to w;.

However that does not rule out the derandomization of any special usage of the isola-
tion lemma. Indeed, for all applications of the isolation lemma (mentioned above, for
instance) we are interested only in exponentially many set systems F C 2Y.

We make the setting more precise by giving a general framework. Fix the universe
U = [n] and consider an n-input boolean circuit C' where size(C) = m. The set 2Y
of all subsets of U is in a natural 1-1 correspondence with the length n-binary strings
{0,1}": each subset S C U corresponds to its characteristic binary string ys € {0,1}"
whose 4" bit is 1 iff i € S. Thus the n-input boolean circuit C' implicitly defines the
set system

Fo={SCnl|C(xs) =1}.

As an easy consequence of Lemmal[Il we have the following.

Lemma 2. Let U be an universe of size n and C' be an n-input boolean circuit of size
m. Let Fo C 2Y be the family of subsets of U defined by circuit C. Let w : U — [2n)]
denote a weight assignment function to elements of U. Then,

1

2 9

where the weight function w is picked uniformly at random. Furthermore, there is a col-
lection of weight functions {w; }1<i<p(m,n), Where p(m,n) is a fixed polynomial, such
that for each F¢ there is a weight function w; w.r.t. which there is a unique minimum
weight set in Fc.

Prob,, [ There exists a unique minimum weight set in F¢| >
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Lemma ] allows us to formulate two natural and reasonable derandomization hypothe-
ses for the isolation lemma.

Hypothesis 1. There is a deterministic algorithm .4; that takes as input (C,n),
where C' is an n-input boolean circuit, and outputs a collection of weight functions
wy, wa, -+ ,wy such that w; : [n] — [2n], with the property that for some w; there
is a unique minimum weight set in the set system F¢. Furthermore, .4; runs in time
subexponential in size(C).

Hypothesis 2. There is a deterministic algorithm A5 that takes as input (m, n) in unary
and outputs a collection of weight functions w1, ws, - - - , w; such that w; : [n] — [2n],
with the property that for each size m boolean circuit C' with n inputs there is some
weight function w; w.r.t. which F¢ has a unique minimum weight set. Furthermore,
Ap runs in time polynomial in m.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It demands a “black-box” de-
randomization in the sense that A5 efficiently computes a collection of weight functions
that will work for any set system in 2Y specified by a boolean circuit of size m.

Notice that a random collection wy, - - - ,w, of weight functions will fulfil the re-
quired property of either hypotheses with high probability. Thus, the derandomization
hypotheses are plausible. Indeed, it is not hard to see that suitable standard hardness
assumptions that yield pseudorandom generators for derandomizing BPP would imply
these hypotheses. We do not elaborate on this here. In this paper we show the following
consequences of Hypotheses 1 and 2.

1. Hypothesis 1 implies that either NEXP ¢ P/poly or the Permanent does not have
polynomial size noncommutative arithmetic circuits.

2. Hypothesis 2 implies that for almost all n there is an explicit multilinear polyno-
mial f,, (21,29, - ,x,) € Flzy, 29, , 2] in commuting variables x; (where by
explicit we mean that the coefficients of the polynomial f,, are computable by a uni-
form algorithm in time exponential in n) that does not have commutative arithmetic
circuits of size 2°() (where the field I is either the rationals or a finite field).

The first result is a consequence of an identity testing algorithm for noncommutative
circuits that is based on the isolation lemma. This algorithm is based on ideas from
where we used automata theory to pick matrices from a suitable matrix ring
and evaluate the given arithmetic circuit on these matrices. In the next section, we de-
scribe the background and then give the identity test in the following section.

Remark 1. Notice that derandomizing the isolation lemma in specific applications like
the RNC algorithm for matchings [MVV87] and the containment NL. C UL/poly
AROO] might still be possible without implying such circuit size lower bounds.

Noncommutative Circuits

Noncommutative polynomial identity testing has been the focus of recent research
RS05, BWOS5, |JAMSO08]. One reason to believe that it could be easier than the com-
mutative case to derandomize is because lower bounds are somewhat easier to prove
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in the noncommutative setting as shown by Nisan [NOT]]. Using a rank argument Nisan
has shown exponential size lower bounds for noncommutative formulas (and noncom-
mutative algebraic branching programs) that compute the noncommutative permanent
or determinant polynomials in the ring F{xy,--- ,x,} where x; are noncommuting
variables. In [[CSQ7], Chien and Sinclair further extend Nisan’s idea to prove exponen-
tial size lower bounds for noncommutative formulas computing noncommutative per-
manent or determinant polynomial over matrix algebra, quaternion algebra and group
algebra. However, no superpolynomial lower bounds are known for the size of noncom-
mutative circuits for explicit polynomials.

Our result in this paper is similar in flavour to the Impagliazzo-Kabanets result
[KI03], where for commutative polynomial identity testing they show that derandom-
izing polynomial identity testing implies circuit lower bounds. Specifically, it implies
that either NEXP ¢ P/poly or the integer Permanent does not have polynomial-size
arithmetic circuits.

In we have observed that an analogous result also holds in the noncom-
mutative setting. I.e., if noncommutative PIT has a deterministic polynomial-time algo-
rithm then either NEXP ¢ P/poly or the noncommutative Permanent function does not
have polynomial-size noncommutative circuits.

The connection that we show here between derandomizing the isolation lemma and
noncommutative circuit size lower bounds is based on the above observation and our
noncommutative polynomial identity test based on the isolation lemma.

Commutative Circuits

As a consequence of Hypothesis 2 we are able to show that for almost all n there is an
explicit multilinear polynomial f,,(x1,xe, - ,2z,) € F[ml, To, - 7$n] in commuting
variables x; (where by explicit we mean that the coefficients of the polynomial f,,
are computable by a uniform algorithm in time exponential in n) that does not have
commutative arithmetic circuits of size 2°(™ (where the field F is either the rationals or
a finite field). This is a fairly easy consequence of the univariate substitution idea and
the observation that for arithmetic circuits computing multilinear polynomials, we can
efficiently test if a monomial has nonzero coefficient (Lemma).

Klivans and Spielman apply a more general form of the isolation lemma to
obtain a polynomial identity test (in the commutative) case. This lemma is stated below.

Lemma 3. Lemma 4] Let L be any collection of linear forms over variables
21,22, , 2n, With integer coefficients in the range {0,1,--- , K}. If each z; is picked
independently and uniformly at random from {0,1,--- ,2Kn} then with probabil-
ity at least 1/2 there is a unique linear form from C that attains minimum value at
(21, , 2n)-

We can formulate a restricted version of this lemma similar to Lemma[2 that will apply
only to sets of linear forms L accepted by a boolean circuit C'. More precisely, an integer
vector (aq, -+ ,ap) such that a; € {0,---, K} isin L if and only if (a1, , @) is
accepted by the boolean circuit C'.
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Thus, for this form of the isolation lemma we can formulate another derandomiza-
tion hypothesis analogous to Hypothesis 2 as follows.

Hypothesis 3. There is a deterministic algorithm A3 that takes as input (m, n, K') and
outputs a collection of weight functions wy,ws, - -+ , w such that w; : [n] — [2Kn],
with the property that for any size m boolean circuit C' that takes as input (a1, - -+ , )
with a; € {0, -+, K} there is some weight vector w; for which there is a unigue linear
form (a1, -+ ,ay) accepted by C' which attains the minimum value Z?:l w; ().
Furthermore, A3 runs in time subexponential in size(C'). '

We show that Hypothesis 3 yields a lower bound consequence for the integer
permanent.

2 Automata Theory Background

We recall some standard automata theory [HU78]. Fix a finite automaton A =
(@, X, 6, q0,qr) which takes inputs in X*, ¥ is the alphabet, () is the set of states,
0:Q x X — @ is the transition function, and gy and ¢y are the initial and final states
respectively (we only consider automata with unique accepting states). For each b € X,
let & : Q — @ be defined by: 6,(q) = 6(g, b). These functions generate a submonoid
of the monoid of all functions from ) to @. This is the transition monoid of the au-
tomaton A and is well-studied in automata theory page 55]. We now define the
0-1 matrix M, € FIQI*IQI a5 follows:

o [1if(q) =4
My(q,q') = {0 otherwise.

The matrix Mj, is the adjacency matrix of the graph of 6;. As M} is a 0-1 matrix, we
can consider it as a matrix over any field FF.

For a string w = wywy---w, € X* we define M,, to be the matrix product
My, Moy, -+ - My, If w is the empty string, define M,, to be the identity matrix of
dimension |@Q| x |Q]. Let é,, denote the natural extension of the transition function to
w; if w is the empty string, &,, is simply the identity function. We have

1if 6, (q) = ¢/,
0 otherwise.

Mw(Qa q/) = { (1)
Thus, M,, is also a matrix of zeros and ones for any string w. Also, M,,(qo, ¢¢) = 1if
and only if w is accepted by the automaton A.

2.1 Noncommutative Arithmetic Circuits and Automata

This subsection is reproduced from to make this paper self-contained.
Consider the ring F{z1, - ,z,} of polynomials with noncommuting variables
x1, - ,xy over a field F. Let C' be a noncommutative arithmetic circuit comput-
ing a polynomial f € F{zy,---,z,}. Let d be an upper bound on the degree of
f- We can consider monomials over z1,--- ,z, as strings over the alphabet ) =

{‘rlvav"' 7$n}-
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Let A = (Q,X,6,q0,qr) be a finite automaton over the alphabet ¥ =
{x1, 22, ,x,}. We have matrices M,, € FIQIXIQl as defined in Section 2l We are

interested in the output matrix obtained when the inputs z; to the circuit C' are replaced
by the matrices M. This output matrix is defined in the obvious way: the inputs are
|Q| x |@| matrices and we do matrix additions and multiplications at the circuit’s addi-
tion and multiplication gates, respectively. We define the output of C on the automaton
A to be this output matrix M. Clearly, given circuit C' and automaton A, the matrix
Moy can be computed in time poly(|C, | A, n).

We observe the following property: the matrix output M,,,; of C' on A is determined
completely by the polynomial f computed by C the structure of the circuit C' is other-
wise irrelevant. This is important for us, since we are only interested in f. In particular,
the output is always 0 when f = 0.

More specifically, consider what happens when C' computes a polynomial with a
single term, say f(x1, - ,x,) = CLjy -+ T with a non-zero coefficient ¢ € F.
In this case, the output matrix M, is clearly the matrix cM, . P MZJ = cMy,
where w = x;, - - -z, . Thus, by Equation [[labove, we see that the entry Mout(qo, af)
is 0 when A rejects w, and ¢ when A accepts w. In general, suppose C' computes a
polynomial f = Zle ¢;m; with ¢ nonzero terms, where ¢; € F\ {0} and m; =

H;l’zl x;;, where d; < d. Let w; denotes the string representing monomial ;. Finally,

let Sf; ={ie{1,---,t} | Aaccepts w;}.

Theorem 2. [[AMSOS| Given any arithmetic circuit C computing polynomial f €
F{x1,---,x,} and any finite automaton A = (Q, X, 6, qo, q), then the output M
of C on Ais such that Moy (qo, q5) = Ziesj; ;.

Proof. The proof is an easy consequence of the definitions and the properties of
the matrices M, stated in Section 2] Note that M,,; = f(My,,---, M, ). But
J(My,, -, Mg,) =>:_, ¢;M,,, where w; is the string representing monomial m;.
By Equation [ we know that M., (qo, qf) is 1 if w; is accepted by A, and 0 otherwise.
Adding up, we obtain the result.

We now explain the role of the automaton A in testing if the polynomial f computed by
C' is identically zero. Our basic idea is to design an automaton A that accepts exactly
one word among all the words that correspond to the nonzero terms in f. This would
ensure that M,.+(qo, gf) is the nonzero coefficient of the monomial filtered out. More
precisely, we will use the above theorem primarily in the following form, which we
state as a corollary.

Corollary 1. [AMSO08] Given any arithmetic circuit C' computing polynomial f €
F{x1,---,x,} and any finite automaton A = (Q, X, 6, qo, qr), then the output M,
of C on A satisfies:

(1) If A rejects every string corresponding to a monomialin f, then Moy:(qo,qf) = 0.
(2) If A accepts exactly one string corresponding to a monomial in f, then
Mot (qo, qf) is the nonzero coefficient of that monomial in f.

Moreover, M, can be computed in time poly(|C|, | A[, n).
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Proof. Both points (1) and (2) are immediate consequences of the above theorem. The
complexity of computing M,,,; easily follows from its definition.

Another corollary to the above theorem is the following.

Corollary 2. [AMSO08] Given any arithmetic circuit C' over F{x1,--- ,x,}, and any
monomial m of degree d,,, we can compute the coefficient of m in C in time
poly(|C|, dpm,n).

Proof. Apply Corollary [[]with A being any standard automaton that accepts the string
corresponding to monomial m and rejects every other string. Clearly, A can be chosen
so that A has a unique accepting state and |A| = O(nd,,).

In fact corollary2lsays that, given an arithmetic circuit C' and a monomial m, there is an
uniform way to generate a polynomial-size boolean circuit C’ such that C' can decide
whether m is a nonzero monomial in the polynomial computed by C'. The boolean circuit
(" is simply the description of the algorithm described in the proof of corollary 21

Corollary 3. Given an arithmetic circuit C over Fxq,--- , x,, and a monomial m of
degree d, there is an uniform polynomial-time algorithm that generates a poly(|C|, d, n)
size boolean circuit C' that accepts (C,m) if and only if m is a nonzero monomial in
the polynomial computed by C.

Remark 2. Corollary2lis very unlikely to hold in the commutative ring F[zy, - - -, x,].
For, it is easy to see that in the commutative case computing the coefficient of the mono-
mial []"_, z; in even a product of linear forms I7;/; is at least as hard as computing
the permanent over I, which is #P-complete when F = Q. However, we can show the
following for commutative circuits computing multilinear polynomials.

Corollary 4. Given a commutative arithmetic circuit C' over Flzq,- -+ ,xy), with the
promise that C' computes a multilinear polynomial, and any monomial m = [[, g

where S C [n], we can compute the coefficient of m in C' in time poly(|C|, n). Further-
more, there is a uniform polynomial-time algorithm that generates a boolean circuit C'
of size poly(|C|, n) such that C' takes as input a description of circuit C' and monomial
m and it decides whether the coefficient of m is nonzero in the polynomial computed
by C.

Proof. Letm = [[,.g x; be the given monomial. The algorithm will simply substitute
1 for each x; such that ¢ € S and O for each x; such that i ¢ S and evaluate the
circuit C' to find the coefficient of the monomial . The boolean circuit C” is simply
the description of the above algorithm. It is clear that C” can be uniformly generated.

3 Noncommutative Identity Test Based on Isolation Lemma

We now describe a new identity test for noncommutative circuits based on the isolation
lemma. It is directly based on the results from [AMSOS]. This is conceptually quite
different from the randomized identity test of Bogdanov and Wee .
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Theorem 3. Let f € F{x1,x2, - ,x,} be a polynomial given by an arithmetic circuit
C of size m. Let d be an upper bound on the degree of f. Then there is a randomized
algorithm which runs in time poly(n, m, d) and can test whether [ = 0.

Proof. Let [d] = {1,2,---,d} and [n] = {1,2,---,n}. Consider the set of tuples
U = [d] x [n]. Let v = x;, ¥4, - - - ¥;, be a nonzero monomial of f. Then the monomial
can be identified with the following subset .S, of U :

Sy = {(luil)v (2vi2)7 t 7(t7it)}

Let F denotes the family of subsets of U corresponding to the nonzero monomials
of fie,
F = {8, | vis anonzero monomial in f}

By the Isolation Lemma we know that if we assign random weights from [2dn] to
the elements of U, with probability at least 1/2, there is a unique minimum weight
set in F. Our aim will be to construct a family of small size automatons which are
indexed by weights w € [2nd?] and ¢ € [d], such that the automata A, ; will precisely
accept all the strings (corresponding to the monomials) v of length ¢, such that the
weight of S, is w. Then from the isolation lemma we will argue that the automata
corresponding to the minimum weight will precisely accept only one string (monomial).
Now for w € [2nd?], and t € [d], we describe the construction of the automaton
Apr = (Q, 2,68, q0, F) as follows: Q = [d] x [2nd?|U{(0,0)}, ¥ = {z1, 22, -+ , &0},
go = {(0,0)} and F = {(¢, w)}. We define the transition function é : Q@ x ¥ — @,

6((6, V), m5) = (i + 1,V + W),
where W is the random weight assign to (¢ + 1, 7). Our automata family A is simply,
A={Ay,|w e [2nd*],t € [d]}.

Now for each of the automaton A,, ;+ € A, we mimic the run of the automaton A,, + on
the circuit C' as described in Section [21 If the output matrix corresponding to any of the
automaton is nonzero, our algorithm declares f # 0, otherwise declares f = 0.

The correctness of the algorithm follows easily from the Isolation Lemma. By the
Isolation Lemma we know, on random assignment, a unique set S in F gets the min-
imum weight w,,;, with probability at least 1/2. Let S’ corresponds to the monomial
T, iy - - - T4,. Then the automaton A, ¢ accepts the string (monomial) x;, 5, - - - T4,
Furthermore, as no other set in  get the same minimum weight, A, ,. ,rejects all the
other monomials. So the (qo, g7) entry of the output matrix M, that we get in running
Awin,e 00 C'is nonzero. Hence with probability at least 1/2, our algorithm correctly
decide that f is nonzero. The success probability can be boosted to any constant by
standard independent repetition of the same algorithm. Finally, it is trivial to see that
the algorithm always decides correctly if f = 0.

4 Noncommutative Identity Testing and Circuit Lower Bounds

For commutative circuits, Impagliazzo and Kabanets [KIO3] have shown that deran-
domizing PIT implies circuit lower bounds. It implies that either NEXP ¢ P/poly or the
integer Permanent does not have polynomial-size arithmetic circuits.
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In we have observed that this also holds in the noncommutative set-
ting. That is, if noncommutative PIT has a deterministic polynomial-time algorithm
then either NEXP ¢ P/poly or the noncommutative Permanent function does not have
polynomial-size noncommutative circuits. We note here that noncommutative circuit
lower bounds are sometimes easier to prove than for commutative circuits. E.g. Nisan
[NOT]], Chien and Sinclair have shown exponential-size lower bounds for non-
commutative formula size and further results are known for pure noncommutative cir-
cuits [RS0O3]]. However, proving superpolynomial size lower bounds for general
noncommutative circuits computing the Permanent has remained an open problem.

To keep this paper self contained, we briefly recall the discussion from [AMSO0S]].

The noncommutative Permanent function over integer Perm(zq,---,x,) €
Z{x1, -+ ,xn} (Zis the set of integer) is defined as:
n
Perm(zq, -+ ,xpn) = Z Hmi)o(i).
oeS, i=1

Let SUBEXP denote N~ oDTIME(2"") and NSUBEXP denote N~ oNTIME(2").

Theorem 4. [AMSO0S8|]| If PIT for noncommutative circuits of polynomial degree
C(z1,-+ o) € Z{x1, -+ ,xy} is in SUBEXP, then either NEXP ¢ P/poly or the
noncommutative Permanent function does not have polynomial-size noncommutative
circuits.

Proof. Suppose NEXP C P/poly. Then, by the main result of [IKWO02|] we have
NEXP = MA. Furthermore, by Toda’s theorem MA C PPe™™z  \where the oracle
computes the integer permanent. Now, assuming PIT for noncommutative circuits
of polynomial degree is in deterministic subexponential-time, we will show that the
(noncommutative) Permanent function does not have polynomial-size noncommutative
circuits. Suppose to the contrary that it does have polynomial-size noncommutative cir-
cuits. Clearly, we can use it to compute the integer permanent as well. Furthermore, as
in we notice that the noncommutative n X n Permanent is also uniquely char-
acterized by the identities p1 (z) = z and p;(X) = Z;Zl x1pi—1(Xj) for1 < i < n,
where X is a matrix of i* noncommuting variables and X is its j-th minor w.r.t. the
first row. Le. the polynomials p;, 1 < ¢ < n satisfy these n identities over noncom-
muting variables x;;,1 < ¢,j < n if and only if p; computes the 7 x ¢ permanent of
noncommuting variables. The rest of the proof is exactly as in Impagliazzo-Kabanets
[KIO3]. We can easily describe an NP machine to simulate a PY¢"™2 computation. The
NP machine guesses a polynomial-size noncommutative circuit for Perm on m X m
matrices, where m is a polynomial bound on the matrix size of the queries made in
the computation of the P”¢"™2 machine. Then the NP machine verifies that the circuit
computes the permanent by checking the m noncommutative identities it must satisfy.
This can be done in SUBEXP by assumption. Finally, the NP machine uses the cir-
cuit to answer all the integer permanent queries that are made in the computation of
PF¢"™z machine. Putting it together, we get NEXP C NSUBEXP which contradicts the
nondeterministic time hierarchy theorem.
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5 The Results

We are now ready to prove our first result. Suppose the derandomization Hypothesis
1 holds (as stated in the introduction): i.e. suppose there is a deterministic algorithm .4,
that takes as input (C, n) where C' is an n-input boolean circuit and in subexponential
time computes a set of weight functions wy, wa, - - - , wy, w; : [n] — [2n] such that the
set system F defined by the circuit C' has a unique minimum weight set w.r.t. at least
one of the weight functions w;.

Let C' (21,2, - - , x,) be a noncommutative arithmetic circuit of degree d bounded
by a polynomial in size(C”). By Corollary Pl there is a deterministic polynomial-time
algorithm that takes as input C’ and a monomial m of degree at most d and accepts
if and only if the monomial m has nonzero coefficient in the polynomial computed
by C’. Moreover by corollary Bl we have a uniformly generated boolean circuit C' of
size polynomial in size(C") that accepts only the monomials x;, ;, - - - x;,, k < d that
have nonzero coefficients in the polynomial computed by C’. Now, as a consequence of
Theorem[3]and its proof we have a deterministic subexponential algorithm for checking
if C" = 0, assuming algorithm 4, exists. Namely, we compute the boolean circuit C'
from C’ in polynomial time. Then, invoking algorithm .A; with C' as input we compute
at most subexponentially many weight functions wy, - - - , w;. Then, following the proof
of Theorem 3] we construct the automata corresponding to these weight functions and
evaluate C” on the matrices that each of these automata define in the prescribed manner.
By assumption about algorithm A;, if C’ # 0 then one of these w; will give matrix
inputs for the variables z;,1 < j < n on which C' evaluates to a nonzero matrix. We
can now show the following theorem.

Theorem 5. [f the subexponential time algorithm A, satisfying Hypothesis 1 exists
then noncommutative identity testing is in SUBEXP which implies that either NEXP ¢
P/poly or the Permanent does not have polynomial size noncommutative circuits.

Proof. The result is a direct consequence of the discussion preceding the theorem state-
ment and Theorem 4l

Commutative Circuits

We now turn to the result under the stronger derandomization Hypothesis 2 (stated in
the introduction). More precisely, suppose there is a deterministic algorithm 45 that
takes as input (m,n) and in time polynomial in m computes a set of weight func-
tions wy, wa, - -+, we, w; : [n] — [2n] such that for each n-input boolean circuit C' of
size m, the set system F¢ defined by the circuit C' has a unique minimum weight
set w.r.t. at least one of the weight functions w;. We show that there is an explicit
polynomiaﬂ f(z1,-++ ,z,) in commuting variables x; that does not have subexpo-
nential size commutative circuits. The following theorem is similar in flavour to the
Agrawal’s result that a black-box derandomization of PIT for a class of arithmetic
circuit via pseudorandom generator will show similar lower bound (Lemma 5.1 of
[AgrO5])).

! By explicit we mean that the coefficients of f are computable in time exponential in 7.
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Theorem 6. Suppose there is a polynomial-time algorithm A, satisfying Hypothesis 2.
Then for all but finitely many n there is an explicit multilinear polynomial (where by
explicit we mean that the coefficients of the polynomial f,, are computable by a uniform
algorithm in time exponential in n) f(xy, -+ ,x,) € Flxy,x2,- -, 2] (Where F is
either Q or a finite field) that is computable in 22’ time (by a uniform algorithm) and
does not have arithmetic circuits of size 2°().

Proof. We will pick an appropriate multilinear polynomial f € F[zq, 22, -+, Zp]:
f(l'l,l'g,"',l'n): ZCSHI'Z';
SC[n] i€S

where the coefficients cg € F will be determined appropriately so that the polynomial
f has the claimed property.

Suppose Az runs in time m® for constant ¢ > 0, where m denotes the size bound
of the boolean circuit C' defining set system F¢. Notice that the number ¢ of weight
functions output by As is bounded by m*°.

The total number of coefficients cg of f is 2". For each weight function w; let
(wi1, - ,w;n) be the assignments to the variables x;. For each weight function
w;, 1 <4 <t we write down the following equations

f(yw“l,yw“?, ce L ytin) = 0.

Since f is of degree at most n, and the weights w;; are bounded by 2n,
f(y®wir y®iz ... yWin) is a univariate polynomial of degree at most 2n2 in y. Thus,
each of the above equations will give rise to at most 2n? linear equations in the un-
knowns cg.

In all, this will actually give us a system of at most 2n?m¢ linear equations over
F in the unknown scalars cg. Since the total number of distinct monomials is 2", and
2" asymptotically exceeds m¢ for m = 2°("), the system of linear equations has a
nontrivial solution in the cg provided m = 20(n) Furthermore, a nontrivial solution for
cs can be computed using Gaussian elimination in time exponential in n.

We claim that f does not have commutative circuits of size 2°(") over F. Assume
to the contrary that C’(zl, .-, x,) is a circuit for f(zy,---,x,) of size 2°(™). By
Lemmald notice that we can uniformly construct a boolean circuit C' of size m = 2°(")
that will take as input a monomial [, _¢ #; (encoded as an n bit boolean string repre-
senting S as a subset of [n]) and test if it is nonzero in C' and hence in f (1, - - ,2,).

Assuming Hypothesis 2, let w1, - - - ,w; be the weight functions output by A, for
input (m,n). By Hypothesis 2, for some weight function w; there is a unique mono-
mial [] jes %j such that > jes Wi,j takes the minimum value. Clearly, the commutative

circuit C' must be nonzero on substituting ¢ for x; (the coefficient of yzjes Wig
will be nonzero). However, f evaluates to zero on the integer assignments prescribed
by all the weight functions w1, - - - , w;. This is a contradiction to the assumption and it
completes the proof.

Remark 3. We note that Hypothesis 2 also implies the existence of an explicit polyno-
mial in noncommuting variables that does not have noncommutative circuits of subex-
ponential size (we can obtain it as an easy consequence of the above proof).
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We now show that under the derandomization Hypothesis 3 yields a different conse-
quence (about the integer permanent rather than some explicit function).

Theorem 7. If a subexponential-time algorithm As satisfying Hypothesis 3 exists then
identity testing over Z is in SUBEXP which implies that either NEXP ¢ P/poly or the
integer Permanent does not have polynomial size arithmetic circuits.

Proof. Using Lemma [3it is shown in [KSOI, Theorem 5] that there is a randomized
identity test for small degree polynomials in Q[x1, - - , x,], where the polynomial is
given by an arithmetic circuit C of polynomially bounded degree d. The idea is to pick a
random weight vector w : [n] — [2nd] and replace the indeterminate z; by y*(*), where
d is the total degree of the input polynomial. As the circuit C has small degree, after
this univariate substitution the circuit can be evaluated in deterministic polynomial time
to explicitly find the polynomial in y. By Lemma[3]it will be nonzero with probability
1/2if C computes a nonzero polynomial.

Coming to the proof of this theorem, if NEXP ¢ P/poly then we are done. So,
suppose NEXP C P/poly. Notice that given any monomial xill -~ xdn of total degree
bounded by d we can test if it is a nonzero monomial of C'in exponential time ( explic-
itly listing down the monomials of the polynomial computed by C). Therefore, since
NEXP C P/poly there is a polynomial-size boolean circuit C' that accepts the vector
(diy--+ ,dy)iff xill .- 9 is a nonzero monomial in the given polynomial (as required
for application of Hypothesis 3).

Now, we invoke the derandomization Hypothesis 3. We can apply the Klivans-
Spielman polynomial identity test, explained above, to the arithmetic circuit C for each
of the ¢ weight vectors wy, - - - , w; generated by algorithm A3 to obtain a subexponen-
tial deterministic identity test for the circuit C by the properties of .A3. Now, following
the argument of Impagliazzo-Kabanets it is easy to derive that the integer Per-
manent does not have polynomial size arithmetic circuits.

Remark 4. Although the permanent is a multilinear polynomial, notice that Hypothesis
2 does not seem strong enough to prove the above theorem. The reason is that the arith-
metic circuit for the permanent that is nondeterministically guessed may not compute
a multilinear polynomial and hence the application of Lemmad is not possible. There
does not appear any easy way of testing if the guessed circuit computes a multilinear
polynomial.

Remark 5. We can formulate both Hypothesis 1 and Hypothesis 2 more generally by
letting the running time of algorithms .4; and Az be a function ¢(m, n). We will then
obtain suitably quantified circuit lower bound results as consequence.

6 Discussion

An interesting open question is whether derandomizing similar restricted versions of
the Valiant-Vazirani lemma also implies circuit lower bounds. We recall the Valiant-
Vazirani lemma as stated in the original paper [VV86].
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Lemma 4. Let S C {0,1}". Suppose w;,1 < i < t are picked uniformly at random
from {0,1}. For each i, let S; = {v € S | v.w; = 0,1 < j < i} and let pi(S) be the
probability that |S;| = 1 for some i. Then p;(S) > 1/4.

Analogous to our discussion in Section[T] here too we can consider the restricted version
where we consider S C {0,1}™ to be the set of n-bit vectors accepted by a boolean
circuit C' of size m. We can similarly formulate derandomization hypotheses similar to
Hypotheses 1 and 2.

We do not know if there is another randomized polynomial identity test for
noncommutative arithmetic circuits based on the Valiant-Vazirani lemma. The
automata-theoretic technique of Section B does not appear to work. Specifically, given
amatrix h : F§ — F5%, there is no deterministic finite automaton of size poly(n, k) that
accepts x € FJ if and only if h(z) = 0.

Acknowledgements. We are grateful to Manindra Agrawal for interesting discussions
and his suggestion that Theorem [@] can be obtained from the stronger hypothesis. We
also thank Srikanth Srinivasan for comments and discussions.
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Abstract. We continue the study of robust tensor codes and expand
the class of base codes that can be used as a starting point for the con-
struction of locally testable codes via robust two-wise tensor products.
In particular, we show that all unique-neighbor expander codes and all
locally correctable codes, when tensored with any other good-distance
code, are robust and hence can be used to construct locally testable
codes. Previous works by [2] required stronger expansion properties to
obtain locally testable codes.

Our proofs follow by defining the notion of weakly smooth codes that
generalize the smooth codes of [2]. We show that weakly smooth codes are
sufficient for constructing robust tensor codes. Using the weaker defini-
tion, we are able to expand the family of base codes to include the afore-
mentioned ones.

1 Introduction

A linear code over a finite field F' is a linear subspace C' C F™. A code is locally
testable if given a word € F™ one can verify whether © € C' by reading only a
few (randomly chosen) symbols from . More precisely such a code has a tester,
which is a randomized algorithm with oracle access to the received word x. The
tester reads at most ¢ symbols from x and based on this “local view” decides if
x € C or not. It should accept codewords with probability one, and reject words
that are “far” (in Hamming distance) with “noticeable” probability.

Locally Testable Codes (LTCs) were first explicitly studied by Goldreich and
Sudan [9] and since then a few constructions of LTCs were suggested (See [8] for
an extensive survey of those constructions). All known efficient constructions of
LTCs, i.e. that obtain subexponential rate, rely on some form of ”composition”
of two (or more) codes. One of the simplest ways to compose codes for the
construction of LTCs is by use of the tensor product, as suggested by Ben-Sasson
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and Sudan [I]. They introduced the notion of robust LTCs: An LTC is called
robust if whenever the received word is far from the code, then with noticeable
probability the local view of the tester is far from an accepting local view (see
robust definition [2]). It was shown in [I] that a code obtained by tensoring
three or more codes (i.e. C; ® Cy ® C3) is robustly testable when the distances
of the codes are big enough, and used this result to construct LTCs. Then they
considered the tensor product of two codes. Given two linear codes R,C' their
tensor product R® C' consists of all matrices whose rows are codewords of R and
whose columns are codewords of C. If R and C' are locally testable, we would
like R ® C' to be locally testable. [I] suggested using the following test for the
testing the tensor product R ® C' and asked whether it is robust:

Test for R ® C: Pick a random row (or column), accept iff it belongs to R (or
).

Valiant [3] showed a surprising example of two linear codes R and C for which
the test above is not robust, by exhibiting a word = that is far from R ® C but
such that the rows of = are very close to R and the columns of x are very close
to C. Additional examples give a codes whose tensor product with itself is not
robust [4] and two good codes (with linear rate) whose tensor product is not
robust [1].

Despite these examples Dinur et al. showed in [2] that the above test is robust
as long as one of the base codes is smooth, according to a definition of the
term introduced there (see Definition [Bl). The family of smooth codes includes
locally testable codes and certain codes constructed from expander graphs with
very good expansion properties. In this work we continue this line of research and
enlarge the family of base codes that result in robust tensor codes and do this by
working with a weaker definition of smoothness (Definition ). Using the weaker
definition, we still manage to get pretty much the same results as in [2] and
do this using the same proof strategy as there. However, our weaker definition
allows us to argue — in what we view as the main technical contributions of
this paper (Sections [Gl and [) — that a larger family of codes is suitable for
forming robust tensor codes. One notable example is that our definition allows
us to argue that any expander code with unique-neighbor expansion (i.e., with
expansion parameter v < 1/2 as per Definition [3)) is also weakly smooth, hence
robust. We stress that unique-neighbor expansion is the minimal requirement in
terms of expansion needed to argue an expander code has good (i.e., constant
relative) distance, so our our work shows all “combinatorially good” expander
coded] are robust. In comparison, the work of [2] required stronger expansion
parameters (y < 1/4) of the kind needed to ensure an expander code is not
merely good in terms of its distance, but can also be decoded in linear time [10].

Another family of codes shown here to be robust under two-wise tensor prod-
ucts is the family of locally correctable codes (LCCs), see Definition [

! Clearly, there exist non-unique-neighbor expander codes with good distance. How-
ever, the distance of these codes cannot be argued merely using the combinatorial
structure of the underlying parity check matrix.
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We end this section by pointing out that recently, tensor codes have played
a role in the combinatorial construction by Meir [6] of quasilinear length lo-
cally testable codes. Better base codes may result in LTCs with improved rate,
hence the importance in broadening the class of base codes that can be used to
construct robust tensor codes.

Organization of the Paper. In the following section we provide the now-
standard definitions regarding robust tensor codes. In Section B] We formally
define weakly smooth codes and state our main results. In Section [4] We prove
weakly smooth codes are robust. Section [ shows the smooth codes of [2] are
also weakly smooth. The last two sections prove that unique-neighbor expander
codes, and locally correctable codes, respectively, are weakly smooth.

2 Preliminary Definitions

The definitions appearing here are pretty much standard in the literature on
tensor-based LTCs.

Throughout this paper F' is a finite field and C, R are linear codes over F.
For ¢ € C let supp(c) = {i|e; # 0} and wt(c) = [supp(c)|. We define the distance
between two words z,y € F™ to be d(z,y) = [{i | ; # yi}| and the relative
distance to be 6(z,y) = 4=y) The distance of a code is denoted d(C) and defined

to be the minimal value ofnd(x, y) for two distinet codewords z,y € C. Similarly,
the relative distance of the code is denoted 6(C') = d(f) .Forz € F" and C C F"™,
let ¢ (x) = minyec{6(z,y)} denote the relative distance of = from code C. We
let dim(C') denote the dimension of C. The vector inner product between u; and
ug is denoted by (uy,us). For code C let C+ = {u € F" |Vee C: (u,c) =0}
be its dual code and let Ci* = {u € C* | wt(u) = t}. In similar way we define
Ci, ={ueCt|wtu) <t}and O, = {u € C+ | wt(u) < t}. For w € F™
and S C [n] we let w|s = (wj,,wj,,...,w;, ) when {ji,j2, ..., jm} = S be the
projection of w on subset S. Similarly, we let C|s = {c|s | ¢ € C'} to denote the
projection of code C on subset S.

2.1 Tensor Product of Codes

For x € F™ and y € F™ we let  ® y denote tensor product of z and y (i.e.
the n x m matrix xyT). Let R C F™ and C' C F™ be linear codes. We define
the tensor product code R ® C' to be the linear subspace spanned by words
r®@cée F"™ for r € R and ¢ € C. Some immediate facts:

— The code R ® C' consists of all n x m matrices over F whose rows belong to
R and whose columns belong to C.
— dim(R ® C) = dim(R) - dim(C)
—6(R®C)=46(R)-6(C)
Let M € F™ @ F™ and let (M) = drgc(M). Let 6™ (M) = Spgrn (M)
denote the distance from the space of matrices whose rows are codewords of R.
This is expected distance of a random row in x from R. Similarly let §°°/(M) =

dpmgc(M).
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2.2 Robust Locally Testable Codes

Definition 1 (Robustness). Let M be a candidate codeword for R ® C. The
robustness of M is defined as p(M) = (87 (M) + §°°/(M))/2, i.e., it is the
average distance of “local views” of the codeword. The code R ® C' is robustly
testable if there exists a constant a such that gg%g > « for every M.

The robustness of a Tester T is defined as p? = minyre rac 51?’;(;\/8\4).

2.3 Low Density Parity Check (LDPC) Codes

The following definition is the natural generalization of a LDPC codes to fields
of size > 2.

Definition 2 (LDPC codes). A check graph ([n],[m],E, F) is a bipartite
graph ([n],[m], E) over F for a code C C F™ where each edge ¢ = (i,j) € E
is labeled by some e(; ;) # 0 € F and the following holds (let N(j) denote the
neighbors of j in the graph):

r e C«<=Vjem| Z xi-eq ) =0,
i€N(7)

where the sum ZieN(j) T - e ) 18 computed over F'.

Clearly, any linear code C' C F has a corresponding check graph ([n], [m], E, F).
Moreover if C*+ = span(CZ%,) then without loss of generality every right hand
node j € [m] has degree at most d.

Definition 3 (Expander graphs). Let ¢,d € N and let v,6 € (0,1). Define
a (¢,d)-regular (v,8)-expander to be a bipartite graph (L, R, E,F) with vertex
sets L, R such that all vertices in L have degree ¢, and all vertices in R have
degree d; and the additional property that every set of vertices L' C L, such that
|L'| < 6|L|, has at least (1 — ~)c|L'| neighbors.

We say that a code C is an (¢, d,~,6)-expander code if it has a check graph
that is a (¢, d)-regular (7, 8)-expander. It is well-known that if v < 1/2 then
the graph has unique-neighbor expansion, meaning that for every L' C L there
exists a set of unique neighbors R’ on the right such that each member of R’
is a neighbor of a unique member of L’. Thus, from here on we refer to (v, )-
expanders as unique-neighbor expanders. The following well-known proposition
(the proof of which is included for the sake of completeness) shows that unique-
neighbor expansion of G is sufficient to guarantee the code whose check graph
is G has large distance.

Proposition 1. IfC is(c,d,,d)-expander code over F and~y < ;, then6(C) > 6.

Proof. We prove that every non-zero word in C' must have weight more than
on. Indeed let (L, R, E, F') be check graph of C that is a (c,d)-regular (v, 9)-
expander. The proposition follows by examining the unique neighbor structure
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of the graph. Let x € C be such that 0 < wt(z) < én and L' = supp(z) C L.
But then L has at least (1—~)c|L'| > §|L'| neighbors in R. At least one of these
sees only one element of L', so the check by this element (corresponding dual
word) will give z; - e(; ;) when x; # 0, e(; ;) # 0 and thus z; - e(; ;) # 0, violating
the corresponding constraint and contradicting = € C.

3 Main Results

Our first main result says that codes obtained by the tensor product of a code
with constant relative distance and a unique-neighbor expander code is robust:

Theorem 1 (Unique-Neighbor Expander codes are robust). Let R C
F™ be a code of distance at least 6g > 0. Let C C F™ be a (¢, d,~y,0)-expander
code for some ¢,d € N, 6 >0, and 0 < v < 1/2. Then,

. 0.56-6r 6Rr-0.250
T >
pt > min{ ogr 5 ,1/8}.

Where d* < d*, k = (log(0.51,)0.05) + 1.

The above theorem extends the result of [2] where a similar result was proved for
expanders with the stronger requirement < 1/6. Notice the difference between
v < 1/6 and unique-neighbor expansion (y < 1/2) is qualitative, not merely
quantitative. This is because expansion v < 1/4 is required to guarantee efficient
decoding algorithms, as shown by Sipser and Spielman in [I0] whereas v < 1/2
is sufficient for claiming the code has large distance, but does not necessarily
warrant efficient decoding.

Our next result extends [2] in a different direction by showing that locally
correctable codes are also robust. Informally, locally correctable codes allow to
recover each entry of a codeword with high probability by reading only a few
entries of the codeword even if a large fraction of it is adversely corrupted (see
Definition [7]).

Theorem 2 (Locally correctable codes are robust). Let R C F™ be a code
of distance at least 6g > 0. Let C' C F™ be a (¢, 6, q)-locally correctable code with
€ > 0. Then,

To prove both theorems we first define weakly smooth codes and prove that the
tensor of a weakly smooth code and another code with constant relative distance is
robust. Then we show that smooth codes are also weakly smooth. Finally we show
that all unique-neighbor expander codes (with v < 1/2) and all locally correctable
codes are weakly smooth, thus obtaining Theorems[I] 2] respectively.
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3.1 Weakly Smooth Codes

We are coming now to the central definition of the paper, that of a weakly
smooth code. This definition allows us to generalize the work of [2] by using
pretty much the same proof as there. In particular, in Section [§] we show that
every code that is smooth according to [2] is also weakly smooth as per Definition
@l Furthermore, using our definition we get robust tensor from a broader family
of base codes.

Both the smooth codes of [2] and our weakly smooth codes require the code
retain large distance even after a portion of its coordinates and constraints have
been removed. However there are two subtle differences between the two notions.

1. In the smooth codes setting an adversary removes a fraction of constraints
and then a “Good” player removes a fraction of indices. In our Definition H]
both the adversary and the good player remove sets of indices.

2. In the smooth codes work with a predefined set of low weight constraints
coming from a regular bipartite graph. Our Definition @] does not assume
any graph, nor does it require any regularity of degrees. This slackness and
nonregularity will be crucial in arguing that unique-neighbor expanders are
weakly smooth.

Definition 4 (Weakly smooth codes). Let0 < a; <af <1, 0<az <1, d*
be constants. Code C' is (a1, ), ag,d*)-weakly smooth if VI C [n], |I| < ain
letting

Constr(;y = {u € C’%‘d*

supp(u) N1 = 0}

and C' = (Constr(j))l there exists I' C [n], I C I', |I'| < a4n such that
d(Clhn]\p) > QoM.

The following is the main technical lemma used to show weakly smooth codes
are robust. Its proof follows in the next section.

Lemma 1 (Main Lemma). Let R C F™ and C' C F™ be codes of distance 6g
and b¢. Assume C' is (aq, o)y < bc, g, d*)-weakly smooth and let M € F™ Q@ F™.

If p(M) < min{ 28, 722} then §(M) < 8p(M).

4 Weakly Smooth Codes Are Robust — Proof of
Lemma [I]

We pretty much follow the proof of the Main Lemma in [2], but attend to the
required modifications needed to carry the proof with the weaker requirement
of smoothness. The main place where we use the weakly smooth property is the
Proposition

Proof (Proof of Lemma ). For row i € [n], let r; € R denote the codeword
of R closest to the ith row of M. For column j € [m], let ¢/} € C' denote the
codeword of C' closest to the jth column of M. Let Mz denote the n x m matrix
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whose ith row is r;, and let M denote the matrix whose jth column is 9 Let
E = Mg — M.

In what follows matrices Mg, Mo and (especially) E will be central objects
of attention. We refer to E as the error matrix. Note that §(M, Mp) = 6" (M)
and §(M, Mg) = 6°°/(M) and with some abuse of notation let wt(E) be the
relative weight of F, so

wt(E) = (Mg, M¢) < 6(M, Mg) 4 6(M, M¢)
= §"(M) + 6L (M) = 2p(M). (1)

Our proof strategy is to show that the error matrix F is actually very structured.
We do this in two steps. First we show that its columns satisfy most constraints
of the column code. Then we show that E contains a large submatrix which is
all zeroes. Finally using this structure of £ we show that M is close to some
codeword in R ® C. The following is from [2] Proposition 4], we give the proof
for the sake of completeness.

Proposition 2. Let u € Cy be a constraint of C with supp(u) = {i1,...,i4}.
Let e; denote the ith row of E. Suppose wt(e;;) < 6r/d for every j € [d]. Then
ul - E =0.

Proof. Note that Ve € C: (c,u) = 0. Let ¢; denote the i-th row of the ma-
trix Mc.(Recall that the rows of M¢ are not necessarily codewords of any nice
code - it is only the columns of M¢ that are codewords of C'). For every column
J, we have ((M¢);,u) = 0 (since the columns of M¢ are codewords of C').

Thus we conclude that u” - Mg = 0 as a vector. Clearly, u” - Mg € R since
each one of the rows of Mg is a codeword of R. But this implies

uT-E:uT-(MR—MC):uT-MR—uT-MC:uT-MR—OER

Now we use the fact that the e;;s have small weight for i; € [d]. This implies
that
wt(ul - E) < wt(u) - (6p/d) < 6.

But R is an error-correcting code of the minimum distance 6z so the only word
of weight less than 6 in it is the zero codeword, yielding u’ - E = 0.

Proposition 3. There erist subsets U C [m] and V' C [n] with |U|/m < ér
and |V|/n < éc such that letting V = [n]\ V and U = [m] \ U we have for all
ieV,jeU that E(i,j) = 0.

Proof. Let Vi C [n] be the set of indices corresponding to rows of the error
matrix E with weight more than 6r/d*, i.e.

Vi ={i€n] | wt(e:) > 6r/d*}.

Clearly, |V1| < ain, since I‘T/ll‘ . fl’f < wt(E) < 2p(M) and thus “:Lll < %2(/]\52 <o

a1§R

where the last inequality follows from the assumption p(M) < 7. Let
Constr(y,) = {u € C’%d* | supp(u)NVi = 0} and C' = (Constr(vl))l. Proposition
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implies that Vu € Constr(y,) we have v’ - E = 0, i.e. every column of E,
denoted by Ej, satisfies constraint u and thus E; € C".

Recall that C is (a1,0} < é¢,asg,d*)-weakly smooth. Associate the set V3
with I from Definition @l Following this definition, there exists a set I’ (let
V =1T), |V] = [I'| <ajn such that d(C,, ) = d(Cppv) = azn. We notice
that for every column of E, denoted by Ej;, we have (E;)|\r € Cpuj\v- Thus
E; is either zero outside V' or has at least aan non-zero elements outside V.

Let U be the set of indices corresponding to the "heavy columns” of E that
have aon or more non-zero elements in the rows outside V. We conclude that
every column of E that is not zero outside V is located in U. We argue that
for each (i,j) € V x U we have E(i,7) = 0. This is true since after we remove
rows from V' all projected nonzero columns have weight at least agn and thus all
nonzero columns are located in U. Hence all columns of V x U are zero columns.

Clearly, Ing < R, since Ing ‘g < wt(E) < 2p(M) and thus %I < 2”(&24) < R,

where the last inequality follows from the assumption p(M) < °77*2.

We now use a standard property of tensor products to claim Mg, Mz and M
are close to a codeword of R®C'. Recall that M € F™ ™ and that §(M¢, Mp) <
2p(M). We reproduce the following proof from [2, Proposition 6] for the sake of
completeness.

Proposition 4. Assume there exist sets U C [m] and V' C [n], |U|/m < g
and |V|/n < 6¢ such that Mg(i,j) # Mc(i,j) implies j € U or i € V. Then
6(M) < 8p(M).

Proof. First we note that there exists a matrix N € R® C that agrees with Mp
and Mo on V x U (See [Il Proposition 3]). Recall also that §(M, Mpg) = §"°% <
2p(M). So it suffices to show §(Mp, N) < 6p(M).We do so in two steps. First we
show that 6(Mp, N) < 2p(Mp). We then show that p(Mpr) < 3p(M) concluding
the proof.

For the first part we start by noting that Mpr and N agree on every row in
V. This is the case since both rows are codewords of R which may disagree only
on entries from the columns of U, but the number of such columns is less that
6rm. Next we claim that for every column j € [m] the closest codeword of C'
to the Mg(+,7), the jth column of Mg, is N(-, j), the jth column of N. This is
true since Mp(i,5) # N(i,7) implies ¢ € V and so the number of such i is less
than écn. Thus for every j, we have N (-, 7) is the (unique) decoding of the jth
column of Mg. Averaging over j, we get that §°°/(Mg) = §(Mg, N). In turn this
yields p(Mg) > 6(Mg)/2 = 6(Mg, N)/2. This yields the first of the two desired
inequalities.

Now to bound p(Mpg), note that for any pair of matrices M; and My we have
p(My) < p(Mz) + 6(My, Ms). Indeed it is the case that 6"V (M;) < §™°% (M) +
§(My, My) and 6 (M) < 6 (My)+6(My, Ms). When the above two arguments
are combined it yields p(M1) < p(Ma) + 6(M;, M3). Applying this inequality to
My = Mp and My = M we get p(Mgr) < p(M) 4+ 6§(Mg, M) < 3p(M). This
yields the second inequality and thus the proof of the proposition.

The Main Lemma [ follows immediately from the two last propositions.
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5 Smooth Codes Are also Weakly so

We now show that our Definition M is indeed a generalization of smooth codes of
Dinur et al. [2]. In what follows F» denotes the two-element field and C(Ry) is
a code defined by constraints in R\ Ry (For further information and definitions
see [2].). Recall the definition of smooth code:

Definition 5 (Smooth Codes). A code C C FY is (d, «, 3, 6)-smooth if it has
a parity check graph B = (L, R, E) where all the right vertices R have degree d,
the left vertices have degree ¢ = d|R|/|L|, and for every set Ry C R such that
|Ro| < «|R|, there exist a set Lo C L, |Lo| < B|L| such that the code C'(Ro)|in)\ L,
has distance at least 6.

Claim. If C C FY is a (d, «, 3, 6)-smooth code then it is (a1, o), ag, d*)-weakly
smooth with oy = §, o} = 8, ag =6, d* = d.

Proof. Let R be a set of constraints of degree d and let I C [n], |I| < aqn = 2}
be the index set from Definition [l Remove all d-constraints that touch at least
one index in I. Let Ry be a set of removed constraints from R. We have left
degree ¢ = dlfl, so, we removed at most ¢-ayn = d|R|a; = a|R| constraints. Let
Constr(;y = {u € CF | supp(u) NI = 0} be the set of constraints in R\ Ry (low
weight dual words). We notice that C'(Ry) = (Constr(l))L. Let I' C [n], |I'| <
fBn = ojn be index set from smooth codes definition (Definition Bl that should
be thrown out in order to remain with good distance, i.e. d(C(Ro)|p\1/) > 6n =
agn. Clearly I C I" as otherwise d(C(Ro)|[n)\7) = 1. Thus from the definition of
smoothness, letting C’ = (Constr(j))J‘ we have d(C’|j,,)\ 1) > aon which proves
that C'is (a1, o, ag, d*)-weakly smooth.

6 Unique-Neighbor Expander Codes Are Weakly Smooth

As explained in Section Bl Dinur et al. [2] showed that expander codes with
v < é are smooth and thus result in robust tensor product. In this section we
show that it is possible to obtain robust tensor codes from expander code with
the weaker assumption v < é We first define the gap property (Definition [])
and prove that it implies weak smoothness. Then we show that unique-neighbor

expander codes have the gap property.

Definition 6 (Gap property). Code C has a (a,6,d)-gap property if VJ C
[n],|J| < an letting Constr(;y = {u € CZ,; | supp(u) NJ = 0} and C' =
(Constr(J))L we have that Yc € C'|i,)\ s either wt(c) < 0.16n or wt(c) > 0.86n.

Claim. If C has («,d,d)-gap property then it is (o, « + 0.36,0.56, d)-weakly
smooth.

Proof. Clearly, C has no codewords of weight between 0.16n and 0.86n. To see
this take J = () and then gap property implies that Vw € F™ if 0.16n < wt(w) <
0.86n then (w,u) # 0 for some u € Céd.
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Let S = {c e C |0 < wt(c) < 0.16n} be a set of all non-zero low weight
codewords. Let Jg be the union of supports of non-zero low weight words, i.e.
Js = J.cgsupp(c) and for any set A C C'let Ja = [J,c 4 supp(c). We show that
|Js| < 0.36n.

Assume the contrary, i.e. |Jg| > ¢ - 0.3n. Then there exists S” C S, such that
0.26m < |Jg/| < 0.36n. To see this remove low weight words one by one from S,
each time decreasing S at most by 0.16n.

Consider a random linear combination of codewords from S’. The expected
weight of the above is more than 0.16n but can not exceed 0.36n, thus there exists
such a linear combination of low weight codewords that produces a codeword
with weight more than 0.16n but less than 0.36n. Contradiction.

Thus for the rest of the proof we assume |Js| < 0.36n. We are ready to
show that C is («,a + 0.36n,0.56n, d)-weakly smooth. Let I C [n], |I| < an
be arbitrarily chosen set. Let Constr(;y = {u € CZ, | supp(u) NI = 0} and
C' = (Constr(l))L.

JFrom the definition of the gap property and from the above it follows that
Ve € O\ 1 either wt(c) < 0.16n and thus supp(c) C Jg or wt(c) > 0.86n.

Let I' = Jg U T and then |I'| < |[Jg| + |I| < an + 0.36n. We claim that
e’ ‘[n]\ IUJS)) = d(C| NI ) > 0.56n. To see this assume ¢’ € Cl| N € =
/|[ ]\([UJS) e ‘[n]\(juJS) such that 0 < wt(¢”) < 0.56n but then 0 <

wt(c”) < wi(d) < \Js\ + Wt( ") < 0.86n and thus ¢ is a low Weight word, i.e.
supp(c’) € Jg. Hence ¢’ = |\ (1uss) = 0, contradicting wt(c”) > 0.

Proposition 5. Let C be a linear code over F. If u; € Cif and us € Cig

and i € supp(u1) N supp(uz) then exists uz € Cif—i—g such that supp(ug) C
(supp(u1) U supp(uz)) \ {i}.

Proof. Let a € F be ith entry in u; and b € F be ith entry in us. Then

us =a tup + b tuy € C’<f+g has desired properties.

Claim. Let C be a (¢, d, 7y, 6)-expander code over F' with constant 7 < é Let
w € F™ with 0 < wt(w) < én with T = supp(w). Then at least a 0.95-fraction of
indices i € I have u; € C%,. where d* < d*, k = (logo.54+(0.05)) + 1 such that
supp(u;) NI = {i}.

Proof. Fix set I with |I| < én. Let (L, R, E) be a check graph of C' that is
a (¢, d)-regular (v, 6)-expander. The claim follows from examining the unique
neighbor structure of the graph. We prove this by induction on 7 = 1...k and
show set constructions I; satisfying

-1 :I, Ij+1 C Ij
= Ll < (G + L]
— Vi€ I;\ Ij4 exists u; € CZ,; with supp(u;) N1 = {i}

We then conclude (3 + v)* < 0.05 and thus from the induction follows that
I, C I, [I] <0.05- |I] and Vi € I'\ I, exists u; € C<,, with supp(u;) N1 = {i}.
And the the proof of the claim is completed.
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For the base case let I; = I. Since C' is an expander and |I;| < én, I; has
at least (1 —v)c[I1| = (§ 4 (0.5 — ¥)c)|[1| neighbors in R. Each index i € I;
is asked by ¢ constraints in R. And thus the number of neighbors that ask at
least 2 indices from I; is bounded from above by (§)[/1]. Hence there are at least
((3 —7)e)|I1| unique neighbors in R. Since a single index can not have more than
¢ unique neighbors in R, the number of indices in /; having unique neighbor is
at least (y —)|I1]. Le. at least (; —~)-fraction of all indices in I have a unique
neighbor with support d = d'. Let I, C I; be subset of all indices i € I; that
have no unique neighbor of weight at most d'. We constructed set I1, I such
that

— Il = I, 12 C Il
= || < (; + )4
— Vi € I \ I exists u; € C%,, with supp(u;) NI = {i}

And this completes the base case.

Assume correctness until j—1 and let us prove for j. Consider I, |[;| < |I1] <
on. By the unique neighbor expansion at least (; — y)-fraction of indices i € I,
have bounded unique neighbor, i.e. u; € C such that supp(u;) N I; = {i}. Let
Ij41 C I be indices ¢ € I; that have no bounded unique neighbor and thus
1] < (5 =)

Fix i € I;\I;41 arbitrarily. There exists u; € C'; such that supp(u;)NI; = {i}.
Every index [ € supp(u;), I # i is located either in [n]\ I; or in I \ I;. We handle
all I € I; \ I; using linear combination according to Proposition p] to obtain
a constraint u, € CZ,; such that supp(u}) NI = {i}. This is possible since
every | € I1 \ I; is located in some Iy for 1 < f < j and thus from induction
assumption has u; € CZ,;_, such that supp(u;) NI = {l}. Since wt(u;) < d we
obtain u} € C%,;_, , = C%,; such that supp(u}) NI = {i}. So we showed

= Ljp1 C U .
= Ll < (5 + NI
— Vi € I; \ Ij41 exists u; € CZ,; with supp(u;) NI = {i}

This yields the induction and the claim.

Corollary 1. If C is (c¢,d,v,6) expander code with v < ; then C' has

(0.56,0.56, d*) gap property where d* < d*, k = (l0g(0.54+)0.05) 4 1.

Proof. Let J C [n], |J| < 0.56 be arbitrarily chosen. Let Constr( ;) = {u €
CZ e | supp(u)NJ = 0} and C' = (Constr(J))J‘. Assume by contradiction, there
exists w € C’[’n]\J such that 0 < 0.1 (0.56)n < wt(w) < 0.8 - (0.56)n. And thus
there is no u € Constr(y such that |supp(u) Nsupp(w)| = 1.

Let I = JUsupp(w), [I| < |J| + wt(w) < 0.56n 4+ 0.46n < én. We notice
that supp(w) N'J = 0 and [supp(w)| > 0.05 - |I|. Thus Claim ] implies that
there exists u € CZ . such that |supp(u) N supp(w)| = 1 and [supp(u) N 1| =
|supp(u) Nsupp(w)| = 1. Thus u € Constr(y such that [supp(u) Nsupp(w)| = 1.
Contradiction.
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Claim. If C is (c¢,d,7,6) expander code with v < é then C is

(0.58,0.656, 0.2568, d*)-weakly smooth where d* < d*, k = (log(o.5+)0.05) + 1.

Proof. Follows immediately from Corollary [[l and Claim [6l Corollary [ implies
that C has (0.56,0.56,d*) gap property where d* < d*, k = (l0g(0.54+)0.05) + 1.
Claim [@] implies that C' is (0.58,0.56 + 0.158, 0.256, d*)-weakly smooth .

Proof (Proof of Theorem[). Let R C F™ and C' C F™ be codes of distance g
and 6¢c. Let M € F™ ® F™. Claim [0 implies that C is (0.56,0.656,0.256, d*)-
weakly smooth where d* < d*, k = (l0g(0.54+)0.05) + 1. Main Lemma implies

that if p(M) < min{ " 56 )or on- (O 2001 then 6(M) < 8p(M).

7 Locally Correctable Codes Are Weakly Smooth

Definition 7 (Locally Correctable Code). A [n,k,d||p| code C is called
(q,€,0) locally correctable code if there exists a randomized decoder (D) that
reads at most q entries and the following holds: ¥Ye € C, Vi € [n| and ¥Vé € F"
such that d(c,¢) < én we have

Pr[D%[i] = ¢;] > P +e

i.e. with probability at least Iéﬂl + € entry c; will be recovered correct.

Without loss of generality we assume that given ¢ € F™ the ”correction” of
entry 4 (obtaining ¢;) is done by choosing random u € S C C’<q +1 such that
i € supp(u). Formally, assume the ith entry of u is u;, let uP™ = |\ fi} s

P9l = ¢ qqy and then ¢; is recovered by D[] = (W) hotice that
Uyg 7é 0
The next claim holds for every e > 0 which can be arbitrarily close to 0 (e.g.

0(1)) whereas usually locally correctable codes are defined with € = £2(1).

Claim. If C is (e,6,q)-locally correctable code with ¢ > 0 then it is
(0.56,0.56,0.56, ¢ + 1)-weakly smooth and its relative distance is at least 6.

Proof. We first show that VI C [n], |I| < én and Vi € I we have u; € CZ,,,
with supp(u;) NI = {i}. Assume the contrary and fix I C [n], |I| < én and
i € 1. So, for all u; € C’éqﬂ with 7 € supp(u;) NI we have |supp(u;) N I| > 2.
Consider an adversary that takes ¢ € C' and sets c¢; to random element from
F for all jel, obtaimng ¢. Clearly, ¢; will be recovered with probability at
most | | since for every u(® C< 4+1 such that ¢ € supp(u @@ )) the inner product

(W) g3y €l 3) Will produce a uniformly random value in F.

We next bhOW that d(C) > én. To see this assume ¢ € C such that 0 <
wt(c) < én. Let I = supp(c), |I| < én and i € I. There exists u € C’éqﬂ with
supp(u) Nsupp(c) = {i} and thus (u,w) # 0 implies ¢ ¢ C.

We finally show the weak smoothness of C. Let I C [n], |I| < 0.56n be the
adversary chosen set and let I = I. Let Constr ;) = {u € CZ,,, [ supp(u)nl = 0}
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and ¢’ = (Constr(j))J‘. We claim that d(C’|j,;\;) > 0.56n. This is true, since
otherwise we have ¢/ € (', cfn]\j € C'|jp)\1 such that 0 < wt(cfn]\l) < 0.56m.
But then 0 < wt(c’) < 0.56n + [I| < én and thus exists u € Constry) such that
[supp(u) Nsupp(c’)| = 1 which implies (u, ¢’) # 0 and ¢’ ¢ C’. Contradiction. So,
C'is (0.56,0.56,0.56, ¢ + 1)-weakly smooth.

Proof (of Theorem [@). Let R C F™ and C C F™ be linear codes such that
6(R) > 6r. Let M € F™ @ F™. Claim [ implies that C' is (0.56, 0.5, 0.56, g+ 1)-
weakly smooth and §(C') > 6. The Main Lemma [ implies that if p(M) <

. .56)-6p  6r -(0.56 .56)-6
min{ (g(i_g_l)l:‘, " (35 )} = (g(sq_i)_l)R then §(M) < 8p(M).

Acknowledgements. We thank Madhu Sudan for helpful discussions.

References

1. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
In: APPROX-RANDOM, pp. 286-297 (2004) (See ECCC TR04-046, 2004)

2. Dinur, I., Sudan, M., Wigderson, A.: Robust local testability of tensor products of
LDPC codes. In: APPROX-RANDOM, pp. 304-315 (2006)

3. Valiant, P.: The tensor product of two codes is not necessarily robustly testable.
In: APPROX-RANDOM, pp. 472-481 (2005)

4. Copersmith, D., Rudra, A.: On the robust testability of tensor products of codes,
ECCC TR05-104 (2005)

5. Meir, O.: On the rectangle method in proofs of robustness of tensor products,
ECCC TRO7 (2007)

6. Meir, O.: Combinatorial Construction of Locally Testable Codes. M.Sc. Thesis,
Weizmann Institute of Science (2007)

7. Goldreich, O., Meir, O.: The tensor product of two good codes is not necessarily
robustly testable, ECCC TRO7 (2007)

8. Goldreich, O.: Short locally testable codes and proofs (survey), ECCC TR05-014
(2005)

9. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost linear length.
In: FOCS (2002), pp. 13-22 (See ECCC TR02-050 2002)

10. Spielman, D.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. on Information Theory, 1723-1731 (1996)



On the Degree Sequences of Random
Outerplanar and Series-Parallel Graphs

Nicla Bernasconi, Konstantinos Panagiotou*, and Angelika Steger

Institute of Theoretical Computer Science, ETH Zurich
Universitiatsstrasse 6, CH-8092 Zurich
{nicla,panagiok,steger}@inf.ethz.ch

Abstract. Let G be a class of labeled connected graphs and let B be
the class of biconnected graphs in G. In this paper we develop a general
framework that allows us to derive mechanically the degree distribution
of random graphs with n vertices from certain 'nice’ classes G as a func-
tion of the degree distribution of the graphs in B that are drawn under
a specific probabilistic model, namely the Boltzmann model. We apply
this framework to obtain the degree distribution of a random outerplanar
graph and a random series-parallel graph. For the latter we formulate a
generic concentration result that allows us to make statements that are
true with high probability for a large family of variables defined on ran-
dom graphs drawn according to the Boltzmann distribution.

1 Introduction and Results

One of the central questions of interest in theoretical computer science is the
analysis of algorithms. Here one usually distinguishes between worst case analy-
sis and average case analysis. From a practical point of view, an average case
analysis is particularly important when the worst case analysis does not result in
satisfactory quality characteristics about the given algorithm: it is possible that
the algorithm behaves well in real world scenarios, although a bad worst case be-
havior can be mathematically proved. In order to prove qualitatively strong and
meaningful results about the average case behavior of a particular algorithm, we
usually require precise knowledge about properties of “typical” input instances.

The standard example of a successful average case analysis is that of the
QUICKSORT algorithm. It relies on the fact that properties of random permu-
tations are well understood. In the context of graph algorithms an average case
analysis can be performed if we assume the uniform distribution on the set of
all graphs with a given number of vertices: one can then model a “typical” in-
put by the classical Erdés-Rényi random graph, and can thus use the wide and
extensive knowledge about random graphs, see the two excellent monographs [I]
and [2], to derive properties that can be used to analyze performance measures
like the running time or the achieved approximation ratio of the algorithm in
question.
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The picture changes dramatically if we are interested in natural graph classes
where it seems hard — if not impossible — to derive suitable independence prop-
erties. A standard example that has evolved over the last decade as a reference
model in this context is the class of planar graphs. The random planar graph R,
was first investigated in [3] by Denise, Vasconcellos and Welsh and has attracted
considerable attention since then. We mention selectively a few results. McDi-
armid, Steger and Welsh [4] showed the surprising fact that R,, does not share
the 0-1-law known from standard random graph theory: the probability of con-
nectedness is bounded away from 0 and 1 by positive constant values. Moreover,
the situation is similar if the average degree is fixed [5]. These results relied on a
(crude) counting of the number of planar graphs with n vertices. A breakthrough
occurred with the recent results of Giménez and Noy [6], who not only managed
to determine the asymptotic value of the number of planar graphs with n ver-
tices, but also showed that the number of edges in R,, is asymptotically normally
distributed. Moreover, they studied the number of connected and 2-connected
components in R,,. The proofs of these results are based on singularity analy-
sis of generating functions, a powerful method from analytic combinatorics that
has led to many beautiful results, see the forthcoming book by Flajolet and
Sedgewick [7].

Our results. In this paper we further elaborate and extend significantly an ap-
proach that was recently used in [8] to obtain the degree sequence and subgraph
counts of random dissections of convex polygons. More precisely, we exploit the
so-called Boltzmann sampler framework by Duchon, Flajolet, Louchard, and
Schaeffer [9] to reduce the study of degree sequences to properties of sequences
of independent and identically distributed random variables. Hence, we can —
and do — use many tools developed in classical random graph theory to obtain
extremely tight results.

Our first main contribution is a general framework that allows to derive me-
chanically the degree distribution of random graphs from certain “nice” graph
classes from the degree distribution of random graphs from the 2-connected ob-
jects in the graph class in question, see Section [ for the details. Recall that a
2-connected (or biconnected) graph is a graph that can not be disconnected by
deleting any single vertex. Our framework can be readily applied to obtain the
degree sequence of random graphs from “simple” classes, like Cayley trees, or
graphs which have the property that their maximal 2-connected components (or
equivalently, blocks) have a simple structure. We mention as examples cactus
graphs, where the blocks are just cycles, and clique graphs, where the blocks are
complete graphs. The second main contribution of our work are two applications
of this framework.

A graph is called series-parallel (SP) if it does not contain a subdivision of the
complete graph Ky, or equivalently if it does not contain K, as a minor. Hence,
the class of SP graphs is a subclass of all planar graphs. Moreover, an outerplanar
graph is a planar graph that can be embedded in the plane so that all vertices
are incident to the outer face. Outerplanar graphs are characterized as those
graphs that do not contain a K4 or a K3 3 minor. The classes of outerplanar and
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SP graphs are often used as the first non-trivial test cases for results about the
class of all planar graphs.

As a first important application of our framework we derive the degree dis-
tribution of random outerplanar graphs, and show that the number of vertices
of degree k = k(n) (where k is not allowed to grow too fast) is concentrated
around a specific value with very high probability (i.e. the probability of ob-
serving a large deviation is exponentially small). Here we use that the degree
distribution of 2-connected outerplanar graphs can be derived from a result in
[8], where the class of polygon dissections was studied. In order to state our
results we need to fix some notation. Let O,, be the class of labeled, connected
outerplanar graphs with n vertices, and let O,, be a graph drawn uniformly at
random from O,,. Furthermore, for a function G(z) let [2¥]G(z) be the coefficient
of z¥ in the series expansion of G(z) around zero, and for real numbers o and
X let us write “(1 4+ «)X” for the interval ((1 — o)X, (1 + a)X).

Theorem 1. There exist constants A, ..., G, ¢ > 0 and X\ such that for all 6 > 0
and 1 <k =k(n) < (1 —0)loge,pn the following is true. For every 0 < e <1
and sufficiently large n

P [deg(k; On) € (1 £ &)ogn] > 1 — e~ one Vin, 1)

where o, = [2F]\-b(2) - ATE =D and b and r are the functions

Az + Bz? F22+G23
r(z) = C - D» and b(z) =Ez+ (C = D22 (2)

In fact, we do get explicit expressions for A,..., G, and A, cf. (I2)— (). Using
these we can determine the values oy, explicitly for small k and asymptotically for
large k, by evaluating the kth coefficient of the function Ab(z)e*"(*)=1) through
the Cauchy integral formula.

Corollary 1. We have 01 = 0.13659, 0o = 0.28753, 03 = 0.24287, 04 = 0.15507,
o5 = 0.08743, ..., and there are analytically given constants c1, co such that for
large k

or=(140(1))c1 - (D/C)F - e2VF . |1/2,

The formula in Corollary [l (and the proof of Theorem [Il) strongly indicate
that the maximum degree A(O,,) of a random outerplanar graph O,, is roughly
logc/p(n). Unfortunately, our current techniques are not strong enough to prove
this, although we come very close to this value. We thus formulate it as a
conjecture.

Conjecture 1. nleréo P[A(O,) € (1 +0(1))loge/pn] = 1.

In the last part of the paper we study the degree distribution of series-parallel
graphs. With the general framework developed in Section [2]it will again be suf-
ficient to derive the degree distribution of 2-connected series parallel graphs.
This, however, was unknown and our second main contribution is an approach
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to derive this. The main difference (and complication) in comparison to the out-
erplanar graphs is that 2-connected outerplanar graphs can be constructed by an
easy recursive procedure, as was shown in [8]: start with a cycle (whose length
follows an appropriate distribution) and glue onto each edge except one a graph
constructed recursively by the same principle. Clearly, as the name already indi-
cates, the nature of SP graphs does not allow such an easy generation. Instead we
have to consider several types of graph classes and several types of gluing opera-
tions simultaneously. In a first step we obtain the expected number of vertices of
a certain degree, and then, most importantly, we develop a general lemma which
allows us to derive the actual degree distribution. This generic concentration
result is of its own interest and importance, and may have applications to other
parameters and graphs classes as well. Unfortunately, we currently only get a
little bit weaker — but still exponentially small — bounds for the tail probabilities
compared to those in Theorem [l We believe that with the same methods and
some extra work one should be able to obtain similarly strong bounds as above.

Let SP be the class of all labeled connected series-parallel graphs, and let
SP,, be a graph drawn uniformly at random from SP,,. Our result for SP,, is
then the following statement.

Theorem 2. There exist constants C,c > 0 such that the following is true. For
1<k=k(n)<Clogn and for every 0 < e <1 and suﬁ?cientl/y large n

P [deg(k; SP,) € (1 £ e)sgn] > 1 — e sn'? (3)

where s, = [2F]\-b(2) - "7V The constant A and the functions b and r are

given explicitly in (I9), (I8) and [IF).

Corollary 2. We have s = 0.11021, s = 0.35637, s3 = 0.22335, s4 = 0.12576,
s5 = 0.07172, and there are analytically given constants c1 and p = 1.33259 such
that for large k

Sp = clp—kk_—3/2 + O(p—kk—S/Z).

We conjecture also in this case that the asymptotic value of the maximum degree
of a random series parallel graph is log, n.

The number of vertices of a given degree in random outerplanar and series-
parallel graphs is studied also in [I0], independently from our work. Using dif-
ferent techniques, the authors show for constant & that the number of vertices
of degree k is asymptotically normally distributed, with linear expectation and
variance. Moreover, they provide exponential estimates for the tails of the dis-
tributions for such k.

Techniques € QOutline. All graph classes considered in this paper allow a so-
called decomposition, which is a description of the class in terms of general-
purpose combinatorial constructions. These constructions appear frequently in
modern systematic approaches to asymptotic enumeration and random sampling
of several combinatorial structures. It is beyond of the scope of this work to
survey these results, and we refer the reader to [7] and references therein for a
detailed exposition.
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One benefit of the knowledge of the decomposition is that it allows us to
develop mechanically algorithms that sample objects from the graph class in
question by using the framework of Boltzmann samplers. This framework was
introduced by Duchon et. al. in [9], and was extended by Fusy [I1] to obtain an
(expected) linear time approximate-size sampler for planar graphs. Here we just
present the basic ideas of this framework. Let G be a class of labeled graphs.
In the Boltzmann model of parameter x, we assign to any object v € G the
probability

1 zhl

G(x) bt @

if the expression above is well-defined, where G(x) is the exponential generating

function enumerating the elements of G. It is straightforward to see that the

expected size of an object in G under this probability distribution is mg(lf)”) A

P.[y] =

Boltzmann sampler I'G(x) for G is an algorithm that generates graphs from G
according to (@)). In [9UTT] several general procedures which translate common
combinatorial construction rules like union, set, etc. into Boltzmann samplers
are given. Notice that the probability above only depends on the choice of z and
on the size of v, such that every object of the same size has the same probability
of being generated. This means that if we condition on the output being of a
certain size n, then the Boltzmann sampler I'G(z) is a uniform sampler of the
class G,,.

In Section ] we use Boltzmann samplers to derive the degree distribution
of connected random graphs, given the degree distribution of the 2-connected
graphs in suitably defined “nice” graph classes. In Section [B] we use this and a
result from [8] to obtain the degree distribution of a random outerplanar graph.
Finally, in Section Ml we first determine the number of vertices of degree k in
a random 2-connected series-parallel (SP) graph, and then apply the result of
Section [ in order to obtain the degree distribution of a random SP graph.

Notation. Before we proceed, let us introduce some notation which will be ex-
tensively used in the next sections. Let G be a class of labeled graphs. We denote
by G, the subset of graphs in G which have precisely n vertices, and we write
gn = |Gn|. Moreover, we write G(z) = >, . gn " for its corresponding ezpo-
nential generating function (egf).

In the following we will frequently use the pointing and derivative operators.
Given a labeled class of graphs G, we define G® as the class of pointed (or rooted)
graphs, where a vertex is distinguished from all other vertices. The derived class
G! is obtained by removing the label n from every object in G,, such that the
obtained objects have n — 1 labeled vertices, i.e., vertex n can be considered as a
distinguished vertex that does not contribute to the size. Consequently, there is a
bijection between the classes G, _; and G,,. We set G’ := J,,~( G,,- On generating
function level, the pointing operation corresponds to taking the derivative with
respect to x, and multiplying by it by z, i.e. G®(z) = G’ (z). Similarly, the egf
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of G’ is simply G’ (z). Finally, we denote by pg the dominant singularity of G (in
this work we are going to deal only with functions that have a unique singularity
on the real axis).

2 A Framework for Nice Graph Classes

The aim of this section is to develop a general framework that will allow us to
mechanically give tight bounds for the number of vertices of degree k in a random
graph drawn from a graph class that satisfies certain technical assumptions.
Before we state our main result formally, let us introduce some notation. We
denote by Z the graph class consisting of one single labeled vertex. Furthermore,
for two graph classes X and ), we denote by X x ) the cartesian product of
X and Y followed by a relabeling step, so as to guarantee that all labels are
distinct. Moreover, SET(X) is the graph class such that each object in it is an
ordered collection of graphs in X'. Finally, the class X o ) consists of all graphs
that are obtained from graphs from X', where each vertex is replaced (in a unique
way) by a graph from ). This set of combinatorial operators (cartesian product,
set, and substitution) appears frequently in modern theories of combinatorial
analysis [QITUT2IT3] as well as in systematic approaches to random generation of
combinatorial objects [9IT4]. For a very detailed description of these operators
and numerous applications we refer to [7].

With this notation we may now define the graph classes we are going to
consider.

Definition 1. Let G be a class of labeled graphs, and B = B(G) C G the subclass
of biconnected graphs in G. We say that G is nice if it fulfills the following two
conditions.

i) G°® satisfies
G* = Z x SET(B' 0 G*). (5)

it) The egf G®(x) of G* has a unique finite singularity pg and there exist con-
stants ¢, > 0 such that

gn ~enT Y pg™ el (6)
We call o the critical exponent of G.

This definition states that nice classes allow the following decomposition: a
rooted graph can be viewed as a collection of rooted biconnected graphs, which
are “glued” together at their roots, and every vertex in them is substituted by a
rooted connected graph. In particular, every graph in a nice class is connected.
The above definition is not very restrictive, as many natural graph classes are
nice. Probably the most prominent examples are classes with forbidden minors,
in particular connected planar, outerplanar, and series-parallel graphs, or cactus,
block graphs and many kinds of trees (like Cayley trees). Note that condition (@)
restricts the set of possible classes to such ones that have only a “small” number
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of graphs. Hence, many graph classes like the class of connected triangle-free
graphs, or the class of connected k-colorable graphs, are not nice, although they
satisfy (B)).

The remainder of this section is structured as follows. In the next subsection
we shall define an algorithm that generates pointed graphs from a nice class G
according to the Boltzmann model for G. Then, in Section we shall exploit
this sampler to prove our main result (Lemma ), which translates in a general
way the degree sequence of the graphs in B to the degree sequence of G.

2.1 A Sampler for Nice Graph Classes

Recall that due to ([@]) a rooted graph from a nice class G® of graphs can be viewed
as a set of rooted biconnected graphs, which are “glued” together at their roots,
and every vertex in them is substituted by a rooted connected graph. A sampler
for G°® reverses this description: it starts with a single vertex, attaches to it a
random set of biconnected graphs, and proceeds recursively to substitute every
newly generated vertex by a rooted connected graph.

Let us now define formally the generic sampler. For this we need some ad-
ditional notation. Let G(x) and B(x) be the egfs of G and B respectively, and
let pg and pp be their singularities. Define A\g := B'(G*(pg)), and let I'B’(x)
be a Boltzmann sampler for B', i.e. I'B’(z) samples according to the Boltzmann
distribution () with parameter x for B’. Then the sampler I'G*® for G® is defined
as follows.

I'G*® : v « a single node r
F— Po(Ag) (%)
for (j=1,...,k)
~' «— I'B'(G*(pg)), discard the labels of v (%)
~ < merge v and v at their roots
foreach vertex v # r of
Yo < I'G®, discard the labels of 7, (%)
replace all nodes v # r of « with =,
label the vertices of v uniformly at random
return vy

The following lemma is an immediate consequence of the compilation rules in

[9UTT].

Lemma 1. Let v € G°. Then P[I'G® =] = |,Y|!?;g.(pg)-

2.2 Degree Sequence

Our goal is to analyze the execution of I'G® so as to obtain information about
the degree sequence of random graphs from G . Before we proceed let us make
a few important observations. Note that every vertex v different from the root
goes through two phases. In the first phase, v is generated in a biconnected
graph (i.e., in a call to I'B’ in the line marked with (%x)), and has a specific
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degree. We will also say that v was born with this degree. In the second phase,
when I'G*® is recursively called, a certain number of new biconnected graphs
will be attached to v, such that its degree increases by the sum of the degrees
of the roots of those graphs. After this, the degree will not change anymore,
such that the final degree is the sum of the degrees in the two phases. Hence, to
count vertices of a given degree k, we will fix a 1 < ¢ < k and count how many
vertices are born with degree ¢. Let By be the number of such vertices. Then,
we will compute the fraction of vertices among those By that will receive k — /¢
neighbors in their second phase. Let us call this fraction Ri_,. The total number
of vertices with degree k is then the sum of these numbers over all possible /,
namely 25:1 BiRy_y.

In order to determine the degree sequences of the resulting graphs it is there-
fore important to understand how many vertices are born with a given degree
during a (random) execution of I'G®, and what happens to the vertices in their
second phase. In Lemma [ below we describe this idea formally. In order to
state it we need some additional notation. Let B, B, ..., be random graphs
from B’, drawn independently according to the Boltzmann distribution with pa-
rameter © = G*(pg), and denote by rd (B}) the degree of the root vertex of B..
We say that a variable X is sumRootBlock distributed, X ~ sRB, if it is dis-
tributed like ZfﬂAg) rd (B}). Moreover, let deg’(k; B.) be the number of vertices
different from the root vertex of B} that have degree k.

Lemma 2. Let k € N. Let G be a nice class of graphs with critical exponent a,
and let B be the subclass of G containing all biconnected graphs in G. Suppose
that for all 0 < € < 1 there is a decreasing function f(N) = f(N;G, k,e) such
that the following holds for sufficiently large N .

(B) LetBj,...,BY be independent random graphs drawn according to the Boltz-
mann distribution for B’ with parameter x = G*(pg). Then for every 1 <
¢ <k there is a constant bgg such that with probability at least 1 — f(N)

N
S deg/(£: B) € (1 + ; ) bs.eN. (7)
=1

Then, for every 0 < e < 1 and sufficiently large n there is a constant C =
C(k) > 0 such that

P [deg(k; G,) € (1 +¢e)ggn] > 1 —n*> (f (Agn) + eCEQ") . ®)

where g, = Ag 25:1 bs,¢ - 58,k—¢ 15 the kth coefficient of the generating func-
tion Ag - b(z) - p(r(2)), and spr—¢ := P[SRB = k — {]. Here b, p, and r denote
the functions

b(z) = Zb@)gze ,p(2) =Y and r(z) = ZIP’[rd (B') = /)",
>1 >1

where B’ is drawn according to the Boltzmann distribution with parameter

x=G*(pg) for B'.
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The statement of the above lemma generalizes to k = k(n) with one additional
technical assumption. This generalization can be found in the full version of the

paper [19].

3 Outerplanar Graphs

In this section we are going to consider labeled connected outerplanar graphs,
that we will simply call outerplanar graphs. Let O be the class of all outerplanar
graphs, and B the class of labeled biconnected outerplanar graphs. By applying
a standard decomposition of a graph into 2-connected blocks (see e.g. [16] p. 10])
we obtain the following lemma.

Lemma 3. The classes O and B satisfy the relation O® = Z x SET(B' o O°).

In words, a rooted outerplanar graph is just a collection of rooted 2-connected
outerplanar graphs, merged at their roots, in which every vertex may be substi-
tuted with another rooted outerplanar graph. The decomposition above trans-
lates immediately to a relation of the egf’s O°(x) for O° and B'(x) for B'.
Bodirsky et al. exploited this relation in [I7], where among other results they
determined the singular expansion for O°®(x) (which yields straightforwardly an
asymptotic estimate for |Op]). Here we state only the result from [I7] that we
are going to exploit.

Lemma 4 ([I7]). The singular expansion of O®(x) at its singularity po is
0* (@) " 0§ = 011 = w/po) "/ + 0 (1 = 2/p0)'2)

where O is the solution of the equation xB" () = 1, po = 03¢~ 590 and O%
is given analytically. Moreover, |02 = (1 + O(n_l));f/lﬁn_?’/zpann!.

By combining the above two lemmas we obtain immediately the following
corollary.

Corollary 3. The class O of labeled connected outerplanar graphs is nice in the
sense of Definition[d, and has critical exponent o = %

3.1 The Degree Sequence of Random Outerplanar Graphs

In order to apply Lemma [2] we have to check that assertion (B) of that lemma
is true for the class of outerplanar graphs. For this we prove the following state-
ment; before we state it let us introduce some quantities, which are closely re-
lated to the number of vertices of degree k in a random outerplanar graph (the
connection will become more explicit in Lemma [l). Let

T 1’2 T

c(z) = 2B/( , and t(x):= 2B () = 2B/ (x)’

x)—x

and define the quantities
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. - 2(x), ife=1
5@”_{dmu—dm%4P—um+fﬁ$@—UC§é?—0Lﬁ€>2’
9)
and
e {<1 —t@))el@)(1 - e(a) T, i3 2. 1o

The next statement says that assertion (B) of Lemma [2is true for outerplanar
graphs.

Lemma 5. Let B},..., B be independent random graphs drawn according to
the Boltzmann distribution with parameter 0 < x < pg for B'. Let deg’ (¢; B)
denote the number of vertices different from the root with degree £ in B'. There is
a C = C(z) > 0 such that for every 0 < e < 1 and £ such that dy(x)N > log* N

N
P lz deg’ (¢; B)) € (1 £e)dy(x)N| >1— e~ O de(@)N (11)
i=1

Furthermore, letrd (B}) be the degree of the root vertex of B,. ThenP[rd (B}) = (] =
re(x).

Proof (Proof of Theorem [1l). We will only prove the case k& € N, the proof for
general k = k(n) can be found in the full version of the paper [I5]. Let us first
make a technical observation. Recall that O®(po) = Of is due to Lemma [l the
smallest solution of xB”(x) = 1, where B(z) is the egf enumerating biconnected
outerplanar graphs. As B is explicitly given (see [I7]), one can easily verify that
08 <3-2V2=pp.

Recall that the class of outerplanar graphs is nice. Having the previous dis-
cussion in mind, by applying Lemma [l with 2 = O°®(pp) < pg' we see that the
assertions of Lemma [ are satisfied with b, = dg(O) and f(N) = e~ =N for
a suitably chosen C' = C(k) > 0. By applying (§) we immediately obtain ().

It remains to show (). Observe that due to Lemma [l we have O§ B”(0§) = 1.
With @) we then obtain

(0)4 Fz2 + G283
_ ° o\ 0 0 . _ / °
b(z) = dl(OO)z—k;dg(Oo)z =2t (€ — Day2 where Ao = B'(O),
) (12)
and
F=055" (206 — 42008 + (05)* + 0), C =05 - 2o, 13)

G=0825" (=205 +4X008 —2(03)%), D =2(0§ — Xo).

To complete the proof we determine r(z). By applying Lemma [f and by exploit-
ing (I0)
Az + Bz?
— O. L — 14
() =S o =S 0T (14)

>1
where A = O3 \,,' (O — 2)\0) and B = O \,,' (Ao — OF).
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4 Series-Parallel Graphs

In this section we determine the degree sequence of graphs drawn uniformly at
random from the class of connected series-parallel (SP) graphs. To achieve this
we will again apply Lemma [2l Before we proceed let us state some facts that we
are going to need.

Let SP be the class of all labeled connected SP graphs, and B the class of
labeled biconnected SP graphs. Then the following is true, similar to the case of
outerplanar graphs.

Lemma 6. The classes SP and B satisfy the relation SP®* = ZxSET(B'oSP*®).

This decomposition translates into a relation of the egf’s SP®(z) for SP® and
B'(z) for B'. Bodirsky et al. exploited this relation in [I7], where they determined
the singular expansion for SP®(z) and the asymptotic value of |SP;|.

Lemma 7 ([I7]). The singular expansion of SP®(x) around its singularity
psp is

SP*(x) " L” SPy — SPP (1 — a;/pgp)l/2 +o ((1 - 33/057))1/2> ,

where psp = 0.11021, SP = 0.12797 and SP? = 0.00453 are implicitly given

constants. Moreover, |SPs| = (1 + O(n™1)) SPr n=3/2psrnl.

2/
By combining the above two lemmas we obtain immediately the following corollary.

Corollary 4. The class SP is nice with critical exponent o = ;

In order to apply Lemma [ we have to check that condition (B) is true for
the class SP, i.e., we have to determine the fraction of vertices of degree ¢ in a
“typical” sequence of random graphs from B’, drawn according to the Boltzmann
distribution. The second ingredient needed to apply Lemma[2is the distribution
of the root degree of a random graph from B’.

The next lemma provides us with information about the root degree of random
objects from B’. Before we state it, let us introduce an auxiliary graph class,
which plays an important role in the the decomposition of 2-connected series-
parallel graphs. Following [I8[17], we define a network as a connected graph with
two distinguished vertices, called the left and the right pole, such that adding
the edge between the poles the resulting (multi)graph is 2-connected. Let D be
the class of series-parallel networks, such that D,, contains all networks with n
non-pole vertices. We write for brevity Dy = e for the network consisting of a
single edge. Let B be the class containing all graphs in B rooted at any of their
edges, where the root edge is oriented. Then the classes B and D are due to the
definition of D related as follows:

DP+1)xZ>xe=(1+¢) xB. (15)

Although this decomposition can be used to obtain detailed information about
the generating function enumerating B (see e.g. [19]), as well as the degree se-

quence of a “typical” graph from B, it turns out that it is quite involved to derive
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from it information about the degree sequence of a random graph from B. This
difficulty is mainly due to the fact that the number of ways to root a graph at an
edge varies for graphs of the same size (w.r.t. the number of vertices), and would
require to perform a very laborious integration. We attack this problem differ-
ently: we exploit a very general recent result by Fusy, Kang, and Shoilekova [20],
which allows to decompose families of 2-connected graphs in a direct combina-
torial way (again based on networks), but avoiding the often complicated and
intractable integration steps. We will now write only the results that we have
obtained, we refer the reader to the full version of this paper [15] for the proofs
and all the details.

Let G be a class consisting of graphs that have a distinguished vertex. G could
be for example B’, or D with the left pole as distinguished vertex. Let G be a
graph from G, drawn according to the Boltzmann distribution with parameter
x, and denote by rd (G) the degree of the distinguished vertex of G. Then we
write Rg(z; x) for the probability generating function of rd (G), i.e.

Rg(z; x) :== ZIP’[rd (G) = k]2*.

k>0

We will use this notation throughout the paper without further reference and
we will omit the parameter x if this is clear from the context. Having this, the
distribution of the root-degree of random graphs from B’ is as follows.

Lemma 8. Let B’ be a graph drawn from B’ according to the Boltzmann distri-
bution with parameter 0 < x < pgr. Then

Rp(2)(xD(x)?Rp(z) — 2)

Plrd (B') = ¢ = [2'| R (2) =[] sD(x)? — 2 )

(16)

where D(x) is the egf enumerating series-parallel networks, and Rp(z) satisfies

z Rp(z)
Rp(z) = Dgx) (—1+(1+z)(1+f< )) ) (17)

Next we determine the ezpected number of non-root vertices having degree ¢ in
a random graph from B’. Let I/ (z) be the function whose kth coefficient is the
expected number of non-root vertices of degree k in B'.

Lemma 9. Let B’ be a graph from B’ drawn according to the Boltzmann distri-
bution with parameter 0 < x < ppr. Then

Eldeg(¢: B')] = [ (=) = [] ((5(@? 1) Ro2)? + R3f<z>) )

Lemma [ is unfortunately not sufficient to apply Lemma [2 as it provides us
only with information about the expected number of non-root vertices with a
given degree, and not with the appropriate concentration statement. Our final
lemma solves this problem in a general way, with the slight disadvantage that
the obtained tail probability might not be sharp.
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Lemma 10. Let Gy, ..., Gy be random graphs drawn independently from a class
G of graphs, according to a distribution that satisfies P[|G;| = s] < ¢ % for all
s, and some ¢ > 1. Let X : G — N be a function such that X (G) < |G| for all

G € g, and E[X] > lo\g/jVN. Then there is a C > 0 such that for all 0 < e < 1
and sufficiently large N

P f:X(Gi) € 1+ e)E[X]N| > 1 — e CCEXI* N,
=1

If we choose G to be B’ and X as the variable counting internal vertices of degree
k, all conditions of Lemma [0 are fulfilled. Then condition (B) of Lemma[2holds
for SP, and we can apply the lemma to prove Theorem [ with b(z) = Ip/(2),
r(z) = Rg:/(2) and

Asp = B'(SF}). (19)

The proof can be found in the full version of the paper [I5].
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Abstract. We consider the problem of testing functions for the property
of being a k-junta (i.e., of depending on at most k variables). Fischer,
Kindler, Ron, Safra, and Samorodnitsky (J. Comput. Sys. Sci., 2004)
showed that O(k?)/e queries are sufficient to test k-juntas, and conjec-
tured that this bound is optimal for non-adaptive testing algorithms.

Our main result is a non-adaptive algorithm for testing k-juntas with
O(k3/2)/e queries. This algorithm disproves the conjecture of Fischer et al.

We also show that the query complexity of non-adaptive algorithms
for testing juntas has a lower bound of min (22(k/e), 2" /k), essentially
improving on the previous best lower bound of 2(k).

1 Introduction

A function f : {0,1}™ — {0,1} is said to be a k-junta if it depends on at
most k variables. Juntas provide a clean model for studying learning problems
in the presence of many irrelevant features [41[6], and have consequently been of
particular interest to the computational learning theory community [Bl[6,17,12]
[I6]. A problem closely related to learning juntas is the problem of testing juntas:
given query access to a function, is it possible to efficiently determine if all but
at most k of the variables in the function represent irrelevant features?

We consider the problem of testing juntas in the standard framework of prop-
erty testing, as originally introduced by Rubinfeld and Sudan [19]. In this frame-
work, we say that a function f is e-far from being a k-junta if for every k-junta g,
the functions f and ¢ disagree on at least an € fraction of inputs. A randomized
algorithm 4 that makes ¢ queries to its input function is an e-testing algorithm
for k-juntas if

1. All k-juntas are accepted by A with probability at least 2/3, and
2. All functions that are e-far from being k-juntas are rejected by A with prob-
ability at least 2/3.

A testing algorithm A is non-adaptive if does not use the answers of some queries
to determine later queries; otherwise, the algorithm A is adaptive.

In this article we consider the problem of determining the query complexity
for the problem of testing juntas: given fixed £ > 1 and ¢ > 0, what is the
minimum number ¢ = ¢(k, €) of queries required for any algorithm A to e-test
k-juntas?

* Supported in part by a scholarship from the Fonds québécois de recherche sur la
nature et les technologies (FQRNT).

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 317}-330| 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Background. The first result related to testing juntas was obtained by Bellare,
Goldreich, and Sudan [2] in the context of testing long codes. That result was
generalized by Parnas, Ron, and Samorodnitsky [I8] to obtain an algorithm for
e-testing 1-juntas with only O(1/€) queries.

The next important step in testing k-juntas was taken by Fischer, Kindler,
Ron, Safra, and Samorodnitsky [I0], who developed multiple algorithms for
testing k-juntas with poly(k)/e queries. Those algorithms were particularly sig-
nificant for showing explicitly that testing juntas can be done with a query
complexity independent of the total number of variables. The most query-efficient
algorithms they presented require O(kQ) /€ querieﬂ to e-test k-juntas.

Fischer et al. [I0] also gave the first non-trivial lower bound on the query
complexity for the testing juntas problem. They showed that any non-adaptive
algorithm for e-testing k-juntas requires at least 2(v/k) queries and conjectured
that the true query complexity for non-adaptive algorithms is k2 /e queries.

Chockler and Gutfreund [8] improved the lower bound for testing juntas by
showing that all algorithms — adaptive or non-adaptive — for e-testing k-juntas
require {2(k) queries. This result applies for all values of ¢ < 1/8, but the bound
itself does not increase as e decreases.

Our results and techniques. Our main result is an improvement on the upper
bound for the query complexity of the junta testing problem.

Theorem 1.1. The property of being a k-junta can be e-tested by a non-adaptive
algorithm with O(k3/2) /e queries.

The new algorithm presented in this article is the first for testing juntas with a
number of queries sub-quadratic in k, and disproves the lower bound conjecture
of Fischer et al.

Our algorithm is based on an algorithm of Fischer et al. for testing juntas [10}
§4.2]). The observation that led to the development of the new algorithm is
that the algorithm of Fischer et al. can be broken up into two separate tests:
a “block test” and a simple “sampling test”. In this article, we generalize the
sampling test, and we establish a structural Lemma for functions that are e-far
from being k-juntas to show how the two tests can be combined to e-test k-juntas
more efficiently.

Our second result is an improved lower bound on the number of queries re-
quired for testing juntas with non-adaptive algorithms. The new bound is the
first lower bound for the query complexity of the junta testing problem that
incorporates the accuracy parameter e.

Theorem 1.2. Any non-adaptive algorithm for e-testing k-juntas must make at

least min (Q(log/;/e), !2(2,: )) queries.

We prove Theorem [[2] via Yao’s Minimax Principle [20]. The proof involves an
extension of the argument of Chockler and Gutfreund [8] and an application of
the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3], and Hart [T4].

! Here and in the rest of this article, the O( - ) notation is used to hide polylog factors.
(i.e., O(f(x)) = O(f(z)log® f(z)) and f?(f(x)) =0 A ) for some ¢ > 0.)

log® f(x)
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Organization. We introduce some notation and definitions in Section 2. We
present the new algorithm for e-testing k-juntas and its analysis in Section 3.
In Section 4, we present the proof for the lower bound on the query complexity
of non-adaptive algorithms for testing juntas. Finally, we conclude with some
remarks and open problems in Section 5.

2 Preliminaries

Notation. Forn > 1,let [n] = {1,...,n}. For aset A C [n], we write A = [n]\ A
to represent the complement of A in [n]. When z,y € {0,1}", we define x4y
to be the hybrid string z where z; = x; for every ¢ € A and z; = y; for every
j €A

We write Pr,[-] (resp., E;[-]) to denote the probability (resp., expectation)
over the choice of x taken uniformly at random from {0,1}". We also write

H, = Z?:I ; to denote the k-th harmonic number.

Variation. In the analysis of the new algorithm for testing juntas, we consider
the variation of sets of coordinates in a function, a concept introduced by Fischer

et al. [10] 2

Definition 2.1. The variation of the set S C [n] of coordinates in the function
f:{0,1}™ — {0,1} is

Vrp(A) = Pro [f(z) # f(zsys)].

We write Vry (i) = Vry({i}) to represent the variation of the ith coordinate. The
variation of a single coordinate is equivalent to the notion of influence, as defined
in, e.g., [15].

Some useful properties of variation are its monotonicity, subadditivity, and
submodularity.

Fact 2.2 (Fischer et al. [10]) For any function f :{0,1}" — {0,1}, and any
sets A, B,C C [n], the following three properties hold:

(1) Monotonicity: Vry(A) < Vry(AU B)
(ii) Subadditivity: Vry(AU B) < Vry(A) + Vr(B)
(i11) Submodularity: Vry(AU B) — Vry(B) > Vry(AUBUC) — Viy(BUC)

The Independence Test. A function f is said to be independent of a set
S C [n] of coordinates if Vr¢(S) = 0. The definition of variation suggests a nat-
ural test for independence:

INDEPENDENCETEST [I0]: Given a function f : {0,1}" — {0,1} and a set S C
[n], generate two inputs z,y € {0,1}" independently and uniformly at random.
If f(x) = f(zgys), then accept; otherwise, reject.

2 The definition of variation used in [I0] is slightly different, but is equivalent to the
one used in this article up to a constant factor.
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BLOCKTEST(f, k, n, )
Additional parameters: s = [2k*/8], r = [4kIn(s/6)], m = [In(2r/6)/n]

1. Randomly partition the coordinates in [n] into s sets I, ..., Is.
2. For each of r rounds,
2.1. Pick a random subset T' C [s] by including each index independently with
probability 1/k.
2.2. Define the block of coordinates Br = {J;cr I
2.3. If INDEPENDENCETEST(f, Br, m) accepts, mark I; as “variation-free” for
every j€7T.
3. Accept f if at most k of the sets I1, ..., Is are not marked as “variation-free”;
otherwise reject f.

Fig. 1. The algorithm for the block test

Let us define INDEPENDENCETEST(f, S, m) to be the algorithm that runs m
instances of the INDEPENDENCETEST on f and S and accepts if and only if every
instance of the INDEPENDENCETEST accepts. By the definition of variation, this
algorithm accepts with probability (1 — V(S ))m In particular, this test always
accepts when f is independent of the set S of coordinates, and rejects with
probability at least 1 — 6 when Vr(S) > In(1/6)/m.

3 The Algorithm for Testing Juntas

In this section, we present the algorithm for e-testing k-juntas with O(k3/2)/e
queries. The algorithm has two main components: the BLOCKTEST and the
SAMPLINGTEST. We introduce the BLOCKTEST in Section Bl and the Sam-
PLINGTEST in Section B2l Finally, in Section B3] we show how to combine both
tests to obtain an algorithm for testing juntas.

3.1 The Block Test

The purpose of the BLOCKTEST is to accept k-juntas and reject functions that
have at least k£ + 1 coordinates with “large” variation.

The BLOCKTEST first randomly partitions the coordinates in [n] into s sets
Ii,...,I;. It then applies the INDEPENDENCETEST to blocks of these sets to
identify the sets of coordinates that have low variation. The test accepts if all
but at most k of the sets I, ..., I are identified as having low variation. The
full algorithm is presented in Fig.[Il

The BLOCKTEST is based on Fischer et al.’s non-adaptive algorithm for test-
ing juntas [I0, §4.2], which uses a very similar test!] As the following two

3 The principal difference between our version of the BLOCKTEST and Fischer et al.’s
version of the test is that in [I0], the set T is generating by including exactly k
indices chosen at random from [s].
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Propositions show, with high probability the BLOCKTEST accepts k-juntas and
rejects functions with k£ + 1 coordinates with variation at least 7.

Proposition 3.1 (Completeness). Fiz n > 0, and let f:{0,1}" — {0,1} be
a k-junta. Then the BLOCKTEST accepts f with probability at least 1 — 6.

Proof. Let I; be a set that contains only coordinates ¢ with variation Vr (i) = 0.
In a given round, the probability that I; is included in By and none of the sets
I that contain a coordinate with positive variation are included in Br is at
least (1/k)(1 — 1/k)* > 1/4k since (1 — 1/k)* > 1/4 for all k > 2. So the
probability that I; is not marked as “variation-free” in any of the r rounds is
at most (1 — 1/4k)” < e~"/* < §/s when r > 4kIn(s/8). By the union bound,
all the sets I; that contain only coordinates with no variation are identified as
“variation-free” with probability at least 1 — s(6/s) =1 — 6. |

Proposition 3.2 (Soundness). Let f : {0,1}" — {0,1} be a function for
which there exists a set S C [n] of size |S| = k + 1 such that every coordinate
i € S has variation Vry(i) > 1. Then the BLOCKTEST rejects f with probability
at least 1 — 0.

Proof. There are two ways in which the block test can wrongly accept the input
function. The first way it can do so is by mapping all the coordinates with
variation at least n into at most k sets during the random partition. We can
upper bound the probability of this event with the probability that any collision
occurs during the mapping of the first k£ + 1 coordinates with high variation,
which is at most i + f + -+ ]: = k(};l) < kj <6/2.

The second way in which the block test can wrongly accept the input function
is by erroneously marking one of the sets I; that contains a coordinate with
variation at least n as “variation-free”. To bound the probability of this event
happening, consider a given round in which Br contains at least one of the
coordinates ¢ with variation Vry(i) > 7. By Fact (i), the variation of Bp
is at least 7, so when m > In(2r/6)/n, the INDEPENDENCETEST accepts By
with probability at most §/2r. By the union bound, the probability that one of
the r rounds results in a false “variation-free” marking is at most /2. So the
total probability that the algorithm wrongly accepts the function f is at most
6/246/2=246. O

The BLOCKTEST algorithm makes 2m queries to f in each round, so the total
query complexity of the algorithm is 2rm = O(klog®(k/6)/n).

3.2 The Sampling Test

The purpose of the SAMPLINGTEST is to accept k-juntas and reject functions
that have a large number of coordinates with non-zero variation.

The SAMPLINGTEST, as its name implies, uses a sampling strategy to estimate
the number of coordinates with non-negligible variation in a given function f.
The sampling test generates a random subset T' C [n] of coordinates in each
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SAMPLINGTEST(f, k, [, 1, 6)
Additional parameters: v = [128k* In(2/6)/1*], m = [In(2r/68)/n]

1. Initialize the success counter ¢ < 0.
2. For each of r rounds,
2.1. Pick a random subset 7" C [n] by including each coordinate independently
with probability 1/k.
2.2. If INDEPENDENCETEST(f, T, m) accepts, set ¢ «+ ¢+ 1.
3. Accept f if ¢/r > (1 — 1/k)* — 1/16k; otherwise reject f.

Fig. 2. The algorithm for the sampling test

round, and uses the INDEPENDENCETEST to determine if f is independent of
the coordinates in T'. The test accepts when the fraction of rounds that pass the
independence test is not much smaller than the expected fraction of rounds that
pass the test when f is a k-junta. The details of the algorithm are presented in
Fig.2l

Proposition 3.3 (Completeness). Fizn > 0,1 € [k]. Let f:{0,1}" — {0,1}
be a k-junta. Then the SAMPLINGTEST accepts f with probability at least 1 — 6.

Proof. When f is a k-junta, the probability that the set T in a given round
contains only coordinates i with variation Vry(i) = 0 is at least (1 — 1/k)*.
When this occurs, the set T also has variation Vr¢(T') = 0. Let ¢ be the number
of rounds for which the set T satisfies Vry(T') = 0. By Hoeffding’s bound,

t l 2
P 1—1/k)F - < e 2 W16k < 5 /9
Pl <A URT = ] Se </
when 7 > 128k%1In(2/6) /1. Every set T’ with variation Vr;(T) = 0 always passes
the INDEPENDENCETEST, so ¢ > t and the completeness claim follows. a

Proposition 3.4 (Soundness 1). Fizn > 0,1 € [k]. Let f: {0,1}" — {0,1}
be a function for which there is a set S C [n] of size |S| =k + 1 such that every
coordinate i € S has variation Vry(i) > n. Then the SAMPLINGTEST rejects f
with probability at least 1 — 6.

Proof. In a given round, the probability that the random set 7' does not contain
any of the k + [ coordinates with large variation is (1 — 1/k)**!. When [ < k,
(1-1/k)! <1—1/2k, and when k > 2, (1—1/k)¥ > 1/4. So the probability that
T contains none of the k + [ coordinates with large varation is (1 — 1/k)F*! <
(1—1/k)k(1 —1/2k) < (1 —1/k)* —1/8k.

Let ¢ represent the number of rounds whose sets T' contain no coordinate with
variation at least 1. By Hoeffding’s bound,

Pr |’ > (1= 1/k)F — 1/8k) + 1/16k| < e~2rW/160)° < 5/9
T
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when r > 128k%1In(2/6)/I2. By Fact (i), every set T that contains one of
the coordinates ¢ with variation Vry(i) > n also has variation Vr;(T) > n. By
our choice of m, the probability that the INDEPENDENCETEST accepts a set
with variation 7 is at most 6/2r. By the union bound, the INDEPENDENCETEST
correctly rejects all the sets with variation at least 7 except with probability at
most 6/2.

The sampling test can accept f only if more than a (1—1/k)*—1/16k fraction of
the random sets contain no coordinate with variation 7, or if at least one of those
random sets contains such a coordinate but still passes the INDEPENDENCETEST.
So the proability that the sampling test erroneously accepts f is at most 6/2 +
6/2=4. O

Proposition 3.5 (Soundness 2). Letn = 64§kkﬂ and let f: {0,1}" — {0,1}
be a function for which there exists a set S C [n] of coordinates satisfying the
following two properties:

(1) Each coordinate i € S has variation Vry(i) <, and
(1t) The total variation of the set S is Vr§(S) > €/2.

Then when | = k, the SAMPLINGTEST rejects f with probability at least 1 — 6.

The proof of Proposition B3 follows very closely the proof of Fischer et al. [10,
Lem. 4.3]. In particular, the proof uses the following Chernoff-like bound.

Lemma 3.6 (Fischer et al. [10, Prop. 3.5]). Let X = 2221 X, be a sum
of non-negative independent random variables X;. If every X; is bounded above
by t, then for every A >0

E[X
Pr[X < AE[X]] < exp < Lt }()\e - 1)) .
The proof of Proposition .5 also makes extensive use of Fischer et al.’s concept

of unique variation [10].

Definition 3.7 (Fischer et al. [10]). The unique variation of the coordinate
i € [n] with respect to the set S C [n] in the function f:{0,1}" — {0,1} is

Urf)s(i) = Vrf([i] N S) — Vrf([i — 1] n S)

Furthermore, the unique variation of the set I C [n] of coordinates with respect
to S in fis Urys(I) =3 ,c; Urys(i).

Fact 3.8 (Fischer et al. [10]) For any function f :{0,1}"™ — {0,1} and sets
of coordinates S, T C [n], the following two properties hold:

(1) Urys(T) < Vry(T), and
(ii) Urys([n]) = Vrg(S).

We are now ready to complete the proof of Proposition .5

4 Recall that Hy = Z§:1 ; is the kth harmonic number.
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Proof (of Proposition [Z2). There are two ways in which the SAMPLINGTEST
can accept f. The test may accept f if at least a (1 — 1/k)*¥ — 1/16 fraction
of the random sets T have variation Vry(T') < 7n. Alternatively, the test may
also accept if some of the sets T with variation Vry(T') > n pass the INDEPEN-
DENCETEST. By our choice of m and the union bound, this latter event happens
with probability at most §/2. So the proof of Proposition is complete if we
can show that the probability of the former event happening is also at most 6/2.

Let t represent the number of rounds where the random set T has variation
Vry(T) > 1. We want to show that Pr [t/r > (1 — 1/k)* —1/16] < 6/2. In fact,
since (1—1/k)* > 1/4 for all k > 2, it suffices to show that Pr [t/r > 3/16] < §/2.

In a given round, the expected unique variation of the random set 7" with
respect to S in f is

E[Ur;s(T) = Y ;Urf,s(z') _ Urf,;([n]) _ Vrfk(S) . ;M

1€[n]

where the third equality uses Fact (ii). By Property (i) of the Proposition,
Ury,s(T) is the sum of non-negative variables that are bounded above by 1. So
we can apply Lemma [3.6 with A = 1/32H, to obtain

Pr [Ur/(T) < 5] < e (oo, 1)

By Fact B8 (i) and the fact that e (32;% 71) < 1/8 for all k > 1, we have that
E[t/r] = Pr[Vrs(T) <n] <1/8.

The final result follows from an application of Hoeffding’s inequality and the
choice of r. 0

The SAMPLINGTEST algorithm makes 2m queries to f in each round, so the
total query complexity of the algorithm is 2rm = O(k? log(k/16)/1*n).

3.3 The Junta Test

In the previous two subsections, we defined two tests: the BLOCKTEST that
distinguishes k-juntas from functions with k+1 coordinates with large variation,
and the SAMPLINGTEST that distinguishes k-juntas from functions that have
some variation distributed over a large number of coordinates. The following
structural Lemma on functions that are e-far from being k-juntas shows that
these two tests are sufficient for testing juntas.

Lemma 3.9. Let f: {0,1}" — {0,1} be e-far from being a k-junta. Then for
any t > 0, f satisfies at least one of the following two properties:

(i) There exists an integerl € [k] such that there are at least k+1 coordinates i
with variation Vry(i) > 5, in f.
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JUNTATEST(f, Kk, €)

1

3(Mogk/2)42)7 T =

Additional parameters: 6 = Gﬁlk

1. Run BLOCKTEST(f, k, 7/[kY?], 6).

2. For | = [K'/?], [2kY/?], [4k/2], [8KY/],. .. k,
2.1. Run SAMPLINGTEST(f, k, [, 7/2l, §).

3. Run SAMPLINGTEST(f, k, k, T/k, 0).

4. Accept f if all of the above tests accept; otherwise reject f.

Fig. 3. The algorithm for the junta test

(i) The set S of coordinates i € [n] with variation Vry(i) < . has total
variation Vry(S) > (1 —1/t)e.

Proof. Let f be a function that does not satisfy the Property (i) of the Lemma.
Define J C [n] to be the set of the k coordinates in f with highest variation, and
let T' be the set of coordinates i € [n] \ J with variation Vry(i) > - . Since f
does not satisfy Property (i) of the Lemma, Fact 22 (ii) ensures that the variation
of T is bounded by Vry(T) < , 5 + o,y ++ + g, = ¢ Since SUT 2 [n]\ J
and any function e-far from being a k-junta must satisfy Vryp([n] \ J) > €, a
second application of Fact (ii) shows that f must satisfy Property (ii) of the
Lemma. O

Lemma B9 naturally suggests an algorithm for testing k-juntas: use the BLOCK-
TEST (with parameter n = ¢/64Hk) to reject functions that satisfy Property (i)
of the Lemma, and use the SAMPLINGTEST (with parameters | = k and 7 as
above) to reject the functions that satisfy Property (ii) of the Lemma. This al-
gorithm is equivalent to the non-adaptive algorithm of Fischer et al. [I0], and
requires O(k?)/e queries.

We can improve the query complexity of the algorithm by splitting up the
task of identifying functions that satisfy Property (i) of Lemma 39 into multiple
tasks for more specific ranges of [. The result of this approach is the JUNTATEST
algorithm presented in Fig.Bl With this algorithm, we are now ready to prove
Theorem [T11

Theorem 1.1. The property of being a k-junta can be e-tested by a non-adaptive
algorithm with O(k3/2) /e queries.

Proof. Let us begin by showing that the JUNTATEST is a valid algorithm for e-
testing k-juntas. By PropositionsBdland [3.3] k-juntas pass the BLOCKTEST and
each of the SAMPLINGTEST instances with probability 6. So by our choice of ¢
and the union bound, k-juntas are accepted by the JUNTATEST with probability
at least 2/3.

Let f be any function that is e-far from being a k-junta. If f satisfies Prop-
erty (i) of Lemma with parameter ¢ = 64, consider the minimum integer
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" € [k] for which there is a set S C [n] of size k + I’ such that every coordinate
i € 5 has variation Vry(i) > ¢, 5 . If I < [k'/2], then by Proposition B2 the
BLOCKTEST rejects f with probability 1 —¢§ > 2/3. If I > k'/2 then by Propo-
sition 34 the SAMPLINGTEST with the parameter [ that satisfies [ < I’ < 21
rejects the function with probability 1 — 6 > 2/3.

If f satisfies Property (ii) of Lemma B9l by Proposition B3 the last Sam-
PLINGTEST rejects the function with probability 1 — 6 > 2/3. Since Lemma 3.0
guarantees that any function e-far from being a k-junta must satisfy at least one
of the two properties of the Lemma, this completes the proof of soundness of the
JUNTATEST.

To complete the proof of Theorem [[] it suffices to show that the JUNTAT-
EST is a non-adaptive algorithm and that it makes only O(k®/?)/e queries to the
function. The non-adaptivity of the JUNTATEST is apparent from the fact that
all queries to the input function come from independent instances of the INDE-
PENDENCETEST. The query complexity of the JUNTATEST also follows from the
observation that each instance of the BLOCKTEST or the SAMPLINGTEST in the
algorithm requires O(k3/2)/e queries. Since there are a total of O(log k) calls to
those tests, the total query complexity of the JUNTATEST is also O(k%/?)/e. O

4 The Lower Bound

In this section, we show that every non-adaptive algorithm for e-testing k-juntas
must make at least min (Q(k/e), 2% /k) queries to the function.

To prove Theorem [[2 we introduce two distributions, Dyes and Dy, over
functions that are k-juntas and functions that are e-far from k-juntas with high
probability, respectively. We then show that no deterministic non-adaptive algo-
rithm can reliably distinguish between functions drawn from Dy., and functions
drawn from D,,. The lower bound on all non-adaptive algorithms for e-testing
k-juntas then follows from an application of Yao’s Minimax Principle [20].

A central concept that we use extensively in the proof of Theorem [[2] is
Chockler and Gutfreund’s definition of twins [§].

Definition 4.1. Two vectors x,y € {0,1}" are called i-twins if they differ ex-
actly in the ith coordinate (i.e., if x; # y; and x; = y; for all j € [n]\{i}). The
vectors x,y are called twins if they are i-twins for some i € [n].

We now define the distributions Dy.s and Dy,. To generate a function from the
distribution D,,,, we first define a function g : {0, 1}**1 — {0,1} by setting
the value g(x) for each input z € {0,1}**! independently at random, with
Prlg(xz) = 1] = 6e. We then extend the function over the full domain by defining
f(x) = g(@[yq)) for every x € {0,1}". The distribution Dy, is defined to be

the uniform mixture distribution over the distributions Déle?g,’l)?(fel, e ,D?(,}zjl),

where the distribution Dz(fe)s is defined similarly to the D, distribution, but over
the set [k + 1]\ {i} instead of [k + 1].
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By construction, the functions drawn from Dy are all k-juntas. The following
Lemma shows that a function drawn from D,,, is e-far from being a k-junta with
high probability.

Lemma 4.2. When k/2F < € <1/12 and k > 3, a function f : {0,1}" — {0,1}
drawn from Dy, is e-far from being a k-junta with probability at least 11/12.

Proof. A function f drawn from D,,, is e-far from being a k-junta iff the function
g: {0, 1}*+1 — {0, 1} that was extended to form f is e-far from being a k-junta.
In turn, g is e-far from being a k-junta iff for every coordinate i € [k + 1], we
must change the value of g(z) on at least €251 different inputs z € {0, 1}*+1
to make the function g independent of the ith variable — which is equivalent to
requiring that at least €2#t! pairs of i-twins have distinct values in g.

Consider a fixed i € [k + 1]. Since each value g(x) is generated independently
and takes value g(x) = 1 with probability 6¢, each pair of i-twins has distinct
values with probability 2 6¢(1 — 6¢). Let ¢; represent the number of i-twins with
distinct values in g. Then when e < 1/12, E[t;] = 12¢(1 — 6€)2F > 662, and we
can apply Chernoft’s bound to obtain

Pr[t; < 62k+1} < =02 (1-1/8)%/2 _ =223

The Lemma then follows from the union bound and the conditions that e > k/2*
and k > 3. O

Consider any sequence of ¢ queries that a deterministic non-adaptive algorithm
may make to a function f. We want to show that when ¢ is small, the responses
observed by the algorithm when f is drawn from D,.s are very similar to the
responses observed when f is drawn from D,,,. The following Lemma provides
a first step toward that goal.

Lemma 4.3. Let Q be a set of q queries containing t; i-twins. Let R@(fe)s and
Rno be the distributions of the responses to the queries in Q when the input

function is drawn from Dg(fe)s or Dy, respectively. Then the statistical distance

between R&QS and Ry, 1s bounded above by

> IRGL () = Rao(y)| < 24tie.
ye{0,1}9

Proof. We apply a hybridization argument. Let the pairs of i-twins in @ be
represented by (o, 1), ..., (at,, Bt,). For j € {0,1,...,¢;}, define the response
distribution H; to be the distribution where each response is independent and
Ge-biased, except for the responses 31,...,3;, which are constrained to satisfy

o1 = Br,...,a; = fj. Note that Hy = Ry, and Hy, = Réie)s, SO

S IRD W) = Ruo()| =D [He(y) — Holw)] < Z > [Hi(y) = Hia(y)]-

j=1y
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The distributions H; and H;_1 are nearly identical. The only difference be-
tween the two distributions is that 3; is constrained to take the value o in H;,
while it is an independent 6Ge-biased random variable in H;_;. So the statistical
distance between H; and H;_; is twice the probability that 3; # «; in H;_;.
Thus, >, 1H;(y) — Hj—1(y)| < 24€(1 — 6€) < 24€ and the Lemma follows. O

With Lemma B3] we can now bound the statistical distance between the re-
sponses observed when the input function is drawn from Dyes or Dj,.

Lemma 4.4. Let QQ be a sequence of q queries containing t pairs of twins. Let
Ryes and Ry, be the distributions of the responses to the queries in Q) when the
input function is drawn from Dyes or Do, respectively. Then

24te
D Ryes(y) = Ruoly)] < bl
ye{0,1}¢

Proof. Since Ryes is a mixture distribution over R?(,le)s, e ,R?(,’fgfl), then

SR W) = Ruo@)] =D |He,(w) = How)] < DD [Hi(y) — Hi—1(w)]-
y y j=1 y
By Lemma 3] the above equation is upper bounded by kil Zi?;rll 24t e,
where t; represents the number of i-twins in (). Lemma 4] then follows from
the fact that t = Zf;l ti. m]

The previous Lemma bounds the statistical distance between the responses ob-
served from a function drawn from Dyes or D,,, when we have a bound on the
number of twins in the queries. The following Lemma shows that the number of
pairs of twins in a sequence of ¢ queries can not be larger than ¢logq.

Lemma 4.5. Let {z1,...,x4} € {0,1}"™ be a set of q distinct queries to a func-
tion f:{0,1}™ — {0,1}. Then there are at most qlogq pairs (x;,x;) such that
x; and x;j are twins.

Proof. A natural combinatorial representation for a query = € {0,1}™ is as a
vertex on the n-dimensional boolean hypercube. In this representation, a pair of
twins corresponds to a pair of vertices connected by an edge on the hypercube.
So the number of pairs of twins in a set of queries is equal to the number of edges
contained in the corresponding subset of vertices on the hypercube. The Lemma
then follows from the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3],
and Hart [14] (see also [T, §16]), which states that any subset S of ¢ vertices in
the boolean hypercube contains at most ¢loggq edgesé a

We can now combine the above Lemmas to prove Theorem [[.21

5 The result of Harper, Bernstein, and Hart is slightly tighter, giving a bound of

¢_1 h(i), where h(i) is the number of ones in the binary representation of .
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Theorem 1.2. Any non-adaptive algorithm for e-testing k-juntas must make at

least min (Q(log/;/e), !2(2,: )) queries.

Proof. Let us first consider the case where ¢ > k/2F. Let A be any non-adaptive
deterministic algorithm for testing k-juntas with ¢ = 10’;26/0600506
Lemma [£7] there can be at most glogq = 6(;“06 pairs of twins in the ¢ queries.
By Lemma 4] this means that the statistical distance between the response

distributions Ryes and R, is at most 6(;“06 . lffl < 215. So the algorithm A can

not predict which distribution generated a given input with accuracy greater

than é + % . 215 = gg. By Lemma[L2 a function drawn from D, fails to be e-far
from being a k-junta with probability at most 112. So the success rate of A is
at most gg + 112 < g Therefore, by Yao’s Minimax Principle, any algorithm for

e-testing k-juntas requires Q(IOZ/,:/E) queries.

queries. By

When € < k/2F, we can repeat the above argument with ¢ = k/2* instead of

€. This yields a lower bound of Q(log/]://e,) = 9(2: ) queries. O

5 Conclusion

Our results have improved the upper bound for the query complexity for testing
juntas and the lower bound for testing juntas with non-adaptive algorithms. The
results stated in this article are all presented in the context of testing functions
with boolean domains, but we note that the results also generalize to the context
of testing of functions f : X™ — {0,1} for any finite domain X.

The results also suggest some interesting problems for future work.

Open Problem 5.1 What is the query complexity of the junta testing problem?
In particular, can we e-tests k-juntas non-adaptively with O(k/€) queries?

Open Problem [5.1] has some relevance to the study of quantum algorithms in
property testing: while Theorem [[LI] improves on all known upper bounds for
the query complexity of classical algorithms for testing juntas, it still does not
match the query complexity of O(k/e) obtained by Atici and Servedio [ for a
non-adaptive algorithm with access to quantum examples.

Open Problem 5.2 Is there a gap between the query complexity of adaptive
and non-adaptive algorithms for testing juntas?

Gonen and Ron [I1] showed that such a gap exists for some property testing
problems in the dense graph model. A positive answer to Open Problem
would provide an interesting example of a similar gap in the context of testing
function properties.

Open Problem 5.3 Can improved query bounds for testing juntas yield better
bounds for testing other properties of boolean functions?

The work of Diakonikolas et al. [9] strongly suggests a positive answer to Open
Problem [£.3] since the junta test plays a central role in their generic algorithm
for testing many properties of boolean functions.
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Abstract. Markov random fields are often used to model high dimen-
sional distributions in a number of applied areas. A number of recent
papers have studied the problem of reconstructing a dependency graph
of bounded degree from independent samples from the Markov random
field. These results require observing samples of the distribution at all
nodes of the graph. It was heuristically recognized that the problem of
reconstructing the model where there are hidden variables (some of the
variables are not observed) is much harder.

Here we prove that the problem of reconstructing bounded-degree
models with hidden nodes is hard. Specifically, we show that unless
NP = RP,

— It is impossible to decide in randomized polynomial time if two mod-
els generate distributions whose statistical distance is at most 1/3
or at least 2/3.

— Given two generating models whose statistical distance is promised
to be at least 1/3, and oracle access to independent samples from one
of the models, it is impossible to decide in randomized polynomial
time which of the two samples is consistent with the model.

The second problem remains hard even if the samples are generated
efficiently, albeit under a stronger assumption.

1 Introduction

We study the computational complexity of reconstructing a Markov random
field of bounded degree from independent and identically distributed samples at
a subset of the nodes.
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The problem of reconstructing Markov random fields (MRF) has been recently
considered as Markov random fields provide a a very general framework for
defining high dimensional distributions. Much of the interest emanates from the
use of such models in biology, see e.g. [I] and a list of related references [2].

Reconstructing Markov random fields where the generating model is a
bounded-degree tree is one of the major computational problems in evolutionary
biology, see e.g. [3]. For tree models the problem of sampling from a given
model or calculating the probability of observing a specific sample for a given
model are well known to be computationally feasible using simple recursions (also
termed “dynamic programming” and “peeling”). Moreover, in the last decade it
was shown that the problem of reconstructing a tree model given samples at a
subset of the nodes is computationally feasible under mild non-degeneracy con-
ditions, see e.g. [B6I7] for some of the best results of this type. (These results
often assume that the samples are observed at the leaves of the tree, but they
easily extend to the case where some of the observables are internal nodes.)

Following extensive experimental work, Abbeel et al. [§] considered the prob-
lem of reconstructing bounded-degree (non-tree) graphical models based on
factor graphs, and proposed an algorithm with polynomial time and sample
complexity. The goal of their algorithm was not to reconstruct the true structure,
but rather to produce a distribution that is close in Kullback-Leibler divergence
to the true distribution.

In a more recent work [9], it was shown that the generating graph of maximal
degree d on n nodes can be efficiently reconstructed in time n°(4 under mild non-
degeneracy conditions. Other results on reconstructing the graph have appeared
in [I0].

Note that all of the results for non-tree models assume that there are no hidden
variables. This is consistent with our results described next which show that the
problem of reconstructing models with hidden variables is computationally hard.

1.1 Definitions and Main Results

Fix an alphabet Y. An undirected model M over X™ consists of an undirected
graph G with n vertices and a collection of weight functions w, : X2 — RZ°, one
for each edge e € E(G). The degree of the model is the degree of the underlying
graph. To each undirected model M we associate the probability distribution
war on X given by

H(uv €E(G w(u v)(auuav)

PrXN,“‘IW [X = a’} ZM

1)
where Z); is the partition function
Z H W(u,v) (aIM av)'
a€X" (u,w)EEB(G)

This probability distribution s is called the Markov Random Field of M.
(Throughout, we will only work with models where Zj; # 0 so that pps is
well-defined.)
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As an example, consider the special case that ¥ = {0,1} and all the weight
functions are the NAND function. Then an assignment a has nonzero weight iff
it is the characteristic vector of an independent set in the graph, Zj; counts the
number of independent sets in the graph, and pys is the uniform distribution
on the independent sets in the graph. For even this special case, it is NP-hard
to compute Zy; given M is NP-hard, even approximately [T1] and in bounded-
degree graphs [12]. Due to the close connection between approximate counting
and sampling [I3], it follows that given a bounded-degree model M, it is in-
feasible to sample from the distribution pas (unless NP = RP). Here, we are
interested in computational problems of the reverse type: given samples, deter-
mine M. Nevertheless, our techniques are partly inspired by the line of work on
the complexity of counting and sampling.

We note that in standard definitions of Markov Random Fields, there is a
weight function we for every cligue C' in the graph (not just edges), and the
probability given to an assignment « is proportional to the product of the weights
of all cliques in the graph. Our definition corresponds to the special case where all
cliques of size greater than 2 have weight functions that are identically one. This
restriction only makes our hardness results stronger. (Note that in bounded-
degree graphs, there are only polynomially many cliques and they are all of
bounded size, so our restriction has only a polynomial effect on the representation
size.)

Markov Random fields model many stochastic processes. In several applica-
tions of interest one is given samples from the distribution pp; and is interested
in “reconstructing” the underlying model M. Often the observer does not have
access to all the vertices of M, but only to a subset V' C {1,...,n} of “re-
vealed” vertices. We call this a model with hidden nodes M | V and denote the
corresponding distribution by pipsv-.

We are interested in the computational complexity of reconstructing the model
M given samples from jipy. Of course, the model M may not be uniquely
specified by pipy (e.g. M may have a connected component that is disjoint from
V'), so one needs to formalize the question more carefully. Since we are interested
in proving hardness results, we take a minimalist view of reconstruction: Any
algorithm that claims to reconstruct M given samples from jipz should in
particular be able to distinguish two models M and M’ when their corresponding
distributions ppsy and iy are statistically far apart.

As a first step towards understanding this question, we consider the following
computational problem:

Problem. dDIST
INPUT: Two models My and M; over X" of degree d, a set V C {1,...,n}.
PROMISE: Zj, and Z), are nonzero.

YES INSTANCES: The statistical distance between ppz, v and gy v is at most
1/3.
No INSTANCES: The statistical distance between piyg, v and ppg, v is at least
2/3.
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Here, the statistical distance (a.k.a. total variation distance) between two dis-
tributions g and v on a set {2 is the quantity

Sd([l,, l/) = maxrcyn |PI‘XN#[X S T] — PI‘XND[X S TH .

The computational problem dDIST, and all others we consider in this paper,
are promise problems, which are decision problems where the set of inputs are
restricted in some way, and we do not care what answer is given on inputs that
are neither yes or no instances or violate the promise. Languages are special
cases where all strings are either yes or no instances. For more about promise
problems, see the survey by Goldreich [14].

Next, we consider a problem that seems much more closely related to (and
easier than) reconstructing a model from samples. Here, the distinguisher is given
two candidate models for some probabilistic process, as well as access to samples
coming from this process. The goal of the distinguisher then is to say which is
the correct model for this process.

Problem. dSAMP
INPUT: Two models My and M; over X" of degree d, a set V C {1,...,n}.

PROMISE: Zy, and Z)s, are nonzero, and the statistical distance between po =
paro)v and g1 = piag, v is at least 1/3.

PROBLEM: Given oracle access to a sampler S that outputs independent samples
from either o or p1, determine which is the case.

More precisely, the distinguishing algorithm D isrequired to satisfy the condition
Pr[D% (Mo, My,V) =b] >2/3  for be {0,1} (2)

where Sp, denotes the sampler for p;, and the probability is taken both over the
randomness of the sampler and the randomness of D.
Our main results are that both of these problems are hard:

Theorem 1. If there is a deterministic (resp., randomized) polynomial-time al-

gorithm for 3DIST, then NP = P (resp., NP = RP). This holds even if we
restrict to models over the alphabet X = {0,1}.

Theorem 2. If there is a randomized polynomial-time algorithm for 3SAMP,
then NP = RP. This holds even if we restrict to models over the alphabet X =

{0,1}.

These characterizations are the best possible: If NP = RP, both DIST and
SAMP have efficient algorithms. See Appendix [Al

The proofs of the two theorems are based on the fact that the Markov Random
Field of a suitably chosen model can approximate the uniform distribution over
satisfying assignments of an arbitrary boolean circuit. By revealing one node, we
can then use an algorithm for either dDIST or dSAMP to distinguish the case
that the first variable is 1 in all satisfying assignments from the case that the
first variable is 0 in all satisfying assignments, which is an NP-hard problem.
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2 Sampling Satisfying Assignments with a Markov
Random Field

In this section, we establish the key lemma that is used in all of our hardness
results — given a boolean circuit C', we can construct a model whose Markov Ran-
dom Field corresponds to the uniform distribution on satisfying assignments of C'.

Lemma 1. There is a polynomial-time algorithm R that on input a circuit C :
{0,1}™ — {0, 1} produces an undirected model M of degree 3 over alphabet {0,1}
with a collection of special vertices v1,...,v, such that Zy; # 0 and if C' is
satisfiable, then the statistical distance between a random satisfying assignment
of C' and the Markov Random Field of M restricted to vy, ..., v, is at most 27™.

This proof is an extension of the standard reduction from circuit satisfiability to
independent set: For each gate in the circuit and every possible assignment to the
wires at this gate we have a vertex in the graph, and we put an edge between ver-
tices corresponding to inconsistent assignments. (For the output gate, we remove
those vertices corresponding to non-satisfying assignments.) Then the uniform
distribution on maximum independent sets in the graph corresponds exactly
to the uniform distribution on satisfying assignments in the circuit. However,
the independent set model also gives weight to independent sets that are not
maximum.

The weight corresponding to maximum independent sets can be magnified us-
ing the “blow-up” technique of [T3IT1], where we clone every vertex polynomially
many times and replace each edge with complete bipartite graph between the
clones of the endpoints. However, this results in a graph of polynomially large
degree. In order to obtain a degree 3 model, we use the more general weight
functions allowed in a Markov Random Field to achieve the same blow-up effect
with many fewer edges. Specifically, we can force all clones of a vertex to have
the same value by connecting them in a cycle with appropriate weight functions,
and can also use the weights to magnify the weight of large sets. Then we can
spread out the edges of the original graph among the clones in a way that the
degree increases only by 1.

Proof. Consider the following polynomial-time algorithm that, on input a circuit
C' of size s, produces an undirected model M over alphabet {0,1}. We assume
without loss of generality that each gate has fanin two and that all NOT gates
are at the input level. For each gate g of C, including the input gates, and each
consistent assignment « of values to the wires incident to this gate, the model
M has r = 8s vertices vg.a,1,...,Vgq,r (Note that for each gate g, there are
at most 22 = 8 possible assignments «.) For the output gate, we only consider
assignments consistent with the circuit accepting. For every i, connect the ver-
tices v = Vg,q,i and u = Vg,q,i+1 by an edge with the following weighted “inner
constraint”:
1 ifa,=a,=0
Win (A, 0y) = 2 ifay =a, =1

0 otherwise.
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For any pair of gates g, h where either g = h or g and h are connected, and any
pair of assignments « for g and § for h that are inconsistent, add the following
“outer constraint’ between v = vy o ; and u = vy, g ;, where 7 (resp. j) is the first
index that has not been used in any outer constraint for g (resp. h):

0 ifa,=a,=1
1 otherwise.

wout(au7 a'u) = {

The first type of constraint ensures that all representatives of the same gate-
assignment pair are given the same value, and favors values that choose the
assignment. The second type of constraint ensures that the assignments to the
vertices of the model are consistent with circuit evaluation.

Assume that C is satisfiable, and look at the distribution induced by the
Markov Random Field of M on the vertices v1,...,v,, where v; = vy, 1,1 rep-
resent the inputs of C. For every satisfying assignment « of C, consider the
corresponding assignment o’ of M that assigns value 1 to all vertices represent-
ing gate-assignment pairs consistent with the evaluation of C' on input «, and 0
to all others. This gives o relative weight 25" in the Markov Random Field.

We now argue that the combined weight of all other assignments of M cannot
exceed 277 - 2°" and the claim follows easily from here. By construction, every
assignment of M with nonzero weight assigns 1 to at most one group of vertices
Vg,a,1,- -+, VUg,a,r fOr every gate g, and if the assignment does not represent a
satisfying assignment of C' then at least one gate must have no group assigned
1. For each group assigned 1, there are at most 8 ways to choose the assignment
from each group, and each such assignment contributes a factor of 2" to the
weight, so the total weight of non-satisfying assignments is at most

s—1
Z (Z) . (8 . 27‘)k < 25 .85 . 2(571)7‘ < 9=s . 9sT
k=0

by our choice of r. O

3 Hardness of 3DIST and 3SAMP

In this section we prove Theorems [I] and Bl For both, we will reduce from the
following NP-hard problem.

Problem. CKTDIST

INPUT: A circuit C' (with AND, OR, NOT gates) over {0,1}".

ProMise: C is satisfiable.

YES INSTANCES: All satisfying assignments of C' assign the first variable 1.

No INSTANCES: All satisfying assignments of C' assign the first variable 0.

Lemma 2. If CKTDIST has a polynomial-time (resp., randomized polynomial-
time) algorithm, then NP =P (resp., NP = RP).
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Proof. This follows from a result of Even, Selman, and Yacobi [15], who showed
that given two circuits (Co, C71) where it is promised that exactly one is satis-
fiable, it is NP-hard to distinguish the case that Cj is satisfiable from the case
that C; is satisfiable. This problem is easily seen to be equivalent to CKTDIST
by setting C'(b,x) = Cy(x). (The interest of [I5] in this problem was the fact
that it is in the promise-problem analogue NP N coNP, whereas there cannot be
NP-hard languages in NP N coNP unless NP = coNP.) O

Now we use Lemma [T to reduce CKTDIST to 3DIST and 3SAMP.

Proof (of Theorem[]). To prove Theorem[I] let’s assume for sake of contradiction
that there is an efficient algorithm D for 3DIST. For simplicity, we assume that
D is deterministic; the extension to randomized algorithms is straightforward.

Given a satisfiable circuit C', we will to use the distinguishing algorithm D
to distinguish the case that all satisfying assignments assign the first variable
1 from the case that all satisfying assignments assign the first variable 0. First,
using Lemma [Tl we turn the circuit C' into an undirected model M and let v be
the variable corresponding to the first variable of C. Then ppzf,,) is a Bernoulli
random variable that outputs 1 with probability approximately equal (within
+27™) to the fraction of satisfying assignments that assign the first variable 1.

Next, let M’ be any model where the node v is always assigned 1 in .
(For example, we can have a single edge (u,v) with weight function w, )
(au, ay) = ayay.)

Then pazipy and pagr g0y have statistical distance at most 27" < 1/3 if C' is
a NO instance of CKTDIST, and have statistical distance at least 1 —27" > 2/3
if C'is a YES instance. Thus, D(M, M',{v}) correctly decides CKTDIST, and
NP =P. O

Proof (of Theorem[d). Similarly to the previous proof, we reduce CKTDIST to
3SAMP: Given a circuit C, define the circuits Co(x1, xa, ..., x,) = C(x1,...,2p)
and Ci(x1,22,...,2,) = C(—x1,x2,...,2,). Note that if all satisfying assign-
ments of C' assign the first variable value b, then all satisfying assignments to Cj,
assign the x1 = 0 and all satisfying assignments to C—; assign ;1 = 1. Now, we
apply Lemma [ to construct models My and M; corresponding to Cy and Cf,
and we reveal only the vertex V' = {v1} corresponding to the variable x;. (Note
that piaz,v and g,y have statistical distance at least 1 —2-27".) Given a ran-
domized algorithm A for 3SAMP, we run A% (M, M) where S is the sampler
that always outputs 0. If all satisfying assignments of C' assign 1 = b then S is
27 "-close in statistical distance to Sy ~ g . Thus

Pr[A% (Mo, My) = b] > Pr[AS (My, My) = b] — poly(n) - 27" > 2/3 — o(1)

and the construction gives a randomized algorithm for CKTDIST. O

4 On the Samplability of the Models

One possible objection to the previous results is that the Markov Random Fields
in question are not required to be samplable. In some of the applications we have
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in mind, the model represents a natural (physical, biological, sociological,...)
process. If we believe that nature itself is a computationally efficient entity, then
it makes sense to assume that the models we are trying to reconstruct will be
efficiently samplable. It is natural to ask if the problem of distinguishing Markov
Random Fields remains hard in this setting too.

Problem. EFFSAMP

INPUT: Two models My and M over X" of degree d, aset V C {1,...,n}, and
a parameter s in unary.

PROMISE: Z);, and Zjp;, are nonzero, the statistical distance between po =
paro)v and gy = pupr v is at least 1/3, and both g, and iy, are 27"-close in
statistical distance to distributions samplable by circuits of size at most s.

PROBLEM: Given oracle access to a sampler S that outputs independent samples
from either g or pq, determine which is the case.

We have the following hardness result for EFFSAMP. Here CZK is the class
of decision problems that have “computational zero-knowledge proofs”. (See [16]
for a definition.)

Theorem 3. If EFFSAMP has a polynomial-time randomized algorithm, then
CZK = BPP.

A slightly weaker version of this theorem says that if EFFSAMP has a
polynomial-time randomized algorithm, then one-way functions, or equivalently
pseudorandom generators [I7], do not exist. (See [16] for definitions of both one-
way functions and pseudorandom generators.) To prove this, we observe that
an algorithm for EFFSAMP can be used to break any candidate pseudoran-
dom generator G: Convert G into an undirected model My | V using Lemma [I]
and let My | V be a model whose Markov Random Field is uniform. Then
the algorithm for EFFSAMP can be used to tell if a sample came from the
pseudorandom generator or from the uniform distribution, thereby breaking the
generator. Theorem Bl is stronger because it is known that if one-way functions
exist, then CZK = PSPACE # BPP [I8[T920].

To prove the actual theorem, we use a result of Ostrovsky and Wigderson [21],
which says that if CZK # BPP then there must exist an “auxiliary-input pseudo-
random generator”, which can also be broken by the same argument.

Proof. Suppose that CZK # BPP. Then by Ostrovsky and Wigderson [21], there
exists an auziliary-input one-way function: This is a polynomial-time computable
function f : {0,1}" x {0,1}™ — {0,1}"™ such that for every polynomial p and
polynomial-size circuit C, there exist infinitely many a such that

Pro (013 [f(a,Cla, f(a,2))) = f(a,2)] <1/p(n)

where n is the length of a. By Hastad et al. [T7], it follows that there is also an
auxiliary-input pseudorandom generator: This is a polynomial-time computable
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function G : {0,1}™ x {0,1}" — {0,1}"*! such that for every polynomial-size
circuit family D and every polynomial p, there exist infinitely many a such that

’PrZJN{OJ}"“ [D(a, y)] - PrmN{O,l}” [D(aﬂ G(aﬂ 1’))] ’ < 1/p(n)‘

It follows by a standard hybrid argument that for every polynomial-size oracle
circuit D whose oracle provides independent samples from a given distribution
we have that

[Pr[DY(a)] — Pr[D%*(a)]| < 1/p(n).

for infinitely many a, where U is (a sampler for) the uniform distribution on
{0,1}"! and G4, is the output distribution of G(a, z) when x is chosen uniformly
from {0,1}™. We show that if EFFSAMP has a polynomial-time randomized
algorithm A, then for every polynomial-time computable G there is a circuit D
such that

’Pr[DU(a)] — Pr[D% (a)H > 1/4.

for every a. Fix an a of length n, let C,(z,y) be the circuit

Culi,y) = {1 Hy =l

0 otherwise
Apply Lemmal[dlto circuit C, to obtain a model M,, and let V be the set of nodes
of M, corresponding to the input y of C,. Then the Markov Random Field of M,
is 27" close to the distribution G,. Let M’ | V be a model whose Markov Random
Field is the uniform distribution over {0,1}"*%. Then D(a) = A*(M,, M') is
the desired circuit. O
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Converse Theorem

Theorem 4. If NP = RP, then for every d there are randomized polynomial-
time algorithms for dDIST and dSAMP.

To prove Theorem[d] we use the following results of Jerrum, Valiant, Vazirani [13].
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Theorem 5. Assume NP = RP. Then there exists

1. A randomized polynomial-time sampling algorithm Sample that on input a
satisfiable circuit C' : {0,1}™ — {0,1} and € > 0 (represented in unary), has
an output distribution that is e-close in statistical distance to the uniform
distribution on the satisfying assignments of C'.

2. A randomized polynomial-time sampling algorithm Count that on input a
circuit C : {0,1}™ — {0,1} and € > 0 (represented in unary) such that with
high probability

C71(1)] < Comnt(C, ) < (1+2)|C(1)]
Now we assume NP = RP and describe algorithms for dDIST and dSAMP.

Algorithm for DIST: Using part (1) of Theorem [B] we can sample from a
distribution close to the Markov Random Field M | V. To see this, consider the
circuit C' that takes as inputs an assignment x € X" and numbers ¢, € N, one
for each edge e of M and outputs

Cloew) = {1, ift, < 'we(ace) for all e
0, otherwise.

Conditioned on C(x,e,w) = 1, for a uniformly chosen triple (z,e,w) the input
x ~ X" follows exactly the distribution pjs. Using the above theorem, there
is then an algorithm which on input (M, V') outputs a sample from a distribu-
tion that is 1/9-close (in statistical distance) to ppzv. Let us use Cpsy as the
sampling circuit obtained by hardwiring M and V as inputs to the algorithm A.

Now given an input My, M1,V for dDIST, we produce the circuits Cy =
Cu,v and C; = Ci,v. Note that if sd(po, p1) > 2/3 then the statistical
distance between the output distributions of these two circuits is > 2/3 —1/9 =
5/9, and if sd(po, 1) < 1/3 then the distance is < 1/3 + 1/9 = 4/9. The
problem of distinguishing circuits with large statistical distance from those with
small statistical distance is known to be in the complexity class AM [22], which
collapses to BPP under the assumption that NP = RP [23].

Algorithm for SAMP: First, we may assume that the statistical distance be-
tween the distributions pg and 4 is as large as 9/10: Instead of working with the
original models, take 40 independent copies of each model; now each sample of
this new model will correspond to 40 independent samples of the original model.
The statistical distance increases from 1/3 to 9/10 by the following inequality:

Claim. Let u,v be arbitrary distributions, and p*, v* consist of k independent
copies of u, v, respectively. Then

1 — exp(k - sd(p, v)?/2) < sd(p¥,v%) <k -sd(u,v).

Using part (2) of Theorem B for every partial configuration a € £V, we can
efficiently compute approximations pg(a), p1(a) such that

po(a) < po(a) <2po(a)  and  pi(a) < pi(a) < 2pi(a),
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where p;(a) = Prx~,,[X = a]. Now consider the following algorithm D: On
input My, M7,V , generate a sample a from S, output 0 if po(a) > p1(a) and
1 otherwise. Then, assuming the counting algorithm of Theorem [ returns the
correct answer, we have:

PI‘[DSO (Mo, M17 V) = 0] Z Za'yo(a)>2p,1(a) /J,()(Cl)

> — .
.. (@) (@) 0L Za:2m(@)2uo(a)>m(0) Hola)

The first term is at least as large as sd(puo, 1) > 9/10. For the second term, we
have

< 2
po(a) < Za:Qm(a)ZHo(G)>M1(G) mia)

<2.
S2:) oo (@
<2 (1 —sd(uo, ) =1/5.

Za:2m (a)>po(a)>p1(a)

It follows that Pr[D%0 (Mg, My, V) = 0] > 2/3, and by the same argument
Pr[D% (Mo, My, V) = 1] > 2/3.
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Abstract. Markov random fields are used to model high dimensional
distributions in a number of applied areas. Much recent interest has
been devoted to the reconstruction of the dependency structure from
independent samples from the Markov random fields. We analyze a sim-
ple algorithm for reconstructing the underlying graph defining a Markov
random field on n nodes and maximum degree d given observations. We
show that under mild non-degeneracy conditions it reconstructs the gen-
erating graph with high probability using ©(d logn) samples which is
optimal up to a multiplicative constant. Our results seem to be the first
results for general models that guarantee that the generating model is
reconstructed. Furthermore, we provide an explicit O(dn®*?logn) run-
ning time bound. In cases where the measure on the graph has correlation
decay, the running time is O(n?logn) for all fixed d. In the full-length
version we also discuss the effect of observing noisy samples. There we
show that as long as the noise level is low, our algorithm is effective. On
the other hand, we construct an example where large noise implies non-
identifiability even for generic noise and interactions. Finally, we briefly
show that in some cases, models with hidden nodes can also be recovered.

1 Introduction

In this paper we consider the problem of reconstructing the graph structure
of a Markov random field from independent and identically distributed samples.
Markov random fields (MRF) provide a very general framework for defining high
dimensional distributions and the reconstruction of the MRF from observations
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has attracted much recent interest, in particular in biology, see e.g. [9] and a list
of related references [10].

1.1 Our Results

We give sharp, up to a multiplicative constant, estimates for the number of in-
dependent samples needed to infer the underlying graph of a Markov random
field. In Theorem 2l we use a simple information-theoretic argument to show that
2(dlogn) samples are required to reconstruct a randomly selected graph on n
vertices with maximum degree at most d. Then in Theorems (] and Bl we propose
two algorithms for reconstruction that use only O(dlogn) samples assuming
mild non-degeneracy conditions on the probability distribution. The two theo-
rems differ in their running time and the required non-degeneracy conditions.
It is clear that non-degeneracy conditions are needed to insure that there is a
unique graph associated with the observed probability distribution.

Chickering [2] showed that maximum-likelihood estimation of the underly-
ing graph of a Markov random field is NP-complete. This does not contradict
our results which assume that the data is generated from a model (or a model
with a small amount of noise). Although the algorithm we propose runs in time
polynomial in the size of the graph, the dependence on degree (the run-time is
O(dn%+?logn)) may impose too high a computational cost for some applica-
tions. Indeed, for some Markov random fields exhibiting a decay of correlation
a vast improvement can be realized: a modified version of the algorithm runs in
time O(dn?logn). This is proven in Theorem Bl

In addition to the fully-observed setting in which samples of all variables are
available, we extend our algorithm in several directions. These sections are omit-
ted due to space constraints; we refer the reader to the full version [I4] for the
discussion on these topics. In Section 5 of [T4] we consider the problem of noisy
observations. We first show by way of an example that if some of the random
variables are perturbed by noise then it is in general impossible to reconstruct
the graph structure with probability approaching 1. Conversely, when the noise
is relatively weak as compared to the coupling strengths between random vari-
ables, we show that the algorithms used in Theorems @ and [l reconstruct the
graph with high probability. Furthermore, we study the problem of reconstruc-
tion with partial observations, i.e. samples from only a subset of the nodes are
available, and provide sufficient conditions on the probability distribution for
correct reconstruction.

1.2 Related Work

Chow and Liu [I] considered the problem of estimating Markov random fields
whose underlying graphs are trees, and provided an efficient (polynomial-time)
algorithm based on the fact that in the tree case maximum-likelihood estima-
tion amounts to the computation of a maximum-weight spanning tree with edge
weights equal to pairwise empirical mutual information. Unfortunately, their
approach does not generalize to the estimation of Markov random fields whose
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graphs have cycles or hidden nodes. Much work in mathematical biology is de-
voted to reconstructing tree Markov fields when there are hidden nodes. For
trees, given data that is generated from the model, the tree can be reconstructed
efficiently from samples at a subset of the nodes given mild non-degeneracy con-
ditions. See [T2IT3ITT] for some of the most recent and tightest results in this
setup.

Abbeel, et al [3] considered the problem of reconstructing graphical models
based on factor graphs, and proposed a polynomial time and sample complexity
algorithm. However, the goal of their algorithm was not to reconstruct the true
structure, but rather to produce a distribution that is close in Kullback-Leibler
divergence to the true distribution. In applications it is often of interest to recon-
struct the true structure which gives some insight into the underlying structure
of the inferred model.

Note furthermore that two networks that differ only in the neighborhood
of one node will have O(1) KL distance. Therefore, even in cases where it is
promised that the KL distance between the generating distribution and any other
distribution defined by another graph is as large as possible, the lower bounds on
the KL distance is £2(1). Plugging this into the bounds in [3] yields a polynomial
sampling complexity in order to find the generating network compared to our
logarithmic sampling complexity. For other work based on minimizing the KL
divergence see the references in [3].

Essentially the same problem as in the present work (but restricted to the Ising
model) was studied by Wainwright, et al [5], where an algorithm based on ;-
regularization was introduced. In that work, sufficient conditions—different than
ours—for correct reconstruction were given. They require a condition (called
A2) where the neighborhood of every vertex is only weakly affected by their
neighbors. Verifying when the condition holds seems hard and no example is
given in the paper where the condition holds. The simulation studies in the
paper are conducted for graphs consisting of small disconnected components. In
this setting the running time of their algorithm is O(n®). The result [5] is best
compared to our result showing that under standard decay of correlation (e.g.,
for models satisfying the Dobrushin condition, which is satisfied for the models
simulated in their work), the running time of our algorithm is O(n?logn) as
given in Theorem [8l The algorithm of [5] has suboptimal sample complexity,
requiring ©(d® log n) samples for reconstruction.

Subsequent to our work being posted on the Arxiv, Santhanam and Wain-
wright [4] again considered essentially the same problem for the Ising model,
producing nearly matching lower and upper bounds on the asymptotic sampling
complexity. A key difference from our work is that they restrict attention to the
Ising model, i.e. Markov random fields with pairwise potentials and where each
variable takes two values. Also, they consider models with a fixed number of
total edges, and arbitrary node degree, in contrast to our study of models with
bounded node degrees and an arbitrary number of edges. We note that their re-
sults are limited to determining the information theoretic sampling complexity
for reconstruction, and provide no efficient algorithm.
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2 Preliminaries

We begin with the definition of Markov random field.

Definition 1. On a graph G = (V, E), a Markov random field is a distribution
X taking values in AV, for some finite set A with | A |= A, which satisfies the
Markov property

PX(W), X(U) | X(5)) = P(X(W) | X(5))P(X(U) | X(5)) (1)

when W, U, and S are disjoint subsets of V' such that every path in G from W
to U passes through S and where X (U) denotes the restriction of X from AV
to AV for U C V.

Famously, by the Hammersley-Clifford Theorem, such distributions can be writ-
ten in a factorized form as

Zwa(oa)l 7 (2)

where Z is a normalizing constant, a ranges over the cliques in G, and ¥, : Al*l —
R U {—o0} are functions called potentials.

The problem we consider is that of reconstructing the graph G, given k in-
dependent samples X = {X' ..., X*} from the model. Denote by G4 the set
of labeled graphs with maximum degree at most d. We assume that the graph
G € G4 is from this class. A structure estimator (or reconstruction algorithm)
G Ak G4 is a map from the space of possible sample sequences to the set
of graphs under consideration. We are interested in the asymptotic relationship
between the number of nodes in the graph, n, the maximum degree d, and the
number of samples k£ that are required. An algorithm using number of samples
k(n) is deemed successful if in the limit of large n the probability of reconstruc-
tion error approaches zero.

1
P(o) = 7 €XP

3 Lower Bound on Sample Complexity

Suppose G is selected uniformly at random from G;. The following theorem gives
a lower bound of {2(d log n) on the number of samples necessary to reconstruct
the graph G. The argument is information theoretic, and follows by comparing
the number of possible graphs with the amount of information available from
the samples.

Theorem 2. Let the graph G be drawn according to the uniform distribution
on Gq. Then there exists a constant ¢ = c¢(A) > 0 such that if k < cdlogn

then for any estimator G: X — Ga, the probability of correct reconstruction is
P(G=G)=o0(1).

Remark 1. Note that the theorem above doesn’t need to assume anything about
the potentials. The theorem applies for any potentials that are consistent with
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the generating graph. In particular, it is valid both in cases where the graph is
“identifiable” given many samples and in cases where it isn’t.

Proof. To begin, we note that the probability of error is minimized by letting G
be the maximum a posteriori (MAP) decision rule,

Guap(X) = argmax,c o P(G = g | X).

By the optimality of the MAP rule, this bounds the probability of error using
any estimator. Now, the MAP estimator Gyap(X) is a deterministic function
of X. Clearly, if a graph ¢ is not in the range of G then the algorithm always
makes an error when G = g. Let S be the set of graphs in the range of Gyiap,
so P(error | g € §¢) = 1. We have

P(error) = Z P(error | G = g)P(G =g)

geG
= Z P(error | G = g)P(G =g) + Z P(error | G = g)P(G = g)
ges gese
>> P(G=g)=1-) |G|
geSse ges
Ank
>1

=gyl
(3)

where the last step follows from the fact that | S |<| X |< A™*. It remains only
to express the number of graphs with max degree at most d, | G4 |, in terms of
the parameters n, d. The following lemma gives an adequate bound.

Lemma 3. Suppose d < n® with a < 1. Then the number of graphs with max
degree at most d, | G4 |, satisfies

log | Gu |= 2(ndlog n). (4)

Proof. To make the dependence on n explicit, let U, 4 be the number of graphs
with n vertices with maximum degree at most d. We first bound U, 42,4 in terms
of Uy, q,. Given a graph G with n vertices and degree at most d, add two vertices
a and b. Select d distinct neighbors vy, . .., vq for vertex a, with d labeled edges;
there are (7)) d! ways to do this. If v; already has degree d in G, then v; has at
least one neighbor u that is not a neighbor of a, since there are only d — 1 other
neighbors of a. Remove the edge (v;, u) and place an edge labeled i from vertex
b to w. This is done for each vertex vy,...,vq, so b has degree at most d. The
graph G can be reconstructed from the resulting labeled graph on n + 2 vertices
as follows: remove vertex a, and return the neighbors of b to their correct original
neighbors (this is possible because the edges are labeled).

Removing the labels on the edges from a and b sends at most d!? edge-labeled
graphs of this type on n + 2 vertices to the same unlabeled graph. Hence, the
number of graphs with max degree d on n + 2 vertices is lower bounded as
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n 1 n\ 1
> L~ .
Unyo,a > Un,d(d>d 212 U, ,d<d> dl

It follows that for n even (and greater than 2d + 4)

. n/4
nj2(n—2i\ 1 n/2\ 1
Una 2 Xl‘—l( d )d! z (( d)a) (5)

If n is odd, it suffices to note that U,41,4 > U, 4. Taking the logarithm of
equation (@) yields

log Up,q = $2(nd(logn —log d)) = 2(ndlogn), (6)
assuming that d < n® with a < 1. 0O

Together with equation (@), Lemma Bl implies that for small enough ¢, if the
number of samples k& < cd log n, then

P(error) > 1 — ‘quﬂf =1-o0(1).

This completes the proof of Theorem O

4 Reconstruction

We now turn to the problem of reconstructing the graph structure of a Markov
random field from samples. For a vertex v we let N(v) = {u € V\{v}: (u,v) €
E} denote the set of neighbors of v. Determining the neighbors of v for every
vertex in the graph is sufficient to determine all the edges of the graph and
hence reconstruct the graph. Our algorithms reconstruct the graph by testing
each candidate neighborhood of size at most d by using the Markov property,
which states that for each w € V' \ (N(v) U{v})

P(X(v) | X(N(v)), X (w)) = P(X(v) [ X(N(v)))- (7)

We give two algorithms for reconstructing networks; they differ in their non-
degeneracy conditions and their running time. The first one, immediately below,
has more stringent non-degeneracy conditions and faster running time.

4.1 Conditional Two Point Correlation Reconstruction

The first algorithm requires the following non-degeneracy condition:

Condition N1: There exist €,6 > 0 such that forall v € V,if U C V' \ {v}
with | U |< d and N(v) € U then there exist values @y, Ty, Ty, Tuy , - - - » Tu,
such that for some w € V' \ (U U{v})

’P(X(U) =z, | X(U) =2y, X (w) = z4)

, ®)
~P(X(v) =, | X(U) =2y, X (w) = z,,)| > €
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and
9)

Remark 2. Condition () captures the notion that each edge should have suffi-
cient strength. Condition (@) is required so that we can accurately calculate the
empirical conditional probabilities.

We now describe the reconstruction algorithm, with the proof of correctness
given by Theorem Hl In the following, P denotes the empirical probability mea-
sure from the & samples.

Algorithm SIMPLERECON(Input: k i.i.d. samples from MRF; Output: estimated
graph G)

— Initialize FF = @.
— For each vertex v do
e For each U C V \ {v} with |[U|] < d, w € V \ (UU {v}), and
L1y '7$laxw7$;u>xv cA
* If N
P(X(U) = 20, X (w) = 24)] > 0/2

and
IP(X(U) = o, X (w) = al,)| > 6/2

then compute

(U, 2y, w, Tup, Thy)) :‘ﬁ(X(U) =2,|X(U) = zp, X (w) = zy)
— P(X(v) = 2,|]X(U) = zp, X (w) = )| .

e Let N(v) be the minimum cardinality U such that
MaXyy, wa,,e, T(U, Tu, W, Ty, T,) < €/2.
e Add the edges incident to v: E = EU {(v,u) : u € N(v)}.
— Return the graph G = (V, E).

Run-time analysis. The analysis of the running time is straightforward. There
are n nodes, and for each node we consider O(n?) neighborhoods U. For each
candidate neighborhood, we check O(n) nodes z,, and perform a correlation test
of complexity O(d logn). The run-time of SIMPLERECON is thus O(dn%+2log n)
operations.

We now give the main theorem.

Theorem 4 (Correctness of SimpleRecon). Suppose the MRF satisfies

condition N1. Then with the constant C = (8612((&23) + Cl>, when k > Cdlogn,

the estimator SIMPLERECON correctly reconstructs with probability at least
1—0(n=%).
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Proof. Azuma’s inequality gives that if ¥ ~ Bin(k, p) then
P(lY = kp |> vk) < 2exp(—27°k)
and so for any collection U = {uy,...,u} C V and z1,...,2 € A we have

P (|POX(U) = 20) = P(X(U) = 20)| <) < 2exp(-29%K).  (10)

There are A'("}) < A'n' such choices of ui,...,u and 21, ..., 2. An application
of the union bound implies that with probability at least 1 — A'n'2 exp(—272k)
it holds that R

P(X(U) = a0) = P(X(U) = a0)| <9 (1)

for all {u;}!_; and {z;}!_,. If we additionally have [ < d+2 and k > C(v)d log n,
then equation (I} holds with probability at least 1 — A%+2pd+22/p27*C(0d,
Choosing C(y) = 42 + €y, equation () holds with probability at least 1 —

y22d
24942 /n 01,
For the remainder of the proof assume (1) holds. Taking
v(e,8) = €8%/9 (12)
we can bound the error in conditional probabilities as
| P(X(v) =, | X(U) = 2v) = P(X(v) =2, | X(U) = zv) |
| P(X(v) =2, X(U) =2y)  P(X(v) =2, X(U) = 5p)
P(X(U) = ay) P(X(U) = zv)
_ P(X(v) =2, X(U) =12y) P(X(v) =2, X(U) = 2p)
- P(X(U)=zy) P(X(U) =uay)
n 1 _ 1
P(X(U)=1zy) PXU)=uav)
¥ ¥ €62 €62 €6 € €
< < = . 1
ST G-6 T 95 Tos—s 9 (9-e) "4 (13)

For each vertex v € V we consider all candidate neighborhoods for v, subsets
UC V\{v} with | U |< d. The estimate ([I3]) and the triangle inequality imply
that if N(v) C U, then by the Markov property,

[P(X(v) = 2 | X(U) = 20, X (w) = 2)
—P(X(v) =2, | X(U) = 2y, X (w) = z},)| < ¢/2 (14)

for all w € V and 1, ..., 2, Ty, T,,, T, € A such that
‘?’(X(U) — 20, X (w) = xw)’ > 6/2,

P(X(U) = 2y, X (w) :x;v)‘ > 6/2. (15)
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Conversely by condition N1 and (@) and the estimate ([I3]), we have that for any
U with N(v) € U there exists some w € V and @y, , ..., Ty, T, L,,, T, € A such
that equation (&) holds but equation ([I4) does not hold. Thus, choosing the
smallest set U such that ([I4]) holds gives the correct neighborhood.

To summarize, with number of samples

b (81(d+2)

25194 —1—01) dlogn

the algorithm correctly determines the graph G with probability

P(SIMPLERECON(X) = G) > 1 — 24412 /n% |

4.2 General Reconstruction

While the algorithm SIMPLERECON applies to a wide range of models, condition
N1 may occasionally be too restrictive. One setting in which condition N1 does
not apply is if the marginal spin at some vertex v is independent of the marginal
spin at each of the other vertices, (i.e for all v € V \ {v} and all z,y € A
we have P(X(v) =z, X (u) = y) = P(X(v) = 2)P(X(u) = y). In this case the
algorithm would incorrectly return the empty set for the neighborhood of v. The
weaker condition for GENERALRECON holds on essentially all Markov random
fields. In particular, ([I6) says that the potentials are non-degenerate, which is
clearly a necessary condition in order to recover the graph. Equation (7)) holds
for many models, for example all models with soft constraints. This additional
generality comes at a computational cost, with SIMPLERECON having a faster
running time, O(dn?*%logn), versus O(dn??*'logn) for GENERALRECON.

We use the following notation in describing the non-degeneracy conditions.
For an assignment zy = (y,,...,,) and z;, € A, define

x%](xq’l) = (Tugs oo s Ty ey Tuy)

to be the assignment obtained from zy by replacing the ith element by = .

Condition N2: There exist €, > 0 such that the following holds: for all
veV,if N(v)=uwu,...,u, then for each 4,1 < i <[ and for any set W C
V\ (vUN(v)) with | W |< d there exist values y, Zu,, .., Tu;, - - - 5 Loy, Ty, €
A and zyw € AW such that

|P(X(v) =, | X(N(v)) = zn(s))
— P(X(v) =z | X(N(v)) = 2k (2},)| > €

u;

(16)

and
| P(X(N(v)) = 2n(0), X (W) = 2w) [> 6,
| P(X(N(0)) = iyl ), X (W) = aw) |> 6.

%

(17)
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We now give the algorithm GENERALRECON.

Algorithm GENERALRECON(Input: k ii.d. samples from MRF; Output: esti-
mated graph G)

— Initialize £ = @.
— For each vertex v do
e Initialize N(v) = @.
e Foreach U C V\{v} withl=|U| <d, W € V\(UU{v}) with |W| < d,
each i, 1 <i <, and z,, 2w, zy, 7, € A
x If

P(X(W) = 2w, X(U) = zy) > §/2
P(X(W) = zw,X(U) = 2j,(z),,)) > §/2

then compute

r(UW,i, 2y, 2w, Tu, 25,
= |P(X(v) = 2| X(W) = 2w, X (U) = 2v)
~ P(X(0) = 2| X(W) = 2w, X(U) = ajy ()|
e Let N(v) be the maximu