

Lecture Notes in Computer Science 5171
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ashish Goel Klaus Jansen
José D.P. Rolim Ronitt Rubinfeld (Eds.)

Approximation,
Randomization
and Combinatorial
Optimization
Algorithms and Techniques

11th International Workshop, APPROX 2008
and 12th InternationalWorkshop, RANDOM 2008
Boston, MA, USA, August 25-27, 2008
Proceedings

13

Volume Editors

Ashish Goel
Stanford University, Department of Management Science and Engineering
and (by courtesy) Computer Science
Terman 311, Stanford, CA, 94305, USA
E-mail: ashishg@stanford.edu

Klaus Jansen
University of Kiel, Institute for Computer Science
Olshausenstrasse 40, 24118 Kiel, Germany
E-mail: kj@informatik.uni-kiel.de

José D.P. Rolim
Centre Universitaire d’Informatique, Battelle Bâtiment A
Route de Drize 7, 1227 Carouge, Geneva, Switzerland
E-mail: rolim@cui.unige.ch

Ronitt Rubinfeld
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Building 32-G698, Cambridge, MA 02139, USA
E-mail: ronitt@csail.mit.edu

Library of Congress Control Number: 2008933319

CR Subject Classification (1998): F.2, G.2, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85362-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85362-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12456543 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 11th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2008) and the 12th International Workshop on Randomization and
Computation (RANDOM 2008), which took place concurrently at the MIT (Mas-
sachusetts Institute of Technology) in Boston, USA, during August
25–27, 2008. APPROX focuses on algorithmic and complexity issues surrounding
the development of efficient approximate solutions to computationally difficult
problems, and was the 11th in the series after Aalborg (1998), Berkeley (1999),
Saarbrücken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), and Princeton (2007). RANDOM is
concerned with applications of randomness to computational and combinatorial
problems, and was the 12th workshop in the series following Bologna (1997),
Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006),
and Princeton (2007).

Topics of interest for APPROX and RANDOM are: design and analysis of ap-
proximation algorithms, hardness of approximation, small space, sub-linear time,
streaming, algorithms, embeddings and metric space methods, mathematical
programming methods, combinatorial problems in graphs and networks, game the-
ory, markets, economic applications, geometric problems, packing, covering,
scheduling, approximate learning, design and analysis of randomized algorithms,
randomized complexity theory, pseudorandomness and derandomization, random
combinatorial structures, random walks/Markov chains, expander graphs and
randomness extractors, probabilistic proof systems, random projections and em-
beddings, error-correcting codes, average-case analysis, property testing, compu-
tational learning theory, and other applications of approximationand randomness.

The volume contains 20 contributed papers, selected by the APPROX Pro-
gram Committee out of 42 submissions, and 27 contributed papers, selected by
the RANDOM Program Committee out of 50 submissions.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees:

APPROX 2008

Matthew Andrews, Bell Labs
Timothy Chan, University of Waterloo
Julia Chuzhoy, Toyota Technological Institute at Chicago
Uriel Feige, Weizmann Institute
Ashish Goel, Stanford University (Chair)

VI Preface

Elad Hazan, IBM Almaden Research Center
Stefano Leonardi, Sapienza University of Rome
Aranyak Mehta, Georgia Institute of Technology
Vahab Mirrokni, Massachusetts Institute of Technology
Kamesh Munagala, Duke University
Adi Rosen, Laboratoire de Recherche en Informatique
David Shmoys, Cornell University
Adrian Vetta, McGill University
Jan Vondrak, Princeton University
David Williamson, Cornell University

RANDOM 2008

Nir Ailon, Google Research
Tugkan Batu, University of Pennsylvania
Petra Berenbrink, Simon Fraser University
Harry Buhrman, University of Amsterdam
Amin Coja-Oghlan, University of Edinburgh
Anna Gal, University of Chicago
Yuval Ishai, Technion-Israel Institute of Technology
David Kempe, University of Southern California
Adam Klivans, University of Texas at Austin
Ronitt Rubinfeld, Massachusetts Institute of Technology (Chair)
Alex Samorodnitsky, The Hebrew University of Jerusalem
Martin Strauss, University of Michigan
Amir Shpilka, Technion-Israel Institute of Technology
Eric Vigoda, Georgia Institute of Technology
David Woodruff, IBM Almaden Research Center

We would also like to thank the external subreferees:

Scott Aaronson, Alexandr Andoni, Nikhil Bansal, Boaz Barak, Omer Barkol,
Luca Becchetti, Eli Ben-Sasson, Petra Berenbrink, Ivona Bezakova, Julia
Boettcher, Andrej Bogdanov, Vincenzo Bonifaci, Chandra Chekuri, Zhi-Zhong
Chen, Ken Clarkson, Colin Cooper, Mary Cryan, Artur Czumaj, Anirban Das-
gupta, Ned Dimitrov, Irit Dinur, Debora Donato, Petros Drineas, Philippe
Duchon, Michael Elkin, Robert Elsaesser, Funda Ergun, Vitaly Feldman, El-
dar Fischer, Thomas Friedetzky, Toshihiro Fujito, Konstantinos Georgiou, Anna
Gilbert, Andreas Goerdt, Fabrizio Grandoni, Dan Gutfreund, Prahladh
Harsha, Piotr Indyk, Kazuo Iwama, Satyen Kale, Mihyun Kang, Adriana Kara-
giozova, Marek Karpinski, Iordanis Kerenidis, Sanjeev Khanna, Guy Kindler,
Swastik Kopparty, James Lee, Troy Lee, David Liben-Nowell, Satya Lokam,
Shachar Lovett, Mohammad Mahdian, Konstantin Makarychev, Russell Mar-
tin, Arie Matsliah, Dieter van Melkebeek, Daniele Micciancio, Alantha New-
man, Ofer Neiman, Rolf Niedermeier, Jelani Nelson, Jeff Phillips, Yuval Rabani,
Luis Rademacher, Anup Rao, Ran Raz, Bruce Reed, Oded Regev, Heiko Roglin,

Preface VII

Dana Ron, Mark Rudelson, Atri Rudra, Matthias Ruhl, Tamas Sarlos, Thomas
Sauerwald, Gabriel Scalosub, Mathias Schacht, Christian Schaffner, Christian
Scheideler, Florian Schoppmann, C. Seshadhri, Ronen Shaltiel, Asaf Shapira,
Alexander Sherstov, Anastosios Sidiroupoulos, Shakhar Smorodinsky, Sagi Snir,
Christian Sohler, Xiaoming Sun, Maxim Sviridenko, Chaitanya Swamy, Mario
Szegedy, Kunal Talwar, Anush Taraz, Iannis Tourlakis, Chris Umans, Falk
Unger, Paul Valiant, Santosh Vempala, Danny Vilenchik, Emanuele Viola, Tandy
Warnow, Enav Weinreb, Udi Wieder, Sergey Yekhanin, Yitong Yin, Shengyu
Zhang, David Zuckerman, and Hamid Zarrabi-Zadeh.

We gratefully acknowledge the support from Microsoft Research, the De-
partment of Management Science and Engineering of Stanford University, the
Department of Electrical Engineering and Computer Science and the Laboratory
for Computer Science and Artificial Intelligence at the Massachusetts Institute
of Technology, the Institute of Computer Science of the Christian-Albrechts-
Universität zu Kiel and the Department of Computer Science of the University
of Geneva.

August 2008 Ashish Goel
Ronitt Rubinfeld

Klaus Jansen
José D.P. Rolim

Table of Contents

Contributed Talks of APPROX

Approximating Optimal Binary Decision Trees . 1
Micah Adler and Brent Heeringa

Santa Claus Meets Hypergraph Matchings . 10
Arash Asadpour, Uriel Feige, and Amin Saberi

Ordinal Embedding: Approximation Algorithms and Dimensionality
Reduction . 21

Mihai Bădoiu, Erik D. Demaine, MohammadTaghi Hajiaghayi,
Anastasios Sidiropoulos, and Morteza Zadimoghaddam

Connected Vertex Covers in Dense Graphs . 35
Jean Cardinal and Eythan Levy

Improved Approximation Guarantees through Higher Levels of SDP
Hierarchies . 49

Eden Chlamtac and Gyanit Singh

Sweeping Points . 63
Adrian Dumitrescu and Minghui Jiang

Constraint Satisfaction over a Non-Boolean Domain: Approximation
Algorithms and Unique-Games Hardness . 77

Venkatesan Guruswami and Prasad Raghavendra

Fully Polynomial Time Approximation Schemes for Time-Cost Tradeoff
Problems in Series-Parallel Project Networks . 91

Nir Halman, Chung-Lun Li, and David Simchi-Levi

Efficient Algorithms for Fixed-Precision Instances of Bin Packing and
Euclidean TSP . 104

David R. Karger and Jacob Scott

Approximating Maximum Subgraphs without Short Cycles 118
Guy Kortsarz, Michael Langberg, and Zeev Nutov

Deterministic 7/8-Approximation for the Metric Maximum TSP 132
�Lukasz Kowalik and Marcin Mucha

Inapproximability of Survivable Networks . 146
Yuval Lando and Zeev Nutov

X Table of Contents

Approximating Single Machine Scheduling with Scenarios 153
Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson

Streaming Algorithms for k-Center Clustering with Outliers and with
Anonymity . 165

Richard Matthew McCutchen and Samir Khuller

A General Framework for Designing Approximation Schemes for
Combinatorial Optimization Problems with Many Objectives Combined
into One . 179

Shashi Mittal and Andreas S. Schulz

The Directed Minimum Latency Problem . 193
Viswanath Nagarajan and R. Ravi

A Simple LP Relaxation for the Asymmetric Traveling Salesman
Problem . 207

Thành Nguyen

Approximating Directed Weighted-Degree Constrained Networks 219
Zeev Nutov

A Constant Factor Approximation for Minimum λ-Edge-Connected
k-Subgraph with Metric Costs . 233

MohammadAli Safari and Mohammad R. Salavatipour

Budgeted Allocations in the Full-Information Setting 247
Aravind Srinivasan

Contributed Talks of RANDOM

Optimal Random Matchings on Trees and Applications 254
Jeff Abrahamson, Béla Csaba, and Ali Shokoufandeh

Small Sample Spaces Cannot Fool Low Degree Polynomials 266
Noga Alon, Ido Ben-Eliezer, and Michael Krivelevich

Derandomizing the Isolation Lemma and Lower Bounds for Circuit
Size . 276

V. Arvind and Partha Mukhopadhyay

Tensor Products of Weakly Smooth Codes Are Robust 290
Eli Ben-Sasson and Michael Viderman

On the Degree Sequences of Random Outerplanar and Series-Parallel
Graphs . 303

Nicla Bernasconi, Konstantinos Panagiotou, and Angelika Steger

Improved Bounds for Testing Juntas . 317
Eric Blais

Table of Contents XI

The Complexity of Distinguishing Markov Random Fields 331
Andrej Bogdanov, Elchanan Mossel, and Salil Vadhan

Reconstruction of Markov Random Fields from Samples: Some
Observations and Algorithms . 343

Guy Bresler, Elchanan Mossel, and Allan Sly

Tight Bounds for Hashing Block Sources . 357
Kai-Min Chung and Salil Vadhan

Improved Separations between Nondeterministic and Randomized
Multiparty Communication . 371

Matei David, Toniann Pitassi, and Emanuele Viola

Quantum and Randomized Lower Bounds for Local Search on
Vertex-Transitive Graphs . 385

Hang Dinh and Alexander Russell

On the Query Complexity of Testing Orientations for Being Eulerian . . . 402
Eldar Fischer, Oded Lachish, Ilan Newman, Arie Matsliah, and
Orly Yahalom

Approximately Counting Embeddings into Random Graphs 416
Martin Fürer and Shiva Prasad Kasiviswanathan

Increasing the Output Length of Zero-Error Dispersers 430
Ariel Gabizon and Ronen Shaltiel

Euclidean Sections of �N
1 with Sublinear Randomness and

Error-Correction over the Reals . 444
Venkatesan Guruswami, James R. Lee, and Avi Wigderson

The Complexity of Local List Decoding . 455
Dan Gutfreund and Guy N. Rothblum

Limitations of Hardness vs. Randomness under Uniform Reductions 469
Dan Gutfreund and Salil Vadhan

Learning Random Monotone DNF . 483
Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and
Andrew Wan

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 498
Tali Kaufman, Simon Litsyn, and Ning Xie

Dense Fast Random Projections and Lean Walsh Transforms 512
Edo Liberty, Nir Ailon, and Amit Singer

Near Optimal Dimensionality Reductions That Preserve Volumes 523
Avner Magen and Anastasios Zouzias

XII Table of Contents

Sampling Hypersurfaces through Diffusion . 535
Hariharan Narayanan and Partha Niyogi

A 2-Source Almost-Extractor for Linear Entropy . 549
Anup Rao

Extractors for Three Uneven-Length Sources . 557
Anup Rao and David Zuckerman

The Power of Choice in a Generalized Pólya Urn Model 571
Gregory B. Sorkin

Corruption and Recovery-Efficient Locally Decodable Codes 584
David Woodruff

Quasi-randomness Is Determined by the Distribution of Copies of a
Fixed Graph in Equicardinal Large Sets . 596

Raphael Yuster

Author Index . 603

Approximating Optimal Binary Decision Trees

Micah Adler1 and Brent Heeringa2

1 Department of Computer Science, University of Massachusetts, Amherst, 140 Governors
Drive, Amherst, MA 01003
micah@cs.umass.edu

2 Department of Computer Science, Williams College, 47 Lab Campus Drive, Williamstown,
MA 01267

heeringa@cs.williams.edu

Abstract. We give a (lnn + 1)-approximation for the decision tree (DT) prob-
lem. An instance of DT is a set of m binary tests T = (T1, . . . , Tm) and a set of
n items X = (X1, . . . , Xn). The goal is to output a binary tree where each inter-
nal node is a test, each leaf is an item and the total external path length of the tree
is minimized. Total external path length is the sum of the depths of all the leaves
in the tree. DT has a long history in computer science with applications ranging
from medical diagnosis to experiment design. It also generalizes the problem of
finding optimal average-case search strategies in partially ordered sets which in-
cludes several alphabetic tree problems. Our work decreases the previous upper
bound on the approximation ratio by a constant factor. We provide a new analysis
of the greedy algorithm that uses a simple accounting scheme to spread the cost
of a tree among pairs of items split at a particular node. We conclude by showing
that our upper bound also holds for the DT problem with weighted tests.

1 Introduction

We consider the problem of approximating optimal binary decision trees. Garey and
Johnson [8] define the decision tree (DT) problem as follows: given a set of m binary
tests T = (T1, . . . , Tm) and a set of n items X = (X1, . . . , Xn), output a binary
tree where each leaf is labeled with an item from X and each internal node is labeled
with a test from T . If an item passes a test it follows the right branch; if it fails a test
it follows the left branch. A path from the root to a leaf uniquely identifies the item
labeled by that leaf. The depth of a leaf is the length of its path from the root. The
total external path length of the tree is the sum of the depths of all the leaves in the
tree. The goal of DT is to find a tree which minimizes the total external path length. An
equivalent formulation of the problem views each item as anm-bit binary string where
bit i is 1 if the item passes test Ti and 0 otherwise. We use instances of this type when
discussing DT throughout this paper and denote them using the set of items X . If no
two strings in X are identical, every feasible solution to DT has n leaves. In this paper
we always assume the input is a set of unique strings since finding duplicate strings is
easily computable in polynomial time. Decision trees have many natural applications
(see [6,14,17] and references therein) including medical diagnosis (tests are symptoms)
and experiment design (tests are experiments which determine some property). In fact,
Hyafil and Rivest showed that DT was NP-complete precisely because ”of the large

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 1–9, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Adler and B. Heeringa

amount of effort that [had] been put into finding efficient algorithms for constructing
optimal binary decision trees” [11].

In this paper, we give a polynomial-time (lnn+1)-approximation for the decision tree
problem. This improves the upper bound on the approximation ratio given by Kosaraju et
al. [12] by a constant factor. More importantly, our work provides a substantially different
analysis of the greedy algorithm for building decision trees. We employ an accounting
scheme to spread the total cost of the tree among pairs of items split at internal nodes.
The result is an elementary analysis that others may find of independent interest. In fact,
our techniques have already been extended to the DT problem with weighted items [4].
We also consider the problem with weights associated with the tests (in contrast to the
items) and show that the (ln n + 1)-approximation remains intact.

1.1 Prior and Related Work

DT generalizes the problem of finding optimal search strategies in partially ordered
sets when one wishes to minimize the average search time (assuming each item is
desired with equal probability) as opposed to minimizing the longest search time [3].
The latter case corresponds to finding minimal height decision trees. This problem is
known to have matching upper and lower bounds (O(log n) and Ω(log n) respectively)
on the approximation ratio [2,13,15]. However these results do not generally apply to
DT because of the difference in the definition of cost. Additionally, DT generalizes
several Huffman coding problems including numerous alphabetic tree problem [12].

The name decision tree also refers to a similar but subtly different problem which
we call ConDT (for consistent decision tree) that is extremely hard to approximate. The
input to ConDT is a set of n positive / negative labeled binary strings, each of length m,
called examples1. The output is a binary tree where each internal node tests some bit i
of the examples, and maps the example to its left child if i is a 0 and its right child if i is
a 1. Each leaf is labeled either TRUE or FALSE. A consistent decision tree maps each
positive example to a leaf labeled TRUE and each negative example to a leaf labeled
FALSE. The size of a tree is the number of leaves. ConDT seeks the minimum size tree
which is consistent with the examples.

Alekhnovich et. al. [1] show it is not possible to approximate size s decision trees by
size sk decision trees for any constant k ≥ 0 unless NP is contained in DTIME[2mε

]
for some ε < 1. This improves a result from Hancock et. al. [9] which shows that
no 2logδ s-approximation exists for size s decision trees for any δ < 1 unless NP is
quasi-polynomial. These results hold for s = Ω(n).

Our results demonstrate that DT and ConDT – although closely related – are quite
different in terms of approximability: ConDT has no c lnn-approximation for any con-
stant c (unless P = NP) whereas our results yield such an approximation for DT for
c > 1. Also, we show that the lower bounds on learning decision trees of the ConDT
type hold when minimizing total external path length instead of minimum size. Note
that tree size is not an insightful measure for DT since all feasible solutions have n
leaves. Thus, it is the difference in input and output, and not the difference in measure,
that accounts for the difference in approximation complexity.

1 Many papers take m to be the number of examples and take n to be the number of bits.

Approximating Optimal Binary Decision Trees 3

Moret [14] views DT and ConDT as unique instances of a general decision tree
problem where each item is tagged with k possible labels. With DT there are always
k = n labels, but only one item per label. With ConDT, there are only two labels,
but multiple items carry the same label. It appears then that labeling restrictions play a
crucial role in the complexity of approximating decision trees.

DT shares some similarities with set cover. Since each pair of items is separated exactly
once in any valid decision tree, one can view a path from the root to a leaf as a kind of
covering of the items. In this case, each leaf defines a set cover problem where it must
cover the remaining n − 1 items using an appropriate set of bits or tests. In fact, our
analysis is inspired by this observation. However, in the decision tree problem, the n set
cover problems defined by the leaves are not independent. For example, the bit at the
root of an optimal decision tree appears in each of the n set cover solutions, but it is
easy to construct instances of DT for which the optimal (independent) solutions to the n
set cover instances have no common bits. More specifically, one can construct instances
of DT where the n independent set cover problems have solutions of size 1, yielding a
decision tree with cost Θ(n2) but where the optimal decision tree has cost O(n log n).
Hence, the interplay between the individual set cover problems appears to make the DT
problem fundamentally different from set cover. Conversely, set cover instances naturally
map to decision tree instances, however, the difference in cost between the two problems
means that the optimal set cover is not necessarily the optimal decision tree.

The min-sum set cover (MSSC) problem is also similar to DT. The input to MSSC
is the same as set cover (i.e., a universe of itemsX and a collection C of subsets ofX),
but the output is a linear ordering of the sets from 1 to |C|. If f(x) gives the index of
the first set in the ordering that covers x then the cost of the ordering is

∑
x∈X f(x).

This is similar, but not identical to the cost of the corresponding DT problem because
the covered items must still be separated from one another, thus adding additional cost.
Greedily selecting the set which covers the most remaining uncovered items yields a
4-approximation to MSSC [5,16]. This approximation is tight unless P=NP. As with set
cover, we can think of DT as n instances of MSSC, but again, these instances are not
independent so the problems inherent in viewing DT as n set cover problems remain
when considering DT as n instances of MSSC.

In the following section we describe and analyze our approximation algorithm for
DT. We then extend this analysis to the problem where weights are associated with
the tests (but not the items). In Section 3 we show that the lower bounds on learning
ConDTs hold for total external path length. Finally, we conclude with a discussion of
some open problems including the gap between the upper and lower bounds on the
approximation ratio.

2 Approximating DT

Given a set of binary m-bit strings S, choosing some bit i always partitions the items
into two sets S0 and S1 where S0 contains those items with bit i = 0 and S1 contains
those items with i = 1. A greedy strategy for splitting a set S chooses the bit i which
minimizes the difference between the size of S0 and S1. In other words, it chooses
the bit which most evenly partitions the set. Using this strategy, consider the following
greedy algorithm for constructing decision trees of the DT type given a set of n itemsX :

4 M. Adler and B. Heeringa

GREEDY-DT(X)

1 if X = ∅
2 then return NIL

3 else Let i be the bit which most evenly partitions X into X0 and X1

4 Let T be a tree node with left child left [T] and right child right [T]
5 left [T] ← GREEDY-DT(X0)
6 right [T] ← GREEDY-DT(X1)
7 return T

Fig. 1. A greedy algorithm for constructing decision trees

A straightforward implementation of this algorithm runs in time O(mn2). While the
algorithm does not always give an optimal solution, it does approximate it within a
factor of lnn+ 1.

Theorem 1. IfX is an instance of DT with n items and optimal cost C∗ then GREEDY-
DT(X) yields a tree with cost at most (lnn+ 1)C∗

Proof. We begin with some notation. Let T be the tree constructed by GREEDY-DT
on X with cost C. An unordered pair of items {x, y} (hereafter just pair of items) is
separated at an internal node S if x follows one branch and y follows the other. Note
that each pair of items is separated exactly once in any valid decision tree. Conversely,
each internal node S defines a set ρ(S) of pairs of items separated at S. That is

ρ(S) = {{x, y} | {x, y} is separated at S}

For convenience we also use S to denote the set of items in the subtree rooted at
S. Let S+ and S− be the two children of S such that |S+| ≥ |S−|. Note that |S| =
|S+|+ |S−|. The number of sets to which an item belongs equals the length of its path
from the root, so the cost of T may be expressed as the sum of the sizes of each S:

C =
∑

S∈T
|S|

Our analysis uses an accounting scheme to spread the total cost of the greedy tree
among all unordered pairs of items. Since each set S contributes its size to the total cost
of the tree, we spread its size uniformly among the |S+||S−| pairs of items separated at
S. Let cxy be the pair cost assigned to each pair of items {x, y} where

cxy =
1
|S+

xy|
+

1
|S−

xy|
.

and Sxy separates x from y. Note that the greedy choice minimizes cxy. We can now
talk about the cost of a tree node S by the costs associated with the pairs of items
separated at S. Summing the costs of these pairs is, by definition, exactly the size of S:

∑

{x,y}∈ρ(S)

cxy = |S+||S−|
(1
|S+| +

1
|S−|

)
= |S|

Approximating Optimal Binary Decision Trees 5

Because two items are separated exactly once, C is exactly the sum of the all pair costs

C =
∑

{x,y}
cxy.

Now consider the optimal tree T ∗ for X . If Z is an internal node of T ∗ then we also
use Z to denote the set of items that are leaves of the subtree rooted at Z . Following our
notational conventions, we let Z+ and Z− be the children of Z such that |Z+| ≥ |Z−|
and |Z| = |Z+|+ |Z−|. The cost of the optimal tree, C∗, is

C∗ =
∑

Z∈T ∗

|Z| (1)

Since, every feasible tree separates each pair of items exactly once, we can rearrange
the greedy pair costs according to the structure of the optimal tree:

C =
∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy (2)

If Z is a node in the optimal tree, then it defines |Z+||Z−| pairs of items. Our goal
is to show that the sum of the cxy associated with the |Z+||Z−| pairs of items split
at Z (but which are defined with respect to the greedy tree) total at most a factor of
H(|Z|) more than |Z| where H(d) =

∑d
i=1 1/i is the dth harmonic number. This is

made precise in the following lemma:

Lemma 1. For each internal node Z in the optimal tree:

∑

{x,y}∈ρ(Z)

cxy ≤ |Z|H(|Z|)

where each cxy is defined with respect to the greedy tree T .

Proof. Consider any node Z in the optimal tree. For any unordered pair of items {x, y}
split at Z , imagine using the bit associated with the split at Z on the set Sxy separating
x from y in the greedy tree. Call the resulting two sets SZ+

xy and SZ−

xy respectively. Since
the greedy split at Sxy minimizes cxy , we know

cxy =
1
|S+

xy|
+

1
|S−

xy|
≤ 1
|SZ+

xy |
+

1
|SZ−

xy |
≤ 1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−| .

Hence ∑

{x,y}∈ρ(Z)

cxy ≤
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−| . (3)

One interpretation of the sum in (3) views each item x in Z+ as contributing

∑

y∈Z−

1
|Sxy ∩ Z−|

6 M. Adler and B. Heeringa

to the sum and each node y in Z− as contributing

∑

x∈Z+

1
|Sxy ∩ Z+|

to the sum. For clarity, we can view Z as a complete bipartite graph where the items in
Z+ are one set of nodes and the items in Z− is the other set. Letting bxy = 1/(|(Sxy ∩
Z−|) and byx = 1/(|Sxy ∩ Z+|) we can think of every edge (x, y) where x ∈ Z+ and
y ∈ Z− as having two costs: one associated with x (bxy) and the other associated with
y (byx). Thus, the cost of Z is at most the sum of all the bxy and byx costs. We can
bound the total cost by first bounding all the costs associated with a particular node. In
particular, we claim:

Claim. For any x ∈ Z+ we have

∑

y∈Z−

bxy =
∑

y∈Z−

1
|Sxy ∩ Z−| ≤ H(|Z−|)

∑

y∈Z−

bxy ≤ H(|Z−|)

which proves the claim. ��

We can use the same argument to prove the analogous claim for all the items in Z−.
With these inequalities in hand we have

∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−| ≤ |Z

+|H(|Z−|) + |Z−|H(|Z+|)

< |Z+|H(|Z|) + |Z−|H(|Z|)
= |Z|H(|Z|) (since |Z+|+ |Z−| = |Z|))

��

Substituting this result into the initial inequality completes the proof of the theorem.

∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

|Z|H(|Z|) ≤
∑

Z∈T ∗

|Z|H(n) = H(n)C∗ ≤ (lnn+ 1)C∗

��

Proof. If Z− has d items then let (y1, . . . , yd) be an ordering of Z− in reverse order
from when the items are split from x in the greedy tree (with ties broken arbitrarily).
This means item y1 is the last item split from x, yd is the first item split from x, and
in general yd−t+1 is the tth item split from x. When yd is split from x there must be
at least |Z−| items in Sxyd

— by our ordering the remaining items in Z− must still be
present — so Z− ⊆ Sxyd

. Hence bxyd
, the cost assigned to x on the edge (x, yd), is

at most 1/|(Z−)| and in general, when yt is separated from x there are at least t items
remaining from Z−, so the cost bxyt assigned to the edge (x, yt) is at most 1/t. This
means, for any x ∈ Z+

Approximating Optimal Binary Decision Trees 7

2.1 Tests with Weights

In many applications, different tests may have different execution costs. For example, in
experiment design, a single test might be a good separator of the items, but it may also
be expensive. Running multiple, inexpensive tests may serve the same overall purpose,
but at less cost. To model scenarios like these we associate a weight w(k) with each
bit k and without confusion take w(S) to be the weight of the bit used at node S. We
call this problem DT with weighted tests (in contrast to the DT problem with weighted
items). In the original problem formulation, we can think of each test as having unit
weight, so the cost of identifying an item is just the length of the path from the root to
the item. When the tests have non-uniform weights, the cost of identifying an item is
the sum of the weights of the tests along that path. We call this the path cost. The cost of
the tree is the sum of the path costs of each item. When all the tests have equal weight,
we choose the bit which most evenly splits the set of items into two groups. In other
words, we minimize the pair cost cxy. With equal weights, the cost of an internal node
is just its size |S|. With unequal weights, the cost of an internal node is the weighted
size w(S)|S|, so assuming S separates x from y the pair cost becomes

cxy =
w(S)
|S+| +

w(S)
|S−| (4)

and our new greedy algorithm recursively selects the bit which minimizes this quantity.
This procedure yields a result equivalent to Theorem 1 for DT with weighted tests. A
straightforward implementation on this algorithm still runs in time O(mn2).

Theorem 2. The greedy algorithm which recursively selects the bit that minimizes
Equation 4 yields a (lnn+ 1)-approximation to DT with weighted tests.

Proof. Following the structure of the proof for Theorem 1 leads to the desired result.
The key observation is that choosing the bit that minimizes Equation 4 yields the in-
equality

cxy ≤ w(Z)
(1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−|

)
. (5)

Since the weight term w(Z) may be factored out of the summation

w(Z)
∑

{x,y}∈ρ(Z)

1
|Sxy ∩ Z+| +

1
|Sxy ∩ Z−|

we can apply the previous claim and the theorem follows:
∑

Z∈T ∗

∑

{x,y}∈ρ(Z)

cxy ≤
∑

Z∈T ∗

w(Z)|Z|H(n) ≤ (lnn+ 1)C∗

Here C∗ =
∑

Z∈T ∗ w(Z)|Z| is the cost of the optimal tree. ��

Another natural extension to DT considers the problem with weighted items. Here, one
weights each path length by the weight of the item which defines the path. Recently,
Chakaravarthy et al. [4] extended our analysis to the DT problem with weighted items.

8 M. Adler and B. Heeringa

3 Hardness of Approximation for ConDT under Total External
Path Length

Alekhnovich et. al. [1] showed it is not possible to approximate size s decision trees by
size sk decision trees for any constant k ≥ 0 unless NP is contained in DTIME
for some ε < 1. Decision tree here refers to trees of the ConDT type and the measure
is tree size. In this section we show that these hardness results also hold for ConDT
under minimum total external path length. Our theorem relies on the observation that
if I is an instance of ConDT with minimum total external path length s then I has
minimum tree size at leastΩ(

√
s). If it didn’t, a tree of smaller size would have smaller

total external path length, a contradiction. The case where minimum total external path
length s corresponds to minimum size Ω(

√
s) is a cascading tree; that is, a tree with

exactly one leaf at each depth save the deepest two.

Theorem 3. If there exists an sk approximation for some constant k > 0 to decision
trees with minimum total external path length s then NP is contained in DTIME
for some ε < 1.

Proof. Let I be an instance of ConDT with minimum total external path length s = r2.
It follows that I has minimum tree size at least Ω(r). Now, if an sk approximation
did exist for some k then there would exist an Ω(r2k) = rk

′
approximation for some

constant k′ for ConDT under minimum tree size; a contradiction. ��

4 Open Problems and Discussion

Our primary result in this paper is a (lnn+1)-approximation for the decision tree prob-
lem. The most prominent open problem is the gap between the upper and lower bounds
on the approximation ratio of DT. The best lower bound on the approximation ratio in
the unweighted items case is 2 − ε for any ε > 0 (modulo P
=NP) [4]. This improves
upon the no PTAS result from [10]. However, when the input has arbitrary weights on
the items, then the lower bound on the approximation ratio becomes Ω(logn).

Unfortunately, the Ω(log n) lower bound of Laber and Nogueira [13] for decision
trees of minimal height also does not apply to our problem. This is because height
mirrors the notion of size in set cover problems.

Amplifying the 2−ε gap using techniques from [9] for ConDT does not work for DT.
There, one squares an instance of ConDT, applies an α-approximation, and recovers a
solution to the original instance which is a

√
α-approximation. Repeating this procedure

yields the stronger lower bound. This does not work for DT because the average path
length only doubles when squaring the problem, so solving the squared problem with
an α-approximation and recovering a solution to the original problem simply preserves
(and unfortunately does not improve) the approximation ratio. The hardness results
from [1] rely on the construction of a binary function which is difficult to approximate
accurately when certain instances of a hitting-set problem have large solutions. These
techniques do not appear to work for DT either.

[2mε

]

[2mε

]

Approximating Optimal Binary Decision Trees 9

The analysis of the greedy algorithm is also not known to be tight. We only know
of instances where the approximation ratio of the greedy algorithm is not better than
Ω(log n

log log n) of optimal [7,12].
Finally, we leave as an open question the problem of approximating DT with both

arbitrary item weights and arbitrary test weights.

Acknowledgments. We thank the anonymous reviewers for their insightful and helpful
comments.

References

1. Alekhnovich, M., Braverman, M., Feldman, V., Klivans, A.R., Pitassi, T.: Learnability and
automatizability. In: Proceedings of the 45th Annual Symposium on Foundations of Com-
puter Science, pp. 621–630. IEEE Computer Society Press, Los Alamitos (2004)

2. Arkin, E.M., Meijer, H., Mitchell, J.S.B., Rappaport, D., Skiena, S.: Decision trees for geo-
metric models. International Journal of Computational Geometry and Applications 8(3),
343–364 (1998)

3. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random partially ordered
sets. Theor. Comput. Sci. 321(1), 41–57 (2004)

4. Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.K.: Decision trees for entity
identification: approximation algorithms and hardness results. In: Libkin, L. (ed.) Proceed-
ings of the Twenty-Sixth ACM Symposium on Principles of Database Systems, pp. 53–62
(2007)

5. Feige, U., Lovász, L., Tetali, P.: Approximating min-sum set cover. Algorithmica 40(4), 219–
234 (2004)

6. Garey, M.R.: Optimal binary identification procedures. SIAM Journal on Applied Mathemat-
ics 23(2), 173–186 (1972)

7. Garey, M.R., Graham, R.L.: Performance bounds on the splitting algorithm for binary testing.
Acta Inf. 3, 347–355 (1974)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

9. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on learning decision lists and trees.
Information and Computation 126(2), 114–122 (1996)

10. Heeringa, B.: Improving Access to Organized Information. PhD thesis. University of Massa-
chusetts, Amherst (2006)

11. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is np-complete. Information
Processing Letters 5(1), 15–17 (1976)

12. Rao Kosaraju, S., Przytycka, T.M., Borgstrom, R.S.: On an optimal split tree problem. In:
Dehne, F.K.H.A., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663,
pp. 157–168. Springer, Heidelberg (1999)

13. Laber, E.S., Nogueira, L.T.: On the hardness of the minimum height decision tree problem.
Discrete Applied Mathematics 144(1-2), 209–212 (2004)

14. Moret, B.M.E.: Decision trees and diagrams. ACM Comput. Surv. 14(4), 593–623 (1982)
15. Moshkov, M.J.: Greedy algorithm of decision tree construction for real data tables. In: Trans-

actions on Rough Sets, pp. 161–168 (2004)
16. Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem. In: ICDT,

pp. 83–98 (2005)
17. Murthy, K.V.S.: On growing better decision trees from data. PhD thesis, The Johns Hopkins

University (1996)

Santa Claus Meets Hypergraph Matchings

Arash Asadpour1,�, Uriel Feige2, and Amin Saberi3

1 Stanford University, Stanford CA 94305, USA
asadpour@stanford.edu

2 Weizmann Institute, Rehovot 76100, Israel
uriel.feige@weizmann.ac.il

3 Stanford University, Stanford CA 94305, USA
saberi@stanford.edu

Abstract. We consider the problem of max-min fair allocation of indi-
visible goods. Our focus will be on the restricted version of the problem
in which there are m items, each of which associated with a non-negative
value. There are also n players and each player is only interested in some
of the items. The goal is to distribute the items between the players such
that the least happy person is as happy as possible, i.e. one wants to
maximize the minimum of the sum of the values of the items given to
any player. This problem is also known as the Santa Claus problem [3].
Feige [9] proves that the integrality gap of a certain configuration LP,
described by Bansal and Sviridenko [3], is bounded from below by some
(unspecified) constant. This gives an efficient way to estimate the opti-
mum value of the problem within a constant factor. However, the proof
in [9] is nonconstructive: it uses the Lovasz local lemma and does not
provide a polynomial time algorithm for finding an allocation. In this pa-
per, we take a different approach to this problem, based upon local search
techniques for finding perfect matchings in certain classes of hypergraphs.
As a result, we prove that the integrality gap of the configuration LP is
bounded by 1

5 . Our proof is nonconstructive in the following sense: it
does provide a local search algorithm which finds the corresponding allo-
cation, but this algorithm is not known to converge to a local optimum
in a polynomial number of steps.

1 Introduction

Resource allocation problems, i.e. allocating limited resources to a number of
players while satisfying some given constraints, have been studied extensively in
computer science, operations research, economics, and the mathematics litera-
ture. Depending on whether the resource is divisible or not one can distinguish
two main types of such problems. The divisible case has been considered mostly
by combinatorists and measure theorists in the past century under the title of
“Cake Cutting” problems [16,5]. On the other hand, the indivisible resource al-
location problems have been mostly the focus of algorithmic lines of research. In
� The first and third authors were supported through NSF grants 0546889 and 0729586

and a gift from Google.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 10–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Santa Claus Meets Hypergraph Matchings 11

such problems, often the set of resources R consists of m items. There is also a
set P of n players. Each player i has a value function fi : 2S → IR. For the sake
of simplicity we define vij = fi({j}). The goal is to partition the set of items to
subsets S1, S2, · · · , Sn and allocate each part to one of the players such that a
certain objective function is optimized.

Depending on the objective functions, various indivisible resource allocation
problems can be considered. For example, the problem of maximizing social
welfare arises when we want to maximize

∑
i fi(Si). See [6,8,10,17] for recent

progress on this problem.
Minimizing the makespan is another example of indivisible resource alloca-

tion problems in which the goal is to minimize maxi fi(Si) and fi’s are linear
functions, i.e. fi(Si) = vij . Lenstra, Shmoys and Tardos [15] provide a
2-approximation algorithm and also prove that the problem is hard to approxi-
mate within a factor of 1.5. Approximation ratios better than 2 are known for
some very special cases of this problem [7].

Another interesting trend in indivisible resource allocation is Max-min fair
allocation problems. Here, we aim to maximize mini fi(Si) while fi’s are still lin-
ear functions. Although very similar at the first glance, this problem has turned
out to be fundamentally different from minimizing the makespan and the tech-
niques that are known to be useful there fail to give non-trivial results here.
Most notably, the assignment LP used in [15] yields an additive approximation
of maxij vij [4]. It can be used to find a solution of value at least OPT−maxij vij ,
where OPT is the value of the optimal solution. Unfortunately, it offers no
approximation guarantee in the most challenging cases of the problem when
OPT ≤ maxij vij .

Bansal and Sviridenko [3] studied this problem under the name of the Santa
Claus problem, where Santa wants to distribute some presents among some kids
and his goal is to do this in such a way that the least happy kid is as happy as
possible. They considered a certain type of linear programming relaxation of the
problem (known as configuration LP that we will explain shortly), and showed
that it can be used to find a solution with value at least OPT/n. They also
showed that the integrality gap of this LP is no better than O(1/

√
n). Asadpour

and Saberi [2] showed how to round the solution of configuration LP to get a
solution with value at least Ω(OPT/

√
n(log n)3).

Our focus here will be on a special case of the Max-min fair allocation problem,
known as restricted assignment problem, in which each item j has an inherent
value vj and a set of players to which the item can be assigned. In other words,
for each such player i, the value of vij is vj and for all other players it is 0.
Bezakova and Dani [4] showed that this problem is hard to approximate within
a factor better than 1

2 . (In fact, this is also the best hardness result known
for the general problem.) Bansal and Sviridenko [3] showed that it is possible
to round the values of the configuration LP and get a feasible solution with
value Ω(OPT log log logn/ log logn). Recently, Feige [9] proved that the optimal
value of the configuration LP is in fact within a constant factor of OPT. Al-
though [9] does not give a polynomial time algorithm to find a constant factor

∑
j∈Si

12 A. Asadpour, U. Feige, and A. Saberi

approximation solution, it does provide a constant factor estimation for the op-
timal value of the problem1. This is due to the fact that the configuration LP
can be solved (up to arbitrary precision) in polynomial time, and its value is an
upper bound on OPT. The main result of this paper can be summarized as the
following:

Theorem 1. In the restricted assignment problem, there is a polynomial time
algorithm that estimates the optimal value of max-min allocation problem within
a factor of 1

5 − ε, where ε > 0 is an arbitrarily small constant.

The polynomial time algorithm referred to in the above theorem is simply the
configuration LP. The proof of the 1

5 estimation factor will follow from our
proof that the optimal value of the configuration LP is at most 5OPT. There
is a small loss of ε in the estimation factor because the known polynomial time
algorithms [3] solve the configuration LP up to any desired degree of accuracy,
but not necessarily exactly.

Our proof of Theorem 1 transforms the problem into a problem of finding
a perfect matching in certain hypergraphs. We design a local search algorithm
that finds such a perfect matching. It is inspired by the techniques of [11] which
will be discussed in Sect.2. This method can be viewed as a generalization of
Hungarian method [14] to the domain of hypergraphs.

Comparing our results to those in [9], our result has the advantage of providing
an explicit bound (of 1

5) on the integrality gap of the configuration LP. Also, our
proof technique suggests an algorithmic approach to round the solution of the
configuration LP. While in [9] multiple applications of the Lovasz local lemma
are used, here we introduce a local search algorithm and prove that it ends up
in a solution with value at least OPT

5 . Although we cannot bound the running
time within a polynomial, it puts the problem in the complexity class PLS2 and
proposes the open question of whether this local search (or a modified version
of it) converges in polynomial time to an appropriate solution.

1.1 The Configuration LP

Fix a real number t and suppose that we want to see if it is possible to do the
allocation in such a way that each player i receives a bundle of items Si with
fi(Si) ≥ t. For any bundle S of items, let xiS be the indicator 0/1 variable,
representing if the whole bundle S is allocated to person i (in this case xiS will
be 1) or not (xiS = 0). To provide a bundle with value at least t for every person,
we need to solve the following integer program:

1 We emphasize that all the results related to the hardness of approximation remains
valid even for estimating the optimal value of the problem.

2 The complexity class PLS consists of problems for which, given any input instance
there exists a finite set of solutions and an efficient algorithm to compute a cost for
each solution, and also a neighboring solution of lower cost provided that one exists.
Then the problem is to find a solution, namely a local optimum, that has cost less
than or equal to all its neighbors. For more information, see [12].

Santa Claus Meets Hypergraph Matchings 13

– Every player only accepts bundles with value at least t; ∀i : xiS = 0 whenever
fi(S) < t.

– Every player receives one bundle; ∀i :
∑

S xiS = 1.
– Every item is allocated to at most one player: ∀j :

∑
i,S|j∈S xiS ≤ 1.

– xiS ∈ {0, 1} for every player i and bundle S.

The configuration LP is the relaxation of the above integer program. The last
constraint is replaced by xiS ≥ 0

If the LP is feasible for some t0, then it is also feasible for all t ≤ t0. Let optLP
be the maximum of all such values of t (it can be shown that such maximum
exists). Every feasible allocation is a feasible solution of configuration LP. Hence
optLP ≥ OPT. The value of optLP and a feasible solution to the configuration
LP of value optLP can be approximated within any desired degree of accuracy
in polynomial time, as shown in [3].

In this paper we show that any fractional solution of configuration LP corre-
sponding to optLP can be rounded (though not necessarily in polynomial time)
to an integral solution whose value is within a constant factor of optLP. We
provide two versions of our proof. In Section 2 we show how this result can be
deduced by combining (in a blackbox manner) a previous intermediate result of
Bansel and Sviridenko [3] with a theorem of Haxell [11]. In Section 3 we provide
our main result which is basically a local search that finds an integral solution
with value at least optLP

5 . The proof in Section 3 is inspired by the results of
Section 2, but is presented in a self contained way. It circumvents the use of the
intermediate result of [3], and extends the proof technique of [11] in certain ways.
Any of the two sections 2 and 3 can be read and understood without needing to
read the other section.

2 Matchings in Hypergraphs

Let H = (V, E) be a hypergraph. A matching in H is a set of pairwise disjoint
edges. We denote by ν(H) the maximum size of a matching in H. A matching is
called perfect if any vertex appears in exactly one of its edges. Unlike the case for
matchings in graphs, the problem of finding a perfect matching in hypergraphs is
NP-complete. (A well known special case of this problem is the NP-hard problem
of 3-dimensional matching. Note that 3-dimensional matching can also be cast as
a special case of finding a perfect matching in a bipartite hypergraph, a problem
that we shall describe below.) There are some sufficient conditions known for
the existence of perfect matchings in hypergraphs. See for example [1] and [13].
Some of these sufficient conditions are not computable in polynomial time.

Here, we focus on the problem of finding a maximum matching in bipartite
hypergraphs. A hypergraph H = (V, E) is called bipartite if the ground set V is
the disjoint of sets U and V , and every E ∈ E satisfies |E ∩ U | = 1. A perfect
matching in a bipartite hypergraph is defined as a matching that saturates all
the vertices in U . A transversal for hypergraph H is a subset T ⊆ V with the
property that E ∩ T
= ∅ for every E ∈ E . Let τ(H) denote the minimum size

14 A. Asadpour, U. Feige, and A. Saberi

of a transversal of H. For a subset C ⊆ U , we write EC = {F ⊆ V : {c} ∪ F ∈
E for some c ∈ C}, and letHC be the hypergraph (V, EC). The following theorem
is proved by Haxell in [11].

Theorem 2. (Haxell [11]) Let H = (U ∪ V, E) be a bipartite hypergraph such
that for every E ∈ E we have |E∩V | ≤ r−1, and also τ(HC) > (2r−3)(|C|−1)
for every C ⊆ U . Then ν(H) = |U |.

When r = 2,H becomes a graph, and Haxell’s theorem reduces to Hall’s theorem.
The proof of Theorem 2 as described in [11] is not constructive.

2.1 A Constant Integrality Gap

In this section, we will consider a combinatorial conjecture (which is by now
a theorem, by the results of [9]) which is equivalent up to constant factors to
the restricted assignment problem, and prove it via Theorem 2. It reveals the
intuition behind the relation between the restricted assignment problem and
matchings in hypergraphs. Also, it is through this transformation that our local
search appears.

Bansal and Sviridenko proved that if the following conjecture is true for some
β, then it can be shown that the integrality gap of configuration LP relaxation
for the restricted assignment problem is Ω(β).

Conjecture (by Bansal and Sviridenko [3]): There is some uni-
versal constant β > 0 such that the following holds. Let C1, · · · , Cp be
collections of sets, Ci = {Si1, · · · , Sil} for i = 1, · · · , p, where each set Sij

is a k-element subset of some ground set and each element appears in at
most l sets Sij . Then there is a choice of some set Si,f(i) ∈ Ci for each
i = 1, · · · , p, and a choice S′

i ⊆ Si,f(i) with the property that |S′
i| ≥ βk

and that each element occurs in at most one set in {S′
1, · · · , S′

p}.

For every value k, it is not hard to see that the conjecture is true when
β = 1/k. Feige [9] shows that the conjecture is true for some small enough
universal constant β, for all values of k. Here, using Theorem 2 we prove that it
is true even for β = 1

5 . (For every k ≥ 3, our value of β is the largest number
satisfying two constraints. Namely, that (1 − β) ≥ 2β, which will be needed in
the proof of Theorem 3, and that βk is an integer. Hence , β = 1/3 when k is
divisible by 3, but might be as small as 1

5 for k = 5.)

Theorem 3. Conjecture 2.1 is true for any β ≤ �k/3�
k

Proof. Consider the following bipartite hypergraph H = (U ∪ V, E). Here, V =⋃
i,j Si,j and U = {a1, a2, · · · , ap}. Also E = {S∪{ai} : S ⊆ Si,j for some j, |S| =

βk}. Note that here r = βk+ 1. By the construction of H, it is enough to prove
that H has a perfect matching (i.e. a matching with size |U |). We will do so by
showing that H satisfies the conditions of Theorem 2.

Consider an arbitrary C ⊂ U and a transversal set T in HC . Because T is a
transversal set in HC , it must have some intersection with all the edges in HC .

Santa Claus Meets Hypergraph Matchings 15

But edges in HC correspond to all subsets S of V with βk elements such that for
some j and ai ∈ C it holds that S ⊆ Si,j . It means that for any such i and j, at
least (1−β)k elements of Si,j should be in T . (In fact, the number of elements of
Si,j in T should be at least (1− β)k+ 1, but the extra +1 term does not appear
to have a significant effect on the rest of the proof, so we omit it.)

Now, consider a bipartite graph G = (V ′, E) such that V ′ = U ′ ∪ T where
U ′ =

⋃
i∈C{ai,1, · · · , ai,l} and E = {{ai,j, q} : q ∈ Si,j}. By the above discussion,

deg(v) ≥ (1 − β)k, for all v ∈ U ′. Hence, |E| ≥ (1 − β)k|C|l. Also by the
assumption of the conjecture, deg(v) ≤ l for all v ∈ V ′. Hence |E| ≤ l|T |.
Therefore,

l|T | ≥ (1− β)k|C|l.
Thus, |T | ≥ (1 − β)k|C| = 1−β

β (r − 1)|C|. Picking any β ≤ 1/3, we have
|T | ≥ 2(r− 1)|C| which means that τ(HC) > (2r− 3)(|C| − 1) for every C ⊆ U .
This completes the proof. ��

3 A 1
5-approximate Solution through a Local Search

In this section we prove that the integrality gap of the configuration LP is no
worse than 1

5 .
Given a feasible solution {xiS} to the configuration LP, we modify it as follows.

To simplify notation, scale values of all items so that we can assume that t = 1.
Recall that vij ∈ {0, vj}. Call an item j fat if vj > 1

5 and thin it vj ≤ 1
5 .

(The value of 1
5 is taken with hindsight, being the largest value p satisfying

2(p + p) ≤ 1 − p, needed later in the proof of Lemma 1.) For every fat item j,
change vj so that vj = 1. Now modify the LP solution so as to make it minimal,
by restricting players to choose bundles that are minimally satisfying for the
player – dropping any item from the set reduces its value below 1. This can be
achieved in polynomial time by dropping items from sets whenever possible. We
are now left with an LP solution that uses only two types of sets:

– Fat sets. These are sets that contain only a single fat item and nothing else.
– Thin sets. These are sets that contain only thin items.

We call such a solution to the LP a minimal solution.
Construct a bipartite hypergraph based on the modified LP solution. The

U side are the players. The V side are the items. For every player i put in
hyperedges associated with those sets for which xiS > 0 as follows. If S = {j} is
a fat set, include the hyperedge {i, j}. If S is a thin set, then for every minimal
subset S′ ⊂ S of value at least 1

5 (minimal in the sense that dropping any item
from S′ reduces its value below 1

5), put in the hyperedge {i, S′}. Observe that
by minimality, S′ has weight at most 2

5 .

Theorem 4. Given any minimal solution to the configuration LP, the bipartite
hypergraph constructed above has a perfect matching (namely, a matching in
which all vertices of U are covered).

16 A. Asadpour, U. Feige, and A. Saberi

We note that Theorem 4 implies that there is an integer solution of value at
least 1

5 , since every player can get either a fat set (that contains an item of value
more than 1

5), or a part of a thin set of value at least 1
5 .

Our proof of Theorem 4 is patterned a proof of [11], with some changes. The
most significant of these changes is the use of Lemma 1.

For a setW of edges, we use the notationWU to denote the vertices of U that
are covered by W , and WV to denote the vertices of V that are covered by W .

Proof. The proof is by induction on U . For |U | = 1, the theorem is obviously true
(since the hypergraph has at least one edge). Hence assume that the theorem is
true for |U | = k, and prove for |U | = k + 1.

Denote the vertices of U by {u0, . . . uk}. By the inductive hypothesis, there is
a matching of size k involving all U vertices except for u0. (This is true because
by removing u0 from the hypergraph and all its edges, one obtains a hypergraph
which corresponds to a minimal solution to an LP with one less player.) Pick
an arbitrary such matching M . We present an algorithm that transforms this
matching into a new matching of size k + 1. The algorithm is in some respects
similar to the known algorithm for constructing matchings in bipartite graphs.
It constructs an alternating tree in an attempt to find an alternating path. In
the graph case, when such a path is found, the matching can be extended. In
the hypergraph case, the situation is more complicated, and hence the proof will
not provide a polynomial upper bound on the number of steps required until
eventually the matching is extended.

In our alternating tree, there will be two types of edges. Edges of type A are
edges that we try to add to the matching (A stands for Add). Edges of type B
will be existing matching edges (hence B ⊂ M) that intersect edges of type A,
and hence block us from adding edges of type A to the matching (B stands for
Block). Every root to leaf path will be an alternating sequence of edges of type
A and B.

The A edges will be numbered in the order in which they are added to the
alternating tree. Hence their names will be a1, a2, . . ., and these names are rela-
tive to a currently existing alternating tree (rather than being names that edges
keep throughout the execution of the algorithm). For every i ≥ 1, we associate
with edge ai an integer mi ≥ 1 that will correspond to the number of B edges
that block ai. The strict positivity of mi implies that |B| ≥ |A|.

Initially one needs to pick the first edge for the alternating tree. Pick an
arbitrary edge e such that eU = u0. Let m1 denote the number of edges from M
that eV intersects. If m1 = 0, then terminate, because the edge e can be added
to M , obtaining a perfect matching. If m1 > 0, rename e as a1, add a1 to A,
and add the m1 matching edges that intersect a1 to B.

Let i ≥ 2 and assume that the alternating tree already contains i − 1 edges
of type A (named as a1, . . . , ai−1), and at least i − 1 edges of type B. We now
pick an edge e such that eU ∈ (A ∪ B)U and eV does not intersect (A ∪ B)V .
The following lemma shows that such an edge must exist.

Santa Claus Meets Hypergraph Matchings 17

Lemma 1. Let H(U, V,E) be the hypergraph associated with a minimal solution
to the configuration LP. Then given any alternating tree as described above, there
always is an edge e such that eU ∈ (A∪B)U and eV does not intersect (A∪B)V .

Proof. Let � denote the number of vertices of U in the alternating tree. Each
hyperedge corresponds in a natural way either to a fat set or to (part of) a thin
set. Let Af (At, respectively) denote the collection of A edges in the alternating
tree that correspond to fat sets (thin sets, respectively), and similarly for Bf

and Bt with respect to B edges in the alternating tree. Observe that in an
alternating tree necessarily |Af | + |At| = |A| < � and |Bf | + |Bt| = |B| < �.
Moreover, |Af | = |Bf | = |(Af ∪ Bf)V |, because every fat edge of A contains
exactly one vertex in V , this vertex is contained only in fat edges, and hence
this fat edge is intersected by exactly one fat edge in B.

Consider now the restriction of the minimal solution to the LP to the set of
players P represented by the � vertices of (A ∪B)U . Let Sf be the collection of
fat sets and St be the collection of thin sets. Let α =

∑
i∈P, S∈S xiS denote the

total weight assigned by this restricted solution to fat sets, and let β = �− α =∑
i∈P, S∈S xiS denote the total weight assigned by this restricted solution to

thin sets. If α > |(Af ∪ Bf)V | then it must be the case that some fat set has
positive weight in the restricted solution but is not part of the alternating tree.
In this case, this fat set can contribute a hyperedge to the alternating tree. Hence
it remains to deal with the case that α ≤ |Af |. In this case, 2β ≥ |At|+ |Bt|+ 2.
The hyperedges in the alternating tree that correspond to thin sets each take up
value at most 2

5 . Hence even after removing all items appearing in the alternating
tree, the sum of weights multiplied by respective remaining value of thin sets in
the LP is

∑

i∈P, S∈S

xiS

∑

j∈S\(A ∪B)

vij >
β

5

This means than at least one thin set must have retained a value of at least
1
5 . Hence, this thin set can contribute a hyperedge to the alternating tree. ��

Pick an arbitrary hyperedge e satisfying Lemma 1 and let mi denote the number
of edges of M that e intersects. If mi > 0, we call this an extension (the alter-
nating tree grew larger), rename e as ai, add ai to A, and add the mi matching
edges that intersect ai to B.

We now describe what to do when mi = 0. If eU = u0, add edge e to the
matching M , and terminate. If eU
= u0, then let e′ be the unique edge in B for
which eU = e′U . Let aj (here necessarily we will have j < i) be the unique edge
in A that intersects e′. In the matching M , replace the matching edge e′ by the
matching edge e. Note that this still gives a valid matching of size k, because by
construction, e does not intersect any edge of M except for sharing its U side
vertex with e′, which is removed from M . Update mj by decreasing it by 1. If
the new value of mj is still positive, this step ends. However, if mj = 0, then the
above procedure is repeated with j replacing i (in particular, aj will also become
part of the matching M). Because j < i, the number of times the procedure can

f

t

t t t

18 A. Asadpour, U. Feige, and A. Saberi

be repeated is finite, and hence eventually the step must end. We call such a
step a contraction (the alternating tree becomes smaller).

This completes the description of the algorithm. Observe that the algorithm
terminates only when we extend the matching M by one more edge. Hence it
remains to show that the algorithm must terminate.

To see this, consider the evolution of vector m1,m2, . . . ,mj . For simplicity
of the argument, append at the end of each such vector a sufficiently large
number (|M |+1 would suffice). We call the resulting vector the signature of the
alternating tree. We claim that the signatures of any two alternating trees are
distinct. This is because ordering the signatures by the time in which they were
generated sorts them in decreasing lexicographic order. For extension steps, this
follows from the fact that we appended |M | + 1 at the end of the respective
vector. For contraction steps, this follows from the fact that mj decreases.

Since
∑

imi ≤ |M | and mi > 0 (whenever mi is defined), the number of
possible signatures is 2|M| (there is a one to one correspondence between these
vectors and choices of after which items to place delimiters in a sequence of |M |
items), and hence the algorithm cannot have infinite executions. ��

The proof of Theorem 4 implicitly provides a local search algorithm to find
an integral solution with value 1

5 . Its basic objects are the alternating trees. A
basic step is that of adding an edge to the tree, resulting in either an extension
step or a contraction step. The measure of progress of the local search is via the
lexicographic value of the corresponding signature. Given a matching with |M | <
n edges (an allocation toM players), it will be extended after at most 2|M| steps.
Hence starting with the empty matching it takes at most

∑n−1
|M|=0 2|M| < 2n local

search steps uptil a perfect matching is found. This corresponds to allocating
disjoint bundles of value at least optLP/5 to all players. Noting that optLP is
at least as large as the optimal solution, the following theorem is established.

Theorem 5. After 2n local moves, our algorithm finds a feasible integral 1
5 -

approximate allocation.

4 Open Directions

Characterizing the best possible approximation ratio for the max-min allocation
problem is still open, both for the restricted assignment version and for the
general version of the problem. We list here some research questions that are
suggested by our work.

1. Integrality gap. We showed that the integrality gap of the configuration LP
for the restricted assignment problem is no worse than 1/5. It was previously
known to be no better than 1/2 (in particular, this follows from the NP-
hardness result of [4]). Narrow the gap between these two bounds.

2. Complexity of local search. Our proof is based on a local search procedure.
Can a locally optimal solution with respect to this local search be found in
polynomial time? Is finding such a solution PLS-complete? These questions

Santa Claus Meets Hypergraph Matchings 19

apply also to similar local search procedures that find a perfect matching in
hypergraphs satisfying the conditions of Theorem 2.

3. Approximation algorithms. Provide an approximation algorithm (that ac-
tually finds an allocation) with a constant approximation ratio for the re-
stricted assignment problem.

4. Hypergraph matchings. Can the proof techniques used in our paper be used
also for other problems? For example, can our approach be employed to
prove that the integrality gap of configuration LP for general max-min fair
allocation problem is Θ(1√

n
) (saving a log3 n factor compared to [2])?

Acknowledgements

Part of this work was performed at Microsoft Research, Redmond, Washington.

References

1. Aharoni, R., Haxell, P.: Hall’s theorem for hypergraphs. Journal of Graph The-
ory 35, 83–88 (2000)

2. Asadpour, A., Saberi, A.: An Approximation Algorithm for Max-Min Fair Alloca-
tion of Indivisible Goods. In: Proceedings of the ACM Symposium on Theory of
Computing (STOC) (2007)

3. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the ACM
Symposium on Theory of Computing (STOC) (2006)

4. Bezakova, I., Dani, V.: Allocating indivisible goods. SIGecom Exchanges (2005)
5. Brams, S.J., Taylor, A.D.: Fair division: from Cake Cutting to Dispute Resolution.

Cambridge University Press, Cambridge (1996)
6. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-

rial auctions with submodular bidders. In: Proceedings of Symposium on Discrete
Algorithms (SODA) (2006)

7. Ebenlendr, T., Krcal, M., Sgall, J.: Graph Balancing: A Special Case of Scheduling
Unrelated Parallel Machines. In: Proceedings of Symposium on Discrete Algorithms
(SODA) (2008)

8. Feige, U.: On maximizing welfare when utility functions are subadditive. In: Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC) (2006)

9. Feige, U.: On allocations that maximize fairness. In: Proceedings of Symposium on
Discrete Algorithms (SODA) (2008)

10. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: Proceedings of Foundations of Computer Science
(FOCS) (2006)

11. Haxell, P.E.: A Condition for Matchability in Hypergraphs. Graphs and Combina-
torics 11, 245–248 (1995)

12. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search?
Journal of Computer and System Sciences 37, 79–100 (1988)

13. Kessler, O.: Matchings in Hypergraphs. D.Sc. Thesis, Technion (1989)
14. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research

Logistic Quarterly 2, 83–97 (1955)

20 A. Asadpour, U. Feige, and A. Saberi

15. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, Series A (1993)

16. Steinhaus, H.: The problem of fair division. Econometrica (1948)
17. Vondrak, J.: Optimal approximation for the Submodular Welfare Problem in the

value oracle model. In: Proceedings of the ACM Symposium on Theory of Com-
puting (STOC) (2008)

Ordinal Embedding: Approximation Algorithms

and Dimensionality Reduction

Mihai Bădoiu1, Erik D. Demaine2,�, MohammadTaghi Hajiaghayi3,
Anastasios Sidiropoulos2, and Morteza Zadimoghaddam4

1 Google Inc.
mihai@theory.csail.mit.edu

2 MIT Computer Science and Artificial Intelligence Laboratory
{edemaine,tasos}@mit.edu
3 AT&T Labs — Research

hajiagha@research.att.com
4 Department of Computer Engineering, Sharif University of Technology

zadimoghaddam@ce.sharif.edu

Abstract. This paper studies how to optimally embed a general met-
ric, represented by a graph, into a target space while preserving the
relative magnitudes of most distances. More precisely, in an ordinal em-
bedding, we must preserve the relative order between pairs of distances
(which pairs are larger or smaller), and not necessarily the values of
the distances themselves. The relaxation of an ordinal embedding is the
maximum ratio between two distances whose relative order is inverted
by the embedding. We develop polynomial-time constant-factor approx-
imation algorithms for minimizing the relaxation in an embedding of an
unweighted graph into a line metric and into a tree metric. These two
basic target metrics are particularly important for representing a graph
by a structure that is easy to understand, with applications to visualiza-
tion, compression, clustering, and nearest-neighbor searching. Along the
way, we improve the best known approximation factor for ordinally em-
bedding unweighted trees into the line down to 2. Our results illustrate
an important contrast to optimal-distortion metric embeddings, where
the best approximation factor for unweighted graphs into the line is
O(n1/2), and even for unweighted trees into the line the best is Õ(n1/3).
We also show that Johnson-Lindenstrauss-type dimensionality reduction
is possible with ordinal relaxation and �1 metrics (and �p metrics with
1 ≤ p ≤ 2), unlike metric embedding of �1 metrics.

1 Introduction

The maturing field of metric embeddings (see, e.g., [IM04]) originally grew out of
the more classic field of multidimensional scaling (MDS). In MDS, we are given a
finite set of points and measured pairwise distances between them, and our goal
is to embed the points into some target metric space while (approximately) pre-
serving the distances. Originally, the MDS community considered embeddings
� Supported in part by NSF under grant number ITR ANI-0205445.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 21–34, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 M. Bădoiu et al.

into an �p space, with the goal of aiding in visualization, compression, clustering,
or nearest-neighbor searching; thus, the focus was on low-dimensional embed-
dings. An isometric embedding preserves all distances, while more generally,
metric embeddings trade-off the dimension with the fidelity of the embeddings.

But the distances themselves are not essential in nearest-neighbor searching
and many contexts of visualization, compression, and clustering. Rather, the
order of the distances captures enough information; in order words, we only need
an embedding of a monotone mapping of the distances into the target metric
space. The early MDS literature considered such embeddings heavily under the
terms ordinal embeddings, nonmetric MDS, or monotone maps [CS74, Kru64a,
Kru64b, She62, Tor52].

While the early work on ordinal embeddings was largely heuristic, there has
been some work with provable guarantees since then. Define a distance matrix
to be any matrix of pairwise distances, not necessarily describing a metric. Shah
and Farach-Colton [SFC04] have shown that it is NP-hard to decide whether
a distance matrix can be ordinally embedded into an additive metric, i.e., the
shortest-path metric in a tree. Define the ordinal dimension of a distance matrix
to be the smallest dimension of a Euclidean space into which the matrix can be
ordinally embedded. Bilu and Linial [BL04] have shown that every matrix has
ordinal dimension at most n− 1. They also applied the methods of [AFR85] to
show that (in a certain well-defined sense) almost every n-point metric space
has ordinal dimension Ω(n). It is also known that ultrametrics have ordinal
dimension exactly n− 1 [ABD+].

While ordinal embeddings and ordinal dimension provide analogs of exact
isometric embedding with monotone mapping, Alon et al. [ABD+] introduced an
ordinal analog of distortion to enable a broader range of embeddings. Specifically,
a metricM ′ is an ordinal embedding with relaxation α ≥ 1 of a distance matrixM
if αM [i, j] < M [k, l] implies M ′[i, j] < M ′[k, l]. In other words, the embedding
must preserve the relative order of significantly different distances. Note that
in an ordinary ordinal embedding, we must respect distance equality, while in
an ordinal embedding with relaxation 1, we may break ties. The goal of the
ordinal relaxation problem is to find an embedding of a given distance matrix
into a target family of metric spaces while minimizing the relaxation. Here we
optimize the confidence with which ordinal relations are preserved, rather than
the number of ordinal constraints satisfied (as in [Opa79, CS98, SFC04]).

Our results. We develop polynomial-time constant-factor approximation algo-
rithms for minimizing the relaxation in an embedding of an unweighted graph
into a line metric and into a tree (additive) metric. These two basic target met-
rics are particularly important for representing a graph by a structure that is
easy for humans to understand, with applications to visualization, compression,
clustering, and nearest-neighbor searching.

Our 10/3-approximation for unweighted graphs into the line (Section 3) illus-
trates an important contrast to optimal-distortion metric embeddings, where the
best approximation factor for unweighted graphs into the line is O(n1/2), and
even for unweighted trees into the line the best is Õ(n1/3) [BDG+05]. This result

Ordinal Embedding: Approximation Algorithms 23

significantly generalizes the previously known 3-approximation for minimum-
relaxation ordinal embedding of unweighted trees into the line [ABD+]. Along
the way, we also improve this result to a 2-approximation. The main approach
of our algorithm is to embed the given graph G into the line with additive
distortion at most 4α (2α from expansion and 2α from contraction), where α is
the minimum relaxation of an ordinal embedding of G into a tree. We show that
this embedding has (multiplicative) ordinal relaxation at most 4α, a property
not necessarily true of multiplicative distortion. When G is a tree, we show that
the embedding is contractive, and thus we obtain a 2-approximation. For general
graphs G, we modify the embedding by contracting certain distances to improve
the (asymptotic) approximation factor to 10/3.

Our 27-approximation for unweighted graphs into trees (Section 4) is in fact
an approximation algorithm for both minimum-relaxation ordinal embedding
and minimum-distortion metric embedding. We show that lower bounds on the
ordinal relaxation (which are also lower bounds on metric distortion) provide
new insight into the structure of both problems. Our result improves the best
previous 100-approximation for metric distortion, and is also the first illustration
that relaxation and distortion are within constant factors of each other in this
context. The main approach of our algorithm is to construct a supergraph H of
the given graph G such that (1) G can be embedded into H with distortion at
most 9α, where α is the minimum relaxation of an ordinal embedding of G into
a tree, and (2) H can be embedded into a spanning tree of H with distortion
at most 3. The resulting embedding of distortion 27α is a 27-approximation for
both distortion and relaxation.

In each context where we obtain constant-factor approximations, e.g., or-
dinally embedding unweighted graphs into the line, it remains open to prove
NP-hardness or inapproximability of minimizing relaxation.

Another topic of recent interest is dimensionality reduction. The famous
Johnson-Lindenstrauss Theorem [JL84] guarantees low-distortion reduction to
logarithmic dimension for arbitrary �2 metrics, but recently it was shown that the
same is impossible without significant distortion for �1 metrics [BC05, LN04] (de-
spite their usefulness and flexibility for representation). In contrast, we show in
Section 5 that arbitrary �1 metrics can be ordinally embedded into logarithmic-
dimension �1 space with relaxation 1+ε for any ε > 0. More generally, our analog
of the Johnson-Lindenstrauss Theorem applies to �p metrics with 1 ≤ p ≤ 2. We
show that this result in fact follows easily from a combination of known results:
the monotone property of ordinal embeddings, power transformations for mak-
ing metrics Euclidean, the Johnson-Lindenstrauss Theorem, and Dvoretzky-type
results to return to the desired �p space [FLM77, Ind07].

2 Definitions

In this section, we formally define ordinal embeddings and relaxation (as in
[ABD+]) as well as the contrasting notions of metric embeddings and distortion.

24 M. Bădoiu et al.

Consider a finite metric D : P×P → [0,∞) on a finite point set P—the source
metric—and a class T of metric spaces (T, d) ∈ T where d is the distance function
for space T—the target metrics. An ordinal embedding (with no relaxation) of
D into T is a choice (T, d) ∈ T of a target metric and a mapping φ : P → T
of the points into the target metric such that every comparison between pairs
of distances has the same outcome: for all p, q, r, s ∈ P , D(p, q) ≤ D(r, s) if and
only if d(φ(p), φ(q)) ≤ d(φ(r), φ(s)). Equivalently, φ induces a monotone function
D(p, q) �→ d(φ(p), φ(q)). An ordinal embedding with relaxation α of D into T is
a choice (T, d) ∈ T and a mapping φ : P → T such that every comparison
between pairs of distances not within a factor of α has the same outcome: for all
p, q, r, s ∈ P withD(p, q) > αD(r, s), d(φ(p), φ(q)) > d(φ(r), φ(s)). Equivalently,
we can view a relaxation α as defining a partial order on distances D(p, q), where
two distances D(p, q) and D(r, s) are comparable if and only if they are not
within a factor of α of each other, and the ordinal embedding must preserve this
partial order on distances.

We pay particular attention to contrasts between relaxation in ordinal embed-
ding relaxation and distortion in “standard” embedding, which we call “metric
embedding” for distinction. A contractive metric embedding with distortion c of
a source metric D into a class T of target metrics is a choice (T, d) ∈ T and
a mapping φ : P → T such that no distance increases and every distance is
preserved up to a factor of c: for all p, q ∈ P , 1 ≤ D(p, q)/d(φ(p), φ(q)) ≤ c.
Similarly, we can define an expansive metric embedding with distortion c with
the inequality 1 ≤ d(φ(p), φ(q))/D(p, q) ≤ c. When c = 1, these two notions co-
incide to require exact preservation of all distances; such an embedding is called
a metric embedding with no distortion or an isometric embedding. In general,
c∗ = c∗(D, T) denotes the minimum possible distortion of a metric embedding
of D into T . (This definition is equivalent for both contractive and expansive
metric embeddings, by scaling.)

3 Constant-Factor Approximations for Embedding
Unweighted Graphs and Trees into the Line

In this section we give an asymptotically 10/3-approximation algorithm for
minimum-relaxation ordinal embedding of the shortest-path metric of an un-
weighted graph into the line. This result shows a sharp contrast from metric
embedding, where the best known polynomial-time approximation algorithm for
unweighted graphs into the line achieves an approximation ratio of just O(n1/2),
and even for unweighted trees into the line the best is Õ(n1/3) [BDG+05]. Along
the way, we give a 2-approximation algorithm for minimum-relaxation ordinal
embedding of unweighted trees into the line, improving on the 3-approximation
of [ABD+].

Let G = (V,E) be the input unweighted graph. Suppose that there exists an
ordinal embedding h of G into the line R with relaxation α. Let u and v be the
vertices in G that h maps onto the leftmost and rightmost points, respectively,
in the line. In other words, h(u) and h(v) are the minimum and maximum values

Ordinal Embedding: Approximation Algorithms 25

taken by h. The algorithm guesses the vertices u and v, i.e., repeats the following
procedure for all possible pairs of vertices u and v.

For a given guess of u and v, the algorithm computes an (arbitrary) shortest
path P from u to v in G, say visiting vertices u = v0, v1, v2, . . . , vδ = v. Then it
computes the Voronoi partition of the vertices V = V0 ∪ V1 ∪ · · · ∪ Vδ where the
sites are the vertices v0, v1, . . . , vδ of the path P , i.e., for each i ∈ {0, 1, . . . , δ}
and for each x ∈ Vi, DG(x, vi) = min{DG(x, vj) | vj ∈ P}. In particular, vi ∈ Vi.
This partition defines a function f : V → R by f(x) = i for x ∈ Vi. This
function will turn out to be a good embedding if G is a tree, but it will need
further refinement for general graphs. We begin by deriving some properties of f .

Lemma 1. For any i ∈ {0, 1, . . . , δ} and any x ∈ Vi, we have α ≥ DG(x, vi),
and if G is a tree, we have α ≥ DG(x, vi) + 1.

Proof. Suppose for contradiction that some vertex x ∈ Vi has α < DG(x, vi).
Consider the ordinal embedding h ofG into R with relaxation α. By construction,
h(v0) ≤ h(x) ≤ h(vδ), so some j with 0 ≤ j < δ has h(vj) ≤ h(x) ≤ h(vj+1). By
assumption, DG(x, vj) ≥ DG(x, vi) > α = αDG(vj , vj+1) = α. By definition of
relaxation, |h(x)− h(vj)| > |h(vj)− h(vj+1)|, contradicting that h(vj) ≤ h(x) ≤
h(vj+1).

If G is a tree, we have the property that |DG(x, vj) −DG(x, vj+1)| = 1. By
construction, both DG(x, vj) and DG(x, vj+1) are at least DG(x, vi), and hence
the larger is at least DG(x, vi) + 1 > α+ 1. The rest of the proof for trees is as
above. �

Lemma 2. For any two vertices x1 and x2 in G, we have

DG(x1, x2)− 2α ≤ |f(x1)− f(x2)| ≤ DG(x1, x2) + 2α,

and if G is a tree, we have

DG(x1, x2)− 2(α− 1) ≤ |f(x1)− f(x2)| ≤ DG(x1, x2) + 2(α− 1).

Proof. Suppose x1 and x2 are in Vi1 and Vi2 , respectively. By Lemma 1,
DG(x1, vi1) ≤ α and DG(x2, vi2) ≤ α. By the triangle inequality, DG(x1, x2) ≤
DG(x1, vi1) + DG(vi1 , vi2) + DG(vi2 , x2) ≤ α + |f(x1) − f(x2)| + α. We also
have |f(x1)− f(x2)| = DG(vi1 , vi2) ≤ DG(vi1 , x1) +DG(x1, x2) +DG(x2, vi2) ≤
α+DG(x1, x2)+α. If G is a tree, we can replace each α with α−1 by Lemma 1
and obtain the stronger inequalities. �

Next we show the efficiency of f as an ordinal embedding for trees, improving
on the 3-approximation of [ABD+]:

Theorem 1. There is a polynomial-time algorithm which, given an unweighted
tree T that ordinally embeds into the line with relaxation α, computes an ordinal
embedding with relaxation 2α− 1.

Proof. We prove that the function f defined above is an ordinal embedding with
relaxation 2α− 1.

26 M. Bădoiu et al.

First we claim that, for any two vertices x and y, we have |f(x) − f(y)| ≤
DT (x, y). Because T is a tree, there is a unique simple path Q from x to y.
Suppose x and y belong to Vi and Vj , respectively. If i = j, then f(x) = f(y),
and the claim is trivial. Otherwise, Q must be the simple path from x to vi to
vj (along P) to y. Therefore the length of Q is at least |i− j| = |f(x)− f(y)|. In
other words, the embedding f does not increase the distance between x and y.

Next let x1, x2, x3, x4 be vertices of T with DT (x1, x2)/DT (x3, x4) > 2α− 1.
It remains to show that |f(x1) − f(x2)| > |f(x3) − f(x4)|. Because α ≥ 1 and
DT (x3, x4) ≥ 1, we have DT (x1, x2) > (2α−1)DT (x3, x4) ≥ 2α−2+DT (x3, x4).
By Lemma 2, we have |f(x1) − f(x2)| ≥ DT (x1, x2) − 2α + 2, which is greater
than DT (x3, x4). Above we proved that DT (x3, x4) ≥ |f(x3)− f(x4)|. Therefore
|f(x1)− f(x2)| > |f(x3)− f(x4)|. �
Before we define our embedding for general unweighted graphs, we prove a final
property of f :

Lemma 3. For any ε > 1/α, any vertex x, and any vertices y1 and y2 adjacent
to x, we have either min{f(y1), f(y2)} > f(x)−α(1+ε) or max{f(y1), f(y2)} <
f(x) + α(1 + ε).

Proof. Suppose for contradiction that there is a vertex x with neighbors y1
and y2 for which f(y1) ≤ f(x) − α(1 + ε) and f(x) ≤ f(y2) − α(1 + ε). Thus
|f(y1) − f(y2)| ≥ 2α(1 + ε). But DG(y1, y2) ≤ 2, so by Lemma 2 we conclude
|f(y1)− f(y2)| ≤ 2 + 2α, which is a contradiction for ε > 1/α. �
Finally we can define our ordinal embedding g : V → R for a general unweighted
graph G = (V,E), for any ε > 0:

g(x) =

⎧
⎨

⎩

f(x)− α/3 if x has a neighbor y in G with f(y) ≤ f(x)− α(1 + ε),
f(x) + α/3 if x has a neighbor y in G with f(y) ≥ f(x) + α(1 + ε),
f(x) otherwise.

By Lemma 3, the embedding g is well-defined. It remains to bound its relaxation.

Lemma 4. For any two vertices x1 and x2 in G, we have

DG(x1, x2)− 8α/3 ≤ |g(x1)− g(x2)| ≤ DG(x1, x2) + 8α/3.

Proof. By construction, |g(x)− f(x)| ≤ α/3 for any vertex x. By Lemma 2,

DG(x1, x2)− 2α− 2α/3 ≤ |g(x1)− g(x2)| ≤ DG(x1, x2) + 2α+ 2α/3. �
Lemma 5. For any ε > 3/(2α) and any edge e = (x, y) in G, we have |g(x) −
g(y)| ≤ (4/3 + ε)α.

Proof. Without loss of generality, suppose that f(x) ≤ f(y). By Lemma 2,
|f(x) − f(y)| ≤ 1 + 2α. If f(x) < f(y) − α(1 + ε), then g(x) = f(x) + α/3
and g(y) = f(y)− α/3. In this case, we have

|g(x)− g(y)| = |f(x)− f(y)| − 2α/3 ≤ 2α+ 1− 2α/3 ≤ (4/3 + ε)α

for α ≥ 1/ε.

Ordinal Embedding: Approximation Algorithms 27

It remains to consider the case f(x) ≤ f(y) + (1 + ε)α. Observe that g(x)
is equal to one of the values f(x) − α/3, f(x), and f(x) + α/3. There are also
three cases for g(y). So there are nine cases to consider. But the claim is clearly
true for eight of them. The only case for which the claim is nontrivial is when
g(x) = f(x)− α/3 and g(y) = f(y) + α/3.

In this case, we have |g(x)− g(y)| = |f(x)− f(y)|+ 2α/3. By definition of g,
we conclude that there is a vertex x′ adjacent to x in G such that f(x′) ≤
f(x) − (1 + ε)α. Similarly, there is a vertex y′ adjacent to y for which we have
f(y′) ≥ f(y) + (1 + ε)α. Thus f(y′) − f(x′) ≥ (2 + 2ε)α. But we know that
DG(x′, y′) ≤ 3, and |f(x′)−f(y′)|must be at most 3+2α, which is a contradiction
for ε > 3/(2α). Therefore this case does not occur, and the claim is true for all
nine cases. �

Lemma 6. The ordinal embedding g has relaxation (10/3 + ε)α + 1 for ε >
3/(2α).

Proof. Consider x1, x2, x3, x4 ∈ V for which DG(x1, x2)/DG(x3, x4) > (10/3 +
ε)α + 1. It suffices to show that |g(x1) − g(x2)| > |g(x3) − g(x4)|. We consider
two cases.

First suppose that DG(x3, x4) > 1. Then

DG(x1, x2)−DG(x3, x4) > [(10/3 + ε)α+ 1− 1]DG(x3, x4) > 20α/3.

By Lemma 4, |g(x1) − g(x2)| ≥ DG(x1, x2) − 8α/3 and |g(x3) − g(x4)| ≤
DG(x3, x4) + 8α/3. Thus

|g(x1)−g(x2)|−|g(x3)−g(x4)| ≥ [DG(x1, x2)−8α/3]− [DG(x3, x4)+8α/3] ≥ 1.

Therefore |g(x1)− g(x2)| > |g(x3)− g(x4)|.
In the second case, there is an edge between vertices x3 and x4. We also know

that DG(x1, x2) > (10/3 + ε)α + 1. By Lemma 5, |g(x3)− g(x4)| ≤ (4/3 + ε)α.
It suffices to prove that |g(x1) − g(x2)| > (4/3 + ε)α. By Lemma 2, |f(x1) −
f(x2)| ≥ DG(x1, x2)− 2α > (4/3 + ε)α. If |g(x1)− g(x2)| ≥ |f(x1)− f(x2)|, the
claim is true. On the other hand, if |f(x1) − f(x2)| > (2 + ε)α, then because
|g(x1)− g(x2)| ≥ |f(x1)− f(x2)| − 2α/3, we have |g(x1)− g(x2)| > (4/3 + ε)α.
So we can suppose that |g(x1) − g(x2)| < |f(x1) − f(x2)| and that |f(x1) −
f(x2)| ∈ [(4/3 + ε)α, (2 + ε)α]. Without loss of generality, we can suppose that
f(x1) < f(x2), and consequently f(x2) ∈ [f(x1) + (4/3 + ε)α, f(x1) + (2 + ε)α].
Because |g(x1) − g(x2)| < |f(x1) − f(x2)|, and by the symmetry between x1

and x2, we can suppose that g(x1) = f(x1) + α/3 and g(x2) ≤ f(x2).
We conclude that there exists a vertex x5 for which e = (x1, x5) ∈ E(G)

and f(x1) + (1 + ε)α ≤ f(x5) ≤ f(x1) + 2α. As a consequence, DG(x5, x2) ≥
DG(x1, x2)−1 > (10/3+ε)α and f(x5) ∈ [f(x1)+(1+ε)α, f(x1)+2α]. Therefore
|f(x5) − f(x2)| ≤ α. But this inequality contradicts that |f(x5) − f(x2)| ≥
DG(x5, x2) − 2α ≥ (4/3 + ε)α. We conclude that |g(x1) − g(x2)| > (4/3 + ε)α,
which completes the proof. �

28 M. Bădoiu et al.

Substituting ε = 3/(2α) + δ/α in Lemma 6, we obtain the following result:

Theorem 2. For any δ > 0, there is a polynomial-time algorithm which, given
an unweighted graph that ordinally embeds into the line with relaxation α, com-
putes an ordinal embedding with relaxation (10/3)α+ 5/2 + δ

4 Constant-Factor Approximation for Embedding
Unweighted Graphs into Trees

In this section, we develop a 27-approximation for the minimum-relaxation ordi-
nal embedding of an arbitrary unweighted graph into a tree metric. Specifically,
we give a polynomial-time algorithm that embeds a given unweighted graph G
into a tree with (metric) distortion at most 27αG, where αG is the minimum
relaxation needed to ordinally embed G into a tree. Because the relaxation of
an embedding is always at most its distortion [ABD+, Proposition 1], we obtain
the desired 27-approximation for minimum relaxation. Furthermore, because the
optimal relaxation is also at most the optimal distortion, the same algorithm is
a 27-approximation for minimum distortion. This result improves substantially
on the 100-approximation for minimum-distortion metric embedding of an un-
weighted graph into a tree [BIS07]. Furthermore, we obtain that the minimum
possible distortion cG is Θ(αG) for any graph G, a property which is not true in
many other cases [ABD+].

4.1 Lower Bound for Ordinal Embedding of Graphs into Trees

We start with a lower bound on the minimum relaxation needed to embed a
graph with a special structure into any tree.

Theorem 3. Any graph G has αG ≥ 2l/3 if there are two vertices u and v and
two paths P1 and P2 between them with the following properties:

1. P1 is a shortest path between u and v; and
2. there is a vertex w on P1 whose distance to any vertex on P2 is at least l.

Proof. Suppose that G can be ordinally embedded into a tree T with relaxation
less than 2l/3. Let u = v1, v2, . . . , vm = v be the vertices of the path P1 in G.
By Property 2, we have m ≥ 2l because u and v are also two vertices on P2.
Note that in addition to u and v, P1 and P2 may have more vertices in common.
Let vi be mapped onto v′i in this embedding, v′i ∈ V (T). Let P ′ be the unique
path between v′1 and v′m in T . Also suppose that xi is the first vertex on path
P ′ that we meet when we are moving from v′i to v′m. Note that such a vertex
necessarily exists because v′m is a vertex on P ′ which we meet during our path
in T , and there might be more vertices like v′m. According to this definition, xi

is a vertex on P ′, and the vertices v′1 = x1, x2, . . . , xm = v′m are not necessarily
distinct. Let k be the maximum distance between two vertices x and y in T over
all pairs (x, y) with the property that their representatives in G are adjacent.

Ordinal Embedding: Approximation Algorithms 29

Because there is exactly one path between any pair of vertices in T , we know
that, if xi
= xi+1, then the vertex xi lies in the (shortest) path between v′i and
v′i+1 in T . Consequently, we have dT (v′i, v

′
i+1) = dT (v′i, xi) + dT (xi, v

′
i+1) where

dT (a, b) is the distance between a and b in T . Note that by definition of k, for
any i where xi
= xi+1, the sum of these two terms is at most k. This means
that either dT (v′i, xi) or dT (xi, v

′
i+1) is at most k/2. We use this fact frequently

in the rest of proof.
Let w be the ith vertex on P1. Equivalently, let w be vi. In order to complete

our proof, we consider two cases. At first, suppose that xi−l/3 = xi−l/3+1 =
· · · = xi = xi+1 = · · · = xi+l/3. In this case, let i1 and i2 be respectively the
minimum and maximum numbers for which we have xi1 = xi = xi2 . We prove
that either dT (v′i1 , xi1) or dT (xi1 , v

′
i1−1) is at most k/2. If i1 = 1, then we have

xi1 = v′i1 and consequently dT (xi1 , v
′
i1

) = 0. Otherwise, we have xi1
= xi1−1

and therefore we deduce that either dT (v′i1 , xi1) or dT (xi1 , v
′
i1−1) is at most k/2.

According to the symmetry of the case, we also have that either dT (v′i2 , xi2) or
dT (xi2 , v

′
i2+1) is at most k/2. Note that xi1 = xi2 . Finally we conclude that there

exist j1 ∈ {i1−1, i1} and j2 ∈ {i2, i2+1} such that dT (v′j1 , v
′
j2) ≤ k/2+k/2 = k.

Note that the distance between vj1 and vj2 is at least 2l/3 in G. Because there
are two adjacent vertices in G such that their distance in T is k, we can say that
the relaxation is at least 2l/3

1 = 2l/3.
Now we consider the second and final case. In this case, There exists a vertex

j1 ∈ {i+1−l/3, i+2−l/3, . . . , i−1+l/3} such that we have either xj1
= xj1−1 or
xj1
= xj1+1. Using each of these inequalities, we reach the fact that there exists
j2 ∈ {j1 − 1, j1, j1 + 1} for which we have dT (v′j2 , xj1) ≤ k/2. We define some
similar terms for path P2. Let u = u1, u2, . . . , um′ = v be the vertices of the path
P2 in graph G. Let ui is mapped onto u′i in this embedding, u′i ∈ V (T). Suppose
that yi is the first vertex on path P ′ that we meet when we are moving from u′i
to u′m. We know that either xj1
= v′1 or xj1
= v′m. Without loss of generality,
suppose that xj1
= v′1. Now we know that y1 = v′1 lies before xj1 on path P ′, and
ym′ = v′m does not lie before xj1 on this path. Therefore there exists a number
j3 for which yj3 lies before xj1 on P ′, and yj3+1 does not lie before xj1 on the
path. Therefore xj1 occurs in the (shortest) path between u′j3 and u′j3+1 in T . In
the other words, we have dT (u′j3 , u

′
j3+1) = dT (u′j3 , xj1) + dT (xj1 , u

′
j3+1) ≤ k. We

can say that either dT (u′j3 , xj1) or dT (xj1 , u
′
j3+1) is at most k/2. Suppose that

dT (u′j3 , xj1) is at most k/2. The proof in the other case is exactly the same.
Finally we reach the inequality dT (v′j2 , u

′
j3

) ≤ dT (v′j2 , xj1) + dT (xj1 , u
′
j3

) ≤
k/2 + k/2 = k. Note that the distance between vj2 and w = vi is at most l/3
in G, and therefore the distance between vj2 and uj3 which is a vertex on path
P2 is at least l− l/3 = 2l/3 in G. Again we can say that there are two adjacent
vertices in G such that their distance in T is k, and therefore the relaxation is
at least (2l/3)/1 = 2l/3. �

4.2 27-Approximation Algorithm

In this section we embed a given graph G into a tree with distortion (and hence
relaxation) at most 27αG. We find the embedding in two phases. At first, we

30 M. Bădoiu et al.

construct graph H from the given graph G only by adding some edges to G.
Then we propose an algorithm which finds a spanning tree of H like T . Next,
we prove that the distortion of embedding G into H is at most O(αG). We also
prove that the embedding H into T has distortion at most 3. Therefore the
distortion of embedding G into T is O(αG).

Let G be the given graph. We construct H as follows. Choose an arbitrary
vertex v, and run a breadth-first search to find a tree Tv rooted at v in which
the distance between each vertex and v is equal to their distance in G. The ver-
tices of G occur in different levels of Tv. The ith level of this tree, Li, consists
of vertices whose distance to v is i. We have L0 = {v} and V (G) =

⋃n−1
i=0 Li.

In constructing H from G, we add an edge between two vertices u1 and u2 if
and only if u1 and u2 are in the same level such as Li or in two consecutive
levels such as Li and Li+1, and there is a path between u1 and u2 that does
not use the vertices of levels L0, L1, . . . , Li−1. In the other words, there exists
a path between u1 and u2 in graph G[V −

⋃i−1
j=0 Lj] where G[X] is the sub-

graph of G induced by vertex set X . Using Lemma 3, we prove the following
lemma.

Lemma 7. The distortion of embedding G into H is at most 9αG.

Proof. Because we only add edges to G to form H , the distance between vertices
does not increase. Therefore this metric embedding is contractive. The distortion
of the embedding is thus maxu,v∈V (G)=V (H) dG(u, v)/dH(u, v). We also know
that this maximum is equal to max(u,v)∈E(H) dG(u, v)/dH(u, v) because, if we
know that the distance between two vertices adjacent in H is at most k in G,
then the distance between every pair of vertices in G is at most k times their
distance in H . Therefore we just need to prove that, for each edge (u1, u2) that
we add, the distance between u1 and u2 in G is at most 9αG. In the rest of
proof, when we talk about the distance between two vertices or a path between
them, we consider all of them in graph G. Note that u1 and u2 are either in the
same level such as Li or in two consecutive levels Li and Li+1, and there is a
path P1 between them which uses only vertices in levels Li, Li+1, Consider
a shortest path P2 between u1 and u2. There is also a unique path P3 between
u1 and u2 in the breadth-first-search tree rooted at v. Note that these paths are
not necessarily disjoint. Let l be the length of P2. We prove that l ≤ 9αG. We
consider two cases.

First suppose that there is a vertex in P2 like w that is in
⋃i−l/6

j=0 Lj. For

i < l/6,
⋃i−l/6

j=0 Lj is empty. The distance between w and any vertex in P1 is
at least l/6 because the distance between v and w is at most i − l/6, and the
distance between v and any vertex in P1 is at least i. Applying Lemma 3 to P2

as the shortest path, P1 as the other path, and vertex w, G cannot be ordinally
embedded into any tree with relaxation less than 2

3 ·
l
6 = l/9. Therefore 9αG ≥ l.

In the second case, all vertices of the path P2 are in
⋃n−1

j=i+1−l/6 Lj, including
the vertex in the middle of P2. Let w be the vertex in the middle of the P2.

Ordinal Embedding: Approximation Algorithms 31

Because P2 is a shortest path, the distance between w and u1 and u2 is at least
l−1
2 . We assert that the distance between w and any vertex in the path P3 is

at least l/6. Consider a vertex in P3 like x. If x is in
⋃i+1−l/3

j=0 Lj , the distance
between w and x is at least (i+1− l/6)− (i+1− l/3) = l/6. Otherwise because
of the special structure of path P3, the distance between x and at least one of
the vertices u1 and u2 is at most i + 1 − (i + 1 − l/3 + 1) = l/3 − 1. Because
the distance between w and both u1 and u2 is at least l−1

2 , we can say that
the distance between w and x is at least l−1

2 − (l/3− 1) ≥ l/6. Again applying
Lemma 3 to P2 as the shortest path, P3 as the other path, and vertex w, G
cannot be ordinally embedded into any tree with relaxation less than 2

3 ·
l
6 = l/9.

Therefore 9αG ≥ l. �

Now we are going to find a spanning tree T of H with distortion at most 3.
Before proposing the algorithm, we mention some important properties of H .

The subgraph G[Li] of H induced by vertices in level Li is a union of some
cliques. In fact, if there are two edges (a, b) and (b, c) in G[Li], then there must
be a path between a and b in G that uses only vertices in

⋃n−1
j=i Lj, and also

a path between b and c in G which uses only vertices in
⋃n−1

j=i Lj . Therefore
there exists a path between a and c in G that uses only vertices in

⋃n−1
j=i Lj .

Consequently we must have added an edge between a and c in constructing H
from G. Because the connectivity relation in each level is transitive, each level
is a union of some cliques. There is another important property of H . For any
a, b ∈ Li+1 and c ∈ Li, if b is adjacent to both a and c in H , then there must be
an edge between a and c in H . The claim is true because of the special definition
of edges in H . Therefore, for each clique in level Li+1, there exists a vertex in
Li that is adjacent to all vertices of that clique.

Now we find the tree T as follows. For any i > 0 and any clique C in level Li,
we just need to find a vertex vC in Li−1 that is adjacent to all vertices in C,
and then add all edges between vertex vC and the vertices in C into the tree.
Actually this tree is a breadth-first-search tree in graph H .

Lemma 8. The distortion of embedding H into T is at most 3.

Proof. It is clear that we obtain a spanning tree T . The embedding is expansive
because T is a subgraph ofH . In order to bound the distortion of this embedding,
we must prove that, for each edge (x, y) in H , the distance between x and y is
at most 3 in T . There are two kinds of edges in H : the edges between vertices in
the same level and edges between vertices in two consecutive levels. If x and y
are in the same level Li, then they are connected to a vertex z in Li−1 in tree T .
Therefore their distance in tree T is 2. Otherwise, suppose that x is in Li and y
is in Li−1. Vertex x is connected to a vertex z in Li−1 in tree T . If z = y, then
the claim is clear. If y
= z, then by definition, there is an edge between y and z
in H , and they are also in the same level Li−1. Therefore the distance between
y and z in T is 2, and consequently the distance between x and y is 3 in T . �

32 M. Bădoiu et al.

Combining Lemmas 7 and 8, we obtain the following result:

Theorem 4. There is a polynomial-time algorithm that embeds a given graph
G into a tree with distortion at most 27αG.

5 Dimensionality Reduction in �1

In this section, we prove that dimensionality reduction in �1, and indeed any
�p space with 1 ≤ p ≤ 2, is possible with ordinal embeddings of logarithmic
dimension and relaxation 1 + ε. This result sharply contrasts metric embedding
distortion, where any embedding of an �1 metric of distortion c requires nΩ(1/c2)

dimensions in �1 [BC05, LN04].

Theorem 5. Any �p metric with 1 ≤ p ≤ 2 can be embedded into O(ε−4 lg n)-
dimensional �p space with ordinal relaxation 1 + ε, for any ε > 0 and positive
integer p.

Proof. First we take the (p/2)th power of the pairwise distances in the given
�p metric D. The resulting metric D′ is an �2 metric [Sch38, WW75]; see also
[MN04]. Also, because x �→ xp/2 is a monotone function, D′ is an ordinal embed-
ding of D (without relaxation). Next we apply Johnson-Lindenstrauss �2 dimen-
sionality reduction [JL84] to obtain an d = O((log n)/δ2)-dimensional �2 metric
D′′ with 1+δ distortion relative to D′. Finally, we can embed this d-dimensional
�2 metric into O(d/δ2)-dimensional �p space D′′′ with distortion 1 + δ relative
to D′′ [FLM77]; see also [Ind07, JS03]. [Is [FLM77] the right reference for
O(1/δ2) dimension blowup?] Thus D′′′ is an O((log n)/δ4)-dimensional �1
metric with distortion (1 + δ)2 relative to D′.

We claim that D′′′ is an ordinal embedding of D with relaxation at most
1 + ε for any desired ε > 0 and a suitable choice of δ. Suppose we have two
distances D[p, q] and D[r, s] with D[p, q]/D[r, s] ≥ 1+ε for a desired ε > 0. Then
D′[p, q]/D′[r, s] = D′[p, q]2/p/D′[r, s]2/p = (D′[p, q]/D′[r, s])2/p ≥ (1 + ε)2/p ≥
1 + (2/p)ε. Thus, if we choose δ < min{ 2

3ε/p, 1}, then the distortion of D′′′

relative to D′ is (1 + δ)2 ≤ 1 + 3δ < 1 + (2/p)ε ≤ D′[p, q]/D′[r, s], so the
embedding preserves the order of distances D′′′[p, q] > D′′′[r, s]. Therefore the
relaxation of D′′′ relative to D is at most 1 + ε as desired. The dimension of the
D′′′ embedding is O((log n)/δ4) = O((log n)/ε4). �

This approach is pleasingly simple in its use of prior results as black boxes. By
more involved arguments, it may be possible to improve the dependence on ε in
the number of dimensions by directly analyzing with a modification of Johnson-
Lindenstrauss [JL84] and avoiding the use of [FLM77].

Acknowledgments

We thank Bo Brinkman for suggesting the approach for the proof in Section 5
and Noga Alon, Martin Farach-Colton, Piotr Indyk, and Assaf Naor for helpful
discussions.

Ordinal Embedding: Approximation Algorithms 33

References

[ABD+] Alon, N., Bădoiu, M., Demaine, E.D., Farach-Colton, M., Hajiaghayi,
M., Sidiropoulos, A.: Ordinal embeddings of minimum relaxation: Gen-
eral properties, trees, and ultrametrics. ACM Transactions on Algorithms
(to appear)

[AFR85] Alon, N., Frankl, P., Rödl, V.: Geometrical realization of set systems and
probabilistic communication complexity. In: Proceedings of the 26th An-
nual Symposium on Foundations of Computer Science, pp. 277–280. Port-
land, Oregon (1985)

[BC05] Brinkman, B., Charikar, M.: On the impossibility of dimension reduction
in l1. Journal of the ACM (electronic) 52(5), 766–788 (2005)

[BDG+05] Bădoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi,
R., Sidiropoulos, A.: Approximation algorithms for low-distortion em-
beddings into low-dimensional spaces. In: Proceedings of the 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, January
2005, British Columbia, Canada (2005)

[BIS07] Bădoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for em-
bedding general metrics into trees. In: Proceedings of the 18th Symposium
on Discrete Algorithms, January 2007, pp. 512–521 (2007)

[BL04] Bilu, Y., Linial, N.: Monotone maps, sphericity and bounded second eigen-
value. arXiv:math.CO/0401293 (January 2004)

[CS74] Cunningham, J.P., Shepard, R.N.: Monotone mapping of similarities into
a general metric space. Journal of Mathematical Psychology 11, 335–364
(1974)

[CS98] Chor, B., Sudan, M.: A geometric approach to betweennes. SIAM Journal
on Discrete Mathematics 11(4), 511–523 (1998)

[FLM77] Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spher-
ical sections of convex bodies. Acta Mathematica 139(1-2), 53–94 (1977)

[IM04] Indyk, P., Matoušek, J.: Low-distortion embeddings of finite metric spaces.
In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Compu-
tational Geometry, 2nd edn., ch. 8, pp. 177–196. CRC Press, Boca Raton
(2004)

[Ind07] Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of
l2 into l1. In: Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, pp. 615–620 (2007)

[JL84] Johnson, W.B., Lindenstrauss, J.: Extensions of lipshitz mapping into
hilbert space. Contemporary Mathematics 26, 189–206 (1984)

[JS03] Johnson, W.B., Schechtman, G.: Very tight embeddings of subspaces of
Lp, 1 ≤ p < 2, into �n

p . Geometric and Functional Analysis 13(4), 845–851
(2003)

[Kru64a] Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika 29, 1–28 (1964)

[Kru64b] Kruskal, J.B.: Non-metric multidimensional scaling. Psychometrika 29,
115–129 (1964)

[LN04] Lee, J.R., Naor, A.: Embedding the diamond graph in Lp and dimension
reduction in L1. Geometric and Functional Analysis 14(4), 745–747 (2004)

[MN04] Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Advances
in Mathematics 189(2), 451–494 (2004)

34 M. Bădoiu et al.

[Opa79] Opatrny, J.: Total ordering problem. SIAM J. Computing 8, 111–114
(1979)

[Sch38] Schoenberg, I.J.: Metric spaces and positive definite functions. Transac-
tions of the American Mathematical Society 44(3), 522–536 (1938)

[SFC04] Shah, R., Farach-Colton, M.: On the complexity of ordinal clustering. Jour-
nal of Classification (to appear, 2004)

[She62] Shepard, R.N.: Multidimensional scaling with unknown distance function
I. Psychometrika 27, 125–140 (1962)

[Tor52] Torgerson, W.S.: Multidimensional scaling I: Theory and method. Psy-
chometrika 17(4), 401–414 (1952)

[WW75] Wells, J.H., Williams, L.R.: Embeddings and extensions in analysis. In:
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-
Verlag, New York (1975)

Connected Vertex Covers in Dense Graphs

Jean Cardinal and Eythan Levy�

Université Libre de Bruxelles, CP 212
B-1050 Brussels, Belgium

{jcardin,elevy}@ulb.ac.be

Abstract. We consider the variant of the minimum vertex cover prob-
lem in which we require that the cover induces a connected subgraph.
We give new approximation results for this problem in dense graphs, in
which either the minimum or the average degree is linear. In particular,
we prove tight parameterized upper bounds on the approximation
returned by Savage’s algorithm, and extend a vertex cover algorithm
from Karpinski and Zelikovsky to the connected case. The new algorithm
approximates the minimum connected vertex cover problem within a
factor strictly less than 2 on all dense graphs. All these results are
shown to be tight. Finally, we introduce the price of connectivity for the
vertex cover problem, defined as the worst-case ratio between the sizes
of a minimum connected vertex cover and a minimum vertex cover. We
prove that the price of connectivity is bounded by 2/(1 + ε) in graphs
with average degree εn, and give a family of near-tight examples.

Keywords: approximation algorithm, vertex cover, connected vertex
cover, dense graph.

1 Introduction

The Connected Vertex Cover Problem (CVC) is the variant of Vertex Cover
(VC) in which we wish to cover all edges with a minimum-size set of vertices that
induce a connected subgraph. The problem was first defined in 1977 by Garey
and Johnson [1], who showed it to be NP-Hard even when restricted to planar
graphs with maximum degree 4. Although CVC has been known since long, it
has received far less attention than VC until the recent years. Most previous
results are in the field of approximation and fixed-parameter tractability.

Regarding approximation algorithms, the first constant ratio is due to Carla
Savage [2], who showed that the internal nodes of any depth-first search tree
provide a 2-approximation for VC. Such a set of nodes always induces a con-
nected subgraph, and, since the minimum connected vertex cover is always at
least as large as the minimum vertex cover, the approximation ratio also ap-
plies to CVC. No better constant approximation ratio is known, and recent
results [3] have shown that the problem is NP-hard to approximate within less

� This work was partially supported by the Actions de Recherche Concertées (ARC)
fund of the Communauté française de Belgique.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 35–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

36 J. Cardinal and E. Levy

than 10
√

5 − 21 ≈ 1.36. Another recent inapproximability result is the APX-
hardness of CVC in bipartite graphs [4].

The constant ratio of 2 has recently been improved for several restricted classes
of graphs. Escoffier et al. [4] have shown that CVC is polynomial in chordal
graphs, admits a PTAS for planar graphs, and can be approximated within 5/3
for any class of graphs for which VC is polynomial.

Approximation results have also been proposed in the field of parallel com-
puting. Fujito and Doi [5] have proposed two parallel 2-approximation algo-
rithms. The first one is an NC algorithm running in time O

(
log2 n

)
using

O
(
Δ2(m+ n)/ logn

)
processors on an EREW-PRAM, and the second one an

RNC algorithm running in O (log n) expected time using O (m+ n) processors
on a CRCW-PRAM (with n,m and Δ standing for the number of vertices, the
number of edges, and the maximum degree, respectively).

Several FPT algorithms have also been proposed [6,7,8], where the parameter
is either the size of the optimum or the treewidth.

Density parameters such as the number of edges m and the minimum degree
δ have been used as parameters for approximation ratios (see [9,10,11,12,13] for
VC and [14,15] for Dominating Set and other problems). Most often, these
ratios are expressed as functions of the normalized values of these parameters,
namely m∗ = m/

(
n
2

)
and δ∗ = δ/n. Currently, the best parameterized ratios

for VC with parameters m∗ and δ∗ are 2/(2 −
√

1−m∗) and 2/(1 + δ∗) [9],
when only one parameter is allowed. Imamura and Iwama [12] later improved the
2/(2−

√
1−m∗) result, by generalizing it to depend on both m∗ and Δ∗ = Δ/n.

Our Results. We present the first parameterized approximation ratios for CVC,
with parameters m∗ and δ∗. We first analyze Savage’s algorithm, and prove
ratios of min {2, 1/(1−

√
1−m∗)} and min {2, 1/δ∗}. We then present a variant

of Karpinski and Zelikovsy’s algorithm which provides better ratios, namely
2/(2 −

√
1−m∗) and 2/(1 + δ∗), and runs in time O

(
n3
)

when m∗ or δ∗ are
constant, against the O

(
n2
)

complexity of Savage’s algorithm. A summary of
these results appears in Fig. 1.

Finally, we introduce a new graph invariant, the price of connectivity for VC,
defined as the maximum ratio between the sizes of the optimal solutions of CVC

and VC. We prove an upper bound of 2/(1 +m∗) for the price of connectivity,
and present a family of nearly tight graphs.

Connected variants of classical covering problems such as VC and Domi-

nating Set have recently found renewed interest, with many applications in
wireless and ad-hoc networks among which fault location [16], wireless network
design [17], broadcasting [18] and virtual backbone construction [19]. In such dis-
tributed settings, connectivity is a crucial issue, and the question of determining
its price arises naturally.

Notations. We denote by σ and τ the sizes of the optimal solutions of CVC

and VC respectively. We denote by m the number of edges in the graph, by
δ its minimum degree, and by α the size of its maximum stable set. We use
the ∗ notation to denote normalized values of the graph parameters: τ∗ = τ/n,
σ∗ = σ/n, m∗ = m/

(
n
2

)
, δ∗ = δ/n and α∗ = α/n.

Connected Vertex Covers in Dense Graphs 37

We use the classical notations Kx, Ix and Cx for, respectively, a clique, a
stable set and a cycle. We define the join A× B of two graphs A and B as the
graph having the edges and vertices of A and B, as well as all possible edges
joining both sets of vertices. Finally, we call weakly dense and strongly dense
graphs those for which, respectively, m∗ and δ∗ is a constant. Throughout the
sequel, OPT will denote an optimal solution and β the approximation ratio.

2 Savage’s Algorithm

In 1982, Carla Savage [2] proposed a simple combinatorial algorithm that pro-
vides a 2-approximation to VC. It simply returns the internal nodes of an ar-
bitrary depth-first search tree. As this algorithm returns always a connected
solution, and σ ≥ τ , the 2-approximation is also valid for CVC.

Our first lemma provides lower bounds for σ.

Lemma 1. The following lower bounds hold.

σ∗ ≥ 1−
√

1−m∗ +O
(

1
n

)

(1)

σ∗ ≥ δ∗ (2)

Proof. We consider the first bound. In any graph, since at least
(
α
2

)
edges are

missing, we have m ≤
(
n
2

)
−
(
α
2

)
, hence m∗ ≤ 1−α∗2 +O

(
1
n

)
. Isolating α∗ yields

α∗ ≤
√

1−m∗ + O
(

1
n

)
. Reverting to the normalized vertex cover τ∗ = 1 − α∗

yields τ∗ ≥ 1 −
√

1−m∗ + O
(

1
n

)
. As σ ≥ τ , we obtain the desired result:

σ∗ ≥ 1−
√

1−m∗ +O
(

1
n

)
.

The same kind of reasoning holds for bound (2). In any graph, since a vertex
in a maximum stable set has at most n − α neighbors, we have δ ≤ n− α = τ ,
thus τ∗ ≥ δ∗. As σ ≥ τ , we obtain the desired result: σ∗ ≥ δ∗. ��

The upper bounds on the ratio now follow immediately:

Theorem 1. Savage’s algorithm approximates CVC within a factor of
{

2 if m∗ < 3
4 + o (1)

1
1−

√
1−m∗ + o (1) otherwise.

(weak density) (3)

{
2 if δ∗ < 1

2 + o (1)
1
δ∗ + o (1) otherwise.

(strong density) (4)

Proof. Since the ratio of 2 is known from Savage’s result, and the value of n− 1
is the worst possible for any heuristic solution, we trivially have the following
bound:

min
{

2,
n− 1
σ

}

=

{
2 if σ < n

2
n−1

σ otherwise.
(5)

38 J. Cardinal and E. Levy

Normalizing, we get a bound of min
{

2, 1

σ∗+O(1
n)

}

. Plugging inequalities (1)

and (2) immediately yields:

1
σ∗ ≤ 1

1 −
√

1 − m∗ + O
(

1
n

) =
1

1 −
√

1 − m∗ + o (1)

1
σ∗ ≤ 1

δ∗ + O
(

1
n

) =
1
δ∗

+ o (1)

We can now easily compute when the minimum is 2:

1
1 −

√
1 − m∗ + o (1) > 2 ⇐⇒ m∗ <

3
4

+ o (1)

and
1
δ∗

+ o (1) > 2 ⇐⇒ δ∗ <
1
2

+ o (1) . ��

It should be noted that Theorem 1 applies to any 2-approximation algorithm for
CVC, as its proof nowhere relies on the specific algorithm being used.

We define the complete split graph ψn,α as the join of a clique Kn−α and a
stable set Iα. The following lemma expresses the result of Savage’s algorithm on
complete split graphs.

Lemma 2. Let H be a worst-case solution returned by Savage’s algorithm. Then

|H (ψn,α) | =

{
n − 1 if α < n

2

2(n − α) otherwise.

Proof. Case 1: α < n
2 . One possible execution of the algorithm starts from a

vertex in the clique, alternatively takes a vertex from the stable set and from
the clique, then ends by taking all the remaining vertices in the clique. This
execution yields a path of n vertices, hence a solution of size n− 1 (by removing
the last vertex).

Case 2: α ≥ n
2 . The worst possible execution of the algorithm starts from a

vertex in the stable set, then alternatively takes a vertex from the clique and
from the stable set. This induces a path of 2(n−α)+1 vertices, hence a solution
of size 2(n − α). ��

Theorem 2. The bounds of theorem 1 are tight.

Proof. We show that ψn,α are tight examples for both bounds (3) and (4).

Optimum. τ(ψn,α) is trivially n − α, and the corresponding optimal solution is
the clique Kn−α. Since this optimal solution is connected, we have σ (ψn,α) =
τ (ψn,α) = n − α. Combining this result with the result of Lemma 2 yields

β (ψn,α) =

{
2 if α > n

2
n−1
n−α otherwise.

=

{
2 if σ∗ < 1

2 + o (1)
1

σ∗ + O
(

1
n

)
otherwise.

(6)

Connected Vertex Covers in Dense Graphs 39

Bound 3. Since
(
α
2

)
edges are missing from ψn,α, we have m(ψn,α) =

(
n
2

)
−

(
α
2

)
. Isolating α and normalizing yields α∗ (ψn,α) =

√
1 − m∗ + O

(
1
n

)
. Finally,

plugging σ∗ = 1 − α∗ = 1 −
√

1 − m∗ + O
(

1
n

)
into bound 6 immediately yields

bound 3.

Bound 4. It is easy to see that δ (ψn,α) = n − α = σ. Hence, plugging σ∗ = δ∗

into bound 6 immediately yields bound 4. ��

This algorithm runs in time O (m), hence O
(
n2

)
for fixed m∗. In the next

section, we improve the approximation ratio at the expense of an increase in
time complexity.

3 A Variant of Karpinski and Zelikovsky’s Algorithm

Karpinski and Zelikovsky [9] proposed two approximation algorithms that ensure
asymptotic approximation ratios of 2

1+δ∗ and 2
2−

√
1−m∗ respectively. However,

they do not always return a connected solution. We propose two variants of their
algorithms for CVC, with the same asymptotic approximation factors.

The analysis relies on the following result.

Lemma 3. Any solution H to CVC that consists of
- a set H1 ⊆ OPT of size ε1n,
- a 2-approximation H2 of CVC in G[V −H1] obtained with Savage’s algorithm,
- an additional set H3 of ε2n vertices, with |H1| ≥ |H3|,
approximates CVC within a factor of

2
1 + ε1 − ε2

.

Proof. We compute the approximation ratio:

β =
|H |

|OPT | =
|H1| + |H2| + |H3|

|H1| + |OPT ′| with OPT ′ = OPT − H1 .

Note that OPT ′ is a vertex cover of G[V −H1], and that H2 is a 2-approximation
of VC in G[V − H1] (as Savage’s algorithm also 2-approximates VC). Hence
|H2| ≤ 2τ(G[V − H1]) ≤ 2|OPT ′| and therefore |OPT ′| ≥ |H2|/2. This yields

β ≤ |H1| + |H2| + |H3|
|H1| + |H2|

2

=
ε1n + |H2| + ε2n

ε1n + |H2|
2

. (7)

Differentiating (7) shows that it grows with |H2| when ε1 ≥ ε2. Plugging the
maximum possible value |H2| = n(1 − ε1 − ε2) into (7) yields

β ≤ 2
1 + ε1 − ε2

. ��

40 J. Cardinal and E. Levy

Algorithm 1. A connected vertex cover algorithm for strongly-dense graphs
1: procedure P(W) � with W ⊆ V
2: for all vertex v ∈ W do
3: res(v) ← {v} ∪ N(v)
4: for all connected components C of G[V − {{v} ∪ N(v)}] do
5: Find a vertex c ∈ C that has a neighbor in N(v)
6: Let Savage(c) be the result of Savage’s algorithm in C, starting from c
7: res(v) ← res(v) ∪ Savage(c)
8: end for
9: end for

10: vmin ← arg minv∈W |res(v)|
11: return res(vmin)
12: end procedure
13: return P (V)

The algorithm of Karpinsky and Zelikovsky makes use of the trivial observation
that if a vertex does not belong to a vertex cover, then all its neighbors do. Thus
for each vertex v, it constructs the vertex cover made of the set N(v) of neighbors
of v, and of a 2-approximation on the remaining induced subgraph. Algorithm 1
implements this strategy. To ensure that the returned vertex cover induces a
connected graph, we choose to start the execution of Savage’s algorithm with a
vertex that is connected to N(v).

Theorem 3. Algorithm 1 approximates CVC within a factor of 2
1+δ∗ .

Proof. It is easy to see that the algorithm returns a connected solution: {v ∪
N(v)} is connected, so are the 2-approximations computed in each component
C, each of which are connected to N(v) by their starting vertex c. Note that
vertex c always exists since the graph is connected.

Furthermore, the returned solution has size at most |res(v′)|, for some vertex
v′ /∈ OPT . Since v′ /∈ OPT , we have N(v′) ⊆ OPT . Thus Lemma 3 can be
applied to res(v′), with |H1| = |N(v′)| ≥ δ∗n and |H3| = |{v′}| = 1, which
immediately yields the desired result. ��
The second algorithm is based on the idea of choosing a set of vertices W ⊆ V of
size at least ρn all vertices of which have degree at least ρn for some well-chosen
constant ρ. Then either W ⊆ OPT , or there exists a vertex w in W such that
N(w) ⊆ OPT . In either case, a set of size at least ρn is included in OPT , and
one can try them all. This original idea of Karpinski and Zelikovsky [9] does
not always return a connected solution. In particular, if all vertices of W are
in OPT , additional operations are needed, as W does not necessarily induce a
connected subgraph. We show that connectivity can be achieved by adding a
small set X of carefully chosen vertices (lines 10–14).

The analysis of Algorithm 2 relies heavily on the following lemma, which has
been proved in [9].

Lemma 4 ([9]). Let ρ = 1 −
√

1 − m∗, and let W be the set of ρn vertices with
highest degree. Then every vertex of W has degree at least |W |.

Connected Vertex Covers in Dense Graphs 41

Algorithm 2. A connected vertex cover algorithm for weakly-dense graphs
1: ρ ← 1 −

√
1 − m∗

2: Let W be the set of ρn vertices with highest degree
3: C1 ← P (W) � with P (·) the procedure defined in Algorithm 1
4: C2 ← W
5: for all connected components C of G[V − W] do
6: Find a vertex c ∈ C that has a neighbor in W
7: Let Savage(c) be the result of Savage’s algorithm in C, starting from c
8: C2 ← C2 ∪ Savage(c)
9: end for

10: X ← ∅
11: while G[W ∪ X] is not connected do
12: Find a vertex v in V − W that is adjacent to the largest number of connected

components of G[W ∪ X]
13: X ← X ∪ {v}
14: end while
15: C2 ← C2 ∪ X
16: return the set of minimum size among C1 and C2

Lemma 5. There exists a set X of size O(log n) such that G[W ∪ X] is con-
nected. Such a set is computed in lines 10–14.

Proof. We construct X by iteratively choosing a vertex that connects the largest
number of remaining connected components.

Let vi be an arbitrary vertex of the ith connected component of G[W]. Let
ki be the size of this component, and k the total number of components. By
Lemma 4, the degree of vi is at least |W |, thus vi has at least |W | − ki + 1
neighbors in V − W . Summing, we get

k∑

i=1

|W | − ki + 1 = (k − 1)|W | + k .

Hence, by the pigeonhole principle there exists a vertex v ∈ V − W that is
connected to the following number of components:

(k − 1)|W | + k

n − |W | =
(k − 1)ρn + k

n(1 − ρ)
= (k − 1)

ρ

1 − ρ
+

k

n(1 − ρ)
> (k − 1)

ρ

1 − ρ
.

We can thus add v to the set X and iterate this argument. Each time a new
vertex is added to X , the number of connected components in G[W ∪X] shrinks
by a constant factor 1 − ρ

1−ρ = 1−2ρ
1−ρ . And since the initial number of connected

components is at most |W |, we have

|X | ≤ log 1−ρ
1−2ρ

(|W |) ≤ log 1−ρ
1−2ρ

(ρn) = O(log n) .

��

42 J. Cardinal and E. Levy

Note again that step 6 of the algorithm can always be done, otherwise the graph
would not be connected.

Theorem 4. Algorithm 2 approximates CVC within a factor of 2
2−

√
1−m∗ .

Proof. Two cases can occur. If W contains a vertex v /∈ OPT , in which case the
proof is identical to that of Theorem 4, by plugging |H1| = |N(v)| ≥ |W | and
|H3| = 1 into Lemma 3.

On the other hand, if W ⊆ OPT , we can again apply Lemma 3 with |H1| =
|W | and, by Lemma 5, |H3| = O(log n). The condition |H3| < |H1| required by
Lemma 3 holds asymptotically, and we have ε2 = O(log n)/n →n→∞ 0. Hence
the approximation factor is 2/(1 + ε1 − ε2)→n→∞ 2/(2−

√
1−m∗). ��

Theorems 3 and 4 now enable us to state the main corollary:

Corollary 1. CVC is approximable within a factor strictly less than 2 in
strongly and weakly dense graphs.

Note that Algorithms 1 and 2 run in time O (nm), hence O
(
n3
)

when m∗ is
fixed.

Theorem 5. The bounds of Theorems 3 and 4 are tight.

Proof. Tightness is witnessed by the following family of graphs: νn,α =
Kn−2α−1 × (K1 × C2α) (the join of a clique and a “wheel”, see Fig. 1). We
first show that σ(νn,α) = n− α and that both algorithms return n− 1 on νn,α.
The ratio then follows naturally.
Optimum. One can easily check that taking the clique Kn−2α−1, the center K1

of the wheel, and every other vertex of the cycle C2α yields a connected vertex
cover of size n−α, and that any smaller set would necessarily leave at least one
edge uncovered.
Algorithm 1. If vertex v is in the clique or at the center of the wheel, then
{{v} ∪ N(v) = V } and |res(v)| = n − 1. If on the other hand v is in the cycle
C2α, Savage’s algorithm is applied in line 6 to only one path P2α−3, yielding
|res(v)| = n− 1.
Algorithm 2. We have |C1| = n − 1 for the same reasons as above. Since σ∗ ≥
1−
√

1−m∗ + o (1) (inequality 1), W contains at least the clique and the center
of the wheel and hence already induces a connected subgraph. In the worst case,
V −W is therefore a path, which implies |C2| = n− 1.
Ratio. Since only the vertices of the cycle C2α have degree less than n−1, we have
δ(νn,α) = n− 2α. Furthermore, νn,α has all possible edges except the

(
2α
2

)
− 2α

edges missing from the cycle C2α, hence m(νn,α) =
(
n
2

)
− 2

(
α
2

)
+ 2α. Solving the

given expressions of δ(νn,α) and m(νn,α) for α and inserting the results into our
ratio of (n− 1)/(n− α) yields the bounds of Theorems 3 and 4. ��

The family of graphs described in the above proof also provide tight examples
for the original algorithms of Karpinski and Zelikovsky [9], provided they use

Connected Vertex Covers in Dense Graphs 43

Algorithm Ratio Tight graphs

Savage’s algorithm

 1

 2

 0 0.25 0.5 0.75 1

ra
tio

parameter

curve for m
curve for δ ψn,α

Algorithms 1 and 2

 1

 2

 0 0.25 0.5 0.75 1

ra
tio

parameter

curve for m
curve for δ

νn,α

Fig. 1. A comparison of the ratios and tight graphs of Savage’s algorithm, Algorithm 1
and Algorithm 2. The second column compares the asymptotic approximation bounds
as functions of parameters m∗ and δ∗ respectively, while the third column illustrates
tight families of graphs for these bounds.

Savage’s algorithm as a subroutine for the 2-approximation phase. This result
is new, as the original article did not adress the issue of tightness. Figure 1
summarizes the results of Sects. 2 and 3.

A natural question to ask is wether we can use Theorem 1 to boost the ap-
proximation ratio of Algorithms 1 and 2. This is not immediately applicable,
since we cannot guarantee that the subgraphs G[V − {{v} ∪ N(v)}] (in Algo-
rithm 1) and G[V −W] (in Algorithm 2) remain dense. Nevertheless, Imamura
and Iwama [12] managed to apply the idea of Karpinski and Zelikovsky recur-
sively, and obtained a randomized algorithm with a better ratio, depending on
both parameters m∗ and Δ (maximum degree). We believe this can be done for
CVC as well and leave it as future work.

While we have shown that VC and CVC can both be approximated within
the same ratio, as a function of m∗ or δ∗, this does not settle the question of the
price of connectivity, defined as the ratio between the optimal solutions of the 2
problems.

4 The Price of Connectivity

In the previous section, we showed that CVC is as well approximable as VC in
dense graphs. The question of the maximum ratio between the connected vertex

44 J. Cardinal and E. Levy

cover and the vertex cover then arises naturally, and is particularly relevant in
networking applications for which connectivity is a crucial issue. This notion
of price of connectivity is general and can similarly be defined for many graph
covering problems.

4.1 Upper Bound

We denote by T an arbitrary optimal vertex cover, by I = V −T the associated
maximum stable set, by k the number of connected components in the subgraph
induced by T , and by err the difference σ − τ . Finally, we denote by S the
additional vertices in a smallest connected vertex cover containing T , with size
s = |S|.

Our first lemma expresses a simple relationship between err, s and k.

Lemma 6. err ≤ s < k.

Proof. The first inequality, err ≤ s, is straightforward as any s strictly smaller
than err would imply the existence of a connected vertex cover of size smaller
than σ. The second inequality, s < k, follows from the fact that, since S is a
stable set, each one of its vertices necessarily decreases the number of connected
components of T by at least one. ��

Our second lemma provides an upper bound on the degrees of the vertices in
the maximum stable set I.

Lemma 7. Every vertex of I is connected to at most k−s+1 different connected
components of T .

Proof. By contradiction, suppose that some vertex v in I were connected to at
least k−s+2 connected components of T , then T∪{v} has at most k−(k−s+1) =
s−1 connected components, hence the smallest subsetX of I that contains v and
such that T ∪X is connected has size at most s−1, contradicting the minimality
of S. ��

The last lemma bounds the number of edges by a function of (n, τ, k, s).

Lemma 8. The following upper bound holds for m:

m ≤
(
τ − k + 1

2

)

+ (n− τ)(τ − s+ 1). (8)

Proof. Let E1 be the set of edges inside G[T] and E2 the set of edges between
T and I. We bound the size of each set separately.

Clearly, E1 is maximized when all the connected components in T are cliques.
Furthermore, since the total number of edges in those cliques involves a sum of
squares, it is maximized with one big clique of size τ − k + 1 and k − 1 isolated
vertices, by the concavity of the function x2. Hence |E1| ≤

(
τ−k+1

2

)
.

Connected Vertex Covers in Dense Graphs 45

We now consider E2. As each vertex v in I is connected to at most k − s+ 1
connected components of T (Lemma 7), there are at least s− 1 such connected
components that v is not connected to, hence at least s − 1 vertices of T that
v is not connected to. Hence v cannot have more than τ − (s − 1) = τ − s + 1
neighbors in T . Multiplying this upper bound of τ − s+ 1 by n− τ , the size of
I, yields |E2| ≤ (n− τ)(τ − s+ 1). ��

Finally, Theorem 6 follows from first expressing bound 8 as a function of (n, β, τ),
then bounding with respect to τ .

Theorem 6. The ratio between the sizes of a minimum connected vertex cover
and a minimum vertex cover in a graph with at least m∗(n

2

)
edges is at most

2
1+m∗ + o (1).

Proof. Starting from the result of Lemma 8:

m ≤
(
τ − k + 1

2

)

+ (n− τ)(τ − s+ 1),

we can see that the bound is a decreasing function of both c and s. We therefore
maximize it by taking the smallest possible values for k and s. These values are
s = err and k = err + 1, by Lemma 6. This yields:

m ≤
(
τ − err

2

)

+ (n− τ)(τ − err + 1). (9)

We define β as the ratio σ/τ . Since err = σ − τ , we have err/τ = β − 1 and
err = τ(β − 1). Plugging this into our last inequality yields:

m ≤
(
τ(2 − β)

2

)

+ (n− τ)(τ(2 − β) + 1). (10)

We now maximize the above expression with respect to τ . Differentiating
bound (10) with respect to τ yields a unique maximum at

τopt =
n

β
− 4− β

2β(2− β)
=
n

β
+O (1) for each fixed β.

Plugging our optimal τopt into 10 yields

m ≤
(
τopt(2 − β)

2

)

+ (n− τopt)(τopt(2− β) + 1) =
n2(2− β)

2β
+O (n) .

Hence
m∗ ≤ 2− β

β
+ o (1) and β ≤ 2

1 +m∗ + o (1) .

��

46 J. Cardinal and E. Levy

4.2 Tightness

We now describe a family of graphs whose ratio almost matches the bound of
Theorem 6. Let Gn,x, with (n− x) a multiple of 3, be the graph composed of a
clique of size x and (n− x)/3 paths P3, all endpoints of which are totally joined
to the clique. Figure 2(a) illustrates G16,4.

(a) The graph G16,4

Upper bound
Ratio of the Gnx family

1

1.2

1.4

1.6

1.8

2

ratio

0 0.2 0.4 0.6 0.8 1

density

(b) A comparison of the upper
bound 2/(1 + m∗) with the ratio
of the class Gn,x

Fig. 2. Nearly tight examples

The minimum vertex cover consists of the clique of size x and the center of
each path, and hence has size x + (n − x)/3 = (n + 2x)/3. On the other hand,
the minimum connected vertex cover consists of the same vertices, augmented
with one extra vertex per path, and hence has size x+ 2(n− x)/3 = (2n+ x)/3.
We therefore have β(Gn,x) = 2n+x

n+2x .
We express this bound as a function of the density m∗. The graph Gn,x has(

x
2

)
edges in the clique, x · 2(n − x)/3 edges between the paths and the clique,

and 2(n− x)/3 edges in the paths. Hence

m(Gn,x) =
(
x

2

)

+
x · 2(n− x)

3
+

2(n− x)
3

=
2nx
3
− x

2

6
− 7x

6
+
n

3
.

Normalizing yields

m∗(Gn,x) =
m(Gn,x)
(
n
2

) =
4x∗ − x∗2

3
+O

(
1
n

)

, where x∗ = x/n .

Solving the above second-order equation for x∗ yields x∗ = 2 ±
√

4− 3m∗ +
o (1), of which only the solution x∗ = 2−

√
4− 3m∗+o (1) must be kept in order

to have x∗ in [0, 1].

Connected Vertex Covers in Dense Graphs 47

Plugging this value for x∗ into our previous expression for β, it can be checked
that

β(Gn,x) =
2n+ x
n+ 2x

=
4 + 2m∗ +

√
4− 3m∗

3 + 4m∗ + o (1) .

This new bound is very close to the previous one, as shown by Fig. 2(b).In fact,
the difference between the old and new ratios does not exceed 1.6% of the latter.

Acknowledgments. The initial conjectures behind several results of this
paper were obtained with the help of the GraPHedron software [20]
(http://www.graphedron.net), an online tool for obtaining tight inequalities
among graph invariants.

References

1. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP complete.
SIAM Journal of Applied Mathematics 32, 826–834 (1977)

2. Savage, C.D.: Depth-first search and the vertex cover problem. Inf. Process.
Lett. 14(5), 233–237 (1982)

3. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: Com-
plexity and algorithms. In: Algorithms and Complexity in Durham 2006 - Pro-
ceedings of the Second ACiD Workshop, Durham, UK, 18-20 September 2006, pp.
69–84 (2006)

4. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for
the connected vertex cover problem. In: Brandstädt, A., Kratsch, D., Müller, H.
(eds.) WG 2007. LNCS, vol. 4769, pp. 202–213. Springer, Heidelberg (2007)

5. Fujito, T., Doi, T.: A 2-approximation NC algorithm for connected vertex cover
and tree cover. Inf. Process. Lett. 90(2), 59–63 (2004)

6. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s thesis,
Institut für Informatik, Friedrich-Schiller Universität Jena (2005)

7. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory Comput. Syst. 41(3), 501–520 (2007)

8. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. Theory Comput. Syst. 43(2),
234–253 (2008)

9. Karpinski, M., Zelikovsky, A.: Approximating dense cases of covering problems. In:
Pardalos, P., Du, D. (eds.) Proc. of the DIMACS Workshop on Network Design:
Connectivity and Facilites Location. DIMACS series in Disc. Math. and Theor.
Comp. Sci, vol. 40, pp. 169–178 (1997)

10. Ibaraki, T., Nagamochi, H.: An approximation of the minimum vertex cover in a
graph. Japan J. Indust. Appl. Math. 16, 369–375 (1999)

11. Cardinal, J., Labbé, M., Langerman, S., Levy, E., Mélot, H.: A tight analysis of the
maximal matching heuristic. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 701–709. Springer, Heidelberg (2005)

12. Imamura, T., Iwama, K.: Approximating vertex cover on dense graphs. In: Proc.
of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 582–589
(2005)

13. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge
dominating set in dense graphs. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA
2006. LNCS, vol. 4368, pp. 108–120. Springer, Heidelberg (2007)

48 J. Cardinal and E. Levy

14. Karpinski, M.: Polynomial time approximation schemes for some dense instances
of NP-hard optimization problems. Algorithmica 30(3), 386–397 (2001)

15. Bar-Yehuda, R., Kehat, Z.: Approximating the dense set-cover problem. J. Comput.
Syst. Sci. 69(4), 547–561 (2004)

16. Paul, S., Miller, R.E.: Locating faults in a systematic manner in a large hetero-
geneous network. In: Proc. IEEE INFOCOM 1995, The Conference on Computer
Communications. Fourteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, pp. 522–529 (1995)

17. Grout, V.: Principles of cost minimisation in wireless networks. J. Heuristics 11(2),
115–133 (2005)

18. Wu, J., Lou, W., Dai, F.: Extended multipoint relays to determine connected dom-
inating sets in MANETs. IEEE Trans. Computers 55(3), 334–347 (2006)

19. Thai, M.T., 0002, F.W., Liu, D., Zhu, S., Du, D.: Connected dominating sets
in wireless networks with different transmission ranges. IEEE Trans. Mob. Com-
put 6(7), 721–730 (2007)

20. Mélot, H.: Facet Defining Inequalities among Graph Invariants: the system
GraPHedron. Discrete Applied Mathematics (to appear, 2007)

Improved Approximation Guarantees through

Higher Levels of SDP Hierarchies

Eden Chlamtac1,� and Gyanit Singh2,��

1 Department of Computer Science, Princeton University, Princeton NJ 08544, USA
chlamtac@cs.princeton.edu

2 Departmen of Computer Science & Engineering, University of Washington, Box
352350, Seattle, WA 98195-2350, USA

gyanit@cs.washington.edu

Abstract. For every fixed γ ≥ 0, we give an algorithm that, given an
n-vertex 3-uniform hypergraph containing an independent set of size γn,

finds an independent set of size nΩ(γ2). This improves upon a recent re-
sult of Chlamtac, which, for a fixed ε > 0, finds an independent set of
size nε in any 3-uniform hypergraph containing an independent set of
size (1

2 − ε)n. The main feature of this algorithm is that, for fixed γ, it
uses the Θ(1/γ2)-level of a hierarchy of semidefinite programming (SDP)
relaxations. On the other hand, we show that for at least one hierarchy
which gives such a guarantee, 1/γ levels yield no non-trivial guaran-
tee. Thus, this is a first SDP-based algorithm for which the approxima-
tion guarantee improves indefinitely as one uses progressively higher-level
relaxations.

1 Introduction

Semidefinite Programming (SDP) has been one of the key tools in the devel-
opment of approximation algorithms for combinatorial optimization problems
since the seminal work of Goemans and Williamson [12] on MAXCUT. For a
number of problems, including MAXCUT [12], MAX-3SAT [16,29], and Unique
Games [6], SDPs lead to approximation algorithms which are essentially opti-
mal under certain complexity-theoretic assumptions [13, 18]. Howeve, for a host
of other problems, large gaps between known hardness of approximation and
approximation algorithmic guarantee persist.

One possibility for improvement on the approximation side is the use of so-
called SDP hierarchies. In general, Linear Programming (LP) and SDP hier-
archies give a sequence of nested (increasingly tight) relaxations for an integer
(0−1) program on n variables, where the nth level of the hierarchy is equivalent
to the original integer program. Such hierarchies include LS and LS+ (LP and
SDP hierarchies, respectively), proposed by Lovász and Schrijver [22], a stronger

� Supported by Sanjeev Arora’s NSF grants MSPA-MCS 0528414, CCF 0514993, ITR
0205594.

�� Supported by NSF grant CCF 0514670.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 49–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 E. Chlamtac and G. Singh

LP hierarchy proposed by Sherali and Adams [26], and the Lasserre [21] SDP
hierarchy (see [20] for a comparison).

SDP hierarchies have been studied more generally in the context of optimiza-
tion of polynomials over semi-algebraic sets [8,23]. In the combinatorial optimiza-
tion setting, there has been quite a large number of negative results [2, 1, 25, 28,
11,5]. This body of work focuses on combinatorial problems for which the quality
of approximation (integrality gap) of the hierarchies of relaxations (mostly LS,
LS+, and more recently Sherali-Adams) is poor (often showing no improvement
over the simplest LP relaxation) even at very high levels.

On the other hand, there have been few positive results. For random graphs,
Feige and Krauthgamer [9] have shown that Θ(log n) rounds of LS+ give a tight
relaxation (almost surely) for Maximum Independent Set (a quasi-polynomial
time improvement). De la Vega and Kenyon-Mathieu [28] showed that one ob-
tains a polynomial time approximation scheme (PTAS) for MAXCUT in dense
graphs using Sherali-Adams. SDP hierarchies at a constant level (where one can
optimize in polynomial time) were used recently by Chlamtac [7], who exam-
ined the use of the Lasserre hierarchies for Graph Coloring and for Maximum
Independent Set in 3-uniform hypergraphs. However, Chlamtac [7] used only the
third level of the Lasserre hierarchy, whereas we exploit increasingly higher levels
to get better approximation guarantees.

Our focus is on Maximum Independent Set in 3-uniform hypergraphs. k-
uniform hypergraphs are collections of sets of size k (“hyperedges”) over a vertex
set. An independent set is a subset of the vertices which does not fully contain
any hyperedge. The first SDP-based approximation algorithm for this problem
was given by Krivelevich et al. [19], who showed that for any 3-uniform hyper-
graph on n vertices containing an independent set of size γn, one can find an
independent set of size Ω̃(min{n, n6γ−3}). This yielded no nontrivial guarantee
for γ ≤ 1

2 . Subsequently, it was shown by Chlamtac [7] that the SDP rounding
of [19] finds an independent set of size Ω(nε) whenever γ ≥ 1

2 − ε, for some fixed
ε > 0, if one uses the third level of the Lasserre SDP hierarchy.

We improve upon [7] by giving two algorithms with a non-trivial approxima-
tion guarantee for every γ > 0. In 3-uniform hypergraphs containing an inde-
pendent set of size γn, both algorithms find an independent set of size ≥ nΩ(γ2).
Our result is novel in that for every fixed γ > 0, the approximation guarantee
relies on the Θ(1/γ2)-level of an SDP hierarchy (which can be solved in time
nO(1/γ2)), and thus gives an infinite sequence of improvements at increasingly
high (constant) levels.

For the first of the two hierachies we use, we also show that this guarantee
cannot be achieved using a fixed constant level by giving a sequence of integrality
gaps. The second hierarchy we consider, the Lasserre hierarchy, allows us to give
a slightly better approximation guarantee, by use of an SDP rounding algorithm
which uses vectors in the higher levels of the SDP relaxation (in contrast to the
approach in [7], where the rounding algorithm was identical to that of [19], and
the analysis only relied on the existence of vectors in the second and third level).

Improved Approximation Guarantees through Higher Levels 51

Note the discrepancy between our result, and the corresponding problem for
graphs, where Halperin et al. [14] have shown how to find an independent set of
size nf(γ) for some f(γ) = 3γ −O(γ2) when the graph contains an independent
set of size γn.

The rest of the paper is organized as follows. In Section 2 we define the
SDPs used in the various algorithms, and discuss some useful properties of these
relaxations. In section 3 we describe a simple integrality gap, followed by a
description of the various algorithms and their analyses. Finally, in Section 4,
we discuss the possible implications of this result for SDP-based approximation
algorithms.

2 SDP Relaxations and Preliminaries

2.1 Previous Relaxation for MAX-IS in 3-Uniform Hypergraphs

The relaxation proposed in [19] may be derived as follows. Given an independent
set I ⊆ V in a 3-uniform hypergraph H = (V,E), for every vertex i ∈ V let
xi = 1 if i ∈ I and xi = 0 otherwise. For any hyperedge (i, j, l) ∈ E it follows
that xi + xj + xl ∈ {0, 1, 2} (and hence |xi + xj + xl − 1| ≤ 1). Thus, we have
the following relaxation (where vector vi represents xi, and v∅ represents 1:
MAX-KNS(H)

Maximize
∑

i ‖vi‖
2 s.t. v2∅ = 1 (1)
∀i ∈ V v∅ · vi = vi · vi (2)

∀(i, j, l) ∈ E ‖vi + vj + vl − v∅‖2 ≤ 1 (3)

2.2 Hypergraph Independent Set Relaxations Using LP and SDP
Hierarchies

The Sherali-Adams Hierarchy. The Sherali-Adams hierarchy [26] is a se-
quence of nested linear programming relaxations for 0−1 polynomial programs.
These LPs may be expressed as a system of linear constraints on the variables
{yI | I ⊆ [n]}. To obtain a relaxed (non-integral) solution to the original prob-
lem, one takes (y{1}, y{2}, . . . , y{n}).

Suppose {x∗i } is a sequence of n random variables over {0, 1}, and for all
I ⊆ [n] we have yI = E[

∏
i∈I x

∗
i] = Pr[∀i ∈ I : x∗i = 1]. Then by the inclusion-

exclusion principle, for any disjoint sets I, J ⊆ [n] we have

yI,−J
def=

∑

J′⊆J

(−1)|J
′|yI∪J′ = Pr[(∀i ∈ I : x∗i = 1) ∧ (∀j ∈ J : x∗j = 0)] ≥ 0.

In fact, it is not hard to see that the constraints yI,−J ≥ 0 are a necessary and
sufficient condition for the existence of a corresponding distribution on {0, 1}
variables {x∗i }. Thinking of the intended solution {x∗i } as a set of indicator
variables for a random independent set in a hypergraph H = (V,E) motivates

52 E. Chlamtac and G. Singh

the following hierarchy of LP relaxations (assume k ≥ max{|e| | e ∈ E}):
ISSA

k (H)

y∅ = 1 (4)

∀I, J ⊆ V s.t. I ∩ J = ∅ and |I ∪ J | ≤ k
∑

J′⊆J

(−1)|J
′|yI∪J′ ≥ 0 (5)

∀e ∈ E ye = 0 (6)

Note that if {yI | |I| ≤ k} satisfy ISSA
k (H), then for any set of vertices

S ⊆ V of size k, there is a distribution over independent sets in H for which
Pr[∀i ∈ I : i ∈ ind. set] = yI for all subsets I ⊆ S.

The Lasserre Hierarchy. The relaxations for maximum hypergraph indepen-
dent set arising from the Lasserre hierarchy [21] are equivalent to those arising
from the Sherali-Adams with one additional semidefiniteness constraint:

(yI∪J)I,J � 0.

We will express these constraints in terms of the vectors {vI |I ⊆ V } arising
from the Cholesky decomposition of the positive semidefinite matrix. In fact,
we can express the constraints on {vI} in a more succinct form which implies
the inclusion-exclusion constraints in Sherali-Adams but does not state them
explicitly:
ISLas

k (H)

v2
∅ = 1 (7)

|I| , |J | , |I ′| , |J ′| ≤ k and I ∪ J = I ′ ∪ J ′ ⇒ vI · vJ = vI′ · vJ′ (8)
∀e ∈ E v2

e = 0 (9)

For convenience, we will henceforth write vi1...is instead of v{i1,...,is}. We will
denote by MAX-ISLas

k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {vI}I satisfy ISLas
k (H).

Since for any set S of size k all valid constraints on {vI | I ⊆ S} are implied
by ISk(H), this is, for all k ≥ 3, a tighter relaxation than that of [19].

As in the Sherali-Adams hierarchy, for any set S ⊆ V of size k, we may think
of the vectors {vI | I ⊆ S} as representing a distribution on random 0 − 1
variables {x∗

i | i ∈ S}, which can also be combined to represent arbitrary events
(for example, we can write v(x∗

i =0)∨(x∗
j =0) = v∅ − v{i,j}). This distribution is

made explicit by the inner-products. Formally, for any two events E1, E2 over the
values of {x∗

i | i ∈ S}, we have vE1 · vE2 = Pr[E1 ∧ E2].
Moreover, as in the Lovász-Schrijver hierarchy, lower-level relaxations may be

derived by “conditioning on x∗
i = σi” (for σi ∈ {0, 1}). In fact, we can condition

on more complex events. Formally, for any event E0 involving k0 < k variables
for which ‖vE0‖ > 0, we can define

vE |E0

def= vE∧E0/‖vE0‖,

and the vectors {vI |E0
| |I| ≤ k − k0} satisfy ISk−k0(H).

Improved Approximation Guarantees through Higher Levels 53

An Intermediate Hierarchy. We will be primarily concerned with a hier-
archy which combines the power of SDPs and Sherali-Adams local-integrality
constraints in the simplest possible way: by imposing the constraint that the
variables from the first two levels of a Sherali-Adams relaxation form a positive-
semidefinite matrix. Formally, for all k ≥ 3 and vectors {v∅} ∪ {vi | i ∈ V } we
have the following system of constraints:
ISmix

k (H)

∃{yI | |I| ≤ k} s.t. (10)
∀I, J ⊆ V, |I|, |J | ≤ 1 : vI · vJ = yI∪J (11)

{yI} satisfy ISSA
k (H) (12)

As above, we will denote by MAX-ISmix
k (H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {v∅} ∪ {vi} satisfy ISmix
k (H).

2.3 Gaussian Vectors and SDP Rounding

Recall that the standard normal distribution has density function 1√
2π

e−x2/2. A
random vector ζ = (ζ1, . . . , ζn) is said to have the n-dimensional standard normal
distribution if the components ζi are independent and each have the standard
normal distribution. Note that this distribution is invariant under rotation, and
its projections onto orthogonal subspaces are independent. In particular, for any
unit vector v ∈ �n, the projection ζ · v has the standard normal distribution.

We use the following notation for the tail bound of the standard normal
distribution: N(x) def=

∫ ∞
x

1√
2π

e−
t2
2 dt. The following property of the normal dis-

tribution ([10], Chapter VII) will be crucial.

Lemma 1. For s > 0, we have 1√
2π

(
1
s − 1

s3

)
e−s2/2 ≤ N(s) ≤ 1√

2πs
e−s2/2.

This implies the following corollary, which is at the core of the analysis of many
SDP rounding schemes:

Corollary 1. For any fixed constant κ > 0, we have N(κs) = Õ(N(s)κ2
).

3 Integrality Gap and Algorithms

3.1 A Simple Integrality Gap

As observed in [26,7], MAX-KNS(H) ≥ n
2 for any hypergraph H (even the com-

plete hypergraph). In this section we will show the necessity of using increasingly
many levels of the SDP hierarchy MAX-ISmix to yield improved approximations,
by demonstrating a simple extention of the above integrality gap:

Theorem 1. For every integer k ≥ 3 and any 3-uniform hypergraph H, we have
MAX-ISmix

k ≥ 1
k−1n.

54 E. Chlamtac and G. Singh

Proof. Suppose V (H) = [n] and let v∅, u1, . . . , un be n + 1 mutually orthogonal
unit vectors. For every i ∈ V let vi = 1

k−1v∅+
√

1
k−1 − 1

(k−1)2 ui, and y{i} = 1
k−1 .

Let y∅ = 1 and for every pair of distinct vertices i, j ∈ V let y{i,j} = 1
(k−1)2 . For

all sets I ⊆ V s.t. 3 ≤ |I| ≤ k, let yI = 0.
It is immediate that constraint (11) and the Sherali-Adams constraint (4) are

satisfied. Since yI = 0 for all sets I of size 3, Sherali-Adams constraint (6) is also
satisfied. To verify Sherali-Adams constraints (5), it suffices to show, for any set
S ⊆ [n] of size k, a corresponding distribution on 0 − 1 variables {x∗

i | i ∈ S}.
Indeed, the following is such a distribution: Pick a pair of distinct vertices i, j ∈ S
uniformly at random. With probability k

2(k−1) , set x∗
i = x∗

j = 1 and for all other
l ∈ S, set x∗

l = 0. Otherwise, set all x∗
l = 0. ��

3.2 The Algorithm of Krivelevich, Nathaniel and Sudakov

We first review the algorithm and analysis given in [19]. Let us introduce the
following notation: For all l ∈ {0, 1, . . . , �log n�}, let Tl

def= {i ∈ V | l/ logn ≤
‖vi‖2

< (l + 1)/ logn}. Also, since ‖vi‖2 = v∅ · vi, we can write vi = (v∅ · vi)v∅ +√
v∅ · vi(1 − v∅ · vi)ui, where ui is a unit vector orthogonal to v∅. They show the

following two lemmas, slightly rephrased here:

Lemma 2. If the optimum of KNS(H) is ≥ γn, there exists an index l ≥
γ log n − 1 s.t. |Tl| = Ω(n/ log2 n).

Lemma 3. For index l = β log n and hyperedge (i, j, k) ∈ E s.t. i, j, k ∈ Tl,
constraint (3) implies

‖ui + uj + uk‖2 ≤ 3 + (3 − 6β)/(1 − β) + O(1/ log n). (13)

Note that constraint (13) becomes unsatisfiable for constant β > 2/3. Thus, for
such β, if KNS(H) ≥ βn, one can easily find an independent set of size Ω̃(n).
Using the above notation, we can now describe the rounding algorithm in [19],
which is applied to the subhypergraph induced on Tl, where l is as in Lemma 2.

KNS-Round(H, {ui}, t)

– Choose ζ ∈ Rn from the n-dimensional standard normal distribution.
– Let Vζ(t)

def= {i | ζ · ui ≥ t}. Remove all vertices in hyperedges fully
contained in Vζ(t), and return the remaining set.

The expected size of the remaining independent set can be bounded from
below by E[|Vζ(t)|] − 3E[|{e ∈ E : e ⊆ Vζ(t)}|], since each hyperedge contributes
at most three vertices to Vζ(t). If hyperedge (i, j, k) is fully contained in Vζ(t),
then we must have ζ · (ui + uj + uk) ≥ 3t, and so by Lemma 3, ζ · ui+uj+uk

‖ui+uj+uk‖ ≥
(
√

(3 − 3γ)/(2 − 3γ)−O(1/ logn))t. By Corollary 1, and linearity of expectation,
this means the size of the remaining independent set is at least

Ω̃(N(t)n) − Õ(N(t)(3−3γ)/(2−3γ) |E|).

Improved Approximation Guarantees through Higher Levels 55

Choosing t appropriately then yields the guarantee given in [19]:

Theorem 2. Given a 3-uniform hypergraph H on n vertices and m hyperedges
containing an independent set of size ≥ γn, one can find, in polynomial time,
an independent set of size Ω̃(min{n, n3−3γ/m2−3γ}).

Note that m can be as large as Ω(n3), giving no non-trivial guarantee for γ ≤ 1
2 .

Chlamtac [7] showed that when the vectors satisfy ISLas
3 (H), the same rounding

algorithm does give a non-trivial guarantee (nε) for γ ≥ 1
2 − ε (for some fixed

ε > 0). However, it is unclear whether this approach can work for arbitrarily
small γ > 0.

Let us note the following Lemma which was implicitly used in the above
analysis, and which follows immediately from Corollary 1. First, we introduce
the following notation for hyperedges e along with the corresponding vectors
{ui | i ∈ e}:

α(e) def= 1
|e|(|e|−1)

∑
i∈e

∑
j∈e\{i} ui · uj

Lemma 4. In algorithm KNS-Round, the probability that a hyperedge e is fully
contained in Vζ(t) is at most Õ(N(t)|e|/(1+(|e|−1)α(e))).

3.3 Improved Approximation Via Sherali-Adams Constraints

Before we formally state our rounding algorithm, let us motivate it with an
informal overview.

Suppose ‖vi‖2 = γ for all i ∈ V . A closer examination of the above analysis
reveals the reason the KNS rounding works for γ > 1

2 : For every hyperedge e ∈ E
we have α(e) < 0. Thus, the main obstacle to obtaining a large independent set
using KNS-Round is the presence of many pairs i, j with large inner-product
ui · uj . As we shall see in section 3.4, we can use higher-moment vectors in
the Lasserre hierarchy to turn this into an advantage. However, just using local
integrality constraints, we can efficiently isolate a large set of vertices on which
the induced subhypergraph has few hyperedges containing such pairs, allowing
us to successfully use KNS-Round.

Indeed, suppose that some pair of vertices i0, j0 ∈ V with inner-product
vi0 · vj0 ≥ γ2/2 participates in many hyperedges. That is, the set S1 = {k ∈
V | (i, j, k) ∈ E} is very large. In that case, we can recursively focus on the
subhypergraph induced on S1. According to our probabilistic interpretation of
the SDP, we have Pr[x∗

i0 = x∗
j0 = 1] ≥ γ2/2. Moreover, for any k ∈ S1 the event

“x∗
k = 1” is disjoint from the event “x∗

i0
= x∗

j0
= 1”. Thus, if we had to repeat

this recursive step due to the existence of bad pairs (i0, j0), . . . , (is, js), then the
events “x∗

il
= x∗

jl
= 1” would all be pairwise exclusive. Since each such event has

probability Ω(γ2), the recursion can have depth at most O(1/γ2), after which
point there are no pairs of vertices which prevent us from using KNS-Round.

We are now ready to describe our rounding algorithm. It takes an n-vertex
hypergraph H for which MAX-ISmix

k (H) ≥ γn, where k = Ω(1/γ2) and {vi} is
the corresponding SDP solution.

56 E. Chlamtac and G. Singh

H-Round(H = (V, E), {vi}, γ)

1. Let n = |V | and for all i, j ∈ V , let Γ (i, j) def= {k ∈ V | (i, j, k) ∈ E}.
2. If for some i, j ∈ V s.t. vi · vj ≥ γ2/2 we have |Γ (i, j)| ≥ {n1−vi·vj/2},

then find an ind. set using H-Round(H |Γ (i,j), {vk | k ∈ Γ (i, j)}, γ).
3. Otherwise,

(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have
wi · wj = γ

24 (ui · uj) (outward rotation).
(b) Let t be s.t. N(t) = n−(1−γ2/16), and return the independent set

found by KNS-Round(H, {wi | i ∈ V }, t).

Theorem 3. For any constant γ > 0, given an n-vertex 3-uniform hypergraph
H = (V, E), and vectors {vi} satisfying ISmix

4/γ2(H) and | ‖vi‖2 − γ| ≤ 1/ logn

(for all vertices i ∈ V), algorithm H-Round finds an independent set of size
Ω(nγ2/32) in H in time O(n3+2/γ2

).

Combining this result with Lemma 2 (applying Theorem 3 to the induced sub-
hypergraph H |Tl

), we get:

Corollary 2. For all constant γ > 0, there is a polynomial time algorithm
which, given an n-vertex 3-uniform hypergraph H containing an independent
set of size ≥ γn, finds an independent set of size Ω̃(nγ2/32) in H.

Before we prove Theorem 3, let us first see that algorithm H-Round makes only
relatively few recursive calls in Step 2, and that when Step 3b is reached, the
remaining hypergraph still contains a large number of vertices.

Proposition 1. For constant γ > 0, n-vertex hypergraph H = (V, E), and vec-
tors {vi} as in Thereom 3:

1. Algorithm H-Round makes at most 2/γ2 recursive calls in Step 2.
2. The hypergraph in the final recursive call to H-Round contains at least

√
n

vertices.

Proof. Let (i1, j1), . . . , (is, js) be the sequence of vertices (i, j) in the order
of recursive calls to H-Round in Step 2. Let us first show that for any s′ ≤
min{s, 2/γ2} we have

s′
∑

l=1

vil
· vjl

≤ 1. (14)

Indeed, let T =
⋃

{il, jl | 1 ≤ l ≤ s′}. Since vectors {vi} satisfy ISmix
4/γ2(H), and

|T | ≤ 2s′ ≤ 4/γ2, there must be some distribution on independent sets S ⊆ T
satisfying Pr[k, k′ ∈ S] = vk · vk′ for all pairs of vertices k, k′ ∈ T . Note that
by choice of vertices il, jl, we have il2 , jl2 ∈ Γ (il1 , jl1) for all l1 < l2. Thus, the
events “il, jl ∈ S” are pairwise exclusive, and so

s′
∑

l=1

vil
· vjl

= Pr[∃l ≤ s′ : il, jl ∈ S] ≤ 1.

Improved Approximation Guarantees through Higher Levels 57

Similarly, if s′ ≤ min{s, 2/γ2 − 1}, then for any k ∈
⋂

l≤s′ Γ (il, jl) we have
∑s′

l=1 vil
· vjl

+ vk · vk ≤ 1. However, by choice of il, jl, we also have
∑s′

l=1 vil
·

vjl
+vk ·vk ≥ |s′|γ2/2+γ−(1/ logn). Thus, we must have s ≤ 2/γ2−1, otherwise

letting k = i2/γ2 above, we would derive a contradiction. This proves part 1.
For part 2, it suffices to note that the number of vertices in the final recursive

call is at least n
�

(1−vil
·vjl

/2), and that by (14) we have
∏

(1 − vil
· vjl

/2) ≥
1 −

∑
vil

· vjl
/2 ≥ 1

2 . ��

We are now ready to prove Theorem 3.

Proof (of Theorem 3). For the sake of simplicity, let us assume that for all
vertices i ∈ V , ‖vi‖2 = γ. Violating this assumption can adversely affect the
probabilities of events or sizes of sets in our analysis by at most a constant
factor, whereas we will ensure that all inequalities have at least polynomial slack
to absorb such errors. Thus, for any i, j ∈ V , we have

vi · vj = γ2 + (γ − γ2)ui · uj. (15)

For brevity, we will write vi · vj = θijγ for all i, j ∈ V (note that all θij ∈ [0, 1]).
Moreover, we will use the notation α(e) introduced earlier, but this time in the
context of the vector solution {wi}:

α(e) =
1
3

∑

i,j∈e
i<j

wi · wj .

The upper-bound on the running time follows immediately from part 1 of
Proposition 1. By part 2 of Proposition 1, it suffices to show that if the condition
for recursion in Step 2 of H-Round does not hold, then in Step 3b, algorithm
KNS-Round finds an independent set of size Ω(N(t)n) = Ω(nγ2/16) (where n is
the number of vertices in the current hypergraph).

Let us examine the performance of KNS-Round in this instance. Recall that
for every i ∈ V , the probability that i ∈ Vζ(t) is exactly N(t). Thus, by linearity
of expectation, the expected number of nodes in Vζ(t) is N(t)n. To retain a large
fraction of Vζ(t), we must show that few vertices participate in hyperedges fully
contained in this set, that is E[|{i ∈ e | e ∈ E ∧ e ⊆ Vζ(t)}|] = o(N(t)n). In
fact, since every hyperedge contained in Vζ(t) contributes at most three vertices,
it suffices to show that E[|{e ∈ E | e ⊆ Vζ(t)}|] = o(N(t)n). We will consider
separately two types of hyperedges, as we shall see.

Let us first consider hyperedges which contain some pair i, j for which θij ≥
γ/2. We denote this set by E+. We will assign every hyperedge in E+ to the
pair of vertices with maximum inner-product. That is, for all i, j ∈ V , define
Γ+(i, j) = {k ∈ Γ (i, j) | θik, θjk ≤ θij}. By (15), for all i, j ∈ V and k ∈ Γ+(i, j)
we have

α(i, j, k) ≤ wi · wj =
γ

24
(ui · uj) =

γ(θij − γ)
24(1 − γ)

≤ θijγ

24
. (16)

58 E. Chlamtac and G. Singh

Now, by our assumption, the condition for recursion in Step 2 of H-Round was
not met. Thus, for all i, j ∈ V s.t. θij ≥ γ/2, we have

|Γ+(i, j)| ≤ |Γ (i, j)| ≤ n1−θijγ/2. (17)

By linearity of expectation, we have

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] ≤
∑

e∈E+

Pr[e ⊆ Vζ(t)]

≤
∑

e∈E+

Õ(N(t)3/(1+2α(e))) by Lemma 4

≤
∑

i,j∈V
θij≥γ/2

∑

k∈Γ+(i,j)

Õ(N(t)3/(1+ 1
12 θijγ)). by (16)

By (17), this gives

E[|{e ∈ E+ | e ⊆ Vζ(t)}|] ≤
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγN(t)3/(1+ 1

12 θijγ))

= N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγN(t)(2−

1
12 θijγ)/(1+ 1

12 θijγ))

= N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγ−(1− 1

16 γ2)(2− 1
12 θijγ)/(1+ 1

12 θijγ))

≤ N(t)
∑

i,j∈V
θij≥γ/2

Õ(n1− 1
2 θijγ−(1− 1

8 θijγ)(2− 1
12 θijγ)/(1+ 1

12 θijγ))

= N(t)
1
n

∑

i,j∈V
θij≥γ/2

Õ(n− 5
96 θ2

ijγ2/(1+ 1
12 θijγ))

≤ N(t)nÕ(n− 5
384 γ4/(1+ 1

24 γ2)) = o(N(t)n).

We now consider the remaining hyperedges E− = E \ E+ = {e ∈ E | ∀i, j ∈
e : θij ≤ γ/2}. By (15), and by definition of {wi}, we have

α(e) ≤ − γ2

48(1 − γ)
(18)

for every hyperedge e ∈ E−. Thus we can bound the expected cardinality of
E− ∩ {e ⊆ Vζ(t)} as follows:

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤
∑

e∈E+

Pr[e ⊆ Vζ(t)]

≤
∑

e∈E−

Õ(N(t)3/(1+2α(e))) by Lemma 4

Improved Approximation Guarantees through Higher Levels 59

= N(t)
∑

e∈E−

Õ(N(t)(2−2α(e))/(1+2α(e)))

≤ N(t)n3Õ(N(t)(2−2γ+ 1
24 γ2)/(1−γ− 1

24γ2)) by (18)

By our choice of t, this gives

E[|{e ∈ E− | e ⊆ Vζ(t)}|] ≤ N(t)Õ(n3−(1− 1
16 γ2)(2−2γ+ 1

24 γ2)/(1−γ− 1
24γ2))

= N(t)Õ(n1−(1
8 γ3− 1

384 γ4)/(1−γ− 1
24 γ2)) = o(N(t)n).

This completes the proof. ��

3.4 A Further Improvement Using the Lasserre Hierarchy

Here, we present a slightly modified algorithm which takes advantage of the
Lasserre hierarchy, and gives a slightly better approximation guarantee. As be-
fore, the algorithm takes an n-vertex hypergraph H for which MAX-ISLas

k (H) ≥
γn, where k = Ω(1/γ2) and {vI}I is the corresponding SDP solution.

H-RoundLas(H = (V, E), {vI | |I| ≤ k}, γ)

1. Let n = |V | and let l = γ′ log n − 1 be as in Lemma 2 (where γ′ ≥ γ).
If γ′ > 2/3 + 2/ logn, output Tl.

2. Otherwise, set H = H |Tl
, and γ = γ′.

3. If for some i, j ∈ Tl s.t. ρij = vi · vj ≥ γ2/2 we have
|Γ (i, j)| ≥ {n1−ρij }, then find an independent set using
H-Round(H |Γ (i,j), {vI |x∗

i =0∨x∗
j =0 | I ⊆ Γ (i, j), |I| ≤ k−2}, γ/(1−ρij)).

4. Otherwise,
(a) Define unit vectors {wi | i ∈ V } s.t. for all i, j ∈ V we have

wi · wj = γ
12 (ui · uj) (outward rotation).

(b) Let t be s.t. N(t) = n−(1−γ2/8), and return the independent set
found by KNS-Round(H, {wi | i ∈ V }, t).

For this algorithm, we have the following guarantee:

Theorem 4. For any constant γ > 0, given an n-vertex 3-uniform hypergraph
H = (V, E) for which MAX-ISLas

8/(3γ2)(H) ≥ γn and vectors {vI} the correspond-

ing solution, algorithm H-RoundLas finds an independent set of size Ω(nγ2/8) in
H in time O(n3+8/(3γ2)).

We will not prove this theorem in detail, since the proof is nearly identical to
that of Theorem 3. Instead, we will highlight the differences from algorithm H-
Round, and the reasons for the improvement. First of all, the shortcut in step 1

60 E. Chlamtac and G. Singh

(which accounts for the slightly lower level needed in the hierarchy) is valid since
(as can be easily checked) constraint (3) cannot be satisfied (assuming (2) holds)
when ‖vi‖2, ‖vj‖2, ‖vl‖2 > 2/3.

The improvement in the approximation guarantee can be attributed to the
following observation. Let {(i1, j1), . . . , (is, js)} be the pairs of vertices chosen
for the various recursive invocations of the algorithm in Step 3. Then in the
probabilistic interpretation of the SDP solution, we have carved an event of
probability ρ = ρi1j1 + . . . + ρisjs out of the sample space, and thus the SDP
solution is conditioned on an event of probability 1−ρ. Hence, the hypergraph in
the final call contains nρ ≥ Ω̃(n1−ρ) vertices, and the SDP value is γρnρ where
γρ ≥ γ/(1 − ρ). Thus one only needs to show that assuming the condition in
Step 3 does not hold, the call to KNS-Round in Step 4b returns an independent
set of size at least

n
γ2

ρ/8
ρ ≥ nγ2/(8(1−ρ)) ≥ nγ2/8.

The proof of this fact is identical to the proof of Theorem 3.

4 Discussion

Theorem 3, together with the integrality gap of Theorem 1, demonstrate that
the hierarchy of relaxations MAX-ISmix

k gives an infinite sequence of improved
approximations for higher and higher levels k. We do not know if similar in-
tegrality gaps hold for the Lasserre hierarchy, though we know that at least
the integrality gap of Theorem 1 cannot be lifted even to the second level in
the Lasserre hierarchy. In light of our results, we are faced with two possible
scenarios:

1. For some fixed k, the kth level of the Lasserre hierarchy gives a better ap-
proximation than MAX-ISmix

l for any (arbitrary large constant) l, or
2. The approximation curve afforded by the kth level Lasserre relaxation gives

strict improvements for infinitely many values of k.

While the second possibility is certainly the more exciting of the two, a result
of either sort would provide crucial insights into the importance of lift-and-
project methods for approximation algorithms. Recently Schoenebeck [27] has
produced strong integrality gaps for high-level Lasserre relaxations for random
3XOR formulas, which rely on properties of the underlying 3-uniform hypergraph
structure. It will be very interesting to see whether such results can be extended
to confirm the second scenario, above.

Finally, we note that the existence of provably improved approximations at
infinitely many constant levels of an SDP hierarchy is surprising in light of the
recent work of Raghavendra [24]. One implication of that work is that if the
Unique Games Conjecture [17] is true, then for every k-CSP, the kth level of a
mixed hierarchy (such as MAX-ISmix) suffices to get the best possible approx-
imation (achievable in polynomial time). Our result, when combined with the
work of Raghavendra [24], does not refute the Unique Games Conjecture (es-
sentially, since the guaranteed optimality of the relaxations in [24] is only up

Improved Approximation Guarantees through Higher Levels 61

to any arbitrary additive linear error). However, it may help shed light on the
characteristics of combinatorial optimization problems which stand to benefit
from the use of lift-and-project techniques.

References

1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability re-
sults in the Lovász-Schrijver hierarchy. In: Proceedings of 37th Annual ACM Sym-
posium on Theory of Computing, pp. 294–303 (2005)

2. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without
knowing the linear program. Theory of Computing 2, 19–51 (2006)

3. Arora, S., Chlamtac, E., Charikar, M.: New approximation guarantee for chromatic
number. In: Proceedings of 38th ACM Symposium of Theory of Computing, pp.
215–224 (2006)

4. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, pp. 222–231 (2004)

5. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality Gaps for Sherali-Adams
Relaxations (manuscript)

6. Charikar, M., Makarychev, K., Makarychev, Y.: Near-Optimal Algorithms for
Unique Games. In: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, pp. 205–214 (2006)

7. Chlamtac, E.: Approximation Algorithms Using Hierarchies of Semidefinite Pro-
gramming Relaxations. In: Proceedings of 48th IEEE Symposium on Foundations
of Computer Science, pp. 691–701 (2007)

8. Klerk, E.D., Laurent, M., Parrilo, P.: A PTAS for the minimization of polynomials
of fixed degree over the simplex. Theoretical Computer Science 361(2-3), 210–225
(2006)

9. Feige, U., Krauthgamer, R.: The Probable Value of the Lovász-Schrijver Relax-
ations for Maximum Independent Set. SIAM Journal on Computing 32(2), 345–370
(2003)

10. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn.,
vol. 1. John Wiley & Sons, Chichester (1968)

11. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2–o(1) for
vertex cover in the Lovász-Schrijver hierarchy. In: Proceedings of 48th IEEE Sym-
posium on Foundations of Computer Science, pp. 702–712 (2007)

12. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

13. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

14. Halperin, E., Nathaniel, R., Zwick, U.: Coloring k-colorable graphs using relatively
small palettes. J. Algorithms 45(1), 72–90 (2002)

15. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. Journal of the ACM 45(2), 246–265 (1998)

16. Karloff, H., Zwick, U.: A 7/8-approximation algorithm for max 3SAT? In: Proceed-
ings of 38th IEEE Symposium on Foundations of Computer Science, pp. 406–415
(1997)

62 E. Chlamtac and G. Singh

17. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)

18. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing 37(1),
319–357 (2007); ECCC Report TR05-101 (2005)

19. Krivelevich, M., Nathaniel, R., Sudakov, B.: Approximating coloring and maximum
independent sets in 3-uniform hypergraphs. Journal of Algorithms 41(1), 99–113
(2001)

20. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0-1 programming. Mathematics of Operations Research 28(3), 460–
496 (2003)

21. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001)

22. Lovász, L., Schrijver, A.: Cones of matrices and set-functioins and 0-1 optimization.
SIAM Journal on Optimization 1(2), 166–190 (1991)

23. Nie, J., Schweighofer, M.: On the complexity of Putinar’s Positivstellensatz. Jour-
nal of Complexity 23(1), 135–150 (2007)

24. Raghavendra, P.: Optimal Algorithms and Inapproximability Results For Every
CSP? In: Proceedings of 30th ACM Symposium on Theory of Computing, pp.
245–254 (2008)

25. Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovász-
Schrijver LP relaxations of Vertex Cover and Max Cut. In: Proceedings of 29th
ACM Symposium on Theory of Computing, pp. 302–310 (2007)

26. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)

27. Schoenebeck, G.: Personal communication
28. de la Vega, F.W., Kenyon-Mathieu, C.: Linear programming relaxations of maxcut.

In: Proceedings of 18th ACM Symposium on Discrete Algorithms, pp. 53–61 (2007)
29. Zwick, U.: Computer assisted proof of optimal approximability results. In: Pro-

ceedings of 13th ACM Symposium on Discrete Algorithms, pp. 496–505 (2002)

Sweeping Points

Adrian Dumitrescu1,� and Minghui Jiang2,��

1 Department of Computer Science, University of Wisconsin-Milwaukee
Milwaukee, WI 53201-0784, USA

ad@cs.uwm.edu
2 Department of Computer Science, Utah State University

Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

Abstract. Given a set of points in the plane, and a sweep-line as a
tool, what is best way to move the points to a target point using a
sequence of sweeps? In a sweep, the sweep-line is placed at a start position
somewhere in the plane, then moved orthogonally and continuously to
another parallel end position, and then lifted from the plane. The cost of a
sequence of sweeps is the total length of the sweeps. Another parameter of
interest is the number of sweeps. Four variants are discussed, depending
whether the target is a hole or a pile, and whether the target is specified
or freely selected by the algorithm. Here we present a ratio 4/π ≈ 1.27
approximation algorithm in the length measure, which performs at most
four sweeps. We also prove that, for the two constrained variants, there
are sets of n points for which any sequence of minimum cost requires
3n/2 − O(1) sweeps.

1 Introduction

Sweeping is a well known and widely used technique in computational geometry.
In this paper we make a first study of sweeping as an operation for moving a set
of points. The following question was raised by Pawe�l Żyliński [4]:

There are n balls on a table. The table has a hole (at a specified point).
We want to sweep all balls to the hole with a line. We can move the balls
by line sweeping: all balls touched by the line are moved with the line in
the direction of the sweep. The problem is to find an optimal sequence of
sweeps which minimizes the total sweeping distance covered by the line.

Although the above problem is quite natural, it does not seem to have been
studied before. We note an obvious application to robotics, in particular, to the
automation of part feeding and to nonprehensile part manipulation [1]. Imagine
a manufacturing system that produces a constant stream of small identical parts,
which have to be periodically cleared out, or gathered to a collection point by a
robotic arm equipped with a segment-shaped sweeping device [1]. Here we study

� Supported in part by NSF CAREER grant CCF-0444188.
�� Supported in part by NSF grant DBI-0743670.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 63–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 A. Dumitrescu and M. Jiang

x

�
′

�

�
′

�

x

Fig. 1. A sweep of cost (length) x

an abstraction of such a scenario, when the small objects and the target are
abstracted as points.

We now introduce some definitions to make the problem more precise. We refer
to Figure 1. A set S of n points in the plane is given. In a sweep, the sweep-line
is placed at a start position somewhere in the plane and is moved orthogonally
and continuously to another parallel end position. All points touched by the line
are moved with the line in the direction of the sweep. Then the line is lifted
from the plane. Note that several points can merge during a sweep, and that
merged points are subsequently treated as one point. A sweeping sequence for S
is a sequence of sweeps that move all points in S to a target point. The cost of
a sweeping sequence is the total length of its sweeps. As it will be evident from
our Theorem 3, the sweep-line as a tool can be conveniently replaced by a finite
sweep-segment of length twice the diameter of the point set.

We consider several variants of the sweeping problem, by making two distinc-
tions on the target. First, the target can be either a hole or pile: if the target is a
hole, then a point stays at the target once it reaches there, i.e., the point drops
into the hole; if the target is a pile, then a point can still be moved away from
the target after it reaches there. While it makes no difference for our algorithms
whether the target is a hole or a pile (i.e., our algorithms are applicable to both
variants), this subtle difference does matter when deriving lower bounds. Second,
the target is either constrained to be a specified point or unconstrained (an ar-
bitrary point freely selected by the algorithm). The four possible combinations,
constrained versus unconstrained (C or U) and hole versus pile (H or P), yield
thus four variants of the sweeping problem: CH, CP, UH, and UP.

Our main results are the following: although there exist sets of n points that
require Ω(n) sweeps in any optimal solution (Section 3, Theorem 2), constant-
factor approximations which use at most 4 sweeps can be computed in linear or
nearly linear time (Section 2, Theorem 1). We also present some initial results
and a conjecture for a related combinatorial question (Section 4, Theorem 3),
and conclude with two open questions (Section 5).

We now introduce some preliminaries. A sweep is canonical if the number of
points in contact with the sweep-line remains the same during the sweep. The
following lemma is obvious.

Sweeping Points 65

Lemma 1. Any sweep sequence can be decomposed into a sweep sequence of the
same cost, consisting of only canonical sweeps. In particular, for any point set
S, there is an optimal sweep sequence consisting of only canonical sweeps.

Proof. Let |S| = n. A non-canonical sweep can be decomposed into a sequence of
at most n canonical sweeps in the same direction and of the same total cost. ��

Throughout the paper, we use the following convention: if A and B are two
points, AB denotes the line through A and B, −−→AB denotes the ray starting from
A and going through B, AB denotes the line segment with endpoints A and B,
and |AB| denotes the length of the segment AB.

2 A Four-Sweep Algorithm

In this section, we present a four-sweep algorithm applicable to all four variants
CH, CP, UH, and UP.

Theorem 1. For any of the four variants CH, CP, UH, and UP of the sweep-
ing problem (with n points in the plane),

(I) A ratio
√

2 approximation that uses at most 4 sweeps can be computed in
O(n) time;

(II) A ratio 4/π ≈ 1.27 approximation that uses at most 4 sweeps can be com-
puted in O(n logn) time.

Proof. We consider first the constrained variant, with a specified target o. Let
S be the set of n points, and let S′ = S ∪ {o}. We next present two algorithms.

(I) Algorithm A1. Choose a rectilinear coordinate system xoy whose origin
is o (of arbitrary orientation). Compute a minimal axis-parallel rectangle Q
containing S′. Denote by w and h its width and height respectively, and assume
w.l.o.g. that h ≤ w. Perform the following (at most four) sweeps: (i) sweep from
the top side of Q to the x-axis; (ii) sweep from the bottom side of Q to the
x-axis; (iii) sweep from the left side of Q to the y-axis; (iv) sweep from the right
side of Q to the y-axis. Figure 2 illustrates the execution of the algorithm on a
small example.
Analysis. Clearly, the algorithm gives a valid solution, whose total cost is
ALG = w + h. Let OPT be the cost of an optimal solution. We first argue
that the approximation ratio of our algorithm is at most 2; we then improve this
bound to

√
2.

We first show that OPT ≥ w. Let p and q be the two extreme points of S′

with minimum and maximum x-coordinates. Assume first that p, q ∈ S. Let p′

and q′ be the projection points of p and q on the x-axis throughout the execution
of the sweep sequence. Put w1 = |p′o|, and w2 = |oq′|. Note that after the sweep
sequence is complete, p′ and q′ coincide with the origin o. Further note that
every sweep brings either p′ or q′ closer to o, but not both. Finally, observe that
to bring p′ to o requires a total sweep cost of at least w1, and similarly, to bring

66 A. Dumitrescu and M. Jiang

Fig. 2. Running the four-sweep algorithm

q′ to o requires a total sweep cost of at least w2. Therefore the total sweep cost
is at least w1 + w2 = w, thus OPT ≥ w. Since the total sweep cost is

ALG = w + h ≤ 2w ≤ 2 ·OPT,

the ratio 2 follows when p, q ∈ S. The case when o is one of the two extreme
points p and q is completely analogous.

We now argue that OPT ≥ (w + h)/
√

2. Let X be an arbitrary sequence
consisting of k sweeps which solves the given instance S. For i = 1, . . . , k let xi

be the cost of the ith sweep, and αi ∈ [0, 2π) be its direction. Write x =
∑k

i=1 xi.
Indeed, the ith sweep of cost xi can reduce the current semi-perimeter of Q
by at most

√
2xi. Here the points in S are considered moving, so S′, and its

enclosing rectangle Q change continuously as an effect of the sweeps. Since the
semiperimeter of Q drops from w + h to 0, by summing over all sweeps, we get
that in any sweep sequence for S of total cost x,

√
2x =

√
2

k∑

i=1

xi ≥ w + h,

thus
ALG = w + h ≤

√
2 ·OPT,

and the approximation ratio
√

2 follows.

(II) Algorithm A2. First compute a minimum perimeter rectangle Q0 contain-
ing S′. This takes O(n logn) using the rotating calipers algorithm of Toussaint

Sweeping Points 67

[3]. Let now xoy be a rectilinear coordinate system in which Q0 is axis-aligned.
Let w and h be its width and height respectively. Then perform the four sweeps
as in Algorithm A1.

Analysis. Assume w.l.o.g. that w+h = 1. For β ∈ [0, π/2), let Q(β) denote the
minimum perimeter rectangle of orientation β containing S′; i.e., one of the sides
of Q(β) makes an angle β with the positive direction of the x-axis. Let w(β) and
h(β) denote the initial values of the width and height of Q(β) respectively. Note
that [0, π/2) covers all possible orientations β of rectangles enclosing S′.

As in the proof of the ratio
√

2 approximation ratio, recall that for any i ∈
{1, . . . , k}, the ith sweep of cost xi can reduce the current semi-perimeter of
Q(β) by at most xi

√
2. In fact we can be more precise by taking into account

the direction of the sweep: the reduction is at most

xi (| cos (αi − β)|+ | sin (αi − β)|) .

Since X solves S, by adding up the reductions over all sweeps i ∈ {1, . . . , k}, we
must have—since w(β) + h(β) ≥ 1, for every β ∈ [0, π/2):

k∑

i=1

xi (| cos (αi − β)|+ | sin (αi − β)|) ≥ 1. (1)

We integrate this inequality over the β-interval [0, π/2]; xi and αi are fixed,
and each term is dealt with independently. Fix i ∈ {1, . . . , k}, and write α = αi

for simplicity. Assume first that α ∈ [0, π/2). A change of variables yields

∫ π/2

0

(| cos (α− β)|+ | sin (α− β)|) dβ

=
∫ α+π/2

α

(| cos β|+ | sinβ|) dβ

=
∫ π/2

α

(cos β + sinβ) dβ +
∫ α+π/2

π/2

(− cosβ + sinβ) dβ

= (sinβ − cosβ)
∣
∣
∣
π/2

α
+ (− sinβ − cosβ)

∣
∣
∣
α+π/2

π/2

= (1− sinα+ cosα) + (− cosα+ sinα+ 1) = 2.

Let

G(α) =
∫ α+π/2

α

(| cosβ|+ | sinβ|) dβ.

It is easy to verify that G(α) = G(α + π/2) for any α ∈ [0, 2π), hence the inte-
gration gives the same result, 2, for any αi ∈ [0, 2π), and for any i ∈ {1, . . . , k}.
Hence by integrating (1) over [0, π/2] yields

2

(
k∑

i=0

xi

)

≥ π
2
, or x ≥ π

4
.

68 A. Dumitrescu and M. Jiang

Since this holds for any valid sequence, we also have OPT ≥ π
4 . Recall that

ALG = w + h = 1, and the approximation ratio 4/π follows.
To extend our results to the unconstrained variant requires only small changes

in the proof. Instead of the minimum semi-perimeter rectangle(s) enclosing
S′ = S∪{o}, consider the minimum semi-perimeter rectangle(s) enclosing S. All
inequalities used in the proof of Theorem 1 remain valid. We also remark that
the resulting algorithms execute only two sweeps (rather than four): from top
to bottom, and left to right, with the target being the lower-right corner of the
enclosing rectangle. ��

2.1 A Lower Bound on the Approximation Ratio of Algorithm A2

It is likely that the approximation ratio of our four-sweep algorithm is slightly
better than what we have proved: we noticed that for both cases, when h is large
and when h is small relative to w, our estimates on the reduction are slightly
optimistic. However, the construction we describe next, shows that the ratio of
our four-sweep algorithm cannot be reduced below 1.1784 (for either variant).

Perhaps the simplest example to check first is the following. Take the three
vertices of a unit (side) equilateral triangle as our point set. For the constrained
variant, place the target at the triangle center: the optimal cost is at most

√
3

by 3 sweeps (in fact, equality holds, as shown in the proof of Theorem 3), while
the four-sweep algorithm uses 1 +

√
3/2. The ratio is about 1.077.

We now describe a better construction that gives a lower bound of about
1.1784; see Figure 3. Place n points uniformly (dense) on the thick curve C
connectingB and C. For the constrained variant, place the target at pointB. The
curve is made from the two equal sides of an obtuse isosceles triangle with sharp
angles α = arctan(1/2) ≈ 26.565◦, then “smoothed” around the obtuse triangle
corner. �ABC is an isosceles triangle with sides AB = AC =

√
5 and BC = 4,

with altitude AD = 1, and with angles � ABC = � ACB = α = arctan(1/2). E
and F are two points on AB and AC, respectively, such that DE ⊥ AB and
DF ⊥ AC.

The curve C consists of the two segments BE and CF and a curve C0 connect-
ing E and F , defined as follows. For an arbitrary point G on C0, � ADG = β ≤ α,
the length of the segment DG is

A

B CD

E F
G

α α

Fig. 3. A continuous convex curve that gives a lower bound of about 1.1784 on the
approximation ratio of Algorithm A2

Sweeping Points 69

|DG| = f(β) = 4 cosα+ 4 sinα− 4 cosβ − 2 sinβ.

Observe that 4 sinα− 2 cosα = 0 holds by the definition of α, hence

d
dβ
f(β) = 4 sinβ − 2 cosβ ≤ 4 sinα− 2 cosα = 0,

where the derivative reaches zero at E and F (when β = α). So C is a continuous
convex curve. For a rectangle that circumscribes the curve C with one side tan-
gent to C0 at point G, its width and height are |BC| cos β and |DG|+ |CD| sinβ,
respectively. Hence its semi-perimeter is

|BC| cosβ + |DG|+ |CD| sinβ
= 4 cosβ + (4 cosα+ 4 sinα− 4 cosβ − 2 sinβ) + 2 sinβ
= 4 cosα+ 4 sinα.

Therefore the semi-perimeter of a minimum rectangle with orientation β,
where 0 ≤ β ≤ α, that encloses C is a constant: 4 cosα + 4 sinα. Since the
length of C0 is

2
∫ α

β=0

f(β)dβ = 2
∫ α

β=0

(4 cosα+ 4 sinα− 4 cosβ − 2 sinβ)dβ

= 8(cosα+ sinα)α+ 2(−4 sinβ + 2 cosβ)
∣
∣
∣
α

0

= 8(cosα+ sinα)α+ 2(−4 sinα+ 2 cosα− 2)
= 8(cosα+ sinα)α− 4,

and since |BE| = |CF | = 2 cosα, the length of C is 8(cosα + sinα)α − 4 +
4 cosα. The ratio of the minimum semi-perimeter and the curve length is (after
simplification by 4, and using the values cosα = 2/

√
5, sinα = 1/

√
5, α =

arctan(1/2))

4 cosα+ 4 sinα
8(cosα+ sinα)α− 4 + 4 cosα

=
3

6 arctan(1/2)−
√

5 + 2
= 1.1784

This gives a lower bound of 1.1784 on the approximation ratio of Algorithm A2,
which holds for all four variants.

3 Point Sets for the Constrained Variants That Require
Many Sweeps

In this section we show that some point sets require many sweeps in an optimal
solution, i.e., the number of sweeps is not just a constant. In what follows, the
target is constrained to a specified point, and may be either a hole or a pile, i.e.,
we refer to both constrained variants CH and CP.

70 A. Dumitrescu and M. Jiang

rA

rB rC

A

B C

O

A

A0

B

C

C0

E

E0

F
F0

O

O0

D

S

T

(a) (b)

Fig. 4. A construction with three points A, B, and C (black points) forming a unit
equilateral triangle and n − 3 arbitrary points (white points) on the edge BC. The
target is at the point B. Initially: A = A0, B = B0, C = C0. (a) An optimal sweeping
sequence. (b) Some properties of optimal sweeping sequences are illustrated.

Theorem 2. For the two constrained variants CH and CP, and for any n, there
are sets of n points for which any optimal sweeping sequence consists of at least
3n/2−O(1) sweeps.

We now proceed with the proof of Theorem 2. We refer to Figure 4(a). Our set
S consists of three points A, B, and C (black points) forming a unit equilateral
triangle and n− 3 points (white points) arbitrary placed on the edge BC. The
target is at the point B. For convenience, we place �ABC initially with B at
the origin and −−→BC along the x axis. In what follows, we refer to the intermediate
positions of the moving points: input points from the set S (such as A, B, C, D,
etc.) or other auxiliary points (such as E and F) during a sequence of sweeps.
When the intermediate position of a point does not coincide with its original
position, we avoid the possible ambiguity by adding a subscript 0 to the label of
the original position. For example, the two labels A and A0 in the figure refer
to the intermediate and the original positions, respectively, of the same point
A. Initially, we have A = A0, B = B0, C = C0. We will show in Lemma 2 that
B = B0 (that is, B remains stationary) during any optimal sequence; this is
evident for the CH variant, but not so for the CP variant.

Define three rays: a ray rA from A in the 3π/2 direction, a ray rB from B
in the π/6 direction, and a ray rC from C in the 5π/6 direction. The three
rays from A, B, and C initially intersect at a single point O = O0, the center

Sweeping Points 71

of �A0B0C0. We will show below that this concurrency property is maintained
throughout any optimal sweeping sequence for S. We now define six special types
of sweeps:

Type A: A is moved in the direction −→AO. B and C are not moved.
Type BC: B and C are moved together in the direction −→OA. A is not moved.
Type B: B is moved in the direction −−→BO. A and C are not moved.
Type AC: A and C are moved together in the direction −−→OB. B is not moved.
Type C: C is moved in the direction −−→CO. A and B are not moved.
Type AB: A and B are moved together in the direction −−→OC. C is not moved.

We note that, for the CH variant, the three types involving B, namely types
BC, B, and AB are in fact not used, since point B will remain at the hole
throughout any sweeping sequence.

For each of the six types, each moved point (among A, B, and C) is moved
for a distance equal to the sweep length, that is, the moved point is on the
sweep-line during the sweep. If a sweeping sequence consists of only sweeps of
the six special types, then it can be easily verified (by induction) that the three
rays from A, B, and C still intersect at a single point O after each sweep; see
Figure 4(b).

The three segments A0O0, B0O0, and C0O0 determine two parallelograms
A0O0B0E0 and C0O0B0F0 (each is a rhombus with two 60◦ angles), as shown
in Figure 4(b). We now observe some properties of sweeps of the three types
A, C, and AC. Consider how a sweep changes the two parallelograms AOBE
and COBF , initially A0O0B0E0 and C0O0B0F0: a sweep of type A reduces the
two sides AO and BE; a sweep of type C reduces the two sides CO and BF ;
a sweep of type AC reduces the three sides AE, CF , and OB (note that the
side OB is shared by the two parallelograms). During any sweeping sequence of
the three types A, C, and AC, the point A always remains inside the rhombus
A0O0B0E0, and point C inside the rhombus C0O0B0F0.

Lemma 2. The optimal cost for S is
√

3. Moreover, any optimal sequence for S
consists of only sweeps of the three special types A, C, and AC, with a subtotal
cost of

√
3/3 for each type.

Proof. We first show that the optimal cost for S is at most
√

3. We refer to
Figure 4(a) for a sweeping sequence of n− 1 alternating steps: (i) one sweep of
type AC (the white arrow); (ii) two sweeps, one of type A and the other of type
C (the black arrows). Each step, except the first and the last, merges C with a
white point, in sequential order from right to left. The total number of sweeps
in this sequence is (3n− 3)/2 when n is odd, and is (3n− 4)/2 when n is even.
The total cost of this sequence is |A0O0|+ |B0O0|+ |C0O0| = 3 ·

√
3/3 =

√
3.

We next show that the optimal cost for S is at least
√

3. Consider an optimal
sequence for S. Assume w.l.o.g. that the sequence is canonical. We construct
three paths, from the three points A0, B0, and C0 to a single point, such that
their total length is at most the cost of the sequence. Each sweep in the sequence
that moves one or two of the three points A, B, and C corresponds to an edge

72 A. Dumitrescu and M. Jiang

in one of the three paths, with the sweep length equal to the edge length: (i) if a
sweep moves only one of the three points, then the corresponding edge extends
the path from that point, along the sweep direction; (ii) if a sweep moves two of
the three points, then the corresponding edge extends the path from the third
point, along the opposite sweep direction. We note that, for the three points
A, B, and C, each three-point sweep is useless, and each two-point sweep is
equivalent to a one-point sweep in the opposite direction, in the sense that the
resulting triangles �ABC are congruent. When the three points finally meet at
the target, the three paths also end at a single point (which could be different
from the target).

The total length of the three paths is at least the total length of a Steiner tree
for the three points A0, B0, and C0. It is well known [2] that the minimum Steiner
tree for the three points A0, B0, and C0 is unique, and consists of exactly three
edges of equal length

√
3/3, from the three points to the center O0 of �A0B0C0.

It follows that the optimal cost for S is at least
√

3. Together with the matching
upper bound achieved by the sequence illustrated in Figure 4(a), we have shown
that the optimal cost for S is exactly

√
3.

The uniqueness of the minimum Steiner tree for the three points A0, B0, and
C0 implies that every sweep in the optimal sequence must be of one of the six
special types, with a subtotal cost of |A0O0| = |B0O0| = |C0O0| =

√
3/3 for

each of the three groups: A and BC, B and AC, and C and AB. To complete
the proof, we next show that sweeps of the three types B, AB, and BC never
appear in the optimal sequence. Consider the two possible cases for the target:

1. The target is a hole, that is, a point stays at the target once it reaches there.
Since B is already at the target, it must stay there. So this case is obvious,
as noted after our definition of the six types.

2. The target is a pile, that is, a point can be moved away from the target
after it reaches there. Although B is already at the target, it can still be
moved away. The only sweeps that move B are of the three types B, AB,
and BC. Such sweeps all have a positive projection in the direction −−→BO, and
can only move B away from the target (and cannot move it back); therefore
they cannot appear in the optimal sequence.

This completes the proof of Lemma 2. ��
Let D be the rightmost white point. Figure 4(b) shows the initial position of D.
Later in Lemma 4, we will prove that D remains at its initial position until it is
merged with C. In Lemma 3 however, we don’t make any assumption of D being
at its original position. Let −→DS and −−→DT be two rays from D with directions π/6
and −π/6, respectively.

Lemma 3. Consider an optimal sweeping sequence. If C is moved above the
line DS or below the line DT , then C remains either above DS or below DT
until either C or D coincides with the target.

Proof. We refer to Figure 4(b). Assume w.l.o.g. that the sweeping sequence is
canonical. Consider each remaining sweep in the sequence after C is at a position
above DS or below DT :

Sweeping Points 73

Type C. Consider two cases: C is above DS or below DT .
1. C is above DS. If D is not moved, then C is moved further above DS.

If both C and D are moved (when CD ⊥ CO), then they are moved for
the same distance in the same direction, and C remains above DS.

2. C is below DT . Since DT is parallel to the sweep direction −−→CO, C
remains below DT ,

Type AC. Consider two cases: C is above DS or below DT .
1. C is aboveDS. SinceDS is parallel to the sweep direction−−→OB, C remains

above DS.
2. C is below DT . If D is not moved, then C is moved further below DT .

If both C and D are moved, then they are moved for the same distance
in the same direction, and C remains below DT .

Type A. Note that C may be both above DS and below DT . We divide the
two cases in an alternative way without overlap: C is either (i) above DS
and not below (i.e., above or on) DT or (ii) below DT .
1. C is above DS and not below DT . Then C is above D. Since C is not

moved, D is not moved either. So C remains above DS and not below
DT .

2. C is below DT . Since DT is parallel to CO, D is above CO. The sweep
may move A down to O and correspondingly move D down until it is on
the horizontal line through O, but no further. So D remains above CO,
and C remains below DT .

��

Lemma 4. In any optimal sequence, each white point is not moved until it is
merged with C, in sequential order from right to left.

Proof. Assume w.l.o.g. that the sweeping sequence is canonical. Lemma 2 shows
that the sweeps in any optimal sequence are of the three types A, C, and AC.
Let σ1 be the first sweep that moves a white point, and let D1 be the first white
point moved. If the sweep σ1 is of type A, then A would be moved below the x
axis (recall that in a sweep of type A the sweep-line always goes through A), and
any subsequent sweep that moves A, of type A or AC, would move A further
below the x axis and never to B. This contradicts the validity of the sequence.
Therefore σ1 must be of type C or AC.

We claim that C must be merged with the rightmost white point D before
the sweep σ1. We will prove the claim by contradiction. Suppose the contrary.

Our proof by contradiction is in two steps: In the first step, we will show that
C is either above DS or below DT at the beginning of sweep σ1. In the second
step, we will show that the assumed optimal sequence is not valid.

First step. The sweep-line of σ1 goes through D1 during the sweep. Since σ1

is of type C or AC, C is also on the sweep-line of σ1. Consider two cases for the
relation between D1 and D:

1. D1
= D (D1 is to the left of D on the x axis). Then every point on the
sweep-line, including C, is either above DS or below DT .

74 A. Dumitrescu and M. Jiang

2. D1 = D. Then every point on the sweep-line, except D, is either above DS
or below DT . Since C is not merged with D before σ1, C is either above DS
or below DT .

In either case, C is either above DS or below DT .

Second step. From Lemma 3, C remains either above DS or below DT until
either C or D coincides with the target. This, as we will show in the following,
implies that the sweeping sequence is not valid. Consider the two possible cases
for the target as either a pile or a hole:

1. The target is a pile, that is, a point can be moved away from the target after
it reaches there. Then C remains either above DS or below DT even after
either C or D reaches the target. It follows that C and D never merge, and
hence cannot end up together at the target. Therefore the sweeping sequence
is not valid.

2. The target is a hole, that is, a point stays at the target once it reaches there.
Let σ2 be a sweep in the sequence that moves D to the target. We consider
the three possible cases for the type of σ2:
Type AC. The sweep-line of σ2 goes through the two points A and C. As D

is moved to the point B by σ2, both parallelograms AOBE and COBF
shrink to the point B, that is, both A and C are moved to the target
together with D. Then A, C, and D must have been merged even before
the sweep σ2. This is impossible because C is above DS or below DT
until either C or D reaches the target.

Type C. It follows by the same argument (the parallelogram COBF shrinks
to the point B) that C and D are merged before the sweep σ2, which is
again impossible.

Type A. It follows by the same argument (the parallelogramAOBE shrinks
to the point B) that A and D are merged before the sweep σ2, above the
line BO. This is impossible because D cannot be moved above BO: a
sweep of type AC does not change the distance from D to BO; a sweep
of type A can only move D further below BO; a sweep of type C can
move D to BO but not above BO, since C itself cannot be moved above
BO.

In each case, D cannot be moved to the target. Therefore the sweeping
sequence is not valid.

We have shown that the sequence is not valid with the target as either a pile or
a hole. By contradiction, this proves our original claim that C must be merged
with D before the sweep σ1.

As soon as C is merged with D, we can consider D as deleted. The point
set now reaches a configuration similar to the original configuration: the two
points B and C are on the x axis with all the (unmoved) white points between
them, and A alone is above the x axis. But now we have one less white point.
Repeating the argument in the preceding paragraphs inductively completes the
proof of Lemma 4. ��

Sweeping Points 75

We are now in position to finalize the proof of Theorem 2. We have shown that in
an optimal sequence, C must be merged with the white points one by one from
right to left. Since the sweeps are not along the x axis, each of the n− 3 white
point requires at least one sweep to be merged. The total number of sweeps in
the sequence is at least n−O(1). We obtain a tighter estimate (that matches our
previous sweep sequence for S) as follows. Between two consecutive merges, C
has to be moved to the left by alternating sweeps of types AC and C. Between
two sweeps of type AC, since C is moved by a sweep of type C, A must also
be moved by a sweep of type A, to make AC ⊥ OB for the next sweep of type
AC. Therefore each merge requires either one sweep of type AC or two sweeps
of types A and C, in an alternating pattern as shown in Figure 4(a). The total
number of sweeps in the sequence is at least 3n/2 − O(1). This completes the
proof of Theorem 2.

4 A Combinatorial Question for the Unconstrained
Variants

The following related question suggests itself: What is the maximum cost re-
quired for sweeping a planar point set of unit diameter to a single point? Note
that the target point is unconstrained, and can be either a hole or a pile. Define

ρH = sup
S

inf
X

cost(X), for the variant UH,

and
ρP = sup

S
inf
X

cost(X), for the variant UP,

where S ranges over all finite planar point sets of unit diameter, and X ranges
over all sweeping sequences for S. We give estimates on the two numbers ρH and
ρP in the following theorem:

Theorem 3. 1.73 ≈
√

3 ≤ ρH ≤ ρP ≤ 2.

Proof. Any sweeping sequence for the UP variant is also a sweeping sequence for
the UH variant, so we have ρH ≤ ρP . We first prove the upper bound ρP ≤ 2.
Let S be an arbitrary finite planar set with unit diameter. Let p and q be two
points in S at unit distance. Then S is contained in a rectangle with width 1
(parallel to the line pq) and height at most 1. A sweep along the width and a
sweep along the height reduce the rectangle to a single point (the pile), at a cost
of at most 2.

We next prove the lower bound ρH ≥
√

3. Let T be an equilateral triangle with
unit side. LetX∗ be an optimal sequence of canonical sweeps for the three vertices
of T . Using the same idea as in the proof for Lemma 2, we construct three paths,
from the three vertices of T to a common point, such that their total length is
at most the cost of X∗. It follows that the cost of X∗ is at least the total length
of a minimum Steiner tree for the three vertices, which is

√
3 [2]. Note that our

analysis for this case is tight: three sweeps along the edges of the minimum Steiner
tree clearly reduce the equilateral triangle T to a single point. ��

76 A. Dumitrescu and M. Jiang

The reader can observe that a weaker lower bound ρH ≥ π/2 ≈ 1.57 follows from
our result in Theorem 1 applied to a set of n points uniformly distributed on a
circle (for large n). We think the upper bound in Theorem 3 is best possible, for
instance, in the same case of n points uniformly distributed on a circle of unit
diameter, for n going to infinity:

Conjecture 1. ρH = ρP = 2.

5 Concluding Remarks

Besides Conjecture 1, two interesting questions (for any of the four variants)
remain open:

(1) What is the complexity of the sweeping problem? Is there a polynomial time
algorithm for generating an optimal sweeping sequence?

(2) Can the number of sweeps in an optimal solution be always bounded by a
polynomial in n? i.e., is there always an optimal solution with a polynomial
number of sweeps?

Acknowledgment. We are grateful to Pawe�l Żyliński for sharing his dream prob-
lem with us.

References

1. Halperin, D., Kavraki, L., Latombe, J.-C.: Robotics. In: Goodman, J., O’Rourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 1065–1093.
Chapman & Hall, Boca Raton (2004)

2. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. In: Annals of
Discrete Mathematics, vol. 53. North-Holland, Amsterdam (1992)

3. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings
of Mediterranean Electrotechnical Conference (MELECON 1983), Athens (1983)

4. Żyliński, P.: personal communication (June 2007)

Constraint Satisfaction over a Non-Boolean

Domain: Approximation Algorithms and
Unique-Games Hardness

Venkatesan Guruswami� and Prasad Raghavendra��

Department of Computer Science & Engineering,
University of Washington,

Seattle, WA
{venkat,prasad}@cs.washington.edu

Abstract. We study the approximability of the MAX k-CSP problem
over non-boolean domains, more specifically over {0, 1, . . . , q−1} for some
integer q. We extend the techniques of Samorodnitsky and Trevisan [19]
to obtain a UGC hardness result when q is a prime. More precisely,
assuming the Unique Games Conjecture, we show that it is NP-hard to
approximate the problem to a ratio greater than q2k/qk. Independent of
this work, Austrin and Mossel [2] obtain a more general UGC hardness
result using entirely different techniques.

We also obtain an approximation algorithm that achieves a ratio of
C(q) ·k/qk for some constant C(q) depending only on q, via a subroutine
for approximating the value of a semidefinite quadratic form when the
variables take values on the corners of the q-dimensional simplex. This
generalizes an algorithm of Nesterov [16] for the ±1-valued variables. It
has been pointed out to us [15] that a similar approximation ratio can
be obtained by reducing the non-boolean case to a boolean CSP.

1 Introduction

Constraint Satisfaction Problems (CSP) capture a large variety of combinatorial
optimization problems that arise in practice. In the MAX k-CSP problem, the in-
put consists of a set of variables taking values over a domain(say {0, 1}), and a set
of constraints with each acting on k of the variables. The objective is to find an
assignment of values to the variables that maximizes the number of constraints
satisfied. Several classic optimization problems like 3-SAT, Max Cut fall in to the
general framework of CSPs. For most CSPs of interest, the problem of finding
the optimal assignment turns out to be NP-hard. To cope with this intractability,
the focus shifts to approximation algorithms with provable guarantees. Specifi-
cally, an algorithm A is said to yield an α approximation to a CSP, if on every
instance Γ of the CSP, the algorithm outputs an assignment that satisfies at
least α times as many constraints as the optimal assignment.
� Work done while on leave at School of Mathematics, Institute for Advanced Study,

Princeton, NJ. Research supported in part by a Packard Fellowship and NSF grant
CCF-0324906 to the IAS.

�� Research supported by NSF CCF-0343672.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 77–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 V. Guruswami and P. Raghavendra

Apart from its natural appeal, the study of the MAX k-CSP problem is inter-
esting for yet another reason. The best approximation ratio achievable for MAX
k-CSP equals the optimal soundness of a PCP verifier making at most k queries.
In fact, inapproximability results for MAX k-CSP have often been accompanied
by corresponding developments in analysis of linearity testing.

Over the boolean domain, the problem of MAX k-CSP has been studied ex-
tensively. For a boolean predicate P : {0, 1}k → {0, 1}, the MAX k-CSP (P)
problem is the special case of MAX k-CSP where all the constraints are of the
form P (l1, l2, . . . , lk) with each literal li being either a variable or its negation.
For many natural boolean predicates P , approximation algorithms and match-
ing NP-hardness results are known for MAX k-CSP (P)[11]. For the general MAX
k-CSP problem over boolean domain, the best known algorithm yields a ratio of
Ω(k

2k) [3], while any ratio better than 2
√

2k/2k is known to be NP-hard to achieve
[5]. Further if one assumes the Unique Games Conjecture, then it is NP-hard to
approximate MAX k-CSP problem to a factor better than 2k

2k [19].
In this work, we study the approximability of the MAX k-CSP problem over

non-boolean domains, more specifically over {0, 1, . . . , q − 1} for some integer q,
obtaining both algorithmic and hardness results (under the UGC) with almost
matching approximation factors.

On the hardness side, we extend the techniques of [19] to obtain a UGC hard-
ness result when q is a prime. More precisely, assuming the Unique Games Con-
jecture, we show that it is NP-hard to approximate the problem to a ratio greater
than q2k/qk. Except for constant factors depending on q, the algorithm and the
UGC hardness result have the same dependence on of the arity k. Independent
of this work, Austrin and Mossel [2] obtain a more general UGC hardness result
using entirely different techniques. Technically, our proof extends the Gowers
Uniformity based approach of Samorodnitsky and Trevisan [19] to correlations
on q-ary cubes instead of the binary cube. This is related to the detection of
multidimensional arithmetic progressions by a Gowers norm of appropriately
large degree. Along the way, we also make a simplification to [19] and avoid the
need to obtain a large cross-influence between two functions in a collection with
a substantial Uniformity norm; instead our proof works based on large influence
of just one function in the collection.

On the algorithmic side, we obtain a approximation algorithm that achieves
a ratio of C(q) · k/qk with C(q) = 1

2πeq(q−1)6 . As a subroutine, we design an al-
gorithm for maximizing a positive definite quadratic form with variables forced
to take values on the corners of the q-dimensional simplex. This is a generaliza-
tion of an algorithm of Nesterov [16] for maximizing positive definite quadratic
form with variables forced to take {−1, 1} values. Independent of this work,
Makarychev and Makarychev [15] brought to our notice a reduction from non-
boolean CSPs to the boolean case, which in conjunction with the CMM algo-
rithm [3] yields a better approximation ratio for the MAX k-CSP problem. Using
the reduction, one can deduce a q2(1 + o(1))k/qk factor UG hardness for MAX
k-CSP for arbitrary positive integers q, starting from our UG hardness result for
primes q.

Constraint Satisfaction over a Non-Boolean Domain 79

1.1 Related Work

The simplest algorithm for MAX k-CSP over boolean domain is to output a
random assignment to the variables, thus achieving an approximation ratio of
1
2k . The first improvement over this trivial algorithm, a ratio of 2

2k was obtained
by Trevisan [20]. Hast [9] proposed an approximation algorithm with a ratio
of Ω(k

log k2k), which was later improved to the current best known algorithm
achieving an approximation factor of Ω(k

2k) [3].
On the hardness side, MAX k-CSP over the boolean domain was shown to be

NP-hard to approximate to a ratio greater than Ω(22
√

k/2k) by Samorodnitsky
and Trevisan [18]. The result involved an analysis of a graph-linearity test which
was simplified subsequently by H̊astad and Wigderson [13]. Later, using the
machinery of multi-layered PCP developed in [4], the inapproximability factor
was improved to O(2

√
2k/2k) in [5].

A predicate P is approximation resistant if the best optimal approximation
ratio for MAX k-CSP (P) is given by the random assignment. While no pred-
icate over 2 variables is approximation resistant, a predicate over 3 variables
is approximation resistant if and only if it is implied by the XOR of 3 vari-
ables [11,21]. Almost all predicates on 4 variables were classified with respect to
approximation resistance in [10].

In recent years, several inapproximability results for MAX k-CSP problems
were obtained assuming the Unique Games Conjecture. Firstly, a tight inap-
proximability of Θ

(
k
2k

)
was shown in [19]. The proof relies on the analysis of

a hypergraph linearity test using the Gowers uniformity norms. Hastad showed
that if UGC is true, then as k increases, nearly every predicate P on k variables
is approximation resistant [12].

More recently, optimal inapproximability results have been shown for large
classes of CSPs assuming the Unique Games Conjecture. Under an additional
conjecture, optimal inapproximability results were obtained in [1] for all boolean
predicates over 2 variables. Subsequently, it was shown in [17] that for every CSP
over an arbitrary finite domain, the best possible approximation ratio is equal
to the integrality gap of a well known Semidefinite program. Further the same
work also obtains an algorithm that achieves the best possible approximation
ratio assuming UGC. Although the results of [17] apply to non-boolean domains,
they do not determine the value of the approximation factor explicitly, but only
show that it is equal to the integrality gap of an SDP. Further the algorithm
proposed in [17] does not yield any approximation guarantee for MAX k-CSP
unconditionally. Thus neither the inapproximability nor the algorithmic results
of this work are subsumed by [17].

Austrin and Mossel [2] obtain a sufficient condition for a predicate P to be
approximation resistant. Through this sufficiency condition, they obtain strong
UGC hardness results for MAX k-CSP problem over the domain {1, . . . , q} for
arbitrary k and q. For the case when q is a prime power, their results imply a
UGC hardness of kq(q − 1)/qk. The hardness results in this work and [2] were
obtained independently and use entirely different techniques.

80 V. Guruswami and P. Raghavendra

1.2 Organization of the Paper

We begin with background on the Unique Games conjecture, Gowers norm, and
influence of variables in Section 2. In Section 3, we present a linearity test that
forms the core of the UGC based hardness reduction. We prove our inapproxima-
bility result (for the case when q is a prime) by a reduction from Unique Games
in Section 4. The proof uses a technical step bounding a certain expectation by
an appropriate Gowers norm; this step is proved in Section 5. Finally, we state
the algorithmic result in Section 6, deferring the details to the full version [6].

2 Preliminaries

In this section, we will set up notation, and review the notions of Gower’s uni-
formity, influences, noise operators and the Unique games conjecture. Hence-
forth, for a positive integer n, we use the notation [n] for the ring Z/(n) =
{0, 1, . . . , n − 1}.

2.1 Unique Games Conjecture

Definition 1. An instance of Unique Games represented as Γ = (X ∪ Y, E, Π,
〈R〉), consists of a bipartite graph over node sets X ,Y with the edges E between
them. Also part of the instance is a set of labels 〈R〉 = {1, . . . , R}, and a set of
permutations πvw : 〈R〉 → 〈R〉 for each edge e = (v, w) ∈ E. An assignment A
of labels to vertices is said to satisfy an edge e = (v, w), if πvw(A(v)) = A(w).
The objective is to find an assignment A of labels that satisfies the maximum
number of edges.

For sake of convenience, we shall use the following stronger version of Unique
Games Conjecture which is equivalent to the original conjecture [14].
Conjecture 1. For all constants δ > 0, there exists large enough constant R such
that given a bipartite unique games instance Γ = (X ∪ Y, E, Π = {πe : 〈R〉 →
〈R〉 : e ∈ E}, 〈R〉) with number of labels R, it is NP-hard to distinguish between
the following two cases:
– (1 − δ)-satisfiable instances: There exists an assignment A of labels such that

for 1 − δ fraction of vertices v ∈ X , all the edges (v, w) are satisfied.
– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-

fraction of the edges E.

2.2 Gowers Uniformity Norm and Influence of Variables

We now recall the definition of the Gowers uniformity norm. For an integer d � 1
and a complex-valued function f : G → C defined on an abelian group G (whose
group operation we denote by +), the d’th uniformity norm Ud(f) is defined as

Ud(f) := E
x,y1,y2,...,yd

⎡

⎢
⎢
⎣

∏

S⊆{1,2,...,d}
|S| even

f

(

x +
∑

i∈S

yi

)
∏

S⊆{1,2,...,d}
|S| odd

f

(

x +
∑

i∈S

yi

)
⎤

⎥
⎥
⎦ .

(1)

Constraint Satisfaction over a Non-Boolean Domain 81

where the expectation is taken over uniform and independent choices of x, y0, . . . ,

yd−1 from the group G. Note that U1(f) =
(

E
x
[f(x)]

)2

.

We will be interested in the case when the group G is [q]R for positive integers
q, R, with group addition being coordinate-wise addition modulo q. G is also
closed under coordinate-wise multiplication modulo q by scalars in [q], and thus
has a [q]-module structure. For technical reasons, we will restrict attention to
the case when q is prime and thus our groups will be vector spaces over the
field Fq of q elements. For a vector a ∈ [q]k, we denote by a1, a2, . . . , ak its k
coordinates. We will use 1,0 to denote the all 1’s and all 0’s vectors respectively
(the dimension will be clear from the context). Further denote by ei the ith basis
vector with 1 in the ith coordinate and 0 in the remaining coordinates. As we shall
mainly be interested in functions over [q]R for a prime q, we make our further
definitions in this setting. Firstly, every function f : [q]R → C has a Fourier
expansion given by f(x) =

∑
α∈[q]R f̂αχα(x) where f̂α = E

x∈[q]R
[f(x)χα(x)] and

χα(x) =
∏R

i=1 ωαixi for a qth root of unity ω.
The central lemma in the hardness reduction relates a large Gowers norm

for a function f , to the existence of an influential coordinate. Towards this, we
define influence of a coordinate for a function over [q]R.

Definition 2. For a function f : [q]R → C define the influence of the ith coor-
dinate as follows:

Infi(f) = E
x
[Varxi [f]] .

The following well known result relates influences to the Fourier spectrum of the
function.

Fact 1. For a function f : [q]R → C and a coordinate i ∈ {1, 2, . . . , R},

Infi(f) =
∑

αi �=0,α∈[q]R

|f̂α|2 .

The following lemma is a restatement of Theorem 12 in [19].

Lemma 1. There exists an absolute constant C such that, if f : [q]m → C is a
function satisfying |f(x)| � 1 for every x then for every d � 1,

Ud(f) � U1(f) + 2Cd max
i

Infi(f)

2.3 Noise Operator

Like many other UGC hardness results, one of the crucial ingredients of our
reduction will be a noise operator on functions over [q]R. We define the noise
operator T1−ε formally below.

Definition 3. For 0 � ε � 1, define the operator T1−ε on functions f : [q]R → C
as:

T1−εf(x) = E
η
[f(x + η)]

82 V. Guruswami and P. Raghavendra

where each coordinate ηi of η is 0 with probability 1 − ε and a random element
from [q] with probability ε. The Fourier expansion of T1−εf is given by

T1−εf(x) =
∑

α∈[q]R

(1 − ε)|α|f̂αχα(x)

Here |α| denotes the number of non-zero coordinates of α. Due to space con-
straints, we defer the proof of the following lemma(see [6]).

Lemma 2. If a function f : [q]R → C satisfies |f(x)| � 1 for all x, and g =
T1−εf then

∑R
i=1 Infi(g) � 1

2e ln 1/(1−ε)

3 Linearity Tests and MAX k-CSP Hardness

The best approximation ratio possible for MAX k-CSP is identical to the best
soundness of a PCP verifier for NP that makes k queries. This follows easily by
associating the proof locations to CSP variables, and the tests of the verifier to
k-ary constraints on the locations. In this light, it is natural that the hardness
results of [18,5,19] are all associated with a linearity test with a strong soundness.
The hardness result in this work is obtained by extending the techniques of [19]
from binary to q-ary domains. In this section, we describe the test of [19] and
outline the extension to it.

For the sake of simplicity, let us consider the case when k = 2d − 1 for some
d. In [19], the authors propose the following linearity test for functions F :
{0, 1}n → {0, 1}.

Complete Hypergraph Test (F, d)

– Pick x1, x2, . . . , xd ∈ {0, 1}n uniformly at random.
– Accept if for each S ⊆ [r], F (

∑
i∈S xi) =

∑
i∈S F (xi).

The test reads the value of the function F at k = 2d − 1 points of a random
subspace(spanned by x1, . . . , xd) and checks that F agrees with a linear function
on the subspace. Note that a random function F would pass the test with prob-
ability 2d/2k, since there are 2d different satisfying assignments to the k binary
values queried by the verifier. The following result is a special case of a more
general result by Samorodnitsky and Trevisan [19].

Theorem 1. [19] If a function F : {0, 1}n → {0, 1} passes the Complete Hy-
pergraph Test with probability greater than 2d/2k + γ, then the function f(x) =
(−1)F (x) has a large dth Gowers norm. Formally, Ud(f) � C(γ, k) for some
fixed function C of γ, k.

Towards extending the result to the domain [q], we propose a different linearity
test. Again for convenience, let us assume k = qd for some d. Given a function
F : [q]n → [q], the test proceeds as follows:

Constraint Satisfaction over a Non-Boolean Domain 83

Affine Subspace Test (F, d)

– Pick x,y1,y2, . . . ,yd ∈ [q]n uniformly at random.
– Accept if for each a ⊆ [q]d,

F
(
x +

d∑

i=1

aiyi

)
=
(
1−

d∑

i=1

ai

)
F (x) +

d∑

i=1

aiF
(
x + yi

)

Essentially, the test queries the values along a randomly chosen affine sub-
space, and tests if the function F agrees with an affine function on the subspace.
Let ω denote a q′th root of unity. From Theorem 4 presented in Section 5, the
following result can be shown:

Theorem 2. If a function F : [q]n → [q] passes the Affine Subspace Test with
probability greater than qd+1/qk + γ, then for some q’th root of unity ω
= 1,
the function f(x) = ωF (x) has a large dq’th Gowers norm . Formally, Udq(f) �
C(γ, k) for some fixed function C of γ, k.

The above result follows easily from Theorem 4 using techniques of [19], and the
proof is ommited here. The Affine Subspace Test forms the core of the UGC
based hardness reduction presented in Section 4.

4 Hardness Reduction from Unique Games

In this section, we will prove a hardness result for approximating MAX k-CSP
over a domain of size q when q is prime for every k � 2. Let d be such that
qd−1 + 1 � k � qd. Let us consider the elements of [q] to have a natural order
defined by 0 < 1 < . . . < q − 1. This extends to a lexicographic ordering on
vectors in [q]d. Denote by [q]d<k the set consisting of the k lexicographically
smallest vectors in [q]d. We shall identify the set {1, . . . , k} with set of vectors in
[q]d<k. Specifically, we shall use {1, . . . , k} and vectors in [q]d<k interchangeably
as indices to the same set of variables. For a vector x ∈ [q]R and a permutation
π of {1, . . . , R}, define π(x) ∈ [q]R defined by (π(x))i = xπ(i).

Let Γ = (X ∪ Y, E,Π = {πe : 〈R〉 → 〈R〉|e ∈ E}, 〈R〉) be a bipartite
unique games instance. Towards constructing a k-CSP instance Λ from Γ , we
shall introduce a long code for each vertex in Y. Specifically, the set of variables
for the k-CSP Λ is indexed by Y × [q]R. Thus a solution to Λ consists of a set of
functions Fw : [q]R → [q], one for each w ∈ Y.

Similar to several other long code based hardness results, we shall assume
that the long codes are folded. More precisely, we shall use folding to force the
functions Fw to satisfy Fw(x + 1) = F (x) + 1 for all x ∈ [q]R. The k-ary con-
straints in the instance Λ are specified by the following verifier. The verifier uses
an additional parameter ε that governs the level of noise in the noise operator.

84 V. Guruswami and P. Raghavendra

– Pick a random vertex v ∈ X . Pick k vertices {wa|a ∈ [q]d<k} from N(v) ⊂
Y uniformly at random independently. Let πa denote the permutation
on the edge (v, wa).

– Sample x,y1,y2, . . . ,yd ∈ [q]R uniformly at random. Sample vectors
ηa ∈ [q]R for each a ∈ [q]d<k from the following distribution: With prob-
ability 1 − ε, (ηa)j = 0 and with the remaining probability, (ηa)j is a
uniformly random element from [q].

– Query Fwa

(
πa(x +

∑
j ajyj + ηa)

)
for each a ∈ [q]d<k. Accept if the

following equality holds for each a ∈ [q]d<k.

Fwa

(
πa(x +

d∑

j=1

ajyj + ηa)
)

=
(
1 −

d∑

j=1

aj

)
Fw0

(
π0(x + η0)

)

+
d∑

j=1

ajFwej

(
πej(x + yj + ηej)

)

Theorem 3. For all primes q, positive integers d, k satisfying qd−1 < k � qd,
and every γ > 0, there exists small enough δ, ε > 0 such that

– Completeness: If Γ is a (1−δ)-satisfiable instance of Unique Games, then
there is an assignment to Λ that satisfies the verifier’s tests with probability
at least (1 − γ)

– Soundness: If Γ is not δ-satisfiable, then no assignment to Λ satisfies the
verifier’s tests with probability more than qd+1

qk + γ.

Proof. We begin with the completeness claim, which is straightforward.
Completeness. There exists labelings to the Unique Game instance Γ such
that for 1 − δ fraction of the vertices v ∈ X all the edges (v, w) are satisfied. Let
A : X ∪ Y → 〈R〉 denote one such labelling. Define an assignment to the k-CSP
instance by Fw(x) = xA(w) for all w ∈ Y.

With probability at least (1 − δ), the verifier picks a vertex v ∈ X such
that the assignment A satisfies all the edges (v, wa). In this case for each a,
πa(A(v)) = A(wa). Let us denote A(v) = l. By definition of the functions Fw,
we get Fwa(πa(x)) = (πa(x))A(wa) = xπ−1

a (A(wa)) = xl for all x ∈ [q]R. With
probability at least (1 − ε)k, each of the vectors ηa have their lth component
equal to zero, i.e (ηa)l = 0. In this case, it is easy to check that all the constraints
are satisfied. In conclusion, the verifier accepts the assignment with probability
at least (1 − δ)(1 − ε)k. For small enough δ, ε, this quantity is at least (1 − γ).

Soundness. Suppose there is an assignment given by functions Fw for w ∈ Y
that the verifier accepts with probability greater than qd+1

qk + γ.
Let z1, z2, . . . , zk be random variables denoting the k values read by the veri-

fier. Thus z1, . . . , zk take values in [q]. Let P : [q]k → {0, 1} denote the predicate

Constraint Satisfaction over a Non-Boolean Domain 85

on k variables that represents the acceptance criterion of the verifier. Essentially,
the value of the predicate P (z1, . . . , zk) is 1 if and only if z1, . . . , zk values are
consistent with some affine function. By definition,

Pr[Verifier Accepts] = E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[
P (z1, . . . , zk)

]
� qd+1

qk
+ γ

Let ω denote a qth root of unity. The Fourier expansion of the function P : [q]k →
C is given by P (z1, . . . , zk) =

∑
α∈[q]k P̂αχα(z1, . . . , zk) where χα(z1, . . . , zk) =

∏k
i=1 ωαizi and P̂α = E

z1,...,zk

[P (z1, . . . , zk)χα(z1, . . . , zk)]. Notice that for α = 0,

we get χα(z1, . . . , zk) = 1. Further,

P̂0 = Pr[random assignment to z1, z2, . . . , zk satisfies P] =
qd+1

qk

Substituting the Fourier expansion of P , we get

Pr[Verifier Accepts] =
qd+1

qk
+

∑

α�=0

P̂α E
v∈X

E
wa∈N(v)

E
x,y1,...,yd

E
ηa

[
χα(z1, . . . , zk)

]

Recall that the probability of acceptance is greater than qd+1

qk +γ. Further |P̂α| �
1 for all α ∈ [q]k. Thus there exists α �= 0 such that,

∣
∣
∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd
E
ηa

[
χα(z1, . . . , zk)

]∣
∣
∣ � γ

qk

For each w ∈ Y, t ∈ [q], define the function f
(t)
w : [q]d → C as f

(t)
w (x) =

ωtFw(x). For convenience we shall index the vector α with the set [q]d<k instead
of {1, . . . , k}. In this notation,

∣
∣
∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd
E
ηa

[∏

a∈[q]d<k

f (αa)
wa

(
πa(x +

d∑

i=1

aiyi + ηa)
)]∣∣

∣ � γ

qk

Let g
(t)
w : [q]d → C denote the smoothened version of function f

(t)
w . Specifically,

let g
(t)
w (x) = T1−εf

(t)
w (x) = Eη[f (t)

w (x + η)] where η is generated from ε-noise
distribution. Since each ηa is independently chosen, we can rewrite the above
expression,

∣
∣
∣ E

v∈X
E

wa∈N(v)
E

x,y1,...,yd

[∏

a∈[q]d<k

g(αa)
wa

(
πa(x +

d∑

i=1

aiyi)
)]∣∣

∣ � γ

qk
.

For each v ∈ X , t ∈ [q], define the function g
(t)
v : [q]d → C as g

(t)
v (x) =

Ew∈N(v)[g
(t)
w (πvw(x))]. As the vertices wa are chosen independent of each other,

∣
∣
∣ E

v∈X
E

x,y1,...,yd

[∏

a∈[q]d
<k

g(αa)
v

(
x +

d∑

i=1

aiyi

)]∣∣
∣ � γ

qk
.

86 V. Guruswami and P. Raghavendra

As α �= 0, there exists an index b ∈ [q]d<k such that αb �= 0. For convenience let

us denote c = αb. Define κ = 2−Cdq
(

γ
2qk

)2dq

where C is the absolute constant
defined in Lemma 1.

For each v ∈ X , define the set of labels L(v) = {i ∈ 〈R〉 : Infi(gc
v) � κ}.

Similarly for each w ∈ Y, let L(w) = {i ∈ 〈R〉 : Infi(gc
w) � κ/2}. Obtain

a labelling A to the Unique Games instance Γ as follows : For each vertex
u ∈ X ∪ Y, if L(u) �= φ then assign a randomly chosen label from L(u), else
assign a uniformly random label from 〈R〉.

The functions g
(c)
w are given by g

(c)
w = T1−εf

(c)
w where f

(c)
w is bounded in ab-

solute value by 1. By Lemma 2, therefore, the sum of its influences is bounded by
1

e ln 1/(1−ε) . Consequently, for all w ∈ Y the size of the label set L(w) is bounded
by 2

κe ln 1/(1−ε) . Applying a similar argument to v ∈ X , |L(v)| � 1
κe ln 1/(1−ε) .

For at least γ/2qk fraction of vertices v ∈ X we have,

∣
∣
∣ E
x,y1,...,yd

[∏

a∈[q]d<k

g(αa)
v

(
x +

d∑

i=1

aiyi

)]∣∣
∣ � γ

2qk

We shall refer to these vertices as good vertices. Fix a good vertex v.
Observe that for each u ∈ X ∪ Y the functions g

(t)
u satisfy |g(t)

u (x)| � 1 for
all x. Now we shall apply Theorem 4 to conclude that the functions g

(t)
v have

a large Gowers norm. Specifically, consider the collection of functions given by
fa = g

(αa)
v for a ∈ [q]d<k, and fa = 1 for all a /∈ [q]d<k. From Theorem 4, we get

min
a

Udq(g(αa)
v) �

(γ

2qk

)2dq

.

In particular, this implies Udq(g(c)
v) �

(
γ

2qk

)2dq

. Now we shall use Lemma 1 to
conclude that the function gv has influential coordinates. Towards this, observe
that the functions f

(t)
w satisfy f

(t)
w (x + 1) = f

(t)
w (x) · ωt due to folding. Thus for

all t �= 0 and all w ∈ Y, Ex[f (t)
w (x)] = 0. Specifically for c �= 0,

U1(g(c)
v) =

(
E
x
[g(c)

v (x)]
)2

=
(

E
w∈N(v)

E
η

E
x
[f (c)

w (x + η)]
)2

= 0

Hence it follows from Lemma 1 that there exists influential coordinates i with

Infi(g
(c)
v) � 2−Cdq

(
γ

2qk

)2dq

= κ. In other words, L(v) is non-empty. Observe
that, due to convexity of influences,

Infi(g(c)
v) = Infi(E

w∈N(v)
[g(c)

w]) � E
w∈N(v)

Infπvw(i)([g(c)
w (x)]) .

If the coordinate i has influence at least κ on g
(c)
v , then the coordinate πvw(i) has

an influence of at least κ/2 for at least κ/2 fraction of neighbors w ∈ N(v). The

Constraint Satisfaction over a Non-Boolean Domain 87

edge πvw is satisfied if i is assigned to v, and πwv(i) is assigned to w. This event
happens with probability at least 1

|L(u)||L(v)| � (eκ ln 1/(1 − ε))2/2 for at least
κ/2 fraction of the neighbors w ∈ N(v). As there are at least (γ/2qk) fraction
of good vertices v, the assignment satisfies at least (γ/2qk)(eκ ln 1/(1 − ε))2κ/4
fraction of the unique games constraints. By choosing δ smaller than this fraction,
the proof is complete.

Since each test performed by the verifier involve k variables, by the standard
connection between hardness of MAX k-CSP and k-query PCP verifiers, we get
the following hardness result conditioned on the UGC.

Corollary 1. Assuming the Unique Games conjecture, for every prime q, it is
NP-hard to approximate MAX k-CSP over domain size q within a factor that is
greater than q2k/qk.

Using the reduction of [15], the above UG hardness result can be extended from
primes to arbitrary composite number q.

Corollary 2. [15] Assuming the Unique Games conjecture, for every positive
integer q, it is NP-hard to approximate MAX k-CSP over domain size q within
a factor that is greater than q2k(1 + o(1))/qk.

5 Gowers Norm and Multidimensional Arithmetic
Progressions

The following theorem forms a crucial ingredient in the soundness analysis in
the proof of Theorem 3.

Theorem 4. Let q � 2 be a prime and G be a Fq-vector space. Then for all
positive integers � � q and d, and all collections {fa : G → C}a∈[]d of �d

functions satisfying |fa(x)| � 1 for every x ∈ G and a ∈ [�]d, the following
holds:

∣
∣
∣
∣
∣
∣

E
x,y1,y2,...,yd

⎡

⎣
∏

a∈[]d

fa(x + a1y1 + a2y2 + · · · + adyd)

⎤

⎦

∣
∣
∣
∣
∣
∣
� min

a∈[]d

(
Ud	(fa)

)1/2d�

(2)

The proof of the above theorem is via double induction on d, �. We first prove
the theorem for the one-dimensional case, i.e., d = 1 and every �, 1 � � < q
(Lemma 3). This will be done through induction on �. We will then prove the
result for arbitrary d by induction on d.

Remark 1. Green and Tao, in their work [8] on configurations in the primes,
isolate and define a property of a system of linear forms that ensures that the
degree t Gowers norm is sufficient to analyze patterns corresponding to those lin-
ear forms, and called this property complexity (see Definition 1.5 in [8]). Gowers
and Wolf [7] later coined the term Cauchy-Schwartz (CS) complexity to refer to

,

88 V. Guruswami and P. Raghavendra

this notion of complexity. For example, the CS-complexity of the q linear forms
x, x+y, x+2y, . . . , x+(q−1)y corresponding to a q-term arithmetic progression
equals q − 2, and the U q−1 norm suffices to analyze them. It can similarly be
shown that the CS-complexity of the d-dimensional arithmetic progression (with
qd linear forms as in (2)) is at most d(q − 1) − 1. In our application, we need a
”multi-function” version of these statements, since we have a different function
fa for each linear form x+ a · y. We therefore work out a self-contained proof of
Theorem 4 in this setting.

Towards proving Theorem 4, we will need the following lemma whose proof is
presented in the full version[6].

Lemma 3. Let q � 2 be prime and �, 1 � � � q, be an integer, and G be a
Fq-vector space. Let {hα : G → C}α∈[] be a collection of � functions such that
|hα(x)| � 1 for all α ∈ [�] and x ∈ G. Then

∣
∣
∣
∣
∣
∣

E
x,y1

⎡

⎣
∏

α∈[]

hα(x + αy1)

⎤

⎦

∣
∣
∣
∣
∣
∣
� min

α∈[]

(
U 	(hα)

) 1
2� . (3)

Proof of Theorem 4: Fix an arbitrary �, 1 � � � q. We will prove the result
by induction on d. The base case d = 1 is the content of Lemma 3, so it remains
to consider the case d > 1.

By a change of variables, it suffices to upper bound the LHS of (2) by
(
Ud	(f(−1)1)

)1/2d�

, and this is what we will prove. For α ∈ [�], and y2, y3, . . . ,

yd ∈ G, define the function

gy2,...,yd
α (x) =

∏

b=(b2,b3,...,bd)∈[]d−1

f(α,b)(x + b2y2 + · · · + bdyd) . (4)

The LHS of (2), raised to the power 2d	, equals

∣
∣
∣
∣
∣

E
y2,...,yd

E
x,y1

[∏

α∈[�]

gy2,...,yd
α (x + αy1)

]∣
∣
∣
∣
∣

2d�

�

⎛

⎝ E
y2,...,yd

∣
∣
∣
∣ E

x,y1

∏

α∈[�]

gy2,...,yd
α (x + αy1)

∣
∣
∣
∣

2�
⎞

⎠

2(d−1)�

�
∣
∣
∣
∣ E

y2,...,yd

U �(gy2,...,yd

�−1)
∣
∣
∣
∣

2(d−1)�

(using Lemma 3)

=
∣
∣
∣
∣ E

y2,...,yd

E
x,z1,...,z�

[∏

S⊆{1,2,...,�}
gy2,...,yd

�−1

(
x +

∑

i∈S

zi

)] ∣
∣
∣
∣

2(d−1)�

Defining the function

Hz1,...,z�

b (t) :=
∏

S⊆{1,2,...,	}
f(−1,b)

(
t +

∑

i∈S

zi

)
(5)

Constraint Satisfaction over a Non-Boolean Domain 89

for every b ∈ [�]d−1 and z1, . . . , z	 ∈ G, the last expression equals
∣
∣
∣
∣ E

z1,...,z�

E
x,y2,...,yd

[∏

b=(b2,...,bd)∈[]d−1

Hz1,...,z�

b

(
x + b2y2 + · · · + bdyd

)] ∣
∣
∣
∣

2(d−1)�

which is at most

E
z1,...,z�

⎡

⎣
∣
∣
∣
∣ E

x,y2,...,yd

[∏

b=(b2,...,bd)∈[]d−1

Hz1,...,z�

b

(
x + b2y2 + · · · + bdyd

)] ∣
∣
∣
∣

2(d−1)�
⎤

⎦ .

(6)

By the induction hypothesis, (6) is at most E
z1,...,z�

[

U (d−1)	
(
Hz1,...,z�

(−1)1

)]

. Re-

calling the definition of Hz1,...,z�

b from (5), the above expectation equals

E
z1,...,z�

E
x,{z′

j
}

1�j�(d−1)�

⎡

⎢
⎣

∏

S⊆{1,2,...,�}
T ⊆{1,2,...,(d−1)�}

f(−1)1

(
x +

∑

i∈S

zi +
∑

j∈T

z′j

)
⎤

⎥
⎦

which clearly equals Ud	(f(−1)1).

6 Approximation Algorithm for MAX k-CSP

On the algorithmic side, we show the following result:

Theorem 5. There is a polynomial time algorithm that computes a 1
2πeq(q−1)6 ·

k
qk factor approximation for the MAX k-CSP problem over a domain of size q.

The algorithm proceeds along the lines of [3], by formulating MAX k-CSP as a
quadratic program, solving a SDP relaxation and rounding the resulting solution.
The variables in the quadratic program are constrained to the vertices of the q-
dimensional simplex. Hence, as a subroutine, we obtain an efficient procedure
to optimize positive definite quadratic forms with the variables forced to take
values on the q-dimensional simplex. Let Δq denote the q-dimensional simplex,
and let Vert(Δq) denote the vertices of the simplex. Formally,

Theorem 6. Let A = (a(k)(l)
ij) be a positive definite matrix where k, l ∈ [q] and

1 � i, j � n. For the quadratic program Γ , there exists an efficient algorithm
that finds an assignment whose value is at least 2

π(q−1)4 of the optimum.

QuadraticProgram Γ

Maximize
∑

ij

a
(k)(l)
ij x

(k)
i · x(l)

j

Subject to xi = (x(0)
i , x

(1)
i , . . . , x

(q−1)
i) ∈ Vert(Δq) 1 � i � n

The details of the algorithm are presented in the full version[6]. It has been
pointed out to us that a Ω(q2k/qk)-approximation for MAX k-CSP can be ob-
tained by reducing from the non-boolean to the boolean case [15].

90 V. Guruswami and P. Raghavendra

References

1. Austrin, P.: Towards sharp inapproximability for any 2-csp. In: FOCS: IEEE Sym-
posium on Foundations of Computer Science, pp. 307–317 (2007)

2. Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise indepen-
dence. Electronic Colloqium on Computational Complexity, TR08-009 (2008)

3. Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for max-
imum constraint satisfaction problems. In: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 62–68 (2007)

4. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of hypergraph vertex cover. SIAM J. Computing 34(5), 1129–1146 (2005)

5. Engebretsen, L., Holmerin, J.: More efficient queries in PCPs for NP and im-
proved approximation hardness of maximum CSP. In: Diekert, V., Durand, B.
(eds.) STACS 2005. LNCS, vol. 3404, pp. 194–205. Springer, Heidelberg (2005)

6. Guruswami, V., Raghavendra, P.: Constraint Satisfaction over the Non-Boolean
Domain: Approximation algorithms and Unique Games hardness. ECCC: Elec-
tronic Colloqium on Computational Complexity, TR08-008 (2008)

7. Gowers, W.T., Wolf, J.: The true complexity of a system of linear equations.
arXiv:math.NT/0711.0185 (2007)

8. Green, B., Tao, T.: Linear equations in primes. arXiv:math.NT/0606088v1 (2006)
9. Hast, G.: Approximating MAX kCSP – outperforming a random assignment with

almost a linear factor. In: ICALP: Annual International Colloquium on Automata,
Languages and Programming (2005)

10. Hast, G.: Beating a random assignment - approximating constraint satisfaction
problems. Phd Thesis, Royal Institute of Technology (2005)

11. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001)

12. H̊astad, J.: On the approximation resistance of a random predicate. In: APPROX-
RANDOM, pp. 149–163 (2007)

13. H̊astad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP.
Random Struct. Algorithms 22(2), 139–160 (2003)

14. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within /spl
epsi/. In: Annual IEEE Conference on Computational Complexity (formerly An-
nual Conference on Structure in Complexity Theory), vol. 18 (2003)

15. Makarychev, K., Makarychev, Y.: Personal communication (2008)
16. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimiza-

tion. CORE Discussion Paper 9719 (1997)
17. Raghavendra, P.: Optimal algorithm and inapproximability results for every csp?

In: STOC: ACM Symposium on Theory of Computing, pp. 245–254 (2008)
18. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-

tized query complexity. In: STOC: ACM Symposium on Theory of Computing, pp.
191–199 (2000)

19. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and
PCPs. In: STOC: ACM Symposium on Theory of Computing (2006)

20. Trevisan, L.: Parallel approximation algorithms by positive linear programming.
Algorithmica 21(1), 72–88 (1998)

21. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In: Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 201–210 (1998)

Fully Polynomial Time Approximation Schemes

for Time-Cost Tradeoff Problems
in Series-Parallel Project Networks

Nir Halman1, Chung-Lun Li2, and David Simchi-Levi3

1 Institute for Advanced Study, Princeton, NJ, and Massachusetts Institute of
Technology, Cambridge, MA

halman@mit.edu
2 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

lgtclli@polyu.edu.hk
3 Massachusetts Institute of Technology, Cambridge, MA

dslevi@mit.edu

Abstract. We consider the deadline problem and budget problem of the
nonlinear time-cost tradeoffproject schedulingmodel inaseries-parallel ac-
tivity network. We develop fully polynomial time approximation schemes
forbothproblemsusingK-approximation sets and functions, togetherwith
series and parallel reductions.

Keywords: Project management, time-cost tradeoff, approximation
algorithms.

1 Introduction

Project scheduling with time-cost tradeoff decisions plays a significant role in
project management. In particular, discrete time-cost tradeoff models with dead-
line or budget constraints are important tools for project managers to perform
time planning and budgeting for their projects. As a result, efficient and effective
solution procedures for such models are highly attractive to those practitioners.
Unfortunately, these models are computationally intractable, and constructing
near-optimal polynomial-time heuristics for them is highly challenging. In this
paper, we develop fully polynomial time approximation schemes (FPTASs) for
an important class of time-cost tradeoff problems in which the underlying project
network is series-parallel (see Section 4 for a discussion of how our results can
be applied to problems with “near-series-parallel” networks).

Time-cost tradeoff problems in series-parallel networks have applications not
only in project management. Rothfarb et al. [11] and Frank et al. [5] have applied
the time-cost tradeoff model to natural-gas pipeline system design and central-
ized computer network design, respectively. In their applications, the underlying
network is a tree network, which is a special kind of series-parallel network, and
they proposed an (exponential time) enumeration method for their problems.

Consider the following time-cost tradeoff model for project scheduling: There
is a (directed acyclic) project network of n activities in activity-on-arc rep-
resentation. Associated with each activity i are two nonincreasing functions

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 91–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

92 N. Halman, C.-L. Li, and D. Simchi-Levi

(a) function fi (b) function gi

Fig. 1. An activity time-cost tradeoff example

fi : Ti → Z+ and gi : Ci → Z+, where fi(ti) is the cost incurred when the
activity time is ti, gi(ci) is the activity time when an amount ci of monetary
resource is spent on the activity, Ti = {ti, ti +1, . . . , t̄i} ⊂ Z+ is the set of all
possible time duration of activity i, Ci = {ci, ci +1, . . . , c̄i} ⊂ Z+ is the set of
all possible cost consumption of activity i, and Z+ is the set of all nonnegative
integers. For example, if fi is the function depicted in Figure 1(a), then gi is the
function depicted in Figure 1(b). Here, we assume that all activity times and
costs are integer-valued.

Denote the activities as 1, 2, . . . , n. Let φ(t1, t2, . . . , tn) denote the total du-
ration of the project (i.e., the length of the longest path in the network) when
the time duration of activity i is ti for i = 1, 2, . . . , n. We are interested in two
different variants of the problem: (i) given a deadline d, determine t1, t2, . . . , tn
so that φ(t1, t2, . . . , tn) ≤ d and that f1(t1) + f2(t2) + · · ·+ fn(tn) is minimized,
and (ii) given a budget b, determine c1, c2, . . . , cn so that c1 + c2 + · · ·+ cn ≤ b
and that φ(g1(c1), g2(c2), . . . , gn(cn)) is minimized. We refer to the first problem
as the deadline problem and the second problem as the budget problem. In the
deadline problem, we assume, for simplicity, that for each activity i, function
fi can be evaluated in constant time (i.e., for any given t ∈ Ti, fi(t) can be
determined in constant time). In the budget problem, we assume, for simplicity,
that for each activity i, function gi can be evaluated in constant time. However,
our FPTASs remain valid as long as fi and gi can be evaluated in an amount of
time which is polynomial in the input size of the problems.

Note that in our model the time-cost tradeoff function of an activity can be any
nonincreasing function (with nonnegative integer domain and range). Thus, our
model is a generalization of the traditional “discrete” time-cost tradeoff model,
which is defined in such a way that every activity i has m(i) alternatives, of
which alternative j requires t(i, j) ∈ Z+ time units and c(i, j) ∈ Z+ cost units
(j = 1, 2, . . . ,m(i)). De et al. [3] have shown that both the deadline problem
and the budget problem are NP-hard in the strong sense for the discrete time-
cost tradeoff model when the underlying project network is a general directed

FPTASs for Time-Cost Tradeoff Problems 93

acyclic network. This implies that both the deadline and budget problems of
our model are strongly NP-hard as well. Thus, it is unlikely that there exists
an FPTAS for either problem. In fact, developing polynomial-time approxima-
tion algorithms for the discrete time-cost tradeoff model is a challenging task.
Skutella [12] has developed a polynomial-time algorithm for the budget problem
with performance guarantee O(log l), where l is the ratio of the maximum dura-
tion and minimum nonzero duration of any activity. However, as pointed out by
Deineko and Woeginger [4], unless P=NP, the budget problem does not have a
polynomial-time approximation algorithm with performance guarantee strictly
less than 3

2 .
When the underlying network is series-parallel, the deadline problem and the

budget problem become “more tractable.” Although the deadline and budget
problems in a series-parallel project network remain NP-hard in the ordinary
sense [3], they can be solved in pseudo-polynomial time by dynamic program-
ming [3,9]. However, to the best of our knowledge, no known polynomial-time
approximation scheme has been developed for these problems. Note that a series-
parallel network can be reduced to a single-arc network efficiently via a sequence
of simple series and parallel reduction operations [13]. In what follows, we will
make use of series and parallel reductions, together with the K-approximation
sets and functions introduced by Halman et al. [7], to develop FPTASs for the
deadline and budget problems in series-parallel networks.

To simplify the discussion, we only consider the case where the problem is
feasible. Note that it is easy to detect feasibility of the problem. The budget
problem is feasible if and only if

∑
i gi(c̄i) ≤ b. The feasibility of the deadline

problem can be detected by setting all activity times to their lower limits, solving
the problem by the standard critical path method, and comparing the resulting
project completion time with the deadline d.

To simplify our analysis, we expand the domains of functions fi and gi to
{0, 1, . . . , U} for each activity i, where U = maxi{max{t̄i, c̄i}}. We can do so
by defining fi(t) = M for t = 0, 1, . . . , ti − 1, defining fi(t) = fi(t̄i) for t =
t̄i + 1, t̄i + 2, . . . , U , defining gi(c) = M for c = 0, 1, . . . , ci − 1, and defining
gi(c) = gi(c̄i) for c = c̄i + 1, c̄i + 2, . . . , U , where M is a large integer. (Note: It
suffices to set M = max{

∑
i fi(ti),

∑
i gi(ci)}+ 1.)

Throughout the paper, all logarithms are base 2 unless otherwise stated.

2 K-Approximation Sets and Functions

Halman et al. [7] have introduced K-approximation sets and functions, and used
them to develop an FPTAS for a stochastic inventory control problem. Halman
et al. [6] have applied these tools to develop a general framework for constructing
FPTASs for stochastic dynamic programs. In this section we provide an overview
of K-approximation sets and functions. In the next section we will use them to
construct FPTASs for our time-cost tradeoff problems. To simplify the discus-
sion, we modify Halman et al.’s definition of the K-approximation function by
restricting it to integer-valued functions.

94 N. Halman, C.-L. Li, and D. Simchi-Levi

Let K ≥ 1, and let ψ : {0, 1, . . . , U} → Z+ be an arbitrary function. We say
that ψ̂ : {0, 1, . . . , U} → Z+ is aK-approximation function of ψ if ψ(x) ≤ ψ̂(x) ≤
Kψ(x) for all x = 0, 1, . . . , U . The following property of K-approximation func-
tions is extracted from Proposition 4.1 of [6], which provides a set of general
computational rules of K-approximation functions. Its validity follows directly
from the definition of the K-approximation function.

Property 1. For i = 1, 2, let Ki ≥ 1, let ψi : {0, 1, . . . , U} → Z+ be an arbitrary
function, let ψ̃i : {0, 1, . . . , U} → Z+ be a Ki-approximation function of ψi, and
let α, β ∈ Z+. The following properties hold:
Summation of approximation: αψ̃1 +βψ̃2 is a max{K1,K2}-approximation func-
tion of αψ1 + βψ2.
Approximation of approximation: If ψ2 = ψ̃1 then ψ̃2 is a K1K2-approximation
function of ψ1.

Let K > 1. Let ϕ : {0, 1, . . . , U} → Z+ be a nonincreasing function and
S = (k1, k2, . . . , kr) be an ordered subset of {0, 1, . . . , U}, where 0 = k1 < k2 <
· · · < kr = U . We say that S is a K-approximation set of ϕ if ϕ(kj) ≤ Kϕ(kj+1)
for each j = 1, 2, . . . , r − 1 that satisfies kj+1 − kj > 1. (The term used in [6]
is weak K-approximation set of ϕ.) Given ϕ, there exists a K-approximation
set of ϕ with cardinality O(logK Ū), where Ū is any constant upper bound
of maxx=0,1,...,U{ϕ(x)}. Furthermore, this set can be constructed in O

(
(1 +

τ(ϕ)) logK Ū logU
)

time, where τ(ϕ) is the amount of time required to eval-
uate ϕ (see Lemma 3.1 of [6]).

Given ϕ and a K-approximation set S = (k1, k2, . . . , kr) of ϕ, a K-approxima-
tion function of ϕ can be obtained easily as follows (Definition 3.4 of [6]): Define
ϕ̂ : {0, 1, . . . , U} → Z+ such that

ϕ̂(x) = ϕ(kj) for kj ≤ x < kj+1 and j = 1, 2, . . . , r − 1,

and that
ϕ̂(kr) = ϕ(kr).

Note that ϕ(x) ≤ ϕ̂(x) ≤ Kϕ(x) for x = 0, 1, . . . , U . Therefore, ϕ̂ is a nonin-
creasing K-approximation function of ϕ. We say that ϕ̂ is the K-approximation
function of ϕ corresponding to S.

3 Series and Parallel Reductions

Two-terminal edge series-parallel networks (or simply “series-parallel networks”)
are defined recursively as follows [13]: (i) A directed network consisting of two
vertices (i.e., a “source” and a “sink”) joined by a single arc is series-parallel.
(ii) If two directed networks G1 and G2 are series-parallel, then so are the
networks constructed by each of the following operations: (a) Two-terminal

FPTASs for Time-Cost Tradeoff Problems 95

(a) series reduction

(b) parallel reduction

Fig. 2. Series and parallel reductions

series composition: Identify the sink of G1 with the source of G2. (b) Two-
terminal parallel composition: Identify the source of G1 with the source of G2

and the sink of G1 with the sink of G2.
As mentioned in Section 1, a series-parallel network can be reduced to a single-

arc network via a sequence of series and parallel reduction operations. A series
reduction is an operation that replaces two series arcs by a single arc, while a
parallel reduction is an operation that replaces two parallel arcs by a single arc
(see Figure 2). In a project network, a reduction of two series activities with
time duration t′ and t′′ will result in a single activity with time duration t′ + t′′,
while a reduction of two parallel activities with time duration t′ and t′′ will result
in a single activity with time duration max{t′, t′′}. For example, given a series-
parallel activity network depicted in Figure 3(a), we can perform a sequence
of series/parallel reductions as shown in Figure 3(b). The resulting network
consists of a single activity with duration 20, which is equal to the minimum
project completion time of the original activity network. Thus, for a given series-
parallel project network of n activities, it takes only n−1 series/parallel reduction
operations to reduce it to a single-activity network. However, when there are
time-cost tradeoff decisions for the activities, the integration of the two time-
cost tradeoff functions during a series/parallel reduction operation becomes a
challenge if we want to perform the computation efficiently. In the following
subsections, we explain how to apply series and parallel reductions, together
with K-approximation sets and functions, to develop FPTASs for the deadline
and budget problems.

Note that series-parallel graphs have tree-width 2 (see [10], where “tree-width”
was first introduced). It is known that many optimization problems on low
tree-width graphs admit dynamic programs, which often lead to efficient ex-
act/approximation algorithms that are unlikely to exist if the graphs were gen-
eral [1]. Our paper goes along this line of research.

3.1 The Deadline Problem

For a given error tolerance ε ∈ (0, 1], our approximation algorithm for the dead-
line problem can be described as follows:

96 N. Halman, C.-L. Li, and D. Simchi-Levi

Fig. 3. An example

FPTASs for Time-Cost Tradeoff Problems 97

Step 1: Let K = 1 + ε
2n .

Step 2: For each activity i, obtain a K-approximation set Si of fi, and obtain
the K-approximation function f̂i of fi corresponding to Si.

Step 3: Select any pair of series or parallel activities i1 and i2.
Case (a): If i1 and i2 are series activities, then perform a series reduction to

replace these two activities by an activity i. Obtain a K-approximation
set S̄i of f̄i, where

f̄i(t) = min
t′∈{0,1,...,t}∩(Si1∪{t−x | x∈Si2})

{
f̂i1(t

′) + f̂i2(t − t′)
}
. (1)

Obtain the K-approximation function f̂i of f̄i corresponding to S̄i (i.e.,
obtain and store the values of {f̂i(t) | t ∈ S̄i} in an array arranged in
ascending order of t).

Case (b): If i1 and i2 are parallel activities, then perform a parallel
reduction to replace these two activities by an activity i. Obtain a
K-approximation set S̄i of f̄i, where

f̄i(t) = f̂i1(t) + f̂i2(t). (2)

Obtain the K-approximation function f̂i of f̄i corresponding to S̄i.
Step 4: If the project network contains only one activity i0, then the approxi-

mated solution value is given by f̂i0(d). Otherwise, return to Step 3.

We first discuss Case (a) of Step 3. Suppose that we allocate t time units to a
pair of series activities i1 (along arc u → v) and i2 (along arc v → w); that is, we
allow these two activities to spend no more than a total of t time units. Then,
the merged activity i (along with merged arc u → w, as shown in Figure 2(a)),
which has a duration of t, will incur a cost of

fi(t) = min
t′=0,1,...,t

{
fi1(t

′) + fi2(t − t′)
}
, (3)

where fi1(t′) and fi2(t − t′) are the costs of the original activities i1 and i2 if
they are allocated t′ and t − t′ time units, respectively. Suppose we do not know
the exact time-cost tradeoff functions fi1 and fi2 of these two activities, but
instead we have: (i) a nonincreasing Kk−1-approximation function f̄i1 of fi1 and a
nonincreasing K�−1-approximation function f̄i2 of fi2 , where k and 	 are positive
integers, and (ii) a K-approximation set Sij of f̄ij and the K-approximation
function f̂ij of f̄ij corresponding to Sij for j = 1, 2. Then, we obtain f̄i using
equation (1). We first show that f̄i is a nonincreasing function.

Property 2. f̄i defined in (1) is a nonincreasing function.

Proof: Consider any t ∈ {0, 1, . . . , U −1}. Then f̄i(t) = f̂i1(t∗) + f̂i2(t − t∗) for
some t∗ ∈ {0, 1, . . . , t}∩ (Si1 ∪{t−x | x ∈ Si2}). We have t∗ ∈ Si1 or t− t∗ ∈ Si2

(or both). If t∗ ∈ Si1 , then t∗ ∈ {0, 1, . . . , t, t+1} ∩ (Si1 ∪ {t + 1 − x | x ∈ Si2}),
which implies that

f̄i(t + 1) ≤ f̂i1(t
∗) + f̂i2(t + 1 − t∗) ≤ f̂i1(t

∗) + f̂i2(t − t∗) = f̄i(t).

98 N. Halman, C.-L. Li, and D. Simchi-Levi

If t−t∗ ∈ Si2 , then t∗+1 ∈ {t+1−x | x ∈ Si2} ⊆ {0, 1, . . . , t, t+1}∩(Si1∪{t+1−x |
x ∈ Si2}), which implies that

f̄i(t + 1) ≤ f̂i1(t
∗ + 1) + f̂i2(t − t∗) ≤ f̂i1(t

∗) + f̂i2(t − t∗) = f̄i(t).

Therefore, f̄i is nonincreasing.
�

The following property is modified from Theorem 4.1 of [6].

Property 3. Let fi and f̄i be the functions defined in (3) and (1), respectively.
Then, f̄i is a Kmax{k,�}-approximation function of fi.

Proof: Consider any fixed t ∈ {0, 1, . . . , U}. Let

t∗ = arg min
t′=0,1,...,t

{
fi1(t

′) + fi2(t − t′)
}

(with ties broken arbitrarily). Let

t∗∗ = arg min
t′∈{0,1,...,t}∩(Si1∪{t−x | x∈Si2})

{
f̂i1(t

′) + f̂i2(t − t′)
}

(with ties broken arbitrarily). We have

f̄i(t) = f̂i1(t
∗∗)+ f̂i2(t−t∗∗) ≥ fi1(t

∗∗)+fi2(t−t∗∗) ≥ fi1(t
∗)+fi2(t−t∗) = fi(t).

(4)
Because f̂i1 is the K-approximation function of f̄i1 corresponding to Si1 , there
exists t0 ∈ Si1 such that t0 ≤ t∗ and f̂i1(t0) = f̂i1(t∗). This implies that f̂i1(t0) ≤
Kf̄i1(t∗) ≤ Kkfi1(t∗). Note that f̂i2(t − t0) ≤ f̂i2(t − t∗) ≤ Kf̄i2(t − t∗) ≤
K�fi2(t − t∗). Thus,

f̄i(t) = f̂i1(t∗∗) + f̂i2(t − t∗∗) ≤ f̂i1(t0) + f̂i2(t − t0)
≤ Kkfi1(t

∗) + K�fi2(t − t∗) ≤ Kmax{k,�}fi(t). (5)

Combining (4) and (5) yields the desired result.
�

In Case (a) of Step 3, S̄i is a K-approximation set of f̄i. Due to Property 2, S̄i

is well defined. Function f̂i is the (nonincreasing) K-approximation function of
f̄i corresponding to S̄i. By approximation of approximation (Property 1), f̂i is
a nonincreasing Kmax{k,�}+1-approximation function of fi. The amount of time
required to evaluate f̄i(t) for each t is

τ(f̄i) = O
(
(|Si1 | + |Si2 |)(τ(f̂i1) + τ(f̂i2))

)
.

Note that
|Si1 | = O(logK Ū),

|Si2 | = O(logK Ū),

and
τ(f̂ij) = O(log |Sij |)

FPTASs for Time-Cost Tradeoff Problems 99

for j = 1, 2 (because the values of {f̂ij (t) | t ∈ Sij } are stored in an array
arranged in ascending order of t, for any t = 0, 1, . . . , U , it takes only O(log |Sij |)
time to search for the value of f̂ij (t)). Thus, τ(f̄i) ≤ O(logK Ū log logK Ū), and
therefore the time required for constructing S̄i is O

(
(1 + τ(f̄i)) logK Ū log U

)
≤

O(log2
K Ū log U log logK Ū).

Next, we discuss Case (b) of Step 3. Suppose that we allocate t time units to
a pair of parallel activities i1 and i2; that is, we allow each of these two activities
to spend no more than t time units. Then, the merged activity, which has a
maximum duration of t, will incur a cost of

fi(t) = fi1(t) + fi2(t), (6)

where fi1(t) and fi2(t) are the costs of the original activities i1 and i2, respec-
tively. Suppose we do not know the exact time-cost tradeoff functions fi1 and
fi2 , but instead we have: (i) a nonincreasing Kk−1-approximation function f̄i1

of fi1 and a nonincreasing K�−1-approximation function f̄i2 of fi2 , where k
and 	 are positive integers, and (ii) a K-approximation set Sij of f̄ij and the
K-approximation function f̂ij of f̄ij corresponding to Sij for j = 1, 2. Then, f̂i1

is a Kk-approximation function of fi1 , and f̂i2 is a K�-approximation function
of fi2 .

By summation of approximation (Property 1), f̄i defined in (2) is a Kmax{k,�}-
approximation function of fi. Clearly, f̄i is nonincreasing. Let S̄i be a K-approx-
imation set of f̄i, and f̂i be the (nonincreasing) K-approximation function of f̄i

corresponding to S̄i. By approximation of approximation (Property 1), f̂i is
a Kmax{k,�}+1-approximation function of fi. The amount of time required to
evaluate f̄i is

τ(f̄i) = O
(
τ(f̂i1) + τ(f̂i2)

)
= O(log |Si1 | + log |Si2 |) ≤ O(log logK Ū).

The amount of time required to construct S̄i is O
(
(1+τ(f̄i)) logK Ū log U

)
, which

is dominated by the running time for constructing S̄i in the series reduction case.
Let f∗(d) denote the optimal total cost of the project for a given deadline

d. We now analyze how close f̂i0(d) is to f∗(d). Note that after performing r
series/parallel reduction operations (0 ≤ r ≤ n−1), the project network has n−r
activities, namely i1, i2, . . . , in−r. Associated with each activity ij is a function
f̂ij , which is a Kβj -approximation function of fij for some positive integer βj .
We define

∑n−r
j=1 βj as the approximation level of this project.

Before performing any series/parallel reduction, the project has an approxi-
mation level n. Since max{k, 	}+ 1 ≤ k + 	, neither a series reduction operation
nor a parallel reduction operation will increase the approximation level of the
project. Hence, at the end of the solution procedure, the approximation level of
the project is at most n, which implies that f̂i0 is a Kn-approximation of f∗.
Recall that K = 1 + ε

2n . Because (1 + ε
2n)n ≤ 1 + ε, we conclude that f̂i0(d) is a

(1 + ε)-approximation solution to the deadline problem.
Finally, we analyze the running time of the approximation algorithm. Step 2

obtains a K-approximation set and function for each activity. The running

100 N. Halman, C.-L. Li, and D. Simchi-Levi

time of this step is dominated by that of the series/parallel reduction opera-
tions in Step 3. The construction of S̄i in each series/parallel reduction takes
O(log2

K Ū logU log logK Ū) time. Thus, the running time of the entire solution
procedure is O(n log2

K Ū logU log logK Ū).Since logK Ū ≤ 1
K−1 log2 Ū (because

log2K ≥ K−1 for1 < K < 2),therunningtime isO
(

n3

ε2 log2 Ū logU log(n
ε log Ū)

)
.

Therefore, our solution scheme is an FPTAS.

3.2 The Budget Problem

We now consider the budget problem. Let g∗(b) denote the optimal duration
of the project for a given budget b. Suppose we allocate c units of monetary
resources to a pair of series activities i1 (along arc u → v) and i2 (along arc
v → w). Then, the merged activity i (along the merged arc u → w), which has
a budget of c, will have a duration of

gi(c) = min
c′=0,1,...,c

{
gi1(c

′) + gi2(c− c′)
}
, (7)

By Properties 2 and 3, ḡi is a nonincreasing Kmax{k,�}-approximation function
of gi. Let S̄i be a K-approximation set of ḡi, and ĝi be the (nonincreasing)
K-approximation function of ḡi corresponding to S̄i. Then, ĝi is a nonincreas-
ing Kmax{k,�}+1-approximation function of gi, and S̄i can be constructed in
O(log2

K Ū logU log logK Ū) time.
Now, suppose that we allocate c units of monetary resources to a pair of parallel

activities i1 and i2. Then, the merged activity will have an activity time of

gi(c) = min
c′=0,1,...,c

{
max

{
gi1(c

′), gi2(c− c′)
}}
. (8)

We define function ḡi such that for t = 0, 1, . . . , U ,

with Si1 , Si2 , ĝi1 , and ĝi2 having the same definitions as before. Using the same
argument as in the proofs of Properties 2 and 3, we can show that ḡi is a nonin-
creasing Kmax{k,�}-approximation function of gi. Let S̄i be a K-approximation

ḡi(c) = min
c′∈{0,1,...,c}∩(Si1∪{c−x | x∈Si2})

{
ĝi1(c

′) + ĝi2(c− c′)
}
.

ḡi(c) = min
c′∈{0,1,...,c}∩(Si1∪{c−x | x∈Si2})

{
max

{
ĝi1(c

′), ĝi2(c− c′)
}}
,

where gi1(c′) and gi2(c−c′) are the activity times of the original activities i1 and
i2 if they are allocated monetary resources of c′ and c−c′, respectively. Let ḡi1 be
a nonincreasing Kk−1-approximation function of gi1 , and ḡi2 be a nonincreasing
K�−1-approximation function of gi2 . Let Sij be a K-approximation set of ḡij ,
and ĝij be the K-approximation function of ḡij corresponding to Sij (j = 1, 2).
Then, ĝi1 is a Kk-approximation function of gi1 , and ĝi2 is a K�-approximation
function of gi2 . Following the same argument as in Section 3.1, we define function
ḡi such that for t = 0, 1, . . . , U ,

FPTASs for Time-Cost Tradeoff Problems 101

set of ḡi, and ĝi be theK-approximation function of ḡi corresponding to S̄i. Then,
ĝi is a Kmax{k,�}+1-approximation function of gi, and S̄i can be constructed in
O(log2

K Ū logU log logK Ū) time.
Similar to the deadline problem, we determine an approximation solution

to the budget problem by first obtaining a K-approximation set Si and the
K-approximation function of fi corresponding to Si for each activity i, and
then applying series and parallel reductions recursively until the project is re-
duced to a single activity i0. The solution value is given by ĝi0(b), which is a
Kn-approximation of ĝ∗(b). Let K = 1 + ε

2n , where 0 < ε ≤ 1. Then, ĝi0(b) is a
(1 + ε)-approximation solution to the budget problem, and the running time of
the solution procedure is O

(
n3

ε2 log2 Ū logU log(n
ε log Ū)

)
. Therefore, our solution

scheme is an FPTAS.

4 Concluding Remarks

We have developed FPTASs for both the deadline and budget problems. Note
that although these FPTASs generate solutions with relative errors bounded by
ε, the actual relative error of a solution is affected by the sequence of series
and parallel reduction operations. For example, consider the deadline problem
with only four activities i1, i2, i3, i4 arranged in series, where ij is the immediate
predecessor of ij+1 (j = 1, 2, 3). At the beginning of the solution procedure,
we obtain a K-approximation set and a K-approximation function for each of
these activities. Suppose we perform series reductions in the following sequence:
(i) merge i1 and i2 to form a new activity i12; (ii) merge i12 and i3 to form a
new activity i123; and (iii) merge i123 and i4 to form a network with a single
activity i0. Then, step (i) generates a K2-approximation function f̂i12 of fi12 .
Step (ii) generates aK3-approximation function f̂i123 of fi123 . Step (iii) generates
a K4-approximation function f̂i0 of fi0 .

Now, suppose we perform the series reductions in another sequence: (i) merge
i1 and i2 to form a new activity i12; (ii) merge i3 and i4 to form a new activity
i34; and (iii) merge i12 and i34 to form a network with a single activity i0. Then,
step (i) generates a K2-approximation function f̂i12 of fi12 . Step (ii) generates a
K2-approximation function f̂i34 of fi34 . Step (iii) generates a K3-approximation
function f̂i0 of fi0 . Hence, this sequence of series reduction operations yields a
better approximation than the previous one.

Our FPTAS for the deadline problem uses only the “primal” dynamic program
in (3) and (6). It not only approximates the value of the optimal solution f∗(d)
for the deadline problem, but also stores an approximation of the function f∗ over
the entire domain {0, 1, . . . , d} in a sorted array of size O(n

ε log Ū). Therefore,
for any integer x ∈ {0, 1, . . . , d}, only O(log(n

ε log Ū)) additional time is needed
to determine the approximated value of f∗(x).

We note that it is also possible to approximate the deadline and budget prob-
lems using the traditional “scaling and rounding the data” approach. On one
hand, for doing so one needs to use the “dual” dynamic program (e.g., recur-
sions (7) and (8) for the deadline problem). On the other hand, by applying

102 N. Halman, C.-L. Li, and D. Simchi-Levi

the elegant technique of Hassin [8], it is possible to reduce the log Ū term in
the running time to log log Ū . This is done by performing binary search in the
log domain and rounding/scaling gi(c) in (7) and (8) for every value c where
these functions are computed. Unlike our approach, approximating f∗(x) for
any additional x will require the same running time.

Our solution method can be extended to non-series-parallel project networks.
However, the running time of the approximation algorithm will no longer be
polynomial. To tackle non-series-parallel project networks, besides series and
parallel reductions, we also make use of node reduction. Any two-terminal di-
rected acyclic network can be reduced to a single arc via series, parallel, and
node reductions (see [2]). A node reduction operation can be applied when the
node concerned has either in-degree 1 or out-degree 1. Suppose node v has in-
degree 1. Let u → v be the arc into v, and v → w1, v → w2, ..., v → wk be the
arcs out of v. Then a node reduction at v is to replace these k + 1 arcs by arcs
u→ w1, u→ w2, ..., u→ wk. The case where v has out-degree 1 is defined sym-
metrically. In our deadline and budget problems, such a node reduction implies
a decomposition of the problem into m(i) separate problems, where m(i) is the
number of time-cost alternatives of the activity i corresponding to arc u → v.
In each decomposed problem, we obtain the time-cost tradeoff functions for arcs
u → w1, u → w2, ..., u → wk by adding the time duration and activity cost
of u → v to the time-cost tradeoff functions of v → w1, v → w2, ..., v → wk,
respectively. Bein et al. [2] have developed an efficient method for determining
the minimum number of node reductions in order to reduce the given project
network to a single activity. They refer to this minimum number of node reduc-
tions as reduction complexity. Therefore, a discrete time-cost tradeoff problem
in a non-series-parallel project network can be decomposed into m̄h time-cost
tradeoff problems with series-parallel networks, where m̄ = maxi{m(i)} and h
is the reduction complexity. If h is bounded by a constant (i.e., the network is
near-series-parallel) and m̄ is bounded by a polynomial of the problem input
size, then making such a decomposition and applying the algorithms presented
in Section 3 will give us an FPTAS for the problem.

Note that the computational complexity of this decomposition method in-
creases exponentially as the reduction complexity increases. Hence, this method
is practical only if h is small. As mentioned in Section 1, for general non-series-
parallel project networks, it is very difficult to obtain an ε-approximation algo-
rithm for the time-cost tradeoff problem (for example, the budget problem does
not even have a polynomial-time approximation algorithm with performance
guarantee better than 3

2 unless P=NP).

Acknowledgment

The authors would like to thank three anonymous reviewers for their helpful
comments and suggestions, including the one about the possibility to decrease
the log Ū term in the running time to log log Ū .

FPTASs for Time-Cost Tradeoff Problems 103

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the Association for Computing Machinery 41, 153–180 (1994)

2. Bein, W.W., Kamburowski, J., Stallmann, M.F.M.: Optimal reduction of two-
terminal directed acyclic graphs. SIAM Journal on Computing 21, 1112–1129
(1992)

3. De, P., Dunne, E.J., Ghosh, J.B., Wells, C.E.: Complexity of the discrete time-cost
tradeoff problem for project networks. Operations Research 45, 302–306 (1997)

4. Deineko, V.G., Woeginger, G.J.: Hardness of approximation of the discrete time-
cost tradeoff problem. Operations Research Letters 29, 207–210 (2001)

5. Frank, H., Frisch, I.T., Van Slyke, R., Chou, W.S.: Optimal design of centralized
computer networks. Networks 1, 43–58 (1971)

6. Halman, N., Klabjan, D., Li, C.-L., Orlin, J., Simchi-Levi, D.: Fully polynomial
time approximation schemes for stochastic dynamic programs. In: Proceedings of
the Nineteenth ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 700–
709 (2008)

7. Halman, N., Klabjan, D., Mostagir, M., Orlin, J., Simchi-Levi, D.: A fully polyno-
mial time approximation scheme for single-item stochastic inventory control with
discrete demand. Working paper submitted for publication. Massachusetts Insti-
tute of Technology, Cambridge (2006)

8. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-
ematics of Operations Research 17, 36–42 (1992)

9. Hindelang, T.J., Muth, J.F.: A dynamic programming algorithm for decision CPM
networks. Operations Research 27, 225–241 (1979)

10. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

11. Rothfarb, B., Frank, H., Rosebbaum, D.M., Steiglitz, K., Kleitman, D.J.: Optimal
design of offshore natural-gas pipeline systems. Operations Research 18, 992–1020
(1970)

12. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem.
Mathematics of Operations Research 23, 909–929 (1998)

13. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs.
SIAM Journal on Computing 11, 298–313 (1982)

Efficient Algorithms for Fixed-Precision

Instances of Bin Packing and Euclidean TSP

David R. Karger and Jacob Scott�

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
{karger,jhscott}@csail.mit.edu

Abstract. This paper presents new, polynomial time algorithms for Bin
Packing and Euclidean TSP under fixed precision. In this model, integers
are encoded as floating point numbers, each with a mantissa and an ex-
ponent. Thus, an integer i with has mantissa ai and exponent
ti. This natural representation is the norm in real-world optimization. A
set of integers I has L-bit precision if maxi∈I ai < 2L. In this framework,
we show an exact algorithm for Bin Packing and an FPTAS for Euclid-
ean TSP which run in time poly(n) and poly(n + log 1/ε), respectively,
when L is a fixed constant. Our algorithm for the later problem is exact
when distances are given by the L1 norm. In contrast, both problems
are strongly NP-Hard (and yield PTASs) when precision is unbounded.
These algorithms serve as evidence of the significance of the class of fixed
precision polynomial time solvable problems. Taken together with algo-
rithms for the Knapsack and Pm||Cmax problems introduced by Orlin
et al. [10], we see that fixed precision defines a class incomparable to
polynomial time approximation schemes, covering at least four distinct
natural NP-hard problems.

1 Introduction

When faced with an NP-complete problem, algorithm designers must either set-
tle for approximation algorithms, accept superpolynomial runtimes, or identify
natural restrictions of the given problem that are tractable. In the last cate-
gory we find numerous weakly NP-hard problems, which have pseudo-polynomial
algorithms that solve them in time polynomial in the problem size and the mag-
nitude of the numbers in the problem instance, and are thus polynomial in the
problem size when the number magnitudes are polynomial in the problem size.
A more recent development is that of fixed parameter tractability, another way
of responding to the hardness of specific problem instances. In this paper, we
explore fixed precision tractability. While pseudo-polynomial algorithms aim at
problems whose numbers are integers of bounded size, we consider the case of
floating point numbers that have bounded mantissas but arbitrary exponents.
We consider such an exploration natural for a variety of reasons:
� Supported by National Science Foundation grant CCF-0635286 and by an NDSEG

Fellowship.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 104–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

i = ai2
ti

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 105

1. Floating point numbers are the norm in real-world optimization. They reflect
the fact that practitioners seem to need effectively unlimited ranges for their
numbers but recognize that they must tolerate limited precision. It is thus
worth developing a complexity theory aligned with these types of inputs.

2. Conversely, from a complexity perspective, it remains unclear exactly why
certain problems become easy in the pseudo-polynomial sense. Is it because
the magnitude of those numbers is limited, or because their precision is?
The pseudo-polynomial characterization bounds both, so it is not possible
to distinguish.

3. As observed by Orlin et al. [10], a fixed-precision-tractable algorithm yields a
inverse approximation algorithm for the problem, taking an arbitrary input
and yielding an optimal solution to an instance in which the input numbers
are perturbed by a small relative factor (namely, by rounding to fixed pre-
cision). This is arguably a more meaningful approximation than a PTAS or
FPTAS that perturbs the value of the output.

Orlin et al., while introducing the notion of fixed precision tractability, gave
fixed precision algorithms for Knapsack and Three Partition. But this left open
the question of how general fixed-precision tractability might be. Knapsack and
Three Partition are some of the “easiest” NP-complete problems, both exhibiting
trivial fully polynomial approximation schemes. It was thus conceivable that
fixed-precision tractability was a fluke arising from these problems’ simplicity.

In this paper we bring evidence as to the significance of the fixed precision
class, by showing that Bin Packing and Euclidean TSP are both fixed precision
tractable. This is interesting because neither of them is known to have a fully
polynomial approximation scheme. Orlin et al. showed that, conversely, there are
problems with FPTASs that are not fixed precision tractable. We therefore see
that fixed precision defines a class incomparable to FPTASs, covering at least 4
distinct natural NP-hard problems.

In order to demonstrate these results it is necessary for us to introduce some
new, natural solution techniques. If all our input numbers have the same expo-
nent, then we can concentrate on the mantissas of those numbers (which will
be bounded integers) and apply techniques from pseudo-polynomial algorithms.
The question is how to handle the varying exponents. We develop dynamic pro-
grams that scale through increasing values of the exponents, and argue that once
we have reached a certain exponent, numbers with much smaller exponents can
be safely ignored. This would be trivial if we were seeking approximate solu-
tions but takes some work as we are seeking exact solutions. We believe that our
approach is a general one to developing fixed-precision algorithms.

2 Background

In this section we give an overview of generally related previous work. Then
we review the L-bit precision model to which our algorithms apply. Finally, we
present relevant work on Bin Packing and Euclidean TSP, the problems for which
we give algorithms in Sections 3 and 4.

106 D.R. Karger and J. Scott

2.1 Approximation Algorithms, Fixed Parameter Tractability, and
Inverse Optimization

When faced with an NP-Hard optimization problem, the first option is most
often the development of an approximation algorithm. If the best solution for an
instance I of some minimization problem P has objective value OPT (I), then
an α-approximation algorithm for P is guaranteed for each instance I to return
a solution with an objective value of no more than α · OPT (I). Previous work
in this area is vast, and we refer the interested reader to Vazirani [12] for a wide
overview of the field. The best one can hope for in this context is a polynomial
time approximation scheme, a polynomial time algorithm which can provide a
(1 + ε)-approximation for P , for any ε. If the running time of such an algorithm
is polynomial in 1/ε, it is referred to as fully polynomial, and we say that P has
an FPTAS. If the running time is polynomial only when ε is fixed, we say that
P has an PTAS.

Another way in which NP-Hard problems can be approached is through fixed
parameter tractability [6]. Here, a problem may have an algorithm that is expo-
nential, but only in the size of a particular input parameter. Given an instance I
and a parameter k, a problem P is fixed parameter tractable with respect to k if
there is an (exact) algorithm for P with running time O(f(|k|) · |I|c), where |x|
gives the length of x, f depends only on |k|, and c is a constant. Such problems
can be tractable for small values of k. For example, Balasubramanian et al. [3]
show it is possible to determine if a graph G = (V,E) has a vertex cover of size
k in O

(
|V |k + (1.324718)kk2

)
time. The problem is thus tractable when the size

of the vertex cover is given as a fixed parameter.
Inverse optimization, introduced by Ahuja and Orlin [1], is closer to the L-

bit precision regime we work in. Consider a general minimization problem over
some vector space X , min{cx : x ∈ X}. If this problem is NP-Hard, an α-
approximation algorithm can return a solution x∗ such that cx∗−cx

cx ≤ α. Inverse
optimization instead modifies the cost vector. That is, it searches for a solution
x′ and cost vector c′ close to c (in, for example, L∞ distance) so that min{c′x :
x ∈ X} = x′. The tightness of this approximation is then measured based on the
distance from c′ to c. This analysis can be more natural for some problems. In Bin
Packing, for example, a standard approximation algorithm requires more bins
than the optimal algorithm, while an inverse approximation algorithm requires
an equal number of larger bins. All fixed precision tractable problems can be
translated into this framework via rounding.

2.2 L-Bit Precision

Our algorithms apply to the L-bit precision model introduced by Orlin et al. [10].
Problems in this model have their integer inputs represented in a nonstandard
encoding. Each integer i is encoded as the unique pair (m,x) such that i = m·2x,
and m is odd. Following terminology for floating point numbers, we refer to
m as the mantissa and x as the exponent of i. A problem instance has L-bit
precision with respect to some subset M ⊆ I of its integer inputs (encoded as
above) if, ∀(m,x) ∈M,m < 2L. Each (m,x) ∈M can then be represented with

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 107

O(L+ log x) bits. An algorithms runtime is then computed in relation to the
total size T of its input, with numbers encoded appropriately. Two settings for
L are considered. When L is constant, instances have fixed precision, and when
L = O(logT), they have logarithmic precision.

Orlin et al. show polynomial time algorithms for fixed and logarithmic preci-
sion instances of the Knapsack problem. They show the same for Pm||Cmax, the
problem of scheduling jobs on m identical machines so as to minimize the maxi-
mum completion time. The precision here is with respect to item values and job
lengths, respectively. The algorithms work by reducing the problem to finding
the shortest path on an appropriate graph. Such paths can take exponential time
to find in the general case, but can be computed efficiently under L-bit precision.
Our algorithms use similar techniques. We note that both of these problems are
known to be NP-Complete, and also to support FPTASs.

The paper also demonstrates a polynomial time algorithm for the 3-partition
problem when all numbers to be partitioned have fixed precision.1 These in-
stances can be reduced to integer programs with a linear number of constraints
and a fixed number of variables, which in turn can be solved in linear time.
Finally, a variant of the Knapsack problem is shown that supports an FPTAS,
but is NP-Complete for even 1-bit precision. The problem, Group Knapsack,
allows items to have affinities for other items, so that item x can be placed in
the Knapsack if and only if item y is also packed. Thus, items with different
exponents can express affinity for each other, essentially reconstructing items of
arbitrary precision.

2.3 Bin Packing

Bin packing is a classic problem in combinatorial optimization. The problem
dates back to the 1970s and there are an enormous number of variants. We
restrict ourselves to the original one-dimensional version. Here we are given a set
of n items {x1, x2, . . . xn}, each with a size s(xi) ∈ [0, 1]. We must pack each item
into a unit capacity binBk without overflowing it – that is,
Our goal is to pack the items so that the number of bins used, K, is minimized.

Bin packing is NP-Complete, and extensive research has been done on approx-
imation algorithms for the problem in various settings (see Coffman et al. [5] for
a survey). The culmination of this work is the well-known asymptotic PTAS
of de la Vega and Lueker [7], which handles large items with a combination of
rounding and brute force search, and then packs small items into the first bin in
which they fit. There is a key difference between this and all other worst case ap-
proximation algorithms for Bin Packing and the algorithm we show in Section 3.
While both run in polynomial time, the former guarantee that they can pack
any set of items into a number of bins that is almost optimal. Our algorithm
guarantees that for a specific class of instances, namely those whose items have
fixed-precision sizes, it can pack items into exactly the optimal number of bins.
1 Note that this is the problem of grouping 3n numbers into n 3-tuples with identical

sums, not splitting them into three groups having the same sum, which is a special
case of Pm||Cmax.

∀k,
∑

xi∈Bk
s(xi) ≤ 1.

108 D.R. Karger and J. Scott

2.4 Euclidean TSP

The Euclidean TSP is a special case of the well-known Traveling Salesman Prob-
lem. The goal of the TSP is to find the minimum cost Hamiltonian cycle on a
weighted graph G = (V,E). That is, to find a minimum weight tour of the graph
(starting from an arbitrary vertex) that visits every other vertex exactly once be-
fore returning to the starting vertex. Determining whether a Hamiltonian cycle
exists in a graph is one of the original twenty-one problems that Karp shows to
be NP-Complete [8], and it follows immediately that TSP is NP-Complete. In-
deed, this reduction implies that no polynomial time algorithm can approximate
general instances TSP to within any polynomial factor unless P=NP.

One special case of the TSP that can be approximated is metric TSP. Here
there is an edge between each pair of vertices, and edge weights are required to
obey the triangle inequality. A simple 2-approximation for metric TSP can be
shown using a tour that “shortcuts” the cycle given by doubling every edge in a
minimum spanning tree and using the resulting Eulerian tour. The best known
approximation ratio for metric TSP is 3/2, and comes from Christofides [4], who
augments the minimum spanning tree more wisely than doubling each edge.

Euclidean TSP, finally, is then a further restriction of metric TSP. Vertices
are taken to be points in Euclidean space (throughout this paper, we restrict
ourselves to the plane), and there is an edge between each pair of vertices with
weight equal to their Euclidean distance. Despite this restriction, the problem re-
mains strongly NP-Hard [11]. Arora [2] gives what is then the best possible result
(unless P = NP), a PTAS, for Euclidean TSP. His algorithm combines dynamic
programming with the use of a newly introduced data structure, the randomly
shifted quadtree, which has since found wide use in computational geometry.
Our algorithm for fixed-precision Euclidean TSP uses a similar combination of
recursion and brute force, but takes advantage of structural properties implied
by the nature of our narrower class of inputs.

3 Bin Packing

In this section we present an nO() time algorithm for L-bit precision instances
of Bin Packing.

3.1 Preliminaries

We consider a version of Bin Packing that is slightly modified from that discussed
in Section 2. We take the following decision problem: given a set of n items
S = {u1, u2, . . . un}, each with a size s(ui) ∈ N, and integers K and C, can
the set S be packed into K bins of capacity C? In the standard way, one can
use an algorithm for this decision problem to solve its optimization analog by
performing a binary search for the minimum feasible value of K. We find it
convenient to consider S to be a set of item sizes, rather than items themselves,
and refer to it in this way throughout the remainder of this section.

4L

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 109

We consider the precision of an instance with respect to the set of items S.
Thus, we consider an instance of Bin Packing to have L-bit precision if for all
u = m2x ∈ S,m < 2L.

3.2 The Algorithm

Here, in broad strokes, is a nondeterministic algorithm A (that is, A can mag-
ically make correct guesses) for this problem. A runs in rounds, and is only
allowed to pack items that are currently in a special reservoir R. It also main-
tains bin occupancies in a set O, such that ok ∈ O gives the current occupancy
of (that is, the total size of the items in) the kth bin. Rounds proceed as follows.
At the start of each round, A moves some items from S into R. Then, it guesses
which items in R to pack, and which bins to pack them into. Finally, A updates
the occupancy of bins that received items in the round, and performs certain
bookkeeping on R. After the final round, A reports success if and only if R is
empty and all bins have occupancy less than C.

We now describe these steps in detail. Afterwards, we demonstrate how they
can be implemented efficiently. We initialize R to be empty, and all bins to have
occupancy zero. In round x, we move the subset of items Sx ⊆ S from S to R,
where Sx contains all items in S with exponent x. In the packing step, for each
size mantissa m ∈ {1, 3, . . .2L − 1}, we guess which bins will be packed with an
odd number of items of size m2x. We place exactly one item of size m2x into
each such bin, removing it from R and updating O.

We note the following property of the algorithm as presented so far.

Property 1. After round x, for all m, the remaining number of items of size m2x

that should be packed into any bin k is even.

In light of Property 1, our bookkeeping procedure is to merge each pair of items
of size m2x in R, creating a single item of size m2x+1. Because we know that
all of these items will be packed in pairs and that the size of the merged item
is the sum of the sizes of its two constituents, this merging will not effect fea-
sibility. By induction, this will mean that after round x there are no items of
exponent less than x remaining in either S or R. After this step, A proceeds to
round x + 1. The final round occurs when both S and R are empty, at which
point all items have been packed. The following lemma bounds the number of
rounds.

Lemma 1. If a round x is skipped when both Sx and R are empty, then A runs
at most n rounds.

3.3 Analysis

We start by showing that the state of A can be represented compactly. This
state can be described completely by the current round (which also dictates the
items remaining in S), the items in R, and the bin occupancy O, so we represent
such a state as {R,O, x}. We have already seen that x has at most n possible
values. By design, every item in R at the start of round x has exponent exactly

110 D.R. Karger and J. Scott

x. Thus, we can represent R by storing a count of the number of objects with
each mantissa. Expressed in this way, R has a total of O(n2 −1

) possible values.
The following lemma shows that O can also be represented compactly.

Lemma 2. Consider a bin occupancy ok at the start of round x. Then rounding
ok up to the next integer multiple of 2x does not affect the feasible executions of A.

Proof. Let ok′ be equal to ok rounded up to the next integer multiple of 2x, and
consider two bins with these occupancies. Let ek = C − ok and ek′ = C − ok′ be
the space remaining in each bin. Then we have that

⌊ ek
2x

⌋
=
⌊ek′

2x

⌋

We conclude the proof by noting that all items remaining to be packed (in
both R and S) have exponent at least x, so that any set of remaining items can
be packed into bin k if and only if it can be packed into bin k′.

At the start of round x, each bin is occupied by at most one item of each
size that has exponent less than x. At this point, we thus have for each k,
ok ≤

∑x
y=0

∑2 −1
w=1 w2y ≤ 22L+x. This fact coupled with Lemma 2 yields that

O can also be represented by counting the number of bins of size a · 2x, for
a ∈ [0, 22L). As there are at most n bins, the number of distinct O can then be
bounded by O(n4).

Now, consider a graph with nodes for each possible state {R,O, x}. Let us
place a directed edge between {R,O, x} and {R′, O′, x+1} if it possible for A to
begin round x+1 with reservoir R′ and bin occupancy O′ having started round x
with reservoir R and occupancy O.2 Then we can implement A by searching for
a path between {{}, {}, 0} and {{}, O∗, xmax} in this graph (where O∗ satisfies
all ok ≤ C for all ok ∈ O∗). The following lemma states that we can test if an
edge should be inserted efficiently.

Lemma 3. Given two algorithm states S1 = {R,O, x} and S2 = {R′, O′, x+1},
it is possible to determine if A can transition from S1 to S2 in time O

(
n · n4·4

)
.

Proof. Consider the following packing problem: given a set of n items Y , and a
set of w bins with occupancies U and capacities Q (we allow bins with different
capacities), is there a feasible packing of Y into the partially occupied U? We
note that if all bin capacities are upper bounded by v, then this problem can be
easily solved by dynamic programming in time O(nw2v).

It should be clear that asking if a transition is possible between S1 and S2 can
be represented as an instance of this problem. We first take Y = R ∪ Sx − R′,
noting that we may need to ‘unmerge’ some items in R′ in order to subtract
them, but that this is easy to do. Initial bin occupancies U are then given by
O. Bin capacities Q are given by O′, as this set describes the occupancy bins
should have at the start of round x+ 1.
2 We may also need some edges between states {R, O, x} and {R′, O′, x′}, where x′ �=

x + 1. However, this only happens when rounds are skipped, and these edges are
trivial to calculate.

L

L

L

L

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 111

We have one caveat here. As described above, the items in Y all have exponent
2x, but the occupancies in O′ are represented as multiples of 2x+1. Thus, an
occupancy o′k = (2i− 1)2x+1 ∈ O considered as a capacity qw ∈ Q may need to
be incremented by 2x. Letting C[x] be the xth bit of our original capacity C, we
can simply let qw = o′k + C[x]2x.

Finally, we would like our capacities to have a small upper bound, so that the
dynamic programming is efficient. Since all of the numbers here are multiples
of 2x, we scale them down by this factor before running the dynamic program-
ming. This gives us a maximum bin capacity of v = 22L+2. Thus we can test
whether there should be an edge between S1 and S2 in time O

(
nw22 +2

)
=

O
(
n · n4·+4

)
.

We can now state our main theorem.

Theorem 1. There is an nO(4) time algorithm for L-bit instances of Bin
Packing.

Proof. The Running time of A is dominated by constructing the edges in the
state space graph. There are nO(4) of these edges, and each takes nO(4) time
to test for inclusion.

4 Euclidean TSP

In this section we present an FPTAS for L-bit instances of Euclidean TSP, which
provides an (1 + ε)-approximation in time nO(4) · log 1/ε.

4.1 Preliminaries

The version of the Euclidean TSP we consider is the following. Given a set of
vertices V = {(x, y)} on the plane,3 what is the shortest tour that visits each
point exactly once, when edge lengths are given by the L2 distance between
two endpoints? We consider the precision of an instance with respect to the
coordinates of its points in the following manner. We say an instance of Euclidean
TSP has precision L if for every ((mx, xx), (my, xy)) ∈ V , max{mx,my} < 2L,
and bothmx andmy are odd. Equivalently, all points in V must lie along a series
of axis-aligned squares SQz centered on the origin, with side length z = i · 2j ,
and all i ≤ 2L. See Figure 1 for an example.

While we would like to show an exact algorithm for fixed-precision instances
of Euclidean TSP, that goal is frustrated by the fact that the problem is not
known to be in NP. Specifically, there are no known polynomial time algorithms
for comparing the magnitude of sums of square roots. Thus, given two tours with
square-root edge lengths, we have no efficient way to decide which is shorter.
Instead, we provide an algorithm that achieves a (1 + ε)-approximation with a
3 We use x to denote the x-axis of the plane in order to avoid confusion with the

exponent of a fixed precision integer.

L

L

L

L L

L

112 D.R. Karger and J. Scott

Fig. 1. The initial squares SQ1, SQ2,
SQ3, SQ4, SQ6 and SQ8 on which
points of a 2-bit precision Euclidean
TSP instance can lie

v1

v2

v3
SQzv4

v6

v5

v7

v8

Fig. 2. If the edges of Wx are given
as above, then Dx = {0 : {v5, v6}, 1 :
{(v1, v4), (v7, v8)}}. All remaining ver-
tices (v2 and v3) then have degree two.

runtime dependence on ε that is only O(log 1/ε). We do this by rounding edge
lengths to the nearest multiple of 2�log ε�. Going forward we assume that this
rounding has been done.

For simplicity, we rescale the edge lengths and present our algorithm as an
exact algorithm taking integral edge lengths in addition to the set of vertices V .
We also give our bounds assuming that we can do operations on edge lengths in
constant time. At the end of the section, we reintroduce the approximate nature
of our result and the O(log 1/ε) cost of doing operations on edge lengths. Note
that this problem with radicals does not arise when edge lengths are given by the
L1 norm, and in this case the above rounding and approximation is unnecessary.

4.2 The Algorithm

Again, we begin by giving an overview of an algorithm B which solves the prob-
lem, and follow with an analysis of its efficiency. Like A discussed in the previous
section, B is nondeterministic and runs in rounds. In each round, B considers
points lying on a single SQz (as described above), in increasing order of side
length. The algorithm maintains an edge set W , and for each vertex v consid-
ered in a round, the algorithm guesses all edges in an optimal tour connecting v
to previously processed vertices. After the last round, when all points lying on
the outermost square are processed, W will contain edges that form an optimal
tour of V . The intuition underlying our algorithm is similar to that of Arora [2].
Because points lie along a series of SQz, and z is fixed precision, we expect few
edges to cross these squares, as cheaper tours may be constructed by ‘shortcut-
ting’ such in-out edges. This allows a dynamic programming formulation that
keeps as its state the entry and exit points of these squares, and gathers the
(rare) crossing edges.

x

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 113

More formally, let T be an edge set that forms an optimal tour of V . We
define Tz ⊆ T to be the subset of edges in T with both endpoints on or inside
SQz. Assume that the points in V lie on a series of squares with side length
z1 < z2 < . . . < zmax (clearly, there are at most n such squares). Then in round
x, B will add the edges in Tzx − Tzx−1 to W .

We use the following construction to implement B. We define Dx = d(Wx)
to be an augmented degree sequence of the vertices in V induced by the edges
present in W at the start of round x. We note that Tzx is composed of disjoint
paths; our augmentation is to record in Dx the endpoints of these paths (in
pairs). See Figure 2 for an example. This information is necessary to check for
the presence of premature cycles, as we will see later. We then create a graph
Gdeg with all possible Dx as vertices. We add a directed transition edge with
weight w between Dx and Dx+1 if there is an edge set Sx with cumulative weight
w such that Dx + d(Sx) = Dx+1. We further require that adding Sx to Dx does
not create any cycles, save when x+1 = xmax. For each pair (Dx, Dx+1), we keep
only the lightest such transition edge, and annotate it with the set Sx. From this
graph, we can recover T by taking the union of the Sx attached to a shortest
path between D0 = (0, 0, . . . , 0) and Dxmax = (2, 2, . . . , 2).

4.3 Analysis

We now show that the number of vertices in Gdeg is bounded, and that we can
efficiently construct its edge set. We begin with the following lemma, whose proof
appears in Appendix A.

Lemma 4. Consider a L-bit precision set of vertices V on the plane. Then for
all z, any optimal tour of V will cross SQz at most O

(
4L
)

times.

We now consider the number of distinct feasible values of Dx, for a fixed x.
Clearly, all points outside of SQz have degree zero. By Lemma 7, we know that
at most O

(
4L
)

of the remaining vertices have a degree that is less than two.
Thus Dx can be represented compactly by listing the vertices in this set, their
degree, and all path endpoints (that is, pairings of degree one vertices). This
gives a bound of nO(4L) on the number of distinct values.

What remains is to demonstrate that for each pair of degree sequences (Dx,
Dx+1), the minimum weight edge set Sx whose addition to Dx yields Dx+1

(and no cycles) can be computed in polynomial time. We note that all edges
in Sx have at least one endpoint on SQzx . We refer to edges with exactly one
endpoint on SQzx as single edges, and those with both endpoints on SQzx as
double edges. For each point v strictly inside SQzx , we must addDx+1(v)−Dx(v)
single edges incident to v. We enumerate all nO(4L) possible non-cycle-inducing
sets Ss

x of single edges, and claim that given such a set, the minimum weight
non-cycle-inducing set of double edges Sd

x can be computed in polynomial time.

Lemma 5. Let Dx and Dx+1 be degree sequences as described above. Let Ss
x be

a non cycle inducing set of single edges. Then the minimum weight non-cycle-
inducing set of double edges Sd

x satisfying Dx + d(Ss
x) + d(Sd

x) = Dx+1 can be
constructed in time nO(4L).

114 D.R. Karger and J. Scott

5 Conclusion

We have given algorithms demonstrating that two natural problems, bin-packing
and Euclidean TSP, are polynomial time solvable when their input numbers are
given in fixed precision. We have therefore offered further evidence that the
class of fixed-precision tractable NP-hard problems is a meaningful class worthy
of further study. Several additional observations arise regarding this class:

1. As argued in the introduction, fixed-precision tractability seems orthogonal
to pseudo-polynomial tractability. There are problems, such as Knapsack,
that have both pseudo-polynomial and fixed precision algorithms. Others,
such as Group Knapsack, have pseudo-polynomial algorithms but do not
have fixed-precision algorithms. Conversely, while bin-packing and Euclidean
TSP do not have fully polynomial approximation schemes, our algorithms
show them to be fixed precision tractable, but only when the number of
mantissa bits is fixed (note that if we could handle a logarithmic number of
bits of precision, we would have a pseudo-polynomial algorithm).

2. Just how large is this class of fixed-precision tractable problems? Fixed pre-
cision tractability seems fragile, in a way the pseudo-polynomial algorithms
are not. Add some polynomial size integers and you get another; add two
low-precision numbers with different exponents and you suddenly have a high
precision number. Does this fragility mean that few problems are tractable
in this way?

Proof. All possible Sd
x can be enumerated as follows. Consider any point v along

SQzx with Dx+1[v] = Dx[v] + d(Ss
x)[v] + 1. The edges in Sd

x that v can reach
form a path consisting of connected segments of the perimeter of SQzx . This
path cannot cross itself (for if this is the case, then there is a less expensive
tour that does not include this crossing), so there can be at most one segment
on each side of SQzx . We can enumerate the starting and ending vertex of each
segment, giving the path starting from a single vertex O

(
n8
)

possibilities. By

Lemma 7, there are at most nO(4L) possible starting vertices. Finally, for each
set of paths, we spend O(n) time to check that no cycles have been created and
that the degree sequence induced is correct.

We can now give our main lemma.

Lemma 6. There is an nO(4L) time exact algorithm for L-bit precision instances
of Euclidean TSP with integral edge lengths.

Proof. Our runtime is dominated by the time to construct Gdeg. By Lemma 7
we have at most nO(4L) possible edges in Gdeg. By Lemma 5, the cost to check
each edge is nO(4L).

We conclude by relaxing our constraints on edge lengths.

Theorem 2. There is an FPTAS for L-bit instances of Euclidean TSP that
achieves an (1 + ε)-approximation in time nO(4L) log 1/ε.

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 115

3. Work by Korte and Schrader [9] shows a tight connection between pseudo
polynomial algorithms and fully polynomial approximation schemes—
problems that have one tend to have the other, in a formalizable sense.
There is a similar coupling between algorithms with (non-fully) polynomial
approximation schemes, and algorithms that can be solved by brute force
enumeration when they are limited to a few input “types.” Is there a simi-
lar connection between fixed-precision tractability and, for example, inverse
approximation as defined by Orlin? One direction is obvious (as is the case
for FPTAS and pseudo-polynomial algorithms) but the other is not clear.

References

1. Ahuja, R.K., Orlin, J.B.: Inverse Optimization. Operations Research 49(5), 771–
783 (2001)

2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. Journal of the ACM (JACM) 45(5), 753–782
(1998)

3. Balasubramanian, R., Fellows, M.R., Raman, V.: An improved fixed-parameter
algorithm for vertex cover. Information Processing Letters 65(3), 163–168 (1998)

4. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman
problem. In: Symposium on new directions and recent results in algorithms and
complexity, page 441 (1976)

5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin
packing: a survey. In: Approximation algorithms for NP-hard problems, pp. 46–93
(1996)

6. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness I:
Basic Results. SIAM J. Comput. 24(4), 873–921 (1995)

7. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ ε in
linear time. Combinatorica 1(4), 349–355 (1981)

8. Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer
Computations 43, 85–103 (1972)

9. Korte, B., Schrader, R.: On the Existence of fast Approximation Schemes (1982)
10. Orlin, J.B., Schulz, A.S., Sengupta, S.: ε-optimization schemes and L-bit preci-

sion: alternative perspectives in combinatorial optimization (extended abstract).
In: ACM Symposium on Theory of Computing, pp. 565–572 (2000)

11. Papadimitriou, C.H.: Euclidean TSP is NP-complete. Theoretical Computer Sci-
ence 4, 237–244 (1977)

12. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

A Geometric Proofs

Lemma 7. Consider a L-bit precision set of vertices V on the plane. Then for
all z, any optimal tour of V will cross SQz at most O

(
4L
)

times.

Proof. An edge crosses SQz if it has exactly one endpoint strictly outside SQz.
We refer to the set of crossing edges as Q, breaking it into two distinct subsets
Q1 and Q2 such that Q1 ∪ Q2 = Q. Edges in Q1 have an endpoint on SQz ,a

116 D.R. Karger and J. Scott

SQz

SQz′

Fig. 3. This is an example ’brute force’ tour that will cover all points in Q1. We take
z′ ≤ 3z. Note that the horizontal distance between the vertical edges can be arbitrarily
small.

a b c

d e f

SQ3z

SQz

Fig. 4. The solid lines between points exist in Q2. The dashed line indicates that there
is a path from a to e that does not go through b, c, d, or f . This edge is guaranteed
(modulo permutations on vertex labels) to exist, because there are no other diagonal
edges between these vertices in Q2, by definition.

z < za ≤ 3z, and edges in Q2 have an endpoint on SQz , 3z < zb. In what follows
we show that |Q1| ≤ 9 · 4L and |Q2| ≤ 192, and the claim follows immediately.

We can construct a tour that replaces edges in Q1 with (shortcutting) the
construction shown in Figure 3. Each SQz is toured via edges with total weight
6za, while each edge in Q1 with an endpoint on SQz has length at least za/2L.
Since there are at most 3 · 2L−1 squares between SQz and SQ3z, this gives an
upper bound of 9 · 4L on the size of Q1.

b

a

a

Efficient Algorithms for Fixed-Precision Instances of Bin Packing 117

a

d e

t2

b

t1 SQ3z

SQz

Fig. 5. We have that len(ab) ≤
√

2z and len(t1t2) ≤ z/2. Also, both len(t1a) and len(t2b)
are at least 2z. Thus we can replace {(a, d), (b, d)} with {(a, b), (d, t1), (t1, t2), (t2, e)},
and end up with a shorter tour without adding any cycles.

Now, assume that |Q2| > 192. Then there must be a segment along the
perimeter of SQ3z of length z/2 that is intersected by 8 edges in Q2. Then
there are distinct vertices H = {a, b, c, d, e, f} as in Figure 4 such that the set
{(a, e)(a, f), (b, d), (b, f), (c, d), (c, e)} intersected with Q2 is empty. Thus, there
must be v1 ∈ (a, b, c) and v2 ∈ (d, e, f) such that there is a path from v1 to
v2 is neither direct nor passes through any other vertices in H . This in turn
induces a graph like that found in Figure 5, where without loss of generality
v1 = a and v2 = e. Here, we can replace the edges {(a, d), (b, e)} with edges
{(a, b), (d, t1), (t1, t2), (t2, e)} for a shorter tour, contradicting the assertion that
|Q2| > 192.

Approximating Maximum Subgraphs without
Short Cycles

Guy Kortsarz1,�, Michael Langberg2, and Zeev Nutov3

1 Rutgers University, Camden
Currently visiting IBM Research Yorktown Heights

guyk@camden.rutgers.edu
2 The Open University of Israel

mikel@openu.ac.il
3 The Open University of Israel

nutov@openu.ac.il

Abstract. We study approximation algorithms, integrality gaps, and
hardness of approximation, of two problems related to cycles of “small”
length k in a given graph. The instance for these problems is a graph
G = (V, E) and an integer k. The k-Cycle Transversal problem is to find
a minimum edge subset of E that intersects every k-cycle. The k-Cycle-
Free Subgraph problem is to find a maximum edge subset of E without
k-cycles.

The 3-Cycle Transversal problem (covering all triangles) was studied by
Krivelevich [Discrete Mathematics, 1995], where an LP-based 2-approxi-
mation algorithm was presented. The integrality gap of the underlying
LP was posed as an open problem in the work of Krivelevich. We re-
solve this problem by showing a sequence of graphs with integrality gap
approaching 2. In addition, we show that if 3-Cycle Transversal admits a
(2−ε)-approximation algorithm, then so does the Vertex-Cover problem,
and thus improving the ratio 2 is unlikely. We also show that k-Cycle
Transversal admits a (k−1)-approximation algorithm, which extends the
result of Krivelevich from k = 3 to any k. Based on this, for odd k we
give an algorithm for k-Cycle-Free Subgraph with ratio k−1

2k−3 = 1
2 + 1

4k−6 ;
this improves over the trivial ratio of 1/2.

Our main result however is for the k-Cycle-Free Subgraph problem with

even values of k. For any k = 2r, we give an Ω
�
n

− 1 + 1
(2 −1) −ε

�
-approxi-

mation scheme with running time ε−Ω(1/ε)poly(n). This improves over
the ratio Ω(n−1/r) that can be deduced from extremal graph theory. In
particular, for k = 4 the improvement is from Ω(n−1/2) to Ω(1/n−1/3−ε).

Similar results are shown for the problem of covering cycles of length
≤ k or finding a maximum subgraph without cycles of length ≤ k.

1 Introduction

In this work, we study approximation algorithms, integrality gaps, and hardness
of approximation, of two problems related to cycles of a given “small” length k
� Partially supported by NSF Award Grant number 072887.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 118–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

r r r

Approximating Maximum Subgraphs without Short Cycles 119

(henceforth k-cycles) in a graph. The instance for each one of these problems is
an undirected graph G = (V,E) and an integer k. The goal is:
k-Cycle Transversal:
Find a minimum edge subset of E that intersects every k-cycle.
k-Cycle Free Subgraph:
Find a maximum edge subset of E without k-cycles.

Note that k-Cycle Transversal and k-Cycle-Free Subgraph are complementary
problems, as the sum of their optimal values equals |E| = m; hence they are
equivalent with respect to their optimal solutions. However, they differ substan-
tially when considering approximate solutions. Also note that for k = O(log n)
the number of k cycles in a graph can be computed in polynomial time, c.f.,
[3], and that it is polynomial for any fixed k. The k-Cycle Transversal problem
is sometimes referred to as the “k-cycle cover” problem (as one seeks to cover
k-cycles by edges). We adapt an alternative name, to avoid any mixup with an
additional problem that has the same name – the problem of covering the edges
of a given graph with a minimum family of k-cycles.

We will also consider problems of covering cycles of length ≤ k or finding
a maximum subgraph without cycles of length ≤ k. We will elaborate on the
relation of these problems to our problems later. Most of our results extend
to the case when edges have weights, but for simplicity of exposition, we con-
sider unweighted and simple graphs only. We will also assume w.l.o.g. that G is
connected.

1.1 Previous and Related Work

Problems related to k-cycles are among the most fundamental in the fields of
Extremal Combinatorics, Combinatorial Optimization, and Approximation Al-
gorithms, and they were studied extensively for various values of k. See for ex-
ample [5,1,2,17,4,8,10,12,11,13,14,16,15,6] for only a small sample of papers on
the topic. 3-Cycle Transversal was studied by Krivelevich [12]. Erdös et al. [6] con-
sidered 3-Cycle Transversal and 3-Cycle-Free Subgraph and their connections to
related problems. Pevzner et al. [18] studied the problem of finding a maximum
subgraph without cyles of lengt ≤ k in the context of computational biology,
and suggested some heuristics for the problem, without analyzing their approxi-
mation ratio. However, most of the related papers studied k-Cycle-Free Subgraph
in the context of extremal graph theory, and address the maximum number of
edges in a graph without k-cycles (or without cycles of length ≤ k). This is
essentially the k-Cycle-Free Subgraph problem on complete graphs. In this work
we initiate the study of k-Cycle-Free Subgraph in the context of approximation
algorithms on general graphs.

As the state of the art differs substantially for odd and even values of k, we
consider these cases separately. But for both odd and even k, note that k-Cycle
Transversal is a particular case of the problem of finding a minimum transversal
in a k-uniform hypergraph (which is exactly the Hitting-Set problem). Thus a
simple greedy algorithm which repeatedly removes a k-cycle until no k-cycles
remain, has approximation ratio k.

120 G. Kortsarz, M. Langberg, and Z. Nutov

Odd k: For k-Cycle Transversal, an improvement over the trivial ratio of k was
obtained for k = 3 by Krivelevich [12]. Let Ck(G) denote the set of k cycles in
G, and let τ∗(G) denote the optimal value of the following LP-relaxation for
k-Cycle Transversal:

min
∑

e∈E xe (1)
s.t.

∑
e∈C xe ≥ 1 ∀C ∈ Ck(G)

xe ≥ 0 ∀e ∈ E

Theorem 1 (Krivelevich [12]). 3-Cycle Transversal admits a 2-approximation
algorithm, that computes a solution of size at most 2τ∗(G).
For odd values of k, k-Cycle-Free Subgraph admits an easy 1/2-approximation
algorithm, as it is well known that any graph G has a subgraph without odd
cycles (namely, a bipartite subgraph) containing at least half of the edges (such
a subgraph can be computed in polynomial time). In fact, the problem of com-
puting a maximum bipartite subgraph is exactly the Max-Cut problem, for which
Goemans and Williamson [9] gave an 0.878-approximation algorithm. Note how-
ever that the solution found by the Goemans-Williamson algorithm has size at
least 0.878 times the size of an optimal subgraph without odd cycles at all, and
the latter can be much smaller than the optimal subgraph without k-cycles only.

Even k: For k-Cycle Transversal with even values of k we are not aware of any
improvements over the trivial ratio of k. For k-Cycle-Free Subgraph with even k, it
is no longer the case that G has a k-cycle free subgraph containing at least half of
the edges. The maximum number ex(n,C2r) of edges in a graph with n nodes and
without cycles of length k = 2r has been extensively studied. This is essentially
the 2r-Cycle-Free Subgraph problem on complete graphs. This line of research in
extremal graph theory was initiated by Erdös [5]. The first major result is known
as the “Even Circuit Theorem”, due to Bondy and Simonovits [4], states that
any undirected graph without even cycles of length ≤ 2r has at most O(rn1+1/r)
edges. This bound was subsequently improved. To the best of our knowledge,
the currently best known upper bound on ex(n,C2r) due to Lam and Verstraëte
[15] is 1

2n
1+1/r + 2r2

n. We note that the best lower bounds on ex(n,C2r) are as
follows. For r = 2, 3, 5 it holds that ex(n,C2r) = Θ(n1+1/r). For other values of
r, the existence of a 2r-cycle-free graph with Θ(n1+1/r) has not been established,
and the best lower bound known is ex(n,C2r) = Ω

(
n1+ 2

3 −3+

)
where ε = 0

if r is odd and ε = 1 if r is even; we refer the reader to [16] for a summary
of results of this type. All this implies that on complete graphs (a case which
was studied extensively), the best known ratios for 2r-Cycle-Free Subgraph are:
constant for r = 2, 3, 5, and Ω

(
n−

1 + 2
6 −3+

)
otherwise. For general graphs, the

bound ex(n,C2r) = O
(
n1+1/r

)
implies an Ω(n−1/r)-approximation by taking a

spanning tree of G as a solution. In particular, for k = 4, the approximation
ratio is Ω(1/

√
n), and no better approximation ratio was known for this case.

k

r r

Approximating Maximum Subgraphs without Short Cycles 121

1.2 Our Results

Our main result is for the k-Cycle-Free Subgraph problem on even values of k. It
can be summarized by the following theorem:

Theorem 2. For k = 2r, k-Cycle-Free Subgraph admits an Ω
(
n−

1 + 1
(2 −1)−ε

)
-

approximation scheme with running time ε−Ω(1/ε)poly(n). In particular, 4-Cycle-
Free Subgraph admits an Ω(1/n−1/3−ε)-approximation scheme.

For dense graphs, we obtain better ratios that are close to the ones known for
complete graphs. Proof of the following statement will appear in the full version
of this paper.

Theorem 3. Let G = (V,E) be a graph with n nodes and at least εn2 edges.
Then G contains a 2r-cycle-free subgraph with at least ε · ex(n,C2r) edges.

On the negative side, the only hardness of approximation result we obtain (again
proof will appear in the full version of this paper) is APX-hardness. Thus for
even values of k there is a large gap between the upper and lower bounds we
present. Resolving this large gap is an intriguing question left open in our work.

Our next results are for odd k. Krivelevevich [12] posed as an open question
if his (upper) bound of 2 on the integrality gap of LP (1) is tight for k = 3.
We resolve this question, and in addition show that the ratio 2 achieved by
Krivelevich for k = 3 is essentially the best possible.

Theorem 4

(i) If 3-Cycle Transversal admits a 2 − ε approximation ratio for some positive
universal constant ε < 1/2, then so does the Vertex-Cover problem.

(ii) For any ε > 0 there exist infinitely many undirected graphs G for which the
integrality gap of LP (1) with k = 3 is at least 2− ε.

We note that Theorem 4 holds also for any k ≥ 4. We also extend the 2-
approximation algorithm of Krivelevich [12] for 3-Cycle Transversal to arbitrary
k which is odd, and use it to improve the trivial ratio of 1/2 for k-Cycle-Free
Subgraph.

Theorem 5. For any odd k the following holds:

(i) k-Cycle Transversal admits a (k − 1)-approximation algorithm.
(ii) k-Cycle-Free Subgraph admits a

(
1
2 + 1

4k−6

)
-approximation algorithm.

Some remarks are in place: Theorem 5 is valid also for digraphs, for any value
of k. Our results can be used to give approximation algorithms for the problem of
covering cycles of length ≤ k, or finding a maximum subgraph without cycles of
length ≤ k. For k = 3 we have for both problems the same ratios as in Theorem 5.
For k ≥ 4, the problem of covering cycles of length ≤ k admits a k-approximation
algorithm (via the trivial reduction to the Hitting Set problem). For the problem
of finding a maximum subgraph without cycles of length ≤ k, we can show

r rr

122 G. Kortsarz, M. Langberg, and Z. Nutov

the ratio Ω(n−1/3−ε) for any k. For k ≥ 6 this follows from extremal graph
theory results mentioned, while for k = 4, 5 this is achieved by first computing
a bipartite subgraph G′ of G with at least |E|/2 edges, and then applying on G′

the algorithm from Theorem 2 for 4-cycles.

1.3 Techniques

The proof of Theorem 2 is the main technical contribution of this paper. Our
algorithm for k-Cycle-Free Subgraph with k = 2r consists of two steps. In the
first step we identify in G a subgraph G′ which is an almost regular bipartite
graph with the property that G and G′ have approximately the same optimal
values. The construction of G′ can be viewed as a preprocessing step of our
algorithm and may be of independent interest for other optimization problems
as well. In the second step of our algorithm, we use the special structure of G′ to
analyze the simple procedure that first removes edges at random from G′ until
only few k-cycles remain in G′, and then continues to remove edges from G′

deterministically (one edge per cycle) until G′ becomes k-cycle free.
The proof of Theorem 4(i) gives an approximation ratio preserving reduction

from Vertex-Cover on triangle free graphs to 3-Cycle Transversal. It is well known
that breaking the ratio of 2 for Vertex-Cover on triangle free graphs is as hard as
breaking the ratio of 2 on general graphs. The proof of Theorem 4(ii) uses the
same reduction on graphs G that on one hand are triangle free, but on the other
have a minimum vertex-cover of size (1− o(1))n. Such graphs exist, and appear
in several places in the literature; see for example [7].

The proof of part (i) of Theorem 5 is a natural extension of the proof of
Krivelevich [12] of Theorem 1. Part (ii) simply follows from part (i).

Theorems 2, 4, and 5, are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 2

In what follows let opt(G) be the optimal value of the k-Cycle-Free Subgraph
problem on G. We start by a simple reduction which shows that we may assume
that our input graph G is bipartite, at the price of loosing only a constant in
the approximation ratio. Fix an optimal solution G∗ to k-Cycle Free Subgraph.
Partition the vertex set V of G randomly into two subsets, A and B, each of size
n/2, and remove edges internal to A or B. In expectation, the fraction of edges
in G∗ that remain after this process is 1/2. With probability at least 1/3 the
fraction of edges in G∗ that remain is at least 1/4; here we apply the Markov
inequality on the fraction of edges inside A and B.

Assuming that the input graph G is bipartite, our algorithm has two steps.
In the first step, we extract from G a family G of subgraphs Gi = (Ai +Bi, Ei),
so that either: one of these subgraphs has a “θ-semi-regularity” property (see
Definition 1 below) and a k-cycle-free subgraph of size close to opt(G) or we
conclude that opt(G) is small. In the latter case, we just return a spanning tree
in G. In the former case, it will suffice to approximate k-Cycle-Free Subgraph on
Gi ∈ G, which is precisely what we do in the second step of the algorithm.

Approximating Maximum Subgraphs without Short Cycles 123

Definition 1. A subset A of nodes in a graph is θ-semi-regular if ΔA ≤ θ · dA

where ΔA and dA denote the maximum and the average degree of a node in A,
respectively. A bipartite graph with sides A,B is θ-semi-regular if each of A,B
is θ-semi-regular.

We will prove the following two statements that imply Theorem 2.

Lemma 1. Let k = 2r. For any bipartite instance G of k-Cycle-Free Subgraph
there exists an algorithm that in ε−O(1/ε)poly(n) time finds a family G of at most
2ε−2/ε subgraphs of G so that at least one of the following holds:

(i) G contains an n2ε-semi-regular bipartite subgraph Gi of G so that opt(Gi) =
Ω(ε2/ε)opt(G).

(ii) opt(G) = O
(
nε−2/ε

)
.

Lemma 2. k-Cycle-Free Subgraph on bipartite θ-semi-regular instances G =

(A + B,E) and k = 2r admits an Ω

((
θr(|A||B|)

−1
(2 −1)

)−1
)

-approximation

ratio in (randomized) polynomial time.

Let us show that Lemmas 1 and 2 imply Theorem 2 for bipartite graphs. We
first compute the family G as in Lemma 1. Then, for each Gi ∈ G we compute a
k-cycle-free subgraph Hi of Gi using the algorithm from Lemma 2, with θ = n2ε.
Let H be the largest among the subgraphs Hi computed. If H has more than n
edges, we output H . Else, we return a spanning tree in G.

2.1 Reduction to θ-Semi-Regular Graphs (Proof of Lemma 1)

Let G = (A+B,E) be a bipartite connected graph, let ε > 0 be a small constant,
let n = |A| + |B|, and let θ = nε. For simplicity of exposition we will assume
that θ and � = 1/ε are integers.

We define an iterative process which partitions a subgraph G′ = (A′ +B′, E′)
of G with A′ ⊆ A and B′ ⊆ B into at most � = 1/ε subgraphs so that at
least one of the sides in each subgraph is θ-semi-regular. Specifically, the family
F(G′, A) is defined as follows. Partition the nodes in A′ into at most � sets Aj ,
where Aj consists of nodes in A′ of degree in the range

[
θj , θj+1

)
. The family

F(G′, A) consists of the graphs Gj = G′ − (A′ −Aj) (namely, Gj is the induced
subgraph of G′ with sides Aj and B′). Note that Aj is a θ-semi-regular node set
in Gj , but Gj may not be θ-semi-regular. In a similar way, the family F(G′, B)
is defined. Since the the union of the subgraphs in F(G′, A) is G′, and since
|F(G′, A)| = 1/ε, there exists G′′ ∈ F(G′, A) so that opt(G′′) ≥ ε · opt(G′);
a similar statement holds for F(G′, B). For a family G of subgraphs of G let
F(G, A) =

⋃
{F(G′, A) : G′ ∈ G} and F(G, B) =

⋃
{F(G′, B) : G′ ∈ G}.

Define a sequence of families of subgraphs of G as follows. G0 = {G}, G1 =
F(G0, A), G2 = F(G1, B), and so on. Namely, Gi = F(Gi−1, A) if i is odd and
Gi = F(Gi−1, B) if i is even. The following statement is immediate.

Claim. There exists a sequence of graphs {Gi = (Ai +Bi, Ei)}2�
i=0 so that for

every i: Gi ∈ Gi, Gi ⊆ Gi−1, and opt(Gi) ≥ ε · opt(Gi−1).

r
r

r

Proof. Consider picking k = 2r distinct nodes in G, r from A and r from B,
uniformly at random. Denote the nodes a1, a2, . . . , ar ∈ A and b1, . . . , br ∈ B.
We analyze the probability that (a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G. In
our analysis, our random choices are made according to the order of the cycle
at hand, i.e., we first pick a1, then b1, then a2, and so on. As a1 has degree at
most θdA, the probability that b1 is adjacent to a1 is at most θdA/|B|. Similarly,
as b1 has degree at most θdB , the probability that a2 is adjacent to b1 is at
most θdB/|A|. Continuing this line of argument, it is not hard to verify that the
probability that (a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G is at most

θ2r−1 dr
Ad

r−1
B

|A|r−1|B|r .

The number of k-tuples (a1, b1, a2, b2, . . . , ar, br) in G is bounded by |A|r|B|r.
Thus the number of k-cycles in G is at most θ2r−1dr

Ad
r−1
B |A| = mθ2r−1dr−1

A dr−1
B .

124 G. Kortsarz, M. Langberg, and Z. Nutov

We now study the structure of the graphs Gi. We show that the average degree
in Gi is rapidly decreasing when i is increasing, until one of the Gi’s is θ2-semi-
regular.

Claim. For every i, either Gi+2 is θ2-semi-regular, or at least one of the following
holds:
• if i is even then dAi+2 < dAi+1/θ, where dAi is the average degree of Ai in Gi;
• if i is odd then dBi+2 < dBi+1/θ, where dBi is the average degree of Bi in Gi.

Proof. Suppose that i is even; the proof of the case when i is odd is similar.
In Gi+1 ∈ Gi+1, the maximum degree ΔAi+1 of Ai+1 is at most θ times the
average degree dAi+1 of Ai+1. If Gi+2 is not θ2 regular, then ΔAi+2 ≥ θ2 · dAi+2 .
However, the maximum degree in Ai+2 is ΔAi+2 ≤ ΔAi+1 ≤ θdAi+1 . This implies
that dAi+2 ≤ dAi+1/θ.

All in all, we conclude that for some i ≤ 2/ε, Gi is θ2-semi-regular and sat-
isfies opt(Gi) ≥ εiopt(G); or G2/ε has constant average degree and satisfies
opt(G2/ε) ≥ ε2/εopt(G). The latter implies that opt(G) = O(ε−2/εn).

2.2 Algorithm for θ-Semi-Regular Graphs (Proof of Lemma 2)

Let G = (A + B, E) be a bipartite θ-semi-regular graph. Let dA be the average
degree of nodes in A, and dB be the average degree of nodes in B. Let m =
dA|A| = dB|B| =

√
dAdB |A||B| be the number of edges in G. Our algorithm

builds on the following two results (the first is by A. Naor and Verstraëte [17]).

Theorem 6 ([17]). The maximum number of edges in a bipartite graph G =
(A + B, E) without cycles of length k = 2r is:

(2r − 3)
[
(|A||B|)

r+1
2r + |A| + |B|

]
if r is odd

(2r − 3)
[
|A|

1
2 |B|

r+2
2r + |A| + |B|

]
if r is even

Lemma 3. The number of k-cycles in G is at most mθ2r−1dr−1
A dr−1

B .

Approximating Maximum Subgraphs without Short Cycles 125

We now present our algorithm for k-Cycle Free Subgraph. In our analysis, we
assume w.l.o.g. that |A| ≥ |B|. We also assume that |A| and |B| are sufficiently
large with respect to θ. Namely we assume that |A||B| ≥ (16θ)2. Otherwise,
the subgraph consisting of a single edge adjacent to v for each node v ∈ A, will
suffice to yield an approximation ratio of Ω(1/θ) which will equal Ω(n−2ε) in
our final setting of parameters. Theorem 6 implies that

opt(G) ≤ 4r((|A||B|)
r+1
2r + |A|)

for any r. We now consider two cases: the case in which (|A||B|) r+1
2r ≥ |A|

and thus opt(G) ≤ 8r(|A||B|) r+1
2r ; and the case in which (|A||B|) r+1

2r ≤ |A| and
thus opt(G) ≤ 8r|A|. In the later case, the subgraph consisting of a single edge
adjacent to v for each node v ∈ A will suffice to yield an approximation ratio of
Ω(1/r). We now continue to study the case in which opt(G) ≤ 8r(|A||B|) r+1

2r .
Consider the following random process in which we remove edges from G. Each

edge will be removed from G independently with probability p to be defined later.
Denote the resulting graph by H . Denote by q = 1 − p the probability that an
edge is not removed.

Claim. As long as mq ≥ 16, with probability at least 1
2 the subgraph H satisfies:

• The number of edges in H is at least mq/2.
• The number of k cycles in H is at most 4q2rmθ2r−1dr−1

A dr−1
B .

Proof. The expected number of edges in H is mq ≥ 16. Thus, using the Cher-
noff bound, the number of edges in H is at least half the expected value with
probability ≥ 3/4. In expectation, the number of k-cycles in H is at most
q2rmθ2r−1dr−1

A dr−1
B . With probability at least 3/4 (Markov) the number of k-

cycles in H will not exceed 4 times this expected value.

We now set q such that the number of k-cycles in H is at most 1
2 the number of

edges in H . Namely, we set q to satisfy 4q2rmθ2r−1dr−1
A dr−1

B ≤ mq/4. Then:

q−1 = 16
1

2r−1 θ(dAdB)
r−1
2r−1 .

With this setting of parameters and our assumption that |A||B| ≥ 16θ2, we have
that mq ≥ 16 and Claim 2.2 holds. Thus, we may remove an additional single
edge from each remaining k-cycle in H to obtain a k-cycle-free subgraph with at
least mq/4 edges. This is the graph our algorithm will return. To conclude our
proof, we now analyze the quality of our algorithm.

We consider 2 cases. Primarily, consider the case that m ≤ 8r(|A||B|) r+1
2r .

This implies that (|A||B|dAdB)
1
2 ≤ 8r(|A||B|) r+1

2r , which in turn implies that
dAdB ≤ 64r2(|A||B|) 1

r . Using the fact that opt(G) ≤ m we obtain in this case
an approximation ratio of

mq

4opt(G)
≥ q

4
= Ω

�
1

θ(dAdB)
r−1
2r−1

�
≥ Ω

�
1

θ(64r2|A||B|)
r−1

r(2r−1)

�

= Ω

�
1

θ(|A||B|)
r−1

r(2r−1)

�
.

126 G. Kortsarz, M. Langberg, and Z. Nutov

The second case is analyzed similarly. Assuming m ≥ 8r(|A||B|) r+1
2r we get

that dAdB ≥ 64r2(|A||B|) 1
r . Using the fact that opt(G) ≤ 8r(|A||B|) r+1

2r we
obtain in this case an approximation ratio of

mq

4opt(G)
≥ (|A||B|dAdB)

1
2

32r(|A||B|) r+1
2r · 16

1
2r−1 θ(dAdB)

r−1
2r−1

= Ω

�
(dAdB)

1
2(2r−1)

θr(|A||B|) 1
2r

�

= Ω

�
1

θr(|A||B|)
r−1

r(2r−1)

�
.

3 Proof of Theorem 4

Given an instance J = (VJ , EJ) of Vertex-Cover, construct a graph G = (V, E)
for the 3-Cycle Transversal instance by adding to J a new node s and the edges
{sv : v ∈ VJ}. Clearly, every edge uv ∈ EJ corresponds to the 3-cycle Cuv =
{us, sv, uv} in G.

Suppose that J is 3-cycle-free. Then the set of 3-cycles of G is exactly {Cuv :
uv ∈ EJ}. The following statement implies that w.l.o.g. we may consider only
3-cycle transversals that consist from edges incident to s.

Claim. Suppose that J is 3-cycle-free. Let F be a 3-cycle transversal in G and
let uv ∈ F ∩EJ . Then F − uv + su is also a 3-cycle transversal in G. Thus there
exists a 3-cycle transversal F ′ ⊆ {sv : v ∈ VJ} in G with |F ′| ≤ |F |.

Proof. The only 3-cycle in G that is covered by the edge uv is Cuv. This cycle
is also covered by the edge su.

Claim. Suppose that J is 3-cycle-free. Then U ⊆ VJ is a vertex-cover in J if,
and only if, the edge set FU = {su : u ∈ U} is a k-cycle transversal in G.

Proof. We show that if U ⊆ VJ is a vertex-cover in J then FU is a 3-cycle
transversal in G. Let Cuv be a 3-cycle in G. As U is a vertex-cover, u ∈ U or
v ∈ U . Thus su ∈ FU or sv ∈ FU . In both cases, Cuv ∩ FU 	= ∅.

We now show that if FU is a 3-cycle transversal in G, then U is a vertex-cover
in J . Let uv ∈ EJ . Then Cuv is a 3-cycle in G, and thus su ∈ FU or sv ∈ FU .
This implies that u ∈ U or v ∈ U , namely, the edge uv is covered by U .

From the claims above it follows that an α-approximation for 3-Cycle Transversal
on G implies an α-approximation for Vertex-Cover on 3-cycle-free graphs J . Now
we prove (for completeness, as we did not find an appropriate reference):

Claim. Any approximation algorithm with ratio α ≥ 3/2 for Vertex-Cover on 3-
cycle-free graphs implies an α-approximation algorithm for Vertex-Cover
(on general graphs).

Approximating Maximum Subgraphs without Short Cycles 127

Proof. Suppose that there is an α-approximation algorithm for Vertex-Cover on
3-cycle-free graphs. Let J be a general graph, and let opt(J) be the size of
its minimum vertex cover. Consider the following two phase algorithm. Phase 1
starts with an empty cover F1, and repeatedly, for every 3-cycle C in J , adds the
nodes of C to F1 and deletes them from J . Note that any vertex-cover contains
at least two nodes of C, which implies a “local ratio” of 2/3. Let J2 be the
triangle free graph obtained after Phase 1. In Phase 2 use the α-approximation
algorithm (for 3-cycle-free graphs) to compute a vertex-cover F2 of J2. The
statement follows since: opt(J) ≥ 2

3 |F1|+ opt(J2) ≥ 2
3 |F1|+ |F2|

α ≥ |F1|+|F2|
α .

We now prove part (ii) of the theorem, namely, that for k = 3 the integrality
gap of (1) is at least 2 − ε. We will use the fact that for any ε > 0, there exist
infinitely many graphs J = (VJ , EJ) which are 3-cycle-free and have minimum
vertex-cover of size at least |VJ |(1− ε

2). Such graphs appear in various places in
the literature. For example see Theorem 1.2 in [7] in which 3-cycle-free graphs J
with independence number at most ε

2 |VJ | are presented. For such graph J , the
minimum k-cycle cover in the corresponding graphG has size at least |VJ |(1− ε

2).
On the other hand, the solution xe = 1/2 if e is incident to s and xe = 0 otherwise
is a feasible solution to LP (1) on G with value |VJ |/2. Hence the integrality gap
is at least (1− 2)

1/2 = 2− ε.
Theorem 4 easily extends to arbitrary k ≥ 4. We use the same construction

as for the case k = 3, but in addition subdivide every edge of J by k − 3 nodes
(and do not make any assumptions on J). Hence every edge uv ∈ EJ is replaced
by a path Puv of the length k − 2, and Cuv = Puv + su + sv is a k-cycle in
G. Since k ≥ 4, G has no other k-cycles, namely, the set of k-cycles in G is
{Cuv = Puv + su+ sv : uv ∈ EJ}. The rest of the proof of this case is identical
to the case k = 3, and thus is omitted.

4 Proof of Theorem 5

To prove Theorem 5, we prove two theorems that consider a more general setting
of a family F of subgraphs of G which are not necessarily k-cycles, nevertheless
each subgraph C ∈ F is of size ≤ k. We need some definitions. Let G be a graph
and let F be a family of subgraphs (edge subsets) of G. For a subgraph H of G,
let F(H) be the restriction of F to subgraphs of H ; H is F-free if F(H) = ∅. An
edge set F that intersects every member of F is an F-transversal. We consider
the following two problems, that generalize the problems k-Cycle-Free Subgraph
and k-Cycle Transversal. The instance of the problems is a graph G = (V,E) and
a family F of subgraphs of G. The goal is:

F -Transversal: Find a minimum size F -transversal.

F -Free Subgraph: Find a maximum size F -free subgraph of G.

For F = Ck(G), we get the problems k-Cycle Transversal and k-Cycle Free
Subgraph, respectively. Let τ∗F (H) denote the optimal value of the following LP-
relaxation for F -Transversal on H :

128 G. Kortsarz, M. Langberg, and Z. Nutov

min
∑

e∈E(H) xe (2)

s.t.
∑

e∈C xe ≥ 1 ∀C ∈ F(H)
xe ≥ 0 ∀e ∈ E(H)

An edge of H is F-redundant if no member of F(H) contains it; e.g., if F =
Ck(G), then an edge of H is F -redundant if it is not contained in any k-cycle of
H . We prove:

Theorem 7. Suppose that any subgraph H of G admits a polynomial time algo-
rithm that: (i) Solves LP (2) for H; (ii) Finds F-redundant edges of H; (iii) Finds
an F(H)-transversal of size at most |E(H)| · (k− 1)/k. Then there exist a poly-
nomial time algorithm that finds an F(G)-transversal of size ≤ (k − 1) · τ∗F (G).

To prove Theorem 5(ii) we connect the approximation of F -Free Subgraph and
F -Transversal by the following theorem:

Theorem 8. Suppose that for any graph G with m edges there exist a polynomial
algorithm that finds an F(G)-free subgraph of size ≥ βm, and that F -Transversal
admits an α-approximation algorithm. Then k-Cycle-Free Subgraph admits an
αβ/(α+ β − 1)-approximation algorithm.

Let us now show that Theorem 7 implies Theorem 5(i) and that Theorem 8
implies Theorem 5(ii). Let G be a graph with m edges. As was mentioned, it
is not hard to find in G a subgraph with at least m/2 edges and without odd
cycles. For Theorem 5(i), it is easy to see that this setting obeys the conditions
of Theorem 7, hence we obtain a (k− 1)-approximation for F -Transversal in this
case. For Theorem 5(ii), we apply Theorem 8 with β = 1/2 and α = k − 1. The
ratio obtained is αβ/(α+ β − 1) = (k − 1)/(2k − 3) = 1

2 + 1
4k−6 . We now prove

Theorems 7 and 8 (in Sections 4.1 and 4.2, respectively).

4.1 Proof of Theorem 7

The algorithm is as follows:

Initialization: H ← G; F1 ← ∅.
Phase 1:
While for an optimal solution x to (2) xe ≥ 1/(k − 1) for some e ∈ E(H) do:

F1 ← F1 + e; H ← H − e.
EndWhile
Phase 2:
- Remove all F(H)-redundant edges from H . Denote the resulting graph by H2.
- Compute an F(H2)-transversal F2 of size at most |E(H2)| · (k − 1)/k.
Return F1 ∪ F2.

Under the assumptions of the Theorem, all steps can be implemented in poly-
nomial time. It is also easy to see that the algorithm returns a feasible solution.
We now analyze the approximation ratio. We start with a simple claim followed
by our key Lemma.

Approximating Maximum Subgraphs without Short Cycles 129

Claim. Let H be the graph obtained after Phase 1 of our algorithm and let xe

be an optimal solution to LP (2) on H . Then xe = 0 for every F(H)-redundant
edge e in H . Thus the restriction of x to H2 is also an optimal solution to LP
(2) on H2.

Proof. Let e be an F(H)-redundant edge. Assume for sake of contradiction that
xe > 0. We can now reduce the value of the LP solution by zeroing out xe. The
new solution is still valid, as e is F(H)-redundant and thus does not appear in
the first family of constraints of (2).

Let H2 be obtained from H by removing all F(H)-redundant edges. Then the
restriction of x to H2 is an optimal solution to (2) since any LP solution for H2

can be extended to one forH by setting xe = 0 for every F(H)-redundant edge e.

Using the claim above, we may assume that the subgraph H2 has an optimal
solution x to (2) in which xe < 1/(k − 1) (for all e ∈ E(H2)).

Lemma 4. Let H2 be a subgraph of G without F-redundant edges and let x be
an optimal solution to LP (2). If xe < 1/(k − 1) for every e ∈ E(H2) then
τ∗F (H2) ≥ |E(H2)|/k.

Proof. Let ν∗F(H2) = τ∗F (H2) denote the optimal value of the dual LP:

max
∑

C∈F yC (3)
s.t.

∑
C�e yC ≤ 1 ∀e ∈ E(H2)

yC ≥ 0 ∀C ∈ F(H2)

Let x and y be optimal solutions to (2) and to (3), respectively. Consider two
cases, after noting that the primal complementary slackness condition is:

xe > 0 =⇒
∑

C�e

yC = 1 (4)

Case 1: xe > 0 for every e ∈ E(H2).
In this case τ∗F (H) ≥ |E(H2)|/k, since from (4) we get:

|E(H2)| =
∑

e∈E(H2)

1 =
∑

e∈E

∑

C�e

yC =
∑

C∈F(H2)

|C|yC ≤
∑

C∈F(H2)

kyC = kν∗

F (H2) = kτ∗

F (H2) .

Case 2: xf = 0 for some f ∈ E(H2).
Since H2 has no F -redundant edges, there is C ∈ F(H2) so that f ∈ C. Since
xf = 0, we have

∑
e∈C−f xe ≥ 1. Since |C − f | ≤ k − 1, there exists e ∈ C − f

so that xe ≥ 1/(k − 1). A contradiction.

We now bound the value of |F1| and |F2| with respect to τ∗F (G). We start with
some notation. Let H0 = G be the starting point of our algorithm. Let H1 be
graph obtained from H0 by the removal of e1 after the first round of Phase 1.
Similarly, for the i’th round of Phase 1, let Hi be the graph obtained from Hi−1

by the removal of ei. Let H = H� be the graph obtained after Phase 1 of our

4.2 Proof of Theorem 8

In what follows let opt be the optimal solution value of the F -Free Subgraph
problem on G. We choose the better result F from the following two algorithms:

Algorithm 1: Find an F(G)-free subgraph of size ≥ βm.
Algorithm 2: Find an F(G)-transversal I of size ≤ α times an optimal F(G)-

transversal, and return G− I.
Algorithm 1 computes a solution of size ≥ βm. Algorithm 2 computes a

solution of size ≥ m− α(m − opt). The worse case is when these lower bounds
coincide: βm = m−α(m− opt) which implies opt = m(α+ β− 1)/α. This gives
the ratio βm

m(α+β−1)/α = αβ
α+β−1 . Formally, |F | ≥ max{βm,m − α(m − opt)}.

Consider two cases:

Case 1: βm ≥ m− α(m− opt), so opt ≤ m(α+ β − 1)/α. Then

|F |
opt

≥ βm

opt
≥ βm

(α + β − 1)/α
=

αβ

α + β − 1
.

Case 2: m− α(m− opt) ≥ βm, so m/opt ≤ α/(α+ β − 1). Then

|F |
opt

≥ m − α(m − opt)
opt

= α − (α − 1) · m

opt
≥ α − (α − 1) · α

α + β − 1
=

αβ

α + β − 1
.

In both cases the ratio is bounded by αβ
α+β−1 , which concludes our proof.

5 Open Problems

For k-Cycle Transversal, we have ratios k − 1 for odd values of k and k for even
values of k. However, the best approximation threshold we have is 2. Closing
this gap (even for k = 4, 5) is left open.

130 G. Kortsarz, M. Langberg, and Z. Nutov

algorithm (here � denotes the number of rounds in Phase 1). It is not hard to
verify that τ∗

F(Hi−1) ≥ τ∗
F (Hi) + xei . Here xei is obtained from the optimal

solution to Hi−1. This implies that τ∗
F (G) ≥ τ∗

F (H) +
∑�−1

i=1 xei .
Now to bound |F1| and |F2|. First notice that |F1| ≤ (k − 1)

∑�−1
i=1 xei . Re-

call that H2 is the graph obtained in Phase 2 from H by removing all F(H)-
redundant edges. It also holds that, |F2| ≤ |E(H2)| · (k − 1)/k. By Lemma 4,
τ∗
F (H2) ≥ |E(H2)|/k. Hence

|F2|
τ∗
F (H2)

≤ |E(H2)| · (k − 1)/k

|E(H2)|/k
= k − 1 .

As by Claim 4.1, τ∗
F (H) = τ∗

F (H2) we have that

|F1| + |F2| ≤ (k − 1)(τ∗
F (H) +

�−1∑

i=1

xei) ≤ (k − 1)τ∗
F (G) ,

which concludes our proof.

Approximating Maximum Subgraphs without Short Cycles 131

For k-Cycle-Free Subgraph, we have ratios 2/3 for k = 3 and n−1/3−ε for k = 4.
The best approximation threshold we have is APX-hardness. Hence, we do not
even know if our ratio of 2/3 for k = 3 is tight. Our result for k = 3 actually
establishes a lower bound of 2/3 on the integrality gap for the natural LP for
3-Cycle-Free Subgraph, but the best upper bound we have is only 3/4. Finally, in
our opinion, the most challenging open question is closing the huge gap for the
case k = 4.

References

1. Alon, N.: Bipartite subgraphs. Combinatorica 16, 301–311 (1996)
2. Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B.: Maximum cuts and judicious

partitions in graphs without short cycles. J. of Comb. Th. B 88(2), 329–346 (2003)
3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-

rithmica 17(3), 209–223 (1997)
4. Bondy, J.A., Simonovits, M.: Cycles of even lengths in graphs. J. Comb. Th. B 16,

97–105 (1974)
5. Erdös, P.: Extremal problems in graph theory. In: Fiedler, M. (ed.) Theory of

Graphs and Its Applications. Academic Press, New York (1965)
6. Erdös, P., Gallai, T., Tuza, Z.: Covering and independence in triangle structures.

Discrete Mathematics 150, 89–101 (1996)
7. Feige, U., Langberg, M., Schechtman, G.: Graphs with tiny vector chromatic num-

bers and huge chromatic numbers. SIAM J. Comput. 33(6), 1338–1368 (2004)
8. Furedi, Z., Naor, A., Verstraëte, J.: On the Turan number of the hexagon. Advances

in Mathematics 203(2), 476–496 (2006)
9. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

10. Hoory, S.: The size of bipartite graphs with a given girth. Journal of Combinatorial
Theory Series B 86(2), 215–220 (2002)

11. Komlós, J.: Covering odd cycles. Combinatorica 17(3), 393–400 (1997)
12. Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles.

Discrete Mathematics 142(1-3), 281–286 (1995)
13. Kühn, D., Osthus, D.: Four-cycles in graphs without a given even cycle. Journal

of Graph Theory 48(2), 147–156 (2005)
14. Lam, T.: A result on 2k-cycle free bipartite graphs. Australasian Journal of Com-

binatorics 32, 163–170 (2005)
15. Lam, T., Verstraëte, J.: A note on graphs without short even cycles. The Electronic

Journal of Combinatorics 12(1,N5) (2005)
16. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Polarities and 2k-cycle free graphs.

Discrete Math. 197/198, 503–513 (1999)
17. Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Probability,

Combinatorics and Computing 14(5-6), 845–849 (2005)
18. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment

assembly. Genome Research 14(9), 1786–1796 (2004)

Deterministic 7/8-Approximation for the Metric

Maximum TSP

(Extended Abstract)

�Lukasz Kowalik and Marcin Mucha�

Institute of Informatics, University of Warsaw, Poland
{kowalik,mucha}@mimuw.edu.pl

Abstract. We present the first 7/8-approximation algorithm for the
maximum traveling salesman problem with triangle inequality. Our al-
gorithm is deterministic. This improves over both the randomized algo-
rithm of Hassin and Rubinstein [2] with expected approximation ratio of
7/8 − O(n−1/2) and the deterministic (7/8 − O(n−1/3))-approximation
algorithm of Chen and Nagoya [1].

In the new algorithm, we extend the approach of processing local
configurations using so-called loose-ends, which we introduced in [4].

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively
researched problems in computer science and arise in a variety of applications.
In its classical version, given a set of vertices V and a symmetric weight function
w : V 2 → R≥0 satisfying the triangle inequality one has to find a Hamiltonian
cycle of minimum weight.

There are several variants of TSP, e.g. one can look for a Hamiltonian cy-
cle of minimum or maximum weight (MAX-TSP), the weight function can be
symmetric or asymmetric, it can satisfy the triangle inequality or not, etc.

In this paper, we are concerned with the MAX-TSP variant, where the weight
function is symmetric and satisfies the triangle inequality. This variant is often
called the metric MAX-TSP.

MAX-TSP (not necessarily metric) was first considered by Serdyukov in [5],
where he gives a 3

4 -approximation. Next, a 5
6 -approximation algorithm for the

metric case was given by Kostochka and Serdyukov [3]. Hassin and Rubinstein [2]
used these two algorithms together with new ideas to achieve a randomized
approximation algorithm with expected approximation ratio of (7

8 −O(n−1/2)).
This algorithm has later been derandomized by Chen and Nagoya [1], at a cost
of a slightly worse approximation factor of (7

8 −O(n−1/3)).
In this paper, we give a deterministic 7

8 -approximation algorithm for metric
MAX-TSP. Our algorithm builds on the ideas of Serdyukov and Kostochka, but
� This research is partially supported by a grant from the Polish Ministry of Science

and Higher Education, project N206 005 32/0807.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 132–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deterministic 7/8-Approximation for the Metric Maximum TSP 133

is completely different from that of Hassin and Rubinstein. We apply techniques
similar to those used earlier in [4] for the directed version of MAX-TSP with
triangle inequality.

1.1 Closer Look at Previous Results

Classic undirected MAX-TSP algorithm of Serdyukov [5] starts by constructing
two sets of edges of the input graph G: a maximum weight cycle cover C and a
maximum weight matching M , and then removing a single edge from each cycle
of C and adding it to M . It can be shown that we can avoid creating cycles
in M , so in the end we get two sets of paths: C′ and M ′. These sets can be
extended to Hamiltonian cycles arbitrarily. Since we started with a maximum
weight cycle cover and a maximum weight matching, we have w(C′) +w(M ′) ≥
w(C) + w(M) ≥ 3

2OPT. It follows that the better of the two cycles has weight
at least 3

4OPT. Here, we used two standard inequalities: w(C) ≥ OPT and
w(M) ≥ 1

2OPT. The latter only holds for graphs with even number of vertices.
The case of odd number of vertices needs separate treatment.

Serdyukov’s algorithm works for any undirected graph, with weight function
not necessarily satisfying the triangle inequality. However, if this inequality is
satisfied, we can get a much better algorithm. Kostochka and Serdykov observed
the following useful fact (see e.g. [2] for a proof).

Lemma 1 (Kostochka, Serdyukov [3]). Let G = (V,E) be a weighted com-
plete graph with a weight function w : E → R≥0 satisfying the triangle inequality.
Let C be a cycle cover in G and let Q = {e1, . . . , e|C|} be a set of edges with ex-
actly one edge from each cycle of C. Then the collection of paths C \ Q can be
extended in polynomial time to a Hamiltonian cycle H with

w(H) ≥ w(C) −
|C|∑

i=1

w(ei)/2.

Kostochka and Serdyukov [3] propose an algorithm which starts by finding a
maximum weight cycle cover C and then applies the above lemma with Q con-
sisting of the lightest edges of cycles in C. Since all cycles have length at least
3, the weight of the removed edges amounts to at most 1

3w(C), so we regain at
least 1

6w(C), which leads to 5
6 -approximation. (Note that if it happens that all

the cycles in C have length at least 4 we get 7
8 -approximation).

2 Our Approach

Similarly to Serdykov’s algorithm (as well as that of Hassin and Rubinstein), our
algorithm starts by constructing a maximum weight cycle cover C and maximum
weight matching M . In our reasoning we need the inequality w(M) ≥ 1

2OPT,
which holds only for graphs with even number of vertices. In the remainder of
this paper we only consider such graphs. Our results can be extended to graphs
with odd number of vertices, we defer the details to the full version of the paper.

134 �L. Kowalik and M. Mucha

In all previous algorithms edges are moved from the cycle cover C to the
matching M . We do not follow this approach. Instead, we remove some edges
from C and add some edges to M . The edges added to M are not necessarily the
edges removed from C. In fact, they might not even be cycle edges in C. All we
need to guarantee is that their total weight is sufficiently large compared to the
weight loss in C.

Here is how it works. Let min(Ci) be the lightest edge of a cycle Ci ∈ C. Since
removing a single edge from each Ci and then joining the resulting paths using
Lemma 1 results in the weight loss equal to half the weight of the removed edges,
it should be clear that we should remove min(Ci) from each Ci. The weight loss
is then

∑
i w(min(Ci))/2.

We are going to describe an iterative process of adding edges to a collection
of paths P , initially equal to M . Edges will be added in phases, each phase
corresponds to a single cycle Ci ∈ C. After finishing the phase corresponding to
Ci we will call Ci processed. The edges added in the phase corresponding to Ci

will usually, but not necessarily belong to Ci or at least connect vertices of Ci.
Their total weight will also be directly related to w(Ci) and w(min(Ci)). Let
(α, β) � Ci = αw(Ci) + βw(min(Ci)). The following Lemma shows why this is a
useful definition:

Lemma 2. If during processing the cycles in C, we can add edges of total weight
at least

∑
C ∈C(α, 1/2) � Ci to M , then we get a (3/4 + α/2)-approximation

algorithm.

Proof. Let H1 be the Hamiltonian cycle obtained from C by using Lemma 1, and
let H2 be the cycle obtained from M by processing all cycles of C and patching
the resulting collection of paths into a Hamiltonian cycle. Then

w(H1) + w(H2) ≥
[

w(C) −
∑

i

w(min(Ci))/2

]

+

+

[

w(M) + αw(C) +
∑

i

w(min(Ci))/2

]

≥ (3/2 + α)OPT,

so the heavier of the two cycles is a (3/4 + α/2)-approximation.

In the remainder of the paper, we show that this can be done for α = 1/4,
yielding a 7/8-approximation.

2.1 Skeleton of the Algorithm

A graph P is sub-Hamiltonian if it is a family of disjoint paths or a Hamiltonian
cycle (i.e. it can be extended to a Hamiltonian cycle). Let P be a family of
disjoint paths. We say that set of edges S is allowed w.r.t. P , if S is disjoint
from P and the edge sum of P and S is sub-Hamiltonian. We call an edge e
allowed w.r.t P if {e} is allowed w.r.t. P . If an edge is not allowed, we call it
forbidden.

i

Deterministic 7/8-Approximation for the Metric Maximum TSP 135

In the algorithm presented below, we maintain a sub-Hamiltonian graph P
satisfying the following invariant.

Invariant 1. For any vertex v, if degP (v) = 2 then the cycle v belongs to has
been already processed.

Consider a phase of our algorithm and let C be the cycle that is still unprocessed.
In this situation a set S of edges will be called a support of C if S is allowed
w.r.t. P , and after adding S to P (and thus making C processed) Invariant 1 is
satisfied.

The following is the skeleton of the algorithm, that we will develop in the
remainder of the paper.

Algorithm 2.1. Main Algorithm

1: Let M be a heaviest matching and C a heaviest cycle cover in G.
2: Let H1 be the Hamiltonian cycle obtained from C by using Lemma 1.
3: P := M
4: Mark all cycles in C as unprocessed.
5: for each unprocessed cycle C in C do
6: Find S, a support of C of large weight.
7: P := P ∪ S
8: Mark C as processed.

9: Arbitrarily patch P to a Hamiltonian cycle H2.
10: Return the heavier of H1 and H2.

2.2 Loose-Ends

When considering a cycle Ci, we are going to extend P by adding some edges
connecting the vertices of Ci. Ideally we would like to add ni/2 new edges, where
ni is the length of Ci. However, this is not always possible, because some of the
cycles have odd length and ni/2 is not an integer. Instead we are going to use
the idea of loose-ends introduced in [4].

A loose-end is a vertex v, for which degP (v) = 1 even though the cycle it
belongs to is already processed. A vertex v of cycle C ∈ C becomes a loose-end
if no edge adjacent to v is added to P when C is processed. This vertex can be
connected with some other vertex at a later stage and cease being a loose-end.

Consider two odd-length cycles C1 and C2, say both of length 5. When we
process C1, we can only add 2 edges to M , and some vertex v ∈ C1 is not an
endpoint of any of these edges, so it becomes a loose-end. Later, when we process
C2, we can add 3 edges to M , by connecting one of C2’s vertices with v. Using
the triangle inequality, we can guarantee that this edge has large weight. So in
this case we get a little less weight from C1 and a little more weight from C2. It
is important to process cycles in order that guarantees that the weight lost when
processing the earlier cycles (the ones that give loose-ends) is dominated by the
weight gained when processing the later cycles (the ones that use loose-ends).
We will show that the algorithm can determine this order.

136 �L. Kowalik and M. Mucha

Let S be a support of C in some phase of the algorithm. We will say that S
is a k-support if after adding it to P (and thus processing cycle C) the number
of loose-ends increases by at least k (k could be negative here).

In the following section we describe in detail how the cycles are processed in
our algorithm. For even-length cycles we construct heavy 0-supports, and for
odd-length cycles we construct both (−1)-supports and (+1)-supports.

When constructing (−1)-supports, we need to assume that at least one loose-
end is available. Unfortunately, just one loose-end may be insufficient to guar-
antee the existence of a (−1)-support. This could happen if the loose-end u is
connected to C, the cycle being processed, by a path in P . In that case, adding
an edge between u and a vertex of C to P may create a cycle in P . This is accept-
able only if that cycle is Hamiltonian (in particular, C would have to be the last
cycle processed). Luckily, it turns out that two loose-ends are always sufficient
to avoid creating such short cycles. Thus, when describing a (−1)-support for
each odd cycle we will consider two situations: when there are two loose-ends,
and when there is exactly one loose-end but the algorithm is in the last (i.e.
|C|-th) phase.

3 Processing Cycles

In this section we consider an arbitrary phase of the algorithm and we describe
supports of unprocessed cycles. The construction of a support of such a cycle
C may depend on the number of loose-ends and the way the collection P of
paths constructed so far interacts with C, in particular on which edges of C are
forbidden etc.

The following observations will be used in many of our proofs.

Observation 1. Let C be an unprocessed cycle and let M ⊂ E(C) be a match-
ing. Let C̃ be any cycle in P ∪M . Then if C̃ contains an allowed edge of M , it
contains at least two allowed edges. Also, if C̃ contains a forbidden edge of M ,
it contains exactly one edge of M . ��

Observation 2. In any phase of the algorithm and for any unprocessed cycle
C, forbidden edges with both endpoints in C form a matching. ��

Consider an unprocessed cycle C. A set of edges S will be called a semi-support
of C when P ∪ S contains vertices of degree at most 2, and after adding S to P
(and thus making C processed) Invariant 1 is satisfied. If after adding S to P
the number of loose-ends increases by k be will also call S a k-semi-support (k
may be negative).

Note that the only difference between a semi-support and a support is that
after adding a semi-support to P we may get a non-Hamiltonian cycle in P .
The following lemma, similar to the Kostochka-Serdyukov technique, will be
used to convert a semi-support M to a support S without losing much weight.
The weight loss in this process depends on how the weight of M is distributed
between allowed and forbidden edges, on the weight of allowed edges of M that
belong to cycles in P ∪M , etc.

Deterministic 7/8-Approximation for the Metric Maximum TSP 137

x0 x1

y1

y2

x2

y3

x3

Fig. 1. Breaking the cycles in the proof of Lemma 3. Dashed edges are lighter than the
corresponding solid edges. Crossed-out edges are the edges removed from the cycles.

Lemma 3. Consider any phase of the algorithm and let C be an unprocessed
cycle. Let M be a k-semi-support of C. Assume there is a vertex x0
∈ V (M),
such that x0 is a loose-end or x0 ∈ V (C). Moreover, assume P ∪M contains
cycles (possibly of length 2) C1, . . . , Cq. For each i, 1 ≤ i ≤ q, let ei be any edge in
M∩Ci. Let Q = {e1, . . . , eq} and let D =

⋃
i Ci. Finally, let us partition edges in

M into two sets: F containing forbidden edges, and A containing allowed edges.
Then one can find S, a k-support of C, such that

(i) w(S) ≥ w(M \Q) + 1
2w(Q),

(ii) w(S) ≥ w(A \D) + 3
4w(A ∩D) + 1

2w(F).

Proof. Denote the ends of e1 by x1 and y1 in such a way that x0y1 is heavier than
x0x1. Note that w(x0y1) = max{w(x0x1), w(x0y1)} ≥ 1

2 (w(x0x1) + w(x0y1)) ≥
1
2w(e1), where the last step follows from the triangle inequality. Moreover, by
replacing e1 by x0y1 we break the cycle C1 and x1 becomes a loose-end. We can
proceed in this way for all cycles, i.e., for every i = 1, . . . , q the ends of ei are
labelled xi and yi so that

w(xi−1yi) ≥ 1
2w(ei). (1)

Let S = M \ {ei | i = 1, . . . , q} ∪ {xi−1yi | i = 1, . . . , q}. Clearly, P ∪ S does not
contain cycles hence it is sub-Hamiltonian. Also, observe that there are only 2
vertices, namely x0 and xq whose degrees differ in graphs P ∪M and P ∪S. Since
degP∪S x0 = 2 and degP∪S xq = 1, after adding S to P (and thus processing
C) Invariant 1 is still satisfied, and so S is a support. Also note that x0 is a
loose-end in P ∪M and it is not a loose-end in P ∪S, while xq is not a loose-end
in P ∪M and it is a loose-end in P ∪ S. It follows that S is a k-support.

Now let us bound the weight of S. By (1), w(S) ≥ w(M \Q)+ 1
2w(Q), which is

claim (i). To prove (ii), in each cycle Ci we choose the lightest edge ei in M ∩Ci

and we assume Q consists of these edges. Notice that F ⊆ Q (by Observation 1)
and also A \D ⊆M \Q, so by (i) we have,

w(S) ≥ w(M \Q)+w(Q) ≥ w(A\D)+w((A∩D)\Q)+ 1
2w(A∩Q)+ 1

2w(F). (2)

By Observation 1, and since Q consists of the lightest edges in cycles, w((A ∩
D) \Q) ≥ 1

2w(A ∩D). Then w((A ∩D) \Q) + 1
2w(A ∩Q) = w((A ∩D) \Q) +

138 �L. Kowalik and M. Mucha

1
2w((A ∩D) ∩Q) = 1

2w((A ∩D) \Q) + 1
2w(A ∩D) ≥ 3

4w(A ∩D). By plugging
it into (2) we get (ii).

3.1 Even Cycles

Lemma 4. Let C be an unprocessed 4-cycle and assume that there is at least
one loose-end. Then there is a 0-support of C of weight ≥ (1

4 ,
1
2) � C.

Proof. We consider two cases:

Case 1. E(C) has at most one forbidden edge. We partition E(C) into two
matchings, M1 and M2. W.l.o.g. assume M1 does not contain forbidden edges.
Let S1 and S2 be the supports corresponding to M1 and M2 by Lemma 3 and
let S be the heavier of them. Following the notation from Lemma 3, define A1,
A2 (F1, F2) as the sets of allowed (resp. forbidden) edges of M1, M2. Let D1,
D2 be the sets of edges of E(C) that belong to cycles in P ∪M1 or P ∪M2

respectively. Also let A = A1 ∪A2, F = F1 ∪ F2 and D = D1 ∪D2.
Notice that by inequality (ii) of Lemma 3 applied to Mi, i = 1, 2 we get

w(Si) ≥ w(Ai \Di) + 3
4w(Ai ∩Di) + 1

2w(Fi). Summing up the two inequalities
yields

w(S) ≥ 1
2 (w(S1) + w(S2)) ≥ 1

2w(A \D) + 3
8w(A ∩D) + 1

4w(F). (3)

Let us first assume that P ∪M1 contains a cycle C̃. By Observation 1 both
allowed edges of M1 are in C̃. So either both chords of C are forbidden or both
edges of M2 are. Since we assumed that E(C) has at most one forbidden edge,
it is the chords of C that are forbidden. It now follows from Observation 2 that
both edges of M2 are allowed, so A = C. From (3) we get w(S) ≥ 3

8w(A) =
3
8w(C) ≥ (1

4 ,
1
2) � C.

Hence, we may assume that P ∪M1 contains no cycle. It follows that D1 = ∅,
so |A \ D| ≥ 2. From (3) we get w(S) ≥ 1

2w(A \D) + 3
8w(A ∩ D) + 1

4w(F) ≥
1
4 (w(A\D)+w(A∩D)+w(F))+ 1

4w(A\D) ≥ 1
4w(C)+ 1

4w(A\D) ≥ (1
4 ,

1
2)�C,

where the last inequality follows from |A \D| ≥ 2.

v1

v2 v3

v4

u

S1

v1

v2 v3

v4

u

S2

v1

v2 v3

v4

u

S3

v1

v2 v3

v4

u

S4

Fig. 2. Supports in Case 2 of the proof of Lemma 4

Case 2. E(C) has two forbidden edges. Denote the vertices of C by v1, . . . , v4 in
the order they appear on C and assume w.l.o.g. that v1v2 and v3v4 are forbidden.
Let u be a loose-end. Consider four edge sets S1 = {uv1, v2v3}, S2 = {uv2, v1v4},

Deterministic 7/8-Approximation for the Metric Maximum TSP 139

S3 = {uv4, v2v3}, and S4 = {uv3, v1v4}. Note that these sets are allowed since
for any i, edges of Si belong to a single path in P ∪ Si (ending in v4, v3, v1 and
v2 respectively). It follows that all Si are supports and we choose S, the heaviest
of them. Then w(S) ≥ 1

4

∑4
i=1 w(Si) ≥ 1

4 [2w(v2v3) + 2w(v1v4) + (w(uv1) +
w(uv2)) + (w(uv3) + w(uv4))] ≥ 1

4 [2w(v2v3) + 2w(v1v4) + w(v1v2) + w(v3v4)],
where the last step follows from triangle inequality. Hence w(S) ≥ 1

4w(C) +
1
4 [w(v2v3) + w(v1v4)] ≥ (1

4 ,
1
2) � C.

Lemma 5. Let C be an unprocessed even-length cycle, |C| ≥ 6, and assume that
there is at least one loose-end. Then there is a 0-support of C of weight at least
(1
4 ,

1
2) � C.

Proof. We partition E(C) into two matchings,M1 and M2, let S1 and S2 be the
supports corresponding to M1 and M2 by Lemma 3, and let S be the heavier of
these supports. We follow all the definitions from the beginning of the proof of
the previous lemma to obtain inequality (3).

From that inequality we get w(S) ≥ 3
8w(A) + 1

4w(F) = 1
4w(C) + 1

8w(A). It
follows that w(S) ≥ (1

4 ,
1
2) � C if |A| ≥ 4.

Since by Observation 2 we have |A| ≥ |C|/2, the only case we need to consider
is that of |C| = 6 and |A| = 3. W.l.o.g.M1 = A andM2 = F . Let Q bet the set of
the lightest edges from each cycle in P ∪M1 or P ∪M2, one edge from each cycle.
There is at most one such cycle in P ∪M1, since by Observation 1 each such
cycle has to contain at least two edges. It follows that |A \Q| ≥ 2. By inequality
(i) in Lemma 3 we get w(S) ≥ 1

2 (w(S1) + w(S2)) ≥ 1
2w(E(C) \Q) + 1

4w(Q) =
1
4w(E(C) \Q) + 1

4w(C) = 1
4w(A \Q) + 1

4w(C) ≥ (1
4 ,

1
2) � C, as required.

3.2 Triangles

For any cycle C, by max(C) we denote the heaviest edge in C.

Lemma 6. For any unprocessed triangle C, there is a (+1)-support of C of
weight at least (1

4 ,
1
2) � C − 1

4w(max(C)).

Proof. Let x, y, z be the vertices of C and assume w.l.o.g. that both xz and
yz are allowed. Let S consist of the heavier of the edges xz, yz. Clearly, S is a
support and w(S) ≥ 1

2 (w(xz)+w(yz)) ≥ 1
4w(C)+ 1

4 (w(xz)+w(yz))− 1
4w(xy) ≥

(1
4 ,

1
2) � C − 1

4w(xy) ≥ (1
4 ,

1
2) � C − 1

4w(max(C)).

Lemma 7. Let C be an unprocessed triangle and assume that there are two
loose-ends. Then there is a (−1)-support of C of weight at least (1

4 ,
1
2) � C +

1
4w(max(C)).

Proof. Let x, y, z bet the vertices of C and let u and v be the loose-ends. We
consider 2 cases:

Case 1. Both loose-ends are connected to C by paths, say u is connected to x
and v to y. Note that in this case all edges of C are allowed. Let S1 = {xy, zv}
and S2 = {zy, xv}. Note that after adding any of these sets to P , both added

140 �L. Kowalik and M. Mucha

x

y

zu

v

S1

x

y

zu

v

S2

Fig. 3. Supports in Case 1 of the proof of Lemma 7. Gray lines denote the paths
connecting loose-ends with C.

edges lie on a single path that ends in u (see Figure 3), so P remains sub-
Hamiltonian. Hence both S1 and S2 are supports of C. The heavier of them
has weight max{w(xy) + w(zv), w(zy) + w(xv)} ≥ 1

2 (w(xy) + w(zy) + w(zv) +
w(xv)) ≥ 1

2 (w(xy) + w(zy) + w(xz)) ≥ 1
4w(C) + 1

2w(min(C)) + 1
4w(max(C)) =

(1
4 ,

1
2) � C + 1

4w(max(C)).

Case 2. At least one loose-end, say u, is not connected to C by a path in
P . W.l.o.g. assume that both xz are yz allowed. Let S1 = {xz, yu} and S2 =
{yz, xu}. Note that adding S1 to P does not create a cycle. Indeed, yu does not
belong to a cycle because yu belongs to a path that ends in a vertex different
from x, y or z. Also xz does not belong to a cycle because it was allowed before
adding it to P . Similar reasoning shows that adding S2 to P does not create
a cycle. Hence both S1 and S2 are supports. Similarly to the previous case we
get max{w(S1), w(S2)} ≥ 1

2 (w(xz) + w(yu) + w(yz) + w(xu)) ≥ (1
4 ,

1
2) � C +

1
4w(max(C)).

Observation 3. Let C be an unprocessed odd cycle in the last phase of the
algorithm and assume that there is exactly one loose-end u. Then u is connected
by a path in P to a vertex z ∈ C and E(C) contains exactly !|E(C)|/2" forbidden
edges and none of them is adjacent to z. ��

Lemma 8. Let C be an unprocessed triangle in the last phase of the algorithm
and assume that there is exactly one loose-end u. Then there is a (−1)-support
of C of weight at least (1

4 ,
1
2) � C + 1

4w(max(C)).

Proof. Let x, y, z denote the vertices of C. By Observation 3 cycle C contains
a forbidden edge — assume w.l.o.g. it is xy — and u is connected in P by a
path to z. Let S1 = {xz, yu} and S2 = {yz, xu}. Clearly, xz and yu are in the
same cycle in P ∪ S1 and it is a Hamiltonian cycle. Hence, S1 is a support of C,
and similarly S2. We pick the heavier of these cycle (its weight can be estimated
similarly as in the proof of Lemma 7).

3.3 5-Cycles

Lemma 9. Let C be an unprocessed 5-cycle with at most one forbidden edge.
Then there is a (+1)-support of weight at least (1/4, 1/2) � C.

Deterministic 7/8-Approximation for the Metric Maximum TSP 141

Proof. Let v1, . . . , v5 be the vertices of C in the order they appear on C and
assume w.l.o.g. that v1v5 is the lightest edge in E(C).

Let M1 = {v1v2, v3v4} and M2 = {v2v3, v4v5}. Let S1 and S2 be the supports
corresponding to M1 and M2 by Lemma 3 and let S be the heavier of them.
Also, assume all definitions leading to inequality (3) in the proof of Lemma 4.

We consider three cases:

Case 1. v1v5 is forbidden. Then v1v2 belongs to a path in P ∪M1 (ending in
v5), hence v1v2
∈ D. By Observation 1, then also v3v4
∈ D, so M1 ∩D = ∅. By
symmetry, also M2 ∩D = ∅. Hence A \D = A. By inequality (ii) in Lemma 3
we get w(S) ≥ 1

2 (w(S1) + w(S2)) ≥ 1
2w(A) ≥ 1

2 ·
4
5w(C) = 2

5w(C) ≥ 1
4w(C) +

3
4 min(C) ≥ (1

4 ,
1
2) � C.

Case 2. One of the matchings, say M1, contains a forbidden edge. Hence the
other edge of M1 is allowed and by Observation 1 it does not belong to D.
Also note that at least one of the edges e of M2 has a vertex in common with
the forbidden edge from M1. It follows that e does not lie on a cycle in M2 ∪
P , because it lies on a path that ends with the forbidden edge from M1. By
Observation 1, the other edge of M2 cannot lie on a cycle either. Altogether,
this gives |A \D| ≥ 3.

Using inequality (3) we get w(S) ≥ 1
2w(A \ D) + 3

8w(A ∩ D) + 1
4w(F) ≥

1
4w(C\{v1v5})+ 1

4w(A\D)+ 1
8w(A∩D) ≥ 1

4w(C\{v1v5})+ 1
2w(v1v5) = (1

4 ,
1
2)�C.

Case 3. There are no forbidden edges in E(C). Suppose P ∪M1 contains a
cycle. Then the chords v1v3 and v2v4 are forbidden. It follows that the edges of
M2 belong to a path in P ∪M2 (one ending in v1), so they cannot lie on a cycle
in P ∪M2. We conclude that at least one of P ∪M1 and P ∪M2 does not contain
cycles, and so |A \D| ≥ 2.

Using inequality (3) we get w(S) ≥ 1
2w(A\D)+ 3

8w(A∩D) = 3
8w(A)+ 1

8w(A\
D) ≥ 3

8 ·
4
5w(C) + 1

4 min(C) = 1
4w(C) + 1

20w(C) + 1
4 min(C) ≥ (1

4 ,
1
2) � C.

Lemma 10. Let C be an unprocessed 5-cycle with two forbidden edges. Let e be
any of the two forbidden edges of C. Then there is a (+1)-support of C of weight
at least (1

4 ,
1
2) � C − 1

4w(e).

Proof. Let v1, . . . , v5 be the vertices of C in the order they appear on C and
assume w.l.o.g. that v1v5 and v2v3 the forbidden edges of C and e = v1v5. Let
M1 = {v1v2, v3v4} and M2 = {v2v3, v4v5} and assume the notation from the
proof of the previous lemma.

Note that the edges of M1 belong to a path in P ∪M1 ending in v5, hence
M1 ∩ D = ∅. It follows that |A \ D| ≥ 2. Using inequality (3) we get w(S) ≥
1
2w(A\D)+ 3

8w(A∩D)+ 1
4w(F) ≥ 1

4 (w(A\D)+w(A∩D)+w(F))+ 1
4w(A\D) =

1
4w(C \ {e}) + 1

4w(A \D) ≥ 1
4w(C \ {e}) + 1

2 min(C) = (1
4 ,

1
2) � C − 1

4w(e).

Lemma 11. Let C be an unprocessed 5-cycle with two forbidden edges and as-
sume that there are two loose-ends. Let e denote any of the two forbidden edges
of C. Then there is a (−1)-support of C of weight at least (1

4 ,
1
2) � C + 1

4w(e).

142 �L. Kowalik and M. Mucha

Proof. Label the vertices of C as in the proof of the previous lemma. Observe
that since there are at least two loose-ends, at least one of them, call it u, is not
connected by a path to C in P .

Let M1 = {v1v2, v3v4, v5u} and M2 = {uv1, v2v3, v4v5}, let S1 and S2 be the
supports corresponding to M1 and M2 by Lemma 3, and let S be the heavier of
them.

Note that the edges of M1 belong to a path in P ∪M1 (the one ending in
u), hence P ∪M1 does not contain cycles and we have S1 = M1. Also, neither
uv1 nor v4v5 belong to a cycle in P ∪M2. Of course v2v3 belongs to a 2-cycle in
P ∪M2.

By inequality (i) in Lemma 3 we get w(S) ≥ 1
2 (w(S1)+w(S2)) ≥ 1

2 [w(v1v2)+
w(v3v4) +w(v5u) +w(uv1) +w(v4v5)] + 1

4w(v2v3). Using the triangle inequality
gives w(S) ≥ 1

2 [w(v1v2) +w(v3v4) +w(v1v5) +w(v4v5)] + 1
4w(v2v3) ≥ 1

4w(C) +
3
4 min(C) + 1

4w(v1v5) ≥ (1
4 ,

1
2) � C + 1

4w(e).

Lemma 12. Let C be an unprocessed 5-cycle in the last phase of the algorithm
and assume that there is exactly one loose-end u. Let e be any of the two forbidden
edges of E(C). Then there is a (−1)-support of C of weight at least (1

4 ,
1
2) � C +

1
4w(e).

Proof. Label the vertices of C as in Lemma 10. By Observation 3, u is connected
in P to v4 by a path.

Let S1 = {v1v2, v3v4, v5u}, S2 = {uv1, v2v4, v3v5} and S3 = {uv1, v2v5, v3v4}.
One may check that for any i = 1, 2, 3, Si is a support and in particular P ∪ Si

is a Hamiltonian cycle. Let S be the heaviest of these supports.
Denote w(v2v4)+w(v3v5)+w(v2v5)+w(v3v4) by X . Then w(S) ≥ 1

2w(S1)+
1
4w(S2) + 1

4w(S3) = 1
2 (w(v1v2) + w(v3v4) + w(v5u) + w(uv1)) + 1

4X .
By triangle inequality (used twice), X ≥ 2w(v2v3). By symmetry, X ≥

2w(v4v5). Hence, X ≥ w(v2v3) + w(v4v5). Let us apply triangle inequality one
more time: w(v5u) + w(uv1) ≥ w(v1v5).

Putting it all together we get w(S) ≥ 1
2 (w(v1v2) + w(v3v4) + w(v1v5)) +

1
4 (w(v2v3) + w(v4v5)) ≥ (1

4 ,
1
2) � C + 1

4w(e).

3.4 Odd Cycles of Length at Least 7

Lemma 13. Let C be an unprocessed odd cycle of length at least 7. Then there
is a (+1)-support of weight at least (1

4 ,
1
2) � C.

Proof. Let |C| = 2k + 1, k ≥ 3. We enumerate vertices in V (C) so that C =
v0v1v2 . . . v2k−1v2kv0, both v0v1 and v0v2k are allowed and w(v0v1) ≥ w(v0v2k).
Consider two subsets of E(C): M1 = {v2iv2i+1 | 0 ≤ i ≤ k − 1} and M2 =
{v2i+1v2i+2 | 0 ≤ i ≤ k − 1}. In other words we partition E(C) \ {v0v2k} into
two matchings.

Let C1, . . . , Cp be all cycles in P ∪ M1 and Let Cp+1, . . . , Cq be all cycles in
P ∪M2. Similarly as in Lemma 3, letD =

⋃q
i=1 Ci and we partition edges inM1∪

M2 into two sets: F containing forbidden edges, and A containing allowed edges.

Deterministic 7/8-Approximation for the Metric Maximum TSP 143

Further, let us choose for each cycle Ci, i = 1, . . . , q, some edge ei in Ci ∩ E(C)
and let Q = {e1, . . . , eq}. Since by Observation 1 each cycle Ci that contains v0v1
contains also another edge from A, we assume w.l.o.g. that v0v1
∈ Q.

Using Lemma 3 we obtain supports S1, S2. Let S be the heavier of these
supports. Then w(S) ≥ 1

2 (w(S1) + w(S2)). Using Lemma 3 we obtain supports
S1, S2. Let S be the heavier of these supports. Then w(S) ≥ 1

2 (w(S1) +w(S2)).
By inequality (i) in Lemma 3, w(S) ≥ 1

2w((M1 ∪ M2) \ Q) + 1
4w(Q) =

1
4w(E(C) \ {v0v2k}) + 1

4w((M1 ∪ M2) \ Q). Since v0v1
∈ Q and w(v0v1) ≥
w(v0v2k), w(S) ≥ 1

4w(E(C)) + 1
4w((M1 ∪ M2) \ (Q ∪ {v0v1})). As F ⊆ Q,

(M1 ∪M2) \ (Q ∪ {v0v1}) = (A \ {v0v1}) \Q and hence

w(S) ≥ 1
4w(E(C)) + 1

4w((A \ {v0v1}) \Q). (4)

It follows that |(A \ {v0v1}) \Q| ≥ 2 implies w(S) ≥ (1/4, 1/2) � C.
First assume there are k forbidden edges in E(C). Then one of the matchings,

say M1, contains only allowed edges (and the other matching contains all the
forbidden edges of C). Note that in P ∪M1 all edges of M1 belong to a path
with one end in v2k. It follows that M1 = S1 and S1 ∩ Q = ∅. It follows that
A ∩ Q = ∅ and hence (A \ {v0v1}) \ Q contains at least k − 1 ≥ 2 edges, as
required.

Now assume there are at most k−1 forbidden edges in E(C). Then |A| ≥ k+1.
By Observation 1, |A \Q| ≥ � |A|

2 �. It follows that |(A \ {v0v1}) \Q| ≥ � |A|
2 �− 1.

For |A| ≥ 5, we get � |A|
2 � − 1 ≥ 2.

Hence we are left with the case |A| ≤ 4. Since |A| ≥ k + 1, k ≤ 3. So k = 3,
|A| = 4 and |F | = 2. We consider two subcases.
Case 1. v5v6 is forbidden. Then v4v5 is allowed and after adding the matching
containing v4v5 to P , v4v5 is on a path ending in v6, hence v4v5 does not belong
to any Ci. Hence the three remainig edges in A belong at most one cycle Ci, so
|A ∩Q| ≤ 1 and further |(A \ {v0v1}) \Q| ≥ 2, as required.

Case 2. v5v6 is allowed. If F = {v2v3, v4v5}, one of the matchings, namely M2,
contains only allowed edges. Moreover, these edges belong to a path in P ∪M2

(ending in v6), so M2 = S2 and S2 ∩ Q = ∅. There is just one allowed edge
in M1 and hence it cannot belong to a cycle Ci. It follows that Q = F and
hence |(A \ {v0v1}) \ Q| ≥ 3. The case F = {v1v2, v3v4} is symmetric. Finally,
assume F = {v1v2, v4v5}. By Observation 1, in P ∪M1 and P ∪M2 there are
at most 2 cycles with edges from A. If P ∪M1 contains such cycle, then v0v3 is
forbidden. However, then P ∪M2 contains no such cycle. Hence |A∩Q| ≤ 1 and
|(A \ {v0v1}) \Q| ≥ 2, as required.

4 Ordering the Cycles

4.1 Basic Setup

Based on the results from the previous section, we can see that every cycle C
belongs to one of three categories:

144 �L. Kowalik and M. Mucha

even cycles: C has a 0-support of weight (1
4 ,

1
2) �C, if there exists at least one

loose-end.
good odd cycles: C has a (+1)-support of weight at least (1

4 ,
1
2) � C — that

is the case if C is an odd cycle of length ≥ 7 or a 5-cycle with at most one
forbidden edge.

bad odd cycles: C has a (+1)-support of weight smaller than (1
4 ,

1
2) � C, and

it also has a (−1)-support of weight greater than (1
4 ,

1
2)�C, but only if there

exist at least two loose-end or it is the last cycle processed — that is the
case for all 3-cycles and for 5-cycles with two forbidden edges.

Remark 1. Notice that a good odd cycle might become bad when other cycles
are processed, if it is initially a 5-cycle with zero (or one) forbidden edges and
two (one, resp.) of its allowed edges becomes forbidden.

We say that a cycle C is k-processed, if it is processed using a k-support. The
general order of processing the cycles consists of 4 stages:

(1) as long as there exists a good odd cycle, (+1)-process it,
(2) (+1)-process bad odd cycles until the number of loose-ends is greater or

equal to the number of remaining bad odd cycles,
(3) 0-process even cycles,
(4) (−1)-process the remaining odd cycles.

When we use the above processing order all the assumptions of previous sec-
tion’s lemmas are satisfied. In particular in stage 3, there exists at least one
loose-end, so we can process the even cycles. This is because we can assume
that C contains at least one triange, otherwise already the Kostochka-Serdyukov
algorithm gives 7/8-approximation.

It is clear that we are getting enough weight from cycles processed in stages
1 and 3. We also gain some extra weight in stage 2 and lose weight in stage 4.
We want to select the cycles to be processed in stage 2 in such a way that the
overall weight of edges added during stages 2 and 4 is at least

∑
i(

1
4 ,

1
2) � Ci,

where the sum is over all cycles processed in these stages.

4.2 Ordering Bad Odd Cycles

Let us first define certain useful notions. For any bad odd cycle C, let B−1(C)
(B+1(C)) be the lower bound on the weight of the (−1)-support ((+1)-support),
as guaranteed by the appropriate lemma in the previous section. Suppose that
Ci is the set of bad odd cycles processed in stage i, i = 2, 4. If we use previous
section’s lemmas to lowerbound the weight of all edges added in stages 2 and 4,
we are going to get ∑

C∈C2

B+1(C) +
∑

C∈C4

B−1(C),

and we need to show that C2 and C4 can be chosen so that the value of this
expression is at least ∑

C∈C2∪C4

(1
4 ,

1
2) � C.

Deterministic 7/8-Approximation for the Metric Maximum TSP 145

For every bad odd cycle C there exists a non-negative number, which we call
the loose-end value for C and denote LEV(C) such that

B+1(C) ≥ (1
4 ,

1
2) � C − LEV(C) and B−1(C) ≥ (1

4 ,
1
2) � C + LEV(C).

Note, that this number is equal to 1
4w(e), where e is the heaviest edge of C if C

is a triangle, or the heavier of the two forbidden edges of C if C is a bad 5-cycle.
The reason why we call this number the loose-end value for C is that it is

essentially the price at which C should be willing to buy/sell a loose-end. In this
economic analogy, the cycles that are (+1)-processed are selling loose-ends to
the cycles that are (−1)-processed. If we can make every cycle trade a loose-end
at a preferred price (LEV or better), the weight of a support of any cycle C
together with its profit/loss coming from trading a loose-end adds up to at least
(1
4 ,

1
2) � C. But it is obvious how to make every cycle trade a loose-end at a

preferred price! It is enough to make the cycles with smallest LEV sell loose-
ends (process them in stage 2), and make the remaining cycles buy loose-ends
(process them in stage 4).

Note here, that some bad odd cycles will get loose-ends for free from good odd
cycles processed in stage 1. Since we assume that the total number of vertices
in the graph is even, the number of the remaining bad odd cycles is also even,
and so they can be divided evenly into sellers and buyers.

Using Lemma 2 we get

Theorem 1. Metric MAX-TSP problem can be 7/8-approximated for graphs
with even number of vertices.

This can be extended to graphs with odd number of vertices, at a cost of increas-
ing the running time by a factor of O(n4), we omit the details in this extended
abstract.

References

1. Chen, Z.-Z., Nagoya, T.: Improved approximation algorithms for metric max TSP.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 179–190.
Springer, Heidelberg (2005)

2. Hassin, R., Rubinstein, S.: A 7/8-approximation algorithm for metric Max TSP. Inf.
Process. Lett. 81(5), 247–251 (2002)

3. Kostochka, A.V., Serdyukov, A.I.: Polynomial algorithms with the estimates 3/4 and
5/6 for the traveling salesman problem of the maximum (in Russian). Upravlyaemye
Sistemy 26, 55–59 (1985)

4. Kowalik, �L., Mucha, M.: 35/44-approximation for asymmetric maximum TSP with
triangle inequality. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 589–600. Springer, Heidelberg (2007)

5. Serdyukov, A.I.: The traveling salesman problem of the maximum (in Russian).
Upravlyaemye Sistemy 25, 80–86 (1984)

Inapproximability of Survivable Networks�

Yuval Lando1 and Zeev Nutov2

1 Ben-Gurion University of the Negev
ylando@hotmail.com

2 The Open University of Israel
nutov@openu.ac.il

Abstract. In the Survivable Network Design Problem (SNDP) one seeks
to find a minimum cost subgraph that satisfies prescribed node-connecti-
vity requirements. We give a novel approximation ratio preserving reduc-
tion from Directed SNDP to Undirected SNDP. Our reduction extends and
widely generalizes as well as significantly simplifies the main results of
[6]. Using it, we derive some new hardness of approximation results, as
follows. We show that directed and undirected variants of SNDP and of
k-Connected Subgraph are equivalent w.r.t. approximation, and that a
ρ-approximation for Undirected Rooted SNDP implies a ρ-approximation
for Directed Steiner Tree.

1 Introduction

Let κH(u, v) (possibly u = v) denote the maximum number of pairwise internally-
disjoint uv-paths in a graph H . Let κ(H) = min{κH(u, v) : (u, v) ∈ V × V, u
=
v} be the connectivity of H . The following is a fundamental problem in Network
Design:

Survivable Network Design Problem (SNDP)
Instance: A graph G = (V,E), edge costs {c(e) : e ∈ E}, and requirements

r(u, v) on V × V .
Objective: Find a minimum cost spanning subgraph H = (V, I) of G so that

κH(u, v) ≥ r(u, v) for all u, v ∈ V. (1)

This formulation includes well known problems such as Steiner Tree/Forest,
Min-Cost k-Flow, and others. If r(u, v) = k for all u, v ∈ V then we get the
k-Connected Subgraph problem, which seeks a minimum cost spanning subgraph
H with κ(H) ≥ k. In the Rooted SNDP there is s ∈ V so that if r(u, v) > 0
then: u = s for directed graphs, and u = s or v = s for undirected graphs. In
{0, k}-SNDP, requirements are either 0 or k; {0, 1}-SNDP is the Steiner Forest
Problem, and Rooted {0, 1}-SNDP is the Steiner Tree Problem. See a survey in [7]
for various types of SNDP problems. The following known statement (c.f., [7])
shows that undirected SNDP problems cannot be much harder to approximate
than the directed ones.
� This research was supported by The Open University of Israel’s Research Fund

(grant no. 100685).

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 146–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Inapproximability of Survivable Networks 147

Proposition 1. A ρ-approximation algorithm for Directed SNDP implies a
2ρ-approximation algorithm for Undirected SNDP.

The reduction in Proposition 1 is very simple: just apply the ρ-approximation
algorithm on the ”bidirected” instance, and return the underlying graph of the
directed solution computed.

Following the classification of cost types of [7], we assume that the input
graph G to an SNDP instance is complete. The case of {0, 1}-costs gives the
augmentation problems when we seek to augment a graph G0 (formed by edges
of cost 0 in G) by a minimum size edge-set F (any edge is allowed) so that G0+F
satisfies the requirements. The case of {1,∞}-costs gives the min-size subgraph
problems: edges in G have unit costs, while edges not in G have cost ∞.

Most undirected variants of {0, 1}-SNDP are substantially easier to approx-
imate than the directed ones. For example, Undirected Steiner Tree/Forest ad-
mits a constant ratio approximation algorithm, while the directed variants are
not known to admit even a polylogarithmic approximation ratio. Specifically,
Dodis and Khanna [2] showed that Directed Steiner Forest is at least as hard
to approximate as Label-Cover. By extending the construction of [2], Kortsarz,
Krauthgamer, and Lee [6] showed a similar hardness result for Undirected {0, k}-
SNDP; the same hardness is valid even for {0, 1}-costs, see [9]. The currently
best known approximation lower bound for Directed Steiner Tree is log2−ε n [5],
while the best known approximation ratio is nε/ε3 [1].

So far, there was no unifying hardness result indicating that the inverse to
Proposition 1 is also true, namely, that Undirected SNDP is at least as hard to
approximate as Directed SNDP. We will give such a reduction, which looks sur-
prisingly simple, after it is found. Our reduction transforms a directed instance
on n nodes with costs in the range C into an undirected instance with n′ = 2n
nodes and costs in the range C′ = C ∪ {0}; hence if the range C includes 0
costs, we have C = C′. Every requirement r(u, v) transforms into the require-
ment r′(u, v′) = r(u, v) + n = r(u, v) + n′/2. We note that the reduction does
not preserves metric costs (because we add edges of cost zero), and transforms
small requirements into large requirements. However, in several cases, it has
the advantage of preserving the ”type” of requirements and costs; see [7] for a
classification of SNDP problems w.r.t. costs and requirements. In particular, we
obtain the following results:

Theorem 1. The following holds for any range of costs that includes the zero
costs:

(i) A ρ-approximation for Undirected SNDP implies a ρ-approximation for Di-
rected SNDP.

(ii) A ρ-approximation for Undirected k-Connected Subgraph implies a
ρ-approximation for Directed k-Connected Subgraph.

(iii) A ρ-approximation for Undirected {0, k}-SNDP implies a ρ-approximation
for Directed Steiner Forest.

(iv) A ρ-approximation for Undirected Rooted {0, k}-SNDP implies a ρ-approxi-
mation for Directed Steiner Tree.

148 Y. Lando and Z. Nutov

To illustrate the power and the limitations of our result, we list and discuss some
specific consequences. Note that Theorem 1 is true for {0, 1}-costs. This fact is
however redundant for the problems in parts (ii) and (iii), since for {0, 1}-costs
the directed versions in parts (ii) and (iii) are known to be “easier” than the
undirected ones. Specifically, for {0, 1}-costs we have:

– Directed k-Connected Subgraph with {0, 1}-costs is in P [4], while the com-
plexity status of the undirected variant is unknown.

– Directed Steiner Forest with {0, 1}-costs admits an O(log n)-approximation
[8], while the undirected variant is unlikely to admit a polylogarithmic ap-
proximation [9].

Dodis and Khanna [2] showed by a relatively simple proof that Directed Steiner
Forest cannot be approximated within O(2log1−ε n) for any fixed ε > 0, unless
NP ⊆ quasi-P. Thus part (iii) immediately implies the main result of [6]:

Corollary 1 ([6]). Undirected {0, k}-SNDP does not admit an O(2log1−ε n) ap-
proximation for any fixed ε > 0, unless NP ⊆ quasi-P.

In [9] it is proved that the same hardness result holds even for {0, 1}-costs, for
both directed and undirected graphs (for large values of k). It seems that this
result of [9] cannot be deduced from our work, as the proof of the directed case
is essentially the same as that of the undirected one.

It was already observed by A. Frank [3] long time ago by an easy proof that
Directed Rooted {0, 1}-SNDP with {0, 1}-costs is at least as hard as the Set-Cover
problem. Hence from part (iv) we obtain the following hardness result, which
proof required considerable effort in [6] and in [10].

Corollary 2 ([6,10]). Undirected Rooted {0, k}-SNDP with {0, 1}-costs cannot
be approximated within C ln n for some C > 0, unless P=NP.

Now we give two new results. Combining part (ii) with Proposition 1, we obtain:

Corollary 3. Directed and undirected variants of SNDP and of k-Connected
Subgraph are equivalent (up to a constant factor) w.r.t. approximation.

Finally, we can combine part (iv) with the hardness result of Halperin and
Krauthgamer [5] for Directed Steiner Tree to obtain:

Corollary 4. There exists a constant C > 0 so that Undirected Rooted {0, k}-
SNDP does not admit a C log2−ε n approximation for any fixed ε > 0, unless NP
has quasi-polynomial Las-Vegas algorithms.

The hardness in part (iv) however seems “stronger” than the one in Corollary 4,
as currently no polylogarithmic approximation is known for Directed Steiner Tree.
We also note that the statements in Corollaries 1 – 4 are valid even for instances
when we are only interested to increase the connectivity by 1 between pairs
with requirement k, namely, when G contains a subgraph G0 of cost 0 with
κG0(u, v) = k − 1 for all u, v ∈ V with r(u, v) = k.

Inapproximability of Survivable Networks 149

2 The Reduction

Definition 1. Let H = (V, I) be a directed graph. The bipartite (undirected)
graph of H is obtained by adding a copy V ′ of V and replacing every directed
edge ab ∈ I by the undirected edge ab′, where b′ denotes the copy of b in V ′.

The key observation is the following.

clique of cost 0
V

clique of cost 0

’a

u

’u’

vaV

’b

b

’v

Fig. 1. The construction in Lemma 1; edges in M are shown by thin lines

Lemma 1. Let H ′ = (V + V ′, I ′) be an undirected graph obtained by adding to
the bipartite graph of a directed graph H = (V, I) edge sets of cliques on each of
V and V ′, and the matching M = {aa′ : v ∈ V } (see Figure 1). Then:

κH′(u, v′) = κH(u, v) + n ∀u, v ∈ V . (2)

Proof. Let k = κH(u, v) and k′ = κH′(u, v′). We may assume that uv /∈ I;
otherwise the same proof applies on G− uv. Note that then n ≥ k + 2 if u
= v.

We prove that k′ ≥ k+n by showing thatH ′ contains k+n pairwise internally-
disjoint uv′-paths. Assuming u
= v, we will show 2k + 2 paths of the length 2
each, and the rest n − k − 2 paths of the length 3 each. Consider a set Π of k
pairwise internally-disjoint uv-paths in H .

The length 2 paths are as follows:

• The two paths u− u′ − v′ and u− v − v′.
• The k paths u− w′ − v′ for any edge uw belonging to some path in Π .
• The k paths u− w − v′ for any edge wv belonging to some path in Π .

The length 3 paths are as follows:

• A path u − a − b′ − v′ for every edge ab belonging to some path in Π and
not incident to u, v.
• A path u− a− a′ − v′ for every node a not belonging to any path in Π .

150 Y. Lando and Z. Nutov

It is easy to see that these paths are pairwise internally-disjoint, and we now
count their number. Excluding u, v′, every node of H ′ appears as an internal
node in exactly one of these paths. The number of internal nodes in the paths
of length 2 is 2k + 2. Hence the number of internal nodes in the length 3 paths
is (2n− 2)− (2k + 2) = 2(n− k − 2). As each of the length 3 paths has exactly
2 internal nodes, their number is n− k − 2. Hence the total number of paths is
(2k + 2) + (n− k − 2) = n+ k, as claimed.

Now consider the case u = v. In this case, we have only 2k paths of the length
2 each, but there is one path of the length 1, namely, the edge vv′. So we have
a total of 2k+ 1 paths. The total number of internal nodes in these paths is 2k.
We can form length 3 paths that use as internal nodes all the other 2n− 2− 2k
nodes, in the same way as for the case u
= v. So, the number of length 3 paths
is n−1−k. This gives a total of (2k+1)+(n−k−1) = n+k paths, as claimed.

To prove that k ≥ k′ − n we show that H contains k′ − n pairwise internally-
disjoint uv-paths. A uv′-path of length 3 in H ′ is an M -path if its internal edge
belongs to M ; in the case u = v, the single edge vv′ is also considered as an
M -path.

Consider a set Π ′ of k′ pairwise internally-disjoint uv′-paths in H ′ with max-
imum number of M -paths. From the structure of H ′, we may assume that every
path in Π ′ has length 2 or 3, or that it is the edge vv′ in the case u = v. Note
that every node of H ′ belongs to some path in Π ′. Otherwise, if say a ∈ V does
not belong to some path in Π ′, then by replacing the path in Π ′ containing a′

by the M -path u − a − a′ − v′ the number of M -paths in Π ′ increases by 1; a
similar argument applies if there is a′ ∈ V ′ that does not belong to some path
in Π ′.

’2 v’a a’’1

u

a

a1

’

a2

u

v

q

aq

Fig. 2. Illustration to the proof of Lemma 1

We claim that there exists a sequence a1, . . . , aq of nodes in V satisfying (see
Figure 2):

(i) u− a′1 − v′ and u− aq − v′ belong to Π ′;
(ii) u− ai−1 − ai

′ − v′ belongs to Π ′ for every i = 2, . . . , q;
(iii) uai

′ /∈ I ′ and ai−1v
′ /∈ I ′ for every i = 2, . . . , q.

Inapproximability of Survivable Networks 151

Such a sequence can be constructed as follows. Note that u has at least k′−n
neighbors in V ′ − u′ in the paths in Π ′, since u has n neighbors in V + u′.
We choose one such neighbor a1′ of u. Since every node belongs to some path
in Π ′, there must be a non M -path containing a1. If this paths has length 2,
namely, if it is u − a1 − v′, we are done. Otherwise, this path has length 3, say
u − a1 − a2′ − v′. Note that a2′ cannot be a neighbor of u, since otherwise we
could replace these two paths by the two paths u− a2′− v′ and u− a1− a1′− v′
to increase the number of M -paths by 1. So, we can continue this process until
at some iteration q a path u− aq − v′ of length 2 is found.

Now we observe that a sequence above defines the uv-path u−a1−a2−· · ·−aq

in H . As u has at least k′ − n neighbors in V ′ − u′, we can form k′ − n such
sequences, which gives a set of k′ − n pairwise internally-disjoint paths in H .

Corollary 5. κ(H ′) = κ(H) + n for H,H ′ as in Lemma 1.

Proof. Let k = κ(H). By Lemma 1, it is sufficient to show that:

• κH′(u, v), κH′ (u′, v′) ≥ k + n for all u, v ∈ V .
• κH′(v, v′) ≥ k + n for all v ∈ V .

We prove that κH′(u, v) ≥ k+n; the proof that κH′(u′, v′) ≥ k+n is identical.
We may again assume that uv /∈ I. A set of k+n pairwise internally-disjoint uv
paths in H ′ is as follows. There are n−1 internally-disjoint uv-paths in H ′−V ′.
Another path is u−u′−v′−v. We now show additional k paths using nodes from
V ′ −{u′, v′} only. Let A be the set of neighbors of u and B the set of neighbors
of v in V ′ − {u′, v′}. We have |A|, |B| ≥ k, since H is k-connected, and since
uv /∈ I. There are |A ∩ B| uv-paths of the length 2 each through A ∩ B, and
min{|A−B|, |B−A|} uv-paths of the length 3 each through (A∪B)− (A∩B).
Hence we have |A ∩B|+ min{|A−B|, |B −A|} ≥ k pairwise internally-disjoint
uv-paths through V ′ − {u′, v′}, as claimed.

We prove that κH′(v, v′) ≥ k + n. The key point here is that κH(v, v) ≥ k,
namely, that in H there are at least k pairwise internally-disjoint paths from v
to itself. Otherwise, by Menger’s Theorem, there is a set C with |C| = k − 1 so
that H − C has no path from v to itself. This implies that either V = C + v so
|V | = k, or that H − C is not strongly connected. In both cases, we obtain the
contradiction κ(H) ≤ k − 1. Thus by Lemma 1 we have κH′ (v, v′) = κH(v, v) +
n ≥ k + n, as claimed.

Given an instance I = (G = (V,E), c, r) of Directed SNDP with n = |V |, con-
struct an instance I ′ = (G′ = (V +V ′, E′), c′, r′) of Undirected SNDP as follows.
G′ is as in Lemma 1, keeping costs of edges in E, and with zero costs of other
edges in E′. The requirements are r′(u, v′) = n + r(u, v) for (u, v) ∈ V × V ,
and r′(u, v) or r′(u′, v′) can be any integer between 0 and n otherwise. Every
directed edge in E has a (unique) appearance in E′, so we identify a directed
edge in E with the corresponding undirected edge in E′. This establishes a bi-
jective correspondence between edge subsets I ⊆ E and edge subsets I ′ ⊆ E′

containing E′ − E, namely, I ′ = I + (E′ − E). From Lemma 1 and Corollary 5
we get the following statement, which implies Theorem 1.

152 Y. Lando and Z. Nutov

Corollary 6. (1) holds for H = (V, I), r if, and only if, (1) holds for H ′ =
(V + V ′, I ′), r′. Furthermore, κ(H ′) = κ(H) + n, namely, H is k-connected if,
and only if, H ′ is (k + n)-connected.

Corollary 6 implies thatH = (V, I) is a feasible solution to instance I if, and only
if, H ′ = (V, I ′) is a feasible solution to the constructed instance I ′; furthermore,
c(I) = c′(I ′), since I ′ is obtained from I by adding edges of cost 0. In particular,
we obtain that the optimal solution values for I and for I ′ coincide. This is
so both for SNDP and for k-Connected Subgraph. Thus if H ′ = (V ′, I ′) is a ρ-
approximate solution for I ′, then H = (V, I) is a ρ-approximate solution for I.
Even if the approximation ratio ρ is given in terms of n (and is non-decreasing
in n), then we get an O(ρ)-approximation for I, since |V ′| = 2|V | ≥ |V |.

As when transforming I to I ′, the requirement are shifted by the additive
term n = n′/2, Directed Steiner Forest is transformed into Undirected {0, k}-
SNDP, while Directed Steiner Tree is transformed into Undirected Rooted {0, k}-
SNDP, where k = n′/2 + 1. Furthermore, an instance for k-Connected Subgraph
is transformed into an instance of k′-Connected Subgraph, where k′ = k + n/2.

Finally, note that since the only change in the range of the costs when trans-
forming I to I′ was adding edges of cost 0, then the ranges of costs of I and I ′
coincide, provided 0 costs are in the range of I.

The proof of Theorem 1 is now complete.

References

1. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation algorithms for directed Steiner problems. Journal of Algorithms 33,
73–91 (1999)

2. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: STOC,
pp. 750–759 (2003)

3. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Jour-
nal on Discrete Math. 5(1), 25–53 (1992)

4. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. on Comb. Theory
B 65, 73–110 (1995)

5. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp.
585–594 (2003)

6. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing 33(3), 704–720
(2004)

7. Kortsarz, G., Nutov, Z.: Approximating minimum-cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, Boca Raton (2007)

8. Kortsarz, G., Nutov, Z.: Tight approximation algorithm for connectivity augmen-
tation problems. Journal of Computer and System Sciences 74, 662–670 (2008)

9. Nutov, Z.: Approximating connectivity augmentation problems. In: SODA, pp.
176–185 (2005)

10. Nutov, Z.: Approximating rooted connectivity augmentation problems. Algorith-
mica 44, 213–231 (2006)

Approximating Single Machine Scheduling

with Scenarios

Monaldo Mastrolilli, Nikolaus Mutsanas, and Ola Svensson

IDSIA - Lugano, Switzerland
{monaldo,nikolaus,ola}@idsia.ch

Abstract. In the field of robust optimization, the goal is to provide
solutions to combinatorial problems that hedge against variations of the
numerical parameters. This constitutes an effort to design algorithms
that are applicable in the presence of uncertainty in the definition of
the instance. We study the single machine scheduling problem with the
objective to minimize the weighted sum of completion times. We model
uncertainty by replacing the vector of numerical values in the description
of the instance by a set of possible vectors, called scenarios. The goal is
to find the schedule with minimum value in the worst-case scenario.

We first show that the general problem is intractable by proving that it
cannot be approximated within O(log1−ε n) for any ε > 0, unless NP has
quasi-polynomial algorithms. We then study more tractable special cases
and obtain an LP based 2-approximation algorithm for the unweighted
case. We show that our analysis is tight by providing a matching lower
bound on the integrality gap of the LP. Moreover, we prove that the
unweighted version is NP-hard to approximate within a factor less than
6/5. We conclude by presenting a polynomial time algorithm based on
dynamic programming for the case when the number of scenarios and
the values of the instance are bounded by some constant.

1 Introduction

In classical optimization problems, it is often assumed that the parameters of the
instances are precisely defined numerical values. In many cases, however, such a
precise definition is impossible due to inadequate knowledge on the side of the
decision maker. The necessity to provide algorithms for minimizing the cost in
uncertain environments lead to the fields of stochastic and robust optimization.

In stochastic optimization [4], it is assumed that we have knowledge of the
probability distribution of the data and the goal is to find a solution that min-
imizes the expected cost. Robust optimization [3,15] can be considered as the
worst-case counterpart of the stochastic optimization. In a robust optimization
problem, we have a set of possible configurations of the numerical parameters
of the problem, and the goal is to find a solution that minimizes the cost in a
worst-case scenario for the given solution. In the following we will focus on this
latter approach.

Within robust optimization, two common ways of modeling uncertainty are
interval data and discrete scenarios. In the case of interval data the vector of

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 153–164, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 M. Mastrolilli, N. Mutsanas, and O. Svensson

numerical parameters in the description of the instance is replaced by a vector
of intervals, one for each parameter. On the other hand, in the case of discrete
scenarios the vector of numerical parameters is replaced by a set of vectors, each
of them corresponding to a different scenario. An advantage of this model is
that, whereas in the case of interval data the fluctuations of the different nu-
merical parameters are implicitly assumed to be independent, the use of discrete
scenarios allows the implementation of dependencies among parameters.

Several objective functions for robust minimization1 problems have been pro-
posed in literature (see e.g. the book by Kouvelis & Yu [15]). In the absolute
robustness approach, the goal is to minimize the maximum among all feasible
solutions and all scenarios. This is often referred to as the “min-max” version of
the problem. In the robust deviation approach, the goal is to minimize the max-
imum deviation from optimality among all feasible solutions and all scenarios.
Recent examples of these two families of approaches can be found in [1,12,9].

In this paper we investigate the min-max version of the following classical
scheduling problem. There is a set N = {1, . . . , n} of n jobs to be scheduled on a
single machine. The machine can process at most one job at a time. Each job j
is specified by its length pj and its weight wj , where pj and wj are nonnegative
integers. Jobs must be processed for pj time units without interruptions on the
machine. The goal is to find a schedule (i.e. permutation π : N → {1, . . . , n})
such that the sum

∑n
j=1 wjCj , where Cj is the time at which job j completes in

the given schedule, is minimized. In standard scheduling notation (see e.g. Gra-
ham et al. [10]), this problem is known as 1||

∑
wjCj . Smith [22] gave a simple

polynomial time algorithm for this problem, by showing that scheduling jobs in
non-decreasing order of the ratio of their processing time to their weight is op-
timal: given a set of n jobs with weights wj and processing times pj , 1 ≤ j ≤ n,
schedule the jobs such that π(i) < π(j) if and only if pi/wi ≤ pj/wj . When there
are precedence constraints among jobs, then the problem becomes NP -hard [16].
Several 2-approximation algorithms are known for this variant [19,11,6,5,17], as
observed in [7], all of them can be seen as obtained by rounding a linear relax-
ation of an integer program formulation ILP due to Potts [18]. The integrality gap
of ILP is known [5] to be 2, and understanding if a better than 2-approximation
algorithm exists is considered an outstanding open problem in scheduling the-
ory (see e.g. [21]). In this paper we consider the robust version of this classical
scheduling problem, as defined below.

1 The definition for robust maximization problems are analogous.

Definition 1. In the robust scheduling problem, we are given a set of jobs
N = {1, . . . , n} and a set of scenarios S = {s1, . . . , sm} where si =
(psi

1 , . . . , psi
n , wsi

1 , . . . , wsi
n) for si ∈ S. A feasible schedule is a permutation π

of the jobs and the problem is to find a permutation π∗ of the jobs such that

π∗ = min
π

max
si∈S

⎛

⎝
∑

j∈N

wsi

j Csi

j (π)

⎞

⎠ ,

where Csi

j (π) =
∑

j′∈N,π(j′)≤π(j) psi

j′ .

Approximating Single Machine Scheduling with Scenarios 155

Whereas 1||
∑
wjCj is polynomial time solvable in the case of a single scenario,

Kouvelis & Yu [15] prove that the robust version is weakly NP-complete even
for the case of two scenarios and unit processing times.

In this paper we take on the task of studying the approximability of the
robust variant. We show that, unless NP has quasi-polynomial algorithms, it
cannot be approximated within factor O(log1−ε n) in polynomial time, for any
ε > 0. Moreover, under P
= NP , we show that it remains hard to approximate
within 6/5 even if we assume that processing times, or alternatively weights, are
equal to one and do not vary across the scenarios.

Then, we study the natural generalization of the ILP due to Potts [18] for the
robust version. We provide a lower bound on the integrality gap and a matching
upper bound for the special case where processing times or, alternatively, weights
do not vary across the scenarios. Interestingly, the upper bound can be extended
to include precedence constraints, and we obtain the same performance guar-
antee, namely a 2-approximation, as for the single scenario case. Proving good
hardness of approximation results for 1|prec|

∑
wjCj is a long standing open

problem in scheduling theory. In contrast, for the robust variant, we show that
it is NP-hard to approximate within a factor less than 6/5.

We conclude by presenting a polynomial time algorithm based on dynamic
programming for the case that the number of scenarios and the values of the
instance are bounded by some constant.

2 Hardness of the Robust Scheduling Problem

2.1 Inapproximability Result for the General Problem

Here, we show that the general problem with non-constant number of scenarios
has no O(log1−ε n)-approximation algorithm for any ε > 0, unless NP has quasi-
polynomial algorithms. The hardness result is obtained by reducing the following
version of the Label Cover problem to the scheduling problem.

Definition 2. The Label Cover problem L(V,W,E, [R], {σv,w}(v,w)∈E) is de-
fined as follows. We are given a regular bipartite graph with left side vertices
V , right side vertices W , and set of edges E ⊆ V ×W . In addition, for every
edge (v, w) ∈ E we are given a map σv,w : [R]→ [R]. A labeling of the instance
is a function � assigning a set of labels to each vertex of the graph, namely
� : V ∪W → 2[R]. A labeling � satisfies an edge (v, w) if

∃a ∈ �(v), ∃b ∈ �(w) : σv,w(a) = b.

A total-labeling is a labeling that satisfies all edges. The value of a Label Cover
instance, denoted val(L), is defined to be the minimum, over all total-labelings,
of maxx∈V ∪W |�(x)|.

Observe that the variant of the Label Cover problem that is considered assumes
that an edge is covered if, among the chosen labels, there exists a satisfying pair
of labels. The following hardness result easily follows from the hardness result

156 M. Mastrolilli, N. Mutsanas, and O. Svensson

for the max version by using the “weak duality” relationship between the two
versions (see e.g. [2]).

Theorem 1. There exists a constant γ > 0 so that for any language L in NP,
any input w and any R > 0, one can construct a labeling instance L, with
|w|O(log R) vertices, and label set of size R, so that: If w ∈ L, val(L) = 1 and
otherwise val(L) > Rγ . Furthermore, L can be constructed in time polynomial
in its size.

We prove the following theorem by presenting a reduction from the label cover
problem.

Theorem 2. There exists a constant γ > 0 so that for any language L in NP,
any input w, any R > 0 and for g ≤ Rγ , one can, in time O(|w|O(g log R) ·RO(g)),
construct a robust scheduling instance that has optimal value 1 + o(1) if w ∈ L
and optimal value g otherwise.

Proof. Given a Label Cover instance L(V,W,E, [R], {σv,w}(v,w)∈E), we construct
a robust scheduling instance I. Before giving a more formal definition of the
reduction, we first give the intuition behind it.

For x ∈ V ∪W let Rx ⊆ [R] be the possible labels of x. For each (v, w) ∈ E,
let Rv,w ⊆ Rv × Rw contain all pairs of labels of v and w that satisfy the map
σv,w, i.e., Rv,w = {(a, b) ∈ Rv ×Rw : b = σv,w(a)}.

Clearly, for any feasible label cover � there is at least one pair (a, b) from
Rv,w such that a ∈ �(v) and b ∈ �(w), and we say that (a, b) covers (v, w). In
order to have a “corresponding” situation in the scheduling instance I, we define
for each (v, w) ∈ E a set J (v,w) = {J (v,w)

1 , J
(v,w)
2 , . . . , J

(v,w)} of nv,w = |Rv,w|
jobs. Let us consider some total ordering rv,w : Rv,w → {1, . . . , nv,w} of the
pairs in Rv,w. In any feasible schedule of the jobs from J (v,w) there exists an
i = 1, . . . , nv,w, such that J (v,w)

i+1 is scheduled before J (v,w)
i (assume i + 1 equal

to 1 when i = nv,w), otherwise we would have a cycle in that schedule. The
reduction that we are going to present will associate this situation (job J (v,w)

i+1

scheduled before J (v,w)
i) to the case where the ith pair in Rv,w is in the label

cover, i.e. r−1
v,w(i) covers edge (v, w). Then, for each x ∈ V ∪W , a set of scenarios

is defined such that the maximum value of them counts (up to g) the number of
different labels of x. A precise description of the reduction is given below.

Jobs. The jobs of instance I are the union of all jobs
⋃

(v,w)∈E J (v,w).

Ordering Scenarios. Letm = |E| and let π : E → {1, . . . ,m} be some order of
the edges. For each i : 1 ≤ i < m, we have a scenario that sets the weights of
the jobs in J π−1(i) to m and the processing time of the jobs in

⋃
j>i J π−1(j)

to m. The purpose of these scenarios is to ensure that any optimal schedule
will schedule the jobs in the order

J π−1(1) ≺ J π−1(2) ≺ · · · ≺ J π−1(m). (1)

nv,w

Approximating Single Machine Scheduling with Scenarios 157

The total number of scenarios is at most |E| − 1 + 2|E|g · Rg · Rg and the
total number of jobs is at most |E| · R2. As |E| = |w|O(log R), the total size of
the robust scheduling instance is O(|w|O(g log R) ·RO(g)).

Completeness Analysis. By Theorem 1, there exists a feasible labeling of L
that assigns one label to each vertex. Let � be such a labeling and consider a
schedule σ of I that respects (1) and such that, for each element (v, w) ∈ E, the
jobs in J (v,w) are scheduled as follows: for h = 1, . . . , nv,w, if h = rv,w(�(v), �(w))
then job J (v,w)

h+1 is scheduled before J (v,w)
h , otherwise J (v,w)

h is before J (v,w)
h+1 . This

gives a feasible schedule. Moreover, since only one label is assigned to each vertex,
it is easy to see that the value of any scenario is at most 1 + o(1).

Soundness Analysis. Consider a schedule σ of I. Define a labeling � as follows:

{
�(v) = {a : if J (v,w)

h+1 ≺ J
(v,w)
h for some h = rv,w(a, b), w ∈W and b ∈ Rw}

�(w) = {b : if J (v,w)
h+1 ≺ J

(v,w)
h for some h = rv,w(a, b), v ∈ V and a ∈ Rv}

As at least one scenario for each edge will have value 1, � is a feasible labeling
of L. Furthermore, by Theorem 1, there exists a vertex x ∈ V ∪ W so that
|�(x)| ≥ g, and this implies that there is a scenario of value g. Indeed, if x ∈ V
let �(x) = {a1, . . . , ag} be the set of g labels assigned to x, and let (b1, . . . , bg) and
(w1, . . . , wg) be such that J (v,w)

h+1 ≺ J
(x,w)
h with h = rx,w (ai, bi). Then scenario

S(x,w1),...,(x,w)

(a1,b1),...,(a ,b) has been constructed to have value g according to this schedule.
The same holds when x ∈W .

Counting Scenarios. For each v ∈ V , let Ev ⊆ E denote the set of edges
incident to v. For each tuple ((v, w1), . . . , (v, wg)) ∈ Ev×· · ·×Ev of pairwise
different edges, for each tuple (a1, . . . , ag) ∈ Rv×· · ·×Rv of pairwise different
labels, and for each tuple (b1, . . . , bg) ∈ Rw1×· · ·×Rwg so that σ(v,wi)(ai) =

bi for i = 1, . . . , g, we have a different scenario S(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg). Each scenario

S(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg) represents the situation in which label (ai, bi) covers edge
(v, wi) and the number of different labels of v is at least g. This label cover
(partial) solution corresponds to the scheduling solutions σ(v,w1),...,(v,wg)

(a1,b1),...,(ag,bg)

that schedule job J (v,wi)
h+1 before J (v,wi)

h , where h = rv,wi(ai, bi), for each
i = 1, . . . , g. The value of these schedules is made larger than g by setting
the processing time of J (v,wi)

h+1 equal to m2π(v,wi) and the weight of J (v,wi)
h

equal to 1/m2π(v,wi), for each i = 1, . . . , g, and zero all the others. Observe
that the processing times and weights have been picked in such a way that
jobs in J π−1(i) only contribute a negligible amount to the weighted comple-
tion time of jobs in J π−1(j) for i < j. This defines weights and processing
times of scenarios for every v ∈ V . In a symmetric way we define scenarios
S(v1,w),...,(vg,w)

(a1,b1),...,(ag,bg), for every w ∈ W , to count the number of labels that are
assigned to w.

gg

g

i

158 M. Mastrolilli, N. Mutsanas, and O. Svensson

By setting g = O(logc n) (and R = O(logO(c) n)), where |w| = n and c ≥ 1 any
large constant, we obtain that the input size is equal to s = nO(g log R) · RO(g) =
nO(logc n·log log n)·(log n)O(logc n) = nO(logc+δ n) = 2O(logc+1+δ n), for any arbitrarily
small δ > 0. It follows that g = O(log s)

c
c+1+δ = O(log s)1−ε, for any arbitrarily

small ε > 0.

Theorem 3. For every ε > 0, the robust scheduling problem cannot be approx-
imated within ratio O(log1−ε s), where s is the input size, unless NP has quasi-
polynomial algorithms.

2.2 Inapproximability for Unit-Time/Unweighted Case

We now restrict the above problem to the case where the processing times do not
vary across scenarios. We note that this case is symmetric to the one where the
processing times may vary across scenarios while the weights are common. We
show that, if the number of scenarios is unbounded, the robust scheduling prob-
lem is not approximable within 6/5 even for the special case that all processing
times are equal to one.

Our reduction is from the E3-Vertex-Cover problem, defined as follows. Given
a 3-uniform hypergraph G = (V, E) (each edge has size 3), the E3-Vertex-Cover
problem is to find a subset S ⊆ V that “hits” every edge in G, i.e. such that for all
e ∈ E, e ∩ S �= ∅. Dinur et al. [8] showed that it is NP-hard to distinguish whether
a k-uniform hypergraph has a vertex cover of weight (1

k−1 + ε)n from those whose
minimum vertex cover has weight at least (1 − ε)n for an arbitrarily small ε > 0.

Given a 3-uniform hypergraph G(V, E), we construct a robust scheduling in-
stance as follows.

– For every vertex vi ∈ V we create a job i ∈ N with pi = 1.
– For every hyperedge e = {ve

1, v
e
2, v

e
3} ∈ E we create a scenario se defined by

wse

i =
{

1 , if vi ∈ {ve
1, v

e
2, v

e
3}

0 , otherwise.

Given the size of a minimum vertex cover c, one can calculate upper and
lower bounds on the optimal value of the corresponding scheduling instance, as
follows: given a schedule, i.e., a permutation π of the jobs, we can define a vertex
cover solution V C by letting

V C = {vi | vi covers an edge not covered by {vj|π(j) < π(i)}}.

Let vj ∈ V C be the vertex in V C that is scheduled last, i.e., any vi ∈ V C
with i �= j satisfies π(i) < π(j). As vj was added to V C, it covers an edge, say
e = {vj , vk, vl}, with π(j) < π(k) and π(j) < π(l). Furthermore, since |V C| ≥ c
we have that π(j) ≥ c and hence π(k) + π(l) ≥ (c + 1) + (c + 2). It follows that
there is an s ∈ S with value at least

LB(c) = c + (c + 1) + (c + 2) > 3c

which is thus also a lower bound on min
π

max
s∈S

(val(π, s)).

Approximating Single Machine Scheduling with Scenarios 159

For the upper bound, consider the schedule where we schedule c jobs corre-
sponding to a minimum vertex cover first. Observe that a scenario in which the
last of these c jobs has weight one takes its maximal value if the other two jobs
of the corresponding edge are scheduled last, yielding

UB(c) = c+ (n− 1) + n < c+ 2 · n.

Using the inapproximability results of Dinur et al. [8] we get the following gap
for the robust scheduling problem:

LB((1 − ε)n)
UB((1

3−1 + ε)n)
>

(1− ε)n · 3
(1
2 + ε)n+ 2 · n

=
6
5
− ε′

for some ε′ > 0 that can be made arbitrarily small. As the unit-time and un-
weighted robust scheduling problem are symmetric, this yields the following
theorem.

Theorem 4. It is NP-hard to approximate the unit-time/unweighted robust
scheduling problem within a factor less than 6/5.

Assuming the Unique Games Conjecture [13], the inapproximability result for
Ek-uniform Vertex Cover improves to a gap of k − ε [14]. A similar reduction
from 2-uniform hypergraphs (i.e. graphs) using the same bounds as above yields
an inapproximability gap of 4/3.

Finally, we note that an easy numerical analysis shows that, in both cases,
the inapproximability results cannot be improved by changing the uniformity of
the hypergraphs in the vertex cover problems considered.

3 An LP-Based Approximation Algorithm and Integrality
Gap

In this section, we consider the special case that processing times do not vary
among scenarios, i.e. for every i ∈ N we have ps1

i = . . . = ps
i = pi. Note that

this is symmetric to the case that processing times may vary across scenarios
while weights are common. Inspired by Potts [18] integer linear program (ILP)
formulation of 1|prec|

∑
wjCj , we formulate the robust scheduling problem with

common processing times as follows:

δij + δji = 1 (i, j) ∈ N2

δij + δjk + δki ≥ 1 (i, j, k) ∈ N3

δij ∈ {0, 1} (i, j) ∈ N2

The variables, δij for (i, j) ∈ N2, are called ordering variables with the natural
meaning that job i is scheduled before job j if and only if δij = 1. The LP

m

min t∑

j∈N

pjw
sk

j +
∑

(i,j)∈N2

δij · piw
sk

j ≤ t 1 ≤ k ≤ m

160 M. Mastrolilli, N. Mutsanas, and O. Svensson

relaxation of the above ILP is obtained by relaxing the constraint δij ∈ {0, 1}
to δij ≥ 0. We will show that the resulting LP has an integrality gap of 2.

Consider the following family of instances, consisting of n jobs and an equal
number of scenarios. The (scenario-independent) processing times are set to
pj = 1, j ∈ N . The weights of the jobs in scenario sk are defined as follows:

ws
j =

{
1 , if j = k
0 , otherwise , j ∈ N.

It is easy to see that setting

δij = 1/2, 1 ≤ i, j ≤ n, i
= j

yields a feasible solution. For this solution, all scenarios assume the same objec-
tive value

pj +
∑

i�=j

δijpi = 1 + (n− 1) · 1
2

=
n+ 1

2

which therefore equals the objective value of this solution. This gives an upper
bound on the value of the optimal solution.

On the other hand, for any feasible integral solution, there is a scenario sk for
which the job j is scheduled last. This scenario has value wk

j ·Cj = n. Thus the
integrality gap of the above presented LP with n scenarios is at least 2n/(n+1),
which tends to 2 as n tends to infinity.

We now provide a 2-approximation algorithm based on the aboveLP-relaxation,
thus showing that the analysis of the integrality gap is tight.

Given a solution of the LP, let

C̃j = pj +
∑

i�=j

δijpi

be the fractional completion time of job j. Assume, without loss of general-
ity, that C̃1 ≤ . . . ≤ C̃n. We will use the following property to derive a 2-
approximation algorithm.

Lemma 1 (Schulz [20]). Given a solution of the above LP, with C̃1 ≤ . . . ≤ C̃n

the following inequality holds

C̃j ≥
1
2

j∑

i=1

pi

This property can be used to derive a simple 2-approximation algorithm: sched-
ule the jobs in non-decreasing order of C̃j . The integral completion time is

Cj =
j∑

i=1

pi ≤ 2 · C̃j .

Since every completion time increases by at most a factor of 2, we have a 2-
approximate solution.

k

Approximating Single Machine Scheduling with Scenarios 161

It is worth noting that the above analysis holds also for the case that there are
precedence constraints among the jobs, a significant generalization of this prob-
lem. For instance, in the single scenario case, 1|prec|

∑
wjCj is NP-complete

whereas 1||
∑
wjCj is polynomial time solvable. We summarize with the follow-

ing theorem.

Theorem 5. The robust version of 1|prec|
∑
wiCi has a polynomial time 2-

approximation algorithm when the processing times or, alternatively, the weights
of the jobs do not vary among the scenarios.

4 A Polynomial Time Algorithm for Constant Number of
Scenarios and Constant Values

In this section we assume that the number of scenarios m as well as the weights
and processing times are bounded by some constant. Given an instance I of the
robust scheduling problem, let W be the maximum weight and P the maximum
processing time occurring in the description of I. We present a polynomial time
algorithm that solves this problem. In fact, we are going to solve the related
multi-criteria scheduling problem. This result carries over to our problem by use
of Theorem 1 in Aissi et. al. [1].

In the context of multi-criteria optimization, given two vectors v, w ∈ Nk,
v
= w, k > 0, we say that v dominates w, if vi ≤ wi for all 1 ≤ i ≤ k. A vector
that is not dominated is called efficient. Analogously, given a set of vectors S,
a subset S′ ⊆ S is called an efficient set if there is no pair (v, v′), v ∈ S, v′ ∈ S′

such that v dominates v′. The goal in multi-criteria optimization is to find a
maximal efficient set of solutions.

For a fixed set of scenarios S = {s1, . . . , sm}, we define the multivalue of a
schedule π by val(π) = (val(π, s1), . . . , val(π, sm)). Furthermore, we call α =
((w1, p1), . . . , (wm, pm)) with 1 ≤ wi ≤ W , 1 ≤ pi ≤ W a job profile, and
let p(α) = (p1, . . . , pm) and similarly w(α) = (w1, . . . , wm). Note that, since
we assumed that P ,W and m are all bounded by a constant, there can only
be a constant number of different job profiles. Let α1, . . . , αk be the differ-
ent job profiles that occur in instance I. We can now identify I by the tuple
((α1, . . . , αk), (n1, . . . , nk)) where ni is the number of jobs with profile αi oc-
curring in I. We will present a dynamic programming approach for solving the
min-max scheduling problem with a constant number of scenarios and constant
values in polynomial time.

4.1 Polynomial Time Algorithm

Consider a k-dimensional dynamic programming table DPT of size (n1 + 1) ×
(n2 + 1)× . . .× (nk + 1). Each cell of this table represents a subinstance I ′ of I,
where the coordinates of the cell encode the number of jobs of the correspond-
ing profile that are present in I ′ (for instance, the cell (1, 0, 4) represents the
subinstance of I that contains one job of type α1 and four jobs of type α3). We

162 M. Mastrolilli, N. Mutsanas, and O. Svensson

denote the number of jobs in an instance represented by a cell c = (c1, . . . , ck)
by n(c) =

∑k
i=1 ci. Each of these cells will accommodate an efficient set Mc of

multivalues of schedules in which only the jobs of the subinstance are considered
(note that since the maximum value in any scenario is bounded, there can only
be a polynomial number of different efficient vectors). Since the cell (n1, . . . , nk)
represents the whole instance, filling in the last cell of the table would allow
us to solve the multi-criteria scheduling problem, and thus also the min-max
scheduling problem.

We initialize the table by filling in the cells whose coordinates sum up to one,
i.e. the cells c = (c1, . . . , ck) with n(c) = 1, as follows: for ct = 1 add to Mc the
multivalue of the schedule consisting of a single job with profile αt. We continue
filling in the rest of the cells in order of increasing n(c) in the following manner.

Consider the cell c with coordinates (c1, . . . , ck) and let Tc = {(c′1, . . . , c′k) |
n(c′) = n(c)−1, c′i ≥ ci−1}. In other words, Tc contains those cells representing
subinstances that result by removing one job from Ic. Note that, since we fill
in the table in order of increasing n(c), all cells in Tc have been filled in at this
point. For each c′ ∈ Tc with ct − c′t = 1, add to the set Mc the multivalues of
the schedules that result from the schedules in Mc′ by adding a job of profile αt

in the end of the schedule. More formally, for each π′ with val(π′) ∈ Mc′ , add
val(π) to Mc, with π defined as follows:

π(j) = π′(j) for 1 ≤ j ≤ n(c′) and π(n(c)) = αt.

Given val(π′), the multivalues of these schedules can easily be computed by:

val(π) = val(π′) + w(αt) ·
k∑

i=1

ci · p(αi)

Note that only the multivalue of π′ is needed in the above calculations, not π′

itself.
We conclude the computation for cell c by replacing Mc by Red(Mc), which

retains only the efficient elements of Mc.

Lemma 2. For every cell c of the table DPT , the set Mc is a maximal efficient
subset of the set of all multivalues achieved by scheduling the jobs of Ic.

Proof. We need to show that for every cell c of the table DPT and every mul-
tivalue val(π), where π is a schedule of Ic, either

• val(π) ∈Mc, or
• ∃v ∈Mc, such that v ≤ val(π)

Suppose, towards contradiction, that this is not the case, and let c be a cell
with minimal n(c) that does not satisfy the above condition. Thus, there is a
schedule π of the instance Ic with val(π)
∈ Mc and for any v ∈ Mc there is
an l ∈ {1, . . . , k} with val(π)l < vl. Clearly, this can only happen for n(c) ≥
2. Let αf be the profile of the job scheduled last in π and let c′ be the cell

Approximating Single Machine Scheduling with Scenarios 163

with coordinates (c1, c2, . . . , cf−1, cf − 1, cf+1, . . . , ck). Furthermore, let π′ be
the schedule derived from π by omitting the last job. The multivalue of π′ is
val(π)−w(αf) ·

∑k
i=1 ci ·p(αi). If there were a v ∈Mc such that val(v) ≤ val(π′),

then val(π) would be dominated by v + w(αf) ·
∑k

i=1 ci · p(αi). Thus, for every
v ∈ Mc′ , there is an l ∈ {1, . . . , k} such that vl > val(π′)l and thus c′ does
not satisfy the above property either. Since n(c′) < n(c), this contradicts the
minimality of c.

Acknowledgements

This research is supported by Swiss National Science Foundation project 200021-
104017/1, “Power Aware Computing”, by the Swiss National Science Founda-
tion project 200020-109854, “Approximation Algorithms for Machine scheduling
Through Theory and Experiments II”, and by the Swiss National Science Foun-
dation project PBTI2-120966, “Scheduling with Precedence Constraints”.

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximating min-max (regret) versions
of some polynomial problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 428–438. Springer, Heidelberg (2006)

2. Arora, S., Lund, C.: Hardness of approximations. In: Hochbaum, D.S. (ed.) Ap-
proximation Algorithms for NP-Hard Problems. PWS (1995)

3. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Program-
ming Series B 98, 49–71 (2002)

4. Birge, J., Louveaux, F.: Introduction to stochastic programming. Springer, Heidel-
berg (1997)

5. Chekuri, C., Motwani, R.: Precedence constrained scheduling to minimize sum
of weighted completion times on a single machine. Discrete Applied Mathemat-
ics 98(1-2), 29–38 (1999)

6. Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for
scheduling precedence-constrained jobs on a single machine. Operations Research
Letters 25, 199–204 (1999)

It is easy to see that the initialization of the table, as well as the computations
of val(π) can be done in polynomial time. Furthermore, since (n2 · P · W)2 is
an upper bound on the value of any schedule in any scenario, there can be at
most (n2 · P · W)2m efficient vectors in any stage of the computation. The size
of the dynamic programming table is bounded by nk and for each computation
of a cell, at most k cells need to be considered. Moreover, the operator Red can
be implemented in time (n2 ·P ·W)4m by exhaustive comparison. Thus, a single
cell can be filled-in in time k(n2 ·P ·W)2m +(n2 ·P ·W)4m, and the whole table
in time nk · (k · (n2 · P · W)2m +(n2 · P · W)4m). The number of different profiles
k is bounded by (P ·W)m, which is a constant. Thus our algorithm runs in time
O(n8m+W mP m

), i.e. polynomial in n.

164 M. Mastrolilli, N. Mutsanas, and O. Svensson

7. Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints.
Mathematics of Operations Research 30(4), 1005–1021 (2005); Extended abstract
in Proceedings of the 10th Conference on Integer Programming and Combinatorial
Optimization (IPCO 2004), pp. 283–297 (2004)

8. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered pcp and the
hardness of hypergraph vertex cover. In: STOC 2003: Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing, pp. 595–601. ACM, New
York (2003)

9. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S.: Robust combinatorial optimiza-
tion with exponential scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO
2007. LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007)

10. Graham, R., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of
Discrete Mathematics 5, 287–326 (1979)

11. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize aver-
age completion time: off-line and on-line algorithms. Mathematics of Operations
Research 22, 513–544 (1997)

12. Kasperski, A., Zieliński, P.: On the existence of an fptas for minmax regret combina-
torial optimization problems with interval data. Operations Research Letters 35(4),
525–532 (2007)

13. Khot, S.: On the power of unique 2-prover 1-round games. In: IEEE Conference
on Computational Complexity, p. 25 (2002)

14. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
In: Proc. of 18th IEEE Annual Conference on Computational Complexity (CCC),
pp. 379–386 (2003)

15. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Dordrecht (1997)

16. Lawler, E.L.: Sequencing jobs to minimize total weighted completion time subject
to precedence constraints. Annals of Discrete Mathematics 2, 75–90 (1978)

17. Margot, F., Queyranne, M., Wang, Y.: Decompositions, network flows and a prece-
dence constrained single machine scheduling problem. Operations Research 51(6),
981–992 (2003)

18. Potts, C.N.: An algorithm for the single machine sequencing problem with prece-
dence constraints. Mathematical Programming Study 13, 78–87 (1980)

19. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H.,
Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–
315. Springer, Heidelberg (1996)

20. Schulz, A.S.: Scheduling to minimize total weighted completion time: performance
guarantees of LP-based heuristics and lower bounds. In: Cunningham, W.H.,
Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–
315. Springer, Heidelberg (1996)

21. Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for
machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)

22. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3, 59–66 (1956)

Streaming Algorithms for k-Center Clustering

with Outliers and with Anonymity

Richard Matthew McCutchen� and Samir Khuller��

University of Maryland
{rmccutch,samir}@cs.umd.edu

Abstract. Clustering is a common problem in the analysis of large data
sets. Streaming algorithms, which make a single pass over the data set
using small working memory and produce a clustering comparable in cost
to the optimal offline solution, are especially useful. We develop the first
streaming algorithms achieving a constant-factor approximation to the
cluster radius for two variations of the k-center clustering problem. We
give a streaming (4+ε)-approximation algorithm using O(ε−1kz) memory
for the problem with outliers, in which the clustering is allowed to drop
up to z of the input points; previous work used a random sampling
approach which yields only a bicriteria approximation. We also give a
streaming (6 + ε)-approximation algorithm using O(ε−1 ln(ε−1)k + k2)
memory for a variation motivated by anonymity considerations in which
each cluster must contain at least a certain number of input points.

Keywords: clustering, k-center, streaming, outliers, anonymity.

1 Introduction

Clustering is a common problem arising in the analysis of large data sets. For
many applications in document and image classification [3,9,13,15,16] and data
mining, clustering plays a central role [5]. In a typical clustering problem, we have
a set of n input points from an arbitrary metric space (with a distance function
satisfying the triangle inequality) and wish to partition the points into k clusters.
We select a center point for each cluster and consider the distance from each
point to the center of the cluster to which it belongs. In the k-center problem,
we wish to minimize the maximum of these distances, while in the k-median
problem, we wish to minimize their sum. In this paper we focus on k-center
clustering, since it is an important problem for which a variety of approaches
have been presented. Hochbaum and Shmoys [14] and Gonzalez [10] developed
algorithms that achieve a factor 2 approximation in the cluster radius. This is
the best possible since one can show by a reduction from the dominating set
problem that it is NP -hard to approximate k-center with factor 2 − ε for any
ε > 0.

� Supported by an NSF REU Supplement to Award CCF-0430650.
�� Supported by NSF CCF-0430650 and CCF-0728839.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 165–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

166 R.M. McCutchen and S. Khuller

In the analysis of extremely large data sets, it is not possible to hold the entire
input in memory at once. Thus, we consider the streaming or incremental model
in which the algorithm reads input points one by one and maintains a valid
clustering of the input seen so far using a small amount of working memory. (We
contrast such algorithms with offline algorithms that use memory polynomial in
the size of the input.)

Charikar, Chekuri, Feder and Motwani [5] introduced the incremental model
for the k-center problem and gave a very elegant “Doubling Algorithm” that
achieves a factor 8 approximation using only O(k) memory. The result is slightly
surprising, since it is not obvious at all how to do this incrementally. The key
idea is to maintain a lower bound on the radius of an optimal solution. For
example, after k + 1 input points have been presented, examining the closest
pair of points gives us an obvious lower bound on the optimal radius, since at
least two of these points must belong to the same cluster.

The key focus of this paper is to deal with outliers, an issue originally raised
in [7]. Data is often noisy and a very small number of outliers can dramatically
affect the quality of the solution if not taken into account, especially under the
k-center objective function, which is extremely sensitive to the existence of points
far from cluster centers. The formal definition of the problem is as follows: group
all but z points into k clusters, minimizing the radius of the largest cluster. An
offline factor 3 approximation for the outlier version was developed [7]; it greedily
chooses clusters of a certain radius so as to cover as many new input points with
each cluster as possible. The factor 3 assumes that we can enumerate all center
points in the metric space that the optimal clustering is allowed to use. If not, the
algorithm is easily modified to produce a clustering that uses only input points
as centers but has radius at most 4 times that of an optimal clustering with unre-
stricted centers.1 The same paper also considered the k-median objective function
and developed a bicriteria algorithm: if there exists a solution of costC that drops
z outliers, it finds one of cost at mostO(C) that drops at mostO(z) outliers. More
recently, a polynomial time algorithm has been developed for k-medians that de-
livers a solution of cost O(C) while dropping only z outliers [8].

The offline algorithm for k-center clustering with outliers is not easily adapted
to the streaming model because it relies on the ability to count the input points
that would be covered by a potential cluster, which is difficult to implement
without having the entire data set in memory. In general, dealing with outliers
in the streaming model is quite tricky because we have no way to know, as
points arrive, which should be clustered and which are outliers. This problem
was first considered by Charikar, O’Callaghan and Panigrahy [6], who developed
a streaming-model bicriteria approximation for the k-center problem (see also
[12]). Their approach is based on taking a random sample of the data set that
is small enough to fit in memory and running the offline algorithm [7] on the
sample. They then prove that, with high probability, the set of clusters found
for the sample is also a good solution for the entire data set. This construction
preserves the radius approximation factor of the underlying offline algorithm

1 We simply expand the disks Gi to radius 2r and the disks Ei to radius 4r.

Streaming Algorithms for k-Center Clustering 167

(3 or 4) but increases the number of outliers to (1 + ε)2z. The sample has size
roughly O(ε−2kn/z), where n is the data set size. Therefore, the sampling ap-
proach is good when z is linear in n and a slight increase in the number of
outliers is acceptable; otherwise, it requires an unreasonable amount of memory.

We present a streaming algorithm for k-center clustering with outliers that
is in several ways complementary to that of [6]. Our deterministic algorithm
is based on the Doubling Algorithm [5] and also uses the offline algorithm for
outliers [7] as a subroutine. It increases the radius approximation factor to 3+ ε
or 4+ε but meets the outlier bound z exactly; as far as we are aware, it is the first
streaming constant-factor approximation with the latter property. Our algorithm
uses O(ε−1kz) memory, so it is suitable when z is small and an additional slight
increase in the cluster radius is acceptable.

Agarwal et al. [1] present an algorithm for shape-fitting with outliers that may
be applicable to k-center clustering, and Bădoiu et al. [4] present a sampling-
based streaming k-center algorithm that uses coresets. However, both techniques
work only in Euclidean spaces Rd; furthermore, the first requires multiple passes
over the input and the second has running time exponential in k.

Other recent applications of k-center clustering (with and without outliers)
for the purposes of anonymity are considered in [2], but the algorithms given
there do not work in the streaming model. We present a streaming (6 + ε)-
approximation algorithm for the k-center clustering problem with a lower bound
b on the number of points per cluster. The precise requirement is that it must be
possible to allocate each input point to a center within the appropriate radius
so that each center gets at least b points, i.e., centers cannot meet the bound by
sharing points.

2 Improving Streaming Algorithms by Parallelization

In this section, we develop a parallelization construction that improves the ap-
proximation factor of the Doubling Algorithm to 2 + ε while increasing the run-
ning time and memory usage by a factor of O(ε−1 ln(ε−1)).2 We first generalize
the Doubling Algorithm to a “Scaling Algorithm” based on a parameter α > 1
that maintains a lower bound r on the radius of the optimal cluster and raises
it by a factor of exactly α at a time. As it reads points, this algorithm keeps
centers separated by at least 2αr and ensures that every input point seen so far
is within ηr =

(
2α2/(α − 1)

)
r of a center. Let r∗ denote the optimal radius,

and let r0 be half the least distance between two of the first k+ 1 distinct input
points, which is used to initialize r.

Naively, the Scaling Algorithm is an η-approximation because it gives us a
solution with radius within a factor η of its own lower bound r, and we minimize
η = 8 by choosing α = 2. But observe that if r∗ = 1.9r0, we get lucky: the
algorithm cannot raise r to 2r0 because 2r0 is not a lower bound on r∗, so it is
2 Sudipto Guha independently discovered a similar construction [11] based on Gonza-

lez’s algorithm [10]; it also yields a streaming (2 + ε)-approximation algorithm for
k-center clustering.

168 R.M. McCutchen and S. Khuller

obliged to return a solution with radius at most 8r0, which is only a factor of
about 4.2 from optimal.

To ensure that we always get lucky in this way, we runm instances of the Scaling
Algorithm in parallel (feeding each input point to each instance) with interleaved
sequences of r values. Specifically, we initialize the r value of the ith instance (i = 1,
. . . ,m) toα(i/m)−1r0 so that the instance takes on the r valuesαt+(i/m)−1r0, where
t = 0, 1, Consequently, any desired r of the form α(j/m)−1r0 for a positive
integer j will eventually be taken on by some instance. Letting j be the smallest
integer greater than m logα(r∗/r0), we have αj/mr0 > r∗, so the instance that
takes r = α(j/m)−1r0 will be unable to raise r again and thus will return a solution
whose radius R is at most ηα(j/m)−1r0. And by our choice of j, α(j−1)/mr0 ≤ r∗,
soR ≤ ηα(1/m)−1r∗. Therefore, by taking the best solution produced by any of the
m instances, we achieve a factor (η/α)

√
α approximation.

Substituting the expression for η, the approximation factor of the parallelized
algorithm becomes 2

(
1+1/(α−1)

)√
α. Now, we want α large to make 1/(α−1)

small; intuitively, with larger α, accounting for previous rounds across an increase
of r costs less in the Scaling Algorithm’s approximation factor. We also want
m large to keep

√
α close to 1. Letting α = O(ε−1) and m = O(ε−1 ln(ε−1))

gives a factor of 2 + ε. This approximation factor is essentially the best we can
hope for since the best offline algorithms [14,10] are 2-approximations, but there
may be a better construction that uses less time and memory. We will apply the
same parallelization construction to the streaming-model clustering algorithms
described in the following sections.

2.1 Suitability of Parallelized Algorithms

The original model of Charikar et al. [5] requires that a clustering algorithm
maintain a single clustering of the input points read so far and modify it only
by merging clusters. This model has the advantage that a forest describing the
merges can be incrementally written to secondary storage; the forest can later
be traversed to enumerate the input points in any desired output cluster without
a second pass over the entire input. Parallelized algorithms do not fit this model
because they maintain many clusterings and do not choose one until the end.
(This is why they do not contradict the lower bound of 1+

√
2 on the approxima-

tion factor in [5].) Writing out a forest for each of the many partial clusterings
under consideration may be impractical. However, parallelized algorithms are
still useful when the goal is only to produce statistics for each output cluster
(along with the centers themselves) because the statistics can be maintained
independently for each partial clustering.

3 Clustering with Outliers

In this section, we develop a streaming algorithm for k-center clustering with z
outliers that achieves a constant factor approximation to the cluster radius using
O(kz) memory. We then parallelize it to a (4+ ε)-approximation using O(ε−1kz)

m

m

m

Streaming Algorithms for k-Center Clustering 169

memory. The essential difficulty in designing a deterministic streaming algorithm
for clustering with outliers is that it is dangerous to designate an input point
as a cluster center and start forgetting nearby points because they could all be
outliers and the center might be needed to cover points elsewhere. Our algorithm
overcomes the difficulty by delaying the decision as long as necessary. Specifically,
it accumulates input points (remembering all of them) until it sees z + 1 points
close together. These cannot all be outliers, so it creates a cluster for them and
only then can safely forget any later points that fall in that cluster.

The algorithm’s state consists of:

– some number � ≤ k of stored cluster centers, each of which carries a list of
z + 1 nearby “support points” from which it was originally formed;

– some “free points” that do not fall into existing clusters but cannot yet be
made into new clusters because they might be outliers; and

– a lower bound r on the optimal radius, as in the Doubling Algorithm.

The algorithm ensures that clusters of radius ηr at the � stored centers cover
all forgotten points, and it checks after processing each input point that it can
cover all but at most z of the free points with k− � additional clusters of radius
ηr. Thus, whenever the algorithm encounters the end of the input, it can produce
a solution with radius ηr. The algorithm is based on parameters α, β, and η,
which we will choose later to optimize the approximation factor; for the proof
of correctness to hold, these parameters must satisfy some constraints that we
will state as they arise.

The algorithm is designed so that, whenever its partial solution with radius ηr
becomes invalid, it can establish a new lower bound αr on the optimal radius,
raise r by a factor of α, and adapt the partial solution to the new value of
r; this process is repeated until the validity of the partial solution is restored.
Furthermore, we will show that the algorithm will never store more than O(kz)
free points at a time, establishing the memory requirement.

As in the Doubling Algorithm [5], we need a certain separation between centers
in order to raise r. To this end, we say that two distinct centers conflict if some
support point of the first is within distance 2αr of some support point of the
second.

Algorithm 3.1 (Clustering with outliers). Peek at the first k+z+1 distinct
input points, initialize r to half the least distance between any two of those
points, and start with no cluster centers and no free points. Then read the input
points in batches. Batches of size kz appear to give the best trade-off between
running time and memory usage, but a different size can be used if desired.
For each batch, add the points as free points and then perform the following
procedure:

1. Drop any free points that are within distance ηr of cluster centers.
2. If some free point p has at least z+1 free points within distance βr (including

itself), then add p as a cluster center, choosing any z + 1 of the free points
within distance βr as its support points, and repeat from step 1. If no such
p exists, proceed to the next step.

170 R.M. McCutchen and S. Khuller

3. Let � be the number of stored cluster centers. Check that � ≤ k and that
at most (k − �)z + z free points are stored. Run the 4-approximation offline
algorithm for k-center clustering with outliers (see the Introduction) to at-
tempt to cover all but at most z of the free points using k − � clusters of
radius ηr. If the checks and the offline algorithm both succeed, processing of
the current input batch is complete. Otherwise, set r ← αr and continue to
the next step.

4. Unmark all the stored centers and then process them as follows: while there
exists an unmarked center c, mark c and drop any other centers that conflict
with c with respect to the new value of r. When a center is dropped, its
support points are forgotten. (Note that once a center c is marked, it cannot
later be dropped on account of another center c′ because c′ would already
have been dropped on account of c.) Repeat from step 1.

When the end of the input is reached, return clusters of radius ηr at the stored
centers plus the clusters found by the last run of the offline algorithm. ��

Figure 1 shows an intermediate state of the algorithm on a data set with k = 3 and
z = 4. The algorithm is storing � = 2 cluster centers c1 and c2, and each center has
z+1 = 5 support points (including itself), which are within βr of it. Several other
input points within distance ηr of the centers have been forgotten. The algorithm

cluster boundary

forgotten input point

free point

cluster center

support boundary

support point

offline algm’s cluster

Key
> 2αr

ηr

c1

c2

ω

Γ

f1

βr

A

B

k = 3, z = 4

Fig. 1. Example of clustering with outliers

Streaming Algorithms for k-Center Clustering 171

is also storing seven free points, including f1, which would be converted to a cluster
center if there were just one more free point inside circle ω; but as it stands, the
algorithm cannot rule out the possibility that all four of the points inω are outliers.
The offline algorithm found the cluster Γ (centered at f1), which covers all but
2 ≤ z of the free points; if we combine it with the stored centers, we have a valid
clustering of radius ηr for the input points seen so far.

Notice that the three support points A are just far enough from the support
points B to avoid a conflict. If they were any closer, then the optimal solution
could conceivably cover all six points with a single cluster of radius αr and leave
the remaining four support points as outliers, and the proof of correctness of the
algorithm’s decision to set r ← αr (see Lemma 3.2(e) below) would fail.

Suppose several free points arrive inside Γ but outside ω. The current clus-
tering covers these points, but if the algorithm allowed them to accumulate
indefinitely, it would violate the O(kz) memory bound. Thus, when the number
of free points exceeds (k − �)z + z = 8, the algorithm raises r on the following
logic: in the optimal solution, two clusters are busy covering support points of
the stored centers, and there is no way a third cluster of radius αr containing
at most z = 4 points can cover all the free points with at most 4 outliers. (If
there were a potential third cluster of more than 4 points, the algorithm would
already have recognized it in step 2.) Once r is raised, the support points A and
B conflict, so one of the centers c1, c2 subsumes the other in step 4.

Lemma 3.2. The algorithm maintains the following invariants:

(a) Every time step 1 completes, the remaining free points are at least distance
ηr from cluster centers.

(b) Each stored center has z + 1 support points within distance βr of it.
(c) No two stored cluster centers conflict.
(d) Every input point the algorithm has read so far either is a free point or is

covered by a cluster of radius ηr at a stored center.
(e) The optimal clustering for the input points the algorithm has read so far

requires a radius of at least r.

Proof. (a) is obvious. (b) is checked when a center is added and remains true
when r increases.

To prove (c), we place the constraint η ≥ 2α + β on our later choice of the
parameters. With this constraint, addition of a center c in step 2 preserves the
invariant. For if s1 is a support point of an existing center c1, then s1 is within
βr of c1, which is at least ηr from c’s support points (since they were previously
free points). By the triangle inequality, s1 is at least distance ηr − βr ≥ 2αr
from c’s support points, so no conflict results. Furthermore, temporary conflicts
created by an increase in r are removed in step 4.

Each point the algorithm reads is initially a free point, so the algorithm endan-
gers invariant (d) only when it drops free points or centers. Free points dropped
in step 1 are covered by stored centers, so they do not break the invariant. Steps
3 and 4 effectively drop some clusters while expanding the remaining ones to
radius ηαr; we must show that any input point that was covered by a dropped

172 R.M. McCutchen and S. Khuller

cluster before the change is covered by an expanded cluster afterwards. To this
end, we constrain η + 2α2 + 2β ≤ ηα. Let r0 and r1 = αr0 denote the old and
new values of r, respectively. Consider an input point p that was covered by a
dropped center c, meaning that it was within distance ηr0 of c. c was dropped
when a conflicting center c′ was marked. The support points causing the conflict
were within distance 2αr1 of each other and distance βr0 of their respective
centers, so the distance from p to c′ is at most

ηr0 + βr0 + 2αr1 + βr0 = (η + 2α2 + 2β)r0 ≤ ηαr0 = ηr1.

Thus, p is covered by c′, and the invariant holds.
Invariant (e) is established by the initial setting of r because one of the k

clusters of the optimal solution must cover two of the first k + z + 1 distinct
input points. To show that increases in r maintain the invariant, we will show
that, if step 3 is reached and the optimal clustering C∗ for the input read so far
has radius less than αr, then the algorithm does not set r ← αr.

Let c be a stored cluster center. C∗ cannot designate all z + 1 of c’s support
points as outliers, so some cluster c∗ ∈ C∗ must cover one of c’s support points;
we say that c∗ bites c. No two stored cluster centers conflict, so no cluster of C∗

(having diameter less than 2αr) can bite two of them; thus, each stored cluster
center is bitten by a different cluster of C∗. In particular, this means � ≤ k.
Similarly, by invariant (a) and our assumption that η ≥ 2α+β, no cluster of C∗

can both bite a stored cluster center and cover a free point. Finally, we constrain
β ≥ 2α; then no cluster of C∗ can cover z + 1 or more free points because, if it
did, each of those free points would be within distance βr of all the others and
they would have become the support points of a cluster center in step 2.

Now, at least � of the clusters of C∗ are devoted to biting stored cluster
centers, so at most k− � clusters can cover free points; let F ∗ be the set of these
clusters. In order for C∗ to be a valid solution for the input read so far, F ∗ must
be a valid clustering of all but at most z of the free points. But we showed that
each of the at most k − � clusters in F ∗ covers at most z free points, so there
can be at most (k − �)z + z free points in total. Finally, the offline algorithm is
a 4-approximation, so if we assume that η ≥ 4α, the existence of F ∗ with radius
less than αr guarantees that the offline algorithm will find a clustering of radius
ηr. The result is that r is not raised, as desired. ��

Theorem 3.3. The algorithm produces a valid clustering of radius ηr using
O(kz) memory and O(kzn+(kz)2 logP) time, where P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. Validity of the clustering: The first set of � clusters covers all input points
except the free points by Lemma 3.2(d), and the second set of k−� clusters covers
all but at most z of the free points. Thus, together, the k clusters cover all but
at most z of the input points.

Memory usage: At any time, the algorithm remembers �(z + 1) support points
(including the centers), at most (k − �)z + z free points from before the current

Streaming Algorithms for k-Center Clustering 173

batch, and at most kz free points from the current batch. This is a total of at
most (2k + 1)(z + 1) points, and the working storage needed to carry out the
steps is constant per point.

Running time: At the beginning of a batch, we perform step 1 exhaustively in
O(k2z) time. We identify potential centers in step 2 by maintaining a count for
each free point p of the free points within distance βr of p. Each time we add
or drop a free point, which happens at most O(kz) times per batch, we perform
a scan of the other free points to update their counts (this takes O(kz) time).
When we convert a free point c to a center, we identify its support points and
the free points to be dropped in step 1 on the same scan that drops c itself as
a free point. The offline algorithm in step 3 runs in O((kz)2) time using its own
set of distance-ηr/2 counts; we charge a successful run of the offline algorithm,
which ends a batch, to that batch and a failed run to the resulting increase in
r. In step 4, we have O(k) centers (k from the previous batch and at most one
per z + 1 of the O(kz) free points), so we test each of the O(k2) pairs of centers
for a conflict in O(z2) time; this takes O((kz)2) time, which we charge to the
increase in r. Now, there are O(n/kz) batches and O(logP) increases in r, and
each batch or increase is charged O((kz)2) time, giving the desired bound. ��

The construction in Section 2 yields an m-instance parallelized algorithm with
approximation factor (η/α)

√
α. We wish to choose the parameters to minimize

this factor. We have the constraints:

η ≥ 2α+ β (1)
ηα ≥ η + 2α2 + 2β (2)
β ≥ 2α (3)
η ≥ 4α (4)

Setting α = 4, β = 8, and η = 16 satisfies the constraints and gives an ap-
proximation factor of 41+(1/m), so we can achieve a (4 + ε)-approximation with
m = O(ε−1). The memory usage and running time of the parallelized algorithm
increase by a factor of m to O(ε−1kz) and O(ε−1(kzn+ (kz)2 logP)). Note that
two things limit the approximation performance: that of the offline algorithm
via (4), and the constraints (3) and (1) that limit what an optimal cluster can
do. Thus, an improvement in the approximation factor of the offline algorithm
will not carry through to the streaming algorithm unless it comes with a corre-
spondingly better way to analyze optimal clusters.

3.1 Improvement Using a Center-Finding Oracle

There is a (3+ε)-approximation version of the streaming algorithm, correspond-
ing to the 3-approximation offline algorithm, when the metric space comes with
a center-finding oracle. Given a positive integer j, a distance x, and a point set
S, the oracle returns a point p having at least j points of S within distance x
or announces that no such p exists in the metric space. Such an oracle may be

m

174 R.M. McCutchen and S. Khuller

impractical to implement in high-dimensional spaces, but when one is available,
we can use it to improve the algorithm.

In step 2, instead of looking for potential centers among the free points, we
invoke the oracle with x = βr, j = z + 1, and S being the current set of free
points, and we add the resulting point (if any) as a center. Now, when the oracle
fails, we know there is no cluster of radius βr centered anywhere that covers
more than z free points, so we can relax constraint (3) to β ≥ α. In step 3,
we substitute the 3-approximation offline algorithm, choosing centers using the
oracle, and hence relax constraint (4) to η ≥ 3α. With the modified constraints,
we choose α = β = 5 and η = 15 to achieve a (3 + ε)-approximation with the
same O(ε−1kz) memory usage; the running time depends on that of the oracle.

4 Clustering with Anonymity

For the problem of k-center clustering with a lower bound b on the number of
points per cluster, we present a construction based on the parallelized Scaling
Algorithm of Section 2 that achieves a (6 + ε)-approximation. Applications of
this problem for anonymity are considered by Aggarwal et al. [2].

Algorithm 4.1 (Clustering with anonymity). Let δ = ε/2. First run the
m-instance parallelized Scaling Algorithm with m chosen to achieve a (2 + δ)-
approximation, but modify it to keep a count of how many input points “belong”
to each center under an assignment of each point to a center within distance (2 +
δ)r of it. (The algorithm does not store this assignment explicitly, but we use it
in the proof of correctness.) When an existing center catches a new input point,
the center’s count is incremented, and when centers are merged, their counts are
added. The Scaling Algorithm returns a lower bound r on the radius of the optimal
k-center clustering of the input, a list of k preliminary centers c1, . . . , ck, and the
number ni of input points belonging to each preliminary center ci.

If ni ≥ b for all i, the preliminary centers ci constitute a solution within factor
2 + δ of the optimal and we are done. Otherwise, we merge some centers using a
scheme resembling the offline algorithm for k-center clustering with anonymity
[2]. Given a merging radius R, the scheme works as follows. Initialize all prelim-
inary centers to inactive; then, while there exists a preliminary center c that has
no active center within distance 2R, activate c. Next, attempt to allocate each
input point p (belonging to a preliminary center c) to an active center within
distance 2R+ (2 + δ)r of c in such a way that each active center gets at least b
input points. To do this, construct a bipartite graph on the sets P of preliminary
centers and A of currently active centers with an edge of infinite capacity con-
necting a node x ∈ P to a node y ∈ A if their distance is at most 2R+ (2 + δ)r.
Add a source s with an edge of capacity ni to each ci ∈ P and a sink t with an
edge of capacity b from each ci ∈ A, and compute a max flow from s to t. If this
flow saturates all edges entering t, it represents a valid allocation of the input
points, which the merging scheme returns.

We attempt the merging scheme for various values of R in a binary search
(which need only consider values of the form d/2 and (d − (2 + δ)r)/2 for

Streaming Algorithms for k-Center Clustering 175

intercenter distances d) and keep the successful allocation with the smallest
value of R. The algorithm returns a clustering consisting of the active centers
under this allocation with radius (4 + 2δ)r + 2R. ��
Theorem 4.2. The algorithm produces a clustering with at least b points per
cluster whose radius is at most 6 + ε = 6 + 2δ times that of the optimal such
clustering.

Proof. Every input point p belongs to a preliminary center c within distance
(2+ δ)r of it and is allocated to an active center c′ within distance 2R+(2+ δ)r
of c, so p is within distance (4 + 2δ)r + 2R of c′. The algorithm’s clustering
consists of the active centers, so the clustering covers every input point at radius
(4 + 2δ)r + 2R by virtue of the active center to which the point is allocated.
Furthermore, each active center is allocated b points within distance (4+2δ)r+2R
of it. Therefore, the algorithm’s clustering is valid. We must show that it is a
(6 + 2δ)-approximation.

Let r∗ be the radius of the optimal clustering, and consider an execution of
the merging scheme with R ≥ r∗. Active centers are separated by more than
2R ≥ 2r∗ by construction, so each lies in a different optimal cluster. We now
claim that there exists an allocation of the form sought by the merging scheme,
namely the allocation A that gives each input point to the unique active center (if
any) lying in its optimal cluster. Let p be an input point; since optimal clusters
have diameter 2r∗, A gives p to an active center c within distance 2r∗ of it. At the
end of the Scaling Algorithm, p belonged to a center c′ within distance (2 + δ)r,
so the distance between c and c′ is at most 2r∗ +(2+ δ)r ≤ 2R+(2+ δ)r. Thus,
the merging scheme could legally allocate p (as counted by c′) to c. This is true
of every input point p, so the claim is established. Consequently, the merging
scheme must succeed whenever R ≥ r∗.

Thus, when the algorithm takes the smallest R for which the merging scheme
succeeds, it will take an R ≤ r∗. (The algorithm might consider not r∗ itself
but a slightly smaller value of R for which the merging scheme makes all the
same decisions and therefore still must succeed.) The Scaling Algorithm ensures
that r is a lower bound on r∗, i.e., r ≤ r∗. Combining these two inequalities, the
radius (4 + 2δ)r + 2R of the algorithm’s clustering is at most 6 + 2δ times the
optimal radius r∗, as desired. ��
Theorem 4.3. The algorithm runs in O(m(kn+k2 logP)+k3 log k) time using
O(mk+k2) memory, where m = O(ε−1 ln(ε−1)) and P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. We use the simple O(k)-memory implementation of the Scaling Algorithm
that stores only the centers; it performs each of the O(logP) scalings in O(k2)
time and otherwise processes each point in O(k) time for a total running time
of O(kn+ k2 logP). Parallelization multiplies these bounds by m. The running
time of the second phase is dominated by the max flow computation, which
is done O(log k) times because there are O(k2) possible values for R. Using the
relabel-to-front algorithm, each max flow invocation takes O(k3) time and O(k2)
memory. The desired bounds follow. ��

176 R.M. McCutchen and S. Khuller

c2

2R

c∗
c1

A B

(4 + 2δ)r + 2R

(2
+

δ)
r

Fig. 2. Example of clustering with anonymity, with b = 3

The example in Figure 2 should help clarify the argument and motivate the final
radius of (4 + 2δ)r + 2R. We have two preliminary clusters c1 and c2 of radius
(2 + δ)r with n1 = 5 and n2 = 1. The Scaling Algorithm decided to make the
points A belong to c1 even though they are actually much closer to c2, perhaps
because c2 was not created until after they were read. Suppose we activate c2 in
the merging scheme. All we know about it is that it is in some optimal cluster of
diameter 2r∗ that contains b input points. For example, suppose b = 3 and there
is an optimal cluster centered at c∗ (not an input point) that contains c2 and
the points A. In order to guarantee that we can successfully allocate three points
to c2 whenever R ≥ r∗, we must make all input points within distance 2R of c2
(here the points A) available for allocation to it. But these points could belong to
a different center (here c1) that is another (2+δ)r away, so to be sure of catching
them, we must allow c2 to take points belonging to centers up to 2R+ (2 + δ)r
away. However, the algorithm knows only that the five points belonging to c1
are within (2 + δ)r of it; it knows nothing else about where they lie. In allowing
c2 to take points from c1 to ensure that it has access to the points A, we are
also opening the possibility of it taking the points B, which are (4 + 2δ)r + 2R
away; there is no obvious way to avoid this. Thus, we set the radius of the final
clustering to (4 + 2δ)r + 2R to make sure the clustering is valid. (For example,
if b = 6, the algorithm might return a clustering consisting of a single cluster
centered at c2 containing all six points, which would need radius (4+2δ)r+2R.)

The best-known offline algorithm [2], which essentially performs the allocation
phase without the perturbation caused by the initial Scaling Algorithm phase,
achieves an approximation factor of 2. Whether there is a streaming algorithm
with a factor closer to 2 is an open problem.

4.1 Computing Per-cluster Statistics

Suppose that we wish to compute some statistics about the points allocated to
each cluster as well as the center itself. In most cases, the algorithm can be

Streaming Algorithms for k-Center Clustering 177

extended to compute the statistics without a second pass over the input. For
example, consider a medical application in which each input point represents
a person who may or may not have a certain disease, and suppose we want to
know what percentage of the people in each cluster have the disease. The first
phase already maintains a count of people belonging to each center, and we can
maintain a second count of people with the disease in the same way. When we
allocate the people belonging to a preliminary center in the second phase, we
simply allocate the people with the disease in the same proportion. For example,
suppose 100 people belong to a preliminary center c1 and 11 of them have the
disease; if we allocate 30 of these 100 people to an active center c2, we assume
that 3.3 of them have the disease. In effect, we are allocating to c2 30% of each
individual who belongs to c1. The fractionality of the allocation may appear silly
but does not really harm the statistics.

In the same way, if we want the average height of the people in each cluster,
we can maintain a “total height” value for each center, allocate height values
in proportion to people, and then divide the total height allocated to a cluster
by the number of people allocated to it. We can even compute several statistics
on the same run. In full generality, if each input point comes with a vector of
real-number weights, we can compute a total-weight vector for each cluster and
divide by the number of points if we desire averages.

5 Conclusions

It is probably possible to combine our techniques for clustering with outliers
and with anonymity to obtain an algorithm for the problem with both outliers
and anonymity (albeit with a worse approximation factor), but we have not
investigated this. One obvious open problem is to find an algorithm for the
outlier problem with better running time and memory usage than our approach
or the sampling approach of [6], particularly for the case where neither z nor
n/z is small, or to prove a lower bound on the amount of memory needed.

If we are allowed multiple passes over the input, we can use a scaling-style
algorithm to determine the optimal radius up to a constant factor on the first
pass and then bound it more tightly on each subsequent pass by testing multiple
guesses in parallel. By spreading the work across passes, we achieve the same
approximation factor with a much smaller number of parallel instances. (The
basic Hochbaum-Shmoys method [14] works naturally for guess-checking in the
streaming model, but the offline algorithm for outliers [7] does not; one could
instead use a cut-down guess-checking version of our outlier algorithm.) Devel-
oping a better algorithm that fully exploits multiple passes to achieve the same
approximation factor using even less memory is another open problem.

Acknowledgment. The authors are grateful to Sudipto Guha for useful
discussions.

178 R.M. McCutchen and S. Khuller

References

1. Agarwal, P., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating
coresets. In: Proc. of ACM Symp. on Discrete Algorithms (SODA), pp. 182–191
(2006)

2. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D.,
Zhu, A.: Achieving anonymity via clustering. In: Proc. of ACM Principles of Data-
base Systems (PODS), pp. 153–162 (2006)

3. Aldenderfer, M.S., Blashfield, R.K.: Cluster Analysis. Sage, Beverly Hills (1984)
4. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:

Proc. of ACM Symp. on Theory of Computing (STOC), pp. 250–257 (2002)
5. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and

dynamic infomation retrieval. In: Proc. of ACM Symp. on Theory of Computing
(STOC), pp. 626–635 (1997)

6. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for
clustering problems. In: Proc. of ACM Symp. on Theory of Computing (STOC),
pp. 30–39 (2003)

7. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for facility loca-
tion problems with outliers. In: Proc. of ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 642–651 (2001)

8. Chen, K.: A constant factor approximation algorithm for k-median clustering with
outliers. In: Proc. of ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 826–
835 (2008)

9. Everitt, B.: Cluster Analysis. Heinemann Educational, London (1974)
10. Gonzalez, T.: Clustering to minimize the maximum inter-cluster distance. Theo-

retical Computer Science 38, 293–306 (1985)
11. Guha, S.: The k-center karma of a data stream (unpublished manuscript) (2007)
12. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:

Proc. of IEEE Foundations of Computer Science (FOCS), pp. 359–366 (2000)
13. Hartigan, J.A.: Clustering Algorithms. Wiley, Chichester (1975)
14. Hochbaum, D., Shmoys, D.B.: A best possible approximation algorithm for the

k-center problem. Math. of Operations Research 10, 180–184 (1985)
15. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall, NJ (1988)
16. Rasmussen, E.: Clustering algorithms. In: Frakes, W., Baeza-Yates, R. (eds.) In-

formation Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs (1992)

A General Framework for Designing

Approximation Schemes for Combinatorial
Optimization Problems with Many Objectives

Combined into One

Shashi Mittal and Andreas S. Schulz

Operations Research Center and Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA 02139
{mshashi,schulz}@mit.edu

Abstract. In this paper, we propose a general framework for designing
fully polynomial time approximation schemes for combinatorial optimiza-
tion problems, in which more than one objective function are combined
into one using any norm. The main idea is to exploit the approximate
Pareto-optimal frontier for multi-criteria optimization problems. Using
this approach, we obtain an FPTAS for a novel resource allocation prob-
lem, for the problem of scheduling jobs on unrelated parallel machines,
and for the Santa Claus problem, when the number of agents/machines is
fixed, for any norm, including the l∞-norm. Moreover, either FPTAS can
be implemented in a manner so that the space requirements are polyno-
mial in all input parameters. We also give approximation algorithms and
hardness results for the resource allocation problem when the number of
agents is not fixed.

1 Introduction

Consider the following resource allocation problem. There are m agents, and
n resources, which are to be distributed among the agents. Each resource is
assumed to be unsplittable; that is, a resource can be allocated to only one
of the agents. However, agents may need to access resources assigned to other
agents as well. The cost incurred by agent i, if it needs to access resource k
from agent j, is ckij . We assume that the ckij are non-negative integers, and that
ckii = 0. The goal is to have a fair allocation of the resources among the agents;
in other words, the maximum cost of an agent is to be minimized.

A practical setting where such a resource allocation problem can arise is page
sharing in a distributed shared memory multiprocessor architecture [1]. In this
architecture, the shared memory is distributed among different processors (also
referred to as nodes), and each node contains a part of the shared memory
locally. Typically, accessing the local memory is faster than accessing the remote
memory. Every physical page in this architecture is allocated to a fixed node,
which is referred to as the home node of the page. Also, there cannot be more

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 179–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 S. Mittal and A.S. Schulz

than one copy of a page in the system. Suppose each node knows in advance the
number of accesses it will need to make to a page. The total delay, or latency,
faced by a node is the sum of latencies over all the pages it needs to access.
Suppose the latency between node i and j is tij , and the number of times node i
needs to access page k is aik. If page k is stored in node j, then the cost of
accessing page k for node i will be ckij = tijaik. The performance of the system
is governed by the node having maximum total latency. Thus, the objective is to
allocate pages among the nodes in an offline fashion so that the maximum total
latency over all the nodes is minimized.

We present an FPTAS for this resource allocation problem when the number
of agents is fixed. There are many standard techniques for obtaining approxima-
tion schemes for combinatorial optimization problems. They include rounding of
the input parameters (e.g. [2,3,4]), and shrinking the state space of dynamic pro-
grams [5]. We propose a novel framework for designing approximation schemes.
The idea behind the new procedure is to treat the cost of each agent as a sep-
arate objective function, and to find an approximate Pareto-optimal frontier
corresponding to this multi-objective optimization problem. Safer et al. [6]1 give
necessary and sufficient conditions for the existence of fully polynomial time ap-
proximation schemes in multi-criteria combinatorial optimization. Papadimitriou
and Yannakakis [9] propose an efficient procedure to construct an approximate
Pareto-optimal frontier for discrete multi-objective optimization problems, and
we use their procedure in constructing the approximation scheme for the resource
allocation problem.

A closely related problem is the Santa Claus problem [10,11,12]. In this prob-
lem, each agent has a utility corresponding to each resource allocated to it, and
the objective is to allocate the resources among the agents so that the minimum
utility over all the agents is maximized. Our problem is different from the Santa
Claus problem in that there is a cost associated with accessing each resource an
agent does not get, instead of having a utility for each resource it gets. Using
the above framework, we obtain the first FPTAS for the Santa Claus problem
with a fixed number of agents.

Another closely related problem is scheduling jobs on unrelated parallel ma-
chines to minimize the makespan, also referred to in the literature as the
Rm| |Cmax problem. There are m machines and n jobs, and each job is to be
scheduled on one of the machines. The processing time of job k on machine i is
pik. The objective is to minimize the makespan, that is the time at which the last
job finishes its execution. Our procedure yields the first FPTAS for this problem
that has space requirements that are polynomial in all the input parameters.

The resource allocation problem is NP-hard even when there are only two
agents, and strongly NP-hard when the number of agents is variable (see the
proof of NP-hardness in the Appendix). It remains strongly NP-hard for the
special case of uniform costs, in which for each agent i and each resource k, ckij =
cki for all agents j
= i. In this paper, we give a 2-approximation algorithm for

1 This paper is a combined version of two earlier working papers by Safer and
Orlin [7,8].

A General Framework for Designing Approximation Schemes 181

the uniform cost case. The algorithm makes use of the well-known technique of
parametric linear programming and rounding, which has been successfully used
in obtaining approximation algorithm for scheduling problems in the past [3].
Our rounding procedure, however, differs from the one given in [3]; it is more
similar to the one used by Bezàkovà and Dani [12] for the Santa Claus problem.

Our results: The results in this paper can be summarized as follows.
1. Approximation schemes. We present a general framework for designing ap-
proximation schemes for problems with multiple objective functions combined
into one using norms or other functions. We illustrate the versatility of this
scheme by applying it to the resource allocation problem, the Rm| |Cmax prob-
lem, and the Santa Claus problem. An interesting byproduct is that, by a careful
implementation of the FPTAS, the space requirements can be made polynomial
in all the input parameters. Previously, all FPTASes for the Rm| |Cmax problem
had space complexity exponential in the number of machines. This settles an
open question raised by Lenstra et al. [3].
2. A 2-approximation algorithm. We propose a 2-approximation algorithm for
the resource allocation problem with an arbitrary number of agents, for the
special case of uniform costs, in which each agent incurs the same cost to access
a resource from another agent, irrespective of the agent the resource is allocated
to. This is achieved by solving a linear programming relaxation of the problem,
and then rounding the fractional solution.
3. Hardness of approximation. We show that the general resource allocation prob-
lem cannot be approximated within a factor better than 3/2 in polynomial time,
unless P=NP. We achieve this by giving an approximation preserving reduction
from the R| |Cmax problem to the resource allocation problem. In [3], it had
been shown that the former problem cannot be approximated better than 3/2 in
polynomial time, unless P=NP, hence a similar result holds for the resource allo-
cation problem, too. This reduction also establishes a direct connection between
the resource allocation problem and the R| |Cmax scheduling problem.

Related work: Lenstra et al. [3] presented a 2-approximation algorithm for the
R| |Cmax problem, based on a linear programming relaxation and rounding. For
the case of a fixed number of machines, Horowitz and Sahni [2] gave the first
FPTAS, which, however, has exponential space requirements. Lenstra et al. [3]
derived a PTAS for this problem, which has better space complexity. In their
paper, the authors mentioned that, “An interesting open question is whether
this result can be strengthened to give a fully polynomial approximation scheme
for fixed values ofm, where the space required is bounded by a polynomial in the
input size, m, and 1/ε (or, even better, log(1/ε)).” We settle this open question
in the affirmative in this paper. Azar et al. [13] gave an FPTAS for this problem
for fixed m for any lp-norm, but they do not analyze the space complexity of
their approximation scheme.

The Santa Claus problem was first studied by Lipton et al. [11]. Bezàkovà
and Dani [12] proposed a linear factor approximation algorithm for this problem,
which is based on a linear programming relaxation and rounding; our rounding
procedure is similar to the rounding procedure used in their paper. Bansal and

182 S. Mittal and A.S. Schulz

Sviridenko [10] obtained a tighter approximation algorithm for the restricted
assignment version of the problem, where each resource can be allocated to only
a subset of the agents, and each such agent has the same utility for that resource.
As of now, no FPTAS has been proposed for the Santa Claus problem with a
fixed number of agents.

The focus of this paper will be mainly on the resource allocation problem, since
this problem was our original motivation for taking up this study. We will refer
to the Rm| |Cmax problem and the Santa Claus problem whenever our techniques
for the resource allocation problem also apply to these two problems. We begin by
giving an integer programming formulation of the resource allocation problem.
Let xik be a variable which is 1 if the kth resource is given to agent i, otherwise
it is 0. Then the total cost incurred by agent i is

∑n
k=1

∑m
j=1 c

k
ijxjk. An integer

programming formulation of the resource allocation problem is given by

min S

s.t.
n∑

k=1

m∑

j=1

ckijxjk ≤ S for i = 1, . . . ,m,

m∑

i=1

xik = 1 for k = 1, . . . n,

xik ∈ {0, 1} for i = 1, . . . ,m, k = 1, . . . , n.

2 An FPTAS for a Fixed Number of Agents

In this section, we give an FPTAS for the resource allocation problem with a
fixed number of agents. We first discuss a polynomial-time procedure to compute
an approximate Pareto-optimal frontier for general multi-objective optimization
problems. We then show that using the approximate Pareto-optimal frontier,
we can get an approximate solution for the resource allocation problem. Sub-
sequently, we use this technique for obtaining an FPTAS for the Rm| |Cmax

problem and the Santa Claus problem as well, and then extend it to the case of
general lp-norms, other norms, and beyond.

2.1 Formulation of the FPTAS

An instance π of a multi-objective optimization problem Π is given by a set ofm
functions f1, . . . , fm. Each fi : X → R+ is defined over the same set of feasible
solutions, X . Let |π| denote the binary-encoding size of the instance π. Assume
that each fi takes values in the range [2−p(|π|), 2p(|π|)] for some polynomial p. We
first define the Pareto-optimal frontier for multi-objective optimization problems.

Definition 1. Let π be an instance of a multi-objective optimization problem.
A Pareto-optimal frontier (with respect to minimization), denoted by P (π), is a
set of solutions x ∈ X, such that there is no x′ ∈ X such that fi(x′) ≤ fi(x) for
all i with strict inequality for at least one i.

A General Framework for Designing Approximation Schemes 183

In other words, P (π) consists of all undominated solutions. In many cases, it may
not be tractable to compute P (π) (e.g., determining whether a point belongs to
the Pareto-optimal frontier for the two-objective shortest path problem is NP-
hard), or the number of undominated solutions can be exponential in |π| (e.g.,
for the two-objective shortest path problem [14]). One way of getting around this
problem is to look at an approximate Pareto-optimal frontier, which is defined
below.

Definition 2. Let π be an instance of a multi-objective optimization problem.
For ε > 0, an ε-approximate Pareto-optimal frontier, denoted by Pε(π), is a set
of solutions, such that for all x ∈ X, there is x′ ∈ Pε(π) such that fi(x′) ≤
(1 + ε)fi(x), for all i.

In the rest of the paper, whenever we refer to an (approximate) Pareto-optimal
frontier, we mutually refer to both its set of solutions and their vectors of objec-
tive function values.

Papadimitriou and Yannakakis [9] showed that whenever m is fixed, there
is always an approximate Pareto-optimal frontier that has polynomially many
elements.

Theorem 1 (Papadimitriou and Yannakakis [9]). Let π be an instance of
a multi-objective optimization problem. For any ε > 0 and for fixed m, there is
an ε-approximate Pareto-optimal frontier Pε(π) whose cardinality is bounded by
a polynomial in |π| and 1/ε.

Let us consider the following optimization problem:

minimize g(x) = max
i=1,...,m

fi(x), x ∈ X. (1)

We show that if an approximate Pareto curve can be constructed in polynomial
time, then there is an FPTAS to solve this min-max problem.

Lemma 1. There is at least one optimal solution x∗ to (1) such that x∗ ∈ P (π).

Proof. Let x̂ be an optimal solution of (1). Suppose fk(x̂) is the maximum
among all function values for x̂; that is, fk(x̂) ≥ fi(x̂) for all i = 1, . . . ,m.
Suppose x̂ /∈ P (π). Then there exists x′ ∈ P (π) such that fi(x′) ≤ fi(x̂) for i =
1, . . . ,m. Therefore, fi(x′) ≤ fk(x̂) for all i, that is maxi=1,...,m fi(x′) ≤ fk(x̂),
or g(x′) ≤ g(x̂). Thus x′ minimizes the function g and is in P (π). ��

Lemma 2. Let x̂ be a solution in Pε(π) that minimizes g(x) over all points
x ∈ Pε(π). Then x̂ is a (1 + ε)-approximate solution of (1); that is, g(x̂) is at
most (1 + ε) times the value of an optimal solution to (1).

Proof. Let x∗ be an optimal solution of (1) that is in P (π). By the definition of
ε-approximate Pareto-optimal frontier, there exists x′ ∈ Pε(π) such that fi(x′) ≤
(1 + ε)fi(x∗), for all i = 1, . . . ,m. Therefore g(x′) ≤ (1 + ε)g(x∗). Since x̂ is a
minimizer of g(x) over all solutions in Pε(π), g(x̂) ≤ g(x′) ≤ (1 + ε)g(x∗). ��

184 S. Mittal and A.S. Schulz

From these two lemmas, we get the following theorem regarding the existence of
an FPTAS for solving (1).

Theorem 2. Suppose there is an algorithm that computes Pε(π) in time poly-
nomial in |π| and 1/ε for a fixed value of m. Then there is an FPTAS for solving
the min-max optimization problem (1).

Thus, the only thing we are leftwith is to find a polynomial-time algorithm for com-
puting an approximatePareto-optimal frontier. Papadimitriouand Yannakakis [9]
give a necessary and sufficient condition under which such a polynomial-time algo-
rithm exists.

Theorem 3 (Papadimitriou and Yannakakis [9]). Let m be fixed, and let
ε, ε′ > 0 be such that (1 − ε′)(1 + ε) = 1. One can determine a Pε(π) in time
polynomial in |π| and 1/ε if and only if the following ‘gap problem’ can be solved
in polynomial-time: Given an m-vector of values (v1, . . . , vm), either
(i) return a solution x ∈ X such that fi(x) ≤ vi for all i = 1, . . . ,m, or
(ii) assert that there is no x ∈ X such that fi(x) ≤ (1− ε′)vi for all i = 1, . . . ,m.

We sketch the proof because our approximation schemes are based on it.

Proof. Suppose we can solve the gap problem in polynomial time. An approx-
imate Pareto-optimal frontier can then be constructed as follows. Consider the
box in Rm of possible function values given by {(v1, . . . , vm) : 2−p(|π|) ≤ vi ≤
2p(|π|) for all i}. We divide this box into smaller boxes, such that in each dimen-
sion, the ratio of successive divisions is equal to 1 + ε′′, where ε′′ =

√
1 + ε− 1.

For each corner point of all such smaller boxes, we call the gap problem. Among
all solutions returned by solving the gap problems, we keep only those solu-
tions that are not Pareto-dominated by any other solution. This is the required
Pε(π). Since there are O((p(|π|)/ε)m) many smaller boxes, this can be done in
polynomial time.

Conversely, suppose we can construct Pε(π) in polynomial time. To solve
the gap problem for a given m-vector (v1, . . . , vm), if there is a solution point
(f1(x), . . . , fm(x)) in Pε(π) such that fi(x) ≤ vi for all i, then we return x.
Otherwise we assert that there is no x ∈ X such that fi(x) ≤ (1 − ε′)vi for all
i = 1, . . . ,m. ��

Thus, we only need to solve the gap problem to get a (1+ε)-approximate solution
for the min-max problem. This is accomplished in a manner similar to that given
in [9]. Our description here is with respect to minimization problems; a similar
description for maximization problems can be found in [9].

We restrict our attention to the case whenX ⊆ {0, 1}d, since many combinato-
rial optimization problems can be framed as 0/1-integer programming problems.
Further, we consider linear objective functions; that is, fi(x) =

∑d
j=1 aijxj , and

each aij is a non-negative integer. Suppose we want to solve the gap problem for
them-vector (v1, . . . , vm). Let r = �d/ε′�. We first define a “truncated” objective
function. For all j = 1, . . . , d, if for some i, aij > vi, we set xj = 0, and drop the

A General Framework for Designing Approximation Schemes 185

variable xj from each of the objective functions. Let V be the index set of the
remaining variables. Thus, the coefficients in each objective function are now less
than or equal to vi. Next, we define a new objective function f ′i(x) =

∑
j∈V a

′
ijxj ,

where a′ij = �aijr/vi�. In the new objective function, the maximum value of a
coefficient is now r. For x ∈ X , the following two statements hold.

– If f ′i(x) ≤ r, then fi(x) ≤ vi.
– If fi(x) ≤ vi(1− ε′), then f ′i(x) ≤ r.

Therefore, to solve the gap problem, it suffices to find an x ∈ X such that f ′i(x) ≤
r, for i = 1, . . . ,m, or assert that no such x exists. Since all the coefficients of
f ′i(x) are non-negative integers, there are r + 1 ways in which f ′i(x) ≤ r can be
satisfied. Hence there are (r+1)m ways overall in which all inequalities f ′i(x) ≤ r
can be simultaneously satisfied. Suppose we want to find if there is an x ∈ X
such that f ′i(x) = bi for i = 1, . . . ,m. This is equivalent to finding an x such
that

∑m
i=1M

i−1f ′i(x) =
∑m

i=1M
i−1bi, where M = dr + 1 is a number greater

than the maximum value that f ′i(x) can take.
Given an instance π of a multi-objective linear optimization problem over

a discrete set X , the exact version of the problem is: Given a non-negative
integer C and a vector (c1, . . . , cd) ∈ Zd

+, does there exist a solution x ∈ X such
that

∑d
j=1 cjxj = C?

Theorem 4. Suppose we can solve the exact version of the problem in pseudo-
polynomial time, then there is an FPTAS for solving (1).

Proof. The gap problem can be solved by making at most (r + 1)m calls to the
pseudo-polynomial time algorithm, and the input to each call has numerical val-
ues of order O((d2/ε)m+1). Therefore, all calls to the algorithm take polynomial
time, hence the gap problem can be solved in polynomial time. The theorem
now follows from Theorems 2 and 3. ��

Now we give a pseudo-polynomial time algorithm for solving the exact version of
the resource allocation problem for a fixed number of agents. The exact version
for resource allocation is this: Given an integer C, does there exist a 0/1-vector x
such that

∑n
k=1

∑m
j=1 cjkxjk = C, subject to the constraints that

∑m
j=1 xjk = 1

for k = 1, . . . , n, and xjk ∈ {0, 1}? The exact problem can be viewed as a
reachability problem in a directed graph. The graph is an (n+1)-partite directed
graph; let us denote the partitions of this digraph by V0, . . . , Vn. The partition
V0 has only one node, labeled as v0,0 (the source node), all other partitions have
C+1 nodes. The nodes in Vi for 1 ≤ i ≤ n are labeled as vi,0, . . . , vi,C . The arcs
in the digraph are from nodes in Vi to nodes in Vi+1 only, for 0 ≤ i ≤ n− 1. For
all c ∈ {c1,i+1, . . . , cm,i+1}, there is an arc from vi,j to vi+1,j+c, if j+c ≤ C. Then
there is a solution to the exact version if and only if there is a directed path from
the source node v0,0 to the node vn,C . Finding such a path can be accomplished
by doing a depth-first search from the node v0,0. The corresponding solution for
the exact problem (if it exists) can be obtained using the path found by the
depth-first search algorithm.

186 S. Mittal and A.S. Schulz

Thus, the above pseudo-polynomial algorithm implies the following theorem.

Theorem 5. There is an FPTAS for the resource allocation problem with a fixed
number of agents.

2.2 Space Complexity of the FPTAS

A straightforward implementation of the above algorithm will have substantial
storage requirements. The bottleneck for space requirements appears at two
places: one is storing the approximate Pareto-optimal frontier, and the other
is in solving the exact problem. However, by a careful implementation of the
algorithm, the storage requirements can be reduced significantly. We give an
outline below for a space-efficient implementation of the above algorithm.

1. We do not need to store all the corner points of the smaller boxes into which
the region of possible objective function values has been divided. By simply
iterating over the corner points using loops, we can cover all the corner points.
2. We also do not need to store the approximate Pareto-optimal frontier, as it
is sufficient to store the current best solution obtained after solving each gap
problem.
3. When solving the exact problem using the depth-first search algorithm, we do
not need to generate the whole graph explicitly. The only data we need to store in
the execution of the depth-first search algorithm are the stack corresponding to
the path traversed in the graph so far (the path length is at most n), and the coef-
ficients of the modified objective function. There aremn coefficients that need to
be stored, and the maximum magnitude of each coefficient is O((m2n2/ε)m+1),
thus the space complexity of the FPTAS is O(m2n log (mn/ε)).

Thus, we have the following theorem.

Theorem 6. There is an FPTAS for the resource allocation problem whose
space requirements are polynomial in m, n and log (1/ε).

2.3 An FPTAS for Scheduling on Unrelated Parallel Machines and
the Santa Claus Problem

Recall the Rm| |Cmax scheduling problem defined in the introduction. There are
m machines and n jobs, and the processing time of job k on machine i is pik.
The objective is to schedule the jobs to minimize the makespan. The m objective
functions in this case are given by fi(x) =

∑n
k=1 pikxik, and the set X is given by∑m

i=1 xik = 1 for each k = 1, . . . , n, and xik ∈ {0, 1}. The Santa Claus problem is
similar to this scheduling problem, except that the objective here is to maximize
the minimum execution time over all the machines.

The exact version of the Rm| |Cmax problem and the Santa Claus problem
is the same as that for the resource allocation problem, and hence we get an
FPTAS for either problem for fixed m. For the Rm| |Cmax problem, we obtain
the first FPTAS that has space requirements which are polynomial in m, n

A General Framework for Designing Approximation Schemes 187

and log (1/ε), whereas all the previously obtained FPTASes for this problem
had space complexity exponential in m. For the Santa Claus problem, we give
the first FPTAS for a fixed number of agents. We therefore have the following
theorem.

Theorem 7. There are FPTASes for the Rm| |Cmax problem and the Santa
Claus problem with a fixed number of agents whose space requirements are poly-
nomial in n, m, and log (1/ε).

2.4 FPTAS for Any Norm

The above technique for obtaining an FPTAS in fact can be extended to include
any norm used for combining the different objective functions. More generally,
let h : Rm

+ → R+ be any function that satisfies
(i) h(y) ≤ h(y′) for all y, y′ ∈ Rm

+ such that yi ≤ y′i for all i = 1, . . . ,m, and
(ii) h(λy) ≤ λh(y) for all y ∈ Rm

+ and λ > 1.
Consider the following generalization of the optimization problem given by (1):

minimize g(x) = h(f(x)), x ∈ X. (2)

Then Lemma 1 and 2 can be easily generalized as follows.

Lemma 3. There is at least one optimal solution x∗ to (2) such that x∗ ∈ P (π).

Lemma 4. Let x̂ be a solution in Pε(π) that minimizes g(x). Then x̂ is a (1+ε)-
approximate solution of (2); that is, g(x̂) is at most (1 + ε) times the optimal
value of (2).

These two lemmata then imply that the technique given in this section can be
used to obtain an FPTAS for (2). The only difference is in selecting the solution
from the approximate Pareto-optimal frontier: we have to choose the solution
which is the best according to the given h. Thus we have the following theorem.

Theorem 8. There is an FPTAS for the resource allocation problem, the prob-
lem of scheduling jobs on unrelated parallel machines, and the Santa Claus
problem with fixed m when the objectives for the different agents/machines are
combined into one using a function h that satisfies (i) and (ii). Moreover, this
algorithm can be made to run with space requirements that are polynomial in m,
n, and log (1/ε).

3 A 2-Approximation Algorithm for the Uniform Cost
Case

Recall that in the case of the resource allocation problem with uniform costs, for
each agent i and each resource k, ckij = cki for all j
= i, and ckii = 0. Let Ak(s)

188 S. Mittal and A.S. Schulz

denote the set of all agents such that if resource k is allocated to an agent in
this set, the cost that any other agent will have to pay to access resource k is no
more than s.

We will consider a parametric linear programming relaxation of the problem,
in which we have the constraint that no agent has a cost of more than s in
the relaxed solution. For each resource k, we consider only the agents in the set
Ak(s) as possible candidates for allocating that resource. We show that if this
parametric linear program has a feasible solution, then an extreme point of the
feasible set of the linear program can be rounded to an integer solution in which
each agent has cost no more than 2s.

Theorem 9. For s ∈ Z+, consider the following set of linear inequalities, which
we denote by LP (s):

n∑

k=1

∑

j∈A (s)

ckijxjk ≤ s for i = 1, . . . ,m, (3a)

∑

i∈A (s)

xik = 1 for k = 1, . . . , n, (3b)

xik ≥ 0 for k = 1, . . . , n, i ∈ Ak(s). (3c)

Suppose LP (s) has a feasible solution, then, for the case of uniform costs, one
can find xR

ik ∈ {0, 1} in polynomial time such that

n∑

k=1

∑

j∈A (s)

ckijx
R
jk ≤ 2s for i = 1, . . . ,m, (4a)

∑

i∈A (s)

xR
ik = 1 for k = 1, . . . , n. (4b)

Proof. Let xLP be an extreme point of the non-empty polytope defined by the
inequalities of LP (s). Let v be the total number of variables defining the system
LP (s). There are v+m+n inequalities in LP (s). Since LP (s) has v variables, at
any extreme point of this polytope, at least v linearly independent inequalities
will be satisfied with equality. Hence, at most m + n inequalities will not be
satisfied with equality. Therefore, it follows from (3c) that at mostm+n variables
will have a non-zero value.

Consider the bipartite graph G in which one of the partitions has nodes cor-
responding to each agent, and the other partition has nodes corresponding to
each resource. There is an edge between agent i and resource k in G if xLP

ik > 0.
In this graph, the number of edges is less than or equal to the number of nodes.
For the R| |Cmax problem, which has a similar integer programming formulation,
Lenstra et al. [3] showed that each connected component of G also has the prop-
erty that the number of edges is less than or equal to the number of nodes. This
result holds here as well.

k

k

k

k

A General Framework for Designing Approximation Schemes 189

We now construct an integral solution xR by rounding the fractional solution.
Let G′ be a connected component of G. The rounding is performed in two stages.
In the first stage, the following two operations are performed on G′ repeatedly,
in the given order.

1. For all resource nodes k such that in G′, exactly one edge, say (i, k), is
incident to it, we set xR

ik = 1, and remove all such resource nodes and the
edges incident to these nodes from G′.

2. For all agent nodes i such that there is exactly one edge, say (i, k), incident
to it, we set xR

ik = 0, and remove all such agent nodes and all the edges
incident to these nodes from G′.

The first stage of rounding ends when the above two operations can no longer
be performed. Let the resulting subgraph after the first stage of rounding be
G′′. Note that in the first stage, whenever we are deleting a node, we are also
deleting at least one edge from the graph. Hence after the first stage, the number
of edges is still less than or equal to the number of nodes in G′′. For the second
stage, there are three possibilities.

1. There are no nodes corresponding to resources in G′′. This means that all
resources in this subgraph have already been allocated to some agent. In this
case we are done for G′′.

2. There are some nodes corresponding to resources in G′′, but there are no
edges incident to these resource nodes. That is, some of the resources in
G′ have not yet been assigned to any of the agents. In this case, each such
resource is assigned to one of the agents to which it was incident before the
starting of the rounding procedure.

3. If both the above cases do not hold, then each node in G′′ has at least two
edges incident to it. Since the number of edges is less than or equal to the
number of nodes, this component is actually a cycle, and the number of agent
nodes is the same as the number of resource nodes. In this component, there
is now a perfect matching between the agent nodes and the resource nodes.
We find any perfect matching in this component, and for each matching edge
(i, k) we set xR

ik = 1. All the remaining variables corresponding to G′ whose
values have not been determined yet, are assigned the value zero.

This rounding procedure is performed on each connected component of G
to get a 0/1-solution xR. Note that xR

ik satisfies the constraint (4b), since each
resource is allocated to exactly one of the agents. Also, for each agent i, there
is at most one resource, say r(i), for which the LP solution was fractional, and
in the integral solution that resource was not allocated to i, but was instead
allocated to agent i′ ∈ Ar(i)(s). This is because in the first stage of rounding,
an agent node is deleted only when there is just one resource node in the graph
to which it remains incident to, and hence it does not get that resource. And in
the second stage, in the third case, there will be exactly one resource to which
an agent is incident to, but that resource is not allocated to the agent.

190 S. Mittal and A.S. Schulz

For an agent i, define a partition of the resources into Ri
=0 and Ri

>0 as follows:
Ri

=0 = {k : xLP
ik = 0}, and Ri

>0 = {k : xLP
ik > 0}. For all i ∈ {1, . . . ,m},

To get a 2-approximation algorithm for the problem that runs in polynomial
time, one starts by choosing a trivial lower and upper bound on the optimum
value of the objective function. The lower bound can be min {ckij}, and the upper
bound can be mnmax {ckij}. Then, by adopting a binary search procedure, one
can find the minimum integer value of s, say s∗, for which LP (s) is feasible,
and get a corresponding vertex xLP of the non-empty polytope in polynomial
time by using the ellipsoid algorithm [15]. Clearly, s∗ is a lower bound on the
optimal objective function value of the resource allocation problem. Using the
above rounding procedure, one can obtain a rounded solution whose value is
at most 2s∗. We therefore obtain a 2-approximation algorithm for the resource
allocation problem with uniform costs.

4 Hardness of Approximation

In this section, we give a hardness of approximation result for the resource
allocation problem with general costs.

Theorem 10. There is no polynomial-time algorithm that yields an approxima-
tion ratio smaller than 3/2 for the resource allocation problem, unless P=NP.

Proof. We prove this by a reduction from the problem of scheduling jobs on
unrelated parallel machines (R| |Cmax), which cannot have a better than 3/2-
approximation algorithm, unless P=NP [3].

n∑

k=1

∑

j∈Ak(s)

ck
ijx

R
jk =

∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xR

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

R
jk

=
∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xLP

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

R
jk (5a)

≤
∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xLP

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

LP
jk + c

r(i)
ii′ (5b)

=
n∑

k=1

∑

j∈Ak(s)

ck
ijx

LP
jk + c

r(i)
ii′

≤ s + s = 2s. (5c)

The equality in (5a) follows from the fact that for each resource k,
∑

j∈Ak(s) xLP
jk

=
∑

j∈Ak(s) xR
jk = 1, and also because we are dealing with the case of uniform

costs. The inequality in (5b) holds because for each agent i, there is at most one
resource r(i) such that xLP

i,r(i) > 0, but xR
i,r(i) = 0. And finally, the inequality

in (5c) is true by the definition of the set Ar(i)(s), c
r(i)
i ≤ s, and (3a). ��

A General Framework for Designing Approximation Schemes 191

Consider an instance of the R| |Cmax problem with m machines and n jobs,
where the processing time of job k on machine i is pik. Let pmax = max{pik}.
We construct a corresponding instance of the resource allocation problem as
follows. There are 2m agents and n resources. For i, j ∈ {1, . . . ,m}, i
= j, let
ckij = npmax + 1, and cki,m+i = pik. All other cost coefficients are zero. Then, in
any optimal allocation of resources in the resource allocation problem, all the
resources will be distributed among the agents m + 1, . . . , 2m. It is easy to see
that if there is an optimal solution of the R| |Cmax instance in which job k is
allocated to machine m(k), there is a corresponding optimal solution for the
resource allocation problem in which resource k is allocated to agent m+m(k),
and vice-versa. Also, the optimal objective function value of both instances will
be the same.

Thus, if the resource allocation problem could be approximated better than
3/2 in polynomial time, then so can the R| |Cmax problem, which is impossible,
unless P=NP [3]. ��

Acknowledgments

The first author thanks Mainak Chaudhuri and Maunendra Sankar Desarkar for
fruitful discussions on framing the resource allocation problem. The authors also
thank Retsef Levi for pointing out the work by Bansal and Sviridenko [10]. This
research was supported by NSF awards #0426686 and #0700044, and by ONR
grant N00014-08-1-0029.

References

1. Laudon, J., Lenoski, D.: The SGI origin: A ccNUMA highly scalable server. In: Pro-
ceedings of the 24th International Symposium on Computer Architecture, Boulder,
CO, pp. 241–251 (1997)

2. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. Journal of the ACM 23, 317–327 (1976)

3. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

4. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. Journal of the ACM 34, 144–162
(1987)

5. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
Journal on Computing 12, 57–74 (2000)

6. Safer, H.M., Orlin, J.B., Dror, M.: Fully polynomial approximation in multi-criteria
combinatorial optimization. Technical report, Operations Research Center, MIT
(2004)

7. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combinato-
rial optimzation. Technical report, Operations Research Center, MIT (1995)

8. Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Technical report, Operations Research Center, MIT
(1995)

192 S. Mittal and A.S. Schulz

9. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, Redondo Beach, CA, pp. 86–92 (2000)

10. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, Seattle, WA, pp. 31–40 (2006)

11. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic
Commerce, New York, NY, pp. 125–131 (2004)

12. Bezàkovà, I., Dani, V.: Allocating indivisible goods. ACM SIGecom Exchanges 5,
11–18 (2005)

13. Azar, Y., Epstein, L., Richter, Y., Woeginger, G.J.: All-norm approximation algo-
rithms. Journal of Algorithms 52, 120–133 (2004)

14. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gál, T. (eds.) Multiple Cri-
teria Decision Making: Theory and Application. Lecture Notes in Economics and
Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1980)

15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin (1988)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman, New York (1979)

Appendix

Lemma 5. The resource allocation problem with uniform costs is NP-hard for
two agents, and strongly NP-hard in general.

Proof. The proof of NP-hardness for the two-agents case is by reduction from
Partition [16]. Consider an instance of Partition given by a set A of n el-
ements, where element a ∈ A has size s(a) ∈ Z+. We construct an instance
of the resource allocation problem with two agents and n resources as follows:
ca12 = ca21 = s(a) for each a ∈ A, and caii = 0 for i = 1, 2. Then, A can be
partitioned into two sets of equal size if and only if the optimal solution for the
given resource allocation problem has cost

∑
a∈A s(a)/2.

The strong NP-hardness proof for the general case is by a reduction from
3-Partition [16]. Let an instance of this problem be given by the set A =
{a1, . . . , a3m}, with

∑
a∈A s(a) = mB. The corresponding instance of the re-

source allocation problem is constructed as follows: There are m agents, and 3m
resources. For each agent i, ckij = s(ak) for k = 1, . . . , 3m; j = 1, . . . ,m, i
= j,
and ckii = 0. Then the answer to the 3-Partition instance is “Yes” if and only if
the optimal solution to the given resource allocation problem has cost (m−1)B.

��

The Directed Minimum Latency Problem�

Viswanath Nagarajan and R. Ravi

Tepper School of Business, Carnegie Mellon University, Pittsburgh USA
{viswa,ravi}@cmu.edu

Abstract. We study the directed minimum latency problem: given an n-
vertex asymmetric metric (V, d) with a root vertex r ∈ V , find a spanning
path originating at r that minimizes the sum of latencies at all vertices
(the latency of any vertex v ∈ V is the distance from r to v along the
path). This problem has been well-studied on symmetric metrics, and the
best known approximation guarantee is 3.59 [3]. For any 1

log n
< ε < 1,

we give an nO(1/ε) time algorithm for directed latency that achieves an
approximation ratio of O(ρ · n

ε3
), where ρ is the integrality gap of an LP

relaxation for the asymmetric traveling salesman path problem [13,5].
We prove an upper bound ρ = O(

√
n), which implies (for any fixed ε >

0) a polynomial time O(n1/2+ε)-approximation algorithm for directed
latency.

In the special case of metrics induced by shortest-paths in an un-
weighted directed graph, we give an O(log2 n) approximation algorithm.
As a consequence, we also obtain an O(log2 n) approximation algorithm
for minimizing the weighted completion time in no-wait permutation
flowshop scheduling. We note that even in unweighted directed graphs,
the directed latency problem is at least as hard to approximate as the
well-studied asymmetric traveling salesman problem, for which the best
known approximation guarantee is O(log n).

1 Introduction

The minimum latency problem [17,6,14,2] is a variant of the basic traveling
salesman problem, where there is a metric with a specified root vertex r, and
the goal is to find a spanning path starting from r that minimizes the sum
of arrival times at all vertices (it is also known as the deliveryman problem or
traveling repairman problem). This problem can model the traveling salesman
problem, and hence is NP-complete. To the best of our knowledge, all previous
work has focused on symmetric metrics– the first constant-factor approximation
algorithm was in Blum et al. [2], and the currently best known approximation
ratio is 3.59 due to Chaudhuri et al. [3]. In this paper, we consider the minimum
latency problem on asymmetric metrics.

Network design problems on directed graphs are often much harder to approxi-
mate than their undirected counterparts– the traveling salesman and Steiner tree

� Supported by NSF grant CCF-0728841.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 193–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ε

194 V. Nagarajan and R. Ravi

problems are well known examples. The currently best known approximation ra-
tio for the asymmetric traveling salesman problem (ATSP) is O(log n) [9,7], and
improving this bound is an important open question. On the other hand, there
is a 1.5-approximation algorithm for the symmetric TSP.

The orienteering problem is closely related to the minimum latency problem
that we consider– given a metric with a length bound, the goal is to find a
bounded-length path between two specified vertices that visits the maximum
number of vertices. Blum et al. [1] gave the first constant factor approxima-
tion for the undirected version of this problem. Recently, Chekuri et al. [4] and
the authors [15] independently gave O(log2 n) approximation algorithms for the
directed orienteering problem.

1.1 Problem Definition

We represent an asymmetric metric by (V, d), where V is the vertex set (with
|V | = n) and d : V × V → R+ is a distance function satisfying the triangle
inequality. For a directed path (or tour) π and vertices u, v, dπ(u, v) denotes
the distance from u to v along π; if v is not reachable from u along π, then
dπ(u, v) = ∞. The directed minimum latency problem is defined as follows:
given an asymmetric metric (V, d) and a root vertex r ∈ V , find a spanning
path π originating at r that minimizes

∑
v∈V d

π(r, v); the quantity dπ(r, v) is
the latency of vertex v in path π. Another possible definition of this problem
would require a tour covering all vertices, where the latency of the root r is
defined to be the distance required to return to r (i.e. the total tour length);
note that in the previous definition of directed latency, the latency of r is zero.
The approximability of both these versions of directed latency are related as
below (the proof is deferred to the full version).

Theorem 1. The approximability of the path-version and tour-version of di-
rected latency are within a factor 4 of each other.

In this paper, we work with the path version of directed latency.
For a directed graph G = (V,E) and any S ⊆ V , we denote by δ+(S) =

{(u, v) ∈ E | u ∈ S, v
∈ S} the arcs leaving set S, and δ−(S) = {(u, v) ∈ E |
u
∈ S, v ∈ S} the arcs entering set S. When dealing with asymmetric metrics,
the edge set E is assumed to be V × V unless mentioned otherwise. Given an
asymmetric metric and a special vertex r, an r-path (resp. r-tour) is any directed
path (resp. tour) originating at r.

Asymmetric Traveling Salesman Path (ATSP-path). The following prob-
lem is closely related to the directed latency problem. In ATSP-path, we are
given a directed metric (V, d) and specified start and end vertices s, t ∈ V . The
goal is to compute the minimum length s − t path that visits all the vertices.
It is easy to see that this problem is at least as hard to approximate as the
ATSP (tour-version, where s = t). Lam and Newmann [13] were the first to
consider this problem, and they gave an O(

√
n) approximation based on the

Frieze et al. [9] algorithm for ATSP. This was improved to O(log n) in Chekuri

The Directed Minimum Latency Problem 195

and Pal [5], which extended the algorithm of Kleinberg and Williamson [12]
for ATSP. Subsequently Feige and Singh [7] showed that the approximability of
ATSP-tour and ATSP-path are within a constant factor of each other. We are
concerned with the following LP relaxation of the ATSP-path problem.

min
∑

e de · xe

s.t.
x(δ+(u)) = x(δ−(u)) ∀u ∈ V − {s, t}
x(δ+(s)) = x(δ−(t)) = 1

(ATSP − path) x(δ−(s)) = x(δ+(t)) = 0
x(δ−(S)) ≥ 2

3 ∀{u} ⊆ S ⊆ V \ {s}, ∀u ∈ V
xe ≥ 0 ∀ arcs e

The most natural LP relaxation for ATSP-path would have a 1 in the right-
hand-side of the cut constraints, instead of 2

3 as above. The above LP further
relaxes the cut-constraints, and is still a valid relaxation of the problem. The
precise value in the right-hand-side of the cut constraints is not important: we
only require it to be some constant strictly between 1

2 and 1.

1.2 Results and Paper Outline

Our main result is a reduction from the directed latency problem to the asymmet-
ric traveling salesman path problem (ATSP-path) [13,5], where the approxima-
tion ratio for directed latency depends on the integrality gap of an LP relaxation
for ATSP-path. We give an nO(1/ε) time algorithm for the directed latency prob-
lem that achieves an approximation ratio of O(ρ · n

ε3) (for any 1
log n < ε < 1),

where ρ is the integrality gap of an LP relaxation for the ATSP-path problem.
The best upper bound we obtain is ρ = O(

√
n) (Section 3); however we con-

jecture that ρ = O(log n). In particular, our result implies a polynomial time
O(n1/2+ε)-approximation algorithm (any fixed ε > 0) for directed latency. We
study the LP relaxation for ATSP-path in Section 3, and present the algorithm
for latency in Section 2. Our algorithm for latency first guesses a sequence of
break-points (based on distances along the optimal path) and uses a linear pro-
gram to obtain an assignment of vertices to segments (the portions between
consecutive break-points), then it obtains local paths servicing each segment,
and finally stitches these paths across all segments.

We also consider the special case of metrics given by shortest paths in an un-
derlying unweighted directed graph, and obtain an O(log2 n) approximation for
minimum latency in this case (Section 4). This algorithm is essentially based on
using the directed orienteering algorithm [15,4] within the framework for undi-
rected latency [10]. On the hardness side, we observe that the directed latency
problem (even in this ‘unweighted’ special case) is at least as hard to approxi-
mate as ATSP, for which the best known ratio is O(log n).

We note that ideas from the ‘unweighted’ case, also imply an O(log2 n) ap-
proximation algorithm for minimizing weighted completion time in the no-wait
permutation flowshop scheduling problem [20,18]– this can be cast as the latency

ε

196 V. Nagarajan and R. Ravi

problem in a special directed metric. We are not aware of any previous results
on this problem.

2 The Directed Latency Algorithm

For a given instance of directed latency, let π denote an optimal latency path,
L = d(π) its length, and Opt its total latency. For any two vertices u, v ∈ V , recall
that dπ(u, v) denotes the length along path π from u to v; note that dπ(u, v) is
finite only if u appears before v on path π. The algorithm first guesses the length
L (within factor 2) and l = � 1ε � vertices as follows: for each i = 1, · · · , l, vi is the
last vertex on π with dπ(r, vi) ≤ niε L

n . We set v0 = r and note that vl is the last
vertex visited by π. Let F = {v0, v1, · · · , vl}. Consider now the following linear
program (MLP):

min
∑l−1

i=0 n
(i+1)ε L

n (
∑

u/∈F y
i
u)

s.t.
zi(δ+(u)) = zi(δ−(u)) ∀u ∈ V \ {vi, vi+1}, ∀i = 0, · · · , l − 1
zi(δ+(vi)) = zi(δ−(vi+1)) = 1 ∀i = 0, · · · , l − 1
zi(δ−(vi)) = zi(δ+(vi+1)) = 0 ∀i = 0, · · · , l − 1
zi(δ−(S)) ≥ yi

u ∀{u} ⊆ S ⊆ V \ {vi}, ∀u ∈ V \ F,
∀i = 0, · · · , l − 1∑

e de · zi(e) ≤ n(i+1)ε · L
n ∀i = 0, · · · , l − 1

∑l−1
i=0 y

i
u ≥ 1 ∀u ∈ V \ F

zi(e) ≥ 0 ∀ arcs e, ∀i = 0, · · · , l − 1
yi

u ≥ 0 ∀u ∈ V \ F, ∀i = 0, · · · , l − 1

Basically this LP requires one unit of flow to be sent from vi to vi+1 (for all
0 ≤ i ≤ l− 1) such that the total extent to which each vertex u is covered (over
all these flows) is at least 1. In addition, the i-th flow is required to have total
cost (under the length function d) at most n(i+1)ε · L

n . It is easy to see that this
LP can be solved in polynomial time for any guess {vi}li=1. Furthermore the
number of possible guesses is O(n1/ε), hence we can obtain the optimal solution
of (MLP) over all guesses, in nO(1/ε) time.

Claim 1. The minimum value of (MLP) over all possible guesses of {vi}li=0 is
at most 2nε ·Opt.

Proof: This claim is straightforward, based on the guesses from an optimal
path. Recall that π is the optimal latency path for the given instance. One of
the guesses of the vertices {vi}li=0 satisfies the condition desired of them, namely
each vi (for i = 1, · · · , l) is the last vertex on π with dπ(s, vi) ≤ niε L

n . For each
i = 0, · · · , l − 1, define Oi to be the set of vertices that are visited between vi
and vi+1 in path π. Let zi denote the (integral) edge values corresponding to
path π restricted to the vertices Oi ∪ {vi, vi+1}; note that the cost of this flow
d · zi ≤ dπ(r, vi+1) ≤ n(i+1)ε L

n . Also set yi
u = 1 for u ∈ Oi and 0 otherwise,

for all i = 0, · · · , l − 1. Note that each vertex in V \ {vi}li=0 appears in some

The Directed Minimum Latency Problem 197

set Oi, and each zi supports unit flow from vi to all vertices in Oi; hence this
(integral) solution {zi, yi}l−1

i=0 is feasible for (MLP). The cost of this solution is
∑l−1

i=0 n
(i+1)ε L

n · |Oi| ≤ nεL + nε
∑l−1

i=1 n
iε L

n · |Oi| ≤ 2nε · Opt, since |O0| ≤ n,
L ≤ Opt, and each vertex u ∈ Oi (for i = 1, · · · , l − 1) has dπ(r, u) > niε L

n .
We now assume that we have an optimal fractional solution {zi, yi}l−1

i=0 to
(MLP) over all guesses (with objective value as in Claim 1), and show how to
round it to obtain vi − vi+1 paths for each i = 0, · · · , l− 1, which when stitched
give rise to one r-path having a small latency objective. We say that a vertex
u is well-covered by flow zi if yi

u ≥ 1
4l . We partition the vertices V \ F into two

parts: V1 consists of those vertices that are well-covered for at least two values of
i ∈ [0, l], and V2 consists of all other vertices. Note that each vertex in V2 is cov-
ered by some flow zi to the extent at least 3

4 . We first show how to service each of
V1 and V2 separately using local paths, and then stitch these into a single r-path.

Splitting off: A directed graph is called Eulerian if the in-degree equals the out-
degree at each vertex. In our proofs, we make use of the following ‘splitting-off’
theorem for Eulerian digraphs.

Theorem 2 (Frank [8] (Theorem 4.3) and Jackson [11]). Let D = (U +
r, A) be an Eulerian directed multi-graph. For each arc f = (r, v) ∈ A there
exists an arc e = (u, r) ∈ A so that after replacing arcs e and f by arc (u, v),
the directed connectivity between every pair of vertices in U is preserved.
Note that any vector x̃ of rational edge-capacities that is Eulerian (namely
x̃(δ−(v)) = x̃(δ+(v)) at all vertices v) corresponds to an Eulerian multi-graph
by means of a (sufficiently large) uniform scaling of all arcs. Based on this cor-
respondence, one can use the above splitting-off theorem directly on fractional
edge-capacities that are Eulerian.

2.1 Servicing Vertices V1

We partition V1 into l parts as follows: Ui (for i = 0, · · · , l− 1) consists of those
vertices of V1 that are well-covered by zi but not well-covered by any flow zj for
j > i. Each set Ui is serviced separately by means of a suitable ATSP solution
on Ui∪{vi} (see Lemma 1): this step requires a bound on the length of back-arcs
from Ui-vertices to vi, which is ensured by the next claim.
Claim 2. For each vertex w ∈ Ui, d(w, vi) ≤ 8l · niε L

n .
Proof: Let j ≤ i − 1 be such that yj

w ≥ 1
4l ; such an index exists by the

definition of V1 and Ui. In other words, arc-capacities zj support at least 1
4l flow

from w to vj+1; so 4l ·zj supports a unit flow from w to vj+1. Thus d(w, vj+1) ≤
4l(d · zj) ≤ 4l · n(j+1)ε L

n . Note that for any 0 ≤ k ≤ l, zk supports a unit
flow from vk to vk+1; hence d(vk, vk+1) ≤ d · zk ≤ n(k+1)ε L

n . Now, d(w, vi) ≤
d(w, vj+1) +

∑i−1
k=j+1 d(vk, vk+1) ≤ 4lLn

∑i−1
k=j n

(k+1)ε ≤ 8l · niε L
n .

We now show how all vertices in Ui can be covered by a vi-tour.

Lemma 1. For each i = 0, · · · , l − 1, there is a poly-time computable vi-tour
covering vertices Ui, of length O(1

ε2n
(i+1)ε logn · L

n).

198 V. Nagarajan and R. Ravi

Proof: Fix an i ∈ {0, · · · , l − 1}; note that the arc capacities zi are Eulerian
at all vertices except vi and vi+1. Although applying splitting-off (Theorem 2)
requires an Eulerian graph, we can apply it to zi after adding a dummy (vi+1, vi)
arc of capacity 1, and observing that flows from vi or flows into vi+1 do not use
the dummy arc. So using Theorem 2 on vertices V \ (Ui∪{vi, vi+1}) and triangle
inequality, we obtain arc capacities α on the arcs induced by Ui∪{vi, vi+1} such
that: d · α ≤ d · zi ≤ n(i+1)ε · L

n and α supports yi
u ≥ 1

4l flow from vi to u
and from u to vi+1, for every u ∈ Ui. Below we use B to denote the quantity
n(i+1)ε · L

n . Consider adding a dummy arc from vi+1 to vi of length B in the
induced metric on Ui∪{vi, vi+1}, and set the arc capacity α(vi+1, vi) on this arc
to be 1. Note that α is Eulerian, has total cost at most 2B, and every non-trivial
cut has value at least min{yi

u : u ∈ Ui} ≥ 1
4l . So scaling α uniformly by 4l, we

obtain a fractional feasible solution to ATSP on the vertices Ui∪{vi, vi+1} (in the
modified metric), having cost at most 8l ·B. Since the Frieze et al. [9] algorithm
computes an integral tour of length at most O(log n) times any fractional feasible
solution (see Williamson [19]), we obtain a vi-tour τ on the modified metric of
length at most O(l logn)·B. Since the dummy (vi+1, vi) arc has length B, it may
be used at most O(l logn) times in τ . So removing all occurrences of this dummy
arc gives a set of O(l logn) vi − vi+1 paths in the original metric, that together
cover Ui. Ignoring vertex vi+1 and inserting the direct arc to vi from the last
Ui vertex in each of these paths gives us the desired vi-tour covering Ui. Finally
note that each of the arcs to vi inserted above has length O(l · niε)L

n = O(l) ·B
(from Claim 2), and the number of arcs inserted is O(l logn). So the length of
this vi-tour is at most O(l logn) ·B +O(l2 logn) ·B = O(1

ε2n
(i+1)ε logn · L

n).

2.2 Servicing Vertices V2

We partition vertices in V2 into W0, · · · ,Wl−1, where each Wi contains the ver-
tices in V2 that are well-covered by zi. As noted earlier, each vertex u ∈ Wi

in fact has yi
u ≥ 3

4 > 2
3 . We now consider any particular Wi and obtain a

vi − vi+1 path covering the vertices of Wi. Vertices in Wi are covered by a frac-
tional vi − vi+1 path as follows. Splitting off vertices V \ (Wi ∪ {vi, vi+1}) in
the fractional solution zi gives us edge capacities β in the metric induced on
Wi ∪ {vi, vi+1}, such that: β supports at least 2

3 flow from vi to u and from u to
vi+1 for all u ∈Wi, and d ·β ≤ d · zi (this is similar to how arc-capacities α were
obtained in Lemma 2.1). Note that β is a fractional feasible solution to the LP
relaxation (ATSP − path) for the ATSP-path instance on the metric induced
by Wi ∪ {vi, vi+1} with start-vertex vi and end-vertex vi+1. So if ρ denotes the
(constructive) integrality gap of (ATSP−LP), we can obtain an integral vi-vi+1

path that spans Wi of length at most ρ(d · β) ≤ ρ(d · zi) ≤ ρn(i+1)ε L
n . This re-

quires a polynomial time algorithm that computes an integral path of length at
most ρ times the LP value; However even a non-constructive proof of integrality
gap ρ′ implies a constructive integrality gap ρ = O(ρ′ log n), using the algorithm
in Chekuri and Pal [5]. So we obtain:

Lemma 2. For each i = 0, · · · , l − 1, there is a poly-time computable vi-vi+1

path covering Wi of length at most ρ · n(i+1)ε L
n .

The Directed Minimum Latency Problem 199

2.3 Stitching the Local Paths

We now stitch the vi-tours that service V1 (Lemma 1) and the vi − vi+1 paths
that service V2 (Lemma 2), to obtain a single r-path that covers all vertices. For
each i = 0, · · · , l− 1, let πi denote the vi-tour servicing Ui, and let τi denote the
vi − vi+1 path servicing Wi. The final r-path that the algorithm outputs is the
concatenation τ∗ = π0 ·τ0 ·π1 · · ·πl−1 ·τl−1. From Lemmas 1 and 2, it follows that
for all 0 ≤ i ≤ l − 1, d(πi) ≤ O(1

ε2 logn) · n(i+1)ε L
n and d(τi) ≤ O(ρ) · n(i+1)ε L

n .
So the length of τ∗ from r until all vertices of Ui ∪Wi are covered is at most
O(ρ+ 1

ε2 logn) ·n(i+1)ε L
n (as ε ≥ Ω(1

log n)). This implies that the total latency of
vertices in Ui∪Wi along path τ∗ is at most O(ρ+ 1

ε2 logn)·n(i+1)ε L
n ·(|Wi|+|Ui|).

Moreover, the contribution of each vertex in Ui (resp.,Wi) to the LP objective
is at least 1

4l · n(i+1)ε L
n (resp., 3

4 · n(i+1)ε L
n). Thus the contribution of Ui ∪Wi to

the LP objective is at least 1
4l ·n(i+1)ε L

n · (|Wi|+ |Ui|). Using the upper bound on
the latency along τ∗ for Ui∪Wi, and summing over all i, we obtain that the total
latency along τ∗ is at most O(1

ερ+ 1
ε3 logn) times the optimal value of (MLP).

From Claim 1, it now follows that the latency of τ∗ is O(1
ερ+ 1

ε3 logn)nε ·Opt.

Theorem 3. For any Ω(1
log n) < ε < 1, there is an O(ρ+log n

ε3 ·nε)-approximation
algorithm for directed latency, that runs in time nO(1/ε), where ρ is the integrality
gap of the LP (ATSP − path). Using ρ = O(

√
n), we have a polynomial time

O(n
1
2+ε) approximation algorithm for any fixed ε > 0.

We prove the bound ρ = O(
√
n) in the next section. A bound of ρ = O(log n)

on the integrality gap of (ATSP − path) would imply that this algorithm is a
quasi-polynomial time O(log4 n) approximation for directed latency.

Remark: The (ATSP − path) rounding algorithm in Section 3 can be modified
slightly to obtain (for any 0 < δ < 1), an (O(nδ logn), ! 1δ ") bi-criteria approxi-
mation for ATSP-path. This implies the following generalization of Theorem 3.

Corollary 1. For any Ω(1
log n) < ε < 1 and 0 < δ < 1, there is an nO(1/ε) time

algorithm for directed latency, that computes ! 1δ " paths covering all vertices,
having a total latency of O(log n

ε3 ·nε+δ) ·Opt, where Opt is the minimum latency
of a single path covering all the vertices.

3 Bounding the Integrality Gap of ATSP-Path

We prove an upper bound of O(
√
n) on the integrality gap ρ of the linear relax-

ation (ATSP −path) (c.f. Section 1.1). Even for the seemingly stronger LP with
1 in the right-hand-side of the cut constraints, the best bound on the integrality
gap we can obtain is O(

√
n): this follows from the cycle-cover based algorithm

of Lam and Newmann [13]. As mentioned in Chekuri and Pal [5], it is unclear
whether their O(log n)-approximation can be used to bound the integrality gap

200 V. Nagarajan and R. Ravi

of such a linear program. In this section, we present a rounding algorithm for the
weaker LP (ATSP −path), which shows ρ = O(

√
n). Our algorithm is similar to

the ATSP-path algorithm of Lam and Newmann [13] and the ATSP algorithm
of Frieze et al. [9]; but it needs some more work as we compare the algorithm’s
solution against a fractional solution to (ATSP − path).

Let x be any feasible solution to (ATSP − path). We now show how x can
be rounded to obtain an integral path spanning all vertices, of total length
O(
√
n)(d · x). Let N denote the network corresponding to the directed metric

with the cost of each arc equal to its metric length, and an extra (t, s) arc of cost
0. The capacity of this extra (t, s) arc is set to 3, and all other capacities are set
to ∞. The rounding algorithm for x is as follows.

1. Initialize the set of representatives R ← V \ {s, t}, and the current integral
solution σ = ∅.

2. While R
= ∅, do:
(a) Compute a minimum cost circulation C in N [R ∪ {s, t}] that sends at

least 2 units of flow through each vertex in R (note: C can be expressed
as a sum of cycles).

(b) Repeatedly extract from C all cycles that do not use the extra arc (t, s),
to obtain circulation A ⊆ C. Let R′ ⊆ R be the set of R-vertices that
have degree at least 1 in A.

(c) Let B = C \A; note that B is Eulerian and each cycle in it uses arc (t, s).
(d) If |R′| ≥

√
n, do:

i. Set σ ← σ ∪A.
ii. Modify R by dropping all but one R′-vertex from each strong com-

ponent of A.
(e) If |R′| < √n, do:

i. Take an Euler tour on B and remove all (at most 3) occurrences of
arc (t, s) to obtain s-t paths P1, P2, P3.

ii. Restrict each path P1, P2, P3 to vertices in R \ R′ by short-cutting
over R′-vertices, to obtain paths P̃1, P̃2, P̃3.

iii. Take a topological ordering s = w1, w2, · · · , wh = t of vertices (R \
R′) ∪ {s, t} relative to the arcs P̃1 ∪ P̃2 ∪ P̃3.

iv. Set σ ← σ ∪ {(wj , wj+1) : 1 ≤ j ≤ h− 1}.
v. Repeat for each vertex u ∈ R′: find an arc (w,w′) ∈ σ such that
x supports 1

6 flow from w to u and from u to w′, and modify σ ←
(σ \ (w,w′)) ∪ {(w, u), (u,w′)}.

vi. Set R← ∅.
3. Output any spanning s-t walk in σ.

We now show the correctness and performance guarantee of the rounding
algorithm. We first bound the cost of the circulation obtained in Step 2a during
any iteration.

Claim 3. For any R ⊆ V \ {s, t}, the minimum cost circulation C computed in
step 2a has cost at most 3(d · x).

The Directed Minimum Latency Problem 201

Proof: The arc values x define a fractional s − t path in network N . Extend
x to be a (fractional) circulation by setting x(t, s) = 1. We can now apply
splitting-off (Theorem 2) on each vertex in V \ R, to obtain capacities x′ in
network N [R∪{s, t}], such that every pairwise connectivity is preserved and (by
triangle inequality) d · x′ ≤ d · x. Note that the extra (t, s) arc is not modified
in the splitting-off steps. So x′ supports 2

3 flow from s to each vertex in R; this
implies that 3x′ is a feasible fractional solution to the circulation instance solved
in step 2a (note that x′(t, s) remains 1, so solution 3x′ satisfies the capacity
of arc (t, s)). Finally, note that the linear relaxation for circulation is integral
(c.f. Nemhauser and Wolsey [16]). So the minimum cost (integral) circulation
computed in step 2a has cost at most 3d · x′ ≤ 3d · x.

Note that each time step 2d is executed, |R| decreases by at least
√
n/2 (each

strong component in A has at least 2 vertices); so there are at most O(
√
n) such

iterations and the cost of σ due to additions in this step is O(
√
n)(d · x) (using

Claim 3). Step 2e is executed at most once (at the end); the next claim shows
that this step is well defined and bounds the cost incurred.

Claim 4. In step 2(e)iii, there exists a topological ordering w1, · · · , wh of (R \
R′)∪{s, t} w.r.t. arcs P̃1∪ P̃2∪ P̃3. Furthermore, {(wj , wj+1) : 1 ≤ j ≤ h−1} ⊆
P̃1 ∪ P̃2 ∪ P̃3.

Proof: Note that any cycle in P1 ∪ P2 ∪ P3 is a cycle in B that does not use
arc (t, s), which is not possible by the definition of B (every cycle in B uses arc
(t, s)); so P1∪P2∪P3 is acyclic. It is clear that if P̃1∪ P̃2∪ P̃3 contains a cycle, so
does P1 ∪ P2 ∪ P3 (each path P̃i is obtained by short-cutting the corresponding
path Pi). Hence P̃1 ∪ P̃2 ∪ P̃3 is also acyclic, and there is a topological ordering
of (R \R′)∪{s, t} relative to arcs P̃1 ∪ P̃2 ∪ P̃3. We now prove the second part of
the claim. In circulation C, each vertex of R has at least 2 units of flow through
it; but vertices R \R′ are not covered (even to an extent 1) in the circulation A.
So each vertex of R\R′ is covered to extent at least 2 in circulation B, and hence
in P1 ∪P2 ∪P3. In other words, each vertex of R \R′ appears on at least two of
the three s− t paths P1, P2, P3. This also implies that (after the short-cutting)
each R \ R′ vertex appears on at least two of the three s − t paths P̃1, P̃2, P̃3.
Now observe that for each consecutive pair (wj , wj+1) (1 ≤ j ≤ h − 1) in the
topological order, there is a common path P̃k (for some k = 1, 2, 3) that contains
both wj and wj+1. Furthermore, in P̃k, wj and wj+1 are consecutive in that
order (otherwise, the topological order would contain a back arc!). Thus each
arc (wj , wj+1) (for 1 ≤ j ≤ h− 1) is present in P̃1 ∪ P̃2 ∪ P̃3, and we obtain the
claim.

We also need the following claim to bound the cost of insertions in step 2(e)v.

Claim 5. For any two vertices u′, u′′ ∈ V , if λ(u′, u′′;x) (resp. λ(u′′, u′;x))
denotes the maximum flow supported by x from u′ to u′′ (resp. u′′ to u′), then
λ(u′, u′′;x) + λ(u′′, u′;x) ≥ 1

3 .

202 V. Nagarajan and R. Ravi

Proof: If either u′ or u′′ is in {s, t}, the claim is obvious since for every vertex
v, x supports 2

3 flow from s to v and from v to t. Otherwise {s, t, u′, u′′} are
distinct, and define capacities x̂ as:

x̂(v1, v2) =
{
x(v1, v2) for arcs (v1, v2)
= (t, s)

1 for arc (v1, v2) = (t, s)

Observe that x̂ is Eulerian; now apply Theorem 2 to x̂ and split-off all vertices
of V except T = {s, t, u′, u′′}, and obtain capacities y on the arcs induced on T .
We have λ(t1, t2; y) = λ(t1, t2; x̂) for all t1, t2 ∈ T . Note that since neither t nor s
is split-off, their degrees in y are unchanged from x̂, and also y(t, s) ≥ x̂(t, s) = 1.
Since the out-degree of t in x̂ (hence in y) is 1 and yt,s ≥ 1, we have y(t, u′) =
y(t, u′′) = 0 and y(t, s) = 1. The capacities y support at least 2

3 flow from s to u′;
so y(s, u′)+y(u′′, u′) ≥ 2

3 . Similarly for u′′, we have y(s, u′′)+y(u′, u′′) ≥ 2
3 , and

adding these two inequalities we get y(u′, u′′)+y(u′′, u′)+(y(s, u′)+y(s, u′′)) ≥ 4
3 .

Note that y(s, u′) + y(s, u′′) ≤ y(δ+(s)) = x̂(δ+(s)) = 1 (the degree of s is
unchanged in the splitting-off). So y(u′, u′′) + y(u′′, u′) ≥ 1

3 . Since y is obtained
from x̂ by a sequence of splitting-off operations, it follows that x̂ supports flows
corresponding to all edges in y simultaneously. In particular, the following flows
are supported disjointly in x̂: F1 that sends y(u′, u′′) units from u′ to u′′, F2

that sends y(u′′, u′) units from u′′ to u′, and F3 that sends y(t, s) = 1 unit from
t to s. Hence the flows F1 and F2 are each supported by x̂ and do not use the
extra (t, s) arc (since x̂(δ+(t)) = x̂(t, s) = 1). This implies that the flows F1 and
F2 are both supported by the original capacities x (where x(t, s) = 0). Hence
λ(u′, u′′;x) + λ(u′′, u′;x) ≥ y(u′, u′′) + y(u′′, u′) ≥ 1

3 .
From Claim 4, we obtain that the cost addition in step 2e(iv) is at most

d(P̃1)+d(P̃2)+d(P̃3) ≤ d(P1)+d(P2)+d(P3) ≤ 3(d ·x) (from Claim 3). We now
consider the cost addition to σ in step 2(e)v. Claim 5 implies that for any pair of
vertices u′, u′′ ∈ V , x supports 1

6 flow either from u′ to u′′ or from u′′ to u′. Also
for every vertex u, x supports 2

3 flow from s to u and from u to t. Since σ always
contains an s− t path in step 2(e)v, there is always some position along this s− t
path to insert any vertex u ∈ R′ as required in step 2(e)v. Furthermore, the cost
increase in any such insertion step is at most 12(d · x). Hence the total cost for
inserting all the vertices R′ into σ is at most 12|R′|(d · x) = O(

√
n)(d · x). Thus

the total cost of σ at the end of the algorithm is O(
√
n)(d ·x). Finally note that

σ is connected (in the undirected sense), Eulerian at all vertices in V \{s, t} and
has outdegree 1 at s. This implies that σ corresponds to a spanning s− t walk.
This completes the proof of the following.

Theorem 4. The integrality gap of (ATSP − path) is at most O(
√
n).

4 Unweighted Directed Metrics

In the special case where the metric is induced by shortest paths in an un-
weighted directed graph, we obtain an improved approximation guarantee for
the minimum latency problem. This draws on ideas from the undirected latency

The Directed Minimum Latency Problem 203

problem, and the O(log2 n) approximation ratio for directed orienteering ([15]
and [4]). The directed orienteering problem is as follows: given a starting vertex
r in an asymmetric metric and length bound L, find an r-path of length at most
L covering the maximum number of vertices. We note that the reduction from
ATSP to directed latency also holds in unweighted directed metrics, and the
best known approximation ratio for ATSP even on this special class is O(log n).
Here we show the following.

Theorem 5. An α-approximation algorithm for directed orienteering implies an
O(α+γ) approximation algorithm for the directed latency problem on unweighted
digraphs, where γ is the best approximation ratio for ATSP. In particular there
is an O(log2 n) approximation.

Let G = (V,A) denote the underlying digraph that induces the given metric, and
r the root vertex. We first argue (Section 4.1) that if G is strongly connected,
then there is an O(α)-approximation algorithm. Then we show (Section 4.2) how
this can be extended to the case when G is not strongly connected.

4.1 G Is Strongly Connected

In this case, the distance from any vertex to the root r is at most n = |V |.
The algorithm and analysis for this case are identical to those for the undirected
latency problem [2,10,3]. Details are deferred to the full version.

Remark: This ‘greedy’ approach does not work in the general directed case since
it is unclear how to bound the length of back-arcs to the root r (which is required
to stitch the paths that are computed greedily). In the undirected case, back-
arcs can be easily bounded by the forward length, and this approach results in
a constant approximation algorithm. In the unweighted strongly-connected case
(considered above), the total length of back-arcs used by the algorithm could be
bounded by roughly n2 (which is also a lower bound for the latency problem).
By an identical analysis, it also follows that there is an O(α)-approximation for
the directed latency problem on metrics (V, d) with the following property: for
every vertex v ∈ V , the back-arc length to r is within a constant factor of the
forward-arc length from r, i.e. d(v, r) ≤ O(1) · d(r, v). As a consequence, we
obtain an O(α) = O(log2 n) approximation for no-wait flowshop scheduling with
the weighted completion time objective (n is the number of jobs in the given
instance); this seems to be the first approximation ratio for the problem. The
no-wait flowshop problem can be modeled as a minimum latency problem in an
appropriate directed metric [20,18], with the property that all back-arcs to the
root r have length 0; hence the above greedy approach applies.

4.2 G Is Not Strongly Connected

In this case, we show an O(γ + β)-approximation algorithm, where γ is the ap-
proximation guarantee for ATSP and β is the approximation guarantee for the
minimum latency problem on unweighted strongly-connected digraphs. From

204 V. Nagarajan and R. Ravi

Section 4.1, β = O(α), where α is the approximation ratio for directed orien-
teering. Consider the strong components of G, which form a directed acyclic
graph. If the instance is feasible, there is a Hamilton path in G from r; so we
can order the strong components of G as C1, · · · , Cl such that r ∈ C1 and
any spanning path from r visits the strong components in that order. For each
1 ≤ i ≤ l, let ni = |Ci|, and pick an arbitrary vertex si ∈ Ci as root for each
strong component (setting s1 = r).

Lemma 3. There exists a spanning r-path τ∗ having latency objective at most
7 ·Opt such that τ∗ = τ1 · (s1, s2) · τ2 · (s2, s3) · · · (sl−1, sl) · τl, where each τi (for
1 ≤ i ≤ l) is an si-tour covering all vertices in Ci.

Proof: Consider the optimal latency r-path P ∗: this is a concatenation P1 ·
P2 · · ·Pl of paths in each strong component (Pi is a spanning path on Ci). For
each 1 ≤ i ≤ l, let Lat(Pi) denote the latency of vertices Ci just along path Pi,
and Di =

∑i−1
j=1 d(Pj) be the distance traversed by P ∗ before Pi. Then the total

latency along P ∗ is Opt =
∑l

i=1(ni ·Di + Lat(Pi)).
For each 1 ≤ i ≤ l, let τi denote a spanning tour on Ci, obtained by adding

to Pi the direct arcs: from si to its first vertex and from its last vertex to si.
Each of these extra arcs in τi has length at most ni − 1 (since Ci is strongly
connected), and d(Pi) ≥ ni − 1 (it is spanning on Ci); so d(τi) ≤ 3d(Pi). Let
Lat(τi) denote the latency of vertices Ci along τi; from the above observation we
have Lat(τi) ≤ ni · (ni − 1) + Lat(Pi). Now we obtain τ∗ as the concatenation
τ1 · (s1, s2) · τ2 · · · (st−1, sl) · τl. Note also that for any 1 ≤ i ≤ l− 1, d(si, si+1) ≤
ni + ni+1. So the latency in τ∗ of vertices Ci is:

ni ·
∑i−1

j=1(d(τj) + d(sj , sj+1)) + Lat(τi)
≤ ni ·

∑i−1
j=1(3d(Pj) + nj + nj+1) + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1(3d(Pj) + 2nj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ ni ·
∑i−1

j=1 7d(Pj) + n2
i + ni · (ni − 1) + Lat(Pi)

≤ 7ni ·Di + 2n2
i + Lat(Pi)

≤ 7ni ·Di + 5 · Lat(Pi)

The last inequality follows from the fact that Lat(Pi) ≥ n2
i /2 (Pi is a path

on ni vertices in an unweighted metric). So the total latency of τ∗ is at most
7
∑l

i=1(ni ·Di + Lat(Pi)) = 7 · Opt.

The algorithm for directed latency in this case computes an approximately mini-
mum latency si-path for each Ci separately (using the algorithm in Section 4.1);
by adding the direct arc from the last vertex back to si, we obtain Ci-spanning
tours {σi}li=1. We now use the following claim from [2] to bound the length of
each tour σi.

Claim 6 ([2]). Given Ci-spanning tours σi and πi, there exists a poly-time
computable tour σ′i on Ci of length at most 3 · d(πi) and latency at most thrice
that of σi.

The Directed Minimum Latency Problem 205

Proof: Tour σ′i is constructed as follows: starting at si, traverse tour σi until a
length of d(πi), then traverse tour πi from the current vertex to visit all remaining
vertices and then return to si. Note that tour πi will have to be traversed at
most twice, and so the length of σ′i is at most 3d(πi). Furthermore, the total
latency along σ′i for vertices visited in the σi part is at most Lat(σi) (the latency
along σi). Also the latency along σ′i of each vertex v visited in the πi part is at
most 3d(πi), which is at most thrice its latency in σi. Hence the total latency
along σ′i is at most 3 · Lat(σi).
This implies that by truncating σi with a γ-approximate TSP on Ci, we obtain
another spanning tour σ′i of length 3γ · Li and latency 3 · Lat(σi) (where Li is
length of the minimum TSP on Ci). The final r-path is the concatenation of
these local tours, π = σ′1 · (s1, s2) · σ′2 · · · (sl−1, sl) · σ′l.

Claim 7. The latency of r-path π is at most O(γ + β) · Opt.

Proof: Consider the near-optimal r-path τ∗ given by Lemma 3. For 1 ≤ i ≤ l,
let Opti denote the latency of the Ci-spanning tour τi, and D̃i =

∑i−1
j=1(d(τj) +

d(sj , sj+1)) denote the length of τ∗ before Ci. Then the total latency of τ∗ can
be written as

∑l
i=1(ni · D̃i + Opti) ≤ 7 · Opt.

Now consider the r-path π output by the algorithm. The si-tour τi is a feasible
solution to the minimum latency instance on Ci; so the latency of tour σi is at
most β ·Opti, since we use a β-approximation for each such instance. So for each
1 ≤ i ≤ l, the truncated tour σ′i has latency Lat(σ′i) ≤ 3β · Opti, and length
d(σ′i) ≤ 3γLi. Again, the latency of π can be written as

∑l
i=1(ni ·D′

i + Lat(σ′i)),
where D′

i =
∑i−1

j=1(d(σ
′
j)+d(sj , sj+1)) is the length of π before Ci. So the latency

of vertices Ci in π is:

ni ·
∑i−1

j=1(d(σ
′
j) + d(sj , sj+1)) + Lat(σ′i)

≤ ni ·
∑i−1

j=1(3γ · Lj + d(sj , sj+1)) + 3β · Opti
≤ ni ·

∑i−1
j=1(3γ · d(τj) + d(sj , sj+1)) + 3βOpti

≤ 3γni ·
∑i−1

j=1(d(τj) + d(sj , sj+1)) + 3βOpti
= 3γni · D̃i + 3βOpti
≤ 3(γ + β)(ni · D̃i + Opti)

So the total latency of π is at most 3(γ+β)
∑l

i=1(ni·D̃i+Opti) ≤ O(γ+β)·Opt.

Theorem 5 now follows.

References

1. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approx-
imation Algorithms for Orienteering and Discounted-Reward TSP. In: FOCS, pp.
46–55 (2003)

2. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Su-
dan, M.: The minimum latency problem. In: STOC, pp. 163–171 (1994)

206 V. Nagarajan and R. Ravi

3. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, Trees, and Minimum La-
tency Tours. In: FOCS, pp. 36–45 (2003)

4. Chekuri, C., Korula, N., Pal, M.: Improved Algorithms for Orienteering and Re-
lated Problems. In: SODA, pp. 661–670 (2008)

5. Chekuri, C., Pal, M.: An O(log n) Approximation Ratio for the Asymmetric Trav-
eling Salesman Path Problem. Theory of Computing 3, 197–209 (2007)

6. Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N., Afrati, F., Cos-
madakis, S.: The complexity of the traveling repairman problem. Informatique
Theorique et Applications 20, 79–87 (1986)

7. Feige, U., Singh, M.: Improved Approximation Ratios for Traveling Salesperson
Tours and Paths in Directed Graphs. In: APPROX-RANDOM, pp. 104–118 (2007)

8. Frank, A.: On Connectivity properties of Eulerian digraphs. Annals of Discrete
Mathematics 41, 179–194 (1989)

9. Frieze, A., Galbiati, G., Maffioli, F.: On the worst-case performance of some algo-
rithms for the asymmetric travelling salesman problem. Networks 12, 23–39 (1982)

10. Goemans, M., Kleinberg, J.: An improved approximation ratio for the minimum
latency problem. Mathematical Programming 82, 111–124 (1998)

11. Jackson, B.: Some remarks on arc-connectivity, vertex splitting, and orientation in
digraphs. Journal of Graph Theory 12(3), 429–436 (1988)

12. Kleinberg, J., Williamson, D.: Unpublished note (1998)
13. Lam, F., Newman, A.: Traveling salesman path problems. Mathematical Program-

ming (2006) (online)
14. Minieka, E.: The delivery man problem on a tree network. Annals of Operations

Research 18, 261–266 (1989)
15. Nagarajan, V., Ravi, R.: Poly-logarithmic approximation algorithms for directed

vehicle routing problems. In: APPROX-RANDOM, pp. 257–270 (2007)
16. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization (1999)
17. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the

ACM 23, 555–565 (1976)
18. Sviridenko, M.: Makespan Minimization in No-Wait Flow Shops: A Polynomial

Time Approximation Scheme. SIAM J. Discret. Math. 16(2), 313–322 (2003)
19. Williamson, D.: Analysis of the held-karp heuristic for the traveling salesman prob-

lem. Master’s thesis, MIT Computer Science (1990)
20. Wismer, D.A.: Solution of the flowshop sheduling problem with no intermediate

queues. Operations Research 20, 689–697 (1972)

A Simple LP Relaxation for the

Asymmetric Traveling Salesman Problem

Thành Nguyen�

Cornell University,
Center for Applies Mathematics

657 Rhodes Hall, Ithaca, NY, 14853, USA
thanh@cs.cornell.edu

Abstract. A long-standing conjecture in Combinatorial Optimization
is that the integrality gap of the Held-Karp LP relaxation for the Asym-
metric Traveling Salesman Problem (ATSP) is a constant. In this paper,
we give a simpler LP relaxation for the ASTP. The integrality gaps of
this relaxation and of the Held-Karp relaxation are within a constant
factor of each other. Our LP is simpler in the sense that its extreme
solutions have at most 2n − 2 non-zero variables, improving the bound
3n − 2 proved by Vempala and Yannakakis for the extreme solutions of
the Held-Karp LP relaxation. Moreover, more than half of these non-zero
variables can be rounded to integers while the total cost only increases
by a constant factor.

We also show that given a partially rounded solution, in an extreme
solution of the corresponding LP relaxation, at least one positive variable
is greater or equal to 1/2.

Keywords: ATSP, LP relaxation.

1 Introduction

The Traveling Salesman Problem (TSP) is a classical problem in Combinatorial
Optimization. In this problem, we are given an undirected or directed graph
with nonnegative costs on the edges, and we need to find a Hamiltonian cycle of
minimum cost. A Hamiltonian cycle is a simple cycle that covers all the nodes
of the graph. It is well known that the problem is in-approximable for both
undirected and directed graphs. A more tractable version of the problem is to
allow the solution to visit a vertex/edge more than once if necessary. The problem
in this version is equivalent to the case when the underlying graph is a complete
graph, and the edge costs satisfy the triangle inequality. This problem is called
the metric-TSP, more specifically Symmetric-TSP (STSP) or Asymmetric-TSP
(ATSP) when the graph is undirected or directed, respectively. In this paper, we
consider the ATSP.

� Part of this work was done while the author visited the Egerváry Research Group
on Combinatorial Optimization (EGRES), Budapest, Hungary.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 207–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

208 T. Nguyen

Notation. In the rest of the paper, we need the following notation. Given a directed
graph G = (V,E) and a set S ⊂ V , we denote the set of edges going in and out of
S by δ+(S) and δ−(S), respectively. Let x be a nonnegative vector on the edges of
the graphG, the in-degree or out-degree of S (with respect to x) is the sum of the
value of x on δ+(S) and δ−(S). We denote them by x(δ+(S)) and x(δ−(S)).

An LP relaxation of the ATSP was introduced by Held and Karp [9] in 1970.
It is usually called the Held-Karp relaxation. Since then it has been an open
problem to show whether this relaxation has a constant integrality gap. The
Held-Karp LP relaxation can have many equivalent forms, one of which requires
a solution x ∈ R|E|

+ to satisfy the following two conditions: i) the in-degree and
the out-degree of every vertex are at least 1 and equal to each other, and ii) the
out-degree of every subset S ⊂ V −{r} is at least 1, where r is an arbitrary node
picked as a root. Fractional solutions of this LP relaxation are found to be hard
to round because of the combination of the degree conditions on each vertex
and the connectivity condition. A natural question is to relax these conditions
to get an LP whose solutions are easier to round. In fact, when these conditions
are considered separately, their LP forms integral polytopes, thus the optimal
solution can be found in polynomial time. However, the integrality gap of these
LPs with respect to the integral solutions of the ATSP can be arbitrarily large.
Another attempt is to keep the connectivity condition and relax the degree
condition on each vertex. It is shown recently by Lau et al. [15] that one can find
an integral solution whose cost is at most a constant times the cost of the LP
described above, furthermore it satisfies the connectivity condition and violates
the degree condition at most a constant. The solution found does not satisfy the
balance condition on the vertices, and such a solution can be very far from a
solution of the ATSP.

Generally speaking, there is a trade-off in writing an LP relaxation for a
discrete optimization problem: between having “simple enough” LP to round
and a “strong enough” one to prove an approximation guarantee. It is a major
open problem to show how strong the Held-Karp relaxation is. And, as discussed
above, it seems that all the simpler relaxations can have arbitrarily big integrality
gaps. In this paper, we introduce a new LP relaxation of the ATSP which is as
strong as the Help-Karp relaxation up to a constant factor, and is simpler. Our
LP is simpler in the sense that an extreme solution of this LP has at most 2n−2
non-zero variables, improving the bound 3n− 2 on the extreme solutions of the
Held-Karp relaxation. Moreover, out of such 2n− 2 variables, at least n can be
rounded to integers. This result shows that the integrality gap of the Held-Karp
relaxation is a constant if and only if our simpler LP also has a constant gap.

The new LP. The idea behind our LP formulation is the following. Consider the
Held-Karp relaxation in one of its equivalent forms:

min cexe

Sbjt: x(δ+(S)) ≥ 1 ∀S ⊂ V − {r} (Connectivity condition)

x(δ+(v)) = x(δ−(v)) ∀v ∈ V (Balance condition)
xe ≥ 0.

(1)

A Simple LP Relaxation for the ATSP 209

Our observation is that because of the balance condition in the LP above, the
in-degree x(δ+(S)) is equal to the out-degree x(δ−(S)) for every set S . If one
can guarantee that the ratio between x(δ+(S)) and x(δ−(S)) is bounded by a
constant, then using a theorem of A. J. Hoffman [10] about the condition for
the existence of a circulation in a network, we can still get a solution satisfying
the balance condition for every node with only a constant factor loss in the total
cost. The interesting fact is that when allowed to relax the balance condition,
we can combine it with the connectivity condition in a single constraint. More
precisely, consider the following fact. Given a set S ⊂ V − {r}, the balance
condition implies x(δ+(S)) − x(δ−(S)) = 0, and the connectivity condition is
x(δ+(S)) ≥ 1. Adding up these two conditions, we have:

2x(δ+(S))− x(δ−(S)) ≥ 1.

Thus we can have a valid LP consisting of these inequalities for all S ⊂ V −{r}
and two conditions on the in-degree and out-degree of r. Observe that given
a vector x ≥ 0, the function f(S) = 2x(δ+(S)) − x(δ−(S)) is a submodular
function, therefore, we can apply the uncrossing technique as in [11] to investigate
the structure of an extreme solution. We introduce the following LP:

min cexe

Subject to: 2x(δ+(S))− x(δ−(S)) ≥ 1 ∀S ⊂ V − {r}
x(δ+(r)) = x(δ−(r)) = 1
xe ≥ 0.

(2)

This LP has exponentially many constraints. But because 2x(δ+(S))−x(δ−(S))
is a submodular function, the LP can be solved in polynomial time via the
ellipsoid method and a subroutine to minimize submodular setfunctions.

Our results. It is not hard to see that our new LP (2) is weaker than the Held-
Karp relaxation (1). In this paper, we prove the following result in the reverse
direction. Given a feasible solution x of (2), in polynomial time we can find a
solution y feasible to (1) on the support of x such that the cost of y is at most
a constant factor of the cost of x. Furthermore, if x is integral then y can be
chosen to be integral as well. Thus, given an integral solution of (2) we can find
a Hamiltonian cycle of a constant approximate cost. This also shows that the
integrality gaps of these two LPs are within a constant factor of each other. In
section 3, we show that our new LP is simpler than the Held-Karp relaxation.
In particular, we prove that an extreme solution of the new LP has at most
2n− 2 non-zero variables, improving the bound 3n− 2 proved by Vempala and
Yannakakis [17] for the extreme solutions of the Held-Karp relaxation. We then
show how to round at least n variables of a fractional solution of (2) to integers.
And finally, we prove the existence of a big fractional variable in an extreme
point of our LP in a partially rounded instance.

Note that one can have a more general LP relaxation by adding the Balance
Condition and the Connectivity Condition in (1) with some positive coefficient

210 T. Nguyen

(a, b) to get: (a+ b)x(δ+(S))− bx(δ−(S)) ≥ a. All the results will follow, except
that the constants in these results depend on a and b. One can try to find a and
b to minimize these constants. But, to keep this extended abstract simple, we
only consider the case where a = b = 1.

Related Work. The Asymmetric TSP is an important problem in Combinator-
ial Optimization. There is a large amount of literature on the problem and its
variants. See the books [8], [16] for references and details. A natural LP relax-
ation was introduced by Held-Karp [9] in 1970, and since then many works have
investigated this LP in many aspects. See [8] for more details. Vempala and
Yannakakis [17] show a sparse property of an extreme solution of the Held-Karp
relaxation. Carr and Vempala [4] investigated the connection between the Sym-
metric TSP (STSP) and the ATSP. They proved that if a certain conjecture on
STSP is true then the integrality gap of this LP is bounded by 4/3. Charikar et
al. [3] later refuted this conjecture by showing a lower bound of 2 for the inte-
grality gap of the Held-Karp LP, this is currently the best known lower bound.
On the algorithmic side, a log2 n approximation algorithm for the ATSP was
first proved by Frieze et al. [6]. This ratio is improved slightly in [2], [12]. The
best ratio currently known is 0.842 log2 n [12].

Some proofs of our results are based on the uncrossing technique, which was
first used first by László Lovász [5] in a mathematical competition for university
students in Hungary. The technique was later used successfully in Combinatorial
Optimization. See the book [13] for more details. In Approximation Algorithms,
the uncrossing technique was applied to the the generalized Steiner network
problem by Kamal Jain [11]. And it is recently shown to be a useful technique
in many other settings [7,14,15].

2 The Integrality Gaps of the New LP and of the
Held-Karp Relaxation Are Essentially the Same

In this section, we prove that our LP and the Held-Karp relaxation have inte-
grality gaps within a constant factor of each other. We also show that given an
integral solution of the new LP (2), one can find a Hamilton cycle while only
increasing the cost by a constant factor.

Theorem 1. Given a feasible solution of the Held-Karp relaxation (1), we can
find a feasible solution of (2) with no greater cost. Conversely, if x is a solution
of (2) then there is a feasible solution y of (1) on the support of x, whose cost
is at most a constant times the cost of x. Moreover, such a y can be found in
polynomial time, and if x is integral then y can also be chosen to be an integral
vector.

The second part of this theorem is the technical one. As discussed in the intro-
duction, at the heart of our result is the following theorem of Alan Hoffman [10]
about the condition for the existence of a circulation in a network.

A Simple LP Relaxation for the ATSP 211

Lemma 1 (Hoffman). Consider the LP relaxation of a circulation problem on
a directed graph G = (V,E) with lower and an upper bounds le ≤ ue on each
edge e ∈ E:

x(δ+(v)) = x(δ−(v)) ∀v ∈ V
le ≤ xe ≤ ue ∀e ∈ E.

(3)

The LP is solvable if and only if for every set S :
∑

e∈δ+(S)

le ≤
∑

e∈δ−(S)

ue.

Furthermore, if le, ue are integers, then the solution can be chosen to be integral.
��

Given a solution x of our new LP, we use it to set up a circulation problem.
Then, using Lemma 1, we prove that there exists a solution y to this circulation
problem. And this vector is a feasible solution of the Help-Karp relaxation. Before
proving Theorem 1, we need the following lemmas:

Lemma 2. For a solution x of (2) and every set S � V , the in-degree x(δ+(S))
and the out-degree x(δ−(S)) are at least 1

3 .

Proof. Because of symmetry, we assume that r /∈ S. Since x is a solution of (2),
we have: 2x(δ+(S))−x(δ−(S)) ≥ 1. This implies x(δ+(S)) ≥ 1

2 + 1
2x(δ

−(S)) > 1
3 .

We now prove that x(δ−(S)) ≥ 1
3 . If S = V −{r}, then because of the LP (2)

the out-degree of S is 1, which is of course greater than 1
3 . Now, assume S is a

real subset of V − {r}, let T = V − {r} − S
= ∅.
To make the formula easy to follow, we use the following notation. Let α, β

be the total value of the edges going from S to r and T respectively. See
Figure 1. Thus, the out-degree of S is x(δ−(S)) = α + β. We denote the to-
tal value of the edges going from r to S by a, and the total value of edges from
T to S by b. Due to (2), the in-degree and out-degree of r is 1, therefore the
total value of edges from r to T is 1− a and from T to r is 1− α.

Now, from 2x(δ+(T)) − x(δ−(T)) ≥ 1, we have 2(1 − a + β) − (1 − α + b).
Therefore

2β + α ≥ 2a+ b.

And 2x(δ+(S)) − x(δ−(S)) ≥ 1 is equivalent to 2(a + b) − (α + β) ≥ 1, which
implies

(a+ b) ≥ (α+ β) + 1
2

.

Combine these two inequalities:

2β + α ≥ 2a+ b ≥ a+ b ≥ α+ β + 1
2

.

Thus we have 2β+α ≥ α+β+1
2 . From this, 4β+ 2α ≥ α+ β+ 1 and 3β+α ≥ 1.

Hence, 3(β + α) ≥ 3β + α ≥ 1. Therefore

α+ β ≥ 1
3
.

212 T. Nguyen

1 − a

a

b

r

α

β

S T

1 − α

Fig. 1. Out-degree and in-degree of the set S

This inequality is what we need to prove. ��
The next lemma shows that for any S, the ratio between its out-degree and
in-degree is bounded by a constant.

Lemma 3. Given a solution x of (2), for any S � V ,

1
8
x(δ−(S)) ≤ x(δ+(S)) ≤ 8x(δ−(S)).

Proof. Because of symmetry, we can assume that r /∈ S. From the inequality
2x(δ+(S))− x(δ−(S)) ≥ 1 we have:

x(δ−(X)) < 2x(δ+(X)). Therefore
1
8
x(δ−(S)) ≤ x(δ+(S)).

To show the second inequality, we observe that when S = V −{r}, its out-degree
is equal to its in-degree, thus we can assume that S is a real subset of V − {r}.
As in the previous lemma, let T = V −S−{r}
= ∅. We then apply the inequality
2x(δ+(T))− x(δ−(T)) ≥ 1 to get the desired inequality.

First, observe that S and T are almost complements of each other, except
that there is a node r with in and out degrees of 1 outside S and T . Thus, the
out-degree of S is almost the same as the in-degree of T and vice versa. More
precisely, using the same notation as in the previous lemma, one has x(δ+(S))−
x(δ−(T)) = a− (1− α) ≤ 1. Therefore x(δ+(S)) ≤ x(δ−(T)) + 1.

By symmetry, we also have: x(δ+(T)) ≤ x(δ−(S)) + 1.
Now, 2x(δ+(T))− x(δ−(T)) ≥ 1 implies:

1 + x(δ−(T)) ≤ 2x(δ+(T)).

Using the relations between the in/out-degrees of S and T , we have the following:

x(δ+(S)) ≤ 1 + x(δ−(T)) ≤ 2x(δ+(T)) ≤ 2(x(δ−(S)) + 1).

But because of the previous lemma, x(δ−(S)) ≥ 1
3 . Therefore

x(δ+(S)) ≤ 2(x(δ−(S)) + 1) ≤ 8x(δ−(S)).

This is indeed what we need to prove. ��

A Simple LP Relaxation for the ATSP 213

Note: We believe the constant in this lemma can be reduced if we use a more
careful analysis.

We are now ready to prove our main theorem:

Proof (Proof of Theorem 1). First, given a solution y, if y(δ+(r)) = y(δ−(r)) = 1,
then y is also a feasible solution of (2). When y(δ+(r)) = y(δ−(r)) ≥ 1, we can
short-cut the fractional tour to get the solution satisfying the degree constraint
on r: y(δ+(r)) = y(δ−(r)) = 1 without increasing the cost. This solution is a
feasible solution of (2).

We now prove the second part of the theorem. Given a solution x of (2),
consider the following circulation problem:

min ceye

sbt. y(δ+(v)) = y(δ−(v))∀v ∈ V
3xe ≤ ye ≤ 24xe.

For every set S ⊂ V , Lemma 2 states that the ratio between its in-degree and
its out-degree is bounded by 8. Therefore

∑

e∈δ+(S)

3xe ≤
∑

e∈δ−(S)

24xe.

Using Lemma (1), the above LP has a solution y, and y can be chosen to be
integral if x is integral. We need to show that y is a feasible solution of the
Held-Karp relaxation. y satisfies the Balance Constraint on every node, thus we
only need to show the Connectivity Condition. Because y ≥ 3x, for every cut S
we have :

y(δ+(S)) ≥ 3x(δ+(S)) ≥ 1.

The last inequality comes from Lemma 2. We have shown that given a feasible
solution x of the new LP, there exists a feasible solution of the Held-Karp relax-
ation 1 whose cost is at most 24 times the cost of x. This completes the proof
of our theorem. ��

3 Rounding an Extreme Solution of the New LP

In this section, we show that an extreme solution of our LP contains at most 2n−
2 non-zero variables (Theorem 2). And at least n variables of this solution can be
rounded to integers (Theorem 3). Finally, given a partially rounded solution, let
x be an extreme solution of the new LP for this instance. We show that among
the other positive variables, there is at least one with a value greater or equal
to 1/2 (Theorem 4).

Theorem 2. The LP (2) can be solved in polynomial time, and an extreme
solution has at most 2n− 2 non-zero variables.

214 T. Nguyen

Proof. First, observe that given a vector x ≥ 0, fx(S) = 2x(δ+(S))−x(δ−(S)) is
a submodular function. To prove this, one needs to check that fx(S) + fx(T) ≥
fx(S ∪ T) + fx(S ∩ T). Or more intuitively: fx(S) = x(δ+(S)) + (x(δ+(S)) −
x(δ−(S))) is a sum of two submodular functions, thus fx is also a submodular
function.

The constraints in our LP is fx(S) ≥ 1∀S ⊂ V − {r} and x(δ+(r)) =
x(δ−(r)) = 1. Thus with a subroutine to minimize a submodular function, we
can decide whether a vector x is feasible to our LP, and therefore the LP can be
solved in polynomial time by the ellipsoid method.

Now, assume x is an extreme solution. Let S, T be two tight sets, i.e., fx(S) =
fx(T) = 1. Then, it is not hard to see that if S ∪ T
= ∅ then both S ∪ T and
S ∩ T are tight. Furthermore, the constraint vectors corresponding to S, T, S ∪
T, S∩T are dependent. Now, among all the tight sets, take the maximal laminar
set family. The constraints corresponding to these sets span all the other tight
constraints. Thus x is defined by 2 constraints for the root node r and the
constraints corresponding to a laminar family of sets on n − 1 nodes, which
contains at most 2(n− 1)− 1 sets. However, the constraint corresponding to the
set V − r is dependent on the two constraints of the node r, therefore we have
at most 2 + 2(n− 1)− 1− 1 = 2n− 2 independent constraints. This shows that
x has at most 2n− 2 non-zero variables. ��
We prove the next theorem about rounding at least n variables of a fractional
solution of our new LP (2).
Theorem 3. Given an extreme solution x of (2), we can find a solution x̃ on
the support of x. Thus x̃ contains at most 2n − 2 non-zero edges such that it
satisfies the constraint 2x̃(δ+(S)) − x̃(δ−(S)) ≥ 1 ∀S ⊂ V − {r}, and it has
at least n non-zero integral variables. Furthermore, the cost of x̃ is at most a
constant times the cost of x.

Proof. x is a solution of (2). Due to Theorem 1, on the support of x, there exists
a solution y of (1) whose cost is at most a constant times the cost of x. Because
y satisfies y(δ+(v)) = y(δ−(v)) ≥ 1 for every v ∈ V , y is a fractional cycle cover
on the support of x. Recall that a cycle cover on directed graph is a Eulerian
subgraph (possibly with parallel edges) covering all the vertices. However, we
can find an integral cycle cover in a directed graph whose cost is at most the
cost of a fractional solution. Let z be such an integral solution. Clearly, z has at
least n non-zero variables, and the cost of z is at most the cost of y which is at
most a constant times the cost of x.

Next consider the solution w = x + 3
2z. For every edge e where ze > 0, we

have we = xe + 3
2ze >

3
2 . Round we to the closest integer to get the solution x̃.

Clearly, x̃ has at most 2n− 2 non-zero variables and at least n non-zero integral
variables. We will show that the cost of x̃ is at most a constant times the cost
of x, and that x̃ satisfies 2x̃(δ+(S))− x̃(δ−(S)) ≥ 1 ∀S ⊂ V − {r}.

Rounding each we to the closest integer will sometimes cause an increase in we

of at most 1/2. But, because we only round the value we when the corresponding
ze ≥ 1, and note that z is an integral vector, the total increase is at most half
the cost of z which is at most a constant times the cost of x.

A Simple LP Relaxation for the ATSP 215

Consider a set S ⊂ V −{r}. We have 2x(δ+(S))−x(δ−(S)) ≥ 1. Let k be the
total value of the edges of z going out from S, that is k = z(δ+(S)) = z(δ−(S)).
This is true because z is a cycle cover. Hence, when adding w := x + 3

2z, we
have:

2w(δ+(S))− w(δ−(S)) = 2x(δ+(S))− x(δ−(S)) +
3
2
(2z(δ+(S))− z(δ−(S))).

Therefore,

2w(δ+(S))− w(δ−(S)) ≥ 1 +
3
2
k. (4)

Now, x̃ is a rounded vector of w on the edges where z is positive. For the set S,
there are at most 2k such edges, at most k edges going out and k edges coming
in. Rounding each one to the closest integer will sometimes cause a change at
most 1

2 on each edge, and thus causes the change of 2w(δ+(S)) − w(δ−(S)) in
at most k(2.12 − (− 1

2)) = 3
2k. But, because of (4), we have :

2x̃(δ+(S))− x̃(δ−(S)) ≥ 1

which is what we need to show. ��

Our last theorem shows that there always exists a “large” variable in an extreme
solution in which some variables are assigned fixed integers.

Theorem 4. Consider the following LP which is the corresponding LP of (2)
when some variables xe, e ∈ F are assigned fixed integral values. xe = ae ∈ N
for e ∈ F .

min cexe

sbt. 2x(δ+(S))− x(δ−(S)) ≥ 1 ∀S : r
∈ S.
x(δ+(r)) = r1

x(δ−(r)) = r2 (r1, r2 ∈ N)
xe = ae ∀e ∈ F
xe ≥ 0.

(5)

Given an extreme solution x of this LP, let H = {e ∈ E − F |xe > 0}. If H
= ∅,
then there exists an e ∈ H such that xe ≥ 1

2 .

Proof. Let L be the laminar set family whose corresponding constraints together
with two constraints on the root node r determine the value of {xe|e ∈ H}
uniquely. As we have seen in the proof of Theorem 2, one can see that such an L
exists, and |L| is at least |H |. Assume all the values in {xe|e ∈ H} is less than a
half. We assign one token to each edge in H . If we can redistribute these tokens
to the sets in L and the constraints on the root r such that each constraint gets
at least 1 token, but at the end there are still some tokens remaining, we will
get a contradiction to prove the theorem.

We apply the technique used in [11] and the other recent results [14], [15],
[1]. For each e ∈ H , we distribute a fraction 1 − 2xe of the token to the head

216 T. Nguyen

of the edge, a fraction xe of the token to the tail and the remaining xe to the
edge itself. See Figure 2. Because 0 < xe <

1
2 , all of these values are positive.

Given a set S in L, we now describe the set of tokens assigned to this set.
First, we use the following notation: for a set T , let E(T) be the set of edges
in {xe|e ∈ E − F} that have both endings in T . Now, let S1, .., Sk ∈ L be the
maximal sets which are real subsets of S. The set of tokens that S gets is all
the tokens on the edges in E(S)− (E(S1) ∪ ... ∪ E(Sk)) plus the tokens on the
vertices in S − (S1 ∪ ... ∪ Sk). Clearly, no tokens are assigned to more than one
set. The constraint on the in-degree of r gets all the tokens on the heads of edges
going into r, and the constraint on the in-degree of r gets all the tokens on the
tails of edges going out from r.

1 − 2x

r

x

x

S

S1

S2 S3
1

1

1

-1

-2

0
0

2
u

v

Fig. 2. Tokens distributed to S

Consider now the equalities corresponding to the set S, S1, ..., Sk. If we add
the equalities of S1, S2, ..., Sk together and subtract the equality on the set S we
will get an linear equality on the variables {xe|e ∈ H}:

∑

e∈H

αexe = an integer number.

It is not hard to calculate αe for each type of e. For example, if e connects Si

and Sj , i
= j then αe = 1, if e connects from vertex outside S to a vertex in
S − (S1 ∪ ... ∪ Sk) then αe = −2, etc. See Figure 2 for all other cases.

On the other hand, if we calculate the amount of tokens assigned to the set
S, it also has a linear formula on {xe|e ∈ H}:

∑

e∈H

βexe + an integer number.

A Simple LP Relaxation for the ATSP 217

We can also calculate the coefficient βe for every e. For example, if e connects
Si and Sj , i
= j then the edge e is the only one that gives an amount of tokens
which is a function of xe, and it is exactly xe. Thus βe = 1. Consider another
example, e = u → v where u ∈ S − (S1 ∪ ... ∪ Sk) and v ∈ S3. See Figure 2.
Then only the amounts of tokens on the edge uv and the node u depend on xe.
On the edge uv, it is xe and, on the node u, it is xe plus a value not depending
on xe. Thus βe = 2 in this case.

It is not hard to see that the coefficient αe = βe∀e ∈ H . Thus the amount
of tokens S gets is an integer number, and it is positive, thus it is at least 1.
Similarly, one can show that this fact also holds for the constraints on the root
node r.

We now show that there are some tokens that were not assigned to any set.
Consider the biggest set in the laminar set family L , it has some non-zero edges
going in or out but the tokens on this edge is not assigned to any constraint.
This completes the proof. ��

Acknowledgment. The author thanks Tamás Király, Éva Tardos and László
Végh for numerous discussions.

References

1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive Guarantees for Degree
Bounded Directed Network Design. In: STOC 2008 (2008)

2. Bläser, M.: A new Approximation Algorithm for the Asymmetric TSP with Trian-
gle Inequality. In: SODA 2002, pp. 638–645 (2002)

3. Charikar, M., Goemans, M.X., Karloff, H.J.: On the Integrality Ratio for Asym-
metric TSP. In: FOCS 2004, pp. 101–107 (2004)

4. Carr, R., Vempala, S.: On the Held-Karp relaxation for the asymmetric and sym-
metric TSPs. Mathematical Programming 100(3), 569–587 (2004)

5. Frank, A.: Personal communication
6. Frieze, A., Galbiati, G., Maffioli, M.: On the worst-case performance of some algo-

rithms for the asymmetric traveling salesman problem. Networks 12 (1982)
7. Goemans, M.X.: Minimum Bounded Degree Spanning Trees. In: FOCS 2006, pp.

273–282 (2006)
8. Gutin, G., Punnen, A.P. (eds.): Traveling Salesman Problem and Its Variations.

Springer, Berlin (2002)
9. Held, M., Karp, R.M.: The traveling salesman problem and minimum spanning

trees. Operation Research 18, 1138–1162 (1970)
10. Hoffman, A.J.: Some recent applications of the theory of linear inequalities to

extremal combinatorial analysis. In: Proc. Symp. in Applied Mathematics, Amer.
Math. Soc., pp. 113–127 (1960)

11. Jain, K.: A factor 2 approximation for the generalized Steiner network problem.
Combinatorica 21, 39–60 (2001)

12. Kaplan, H., Lewenstein, M., Shafir, N., Sviridenko, M.: Approximation Algorithms
for Asymmetric TSP by Decomposing Directed Regular Multidigraphs. In: Proc.
of IEEE FOCS, pp. 56–67 (2003)

13. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Berlin (2003)

218 T. Nguyen

14. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with
degree or order constraints. In: STOC 2007, pp. 651–660 (2007)

15. Lau, L.C., Singh, M.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC 2007, pp. 661–670 (2007)

16. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D. (eds.): The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley &
Sons Ltd., Chichester (1985)

17. Vempala, S., Yannakakis, M.: A Convex Relaxation for the Asymmetric TSP. In:
SODA 1999, pp. 975–976 (1999)

Approximating Directed Weighted-Degree

Constrained Networks

Zeev Nutov

The Open University of Israel, Raanana, Israel
nutov@openu.ac.il

Abstract. Given a graph H = (V, F) with edge weights {w(e) : e ∈ F},
the weighted degree of a node v in H is

�
{w(vu) : vu ∈ F}. We give

bicriteria approximation algorithms for problems that seek to find a mini-
mum cost directed graph that satisfies both intersecting supermodular
connectivity requirements and weighted degree constraints. The input to
such problems is a directed graph G = (V, E), edge-costs {c(e) : e ∈ E},
edge-weights {w(e) : e ∈ E}, an intersecting supermodular set-function
f on V , and degree bounds {b(v) : v ∈ V }. The goal is to find a minimum
cost f -connected subgraph H = (V, F) (namely, at least f(S) edges in
F enter every S ⊆ V) of G with weighted degrees ≤ b(v). Our algorithm
computes a solution of cost ≤ 2 · opt, so that the weighted degree of
every v ∈ V is at most: 7b(v) for arbitrary f and 5b(v) for a 0, 1-valued
f ; 2b(v)+4 for arbitrary f and 2b(v)+2 for a 0, 1-valued f in the case of
unit weights. Another algorithm computes a solution of cost ≤ 3 ·opt and
weighted degrees ≤ 6b(v). We obtain similar results when there are both
indegree and outdegree constraints, and better results when there are
indegree constraints only: a (1, 4)-approximation algorithm for arbitrary
weights and a polynomial time algorithm for unit weights. Finally, we
consider the problem of packing maximum number k of edge-disjoint
arborescences so that their union satisfies weighted degree constraints,
and give an algorithm that computes a solution of value at least �k/36.

1 Introduction

1.1 Problem Definition

In many Network Design problems one seeks to find a low-cost subgraph H
of a given graph G that satisfies prescribed connectivity requirements. Such
problems are vastly studied in Combinatorial Optimization and Approximation
Algorithms. Known examples are Min-Cost k-Flow, b-Edge-Cover, Min-Cost Span-
ning Tree, Traveling Salesperson, directed/undirected Steiner Tree, Steiner Forest,
k-Edge/Node-Connected Spanning Subgraph, and many others. See, e.g., surveys
in [16,4,8,10,12].

In Degree Constrained Network Design problems, one seeks the cheapest
subgraph H of a given graph G that satisfies both prescribed connectivity re-
quirements and degree constraints. One such type of problems are the matching/
edge-cover problems, which are solvable in polynomial time, c.f., [16]. For other

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 219–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

220 Z. Nutov

degree constrained problems, even checking whether there exists a feasible so-
lution is NP-complete, hence one considers bicriteria approximation when the
degree constraints are relaxed.

The connectivity requirements can be specified by a set function f on V , as
follows.

Definition 1. For an edge set or a graph H and node set S let δH(S) (δinH (S))
denote the set of edges in H leaving (entering) S. Given a set-function f on
subsets of V and a graph H = (V, F), we say that H is f -connected if

|δinH (S)| ≥ f(S) for all S ⊆ V. (1)

Several types of f are considered in the literature, among them the following
known one:

Definition 2. A set function f on V is intersecting supermodular if for any
X,Y ⊆ V , X ∩ Y
= ∅

f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y) . (2)

We consider directed network design problems with weighted-degree constraints.
For simplicity of exposition, we will consider mainly out-degree constraints, but
our results easily extend to the case when there are also in-degree constraints,
see Section 6. The problem we consider is:

Directed Weighted Degree Constrained Network (DWDCN)
Instance: A directed graph G = (V,E), edge-costs {c(e) : e ∈ E}, edge-weights

{w(e) : e ∈ E}, set-function f on V , and degree bounds {b(v) : v ∈ V }.
Objective: Find a minimum cost f -connected subgraph H = (V, F) of G that

satisfies the weighted degree constraints

w(δH(v)) ≤ b(v) for all v ∈ V . (3)

We assume that f admits a polynomial time evaluation oracle. Since for
most functions f even checking whether DWDCN has a feasible solution is NP-
complete, we consider bicriteria approximation algorithms. Assuming that the
problem has a feasible solution, an (α, β)-approximation algorithm for DWDCN
either computes an f -connected subgraph H = (V, F) of G of cost ≤ α · opt
that satisfies w(δH(v)) ≤ β · b(v) for all v ∈ V , or correctly determines that the
problem has no feasible solution. Note that even if the problem does not have
a feasible solution, the algorithm may still return a subgraph that violates the
degree constraints (3) by a factor of β.

A graph H is k-edge-outconnected from r if it has k-edge-disjoint paths from
r to any other node. DWDCN includes as a special case the Weighted De-
gree Constrained k-Outconnected Subgraph problem, by setting f(S) = k for
all ∅
= S ⊆ V − r, and f(S) = 0 otherwise. For k = 1 we get the Weighted De-
gree Constrained Arborescence problem. We also consider the problem of packing

Approximating Directed Weighted-Degree Constrained Networks 221

maximum number k of edge-disjoint arborescences rooted at r so that their union
H satisfies (3). By Edmond’s Theorem, this is equivalent to requiring that H is
k-edge-otconnected from r and satisfies (3). This gives the following problem:

Weighted Degree Constrained Maximum Arborescence Packing (WDCMAP)
Instance: A directed graph G = (V,E), edge-weights {w(e) : e ∈ E}, degree

bounds {b(v) : v ∈ V }, and r ∈ V .
Objective: Find a k-edge-outconnected from r spanning subgraph H = (V, F) of

G that satisfies the degree constraints (3) so that k is maximum.

1.2 Our Results

Our main results are summarized in the following theorem. For an edge set I, let
x(I) =

∑
e∈I x(e). Let opt denote the optimal value of the following natural LP-

relaxation for DWDCN that seeks to minimize c ·x over the following polytope Pf :

x(δinE (S)) ≥ f(S) for all ∅
= S ⊂ V
∑

e∈δ (v)

x(e)w(e) ≤ b(v) for all v ∈ V

0 ≤ x(e) ≤ 1 for all e ∈ E

Theorem 1. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f -connected graph of cost ≤ 2opt so that the
weighted degree of every v ∈ V is at most: 7b(v) for arbitrary f and 5b(v) for
a 0, 1-valued f ; for unit weights, the degree of every v ∈ V is at most 2b(v) + 4
for arbitrary f and 2b(v) + 2 for a 0, 1-valued f . The problem also admits a
(3, 6)-approximation algorithm for arbitrary weights and arbitrary intersecting
supermodular f .

Interistingly, we can show a much better result for the case of indegree constraints
only (for the case of both indegree and outdegree constraints see Section 6).

Theorem 2. DWDCN with intersecting supermodular f and with indegree con-
straints only, admits a (1, 4)-approximation algorithm for arbitrary weights, and
a polynomial time algorithm for unit weights.

Theorem 1 has several applications. Bang-Jensen, Thomassé, and Yeo [1] conjec-
tured that every k-edge-connected directed graph G = (V,E) contains a span-
ning arborescence H so that |δH(v)| ≤ |δG(v)|/k + 1 for every v ∈ V . Bansal,
Khandekar, and Nagarajan [2] proved that even if G is only k-edge-outconnected
from r, then G contains such H so that |δH(v)| ≤ |δG(v)|/k + 2. We prove
that for any � ≤ k, G contains an �-outconnected from r spanning subgraph H
which cost and weighted degrees are not much larger than the ”expected” values
c(G) · (�/k) and wG(v) · (�/k). In particular, one can find an arborescence with
both low weighted degrees and low cost.

E

222 Z. Nutov

Corollary 1. Let Hk = (V, F) be a k-outconnected from r directed graph with
costs {c(e) : e ∈ F} and weights {w(e) : e ∈ F}. Then for any � ≤ k the graph Hk

contains an �-outconnected from r subgraph H� so that c(H�) ≤ c(Hk) · (2�/k)
and so that for all v ∈ V : w(δH�

(v)) ≤ w(δHk
(v)) · (7�/k), and w(δH�

(v)) ≤
w(δHk

(v))·(5/k) for � = 1; for unit weights, |δH�
(v)| ≤ |δHk

(v)|·(2�/k)+2. There
also exists H� so that c(H�) ≤ c(Hk) · (3�/k) and w(δH�

(v)) ≤ w(δHk
(v)) · (6�/k)

for all v ∈ V .

Proof. Consider the Weighted Degree Constrained �-Outconnected Subgraph prob-
lem on Hk with degree bounds b(v) = w(δHk

(v)) · (�/k). Clearly, x(e) = �/k for
every e ∈ F is a feasible solution of cost c(Hk) · (�/k) to the LP-relaxation
min{c · x : x ∈ Pf} where f(S) = � for all ∅ �= S ⊆ V − r, and f(S) = 0
otherwise. By Theorem 1, our algorithm computes a subgraph H� as required.

Another application is for the WDCMAP problem. Ignoring costs, Theorem 1
implies a “pseudo-approximation” algorithm for WDCMAP that computes the
maximum number k of packed arborescences, but violates the weighted degrees.
E.g., using the (3, 6)-approximation algorithm from Theorem 1, we can compute
a k-outconnected H that violates the weighted degree bounds by a factor of 6,
where k is the optimal value to WDCMAP. Note that assuming P �=NP, WDCMAP
cannot achieve a 1/ρ-approximation algorithm for any ρ > 0, since deciding
whether k ≥ 1 is equivalent to the Degree Constrained Arborescence problem,
which is NP-complete. We can however show that if the optimal value k is not
too small, then the problem does admit a constant ratio approximation.

Theorem 3. WDCMAP admits a polynomial time algorithm that computes a
feasible solution H that satisfies (3) so that H is �k/36�-outconnected from r.

Proof. The algorithm is very simple. We set b′(v) ← b(v)/6 for all v ∈ V and
apply the (3, 6)-approximation algorithm from Theorem 1. The degree of every
node v in the subgraph computed is at most 6b′(v) ≤ b(v), hence the solution is
feasible. All we need to prove is that if the original instance admits a packing
of size k, then the new instance admits a packing of size �k/36�. Let Hk be an
optimal solution to WDCMAP. Substituting � = �k/36� in the last statement
of Corollary 1 and ignoring the costs we obtain that Hk contains a subgraph
H� which is �-outconnected from r so that w(δH�

(v)) ≤ w(δHk
(v)) · (6�/k) ≤

w(δHk
(v))/6 ≤ b(v)/6 for all v ∈ V , as claimed.

We note that Theorem 3 easily extends to the case when edges have costs; the
cost of the subgraph H computed is at most the minimum cost of a feasible
k-outconnected subgraph.

1.3 Previous and Related Work

Fürer and Raghavachari [6] considered the problem of finding a spanning tree
with maximum degree ≤ Δ, and gave an algorithm that computes a spanning
tree of maximum degree ≤ Δ + 1. This is essentially the best possible since

Approximating Directed Weighted-Degree Constrained Networks 223

computing the optimum is NP-hard. A variety of techniques were developed in
attempt to generalize this result to the minimum-cost case – the Minimum Degree
Spanning Tree problem, c.f., [15,11,3]. Goemans [7] presented an algorithm that
computes a spanning tree of cost ≤ opt and with degrees at most b(v) + 2 for
all v ∈ V , where b(v) is the degree bound of v. An optimal result was obtained
by Singh and Lau [17]; their algorithm computes a spanning tree of cost ≤ opt
and with degrees at most b(v) + 1 for all v ∈ V . The algorithm of Singh and
Lau [17] uses the method of iterative rounding. This method was initiated in a
seminal paper of Jain [9] that gave a 2-approximation algorithm for the Steiner
Network problem. Without degree constraints, this method is as follows: given
an optimal basic solution to an LP-relaxation for the problem, round at least
one entry, and recurse on the residual instance. The algorithm of Singh and Lau
[17] for the Minimum Bounded Degree Spanning Tree problem is a surprisingly
simple extension – either round at least one entry, or remove a degree constraint
from some node v. The non-trivial part usually is to prove that basic fractional
solution have certain ”sparse” properties.

For unit weights, the following results were obtained recently. Lau, Naor, Sal-
vatipour, and Singh [13] were the first to consider general connectivity require-
ments. They gave a (2, 2b(v)+3)-approximation for undirected graphs in the case
when f is skew-supermodular. For directed graphs, they gave a (4opt, 4b(v)+6)-
approximation for intersecting supermodular f , and (8opt, 8b(v)+6)-approxima-
tion for crossing supermodular f (when (2) holds for any X,Y that cross).
Recently, in the full version of [13], these ratios were improved to (3opt, 3b(v)+5)
for crossing supermodular f , and (2opt, 2b(v)+2) for 0, 1-valued intersecting su-
permodular f . For the latter case we obtain the same ratio, but our proof is
simpler than the one in the full version of [13].

Bansal, Khandekar, and Nagarajan [2] gave for intersecting supermodular f
a (1

ε · opt, � b(v)
1−ε� + 4)-approximation scheme, 0 ≤ ε ≤ 1/2. They also showed,

that this ratio cannot be much improved based on the standard LP-relaxation.
For crossing supermodular f [2] gave a (2

ε ·opt, � b(v)
1−ε�+4+ fmax)-approximation

scheme. For the degree constrained arborescence problem (without costs) [2] give
an algorithm that computes an arborescence H with |δH(v)| ≤ b(v) + 2 for all
v ∈ V . Some additional results for related problems can also be found in [2].

For weighted degrees, Fukunaga and Nagamochi [5] considered undirected net-
work design problems and gave a (1, 4)-approximation for minimum spanning
trees and a (2, 7)-approximation algorithm for arbitrary weakly supermodular
set-function f .

2 Proof of Theorem 1

During the algorithm, F denotes the partial solution, I are the edges to add to
F , and B is the set of nodes on which the outdegree bounds constraints are still
present. The algorithm starts with F = ∅, B = V and performs iterations. In
any iteration, we work with the ”residual problem” polytope Pf (I, F,B) (α ≥ 1
is a fixed parameter):

224 Z. Nutov

x(δinI (S)) ≥ f(S)− |δinF (S)| for all ∅
= S ⊂ V
∑

e∈δ (v)

x(e)w(e) ≤ b(v)− w(δF (v))/α for all v ∈ B

0 ≤ x(e) ≤ 1 for all e ∈ I

Recall some facts from polyhedral theory. Let x belong to a polytope P ⊆ Rm

defined by a system of linear inequalities; an inequality is tight (for x) if it
holds as equality for x. x ∈ P is a basic solution for (the system defining) P
if there exist a set of m tight inequalities in the system defining P such that
x is the unique solution for the corresponding equation system; that is, the
corresponding m tight equations are linearly independent. It is well known that
if min{c · x : x ∈ P} has an optimal solution, then it has an optimal solution
which is basic, and that a basic optimal solution for {c ·x : x ∈ Pf (I, F,B)} can
be computed in polynomial time, c.f., [13].

Note that if x ∈ Pf (I, F,B) is a basic solution so that 0 < x(e) < 1 for all
e ∈ I, then every tight equation is induced by either:

• cut constraint x(δinI (S)) ≥ f(S)− |δinF (S)| defined by some set ∅
= S ⊂ V
with f(S)− |δinF (S)| ≥ 1.

• degree constraint
∑

e∈δ (v) x(e)w(e) ≤ b(v) − w(δF (v))/α defined by some
node v ∈ B.

A family F of sets is laminar if for every S, S′ ∈ F , either S ∩ S′ = ∅, or
S ⊂ S′, or S′ ⊂ S. We use the following statement observed in [13] for unit
weights, which also holds in our setting.

Lemma 1. For any basic solution x to Pf (I, F,B) with 0 < x(e) < 1 for all
e ∈ I, there exist a laminar family L on V and T ⊆ B such that x is the unique
solution to the linear equation system:

x(δinI (S)) = f(S)− |δinF (S)| for all S ∈ L
∑

e∈δ (v)

x(e)w(e) = b(v)− w(δF (v))/α for all v ∈ T

where f(S) − |δinF (S)| ≥ 1 for all S ∈ L. In particular, |L| + |T | = |I| and the
characteristic vectors of δinI (S) for all S ∈ L are linearly independent.

Proof. Let F = {∅
= S ⊂ V : x(δinE (S)) = f(S)− |δinF (S)| ≥ 1}, (i.e., the tight
sets) and T = {v ∈ B :

∑
e∈δ (v) x(e)w(e) = b(v) − w(δF (v))/α} (i.e., the tight

nodes in B). For F ′ ⊆ F let span(F ′) denote the linear space generated by the
characteristic vectors of δinI (S), S ∈ F ′. Similarly, span(T ′) is the linear space
generated by the weight vectors of δI(v), v ∈ T ′. In [9] (see also [14]) it is proved
that a maximal laminar subfamily L of F satisfies span(L) = span(F). Since
x ∈ Pf (I, F,B) is a basic solution, and 0 < x(e) < 1 for all e ∈ I, |I| is at most
the dimension of span(F) ∪ span(T) = span(L) ∪ span(T). Hence repeatedly
removing from T a node v so that span(L) ∪ span(T − v) = span(L) ∪ span(T)
results in L and T as required.

I

I

I

I

Approximating Directed Weighted-Degree Constrained Networks 225

Definition 3. The polytope Pf (I, F,B) is (α,Δ)-sparse for integers α,Δ ≥ 1 if
any basic solution x ∈ Pf (I, F,B) has an edge e ∈ I with x(e) = 0, or satisfies
at least one of the following:

x(e) ≥ 1/α for some e ∈ I (4)
|δI(v)| ≤ Δ for some v ∈ B (5)

We prove the following two general statements that imply Theorem 1:

Theorem 4. If for any I, F the polytope Pf (I, F,B) is (α,Δ)-sparse (if non-
empty), then DWDCN admits an (α, α + Δ)-approximation algorithm; for unit
weights the algorithm computes a solution F so that c(F) ≤ α ·opt and |δF (v)| ≤
αb(v) +Δ− 1 for all v ∈ V .

Theorem 5. Pf (I, F,B) is (2, 5)-sparse and (3, 3)-sparse for intersecting su-
permodular f ; if f is 0, 1-valued, then Pf (I, F,B) is (2, 3)-sparse.

3 The Algorithm (Proof of Theorem 4)

The algorithm perform iterations. Every iteration either removes at least one
edges from I or at least one node from B. In the case of unit weights we assume
that all the degree bounds are integers.

Algorithm for DWDCN with intersecting supermodular f
Initialization: F ← ∅, B ← V , I ← E − {vu ∈ E : w(vu) > b(v)}.
If Pf (I, F,B) = ∅, then return ”UNFEASIBLE” and STOP.
While I
= ∅ do:

1. Find a basic solution x ∈ Pf (I, F,B).
2. Remove from I all edges with x(e) = 0.
3. Add to F and remove from I all edges with x(e) ≥ 1/α.
4. Remove from B every v ∈ B with |δI(v)| ≤ Δ.

EndWhile

Lemma 2. DWDCN admits an (α, α + Δ)-approximation algorithm if every
polytope Pf (I, F,B) constructed during the algorithm is (α,Δ)-sparse; further-
more, for unit weights, the algorithm computes a solution F so that c(F) ≤ α·opt
and |δF (v)| ≤ αb(v) +Δ− 1 for all v ∈ V .

Proof. Clearly, if Pf (I, F,B) = ∅ at the beginning of the algorithm, then the
problem has no feasible solution, and the algorithm indeed outputs ”INFEA-
SIBLE”. It is also easy to see that if Pf (I, F,B)
= ∅ at the beginning of the
algorithm, then Pf (I, F,B)
= ∅ throughout the subsequent iterations. Hence if
the problem has a feasible solution, the algorithm returns an f -connected graph,
and we need only to prove the approximation ratio. As for every edge added we
have x(e) ≥ 1/α, the algorithm indeed computes a solution of cost ≤ α · opt.

Now we prove the approximability of the degrees. Consider a node v ∈ V .
Let F ′ be the set of edges in δF (v) added to F while v ∈ B, and let F ′′ be

226 Z. Nutov

the set of edges in I leaving v at Step 3 when v was excluded from B. Clearly,
δF (v) ⊆ F ′ ∪F ′′. Note that at the moment when v was excluded from B we had

w(F ′) ≤ α
(

b(v)−
∑

e∈F ′′

x(e)w(e)

)

In particular, w(F ′) ≤ αb(v). Also, |F ′′| ≤ Δ and thus w(F ′′) ≤ |F ′′| · b(v) ≤
Δb(v). Consequently, w(δF (v)) ≤ w(F ′)+w(F ′′) ≤ αb(v)+Δb(v) = (α+Δ)b(v).

Now consider the case of unit weights. We had |F ′| ≤ α
(
b(v)−

∑
e∈F ′′ x(e)

)

when v was excluded from B. Moreover, we had x(e) > 0 for all e ∈ F ′′, since
edges with x(e) = 0 were removed at Step 2, before v was excluded from B.
Hence if F ′′
= ∅ then |F ′| < αb(v), and thus |F | ≤ |F ′| + |F ′′| < αb(v) + Δ.
Since all numbers are integers, this implies |F | ≤ αb(v) + Δ − 1. If F ′′ = ∅,
then |F | = |F ′| ≤ αb(v) ≤ αb(v) + Δ − 1. Consequently, in both cases |F | ≤
αb(v) +Δ− 1, as claimed.

4 Sparseness of Pf(I, F, B) (Proof of Theorem 5)

Let L and T be as in Lemma 1. Define a child-parent relation on the members
of L + T as follows. For S ∈ L or v ∈ T , its parent is the inclusion minimal
member of L properly containing it, if any. Note that if v ∈ T and {v} ∈ L,
then {v} is the parent of v, and that no members of T has a child. For every
edge uv ∈ I assign one tail-token to u and one head-token to v, so every edge
contributes exactly 2 tokens. The number of tokens is thus 2|I|.

Definition 4. A token contained in S is an S-token if it is not a tail-token of
an edge vu leaving S so that v /∈ T (so a tail-token of an edge vu leaving S is
an S-token if, and only if, v ∈ T).

Recall that we need to prove that if x ∈ Pf (I, F,B) is a basic solution so that
0 < x(e) < 1 for all e ∈ I, then there exists e ∈ I with x(e) ≥ 1/α or there exists
v ∈ B with |δI(v)| ≤ Δ. Assuming this is not so, we have:

The Negation Assumption:
- |δinI (S)| ≥ α+ 1 for all S ∈ L;
- |δI(v)| ≥ Δ+ 1 for all v ∈ T .

We obtain the contradiction |I| > |L|+ |T | by showing that for any S ∈ L we
can assign the S-tokens so that every proper descendant of S in L + T gets 2
S-tokens and S gets at least 3 S-tokens. Except the proof of (2, 3)-sparseness of
0, 1-valued f , our assignment scheme will be:

The (2, α+ 1)-Scheme:
- every proper descendant of S in L+ T gets 2 S-tokens;
- S gets α+ 1 S-tokens.

Initial assignment:
For every v ∈ T , assign the |δI(v)| tail-tokens of the edges in δI(v).

Approximating Directed Weighted-Degree Constrained Networks 227

The rest of the proof is by induction on the number of descendants of S in L.
If S has no children/descendants in L, it has at least |δinI (S)| ≥ α+1 head-tokens
of the edges in δinI (S). We therefore assume that S has in L at least one child.
Given S ∈ L with at least one child in L, let C be the set of edges entering some
child of S, J the set of edges entering S or a child of S but not both, and D the
set of edges that enter a child of S and their tail is in T ∩ S but not in a child
of S. Formally:

C =
⋃
{δinI (R) : R is a child in L of S}

J = (δinI (S)− C) ∪ (C − δinI (S))
D = {e = vu ∈ C − δinI (S) : v ∈ T } .

Lemma 3. Let S ∈ L and suppose that 0 < x(e) < 1 for all e ∈ E. Then
|J | ≥ 2, and every edge e ∈ J −D has an endnode that owns an S-token that is
not an R-token of any child R of S in L.

Proof. C = δinI (S) contradicts linear independence, hence one of the sets δinI (S)−
C,C − δinI (S) is nonempty. If one of these sets is empty, say δinI (S) − C = ∅,
then x(C) − x(δinI (S)) must be a positive integer. Thus |C − δinI (S)| ≥ 2, as
otherwise there is an edge e ∈ C − δinI (S) with x(e) = 1. The proof of the case
C − δinI (S) = ∅ is identical. The second statement is straightforward.

4.1 Arbitrary Intersecting Supermodular f

For (2, 5)-sparseness the Negation Assumption is |δinI (S)| ≥ 3 for all S ∈ L, and
|δI(v)| ≥ 6 for all v ∈ T . We prove that then the (2, 3)-Scheme is feasible. First,
for every v ∈ T , we reassign the |δI(v)| tail-tokens assigned to v as follows:
- 3 tokens to v;
- 1/2 token to every edge in δI(v) (this is feasible since |δI(v)| ≥ 6).

Claim. If S has at least 3 children in L, then the (2, 3)-Scheme is feasible.

Proof. By moving one token from each child of S to S we get an assignment as
required.

Claim. If S has exactly 2 children in L then the (2, 3)-Scheme is feasible.

Proof. S can get 2 tokens by taking one token from each child, and needs 1 more
token. If there is e ∈ J − D then S can get 1 token from an endnode of e, by
Lemma 3. Else, |D| = |J | ≥ 2. As every edge in D owns 1/2 token, S can collect
1 token from edges in D.

Claim. If S has exactly 1 child in L, say R, then the (2, 3)-Scheme is feasible.

Proof. S gets 1 token from R, and needs 2 more tokens. We can collect |J −
D|+ |D|/2 + |T ∩ (S −R)| S-tokens that are not R-tokens, from edges in J and
from the children of S in T , by Lemma 3 and our assignment scheme. We claim
that |J −D|+ |D|/2 + |T ∩ (S−R)| ≥ 2. This follows from the observation that
if |J −D| ≤ 1 then |T ∩ (S −R)| ≥ 1, and if |J −D| = 0 then |D| = |J | ≥ 2, by
Lemma 3.

228 Z. Nutov

It is easy to see that during our distribution procedure no token was assigned
twice. For ”node” tokens this is obvious. For 1/2 tokens on the edges, this follows
from the fact that each time we assigned a 1/2 token of an edge, both endnodes
of this edge were inside S, as this edge was connecting the two children of S.

For (3, 3)-sparseness the Negation Assumption is |δinI (S)| ≥ 4 for all S ∈ L and
|δI(v)| ≥ 4 for all v ∈ T . In this case we can easily prove that the (2, 4)-Scheme
is feasible. If S has at least 2 children in L, then by moving 2 tokens from each
child to S we get an assignment as required. If S has exactly 1 child in L, say
R, then S gets 2 tokens from R, and needs 2 more tokens. If D = ∅ then S can
get 2 tokens from endnodes of the edges in J . Else, S has a child in T , and can
get 2 tokens from this child.

4.2 Improved Sparseness for 0, 1-Valued f

Here the Negation Assumption is |δinI (S)| ≥ 3 for all S ∈ L and |δI(v)| ≥ 4 for all
v ∈ T . Assign colors to members of L + T as follows. All nodes in T are black;
S ∈ L is black if S∩T
= ∅, and S is white otherwise. We show that given S ∈ L,
we can assign the S-tokens so that:

The (2, 3, 4)-Scheme
- every proper descendant of S gets 2 S-tokens;
- S gets at least 3 S-tokens, and S gets 4 S-tokens if S is black.

As in the other cases, the proof is by induction on the number of descendants
of S in L. If S has no descendants in L, then S gets |δinI (S)| ≥ 3 head tokens
of the edges in δinI (S); if S is black, then S has a child in T and S gets 1 more
token from this child.

Lemma 4. If J = D then S has a child in T or at least 2 black children in L.

Proof. Otherwise, all edges in J must have tails in T ∩R for some child R of S,
and every edge that enters S also enters some child of S. Thus δinI (R) ⊆ δinI (S),
and since x(δinI (R)) = x(δinI (S)) = 1, we must have δinI (R) = δinI (S). This
contradicts linear independence.

Claim. If S has in L+T at least 3 children, then the (2, 3, 4)-Scheme is feasible.

Proof. S gets 3 tokens by taking 1 token from each child; if S is black, then one
of these children is black, and S can get 1 more token.

Claim. If S has in L exactly 2 children, say R,R′, then the (2, 3, 4)-Scheme is
feasible.

Proof. If S has a child v ∈ T , then we are in the case of Claim 4.2. If both R,R′

are black, then S gets 4 tokens, 2 from each of R,R′. Thus we assume that S
has no children in T , and that at least one of R,R′ is white, say R′ is white. In
particular, S is black if, and only if, R is black. Thus S only lacks 1 token, that
does not come directly from R,R′. By Lemma 4 there is e ∈ J −D, and S can
get a token from an endnode of e, by Lemma 3.

Approximating Directed Weighted-Degree Constrained Networks 229

Claim. If S has in L exactly one child, say R, then the (2, 3, 4)-Scheme is feasible.

Proof. Suppose that T ∩ (S−R) = ∅. Then S is black if, and only if, R is black.
Thus S needs 2 S-tokens not from R. As every edge in D has tail in T ∩ (S−R)
and head in R, D = ∅ so |J −D| = |J | ≥ 2, and thus S can get 2 S-tokens from
endnodes of the edges in J , by Lemma 3.

If there is v ∈ T ∩ (S − R), then S can get 1 token from R, 2 tokens from
v, and needs 1 more token. We claim that there is e ∈ δinI (S) − δinI (R), and
thus S can get the head-token of e. Otherwise, δinI (S) ⊆ δinI (R), and since
x(δinI (S)) = x(δinI (R)) = 1, we obtain δinI (S) = δinI (R), contradicting linear
independence.

This finishes the proof of Theorem 5, and thus also the proof of Theorem 1 is
complete.

5 Indegree Constraints only (Proof of Theorem 2)

Here we prove Theorem 2. Consider the following polytope P in
f (I, F,B):

x(δinI (S)) ≥ f(S)− |δinF (S)| for all ∅
= S ⊂ V
∑

e∈ (v)

x(e)w(e) ≤ b(v)− w(δinF (v)) for all v ∈ B

0 ≤ x(e) ≤ 1 for all e ∈ I

Theorem 6. P in
f (I, F,B) is (1, 3)-sparse for intersecting supermodular f . For

unit weights and integral indegree bounds, any basic solution of P in
f (I, F,B) al-

ways has an edge e with x(e) = 1.

In Lemma 1, we have a set T in of nodes corresponding to tight in-degree con-
straints. We prove that if x ∈ P in

f (I, F,B) is a basic solution so that x(e) > 0
for all e ∈ I, then there exists e ∈ I with x(e) = 1 or there exists v ∈ T in with
|δinI (v)| ≤ 3. Otherwise, we must have:

The Negation Assumption:
- |δinI (S)| ≥ 2 for all S ∈ L;
- |δinI (v)| ≥ 4 for all v ∈ T in.

Assuming Theorem 5 is not true, we show that given S ∈ L, we can assign
the S-tokens so that (here token is an S-token if it is not a tail-token of an edge
leaving S):

The (2, 2)-Scheme:
S and every proper descendant of S in L+ T gets 2 S-tokens.

The contradiction |I| > |L| + |T in| is obtained by observing that if S is an
inclusion maximal set in L, then there are at least 2 edges entering S, and their
tail-tokens are not assigned, since they are not S′-tokens for any S′ ∈ L.

δin
I

230 Z. Nutov

Initial assignment:
For every v ∈ T , we assign the 4 tail-tokens of some edges in δinI (v).

The rest of the proof is by induction on the number of descendants of S, as
before. If S has no children/descendants, it contains at least |δinI (S)| ≥ 2 head-
tokens, as claimed. If S has in L+ T in at least one child v ∈ T in, then S gets 2
tokens from this child.

Thus we may assume that S has at least 1 child in L and no children in T in.
Let J be as in Lemma 3, so |J | ≥ 2. One can easily verify that S can collect 1
S-token from an endnode of every edge in J . Thus the (2, 2)-Scheme is feasible.

For the case of unit weights (and integral degree bounds), we can prove that
any basic solution to P in

f (I, F,B) has an edge e with x(e) = 1. This follows
by the same proof as above, after observing that if v ∈ T in is a child of S ∈
L, then δinI (v)
= δinI (S), as otherwise we obtain a contradiction to the linear
independence in Lemma 1. Thus assuming that there are at least 2 edges in I
entering any member of L + T in, we obtain a contradiction in the same way
as before, by showing that the (2, 2)-Scheme is feasible. Initially, every minimal
member of L+T in gets 2 tail-tokens of some edges entering it. In the induction
step, any S ∈ L can collect at least 2 S-tokens that are not tokens of its children,
by Lemma 3.
Remark: Note that we also showed the well known fact (c.f., [16]), that if there
are no degree constraints at all, then there is an edge e ∈ I with x(e) = 1.

6 The Case of Both Indegree and Outdegree Constraints

Here we describe the slight modifications required to handle the case when there
are both indegree and outdegree constraints. In this case, in Lemma 1, we have
sets T and T in of nodes corresponding to tight out-degree and in-degree con-
straints, respectively. Let S ∈ L and suppose that S has in L+T +T in a unique
child v ∈ T in (possibly S = {v}).

Arbitrary weights: For arbitrary weights, we can show that an appropriate poly-
tope has sparseness (α,Δ,Δin) = (2, 5, 4), in the same way as in Section 4.1.
The Negation Assumption for v ∈ T in is |δinI | ≥ 5, and we do not put any to-
kens on the edges leaving v (unless their tail is in T). Even if δinI (S) = δinI (v)
(note that in the case of arbitrary weights this may not contradict linear in-
dependence), the head-tokens of at least 5 edges entering v suffice to assign 2
tokens for v and 3 tokens to S. Hence in this case the approximation ratio is
(α, α+Δ,α+Δin) = (2, 7, 6). In a similar way we can also show the sparseness
(α,Δ,Δin) = (3, 3, 4), and in this case the ratio is (3, 6, 7).

Unit weights: In the case of unit weights, we must have δinI (S)
= δinI (v), as
otherwise the equations of S and v are linearly dependent. Hence in this case,
it is sufficient to require |δinI | ≥ 4, and the sparseness is (α,Δ,Δin) = (2, 5, 3).
Consequently, the approximation is (α · opt, αb(v) +Δ− 1, αbin(v) +Δin − 1) =
(2 · opt, 2b(v) + 4, 2bin(v) + 2).

Approximating Directed Weighted-Degree Constrained Networks 231

0, 1-valued f : In the case of 0, 1-valued f , we can show that the corresponding
polytope has sparseness (α,Δ,Δin) = (2, 3, 4), in the same way as in Section 4.2.
The negation assumption for a node v ∈ T in is |δinI | ≥ 5; a member in L
containing a node from T in only is not black, unless it also contains a node from
T . Hence in this case the approximation ratio is (α, α +Δ,α+Δin) = (2, 5, 6).
If we have also unit weights, then δinI (S)
= δinI (v), as otherwise we obtain a
contradiction to the linear independence; hence for unit weights we can obtain
sparseness (α,Δ,Δin) = (2, 3, 3), and the ratio (α · opt, αb(v) +Δ− 1, αbin(v) +
Δin − 1) = (2 · opt, 2b(v) + 2, 2bin(v) + 2).

Summarizing, we obtain the following result:

Theorem 7. DWDCN with intersecting supermodular f admits a polynomial
time algorithm that computes an f -connected graph H of cost ≤ 2 · opt so that
the weighted (degree,indegree) of every v ∈ V is at most (7b(v), 6bin(v)) for
arbitrary f , and (5b(v), 6bin(v)) for 0, 1-valued f . Furthermore, for unit weights,
the (degree,indegree) of every v ∈ V is at most (2b(v)+4, 2bin(v)+2) for arbitrary
f , and (2b(v) + 2, 2bin(v) + 2) for a 0, 1-valued f .

References

1. Bang-Jensen, J., Thomassé, S., Yeo, A.: Small degree out-branchings. J. of Graph
Theory 42(4), 287–307 (2003)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive gurantees for degree bounded
directed network design. In: STOC 2008, pp. 769–778 (2008)

3. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel algorithm for
approximating degree bounded MSTs. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 191–201. Springer, Heidelberg
(2006)

4. Frank, A.: Connectivity and network flows. In: Graham, R.L., Grötschel, M.,
Lovász, L. (eds.) Handbook of Combinatorics, ch. 2, pp. 111–177. Elsevier, Ams-
terdam (1995)

5. Fukunaga, T., Nagamochi, H.: Network design with weighted degree constraints.
TR 2008-005, Kyoto University (manuscript, 2008)

6. Furer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to
within one of optimal. Journal of Algorithms 17(3), 409–423 (1994)

7. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS, pp. 273–282
(2006)

8. Goemans, M.X., Williamson, D.P.: The primal-dual method in approximation al-
gorithms and its applications to network design problems. In: Hochbaum, D.S.
(ed.) Approximation Algorithms For NP-hard Problems, ch. 4. PWS (1997)

9. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39–60 (2001)

10. Khuller, S.: Approximation algorithm for finding highly connected subgraphs. In:
Hochbaum, D.S. (ed.) Approximation Algorithms For NP-hard Problems, ch. 6.
PWS (1997)

11. Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms
for degree bounded minimum spanning trees. SIAM Journal on Computing 31(3),
1783–1793 (2002)

232 Z. Nutov

12. Kortsarz, G., Nutov, Z.: Approximating minimum-cost connectivity problems. In:
Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics, ch. 58. Chap-
man & Hall/CRC, Boca Raton (2007)

13. Lau, L.C., Naor, J., Salavatipour, M.R., Singh, M.: Survivable network design with
degree or order constraints. In: STOC, pp. 651–660 (2007)

14. Melkonian, V., Tardos, E.: Algorithms for a network design problem with crossing
supermodular demands. Networks 43(4), 256–265 (2004)

15. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Many birds
with one stone: Multi objective approximation algorithms. In: STOC, pp. 438–447
(1993)

16. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Hei-
delberg (2004)

17. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC, pp. 661–670 (2007)

A Constant Factor Approximation for Minimum
λ-Edge-Connected k-Subgraph with Metric Costs

MohammadAli Safari� and Mohammad R. Salavatipour��

Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2E8, Canada
{msafarig,mreza}@cs.ualberta.ca

Abstract. In the (k, λ)-subgraph problem, we are given an undirected graph G =
(V, E)with edge costs and two parametersk andλ and the goal is to find a minimum
cost λ-edge-connected subgraph of G with at least k nodes. This generalizes sev-
eral classical problems, such as the minimum cost k-Spanning Tree problem or k-
MST (which is a (k, 1)-subgraph), and minimum cost λ-edge-connected spanning
subgraph (which is a (|V (G)|, λ)-subgraph). The only previously known results
on this problem [12,5] show that the (k, 2)-subgraph problem has an O(log2 n)-
approximation (even for 2-node-connectivity) and that the (k, λ)-subgraph prob-
lem in general is almost as hard as the densest k-subgraph problem [12]. In this
paper we show that if the edge costs are metric (i.e. satisfy triangle inequality),
like in the k-MST problem, then there is an O(1)-approximation algorithm for
(k, λ)-subgraph problem. This essentially generalizes the k-MST constant factor
approximability to higher connectivity.

1 Introduction

Network design is a central topic in combinatorial optimization, approximation algo-
rithms, and operations research. A fundamental problem in network design is to find a
minimum cost subgraph satisfying some given connectivity requirements between ver-
tices. Here by a network we mean an undirected graph together with non-negative costs
on the edges. For example, with a connectivity requirement λ = 1 between all the ver-
tices, we have the classical minimum spanning tree problem. For larger values of λ,
i.e. finding minimum cost λ-edge-connected spanning subgraphs, the problem is APX-
hard. These are special cases of the more general problem of survivable network design
problem (SNDP), in which we have a connectivity requirement of ruv between every
pair u, v of vertices. Even for this general setting there is a 2-approximation algorithm
by Jain [11].

A major line of research in this area has focused on problems with connectivity
requirements where one has another parameter k, and the goal is to find a subgraph
satisfying the connectivity requirements with a lower bound k on the total number of
vertices. The most well-studied problem in this class is the minimum k-spanning tree

� Supported by Alberta Ingenuity.
�� Supported by NSERC and an Alberta Ingenuity New Faculty award.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 233–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 M. Safari and M.R. Salavatipour

problem, a.k.a. k-MST. In this problem, we have to find a minimum cost connected
subgraph spanning at least k-vertices. The approximation factor for this problem was
improved from

√
k and O(log2 k) in [14,1] down to O(log n) in [13] and to a constant

in [3,9] and recently to 2 [10]. The algorithm of [10] can be used to obtain a constant
approximation for the slightly more general setting in which we have a set of nodes T ,
called terminals, and the goal is to find a minimum cost connected subgraph containing
at least k terminals. This is known as the k-Steiner tree problem. The problem of k-
TSP, in which one has to find a minimum cost TSP tour containing at least k nodes, can
be approximated using very similar technique. We note that in all these problems, the
input graph is assumed to be complete and the edge cost function is metric, i.e. satisfies
triangle inequality. Most of these problems are motivated from their applications in
vehicle routing or profit maximization with respect to a given fixed budget. For example,
suppose that we have a battery operated robot and the goal is to find the minimum
battery charge required to travel a sequence of at least k nodes in a given graph such
that the total length of the tour can be travelled in a single battery charge. See [2,6] for
similar problems.

Recently, Lau et al. [12] considered a very natural common generalization of both
the k-MST problem and minimum cost λ-edge-connected spanning subgraph prob-
lem, which they called the (k, λ)-subgraph problem. In this problem, we are given
a graph G = (V,E) with a (not necessarily metric) cost function c : E → R+

on the edges, a positive integers k, and a connectivity requirement λ ≥ 1; the goal
is to find a minimum cost λ-edge-connected subgraph of G with at least k vertices.
We should point out that we are not allowed to take more copies of an edge than are
present in the graph. Otherwise, a 4-approximate solution can be computed by taking
a 2-approximate k-MST solution T , and then taking λ copies of T . It is easy to ob-
serve that the (k, λ)-subgraph problem contains, as special cases, the minimum cost
λ-edge-connected spanning subgraph problem (it becomes the (|V (G)|, λ)-subgraph
problem), and the k-MST problem (which becomes the (k, 1)-subgraph problem). Lau
et al. [12] present an O(log2 n)-approximation for (k, 2)-subgraph and show that for
arbitrary values of λ, (k, λ)-subgraph is almost as hard as the k-densest subgraph prob-
lem1. In the k-densest subgraph problem, one has to find a subgraph with k nodes in
a given graph G that has the largest number of edges. Despite considerable attempts,
the best known approximation algorithm for this problem has ratio O(n

1
3−ε) for some

fixed ε > 0 [8]. Chekuri and Korula [5] have recently (and independently of [12])
shown that an algorithm similar to the one in [12] yields an O(log2 n)-approximation
for the (k, 2)-subgraph problem even if we want a 2-node-connectivity requirement in
the solution.

In light of the result of [12] on the hardness of (k, λ)-subgraph for arbitrary values of
λ and general cost functions, it is natural to try to obtain good approximation algorithms
for the class of graphs where the edge cost function is metric, i.e. satisfies triangle
inequality. Remember that the constant factor approximation algorithms for k-MST
and k-TSP are on graphs with metric cost function. Our main result of this paper is the
following theorem:

1 The extended abstract version claimed an O(log3 n)-approximation but the proof was inaccu-
rate. The full version has the improved result with a complete proof.

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 235

Theorem 1. Given a (complete) graph G with metric costs on the edges and two pa-
rameters k, λ, there is an O(1)-approximation algorithm for finding a (k, λ)-subgraph
in G.

Our algorithm is combinatorial and uses ideas from [4] for metric-cost subset node-
connectivity problem as well as the algorithm for k-Steiner tree [7,10,14]. The constant
factor we obtain is relatively large (between 400 and 500), however, most of our efforts
have been to show that the problem has a constant factor approximation rather than
trying to obtain the best possible ratio.

The organization of the paper is as follows. We start by some definitions and prelim-
inary bounds used throughout paper in the next section. For the ease of exposition, we
first present an algorithm that finds a λ-edge-connected subgraph with at least k − λ/7
nodes whose cost is at most O(OPT). In Section 3 we show how to extend this solution
to a feasible solution to the (k, λ)-subgraph problem while keeping the total cost still
bounded by O(OPT). We finish the paper with some concluding remarks.

2 Preliminaries

As mentioned earlier, we assume we are given a (complete) graph G = (V,E), with
a cost function c : E → R+ on the edges that satisfies triangle inequality, and two
positive integers k and λ ≥ 1. For every subgraph F ⊆ G, we use c(F) to denote the
total cost of the edges in F . Throughout, G∗ ⊆ G denotes the optimum solution and
OPT = c(G∗) denotes the cost of the optimum solution. We will use two lower bounds
on OPT in the analysis of our algorithm. These lower bounds were used earlier in [4] for
the problem of minimum cost subset k-node-connectivity. The first lower bound comes
from the cost of a minimum spanning tree of the G∗, which we call it T ∗. Considering
the cut-constraint IP formulation of MST, it is easy to see that λ

2

∑
e∈T ∗ ce ≤ OPT. The

second lower bound comes from the minimum cost subgraph that has minimum degree
at least λ. Note that in a λ-edge-connected subgraph, every vertex has degree at least λ.
For any λ-edge-connected subgraph F ⊆ G and any vertex u ∈ F we let Su(F) to be
the set of λ nearest neighbors of u in F and su(F) be

∑
v∈S (F) cuv . Clearly, for any

λ-edge-connected subgraph F ⊆ G and any vertex u ∈ F : su(G) ≤ su(F). We often
use Su and su instead of Su(G) and su(G), respectively, unless the graph is different
fromG. It is easy to see that 1

2

∑
u∈G∗ su ≤ 1

2

∑
u∈G∗ su(G∗) ≤ OPT. Thus, if T ∗ is a

minimum spanning tree ofG∗, then we obtain the following two lower bounds for OPT:
(i) 1

2

∑
u∈T ∗ su ≤ OPT, and (ii) λ

2

∑
e∈T ∗ ce ≤ OPT, and in particular:

1
2

∑

u∈T ∗

su +
λ

2

∑

e∈T ∗

ce ≤ 2OPT. (1)

In our algorithm we will use these two lower bounds frequently, often without referring
to them.

We present an algorithm for a modified version of the problem in which along with
G, k, and λ, we are also given a vertex r ∈ G as the root which we are told belongs to
the optimum solution G∗ and among all the vertices in G∗ it has the smallest value su.
Clearly if we can solve this rooted version, then we can try every vertex as the root and
return the minimum solution among all as the final answer.

u

236 M. Safari and M.R. Salavatipour

Ravi et al [14] showed that any α-approximation for k-MST implies a 2α-
approximation for k-Steiner tree. Therefore, together with Garg’s algorithm [10], we
have a 4-approximation for k-Steiner tree. In fact, we can have a 4-approximation al-
gorithm for the rooted version of the problem, in which a specific vertex r is given as
the root and the goal is to find a minimum cost rooted at r Steiner tree containing at
least k terminals. Our algorithm will use the best known approximation algorithm for
finding a minimum cost rooted k-Steiner tree problem; let us denote the approximation
ratio of this algorithm by ρ (by the argument above, we know that ρ ≤ 4). We denote
this approximation algorithm by ST-Alg.

3 Obtaining a Low Cost (k − O(λ), λ)-Subgraph

Observe that to have λ-edge-connectivity, we must have k ≥ λ + 1. We start by pre-
senting an algorithm that returns a λ-edge-connected subgraph (containing root r) that
has at least k − λ/7 nodes and whose cost is within constant factor of OPT. Our al-
gorithm is influenced by the work of Cheriyan and Vetta [4] for minimum cost subset
k-node-connectivity.

3.1 Overview of the Algorithm

The main idea of the algorithm is as follows. We create a new graph G′(V ∪ V ′, E′)
from G by creating a new (dummy) vertex u′ (in V ′) for each vertex u ∈ G and E′ =
E ∪ {uu′|u ∈ V }. Each edge uu′ ∈ E′ has weight su. For every other edge in G′

(that also exists in G) we multiply its weight by λ. Suppose that T ∗ is an optimum
(rooted at r) k-Steiner tree of G′ with terminal set V ′. We show that c(T ∗) ≤ 4OPT.
We can obtain an approximation of T ∗, call it T ′, by running the ST-Alg. Let us assume
that T̃ ⊂ G is the tree obtained from T ′ by deleting the dummy vertices and for ease of
exposition, suppose that T ∗ and T̃ are binary trees. For simplicity, suppose that all these
sets Su (for u ∈ T̃) are disjoint and let us assume that v1, . . . , vp (with p = k/(λ+ 1))
have the smallest su values among all the nodes in T̃ . Our next steps would be to obtain
a λ-edge-connected subgraph by selecting vi and Sv (for 1 ≤ i ≤ p) and forming a
(λ+ 1)-clique on each to get λ-edge connectivity among themselves. The cost of each
of these cliques will be at most λsv , for 1 ≤ i ≤ p, and since p ≈ k/λ the total
cost of all the cliques is at most X =

∑
u∈T̃ su. Considering each of these cliques

as a big “blub”, we need to establish λ-edge connectivity among these blubs. For that
we need to find a tree with the blubs being the nodes and for each edge in the tree
between two blubs we add about λ edges between the cliques corresponding to the
blubs to maintain λ-edge-connectivity. We can use the structure of T̃ itself to establish
a tree over these blubs. Roughly speaking, the total cost of all the λ edges between
the blubs will be at most O(λ) times the edges in T̃ (using triangle inequality) which
is Y = O(λ

∑
e∈T̃ ce). Noting that X + Y ≤ O(c(T ′)) implies that we will have

a solution within constant factor of the optimum. The main difficulty here will be the
possible (or lack of) intersections between Su and Sv for two vertices u, v ∈ T . A lot of
details have been skipped over in this overview and are explained in the next subsection.

i

i

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 237

3.2 Details of the Algorithm

We build the graphG′ fromG as described above and compute an approximate (rooted)
k-Steiner tree with terminal set V ′ = {v′|v ∈ V (G)} and root r′ (copy of r) using the
ST-Alg. Let’s call this tree T ′.

Lemma 1. c(T ′) ≤ 4ρOPT.

Proof. Consider the optimal solution G∗ to the (k, λ)-subgraph problem on G and let
T ∗ be a MST of G∗ (we assume that r ∈ T ∗). Then T̃ = T ∗ ∪ {uu′ ∈ G′|u ∈ T ∗} is
clearly a Steiner tree in G′ containing at least k terminals with total cost at most 4OPT

(using the bound in (1) for T ∗). The lemma follows by observing that the ST-Alg (for
k-Steiner tree) has approximation ratio ρ.

Without loss of generality, we can assume that T ′ has exactly k terminals, as if it has
more we can safely delete them. Let T0 ⊂ G be the tree obtained from T ′ ⊂ G′ by
deleting the dummy nodes (i.e. the nodes in V ′) and V0 be the vertex set of T0. Note
that by Lemma 1:

λ
∑

e∈T0

ce +
∑

u:u′∈T ′

su ≤ 4ρOPT. (2)

We should also point out that V0 might have some vertices v ∈ V (and therefore v ∈ T ′)
but v′
∈ T ′. We obtain another tree T1 = (V1, E1) ⊂ G from T0 with the following
properties: (i) V1 ⊆ V0, (ii) c(T1) ≤ 2c(T0), and (iii) for every vertex v ∈ V1, the
corresponding vertex v′ ∈ G′ belongs to T ′. To do this, we duplicate every edge of T0

and do an Eulerian walk of T0; now shortcut over every vertex v ∈ T0 with v′
∈ T ′.
It is easy to see that we are left with a tree T1 whose cost is at most 2c(T0) and every
vertex v ∈ T1 has its copy v′ in T ′. Also, property (iii) implies that T1 has exactly k
vertices. Thus:

Lemma 2. V1 ⊆ V0, with |V1| = k and c(T1) ≤ 2c(T0).

Suppose that we have an ordering of the vertices of T1, say v1 = r, v2, . . . , vk, such
that sv2 ≤ sv3 ≤ · · · ≤ svk

. Note that although r has the smallest su value among all
vertices u ∈ G∗, it is not necessarily the case in T1. For each 1 ≤ i ≤ k, let μi = svi

λ .
We call Svi the ball of vi and the core of Svi , denote by Bvi , is the set of nodes in Svi

with distance at most 2μi to vi. By a simple averaging argument, one can easily show
that |Bvi | ≥ λ/2. We partition the nodes of T1 into two sets of active and inactive nodes
using the following procedure to cluster the balls. Initially, all the nodes of T1 are active
and we have S = ∅ (S will contain the centers of active balls). For each 1 ≤ i ≤ k,
if vi is active and there is no vj ∈ S (with j < i) such that cij ≤ 4μi + 2μj then add
vi to S and make all the nodes in Svi inactive (except vi itself). Note that Svi might
include some vertices not in T1. So at the end, for every two active nodes vi, vj ∈ S
(with j < i) we have cij > 4μi + 2μj and Bvi ∩ Bvj = ∅. Now for every value of
1 ≤ i ≤ k such that vi is active but vi �∈ S, there exists a j < i such that vj ∈ S and
cij ≤ 4μi + 2μj . Let j∗ be the smallest such index and define p(i) = j∗, meaning that
vi is assigned to ball Svj∗ . So each active node vi is either the center of an active ball
(and it belongs to S) or is assigned to a ball Sp(i) with p(i) ∈ S, and all the remaining
nodes (that are inside the balls with centers in S) are inactive. Thus:

238 M. Safari and M.R. Salavatipour

Lemma 3. Every core Bvi , for vi ∈ S, is disjoint from any other Bvj (with vj ∈ S,
j �= i) and |Bvi | > λ

2 .

For every value of i, consider the union of active nodes vj and their ball Svj (if vj ∈ S),
for all j ≤ i, and define this set of vertices Ui, i.e.

Ui = {active nodes vj with j ≤ i} ∪
⋃

active vj , j ≤ i,

vj ∈ S

Svj . (3)

Let i∗ ≤ k be the smallest index such that |Ui∗ | ≥ k − λ/7. It is easy to see that
from the definition of Ui and the choice of i∗:

Lemma 4. k − λ
7 ≤ |Ui∗ | ≤ k + 6λ

7 and if |Ui∗ | > k then vi∗ ∈ S and Svi∗ has at
least λ

7 + 2 vertices not in Ui∗−1.

The solution of our algorithm will be a graph on vertex set Ui∗ .
Let V2 be the set of active nodes in S with index at most i∗. We compute a tree

T2 = (V2, E2) starting from T0 as follows. Duplicate every edge in T0 and find an
Eulerian tour. Shortcut all the edges that go through vertices that were deleted while
computing T1 from T0 or those vertices of T1 that are not in V2. The cost of T2 is clearly
at most 2c(T0), using triangle inequality. Also, it only contains a subset of vertices of
T1, namely V2. Thus:

Lemma 5. V2 ⊆ V1 and c(T2) ≤ 2c(T0).

Note that T2 is in fact a path, so the maximum degree of every vertex in T2 is at most 2.
The next steps of the algorithm would be to make a (λ + 1)-clique over Svi ∪ {vi}, for
each vi ∈ T2 which are precisely those vi ∈ S with i ≤ i∗. For each active node vi �∈ S,
we connect vi to all the λ vertices in Sp(i). It is easy to observe that each ball Svi with
vi ∈ S together with all the active nodes assigned to it will form a λ-edge-connected
subgraph. The final step is to make good connectivity between these balls. For that, we
look at every edge vivj ∈ T2; note that both vi, vj ∈ S. Let a = |Svi ∩Svj |. We add an
arbitrary matching (of size λ−a) between the λ−a vertices in Svi −Svj and Svj −Svi .
The full description of the algorithm, is given in Figure 1, and Figure 2 illustrates the
approximate Steiner tree computed and the balls around the active nodes and some of
the edges added to make the graph λ-edge-connected.

3.3 Analysis of Algorithm

It is easy to see that H contains exactly those active nodes vi with i ≤ i∗ as well as all
the nodes in

⋃
vi≤i∗∈S Svi ; which is exactly set Ui∗ . Thus, by Lemma 4:

Lemma 6. k − λ
7 ≤ |H | ≤ k + 6λ

7 and if |H | > k then at the iteration in which vi∗ is
added to H , Svi∗ ∪ {vi∗} adds at least λ

7 + 2 new vertices to H .

In the remaining of this subsection we show that H has the required connectivity while
its cost is bounded by O(OPT).

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 239

Build graph G′ = (V ′ ∪ V, E′) by starting from G and creating a new vertex u′ for every1

u ∈ G and adding the edge uu′ to G′; define cu′u = su and the cost of every other edge
in G′ (that also belongs to G) is multiplied by λ.
Compute an approximate k-Steiner tree T ′ (using ST-Alg) with terminals V ′.2

Compute tree T1 = (V1, E1) from T ′ (as described) which only consist of vertices v s.t.3

v′ ∈ T ′.
Compute the clustering of active balls S ; let i∗ be the first index such that the union of4

active nodes vi (and their ball Svi if it belongs to S), for all i ≤ i∗, is at least k − λ/7,
and let V2 = {vi ∈ S|i ≤ i∗}.
Compute a tree T2 = (V2, E2) out of T0 s.t. c(T2) ≤ 2c(T0); we first duplicate edges in5

T0, find a Eulerian tour, and shortcut all the edges that go through vertices not in V2.
Let H be an empty graph on vertex set consisting of union of all active nodes vi with6

i ≤ i∗. and vi∈S Bvi .

foreach active node vi with i ≤ i∗ do7

if vi ∈ S then8

Add vi and every u ∈ Svi to H as well as every edge uv, with u, v ∈ Svi ∪ {vi}9

else10

Add vi to H and every edge uvi, with u ∈ Sp(i)11

end12

end13

foreach edge vivj ∈ T2 do14

Add an arbitrary matching of size λ − |Svi ∩ Svj | from Svi − Svj to Svj − Svi in H15

end16

return H17

Fig. 1. Algorithm 1, which is an approximation algorithm for low cost (k − λ/7, λ)-subgraph

Lemma 7. Solution H returned by the algorithm is λ-edge-connected.

Proof. For every v ∈ H , let us define the hub for v, denoted by h(v), to be (i) v itself
if v ∈ S, (ii) p(i) if v = vi is an active node but not in S, and (iii) v� ∈ S if v� is the
first vertex added to S with v ∈ Sv�

. Observe that the set of hub nodes are precisely
the nodes in S with index at most i∗, which is the same as the set of nodes of T2. First
it is easy to see that each v has λ-edge connectivity to its hub (for case (iii) we have
made a clique out of h(v) and all the vertices in its ball including v, and for case (ii)
v is adjacent to λ vertices in the clique made from the ball of h(v)). So it is enough to
show that we have λ-edge-connectivity between the hub vertices. For any two adjacent
vertices vi, vj ∈ T2, the matching edges added between the balls of vi and vj (together
with possible nodes in Svi ∩ Svj) establish λ-edge-connectivity between vi and vj . By
transitivity, we have λ-edge-connectivity between any pair of nodes vi, vj ∈ T2.

Lemma 8. The cost of edges of H added in line 15 is at most 8ρOPT.

Proof. Let vivj be an edge in T2, thus vi, vj ∈ S. For any edge xy with x ∈ Svi and
y ∈ Svj that we add in line 15: cxy ≤ cxvi + cvivj + cvjy . Since the matching added
between the balls of vi and vj has size at most λ, the cost of this matching is at most
λcvivj + svi + svj . Noting that the degree of each vertex vi ∈ T2 is at most 2, there

240 M. Safari and M.R. Salavatipour

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
��� �

�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

active nodes with balls

active nodes without balls matching edges

ball edges

steiner tree edges

Other vertices

Added in Line 11

Added in Line 15

Fig. 2. A sample showing how the edges between the balls of active nodes are added and how
the active nodes without a ball are connected to the balls of other active nodes

are at most two vertices like vj with vivj ∈ T2 for which we have to add a matching
between the balls of Svi and Svj . So the total cost of all the edges added in line 15 is
at most: λ

∑
e∈T2

ce + 2
∑

vi∈T2
svi . Using Equation (2) and noting that V2 ⊆ V0 and

c(T2) ≤ 2c(T0) (by Lemma 5), the total cost of the edges added in line 15 is at most
2λ

∑
e∈T0

ce + 2
∑

vi∈T0
svi ≤ 8ρOPT.

In order to bound the cost of the edges added in lines 9 and 11 we need the following
lemma.

Lemma 9. For every vi ∈ S, with i ≥ 2, (that is every node in S except the root
r = v1) and every node vj ∈ T1 with cvivj ≤ 2μi such that vj became inactive once
we added vi to S: μi ≤ 2μj .

Proof. If i < j (i.e. vi was considered before vj) then clearly svi ≤ svj and therefore
μi ≤ μj . Now suppose that i > j. It means that vj was an active node but not in S at
the time vi was examined. This can happen only if there is � < j with v� ∈ S and

cvjv�
≤ 4μj + 2μ�. (4)

On the other hand, since vi was not inactivated by v�:

cviv�
> 4μi + 2μ� (5)

Using triangle inequality:

cviv�
≤ cvivj + cvjv�

. (6)

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 241

Combining (4), (5), and (6), together with the assumption that cvivj ≤ 2μi implies
that: 4μi + 2μ� < cviv�

≤ cvivj + cvjv�
≤ 2μi + 4μj + 2μ�; therefore μi ≤ 2μj as

wanted.

Lemma 10. The cost of edges of H added in lines 9 and 11 is at most (2 + 28ρ)OPT.

Proof. We will charge the cost of the edges added to H to the vertices incident to
them (at the time those edges and vertices are added) and show that the total charge
is bounded by O(OPT). To achieve this goal, we make sure that for every vertex vi ∈
H ∩T1, the charge assigned to vi is no more than 7svi and for every vertex u ∈ H −T1

(which implies it is added by adding Svi for some vi≤i∗ ∈ S), the charge assigned to u
is no more than 2svi . We consider the following cases.

Case 1: First consider an active node vi≤i∗ �∈ S; so i ≥ 2 and we have added vertex
vi to H plus every edge uvi with u ∈ Sp(i) in line 11. Let us assume p(i) = j∗. Note
that cuvi ≤ cuvj∗ + cvivj∗ . So the total cost of edges added at line 11 (for adding vertex
vi to H) is at most λcvivj∗ + svj∗ . By definition of j∗: cvivj∗ ≤ 4μi + 2μj∗ . Noting
that svj∗ ≤ svi (and therefore μj∗ ≤ μi), the total cost of edges added for vi is at most
6λμi + svi ≤ 7svi . We charge this cost to vi.

Case 2: Now consider an active node vi ∈ S for which we add all the vertices in
Svi∪{vi} to H and make a (λ+1)-clique on these vertices in line 9. For any two vertices
x, y ∈ Svi ∪ {vi}: cxy ≤ cvix + cviy . Since each vertex x is incident with λ edges in
this clique, the total cost of the edges of the clique is at most λ

∑
y∈Svi

cviy = λsvi .

Now we show how to pay for this cost by charging the vertices in Svi ∪ {vi}.

Sub-case 2a: In this sub-case we assume i = 1, i.e. the case of v1 = r. In this case,
we are adding λ new vertices in Sv1 in line 9 at a cost of at most λsv1 . Assume that
v′1, v

′
2, v

′
3, . . . , v

′
k are the vertices of the optimum solution where v′1 = v1 = r. Without

loss of generality, and using the assumption that v′1 = r has the smallest sv′
i

value
among all the nodes in the optimum solution we assume that sr ≤ sv′

2
≤ . . . ≤ sv′

k
.

Using the first lower bound given for OPT in the previous section:
∑

1≤i≤k sv′
i
≤ 2OPT.

Thus, using the fact that k ≥ λ + 1: λsr <
∑

1≤i≤k sv′
i

≤ 2OPT. So if we charge the
root by 2OPT, we can pay for the cost of edges added for the ball of the root in line 9.

Sub-case 2b: In this sub-case we consider other active nodes vi ∈ S with i ≥ 2 that are
added (in line 9). As mentioned earlier, the total cost of the edges of the clique added in
line 9 is at most λsvi . We will charge this cost to the vertices in Bvi . Using Lemma 3,
there are at least λ/2 nodes in Bvi (the core of Svi) that do not belong to any Bvj for
vj ∈ S with j �= i. So the vertices in Bvi that we charge the total cost of λsvi to, are
not charged any cost in a different core. We can pay for this (at most) λsvi cost if we
charge every node in Bvi by 2svi and that is what we do. Remember that we want to
ensure that for every vertex vj ∈ H ∩ T1, the total charge for it is no more than 7svj .
For every vertex vj ∈ Bvi ∩ T1 that we charge 2svi , if j ≥ i then clearly the charge
2svi assigned to vj is no more than 7svj . But if j < i, it means that vj was de-activated
when adding vi to S; in this case the charge of 2svi which is assigned to it is upper
bounded by 4svj for the following reason. Note that cvjvi ≤ 2μi (by definition of core
Bvi); so using Lemma 9: μi ≤ 2μj , which implies svi ≤ 2svj . Thus the total charge
assigned to vj is bounded by 2svi ≤ 4svj .

242 M. Safari and M.R. Salavatipour

Hence, the charge for every node vi ∈ H ∩T1 (i ≥ 2) analyzed in Cases (1) and (2b)
is at most 7svi and the charge of every node u ∈ H−T1, which means u ∈ Svi for some
active node vi≤i∗ ∈ S, is at most 2svi ; i.e. the property we required at the beginning of
the lemma holds. We show the total charge is at most O(OPT), which together with the
charge of root, which is 2OPT, is still O(OPT).

Let H̃ be H − (Sv1 ∪ {v1}) − (Svi∗ ∪ {vi∗}), and |H̃ | = �. By definition of i∗:
� < k − λ

7 − 1. We define a one-to-one function π from the vertices of H̃ to vertices
v2, . . . , v�+1 in T1 in the following way: every vertex vi ∈ H̃ ∩ T1 is mapped to itself
(therefore the charge assigned to vi is at most 7sπ(vi)). Every other vertex u ∈ H̃ − T1,
which is added in line 9 by adding Svi ∪ {vi} (for some vi≤i∗−1 ∈ S), is mapped to a
vertex vj≥i ∈ T1 to which no other vertex of H̃ is mapped to already (in this case the
charge assigned to u is at most 2svi , which is at most 2sπ(u)). Thus, the total charge
assigned to the vertices in H̃ is at most:

7
∑

2≤i≤�+1

svi ≤ 7
∑

2≤i<k−λ/7

svi (7)

where the inequality follows from the fact that � < k − λ
7 − 1. Noting that i∗ ≤ k − λ

7 ,
the total charge of the nodes in Svi∗ ∪ {vi∗} is at most

λsvi∗ ≤ λsvk−λ/7 ≤ 7
∑

k−λ/7≤i≤k

svi . (8)

Using Equations (7) and (8), together with the bound of 2OPT for the charge of v1 in
Sub-case 2b, the total charge of the nodes in H is at most

2OPT + 7
∑

2≤i<k−λ/7

svi + 7
∑

k−λ/7≤i≤k

svi ≤ 2OPT + 7
∑

1≤i≤k

svi .

Using Equation (2) and the fact V1 ⊆ V0: 7
∑

1≤i≤k svi ≤ 28ρOPT. Thus, the total
charge of the nodes in H is at most (2 + 28ρ)OPT.

Theorem 2. Algorithm 1 (in Figure 1) returns a graph of size at least k − λ
7 which is

λ-edge-connected and has cost at most (2 + 36ρ)OPT.

Proof. By Lemma 6 and Lemma 7, H is a λ-edge-connected graph with at least k − λ
7

nodes. Using Lemmas 8 and 10: c(H) ≤ 8ρOPT + (2 + 28ρ)OPT = (2 + 36ρ)OPT.

4 From Size k − O(λ) to Size k

As mentioned in the previous section, graph H computed by Algorithm 1 has at least
k − λ/7 vertices and has non-empty intersection with G∗ (at least root r belongs to
both). If |H | ≥ k then we are done. Otherwise, we in this section show how to augment
H to have at least k vertices without loosing its edge-connectivity. For every vertex
u ∈ G\H , let the distance of u to H , denoted by d(u, H), be the cost of the cheapest
edge from u to a vertex in H . We compute two different graphs H1 ⊇ H and H2 ⊇ H

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 243

If |H | < k then compute H1 and H2 as described below. If H1 = H then return H2.1

Otherwise, return the one with the smallest cost among H1 and H2.
H1:2

Start with H1 = H .3

If there is a vertex u ∈ G\H such that Su contains at least λ/7 vertices in G\H4

then:
Find such a vertex u ∈ G\H with the smallest su + d(u, H) value.5

If Su ∩ H = ∅ then find the cheapest edge from u to a vertex in H , say v. Add6

all the edges from u to the λ nearest neighbors of v in H1.
Add all the vertices in Su ∪ {u} to H1 (if they do not already belong to H1)7

and make Su ∪ {u} a clique by adding all the necessary edges to H1.
H2:8

Start with H2 = H .9

Find a minimum weight matching M of size k − |H | between G\H and H , let Y10

be the set of vertices in G\H that participate in this matching.
Add each y ∈ Y to H2 and all the edges between y to the λ closest neighbors of11

M(y) in H .

Fig. 3. Algorithm 2, which augments H (the result of Algorithm 1) to have at least k vertices

that are λ-edge-connected and return whichever has at least k nodes and the least cost.
The description of the algorithm is given in Figure 3.

Figure 4 shows how graphs H1 and H2 are built from expanding H . To perform
line 10 of the algorithm, we can use one of the known minimum weighted (bipartite)
matching algorithms or a minimum cost flow algorithms (see [15]). In what follows we
show that bothH1 andH2 are λ-edge-connected and at least one of them has at least k
vertices and cost at most O(OPT).

Lemma 11. If H1
= H then it is λ-edge connected and has at least k vertices. Also,
H2 is λ-edge-connected and has at least k vertices.

Proof. By the description of Algorithm 2 (in Figure 3), ifH1
= H then we have added
at least λ/7 new vertices (belonging to Su ∪ {u}) to H , so the size will be at least k
(given that |H | ≥ k − λ/7). For H2, we add the vertices of Y and |Y | = k − |H |,
so |H2| = k. For λ-edge-connectivity, note thatH was originally λ-edge-connected. If
H1
= H then we have added a vertex u together with Su. The vertices in Su∪{u} form
a clique, so are λ-edge-connected among themselves. Also, if Su ∩H = ∅, u is λ-edge
connected to some vertex v ∈ H by the λ edges added between u and the λ nearest
neighbors of v (in H). By transitivity, this implies the λ-edge connectivity of H1. For
the connectivity ofH2, every new vertex y ∈ Y is connected to at least λ vertices inH
which makes it λ-edge connected to all the vertices in H .

Lemma 12. If H is the solution of Algorithm 1, then the solution of Algorithm 2 has
cost at most max{12OPT + 3c(H), 13OPT + 2c(H)}.

Proof. We prove this by considering the following two cases.

244 M. Safari and M.R. Salavatipour

sv(H)

H
G\H

v

su

u u1

u2

u3

uk−|H|sM(u1)
(H)

H
G\H

M(u1)

Fig. 4. Constructing H1 (in the left picture) and H2 (in the right picture)

Case 1: |G∗\H | ≤ λ/3
In this case we show that cost of H2 is at most O(OPT). Every vertex u ∈ G∗\H
is connected, in G∗, to at least 2λ/3 vertices in G∗ ∩ H and (by a simple averaging
argument) the distance of u to at least λ/3 of them is at most 3su(G∗)/λ (recall that
su(G∗) is the sum of distances from u to its λ closest neighbors inG∗). Therefore there
is a matching M̃ between G∗\H and G∗ ∩H such that d(u, M̃(u)) ≤ 3su(G∗)/λ for
every u ∈ G∗\H , and |M̃ | = |G∗\H | ≥ k− |H | = |M |, whereM is the matching we
find in the algorithm. SinceM is a minimum weight matching:

c(M) ≤ c(M̃) ≤ 3
λ

∑

u∈G∗\H

su(G∗) ≤ 6OPT

λ
, (9)

where we use the lower bound of
∑

u∈G∗\H su(G∗) ≤
∑

u∈G∗ su(G∗) ≤ 2OPT. Con-
necting u to the λ nearest neighbors ofM(u) costs at most λ ·d(u,M(u))+sM(u)(H),
by triangle inequality. Thus, if c(M) and c(H) denote the cost of edges of matchingM
and graphH , respectively, the total cost of the edges added in line 11 is at most:

∑

u∈G∗\H

(λ · d(u,M(u)) + sM(u)(H)) ≤ λ · c(M) + 2c(H)

≤ 6OPT + 2c(H)

where the first inequality follows from the fact that ∪u∈G∗\HSM(u)(H) counts every
edge of H at most twice and, therefore, its cost is at most twice as much as the cost of
H . Thus, c(H2) ≤ 3c(H) + 6OPT.

Case 2: |G∗\H | > λ/3
In this case (again by an averaging argument) there is a set Y of λ/6 vertices in G∗\H
such that sy ≤ 12OPT/λ for each y ∈ Y (Otherwise, the remaining at least λ/6 vertices
would have total s value more than λ/6×12OPT/λ ≥ 2OPT which is a contradiction).
If every vertex in Y is connected, in G∗, to at least 2λ/6 vertices in G∗ ∩H then, with
an argument similar to the previous case, we can upper bound the cost of H2 by:

A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph 245

c(H2) ≤ c(H) + λ
∑

y∈Y

d(y,M(y)) + 2c(H)

≤ λ
∑

y∈Y

6sy
λ

+ 3c(H)

= 6
∑

y∈Y

sy + 3c(H)

≤ 6 · λ
6
· 12OPT

λ
+ 3c(H)

= 12OPT + 3c(H),

where the 2nd inequality follows from the fact that Y has λ/6 nodes and each y ∈ Y
has at least λ/3 neighbors in G∗ ∩H .

Otherwise, let y ∈ Y be a vertex such that Sy has more than 4λ/6 > λ/7 vertices
in G∗\H . In this case we show that H1
= H and c(H1) = O(OPT). First we claim
that the clique on vertices Sy ∪ {y} costs at most λ · sy ≤ 12OPT. The reason is, for
each pair u, v ∈ Sy: cuv ≤ cuy + cyv. Since edge uy participates in λ such inequalities,
we get that the total cost of the clique is at most λsy , and because each vertex y ∈ Y
has sy ≤ 12OPT/λ, we get the upper bound of 12OPT. Furthermore, since H ∩ G∗

is non-empty (at least r ∈ H), y must have distance at most OPT/λ to some vertex
v ∈ H (because there are at least λ edge disjoint paths between y and v and the cost
of each is at least cyv by the triangle inequality). Thus, with an argument similar to the
previous case, it costs at most λcyv +sv(H) ≤ OPT+c(H) to connect y to the λ nearest
neighbors of v inH . So the cost of building the clique on Sy ∪{y} and connecting y to
the λ nearest neighbors of v in H is at most 13OPT + c(H). This implies that H1 will
have at least k vertices and costs at most 13OPT + 2c(H)

Combining the two Algorithms 1 (in Figure 1) and 2 (in Figure 3), and using Lemmas 12
and 11, and Theorem 2 we have an algorithm that returns a λ-edge connected subgraph
on at least k vertices with cost at most max{12OPT + 3c(H), 13OPT + 2c(H)} ≤
3(2 + 36ρ)OPT + 12OPT = (18 + 108ρ)OPT. Thus, we have the following theorem
which is essentially Theorem 1:

Theorem 3. There is a polynomial time algorithm for the (k, λ)-subgraph problem on
graphs with metric edge costs which has approximation factor at most 18 + 108ρ, with
ρ ≤ 4 being the best approximation factor for the k-Steiner tree problem.

5 Concluding Remarks

In this paper, we proved that the (k, λ)-subgraph problem with metric costs has a poly-
nomial time O(1)-approximation algorithm. However, the approximation ratio of our
algorithm is relatively large (between 400 and 500). Although it is very likely that one
can achieve an approximation ratio close to 100 using the same algorithm by fine tun-
ing the parameters, getting a small constant factor approximation seems challenging,
for general values of λ.

246 M. Safari and M.R. Salavatipour

For general cost functions, the only known results on this problem (that we are aware
of) are the papers [12,5] which prove that the (k, 2)-subgraph problem (on general
graphs) has O(log2 n)-approximation, even if we require 2-node-connectivity in the
solution (instead of 2-edge-connectivity). Even for the special case of λ = 3, there is
no known non-trivial approximation algorithm or lower bound (hardness result).

Acknowledgments. The second author thanks Joseph Cheriyan for some initial dis-
cussions on the problem.

References

1. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen. SIAM J. Computing 28(1), 254–262
(1999)

2. Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M.: Approximation
Algorithms for Orienteering and Discounted-Reward TSP. SIAM J. on Computing 28(1),
254–262 (1999); Earlier version in Proc of STOC 1995

3. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k-MST
problem. J. Comput. Syst. Sci. 58(1), 101–108 (1999); Earlier in Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC 1996), pp. 442–448

4. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. In:
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (STOC),
pp. 167–175 (2005)

5. Chekuri, C., Korula, N.: Min-Cost 2-Connected Subgraphs with k Terminals (manuscript,
2008), http://arxiv.org/abs/0802.2528

6. Chekuri, C., Korula, N., Pál, M.: Improved Algorithms for Orienteering and Related Prob-
lems. In: Proc of ACM-SIAM SODA (2008)

7. Chudak, F., Roughgarden, T., Williamson, D.P.: Approximate MSTs and Steiner trees via the
primal-dual method and Lagrangean relaxation. Math. Program. 100(2), 411–421 (2004)

8. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–
421 (2001); Preliminary version in the Proc. 34-th IEEE Symp. on Foundations of Computer
Science (FOCS) pp. 692–701 (1993)

9. Garg, N.: A 3-Approximation for the minim tree spanning k vertices. In: Proceedings of the
37th Annual Symposium on Foundations of Computer Science (FOCS), pp. 302–309 (1996)

10. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory of computing (STOC),
pp. 396–402 (2005)

11. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica 21, 39–60 (2001)

12. Lau, L., Naor, S., Salavatipour, M., Singh, M.: Survivable Network Design with Degree or
Order Constraints. SIAM J. on Computing (submitted); Earlier version in Proceedings of the
thirty-nineth annual ACM symposium on Theory of computing (STOC) (2007)

13. Rajagopalan, S., Vazirani, V.: Logarithmic approximation of minimum weight k trees (un-
published manuscript) (1995)

14. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrants, D.J., Ravi, S.S.: Spanning trees short
or small. SIAM Journal on Discrete Mathematics 9(2), 178–200 (1996)

15. Schrijver, A.: Combinatorial Optimization. Springer, Heidelberg (2003)

Budgeted Allocations in the Full-Information

Setting�

Aravind Srinivasan

Dept. of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742

Abstract. We build on the work ofAndelman &Mansour andAzar, Birn-
baum, Karlin, Mathieu & Thach Nguyen to show that the full-information
(i.e., offline) budgeted-allocation problem can be approximated to within
4/3: we conduct a rounding of the natural LP relaxation, for which our al-
gorithm matches the known lower-bound on the integrality gap.

1 Introduction

Sponsored-search auctions are a key driver of advertising, and are a topic of
much current research (Lahaie, Pennock, Saberi & Vohra [10]). A fundamen-
tal problem here is online budgeted allocation, formulated and investigated by
Mehta, Saberi, Vazirani & Vazirani [12]. Recent work has also focused on the
offline version of this basic allocation problem; we improve on the known results,
demonstrating a rounding approach for a natural LP relaxation that yields a
4/3-approximation, matching the known integrality gap. We also show that in
the natural scenario where bidders’ individual bids are much smaller than their
budgets, our algorithm solves the problem almost to optimality.

Our problem is as follows. We are given a set U of bidders and a set V
of keywords. Each bidder i is willing to pay an amount bi,j for keyword j to be
allocated to them; each bidder i also has a budgetBi at which their total payment
is capped. Our goal is to assign each keyword to at most one bidder, in order
to maximize the total payment obtained. This models the problem of deciding
which bidder (if any) gets to be listed for each keyword, in order to maximize
the total revenue obtained by, say, a search engine. That is, we want to solve the
following integer linear program (ILP), where xi,j is the indicator variable for
keyword j getting assigned to bidder i: maximize

∑
i∈U min{Bi,

∑
j∈V bi,jxi,j},

subject to
∑

i xi,j ≤ 1 for each j, and xi,j ∈ {0, 1} for all (i, j). (It is easy to see
that the “min” term can be appropriately rewritten in order to express this as
a standard ILP.)
Known results. This NP -hard problem has been studied by Garg, Kumar
& Pandit, who presented an (1 +

√
5)/2 ∼ 1.618-approximation algorithm for

� Research supported in part by NSF ITR Award CNS-0426683 and NSF Award
CNS-0626636. Part of this work was done while the author was on sabbatical at the
Network Dynamics and Simulation Science Laboratory of the Virginia Bioinformatics
Institute, Virginia Tech.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 247–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

248 A. Srinivasan

the problem [8]. (As usual, for our maximization problem, a ρ-approximation
algorithm, for ρ ≥ 1, is a polynomial-time algorithm that always presents a so-
lution of value at least 1/ρ times optimal; in the case of randomized algorithms,
the expected solution-value should be at least 1/ρ times optimal.) In addition
to other results, Lehmann, Lehmann & Nisan [11] have developed a greedy 2-
approximation algorithm for this problem. Now, the natural LP relaxation for
the problem is obtained by relaxing each xi,j to lie in [0, 1], in the above ILP. An-
delman & Mansour [2] presented a rounding algorithm for this LP that achieves
an approximation of e/(e− 1) ∼ 1.582; this was improved – for a more general
problem – by Feige & Vondrak to e/(e − 1) − ε, for an ε that is about 10−4

[6]. More recently, Azar, Birnbaum, Karlin, Mathieu & Thach Nguyen [3] have
improved the approximation ratio to 3/2. There are also two interesting special
cases of the problem: the uniform case, where each j has a price pj such that
bi,j ∈ {0, pj} for all i, and the case where all the budgets Bi are the same. Two
additional results are obtained in [2]: that the integrality gap of the above LP-
relaxation is at least 4/3 even for the first (i.e., uniform) special case, and that
the second special case can be approximated to within 1.39. See, e.g., [12, 4, 9]
for online versions of the problem.
Our results. We build on the work of [2, 3] and show how to round the LP
to obtain an approximation of 4/3: note from the previous paragraph that this
meets the integrality gap. Anna Karlin (personal communication, March 2008)
has informed us that Chakrabarty & Goel have independently obtained this
approximation ratio, as well as improved hardness-of-approximation results – a
preprint of this work is available [5]. We also present two extensions in Section 3:
(a) the important special case where each bidder’s bids are much smaller than
their budget [12, 4] can be solved near-optimally: if, for some ε ∈ [0, 1], bi,j ≤ ε·Bi

for all (i, j), our algorithm’s approximation ratio is 4/(4 − ε); and (b) suppose
that for some λ ≥ 1, we have for all (i, j, j′) that if bi,j and bi,j′ are nonzero, then
bi,j ≤ λ·bi,j′ . For this case, our algorithm yields a better-than-4/3 approximation
if λ < 2. In particular, if λ = 1, our algorithm has an approximation ratio of
(
√

2 + 1)/2 ∼ 1.207.

2 The Algorithm and Analysis

We will round the natural LP-relaxation mentioned in Section 1. Our algo-
rithm is randomized, and can be derandomized using the method of conditional
probabilities.

Observe that for the original (integral) problem, setting

bi,j := min{bi,j, Bi} (1)

keeps the problem unchanged. Thus, we will assume

∀(i, j), bi,j ≤ Bi. (2)

Budgeted Allocations in the Full-Information Setting 249

Notation. When we refer to the load on a bidder i w.r.t. some (fractional)
allocation x, we mean the sum

∑
j bi,jxi,j ; note that we do not truncate at Bi

in this definition.
Suppose we are given some feasible fractional allocation x; of course, the case

of interest is where this is an optimal solution to the LP, but we do not require it.
It is also immediate that the following assumption is without loss of generality:

if bi,j = 0, then xi,j = 0. (3)

As in [3], we may assume that the bipartite graph (with (U, V) as the partition)
induced by those xi,j that lie in (0, 1), is a forest F . This can be effected by
an efficient algorithm, such that the resulting fractional objective-function value
equals that of the original value that we started with [3]. This forest F is the
structure that we start with; we show how to round those xi,j in F . We are
motivated by the approaches of [1, 13, 7]; however, our method is different,
especially in step (P2) below. Each iteration is described next.

2.1 Iteration s, s ≥ 1

Remove all (i, j) that have already been rounded to 0 or 1; let F be the current
forest consisting of those xi,j that lie in (0, 1). Choose any maximal path P =
(w0, w1, . . . , wk) in F ; we will now probabilistically round at least one of the
edges in P to 0 or 1. For notational simplicity, let the current x value of edge
et = (wt−1, wt) in P be denoted yt; note that all the yt lie in (0, 1). We will next
choose values z1, z2, . . . , zk probabilistically, and update the x value of each edge
et = (wt−1, wt) to yt + zt. Suppose we initialize some value for z1, and that we
have chosen the increments z1, z2, . . . , zt, for some t ≥ 1. Then, the value zt+1

(corresponding to edge et+1 = (wt, wt+1)) is chosen as follows:

Observe that the vector z = (z1, z2, . . . , zk) is completely determined by z1,
the path P , and the matrix of bids b; more precisely, there exist reals c1, c2, . . . , ck
that depend only on the path P and the matrix b, such that

∀t, zt = ctz1. (4)

We will denote this resultant vector z by f(z1).
Now let μ be the smallest positive value such that if we set z1 := μ, then all the

x values (after incrementing by the vector z as mentioned above) stay in [0, 1],

(P1) If wt ∈ V (i.e., is a keyword), then zt+1 = −zt (i.e., we retain the total
assignment value of wt);

(P2) if wt ∈ U (i.e., is a bidder), then we choose zt+1 so that the load on wt

remains unchanged (recall that in computing the load, we do not truncate
at Bwt); i.e., we set zt+1 = −bwt,wt−1zt/bwt,wt+1 , which ensures that the
incremental load bwt,wt−1zt + bwt,wt+1zt+1 is zero. (Since xwt,wt+1 is nonzero
by the definition of F , bwt,wt+1 is also nonzero by (3); therefore, dividing by
bwt,wt+1 is admissible.)

250 A. Srinivasan

and at least one of them becomes 0 or 1. Similarly, let γ be the smallest positive
value such that if we set z1 := −γ, then this “rounding-progress” property holds.
(It is easy to see that μ and γ are strictly positive, since all the yi lie in (0, 1).)
We now choose the vector z as follows:

(R1) with probability γ/(μ+ γ), let z = f(μ);
(R2) with the complementary probability of μ/(μ+ γ), let z = f(−γ).

2.2 Analysis

If Z = (Z1, Z2, . . . , Zk) denotes the random vector z chosen in steps (R1) and
(R2), the choice of probabilities in (R1) and (R2) ensures that E[Z1] = 0. So,
we have from (4) that

∀t, E[Zt] = 0. (5)

The algorithm clearly rounds at least one edge permanently in each iteration
(and removes all such edges from the forest F), and therefore terminates in poly-
nomial time. We now analyze the expected revenue obtained from each bidder
i, and prove that it is not too small.

Let L(s)
i denote the load on bidder i at the end of iteration s; the values L(0)

i

refer to the initial values obtained by running the subroutine of [3] that obtains
the forest F . Property (P2) shows that as long as i has degree at least two in
the forest F , L(s)

i stays at its initial value L(0)
i with probability 1. (Recall that

whenever we refer to F etc., we always refer to its subgraph containing those
edges with x values in (0, 1); edges that get rounded to 0 or 1 are removed from
F .) In particular, if i never had degree one at the end of any iteration, then its
final load equals L(0)

i with probability one, so the expected approximation ratio
for i is one. So, suppose the degree of i came down to one at the end of some
iteration s. Let the corresponding unique neighbor of i be j, let β = bi,j , and
suppose, at the end of iteration s, the total already-rounded load on i and the
value of xi,j are α ≥ 0 and p ∈ (0, 1) respectively. Note that j, α, β as well as p
are all random variables, and that L(s)

i = α+ βp; so,

Pr[α+ βp = L(0)
i] = 1.

Fix any j, α, β and p that satisfy α+ βp = L(0)
i ; all calculations from now on

will be conditional on this fixed choice, and on all random choices made up to
the end of iteration s. Property (5) and induction on the iterations show that
the final load on i (which is now a random variable that is a function of the
random choices made from iteration s+ 1 onward) is:

α, with probability 1− p; and α+ β, with probability p. (6)

Let B = Bi for brevity. Thus, the final expected revenue from i is (1 − p) ·
min{α,B}+p ·min{α+β,B}; the revenue obtained from i in the LP solution is

Budgeted Allocations in the Full-Information Setting 251

min{α+βp,B}. So, by the linearity of expectation, the expected approximation
ratio is the maximum possible value of

min{α+ βp,B}
(1− p) ·min{α,B}+ p ·min{α+ β,B} .

It is easily seen that this ratio is 1 if α > B or if α+ β < B. Also note from (2)
that β ≤ B. Thus, we want the minimum possible value of the reciprocal of the
approximation ratio:

r =
(1− p)α+ pB

min{α+ βp,B} , (7)

subject to the constraints

p ∈ [0, 1]; α, β ≤ B; α+ β ≥ B. (8)

(Of course, we assume the denominator of (7) is nonzero. In the case where it is
zero, it is easy to see that so is the numerator, in which case it follows trivially
that (1− p)α+ pB ≥ (3/4) ·min{α+ βp,B}.)

We consider two cases, based on which term in the denominator of r is smaller:
Case I: α+ βp ≤ B. Here, we want to minimize

r =
(1− p)α+ pB

α+ βp
. (9)

Keeping all other variables fixed and viewing α as a variable, r is minimized when
α takes one of its extreme values, since r is a non-negative rational function of
α. From our constraints, we have B − β ≤ α ≤ B − βp. Thus, r is minimized
at one of these two extreme values of α. If α + β = B, then r = 1. Suppose
α = B − βp. Then,

r =
(1− p)α+ pB

B
. (10)

Since
α = B − βp ≥ B(1 − p), (11)

we have

r =
(1− p)α+ pB

B
≥ (1 − p)2 + p,

which attains a minimum value of 3/4 when p = 1/2.
Case II: α + βp ≥ B. We once again fix all other variables and vary α; the
extreme values for α now are α = B − Bp (with β = B) and α = B. In the
former case, the argument of Case I shows that r ≥ 3/4; in the latter case, r is
easily seen to be 1.
This completes the proof that our expected approximation ratio is at most 4/3.
Also, it is easy to derandomize the algorithm by picking one of the two possible
updates in each iteration using the method of conditional probabilities; we will
describe this in the full version. Thus we have the following theorem:

252 A. Srinivasan

Theorem 1. Given any feasible fractional solution to the LP-relaxation of the
offline budgeted-allocation problem with the truncations (1) done without loss of
generality, it can be rounded to a feasible integer solution with at least 3/4-th
the value of the fractional solution in deterministic polynomial time. Therefore,
the offline budgeted-allocation problem can be approximated to within 4/3 in
deterministic polynomial time.

3 Extensions

The following two extensions hold.

3.1 The Case of Bids Being Small w.r.t. Budgets

Here we consider the case where for some ε ∈ [0, 1], we have for all i, j that
bi,j ≤ εBi. The only modification needed to the analysis of Section 2.2 is that
(11) now becomes “α = B−βp ≥ B(1− εp)”, and that the function to minimize
is (1−p) · (1− εp)+p instead of (1−p)2 +p. This is again minimized at p = 1/2,
giving r ≥ 1−ε/4. Thus, the approximation ratio in this case is at most 4/(4−ε).

3.2 The Case of Similar Bids for Any Given Bidder

We now study the case where for each i, all its nonzero bids bi,j are within some
factor λ of each other, where 1 ≤ λ ≤ 2. Note that different bidders can still
have widely-differing bid values.

Consider the analysis of Section 2.2. In the trivial case where α = 0, it easily
follows from (6) that the approximation ratio for machine i is 1. So suppose
α > 0; then the additional constraint that

β ≤ αλ (12)

must hold, by our assumption about the bid-values.
By a tedious proof along the lines of Section 2.2, it can be shown that we get

a better-than-4/3 approximation if λ < 2. We will present the calculation-details
in the full version. For now, we just focus on the case where λ = 1. Recall that
we aim to minimize r from (7), subject to (8) and the constraint (12), i.e., α ≥ β.
Let us first argue that if the minimum value of r is smaller than 1, then α = β
at any minimizing point. To see this, assume for a contradiction that there is a
minimizing pair (α, β) with α > β, and observe that we may make the following
three sets of assumptions w.l.o.g.: (i) if α = 0 or α + β = B, then r = 1: so, we
may assume that α > 0 and α+ β > B; (ii) if β = B, then α ≥ β = B = β and
we are done, so we can assume β < B; (iii) if p = 0, then r = 1, so we can take
p > 0. Now, if we perturb as α := α− δ and β := β + δ/p for some tiny positive
δ, then we stay in the feasible region and get a smaller value for r from (7), a
contradiction. So, we can take α = β, and have from (8) that α = β ≥ B/2.

We repeat the case analysis of Section 2.2. In Case I, the extreme value
α = B/2 gives r = 1. The other extreme value is α = B − βp = B − αp,

Budgeted Allocations in the Full-Information Setting 253

i.e., α = B/(1+p). So, the r of (10) becomes (1−p)/(1+p)+p, whose minimum
value is 2(

√
2 − 1). Similarly in Case II. Thus, r ≥ 2(

√
2 − 1), and taking the

reciprocal, we see that the approximation ratio is (
√

2 + 1)/2 ∼ 1.207.

Acknowledgment. I thank Anna Karlin for informing me about related work,
and the APPROX 2008 referees for their helpful suggestions.

References

[1] Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328
(2004)

[2] Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidel-
berg (2004)

[3] Azar, Y., Birnbaum, B., Karlin, A.R., Mathieu, C., Nguyen, C.T.: Improved ap-
proximation algorithms for budgeted allocations. In: Aceto, L., Damg̊avd, I., Gold-
berg, L.A., Halldórsson, M.M., Ingolfsdóttir, A., Walukiewicz, I. (eds.) ICALP.
LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)

[4] Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

[5] Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and
improved lower bounds for submodular welfare maximization and GAP (manu-
script)

[6] Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Im-
proving the factor of 1 - 1/e. In: FOCS, pp. 667–676 (2006)

[7] Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding
and its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)

[8] Garg, R., Kumar, V., Pandit, V.: Approximation algorithms for budget-
constrained auctions. In: RANDOM-APPROX, pp. 102–113 (2001)

[9] Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to Adwords. In: SODA, pp. 982–991 (2008)

[10] Lahaie, S., Pennock, D.M., Saberi, A., Vohra, R.V.: Sponsored search auctions. In:
Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game
Theory, ch. 28, pp. 699–716. Cambridge University Press, Cambridge (2007)

[11] Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)

[12] Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized
online matching. J. ACM 54(5) (2007)

[13] Srinivasan, A.: Distributions on level-sets with applications to approximation al-
gorithms. In: FOCS, pp. 588–597 (2001)

Optimal Random Matchings on Trees and

Applications

Jeff Abrahamson1, Béla Csaba2,�, and Ali Shokoufandeh1,��

1 Dept. of Computer Science
Drexel University
Philadelphia, PA

{jeffa,ashokouf}@cs.drexel.edu
2 Dept. of Mathematics

Western Kentucky University
Bowling Green, KY
bela.csaba@wku.edu

Abstract. In this paper we will consider tight upper and lower bounds
on the weight of the optimal matching for random point sets distributed
among the leaves of a tree, as a function of its cardinality. Specifically,
given two n sets of points R = {r1, ..., rn} and B = {b1, ..., bn} dis-
tributed uniformly and randomly on the m leaves of λ-Hierarchically
Separated Trees with branching factor b such that each of its leaves is
at depth δ, we will prove that the expected weight of optimal matching
between R and B is Θ(

√
nb
�h

k=1(
√

bλ)k), for h = min(δ, logb n). Using a
simple embedding algorithm from Rd to HSTs, we are able to reproduce
the results concerning the expected optimal transportation cost in [0, 1]d,
except for d = 2. We also show that giving random weights to the points
does not affect the expected matching weight by more than a constant
factor. Finally, we prove upper bounds on several sets for which showing
reasonable matching results would previously have been intractable, e.g.,
the Cantor set, and various fractals.

Keywords: Random Matching, Hierarchically Separated Trees, Supre-
mum Bounds.

1 Introduction

The problem of computing a large similar common subset of two point sets arises
in many areas of computer science, ranging from computer vision and pattern
recognition, to bio-informatics [2,12,4]. Most of the recent related work concerns
the design of efficient algorithms to compute rigid transformations for establish-
ing correspondences between two point sets in Rd subject to minimization of a

� Part of this research was done while the author worked at the Analysis and Stochas-
tics Research Group at the University of Szeged, Hungary. Partially supported by
OTKA T049398.

�� Partially supported by NSF grant IIS-0456001 and by ONR grant ONR-
N000140410363.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 254–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Random Matchings on Trees and Applications 255

distance measure. In comparison, less attention has been devoted to extremal
matching problems related to random point sets, such as: Presented with two
random point sets, how do we expect matching weight to vary with data set size?

Perhaps the most seminal work in extremal random matching is the 1984
paper of Ajtai, Komlós and Tusnády [1] presenting a very deep and impor-
tant result which has found many applications since then. Considering two
sets of points Xn and Yn chosen uniformly at random in [0, 1]2, with |Xn| =
|Yn| = n, they determined (asymptotic) bounds on the sequence {EM}, where
M is the optimal matching weight, or transportation cost between Xn and Yn:
M = minσ

∑
i ||Xi − Yσ(i)||2 where σ runs through all the possible permutations

on [n]. Shortly after Ajtai et al., Leighton and Shor [8] addressed the problem
of 2-dimensional grid matching, analyzing the maximum cost of any edge in
the matching instead of the sum. Shor and Yukich [14] extended this minimax
grid matching result to dimensions greater than two. Shor [13] applied the AKT
result to obtain bounds on the average case analysis of several algorithms. Tala-
grand [15] introduced the notion of majorizing measures and as an illustration
of this powerful technique derived the theorem of Ajtai et al. Rhee and Tala-
grand [9] have explored upward matching (in [0, 1]2): the case where points from
X must be matched to points of Y that have greater x- and y-coordinates. They
have also explored a similar problem in the cube [10]. In [16] Talagrand gave
insight to exact behavior of expected matching weight for dimensions d ≥ 3 for
arbitrary norms.

In this paper we will introduce the random matching problem on hierarchically
separated trees. The notion of a hierarchically (well-)separated tree (HST) was
introduced by Bartal [3]. A λ-HST is a rooted weighted tree with two additional
properties: (1) edge weights between nodes and their children are the same for any
given parent node, and (2) the ratio of incident edge weights along a root-leaf path
is λ (so edges get lighter by a factor of λ as one approaches leaves). We primarily
consider balanced trees, i.e., trees in which the branching factor of all nodes other
than the leaves is an integer b, and in which every leaf is at depth δ. Using the
notion of balanced λ-HST, we can state the first contribution of this manuscript
on the expected transportation cost of optimal matching EMT (R,B):

Theorem 1. Let T = T (b, δ, λ) be a balanced HST, and R and B two ran-
domly chosen n-element submultisets of the set of leaves of T and define h =
min (δ, logb n). Then there exist positive constants K1 and K2 such that

K1

√
bn

h∑

k=1

(
√
bλ)k ≤ EMT (R,B) ≤ K2

√
bn

h∑

k=1

(
√
bλ)k.

Theorem 1 will also allow us easily to approach and duplicate the upper-bound
results of optimal matching for point sets distributed in [0, 1]d found in the
literature (see [7]), with a slightly loose result in the single (and most interesting)
case of d = 2. Since we use crude approximations of [0, 1]d by HSTs, we cannot
expect much more.

On the other hand, this method is general enough to attack the randomized
matching problem in general for finite metric spaces. It can always give upper

256 J. Abrahamson, B. Csaba, and A. Shokoufandeh

bounds (by using Theorem 2 or Corollary 1). If the metric space is sufficiently
symmetric (e.g., fractals), one can get reasonable lower bounds by applying the
theorem of Fakcharoenphol et al. ([5]) on approximating a finite metric space
by HSTs. We further extend the upper bound of the transportation cost to the
case of weighted point sets. This model is commonly used in texture mapping in
computer vision (see [11]).

The final application of the newly developed machinery will include extending
upper-bound matching results to finite approximations of certain fractals. We
generalize Theorem 1 for non-uniformly distributed point sets and for subtrees
of balanced trees as well.

2 The Upper and Lower Bounds for Matching on HSTs

In this section, our modus operandi will be to prove upper- and lower bounds
for the weight of the matching problems on HSTs. The trees considered in this
paper are a somewhat restricted variation of HSTs defined as follows:

Definition 1. Let b, δ be positive integers and 0 < λ < 1 be a real number. We
call a rooted tree T a balanced (b, δ, λ)-HST, if every edge incident on the root has
unit weight, every edge not incident on the root has weight λ times the weight
of the edge immediately closer to the root, every non-leaf node has the same
number of children (which we will call the branching factor b), and every leaf has
the same depth δ.

We remark that having the same depth δ for every leaf of T can be assumed
without loss of generality, and as we will see, in several cases the branching factor
is naturally bounded.

Given a balanced HST T , let R = {r1, ..., rn} and B = {b1, ..., bn} respectively
denote the multisets of n red and n blue points chosen among the leaves of T . We
define a matching between R and B as a one-to-one mapping σ between them.
The weight of the optimal matching (optimal transportation cost) with respect
to T will be defined as MT (R,B) = minσ

(∑
1≤i≤n dT (ri, bσ(i))

)
, where dT (r, b)

is the length of the path between leaves containing points r and b in T . Note
that MT (R,B) is the Earth Mover’s Distance of R and B on the metric defined
by T . For a pair of points (r, b) matched under a mapping σ and belonging to
distinct leaves ur and ub in T , we will say the matched pair (r, b) results in a
transit at vertex v, if v is an ancestor of both ur and ub and the path between
ur and ub passes through v. We will also use τv to denote the total number of
transits at vertex v in an optimal matching between R and B. Any red-blue pair
that is mapped under a matching σ at a leaf of T contributes no weight to the
transportation cost. For a vertex v let δ(v) denote its level in the tree, that is,
the number of edges on the path from r to v. Observe that the weight of the
optimal matching can be restated as follows:

MT (R,B) =
δ−1∑

k=0

∑

v:δ(v)=k

τvS(k, δ − 1), (1)

Optimal Random Matchings on Trees and Applications 257

where S(i, j) = 2(λi + λi+1 + . . . + λj) ≤ Cλλ
i for 0 ≤ i ≤ j ≤ δ − 1, and

Cλ =
∑

j≥0 λ
j .

Our goal is to estimate tight bounds on the expected optimal transportation
cost EMT (R,B) for randomly chosen R and B. Throughout the paper we will
denote the standard deviation of a random variable X by DX. The following
pair of observations will be useful in the proof of Theorem 1:

Observation 1. Given a balanced (b, δ, λ)-HST tree T , and a multiset R of n
red points and a multiset B of m blue points distributed among the leaves of T ,
we have MT (R,B) ≤ min(n,m)S(1, δ).

Lemma 1. Let X be the sum of a finite number of independent bounded random
variables. Then E |X −EX | = Θ(DX).

We omit the details, but comment that to show the upper bound of Lemma 1,
one can repeatedly use Chebyshev’s inequality, while the lower bound is the
consequence of Hölder’s inequality.

The process of randomly and uniformly choosing the leaves of a balanced
HST T with branching factor b to host the points in R and B can be stated as
follows: starting from the root, choose a child of the current vertex uniformly at
random among its b children; if the new vertex is not a leaf, repeat this random
selection process. Otherwise, this leaf is our random choice. We will distribute
the “random” sets R and B among the leaves of T by repeating this procedure
independently for every point of R∪B. It is obvious that this procedure results in
two random submultisets of the set of leaves of T . For an arbitrary vertex v ∈ T ,
let Rv and Bv, respectively, denote the cardinality of the set of red (respectively,
blue) points that when distributed reach their host leaves in T on a path from
the root through v. In particular, Rl is the number of red points assigned to the
leaf l, and Bl is the number of blue points assigned to l.

Next, we will estimate the number of transits, τr, at the root r of a star
(HST-) tree T with b leaves L = {u1, u2, . . . , ub} when n red and n blue points
are distributed randomly among the elements of L. Let Xu = Ru − Bu for the
leaf u. Then

∑
u∈LXu = 0 and

τr =
∑

u∈L

max{Xu, 0} = −
∑

u∈L

min{Xu, 0}.

It follows that
∑

u∈L |Xu| = 2
∑

u∈L max{Xu, 0}, and hence

Eτr =
1
2

∑

u∈L

E|Xu|.

Observe that Xu is the combination of 2n independent indicator random vari-
ables

Xu =
n∑

j=1

Ru(j)−
n∑

j=1

Bu(j),

where Ru(j) = 1 if and only if the jth red points reaches leaf u; we define Bu(j)
similarly. Hence, EXu = 0, and Lemma 1 can be applied. Setting β = (1/b−1/b2),

258 J. Abrahamson, B. Csaba, and A. Shokoufandeh

it is an easy exercise to verify that DRu(j) = DBu(j) =
√
β for every 1 ≤ j ≤ n,

and hence DX =
√

2nβ. In summary, we have

Lemma 2. There exist positive constants c1 and c2 such that c1b
√
nβ ≤ Eτr ≤

c2b
√
nβ for a star T with root r on b leaves, when n red and n blue points are

distributed randomly and uniformly among its leaves.

We note that Lemma 2 proves Theorem 1 when δ = 1. We need a generalization
of the above, when

∑
u∈L(Ru − Bu) = Δ
= 0. In this case there will be |Δ|

points which will remain unmatched in the star tree. The number of transits at
r is easily seen to be

τr =
1
2

(
∑

u∈L

|Xu| − |Δ|
)

,

whereby we get

Lemma 3. The expected number of transits at root r of a star with leaf set L is

Eτr =
1
2
E

(
∑

u∈L

|Xu| − |
∑

u∈L

(Ru −Bu)|
)

.

Next, we present the proof of Theorem 1 for two randomly chosen n-element
submultisets R and B among the leaves of a balanced (b, δ, λ)-HST T . The
following simple combinatorial lemma is crucial for the proof.

Lemma 4. Let R,B and T be as above, and let k ≥ 1. Then Tk−1, the total
number of transits at level k − 1 is

Tk−1 =
∑

δ(v)=k−1

τv =
1
2

∑

δ(u)=k

|Xu| −
1
2

∑

δ(u′)=k−1

|Xu′ |.

The lemma follows easily by induction on the depth of the tree; we omit the
details. �
Now we are ready to prove our main result.
Proof of Theorem 1. Since MT (R,B) is a finite sum (see Equation 1), we can
restate it as the sum of the expectation at each level of the tree T , i.e.,

EMT (R,B) =
δ−1∑

k=0

∑

v:δ(v)=k

EτvΘ(Cλλ
k).

Applying Lemma 4 we get

EMT (R,B) =
δ−1∑

k=0

Θ(Cλλ
k)E

⎛

⎝
∑

δ(u)=k

|Xu| −
∑

δ(u′)=k−1

|Xu′ |

⎞

⎠ .

Therefore, it suffices to compute E|Xu| for every u ∈ T. Notice that we are in
a situation very similar to that of the star tree. At level k we have bk vertices,

Optimal Random Matchings on Trees and Applications 259

hence the expected number of transits at level k is bkE|Xu|, where u is an
arbitrary vertex at level k. Let βk = 1

bk (1 − 1
bk). Applying Lemma 1 we get that

the expected number of transits at level k is of order

Tk = bk−1
√

n(b
√

βk −
√

βk−1).

Simple calculation shows that

bk/2

√
nb

2
≤ Tk ≤ 2bk/2

√
nb.

This will allow us to conclude that

K1

√
bn

δ−1∑

k=0

(λ
√

b)k ≤ EMT (R, B) ≤ K2

√
bn

δ−1∑

k=0

(λ
√

b)k. (2)

If δ ≤ logb n then the above proves Theorem 1. So, assume that δ > logb n.
In this case there is at least one vertex w such that δ(w) = logb n. Then using
Observation 1, the expected transportation cost of the matching for the subtree
Tw rooted at w can be bounded as

MTw(Rw , Bw) ≤ min(|Rw |, |Bw|)S(δ(w), δ).

Therefore, we get the following upper bound for the expected matching length
in Tw:

EMTw(Rw, Bw) ≤ Cλλlogb n
n∑

k=0

Pr(Rw = k) × k

= Cλλlogb n
n∑

k=0

k

k!

≤ eCλλlogb n.

Here we used the fact that if δ(w) = logb n then Rw has a Poisson distribution.
Observing that there are bk vertices at level k, we have

EMT (R, B) ≤ K2

√
bn

logb n−1∑

k=0

(λ
√

b)k + eCλnλlogb n.

Now we are in a position to estimate the precise upper bound on EMT (R, B).
We will consider three distinct cases, depending on the value of

√
bλ:

Case I: If
√

bλ < 1 then λlogb n < n−1/2, and hence, neCλλlogb n < eCλ
√

n.
Since in this case

∑
k=0(λ

√
b)k is a constant, we get the desired upper bound.

Case II: If
√

bλ = 1 we will have
logb n−1∑

k=0

(λ
√

b)k = logb n,

and λlogb n = n−1/2, which again gives us the upper bound of the theorem.

260 J. Abrahamson, B. Csaba, and A. Shokoufandeh

Case III: If
√
bλ > 1 then

which implies the desired upper bound.
The lower bound of Theorem 1 follows trivially from the fact that truncating

the lower bound of the sum in (2) (which has only non-negative elements) at the
logb n-th term will result in the desired lower bound. �
An important generalization emerges when the points of R and B are not nec-
essarily uniformly distributed among the leaves of T . Given any non-leaf vertex
of T we can distribute the red and blue points among its children according to
an arbitrary probability distribution. Conversely, it is easy to see that given any
probability distribution on the leaves one can find appropriate probabilities for
every non-leaf vertex of T in order to arrive at the desired distribution of the
red and blue points at the leaf-level. This gives rise to the following theorem:

Theorem 2. Let T = T (b, δ, λ) be a balanced HST, and P a probability distrib-
ution on the leaves of T . Let R and B be two n-element submultisets of the set
of leaves of T chosen randomly and independently from P. Then there exists a
positive constant K3 (depending only on λ) such that

EMT (R,B) ≤ K3

√
bn

δ−1∑

k=0

(
√
bλ)k.

Sketch of the proof. The proof follows the same line of argument as The-
orem 1, except that in addition we use the following elementary inequality: if
a1, a2, . . . , at ∈ [0, 1],

∑
ai ≤ 1 then

∑

1≤i≤t

√
ai(1− ai) ≤ t

√∑
ai/t(1−

∑
ai/t).

Applying the above inequality we can perform the following balancing algo-
rithm: First, we make the probability of choosing an arbitrary child of the root
equal to the reciprocal of the number of its children; that is, we choose uniformly
among the children of the root. Then we repeat the above for all the subtrees
originating from these children. Proceeding top-down, at the end we achieve
that every leaf of the tree has the same chance to be chosen, moreover, we never
decreased the expected number of transitions at any intermediate vertex. This
implies the theorem. �
We also note the following consequence of Theorem 2, which follows by choosing
certain edge probabilities to be 0.

Corollary 1. If T ′ is an arbitrary subtree of a balanced (b, δ, λ)-HST T , then
the expected optimal transportation cost on T ′ is upper bounded by the expected
optimal transportation cost on T .

√
n

logb n−1∑

k=0

(λ
√

b)k =
√

n
(λ

√
b)logb n − 1

λ
√

b − 1
= O(nλlogb n),

Optimal Random Matchings on Trees and Applications 261

Observe that one cannot expect any reasonable general lower bound in the case
of a non-uniform distribution or for subtrees: if the subtree T ′ is a path, the
transportation cost is zero.

3 The Case of Matching in [0, 1]d

As a first application of the theory we developed in Section 2, we reproduce
the results of [7] concerning the expected optimal transportation cost in the d-
dimensional unit cube. We remark that for finding nearest neighbors in Euclidean
space, Indyk and Thaper [6] used similar ideas for approximating the
d-dimensional unit cube with HSTs.

We begin by presenting the general idea for approximating [0, 1]d by a bal-
anced HST. The number of iterations of this process will be the depth δ of the
tree. In the jth step we construct a grid Gj with 2jd cells, each cell having an
edge length of 2−j. Gj is a refinement of Gj−1 for every j: we obtain the cells
of Gj by dividing each cell of Gj−1 into 2d subcells of equal volume. We stop
when j = δ. The tree is going to have 2jd vertices at level j, with each vertex
corresponding to a cell of Gj . A vertex v at level j will be adjacent to a ver-
tex w at level j + 1 if and only if the cell of v in Gj contains the cell of w in
Gj+1. The weight of edge (v, w) will be 21−j. Clearly, the construction will result
in a balanced (2d, δ, 1/2)-HST. Moreover, the resulting HST will dominate the
distances of the lattice points of Gδ: the Euclidean distance of any two lattice
points is no greater than their distance in the HST. Finally, we will approximate
a set of points in [0, 1]d by discretizing the point set: we assign every point to
the available lattice point that is closest to it.

We will first consider the case of the unit interval, i.e., d = 1:

Proposition 1. Given n red points and n blue points distributed uniformly at
random on [0, 1], the expected weight of an optimal matching is O(

√
n).

Proof: We approximate the [0, 1] interval with an equidistant set of O(n2) lat-
tice points, as is described above. We will approximate this metric space by
a balanced (2, 2 logn, 1/2)-HST T whose leaves are the lattice points. The dis-
cretization overhead associated with approximating the red and blue points with
the leaves is no more than the cost of moving each point to the nearest leaf, i.e.,
2n ·1/(2n) = 1. Applying Theorem 1 with parameters b = 2 and λ = 1/2, results
in the desired bound. �
In the plane our HST technique offers loose results. Ajtai et al. [1] showed that
the expected weight of the optimal matching in [0, 1]2 is Θ(

√
n logn). In Propo-

sition 2, we use Theorem 1 to obtain the bound of O(
√
n logn).

Proposition 2. Let B = {bi}ni=1 and R = {ri}ni=1 be sets of blue and red points
distributed uniformly at random in [0, 1]2 and let Mn be the expected weight of
an optimal matching of B against R. Then EMn = O(

√
n log n).

Proof: As discussed in the general process, we construct the 2-dimensional grid,
then the balanced (4, 1/2, 2 log4 n)-HST T . The discretization overhead associ-
ated with approximating the red and blue points with the leaves of T is again

262 J. Abrahamson, B. Csaba, and A. Shokoufandeh

negligible for δ ≥ 2 log4 n. Applying Theorem 1 with parameters b = 4 and
λ = 1/2, we get the upper bound of O(

√
n logn). �

We now jump to real dimension 3 and above, showing (Proposition 3) that
expected weight of optimal matching is O(n(d−1)/d).

Proposition 3. Let B = {bi}ni=1 and R = {ri}ni=1 be sets of blue and red points
distributed uniformly at random in [0, 1]d, d ≥ 3, and let Mn be the expected
weight of an optimal matching of B against R. Then EMn = O(n(d−1)/d).

Proof: As before, we construct a sufficiently dense grid. Its lattice points will
be used to aproximate the real vectors of [0, 1]d. The finite metric space of the
lattice points will be dominated by a balanced HST T = T (2d, 3 log2 n, 1/2). We
are now in a position to apply Theorem 1 with parameters b = 2d and λ = 1/2,
from which will follow the bound of O(n(d−1)/d). �
Observe that for d
= 2, our seemingly crude approximations by HSTs result in
tight bounds up to a constant factor (see e.g., [1]).

4 Optimal Matching for Weighted Point Sets

In this section we will estimate the expected weight of the optimal weighted
matching for point sets R = {r1, ..., rn} and B = {b1, ..., bn} distributed uni-
formly and at random among the leaves of an HST T . We assume that every leaf u
of T is associated with a randomly and independently chosen mass m(u) ∈ [0, 1].
Then the total transportation cost is defined to be

MT,m(R,B) = minσ

⎛

⎝
∑

1≤i≤n

dT (ri, bσ(i))min{m(ri),m(bσ(i))}

⎞

⎠

We will use the following folklore result: if x and y are chosen randomly and
independently from [0, 1], their expected distance E|x− y| is 1/3.

Theorem 3. Let T = T (b, δ, λ) be a balanced HST with set of leaves L, and
R and B two randomly chosen n-element submultisets of L. Let m : L → [0, 1]
be a function with values drawn randomly and independently, and define h =
min (δ, logb n). Then there exist positive constants K4 and K5 such that

K4

√
bn

h∑

k=1

(
√
bλ)k ≤ EMT,m(R,B) ≤ K5

√
bn

h∑

k=1

(
√
bλ)k.

Sketch of the proof. The proof follows the same line of arguments as Theo-
rem 1, except that when computing the expected transportation cost, one has
to multiply the number of transitions not only by the edge weight of T but also
by the expected mass which is to be moved. Since this latter number is 1/3 on
the average and was chosen independently from the distribution of the points,
the theorem is proved. �

d

Optimal Random Matchings on Trees and Applications 263

5 The Case of Finite Approximation of Fractals

The machinery developed in Section 2 is general enough to use for matching on
a finite approximation of a self-similar set. The notion of a finite approximation
of fractals is best explained through an example. Recall that the Cantor set is
formed by repeatedly removing the open middle third of each line segment in a
set of line segments, starting with [0, 1]. If we stop this process after α iterations,
we will refer to the resulting set as the α-approximation of the Cantor set.

Next, consider sets R = {r1, ..., rn} and B = {b1, ..., bn} of red and blue
points respectively, distributed uniformly at random on the δ-approximation of
the Cantor set, with δ ≥ 2 logn. We are interested in the expected weight of
an optimal matching between R and B. We can think of the δ-approximation
of the Cantor set as being embedded into a balanced (2, δ, 1/3)-HST T over
the unit interval. We have b = 2, since at every step we double the number of
subintervals, and λ = 1/3, because the length of these subintervals shrink by a
factor of 1/3. The discretization overhead associated with approximating the red
and blue points with the leaves is no more than the cost of moving each point
to the nearest leaf 2n · 1/(2n) = 1. We can apply Theorem 1 with parameters
b = 2 and λ = 1/3, and conclude that EMT (R,B) = O(

√
n).

The tree metric of T (2, δ, 1/3) dominates the Euclidean metric on the Can-
tor set. Therefore, the expected optimal matching weight of n blue and n red
points distributed randomly on the Cantor set is no heavier than the same points
distributed on [0, 1] itself. We have proved the following

Theorem 4. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the δ-approximation of the Cantor
set process with δ ≥ 2 logn. Then the expected weight of an optimal matching
between R and B is O(

√
n).

Next, we consider the log3 n-approximation of a Sierpinski triangle. Here a bal-
anced HST with branching factor b = 3, λ = 1/2, and depth δ (δ ≥ 2 log3 n)
dominates the Euclidean metric, and provides a good approximation after dis-
cretization. As with the Cantor set, we can prove the following about the Sier-
pinski triangle:

Theorem 5. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the interior of the δ-approximation
of a Sierpinski triangle for δ large enough. Then the expected weight of an optimal
matching between R and B is O(

√
n).

Note the lack of the logn factor in the upper bound. The expected optimal
matching weight in a triangle would be O(

√
n logn) by the result of Ajtai et al.

As a final example for the application of Theorem 1 on fractals, we will con-
sider the Menger sponge. A Menger sponge results from recursively dividing the
unit cube into 33 = 27 sub-cubes, removing the middle cube on each face and
the cube in the center, then recursing on each sub-cube. To find an upper bound
on the expected weight of matchings on the Menger sponge, consider a balanced

264 J. Abrahamson, B. Csaba, and A. Shokoufandeh

HST T with λ = 1/3 (the diameter decreases by a factor of 1/3 at every re-
cursion step), branching factor b = 20, and depth δ ≥ 3 log20 n (this depth is
sufficiently large to provide good approximation in the discretization). Because
T is dominating, we can state the following upper bound:

Theorem 6. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the interior of the 3 log20 n- ap-
proximation of a Menger sponge. Then the expected weight of an optimal match-
ing between R and B is O(n1−log20 3).

6 Conclusions

In this paper we presented a tight bound on the expected weight of transporta-
tion cost for matching of points on balanced HSTs. We extended our upper
bounds for subtrees of balanced HSTs, and for non-uniform distributions. Using
low-distortion embedding of Rd to HSTs, we reproduce the results concerning
the expected optimal transportation cost in the [0, 1]d, except for the case of
d = 2 for which we have a discrepancy of a factor of

√
logn. We also proved up-

per bounds on several sets for which showing reasonable matching results would
previously have been intractable. By existing approximation theorems for finite
metric spaces, we could give bounds on the expected transportation cost in any
finite metric space. We plan to consider the analogues of other related matching
problems, such as upright matchings.

References

1. Ajtai, M., Komlós, J., Tusnády, G.: On optimal matchings. Combinatorica 4(4),
259–264 (1984)

2. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and ap-
proximation. In: Sack, J., Urrutia, J. (eds.) Handbook of Comput. Geom., pp.
121–153. Elsevier Science Publishers, Amsterdam (1996)

3. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In: FOCS 1996: 37th Annual Symposium on Foundations of Computer
Science, pp. 184–193 (1996)

4. Cabello, S., Giannopoulos, P., Knauer, C., Rote, G.: Matching point sets with
respect to the earth mover’s distance. Comput. Geom. Theory Appl. 39(2), 118–
133 (2008)

5. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC 2003: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pp. 448–455 (2003)

6. Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: The 3rd Interna-
tional Workshop on Statistical and Computational Theories of Vision (2003)

7. Karp, R.M., Luby, M., Marchetti-Spaccamela, A.: A probabilistic analysis of mul-
tidimensional bin packing problems. In: STOC 1984: Proceedings of the sixteenth
annual ACM symposium on Theory of computing, pp. 289–298 (1984)

8. Leighton, T., Shor, P.W.: Tight bounds for minimax grid matching, with applica-
tions to the average case analysis of algorithms. In: STOC 1986: Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pp. 91–103 (1986)

Optimal Random Matchings on Trees and Applications 265

9. Rhee, W.T., Talagrand, M.: Exact bounds for the stochastic upward matching
problem. Transactions of the American Mathematical Society 307(1), 109–125
(1988)

10. Rhee, W.T., Talagrand, M.: Matching random subsets of the cube with a tight
control on one coordinate. The Annals of Applied Probability 2(3), 695–713 (1992)

11. Rubner, Y., Tomasi, C.: Texture based image retrieval without segmentation. In:
IEEE International Conference on Computer Vision, pp. 1018–1024 (1999)

12. Rubner, Y., Tomasi, C., Guibas, L.: The earth movers distance as a metric for
image retrieval. International Journal of Computer Vision 40(2), 99–122 (2000)

13. Shor, P.W.: The average-case analysis of some on-line algorithms for bin packing.
In: FOCS 1984: 25th Annual Symposium on Foundations of Computer Science, pp.
193–200 (1986)

14. Shor, P.W., Yukich, J.E.: Minimax grid matching and empirical measures,
vol. 19(3), pp. 1338–1348 (1991)

15. Talagrand, M.: Matching random samples in many dimensions. Annals of Applied
Probability 2(4), 846–856 (1992)

16. Talagrand, M.: Matching theorems and empirical discrepancy computations using
majorizing measures. J. ACM 7, 455–537 (1994)

Small Sample Spaces Cannot Fool Low Degree

Polynomials

Noga Alon1,�, Ido Ben-Eliezer2, and Michael Krivelevich3,��

1 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA,
and Schools of Mathematics and Computer Science, Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
nogaa@tau.ac.il

2 School of Computer Science, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv 69978, Israel

idobene@post.tau.ac.il
3 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact

Sciences, Tel Aviv University, Tel Aviv 69978, Israel
krivelev@post.tau.ac.il

Abstract. A distribution D on a set S ⊂ ZN
p ε-fools polynomials of

degree at most d in N variables over Zp if for any such polynomial P ,
the distribution of P (x) when x is chosen according to D differs from
the distribution when x is chosen uniformly by at most ε in the �1 norm.
Distributions of this type generalize the notion of ε-biased spaces and
have been studied in several recent papers. We establish tight bounds
on the minimum possible size of the support S of such a distribution,
showing that any such S satisfies

|S| ≥ c1 ·
�

(N
2d

)d · log p

ε2 log (1
ε
)

+ p

�
.

This is nearly optimal as there is such an S of size at most

c2 ·
(3N

d
)d · log p + p

ε2
.

1 Introduction

Let P be a polynomial in N variables over Zp of degree at most d. Let D be
a distribution over a set S of vectors from ZN

p , and denote by UN the uniform
distribution on ZN

p . The distribution D is an ε-approximation of UN with respect
to P if

∑

a∈Z

∣
∣
∣
∣ Pr
x∼D

[P (x) = a]− Pr
x∼U

[P (x) = a]
∣
∣
∣
∣ ≤ ε.

� Research supported in part by the Israel Science Foundation, by a USA-Israeli BSF
grant and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv
University.

�� Research supported in part by USA-Israel BSF Grant 2006322, and by grant 526/05
from the Israel Science Foundation.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 266–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

p
N

Small Sample Spaces Cannot Fool Low Degree Polynomials 267

We say that S (with the distribution D) is an (ε,N, d)-biased space if it is an
ε-approximation with respect to any polynomial onN variables of degree at most
d. Note that D is not necessarily a uniform distribution over its support S.

The case d = 1 is known as ε-biased spaces. Many works deal with such
spaces, including efficient constructions, lower bounds and applications (see, for
example, [3,4,5,7,16,17,19] and their references).

Luby et al. [15] gave an explicit construction for the general case, but the size

of their sample space S is even for the case d = 2. They used it
to construct a deterministic approximation algorithm to the probability that a
given depth-2 circuit outputs a certain value on a random input.

Bogdanov [8] gave better constructions that work for fields of size at least
poly(d, logN, 1

ε). Bogdanov and Viola [10] suggested a construction for general
fields. The construction is the sum of d copies of ε′-biased spaces, and the sam-
ple size is Nd · f(ε, d, p) for some function f . However, the analysis of their
construction relies on the so called “Inverse Gowers Conjecture” which was re-
cently shown to be false [14]. Lovett [13] proved unconditionally for p = 2 that
the sum of 2d copies of ε′-biased spaces fools polynomials of degree d (where ε′

is exponentially small in ε), thus giving an explicit construction of size
Later, Viola [20] proved that the sum of d copies is sufficient. This yields an ex-
plicit construction of size using the best known constructions of ε-biased
spaces. Recently, Bogdanov et. al. [9] showed how to fool width-2 branching
programs using such distributions.

Here we study the minimum possible size of (ε,N, d)-biased spaces. Bogdanov
and Viola [10] observed that for p = 2 and ε < 2−d every such space is of size
at least

(
N
d

)
. Their argument is very simple: The set of polynomials of degree

at most d forms a linear space of dimension
∑d

i=0

(
N
i

)
>
(
N
d

)
. If S is of size

less than
(
N
d

)
then there is a non-zero polynomial P such that P (x) = 0 for

every x ∈ S, and since every non zero polynomial is not zero with probability
at least 2−d (as follows, for example, by considering the minimal distance of the
Reed-Muller code of order d) we get the desired bound. However, their bound
doesn’t depend on ε and, for small values of ε, is far from optimal and also from
the known bound for ε-biased space, which is nearly optimal for d = 1. Our
main contribution is a nearly tight lower bound on the size of such spaces as a
function of all four parameters ε, N ,d and p. Note that as spaces of this type can
be useful in derandomization, where the running time of the resulting algorithms
is proportional to the size of the space, it is interesting to get a tight bound for
their smallest possible size.

Theorem 1. There exists an absolute constant c1 > 0 such that for every d ≤ N
10

and ε ≥ , every (ε,N, d)-biased space over Zp has size at least

max

{

c1 ·
(N
2d)d log p
ε2 log (1

ε)
, p(1− ε)

}

.

22O(
√

log (N/ε))

(N
ε)2

O(d)
.

Nd

εO(d·2d)

d · p− N
2d

268 N. Alon, I. Ben-Eliezer, and M. Krivelevich

We also observe that this bound is nearly tight by proving the following simple
statement:

The proofs are described in the next section; for completeness, we include some of
the details in the appendix. The final section contains some concluding remarks.
Throughout the proofs we omit all floor and ceiling signs whenever these are not
crucial.

2 Proofs

In this section we present the proofs of our results. The proof of our main result,
Theorem 1, lower bounding the size of an (ε,N, d)-biased set, is given in Section
2.1. The proof of the upper bound (Proposition 1) is in Section 2.2.

2.1 Lower Bound

Proposition 1. There is an absolute constant c2 > 0 so that for every d ≤ N
10

there is an (ε, N, d)-biased space over Zp of size at most c2 · (3N
d)d log p+p

ε2 .

First we observe that a bound of p(1− ε) follows easily as otherwise the distribu-
tion doesn’t fool every polynomial P for which P (x) is the uniform distribution
(for example, all the linear polynomials). Let N be the number of variables and
let d be the degree of the polynomial. Assume for simplicity that N = nd, where
n is an integer. For every i ≥ 1 define the set of variables Si = {xi,1, ..., xi,n}.
A monomial over Zp is called d-partite if it has the form

∏
1≤i≤d xi,ji , and a

polynomial over Zp is called d-partite if it is a sum of d-partite monomials. Note
that d-partite polynomials are homogeneous polynomials of degree d.

Let Pn,d be the uniform distribution on the set of d-partite polynomials. A
random element in Pn,d is a sum of d-partite monomials, where every one of the
possible nd monomials has a random coefficient selected uniformly and indepen-
dently from Zp.

An assignment to the variables {xi} is non-trivial if there is an i such that xi �=
0. Similarly, if v1, v2, ..., vn ∈ V for some vector space V , a linear combination∑

i αivi is non-trivial if there is i such that αi �= 0. For a prime p, a polynomial
P over Zp is δ-balanced if

∑

a∈Zp

∣
∣
∣
∣
|{x : P (x) = a}|

pN
− 1

p

∣
∣
∣
∣ ≤ δ.

A polynomial is balanced if it is 0-balanced. We have the following key lemma:

Lemma 1. The probability φ(n, d) that a random element from Pn,d is d · p−n
2 -

balanced is at least

1 − p−(n
2)d+2(n

2)d−1+
�d−3

i=0 (n
2)i(n2

4 +n) ≥ 1 − p−(n
2)d+4(n

2)d−1
.

Small Sample Spaces Cannot Fool Low Degree Polynomials 269

Proof: We apply induction on d. For d = 1, as every non-trivial linear polyno-
mial is balanced, we have φ(n, 1) = 1− p−n, and the statement holds. Assuming
that the statement is valid for d, we prove it for d + 1. A random (d + 1)-partite
polynomial P can be represented as

∑n
i=1 x1,iPi, where for every i, Pi is a ran-

dom polynomial (distributed uniformly and independently over Pn,d) over the
sets of variables S2, S3, ..., Sd+1. Denote the set {Pi} of polynomials by P . We
use the following claim:

Claim 1. With probability at least 1 − p−(n
2)d+1+2(n

2)d+
�d−1

i=0 (n
2)i(n2

4 +n) over the
choice of polynomials in P, there is a subset B ⊆ P of size at least n

2 such that
for any non-trivial choice of {αi}, the polynomial

∑
Pi∈B αiPi is d·p−n

2 -balanced.

Proof: Let B0 := ∅. In the i’th step, we consider the polynomial Pi. If Pi as
well as all its combinations with elements from Bi−1 are d ·p−n

2 -balanced, we set
Bi := Bi−1

⋃
{Pi}, otherwise we call the step bad and let Bi := Bi−1. After the

last polynomial, set B := Bn. We want to bound the probability that there are
more than n

2 bad steps. Consider a certain step i and assume that |Bi−1| < n
2 .

Since Pi is a random polynomial, the sum of Pi with every fixed polynomial
is uniformly distributed over the set Pn,d. By the induction hypothesis, it is

d · p−
n
2 -balanced with probability at least 1 − p−(n

2)d+2(n
2)d−1+

�d−2
i=0 (n

2)i(n2
4 +n).

By the union bound, the probability that the step is bad is at most

pn/2 · p−(n
2)d+2(n

2)d−1+
�d−2

i=0 (n
2)i(n2

4 +n).

We bound the probability that there are more than n
2 bad steps. For d = 2 the

probability is at most
(

n
n
2

) (
pn/2 · p−n

)n/2

≤ p−(n
2)2+n.

For d ≥ 3, we have:
(

n
n
2

) (
pn/2 · p−(n

2)d+2((n
2)d−1)+

�d−2
i=0 (n

2)i(n2
4 +n)

)n/2

≤ p−(n
2)d+1+2((n

2)d)+
�d−1

i=0 (n
2)i(n2

4 +n).

The claim follows.

Assume that the condition of the claim holds, and without loss of generality
assume that {P1, P2, ..., Pn/2} ⊆ B. Let P ′ =

∑n/2
i=1 x1,iPi. By Claim 1, for every

non-trivial assignment of the variables {x1,i}, the obtained polynomial is d·p−n
2 -

balanced. The probability that the assignment of the variables {x1,i} is trivial
is p−

n
2 . Therefore, P ′ is δ-balanced, where

δ ≤ p−
n
2 + d · p−n

2 = (d + 1) · p−
n
2 . (1)

We use this fact to prove that the polynomial P is (d + 1) · p−
n
2 -balanced.

For every assignment of the variables from
⋃

2≤i≤d+1 Si, P reduces to a linear

270 N. Alon, I. Ben-Eliezer, and M. Krivelevich

polynomial, which depends only on the variables from S1. Denote by μ(P) (re-
spectively, μ(P ′)) the probability over the assignments of

⋃
2≤i≤d+1 Si that P

(respectively, P ′) reduces to a trivial linear polynomial. Clearly μ ≤ μ′ and μ is
an upper bound on the imbalance of P . Therefore, it is sufficient to prove that
μ′ is bounded by (d +1) · p−n

2 . To this end, note that whenever P ′ is reduced to
a constant polynomial it is actually reduced to the zero polynomial. Therefore,
as the bias of P ′ is bounded by (d + 1) · p−

n
2 , the lemma follows.

We construct a set of polynomials Q as follows. Let

r = logp (
1

1 − φ(n, d)
) − 1 ≥ (

N

2d
)d − 4(

N

2d
)d−1 − 1.

For every 1 ≤ i ≤ r let qi be a polynomial distributed uniformly and inde-
pendently over Pn,d. Denote by Q the set of all non-trivial combinations of
{q1, ..., qr}.

By the union bound and by Lemma 1, with positive probability all the ele-
ments of Q are d · p−

n
2 -balanced. Fix Q to be such a set. It follows also that

the vectors q1, q2, ..., qr are linearly independent (otherwise Q contains the zero
vector, which is not d · p−

n
2 -balanced). Therefore, |Q| ≥ p(N

2d)d−4(N
2d)d−1−1 − 1.

The following lemma is due to Alon [2]:

Lemma 2 ([2]). There exists an absolute positive constant c so that the follow-
ing holds. Let B be an n by n real matrix with bi,i ≥ 1

2 for all i and |bi,j | ≤ ε for
all i �= j where 1

2
√

n
≤ ε ≤ 1

4 . Then the rank of B satisfies

rank(B) ≥ c log n

ε2 log (1
ε)

.

Here we need the following complex variant of the lemma:

Lemma 3. There exists an absolute positive constant c so that the following
holds. Let C be an n by n complex matrix with |ci,i| ≥ 1

2 for all i and |ci,j | ≤ ε
for all i �= j where 1

2
√

n
≤ ε ≤ 1

4 . Then the rank of C satisfies

rank(C) ≥ c log n

ε2 log (1
ε)

.

We give the proof of this lemma in the appendix. For completeness we also
reproduce there the proof of Lemma 2.

We are now ready to prove Theorem 1:

Proof of Theorem 1. Suppose that W is an (ε, N, d)-biased space, and that
W = {w1, w2, ..., wm}, Pr [wi] = ti. Define a |Q|-by-m complex matrix U whose
rows are indexed by the elements of Q and whose columns are indexed by the
elements of W . Set Uq,wi = (ξp)q(wi)

√
ti, where ξp is a primitive root of unity of

order p and the value of q(wi) is computed over Zp. Note that by our choice of
Q and the definition of an (ε, N, d)-biased space, for every q ∈ Q:

|
m∑

i=1

(ξp)q(wi) · ti| ≤ ε + d · p−
n
2 ≤ 2ε.

Small Sample Spaces Cannot Fool Low Degree Polynomials 271

Also, obviously:
m∑

i=1

ti = 1.

For every two distinct polynomials q1, q2 ∈ Q, the polynomial q1 − q2 is also
in Q, and for every wi we have

(ξp)(q1−q2)(wi) = (ξp)q1(wi) · (ξp)−q2(wi).

Set A = UU∗. For every distinct q1, q2 ∈ Q we have:

|Aq1,q2 | = |
m∑

i=1

(ξp)(q1−q2)(wi) · ti| ≤ 2ε.

All the diagonal entries in A are 1. Since the rank of U is at most m the rank of
A is also at most m. By Lemma 3:

m ≥ rank(A) ≥ c′ · log |Q|
ε2 log (1

ε)
≥ c1 ·

(N
2d)d · log p

ε2 log (1
ε)

.

The desired result follows.

2.2 Upper Bound

Here we prove the simple upper bound:

Proof of Propostion 1. Let R ⊆ ZN
p be a random set of size m = 2 ·

(3N
d)d log (p)+p

ε2 . We bound the probability that for a given polynomial P , the
uniform distribution on R is not an ε-approximation with respect to P .

Let L ⊂ Zp, and let μL = m
∑

a∈L Prx∈Un [p(x) = a] be the expected number
of vectors from R such that P evaluates to elements from L. By the Chernoff
bounds (see, e.g., [6], Appendix A), we have:

Pr
R

[Pr
x∈Un

[P (x) ∈ L] − Pr
x∈R

[P (x) ∈ L] > ε] ≤ e
−μL·(εm

μL
)2/2 ≤ e−mε2/2.

By the union bound over all 2p possible sets L, the probability that the uni-
form distribution on R is not an ε-approximation is at most e−mε2/2+p.

The number of normalized monomials of degree at most d is exactly the number
of ways to put d identical balls in N + 1 distinct bins, and is bounded by

(
d + N

d

)

≤
(

e(N + d)
d

)d

≤
(

3N

d

)d

.

Therefore the total number of polynomials of degree at most d is at most

p(3N
d)d

= 2(3N
d)d·log p.

By applying the union bound, with high probability the uniform distribution
on R is an ε-approximation with respect to any polynomial on N variables with
degree at most d, and the theorem follows.

272 N. Alon, I. Ben-Eliezer, and M. Krivelevich

3 Concluding Remarks

For p&
(
n
d

)
, the ratio between the lower and upper bounds is c · (2e)d log (1

ε) for
some constant c. In particular, for fixed d the ratio is Θ(log (1

ε)). This matches
the ratio between the best known upper and lower bounds in the case d = 1 that
corresponds to ε-biased spaces.

Recently, Schechtman and Shraibman [18] proved a strengthening of Lemma 2.
They showed that under the conditions of Lemma 2, if A is also positive-
semidefinite then we need only an upper bound on the values of non-diagonal
entries, instead of an upper bound on their absolute values. In our case, for p = 2
the matrix A is positive semidefinite, and we can thus relax the conditions and
establish a similar lower bound for the size of the support of any distribution in
which no polynomial attains the value zero with probability bigger by ε/2 than
the probability it attains it in the uniform distribution. That is, for p = 2 the
lower bound for the size of the distribution holds, even if there is no lower bound
on the probability that each polynomial attains the value zero.

Lemma 1 can also be formulated in the language of error correcting codes. For
given N and d, it states that every Reed-Muller code with parameters N and d
contains a dense linear subcode in which every nontrivial codeword is balanced.

Recently, Dvir and Shpilka [12] gave an efficient encoding and decoding pro-
cedures for the construction of sum of d copies of ε-biased spaces.

Acknowledgements. We thank Avi Wigderson, Shachar Lovett and Tali Kaufman
for fruitful discussions.

References

1. Alon, N.: Problems and results in extremal combinatorics, I. Discrete Math. 273,
31–53 (2003)

2. Alon, N.: Perturbed identity matrices have high rank: proof and applications. Com-
binatorics, Probability and Computing (to appear)

3. Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.: Testing
k-wise and almost k-wise independence. In: Proceedings of the 39th Annual ACM
Symposium, STOC 2007, pp. 496–505 (2007)

4. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of almost k-
wise independent random variables. Random Structures and Algorithms 3, 289–304
(1992)

5. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struc-
tures and Algorithms 5, 271–284 (1994)

ε-biased space must be essentially the whole space (even for d = 1). It may be
interesting to close the gap between p−

N
2 and d · p−

N
2d . In a recent joint work

with Tali Kaufman, we could actually replace the probabilistic construction with
an explicit set of polynomials with smaller bias. Using this construction, we can
extend our result for every value of ε. The details will appear in the final version
of this paper.

Our bound is valid only for ε ≥ d · p−
N
2d . As noted in [2], for ε ≤ p−

N
2 every

Small Sample Spaces Cannot Fool Low Degree Polynomials 273

6. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)
7. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low

degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the 35th
Annual ACM Symposium, STOC 2003, pp. 612–621 (2003)

8. Bogdanov, A.: Pseudorandom generators for low degree polynomials. In: Proceed-
ings of the 37th Annual ACM Symposium, STOC 2005, pp. 21–30 (2005)

9. Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width
2 branching programs (manuscript, 2008)

10. Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. In: Proceedings of
the 38th Annual Symposium on Foundations of Computer Science (FOCS), pp.
41–51 (2007)

11. Codenotti, B., Pudlák, P., Resta, G.: Some structural properties of low-rank matri-
ces related to computational complexity. Theoret. Comput. Sci. 235, 89–107 (2000)

12. Dvir, Z., Shpilka, A.: Noisy interpolating sets for low degree polynomials. In: Pro-
ceedings of the 23th IEEE Conference on Computational Complexity (CCC), pp.
140–148 (2008)

13. Lovett, S.: Unconditional pseudorandom generators for low degree polynomials.
In: Proceedings of the 40th Annual ACM Symposium, STOC 2008, pp. 557–562
(2008)

14. Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the Gowers
norm is false. In: Proceedings of the 40th Annual ACM Symposium, STOC 2008,
pp. 547–556 (2008)

15. Luby, M., Velickovic, B., Wigderson, A.: Deterministic approximate counting of
depth-2 circuits. In: Proceedings of the 2nd ISTCS (Israeli Symposium on Theo-
retical Computer Science), pp. 18–24 (1993)

16. Motwani, R., Naor, J., Naor, M.: The probabilistic method yields deterministic
parallel algorithms. JCSS 49(3), 478–516 (1994)

17. Naor, J., Naor, M.: Small bias probability spaces: efficient constructions and ap-
plications. In: Proceedings of the 22th Annual ACM Symposium, STOC 1990, pp.
213–223 (1990)

18. Schechtman, G., Shraibman, A.: Lower bounds for local versions of dimension
reductions (manuscript, 2007)

19. Shpilka, A.: Constructions of low-degree and error-correcting ε-biased generators.
In: Proceedings of the 21st Annual IEEE Conference on Computational Complexity
(CCC), Prague, Czech Republic, pp. 33–45 (2006)

20. Viola, E.: The sum of d small-bias generators fools polynomials of degree d. In:
Proceedings of the 23th IEEE Conference on Computational Complexity (CCC),
pp. 124–127 (2008)

A A Complex Variant of Lemma 2

In this section we reproduce the proof of Lemma 2 (omitting the final detailed
computation) as given in [2], and also prove Lemma 3.

We start with the following lemma from which Lemma 2 will follow:

Lemma 4. There exists an absolute positive constant c so that the following
holds. Let B be an n by n real matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all
i
= j. If 1√

n
≤ ε < 1/2, then

rank(B) ≥ c

ε2 log(1/ε)
logn.

274 N. Alon, I. Ben-Eliezer, and M. Krivelevich

We need the following well known lemma proved, among other places, in [11], [1].

Lemma 5. Let A = (ai,j) be an n by n real, symmetric matrix with ai,i = 1 for
all i and |ai,j | ≤ ε for all i
= j. If the rank of A is d, then

d ≥ n

1 + (n− 1)ε2
.

In particular, if ε ≤ 1√
n

then d > n/2.

Proof: Let λ1, . . . , λn denote the eigenvalues of A, then their sum is the trace
of A, which is n, and at most d of them are nonzero. Thus, by Cauchy-Schwartz,∑n

i=1 λ
2
i ≥ d(n/d)2 = n2/d. On the other hand, this sum is the trace of AtA,

which is precisely
∑

i,j a
2
i,j ≤ n + n(n − 1)ε2. Hence n + n(n − 1)ε2 ≥ n2/d,

implying the desired result.

Lemma 6. Let B = (bi,j) be an n by n matrix of rank d, and let P (x) be an
arbitrary polynomial of degree k. Then the rank of the n by n matrix (P (bi,j))
is at most

(
k+d

k

)
. Moreover, if P (x) = xk then the rank of (P (bi,j)) is at most

(
k+d−1

k

)
.

Proof: Let v1 = (v1,j)n
j=1,v2 = (v2,j)n

j=1, . . . ,vd = (vd,j)n
j=1 be a basis of

the row-space of B. Then the vectors (vk1
1,j · v

k2
2,j · · · v

k
d,j)

n
j=1, where k1, k2, . . . , kd

range over all non-negative integers whose sum is at most k, span the rows of
the matrix (P (bi,j)). In case P (x) = xk it suffices to take all these vectors cor-
responding to k1, k2, . . . , kd whose sum is precisely k.

Proof of Lemma 4. We may and will assume that B is symmetric, since
otherwise we simply apply the result to (B +Bt)/2 whose rank is at most twice
the rank of B. Put d = rank(B). If ε ≤ 1/nδ for some fixed δ > 0, the result
follows by applying Lemma 5 to a ! 1

ε2 " by ! 1
ε2 " principal submatrix of B. Thus

we may assume that ε ≥ 1/nδ for some fixed, small δ > 0. Put k = ! log n
2 log(1/ε)",

n′ = ! 1
ε2
" and note that n′ ≤ n and that εk ≤ 1√

n′ . By Lemma 6 the rank of

the n′ by n′ matrix (bki,j)i,j≤n′ is at most
(
d+k

k

)
≤ (e(k+d)

k)k. On the other hand,
by Lemma 5, the rank of this matrix is at least n′/2. Therefore

(
e(k + d)
k

)k

≥ n
′

2
=

1
2
! 1
ε2k
",

and the desired result follows by some simple (though somewhat tedious) ma-
nipulation, which we omit.

Proof of Lemma 2. Let C = (ci,j) be the n by n diagonal matrix defined by
ci,i = 1/bi,i for all i. Then every diagonal entry of CB is 1 and every off-diagonal
entry is of absolute value at most 2ε. The result thus follows from Lemma 4.

d

k

Small Sample Spaces Cannot Fool Low Degree Polynomials 275

Proof of Lemma 3. Let P be an n by n diagonal matrix defined by pi,i = 1/ci,i
and set D = CP . Then every diagonal entry of D is 1 and every off-diagonal en-
try is of absolute value at most 2ε. Set D′ = (D+D∗)/2. Then D′ is a real matrix
and rank(D′) ≤ 2 · rank(D). The desired result follows by applying Lemma 4
to D′.

Derandomizing the Isolation Lemma and Lower Bounds
for Circuit Size

V. Arvind and Partha Mukhopadhyay

Institute of Mathematical Sciences
C.I.T Campus,Chennai 600 113, India

{arvind,partham}@imsc.res.in

Abstract. The isolation lemma of Mulmuley et al [MVV87] is an important
tool in the design of randomized algorithms and has played an important role
in several nontrivial complexity upper bounds. On the other hand, polynomial
identity testing is a well-studied algorithmic problem with efficient randomized
algorithms and the problem of obtaining efficient deterministic identity tests has
received a lot of attention recently. The goal of this paper is to compare the isola-
tion lemma with polynomial identity testing:

1. We show that derandomizing reasonably restricted versions of the isolation
lemma implies circuit size lower bounds. We derive the circuit lower bounds
by examining the connection between the isolation lemma and polynomial
identity testing. We give a randomized polynomial-time identity test for non-
commutative circuits of polynomial degree based on the isolation lemma.
Using this result, we show that derandomizing the isolation lemma implies
noncommutative circuit size lower bounds. For the commutative case, a
stronger derandomization hypothesis allows us to construct an explicit mul-
tilinear polynomial that does not have subexponential size commutative cir-
cuits. The restricted versions of the isolation lemma we consider are natural
and would suffice for the standard applications of the isolation lemma.

2. From the result of Klivans-Spielman [KS01] we observe that there is a ran-
domized polynomial-time identity test for commutative circuits of poly-
nomial degree, also based on a more general isolation lemma for linear
forms. Consequently, derandomization of (a suitable version of) this isola-
tion lemma implies that either NEXP �⊂ P/poly or the Permanent over Z
does not have polynomial-size arithmetic circuits.

1 Introduction

We recall the Isolation Lemma [MVV87]. Let [n] denote the set {1, 2, · · · , n}. Let U
be a set of size n and F ⊆ 2U be any family of subsets of U . Let w : U → Z+ be a
weight function that assigns positive integer weights to the elements of U . For T ⊆ U ,
define its weight w(T) as w(T) =

∑
u∈T w(u). Then Isolation Lemma guarantees that

for any family of subsets F of U and for any random weight assignmentw : U → [2n],
with high probability there will be a unique minimum weight set in F .

Lemma 1 (Isolation Lemma). [MVV87] Let U be an universe of size n and F be any
family of subsets of U . Let w : U → [2n] denote a weight assignment function to
elements of U . Then,

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 276–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 277

Probw[There exists a unique minimum weight set in F] ≥ 1
2
,

where the weight function w is picked uniformly at random.

In the seminal paper [MVV87] Mulmuley et al apply the isolation lemma to give a
randomized NC algorithm for computing maximum cardinality matchings for general
graphs (also see [ARZ99]). Since then the isolation lemma has found several other ap-
plications. For example, it is crucially used in the proof of the result that NL ⊂ UL/poly
[AR00] and in designing randomized NC algorithms for linear representable matroid
problems [NSV94]. It is also known that the isolation lemma can be used to prove the
Valiant-Vazirani lemma that SAT is many-one reducible via randomized reductions to
USAT.

Whether the matching problem is in deterministic NC, and whether NL ⊆ UL are
outstanding open problems. Thus, the question whether the isolation lemma can be
derandomized is clearly important.

As noted in [Agr07], it is easy to see by a counting argument that the isolation lemma
can not be derandomized, in general, because there are 22 set systems F . More for-
mally, the following is observed in [Agr07].

Observation 1. [Agr07] The Isolation Lemma can not be fully derandomized if we
allow weight functions w : U → [nc] for a constant c (i.e. weight functions with a
polynomial range). More precisely, for any polynomially bounded collection of weight
assignments {wi}i∈[n 1] with weight range [nc], there exists a family F of [n] such that
for all j ∈ [nc1], there exists two minimal weight subsets with respect to wj .

However that does not rule out the derandomization of any special usage of the isola-
tion lemma. Indeed, for all applications of the isolation lemma (mentioned above, for
instance) we are interested only in exponentially many set systems F ⊆ 2U .

We make the setting more precise by giving a general framework. Fix the universe
U = [n] and consider an n-input boolean circuit C where size(C) = m. The set 2U

of all subsets of U is in a natural 1-1 correspondence with the length n-binary strings
{0, 1}n: each subset S ⊆ U corresponds to its characteristic binary string χS ∈ {0, 1}n
whose ith bit is 1 iff i ∈ S. Thus the n-input boolean circuit C implicitly defines the
set system

FC = {S ⊆ [n] | C(χS) = 1}.
As an easy consequence of Lemma 1 we have the following.

Lemma 2. Let U be an universe of size n and C be an n-input boolean circuit of size
m. Let FC ⊆ 2U be the family of subsets of U defined by circuit C. Let w : U → [2n]
denote a weight assignment function to elements of U . Then,

Probw[There exists a unique minimum weight set in FC] ≥ 1
2
,

where the weight functionw is picked uniformly at random. Furthermore, there is a col-
lection of weight functions {wi}1≤i≤p(m,n), where p(m,n) is a fixed polynomial, such
that for each FC there is a weight function wi w.r.t. which there is a unique minimum
weight set in FC .

n

c

278 V. Arvind and P. Mukhopadhyay

Lemma 2 allows us to formulate two natural and reasonable derandomization hypothe-
ses for the isolation lemma.

Hypothesis 1. There is a deterministic algorithm A1 that takes as input (C, n),
where C is an n-input boolean circuit, and outputs a collection of weight functions
w1, w2, · · · , wt such that wi : [n] → [2n], with the property that for some wi there
is a unique minimum weight set in the set system FC . Furthermore, A1 runs in time
subexponential in size(C).

Hypothesis 2. There is a deterministic algorithmA2 that takes as input (m,n) in unary
and outputs a collection of weight functions w1, w2, · · · , wt such that wi : [n]→ [2n],
with the property that for each size m boolean circuit C with n inputs there is some
weight function wi w.r.t. which FC has a unique minimum weight set. Furthermore,
A2 runs in time polynomial inm.

Clearly, Hypothesis 2 is stronger than Hypothesis 1. It demands a “black-box” de-
randomization in the sense thatA2 efficiently computes a collection of weight functions
that will work for any set system in 2U specified by a boolean circuit of sizem.

Notice that a random collection w1, · · · , wt of weight functions will fulfil the re-
quired property of either hypotheses with high probability. Thus, the derandomization
hypotheses are plausible. Indeed, it is not hard to see that suitable standard hardness
assumptions that yield pseudorandom generators for derandomizing BPP would imply
these hypotheses. We do not elaborate on this here. In this paper we show the following
consequences of Hypotheses 1 and 2.

1. Hypothesis 1 implies that either NEXP
⊂ P/poly or the Permanent does not have
polynomial size noncommutative arithmetic circuits.

2. Hypothesis 2 implies that for almost all n there is an explicit multilinear polyno-
mial fn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] in commuting variables xi (where by
explicit we mean that the coefficients of the polynomial fn are computable by a uni-
form algorithm in time exponential in n) that does not have commutative arithmetic
circuits of size 2o(n) (where the field F is either the rationals or a finite field).

The first result is a consequence of an identity testing algorithm for noncommutative
circuits that is based on the isolation lemma. This algorithm is based on ideas from
[AMS08] where we used automata theory to pick matrices from a suitable matrix ring
and evaluate the given arithmetic circuit on these matrices. In the next section, we de-
scribe the background and then give the identity test in the following section.

Remark 1. Notice that derandomizing the isolation lemma in specific applications like
the RNC algorithm for matchings [MVV87] and the containment NL ⊆ UL/poly
[AR00] might still be possible without implying such circuit size lower bounds.

Noncommutative Circuits

Noncommutative polynomial identity testing has been the focus of recent research
[RS05, BW05, AMS08]. One reason to believe that it could be easier than the com-
mutative case to derandomize is because lower bounds are somewhat easier to prove

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 279

in the noncommutative setting as shown by Nisan [N91]. Using a rank argument Nisan
has shown exponential size lower bounds for noncommutative formulas (and noncom-
mutative algebraic branching programs) that compute the noncommutative permanent
or determinant polynomials in the ring F{x1, · · · , xn} where xi are noncommuting
variables. In [CS07], Chien and Sinclair further extend Nisan’s idea to prove exponen-
tial size lower bounds for noncommutative formulas computing noncommutative per-
manent or determinant polynomial over matrix algebra, quaternion algebra and group
algebra. However, no superpolynomial lower bounds are known for the size of noncom-
mutative circuits for explicit polynomials.

Our result in this paper is similar in flavour to the Impagliazzo-Kabanets result
[KI03], where for commutative polynomial identity testing they show that derandom-
izing polynomial identity testing implies circuit lower bounds. Specifically, it implies
that either NEXP
⊂ P/poly or the integer Permanent does not have polynomial-size
arithmetic circuits.

In [AMS08] we have observed that an analogous result also holds in the noncom-
mutative setting. I.e., if noncommutative PIT has a deterministic polynomial-time algo-
rithm then either NEXP
⊂ P/poly or the noncommutative Permanent function does not
have polynomial-size noncommutative circuits.

The connection that we show here between derandomizing the isolation lemma and
noncommutative circuit size lower bounds is based on the above observation and our
noncommutative polynomial identity test based on the isolation lemma.

Commutative Circuits

As a consequence of Hypothesis 2 we are able to show that for almost all n there is an
explicit multilinear polynomial fn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] in commuting
variables xi (where by explicit we mean that the coefficients of the polynomial fn

are computable by a uniform algorithm in time exponential in n) that does not have
commutative arithmetic circuits of size 2o(n) (where the field F is either the rationals or
a finite field). This is a fairly easy consequence of the univariate substitution idea and
the observation that for arithmetic circuits computing multilinear polynomials, we can
efficiently test if a monomial has nonzero coefficient (Lemma 4).

Klivans and Spielman [KS01] apply a more general form of the isolation lemma to
obtain a polynomial identity test (in the commutative) case. This lemma is stated below.

Lemma 3. [KS01, Lemma 4] Let L be any collection of linear forms over variables
z1, z2, · · · , zn with integer coefficients in the range {0, 1, · · · ,K}. If each zi is picked
independently and uniformly at random from {0, 1, · · · , 2Kn} then with probabil-
ity at least 1/2 there is a unique linear form from C that attains minimum value at
(z1, · · · , zn).

We can formulate a restricted version of this lemma similar to Lemma 2 that will apply
only to sets of linear formsL accepted by a boolean circuitC. More precisely, an integer
vector (α1, · · · , αn) such that αi ∈ {0, · · · ,K} is in L if and only if (α1, · · · , αn) is
accepted by the boolean circuit C.

280 V. Arvind and P. Mukhopadhyay

Thus, for this form of the isolation lemma we can formulate another derandomiza-
tion hypothesis analogous to Hypothesis 2 as follows.

Hypothesis 3. There is a deterministic algorithmA3 that takes as input (m,n,K) and
outputs a collection of weight functions w1, w2, · · · , wt such that wi : [n] → [2Kn],
with the property that for any sizem boolean circuit C that takes as input (α1, · · · , αn)
with αi ∈ {0, · · · ,K} there is some weight vectorwi for which there is a unique linear
form (α1, · · · , αn) accepted by C which attains the minimum value

∑n
j=1 wi(j)αj .

Furthermore,A3 runs in time subexponential in size(C).
We show that Hypothesis 3 yields a lower bound consequence for the integer

permanent.

2 Automata Theory Background

We recall some standard automata theory [HU78]. Fix a finite automaton A =
(Q,Σ, δ, q0, qf) which takes inputs in Σ∗, Σ is the alphabet, Q is the set of states,
δ : Q×Σ → Q is the transition function, and q0 and qf are the initial and final states
respectively (we only consider automata with unique accepting states). For each b ∈ Σ,
let δb : Q → Q be defined by: δb(q) = δ(q, b). These functions generate a submonoid
of the monoid of all functions from Q to Q. This is the transition monoid of the au-
tomaton A and is well-studied in automata theory [Str94, page 55]. We now define the
0-1 matrixMb ∈ F|Q|×|Q| as follows:

Mb(q, q′) =
{

1 if δb(q) = q′,
0 otherwise.

The matrixMb is the adjacency matrix of the graph of δb. AsMb is a 0-1 matrix, we
can consider it as a matrix over any field F.

For a string w = w1w2 · · ·wk ∈ Σ∗ we define Mw to be the matrix product
Mw1Mw2 · · ·Mw . If w is the empty string, define Mw to be the identity matrix of
dimension |Q| × |Q|. Let δw denote the natural extension of the transition function to
w; if w is the empty string, δw is simply the identity function. We have

Mw(q, q′) =
{

1 if δw(q) = q′,
0 otherwise.

(1)

Thus,Mw is also a matrix of zeros and ones for any string w. Also,Mw(q0, qf) = 1 if
and only if w is accepted by the automatonA.

2.1 Noncommutative Arithmetic Circuits and Automata

This subsection is reproduced from [AMS08] to make this paper self-contained.
Consider the ring F{x1, · · · , xn} of polynomials with noncommuting variables

x1, · · · , xn over a field F. Let C be a noncommutative arithmetic circuit comput-
ing a polynomial f ∈ F{x1, · · · , xn}. Let d be an upper bound on the degree of
f . We can consider monomials over x1, · · · , xn as strings over the alphabet Σ =
{x1, x2, · · · , xn}.

k

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 281

We now explain the role of the automatonA in testing if the polynomial f computed by
C is identically zero. Our basic idea is to design an automaton A that accepts exactly
one word among all the words that correspond to the nonzero terms in f . This would
ensure that Mout(q0, qf) is the nonzero coefficient of the monomial filtered out. More
precisely, we will use the above theorem primarily in the following form, which we
state as a corollary.

Corollary 1. [AMS08] Given any arithmetic circuit C computing polynomial f ∈
F{x1, · · · , xn} and any finite automaton A = (Q,Σ, δ, q0, qf), then the output Mout

of C on A satisfies:

(1) If A rejects every string corresponding to a monomial in f , thenMout(q0, qf) = 0.
(2) If A accepts exactly one string corresponding to a monomial in f , then

Mout(q0, qf) is the nonzero coefficient of that monomial in f .

Moreover,Mout can be computed in time poly(|C|, |A|, n).

Let A = (Q, Σ, δ, q0, qf) be a finite automaton over the alphabet Σ =
{x1, x2, · · · , xn}. We have matrices Mxi ∈ F|Q|×|Q| as defined in Section 2. We are
interested in the output matrix obtained when the inputs xi to the circuit C are replaced
by the matrices Mxi . This output matrix is defined in the obvious way: the inputs are
|Q| × |Q| matrices and we do matrix additions and multiplications at the circuit’s addi-
tion and multiplication gates, respectively. We define the output of C on the automaton
A to be this output matrix Mout. Clearly, given circuit C and automaton A, the matrix
Mout can be computed in time poly(|C|, |A|, n).

We observe the following property: the matrix output Mout of C on A is determined
completely by the polynomial f computed by C; the structure of the circuit C is other-
wise irrelevant. This is important for us, since we are only interested in f . In particular,
the output is always 0 when f ≡ 0.

More specifically, consider what happens when C computes a polynomial with a
single term, say f(x1, · · · , xn) = cxj1 · · · xjk

, with a non-zero coefficient c ∈ F.
In this case, the output matrix Mout is clearly the matrix cMxj1

· · ·Mxjk
= cMw,

where w = xj1 · · · xjk
. Thus, by Equation 1 above, we see that the entry Mout(q0, qf)

is 0 when A rejects w, and c when A accepts w. In general, suppose C computes a
polynomial f =

∑t
i=1 cimi with t nonzero terms, where ci ∈ F \ {0} and mi =

∏di

j=1 xij , where di ≤ d. Let wi denotes the string representing monomial mi. Finally,

let Sf
A = {i ∈ {1, · · · , t} | A accepts wi}.

Theorem 2. [AMS08] Given any arithmetic circuit C computing polynomial f ∈
F{x1, · · · , xn} and any finite automaton A = (Q, Σ, δ, q0, qf), then the output Mout

of C on A is such that Mout(q0, qf) =
∑

i∈Sf
A

ci.

Proof. The proof is an easy consequence of the definitions and the properties of
the matrices Mw stated in Section 2. Note that Mout = f(Mx1, · · · , Mxn). But
f(Mx1, · · · , Mxn) =

∑s
i=1 ciMwi , where wi is the string representing monomial mi.

By Equation 1, we know that Mwi(q0, qf) is 1 if wi is accepted by A, and 0 otherwise.
Adding up, we obtain the result.

282 V. Arvind and P. Mukhopadhyay

Proof. Both points (1) and (2) are immediate consequences of the above theorem. The
complexity of computingMout easily follows from its definition.

Another corollary to the above theorem is the following.

Corollary 2. [AMS08] Given any arithmetic circuit C over F{x1, · · · , xn}, and any
monomial m of degree dm, we can compute the coefficient of m in C in time
poly(|C|, dm, n).

Proof. Apply Corollary 1 with A being any standard automaton that accepts the string
corresponding to monomialm and rejects every other string. Clearly, A can be chosen
so that A has a unique accepting state and |A| = O(ndm).

In fact corollary 2 says that, given an arithmetic circuitC and a monomialm, there is an
uniform way to generate a polynomial-size boolean circuit C′ such that C′ can decide
whetherm is a nonzero monomial in the polynomial computed byC. The boolean circuit
C′ is simply the description of the algorithm described in the proof of corollary 2.

Corollary 3. Given an arithmetic circuit C over Fx1, · · · , xn and a monomial m of
degree d, there is an uniform polynomial-time algorithm that generates a poly(|C|, d, n)
size boolean circuit C′ that accepts (C,m) if and only if m is a nonzero monomial in
the polynomial computed by C.

Remark 2. Corollary 2 is very unlikely to hold in the commutative ring F[x1, · · · , xn].
For, it is easy to see that in the commutative case computing the coefficient of the mono-
mial

∏n
i=1 xi in even a product of linear forms Πi�i is at least as hard as computing

the permanent over F, which is #P-complete when F = Q. However, we can show the
following for commutative circuits computing multilinear polynomials.

Corollary 4. Given a commutative arithmetic circuit Ĉ over F[x1, · · · , xn], with the
promise that Ĉ computes a multilinear polynomial, and any monomial m =

∏
i∈S xi

where S ⊆ [n], we can compute the coefficient ofm in C in time poly(|Ĉ|, n). Further-
more, there is a uniform polynomial-time algorithm that generates a boolean circuit C′

of size poly(|C|, n) such that C′ takes as input a description of circuit C and monomial
m and it decides whether the coefficient of m is nonzero in the polynomial computed
by C.

Proof. Letm =
∏

i∈S xi be the given monomial. The algorithm will simply substitute
1 for each xi such that i ∈ S and 0 for each xi such that i
∈ S and evaluate the
circuit Ĉ to find the coefficient of the monomial m. The boolean circuit C′ is simply
the description of the above algorithm. It is clear that C′ can be uniformly generated.

3 Noncommutative Identity Test Based on Isolation Lemma

We now describe a new identity test for noncommutative circuits based on the isolation
lemma. It is directly based on the results from [AMS08]. This is conceptually quite
different from the randomized identity test of Bogdanov and Wee [BW05].

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 283

Theorem 3. Let f ∈ F{x1, x2, · · · , xn} be a polynomial given by an arithmetic circuit
C of size m. Let d be an upper bound on the degree of f . Then there is a randomized
algorithm which runs in time poly(n,m, d) and can test whether f ≡ 0.

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Let F denotes the family of subsets of U corresponding to the nonzero monomials
of f i.e,

F = {Sv | v is a nonzero monomial in f}
By the Isolation Lemma we know that if we assign random weights from [2dn] to

the elements of U , with probability at least 1/2, there is a unique minimum weight
set in F . Our aim will be to construct a family of small size automatons which are
indexed by weights w ∈ [2nd2] and t ∈ [d], such that the automata Aw,t will precisely
accept all the strings (corresponding to the monomials) v of length t, such that the
weight of Sv is w. Then from the isolation lemma we will argue that the automata
corresponding to the minimum weight will precisely accept only one string (monomial).
Now for w ∈ [2nd2], and t ∈ [d], we describe the construction of the automaton
Aw,t = (Q,Σ, δ, q0, F) as follows:Q = [d]×[2nd2]∪{(0, 0)},Σ = {x1, x2, · · · , xn},
q0 = {(0, 0)} and F = {(t, w)}. We define the transition function δ : Q×Σ → Q,

δ((i, V), xj) = (i+ 1, V +W),

whereW is the random weight assign to (i+ 1, j). Our automata familyA is simply,

A = {Aw,t | w ∈ [2nd2], t ∈ [d]}.

Now for each of the automaton Aw,t ∈ A, we mimic the run of the automaton Aw,t on
the circuit C as described in Section 2. If the output matrix corresponding to any of the
automaton is nonzero, our algorithm declares f
= 0, otherwise declares f ≡ 0.

4 Noncommutative Identity Testing and Circuit Lower Bounds

For commutative circuits, Impagliazzo and Kabanets [KI03] have shown that deran-
domizing PIT implies circuit lower bounds. It implies that either NEXP
⊂ P/poly or the
integer Permanent does not have polynomial-size arithmetic circuits.

Proof. Let [d] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}. Consider the set of tuples
U = [d] × [n]. Let v = xi1xi2 · · · xit be a nonzero monomial of f . Then the monomial
can be identified with the following subset Sv of U :

The correctness of the algorithm follows easily from the Isolation Lemma. By the
Isolation Lemma we know, on random assignment, a unique set S in F gets the min-
imum weight wmin with probability at least 1/2. Let S corresponds to the monomial
xi1xi2 · · ·xi�

. Then the automaton Awmin,� accepts the string (monomial) xi1xi2 · · · xi�
.

Furthermore, as no other set in F get the same minimum weight, Awmin,� rejects all the
other monomials. So the (q0, qf) entry of the output matrix Mo, that we get in running
Awmin,� on C is nonzero. Hence with probability at least 1/2, our algorithm correctly
decide that f is nonzero. The success probability can be boosted to any constant by
standard independent repetition of the same algorithm. Finally, it is trivial to see that
the algorithm always decides correctly if f ≡ 0.

284 V. Arvind and P. Mukhopadhyay

In [AMS08] we have observed that this also holds in the noncommutative set-
ting. That is, if noncommutative PIT has a deterministic polynomial-time algorithm
then either NEXP
⊂ P/poly or the noncommutative Permanent function does not have
polynomial-size noncommutative circuits. We note here that noncommutative circuit
lower bounds are sometimes easier to prove than for commutative circuits. E.g. Nisan
[N91], Chien and Sinclair [CS07] have shown exponential-size lower bounds for non-
commutative formula size and further results are known for pure noncommutative cir-
cuits [N91, RS05]. However, proving superpolynomial size lower bounds for general
noncommutative circuits computing the Permanent has remained an open problem.

To keep this paper self contained, we briefly recall the discussion from [AMS08].
The noncommutative Permanent function over integer Perm(x1, · · · , xn) ∈

Z{x1, · · · , xn} (Z is the set of integer) is defined as:

Theorem 4. [AMS08] If PIT for noncommutative circuits of polynomial degree
C(x1, · · · , xn) ∈ Z{x1, · · · , xn} is in SUBEXP, then either NEXP
⊂ P/poly or the
noncommutative Permanent function does not have polynomial-size noncommutative
circuits.

Proof. Suppose NEXP ⊂ P/poly. Then, by the main result of [IKW02] we have
NEXP = MA. Furthermore, by Toda’s theorem MA ⊆ PPermZ , where the oracle
computes the integer permanent. Now, assuming PIT for noncommutative circuits
of polynomial degree is in deterministic subexponential-time, we will show that the
(noncommutative) Permanent function does not have polynomial-size noncommutative
circuits. Suppose to the contrary that it does have polynomial-size noncommutative cir-
cuits. Clearly, we can use it to compute the integer permanent as well. Furthermore, as
in [KI03] we notice that the noncommutative n × n Permanent is also uniquely char-
acterized by the identities p1(x) ≡ x and pi(X) =

∑i
j=1 x1jpi−1(Xj) for 1 < i ≤ n,

where X is a matrix of i2 noncommuting variables and Xj is its j-th minor w.r.t. the
first row. I.e. the polynomials pi, 1 ≤ i ≤ n satisfy these n identities over noncom-
muting variables xij , 1 ≤ i, j ≤ n if and only if pi computes the i × i permanent of
noncommuting variables. The rest of the proof is exactly as in Impagliazzo-Kabanets
[KI03]. We can easily describe an NP machine to simulate a PPermZ computation. The
NP machine guesses a polynomial-size noncommutative circuit for Perm on m ×m
matrices, where m is a polynomial bound on the matrix size of the queries made in
the computation of the PPermZ machine. Then the NP machine verifies that the circuit
computes the permanent by checking the m noncommutative identities it must satisfy.
This can be done in SUBEXP by assumption. Finally, the NP machine uses the cir-
cuit to answer all the integer permanent queries that are made in the computation of
PPermZ machine. Putting it together, we get NEXP ⊆ NSUBEXP which contradicts the
nondeterministic time hierarchy theorem.

Perm(x1, · · · , xn) =
∑

σ∈Sn

n∏

i=1

xi,σ(i).

Let SUBEXP denote ∩ε>0DTIME(2nε

) and NSUBEXP denote ∩ε>0NTIME(2nε

).

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 285

5 The Results

We are now ready to prove our first result. Suppose the derandomization Hypothesis
1 holds (as stated in the introduction): i.e. suppose there is a deterministic algorithmA1

that takes as input (C, n) where C is an n-input boolean circuit and in subexponential
time computes a set of weight functions w1, w2, · · · , wt, wi : [n] → [2n] such that the
set system FC defined by the circuit C has a unique minimum weight set w.r.t. at least
one of the weight functions wi.

Let C′(x1, x2, · · · , xn) be a noncommutative arithmetic circuit of degree d bounded
by a polynomial in size(C ′). By Corollary 2, there is a deterministic polynomial-time
algorithm that takes as input C′ and a monomial m of degree at most d and accepts
if and only if the monomial m has nonzero coefficient in the polynomial computed
by C′. Moreover by corollary 3, we have a uniformly generated boolean circuit C of
size polynomial in size(C ′) that accepts only the monomials xi1xi2 · · ·xi , k ≤ d that
have nonzero coefficients in the polynomial computed byC′. Now, as a consequence of
Theorem 3 and its proof we have a deterministic subexponential algorithm for checking
if C′ ≡ 0, assuming algorithm A1 exists. Namely, we compute the boolean circuit C
from C′ in polynomial time. Then, invoking algorithmA1 with C as input we compute
at most subexponentially many weight functionsw1, · · · , wt. Then, following the proof
of Theorem 3 we construct the automata corresponding to these weight functions and
evaluateC′ on the matrices that each of these automata define in the prescribed manner.
By assumption about algorithm A1, if C′
≡ 0 then one of these wi will give matrix
inputs for the variables xj , 1 ≤ j ≤ n on which C′ evaluates to a nonzero matrix. We
can now show the following theorem.

Theorem 5. If the subexponential time algorithm A1 satisfying Hypothesis 1 exists
then noncommutative identity testing is in SUBEXP which implies that either NEXP
⊂
P/poly or the Permanent does not have polynomial size noncommutative circuits.

Proof. The result is a direct consequence of the discussion preceding the theorem state-
ment and Theorem 4.

Commutative Circuits

We now turn to the result under the stronger derandomization Hypothesis 2 (stated in
the introduction). More precisely, suppose there is a deterministic algorithm A2 that
takes as input (m,n) and in time polynomial in m computes a set of weight func-
tions w1, w2, · · · , wt, wi : [n] → [2n] such that for each n-input boolean circuit C of
size m, the set system FC defined by the circuit C has a unique minimum weight
set w.r.t. at least one of the weight functions wi. We show that there is an explicit
polynomial1 f(x1, · · · , xn) in commuting variables xi that does not have subexpo-
nential size commutative circuits. The following theorem is similar in flavour to the
Agrawal’s result that a black-box derandomization of PIT for a class of arithmetic
circuit via pseudorandom generator will show similar lower bound (Lemma 5.1 of
[Agr05]).

1 By explicit we mean that the coefficients of f are computable in time exponential in n.

k

286 V. Arvind and P. Mukhopadhyay

Theorem 6. Suppose there is a polynomial-time algorithm A2 satisfying Hypothesis 2.
Then for all but finitely many n there is an explicit multilinear polynomial (where by
explicit we mean that the coefficients of the polynomial fn are computable by a uniform
algorithm in time exponential in n) f(x1, · · · , xn) ∈ F[x1, x2, · · · , xn] (where F is

either Q or a finite field) that is computable in 2nO(1)
time (by a uniform algorithm) and

does not have arithmetic circuits of size 2o(n).

Proof. We will pick an appropriate multilinear polynomial f ∈ F[x1, x2, · · · , xn]:

f(x1, x2, · · · , xn) =
∑

S⊆[n]

cS

∏

i∈S

xi,

where the coefficients cS ∈ F will be determined appropriately so that the polynomial
f has the claimed property.

Suppose A2 runs in time mc for constant c > 0, where m denotes the size bound
of the boolean circuit C defining set system FC . Notice that the number t of weight
functions output by A2 is bounded by mc.

The total number of coefficients cS of f is 2n. For each weight function wi let
(wi,1, · · · , wi,n) be the assignments to the variables xi. For each weight function
wi, 1 ≤ i ≤ t we write down the following equations

f(ywi,1 , ywi,2 , · · · , ywi,n) = 0.

Since f is of degree at most n, and the weights wi,j are bounded by 2n,
f(ywi,1 , ywi,2 , · · · , ywi,n) is a univariate polynomial of degree at most 2n2 in y. Thus,
each of the above equations will give rise to at most 2n2 linear equations in the un-
knowns cS .

In all, this will actually give us a system of at most 2n2mc linear equations over
F in the unknown scalars cS . Since the total number of distinct monomials is 2n, and
2n asymptotically exceeds mc for m = 2o(n), the system of linear equations has a
nontrivial solution in the cS provided m = 2o(n). Furthermore, a nontrivial solution for
cS can be computed using Gaussian elimination in time exponential in n.

We claim that f does not have commutative circuits of size 2o(n) over F. Assume
to the contrary that Ĉ(x1, · · · , xn) is a circuit for f(x1, · · · , xn) of size 2o(n). By
Lemma 4 notice that we can uniformly construct a boolean circuit C of size m = 2o(n)

that will take as input a monomial
∏

i∈S xi (encoded as an n bit boolean string repre-

senting S as a subset of [n]) and test if it is nonzero in Ĉ and hence in f(x1, · · · , xn).
Assuming Hypothesis 2, let w1, · · · , wt be the weight functions output by A2 for

input (m, n). By Hypothesis 2, for some weight function wi there is a unique mono-
mial

∏
j∈S xj such that

∑
j∈S wi,j takes the minimum value. Clearly, the commutative

circuit Ĉ must be nonzero on substituting ywi,j for xj (the coefficient of y
�

j∈S wi,j

will be nonzero). However, f evaluates to zero on the integer assignments prescribed
by all the weight functions w1, · · · , wt. This is a contradiction to the assumption and it
completes the proof.

Remark 3. We note that Hypothesis 2 also implies the existence of an explicit polyno-
mial in noncommuting variables that does not have noncommutative circuits of subex-
ponential size (we can obtain it as an easy consequence of the above proof).

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 287

We now show that under the derandomization Hypothesis 3 yields a different conse-
quence (about the integer permanent rather than some explicit function).

Theorem 7. If a subexponential-time algorithmA3 satisfying Hypothesis 3 exists then
identity testing over Z is in SUBEXP which implies that either NEXP
⊂ P/poly or the
integer Permanent does not have polynomial size arithmetic circuits.

Proof. Using Lemma 3 it is shown in [KS01, Theorem 5] that there is a randomized
identity test for small degree polynomials in Q[x1, · · · , xn], where the polynomial is
given by an arithmetic circuit Ĉ of polynomially bounded degree d. The idea is to pick a
random weight vectorw : [n]→ [2nd] and replace the indeterminate xi by yw(i), where
d is the total degree of the input polynomial. As the circuit Ĉ has small degree, after
this univariate substitution the circuit can be evaluated in deterministic polynomial time
to explicitly find the polynomial in y. By Lemma 3 it will be nonzero with probability
1/2 if Ĉ computes a nonzero polynomial.

Now, we invoke the derandomization Hypothesis 3. We can apply the Klivans-
Spielman polynomial identity test, explained above, to the arithmetic circuit Ĉ for each
of the t weight vectors w1, · · · , wt generated by algorithmA3 to obtain a subexponen-
tial deterministic identity test for the circuit Ĉ by the properties of A3. Now, following
the argument of Impagliazzo-Kabanets [KI03] it is easy to derive that the integer Per-
manent does not have polynomial size arithmetic circuits.

Remark 4. Although the permanent is a multilinear polynomial, notice that Hypothesis
2 does not seem strong enough to prove the above theorem. The reason is that the arith-
metic circuit for the permanent that is nondeterministically guessed may not compute
a multilinear polynomial and hence the application of Lemma 4 is not possible. There
does not appear any easy way of testing if the guessed circuit computes a multilinear
polynomial.

Remark 5. We can formulate both Hypothesis 1 and Hypothesis 2 more generally by
letting the running time of algorithms A1 and A2 be a function t(m,n). We will then
obtain suitably quantified circuit lower bound results as consequence.

6 Discussion

An interesting open question is whether derandomizing similar restricted versions of
the Valiant-Vazirani lemma also implies circuit lower bounds. We recall the Valiant-
Vazirani lemma as stated in the original paper [VV86].

Coming to the proof of this theorem, if NEXP �⊂ P/poly then we are done. So,
suppose NEXP ⊂ P/poly. Notice that given any monomial xd1

1 · · · xdn
n of total degree

bounded by d we can test if it is a nonzero monomial of Ĉ in exponential time (explic-
itly listing down the monomials of the polynomial computed by Ĉ). Therefore, since
NEXP ⊂ P/poly there is a polynomial-size boolean circuit C that accepts the vector
(d1, · · · , dn) iff xd1

1 · · · xdn
n is a nonzero monomial in the given polynomial (as required

for application of Hypothesis 3).

288 V. Arvind and P. Mukhopadhyay

Lemma 4. Let S ⊆ {0, 1}t. Suppose wi, 1 ≤ i ≤ t are picked uniformly at random
from {0, 1}t. For each i, let Si = {v ∈ S | v.wj = 0, 1 ≤ j ≤ i} and let pt(S) be the
probability that |Si| = 1 for some i. Then pt(S) ≥ 1/4.

Analogous to our discussion in Section 1, here too we can consider the restricted version
where we consider SC ⊆ {0, 1}n to be the set of n-bit vectors accepted by a boolean
circuit C of sizem. We can similarly formulate derandomization hypotheses similar to
Hypotheses 1 and 2.

We do not know if there is another randomized polynomial identity test for
noncommutative arithmetic circuits based on the Valiant-Vazirani lemma. The
automata-theoretic technique of Section 3 does not appear to work. Specifically, given
a matrix h : Fn

2 → Fk
2 , there is no deterministic finite automaton of size poly(n, k) that

accepts x ∈ Fn
2 if and only if h(x) = 0.

Acknowledgements. We are grateful to Manindra Agrawal for interesting discussions
and his suggestion that Theorem 6 can be obtained from the stronger hypothesis. We
also thank Srikanth Srinivasan for comments and discussions.

References

[Agr05] Agrawal, M.: Proving Lower Bounds Via Pseudo-random Generators. In: Ramanu-
jam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Hei-
delberg (2005)

[Agr07] Agrawal, M.: Rings and Integer Lattices in Computer Science. In: Barbados Work-
shop on Computational Complexity, Lecture no. 9 (2007)

[AR00] Reinhardt, K., Allender, E.: Making Nondeterminism Unambiguous. SIAM J. Com-
put. 29(4), 1118–1131 (2000)

[ARZ99] Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching and counting uniform and
nonuniform upper bounds. Journal of Computer and System Sciences 59(2), 164–
181 (1999)

[AMS08] Arvind, V., Mukhopadhyay, P., Srinivasan, S.: New results on Noncommutative and
Commutative Polynomial Identity Testing. In: Proceedings of the 23rd IEEE Confer-
ence on Computational Complexity (to appear, June 2008); Technical report version
in ECCC report TR08-025 (2008)

[BW05] Bogdanov, A., Wee, H.: More on Noncommutative Polynomial Identity Testing.
In: Proc. of the 20th Annual Conference on Computational Complexity, pp. 92–99
(2005)

[CS07] Chien, S., Sinclair, A.: Algebras with Polynomial Identities and Computing the De-
terminants. SIAM J. of Comput. 37(1), 252–266 (2007)

[HU78] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading (1979)

[IKW02] Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Ex-
ponential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences 65(4), 672–694 (2002)

[KI03] Kabanets, V., Impagliazzo, R.: Derandomization of polynomial identity tests means
proving circuit lower bounds. In: Proc. of the thirty-fifth annual ACM Sym. on The-
ory of computing, pp. 355–364 (2003)

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size 289

[KS01] Klivans, A.R., Spielman, D.A.: Randomness Efficient Identity Testing. In: Proceed-
ings of the 33rd Symposium on Theory of Computing (STOC), pp. 216–223 (2001)

[MVV87] Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion.
In: Proc. of the nineteenth annual ACM conference on Theory of Computing, pp.
345–354. ACM Press, New York (1987)

[N91] Nisan, N.: Lower bounds for non-commutative computation. In: Proc. of the 23rd
annual ACM Sym. on Theory of computing, pp. 410–418 (1991)

[NSV94] Narayanan, H., Saran, H., Vazirani, V.V.: Randomized Parallel Algorithms for Ma-
troid Union and Intersection, With Applications to Arboresences and Edge-Disjoint
Spanning Trees. SIAM J. Comput. 23(2), 387–397 (1994)

[RS05] Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non commutative
models. Computational Complexity 14(1), 1–19 (2005)

[Sch80] Schwartz, J.T.: Fast Probabilistic algorithm for verification of polynomial identities.
J. ACM 27(4), 701–717 (1980)

[Str94] Straubing, H.: Finite automata, formal logic, and circuit complexity. In: Progress in
Theoretical Computer Science, Birkhuser Boston Inc., Boston (1994)

[VV86] Valiant, L.G., Vazirani, V.V.: NP is as Easy as Detecting Unique Solutions. Theor.
Comput. Sci. 47(3), 85–93 (1986)

[Zip79] Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proc. of the Int. Sym.
on Symbolic and Algebraic Computation, pp. 216–226 (1979)

Tensor Products of Weakly Smooth Codes Are

Robust�

Eli Ben-Sasson and Michael Viderman

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel
{eli,viderman}@cs.technion.ac.il

Abstract. We continue the study of robust tensor codes and expand
the class of base codes that can be used as a starting point for the con-
struction of locally testable codes via robust two-wise tensor products.
In particular, we show that all unique-neighbor expander codes and all
locally correctable codes, when tensored with any other good-distance
code, are robust and hence can be used to construct locally testable
codes. Previous works by [2] required stronger expansion properties to
obtain locally testable codes.

Our proofs follow by defining the notion of weakly smooth codes that
generalize the smooth codes of [2]. We show that weakly smooth codes are
sufficient for constructing robust tensor codes. Using the weaker defini-
tion, we are able to expand the family of base codes to include the afore-
mentioned ones.

1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. A code is locally
testable if given a word x ∈ Fn one can verify whether x ∈ C by reading only a
few (randomly chosen) symbols from x. More precisely such a code has a tester,
which is a randomized algorithm with oracle access to the received word x. The
tester reads at most q symbols from x and based on this “local view” decides if
x ∈ C or not. It should accept codewords with probability one, and reject words
that are “far” (in Hamming distance) with “noticeable” probability.

Locally Testable Codes (LTCs) were first explicitly studied by Goldreich and
Sudan [9] and since then a few constructions of LTCs were suggested (See [8] for
an extensive survey of those constructions). All known efficient constructions of
LTCs, i.e. that obtain subexponential rate, rely on some form of ”composition”
of two (or more) codes. One of the simplest ways to compose codes for the
construction of LTCs is by use of the tensor product, as suggested by Ben-Sasson

� Research supported in part by a European Community International Reintegration
Grant, an Alon Fellowship, and grants by the Israeli Science Foundation (grant
number 679/06) and by the US-Israel Binational Science Foundation (grant number
2006104).

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 290–302, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tensor Products of Weakly Smooth Codes Are Robust 291

and Sudan [1]. They introduced the notion of robust LTCs: An LTC is called
robust if whenever the received word is far from the code, then with noticeable
probability the local view of the tester is far from an accepting local view (see
robust definition [2]). It was shown in [1] that a code obtained by tensoring
three or more codes (i.e. C1 ⊗ C2 ⊗ C3) is robustly testable when the distances
of the codes are big enough, and used this result to construct LTCs. Then they
considered the tensor product of two codes. Given two linear codes R,C their
tensor product R⊗C consists of all matrices whose rows are codewords of R and
whose columns are codewords of C. If R and C are locally testable, we would
like R ⊗ C to be locally testable. [1] suggested using the following test for the
testing the tensor product R⊗ C and asked whether it is robust:

Test for R ⊗ C: Pick a random row (or column), accept iff it belongs to R (or
C).

Valiant [3] showed a surprising example of two linear codes R and C for which
the test above is not robust, by exhibiting a word x that is far from R⊗ C but
such that the rows of x are very close to R and the columns of x are very close
to C. Additional examples give a codes whose tensor product with itself is not
robust [4] and two good codes (with linear rate) whose tensor product is not
robust [7].

Despite these examples Dinur et al. showed in [2] that the above test is robust
as long as one of the base codes is smooth, according to a definition of the
term introduced there (see Definition 5). The family of smooth codes includes
locally testable codes and certain codes constructed from expander graphs with
very good expansion properties. In this work we continue this line of research and
enlarge the family of base codes that result in robust tensor codes and do this by
working with a weaker definition of smoothness (Definition 4). Using the weaker
definition, we still manage to get pretty much the same results as in [2] and
do this using the same proof strategy as there. However, our weaker definition
allows us to argue — in what we view as the main technical contributions of
this paper (Sections 6 and 7) — that a larger family of codes is suitable for
forming robust tensor codes. One notable example is that our definition allows
us to argue that any expander code with unique-neighbor expansion (i.e., with
expansion parameter γ < 1/2 as per Definition 3) is also weakly smooth, hence
robust. We stress that unique-neighbor expansion is the minimal requirement in
terms of expansion needed to argue an expander code has good (i.e., constant
relative) distance, so our our work shows all “combinatorially good” expander
codes1 are robust. In comparison, the work of [2] required stronger expansion
parameters (γ < 1/4) of the kind needed to ensure an expander code is not
merely good in terms of its distance, but can also be decoded in linear time [10].

Another family of codes shown here to be robust under two-wise tensor prod-
ucts is the family of locally correctable codes (LCCs), see Definition 7.

1 Clearly, there exist non-unique-neighbor expander codes with good distance. How-
ever, the distance of these codes cannot be argued merely using the combinatorial
structure of the underlying parity check matrix.

292 E. Ben-Sasson and M. Viderman

We end this section by pointing out that recently, tensor codes have played
a role in the combinatorial construction by Meir [6] of quasilinear length lo-
cally testable codes. Better base codes may result in LTCs with improved rate,
hence the importance in broadening the class of base codes that can be used to
construct robust tensor codes.

Organization of the Paper. In the following section we provide the now-
standard definitions regarding robust tensor codes. In Section 3 We formally
define weakly smooth codes and state our main results. In Section 4 We prove
weakly smooth codes are robust. Section 5 shows the smooth codes of [2] are
also weakly smooth. The last two sections prove that unique-neighbor expander
codes, and locally correctable codes, respectively, are weakly smooth.

2 Preliminary Definitions

The definitions appearing here are pretty much standard in the literature on
tensor-based LTCs.

Throughout this paper F is a finite field and C, R are linear codes over F .
For c ∈ C let supp(c) = {i|ci �= 0} and wt(c) = |supp(c)|. We define the distance
between two words x, y ∈ Fn to be d(x, y) = |{i | xi �= yi}| and the relative
distance to be δ(x, y) = d(x,y)

n . The distance of a code is denoted d(C) and defined
to be the minimal value of d(x, y) for two distinct codewords x, y ∈ C. Similarly,
the relative distance of the code is denoted δ(C) = d(C)

n . For x ∈ Fn and C ⊆ Fn,
let δC(x) = miny∈C{δ(x, y)} denote the relative distance of x from code C. We
let dim(C) denote the dimension of C. The vector inner product between u1 and
u2 is denoted by 〈u1, u2〉. For code C let C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}
be its dual code and let C⊥

t = {u ∈ C⊥ | wt(u) = t}. In similar way we define
C⊥

<t = {u ∈ C⊥ | wt(u) < t} and C⊥
≤t = {u ∈ C⊥ | wt(u) ≤ t}. For w ∈ Fn

and S ⊆ [n] we let w|S = (wj1 , wj2 , ..., wjm) when {j1, j2, ..., jm} = S be the
projection of w on subset S. Similarly, we let C|S = {c|S | c ∈ C} to denote the
projection of code C on subset S.

2.1 Tensor Product of Codes

For x ∈ Fm and y ∈ Fn we let x ⊗ y denote tensor product of x and y (i.e.
the n × m matrix xyT). Let R ⊆ Fm and C ⊆ Fn be linear codes. We define
the tensor product code R ⊗ C to be the linear subspace spanned by words
r ⊗ c ∈ Fn×m for r ∈ R and c ∈ C. Some immediate facts:

– The code R ⊗ C consists of all n × m matrices over F whose rows belong to
R and whose columns belong to C.

– dim(R ⊗ C) = dim(R) · dim(C)
– δ(R ⊗ C) = δ(R) · δ(C)

Let M ∈ Fm ⊗ Fn and let δ(M) = δR⊗C(M). Let δrow(M) = δR⊗F n(M)
denote the distance from the space of matrices whose rows are codewords of R.
This is expected distance of a random row in x from R. Similarly let δcol(M) =
δF m⊗C(M).

Tensor Products of Weakly Smooth Codes Are Robust 293

2.2 Robust Locally Testable Codes

Definition 1 (Robustness). Let M be a candidate codeword for R ⊗ C. The
robustness of M is defined as ρ(M) = (δrow(M) + δcol(M))/2, i.e., it is the
average distance of “local views” of the codeword. The code R ⊗ C is robustly
testable if there exists a constant α such that ρ(M)

δ(M) ≥ α for every M .

The robustness of a Tester T is defined as ρT = minM∈R⊗C

2.3 Low Density Parity Check (LDPC) Codes

The following definition is the natural generalization of a LDPC codes to fields
of size > 2.

Definition 2 (LDPC codes). A check graph ([n], [m], E, F) is a bipartite
graph ([n], [m], E) over F for a code C ⊂ Fn where each edge e = (i, j) ∈ E
is labeled by some e(i,j)
= 0 ∈ F and the following holds (let N(j) denote the
neighbors of j in the graph):

x ∈ C ⇐⇒ ∀j ∈ [m]
∑

i∈N(j)

xi · e(i,j) = 0,

where the sum
∑

i∈N(j) xi · e(i,j) is computed over F .

Clearly, any linear code C ⊆ F has a corresponding check graph ([n], [m], E, F).
Moreover if C⊥ = span(C⊥

≤d) then without loss of generality every right hand
node j ∈ [m] has degree at most d.

Definition 3 (Expander graphs). Let c, d ∈ N and let γ, δ ∈ (0, 1). Define
a (c, d)-regular (γ, δ)-expander to be a bipartite graph (L,R,E, F) with vertex
sets L,R such that all vertices in L have degree c, and all vertices in R have
degree d; and the additional property that every set of vertices L′ ⊂ L, such that
|L′| ≤ δ|L|, has at least (1 − γ)c|L′| neighbors.

We say that a code C is an (c, d, γ, δ)-expander code if it has a check graph
that is a (c, d)-regular (γ, δ)-expander. It is well-known that if γ < 1/2 then
the graph has unique-neighbor expansion, meaning that for every L′ ⊂ L there
exists a set of unique neighbors R′ on the right such that each member of R′

is a neighbor of a unique member of L′. Thus, from here on we refer to (γ, δ)-
expanders as unique-neighbor expanders. The following well-known proposition
(the proof of which is included for the sake of completeness) shows that unique-
neighbor expansion of G is sufficient to guarantee the code whose check graph
is G has large distance.

Proposition 1. IfC is (c, d, γ, δ)-expander code overF and γ < 1
2 , then δ(C) ≥ δ.

Proof. We prove that every non-zero word in C must have weight more than
δn. Indeed let (L,R,E, F) be check graph of C that is a (c, d)-regular (γ, δ)-
expander. The proposition follows by examining the unique neighbor structure

ρ(M)
δR⊗C(M) .

294 E. Ben-Sasson and M. Viderman

of the graph. Let x ∈ C be such that 0 < wt(x) < δn and L′ = supp(x) ⊆ L.
But then L′ has at least (1−γ)c|L′| > c

2 |L′| neighbors in R. At least one of these
sees only one element of L′, so the check by this element (corresponding dual
word) will give xi · e(i,j) when xi
= 0, e(i,j)
= 0 and thus xi · e(i,j)
= 0, violating
the corresponding constraint and contradicting x ∈ C.

3 Main Results

Our first main result says that codes obtained by the tensor product of a code
with constant relative distance and a unique-neighbor expander code is robust:

Theorem 1 (Unique-Neighbor Expander codes are robust). Let R ⊆
Fm be a code of distance at least δR > 0. Let C ⊆ Fn be a (c, d, γ, δ)-expander
code for some c, d ∈ N, δ > 0, and 0 < γ < 1/2. Then,

ρT ≥ min{0.5δ · δR
2d∗

,
δR · 0.25δ

2
, 1/8}.

Where d∗ < dk, k = (log(0.5+γ)0.05) + 1.

The above theorem extends the result of [2] where a similar result was proved for
expanders with the stronger requirement γ < 1/6. Notice the difference between
γ < 1/6 and unique-neighbor expansion (γ < 1/2) is qualitative, not merely
quantitative. This is because expansion γ < 1/4 is required to guarantee efficient
decoding algorithms, as shown by Sipser and Spielman in [10] whereas γ < 1/2
is sufficient for claiming the code has large distance, but does not necessarily
warrant efficient decoding.

Our next result extends [2] in a different direction by showing that locally
correctable codes are also robust. Informally, locally correctable codes allow to
recover each entry of a codeword with high probability by reading only a few
entries of the codeword even if a large fraction of it is adversely corrupted (see
Definition 7).

Theorem 2 (Locally correctable codes are robust). Let R ⊆ Fm be a code
of distance at least δR > 0. Let C ⊆ Fn be a (ε, δ, q)-locally correctable code with
ε > 0. Then,

ρT ≥ min{0.5δ · δR
2(q + 1)

, 1/8}.

To prove both theorems we first define weakly smooth codes and prove that the
tensor of a weakly smooth code and another code with constant relative distance is
robust. Then we show that smooth codes are also weakly smooth. Finally we show
that all unique-neighbor expander codes (with γ < 1/2) and all locally correctable
codes are weakly smooth, thus obtaining Theorems 1, 2, respectively.

Tensor Products of Weakly Smooth Codes Are Robust 295

3.1 Weakly Smooth Codes

We are coming now to the central definition of the paper, that of a weakly
smooth code. This definition allows us to generalize the work of [2] by using
pretty much the same proof as there. In particular, in Section 5 we show that
every code that is smooth according to [2] is also weakly smooth as per Definition
4. Furthermore, using our definition we get robust tensor from a broader family
of base codes.

Both the smooth codes of [2] and our weakly smooth codes require the code
retain large distance even after a portion of its coordinates and constraints have
been removed. However there are two subtle differences between the two notions.

1. In the smooth codes setting an adversary removes a fraction of constraints
and then a “Good” player removes a fraction of indices. In our Definition 4
both the adversary and the good player remove sets of indices.

2. In the smooth codes work with a predefined set of low weight constraints
coming from a regular bipartite graph. Our Definition 4 does not assume
any graph, nor does it require any regularity of degrees. This slackness and
nonregularity will be crucial in arguing that unique-neighbor expanders are
weakly smooth.

Definition 4 (Weakly smooth codes). Let 0 ≤ α1 ≤ α′
1 < 1, 0 < α2 < 1, d∗

be constants. Code C is (α1, α
′
1, α2, d

∗)-weakly smooth if ∀I ⊆ [n], |I| < α1n
letting

Constr(I) = {u ∈ C⊥
≤d∗ | supp(u) ∩ I = ∅}

and C′ = (Constr(I))
⊥ there exists I ′ ⊂ [n], I ⊆ I ′, |I ′| < α′

1n such that
d(C′|[n]\I′) ≥ α2n.

The following is the main technical lemma used to show weakly smooth codes
are robust. Its proof follows in the next section.

Lemma 1 (Main Lemma). Let R ⊆ Fm and C ⊆ Fn be codes of distance δR
and δC. Assume C is (α1, α

′
1 < δC , α2, d

∗)-weakly smooth and let M ∈ Fm⊗Fn.
If ρ(M) < min{α1δ

2d∗ ,
δ α2

2 } then δ(M) ≤ 8ρ(M).

4 Weakly Smooth Codes Are Robust — Proof of
Lemma 1

We pretty much follow the proof of the Main Lemma in [2], but attend to the
required modifications needed to carry the proof with the weaker requirement
of smoothness. The main place where we use the weakly smooth property is the
Proposition 3.

Proof (Proof of Lemma 1). For row i ∈ [n], let ri ∈ R denote the codeword
of R closest to the ith row of M . For column j ∈ [m], let c(j) ∈ C denote the
codeword of C closest to the jth column of M . Let MR denote the n×m matrix

RR

296 E. Ben-Sasson and M. Viderman

whose ith row is ri, and let MC denote the matrix whose jth column is c(j). Let
E = MR −MC .

In what follows matrices MR,MC and (especially) E will be central objects
of attention. We refer to E as the error matrix. Note that δ(M,MR) = δrow(M)
and δ(M,MC) = δcol(M) and with some abuse of notation let wt(E) be the
relative weight of E, so

wt(E) = δ(MR, MC) ≤ δ(M, MR) + δ(M, MC)
= δrow(M) + δcol(M) = 2ρ(M). (1)

Our proof strategy is to show that the error matrix E is actually very structured.
We do this in two steps. First we show that its columns satisfy most constraints
of the column code. Then we show that E contains a large submatrix which is
all zeroes. Finally using this structure of E we show that M is close to some
codeword in R ⊗ C. The following is from [2, Proposition 4], we give the proof
for the sake of completeness.

Proposition 2. Let u ∈ C⊥
d be a constraint of C with supp(u) = {i1, ..., id}.

Let ei denote the ith row of E. Suppose wt(eij) < δR/d for every j ∈ [d]. Then
uT · E = 0.

Proof. Note that ∀c ∈ C: 〈c, u〉 = 0. Let ci denote the i-th row of the ma-
trix MC .(Recall that the rows of MC are not necessarily codewords of any nice
code - it is only the columns of MC that are codewords of C). For every column
j, we have 〈(MC)j , u〉 = 0 (since the columns of MC are codewords of C).

Thus we conclude that uT · MC = 0 as a vector. Clearly, uT · MR ∈ R since
each one of the rows of MR is a codeword of R. But this implies

uT · E = uT · (MR − MC) = uT · MR − uT · MC = uT · MR − 0 ∈ R

Now we use the fact that the eij s have small weight for ij ∈ [d]. This implies
that

wt(uT · E) ≤ wt(u) · (δR/d) < δR.

But R is an error-correcting code of the minimum distance δR so the only word
of weight less than δR in it is the zero codeword, yielding uT · E = 0.

Proposition 3. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR

and |V |/n < δC such that letting V̄ = [n] \ V and Ū = [m] \ U we have for all
i ∈ V̄ , j ∈ Ū that E(i, j) = 0.

Proof. Let V1 ⊆ [n] be the set of indices corresponding to rows of the error
matrix E with weight more than δR/d∗, i.e.

V1 = {i ∈ [n] | wt(ei) ≥ δR/d∗}.

Clearly, |V1| < α1n, since |V1|
n · δR

d∗ ≤ wt(E) ≤ 2ρ(M) and thus |V1|
n ≤ 2ρ(M)

δR/d∗ < α1

where the last inequality follows from the assumption ρ(M) < α1δR

2d∗ . Let
Constr(V1) = {u ∈ C⊥

≤d∗ | supp(u)∩V1 = ∅} and C′ = (Constr(V1))
⊥. Proposition

Tensor Products of Weakly Smooth Codes Are Robust 297

2 implies that ∀u ∈ Constr(V1) we have uT · E = 0, i.e. every column of E,
denoted by Ej , satisfies constraint u and thus Ej ∈ C′.

Recall that C is (α1, α
′
1 < δC , α2, d

∗)-weakly smooth. Associate the set V1

with I from Definition 4. Following this definition, there exists a set I ′ (let
V = I ′), |V | = |I ′| < α′

1n such that d(C′
[n]\I′) = d(C[n]\V) ≥ α2n. We notice

that for every column of E, denoted by Ej , we have (Ej)|[n]\I′ ∈ C[n]\V . Thus
Ej is either zero outside V or has at least α2n non-zero elements outside V .

Let U be the set of indices corresponding to the ”heavy columns” of E that
have α2n or more non-zero elements in the rows outside V . We conclude that
every column of E that is not zero outside V is located in U . We argue that
for each (i, j) ∈ V̄ × Ū we have E(i, j) = 0. This is true since after we remove
rows from V all projected nonzero columns have weight at least α2n and thus all
nonzero columns are located in U . Hence all columns of V̄ × Ū are zero columns.

Clearly, |U|
m < δR, since |U|

m ·α2 ≤ wt(E) ≤ 2ρ(M) and thus |U|
m ≤

2ρ(M)
α2

< δR,
where the last inequality follows from the assumption ρ(M) < δ α2

2 .

We now use a standard property of tensor products to claim MR, MC and M
are close to a codeword of R⊗C. Recall thatM ∈ Fn×m and that δ(MC ,MR) ≤
2ρ(M). We reproduce the following proof from [2, Proposition 6] for the sake of
completeness.

Proposition 4. Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m < δR
and |V |/n < δC such that MR(i, j)
= MC(i, j) implies j ∈ U or i ∈ V . Then
δ(M) ≤ 8ρ(M).

Proof. First we note that there exists a matrix N ∈ R⊗C that agrees with MR

and MC on V̄ × Ū (See [1, Proposition 3]). Recall also that δ(M,MR) = δrow ≤
2ρ(M). So it suffices to show δ(MR, N) ≤ 6ρ(M).We do so in two steps. First we
show that δ(MR, N) ≤ 2ρ(MR). We then show that ρ(MR) ≤ 3ρ(M) concluding
the proof.

For the first part we start by noting that MR and N agree on every row in
V̄ . This is the case since both rows are codewords of R which may disagree only
on entries from the columns of U , but the number of such columns is less that
δRm. Next we claim that for every column j ∈ [m] the closest codeword of C
to the MR(·, j), the jth column of MR, is N(·, j), the jth column of N . This is
true since MR(i, j)
= N(i, j) implies i ∈ V and so the number of such i is less
than δCn. Thus for every j, we have N(·, j) is the (unique) decoding of the jth
column of MR. Averaging over j, we get that δcol(MR) = δ(MR, N). In turn this
yields ρ(MR) ≥ δ(MR)/2 = δ(MR, N)/2. This yields the first of the two desired
inequalities.

Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have
ρ(M1) ≤ ρ(M2) + δ(M1,M2). Indeed it is the case that δrow(M1) ≤ δrow(M2) +
δ(M1,M2) and δcol(M1) ≤ δcol(M2)+δ(M1,M2). When the above two arguments
are combined it yields ρ(M1) ≤ ρ(M2) + δ(M1,M2). Applying this inequality to
M1 = MR and M2 = M we get ρ(MR) ≤ ρ(M) + δ(MR,M) ≤ 3ρ(M). This
yields the second inequality and thus the proof of the proposition.

The Main Lemma 1 follows immediately from the two last propositions.

R

298 E. Ben-Sasson and M. Viderman

5 Smooth Codes Are also Weakly so

We now show that our Definition 4 is indeed a generalization of smooth codes of
Dinur et al. [2]. In what follows F2 denotes the two-element field and C(R0) is
a code defined by constraints in R \R0 (For further information and definitions
see [2].). Recall the definition of smooth code:

Definition 5 (Smooth Codes). A code C ⊆ Fn
2 is (d, α, β, δ)-smooth if it has

a parity check graph B = (L,R,E) where all the right vertices R have degree d,
the left vertices have degree c = d|R|/|L|, and for every set R0 ⊆ R such that
|R0| ≤ α|R|, there exist a set L0 ⊆ L, |L0| ≤ β|L| such that the code C(R0)|[n]\L0

has distance at least δ.

Claim. If C ⊆ Fn
2 is a (d, α, β, δ)-smooth code then it is (α1, α

′
1, α2, d

∗)-weakly
smooth with α1 = α

d , α′
1 = β, α2 = δ, d∗ = d.

Proof. Let R be a set of constraints of degree d and let I ⊆ [n], |I| < α1n = αn
d

be the index set from Definition 4. Remove all d-constraints that touch at least
one index in I. Let R0 be a set of removed constraints from R. We have left
degree c = d|R|

n , so, we removed at most c ·α1n = d|R|α1 = α|R| constraints. Let
Constr(I) = {u ∈ C⊥

d | supp(u)∩ I = ∅} be the set of constraints in R \R0 (low
weight dual words). We notice that C(R0) = (Constr(I))

⊥. Let I ′ ⊆ [n], |I ′| <
βn = α′

1n be index set from smooth codes definition (Definition 5) that should
be thrown out in order to remain with good distance, i.e. d(C(R0)|[n]\I′) ≥ δn =
α2n. Clearly I ⊆ I ′ as otherwise d(C(R0)|[n]\I′) = 1. Thus from the definition of
smoothness, letting C′ = (Constr(I))

⊥ we have d(C′|[n]\I′) ≥ α2n which proves
that C is (α1, α

′
1, α2, d

∗)-weakly smooth.

6 Unique-Neighbor Expander Codes Are Weakly Smooth

As explained in Section 3.1 Dinur et al. [2] showed that expander codes with
γ < 1

6 are smooth and thus result in robust tensor product. In this section we
show that it is possible to obtain robust tensor codes from expander code with
the weaker assumption γ < 1

2 . We first define the gap property (Definition 6)
and prove that it implies weak smoothness. Then we show that unique-neighbor
expander codes have the gap property.

Definition 6 (Gap property). Code C has a (α, δ, d)-gap property if ∀J ⊆
[n], |J | < αn letting Constr(J) = {u ∈ C⊥

≤d | supp(u) ∩ J = ∅} and C′ =
(Constr(J))

⊥ we have that ∀c ∈ C′|[n]\J either wt(c) < 0.1δn or wt(c) > 0.8δn.

Claim. If C has (α, δ, d)-gap property then it is (α, α + 0.3δ, 0.5δ, d)-weakly
smooth.

Proof. Clearly, C has no codewords of weight between 0.1δn and 0.8δn. To see
this take J = ∅ and then gap property implies that ∀w ∈ Fn if 0.1δn ≤ wt(w) ≤
0.8δn then 〈w, u〉
= 0 for some u ∈ C⊥

≤d.

Tensor Products of Weakly Smooth Codes Are Robust 299

Let S = {c ∈ C | 0 < wt(c) < 0.1δn} be a set of all non-zero low weight
codewords. Let JS be the union of supports of non-zero low weight words, i.e.
JS =

⋃
c∈S supp(c) and for any set A ⊆ C let JA =

⋃
c∈A supp(c). We show that

|JS | < 0.3δn.
Assume the contrary, i.e. |JS | ≥ δ · 0.3n. Then there exists S′ ⊆ S, such that

0.2δn < |JS′ | < 0.3δn. To see this remove low weight words one by one from S,
each time decreasing S at most by 0.1δn.

Consider a random linear combination of codewords from S′. The expected
weight of the above is more than 0.1δn but can not exceed 0.3δn, thus there exists
such a linear combination of low weight codewords that produces a codeword
with weight more than 0.1δn but less than 0.3δn. Contradiction.

Thus for the rest of the proof we assume |JS | < 0.3δn. We are ready to
show that C is (α, α + 0.3δn, 0.5δn, d)-weakly smooth. Let I ⊂ [n], |I| < αn
be arbitrarily chosen set. Let Constr(I) = {u ∈ C⊥

≤d | supp(u) ∩ I = ∅} and
C′ = (Constr(I))

⊥.
¿From the definition of the gap property and from the above it follows that

∀c ∈ C′|[n]\I either wt(c) < 0.1δn and thus supp(c) ⊆ JS or wt(c) > 0.8δn.
Let I ′ = JS ∪ I and then |I ′| ≤ |JS | + |I| < αn + 0.3δn. We claim that

d(C′|[n]\(I∪JS)) = d(C′|[n]\(I′)) ≥ 0.5δn. To see this assume c′ ∈ C′|[n]\I , c′′ =
c′|[n]\(I∪JS), c′′ ∈ C′|[n]\(I∪JS) such that 0 < wt(c′′) < 0.5δn but then 0 <
wt(c′′) ≤ wt(c′) ≤ |JS | + wt(c′′) < 0.8δn and thus c′ is a low weight word, i.e.
supp(c′) ⊆ JS . Hence c′′ = c′|[n]\(I∪JS) = 0, contradicting wt(c′′) > 0.

Proposition 5. Let C be a linear code over F . If u1 ∈ C⊥
<f and u2 ∈ C⊥

<g

and i ∈ supp(u1) ∩ supp(u2) then exists u3 ∈ C⊥
<f+g such that supp(u3) ⊆

(supp(u1) ∪ supp(u2)) \ {i}.

Proof. Let a ∈ F be ith entry in u1 and b ∈ F be ith entry in u2. Then
u3 = a−1u1 + b−1u2 ∈ C⊥

<f+g has desired properties.

Claim. Let C be a (c, d, γ, δ)-expander code over F with constant γ < 1
2 . Let

w ∈ Fn with 0 < wt(w) < δn with I = supp(w). Then at least a 0.95-fraction of
indices i ∈ I have ui ∈ C⊥

<d∗ where d∗ < dk, k = (log0.5+γ(0.05)) + 1 such that
supp(ui) ∩ I = {i}.

Proof. Fix set I with |I| < δn. Let (L, R, E) be a check graph of C that is
a (c, d)-regular (γ, δ)-expander. The claim follows from examining the unique
neighbor structure of the graph. We prove this by induction on j = 1...k and
show set constructions Ij satisfying

– I1 = I, Ij+1 ⊂ Ij

– |Ij+1| ≤ (1
2 + γ)|Ij |

– ∀i ∈ Ij \ Ij+1 exists ui ∈ C⊥
≤dj with supp(ui) ∩ I = {i}

We then conclude (1
2 + γ)k < 0.05 and thus from the induction follows that

Ik ⊂ I, |Ik| < 0.05 · |I| and ∀i ∈ I \ Ik exists ui ∈ C⊥
<dk with supp(ui) ∩ I = {i}.

And the the proof of the claim is completed.

300 E. Ben-Sasson and M. Viderman

For the base case let I1 = I. Since C is an expander and |I1| ≤ δn, I1 has
at least (1 − γ)c|I1| = (c

2 + (0.5 − γ)c)|I1| neighbors in R. Each index i ∈ I1

is asked by c constraints in R. And thus the number of neighbors that ask at
least 2 indices from I1 is bounded from above by (c

2)|I1|. Hence there are at least
((1

2 −γ)c)|I1| unique neighbors in R. Since a single index can not have more than
c unique neighbors in R, the number of indices in I1 having unique neighbor is
at least (1

2 −γ)|I1|. I.e. at least (1
2 −γ)-fraction of all indices in I1 have a unique

neighbor with support d = d1. Let I2 ⊂ I1 be subset of all indices i ∈ I1 that
have no unique neighbor of weight at most d1. We constructed set I1, I2 such
that

– I1 = I, I2 ⊂ I1

– |I2| ≤ (1
2 + γ)|I1|

– ∀i ∈ I1 \ I2 exists ui ∈ C⊥
≤d1 with supp(ui) ∩ I = {i}

And this completes the base case.
Assume correctness until j−1 and let us prove for j. Consider Ij , |Ij | ≤ |I1| ≤

δn. By the unique neighbor expansion at least (1
2 − γ)-fraction of indices i ∈ Ij

have bounded unique neighbor, i.e. ui ∈ C⊥
d such that supp(ui) ∩ Ij = {i}. Let

Ij+1 ⊂ Ij be indices i ∈ Ij that have no bounded unique neighbor and thus
|Ij+1| ≤ (1

2 + γ)|Ij |.
Fix i ∈ Ij\Ij+1 arbitrarily. There exists ui ∈ C⊥

d such that supp(ui)∩Ij = {i}.
Every index l ∈ supp(ui), l �= i is located either in [n]\I1 or in I1 \Ij . We handle
all l ∈ I1 \ Ij using linear combination according to Proposition 5 to obtain
a constraint u′

i ∈ C⊥
≤dj such that supp(u′

i) ∩ I = {i}. This is possible since
every l ∈ I1 \ Ij is located in some If for 1 ≤ f < j and thus from induction
assumption has ul ∈ C⊥

≤dj−1 such that supp(ul) ∩ I = {l}. Since wt(ui) ≤ d we
obtain u′

i ∈ C⊥
≤dj−1·d = C⊥

≤dj such that supp(u′
i) ∩ I = {i}. So we showed

– Ij+1 ⊂ Ij

– |Ij+1| ≤ (1
2 + γ)|Ij |

– ∀i ∈ Ij \ Ij+1 exists ui ∈ C⊥
≤dj with supp(ui) ∩ I = {i}

This yields the induction and the claim.

Corollary 1. If C is (c, d, γ, δ) expander code with γ < 1
2 then C has

(0.5δ, 0.5δ, d∗) gap property where d∗ < dk, k = (log(0.5+γ)0.05) + 1.

Proof. Let J ⊂ [n], |J | < 0.5δ be arbitrarily chosen. Let Constr(J) = {u ∈
C⊥

<dk | supp(u)∩J = ∅} and C′ = (Constr(J))
⊥. Assume by contradiction, there

exists w ∈ C′
[n]\J such that 0 < 0.1 · (0.5δ)n ≤ wt(w) ≤ 0.8 · (0.5δ)n. And thus

there is no u ∈ Constr(J) such that |supp(u) ∩ supp(w)| = 1.
Let I = J ∪ supp(w), |I| ≤ |J | + wt(w) < 0.5δn + 0.4δn < δn. We notice

that supp(w) ∩ J = ∅ and |supp(w)| > 0.05 · |I|. Thus Claim 6 implies that
there exists u ∈ C⊥

<dk such that |supp(u) ∩ supp(w)| = 1 and |supp(u) ∩ I| =
|supp(u)∩ supp(w)| = 1. Thus u ∈ Constr(J) such that |supp(u)∩ supp(w)| = 1.
Contradiction.

Tensor Products of Weakly Smooth Codes Are Robust 301

Claim. If C is (c, d, γ, δ) expander code with γ < 1
2 then C is

(0.5δ, 0.65δ, 0.25δ, d∗)-weakly smooth where d∗ < dk, k = (log(0.5+γ)0.05) + 1.

Proof. Follows immediately from Corollary 1 and Claim 6. Corollary 1 implies
that C has (0.5δ, 0.5δ, d∗) gap property where d∗ < dk, k = (log(0.5+γ)0.05) + 1.
Claim 6 implies that C is (0.5δ, 0.5δ+ 0.15δ, 0.25δ, d∗)-weakly smooth .

Proof (Proof of Theorem 1). Let R ⊆ Fm and C ⊆ Fn be codes of distance δR
and δC . Let M ∈ Fm ⊗ Fn. Claim 6 implies that C is (0.5δ, 0.65δ, 0.25δ, d∗)-
weakly smooth where d∗ < dk, k = (log(0.5+γ)0.05) + 1. Main Lemma implies
that if ρ(M) < min{ (0.5δ)·δ

2d∗ , δ ·(0.25δ)
2 } then δ(M) ≤ 8ρ(M).

7 Locally Correctable Codes Are Weakly Smooth

Definition 7 (Locally Correctable Code). A [n, k, d]|F | code C is called
(q, ε, δ) locally correctable code if there exists a randomized decoder (D) that
reads at most q entries and the following holds: ∀c ∈ C, ∀i ∈ [n] and ∀ĉ ∈ Fn

such that d(c, ĉ) ≤ δn we have

Pr[Dĉ[i] = ci] ≥
1
|F | + ε,

i.e. with probability at least 1
|F | + ε entry ci will be recovered correct.

Without loss of generality we assume that given ĉ ∈ Fn the ”correction” of
entry i (obtaining ci) is done by choosing random u ∈ S ⊆ C⊥

≤q+1 such that
i ∈ supp(u). Formally, assume the ith entry of u is ui, let uproj = u|[n]\{i},

ĉproj = ĉ|[n]\{i} and then ci is recovered by Dĉ[i] = 〈u ,ĉ 〉
u , notice that

ui
= 0.
The next claim holds for every ε > 0 which can be arbitrarily close to 0 (e.g.

o(1)) whereas usually locally correctable codes are defined with ε = Ω(1).

Claim. If C is (ε, δ, q)-locally correctable code with ε > 0 then it is
(0.5δ, 0.5δ, 0.5δ, q+ 1)-weakly smooth and its relative distance is at least δ.

Proof. We first show that ∀I ⊆ [n], |I| ≤ δn and ∀i ∈ I we have ui ∈ C⊥
≤q+1

with supp(ui) ∩ I = {i}. Assume the contrary and fix I ⊆ [n], |I| ≤ δn and
i ∈ I. So, for all ui ∈ C⊥

≤q+1 with i ∈ supp(ui) ∩ I we have |supp(ui) ∩ I| ≥ 2.
Consider an adversary that takes c ∈ C and sets cj to random element from
F for all j ∈ I, obtaining ĉ. Clearly, ci will be recovered with probability at
most 1

|F | since for every u(i) ∈ C⊥
≤q+1 such that i ∈ supp(u(i)) the inner product

〈(u(i))|[n]\{i}, c|[n]\{i}〉 will produce a uniformly random value in F .
We next show that d(C) ≥ δn. To see this assume c ∈ C such that 0 <

wt(c) < δn. Let I = supp(c), |I| < δn and i ∈ I. There exists u ∈ C⊥
≤q+1 with

supp(u) ∩ supp(c) = {i} and thus 〈u,w〉
= 0 implies c /∈ C.
We finally show the weak smoothness of C. Let I ⊂ [n], |I| < 0.5δn be the

adversary chosen set and let I ′ = I. Let Constr(I) = {u ∈ C⊥
≤q+1 | supp(u)∩I = ∅}

R R

proj proj

i

302 E. Ben-Sasson and M. Viderman

and C′ = (Constr(I))
⊥. We claim that d(C′|[n]\I) ≥ 0.5δn. This is true, since

otherwise we have c′ ∈ C′, c′[n]\I ∈ C′|[n]\I such that 0 < wt(c′[n]\I) < 0.5δn.
But then 0 < wt(c′) < 0.5δn+ |I| ≤ δn and thus exists u ∈ Constr(I) such that
|supp(u)∩ supp(c′)| = 1 which implies 〈u, c′〉
= 0 and c′ /∈ C′. Contradiction. So,
C is (0.5δ, 0.5δ, 0.5δ, q+ 1)-weakly smooth.

Proof (of Theorem 2). Let R ⊆ Fm and C ⊆ Fn be linear codes such that
δ(R) ≥ δR. Let M ∈ Fm⊗Fn. Claim 7 implies that C is (0.5δ, 0.5δ, 0.5δ, q+ 1)-
weakly smooth and δ(C) ≥ δ. The Main Lemma 1 implies that if ρ(M) <
min{ (0.5δ)·δ

2(q+1) ,
δ ·(0.5δ)

2 } = (0.5δ)·δ
2(q+1) then δ(M) ≤ 8ρ(M).

Acknowledgements. We thank Madhu Sudan for helpful discussions.

References

1. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
In: APPROX-RANDOM, pp. 286–297 (2004) (See ECCC TR04-046, 2004)

2. Dinur, I., Sudan, M., Wigderson, A.: Robust local testability of tensor products of
LDPC codes. In: APPROX-RANDOM, pp. 304–315 (2006)

3. Valiant, P.: The tensor product of two codes is not necessarily robustly testable.
In: APPROX-RANDOM, pp. 472–481 (2005)

4. Copersmith, D., Rudra, A.: On the robust testability of tensor products of codes,
ECCC TR05-104 (2005)

5. Meir, O.: On the rectangle method in proofs of robustness of tensor products,
ECCC TR07 (2007)

6. Meir, O.: Combinatorial Construction of Locally Testable Codes. M.Sc. Thesis,
Weizmann Institute of Science (2007)

7. Goldreich, O., Meir, O.: The tensor product of two good codes is not necessarily
robustly testable, ECCC TR07 (2007)

8. Goldreich, O.: Short locally testable codes and proofs (survey), ECCC TR05-014
(2005)

9. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost linear length.
In: FOCS (2002), pp. 13-22 (See ECCC TR02-050 2002)

10. Spielman, D.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. on Information Theory, 1723–1731 (1996)

R R R

On the Degree Sequences of Random

Outerplanar and Series-Parallel Graphs

Nicla Bernasconi, Konstantinos Panagiotou�, and Angelika Steger

Institute of Theoretical Computer Science, ETH Zurich
Universitätsstrasse 6, CH-8092 Zurich

{nicla,panagiok,steger}@inf.ethz.ch

Abstract. Let G be a class of labeled connected graphs and let B be
the class of biconnected graphs in G. In this paper we develop a general
framework that allows us to derive mechanically the degree distribution
of random graphs with n vertices from certain ’nice’ classes G as a func-
tion of the degree distribution of the graphs in B that are drawn under
a specific probabilistic model, namely the Boltzmann model. We apply
this framework to obtain the degree distribution of a random outerplanar
graph and a random series-parallel graph. For the latter we formulate a
generic concentration result that allows us to make statements that are
true with high probability for a large family of variables defined on ran-
dom graphs drawn according to the Boltzmann distribution.

1 Introduction and Results

One of the central questions of interest in theoretical computer science is the
analysis of algorithms. Here one usually distinguishes between worst case analy-
sis and average case analysis. From a practical point of view, an average case
analysis is particularly important when the worst case analysis does not result in
satisfactory quality characteristics about the given algorithm: it is possible that
the algorithm behaves well in real world scenarios, although a bad worst case be-
havior can be mathematically proved. In order to prove qualitatively strong and
meaningful results about the average case behavior of a particular algorithm, we
usually require precise knowledge about properties of “typical” input instances.

The standard example of a successful average case analysis is that of the
QuickSort algorithm. It relies on the fact that properties of random permu-
tations are well understood. In the context of graph algorithms an average case
analysis can be performed if we assume the uniform distribution on the set of
all graphs with a given number of vertices: one can then model a “typical” in-
put by the classical Erdős-Rényi random graph, and can thus use the wide and
extensive knowledge about random graphs, see the two excellent monographs [1]
and [2], to derive properties that can be used to analyze performance measures
like the running time or the achieved approximation ratio of the algorithm in
question.
� This work was partially supported by the SNF, grant nr. 20021-107880/1.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 303–316, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

304 N. Bernasconi, K. Panagiotou, and A. Steger

The picture changes dramatically if we are interested in natural graph classes
where it seems hard – if not impossible – to derive suitable independence prop-
erties. A standard example that has evolved over the last decade as a reference
model in this context is the class of planar graphs. The random planar graph Rn

was first investigated in [3] by Denise, Vasconcellos and Welsh and has attracted
considerable attention since then. We mention selectively a few results. McDi-
armid, Steger and Welsh [4] showed the surprising fact that Rn does not share
the 0-1-law known from standard random graph theory: the probability of con-
nectedness is bounded away from 0 and 1 by positive constant values. Moreover,
the situation is similar if the average degree is fixed [5]. These results relied on a
(crude) counting of the number of planar graphs with n vertices. A breakthrough
occurred with the recent results of Giménez and Noy [6], who not only managed
to determine the asymptotic value of the number of planar graphs with n ver-
tices, but also showed that the number of edges in Rn is asymptotically normally
distributed. Moreover, they studied the number of connected and 2-connected
components in Rn. The proofs of these results are based on singularity analy-
sis of generating functions, a powerful method from analytic combinatorics that
has led to many beautiful results, see the forthcoming book by Flajolet and
Sedgewick [7].

Our results. In this paper we further elaborate and extend significantly an ap-
proach that was recently used in [8] to obtain the degree sequence and subgraph
counts of random dissections of convex polygons. More precisely, we exploit the
so-called Boltzmann sampler framework by Duchon, Flajolet, Louchard, and
Schaeffer [9] to reduce the study of degree sequences to properties of sequences
of independent and identically distributed random variables. Hence, we can –
and do – use many tools developed in classical random graph theory to obtain
extremely tight results.

Our first main contribution is a general framework that allows to derive me-
chanically the degree distribution of random graphs from certain “nice” graph
classes from the degree distribution of random graphs from the 2-connected ob-
jects in the graph class in question, see Section 2 for the details. Recall that a
2-connected (or biconnected) graph is a graph that can not be disconnected by
deleting any single vertex. Our framework can be readily applied to obtain the
degree sequence of random graphs from “simple” classes, like Cayley trees, or
graphs which have the property that their maximal 2-connected components (or
equivalently, blocks) have a simple structure. We mention as examples cactus
graphs, where the blocks are just cycles, and clique graphs, where the blocks are
complete graphs. The second main contribution of our work are two applications
of this framework.

A graph is called series-parallel (SP) if it does not contain a subdivision of the
complete graph K4, or equivalently if it does not contain K4 as a minor. Hence,
the class of SP graphs is a subclass of all planar graphs. Moreover, an outerplanar
graph is a planar graph that can be embedded in the plane so that all vertices
are incident to the outer face. Outerplanar graphs are characterized as those
graphs that do not contain a K4 or a K2,3 minor. The classes of outerplanar and

On the Degree Sequences of Random Outerplanar 305

SP graphs are often used as the first non-trivial test cases for results about the
class of all planar graphs.

As a first important application of our framework we derive the degree dis-
tribution of random outerplanar graphs, and show that the number of vertices
of degree k = k(n) (where k is not allowed to grow too fast) is concentrated
around a specific value with very high probability (i.e. the probability of ob-
serving a large deviation is exponentially small). Here we use that the degree
distribution of 2-connected outerplanar graphs can be derived from a result in
[8], where the class of polygon dissections was studied. In order to state our
results we need to fix some notation. Let On be the class of labeled, connected
outerplanar graphs with n vertices, and let On be a graph drawn uniformly at
random from On. Furthermore, for a function G(z) let [zk]G(z) be the coefficient
of zk in the series expansion of G(z) around zero, and for real numbers α and
X let us write “(1± α)X” for the interval ((1− α)X, (1 + α)X).

Theorem 1. There exist constants A, . . . , G, c > 0 and λ such that for all δ > 0
and 1 ≤ k = k(n) ≤ (1 − δ) logC/D n the following is true. For every 0 < ε < 1
and sufficiently large n

P [deg(k; On) ∈ (1 ± ε)okn] ≥ 1− e−cε2o e−3
√

n, (1)

where ok = [zk]λ · b(z) · eλ(r(z)−1), and b and r are the functions

r(z) =
Az +Bz2

C −Dz and b(z) = Ez +
Fz2 +Gz3

(C −Dz)2 . (2)

In fact, we do get explicit expressions for A, . . . , G, and λ, cf. (12)–(14). Using
these we can determine the values ok explicitly for small k and asymptotically for
large k, by evaluating the kth coefficient of the function λb(z)eλ(r(z)−1) through
the Cauchy integral formula.

Corollary 1. We have o1
·= 0.13659, o2

·= 0.28753, o3
·= 0.24287, o4

·= 0.15507,
o5

·= 0.08743, . . ., and there are analytically given constants c1, c2 such that for
large k

ok = (1 + o(1)) · c1 · (D/C)k · ec2
√

k · k1/4.

The formula in Corollary 1 (and the proof of Theorem 1) strongly indicate
that the maximum degree Δ(On) of a random outerplanar graph On is roughly
logC/D(n). Unfortunately, our current techniques are not strong enough to prove
this, although we come very close to this value. We thus formulate it as a
conjecture.

Conjecture 1. lim
n→∞

P[Δ(On) ∈ (1 + o(1)) logC/D n] = 1.

In the last part of the paper we study the degree distribution of series-parallel
graphs. With the general framework developed in Section 2 it will again be suf-
ficient to derive the degree distribution of 2-connected series parallel graphs.
This, however, was unknown and our second main contribution is an approach

k
k

306 N. Bernasconi, K. Panagiotou, and A. Steger

to derive this. The main difference (and complication) in comparison to the out-
erplanar graphs is that 2-connected outerplanar graphs can be constructed by an
easy recursive procedure, as was shown in [8]: start with a cycle (whose length
follows an appropriate distribution) and glue onto each edge except one a graph
constructed recursively by the same principle. Clearly, as the name already indi-
cates, the nature of SP graphs does not allow such an easy generation. Instead we
have to consider several types of graph classes and several types of gluing opera-
tions simultaneously. In a first step we obtain the expected number of vertices of
a certain degree, and then, most importantly, we develop a general lemma which
allows us to derive the actual degree distribution. This generic concentration
result is of its own interest and importance, and may have applications to other
parameters and graphs classes as well. Unfortunately, we currently only get a
little bit weaker – but still exponentially small – bounds for the tail probabilities
compared to those in Theorem 1. We believe that with the same methods and
some extra work one should be able to obtain similarly strong bounds as above.

Let SP be the class of all labeled connected series-parallel graphs, and let
SPn be a graph drawn uniformly at random from SPn. Our result for SPn is
then the following statement.

Theorem 2. There exist constants C, c > 0 such that the following is true. For
1 ≤ k = k(n) ≤ C logn and for every 0 < ε < 1 and sufficiently large n

P [deg(k; SPn) ∈ (1 ± ε)skn] ≥ 1− e−cε2s n1 3
, (3)

where sk = [zk]λ · b(z) · eλ(r(z)−1). The constant λ and the functions b and r are
given explicitly in (19), (16) and (18).

Corollary 2. We have s1
·= 0.11021, s2

·= 0.35637, s3
·= 0.22335, s4

·= 0.12576,
s5

·= 0.07172, and there are analytically given constants c1 and ρ ·= 1.33259 such
that for large k

sk = c1ρ−kk−3/2 +O(ρ−kk−5/2).

We conjecture also in this case that the asymptotic value of the maximum degree
of a random series parallel graph is logρ n.

The number of vertices of a given degree in random outerplanar and series-
parallel graphs is studied also in [10], independently from our work. Using dif-
ferent techniques, the authors show for constant k that the number of vertices
of degree k is asymptotically normally distributed, with linear expectation and
variance. Moreover, they provide exponential estimates for the tails of the dis-
tributions for such k.

Techniques & Outline. All graph classes considered in this paper allow a so-
called decomposition, which is a description of the class in terms of general-
purpose combinatorial constructions. These constructions appear frequently in
modern systematic approaches to asymptotic enumeration and random sampling
of several combinatorial structures. It is beyond of the scope of this work to
survey these results, and we refer the reader to [7] and references therein for a
detailed exposition.

k
/

/

On the Degree Sequences of Random Outerplanar 307

One benefit of the knowledge of the decomposition is that it allows us to
develop mechanically algorithms that sample objects from the graph class in
question by using the framework of Boltzmann samplers. This framework was
introduced by Duchon et. al. in [9], and was extended by Fusy [11] to obtain an
(expected) linear time approximate-size sampler for planar graphs. Here we just
present the basic ideas of this framework. Let G be a class of labeled graphs.
In the Boltzmann model of parameter x, we assign to any object γ ∈ G the
probability

Px[γ] =
1

G(x)
x|γ|

|γ|! , (4)

if the expression above is well-defined, where G(x) is the exponential generating
function enumerating the elements of G. It is straightforward to see that the
expected size of an object in G under this probability distribution is xG′(x)

G(x) . A
Boltzmann sampler ΓG(x) for G is an algorithm that generates graphs from G
according to (4). In [9,11] several general procedures which translate common
combinatorial construction rules like union, set, etc. into Boltzmann samplers
are given. Notice that the probability above only depends on the choice of x and
on the size of γ, such that every object of the same size has the same probability
of being generated. This means that if we condition on the output being of a
certain size n, then the Boltzmann sampler ΓG(x) is a uniform sampler of the
class Gn.

In Section 2 we use Boltzmann samplers to derive the degree distribution
of connected random graphs, given the degree distribution of the 2-connected
graphs in suitably defined “nice” graph classes. In Section 3 we use this and a
result from [8] to obtain the degree distribution of a random outerplanar graph.
Finally, in Section 4 we first determine the number of vertices of degree k in
a random 2-connected series-parallel (SP) graph, and then apply the result of
Section 2 in order to obtain the degree distribution of a random SP graph.

Notation. Before we proceed, let us introduce some notation which will be ex-
tensively used in the next sections. Let G be a class of labeled graphs. We denote
by Gn the subset of graphs in G which have precisely n vertices, and we write
gn := |Gn|. Moreover, we write G(x) =

∑
n≥0 gn

x
n! for its corresponding expo-

nential generating function (egf).
In the following we will frequently use the pointing and derivative operators.

Given a labeled class of graphs G, we define G• as the class of pointed (or rooted)
graphs, where a vertex is distinguished from all other vertices. The derived class
G′n is obtained by removing the label n from every object in Gn, such that the
obtained objects have n−1 labeled vertices, i.e., vertex n can be considered as a
distinguished vertex that does not contribute to the size. Consequently, there is a
bijection between the classes G′n−1 and Gn. We set G′ :=

⋃
n≥0 G′n. On generating

function level, the pointing operation corresponds to taking the derivative with
respect to x, and multiplying by it by x, i.e. G•(x) = xG′(x). Similarly, the egf

n

308 N. Bernasconi, K. Panagiotou, and A. Steger

of G′ is simply G′(x). Finally, we denote by ρG the dominant singularity of G (in
this work we are going to deal only with functions that have a unique singularity
on the real axis).

2 A Framework for Nice Graph Classes

The aim of this section is to develop a general framework that will allow us to
mechanically give tight bounds for the number of vertices of degree k in a random
graph drawn from a graph class that satisfies certain technical assumptions.
Before we state our main result formally, let us introduce some notation. We
denote by Z the graph class consisting of one single labeled vertex. Furthermore,
for two graph classes X and Y, we denote by X × Y the cartesian product of
X and Y followed by a relabeling step, so as to guarantee that all labels are
distinct. Moreover, Set(X) is the graph class such that each object in it is an
ordered collection of graphs in X . Finally, the class X ◦ Y consists of all graphs
that are obtained from graphs from X , where each vertex is replaced (in a unique
way) by a graph from Y. This set of combinatorial operators (cartesian product,
set, and substitution) appears frequently in modern theories of combinatorial
analysis [9,7,12,13] as well as in systematic approaches to random generation of
combinatorial objects [9,14]. For a very detailed description of these operators
and numerous applications we refer to [7].

With this notation we may now define the graph classes we are going to
consider.

Definition 1. Let G be a class of labeled graphs, and B = B(G) ⊂ G the subclass
of biconnected graphs in G. We say that G is nice if it fulfills the following two
conditions.

i) G• satisfies
G• = Z × Set(B′ ◦ G•). (5)

ii) The egf G•(x) of G• has a unique finite singularity ρG and there exist con-
stants c, α > 0 such that

g•n ∼ cn−1−α · ρ−n
G · n!. (6)

We call α the critical exponent of G.

This definition states that nice classes allow the following decomposition: a
rooted graph can be viewed as a collection of rooted biconnected graphs, which
are “glued” together at their roots, and every vertex in them is substituted by a
rooted connected graph. In particular, every graph in a nice class is connected.
The above definition is not very restrictive, as many natural graph classes are
nice. Probably the most prominent examples are classes with forbidden minors,
in particular connected planar, outerplanar, and series-parallel graphs, or cactus,
block graphs and many kinds of trees (like Cayley trees). Note that condition (6)
restricts the set of possible classes to such ones that have only a “small” number

On the Degree Sequences of Random Outerplanar 309

of graphs. Hence, many graph classes like the class of connected triangle-free
graphs, or the class of connected k-colorable graphs, are not nice, although they
satisfy (5).

The remainder of this section is structured as follows. In the next subsection
we shall define an algorithm that generates pointed graphs from a nice class G
according to the Boltzmann model for G. Then, in Section 2.2 we shall exploit
this sampler to prove our main result (Lemma 2), which translates in a general
way the degree sequence of the graphs in B to the degree sequence of G.

2.1 A Sampler for Nice Graph Classes

Recall that due to (5) a rooted graph from a nice class G• of graphs can be viewed
as a set of rooted biconnected graphs, which are “glued” together at their roots,
and every vertex in them is substituted by a rooted connected graph. A sampler
for G• reverses this description: it starts with a single vertex, attaches to it a
random set of biconnected graphs, and proceeds recursively to substitute every
newly generated vertex by a rooted connected graph.

Let us now define formally the generic sampler. For this we need some ad-
ditional notation. Let G(x) and B(x) be the egfs of G and B respectively, and
let ρG and ρB be their singularities. Define λG := B′(G•(ρG)), and let ΓB′(x)
be a Boltzmann sampler for B′, i.e. ΓB′(x) samples according to the Boltzmann
distribution (4) with parameter x for B′. Then the sampler ΓG• for G• is defined
as follows.
ΓG• : γ ← a single node r

k ← Po(λG) (�)
for (j = 1, . . . , k)
γ′ ← ΓB′(G•(ρG)), discard the labels of γ′ (��)
γ ← merge γ and γ′ at their roots

foreach vertex v
= r of γ
γv ← ΓG•, discard the labels of γv (∗)

replace all nodes v
= r of γ with γv

label the vertices of γ uniformly at random
return γ

The following lemma is an immediate consequence of the compilation rules in
[9,11].

Lemma 1. Let γ ∈ G•. Then P[ΓG• = γ] = ρ
| |
G

|γ|!G•(ρG) .

2.2 Degree Sequence

Our goal is to analyze the execution of ΓG• so as to obtain information about
the degree sequence of random graphs from G•n. Before we proceed let us make
a few important observations. Note that every vertex v different from the root
goes through two phases. In the first phase, v is generated in a biconnected
graph (i.e., in a call to ΓB′ in the line marked with (��)), and has a specific

γ

310 N. Bernasconi, K. Panagiotou, and A. Steger

degree. We will also say that v was born with this degree. In the second phase,
when ΓG• is recursively called, a certain number of new biconnected graphs
will be attached to v, such that its degree increases by the sum of the degrees
of the roots of those graphs. After this, the degree will not change anymore,
such that the final degree is the sum of the degrees in the two phases. Hence, to
count vertices of a given degree k, we will fix a 1 ≤ � ≤ k and count how many
vertices are born with degree �. Let B� be the number of such vertices. Then,
we will compute the fraction of vertices among those B� that will receive k − �
neighbors in their second phase. Let us call this fraction Rk−�. The total number
of vertices with degree k is then the sum of these numbers over all possible �,
namely

∑k
�=1B�Rk−�.

In order to determine the degree sequences of the resulting graphs it is there-
fore important to understand how many vertices are born with a given degree
during a (random) execution of ΓG•, and what happens to the vertices in their
second phase. In Lemma 2 below we describe this idea formally. In order to
state it we need some additional notation. Let B′

1,B
′
2, . . . , be random graphs

from B′, drawn independently according to the Boltzmann distribution with pa-
rameter x = G•(ρG), and denote by rd (B′

i) the degree of the root vertex of B′
i.

We say that a variable X is sumRootBlock distributed, X ∼ sRB, if it is dis-
tributed like

∑Po(λG)
i=1 rd (B′

i). Moreover, let deg′(k; B′
i) be the number of vertices

different from the root vertex of B′
i that have degree k.

Lemma 2. Let k ∈ N. Let G be a nice class of graphs with critical exponent α,
and let B be the subclass of G containing all biconnected graphs in G. Suppose
that for all 0 < ε < 1 there is a decreasing function f(N) = f(N ;G, k, ε) such
that the following holds for sufficiently large N .

(B) Let B′
1, . . . ,B

′
N be independent random graphs drawn according to the Boltz-

mann distribution for B′ with parameter x = G•(ρG). Then for every 1 ≤
� ≤ k there is a constant bB,� such that with probability at least 1− f(N)

N∑

i=1

deg′(�; B′
i) ∈

(
1± ε

5

)
bB,�N. (7)

Then, for every 0 < ε < 1 and sufficiently large n there is a constant C =
C(k) > 0 such that

P [deg(k; Gn) ∈ (1± ε)gkn] ≥ 1− nα+5

(

f

(
λGn

2

)

+ e−Cε2n

)

, (8)

where gk = λG
∑k

�=1 bB,� · sB,k−� is the kth coefficient of the generating func-
tion λG · b(z) · p(r(z)), and sB,k−� := P[sRB = k − �]. Here b, p, and r denote
the functions

b(z) :=
∑

�≥1

bB,�z
� , p(z) := eλG(z−1) , and r(z) :=

∑

�≥1

P[rd (B′) = �]z�,

where B′ is drawn according to the Boltzmann distribution with parameter
x = G•(ρG) for B′.

On the Degree Sequences of Random Outerplanar 311

The statement of the above lemma generalizes to k = k(n) with one additional
technical assumption. This generalization can be found in the full version of the
paper [15].

3 Outerplanar Graphs

In this section we are going to consider labeled connected outerplanar graphs,
that we will simply call outerplanar graphs. Let O be the class of all outerplanar
graphs, and B the class of labeled biconnected outerplanar graphs. By applying
a standard decomposition of a graph into 2-connected blocks (see e.g. [16, p. 10])
we obtain the following lemma.

Lemma 3. The classes O and B satisfy the relation O• = Z × Set(B′ ◦ O•).

In words, a rooted outerplanar graph is just a collection of rooted 2-connected
outerplanar graphs, merged at their roots, in which every vertex may be substi-
tuted with another rooted outerplanar graph. The decomposition above trans-
lates immediately to a relation of the egf’s O•(x) for O• and B′(x) for B′.
Bodirsky et al. exploited this relation in [17], where among other results they
determined the singular expansion for O•(x) (which yields straightforwardly an
asymptotic estimate for |O•

n|). Here we state only the result from [17] that we
are going to exploit.

Lemma 4 ([17]). The singular expansion of O•(x) at its singularity ρO is

O•(x)
x→ρO= O•

0 −O•
1(1− x/ρO)1/2 + o

(
(1− x/ρO)1/2

)
,

where O•
0 is the solution of the equation xB′′(x) = 1, ρO = O•

0e
−B′(O•

0), and O•
1

is given analytically. Moreover, |O•
n| = (1 +O(n−1)) O•

1
2
√

π
n−3/2ρ−n

O n!.

By combining the above two lemmas we obtain immediately the following
corollary.

Corollary 3. The class O of labeled connected outerplanar graphs is nice in the
sense of Definition 1, and has critical exponent α = 1

2 .

3.1 The Degree Sequence of Random Outerplanar Graphs

In order to apply Lemma 2 we have to check that assertion (B) of that lemma
is true for the class of outerplanar graphs. For this we prove the following state-
ment; before we state it let us introduce some quantities, which are closely re-
lated to the number of vertices of degree k in a random outerplanar graph (the
connection will become more explicit in Lemma 5). Let

c(x) :=
x

2B′(x)− x, and t(x) :=
x2

2B•(x)
=

x

2B′(x)
,

and define the quantities

312 N. Bernasconi, K. Panagiotou, and A. Steger

d�(x) :=

{
2t(x), if � = 1
c(x)(1 − c(x))�−1

[
1− t(x) + c(x)

1−c(x)(�− 1)
(

xB′′(x)
B′(x) − 1

)]
, if � ≥ 2 ,

(9)
and

r�(x) :=

{
2t(x), if � = 1
(1− t(x))c(x)(1 − c(x))�−1, if � ≥ 2.

(10)

The next statement says that assertion (B) of Lemma 2 is true for outerplanar
graphs.

Lemma 5. Let B′
1, . . . ,B

′
N be independent random graphs drawn according to

the Boltzmann distribution with parameter 0 < x < ρB′ for B′. Let deg′ (�; B′)
denote the number of vertices different from the root with degree � in B′. There is
a C = C(x) > 0 such that for every 0 < ε < 1 and � such that d�(x)N > log4N

P

[
N∑

i=1

deg′ (�; B′
i) ∈ (1± ε)d�(x)N

]

≥ 1− e−Cε2d (x)N . (11)

Furthermore, let rd (B′
i) be the degree of the root vertex of B′

i. Then P[rd (B′
i) = �] =

r�(x).

Proof (Proof of Theorem 1). We will only prove the case k ∈ N, the proof for
general k = k(n) can be found in the full version of the paper [15]. Let us first
make a technical observation. Recall that O•(ρO) = O•

0 is due to Lemma 4 the
smallest solution of xB′′(x) = 1, where B(x) is the egf enumerating biconnected
outerplanar graphs. As B is explicitly given (see [17]), one can easily verify that
O•

0 < 3− 2
√

2 = ρB′ .
Recall that the class of outerplanar graphs is nice. Having the previous dis-

cussion in mind, by applying Lemma 5 with x = O•(ρO) < ρB′ we see that the
assertions of Lemma 2 are satisfied with bB,� = d�(O•

0) and f(N) = e−Cε2N , for
a suitably chosen C = C(k) > 0. By applying (8) we immediately obtain (1).

It remains to show (2). Observe that due to Lemma 4 we have O•
0B

′′(O•
0) = 1.

With (9) we then obtain

b(z) = d1(O•
0)z +

∑

�≥2

d�(O•
0)z� =

O•
0

λO
· z +

Fz2 +Gz3

(C −Dz)2 , where λO = B′(O•
0),

(12)
and

F = O•
0 λ

−1
O
(
2λ2

O − 4λOO•
0 + (O•

0)2 +O•
0

)
, C = O•

0 − 2λO,

G = O•
0 λ

−1
O
(
− 2λ2

O + 4λOO•
0 − 2(O•

0)2
)
, D = 2(O•

0 − λO).
(13)

To complete the proof we determine r(z). By applying Lemma 5 and by exploit-
ing (10)

r(z) =
∑

�≥1

r�(O•
0)z� =

Az +Bz2

C −Dz , (14)

where A = O•
0 λ

−1
O (O•

0 − 2λO) and B = O•
0 λ

−1
O (λO −O•

0).

�

On the Degree Sequences of Random Outerplanar 313

4 Series-Parallel Graphs

In this section we determine the degree sequence of graphs drawn uniformly at
random from the class of connected series-parallel (SP) graphs. To achieve this
we will again apply Lemma 2. Before we proceed let us state some facts that we
are going to need.

Let SP be the class of all labeled connected SP graphs, and B the class of
labeled biconnected SP graphs. Then the following is true, similar to the case of
outerplanar graphs.

Lemma 6. The classes SP and B satisfy the relation SP• = Z×Set(B′◦SP•).

This decomposition translates into a relation of the egf’s SP •(x) for SP• and
B′(x) for B′. Bodirsky et al. exploited this relation in [17], where they determined
the singular expansion for SP •(x) and the asymptotic value of |SP•

n|.
Lemma 7 ([17]). The singular expansion of SP •(x) around its singularity
ρSP is

SP •(x)
x→ρSP= SP •

0 − SP •
1 (1− x/ρSP)1/2 + o

(
(1− x/ρSP)1/2

)
,

where ρSP
·= 0.11021, SP •

0
·= 0.12797 and SP •

1
·= 0.00453 are implicitly given

constants. Moreover, |SP•
n| = (1 +O(n−1))SP •

1
2
√

π
n−3/2ρ−n

SPn!.

By combining the above two lemmaswe obtain immediately the following corollary.

Corollary 4. The class SP is nice with critical exponent α = 1
2 .

In order to apply Lemma 2 we have to check that condition (B) is true for
the class SP , i.e., we have to determine the fraction of vertices of degree � in a
“typical” sequence of random graphs from B′, drawn according to the Boltzmann
distribution. The second ingredient needed to apply Lemma 2 is the distribution
of the root degree of a random graph from B′.

The next lemma provides us with information about the root degree of random
objects from B′. Before we state it, let us introduce an auxiliary graph class,
which plays an important role in the the decomposition of 2-connected series-
parallel graphs. Following [18,17], we define a network as a connected graph with
two distinguished vertices, called the left and the right pole, such that adding
the edge between the poles the resulting (multi)graph is 2-connected. Let D be
the class of series-parallel networks, such that Dn contains all networks with n
non-pole vertices. We write for brevity D0 ≡ e for the network consisting of a
single edge. Let !B be the class containing all graphs in B rooted at any of their
edges, where the root edge is oriented. Then the classes B and D are due to the
definition of D related as follows:

(D + 1)×Z2 × e = (1 + e)× !B. (15)

Although this decomposition can be used to obtain detailed information about
the generating function enumerating B (see e.g. [19]), as well as the degree se-
quence of a “typical” graph from !B, it turns out that it is quite involved to derive

314 N. Bernasconi, K. Panagiotou, and A. Steger

from it information about the degree sequence of a random graph from B. This
difficulty is mainly due to the fact that the number of ways to root a graph at an
edge varies for graphs of the same size (w.r.t. the number of vertices), and would
require to perform a very laborious integration. We attack this problem differ-
ently: we exploit a very general recent result by Fusy, Kang, and Shoilekova [20],
which allows to decompose families of 2-connected graphs in a direct combina-
torial way (again based on networks), but avoiding the often complicated and
intractable integration steps. We will now write only the results that we have
obtained, we refer the reader to the full version of this paper [15] for the proofs
and all the details.

Let G be a class consisting of graphs that have a distinguished vertex. G could
be for example B′, or D with the left pole as distinguished vertex. Let G be a
graph from G, drawn according to the Boltzmann distribution with parameter
x, and denote by rd (G) the degree of the distinguished vertex of G. Then we
write RG(z; x) for the probability generating function of rd (G), i.e.

RG(z; x) :=
∑

k≥0

P[rd (G) = k]zk.

We will use this notation throughout the paper without further reference and
we will omit the parameter x if this is clear from the context. Having this, the
distribution of the root-degree of random graphs from B′ is as follows.

Lemma 8. Let B′ be a graph drawn from B′ according to the Boltzmann distri-
bution with parameter 0 ≤ x ≤ ρB′ . Then

P[rd (B′) = �] = [z�]RB′(z) = [z�]
RD(z)(xD(x)2RD(z)− 2)

xD(x)2 − 2
, (16)

where D(x) is the egf enumerating series-parallel networks, and RD(z) satisfies

RD(z) =
1

D(x)

(

−1 + (1 + z)
(

1 +D(x)
2

)RD(z)
)

. (17)

Next we determine the expected number of non-root vertices having degree � in
a random graph from B′. Let IB′(z) be the function whose kth coefficient is the
expected number of non-root vertices of degree k in B′.

Lemma 9. Let B′ be a graph from B′ drawn according to the Boltzmann distri-
bution with parameter 0 ≤ x ≤ ρB′ . Then

E[deg′(�; B′)] = [z�]IB′ (z) = [z�]
((xB′′(x)

B′(x)
− 1

)
RD(z)2 +RB′(z)

)

. (18)

Lemma 9 is unfortunately not sufficient to apply Lemma 2, as it provides us
only with information about the expected number of non-root vertices with a
given degree, and not with the appropriate concentration statement. Our final
lemma solves this problem in a general way, with the slight disadvantage that
the obtained tail probability might not be sharp.

On the Degree Sequences of Random Outerplanar 315

Lemma 10. Let G1, . . . ,GN be random graphs drawn independently from a class
G of graphs, according to a distribution that satisfies P[|Gi| = s] ≤ c−s for all
s, and some c > 1. Let X : G → N be a function such that X(G) ≤ |G| for all
G ∈ G, and E[X] ≥ log2 N√

N
. Then there is a C > 0 such that for all 0 < ε < 1

and sufficiently large N

P

[
N∑

i=1

X(Gi) ∈ (1± ε)E[X]N

]

≥ 1− e−Cε2E[X]2 3N1 3
.

If we choose G to be B′ and X as the variable counting internal vertices of degree
k, all conditions of Lemma 10 are fulfilled. Then condition (B) of Lemma 2 holds
for SP , and we can apply the lemma to prove Theorem 2 with b(z) = IB′(z),
r(z) = RB′(z) and

λSP = B′(SP •
0). (19)

The proof can be found in the full version of the paper [15].

References

1. Bollobás, B.: Random graphs, 2nd edn. Cambridge Studies in Advanced Mathe-
matics, vol. 73. Cambridge University Press, Cambridge (2001)

2. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. John Wiley & Sons, Chich-
ester (2000)

3. Denise, A., Vasconcellos, M., Welsh, D.J.A.: The random planar graph. Congr.
Numer. 113, 61–79 (1996)

4. McDiarmid, C., Steger, A., Welsh, D.J.A.: Random planar graphs. J. Combin.
Theory Ser. B 93(2), 187–205 (2005)

5. Gerke, S., McDiarmid, C., Steger, A., Weißl, A.: Random planar graphs with n
nodes and a fixed number of edges. In: Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 999–1007. ACM, New York (2005)
(electronic)

6. Giménez, O., Noy, M.: The number of planar graphs and properties of random
planar graphs. In: 2005 Int. Conf. on An. of Alg. Discrete Math. Theor. Comput.
Sci. Proc., AD. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 147–156
(2005) (electronic)

7. Flajolet, P., Sedgewick, R.: Analytic combinatorics (Book in preparation, October
2005)

8. Bernasconi, N., Panagiotou, K., Steger, A.: On properties of random dis-
sections and triangulations. In: Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 132–141 (2008),
www.as.inf.ethz.ch/research/publications/2008/index/

9. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Combin. Probab. Comput. 13(4-5),
577–625 (2004)

10. Drmota, M., Giménez, O., Noy, M.: Vertices of given degree in series-parallel graphs
(preprint)

/ /

316 N. Bernasconi, K. Panagiotou, and A. Steger

11. Fusy, É.: Quadratic exact size and linear approximate size random generation of
planar graphs. In: Mart́ınez, C. (ed.) 2005 In. Conf. on An. of Al. DMTCS Pro-
ceedings. Discrete Mathematics and Theoretical Computer Science, vol. AD, pp.
125–138 (2005)

12. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial species and tree-like struc-
tures. Encyclopedia of Mathematics and its Applications, vol. 67. Cambridge Uni-
versity Press, Cambridge (1998)

13. Stanley, R.P.: Enumerative combinatorics. Vol. 1. Cambridge Studies in Advanced
Mathematics, vol. 49. Cambridge University Press, Cambridge (1997); With a fore-
word by Gian-Carlo Rota, Corrected reprint of the 1986 original

14. Flajolet, P., Zimmerman, P., Van Cutsem, B.: A calculus for the random generation
of labelled combinatorial structures. Theoret. Comput. Sci. 132(1-2), 1–35 (1994)

15. Bernasconi, N., Panagiotou, K., Steger, A.: On the degree sequences of random
outerplanar and series-parallel graphs,
www.as.inf.ethz.ch/research/publications/2008/index/

16. Harary, F., Palmer, E.: Graphical Enumeration. Academic Press, New York (1973)
17. Bodirsky, M., Giménez, O., Kang, M., Noy, M.: On the number of series parallel

and outerplanar graphs. In: 2005 European Conference on Combinatorics, Graph
Theory and Applications (EuroComb 2005). DMTCS Proceedings., Discrete Math-
ematics and Theoretical Computer Science, vol. AE, pp. 383–388 (2005)

18. Walsh, T.R.S.: Counting labelled three-connected and homeomorphically irre-
ducible two-connected graphs. J. Combin. Theory Ser. B 32(1), 1–11 (1982)

19. Bender, E.A., Gao, Z., Wormald, N.C.: The number of labeled 2-connected planar
graphs. Electron. J. Combin. 9(1) (2002); Research Paper 43, 13 pp. (electronic)

20. Fusy, E., Kang, M., Shoilekova, B.: A complete grammar for decomposing a family
of graphs into 3-connected components. (submitted for publication) (2008)

Improved Bounds for Testing Juntas

Eric Blais�

Carnegie Mellon University
eblais@cs.cmu.edu

Abstract. We consider the problem of testing functions for the property
of being a k-junta (i.e., of depending on at most k variables). Fischer,
Kindler, Ron, Safra, and Samorodnitsky (J. Comput. Sys. Sci., 2004)
showed that Õ(k2)/ε queries are sufficient to test k-juntas, and conjec-
tured that this bound is optimal for non-adaptive testing algorithms.

Our main result is a non-adaptive algorithm for testing k-juntas with
Õ(k3/2)/ε queries. This algorithm disproves the conjecture of Fischer et al.

We also show that the query complexity of non-adaptive algorithms
for testing juntas has a lower bound of min

�
Ω̃(k/ε), 2k/k

�
, essentially

improving on the previous best lower bound of Ω(k).

1 Introduction

A function f : {0, 1}n → {0, 1} is said to be a k-junta if it depends on at
most k variables. Juntas provide a clean model for studying learning problems
in the presence of many irrelevant features [4, 6], and have consequently been of
particular interest to the computational learning theory community [5, 6, 17, 12,
16]. A problem closely related to learning juntas is the problem of testing juntas :
given query access to a function, is it possible to efficiently determine if all but
at most k of the variables in the function represent irrelevant features?

We consider the problem of testing juntas in the standard framework of prop-
erty testing, as originally introduced by Rubinfeld and Sudan [19]. In this frame-
work, we say that a function f is ε-far from being a k-junta if for every k-junta g,
the functions f and g disagree on at least an ε fraction of inputs. A randomized
algorithm A that makes q queries to its input function is an ε-testing algorithm
for k-juntas if

1. All k-juntas are accepted by A with probability at least 2/3, and
2. All functions that are ε-far from being k-juntas are rejected by A with prob-

ability at least 2/3.

A testing algorithmA is non-adaptive if does not use the answers of some queries
to determine later queries; otherwise, the algorithm A is adaptive.

In this article we consider the problem of determining the query complexity
for the problem of testing juntas: given fixed k ≥ 1 and ε > 0, what is the
minimum number q = q(k, ε) of queries required for any algorithm A to ε-test
k-juntas?
� Supported in part by a scholarship from the Fonds québécois de recherche sur la

nature et les technologies (FQRNT).

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 317–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

318 E. Blais

Background. The first result related to testing juntas was obtained by Bellare,
Goldreich, and Sudan [2] in the context of testing long codes. That result was
generalized by Parnas, Ron, and Samorodnitsky [18] to obtain an algorithm for
ε-testing 1-juntas with only O(1/ε) queries.

The next important step in testing k-juntas was taken by Fischer, Kindler,
Ron, Safra, and Samorodnitsky [10], who developed multiple algorithms for
testing k-juntas with poly(k)/ε queries. Those algorithms were particularly sig-
nificant for showing explicitly that testing juntas can be done with a query
complexity independent of the total number of variables. The most query-efficient
algorithms they presented require Õ(k2)/ε queries1 to ε-test k-juntas.

Fischer et al. [10] also gave the first non-trivial lower bound on the query
complexity for the testing juntas problem. They showed that any non-adaptive
algorithm for ε-testing k-juntas requires at least Ω̃(

√
k) queries and conjectured

that the true query complexity for non-adaptive algorithms is k2/ε queries.
Chockler and Gutfreund [8] improved the lower bound for testing juntas by

showing that all algorithms – adaptive or non-adaptive – for ε-testing k-juntas
require Ω(k) queries. This result applies for all values of ε < 1/8, but the bound
itself does not increase as ε decreases.

Our results and techniques. Our main result is an improvement on the upper
bound for the query complexity of the junta testing problem.

Theorem 1.1. The property of being a k-junta can be ε-tested by a non-adaptive
algorithm with Õ(k3/2)/ε queries.

The new algorithm presented in this article is the first for testing juntas with a
number of queries sub-quadratic in k, and disproves the lower bound conjecture
of Fischer et al.

Our algorithm is based on an algorithm of Fischer et al. for testing juntas [10,
§4.2]). The observation that led to the development of the new algorithm is
that the algorithm of Fischer et al. can be broken up into two separate tests:
a “block test” and a simple “sampling test”. In this article, we generalize the
sampling test, and we establish a structural Lemma for functions that are ε-far
from being k-juntas to show how the two tests can be combined to ε-test k-juntas
more efficiently.

Our second result is an improved lower bound on the number of queries re-
quired for testing juntas with non-adaptive algorithms. The new bound is the
first lower bound for the query complexity of the junta testing problem that
incorporates the accuracy parameter ε.

Theorem 1.2. Any non-adaptive algorithm for ε-testing k-juntas must make at
least min

(
Ω
(k/ε

log k/ε

)
, Ω
(

2
k

))
queries.

We prove Theorem 1.2 via Yao’s Minimax Principle [20]. The proof involves an
extension of the argument of Chockler and Gutfreund [8] and an application of
the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3], and Hart [14].
1 Here and in the rest of this article, the Õ(·) notation is used to hide polylog factors.

(i.e., Õ
�
f(x)

�
= O

�
f(x) logc f(x)

�
and Ω̃

�
f(x)

�
= Ω

�
f(x)

log f(x)

�
for some c ≥ 0.)

k

c

Improved Bounds for Testing Juntas 319

Organization. We introduce some notation and definitions in Section 2. We
present the new algorithm for ε-testing k-juntas and its analysis in Section 3.
In Section 4, we present the proof for the lower bound on the query complexity
of non-adaptive algorithms for testing juntas. Finally, we conclude with some
remarks and open problems in Section 5.

2 Preliminaries

Notation. For n ≥ 1, let [n] = {1, . . . , n}. For a set A ⊆ [n], we write Ā = [n]\A
to represent the complement of A in [n]. When x, y ∈ {0, 1}n, we define xAyĀ

to be the hybrid string z where zi = xi for every i ∈ A and zj = yj for every
j ∈ Ā.

We write Prx[·] (resp., Ex[·]) to denote the probability (resp., expectation)
over the choice of x taken uniformly at random from {0, 1}n. We also write
Hk =

∑k
j=1

1
j to denote the k-th harmonic number.

Variation. In the analysis of the new algorithm for testing juntas, we consider
the variation of sets of coordinates in a function, a concept introduced by Fischer
et al. [10].2

Definition 2.1. The variation of the set S ⊆ [n] of coordinates in the function
f : {0, 1}n → {0, 1} is

Vrf (A) = Prx [f(x)
= f(xS̄yS)] .

We write Vrf (i) = Vrf ({i}) to represent the variation of the ith coordinate. The
variation of a single coordinate is equivalent to the notion of influence, as defined
in, e.g., [15].

Some useful properties of variation are its monotonicity, subadditivity, and
submodularity.

Fact 2.2 (Fischer et al. [10]) For any function f : {0, 1}n → {0, 1}, and any
sets A,B,C ⊆ [n], the following three properties hold:

(i) Monotonicity: Vrf (A) ≤ Vrf (A ∪B)
(ii) Subadditivity: Vrf (A ∪B) ≤ Vrf (A) + Vrf (B)

(iii) Submodularity: Vrf (A ∪B)−Vrf (B) ≥ Vrf (A ∪B ∪ C)−Vrf (B ∪ C)

The Independence Test. A function f is said to be independent of a set
S ⊆ [n] of coordinates if Vrf (S) = 0. The definition of variation suggests a nat-
ural test for independence:

IndependenceTest [10]: Given a function f : {0, 1}n → {0, 1} and a set S ⊆
[n], generate two inputs x, y ∈ {0, 1}n independently and uniformly at random.
If f(x) = f(xS̄yS), then accept; otherwise, reject.
2 The definition of variation used in [10] is slightly different, but is equivalent to the

one used in this article up to a constant factor.

320 E. Blais

BlockTest(f , k, η, δ)

Additional parameters: s = �2k2/δ�, r = �4k ln(s/δ)�, m = �ln(2r/δ)/η�

1. Randomly partition the coordinates in [n] into s sets I1, . . . , Is.
2. For each of r rounds,

2.1. Pick a random subset T ⊆ [s] by including each index independently with
probability 1/k.

2.2. Define the block of coordinates BT =
�

j∈T Ij .
2.3. If IndependenceTest(f , BT , m) accepts, mark Ij as “variation-free” for

every j ∈ T .
3. Accept f if at most k of the sets I1, . . . , Is are not marked as “variation-free”;

otherwise reject f .

Fig. 1. The algorithm for the block test

Let us define IndependenceTest(f , S, m) to be the algorithm that runs m
instances of the IndependenceTest on f and S and accepts if and only if every
instance of the IndependenceTest accepts. By the definition of variation, this
algorithm accepts with probability

(
1−Vrf (S)

)m. In particular, this test always
accepts when f is independent of the set S of coordinates, and rejects with
probability at least 1− δ when Vrf (S) ≥ ln(1/δ)/m.

3 The Algorithm for Testing Juntas

In this section, we present the algorithm for ε-testing k-juntas with Õ(k3/2)/ε
queries. The algorithm has two main components: the BlockTest and the
SamplingTest. We introduce the BlockTest in Section 3.1 and the Sam-

plingTest in Section 3.2. Finally, in Section 3.3 we show how to combine both
tests to obtain an algorithm for testing juntas.

3.1 The Block Test

The purpose of the BlockTest is to accept k-juntas and reject functions that
have at least k + 1 coordinates with “large” variation.

The BlockTest first randomly partitions the coordinates in [n] into s sets
I1, . . . , Is. It then applies the IndependenceTest to blocks of these sets to
identify the sets of coordinates that have low variation. The test accepts if all
but at most k of the sets I1, . . . , Is are identified as having low variation. The
full algorithm is presented in Fig. 1.

The BlockTest is based on Fischer et al.’s non-adaptive algorithm for test-
ing juntas [10, §4.2], which uses a very similar test.3 As the following two

3 The principal difference between our version of the BlockTest and Fischer et al.’s
version of the test is that in [10], the set T is generating by including exactly k
indices chosen at random from [s].

Improved Bounds for Testing Juntas 321

Propositions show, with high probability the BlockTest accepts k-juntas and
rejects functions with k + 1 coordinates with variation at least η.

Proposition 3.1 (Completeness). Fix η > 0, and let f : {0, 1}n → {0, 1} be
a k-junta. Then the BlockTest accepts f with probability at least 1− δ.

Proof. Let Ij be a set that contains only coordinates i with variation Vrf (i) = 0.
In a given round, the probability that Ij is included in BT and none of the sets
Ij′ that contain a coordinate with positive variation are included in BT is at
least (1/k)(1 − 1/k)k ≥ 1/4k since (1 − 1/k)k ≥ 1/4 for all k ≥ 2. So the
probability that Ij is not marked as “variation-free” in any of the r rounds is
at most (1 − 1/4k)r ≤ e−r/4k ≤ δ/s when r ≥ 4k ln(s/δ). By the union bound,
all the sets Ij that contain only coordinates with no variation are identified as
“variation-free” with probability at least 1− s(δ/s) = 1− δ. ��

Proposition 3.2 (Soundness). Let f : {0, 1}n → {0, 1} be a function for
which there exists a set S ⊆ [n] of size |S| = k + 1 such that every coordinate
i ∈ S has variation Vrf (i) ≥ η. Then the BlockTest rejects f with probability
at least 1− δ.

Proof. There are two ways in which the block test can wrongly accept the input
function. The first way it can do so is by mapping all the coordinates with
variation at least η into at most k sets during the random partition. We can
upper bound the probability of this event with the probability that any collision
occurs during the mapping of the first k + 1 coordinates with high variation,
which is at most 1

s + 2
s + · · ·+ k

s = k(k+1)
2s ≤ k2

s ≤ δ/2.
The second way in which the block test can wrongly accept the input function

is by erroneously marking one of the sets Ij that contains a coordinate with
variation at least η as “variation-free”. To bound the probability of this event
happening, consider a given round in which BT contains at least one of the
coordinates i with variation Vrf (i) ≥ η. By Fact 2.2 (i), the variation of BT

is at least η, so when m ≥ ln(2r/δ)/η, the IndependenceTest accepts BT

with probability at most δ/2r. By the union bound, the probability that one of
the r rounds results in a false “variation-free” marking is at most δ/2. So the
total probability that the algorithm wrongly accepts the function f is at most
δ/2 + δ/2 = δ. ��

The BlockTest algorithm makes 2m queries to f in each round, so the total
query complexity of the algorithm is 2rm = O(k log2(k/δ)/η).

3.2 The Sampling Test

The purpose of the SamplingTest is to accept k-juntas and reject functions
that have a large number of coordinates with non-zero variation.

The SamplingTest, as its name implies, uses a sampling strategy to estimate
the number of coordinates with non-negligible variation in a given function f .
The sampling test generates a random subset T ⊆ [n] of coordinates in each

322 E. Blais

SamplingTest(f , k, l, η, δ)

Additional parameters: r = �128k2 ln(2/δ)/l2�, m = �ln(2r/δ)/η�

1. Initialize the success counter c ← 0.
2. For each of r rounds,

2.1. Pick a random subset T ⊆ [n] by including each coordinate independently
with probability 1/k.

2.2. If IndependenceTest(f , T , m) accepts, set c ← c + 1.
3. Accept f if c/r ≥ (1 − 1/k)k − l/16k; otherwise reject f .

Fig. 2. The algorithm for the sampling test

round, and uses the IndependenceTest to determine if f is independent of
the coordinates in T . The test accepts when the fraction of rounds that pass the
independence test is not much smaller than the expected fraction of rounds that
pass the test when f is a k-junta. The details of the algorithm are presented in
Fig. 2.

Proposition 3.3 (Completeness). Fix η > 0, l ∈ [k]. Let f : {0, 1}n → {0, 1}
be a k-junta. Then the SamplingTest accepts f with probability at least 1− δ.

Proof. When f is a k-junta, the probability that the set T in a given round
contains only coordinates i with variation Vrf (i) = 0 is at least (1 − 1/k)k.
When this occurs, the set T also has variation Vrf (T) = 0. Let t be the number
of rounds for which the set T satisfies Vrf (T) = 0. By Hoeffding’s bound,

Pr
[
t

r
< (1− 1/k)k − l

16k

]

≤ e−2r·(l/16k)2 ≤ δ/2

when r ≥ 128k2 ln(2/δ)/l2. Every set T with variation Vrf (T) = 0 always passes
the IndependenceTest, so c ≥ t and the completeness claim follows. ��

Proposition 3.4 (Soundness 1). Fix η > 0, l ∈ [k]. Let f : {0, 1}n → {0, 1}
be a function for which there is a set S ⊆ [n] of size |S| = k + l such that every
coordinate i ∈ S has variation V rf (i) ≥ η. Then the SamplingTest rejects f
with probability at least 1− δ.

Proof. In a given round, the probability that the random set T does not contain
any of the k + l coordinates with large variation is (1 − 1/k)k+l. When l ≤ k,
(1−1/k)l ≤ 1− l/2k, and when k ≥ 2, (1−1/k)k ≥ 1/4. So the probability that
T contains none of the k + l coordinates with large varation is (1 − 1/k)k+l ≤
(1− 1/k)k(1− l/2k) ≤ (1− 1/k)k − l/8k.

Let t represent the number of rounds whose sets T contain no coordinate with
variation at least η. By Hoeffding’s bound,

Pr
[
t

r
> ((1 − 1/k)k − l/8k) + l/16k

]

≤ e−2r(l/16k)2 ≤ δ/2

Improved Bounds for Testing Juntas 323

when r ≥ 128k2 ln(2/δ)/l2. By Fact 2.2 (i), every set T that contains one of
the coordinates i with variation Vrf (i) ≥ η also has variation Vrf (T) ≥ η. By
our choice of m, the probability that the IndependenceTest accepts a set
with variation η is at most δ/2r. By the union bound, the IndependenceTest

correctly rejects all the sets with variation at least η except with probability at
most δ/2.

The sampling test can accept f only if more than a (1−1/k)k−l/16k fraction of
the random sets contain no coordinate with variation η, or if at least one of those
random sets contains such a coordinate but still passes the IndependenceTest.
So the proability that the sampling test erroneously accepts f is at most δ/2 +
δ/2 = δ. ��

Proposition 3.5 (Soundness 2). Let η = ε
64H k ,4 and let f : {0, 1}n → {0, 1}

be a function for which there exists a set S ⊆ [n] of coordinates satisfying the
following two properties:

(i) Each coordinate i ∈ S has variation Vrf (i) < η, and
(ii) The total variation of the set S is Vrf (S) ≥ ε/2.

Then when l = k, the SamplingTest rejects f with probability at least 1− δ.

The proof of Proposition 3.5 follows very closely the proof of Fischer et al. [10,
Lem. 4.3]. In particular, the proof uses the following Chernoff-like bound.

Lemma 3.6 (Fischer et al. [10, Prop. 3.5]). Let X =
∑l

i=1Xi be a sum
of non-negative independent random variables Xi. If every Xi is bounded above
by t, then for every λ > 0

Pr
[
X < λE[X]

]
< exp

(
E[X]
et

(λe− 1)
)

.

The proof of Proposition 3.5 also makes extensive use of Fischer et al.’s concept
of unique variation [10].

Definition 3.7 (Fischer et al. [10]). The unique variation of the coordinate
i ∈ [n] with respect to the set S ⊆ [n] in the function f : {0, 1}n → {0, 1} is

Urf,S(i) = Vrf ([i] ∩ S)−Vrf ([i− 1] ∩ S).

Furthermore, the unique variation of the set I ⊆ [n] of coordinates with respect
to S in f is Urf,S(I) =

∑
i∈I Urf,S(i).

Fact 3.8 (Fischer et al. [10]) For any function f : {0, 1}n → {0, 1} and sets
of coordinates S, T ⊆ [n], the following two properties hold:

(i) Urf,S(T) ≤ Vrf (T), and
(ii) Urf,S([n]) = Vrf (S).

We are now ready to complete the proof of Proposition 3.5.
4 Recall that Hk =

�k
j=1

1
j

is the kth harmonic number.

k

324 E. Blais

Proof (of Proposition 3.5). There are two ways in which the SamplingTest

can accept f . The test may accept f if at least a (1 − 1/k)k − 1/16 fraction
of the random sets T have variation Vrf (T) < η. Alternatively, the test may
also accept if some of the sets T with variation Vrf (T) ≥ η pass the Indepen-

denceTest. By our choice of m and the union bound, this latter event happens
with probability at most δ/2. So the proof of Proposition 3.5 is complete if we
can show that the probability of the former event happening is also at most δ/2.

Let t represent the number of rounds where the random set T has variation
Vrf (T) ≥ η. We want to show that Pr

[
t/r ≥ (1 − 1/k)k − 1/16

]
≤ δ/2. In fact,

since (1−1/k)k ≥ 1/4 for all k ≥ 2, it suffices to show that Pr [t/r ≥ 3/16] ≤ δ/2.
In a given round, the expected unique variation of the random set T with

respect to S in f is

E[Urf,S(T)] =
∑

i∈[n]

1
k

Urf,S(i) =
Urf,S([n])

k
=

Vrf (S)
k

≥ ε

2k
,

where the third equality uses Fact 3.8 (ii). By Property (i) of the Proposition,
Urf,S(T) is the sum of non-negative variables that are bounded above by η. So
we can apply Lemma 3.6 with λ = 1/32Hk to obtain

Pr [Urf (T) < η] .

By Fact 3.8 (i) and the fact that < 1/8 for all k ≥ 1, we have that

E[t/r] = Pr [Vrf (T) < η] < 1/8.

The final result follows from an application of Hoeffding’s inequality and the
choice of r. ��

The SamplingTest algorithm makes 2m queries to f in each round, so the
total query complexity of the algorithm is 2rm = O(k2 log(k/lδ)/l2η).

3.3 The Junta Test

In the previous two subsections, we defined two tests: the BlockTest that
distinguishes k-juntas from functions with k+1 coordinates with large variation,
and the SamplingTest that distinguishes k-juntas from functions that have
some variation distributed over a large number of coordinates. The following
structural Lemma on functions that are ε-far from being k-juntas shows that
these two tests are sufficient for testing juntas.

Lemma 3.9. Let f : {0, 1}n → {0, 1} be ε-far from being a k-junta. Then for
any t > 0, f satisfies at least one of the following two properties:

(i) There exists an integer l ∈ [k] such that there are at least k+ l coordinates i
with variation Vrf (i) ≥ ε

tH l in f .
k

e
ε

2ekη

�
e

32Hk
−1

�
< e

ε
2ekη

�
e

32Hk
−1

�

Improved Bounds for Testing Juntas 325

JuntaTest(f , k, ε)

Additional parameters: δ = 1
3(�log k1 2�+2)

, τ = ε
64H

1. Run BlockTest(f , k, τ/�k1/2�, δ).
2. For l = �k1/2�, �2k1/2�, �4k1/2�, �8k1/2�, . . . , k,

2.1. Run SamplingTest(f , k, l, τ/2l, δ).
3. Run SamplingTest(f , k, k, τ/k, δ).
4. Accept f if all of the above tests accept; otherwise reject f .

Fig. 3. The algorithm for the junta test

(ii) The set S of coordinates i ∈ [n] with variation Vrf (i) < ε
tH k has total

variation Vrf (S) ≥ (1− 1/t)ε.

Proof. Let f be a function that does not satisfy the Property (i) of the Lemma.
Define J ⊆ [n] to be the set of the k coordinates in f with highest variation, and
let T be the set of coordinates i ∈ [n] \ J with variation Vrf (i) ≥ ε

tH k . Since f
does not satisfy Property (i) of the Lemma, Fact 2.2 (ii) ensures that the variation
of T is bounded by Vrf (T) ≤ ε

tH + ε
2tH + · · ·+ ε

ktH = ε
t . Since S ∪ T ⊇ [n] \ J

and any function ε-far from being a k-junta must satisfy Vrf ([n] \ J) ≥ ε, a
second application of Fact 2.2 (ii) shows that f must satisfy Property (ii) of the
Lemma. ��

Lemma 3.9 naturally suggests an algorithm for testing k-juntas: use the Block-

Test (with parameter η = ε/64Hkk) to reject functions that satisfy Property (i)
of the Lemma, and use the SamplingTest (with parameters l = k and η as
above) to reject the functions that satisfy Property (ii) of the Lemma. This al-
gorithm is equivalent to the non-adaptive algorithm of Fischer et al. [10], and
requires Õ(k2)/ε queries.

We can improve the query complexity of the algorithm by splitting up the
task of identifying functions that satisfy Property (i) of Lemma 3.9 into multiple
tasks for more specific ranges of l. The result of this approach is the JuntaTest

algorithm presented in Fig. 3. With this algorithm, we are now ready to prove
Theorem 1.1.

Theorem 1.1. The property of being a k-junta can be ε-tested by a non-adaptive
algorithm with Õ(k3/2)/ε queries.

Proof. Let us begin by showing that the JuntaTest is a valid algorithm for ε-
testing k-juntas. By Propositions 3.1 and 3.3, k-juntas pass the BlockTest and
each of the SamplingTest instances with probability δ. So by our choice of δ
and the union bound, k-juntas are accepted by the JuntaTest with probability
at least 2/3.

Let f be any function that is ε-far from being a k-junta. If f satisfies Prop-
erty (i) of Lemma 3.9 with parameter t = 64, consider the minimum integer

k

k

k

k k k

/

326 E. Blais

l′ ∈ [k] for which there is a set S ⊆ [n] of size k + l′ such that every coordinate
i ∈ S has variation Vrf (i) ≥ ε

64H l′ . If l′ < �k1/2�, then by Proposition 3.2, the
BlockTest rejects f with probability 1− δ > 2/3. If l′ ≥ k1/2, then by Propo-
sition 3.4, the SamplingTest with the parameter l that satisfies l ≤ l′ ≤ 2l
rejects the function with probability 1− δ > 2/3.

If f satisfies Property (ii) of Lemma 3.9, by Proposition 3.5, the last Sam-

plingTest rejects the function with probability 1− δ > 2/3. Since Lemma 3.9
guarantees that any function ε-far from being a k-junta must satisfy at least one
of the two properties of the Lemma, this completes the proof of soundness of the
JuntaTest.

To complete the proof of Theorem 1.1, it suffices to show that the JuntaT-

est is a non-adaptive algorithm and that it makes only Õ(k3/2)/ε queries to the
function. The non-adaptivity of the JuntaTest is apparent from the fact that
all queries to the input function come from independent instances of the Inde-

pendenceTest. The query complexity of the JuntaTest also follows from the
observation that each instance of the BlockTest or the SamplingTest in the
algorithm requires Õ(k3/2)/ε queries. Since there are a total of O(log k) calls to
those tests, the total query complexity of the JuntaTest is also Õ(k3/2)/ε. ��

4 The Lower Bound

In this section, we show that every non-adaptive algorithm for ε-testing k-juntas
must make at least min

(
Ω̃(k/ε), 2k/k

)
queries to the function.

To prove Theorem 1.2, we introduce two distributions, Dyes and Dno, over
functions that are k-juntas and functions that are ε-far from k-juntas with high
probability, respectively. We then show that no deterministic non-adaptive algo-
rithm can reliably distinguish between functions drawn from Dyes and functions
drawn from Dno. The lower bound on all non-adaptive algorithms for ε-testing
k-juntas then follows from an application of Yao’s Minimax Principle [20].

A central concept that we use extensively in the proof of Theorem 1.2 is
Chockler and Gutfreund’s definition of twins [8].

Definition 4.1. Two vectors x, y ∈ {0, 1}n are called i-twins if they differ ex-
actly in the ith coordinate (i.e., if xi
= yi and xj = yj for all j ∈ [n] \ {i}). The
vectors x, y are called twins if they are i-twins for some i ∈ [n].

We now define the distributions Dyes and Dno. To generate a function from the
distribution Dno, we first define a function g : {0, 1}k+1 → {0, 1} by setting
the value g(x) for each input x ∈ {0, 1}k+1 independently at random, with
Pr[g(x) = 1] = 6ε. We then extend the function over the full domain by defining
f(x) = g(x[k+1]) for every x ∈ {0, 1}n. The distribution Dyes is defined to be
the uniform mixture distribution over the distributions D(1)

yes,D(2)
yes, . . . ,D(k+1)

yes ,
where the distribution D(i)

yes is defined similarly to the Dno distribution, but over
the set [k + 1] \ {i} instead of [k + 1].

k

Improved Bounds for Testing Juntas 327

By construction, the functions drawn from Dyes are all k-juntas. The following
Lemma shows that a function drawn from Dno is ε-far from being a k-junta with
high probability.

Lemma 4.2. When k/2k < ε ≤ 1/12 and k ≥ 3, a function f : {0, 1}n → {0, 1}
drawn from Dno is ε-far from being a k-junta with probability at least 11/12.

Proof. A function f drawn from Dno is ε-far from being a k-junta iff the function
g : {0, 1}k+1 → {0, 1} that was extended to form f is ε-far from being a k-junta.
In turn, g is ε-far from being a k-junta iff for every coordinate i ∈ [k + 1], we
must change the value of g(x) on at least ε2k+1 different inputs x ∈ {0, 1}k+1

to make the function g independent of the ith variable – which is equivalent to
requiring that at least ε2k+1 pairs of i-twins have distinct values in g.

Consider a fixed i ∈ [k + 1]. Since each value g(x) is generated independently
and takes value g(x) = 1 with probability 6ε, each pair of i-twins has distinct
values with probability 2 ·6ε(1−6ε). Let ti represent the number of i-twins with
distinct values in g. Then when ε ≤ 1/12, E[ti] = 12ε(1 − 6ε)2k ≥ 6ε2k, and we
can apply Chernoff’s bound to obtain

Pr
[
ti ≤ ε2k+1

]
≤ e−6ε2k(1−1/3)2/2 = e−ε2k+2/3 .

The Lemma then follows from the union bound and the conditions that ε > k/2k

and k ≥ 3.
�

Consider any sequence of q queries that a deterministic non-adaptive algorithm
may make to a function f . We want to show that when q is small, the responses
observed by the algorithm when f is drawn from Dyes are very similar to the
responses observed when f is drawn from Dno. The following Lemma provides
a first step toward that goal.

Lemma 4.3. Let Q be a set of q queries containing ti i-twins. Let R(i)
yes and

Rno be the distributions of the responses to the queries in Q when the input
function is drawn from D(i)

yes or Dno, respectively. Then the statistical distance
between R(i)

yes and Rno is bounded above by
∑

y∈{0,1}q

∣
∣R(i)

yes(y) − Rno(y)
∣
∣ ≤ 24tiε.

Proof. We apply a hybridization argument. Let the pairs of i-twins in Q be
represented by (α1, β1), . . . , (αti , βti). For j ∈ {0, 1, . . . , ti}, define the response
distribution Hj to be the distribution where each response is independent and
6ε-biased, except for the responses β1, . . . , βj , which are constrained to satisfy
α1 = β1, . . . , αj = βj . Note that H0 = Rno and Hti = R(i)

yes, so

∑

y

∣
∣R(i)

yes(y) − Rno(y)
∣
∣ =

∑

y

∣
∣Hti(y) − H0(y)

∣
∣ ≤

ti∑

j=1

∑

y

∣
∣Hj(y) − Hj−1(y)

∣
∣.

328 E. Blais

The distributions Hj and Hj−1 are nearly identical. The only difference be-
tween the two distributions is that βj is constrained to take the value αj in Hj ,
while it is an independent 6ε-biased random variable in Hj−1. So the statistical
distance between Hj and Hj−1 is twice the probability that βj
= αj in Hj−1.
Thus,

∑
y

∣
∣Hj(y)−Hj−1(y)

∣
∣ ≤ 24ε(1− 6ε) < 24ε and the Lemma follows. ��

With Lemma 4.3, we can now bound the statistical distance between the re-
sponses observed when the input function is drawn from Dyes or Dno.

Lemma 4.4. Let Q be a sequence of q queries containing t pairs of twins. Let
Ryes and Rno be the distributions of the responses to the queries in Q when the
input function is drawn from Dyes or Dno, respectively. Then

∑

y∈{0,1}

∣
∣Ryes(y)−Rno(y)

∣
∣ ≤ 24tε

k + 1
.

Proof. Since Ryes is a mixture distribution over R(1)
yes, . . . ,R(k+1)

yes , then

∑

y

∣
∣R(i)

yes(y)−Rno(y)
∣
∣ =

∑

y

∣
∣Hti(y)−H0(y)

∣
∣ ≤

ti∑

j=1

∑

y

∣
∣Hj(y)−Hj−1(y)

∣
∣.

By Lemma 4.3, the above equation is upper bounded by 1
k+1

∑k+1
i=1 24tiε,

where ti represents the number of i-twins in Q. Lemma 4.4 then follows from
the fact that t =

∑k+1
i=1 ti. ��

The previous Lemma bounds the statistical distance between the responses ob-
served from a function drawn from Dyes or Dno when we have a bound on the
number of twins in the queries. The following Lemma shows that the number of
pairs of twins in a sequence of q queries can not be larger than q log q.

Lemma 4.5. Let {x1, . . . , xq} ⊆ {0, 1}n be a set of q distinct queries to a func-
tion f : {0, 1}n → {0, 1}. Then there are at most q log q pairs (xi, xj) such that
xi and xj are twins.

Proof. A natural combinatorial representation for a query x ∈ {0, 1}n is as a
vertex on the n-dimensional boolean hypercube. In this representation, a pair of
twins corresponds to a pair of vertices connected by an edge on the hypercube.
So the number of pairs of twins in a set of queries is equal to the number of edges
contained in the corresponding subset of vertices on the hypercube. The Lemma
then follows from the Edge-Isoperimetric Inequality of Harper [13], Bernstein [3],
and Hart [14] (see also [7, §16]), which states that any subset S of q vertices in
the boolean hypercube contains at most q log q edges.5 ��

We can now combine the above Lemmas to prove Theorem 1.2.
5 The result of Harper, Bernstein, and Hart is slightly tighter, giving a bound of�q

i=1 h(i), where h(i) is the number of ones in the binary representation of i.

q

Improved Bounds for Testing Juntas 329

Theorem 1.2. Any non-adaptive algorithm for ε-testing k-juntas must make at
least min

(
Ω
(k/ε

log k/ε

)
, Ω
(

2
k

))
queries.

Proof. Let us first consider the case where ε ≥ k/2k. Let A be any non-adaptive
deterministic algorithm for testing k-juntas with q = k/600ε

log k/600ε queries. By
Lemma 4.5, there can be at most q log q = k

600ε pairs of twins in the q queries.
By Lemma 4.4, this means that the statistical distance between the response
distributions Ryes and Rno is at most k

600ε ·
24ε
k+1 <

1
25 . So the algorithm A can

not predict which distribution generated a given input with accuracy greater
than 1

2 + 1
2 ·

1
25 = 26

50 . By Lemma 4.2, a function drawn from Dno fails to be ε-far
from being a k-junta with probability at most 1

12 . So the success rate of A is
at most 26

50 + 1
12 <

2
3 . Therefore, by Yao’s Minimax Principle, any algorithm for

ε-testing k-juntas requires Ω
(k/ε

log k/ε

)
queries.

When ε < k/2k, we can repeat the above argument with ε′ = k/2k instead of
ε. This yields a lower bound of Ω

(k/ε′

log k/ε′

)
= Ω

(
2
k

)
queries. ��

5 Conclusion

Our results have improved the upper bound for the query complexity for testing
juntas and the lower bound for testing juntas with non-adaptive algorithms. The
results stated in this article are all presented in the context of testing functions
with boolean domains, but we note that the results also generalize to the context
of testing of functions f : Xn → {0, 1} for any finite domain X .

The results also suggest some interesting problems for future work.

Open Problem 5.1 What is the query complexity of the junta testing problem?
In particular, can we ε-tests k-juntas non-adaptively with Õ(k/ε) queries?

Open Problem 5.1 has some relevance to the study of quantum algorithms in
property testing: while Theorem 1.1 improves on all known upper bounds for
the query complexity of classical algorithms for testing juntas, it still does not
match the query complexity of O(k/ε) obtained by Atıcı and Servedio [1] for a
non-adaptive algorithm with access to quantum examples.

Open Problem 5.2 Is there a gap between the query complexity of adaptive
and non-adaptive algorithms for testing juntas?

Gonen and Ron [11] showed that such a gap exists for some property testing
problems in the dense graph model. A positive answer to Open Problem 5.2
would provide an interesting example of a similar gap in the context of testing
function properties.

Open Problem 5.3 Can improved query bounds for testing juntas yield better
bounds for testing other properties of boolean functions?

The work of Diakonikolas et al. [9] strongly suggests a positive answer to Open
Problem 5.3, since the junta test plays a central role in their generic algorithm
for testing many properties of boolean functions.

k

k

330 E. Blais

Acknowledgments. The author wishes to thank Ryan O’Donnell for many
valuable discussions and suggestions during the course of this research. The
author also thanks Anupam Gupta, Yi Wu, and the anonymous referees for
many helpful suggestions on earlier drafts of this article.

References

1. Atıcı, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas.
Quantum Information Processing 6(5), 323–348 (2007)

2. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability –
towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)

3. Bernstein, A.J.: Maximally connected arrays on the n-cube. SIAM J. Appl.
Math. 15(6), 1485–1489 (1967)

4. Blum, A.: Relevant examples and relevant features: thoughts from computational
learning theory. In: AAAI Fall Symposium on ‘Relevance’ (1994)

5. Blum, A.: Learning a function of r relevant variables. In: Proc. 16th Conference
on Computational Learning Theory, pp. 731–733 (2003)

6. Blum, A., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial Intelligence 97(2), 245–271 (1997)

7. Bollobás, B.: Combinatorics, Cambridge (1986)
8. Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Process-

ing Letters 90(6), 301–305 (2004)
9. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A.,

Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foun-
dations of Computer Science, pp. 549–558 (2007)

10. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J.
Comput. Syst. Sci. 68(4), 753–787 (2004)

11. Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense
graphs. In: Proc. 11th Workshop RANDOM, pp. 525–539 (2007)

12. Guijarro, D., Tarui, J., Tsukiji, T.: Finding relevant variables in PAC model with
membership queries. In: Proc. 10th Conference on Algorithmic Learning Theory,
pp. 313–322 (1999)

13. Harper, L.H.: Optimal assignments of numbers to vertices. SIAM J. Appl.
Math. 12(1), 131–135 (1964)

14. Hart, S.: A note on the edges of the n-cube. Disc. Math. 14, 157–163 (1976)
15. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In:

Proc. 29th Sym. on Foundations of Computer Science, pp. 68–80 (1988)
16. Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the Fourier spectrum of

symmetric boolean functions with applications to learning symmetric juntas. In:
Proc. 20th Conference on Computational Complexity, pp. 112–119 (2005)

17. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-
ables. J. Comput. Syst. Sci. 69(3), 421–434 (2004)

18. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J.
Discret. Math. 16(1), 20–46 (2003)

19. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

20. Yao, A.C.: Probabilistic computations: towards a unified measure of complexity.
In: Proc. 18th Sym. on Foundations of Comput. Sci., pp. 222–227 (1977)

The Complexity of Distinguishing

Markov Random Fields

Andrej Bogdanov1,�, Elchanan Mossel2,��, and Salil Vadhan3,���

1 Institute for Theoretical Computer Science, Tsinghua University
andrejb@tsinghua.edu.cn

2 Dept. of Statistics and Dept. of Computer Sciences, U.C. Berkeley
mossel@stat.berkeley.edu

3 School of Engineering and Applied Sciences, Harvard University
salil@eecs.harvard.edu

Abstract. Markov random fields are often used to model high dimen-
sional distributions in a number of applied areas. A number of recent
papers have studied the problem of reconstructing a dependency graph
of bounded degree from independent samples from the Markov random
field. These results require observing samples of the distribution at all
nodes of the graph. It was heuristically recognized that the problem of
reconstructing the model where there are hidden variables (some of the
variables are not observed) is much harder.

Here we prove that the problem of reconstructing bounded-degree
models with hidden nodes is hard. Specifically, we show that unless
NP = RP,
– It is impossible to decide in randomized polynomial time if two mod-

els generate distributions whose statistical distance is at most 1/3
or at least 2/3.

– Given two generating models whose statistical distance is promised
to be at least 1/3, and oracle access to independent samples from one
of the models, it is impossible to decide in randomized polynomial
time which of the two samples is consistent with the model.

The second problem remains hard even if the samples are generated
efficiently, albeit under a stronger assumption.

1 Introduction

We study the computational complexity of reconstructing a Markov random
field of bounded degree from independent and identically distributed samples at
a subset of the nodes.

� This work was supported in part by the National Natural Science Foundation of
China Grant 60553001, and the National Basic Research Program of China Grants
2007CB807900 and 2007CB807901.

�� Supported by a Sloan fellowship in Mathematics, by NSF Career award DMS-
0548249, NSF grant DMS-0528488 and ONR grant N0014-07-1-05-06.

��� Work done while visiting U.C. Berkeley, supported by the Miller Institute for Basic
Research in Science, a Guggenheim Fellowship, US-Israel BSF grant 2002246, and
ONR grant N00014-04-1-0478.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 331–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 A. Bogdanov, E. Mossel, and S. Vadhan

The problem of reconstructing Markov random fields (MRF) has been recently
considered as Markov random fields provide a a very general framework for
defining high dimensional distributions. Much of the interest emanates from the
use of such models in biology, see e.g. [1] and a list of related references [2].

Reconstructing Markov random fields where the generating model is a
bounded-degree tree is one of the major computational problems in evolutionary
biology, see e.g. [3,4]. For tree models the problem of sampling from a given
model or calculating the probability of observing a specific sample for a given
model are well known to be computationally feasible using simple recursions (also
termed “dynamic programming” and “peeling”). Moreover, in the last decade it
was shown that the problem of reconstructing a tree model given samples at a
subset of the nodes is computationally feasible under mild non-degeneracy con-
ditions, see e.g. [5,6,7] for some of the best results of this type. (These results
often assume that the samples are observed at the leaves of the tree, but they
easily extend to the case where some of the observables are internal nodes.)

Following extensive experimental work, Abbeel et al. [8] considered the prob-
lem of reconstructing bounded-degree (non-tree) graphical models based on
factor graphs, and proposed an algorithm with polynomial time and sample
complexity. The goal of their algorithm was not to reconstruct the true structure,
but rather to produce a distribution that is close in Kullback-Leibler divergence
to the true distribution.

In a more recent work [9], it was shown that the generating graph of maximal
degree d on n nodes can be efficiently reconstructed in time nO(d) under mild non-
degeneracy conditions. Other results on reconstructing the graph have appeared
in [10].

Note that all of the results for non-tree models assume that there are no hidden
variables. This is consistent with our results described next which show that the
problem of reconstructing models with hidden variables is computationally hard.

1.1 Definitions and Main Results

Fix an alphabet Σ. An undirected model M over Σn consists of an undirected
graph G with n vertices and a collection of weight functions we : Σ2 → R≥0, one
for each edge e ∈ E(G). The degree of the model is the degree of the underlying
graph. To each undirected model M we associate the probability distribution
μM on Σn given by

PrX∼μ [X = a] =

∏
(u,v)∈E(G) w(u,v)(au, av)

ZM
(1)

where ZM is the partition function

ZM =
∑

a∈Σ

∏

(u,v)∈E(G)

w(u,v)(au, av).

This probability distribution μM is called the Markov Random Field of M .
(Throughout, we will only work with models where ZM
= 0 so that μM is
well-defined.)

M

n

The Complexity of Distinguishing Markov Random Fields 333

As an example, consider the special case that Σ = {0, 1} and all the weight
functions are the NAND function. Then an assignment a has nonzero weight iff
it is the characteristic vector of an independent set in the graph, ZM counts the
number of independent sets in the graph, and μM is the uniform distribution
on the independent sets in the graph. For even this special case, it is NP-hard
to compute ZM given M is NP-hard, even approximately [11] and in bounded-
degree graphs [12]. Due to the close connection between approximate counting
and sampling [13], it follows that given a bounded-degree model M , it is in-
feasible to sample from the distribution μM (unless NP = RP). Here, we are
interested in computational problems of the reverse type: given samples, deter-
mine M . Nevertheless, our techniques are partly inspired by the line of work on
the complexity of counting and sampling.

We note that in standard definitions of Markov Random Fields, there is a
weight function wC for every clique C in the graph (not just edges), and the
probability given to an assignment a is proportional to the product of the weights
of all cliques in the graph. Our definition corresponds to the special case where all
cliques of size greater than 2 have weight functions that are identically one. This
restriction only makes our hardness results stronger. (Note that in bounded-
degree graphs, there are only polynomially many cliques and they are all of
bounded size, so our restriction has only a polynomial effect on the representation
size.)

Markov Random fields model many stochastic processes. In several applica-
tions of interest one is given samples from the distribution μM and is interested
in “reconstructing” the underlying model M . Often the observer does not have
access to all the vertices of M , but only to a subset V ⊆ {1, . . . , n} of “re-
vealed” vertices. We call this a model with hidden nodes M | V and denote the
corresponding distribution by μM|V .

We are interested in the computational complexity of reconstructing the model
M given samples from μM|V . Of course, the model M may not be uniquely
specified by μM|V (e.g.M may have a connected component that is disjoint from
V), so one needs to formalize the question more carefully. Since we are interested
in proving hardness results, we take a minimalist view of reconstruction: Any
algorithm that claims to reconstruct M given samples from μM|V should in
particular be able to distinguish two modelsM andM ′ when their corresponding
distributions μM|V and μM ′|V are statistically far apart.

As a first step towards understanding this question, we consider the following
computational problem:

Problem. dDIST

Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}.
Promise: ZM0 and ZM1 are nonzero.

Yes instances: The statistical distance between μM0|V and μM1|V is at most
1/3.

No instances: The statistical distance between μM0|V and μM1|V is at least
2/3.

334 A. Bogdanov, E. Mossel, and S. Vadhan

Here, the statistical distance (a.k.a. total variation distance) between two dis-
tributions μ and ν on a set Ω is the quantity

sd(μ, ν) = maxT⊆Ω |PrX∼μ[X ∈ T]− PrX∼ν [X ∈ T]| .

The computational problem dDIST, and all others we consider in this paper,
are promise problems, which are decision problems where the set of inputs are
restricted in some way, and we do not care what answer is given on inputs that
are neither yes or no instances or violate the promise. Languages are special
cases where all strings are either yes or no instances. For more about promise
problems, see the survey by Goldreich [14].

Next, we consider a problem that seems much more closely related to (and
easier than) reconstructing a model from samples. Here, the distinguisher is given
two candidate models for some probabilistic process, as well as access to samples
coming from this process. The goal of the distinguisher then is to say which is
the correct model for this process.

Problem. dSAMP
Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}.
Promise: ZM0 and ZM1 are nonzero, and the statistical distance between μ0 =
μM0|V and μ1 = μM1|V is at least 1/3.
Problem: Given oracle access to a sampler S that outputs independent samples
from either μ0 or μ1, determine which is the case.

Moreprecisely, thedistinguishingalgorithmD is requiredto satisfy thecondition

Pr[DS (M0,M1, V) = b] > 2/3 for b ∈ {0, 1} (2)

where Sb denotes the sampler for μb and the probability is taken both over the
randomness of the sampler and the randomness of D.

Our main results are that both of these problems are hard:

Theorem 1. If there is a deterministic (resp., randomized) polynomial-time al-
gorithm for 3DIST, then NP = P (resp., NP = RP). This holds even if we
restrict to models over the alphabet Σ = {0, 1}.

Theorem 2. If there is a randomized polynomial-time algorithm for 3SAMP,
then NP = RP. This holds even if we restrict to models over the alphabet Σ =
{0, 1}.

These characterizations are the best possible: If NP = RP, both DIST and
SAMP have efficient algorithms. See Appendix A.

The proofs of the two theorems are based on the fact that the Markov Random
Field of a suitably chosen model can approximate the uniform distribution over
satisfying assignments of an arbitrary boolean circuit. By revealing one node, we
can then use an algorithm for either dDIST or dSAMP to distinguish the case
that the first variable is 1 in all satisfying assignments from the case that the
first variable is 0 in all satisfying assignments, which is an NP-hard problem.

b

The Complexity of Distinguishing Markov Random Fields 335

2 Sampling Satisfying Assignments with a Markov
Random Field

In this section, we establish the key lemma that is used in all of our hardness
results — given a boolean circuitC, we can construct a model whose Markov Ran-
dom Field corresponds to the uniform distribution on satisfying assignments ofC.

Lemma 1. There is a polynomial-time algorithm R that on input a circuit C :
{0, 1}n → {0, 1} produces an undirected model M of degree 3 over alphabet {0, 1}
with a collection of special vertices v1, . . . , vn such that ZM
= 0 and if C is
satisfiable, then the statistical distance between a random satisfying assignment
of C and the Markov Random Field of M restricted to v1, . . . , vn is at most 2−n.

This proof is an extension of the standard reduction from circuit satisfiability to
independent set: For each gate in the circuit and every possible assignment to the
wires at this gate we have a vertex in the graph, and we put an edge between ver-
tices corresponding to inconsistent assignments. (For the output gate, we remove
those vertices corresponding to non-satisfying assignments.) Then the uniform
distribution on maximum independent sets in the graph corresponds exactly
to the uniform distribution on satisfying assignments in the circuit. However,
the independent set model also gives weight to independent sets that are not
maximum.

The weight corresponding to maximum independent sets can be magnified us-
ing the “blow-up” technique of [13,11], where we clone every vertex polynomially
many times and replace each edge with complete bipartite graph between the
clones of the endpoints. However, this results in a graph of polynomially large
degree. In order to obtain a degree 3 model, we use the more general weight
functions allowed in a Markov Random Field to achieve the same blow-up effect
with many fewer edges. Specifically, we can force all clones of a vertex to have
the same value by connecting them in a cycle with appropriate weight functions,
and can also use the weights to magnify the weight of large sets. Then we can
spread out the edges of the original graph among the clones in a way that the
degree increases only by 1.

Proof. Consider the following polynomial-time algorithm that, on input a circuit
C of size s, produces an undirected model M over alphabet {0, 1}. We assume
without loss of generality that each gate has fanin two and that all NOT gates
are at the input level. For each gate g of C, including the input gates, and each
consistent assignment α of values to the wires incident to this gate, the model
M has r = 8s vertices vg,α,1, . . . , vg,α,r. (Note that for each gate g, there are
at most 23 = 8 possible assignments α.) For the output gate, we only consider
assignments consistent with the circuit accepting. For every i, connect the ver-
tices v = vg,α,i and u = vg,α,i+1 by an edge with the following weighted “inner
constraint”:

win(au, av) =

⎧
⎪⎨

⎪⎩

1 if au = av = 0
2 if au = av = 1
0 otherwise.

336 A. Bogdanov, E. Mossel, and S. Vadhan

For any pair of gates g, h where either g = h or g and h are connected, and any
pair of assignments α for g and β for h that are inconsistent, add the following
“outer constraint’ between v = vg,α,i and u = vh,β,j, where i (resp. j) is the first
index that has not been used in any outer constraint for g (resp. h):

wout(au, av) =

{
0 if au = av = 1
1 otherwise.

The first type of constraint ensures that all representatives of the same gate-
assignment pair are given the same value, and favors values that choose the
assignment. The second type of constraint ensures that the assignments to the
vertices of the model are consistent with circuit evaluation.

Assume that C is satisfiable, and look at the distribution induced by the
Markov Random Field of M on the vertices v1, . . . , vn, where vi = vx ,1,1 rep-
resent the inputs of C. For every satisfying assignment α of C, consider the
corresponding assignment α′ of M that assigns value 1 to all vertices represent-
ing gate-assignment pairs consistent with the evaluation of C on input α, and 0
to all others. This gives α′ relative weight 2sr in the Markov Random Field.

We now argue that the combined weight of all other assignments ofM cannot
exceed 2−s · 2sr, and the claim follows easily from here. By construction, every
assignment of M with nonzero weight assigns 1 to at most one group of vertices
vg,α,1, . . . , vg,α,r for every gate g, and if the assignment does not represent a
satisfying assignment of C then at least one gate must have no group assigned
1. For each group assigned 1, there are at most 8 ways to choose the assignment
from each group, and each such assignment contributes a factor of 2r to the
weight, so the total weight of non-satisfying assignments is at most

s−1∑

k=0

(
s

k

)

· (8 · 2r)k ≤ 2s · 8s · 2(s−1)r ≤ 2−s · 2sr

by our choice of r. ��

3 Hardness of 3DIST and 3SAMP

In this section we prove Theorems 1 and 2. For both, we will reduce from the
following NP-hard problem.

Problem. CKTDIST
Input: A circuit C (with AND, OR, NOT gates) over {0, 1}n.
Promise: C is satisfiable.
Yes instances: All satisfying assignments of C assign the first variable 1.
No instances: All satisfying assignments of C assign the first variable 0.

Lemma 2. If CKTDIST has a polynomial-time (resp., randomized polynomial-
time) algorithm, then NP = P (resp., NP = RP).

i

The Complexity of Distinguishing Markov Random Fields 337

Proof. This follows from a result of Even, Selman, and Yacobi [15], who showed
that given two circuits (C0, C1) where it is promised that exactly one is satis-
fiable, it is NP-hard to distinguish the case that C0 is satisfiable from the case
that C1 is satisfiable. This problem is easily seen to be equivalent to CKTDIST
by setting C(b, x) = Cb(x). (The interest of [15] in this problem was the fact
that it is in the promise-problem analogue NP∩ coNP, whereas there cannot be
NP-hard languages in NP ∩ coNP unless NP = coNP.) ��
Now we use Lemma 1 to reduce CKTDIST to 3DIST and 3SAMP.

Proof (of Theorem 1). To prove Theorem 1, let’s assume for sake of contradiction
that there is an efficient algorithm D for 3DIST. For simplicity, we assume that
D is deterministic; the extension to randomized algorithms is straightforward.

Given a satisfiable circuit C, we will to use the distinguishing algorithm D
to distinguish the case that all satisfying assignments assign the first variable
1 from the case that all satisfying assignments assign the first variable 0. First,
using Lemma 1, we turn the circuit C into an undirected model M and let v be
the variable corresponding to the first variable of C. Then μM|{v} is a Bernoulli
random variable that outputs 1 with probability approximately equal (within
±2−n) to the fraction of satisfying assignments that assign the first variable 1.

Next, let M ′ be any model where the node v is always assigned 1 in μM ′ .
(For example, we can have a single edge (u, v) with weight function w(u,v)

(au, av) = auav.)
Then μM|{v} and μM ′|{v} have statistical distance at most 2−n ≤ 1/3 if C is

a NO instance of CKTDIST, and have statistical distance at least 1−2−n ≥ 2/3
if C is a YES instance. Thus, D(M,M ′, {v}) correctly decides CKTDIST, and
NP = P. ��
Proof (of Theorem 2). Similarly to the previous proof, we reduce CKTDIST to
3SAMP: Given a circuit C, define the circuits C0(x1, x2, . . . , xn) = C(x1, . . . , xn)
and C1(x1, x2, . . . , xn) = C(¬x1, x2, . . . , xn). Note that if all satisfying assign-
ments of C assign the first variable value b, then all satisfying assignments to Cb

assign the x1 = 0 and all satisfying assignments to C¬b assign x1 = 1. Now, we
apply Lemma 1 to construct models M0 and M1 corresponding to C0 and C1,
and we reveal only the vertex V = {v1} corresponding to the variable x1. (Note
that μM0|V and μM1|V have statistical distance at least 1−2 ·2−n.) Given a ran-
domized algorithm A for 3SAMP, we run AS(M0,M1) where S is the sampler
that always outputs 0. If all satisfying assignments of C assign x1 = b then S is
2−n-close in statistical distance to Sb ∼ μM |V . Thus

Pr[AS(M0,M1) = b] ≥ Pr[AS (M0,M1) = b]− poly(n) · 2−n ≥ 2/3− o(1)

and the construction gives a randomized algorithm for CKTDIST. ��

4 On the Samplability of the Models

One possible objection to the previous results is that the Markov Random Fields
in question are not required to be samplable. In some of the applications we have

b

b

338 A. Bogdanov, E. Mossel, and S. Vadhan

in mind, the model represents a natural (physical, biological, sociological,...)
process. If we believe that nature itself is a computationally efficient entity, then
it makes sense to assume that the models we are trying to reconstruct will be
efficiently samplable. It is natural to ask if the problem of distinguishing Markov
Random Fields remains hard in this setting too.

Problem. EFFSAMP

Input: Two models M0 and M1 over Σn of degree d, a set V ⊆ {1, . . . , n}, and
a parameter s in unary.

Promise: ZM0 and ZM1 are nonzero, the statistical distance between μ0 =
μM0|V and μ1 = μM1|V is at least 1/3, and both μM0 and μM1 are 2−n-close in
statistical distance to distributions samplable by circuits of size at most s.

Problem: Given oracle access to a sampler S that outputs independent samples
from either μ0 or μ1, determine which is the case.

We have the following hardness result for EFFSAMP. Here CZK is the class
of decision problems that have “computational zero-knowledge proofs”. (See [16]
for a definition.)

Theorem 3. If EFFSAMP has a polynomial-time randomized algorithm, then
CZK = BPP.

A slightly weaker version of this theorem says that if EFFSAMP has a
polynomial-time randomized algorithm, then one-way functions, or equivalently
pseudorandom generators [17], do not exist. (See [16] for definitions of both one-
way functions and pseudorandom generators.) To prove this, we observe that
an algorithm for EFFSAMP can be used to break any candidate pseudoran-
dom generator G: Convert G into an undirected model M0 | V using Lemma 1,
and let M1 | V be a model whose Markov Random Field is uniform. Then
the algorithm for EFFSAMP can be used to tell if a sample came from the
pseudorandom generator or from the uniform distribution, thereby breaking the
generator. Theorem 3 is stronger because it is known that if one-way functions
exist, then CZK = PSPACE
= BPP [18,19,20].

To prove the actual theorem, we use a result of Ostrovsky and Wigderson [21],
which says that if CZK
= BPP then there must exist an “auxiliary-input pseudo-
random generator”, which can also be broken by the same argument.

Proof. Suppose that CZK
= BPP. Then by Ostrovsky and Wigderson [21], there
exists an auxiliary-input one-way function: This is a polynomial-time computable
function f : {0, 1}n × {0, 1}n → {0, 1}n such that for every polynomial p and
polynomial-size circuit C, there exist infinitely many a such that

Prx∼{0,1} [f(a, C(a, f(a, x))) = f(a, x)] < 1/p(n)

where n is the length of a. By H̊astad et al. [17], it follows that there is also an
auxiliary-input pseudorandom generator: This is a polynomial-time computable

n

The Complexity of Distinguishing Markov Random Fields 339

.

Acknowledgments

We thank the anonymous referees for helpful comments on the presentation.

References

1. Friedman, N.: Infering cellular networks using probalistic graphical models. Science
(2004)

2. Kasif, S.: Bayes networks and graphical models in computational molecular biology
and bioinformatics, survey of recent research (2007),
http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html

3. Felsenstein, J.: Inferring Phylogenies. Sinauer, New York (2004)
4. Semple, C., Steel, M.: Phylogenetics. Mathematics and its Applications series,

vol. 22. Oxford University Press, Oxford (2003)

5. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build
(almost) all trees (part 1). Random Structures Algorithms 14(2), 153–184 (1999)

6. Mossel, E.: Distorted metrics on trees and phylogenetic forests. IEEE Computa-
tional Biology and Bioinformatics 4, 108–116 (2007)

function G : {0, 1}n × {0, 1}n → {0, 1}n+1 such that for every polynomial-size
circuit family D and every polynomial p, there exist infinitely many a such that

∣
∣Pry∼{0,1}n+1 [D(a, y)] − Prx∼{0,1}n [D(a, G(a, x))]

∣
∣ < 1/p(n).

It follows by a standard hybrid argument that for every polynomial-size oracle
circuit D whose oracle provides independent samples from a given distribution
we have that ∣

∣Pr[DU (a)] − Pr[DGa(a)]
∣
∣ < 1/p(n).

for infinitely many a, where U is (a sampler for) the uniform distribution on
{0, 1}n+1 and Ga is the output distribution of G(a, x) when x is chosen uniformly
from {0, 1}n. We show that if EFFSAMP has a polynomial-time randomized
algorithm A, then for every polynomial-time computable G there is a circuit D
such that ∣

∣Pr[DU (a)] − Pr[DGa(a)]
∣
∣ > 1/4.

for every a. Fix an a of length n, let Ca(x, y) be the circuit

Ca(x, y) =

{
1 if y = G(a, x)
0 otherwise

Apply Lemma 1 to circuit Ca to obtain a model Ma, and let V be the set of nodes
of Ma corresponding to the input y of Ca. Then the Markov Random Field of Ma

is 2−n close to the distribution Ga. Let M ′ | V be a model whose Markov Random
Field is the uniform distribution over {0, 1}n+1. Then D?(a) = A?(Ma, M ′) is
the desired circuit. ��

340 A. Bogdanov, E. Mossel, and S. Vadhan

7. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In: Pro-
ceedings of the thirty-eighth annual ACM symposium on Theory of computing
(STOC 2006), pp. 159–168 (2006)

8. Abbeel, P., Koller, D., Ng, A.Y.: Learning factor graphs in polynomial time and
sampling complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

9. Bresler, G., Mossel, E., Sly, A.: Reconstruction of Markov random fields from
samples: Some easy observations and algorithms. These proceedings (2008),
http://front.math.ucdavis.edu/0712.1402

10. Wainwright, M.J., Ravikumar, P., Lafferty, J.D.: High dimensional graphical model
selection using �1-regularized logistic regression. In: Proceedings of the NIPS (2006)

11. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov chain
Approach. In: Progress in Theoretical Computer Science. Birkhäuser, Basel (1993)

12. Luby, M., Vigoda, E.: Fast convergence of the Glauber dynamics for sampling
independent sets. Random Struct. Algorithms 15(3–4), 229–241 (1999)

13. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

14. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006)

15. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with ap-
plications to public-key cryptography. Information and Control 61, 159–173 (1984)

16. Goldreich, O.: Foundations of cryptography (Basic tools). Cambridge University
Press, Cambridge (2001)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity, or All languages in NP have zero-knowledge proof systems. Journal of the
Association for Computing Machinery 38(3), 691–729 (1991)

19. Impagliazzo, R., Yung, M.: Direct minimum-knowledge computations (extended
abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51.
Springer, Heidelberg (1988)

20. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

21. Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zero
knowledge. In: Proc. 2nd Israel Symp. on Theory of Computing and Systems, pp.
3–17. IEEE Computer Society Press, Los Alamitos (1993)

22. Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal
of the ACM 50(2), 196–249 (2003)

23. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. Journal of Computer and System Sciences 36,
254–276 (1988)

A Converse Theorem

Theorem 4. If NP = RP, then for every d there are randomized polynomial-
time algorithms for dDIST and dSAMP.

To prove Theorem 4, we use the following results of Jerrum, Valiant, Vazirani [13].

The Complexity of Distinguishing Markov Random Fields 341

Theorem 5. Assume NP = RP. Then there exists

1. A randomized polynomial-time sampling algorithm Sample that on input a
satisfiable circuit C : {0, 1}n → {0, 1} and ε > 0 (represented in unary), has
an output distribution that is ε-close in statistical distance to the uniform
distribution on the satisfying assignments of C.

2. A randomized polynomial-time sampling algorithm Count that on input a
circuit C : {0, 1}n → {0, 1} and ε > 0 (represented in unary) such that with
high probability

|C−1(1)| ≤ Count(C, ε) ≤ (1 + ε)|C−1(1)|

Now we assume NP = RP and describe algorithms for dDIST and dSAMP.

Algorithm for DIST: Using part (1) of Theorem 5, we can sample from a
distribution close to the Markov Random Field M | V . To see this, consider the
circuit C that takes as inputs an assignment x ∈ Σn, and numbers te ∈ N, one
for each edge e of M and outputs

C(x, e, w) =

{
1, if te ≤ we(xe) for all e
0, otherwise.

Conditioned on C(x, e, w) = 1, for a uniformly chosen triple (x, e, w) the input
x ∼ Σn follows exactly the distribution μM . Using the above theorem, there
is then an algorithm which on input (M,V) outputs a sample from a distribu-
tion that is 1/9-close (in statistical distance) to μM|V . Let us use CM,V as the
sampling circuit obtained by hardwiring M and V as inputs to the algorithm A.

Now given an input M0,M1, V for dDIST, we produce the circuits C0 =
CM0,V and C1 = CM1,V . Note that if sd(μ0, μ1) > 2/3 then the statistical
distance between the output distributions of these two circuits is > 2/3− 1/9 =
5/9, and if sd(μ0, μ1) < 1/3 then the distance is < 1/3 + 1/9 = 4/9. The
problem of distinguishing circuits with large statistical distance from those with
small statistical distance is known to be in the complexity class AM [22], which
collapses to BPP under the assumption that NP = RP [23].

Algorithm for SAMP: First, we may assume that the statistical distance be-
tween the distributions μ0 and μ1 is as large as 9/10: Instead of working with the
original models, take 40 independent copies of each model; now each sample of
this new model will correspond to 40 independent samples of the original model.
The statistical distance increases from 1/3 to 9/10 by the following inequality:

Claim. Let μ, ν be arbitrary distributions, and μk, νk consist of k independent
copies of μ, ν, respectively. Then

1− exp(k · sd(μ, ν)2/2) ≤ sd(μk, νk) ≤ k · sd(μ, ν).

Using part (2) of Theorem 5, for every partial configuration a ∈ ΣV , we can
efficiently compute approximations p0(a), p1(a) such that

p0(a) ≤ μ0(a) ≤ 2p0(a) and p1(a) ≤ μ1(a) ≤ 2p1(a),

342 A. Bogdanov, E. Mossel, and S. Vadhan

where μi(a) = PrX∼μ [X = a]. Now consider the following algorithm D: On
input M0,M1, V , generate a sample a from S, output 0 if p0(a) > p1(a) and
1 otherwise. Then, assuming the counting algorithm of Theorem 5 returns the
correct answer, we have:

Pr[DS0(M0,M1, V) = 0] ≥
∑

a:μ0(a)>2μ1(a)
μ0(a)

≥
∑

a:μ0(a)>μ1(a)
μ0(a)−

∑

a:2μ1(a)≥μ0(a)>μ1(a)
μ0(a).

The first term is at least as large as sd(μ0, μ1) ≥ 9/10. For the second term, we
have

∑

a:2μ1(a)≥μ0(a)>μ1(a)
μ0(a) ≤

∑

a:2μ1(a)≥μ0(a)>μ1(a)
2μ1(a)

≤ 2 ·
∑

a:μ0(a)>μ1(a)
μ1(a)

≤ 2 · (1− sd(μ0, μ1)) = 1/5.

It follows that Pr[DS0(M0,M1, V) = 0] > 2/3, and by the same argument
Pr[DS1(M0,M1, V) = 1] > 2/3.

i

Reconstruction of Markov Random Fields from

Samples:
Some Observations and Algorithms

Guy Bresler1,�, Elchanan Mossel2,��, and Allan Sly3,���

1 Dept. of Electrical Engineering and Computer Sciences, U.C. Berkeley
gbresler@eecs.berkeley.edu

2 Dept. of Statistics and Dept. of Electrical Engineering and Computer Sciences,
U.C. Berkeley

mossel@stat.berkeley.edu
3 Dept. of Statistics, U.C. Berkeley

sly@stat.berkeley.edu

Abstract. Markov random fields are used to model high dimensional
distributions in a number of applied areas. Much recent interest has
been devoted to the reconstruction of the dependency structure from
independent samples from the Markov random fields. We analyze a sim-
ple algorithm for reconstructing the underlying graph defining a Markov
random field on n nodes and maximum degree d given observations. We
show that under mild non-degeneracy conditions it reconstructs the gen-
erating graph with high probability using Θ(d log n) samples which is
optimal up to a multiplicative constant. Our results seem to be the first
results for general models that guarantee that the generating model is
reconstructed. Furthermore, we provide an explicit O(dnd+2 log n) run-
ning time bound. In cases where the measure on the graph has correlation
decay, the running time is O(n2 log n) for all fixed d . In the full-length
version we also discuss the effect of observing noisy samples. There we
show that as long as the noise level is low, our algorithm is effective. On
the other hand, we construct an example where large noise implies non-
identifiability even for generic noise and interactions. Finally, we briefly
show that in some cases, models with hidden nodes can also be recovered.

1 Introduction

In this paper we consider the problem of reconstructing the graph structure
of a Markov random field from independent and identically distributed samples.
Markov random fields (MRF) provide a very general framework for defining high
dimensional distributions and the reconstruction of the MRF from observations

� Supported by a Vodafone US-Foundation fellowship and NSF Graduate Research
Fellowship.

�� Supported by a Sloan fellowship in Mathematics, by NSF Career award DMS-
0548249, NSF grant DMS-0528488 and ONR grant N0014-07-1-05-06.

��� Supported by NSF grants DMS-0528488 and DMS-0548249.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 343–356, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

344 G. Bresler, E. Mossel, and A. Sly

has attracted much recent interest, in particular in biology, see e.g. [9] and a list
of related references [10].

1.1 Our Results

We give sharp, up to a multiplicative constant, estimates for the number of in-
dependent samples needed to infer the underlying graph of a Markov random
field. In Theorem 2 we use a simple information-theoretic argument to show that
Ω(d log n) samples are required to reconstruct a randomly selected graph on n
vertices with maximum degree at most d . Then in Theorems 4 and 5 we propose
two algorithms for reconstruction that use only O(d log n) samples assuming
mild non-degeneracy conditions on the probability distribution. The two theo-
rems differ in their running time and the required non-degeneracy conditions.
It is clear that non-degeneracy conditions are needed to insure that there is a
unique graph associated with the observed probability distribution.

Chickering [2] showed that maximum-likelihood estimation of the underly-
ing graph of a Markov random field is NP-complete. This does not contradict
our results which assume that the data is generated from a model (or a model
with a small amount of noise). Although the algorithm we propose runs in time
polynomial in the size of the graph, the dependence on degree (the run-time is
O(dnd+2 log n)) may impose too high a computational cost for some applica-
tions. Indeed, for some Markov random fields exhibiting a decay of correlation
a vast improvement can be realized: a modified version of the algorithm runs in
time O(dn2 log n). This is proven in Theorem 8.

In addition to the fully-observed setting in which samples of all variables are
available, we extend our algorithm in several directions. These sections are omit-
ted due to space constraints; we refer the reader to the full version [14] for the
discussion on these topics. In Section 5 of [14] we consider the problem of noisy
observations. We first show by way of an example that if some of the random
variables are perturbed by noise then it is in general impossible to reconstruct
the graph structure with probability approaching 1. Conversely, when the noise
is relatively weak as compared to the coupling strengths between random vari-
ables, we show that the algorithms used in Theorems 4 and 5 reconstruct the
graph with high probability. Furthermore, we study the problem of reconstruc-
tion with partial observations, i.e. samples from only a subset of the nodes are
available, and provide sufficient conditions on the probability distribution for
correct reconstruction.

1.2 Related Work

Chow and Liu [1] considered the problem of estimating Markov random fields
whose underlying graphs are trees, and provided an efficient (polynomial-time)
algorithm based on the fact that in the tree case maximum-likelihood estima-
tion amounts to the computation of a maximum-weight spanning tree with edge
weights equal to pairwise empirical mutual information. Unfortunately, their
approach does not generalize to the estimation of Markov random fields whose

Reconstruction of MRF from Samples: Some Observations and Algorithms 345

graphs have cycles or hidden nodes. Much work in mathematical biology is de-
voted to reconstructing tree Markov fields when there are hidden nodes. For
trees, given data that is generated from the model, the tree can be reconstructed
efficiently from samples at a subset of the nodes given mild non-degeneracy con-
ditions. See [12,13,11] for some of the most recent and tightest results in this
setup.

Abbeel, et al [3] considered the problem of reconstructing graphical models
based on factor graphs, and proposed a polynomial time and sample complexity
algorithm. However, the goal of their algorithm was not to reconstruct the true
structure, but rather to produce a distribution that is close in Kullback-Leibler
divergence to the true distribution. In applications it is often of interest to recon-
struct the true structure which gives some insight into the underlying structure
of the inferred model.

Note furthermore that two networks that differ only in the neighborhood
of one node will have O(1) KL distance. Therefore, even in cases where it is
promised that the KL distance between the generating distribution and any other
distribution defined by another graph is as large as possible, the lower bounds on
the KL distance is Ω(1). Plugging this into the bounds in [3] yields a polynomial
sampling complexity in order to find the generating network compared to our
logarithmic sampling complexity. For other work based on minimizing the KL
divergence see the references in [3].

Essentially the same problem as in the present work (but restricted to the Ising
model) was studied by Wainwright, et al [5], where an algorithm based on �1-
regularization was introduced. In that work, sufficient conditions—different than
ours—for correct reconstruction were given. They require a condition (called
A2) where the neighborhood of every vertex is only weakly affected by their
neighbors. Verifying when the condition holds seems hard and no example is
given in the paper where the condition holds. The simulation studies in the
paper are conducted for graphs consisting of small disconnected components. In
this setting the running time of their algorithm is O(n5). The result [5] is best
compared to our result showing that under standard decay of correlation (e.g.,
for models satisfying the Dobrushin condition, which is satisfied for the models
simulated in their work), the running time of our algorithm is O(n2 log n) as
given in Theorem 8. The algorithm of [5] has suboptimal sample complexity,
requiring Θ(d5 log n) samples for reconstruction.

Subsequent to our work being posted on the Arxiv, Santhanam and Wain-
wright [4] again considered essentially the same problem for the Ising model,
producing nearly matching lower and upper bounds on the asymptotic sampling
complexity. A key difference from our work is that they restrict attention to the
Ising model, i.e. Markov random fields with pairwise potentials and where each
variable takes two values. Also, they consider models with a fixed number of
total edges, and arbitrary node degree, in contrast to our study of models with
bounded node degrees and an arbitrary number of edges. We note that their re-
sults are limited to determining the information theoretic sampling complexity
for reconstruction, and provide no efficient algorithm.

346 G. Bresler, E. Mossel, and A. Sly

2 Preliminaries

We begin with the definition of Markov random field.

Definition 1. On a graph G = (V ,E), a Markov random field is a distribution
X taking values in AV , for some finite set A with | A |= A, which satisfies the
Markov property

P(X (W),X (U) | X (S)) = P(X (W) | X (S))P(X (U) | X (S)) (1)

when W , U , and S are disjoint subsets of V such that every path in G from W
to U passes through S and where X (U) denotes the restriction of X from AV

to AU for U ⊂ V .

Famously, by the Hammersley-Clifford Theorem, such distributions can be writ-
ten in a factorized form as

P(σ) =
1
Z

exp

[
∑

a

Ψa(σa)

]

, (2)

where Z is a normalizing constant, a ranges over the cliques in G, and Ψa : A|a| →
R ∪ {−∞} are functions called potentials.

The problem we consider is that of reconstructing the graph G, given k in-
dependent samples X = {X 1, . . . ,X k} from the model. Denote by Gd the set
of labeled graphs with maximum degree at most d . We assume that the graph
G ∈ Gd is from this class. A structure estimator (or reconstruction algorithm)
Ĝ : Akn → Gd is a map from the space of possible sample sequences to the set
of graphs under consideration. We are interested in the asymptotic relationship
between the number of nodes in the graph, n, the maximum degree d , and the
number of samples k that are required. An algorithm using number of samples
k(n) is deemed successful if in the limit of large n the probability of reconstruc-
tion error approaches zero.

3 Lower Bound on Sample Complexity

Suppose G is selected uniformly at random from Gd . The following theorem gives
a lower bound of Ω(d log n) on the number of samples necessary to reconstruct
the graph G. The argument is information theoretic, and follows by comparing
the number of possible graphs with the amount of information available from
the samples.

Theorem 2. Let the graph G be drawn according to the uniform distribution
on Gd . Then there exists a constant c = c(A) > 0 such that if k ≤ cd log n
then for any estimator Ĝ : X → Gd , the probability of correct reconstruction is
P(Ĝ = G) = o(1).

Remark 1. Note that the theorem above doesn’t need to assume anything about
the potentials. The theorem applies for any potentials that are consistent with

Reconstruction of MRF from Samples: Some Observations and Algorithms 347

the generating graph. In particular, it is valid both in cases where the graph is
“identifiable” given many samples and in cases where it isn’t.

Proof. To begin, we note that the probability of error is minimized by letting Ĝ
be the maximum a posteriori (MAP) decision rule,

ĜMAP(X) = argmaxg∈GP(G = g | X).

By the optimality of the MAP rule, this bounds the probability of error using
any estimator. Now, the MAP estimator ĜMAP(X) is a deterministic function
of X . Clearly, if a graph g is not in the range of Ĝ then the algorithm always
makes an error when G = g. Let S be the set of graphs in the range of ĜMAP,
so P(error | g ∈ S c) = 1. We have

P(error) =
∑

g∈G
P(error | G = g)P(G = g)

=
∑

g∈S

P(error | G = g)P(G = g) +
∑

g∈Sc

P(error | G = g)P(G = g)

≥
∑

g∈Sc

P(G = g) = 1−
∑

g∈S

| G |−1

≥ 1− Ank

| G | ,

(3)

where the last step follows from the fact that | S |≤| X |≤ Ank . It remains only
to express the number of graphs with max degree at most d , | Gd |, in terms of
the parameters n, d . The following lemma gives an adequate bound.

Lemma 3. Suppose d ≤ nα with α < 1. Then the number of graphs with max
degree at most d, | Gd |, satisfies

log | Gd |= Ω(nd log n). (4)

Proof. To make the dependence on n explicit, let Un,d be the number of graphs
with n vertices with maximum degree at most d . We first bound Un+2,d in terms
of Un,d,. Given a graph G with n vertices and degree at most d , add two vertices
a and b. Select d distinct neighbors v1, . . . , vd for vertex a, with d labeled edges;
there are

(n
d

)
d ! ways to do this. If vi already has degree d in G, then vi has at

least one neighbor u that is not a neighbor of a, since there are only d − 1 other
neighbors of a. Remove the edge (vi , u) and place an edge labeled i from vertex
b to u. This is done for each vertex v1, . . . , vd , so b has degree at most d . The
graph G can be reconstructed from the resulting labeled graph on n +2 vertices
as follows: remove vertex a, and return the neighbors of b to their correct original
neighbors (this is possible because the edges are labeled).

Removing the labels on the edges from a and b sends at most d !2 edge-labeled
graphs of this type on n + 2 vertices to the same unlabeled graph. Hence, the
number of graphs with max degree d on n + 2 vertices is lower bounded as

348 G. Bresler, E. Mossel, and A. Sly

Un+2,d ≥ Un,d

(
n
d

)

d !
1

d !2
= Un,d

(
n
d

)
1
d !
.

It follows that for n even (and greater than 2d + 4)

Un,d ≥ ×n/2
i=1

(
n − 2i

d

)
1
d !
≥
((

n/2
d

)
1
d !

)n/4

. (5)

If n is odd, it suffices to note that Un+1,d ≥ Un,d . Taking the logarithm of
equation (5) yields

log Un,d = Ω(nd(log n − log d)) = Ω(nd log n), (6)

assuming that d ≤ nα with α < 1. �

Together with equation (3), Lemma 3 implies that for small enough c, if the
number of samples k ≤ cd log n, then

P(error) ≥ 1− Ank

|G| = 1− o(1).

This completes the proof of Theorem 2. �

4 Reconstruction

We now turn to the problem of reconstructing the graph structure of a Markov
random field from samples. For a vertex v we let N (v) = {u ∈ V \ {v} : (u, v) ∈
E} denote the set of neighbors of v . Determining the neighbors of v for every
vertex in the graph is sufficient to determine all the edges of the graph and
hence reconstruct the graph. Our algorithms reconstruct the graph by testing
each candidate neighborhood of size at most d by using the Markov property,
which states that for each w ∈ V \ (N (v) ∪ {v})

P(X (v) | X (N (v)),X (w)) = P(X (v) | X (N (v))). (7)

We give two algorithms for reconstructing networks; they differ in their non-
degeneracy conditions and their running time. The first one, immediately below,
has more stringent non-degeneracy conditions and faster running time.

4.1 Conditional Two Point Correlation Reconstruction

The first algorithm requires the following non-degeneracy condition:

Condition N1: There exist ε, δ > 0 such that for all v ∈ V , if U ⊂ V \ {v}
with | U |≤ d and N (v) � U then there exist values xv , xw , x ′

w , xu1 , . . . , xul

such that for some w ∈ V \ (U ∪ {v})

|P(X (v) = xv | X (U) = xU ,X (w) = xw)

− P(X (v) = xv | X (U) = xU ,X (w) = x ′
w)| > ε

(8)

Reconstruction of MRF from Samples: Some Observations and Algorithms 349

and

|P(X (U) = xU ,X (w) = xw)| > δ,
|P(X (U) = xU ,X (w) = x ′

w)| > δ.
(9)

Remark 2. Condition (8) captures the notion that each edge should have suffi-
cient strength. Condition (9) is required so that we can accurately calculate the
empirical conditional probabilities.

We now describe the reconstruction algorithm, with the proof of correctness
given by Theorem 4. In the following, P̂ denotes the empirical probability mea-
sure from the k samples.

Algorithm SimpleRecon(Input: k i.i.d. samples from MRF; Output: estimated
graph G)

– Initialize E = ∅.
– For each vertex v do
• For each U ⊆ V \ {v} with |U | ≤ d, w ∈ V \ (U ∪ {v}), and

x1, . . . , xl, xw, x′
w, xv ∈ A

∗ If
|P̂ (X(U) = xU , X(w) = xw)| > δ/2

and
|P̂ (X(U) = xU , X(w) = x′

w)| > δ/2 ,

then compute

r(U, xU , w, xw, x′
w) =

∣
∣P̂ (X(v) = xv|X(U) = xU , X(w) = xw)

− P̂ (X(v) = xv|X(U) = xU , X(w) = x′
w)
∣
∣ .

• Let N(v) be the minimum cardinality U such that
maxxU ,w,xw,x′

w
r(U, xU , w, xw, x′

w) < ε/2.
• Add the edges incident to v: E = E ∪ {(v, u) : u ∈ N(v)}.

– Return the graph G = (V, E).

Run-time analysis. The analysis of the running time is straightforward. There
are n nodes, and for each node we consider O(nd) neighborhoods U . For each
candidate neighborhood, we check O(n) nodes xw and perform a correlation test
of complexity O(d log n). The run-time of SimpleRecon is thus O(dnd+2 log n)
operations.

We now give the main theorem.

Theorem 4 (Correctness of SimpleRecon). Suppose the MRF satisfies
condition N1. Then with the constant C =

(
81(d+2)
ε2δ42d + C1

)
, when k > Cd log n,

the estimator SimpleRecon correctly reconstructs with probability at least
1−O(n−C1).

350 G. Bresler, E. Mossel, and A. Sly

Proof. Azuma’s inequality gives that if Y ∼ Bin(k , p) then

P(| Y − kp |> γk) ≤ 2 exp(−2γ2k)

and so for any collection U = {u1, . . . , ul} ⊆ V and x1, . . . , xl ∈ A we have

P
(∣
∣
∣P̂(X (U) = xU)− P(X (U) = xU)

∣
∣
∣ ≤ γ

)
≤ 2 exp(−2γ2k). (10)

There are Al
(n
l

)
≤ Aln l such choices of u1, . . . , ul and x1, . . . , xl . An application

of the union bound implies that with probability at least 1−Aln l2 exp(−2γ2k)
it holds that ∣

∣
∣P̂(X (U) = xU)− P(X (U) = xU)

∣
∣
∣ ≤ γ (11)

for all {ui}li=1 and {xi}li=1. If we additionally have l ≤ d+2 and k ≥ C (γ)d log n,
then equation (11) holds with probability at least 1 − Ad+2nd+22/n2γ2C (γ)d .
Choosing C (γ) = d+2

γ22d + C1, equation (11) holds with probability at least 1 −
2Ad+2/nC1 .

For the remainder of the proof assume (11) holds. Taking

γ(ε, δ) = εδ2/9 , (12)

we can bound the error in conditional probabilities as

| P̂(X (v) = xv | X (U) = xU)− P(X (v) = xv | X (U) = xU) |

=

∣
∣
∣
∣
∣

P̂(X (v) = xv ,X (U) = xU)

P̂(X (U) = xU)
− P(X (v) = xv ,X (U) = xU)

P(X (U) = xU)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

P̂(X (v) = xv ,X (U) = xU)
P(X (U) = xU)

− P(X (v) = xv ,X (U) = xU)
P(X (U) = xU)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

P̂(X (U) = xU)
− 1

P(X (U) = xU)

∣
∣
∣
∣
∣

≤ γ
δ

+
γ

(δ − γ)δ ≤
εδ2

9δ
+

εδ2

9(δ − εδ2

9)δ
=
εδ

9
+

ε

(9− εδ) <
ε

4
. (13)

For each vertex v ∈ V we consider all candidate neighborhoods for v , subsets
U ⊂ V \ {v} with | U |≤ d . The estimate (13) and the triangle inequality imply
that if N (v) ⊆ U , then by the Markov property,

|P̂(X (v) = xv | X (U) = xU ,X (w) = xw)

− P̂(X (v) = xv | X (U) = xU ,X (w) = x ′
w)| < ε/2 (14)

for all w ∈ V and x1, . . . , xl , xw , x ′
w , xv ∈ A such that

∣
∣
∣P̂(X (U) = xU ,X (w) = xw)

∣
∣
∣ > δ/2,

∣
∣
∣P̂(X (U) = xU ,X (w) = x ′

w)
∣
∣
∣ > δ/2. (15)

Reconstruction of MRF from Samples: Some Observations and Algorithms 351

Conversely by condition N1 and (9) and the estimate (13), we have that for any
U with N (v) � U there exists some w ∈ V and xu1 , . . . , xul , xw , x ′

w , xv ∈ A such
that equation (15) holds but equation (14) does not hold. Thus, choosing the
smallest set U such that (14) holds gives the correct neighborhood.

To summarize, with number of samples

k =
(

81(d + 2)
ε2δ42d

+ C1

)

d log n

the algorithm correctly determines the graph G with probability

P(SimpleRecon(X) = G) ≥ 1− 2Ad+2/nC1 .

�

4.2 General Reconstruction

While the algorithm SimpleRecon applies to a wide range of models, condition
N1 may occasionally be too restrictive. One setting in which condition N1 does
not apply is if the marginal spin at some vertex v is independent of the marginal
spin at each of the other vertices, (i.e for all u ∈ V \ {v} and all x , y ∈ A
we have P(X (v) = x ,X (u) = y) = P(X (v) = x)P(X (u) = y). In this case the
algorithm would incorrectly return the empty set for the neighborhood of v . The
weaker condition for GeneralRecon holds on essentially all Markov random
fields. In particular, (16) says that the potentials are non-degenerate, which is
clearly a necessary condition in order to recover the graph. Equation (17) holds
for many models, for example all models with soft constraints. This additional
generality comes at a computational cost, with SimpleRecon having a faster
running time, O(dnd+2 log n), versus O(dn2d+1 log n) for GeneralRecon.

We use the following notation in describing the non-degeneracy conditions.
For an assignment xU = (xu1 , . . . , xul) and x ′

ui
∈ A, define

x i
U (x ′

ui
) = (xu1 , . . . , x ′

ui
, . . . , xul)

to be the assignment obtained from xU by replacing the ith element by x ′
ui

.

Condition N2: There exist ε, δ > 0 such that the following holds: for all
v ∈ V , if N (v) = u1, . . . , ul , then for each i , 1 ≤ i ≤ l and for any set W ⊂
V \ (v ∪N (v)) with |W |≤ d there exist values xv , xu1 , . . . , xui , . . . , xul , x

′
ui
∈

A and xW ∈ A|W | such that

|P(X (v) = xv | X (N (v)) = xN (v))

− P(X (v) = xv | X (N (v)) = x i
N (v)(x

′
ui

))| > ε
(16)

and

| P(X (N (v)) = xN (v),X (W) = xW) |> δ,
| P(X (N (v)) = x i

N (v)(x
′
ui

),X (W) = xW) |> δ.
(17)

352 G. Bresler, E. Mossel, and A. Sly

We now give the algorithm GeneralRecon.

Algorithm GeneralRecon(Input: k i.i.d. samples from MRF; Output: esti-
mated graph G)

– Initialize E = ∅.
– For each vertex v do
• Initialize N(v) = ∅.
• For each U ⊆ V \{v} with l = |U | ≤ d, W ∈ V \ (U ∪{v}) with |W | ≤ d,

each i, 1 ≤ i ≤ l, and xv, xW , xU , x′
ui
∈ A

∗ If

P̂ (X(W) = xW , X(U) = xU) > δ/2

P̂ (X(W) = xW , X(U) = xi
U (x′

ui
)) > δ/2

then compute

r(U,W, i, xv, xW , xU , x′
ui

)

=
∣
∣P̂ (X(v) = xv|X(W) = xW , X(U) = xU)

− P̂ (X(v) = xv|X(W) = xW , X(U) = xi
U (x′

ui
))
∣
∣.

• Let N(v) be the maximum cardinality set U such that
minW,i maxxv,xW ,xU ,x′

ui
r(U,W, i, xv, xW , xU , x′

ui
) > ε/2.

• Add the edges incident to v: E = E ∪ {(v, u) : u ∈ N(v)}.
– Return the graph G = (V, E).

Run-time analysis. The analysis of the running time is similar to the previous
algorithm. The run-time of GeneralRecon is O(dn2d+1 log n).

Theorem 5 (Correctness of GeneralRecon). Suppose condition N2 holds
with ε and δ. Then for the constant C = 81(2d+1)

ε2δ42d + C1, if k > Cd log n then
the estimator GeneralRecon correctly reconstructs with probability at least
1−O(n−C1).

Proof. As in Theorem 4 we have that with high probability
∣
∣
∣P̂(X (U) = xU)− P(X (U) = xU)

∣
∣
∣ ≤ γ (18)

for all {ui}li=1 and {xi}li=1 when l ≤ 2d + 1 and k ≥ C (γ)d log n; we henceforth
assume that (18) holds. For each vertex v ∈ V we consider all candidate neigh-
borhoods for v , subsets U = {u1, . . . , ul} ⊂ V \ {v} with 0 ≤ l ≤ d . For each
candidate neighborhood U , the algorithm computes a score

f (v ; U) =

minW ,i max xv ,xW ,xU ,x ′
ui
|P̂(X (v) = xv | X (W) = xW ,X (U) = xU)

− P̂(X (v) = xv | X (W) = xW ,X (U) = x i
U (x ′

ui
))|,

Reconstruction of MRF from Samples: Some Observations and Algorithms 353

where for each W , i , the maximum is taken over all xv , xW , xU , x ′
ui

, such that

P̂(X (W) = xW ,X (U) = xU) > δ/2 (19)

P̂(X (W) = xW ,X (U) = x i
U (x ′

ui
)) > δ/2

and W ⊂ V \ (U ∪ {v}) is an arbitrary set of nodes of size d , xW ∈ Ad is an
arbitrary assignment of values to the nodes in W , and 1 ≤ i ≤ l .

The algorithm selects as the neighborhood of v the largest set U ⊂ V \ {v}
with f (v ; U) > ε/2. It is necessary to check that if U is the true neighborhood
of v , then the algorithm accepts U , and otherwise the algorithm rejects U .

Taking γ(ε, δ) = εδ2/9, it follows exactly as in Theorem 4 that the error in
each of the relevant empirical conditional probabilities satisfies

| P̂(X (v) = xv | X (W) = xW ,X (U) = xU)

− P(X (v) = xv | X (W) = xW ,X (U) = xU) |< ε
4
. (20)

If U � N (v), choosing ui ∈ U −N (v), we have when N (v) ⊂W ∪ U that

|P(X (v) = xv | X (W) = xW ,X (U) = xU)

− P(X (v) = xv | X (W) = xW ,X (U) = x i
U (x ′

ui
))|

= |P(X (v) = xv | X (N (v)) = xN (v))− P(X (v) = xv | X (N (v)) = xN (v))|
= 0 ,

by the Markov property (7). Assuming that equation (18) holds with γ chosen
as in (12), the estimation error in f (v ; U) is at most ε/2 by equation (20) and
the triangle inequality, and it holds that f (v ; U) < ε/2 for each U � N (v).
Thus all U � N (v) are rejected. If U = N (v), then by the Markov property (7)
and the conditions (16) and (17), for any i and W ⊂ V ,

|P(X (v) = xv | X (W) = xW ,X (U) = xU)

− P(X (v) = xv | X (W) = xW ,X (U) = x i
U (x ′

ui
))|

= |P(X (v) = xv | X (N (v)) = xN (v))− P(X (v) = xv | X (N (v)) = x i
N (v)(x

′
ui

))|
> ε

for some xv , xW , xU , x ′
ui

. The error in f (v ; U) is less than ε/2 as before, hence
f (v ; U) > ε/2 for U = N (v). Since U = N (v) is the largest set that is not
rejected, the algorithm correctly determines the neighborhood of v for every
v ∈ V when (18) holds.

To summarize, with number of samples

k =
(

81(2d + 1)
ε2δ42d

+ C1

)

d log n

the algorithm correctly determines the graph G with probability

P(GeneralRecon(X) = G) ≥ 1− 2A2d+1/nC1 .

�

354 G. Bresler, E. Mossel, and A. Sly

4.3 Non-degeneracy of Models

We can expect condition N2 to hold in essentially all models of interest. The
following proposition shows that the condition holds for any model with soft
constraints.

Proposition 6 (Models with soft constraints). In a graphical model with
maximum degree d given by equation (2) suppose that all the potentials Ψuv

satisfy ‖Ψuv‖∞ ≤ K and

maxx1,x2,x3,x4∈A |Ψuv(x1, x2)− Ψuv (x3, x2)− Ψuv (x1, x4) + Ψuv (x3, x4)| > γ,
(21)

for some γ > 0. Then there exist ε, δ > 0 depending only on d ,K and γ such
that condition N2 holds.

Proof. It is clear that for some sufficiently small δ = δ(d ,m,K) > 0 we have
that for all u1, . . . , u2d+1 ∈ V and xu1 , . . . , xu2d+1 ∈ A that

P(X (u1) = xu1 , . . . ,X (u2d+1) = xu2d+1) > δ. (22)

Now suppose that u1, . . . , ul is the neighborhood of v . Then for any 1 ≤ i ≤ l it
follows from equation (21) that there exists xv , x ′

v , xui , x ′
ui
∈ A such that for any

xu1 . . . , xui−1 , xui+1, . . . , xul ∈ A,

P(X (v) = xv | X (u1) = xu1 , . . . ,X (ui) = x ′
ui
, . . . ,X (ul) = xul)

P(X (v) = x ′
v | X (u1) = xu1 , . . . ,X (ui) = x ′

ui
, . . . ,X (ul) = xul)

≥ eγP(X (v) = xv | X (u1) = xu1 , . . . ,X (ui) = xui , . . . ,X (ul) = xul)
P(X (v) = x ′

v | X (u1) = xu1 , . . . ,X (ui) = xui , . . . ,X (ul) = xul)
.

Combining with equation (22), equation (16) follows, showing that condition N2
holds. �

Although the results to follow hold more generally, for ease of exposition we will
keep in mind the example of the Ising model with no external magnetic field,

P(x) =
1
Z

exp

⎛

⎝
∑

(u,v)∈E

βuvxuxv

⎞

⎠ , (23)

where βuv ∈ R are coupling constants and Z is a normalizing constant.
The following lemma gives explicit bounds on ε and δ in terms of bounds on

the coupling constants in the Ising model, showing that condition N2 can be
expected to hold quite generally.

Proposition 7. Consider the Ising model with all parameters satisfying

0 < c <| βij |< C

on a graph G with max degree at most d . Then condition N2 is satisfied with

ε ≥ tanh(2c)
2C 2 + 2C−2

and δ ≥ e−4dC

22d .

Proof. We refer the reader to the full version [14] for the proof. �

Reconstruction of MRF from Samples: Some Observations and Algorithms 355

4.4 O(n2 log n) Algorithm for Models with Correlation Decay

The reconstruction algorithms SimpleRecon and GeneralRecon run in poly-
nomial time O(dnd+2 log n) and O(dn2d+1 log n), respectively. It would be de-
sirable for the degree of the polynomial to be independent of d , and this can be
achieved for Markov random fields with exponential decay of correlations. For
two vertices u, v ∈ V , let d(u, v) denote the graph distance and let dC (u, v)
denote the correlation between the spins at u and v defined as

dC (u, v)=
∑

xu ,xv∈A |P(X (u) = xu ,X (v) = xv)− P(X (u) = xu)P(X (v) = xv)| .

If the interactions are sufficiently weak, the graph will satisfy the Dobrushin-
Shlosman condition (see e.g. [8]) and there will be exponential decay of correla-
tions between vertices, i.e. dC (u, v) ≤ exp(−αd(u, v)) for some α > 0.

The following theorem shows that by restricting the candidate neighborhoods
of the GeneralRecon algorithm to those nodes with sufficiently high correla-
tion, one can achieve a run-time of O(dn2 log n).

Theorem 8 (Reconstruction with correlation decay). Suppose that G and
X satisfy the hypothesis of Theorem 5 and that for all u, v ∈ V , dC (u, v) ≤
exp(−αd(u, v)) and there exists some κ > 0 such that for all (u, v) ∈ E,
dC (u, v) > κ. Then for some constant C = C (α, κ, ε, δ) > 0, if k > Cd log n then
there exists an estimator Ĝ(X) such that the probability of correct reconstruction
is P(G = Ĝ(X)) = 1−o(1) and the algorithm runtime is
with high probability.

Proof. Denote the correlation neighborhood of a vertex v as NC (v) = {u ∈ V :
d̂C (u, v) > κ/2} where d̂C (u, v) is the empirical correlation of u and v . For large
enough C , with high probability for all v ∈ V , we have that N (v) ⊆ NC (v) ⊆
{u ∈ V : d(u, v) ≤ ln(4/κ)

α }. Now, we have the estimate | {u ∈ V : d(u, v) ≤
ln(4/κ)

α } |≤ , which is independent of n.
When reconstructing the neighborhood of a vertex v we modify General-

Recon to only test candidate neighborhoods U and sets W which are subsets
of NC (v). The algorithm restricted to the smaller range of possible neighbor-
hoods correctly reconstructs the graph since the true neighborhood of a vertex
is always in its correlation neighborhood. For each vertex v the total number of
choices of candidate neighborhoods U and sets W the algorithm has to check
is so the reconstruction algorithm takes operations. It
takes O(dn2 ln n) operations to calculate all the correlations, which for large n
dominates the run time. �

Acknowledgment. E.M. thanks Marek Biskup for helpful discussions on models
with hidden variables.

O(nd
d ln(4/κ)

α +dn2 ln n)

d
ln(4/κ)

α

O(nd
d ln(4/κ)

α)O(d
d ln(4/κ)

α),

356 G. Bresler, E. Mossel, and A. Sly

References

1. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. Info. Theory IT-14, 462–467 (1968)

2. Chickering, D.: Learning Bayesian networks is NP-complete. In: Proceedings of AI
and Statistics (1995)

3. Abbeel, P., Koller, D., Ng, A.: Learning factor graphs in polynomial time and
sample complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

4. Santhanam, N., Wainwright, M.J.: Information-theoretic limits of graphical model
selection in high dimensions (submitted, January 2008)

5. Wainwright, M.J., Ravikumar, P., Lafferty, J.D.: High-dimensional graphical model
selection using �1-regularized logistic regression. In: NIPS 2006, Vancouver, BC,
Canada (2006)

6. Baldassi, C., Braunstein, A., Brunel, N., Zecchina, R.: Efficient supervised learning
in networks with binary synapses; arXiv:0707.1295v1

7. Mahmoudi, H., Pagnani, A., Weigt, M., Zecchina, R.: Propagation of external and
asynchronous dynamics in random Boolean networks; arXiv:0704.3406v1

8. Dobrushin, R.L., Shlosman, S.B.: Completely analytical Gibbs fields. In: Fritz, J.,
Jaffe, A., Szasz, D. (eds.) Statistical mechanics and dynamical systems, pp. 371–
403. Birkhauser, Boston (1985)

9. Friedman, N.: Infering cellular networks using probalistic graphical models. In:
Science (February 2004)

10. Kasif, S.: Bayes networks and graphical models in computational molecular biology
and bioinformatics, survey of recent research (2007),
http://genomics10.bu.edu/bioinformatics/kasif/bayes-net.html

11. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In:
STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, pp. 159–168. ACM, New York (2006)

12. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build
(almost) all trees (part 1). Random Struct. Algor. 14(2), 153–184 (1999)

13. Mossel, E.: Distorted metrics on trees and phylogenetic forests. IEEE/ACM Trans.
Comput. Bio. Bioinform. 4(1), 108–116 (2007)

14. Bresler, G., Mossel, E., Sly, A.: Reconstruction of Markov Random Fields from
Samples: Some Observations and Algorithms; arXiv:0712.1402v1

Tight Bounds for Hashing Block Sources�

Kai-Min Chung�� and Salil Vadhan���

School of Engineering & Applied Sciences
Harvard University

Cambridge, MA
{kmchung,salil}@eecs.harvard.edu

Abstract. It is known that if a 2-universal hash function H is applied to
elements of a block source (X1, . . . , XT), where each item Xi has enough
min-entropy conditioned on the previous items, then the output distribu-
tion (H,H(X1), . . . , H(XT)) will be “close” to the uniform distribution.
We provide improved bounds on how much min-entropy per item is re-
quired for this to hold, both when we ask that the output be close to
uniform in statistical distance and when we only ask that it be statis-
tically close to a distribution with small collision probability. In both
cases, we reduce the dependence of the min-entropy on the number T of
items from 2 log T in previous work to log T , which we show to be opti-
mal. This leads to corresponding improvements to the recent results of
Mitzenmacher and Vadhan (SODA ‘08) on the analysis of hashing-based
algorithms and data structures when the data items come from a block
source.

1 Introduction

A block source is a sequence of items X = (X1, . . . , XT) in which each item
has at least some k bits of “entropy” conditioned on the previous ones [CG88].
Previous works [CG88, Zuc96, MV08] have analyzed what happens when one
applies a 2-universal hash function to each item in such a sequence, establishing
results of the following form:

Block-Source Hashing Theorems (informal): If (X1, . . . , XT) is
a block source with k bits of “entropy” per item and H is a random
hash function from a 2-universal family mapping to m & k bits, then
(H(X1), . . . , H(XT)) is “close” to the uniform distribution.

In this paper, we prove new results of this form, achieving improved (in some
cases, optimal) bounds on how much entropy k per item is needed to ensure that

� A full version of this paper can be found on [CV08].
�� Work done when visiting U.C. Berkeley, supported by US-Israel BSF grant 2006060

and NSF grant CNS-0430336.
��� Work done when visiting U.C. Berkeley, supported by the Miller Institute for Basic

Research in Science, a Guggenheim Fellowship, US-Israel BSF grant 2006060, and
ONR grant N00014-04-1-0478.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 357–370, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

358 K.-M. Chung and S. Vadhan

the output is close to uniform, as a function of the other parameters (the output
length m of the hash functions, the number T of items, and the “distance” from
the uniform distribution). But first we discuss the two applications that have
motivated the study of Block-Source Hashing Theorems.

1.1 Applications of Block-Source Hashing

Randomness Extractors. A randomness extractor is an algorithm that extracts
almost-uniform bits from a source of biased and correlated bits, using a short
seed of truly random bits as a catalyst [NZ96]. Extractors have many applications
in theoretical computer science and have played a central role in the theory
of pseudorandomness. (See the surveys [NT99, Sha04, Vad07].) Block-source
Hashing Theorems immediately yield methods for extracting randomness from
block sources, where the seed is used to specify a universal hash function. The
gain over hashing the entire T -tuple at once is that the blocks may be much
shorter than the entire sequence, and thus a much shorter seed is required to
specify the universal hash function. Moreover, many subsequent constructions
of extractors for general sources (without the block structure) work by first
converting the source into a block source and performing block-source hashing.

Analysis of Hashing-Based Algorithms. The idea of hashing has been widely ap-
plied in designing algorithms and data structures, including hash tables [Knu98],
Bloom filters [BM03], summary algorithms for data streams [Mut03], etc. Given a
stream of data items (x1, . . . , xT), we first hash the items into (H(x1), . . . , H(xT)),
and carry out a computation using the hashed values. In the literature, the analy-
sis of a hashing algorithm is typically a worst-case analysis on the input data items,
and the best results are often obtained by unrealistically modelling the hash func-
tion as a truly random function mapping the items to uniform and independent
m-bit strings. On the other hand, for realistic, efficiently computable hash func-
tions (eg., 2-universal orO(1)-wise independent hash functions), the provable per-
formance is sometimes significantly worse. However, such gaps seem to not show
up in practice, and even standard 2-universal hash functions empirically seem to
match the performance of truly random hash functions. To explain this phenom-
enon, Mitzenmacher and Vadhan [MV08] have suggested that the discrepancy is
due to worst-case analysis, and propose to instead model the input items as coming
from a block source. Then Block-Source Hashing Theorems imply that the perfor-
mance of universal hash functions is close to that of truly random hash functions,
provided that each item has enough bits of entropy.

1.2 How Much Entropy Is Required?

A natural question about Block-Source Hashing Theorems is: how large does
the “entropy” k per item need to be to ensure a certain amount of “closeness”
to uniform (where both the entropy and closeness can be measured in various
ways). This also has practical significance for the latter motivation regarding
hashing-based algorithms, as it corresponds to the amount of entropy we need

Tight Bounds for Hashing Block Sources 359

Table 1. Our Results: Each entry denotes the min-entropy (actually, Renyi entropy)
required per item when hashing a block source of T items to m-bit strings to ensure
that the output has statistical distance at most ε from uniform (or from having collision
probability within a constant factor of uniform). Additive constants are omitted for
readability.

Setting Previous Results Our Results

2-universal hashing m + 2 log T + 2 log(1/ε) m + log T + 2 log(1/ε)
ε-close to uniform [CG88, ILL89, Zuc96]

2-universal hashing m + 2 log T + log(1/ε) [MV08] m + log T + log(1/ε)
ε-close to small cp.

4-wise indep. hashing max{m + log T, max{m + log T,
ε-close to small cp. 1/2(m + 3 log T + log 1/ε)} [MV08] 1/2(m + 2 log T + log(1/ε)}

to assume in data items. In [MV08], they provide bounds on the entropy required
for two measures of closeness, and use these as basic tools to bound the required
entropy in various applications. The requirement is usually some small constant
multiple of logT , where T is the number of items in the source, which can be on
the borderline between a reasonable and unreasonable assumption about real-
life data. Therefore, it is interesting to pin down the optimal answers to these
questions. In what follows, we first summarize the previous results, and then
discuss our improved analysis and corresponding lower bounds.

A standard way to measure the distance of the output from the uniform
distribution is by statistical distance.1 In the randomness extractor literature,
classic results [CG88, ILL89, Zuc96] show that using 2-universal hash functions,
k = m+2 log(T/ε)+O(1) bits of min-entropy (or even Renyi entropy)2 per item
is sufficient for the output distribution to be ε-close to uniform in statistical
distance. Sometimes a less stringent closeness requirement is sufficient, where
we only require that the output distribution is ε-close to a distribution having
“small” collision probability3 . A result of [MV08] shows that k = m+ 2 logT +
log(1/ε) + O(1) suffices to achieve this requirement. Using 4-wise independent
hash functions, [MV08] further reduce the required entropy to k = max{m +
logT, 1/2(m+ 3 logT + log(1/ε))}+O(1).

Our Results. We reduce the entropy required in the previous results, as summa-
rized in Table 1. Roughly speaking, we save an additive logT bits of min-entropy
(or Renyi entropy) for all cases. We show that using universal hash functions,
k = m+ logT + 2 log 1/ε+ O(1) bits per item is sufficient for the output to be

1 The statistical distance of two random variables X and Y is Δ(X, Y) = maxT | Pr[X ∈
T] − Pr[Y ∈ T]|, where T ranges over all possible events.

2 The min-entropy of a random variable X is H∞(X) = minx log(1/Pr[X = x]). All of
the results mentioned actually hold for the less stringent measure of Renyi entropy
H2(X) = log(1/Ex←X [Pr[X = x]]).

3 The collision probability of a random variable X is
�

x Pr[X = x]2. By “small collision
probability,” we mean that the collision probability is within a constant factor of the
collision probability of uniform distribution.

360 K.-M. Chung and S. Vadhan

ε-close to uniform, and k = m + log(T/ε) + O(1) is enough for the output to
be ε-close to having small collision probability. Using 4-wise independent hash
functions, the entropy k further reduces to max{m + logT, 1/2(m + 2 logT +
log 1/ε)} + O(1). The results hold even if we consider the joint distribution
(H,H(X1), . . . , H(XT)) (corresponding to “strong extractors” in the literature
on randomness extractors). Substituting our improved bounds in the analysis
of hashing-based algorithms from [MV08], we obtain similar reductions in the
min-entropy required for every application with 2-universal hashing. With 4-wise
independent hashing, we obtain a slight improvement for Linear Probing, and
for the other applications, we show that the previous bounds can already be
achieved with 2-universal hashing. The results are summarized in Table 2.

Although the log T improvement seems small, we remark that it could be
significant for practical settings of parameter. For example, suppose we want to
hash 64 thousand internet traffic flows, so logT ≈ 16. Each flow is specified by
the 32-bit IP addresses and 16-bit port numbers for the source and destination
plus the 8-bit transport protocol, for a total of 104 bits. There is a noticeable
difference between assuming that each flow contains 3 logT ≈ 48 vs. 4 logT ≈ 64
bits of entropy as they are only 104 bits long, and are very structured.

We also prove corresponding lower bounds showing that our upper bounds are
almost tight. Specifically, we show that when the data items have not enough
entropy, then the joint distribution (H,H(X1), . . . , H(XT)) can be “far” from
uniform. More precisely, we show that if k = m+ logT + 2 log 1/ε−O(1), then
there exists a block source (X1, . . . , XT) with k bits of min-entropy per item such
that the distribution (H,H(X1), . . . , H(XT)) is ε-far from uniform in statistical
distance (for H coming from any hash family). This matches our upper bound
up to an additive constant. Similarly, we show that if k = m + logT − O(1),
then there exists a block source (X1, . . . , XT) with k bits of min-entropy per
item such that the distribution (H,H(X1), . . . , H(XT)) is 0.99-far from having
small collision probability (for H coming from any hash family). This matches
our upper bound up to an additive constant in case the statistical distance
parameter ε is constant; we also exhibit a specific 2-universal family for which
the log(1/ε) in our upper bound is nearly tight — it cannot be reduced below
log(1/ε) − log log(1/ε). Finally, we also extend all of our lower bounds to the
case that we only consider distribution of hashed values (H(X1), . . . , H(XT)),
rather than their joint distribution with Y . For this case, the lower bounds are
necessarily reduced by a term that depends on the size of the hash family. (For
standard constructions of universal hash functions, this amounts to logn bits of
entropy, where n is the bit-length of an individual item.)

Techniques. At a high level, all of the previous analyses for hashing block sources
were loose due to summing error probabilities over the T blocks. Our improve-
ments come from avoiding this linear blow-up by choosing more refined measures
of error. For example, when we want the output to have small statistical distance
from uniform, the classic Leftover Hash Lemma [ILL89] says that min-entropy
k = m+ 2 log(1/ε0) suffices for a single hashed block to be ε0-close to uniform,
and then a “hybrid argument” implies that the joint distribution of T hashed

Tight Bounds for Hashing Block Sources 361

Table 2. Applications: Each entry denotes the min-entropy (actually, Renyi entropy)
required per item to ensure that the performance of the given application is “close”
to the performance when using truly random hash functions. In all cases, the bounds
omit additive terms that depend on how close a performance is desired, and we restrict
to the (standard) case that the size of the hash table is linear in the number of items
being hashed. That is, m = log T + O(1).

Type of Hash Family Previous Results [MV08] Our Results

Linear Probing

2-universal hashing 4 log T 3 log T
4-wise independence 2.5 log T 2 log T

Balanced Allocations with d Choices

2-universal hashing (d + 2) log T (d + 1) log T
4-wise independence (d + 1) log T —

Bloom Filters

2-universal hashing 4 log T 3 log T
4-wise independence 3 log T —

blocks is Tε0-close to uniform [Zuc96]. Setting ε0 = ε/T , this leads to a min-
entropy requirement of k = m+2 log(1/ε)+2 logT per block. We obtain a better
bound, reducing 2 logT to logT , by using Hellinger distance to analyze the error
accumulation over blocks, and only passing to statistical distance at the end.

For the case where we only want the output to be close to having small
collision probability, the previous analysis of [MV08] worked by first showing
that the expected collision probability of each hashed block h(Xi) is “small” even
conditioned on previous blocks, then using Markov’s Inequality to deduce that
each hashed block has small collision probability except with some probability
ε0, and finally doing a union bound to deduce that all hashed blocks have small
collision probability except with probability Tε0. We avoid the union bound by
working with more refined notions of “conditional collision probability,” which
enable us to apply Markov’s Inequality on the entire sequence rather than on
each block individually.

The starting point for our negative results is the tight lower bound for ran-
domness extractors due to Radhakrishnan and Ta-Shma [RT00]. Their methods
show that if the min-entropy parameter k is not large enough, then for any hash
family, there exists a (single-block) source X such that h(X) is “far” from uni-
form (in statistical distance) for “many” hash functions h. We then take our
block source (X1, . . . , XT) to consist of T iid copies of X , and argue that the
statistical distance from uniform grows sufficiently fast with the number T of
copies taken. For example, we show that if two distributions have statistical dis-
tance ε, then their T -fold products have statistical distance Ω(min{1,

√
T · ε}),

strengthening a previous bound of Reyzin [Rey04], who proved a bound of
Ω(min{ε1/3,

√
T · ε}). Due to space constraints, we skip the precise statements

and proofs of our negative results. Please refer to the full version of this paper
[CV08] for details.

362 K.-M. Chung and S. Vadhan

2 Preliminaries

Notations. All logs are based 2. We use the convention that N = 2n, K = 2k,
and M = 2m. We think of a data item X as a random variable over [N] =
{1, . . . , N}, which can be viewed as the set of n-bit strings. A hash function
h : [N] → [M] hashes an item to a m-bit string. A hash function family H is a
multiset of hash functions, and H will usually denote a uniformly random hash
function drawn fromH. U[M] denotes the uniform distribution over [M]. Let X =
(X1, . . . , XT) be a sequence of data items. We use X<i to denote the first i− 1
items (X1, . . . , Xi−1). We refer to Xi as an item or a block interchangeably. Our
goal is to study the distribution of hashed sequence (H,Y) = (H,Y1, . . . , YT) def=
(H,H(X1), . . . , H(XT)).

Hash Families. The truly random hash family H is the set of all functions
from [N] to [M]. A hash family H is s-universal if for every sequence of dis-
tinct elements x1, . . . , xs ∈ [N], PrH [H(x1) = · · · = H(xs)] ≤ 1/M s. H is
s-wise independent if for every sequence of distinct elements x1, . . . , xs ∈ [N],
H(x1), . . . , H(xs) are independent and uniform random variables over [M].

Block Sources and Collision Probability. For a random variable X , the colli-
sion probability of X is cp(X) = Pr[X = X ′] =

∑
x Pr[X = x]2, where X ′

is an independent copy of X . The Renyi entropy H2(X) = log(1/cp(X)) can
be viewed as a measure of the amount of randomness in X (In the random-
ness extractor literature, the entropy is measured by min-entropy H∞(X) =
minx∈supp(X) log(1/Pr[X = x]), but using the less stringent measure Renyi en-
tropy makes our results stronger since H2(X) ≥ H∞(X).) For an event E, (X |E)
is the random variable defined by conditioning X on E.

Definition 2.1 (Block Sources). A sequence of random variables (X1, . . . , XT)
over [N]T is a block K-source if for every i ∈ [T], and every x<i in the support
of X<i, we have cp(Xi|X<i = x<i) ≤ 1/K. That is, each item Xi has at least
k = logK bits of Renyi entropy even after conditioning on the previous items.

Let X = (X1, . . . , XT) be a sequence of random variables over [M]T . We are
interested in bounding the overall collision probability cp(X) by the collision
probability of each blocks. Suppose all Xi’s are independent, then cp(X) =
∏T

i=1 cp(Xi). The following lemma generalizes Lemma 4.2 in [MV08], which
says that if for every x ∈ X, the average collision probability of every block Xi

conditioning on X<i = x<i is small, then the overall collision probability cp(X)
is also small. In particular, if X is a block K-source, then cp(X) ≤ 1/KT .

Lemma 2.2. Let X = (X1, . . . , XT) be a sequence of random variables such
that for every x ∈ supp(X),

Then the overall collision probability satisfies cp(X) ≤ αT .

1
T

T∑

i=1

cp(Xi|X<i=x<i) ≤ α.

Tight Bounds for Hashing Block Sources 363

Statistical Distance. The statistical distance is a standard way to measure the
distance of two distributions. Let X and Y be two random variables. The sta-
tistical distance of X and Y is Δ(X,Y) = maxT |Pr[X ∈ T] − Pr[Y ∈ T]| =
(1/2) ·

∑
x |Pr[X = x] − Pr[Y = x]|, where T ranges over all possible events.

When Δ(X,Y) ≤ ε, we say that X is ε-close to Y . Similarly, if Δ(X,Y) ≥ ε,
then X is ε-far from Y . The following standard lemma says that if X has small
collision probability, then X is close to uniform in statistical distance.

Lemma 2.3. Let X be a random variable over [M] such that cp(X) ≤ (1+ε)/M .
Then Δ(X,U[M]) ≤

√
ε.

Conditional Collision Probability. Let (X,Y) be jointly distributed random vari-
ables. We can define the conditional Renyi entropy of X conditioning on Y as
follows.

Definition 2.4. The conditional collision probability of X conditioning on Y
is cp(X |Y) = Ey←Y [cp(X |Y =y)]. The conditional Renyi entropy is H2(X |Y) =
log 1/cp(X |Y).

The following lemma says that as in the case of Shannon entropy, conditioning
can only decrease the entropy.

Lemma 2.5. Let (X,Y, Z) be jointly distributed random variables. We have
cp(X) ≤ cp(X |Y) ≤ cp(X |Y, Z).

Proof. By Arithmetic Mean-Geometric Mean Inequality, the inequality in the
premise implies

T∏

i=1

cp(Xi|X<i=x<i) ≤ αT .

Therefore, it suffices to prove

cp(X) ≤ max
x∈supp(X)

T∏

i=1

cp(Xi|X<i=x<i).

We prove it by induction on T . The base case T = 1 is trivial. Suppose the
lemma is true for T − 1. We have

cp(X) =
∑

x1

Pr[X1 = x1]2 · cp(X2, . . . , XT |X1=x1)

≤
(

∑

x1

Pr[X1 = x1]2
)

· max
x1

cp(X2, . . . , XT |X1=x1)

≤ cp(X1) · max
x1

(

max
x2,...,xT

T∏

i=2

cp(Xi|X<i=x<i)

)

= max
x

T∏

i=1

cp(Xi|X<i=x<i),

as desired.

364 K.-M. Chung and S. Vadhan

Proof. For the first inequality, we have

cp(X) =
∑

x

Pr[X = x]2

=
∑

y,y′

Pr[Y = y] · Pr[Y = y′] ·
(
∑

x

Pr[X = x|Y = y] · Pr[X = x|Y = y′]

)

≤
∑

y,y′

Pr[Y = y] · Pr[Y = y′] ·

(
∑

x Pr[X = x|Y = y]2)1/2 · (
∑

x Pr[X = x|Y = y′]2)1/2

= E
y←Y

[
cp(X |Y = y)1/2

]2

≤ cp(X |Y)

For the second inequality, observe that for every y in the support of Y , we have
cp(X |Y =y) ≤ cp((X |Y =y)|(Z|Y =y)) from the first inequality. It follows that

cp(X |Y) = E
y←Y

[cp(X |Y =y)]

≤ E
y←Y

[cp((X |Y =y)|(Z|Y =y))]

= E
y←Y

[E
z←(Z|Y =y)

[cp(X |Y =y,Z=z)]

= cp(X |Y, Z)

3 Positive Results: How Much Entropy Is Sufficient?

In this section, we present our positive results, showing that the distribution of
hashed sequence (H,Y) = (H,H(X1), . . . , H(XT)) is close to uniform when H
is a random hash function from a 2-universal hash family, and X = (X1, . . . , XT)
has sufficient entropy per block. The new contribution is that we will not need
K = 2k to be as large as in previous works, and so save the required randomness
in the block source X = (X1, . . . , XT).

3.1 Small Collision Probability Using 2-Universal Hash Functions

Let H : [N] → [M] be a random hash function from a 2-universal family H.
We first study the conditions under which (H,Y) = (H,H(X1), . . . , H(XT)) is
ε-close to having collision probability O(1/(|H| ·MT)). This requirement is less
stringent than (H,Y) being ε-close to uniform in statistical distance, and so
requires less bits of entropy. Mitzenmacher and Vadhan [MV08] show that this
guarantee suffices for some hashing applications. They show that K ≥ MT 2/ε
is enough to satisfy the requirement. We save a factor of T , and show that in
fact, K ≥ MT/ε, is sufficient. (Taking logs yields the first entry in Table 1, i.e.
it suffices to have Renyi entropy k = m+ logT + log(1/ε) per block.) Formally,
we prove the following theorem.

Tight Bounds for Hashing Block Sources 365

Theorem 3.1. Let H : [N] → [M] be a random hash function from a 2-
universal family H. Let X = (X1, . . . , XT) be a block K-source over [N]T . For
every ε > 0, the hashed sequence (H,Y) = (H,H(X1), . . . , H(XT)) is ε-close to
a distribution (H,Z) = (H,Z1, . . . , ZT) such that

cp(H,Z) ≤ 1
|H| ·MT

(

1 +
M

Kε

)T

.

In particular, if K ≥ MT/ε, then (H,Z) has collision probability at most (1 +
2MT/Kε)/(|H| ·MT).

To analyze the distribution of the hashed sequence (H,Y), the starting point is
the following version of the Leftover Hash Lemma [BBR85, ILL89], which says
that when we hash a random variableX with enough entropy using a 2-universal
hash function H , the conditional collision probability of H(X) conditioning on
H is small.

Lemma 3.2 (The Leftover Hash Lemma). Let H : [N]→ [M] be a random
hash function from a 2-universal family H. Let X be a random variable over [N]
with cp(X) ≤ 1/K. We have cp(H(X)|H) ≤ 1/M + 1/K.

We now sketch how the hashed block source Y = (Y1, . . . , YT) = (H(X1), . . . ,
H(XT)) is analyzed in [MV08], and how we improve the analysis. The following
natural approach is taken in [MV08]. Since the data X is a block K-source, the
Leftover Hash Lemma tells us that for every block i ∈ [T], if we condition on
the previous blocks X<i = x<i, then the hashed value (Yi|) has small
conditional collision probability, i.e. cp((Yi|)|H) ≤ 1/M + 1/K. This is
equivalent to saying that the average collision probability of (Yi|) over
the choice of the hash function H is small, i.e.,

We can then use a Markov argument to say that for every block, with probability
at least 1− ε/T over h← H , the collision probability is at most 1/M +T/(Kε).
We can then take a union bound to say that for every x ∈ supp(X), at least
(1−ε)-fraction of hash functions h are good in the sense that cp(h(Xi)|)
is small for all blocks i = 1, . . . , T . [MV08] shows that if this condition is true
for every (h,x) ∈ supp(H,X), then Y is a block (1/M + T/(Kε))-source, and
thus the overall collision probability is at most (1 + MT/Kε)T/MT . [MV08]
also shows how to modify an ε-fraction of the distribution to fix the bad hash
functions, and thus complete the analysis.

The problem of the above analysis is that taking a Markov argument for each
block, and then taking a union bound incurs a loss of factor T . To avoid this, we
want to apply Markov argument only once to the whole sequence. For example,
a natural thing to try is to sum over blocks to get

E
h←H

[cp(h(Xi)|X<i=x<i)] = cp((Yi|X<i=x<i)|H) ≤ 1
M

+
1
K

.

X<i=x<i

X<i=x<i

X<i=x<i

E
h←H

[
1
T

T∑

i=1

cp(h(Xi)|X<i=x<i)

]

=
1
T

T∑

i=1

cp((Yi|X<i=x<i)|H) ≤ 1
M

+
1
K

,

X<i=x<i

366 K.-M. Chung and S. Vadhan

and use a Markov argument to deduce that for every x ∈ supp(X), with proba-
bility 1− ε over h← H , the average collision probability per block satisfies

We need to bound the collision probability ofY using this information. We may try
to apply Lemma2.2, but it requires the information on (1/T)

∑
i cp(Yi|) in-

stead of (1/T)
∑

i cp(h(Xi)|). That is, Lemma 2.2 requires us to condition
on previous hashed values Y<i, whereas the above argument refers to condition-
ing on the un-hashed valuesX<i. The difficulty with directly reasoning about the
former is that conditioned on the hashed values Y<i, the hash function H may no
longer be uniform (as it is correlated with Y<i) and thus the Leftover Hash Lemma
no longer applies.

To get around with the issues, we work with the averaged form of conditional
collision probability cp(Yi|H,Y<i), as from Definition 2.4. Our key observation
is that now we can apply Lemma 2.5 to deduce that for every block i ∈ [T],
the conditional collision probability satisfies cp(Yi|H,Y<i) ≤ cp(Yi|H,X<i) ≤
1/M +1/K. Then, by a Markov argument, it follows that with probability 1− ε
over (h,y)← (H,Y), the average collision probability satisfies

1
T

T∑

i=1

cp(Yi|(H,Y)=(h,y)) ≤
1
M

+
1
Kε
.

We can then modify an ε-fraction of distribution, and apply Lemma 2.2 to
complete the analysis.

The following lemma formalizes our claim about that the conditional collision
probability of every block of (H,Y) is small.

Lemma 3.3. Let H : [N] → [M] be a random hash function from a 2-universal
family H. Let X = (X1, . . . , XT) be a block K-source over [N]T . Let (H,Y) =
(H,H(X1), . . . , H(XT)). Then cp(H) = 1/|H| and for every i ∈ [T], cp(Yi|H,Y<i)
≤ 1/M + 1/K.

Proof. cp(H) = 1/|H| is trivial since H is the uniform distribution. Fix i ∈
[T]. By the definition of block K-source, for every x<i in the support of X<i,
cp(Xi|) ≤ 1/K. By the Leftover Hash Lemma, we have cp((Yi|)|
(H |)) ≤ 1/M + 1/K for every x<i. It follows that cp(Yi|H,X<i) ≤
1/M+1/K. Now, we can think of (Yi|H,X<i) as Yi first conditioning on (H,Y<i),
and then further conditioning on X<i. By Lemma 2.5, we have

cp(Yi|H,Y<i) ≤ cp(Yi|H,Y<i, X<i) = cp(Yi|H,X<i) ≤ 1/M + 1/K,

as desired.

The remaining part of the proof follows the above sketch closely. Details can be
found in the full version of this paper[CV08].

1
T

·
T∑

i=1

cp(h(Xi)|X<i=x<i) ≤ 1
M

+
1

Kε
.

X<i=x<i

Y<i=y<i

<i <i

X<i=x<i

X<i=x<i

X<i=x<i

Tight Bounds for Hashing Block Sources 367

3.2 Small Collision Probability Using 4-Wise Independent Hash
Functions

As discussed in [MV08], using 4-wise independent hash functions H : [N] →
[M] from H, we can further reduce the required randomness in the data X =
(X1, . . . , XT). [MV08] shows that in this case, K ≥MT +

√
2MT 3/ε is enough

for the hashed sequence (H,Y) to be ε-close to having collision probability
O(1/|H| ·MT). As discussed in the previous subsection, by avoiding using union
bounds, we show that K ≥ MT +

√
2MT 2/ε suffices. (Taking logs yields the

second entry in Table 1, i.e. it suffices to have Renyi entropy k = max{m +
logT, (1/2) · (m+ 2 logT + log(1/ε))}+O(1) per block.) Formally, we prove the
following theorem.

Theorem 3.4. Let H : [N] → [M] be a random hash function from a 4-wise
independent family H. Let X = (X1, . . . , XT) be a block K-source over [N]T . For
every ε > 0, the hashed sequence (H,Y) = (H,H(X1), . . . , H(XT)) is ε-close to
a distribution (H,Z) = (H,Z1, . . . , ZT) such that

cp(H,Z) ≤ 1
|H| ·MT

(

1 +
M

K
+

√
2M
K2ε

)T

.

In particular, if K ≥ MT +
√

2MT 2/ε, then (H,Z) has collision probability at
most (1 + γ)/(|H| ·MT) for γ = 2 · (MT +

√
2MT 2/ε)/K.

The improvement of Theorem 3.4 over Theorem 3.1 comes from that when we
use 4-wise independent hash families, we have a concentration result on the
conditional collision probability for each block . For the proof of the theorem,
please refer to [CV08].

3.3 Statistical Distance to Uniform Distribution

Let H : [N]→ [M] be a random hash function form a 2-universal family H. Let
X = (X1, . . . , XT) be a block K-source over [N]T . In this subsection, we study
the statistical distance between the distribution of hashed sequence (H,Y) =
(H,H(X1), . . . , H(XT)) and the uniform distribution (H,U[M]). Classic results
of [CG88, ILL89, Zuc96] show that if K ≥ MT 2/ε2, then (H,Y) is ε-close to
uniform. The proof idea is as follows. The Leftover Hash Lemma together with
Lemma 2.3 tells us that the joint distribution of hash function and a hashed value
(H,Yi) = (H,H(Xi)) is

√
M/K-close to uniform U[M] even conditioning on the

previous blocks X<i. One can then use a hybrid argument to show that the
distance grows linearly with the number of blocks, so (H,Y) is T ·

√
M/K-close

to uniform. Taking K ≥MT 2/ε2 completes the analysis.
We save a factor of T , and show that in fact, K = MT/ε2 is sufficient.

(Taking logs yields the third entry in Table 1, i.e. it suffices to have Renyi
entropy k = m+ logT + 2 log(1/ε) per block.) Formally, we prove the following
theorem.

T

368 K.-M. Chung and S. Vadhan

Theorem 3.5. Let H : [N] → [M] be a random hash function from a 2-
universal family H. Let X = (X1, . . . , XT) be a block K-source over [N]T . For
every ε > 0 such that K > MT/ε2, the hashed sequence (H,Y) =
(H,H(X1), . . . , H(XT)) is ε-close to uniform (H,U[M]).

Recall that the previous analysis goes by passing to statistical distance first, and
then measuring the growth of distance using statistical distance. This incurs a
quadratic dependency of K on T . Since without further information, the hybrid
argument is tight, to save a factor of T , we have to measure the increase of
distance over blocks in another way, and pass to statistical distance only in the
end. It turns out that the Hellinger distance (cf., [GS02]) is a good measure for
our purposes:

Definition 3.6 (Hellinger distance). Let X and Y be two random variables
over [M]. The Hellinger distance between X and Y is

d(X, Y)def=

(
1
2

∑

i

(
√

Pr[X = i]−
√

Pr[Y = i])

)1/2

=
√

1−
∑

i

√
Pr[X = i] · Pr[Y = i].

Like statistical distance, Hellinger distance is a distance measure for distribu-
tions, and it takes value in [0, 1]. The following standard lemma says that the
two distance measures are closely related. We remark that the lemma is tight in
both directions even if Y is the uniform distribution.

Lemma 3.7 (cf., [GS02]). Let X and Y be two random variables over [M].
We have

d(X,Y)2 ≤ Δ(X,Y) ≤
√

2 · d(X,Y).

In particular, the lemma allows us to upper-bound the statistical distance by
upper-bounding the Hellinger distance. Since our goal is to bound the distance
to uniform, it is convenient to introduce the following definition.

Definition 3.8 (Hellinger Closeness to Uniform). Let X be a random vari-
able over [M]. The Hellinger closeness of X to uniform U[M] is

C(X) def=
1
M

∑

i

√
M · Pr[X = i] = 1− d(X,U[M])2.

Note that C(X,Y) = C(X) · C(Y) when X and Y are independent random
variables, so the Hellinger closeness is well-behaved with respect to products
(unlike statistical distance). By Lemma 3.7, if the Hellinger closeness C(X) is
close to 1, then X is close to uniform in statistical distance. Recall that collision
probability behaves similarly. If the collision probability cp(X) is close to 1/M ,
then X is close to uniform. In fact, by the following normalization, we can view
the collision probability as the 2-norm of X , and the Hellinger closeness as the
1/2-norm of X .

Let f(i) = M · Pr[X = i] for i ∈ [M]. In terms of f(·), the collision proba-
bility is cp(X) = (1/M2) ·

∑
i f(i)

2, and Lemma 2.3 says that if the “2-norm”
M ·cp(X) = Ei[f(i)2] ≤ 1+ε where the expectation is over uniform i ∈ [M], then

T

Tight Bounds for Hashing Block Sources 369

Δ(X,U) ≤ √ε,. Similarly, Lemma 3.7 says that if the “1/2-norm” C(X) =
Ei[
√
f(i)] ≥ 1− ε, then Δ(X,U) ≤

√
ε.

We now discuss our approach to prove Theorem 3.5. We want to show that
(H,Y) is close to uniform. All we know is that the conditional collision proba-
bility cp(Yi|H,Y<i) is close to 1/M for every block. If all blocks are independent,
then the overall collision probability cp(H,Y) is small, and so (H,Y) is close to
uniform. However, this is not true without independence, since 2-norm tends to
over-weight heavy elements. In contrast, the 1/2-norm does not suffer this prob-
lem. Therefore, our approach is to show that small conditional collision proba-
bility implies large Hellinger closeness. Formally, we have the following lemma.
The main idea is to use Hölder’s inequality to relate two different norms.

Lemma 3.9. Let X = (X1, . . . , XT) be jointly distributed random variables over
[M1] × · · · × [MT] such that cp(Xi|X<i) ≤ αi/Mi for every i ∈ [T]. Then the
Hellinger closeness satisfies

C(X) ≥
√

1
α1 . . . αT

.

The proof of this lemma can be found in the full version of this paper[CV08].
With this lemma, the proof of Theorem 3.5 is immediate.

Proof of Theorem 3.5. By Lemma 3.3, cp(H) = 1/|H|, and cp(Yi|H,Y<i) ≤
(1 +M/K)/M for every i ∈ [T]. By Lemma 3.9, the Hellinger closeness satisfies
C(H,Y) ≥ (1 +M/K)−T/2 ≥ 1−MT/2K (recall that K ≥MT/ε2). It follows
by Lemma 3.7 that

Δ((H,Y), (H,U[M])) ≤
√

2 · d((H,Y), (H,U[M]))

=
√

2 ·
√

1− C(H,Y) ≤
√
MT/K ≤ ε.

Acknowledgments

We thank Wei-Chun Kao for helpful discussions in the early stages of this work,
David Zuckerman for telling us about Hellinger distance, and Michael Mitzen-
macher for suggesting parameter settings useful in practice.

References

[BBR85] Bennett, C.H., Brassard, G., Robert, J.-M.: How to reduce your enemy’s
information (extended abstract). In: Williams, H.C. (ed.) CRYPTO 1985.
LNCS, vol. 218, pp. 468–476. Springer, Heidelberg (1986)

[BM03] Broder, A.Z., Mitzenmacher, M.: Survey: Network applications of bloom
filters: A survey. Internet Mathematics 1(4) (2003)

T T

370 K.-M. Chung and S. Vadhan

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261
(1988)

[CV08] Chung, K.-M., Vadhan, S.: Tight bounds for hashing block sources (2008),
http://www.citebase.org/abstract?id=oai:arXiv.org:0806.1948

[GS02] Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Inter-
national Statistical Review 70, 419 (2002)

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-
way functions (extended abstracts). In: Proceedings of the Twenty First
Annual ACM Symposium on Theory of Computing, Seattle, Washington,
May 15–17, 1989, pp. 12–24 (1989)

[Knu98] Knuth, D.E.: The art of computer programming. Sorting and Searching,
vol. 3. Addison-Wesley Longman Publishing Co., Inc, Boston (1998)

[MV08] Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: Exploiting
the entropy in a data stream. In: Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2008), January 20–22,
2008, pp. 746–755 (2008)

[Mut03] Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA,
p. 413 (2003)

[NT99] Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new con-
structions. J. Comput. Syst. Sci. 58(1), 148–173 (1999)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

[RT00] Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and
depth-two superconcentrators. SIAM Journal on Discrete Mathemat-
ics 13(1), 2–24 (2000) (electronic)

[Rey04] Reyzin, L.: A note on the statistical difference of small direct products.
Technical Report BUCS-TR-2004-032, Boston University Computer Science
Department (2004)

[Sha04] Shaltiel, R.: Recent developments in extractors. In: Paun, G., Rozenberg,
G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science.
Algorithms and Complexity, vol. 1. World Scientific, Singapore (2004)

[Vad07] Vadhan, S.: The unified theory of pseudorandomness. SIGACT News 38(3)
(September 2007)

[Zuc96] Zuckerman, D.: Simulating BPP using a general weak random source. Algo-
rithmica 16(4/5), 367–391 (1996)

Improved Separations between Nondeterministic and
Randomized Multiparty Communication

Matei David1,�, Toniann Pitassi1,��, and Emanuele Viola2,���

1 Department of Computer Science, University of Toronto
2 Computer Science Department, Columbia University

Abstract. We exhibit an explicit function f : {0,1}n → {0,1} that can be com-
puted by a nondeterministic number-on-forehead protocol communicating
O(logn) bits, but that requires nΩ(1) bits of communication for randomized
number-on-forehead protocols with k = δ · logn players, for any fixed δ < 1.
Recent breakthrough results for the Set-Disjointness function (Sherstov, STOC
’08; Lee Shraibman, CCC ’08; Chattopadhyay Ada, ECCC ’08) imply such a
separation but only when the number of players is k < log logn.

We also show that for any k = A log logn the above function f is computable by
a small circuit whose depth is constant whenever A is a (possibly large) constant.
Recent results again give such functions but only when the number of players is
k < log logn.

1 Introduction

Number-on-forehead communication protocols are a fascinating model of computation
where k collaborating players are trying to evaluate a function f : ({0,1}n)k → {0,1}.
The players are all-powerful, but the input to f is partitioned into k pieces of n bits
each, x1, . . . ,xk ∈ {0,1}n, and xi is placed, metaphorically, on the forehead of player i.
Thus, each player only sees (k− 1)n of the k · n input bits. In order to compute f , the
players communicate by writing bits on a shared blackboard, and the complexity of the
protocol is the number of bits that are communicated (i.e., written on the board). This
model was introduced in [CFL83] and has found applications in a surprising variety of
areas, including circuit complexity [HG91, NW93], pseudorandomness [BNS92], and
proof complexity [BPS07].

In this model, a protocol is said to be efficient if it has complexity logO(1) n. Cor-
respondingly, Pcc

k , RPcc
k , BPPcc

k and NPcc
k are the number-on-forehead communication

complexity analogs of the standard complexity classes [BFS86], see also [KN97]. For
example, RPcc

k is the class of functions having efficient one-sided-error randomized
communication protocols. One of the most fundamental questions in NOF communi-
cation complexity, and the main question addressed in this paper, is to separate these
classes. In [BDPW07], Beame et al. give an exponential separation between random-
ized and deterministic protocols for k ≤ nO(1) players (in particular, RPcc

k
= Pcc
k for

� Research supported by NSERC.
�� Research supported by NSERC.
��� Research supported by grants NSF award CCF-0347282 and NSF award CCF-0523664.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 371–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

372 M. David, T. Pitassi, and E. Viola

k≤ nO(1)). The breakthrough work by Sherstov [She07, She08a] sparked a flurry of ex-
citing results in communication complexity [Cha07, LS08, CA08] which gave an expo-
nential separation between nondeterministic and randomized protocols for k< loglogn
players (in particular, NPcc

k
⊂ BPPcc
k for k < log logn). Our main result is to improve

the latter separation to larger values of k.

Theorem 1 (Main Theorem; NPcc
δ logn
⊂ BPPcc

δ logn). For every fixed δ < 1, sufficiently

large n and k = δ · logn, there is an explicit function f : ({0,1}n)k→{0,1} such that: f
can be computed by k-player nondeterministic protocols communicating O(logn) bits,
but f cannot be computed by k-player randomized protocols communicating no(1) bits.

We note that the number of players k = δ · logn in the above Theorem 1 is state-of-
the-art: it is a major open problem in number-on-forehead communication complexity
to determine if every explicit function on n bits can be computed by k = log2 n players
communicating O(logn) bits. We also note that Theorem 1 in particular implies an
exponential separation between nondeterministic and deterministic protocols (hence,
NPcc

k
⊂ Pcc
k for k = δ logn players). Similar separations follow from [BDPW07], but

only for non-explicit functions.
We also address the challenge of exhibiting functions computable by small (un-

bounded fan-in) constant-depth circuits that require high communication for k-player
protocols, which is relevant to separating various circuit classes (see, [HG91, RW93]).
Previous results [Cha07, LS08, CA08] give such functions for k < loglogn. We offer
a slight improvement and achieve k = A log logn for any (possibly large) constant A,
where the depth of the circuit computing the function depends on A.

Theorem 2 (Some constant-depth circuits require high communication). For every
constant A> 1 there is a constant B such that for sufficiently large n and k := A loglogn
there is a function f : ({0,1}n)k→{0,1}which satisfies the following: f can be computed
by circuits of size nB and depth B, but f cannot be computed by k-player randomized pro-
tocols communicating no(1) bits.

1.1 Techniques

In this section we discuss the technical challenges presented by our theorems and how we
have overcome them, building on previous work. An exposition of previous works and of
some of the ideas in this paper also appears in the survey by Sherstov [She08b]. For con-
creteness, in our discussion we focus on separating nondeterministic from deterministic
(as opposed to randomized) protocols, a goal which involves all the main difficulties.

Until very recently, it was far from clear how to obtain communication lower bounds
in the number-on-forehead model for any explicit function f with efficient nondeter-
ministic protocols. The difficulty can be described as follows. The standard method
for obtaining number-on-forehead lower bounds is what can be called the “correlation
method” [BNS92, CT93, Raz00, VW07].1 This method goes by showing that f has

1 This method is sometimes called the “discrepancy method.” We believe that lower bound
proofs are easier to understand when presented in terms of correlation rather than discrepancy,
cf. [VW07].

Separations between Nondeterministic and Randomized Multiparty Communication 373

exponentially small (2−nΩ(1)
) correlation with efficient (deterministic) protocols, and

this immediately implies that f does not have efficient protocols (the correlation is
w.r.t. some probability distribution which in general is not uniform). The drawback of
this method is that, although for the conclusion that f does not have efficient proto-
cols it is clearly enough to show that the correlation of f with such protocols is strictly
less than one, the method actually proves the stronger exponentially small correlation
bound. This is problematic in our setting because it is not hard to see that every function

that has an efficient nondeterministic protocol also has noticeable (≥ 2− logO(1) n) corre-
lation with an efficient (deterministic) protocol, and thus this method does not seem
useful for separating nondeterministic from deterministic protocols.

In recent work, these difficulties were overcome to obtain a surprising lower bound
for a function with an efficient nondeterministic protocol: the Set-Disjointness func-
tion [LS08, CA08]. The starting point is the work by Sherstov [She08a] who applies
the correlation method in a more general way for the 2-player model in order to over-
come the above difficulties. This generalized correlation method is then adapted to han-
dle more players (k + 2) in [LS08, CA08]. The high-level idea of the method is as
follows. Suppose that we want to prove that some specific function f does not have
efficient protocols. The idea is to come up with another function f ′ and a distribution
λ such that: (1) f and f ′ have constant correlation, say f and f ′ disagree on at most

1/10 mass of the inputs with respect to λ , and (2) f ′ has exponentially small (2−nΩ(1)
)

correlation with efficient protocols with respect to λ . The combination of (1) and (2)

easily implies that f also has correlation at most 1/10 + 2−nΩ(1)
< 1 with efficient pro-

tocols, which gives the desired lower bound for f . This method is useful because for
f ′ we can use the correlation method, and on the other hand the correlation of f with
efficient protocols is not shown to be exponentially small, only bounded away from 1
by a constant. Thus it is conceivable that f has efficient nondeterministic protocols, and
in fact this is the case in [LS08, CA08] and in this work.

Although a framework similar to the above is already proposed in previous papers,
e.g. [Raz87, Raz03], it is the work by Sherstov [She08a] that finds a way to suc-
cessfully apply it to functions f with efficient nondeterministic protocols. For this,
[She08a] uses two main ideas, generalized to apply to the number-on-forehead set-
ting in [Cha07, LS08, CA08]. The first is to consider a special class of functions
f := Lift(OR,φ) with efficient nondeterministic protocols. These are obtained by com-
bining the “base” function OR on m bits with a “selection” function φ as described next.
It is convenient to think of f = Lift(OR,φ) as a function on (k + 1)n bits distributed
among k + 1 players as follows: Player 0 receives an n-bit vector x, while Player i, for
1 ≤ i≤ k, gets an n-bit vector yi. The selection function φ takes as input y1, . . . ,yk and
outputs an m-bit subset of {1, . . . ,n}. We view φ as selecting m bits of Player 0’s input
x, denoted x|φ(y1, . . . ,yk). Lift(OR,φ) outputs the value of OR on those m bits of x:

Lift(OR,φ)(x,y1, . . . ,yk) := OR(x|φ(y1, . . . ,yk)).

The second idea is to apply to such a function f := Lift(OR,φ) a certain orthogo-
nality principle to produce a function f ′ that satisfies the points (1) and (2) above. The

374 M. David, T. Pitassi, and E. Viola

structure of f = Lift(OR,φ)(x,y1, . . . ,yk) is crucially exploited to argue that f ′ satisfies
(2), and it is here that previous works require k < loglogn [Cha07, LS08, CA08].

So far we have rephrased previous arguments. We now discuss the main new ideas
in this paper.

Ideas for the proof of Theorem 1. To prove Theorem 1 we start by noting that regardless
of what function φ is chosen, Lift(OR,φ) has an efficient nondeterministic protocol:
Player 0 simply guesses an index j that is one of the indices chosen by φ (she can do
so because she knows the input to φ) and then any of the other players can easily verify
whether or not x j is 1 in that position. In previous work [LS08, CA08], φ is the bitwise
AND function, and this makes Lift(OR,φ) the Set-Disjointness function. By contrast,
in this work we choose the function φ uniformly at random and we argue that, for almost
all φ , Lift(OR,φ) does not have efficient randomized protocols, whenever k is at most
δ logn for a fixed δ < 1.

The above argument gives a non-explicit separation, due to the random choice of
φ . To make it explicit, we derandomize the choice of φ . Specifically, we note that the
above argument goes through as long as φ is 2k-wise independent, i.e. as long as φ
comes from a distribution such that for every 2k fixed inputs ȳ1, . . . , ȳ2k ∈ ({0,1}n)k the

values φ(ȳ1), . . . ,φ(ȳ2k
) are uniform and independent (over the choice of φ). Known

constructions of such distributions [ABI86, CG89] only require about n · 2k = nO(1)

random bits, which can be given as part of the input. Two things should perhaps be
stressed. The first is that giving a description of φ as part of the input does not affect the
lower bound in the previous paragraph which turns out to hold even against protocols
that depend on φ . The second is that, actually, using 2k-wise independence seems to add
the constraint k< 1/2(logn); to achieve k = δ logn for every δ < 1 we use a distribution
on φ that is almost 2k-wise independent [NN93].

Ideas for the proof of Theorem 2. To prove Theorem 2 we show how to implement the
function given by Theorem 1 by small constant-depth circuits when k is A loglogn for
a fixed, possibly large, constant A. In light of the above discussion, this only requires
computing a 2k-wise independent function by small constant-depth circuits, a problem
which is studied in [GV04, HV06]. Specifically, dividing up φ in blocks it turns out that
it is enough to compute 2k-wise independent functions g : {0,1}t → {0,1}t where t is
also about 2k. When k = A log logn, g is a (2k = logA n)-wise independent function on
logA n bits, and [HV06] shows how to compute it with circuits of size nB and depth B
where B depends on A only – and this dependence of B on A is tight even for almost
2-wise independence. This gives Theorem 2. Finally, we note that [HV06] gives explicit
(a.k.a. uniform) circuits, and that we are not aware of an alternative to [HV06] even for
non-explicit circuits.

Organization. The organization of the paper is as follows. In Section 2 we give neces-
sary definitions and background. We present the proof of our main result Theorem 1 in
two stages. First, in Section 3 we present a non-explicit separation obtained by select-
ing φ at random. Then, in Section 4 we derandomize the choice of φ in order to give
an explicit separation and prove Theorem 1. Finally, in Section 5 we prove our results
about constant-depth circuits, Theorem 2.

Separations between Nondeterministic and Randomized Multiparty Communication 375

2 Preliminaries

Correlation. Let f ,g : X → R be two functions, and let μ be a distribution on X . We
define the correlation between f and g under μ to be Corμ(f ,g) := Ex∼μ [f (x)g(x)].
Let G be a class of functions g : X → R (e.g. efficient communication protocols). We
define the correlation between f and G under μ to be Corμ(f ,G) := maxg∈G Corμ(f ,g).
Note that, whenever G is closed under complements, which will always be the case in
this paper, this correlation is non-negative. Whenever we omit to mention a specific
distribution when computing the correlation, an expected value or a probability, it is to
be assumed that we are referring to the uniform distribution, which we denote by U.

Communication Complexity. In the number-on-forehead (NOF) multiparty communi-
cation complexity model [CFL83], k players are trying to collaborate to compute a func-
tion f : X1× . . .×Xk→{−1,1}. For each i, player i knows the values of all of the inputs
(x1, . . . ,xk)∈X1× . . .×Xk except for xi (which conceptually is thought of as being placed
on Player i’s forehead). The players exchange bits according to an agreed-upon protocol,
by writing them on a public blackboard. A protocol specifies what each player writes as
a function of the blackboard content and the inputs seen by that player, and whether the
protocol is over, in which case the last bit written is taken as the output of the protocol.
The cost of a protocol is the maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A randomized protocol
is a distribution on deterministic protocols such that for every input a protocol selected
at random from the distribution errs with probability at most 1/3. In a nondeterministic
protocol, an initial guess string is written on the blackboard at the beginning of the
protocol (and counted towards communication) and the players are trying to verify that
the output of the function is −1 (representing true) in the usual sense: There exists
a guess string where the output of the protocol is −1 if and only if the output of the
function is −1. The communication complexity of a function f under one of the above
types of protocols is the minimum cost of a protocol of that type computing f . In line
with [BFS86], a k-player protocol computing f : ({0,1}n)k→{−1,1} is considered to
be efficient if its cost is at most poly-logarithmic, logO(1) n. Equipped with the notion of
efficiency, one has the NOF communication complexity classes BPPcc

k and NPcc
k that

are analogues of the corresponding complexity classes.

Definition 1. We denote by Π k,c the class of all deterministic k-player NOF communi-
cation protocols of cost at most c.

The following immediate fact allows us to derive lower bounds on the randomized
communication complexity of f from upper bounds on the correlation between f and
the class Π k,c [KN97, Theorem 3.20].

Fact 3. If there exists a distribution μ such that Corμ(f ,Π k,c) ≤ 1/3 then every ran-
domized protocol (with error 1/3) for f must communicate at least c bits.

In order to obtain upper bounds on the correlation between f and the class Π k,c, we use
the following result, which is also standard. Historically, it was first proved by Babai,
Nisan and Szegedy [BNS92] using the notion of discrepancy of a function. It has since
been rewritten in many ways [CT93, Raz00, FG05, VW07]. The formulation we use

376 M. David, T. Pitassi, and E. Viola

appears in [VW07], except that in [VW07] one also takes two copies of x; it is easy to
modify the proof in [VW07] to obtain the following lemma.

Lemma 1 (The standard BNS argument). Let f : X ×Y1×·· ·×Yk→R. Then,

CorU(f ,Π k+1,c)2k ≤ 2c·2k ·E (y0
1,...,y

0
k)∈Y1×···×Yk

(y1
1,...,y

1
k)∈Y1×···×Yk

⎡

⎣

∣
∣
∣
∣
∣
∣
Ex∈X

⎡

⎣ ∏
u∈{0,1}k

f (x,yu1
1 , . . . ,y

uk
k)

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦ .

We later write y for (y1, . . . ,yk).
Degree. The ε-approximate degree of f is the smallest d for which there exists a multi-
variate real-valued polynomial g of degree d such that maxx | f (x)−g(x)| ≤ ε . We will
use the following result of Nisan and Szegedy; see [Pat92] for a result that applies to
more functions.

Lemma 2 ([NS94]). There exists a constant γ > 0 such that the (5/6)-approximate
degree of the OR function on m bits is at least γ ·

√
m.

The following key result shows that if a function f has ε-approximate degree d then
there is another function g and a distribution μ such that g is orthogonal to degree-d
polynomials and g has correlation ε with f . Sherstov [She08a] gives references in the
mathematics literature and points out a short proof by duality.

Lemma 3 (Orthogonality Lemma). If f : {0,1}m → {−1,1} is a function with ε-
approximate degree d, there exist a function g : {0,1}m→{−1,1} and a distribution μ
on {0,1}m such that:

(i) Corμ(g, f)≥ ε; and
(ii) ∀T ⊆ [m] with |T | ≤ d and ∀h : {0,1}|T | → R, Ex∼μ [g(x) ·h(x|T)] = 0,

where x|T denotes the m bits of x indexed by T .

3 Non-explicit Separation

In this section we prove a non-explicit separation between nondeterministic and ran-
domized protocols. As mentioned in the introduction, we restrict our attention to an-
alyzing the communication complexity of certain functions constructed from a base
function f : {0,1}m→ {−1,1}, and a selection function φ . The base function we will
work with is the OR function, which takes on the value -1 if and only if any of its input
bits is 1.

We now give the definition of the function we prove the lower bound for, and then
the statement of the lower bound.

Definition 2 (Lift). Let φ be a function that takes as input k strings y1, . . . ,yk and out-
puts an m-element subset of [n]. Let f be a function on m bits. We construct a lifted
function Lift(f ,φ) as follows. On input (x ∈ {0,1}n,y1, . . . ,yk), Lift(f ,φ) evaluates φ
on the latter k inputs to select a set of m bits in x and returns the value of f on those m
bits. Formally,

Lift(f ,φ)(x,y1, . . . ,yk) := f (x|φ(y1, . . . ,yk)),

Separations between Nondeterministic and Randomized Multiparty Communication 377

where for a set S = {i1, . . . , im} ⊆ [n], x|S denotes the substring xi1 · · ·xim of x indexed
by the elements in S, where i1 < i2 < .. . < im.

The inputs to Lift(f ,φ) are partitioned among k + 1 players as follows: Player 0 is
given x and, for all 1≤ i≤ k, Player i is given yi.

The following is the main theorem proved in this section.

Theorem 4. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large
n, for k = δ · logn, and for m = nε , the following holds. There is a distribution λ such
that if we choose a random selection function φ : ({0,1}n)k →

([n]
m

)
, we have:

Eφ [Corλ (Lift(OR,φ),Π k+1,nα
)]≤ 1/3.

3.1 Overview of the Proof

We obtain our lower bound on the randomized communication complexity of the func-
tion Lift(OR,φ) using an analysis that follows [CA08]. In their paper, Chattopadhyay
and Ada analyze the Set-Disjointness function, and for that reason, their selection func-
tion φ must be the AND function. In our case, we allow φ to be a random function.
While our results no longer apply to Set-Disjointness, we still obtain a separation be-
tween randomized and nondeterministic communication (BPPcc

k and NPcc
k) because, no

matter what selection function is used, Lift(OR,φ) always has an efficient nondeter-
ministic protocol.

At a more technical level, the results of [CA08] require k < loglogn because of the
relationship between n (the size of player 0’s input) and m (the number of bits the base
function OR gets applied to.) For their analysis to go through, they need n> 22k ·mO(1).
In our case, n = 2k ·mO(1) is sufficient, and this allows our results to be non-trivial for
k ≤ δ logn for any δ < 1.

As mentioned earlier, we will start with the base function OR on m input bits, m =
nε & n. We lift the base function OR in order to obtain the lifted function Lift(OR,φ).
Recall that Lift(OR,φ) is a function on (k + 1)n inputs with small nondeterministic
complexity, and is obtained by applying the base function (in this case the OR func-
tion) to the selected bits of Player 0’s input, x. We want to prove that for a random φ ,
Lift(OR,φ) has high randomized communication complexity.

We start with a result of Nisan and Szegedy [NS94] who prove a lower bound on
the approximate degree of the OR function. By Lemma 3 this implies that there exists
a function g (also on m bits) and a distribution μ such that the functions g and OR are
highly correlated over μ and, furthermore, g is orthogonal to low-degree polynomials.
Now we lift the function g in order to get the function Lift(g,φ), and we define λ to be a
distribution over all (k + 1)n-bit inputs that chooses the yi’s uniformly at random and x
also uniformly at random except on the bits indexed by φ(y1, . . . ,yk) which are selected
according to μ . Since g and OR are highly correlated with respect to μ , it is not hard
to see that the lifted functions Lift(f ,φ) and Lift(g,φ)are also highly correlated with
respect to λ . Therefore, to prove that Lift(f ,φ) has low correlation with c-bit protocols
it suffices to prove that Lift(g,φ) has. To prove this, we use the correlation method.
This involves bounding the average value of Lift(g,φ) on certain k-dimensional cubes

378 M. David, T. Pitassi, and E. Viola

(cf. Lemma 1). For this, we need to analyze the distribution of the 2k sets that arise
from evaluating φ on the 2k points of the cube. Specifically, we are interested in how
much these 2k sets are “spread out,” as measured by the size of their union. If the
sets are not spread out, we use in Lemma 4 the fact that g is orthogonal to low-degree
polynomials to bound the average value of Lift(g,φ) on the cubes. This step is similar to
[She07, Cha07, LS08, CA08]. The main novelty in our analysis is that since we choose
φ at random, we can prove good upper bounds (Lemma 6) on the probability that the
sets are spread out.

3.2 Proof of Theorem 4

Let m := nε for a small ε > 0 to be determined later. Combining Lemma 2 and 3, we
see that there exists a function g and a distribution μ such that:

(i) Corμ(g,OR)≥ 5/6; and
(ii) ∀T ⊆ [m], |T | ≤ γ

√
m and ∀h : {0,1}|T | → R, Ex∼μ [g(x)h(x|T)] = 0.

Define the distribution λ on {0,1}(k+1)n as follows. For x,y1, . . . ,yk ∈ {0,1}n, let

λ (x,y1, . . . ,yk) :=
μ(x|φ(y1, . . . ,yk))

2(k+1)n−m
,

in words we select y1, . . . ,yk uniformly at random and then we select the bits of x in-
dexed by φ(y1, . . . ,yk) according to μ and the others uniformly.

It can be easily verified that Corλ (Lift(g,φ),Lift(OR,φ)) = Corμ(g,OR) ≥ 5/6.
Consequently, for every φ and c,

Corλ (Lift(OR,φ),Π c)≤ Corλ (Lift(g,φ),Π c)+ 2 ·Pr
λ

[Lift(OR,φ)
= Lift(g,φ)]

≤ Corλ (Lift(g,φ),Π c)+ 1/6, (1)

where in the last inequality we use that Corλ (Lift(OR,φ),Lift(g,φ)) = Eλ [Lift(OR,φ) ·
Lift(g,φ)] ≥ 5/6. Therefore, we only have to upper bound Corλ (Lift(g,φ),Π c), and
this is addressed next. We have, by the definition of λ and then Lemma 1:

Corλ (Lift(g,φ),Π c)2k
= 2m·2k

CorU(μ(x|φ(y1, . . . ,yk))g(x|φ(y1, . . . ,yk),Π c)2k

≤ 2(c+m)2k
Ey0,y1

⎡

⎣

∣
∣
∣
∣
∣
∣
Ex

⎡

⎣ ∏
u∈{0,1}k

μ(x|φ(yu1
1 , . . . ,y

uk
k))g(x|φ(yu1

1 , . . . ,y
uk
k))

⎤

⎦

∣
∣
∣
∣
∣
∣

⎤

⎦ , (2)

for every φ .
Our analysis makes extensive use of the following notation.

Definition 3. Let S = (S1, . . . ,Sz) be a multiset of m-element subsets of [n]. Let the
range of S, denoted by

⋃
S, be the set of indices from [n] that appear in at least one set

in S. Let the boundary of S, denoted by ∂S, be the set of indices from [n] that appear in
exactly one set in the collection S.

For u ∈ {0,1}k, define Su = Su(y0,y1,φ) = φ(yu1
1 , . . . ,y

uk
k). Let S = S(y0,y1,φ) be

the multiset (Su : u ∈ {0,1}k). We define the number of conflicts in S to be q(S) :=
m ·2k−|⋃S|.

Separations between Nondeterministic and Randomized Multiparty Communication 379

Intuitively, |⋃S|measures the range of S, while m2k is the maximum possible value for
this range. We use the following three lemmas to complete our proof. The first Lemma 4
deals with the case where the multiset S has few conflicts. In this case, we argue that
one of the sets Su ∈ S has a very small intersection with the rest of the other sets, which
allows us to apply Property (ii) of g and μ to obtain the stated bound. A variant of
Lemma 4 appears in [CA08].

Lemma 4. For every y0,y1 and φ , if q(S(y0,y1,φ))< γ ·√m ·2k/2, then

Ex

⎡

⎣ ∏
u∈{0,1}k

μ(x|Su(y0,y1,φ))g(x|Su(y0,y1,φ))

⎤

⎦= 0.

Lemma 5 gives a bound in terms of the number of conflicts in S which only uses the
fact that μ is a probability distribution. A slightly weaker version of this lemma ap-
peared originally in [CA08]. Independently of our work, Chattopadhyay and Ada have
subsequently also derived the stronger statement we give below.

Lemma 5. For every y0,y1 and φ :

Ex

⎡

⎣ ∏
u∈{0,1}k

μ(x|Su(y0,y1,φ))

⎤

⎦≤ 2q(S(y0,y1,φ))

2m·2k .

Lemma 6 is the key place where we exploit the fact that φ is chosen at random to obtain
an upper bound on the probability of having a given number of conflicts in S.

Lemma 6. For every q> 0 and uniformly chosen y0,y1,φ :

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q]≤
(

m3 ·22k

q ·n

)q

.

We defer the proofs of Lemmas 4, 5 and 6 to the Appendix. We now complete the
proof of our Theorem 4. Using Equation 2, Lemmas 4, 5 and 6, along with standard
derivations that we defer to the Appendix, we obtain that, for a uniformly chosen φ ,

Eφ [Corλ (Lift(g,φ),Π c)]2
k
≤ 2c·2k · ∑

q≥γ
√

m2k/2

(
2 ·m3 ·22k

q ·n

)q

.

Furthermore, using q ≥ γ
√

m2k/2, k = δ logn where δ < 1, and taking m = nε for a
sufficiently small ε , we get,

Eφ [Corλ (Lift(g,φ),Π c)]2
k
≤ 2c·2k · ∑

q≥γ
√

m2k/2

(
1
2

)q

≤ 2c·2k+1−γ
√

m2k/2 ≤ 22k(c−nΩ(1)).

Therefore, when c is a sufficiently small power of n we have Eφ [Corλ (Lift(g,φ),Π c)]≤
1/6. Combining this with Equation (1), completes the proof of Theorem 4.

380 M. David, T. Pitassi, and E. Viola

4 Explicit Separation

In this section we prove our main Theorem 1. We proceed as follows. First, we prove
a derandomized version of Theorem 4 from the previous section. This derandomized
version is such that the distribution on φ can be generated using only n random bits
r. Then, we observe how including the random bits r as part of the input gives an
explicit function for the separation, thus proving Theorem 1. As we mentioned in the
introduction, the idea is that the only property of the distribution over φ that the previous
construction was using is that such a distribution is 2k-wise independent. That is, the
evaluations of φ at any 2k points, fixed and distinct, are jointly uniformly distributed,
over the choice of φ (cf. the proof of Lemma 6). The most straightforward way to obtain
explicit constructions from our previous results is thus to replace a random φ with a 2k-
wise independent distribution, and then include a description of φ as part of the input.
However, this raises some technicalities, one being that the range of our φ was a size-m
subset of [n], and it is not immediate how to give constructions with such a range. We
find it more simple to use a slightly different block-wise approach as we describe next.

We think of our universe of n bits as divided in m := nε blocks of b := n1−ε bits each,
where as before ε is a sufficiently small constant. We consider functions φ(y1, . . . ,yk)
whose output is a subset of [n] that contains exactly one bit per block. That is, φ(y1, . . . ,
yk) ∈ [b]m. The building block of our distribution is the following result about almost
t-wise independent functions. We defer its proof to the Appendix. We say that two
distributions X and Y on the same support are ε-close in statistical distance if for every
event E we have |Pr[E(X)]−Pr[E(Y)]| ≤ ε .

Lemma 7 (almost t-wise independence; [NN93]). There is a universal constant a> 0
such that for every t,b (where b is a power of 2) there is a polynomial-time computable
map

h : {0,1}t×{0,1}a·t·logb→ [b]

such that for every t distinct x1, . . . ,xt ∈ {0,1}t , the distribution (h(x1;r), . . . ,h(xt ;r)) ∈
[b]t , over the choice of r ∈ {0,1}a·t·logb, is (1/b)t -close in statistical distance to the
uniform distribution over [b]t .

We now define our derandomized distribution on φ . This is the concatenation of m of
the above functions using independent random bits, a function per block. Specifically,
for each of the m blocks of b bits, we are going to use the above function h where
t := k ·2k · (1+ logb). Jumping ahead, the large input length t is also chosen so that the
probability (over the choice of the y’s) that we do not obtain 2k distinct inputs drops
down exponentially with 2k, which is needed in the analysis. On input y1, . . . ,yk and
randomness r, we break up each yi in m blocks and also r in m blocks. The value of φ
in the j-th block depends only on the j-th blocks of the yi’s and on the j-th block of r.

Definition 4 (Derandomized distribution on φ , given parameters n, m = nε , b =
n1−ε , k = δ · logn; and a universal constant from Lemma 7). Let l := 2k · (1+ logb),
t := l · k. We define

φ : {0,1}m·t×{0,1}m·a·t·logb→ [b]m

as follows. On input (y1, . . . ,yk) ∈ {0,1}m·t and randomness r ∈ {0,1}m·a·t·logb, think of
each yi ∈ {0,1}m·l as divided in m blocks of l bits each, i.e. (yi = (yi)1 ◦ · · ·◦ (yi)m), and

Separations between Nondeterministic and Randomized Multiparty Communication 381

r as divided in m blocks of a · t · logb bits each, i.e. (r = r1 ◦ · · · ◦ rm). The j-th output of
φ in [b] is then

φ(y1, . . . ,yk;r) j := h((y1) j, . . . ,(yk) j
︸ ︷︷ ︸

l·k=t bits

; r j
︸︷︷︸

a·t·logb bits

) ∈ [b].

The distribution on φ is obtained by selecting a uniform r ∈ {0,1}m·a·t·logb and then
considering the map (y1, . . . ,yk)→ φ(y1, . . . ,yk;r) ∈ [b]m.

Note that, in the above definition, the input length of each yi is m · l which up to poly-
logarithmic factors is nε ·2k = n1−Ω(1), for a sufficiently small ε depending on δ .

Theorem 5. For every δ < 1 there are constants ε,α > 0 such that for sufficiently large
n, k := δ · logn, and m = nε , the following holds.

There is a distribution λ such that if φ : {0,1}m·t → [b]m is distributed according to
Definition 4 we have:

Eφ [Corλ (Lift(OR,φ),Π k+1,nα
)]≤ 1/3.

Proof. The proof follows very closely that of Theorem 4. A minor difference is that
now the yi’s are over m · l bits as opposed to n in Theorem 4, but the definition of the
distribution λ in Theorem 4 immediately translates to the new setting – λ just selects
the yi’s at random. The only other place where the proofs differ is in Lemma 6, which is
where the properties of φ are used. Thus we only need to verify the following Lemma.

Lemma 8. For every q> 0 and φ distributed as in Definition (4):

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q]≤
(

m2 ·22k

q ·b

)q

=
(

m3 ·22k

q ·n

)q

.

We defer its proof to the Appendix, and we prove the main Theorem of this work.

Theorem 1 (Main Theorem; NPcc
δ logn
⊂ BPPcc

δ logn). (Restated.) For every fixed δ <
1, sufficiently large n and k = δ · logn, there is an explicit function f : ({0,1}n)k→{0,1}
such that: f can be computed by k-player nondeterministic protocols communicating
O(logn) bits, but f cannot be computed by k-player randomized protocols communicat-
ing no(1) bits.

Proof. Let f (x,(y1,r),y2, . . . ,yk) := OR(x|φ(y1, . . . ,yk;r)), where φ is as in Definition
4. We partition an input (x,(y1,r),y2, . . . ,yk) as follows: Player 0 gets x, Player 1 gets
the pair (y1,r), where r is to be thought of as selecting which φ to use, and player
i> 1 gets yi. Let p be the distribution obtained by choosing r uniformly at random, and
independently (x,y1, . . . ,yk) according to the distribution λ in Theorem 5.

It is not hard to see that f has a nondeterministic protocol communicating O(logn)
bits: We guess a bit position i and then the player that sees (y1,r),y2, . . . ,yk verifies that
the position i belongs to φ(y1, . . . ,yk;r), and another player verifies that xi = 1.

382 M. David, T. Pitassi, and E. Viola

To see the second item observe that:

Corp(f ,Π k+1,nα
) = max

π∈Π k+1,nα
Er[E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]]

≤ Er[max
π∈Π k+1,nα

E(x,y)∼λ [OR(x|φ(y;r)) ·π(x,y,r)]]≤ 1/3,

where the last inequality follows by Theorem 5. Again, the claim about randomized
communication follows by standard techniques, cf. Fact 3.

To conclude, we need to verify that we can afford to give r as part of the input
without affecting the bounds. Specifically, we need to verify that |(y1,r)| ≤ n. Indeed,
|(y1,r)| ≤ m · l + O(m · t · logb) = m ·2k(1 + logb)+ O(m ·2k(1 + logb)k · logb) which
is less than n when k = δ logn for a fixed δ < 1, m = nε for a sufficiently small ε , and
n is sufficiently large (recall b ·m = n, and in particular b≤ n.)

As is apparent from the proofs, and similarly to previous works [She08b], our lower
bound Theorems 4 and 5 hold more generally for any function of the form Lift(f ,φ)
for an arbitrary base function f . The communication bound is then expressed in terms
of the approximate degree of f . In our paper, we focused on f = OR for concreteness.
However, also note that the choice of f = OR is essential in Theorem 1 in order for
Lift(f ,φ) to have a cheap nondeterministic protocol.

5 Communication Bounds for Constant-Depth Circuits

In this section we point out how Theorem 5 from the previous section gives us some new
communication bounds for functions computable by constant-depth circuits. Specifi-
cally, the next theorem, which was also stated in the introduction, gives communication
bounds for up to k = A · loglogn players for functions computable by constant-depth cir-
cuits (whose parameters depend on A), whereas previous results [Cha07, LS08, CA08]
require k< log logn.

Theorem 2 (Someconstant-depthcircuitsrequirehighcommunication). (Restated.)
For every constant A > 1 there is a constant B such that for sufficiently large n and
k := A loglogn there is a function f : ({0,1}n)k→ {0,1} which satisfies the following:
f can be computed by circuits of size nB and depth B, but f cannot be computed by
k-player randomized protocols communicating no(1) bits.

Proof. Use the function from the proof of Theorem 1. This only requires computing
(2k = logA n)-wise independent functions on logO(A) n bits. (As mentioned before, al-
though Theorem 5 uses the notion of almost t-wise independence, for small values of
k, such as those of interest in the current proof, we can afford to use exact t-wise in-
dependence, i.e. set the distance from uniform distribution to 0). Such functions can be
computed by circuits of size nB and depth B, for a constant B that depends on A only.
To see this, one can use the standard constructions based on arithmetic over finite fields
[CG89, ABI86] and then the results from [HV06, Corollary 6]. Equivalently, “scale
down” [HV06, Theorem 14] as described in [HV06, Section 3].

Separations between Nondeterministic and Randomized Multiparty Communication 383

It is not clear to us how to prove a similar result for k = ω(loglogn). This is because our
approach would require computing almost (2k = logω(1) n)-wise independent functions
on logω(1) n bits by nO(1)-size circuits of constant depth, which cannot be done (even
for almost 2-wise independence). The fact that this cannot be done follows from the
results in [MNT90] or known results on the noise sensitivity of constant-depth circuits
[LMN93, Bop97].

We point out that Theorem 2 can be strengthened to give a function that has corre-

lation 2−nΩ(1)
with protocols communicating no(1) bits. This can be achieved using the

Minsky-Papert function instead of OR (cf. [She07, Cha07]).
Finally, Troy Lee (personal communication, May 2008) has pointed out to us that the

analogous of our Theorem 2 for deterministic protocols can be easily obtained from the
known lower bound for generalized inner product (GIP) [BNS92]. This is because it is
not hard to see that for every constant c there is a circuit of depth B = B(c) and size nB

that has correlation at least exp(−n/ logc n) with GIP – just compute the parity in GIP
by brute-force on blocks of size logc n – but on the other hand low-communication k-
party protocols have correlation at most exp(−Ω(n/4k)) with GIP [BNS92]. However,
this idea does not seem to give a bound for randomized protocols or a correlation bound,
whereas our results do.

Acknowledgements. We thank Sasha Sherstov and Troy Lee for helpful comments on
the write-up. Matei David and Toniann Pitassi gratefully acknowledge Arkadev Chat-
topadhyay and Anil Ada for several very insightful conversations. Emanuele Viola is
especially grateful to Troy Lee for many stimulating conversations on communication
complexity.

References

[ABI86] Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maxi-
mal independent set problem. Journal of Algorithms 7, 567–583 (1986)

[BDPW07] Beame, P., David, M., Pitassi, T., Woelfel, P.: Separating deterministic from nondet,
nof multiparty communication complexity. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 134–145. Springer, Heidel-
berg (2007)

[BFS86] Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory (preliminary version). In: FOCS, pp. 337–347. IEEE, Los Alamitos (1986)

[BNS92] Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. System Sci. 45(2), 204–232
(1992)

[Bop97] Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inform. Process.
Lett. 63(5), 257–261 (1997)

[BPS07] Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász–schrijver systems
and beyond follow from multiparty communication complexity. SIAM J. Com-
put. 37(3), 845–869 (2007)

[CA08] Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness.
ECCC, Technical Report TR08-002 (2008)

[CFL83] Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: STOC (1983)
[CG89] Chor, B., Goldreich, O.: On the power of two-point based sampling. Journal of

Complexity 5(1), 96–106 (1989)

384 M. David, T. Pitassi, and E. Viola

[Cha07] Chattopadhyay, A.: Discrepancy and the power of bottom fan-in in depth-three
circuits. In: FOCS, October 2007, pp. 449–458. IEEE, Los Alamitos (2007)

[CT93] Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness.
SIAM J. Discrete Math. 6(1), 110–123 (1993)

[FG05] Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communica-
tion complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1163–1175. Springer, Heidelberg
(2005)

[GV04] Gutfreund, D., Viola, E.: Fooling parity tests with parity gates. In: Jansen, K.,
Khanna, S., Rolim, J., Ron, D. (eds.) RANDOM 2004. LNCS, vol. 3122, pp. 381–
392. Springer, Heidelberg (2004)

[HG91] Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Comput.
Complexity 1(2), 113–129 (1991)

[HV06] Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields of char-
acteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 672–683. Springer, Heidelberg (2006)

[KN97] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, Cambridge (1997)

[LMN93] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and
learnability. J. Assoc. Comput. Mach. 40(3), 607–620 (1993)

[LS08] Lee, T., Shraibman, A.: Disjointness is hard in the multi-party number on the fore-
head model. In: CCC. IEEE, Los Alamitos (2008)

[MNT90] Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: STOC, pp. 235–243. ACM Press, New York (1990)

[NN93] Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. SIAM J. Comput. 22(4), 838–856 (1993)

[NS94] Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials.
Computational Complexity 4, 301–313 (1994)

[NW93] Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM
J. Comput. 22(1), 211–219 (1993)

[Pat92] Paturi, R.: On the degree of polynomials that approximate symmetric boolean func-
tions (preliminary version). In: STOC, pp. 468–474. ACM, New York (1992)

[Raz87] Razborov, A.A.: Lower bounds on the dimension of schemes of bounded depth
in a complete basis containing the logical addition function. Mat. Zametki 41(4),
598–607, 623 (1987)

[Raz00] Raz, R.: The BNS-Chung criterion for multi-party communication complexity.
Comput. Complexity 9(2), 113–122 (2000)

[Raz03] Razborov, A.: Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics 67(1), 145–159 (2003)

[RW93] Razborov, A., Wigderson, A.: nΩ(logn) lower bounds on the size of depth-3 thresh-
old circuits with AND gates at the bottom. Inform. Process. Lett. 45(6), 303–307
(1993)

[She07] Sherstov, A.: Separating AC0 from depth-2 majority circuits. In: STOC 2007: Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing (2007)

[She08a] Sherstov, A.: The pattern matrix method for lower bounds on quantum communi-
cation. In: STOC (2008)

[She08b] Sherstov, A.A.: Communication lower bounds using dual polynomials. Electronic
Colloquium on Computational Complexity, Technical Report TR08-057 (2008)

[VW07] Viola, E., Wigderson, A.: Norms, xor lemmas, and lower bounds for GF(2) poly-
nomials and multiparty protocols. In: CCC. IEEE, Los Alamitos (2007); Theory of
Computing (to appear)

Quantum and Randomized Lower Bounds for

Local Search on Vertex-Transitive Graphs

Hang Dinh and Alexander Russell

Department of Computer Science & Engineering
University of Connecticut
Storrs, CT 06269, USA

{hangdt,acr}@engr.uconn.edu

Abstract. We study the problem of local search on a graph. Given a
real-valued black-box function f on the graph’s vertices, this is the prob-
lem of determining a local minimum of f—a vertex v for which f(v) is
no more than f evaluated at any of v’s neighbors. In 1983, Aldous gave
the first strong lower bounds for the problem, showing that any random-
ized algorithm requires Ω(2n/2−o(1)) queries to determine a local minima
on the n-dimensional hypercube. The next major step forward was not
until 2004 when Aaronson, introducing a new method for query com-
plexity bounds, both strengthened this lower bound to Ω(2n/2/n2) and
gave an analogous lower bound on the quantum query complexity. While
these bounds are very strong, they are known only for narrow families of
graphs (hypercubes and grids). We show how to generalize Aaronson’s
techniques in order to give randomized (and quantum) lower bounds on
the query complexity of local search for the family of vertex-transitive
graphs. In particular, we show that for any vertex-transitive graph G of
N vertices and diameter d, the randomized and quantum query complex-

ities for local search on G are Ω
� √

N
d log N

�
and Ω

�
4√

N√
d log N

�
, respectively.

1 Introduction

The local search problem is that of determining a local minimum of a function
defined on the vertices of a graph. Specifically, given a real-valued black-box
function f on the vertices of a graph, this is the problem of determining a
vertex v at which f(v) is no more than f evaluated at any of v’s neighbors.
The problem provides an abstract framework for studying local search heuristics
that have been widely applied in combinatorial optimization, heuristics that
typically combine random selection with steepest descent. The performance of
these heuristic algorithms, as recognized in [1], “was generally considered to be
satisfactory, partly based on experience, partly based on a belief in some physical
or biological analogy, . . . ” Ideally, of course, we would evaluate practical results
in the context of crisp theoretical bounds on the complexity of these problems!
Moreover, as pointed out in [2], the complexity of the local search problem is also
central for understanding a series of complexity classes which are subclasses of

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 385–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 H. Dinh and A. Russell

the total function class TFNP, including PPP (Polynomial Pigeohole Principle),
PODN (Polynomial Odd-Degree Node), and PLS (Polynomial Local Search).

Local search has been the subject of a sizable body of theoretical work, in
which complexity is typically measured by query complexity: the total number
of queries made to the black-box function f in order to find a local minimum. The
first strong lower bounds were established in 1983 by Aldous [3], who showed
that 2n/2−o(n) queries are necessary, in general, in order for a randomized al-
gorithm to find a local minimum of a function on the hypercube {0, 1}n. His
proof constructs a rich collection of unimodal functions (that is, functions with
a unique minimum) using hitting times of random walks. Llewellyn et al. [6]
improved the bound for deterministic query complexity to Ω(2n/

√
n) using an

adversary argument characterized by vertex cuts.
With the advent of quantum computing, these black-box problems received

renewed interest [2, 11, 8, 9, 10]. Most notably, Aaronson [2] introduced a
query lower bound method tuned for such problems, the relational adversary
method. Though his principal motivation was, no doubt, to provide quantum
lower bounds for local search, his techniques felicitously demonstrated improved
bounds on randomized query complexity. In particular, he established a
Ω(2n/2n−2) lower bound for randomized local search on the Boolean hyper-
cube {0, 1}n and the first nontrivial lower bound of Ω

(
nd/2−1/(d logn)

)
for

randomized local search on a d-dimensional grid [n]d with d � 3.
These two lower bounds of Aaronson’s have been recently improved by Zhang

[11]: refining Aaronson’s framework, he established randomized query complexity
lower bounds of Θ(2n/2n1/2) on the hypercube and Θ(nd/2) on the grid [n]d,
d � 4. Additionally, Zhang’s method can be applied to certain classes of product
graphs, though it provides a rather complicated relationship between the lower
bound and the product decomposition.1 A remaining hurdle in this direct line
of research was to establish strong bounds for grids of small dimension. Sun and
Yao [9] have addressed this problem, proving that the quantum query complexity
is Ω

(
n1/2−c

)
for [n]2 and Ω(n1−c) for [n]3, for any fixed constant c > 0. Focusing

on general graphs, Santha and Szegedy [8] established quantum lower bounds
of Ω(logN) and Ω

(
8
√

s
δ/logN

)
for local search on connected N -vertex graphs

with maximal degree δ and separation number s.2 We remark that s/δ ≤ N and

1 Zhang [11]’s general lower bounds for a product graph Gw ×Gc involve the length L
of the longest self-avoiding path in the “clock” graph Gc, and parameters p(u, v, t)’s
of a regular random walk W on Gw, where p(u, v, t) is the probability that the
random walk W starting at u ends up at v after exactly t steps. In particular,

2 Santha and Szegedy define the separation number s(G) of a graph G =
(V, E) to be: s(G) = max

H⊂V
min

S⊂H,|H|/4≤|S|≤3|H|/4
|∂HS|, where ∂HS =

{v ∈ H \ S : ∃u ∈ S, (v, u) ∈ E} is the boundary of S in the subgraph of G restricted
to H .

he showed that RLS(Gw × Gc) = Ω

�
L

�L/2
t=1 maxu,v p(u,v,t)

�
and QLS(Gw × Gc) =

Ω

�
L

�L/2
t=1

√
maxu,v p(u,v,t)

�
.

Quantum and Randomized Lower Bounds 387

these bounds for general graphs are, naturally, much weaker than those obtained
for the highly structured families of graphs above.

In this article, we show off the flexibility of Aaronson’s framework by extending
it to arbitrary vertex-transitive graphs. Recall that a graph G = (V,E) is vertex-
transitive if the automorphism group of G acts transitively on the vertices: for
any pair of vertices x, y ∈ V , there is a graph automorphism φ : V → V for
which φ(x) = y. In particular, all Cayley graphs are vertex-transitive, so this
class of graphs contains the hypercubes of previous interest and the looped grids
(tori).

Our lower bounds depend only on the size and diameter of the graph:

Theorem 1. Let G be a connected, vertex-transitive graph with N vertices and
diameter d. Then

RLS(G) = Ω

(√
N

d logN

)

, and QLS(G) = Ω

(
4
√
N√

d logN

)

where RLS(G) and QLS(G) are the randomized and quantum query complexities
of local search on G, respectively.

Thus the vertex transitive graphs, compromising between the specific families of
graphs addressed by [2, 11] and the general results of Santha and Szegedy, still
provide enough structure to support strong lower bounds.

2 Definitions and Notation

As in [2, 11], we focus on the local search problem stated precisely as follows:
given a graph G = (V,E) and a black-box function f : V → R, find a local min-
imum of f on G, i.e. find a vertex v ∈ V such that f(v) ≤ f(w) for all neighbors
w of v. While the graph is known to the algorithm, the values of f may only
be accessed through an oracle. For an algorithm A that solves the local search
problem on G, let T (A, G) be the maximum number of queries made to the
black-box function by A before it returns a local minimum, this maximum taken
over all functions f on G. Given a graph G, the randomized query complexity
for Local Search on G is defined as minA T (A, G), where the minimum ranges
over all randomized algorithms A that output a local minimum with probability
at least 2/3. The quantum query complexity is defined similarly, except that
in the quantum case, T (A, G) is the maximum number of unitary query trans-
formations of the error-bounded quantum algorithm A. The randomized (resp.
quantum) query complexity for local search on G will be denoted by RLS(G)
(resp. QLS(G)).

As mentioned in the introduction, we focus on the vertex-transitive graphs,
those whose automorphism groups act transitively on their vertex sets. Per-
haps the most important subclass of the vertex-transitive graphs are the Cayley
graphs. Let G be a group (finite, in this article, and written multiplicatively)
and Γ a set of generators for G. The Cayley graph C(G,Γ) is the graph with

388 H. Dinh and A. Russell

vertex set G and edges E = {(g, gγ) | g ∈ G, γ ∈ Γ ∪ Γ−1}. Note that with this
definition for the edges, (a, b) ∈ E ⇔ (b, a) ∈ E even when G is nonabelian, and
we may consider the graph to be undirected.

If X is a sequence of vertices in a graph, we write Xi→j to denote the sub-
sequence of X from position i to position j (i ≤ j). If X = (x1, . . . , xt) is a
sequence of vertices in a Cayley graph and g is a group element, then we use gX
to denote the sequence (gx1, . . . , gxt). More generally, for any automorphism σ
of a vertex-transitive graph G and any sequence X = (x1, . . . , xt) of vertices in
G, we let σX denote the sequence (σ(x1), . . . , σ(xt)).

The distance between two vertices u, v of a graph G shall be denoted by
ΔG(u, v); when G is understood from context we abbreviate to Δ(u, v). The
statistical distance between two distributions D1 and D2 on the same set Ω is
defined as the distance in total variation:

‖D1 −D2‖t.v. = max
E⊂Ω

|D1(E)−D2(E)| = 1
2

∑

ω∈Ω

|D1(ω)−D2(ω)| .

We say that the distributionD1 is δ-close to distributionD2 if ‖D1−D2‖t.v. ≤ δ.

3 Generalizing Aaronson’s Snakes

Aaronson’s [2] application of the quantum and relational adversary methods to
local search problems involved certain families of walks on a graph he called
“snakes.” We begin by presenting Aaronson’s snake method, adjusted to suit
our generalization. Throughout this section, let G be a graph. A snake X of
length L is a sequence (x0, . . . , xL) of vertices in G such that each xi+1 is either
equal to xi or a neighbor of xi. The subsequence X0→j shall be referred to as
the j-length “head” of the snake X . Suppose Dx0,L is a distribution over snakes
of length L starting at x0, and X is a snake drawn from Dx0,L. In Aaronson’s
parlance, the snake X “flicks” its tail by choosing a position j uniformly at
random from the set {0, . . . , L− 1}, and then drawing a new snake Y from
Dx0,L conditioned on the event that Y0→j = X0→j , that is, that Y has the same
j-length head as X . In order to simplify the proof for vertex-transitive graphs
below, we consider a generalization in which a snake flicks its tail according to a
distribution DL, which may be nonuniform, on the set {0, . . . , L− 1}. We shall
relax, also, Aaronson’s original condition that, aside from adjacent repetition of
a vertex v, snakes be non-self-intersecting.

Let X = (x0, . . . , xL) be a snake. Define the function fX on G as follows: for
each vertex v of G,

fX(v) =

{
L−max {i : xi = v} if v ∈ X ,
L+Δ(x0, v) if v
∈ X .

In other words, fX(xL) = 0, and for any i < L, fX(xi) = L − i if xi
∈
{xi+1, . . . , xL}. Clearly fX has a unique local minimum at xL.

Quantum and Randomized Lower Bounds 389

Let X and Y be snakes of length L starting at x0. A vertex v is called a
disagreement between X and Y if v ∈ X ∩Y and fX(v)
= fY (v). We say X and
Y are consistent if there is no disagreement between X and Y . Observe that so
long as X and Y are consistent, fX(v)
= fY (v) ⇐⇒ setX(v)
= setY (v) for all
vertices v, where setX is the function on G defined as setX(v) = 1 if v ∈ X and
0 otherwise.

Fix a distribution Dx0,L for snakes of length L starting at x0 and a distrib-
ution DL on the set {0, . . . , L− 1}. With these in place, we let Prj,X [·] denote
the probability of an event over the distribution determined by independently
selecting j according to DL and X from Dx0,L.

We record Aaronson’s definition of good snakes, replacing the uniform distri-
bution on the set {0, . . . , L− 1} with the distribution DL, and requiring a good
snake’s endpoint to be different from those of most other snakes.

Definition 1. A snake X ∈ Dx0,L is ε-good w.r.t. distribution DL if it satisfies
the following:

1. X is 0.9-consistent:Prj,Y [X and Y are consistent, and xL
=yL|Y0→j=X0→j]≥
0.9 .

2. X is ε-hitting: For all v ∈ G, Prj,Y [v ∈ Yj+1→L | Y0→j = X0→j] ≤ ε .

Our lower bounds will depend on the following adaptation of Aaronson’s theorem
of [2]:

Theorem 2. Assume a snake X drawn from Dx0,L is ε-good w.r.t. DL with
probability at least 0.9. Then

RLS(G) = Ω(1/ε) and QLS(G) = Ω(
√

1/ε).

Proof. To begin, we reduce the local search problem to a decision problem. For
each snake X ∈ Dx0,L and a bit b ∈ {0, 1}, define the function gX,b on G as
follows: gX,b(v) = (fX(v),−1) for all vertices v
= xL, and gX,b(xL) = (0, b).
Then, an input of the decision problem for local search on G is an ordered
pair (X, gX,b), where X ∈ Dx0,L and b ∈ {0, 1} is an answer bit. However,
the “snake part” X in the input cannot be queried—it appears in the input as
a bookkeeping tool. Given such an input (X, gX,b), the decision problem is to
output the answer bit b. Observe that the randomized (resp. quantum) query
complexity of the decision problem is a lower bound for that of the original local
search problem. This incorporation of X into the input of the decision problem
induces a natural one-to-one correspondence between an input set of the same
answer bit and the set of snakes appearing in the input set. (Thanks to Scott
Aaronson for suggesting this convention to us!) In Aaronson’s original version,
since the input part X is omitted, the snakes must be non-self-intersecting in
order to obtain such a one-to-one correspondence. Santha and Szegedy [8] have
presented an alternate approach for eliminating self-intersecting snakes while
following Aaronson’s proof scheme, though their technique only applies to the
quantum case.

390 H. Dinh and A. Russell

The remaining part of the proof, which establishes lower bounds for the de-
cision problem using the rational and quantum adversary methods, is similar to
Aaronson’s proof with the exception of some technical details due to the adjust-
ments in the definition of good snakes. We have relegated the full proof to the
appendix.

4 Lower Bounds for Vertex-Transitive Graphs

For simplicity, we first apply the snake framework for Cayley graphs, and then
extend the approach for vertex-transitive graphs.

4.1 Lower Bounds for Cayley Graphs

Consider a Cayley graph C(G,Γ) of group G determined by a generating set
Γ . Our goal is to design a good snake distribution for C(G,Γ). Our snakes will
consist of a series of “chunks” so that the endpoint of each chunk looks almost
random given the preceding chunks. The locations at which a snake flicks its tail
will be chosen randomly from the locations of the chunks’ endpoints. Each chunk
is an “extended” shortest path connecting its endpoint with the endpoint of the
previous one. The relevant properties of these snakes depends on the length of
each chunk as well as the number of chunks in each snake. To determine these
parameters, we begin with the following definitions.

Let B(s) be the ball of radius s centered at the group identity, i.e., B(s) is
the set of vertices v for which Δ(1, v) ≤ s. We say that Cayley graph C(G,Γ) is
s-mixing if there is a distribution over the ball B(s) that is O

(
s/|G|3/2

)
-close

to the uniform distribution over G. Clearly, every Cayley graph of diameter d is
d-mixing.

Now we assume C(G,Γ) is s-mixing, and let Ds be a distribution over B(s) so
that the extension of Ds to be over G is δ-close to the uniform distribution over
G, where s ≤

√
|G| and δ = 0.1s/|G|3/2. For each group element g ∈ B(s), we

fix a shortest path (1, g1, . . . , gr) in C(G,Γ) from the group identity to g (here
r = Δ(1, g)). Then let S(g) denote the sequence (g1, g2, . . . , gs), where gi = g
for i ≥ r.

Fix � =
√
|G|/(200s) and let L = (�+1)s. We formally define our snake distrib-

ution Dx0,L for snakesX = (x0, . . . , xL) as follows. For any k ∈ {0, . . . , �}, choose
gk independently according to the distribution Ds, and let the kth “chunk”
(xsk+1, . . . , xsk+s) be identical to the sequence xskS(gk).

Proposition 1. A snake X drawn from Dx0,L δ-mixes by s steps in the sense
that for any k and any t ≥ s, xsk+t is δ-close to uniform over G given xsk.

We define distribution DL on {0, . . . , L− 1} as the uniform distribution on the
set {s, 2s, . . . , �s}. So, unlike Aaronson’s snakes whose tails may be flicked at
any location, our snakes can not “break” in the middle of any chunk and only
flick their tails at the chunk endpoints.

To show that most of our snakes are good, we start by showing that most
snakes X and Y are consistent and have different endpoints.

Quantum and Randomized Lower Bounds 391

Proposition 2. Let j be chosen according to DL. Let X,Y be drawn from Dx0,L

conditioned on Y0→j = X0→j. Then

Pr
X,j,Y

[X and Y are consistent, and xL
= yL | Y0→j = X0→j] ≥ 0.9999− 2
|G| .

Proof. Fix j ∈ {s, 2s, . . . , �s}. Suppose v is a disagreement between X and Y ,
letting t = max {i : xi = v} and t′ = max {i : yi = v}, then t
= t′ and t′, t ≥ j.
We can’t have both t < j + s and t′ < j + s, because otherwise we would have
v
= xj+s and v
= yj+s which implies that both t−j and t′−j equal the distance
from xj to v.

If there is a disagreement, there must exist t and t′ such that xt = yt′ and
either t ≥ j + s or t′ ≥ j + s. In the case t ≥ j + s, we have xt is δ-close to
uniform given yt′ , which implies

Pr [xt = yt′] ≤ δ +
1
|G| ≤

2
|G| .

Similarly, in the case t′ ≥ j+s, we also have Pr [xt = yt′] ≤ 2
|G| . Summing

up for all possible pairs of t and t′ yields

Pr [there is a disagreement between X and Y] ≤ 2(L− s)2
|G| ≤ 0.0001 .

Averaging over j produces

Pr
X,j,Y

[X and Y are not consistent | Y0→j = X0→j] ≤ 0.0001 .

To complete the proof, observe that

Pr
X,j,Y

[xL = yL | Y0→j = X0→j] ≤ δ +
1
|G| ≤

2
|G| .

since yL is δ-close to uniform given xL.

By Markov’s inequality, we obtain:

Corollary 1. Let X be drawn from Dx0,L. Then

Pr
X

[X is 0.9-consistent] ≥ 1− 0.0001 + 2/|G|
0.1

= 0.999− 20
|G| .

We now turn our attention to bounding the hitting probability when a snake
flicks its tail. Following Aaronson, we introduce a notion of ε-sparseness for
snakes and show that (i) if a snake is ε-sparse then it is O(ε)-hitting, and that
(ii) most snakes are ε-sparse.

X,Yj→L

X,Yj→L

X,Yj→L

392 H. Dinh and A. Russell

Formally, we define:

Definition 2. For each x ∈ G, let P (x) = Prg∈D [x ∈ S(g)]. A snake X drawn
from Dx0,L is called ε-sparse if for all vertex v ∈ G,

�∑

k=1

P (x−1
sk v) ≤ ε� .

Intuitively, the sparseness of a snake means that if the snake flicks a random
chunk, it is unlikely to hit any fixed vertex.

Proposition 3. For ε ≥ 2(L−s)
|G| , if snake X is ε-sparse then X is 2ε-hitting.

Proof. Fix a snake X , and fix j ∈ {s, 2s . . . , �s}. Let Y be drawn from Dx0,L

conditioned on the event that Y0→j = X0→j . Since yt is δ-close to uniform for
all t ≥ j + s,

Pr
Y

[v ∈ Yj+s→L | Y0→j = X0→j] ≤ (L − s)(δ +
1
|G|) ≤

2(L− s)
|G| .

On the other hand,

Pr
Y

[v ∈ Yj+1→j+s | Y0→j = X0→j] = Pr
g∈D

[v ∈ xjS(g)] = P (x−1
j v) .

Hence,

Pr
j,Y

[v ∈ Yj+1→L | Y0→j = X0→j] ≤
1
�

�∑

k=1

P (x−1
sk v) +

2(L− s)
|G| ≤ 2ε .

It remains to show that a snake drawn from Dx0,L is ε-sparse with high prob-
ability. Firstly, we consider for the “ideal” case in which the endpoints of the
chunks in a snake are independently uniform.

Lemma 1. Let u1, . . . , u� be independently and uniformly random vertices in
G. If s

|G| ≤ ε2/6 then

Proof. We will use a Chernoff bound to show that there are very few ui’s for
which P (ui) is large. To do this, we first need an upper bound on the ex-
pectation of P (ui). Let u be a uniformly random vertex in G. For any given
g ∈ G, we have Pru[u ∈ S(g)] = Δ(1,g)

|G| ≤ s
|G| . Averaging over g ∈ Ds yields

Prg,u[u ∈ S(g)] ≤ s
|G| , where g is chosen from Ds independently to u. Since

Eu[P (u)] = Pru,g[u ∈ S(g)], we have Eu[P (u)] ≤ s
|G| .

Let Z = | {i : P (ui) ≥ ε} |. By Markov’s inequality,

E[Z] = �Pr
u

[P (u) ≥ ε] ≤ �Eu[P (u)]
ε

≤ �s

|G|ε = μ .

s

s

Pr
u1,...,u�

[
�∑

i=1

P (ui) > 2�ε

]

≤ 2−�ε .

Quantum and Randomized Lower Bounds 393

By a Chernoff bound, for any λ ≥ 2e

Pr
u

[Z ≥ λμ] ≤
(
eλ−1

λλ

)μ

=
(e

λ

)λμ

e−μ ≤ 2−λμ−μ .

Note that if Z < λμ then

�∑

i=1

P (ui) ≤ (�− Z)ε+ Z ≤ �ε+ λμ .

Setting λμ = �ε, which satisfies λ ≥ 2e due to the assumption that s
|G| ≤ ε2/6,

we have

In order to apply this to our scenario without strict independence, we record the
following fact about distance in total variation.

Proposition 4. Let X1, . . . , Xn and Y1, . . . , Yn be discrete random variables so
that Xi and Yi have the same value range. Let (Xi | A1, . . . , Ai−1) denote the
distribution of Xi given that X1 ∈ A1, . . . , Xi−1 ∈ Ai−1; similarly let (Yi |
A1, . . . , Ai−1) denote the distribution of Yi given that Y1 ∈ A1, . . . , Yi−1 ∈ Ai−1.
Then

‖(X1, . . . , Xn)− (Y1, . . . , Yn)‖t.v. ≤ ‖X1 − Y1‖t.v. +
n∑

i=2

Δi

where

A detailed proof of Proposition 4 can be found in the appendix.

Lemma 2. Suppose s
|G| ≤ ε2/6. Then a snake X drawn from Dx0,L is 2ε-sparse

with probability at least 1− |G|2−�ε − 1/2000.

Proof. The proof for the lemma follows immediately by observing that for any
vertex v, the variables x−1

s v, . . . , x−1
s� v satisfy that x−1

s(k+1)v is δ-close to uniform
given x−1

sk v. By Proposition 4,

From Lemma 1,

Pr
X

[
�∑

k=1

P (x−1
sk v) > 2�ε

]

≤ 2−�ε +
1

2000|G| .

Summing up over v ∈ G gives PrX [X is not 2ε-sparse] ≤ |G|2−�ε + 1/2000.

Pr
u1,...,u�

[
�∑

i=1

P (ui) > 2�ε

]

≤ Pr
u1,...,u�

[Z ≥ �ε] ≤ 2−�ε .

Δi = max
A1,...,Ai−1

‖(Xi | A1, . . . , Ai−1) − (Yi | A1, . . . , Ai−1)‖t.v. .

∣
∣
∣
∣
∣
Pr
X

[
�∑

k=1

P (x−1
sk v) > 2�ε

]

− Pr
u1,...,u�

[
�∑

i=1

P (ui) > 2�ε

]∣
∣
∣
∣
∣
≤ �δ ≤ 1

2000|G| .

394 H. Dinh and A. Russell

We need to choose ε such that |G|2−�ε ≤ 1/2000, or ε ≥ log |G|+O(1)
� .

Corollary 2. A snake X drawn from Dx0,L is O
(

s log |G|√
|G|

)

-hitting with proba-

bility at least 0.999.

Putting all the pieces together and applying Theorem 2, we have

Theorem 3. For s = O(
√
|G|), if Cayley graph C(G,Γ) is s-mixing, then

RLS(C(G,Γ)) = Ω

(√
|G|

s log |G|

)

, QLS(C(G,Γ)) = Ω

(
4
√
|G|

√
s log |G|

)

.

In particular, any Cayley graph C(G,Γ) of diameter d has

RLS(C(G,Γ)) = Ω

(√
|G|

d log |G|

)

, QLS(C(G,Γ)) = Ω

(
4
√
|G|

√
d log |G|

)

.

For comparison, applying Aldous’s randomized upper bound [3] and Aaronson’s
quantum upper bound [2] for arbitrary Cayley graph C(G,Γ), we have

RLS(C(G,Γ)) = O
(√
|G||Γ |

)
and QLS(C(G,Γ)) = O

(
3
√
|G| 6

√
|Γ |
)
.

For example, for constant degree expanding Cayley graphs, this randomized
lower bound is tight to within O(log2 |G|) of Aldous’s upper bound.

Theorem 4. (Erdös and Rényi, See also [5]) For s ≥ 2 log |G|+ 2 log(1/δ)+λ,
a sequence of s random elements of G is a sequence of δ-uniform E-R generators
with probability at least 1− 2−λ.

Clearly, any Cayley graph determined by an s-length sequence of δ-uniform E-R
generators is s-mixing. So applying our lower bounds for arbitrary Cayley graphs
and the E-R theorem, we have

Proposition 5. Let s ≥ 5 log |G|−2 log s+λ. With probability at least 1−2−λ,
a random Cayley graph C(G,Γ) determined by a sequence of s random group
elements has

O(
√
|G|s) ≥ RLS(C(G, Γ)) ≥ Ω

(√
|G|

s log |G|

)

and O(3
√
|G| 6
√

s) ≥ QLS(C(G, Γ)) ≥ Ω

(
4
√
|G|

√
s log |G|

)

.

Random Cayley graphs. In fact, it can be showed that most Cayley graphs are
s-mixing for s = Ω(log |G|). Let g1, . . . , gs be a sequence of group elements.
Following [5], we call an element of the form ga1

1 · · · gas
s , where ai ∈ {0, 1}, a

subproduct of the sequence g1, . . . , gs. A random subproduct of this sequence is a
subproduct obtained by independently choosing ai as a fair coin flip. A sequence
g1, . . . , gs is called a sequence of δ-uniform Erdös-Rényi (E-R) generators if its
random subproductors are δ-uniformly distributed over G in the sense that

(1 − δ)
1

|G| ≤ Pr
a1,...,as

[ga1
1 · · · gas

s = g] ≤ (1 + δ)
1

|G| for all g ∈ G .

Quantum and Randomized Lower Bounds 395

4.2 Extending to Vertex-Transitive Graphs

Our approach above for Cayley graphs can be easily extended to vertex-transitive
graphs. We shall describe here how to define a snake distribution Dx0,L similar
to that for a Cayley graph. Consider a vertex-transitive graph G = (V,E) with
N = |V |, and let d be the diameter of G. We fix an arbitrary vertex v0 ∈ V .
For each vertex v ∈ V , we also fix an extended shortest path S(v) = (v1, . . . , vd)
of length d from v0 to v. (v0 is omitted in S(v) for technical reasons.) That is,
(v0, . . . , vr) is the actual shortest path from v0 to v, where r = Δ(v0, v), and
vi = v for all i ≥ r.

position in σxS, for any sequence S of vertices. It follows that in our snake X =
(x0, . . . , xL), for all t ≥ k, xdk+t is uniformly distributed over V given xdk. With
this snake distribution, we can similarly follow the proof for Cayley graphs to prove
the lower bounds for vertex-transitive graphs as given in Theorem 1.

Acknowledgements

We gratefully acknowledge Scott Aaronson for discussing his previous work
with us and showing us the trick for removing the requirement of snake non-
self-intersection. We would like to thank anonymous referees for many helpful
comments.

References

[1] Aardal, K., van Hoesel, S., Lenstra, J.K., Stougie, L.: A decade of combinatorial
optimization. In: CWI Tracts, vol. 122, pp. 5–14 (1997)

[2] Aaronson, S.: Lower bounds for local search by quantum arguments. In: STOC
2004: Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(2004)

Since the automorphism group of G acts transitively on V , we can fix an
automorphism σx, for each x ∈ V , so that σx(v0) = x. Hence, for any x, v ∈ V ,
the sequence σxS(v) is the extended shortest path from x to σx(v). So now we
can determine the kth chunk of a snake as the sequence σxdk

S(uk), where xdk

is the endpoint of the (k − 1)th chunk of the snake, and uk is an independently
and uniformly random vertex. Let P (x) = Pru[x ∈ S(u)], where u is chosen from
V uniformly at random. The condition for a snake X = (x0, . . . , x(�+1)d) to be
ε-sparse is now redefined as

�∑

k=1

P
(
σ−1

xdk
(v)

)
≤ �ε for all v ∈ V .

Observe that, given xdk, the endpoint xdk+k = σxdk
(uk) of the kth chunk is a

uniformly random vertex, since σxdk
is a bijective. Also clearly, σx 	= σy for any

x 	= y because σx and σy send v0 to different places. This means there is a one-to-
one correspondencex ↔ σx betweenV and the set of automorphisms {σx : x ∈ V }.
Therefore, if x is uniformly distributed over V , then so is the vertex at any given

396 H. Dinh and A. Russell

[3] Aldous, D.: Minimization algorithms and random walk on the d-cube. Annals of
Probability 11(2), 403–413 (1983)

[4] Ambainis, A.: Quantum lower bounds by quantum arguments. In: STOC 2000:
Proceedings of the thirty-second annual ACM symposium on Theory of computing
(2000)

[5] Babai, L.: Local expansion of vertex-transitive graphs and random generation
in finite groups. In: STOC 1991: Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pp. 164–174. ACM, New York (1991)

[6] Llewellyn, D.C., Tovey, C., Trick, M.: Local optimization on graphs. Discrete
Appl. Math. 23(2), 157–178 (1989)

[7] Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University
Press (2001)

[8] Santha, M., Szegedy, M.: Quantum and classical query complexities of local search
are polynomially related. In: STOC 2004: Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pp. 494–501. ACM, New York (2004)

[9] Sun, X., Yao, A.C.: On the quantum query complexity of local search in two
and three dimensions. In: FOCS 2006: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, Washington, DC, USA, pp.
429–438. IEEE Computer Society, Los Alamitos (2006)

[10] Verhoeven, Y.F.: Enhanced algorithms for local search. Inf. Process. Lett. 97(5),
171–176 (2006)

[11] Zhang, S.: New upper and lower bounds for randomized and quantum local search.
In: STOC 2006: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pp. 634–643. ACM, New York (2006)

A Appendix

A.1 Quantum and Relational Adversary Methods

The quantum adversary method [4] is a powerful tool underlying many proofs of
quantum lower bounds. The classical counterpart applied above is the relational
adversary method [2]. The central intuition of these adversary methods is to
make it hard to distinguish “related” input sets. Technically, consider two input
sets A and B for a function F : In → [m] so that F (A)
= F (B) for all A ∈ A
and B ∈ B. Here, an input to function F is a black-box function A : [n] → I.
The oracle for an input A answers queries of the form A(x) =?. If A and B are
the two inputs that have the same value at every queryable location, then we
must have F (A) = F (B). Define a “relation” function R(A,B) ≥ 0 on A × B.
Two inputs A and B are said to be related if R(A,B) > 0. Then, for A ∈ A,
B ∈ B, and a queryable location x ∈ [n], let

M(A) =
∑

B′∈B R(A,B′), M(B) =
∑

A′∈AR(A′, B)
M(A, x) =

∑
B′∈B:A(x) �=B′(x)R(A,B′), M(B, x) =

∑
A′∈A:A′(x) �=B(x)R(A′, B) .

Intuitively, the fraction M(A, x)/M(A) (resp. M(B, x)/M(B)) measures how
hard it is to distinguish input A (resp. B) with related inputs in B (resp. A) by
queying at location x. Formally, if there are such input sets A,B and relation
function R(A,B), then

Quantum and Randomized Lower Bounds 397

Theorem 5. (Ambainis) The number of quantum queries needed to evaluate F
with probability at least 0.9 is Ω(Mgeom), where

Mgeom = min
A∈A,B∈B,x

R(A,B)>0,A(x) �=B(x)

√
M(A)
M(A, x)

M(B)
M(B, x)

.

Theorem 6. (Aaronson) The number of randomized queries needed to evaluate
F with probability at least 0.9 is Ω(Mmax), where

Mmax = min
A∈A,B∈B,x

R(A,B)>0,A(x) �=B(x)

max
{
M(A)
M(A, x)

,
M(B)
M(B, x)

}

.

A.2 Proofs

Continued proof for Aaronson’s theorem (Theorem 2)

Proof. To apply the quantum and relational adversary method for the decision
problem, define the input setsA={(X, gX,0) :X ∈D∗} andB={(Y, gY,1) :Y ∈D∗},
where D∗ denotes the set of ε-good snakes drawn from Dx0,L. For simplicity, we
write AX as (X, gX,0), and BY as (Y, gY,1). For AX ∈ A and BY ∈ B, define
relation function R(AX , BY) = w(X,Y) if X and Y are consistent and xL
= yL,
and R(AX , BY) = 0 otherwise, where w(X,Y) is determined as follows. Let p(X)
be the probability of drawing snake X from Dx0,L, and let

w(X,Y) = p(X) Pr
j,Z

[Z = Y | Z0→j = X0→j] .

Claim. For any snakes X,Y ∈ Dx0,L, we have w(X,Y) = w(Y,X).
Proof. (of the claim)Fixj∈{0,. . . ,L−1}andletqj(X,Y)=PrZ [Z=Y|Z0→j=X0→j].
We want to show

p(X)qj(X,Y) = p(Y)qj(Y,X) .

Assume X0→j = Y0→j , otherwise qj(X,Y) = qj(Y,X) = 0. Then letting Z be
drawn from Dx0,L and let E be the event Z0→j = X0→j = Y0→j , we have

p(X)qj(X,Y) = Pr
Z

[E] · Pr
Z

[Zj+1→L = Xj+1→L|E] · Pr
Z

[Zj+1→L = Yj+1→L|E]

= Pr
Z

[E] · Pr
Z

[Zj+1→L = Yj+1→L|E] · Pr
Z

[Zj+1→L = Xj+1→L|E]

= p(Y)qj(Y,X) .

completing the proof for the claim.

As in Aaronson’s original proof, we won’t be able to take the whole input sets
A and B defined above because of the fact that not all snakes are good. Instead,
we will take only a subset of each of these input sets that would be hard enough
to distinguish. This is done by applying Lemma 8 in [2], which states as follows.

398 H. Dinh and A. Russell

Lemma 3. Let p(1), . . . , p(m) be positive reals such that
∑

i p(i) ≤ 1. Let R(i, j),
for i, j ∈ {1, . . . ,m}, be nonnegative reals satisfying R(i, j) = R(j, i) and

∑
i,j

R(i, j) ≥ r. Then there exists a nonempty subset U ∈ {1, . . . ,m} such that∑
j∈U R(i, j) ≥ rp(i)/2 for all i ∈ U .

To apply this lemma, we need a lower bound for the sum
∑

X,Y ∈D∗ R(AX , BY).
Let E(X,Y) denote the event that snakes X and Y are consistent and xL
= yL.
For any X ∈ D∗, we have

∑

Y :E(X,Y)

w(X,Y) = p(X) Pr
j,Y

[E(X,Y) | Y0→j = X0→j] ≥ 0.9p(X) .

Hence, since a snake drawn from Dx0,L is good with probability at least 0.9,

∑

X,Y :E(X,Y)

w(X,Y) ≥ 0.9
∑

X∈D∗

p(X) ≥ 0.9× 0.9 ≥ 0.8 .

By the union bound,
�

X,Y∈D∗
R(AX , BY)≥

�
X,Y :E(X,Y)

w(X, Y)−
�

X �∈D∗
p(X) −

�
Y �∈D∗

p(Y)≥ 0.8 − 0.1 − 0.1=0.6 .

So, by Lemma 3, there exists a nonempty subset D̃ ⊂ D∗ so that for allX,Y ∈ D̃,
∑

Y ′∈ �D

R(AX , BY ′) ≥ 0.3p(X) ,

∑

X′∈ �D

R(AX′ , BY) ≥ 0.3p(Y) .

So now we take the input sets Ã =
{
AX : X ∈ D̃

}
and B̃ =

{
BY : Y ∈ D̃

}
. We

have shown that M(AX) ≥ 0.3p(X) and M(BY) ≥ 0.3p(Y) for any AX ∈ Ã
and BY ∈ B̃. Since the snake part in the inputs can not be queried, we only
care about the measure for distinguishing AX , BY with their related inputs by
querying the function part (i.e. gX,0 or gY,1) in the inputs. Formally, we focus on
lower-bounding M(AX , v) and M(BY , v) for inputs AX ∈ Ã, BY ∈ B̃ for which
R(AX , BY) > 0 and gX,0(v)
= gY,1(v). We remark that since R(AX , BY) > 0,
the event E(X,Y) must hold, which implies that for all vertex v,

gX,0(v)
= gY,1(v) ⇐⇒ fX(v)
= fY (v) ⇐⇒ setX(v)
= setY (v) .

Applying the quantum and randomized adversary method, we will haveRLS(G)≥
Ω(Mmax) and QLS(G) ≥ Ω(Mgeom), where

Mmax = min
AX∈ �A,BY ∈ �B,v

R(AX ,BY)>0,setX (v) �=setY (v)

max
{

M(AX)
M(AX , v)

,
M(BY)

M(BY , v)

}

Quantum and Randomized Lower Bounds 399

≤
∑

Y ′:v∈Y ′

p(X) Pr
j,Z

[Z = Y ′ | Z0→j = X0→j]

= p(X) Pr
j,Z

[v ∈ Z | Z0→j = X0→j]

= p(X) Pr
j,Z

[v ∈ Zj+1→L | Z0→j = X0→j] (since v
∈ X)

≤ p(X)ε (since X is ε-hitting) .

In the case v
∈ Y , we can also obtain M(BY , v) ≤ p(Y)ε due to symmetry.
Hence,

max
{
M(AX)
M(AX , v)

,
M(BY)
M(BY , v)

}

≥ 0.3/ε

√
M(AX)
M(AX , v)

M(BY)
M(BY , v)

≥
√

0.3/ε .

The latter inequality is obtained due to the fact that M(AX , v) ≤ M(AX) and
M(BY , v) ≤ M(BY). Consequently, Mmax = Ω(1/ε) and Mgeom = Ω(

√
1/ε),

completing the proof for Theorem 2.

Proof of Proposition 4

Proof. We prove by induction on n. The case n = 2 can be easily obtained by
applying the following simple fact:

Fact 1. Let x1, x2, y1, y2 be any real numbers in [0, 1]. Then

|x1x2 − y1y2| = |(x1 − y1)x2 + (x2 − y2)y1| ≤ |x1 − y1|x2 + |x2 − y2|y1 ≤ |x1 − y1|+ |x2 − y2| .

In particular, applying the above fact, we have for any pair of events (A,B),

∣
∣
∣Pr[X1 ∈ A, X2 ∈ B]− Pr[Y1 ∈ A, Y2 ∈ B]

∣
∣
∣ ≤

∣
∣
∣Pr[X1 ∈ A]− Pr[Y1 ∈ A]

∣
∣
∣+

∣
∣
∣Pr[X2 ∈ B|X1 ∈ A]− Pr[Y2 ∈ B|Y1 ∈ A]

∣
∣
∣ .

Mgeom = min
AX∈ �A,BY ∈ �B,v

R(AX ,BY)>0,setX (v) �=setY (v)

√
M(AX)

M(AX , v)
M(BY)

M(BY , v)
.

Let AX ∈ Ã, BY ∈ B̃ be inputs for which setX(v) 	= setY (v). Then v 	∈ X or
v 	∈ Y . Assuming the case v 	∈ X , we will show M(AX , v) is small. We have

M(AX , v) ≤
∑

Y ′∈ �D:setX (v) �=setY ′ (v)

w(X, Y ′)

400 H. Dinh and A. Russell

Recall that by definition of total variation,

‖(X1, X2)− (Y1, Y2)‖t.v. = max
A,B

∣
∣
∣Pr[X1 ∈ A,X2 ∈ B]−Pr[Y1 ∈ A, Y2 ∈ B]

∣
∣
∣ and

Δ2 = max
A,B

∣
∣
∣Pr[X2 ∈ B|X1 ∈ A]− Pr[Y2 ∈ B|Y1 ∈ A]

∣
∣
∣ .

Hence,
‖(X1, X2)− (Y1, Y2)‖t.v. ≤ ‖X1 − Y1‖t.v. +Δ2 .

Now we can apply this result and get

‖(X1, . . . , Xn)− (Y1, . . . , Yn)‖t.v. ≤ ‖(X1, . . . , Xn−1)− (Y1, . . . , Yn−1)‖t.v. +Δn

which establishes the proposition by induction.

A.3 Upper Bounds for Local Search

Various upper bounds for both quantum and classical query complexities have
been given for general graphs. For any graph G of N vertices and maximal degree
δ, it has been showed that RLS(G) = O(

√
Nδ) [3] and QLS(G) = O(N1/3δ1/6)

[2]. The idea for designing local search algorithms in [3, 2] is random sampling
followed by steepest descent. More specifically, these algorithms start off by
sampling a subset of vertices, find the best vertex v (i.e., the one with the
minimum f value) in the sampled set, and finally performing steepest descent
beginning at the chosen vertex v.

Zhang [11] later introduced new quantum and randomized algorithms for lo-
cal search on general graphs, providing upper bounds that depend on the graph
diameter and the expansion speed. While Zhang’s upper bounds can only work
well for graphs with slow expansion speed, such as hypecubes, many vertex-
transitive graphs, unfortunately, do not possess this property. Also, Zhang’s
randomized upper bound is no better than O

(
N
d log log d

)
, and his quantum

upper bound is no better than O
(√

N
d (log log d)1.5

)
, except for the line or cycle

graphs, where d is the diameter of the graph. This means Zhang’s upper bounds
do not seem to beat Aaronson and Aldous’s bounds, especially for graphs with
small degrees and small diameters. Note that there are Cayley graphs of non-
abelian simple groups which have constant degrees and have diameters no larger
than O(logN). While Zhang’s upper bounds fail for graphs of small diameters,
Aldous and Aaronson’s upper bounds fail for graphs of large degrees. So, a ques-
tion to ask is whether there is a better upper bound for graphs with large degrees
and small diameters?

Recently, Verhoeven [10] has proposed another deterministic algorithm and
enhanced Zhang’s quantum algorithm, improving upper bounds on determinis-
tic and quantum query complexities of Local Search that depend on the graph’s

Quantum and Randomized Lower Bounds 401

degrees and genus. Precisely, he showed that for any N -vertex graphG of genus g
and maximal degree δ, the deterministic (thus, randomized) and query complex-
ities of Local Search on G are δ+O(

√
g)
√
N and O(

√
δ) +O(4

√
g) 4
√
N log logN ,

respectively. However, these bounds fail for the class of graphs we are caring
about: vertex-transitive graphs, since every vertex-transitive graph is regular
and it has been shown that the genus of an N -vertex m-egde connected graph
is at least

⌈
m
6 −

N
2 + 1

⌉
(see [7, p114]).

On the Query Complexity of Testing Orientations
for Being Eulerian�

Eldar Fischer1,��, Oded Lachish2, Ilan Newman3,��, Arie Matsliah1,
and Orly Yahalom1

1 Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000, Israel
{eldar,ariem,oyahalom}@cs.technion.ac.il

2 Centre for Discrete Mathematics and its Applications (DIMAP), Warwick, UK
o.lachish@warwick.ac.uk

3 Computer Science Department, Haifa University, Haifa 31905 Israel
ilan@cs.haifa.ac.il

Abstract. We consider testing directed graphs for being Eulerian in the orienta-
tion model introduced in [15]. Despite the local nature of the property of being
Eulerian, it turns out to be significantly harder for testing than other properties
studied in the orientation model. We show a non-constant lower bound on the
query complexity of 2-sided tests and a linear lower bound on the query complex-
ity of 1-sided tests for this property. On the positive side, we give several 1-sided
and 2-sided tests, including a sub-linear query complexity 2-sided test for general
graphs. For special classes of graphs, including bounded-degree graphs and ex-
pander graphs, we provide improved results. In particular, we give a 2-sided test
with constant query complexity for dense graphs, as well as for expander graphs
with a constant expansion parameter.

1 Introduction

Property testing deals with the following relaxation of decision problems: Given a prop-
erty P , an input structure S and ε > 0, distinguish between the case where S satisfies
P and the case where S is ε-far from satisfying P . Roughly speaking, an input S is
said to be ε-far from satisfying a property P if more than an ε-fraction of its values
must be modified in order to make it satisfy the property. Algorithms which distinguish
with high probability between the two cases are called property testers or simply testers
for P . Furthermore, a tester for P is said to be 1-sided if it never rejects an input that
satisfies P . Otherwise, the tester is called 2-sided. We say that a tester is adaptive if
some of the choices of the locations for which the input is queried may depend on
the returned values (answers) of previous queries. Otherwise, the tester is called non-
adaptive. Property testing normally deals with problems involving a very large input or
a costly retrieval procedure. Thus, the number of queries of input values, rather than the
computation time, is considered to be the most expensive resource.

� A full version is available at http://www.cs.technion.ac.il/˜oyahalom/EulerianOrientations.pdf.
�� Research supported in part by an ISF grant number 1101/06.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 402–415, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Query Complexity of Testing Orientations 403

Property testing has been a very active field of research since it was initiated by
Blum, Luby and Rubinfeld [5]. The general definition of property testing was formu-
lated by Rubinfeld and Sudan [25], who were interested mainly in testing algebraic
properties. The study of property testing for combinatorial objects, and mainly for la-
belled graphs, began in the seminal paper of Goldreich, Goldwasser and Ron [12]. They
introduced the dense graph model, where the graph is represented by an adjacency ma-
trix, and the distance function is computed accordingly. For comprehensive surveys on
property testing see [24,8].

The dense graph model is in a sense too lenient, since for n-vertex graphs, the dis-
tance function allows adding and removing o(n2) edges, regardless of the number of
actual edges in the graph. Thus, many interesting properties, such as connectivity in
undirected or directed graphs, are trivially testable in this model, as all the graphs are
close to satisfying the property. In recent years, researchers have studied several alter-
native models for graph testing, including the bounded-degree graph model of [13], in
which a sparse representation of sparse graphs is considered, and the general density
model (also called the mixed model) of [21] and [17]. In these models, the distance
function allows edge insertions and deletions whose number is at most a fraction of the
number of the edges in the original graph.

Property testing of directed graphs has also been studied in the context of the above
models [1,3]. Here we continue the study of testing properties of directed graphs in the
orientation model, which started in [15] and followed in [14] and [7]. In this model, an
underlying undirected graphG = (V,E) is given in advance, and the actual input is an

orientation
−→
G of G, in which every edge in E has a direction. Our testers may access

the input using edge queries. That is, every query concerns an edge e ∈ E, and the
answer to the query is the direction of e in

−→
G . An orientation

−→
G of G is called ε-close

to a property P if it can be made to satisfy P by inverting at most an ε-fraction of the
edges of G, and otherwise

−→
G is said to be ε-far from P .

Note that the distance function in the orientation model naturally depends on the
size of the underlying graph and is independent of representation details. Moreover,
the testing algorithm may strongly depend on the structure of the underlying graph.
The model is strict in that the distance function allows only edge inversions, but no
edge insertions or deletions. On the other hand, we assume that our algorithms have a
full knowledge of the underlying graph, whose size is roughly the same as the input
size. Viewing the underlying graph as a parameter that the testing algorithm receives in
advance, we say that the orientation model is an example of a massively parameterized
model. Other examples of massively parameterized models appear in [20], where the
property is represented by a known bounded-width branching program, in [9], where
the input is a vertex-coloring of a known graph, and in other works.

In this paper we consider the property of being Eulerian, which was presented in [14]
as one of the natural orientation properties whose query complexity was still unknown.
A directed graph

−→
G is called Eulerian if for every vertex v in the graph, the in-degree of v

is equal to its out-degree. An undirected graph G has an Eulerian orientation
−→
G if and

only if all the degrees of G are even. Such an undirected graph is called Eulerian also.
Throughout the paper we assume that our underlying undirected graph G is Eulerian.
We note that it is common to require an Eulerian graph to be connected. However, we

404 E. Fischer et al.

may ignore this requirement, as all our algorithms and proofs work equally well whether
G is connected or not. Moreover, as G is given as a parameter, its connectivity can be
tested in a preprocessing stage.

Eulerian graphs and Eulerian orientations have attracted researchers since the dawn
of graph theory in 1736, when Leonard Euler published his solution for the famous
“Königsberg bridge problem”. Throughout the years, Eulerian graphs have been the
subject of extensive research (e.g. [23,18,26,19,6,2]; see [10,11] for an extensive sur-
vey). Aside from their appealing theoretic characteristics, Eulerian graphs have been
studied in the context of networking [16] and genetics [22].

Testing for being Eulerian in the orientation model is equivalent to the following
problem. We have a known network (e.g. a communication network or a transportation
system) where every edge can transport a unit of “flow” in both directions. Our goal is
to know whether the network is “balanced”, or far from being balanced, where being
balanced means that the number of flows entering every node in the network is equal to
the number of flows exiting it. To examine the network, we detect the flow direction in
selected individual edges, and this is deemed to be the expensive operation.

The main difficulty in testing orientations for being Eulerian arises from the fact that
an orientation might have a small number of unbalanced vertices, and each of them with
a small imbalance, and yet be far from being Eulerian. This is since trying to balance
an unbalanced vertex by inverting some of its incident edges may violate the balance
of its balanced neighbors. Thus, we must continue to invert edges along a directed path
between a vertex with a positive imbalance and a vertex with a negative imbalance.
We call such a path a correction path. A main component of our work is giving upper
bounds for the length of the correction paths. We note that Babai [2] showed that the
ratio between the diameter of digraphs and the diameter of their underlying undirected
graphs is Ω(n1/3) for an infinite family of Eulerian graphs.

Our upper bounds are based on three “generic” tests, one 1-sided test and two 2-
sided tests. Instead of receiving ε as a parameter, the generic tests receive a parameter
p, which stands for the number of required correction paths in an orientation that is far
from being Eulerian. We hence call these tests p-tests. We later derive ε-tests from the
p-tests by proving two lower bounds for p. The first one gives an efficient test for dense
graphs and the second one gives an efficient test for expander graphs. Finally, we show
how to use variations of the expander tests for obtaining a 1-sided test and a 2-sided test
for general graphs, using a decomposition (“chopping”) procedure into subgraphs that
are roughly expanders. The 2-sided test that we obtain this way has a sub-linear query
complexity for every graph. Unfortunately, our chopping procedure is adaptive and has
an exponential computational time in |E|. All of our other algorithms are non-adaptive
and their computational complexity is of the same order as their query complexity.

On the negative side, we provide several lower bounds. We show that any 1-sided test
for being Eulerian must useΩ(m) queries for some graphs. For bounded-degree graphs,
we use the toroidal grid to prove non-constant 1-sided and 2-sided lower bounds. These
bounds are noteworthy, as bounded-degree graphs have a constant size witness for not
being Eulerian, namely the edges incident with one unbalanced vertex. In contrast, the
st-connectivity property, whose witness must include a cut in the graph, is testable with
a constant number of queries in the orientation model [7]. In other testing models there

On the Query Complexity of Testing Orientations 405

Table 1. Upper bounds

Table 2. Lower bounds

Result 1-sided tests 2-sided tests

General graphs (Section 2) Ω(m) —

Bounded-degree graphs, non-adaptive tests Ω(m1/4) Ω
��

log m
log log m

�
Bounded-degree graphs, adaptive tests Ω(log m) Ω(log log m)

are known super-constant lower bounds also for properties which have constant-size
witness, e.g., [4] prove a linear lower bound for testing whether a truth assignment
satisfies a known 3CNF formula. However, most of these bounds are for properties that
have stronger expressive power than that of being Eulerian.

Tables 1 and 2 summarize our upper and lower bounds, respectively. Here and through-
out the paper, we set n = |V | andm = |E|, letΔ be the maximum vertex-degree in G,
and set d

def= m/n. The tilde notation hides polylogarithmic factors. Due to space limita-
tions, our upper bounds for dense graphs and lower bounds for bounded-degree graphs
are omitted from this version, and most of the proofs are given as sketches.

2 Preliminaries and the 1-Sided Lower Bound

In this section we introduce basic definitions, notations and lemmas to be used in the
sequel. Throughout the paper, we assume a fixed and known underlying graph G =
(V,E) which is Eulerian, that is, for every v ∈ V , the degree deg(v) of v is even. Given

an orientation
−→
G = (V,

−→
E) and a vertex v ∈ V , let indeg−→

G
(v) denote the in-degree

of v with respect to
−→
G and let outdeg−→

G
(v) denote the out-degree of v with respect to

−→
G . We define the imbalance of v in

−→
G as ib−→

G
(v) def= outdeg−→

G
(v)− indeg−→

G
(v). In the

following, we sometimes omit the subscript
−→
G whenever it is obvious from the context.

We say that a vertex v ∈ V is a spring in
−→
G if ib−→

G
(v) > 0. We say that v is a drain in

−→
G if ib−→

G
(v) < 0. If ib−→

G
(v) = 0 then we say that v is balanced in

−→
G . We say that

−→
G is

Eulerian if all its vertices are balanced. Since all the vertices of G are of even degree,
there always exists some Eulerian orientation

−→
G of G.

Given a set U ⊆ V , let:
E(U) def= {{u, v} ∈ E | u, v ∈ U} and

−→
E (U) def= {(u, v) ∈ −→E | u, v ∈ U},

∂U
def= {{u, v} ∈ E | u ∈ U, v /∈ U} and

−→
∂ U

def= {(u, v) ∈ −→E | u ∈ U, v /∈ U}.

Result 1-sided tests 2-sided tests

Graphs with large d O
�

Δm
ε2d2

�
min

� �O �
m3

ε6d6

�
, �O �√

Δm
ε2d2

��
α-expanders
(Section 4)

O
�

Δ log(1/ε)
αε

�
min

��O	�
log(1/ε)

αε

�3

, �O �√
Δ log(1/ε)

αε

��
General graphs

(Section 6)
O
�

(Δm log m)2/3

ε4/3

�
min

� �O �
Δ1/3m2/3

ε4/3

�
, �O �

Δ3/16m3/4

ε5/4

��

406 E. Fischer et al.

Given two disjoint sets U,W ⊆ V , let E(U,W) def= {{u,w} ∈ E | u ∈ U,w ∈W}
and
−→
E (U,W) def= {(u,w) ∈ −→E | u ∈ U,w ∈W}.

Lemma 1. Suppose that
−→
H is a knowledge graph that does not contain invalid cuts.

Then
−→
H is extensible to an Eulerian orientation

−→
G = (V,

−→
EG) ofG. That is,

−→
EH ⊆

−→
EG.

Consequently, a witness that an orientation
−→
G is not Eulerian must contain at least half

of the edges of some invalid cut with respect to
−→
G .

Proof sketch. We extend the knowledge graph to an orientation of the entire graph by
orienting the edges one by one. In each step we prove using counting arguments that if
a certain orientation of an edge would invalidate one of the cuts, then orienting it in the
other direction would not invalidate any of the other cuts. ��

Theorem 2. There exists an infinite family of graphs for which every 1-sided test for
being Eulerian must use Ω(m) queries.

Proof. For every even n, let Gn
def= K2,n−2, namely, the graph with a set of vertices

V = {v1, . . . , vn} and a set of edges E = {{vi, vj} | i ∈ {1, 2}, j ∈ {3, . . . , n}}.
Clearly,Gn is Eulerian and n = Ω(m). Consider the orientation

−→
Gn ofGn in which all

the edges incident with v1 are outgoing and all the edges incident with v2 are incoming.
Clearly,

−→
Gn is 1

2 -far from being Eulerian. According to Lemma 1, every 1-sided test
must query at least half of the edges in some unbalanced cut (because otherwise it would
clearly not obtain an invalid cut in the knowledge graph). However, one can easily see
that every cut which does not separate v1 and v2 is balanced, while every cut which
separates v1 and v2 is of size n− 2 = Ω(m). ��
Let
−→
G be an orientation of G. Given a subgraph

−→
H = (VH ,

−→
EH) of

−→
G (that is, a

directed graph where VH ⊆ V and
−→
EH ⊆

−→
E) we define

−→
G←−

H

def= (V,
−→
E←−

H
) to be the

orientation of G derived from
−→
G by inverting all the edges of

−→
H . Namely,

−→
E←−

H
=

−→
E \−→EH ∪ {(v, u) ∈ (VH)2 | (u, v) ∈ −→EH}.We say that

−→
H is a correction subgraph of−→

G if
−→
G←−

H
is Eulerian. Note that in such a case,

−→
G is |−→EH |/m-close to being Eulerian.

Since we assume that G is Eulerian, there exists some correction subgraph
−→
H for any−→

G . Furthermore, it is not difficult to show that any correction subgraph
−→
H of

−→
G has an

acyclic subgraph which is also a correction subgraph of
−→
G . Let S be the set of springs

in
−→
G and let T be the set of drains in

−→
G . We say that a directed path

−→
P = 〈u0, . . . , uk〉

in
−→
G is a spring-drain path if u0 ∈ S and uk ∈ T . It is easy to show that for any

correction subgraph
−→
H of

−→
G , u0 is a spring in

−→
H and uk is a drain in

−→
H .

Lemma 3. If
−→
G is not Eulerian then any acyclic correction subgraph

−→
H of

−→
G is a

union of p = 1
4

∑
u∈V |ib(u)| edge-disjoint spring-drain paths.

Proof sketch. Suppose that
−→
G is not Eulerian and let

−→
H be an acyclic correction sub-

graph of
−→
G . By definition, if we invert all the edges of

−→
H in

−→
G then we obtain an

Eulerian orientation of G. It can easily be seen that, since
−→
G is not Eulerian,

−→
H con-

tains a spring-drain path. We thus invert the edges of
−→
H along one spring-drain path at a

On the Query Complexity of Testing Orientations 407

time, until we obtain an Eulerian orientation. One can see that
−→
H is thus decomposed to

the inverted paths. The value of p is computed by noting that by inverting a spring-drain
path, we reduce the sum

∑
u∈V |ib(u)| by exactly four. ��

Let p be some positive number. If every correction subgraph of an orientation
−→
G

is a union of at least p disjoint spring-drain paths, we say that
−→
G is p-far from being

Eulerian. An algorithm is called a p-test for being Eulerian if it accepts an Eulerian
orientation with probability at least 2/3 and rejects a p-far orientation with probabil-
ity at least 2/3. Similarly to ε-tests, if a p-test accepts every Eulerian orientation with
probability 1 then it is called 1-sided, and otherwise it is called 2-sided.

Given β > 0, we say that a vertex v is β-small if deg(v) ≤ β and β-big if deg(v) >
β. An orientation

−→
G is called β-Eulerian if all the β-small vertices in V are balanced in−→

G . Note that for β ≥ Δ,
−→
G is β-Eulerian if and only if

−→
G is Eulerian. All our lemmas

and observations for Eulerian orientations may be adapted to β-Eulerian orientations. In
particular, we can show that modifying an orientation

−→
G to become β-Eulerian requires

inverting edges along at least 1
4

∑
u∈V,deg(u)≤β |ib(u)| spring-drain paths in which at

least one of the spring and the drain is β-small. We call such paths β-spring-drain paths.
An algorithm is called a (p, β)-test for being Eulerian for some positive number p if it

accepts a β-Eulerian orientation with probability at least 2/3 and rejects an orientation
that is p-far from being β-Eulerian with probability at least 2/3. As usual, a (p, β)-
test is said to be 1-sided if it accepts every β-Eulerian orientation with probability 1.
Otherwise, the test is said to be 2-sided.

3 Generic Tests

We present a p-test and two (p, β)-tests for being Eulerian. In later sections we devise

several lower bounds on p for every orientation
−→
G that is ε-far from being Eulerian,

thus obtaining corresponding upper bounds on the tests below.
We begin with a simple 2-sided p-test whose query complexity is independent of the

maximum degree Δ. The algorithm uses probabilistic methods, as well as the charac-
terization of p given given in Lemma 3, in order to detect an unbalanced vertex with
high probability. To simplify notation, we denote δ

def= p
4m .

Algorithm 4. SIMPLE-2(
−→
G, p):

– Repeat 4
δ times independently:

– Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in
−→
E by u and the end vertex of e in

−→
E by v.

– Query 16 ln(12/δ)
δ2 edges incident with u uniformly and independently and reject

if the sample contains at least (1 + δ)8 ln(12/δ)
δ2 outgoing edges.

– Accept if the input was not rejected earlier.

Lemma 5. SIMPLE-2 is a 2-sided p-test for being Eulerian with query complexity

Õ
(

1
δ3

)
= Õ

(
m3

p3

)
.

408 E. Fischer et al.

We next give a simple 1-sided (p, β)-test, which has a better query complexity than
SIMPLE-2 for Δ � m2

p2 ln(m
p). Note that the test checks only β-small vertices for

being unbalanced.

Algorithm 6. GENERIC-1(
−→
G, p, β):

1. Repeat ln 3 m
p times independently:

• Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in
−→
E by u and the end vertex of e in

−→
E by v.

• If deg(u) ≤ β then query all the edges {u, w} ∈ E and reject if u is unbalanced.
2. Repeat ln 3 m

p times independently:
• Select an edge e ∈ E(G) uniformly and query it. Denote the start vertex of e in−→
E by u and the end vertex of e in

−→
E by v.

• If deg(v) ≤ β then query all the edges {w, v} ∈ E and reject if v is unbalanced.
3. Accept if the input was not rejected by the above.

Lemma 7. GENERIC-1 is a 1-sided (p, β)-test for being Eulerian with query com-

plexity O
(

βm
p

)
. In particular, for β = Δ, GENERIC-1 is a 1-sided p-test with query

complexity O
(

Δm
p

)
.

We conclude this section with a 2-sided (p, β)-test, which gives better query complexity
than GENERIC-1 for β log2 m and better query complexity than SIMPLE-2 for p �
m√
β

. The main idea of the algorithm is to perform roughly O((log β)2) testing stages,
each designed to detect unbalanced β-small vertices whose degree and imbalance lie in
a certain interval. In the following, log denotes the logarithm with base 2.

Algorithm 8. MULTISTAGE-2(
−→
G, p, β):

For i = 1, . . . , �log β� − 1, do:

1. Let Vi
def= {u ∈ V | deg(u) ∈ [2i, 2i+1) } and ni

def= |Vi|.
2. Let j = �i/2�. If 2j · ni > 2p

(log β)2 then:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and indepen-
dently.
• For every sampled vertex u, query all the edges incident with u, and reject if
u is unbalanced.

3. For every j ∈ {�i/2� + 1, . . . , i − 1} such that 2j · ni > 2p
(log β)2 do:

• Sample xij = ln 12 (log β)2 2j+1 ni

2p vertices in Vi uniformly and indepen-
dently.
• For every sampled vertex u, query qij = 256 · ln(6(log β)2 xij) · 22(i−j)

edges adjacent to u, uniformly and independently, and reject if the absolute
difference between the number of incoming and outgoing edges in the sample
is at least qij

4·2i−j .
Accept if the input was not rejected earlier.

On the Query Complexity of Testing Orientations 409

Lemma 9. MULTISTAGE-2 is a 2-sided (p, β)-test for being Eulerian with query com-

plexity Õ
(√

β m
p

)
. In particular, for β = Δ, it is a 2-sided p-test for being Eulerian

with query complexity Õ
(√

Δ m
p

)
.

4 Testing Orientations of Expander Graphs

In this section we show how to apply our generic tests for expander graphs. A graph
G = (V, E) is called an α-expander for some α > 0, if it is connected and for every
U ⊆ V such that 0 < |E(U)| ≤ m/2 we have |∂U | ≥ α|E(U)|. Note that while the

diameter of G is O(log(1+α) m), the “oriented-diameter” of
−→
G is not necessarily low,

even if we assume that the orientation is Eulerian, as was shown by [2].
In the following, log(k)

b (x) denotes the k-nested logarithm with base b of x, i.e.,

log(1)
b (x) def= logb(x) and log(k+1)

b (x) def= logb(log(k)
b (x)) for any natural k ≥ 1.

Lemma 10. Let G be an Eulerian α-expander and let k ≥ 1 be a natural number such
that log(k−1)

(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
. Then: (1) Every non-Eulerian orientation

−→
G of G

contains a spring-drain path of length at most 	k
def= 2·log(k)

(1+α/2) m+2·log(1+α/2)

(
4
ε

)
;

(2) Every orientation
−→
G of G that is ε-far from being Eulerian is pk-far from being

Eulerian for pk
def= εm

�k
.

Proof sketch. We prove the lemma by induction on k. In each inductive step, we use
the known bounds of 	k and pk to bound 	k+1 and pk+1 in an iterative manner. To
prove Item 1 of the lemma for k = 1, let

−→
G be a non-Eulerian orientation of

−→
G .

Consider a BFS traversal of
−→
G starting from the set S of springs. For every i ≥ 0,

let Li be the ith level of the traversal, where L0 = S, and let U<i
def=

⋃
0≤j<i Lj and

U≥i
def=

⋃
j≥i Lj . For every i > 0, let fi be the number of directed edges going from

Li−1 to Li. Let L� be the first level that contains a drain. By the expander property of
G, for every i > 0 while |E(U<i)| ≤ m/2 we have |∂(U<i)| ≥ α|E(U<i)|. Note that
for every i ≤ 	, the set U<i contains no drains, and all the directed edges that exit it
are from Li−1 to Li. Hence, for every 0 < i ≤ 	 while |E(U<i)| ≤ m/2, we have
fi > 1

2 |∂(U<i)| > α
2 |E(U<i)| and therefore |E(U<i+1)| >

(
1 + α

2

)
|E(U<i)|. By

induction, we have |E(U<i)| >
(
1 + α

2

)i−1
f1 ≥

(
1 + α

2

)i−1
for every 0 < i ≤ 	 for

which |E(U<i)| ≤ m/2.
Now, if for every 0 < i ≤ 	 we have |E(U<i)| ≤ m/2, then clearly, |E(U<�)| >

(
1 + α

2

)�−1
, and hence 	 = 	1 < log(1+α/2) m. Otherwise, let r > 0 be the minimal

index for which |E(U<r)| > m/2. Using similar arguments to the above, we show that

|E(U≥i−1)| >
(
1 + α

2

)�−i+1 |E(U≥�)| ≥
(
1 + α

2

)�−i+1
for every r ≤ i ≤ 	, which

yields 	1 < 2 · log(1+α/2) m.

To prove Item 2 of the lemma for k = 1, let
−→
G be an orientation of G that is ε-far

from being Eulerian. While
−→
G is not Eulerian, choose a shortest spring-drain path in−→

G and invert all its edges. By Item 1, every chosen spring-drain path is of length at

410 E. Fischer et al.

most 	1. Let
−→
H be the union of the paths inverted. Clearly,

−→
H is a correction subgraph

of
−→
G . As

−→
G is ε-far from being Eulerian,

−→
H contains at least εm edges, and thus

it is necessarily a union of at least p1 = εm
�1

disjoint spring-drain paths. By Lemma

3, every correction subgraph of
−→
G contains the same number of disjoint spring-drain

paths, which completes the base case.
Assuming that the lemma holds for some natural k ≥ 1, the proof of the lemma for

k + 1 is very similar to that of the base case. However, we now know that f1 ≥ pk

and |E(U≥�)| ≥ pk, and so we use our known lower bound for pk (instead of 1 in the
base case). Item 1 is now proved using standard arithmetics, as well as the condition
log(k)

(1+α/2) m ≥ log(1+α/2)

(
4
ε

)
. The proof of Item 2 is the same as for the base case. ��

Lemma 11. Let G be an Eulerian α-expander. Let
−→
G be an orientation of G that is

ε-far from being Eulerian. Then
−→
G is p-far from being Eulerian for p = Ω

(
αεm

log(1
ε)

)
.

Proof sketch. The proof considers the first natural number k such that the condition of
Lemma 10 does not apply, namely log(k)

(1+α/2) m < log(1+α/2)

(
4
ε

)
. The proof is similar

to that of Lemma 10 for smaller k’s. However, since log(k)
(1+α/2) m is sufficiently small,

we are able to give the stated upper bound, which is independent of k. ��
Substituting the lower bound for p of Lemma 11 in Lemmas 5, 7, and 9, we obtain

the following theorem. Note that for a constant α, the query complexity of SIMPLE-2
depends only on ε.

Theorem 12. Let G be an α-expander (for some α > 0) with m edges and maximum
degree Δ. Then:

1. SIMPLE-2
(−→

G, Ω
(

αεm
log(1/ε)

))
is a 2-sided ε-test for being Eulerian with query

complexity Õ

((
log(1/ε)

αε

)3
)

.

2. GENERIC-1
(−→

G,Ω
(

αεm
log(1/ε)

)
, Δ

)
is a 1-sided ε-test for being Eulerian with query

complexity O
(

Δ log(1/ε)
αε

)
.

3. MULTISTAGE-2
(−→

G, Ω
(

αεm
log(1/ε)

)
, Δ

)
is a 2-sided ε-test for being Eulerian with

query complexity Õ
(√

Δ log(1/ε)
αε

)
.

5 Testing Orientations of “Lame” Directed Expanders

In this section we discuss a variation of the expander test, which will serve us in Section
6 for devising tests for general graphs. Given an orientation

−→
G of G, we now test a

subgraph
−→
G [U] of

−→
G , induced by a subset U ⊆ V . We refer to the edges in E(U) as the

internal edges of
−→
G [U], and denote mU

def= |E(U)|. We say that
−→
G [U] is Eulerian if and

only if all the vertices in U are balanced in
−→
G . We say that

−→
G [U] is β-Eulerian if and

only if all the β-small vertices in U are balanced in
−→
G . Note that these definitions rely

On the Query Complexity of Testing Orientations 411

also on the edges in ∂U , which we will henceforth call external edges. We assume that
the orientations of all the external edges are known, and furthermore, we use a distance
function that does not allow inverting external edges. Namely, we will say that

−→
G [U] is

ε-close to being Eulerian if and only if it has a correction subgraph of size at most εmU

which includes only internal edges. Otherwise, we say that
−→
G [U] is ε-far from being

Eulerian. Note that we can view the external edges as comprising a knowledge graph
(see Section 2). We always assume that all the cuts in

−→
G are valid with respect to the

orientation
−→
∂ U of the external edges. This condition ensures that

−→
G [U] can be made

Eulerian (or β-Eulerian) by inverting internal edges only.
We will be interested in induced subgraphs

−→
G [U] that are “lame directed expanders”.

Formally, given a subset U ⊆ V and a parameter β > 0, we say that a cut (A, B) of
U is a β-cut of U if |E(B)| ≥ |E(A)| ≥ β. Given α, β > 0, we say that the subgraph
−→
G [U] of G is an (α, β)-expander if for every β-cut (A, B) of U :

|E(A, B)| −
∣
∣
∣|
−→
E (V \ U, A)| − |−→E (A, V \ U)|

∣
∣
∣ ≥ 2α|E(A)|. (1)

Lemma 13. Let α, β, ε > 0 be parameters and let U ⊆ V be such that
−→
G [U] is an

(α, β)-expander. Denote mU
def= |E(U)| and ΔU

def= max{deg(u) | u ∈ U}. Assume
that the external edges of U are known and do not induce an invalid cut. Then:

1. There exists a 1-sided ε-test for whether
−→
G [U] is Eulerian, GEN-1(

−→
G [U], α, β, ε),

whose query complexity is O
(

ΔU log mU

εα + β·min{β,ΔU}
ε

)
.

2. There exists a 2-sided ε-test for whether
−→
G [U] is Eulerian, MULTI-2(

−→
G [U], α, β, ε),

whose query complexity is Õ

(√
ΔU log mU

εα + β·
√

min{β,ΔU}
ε

)

.

Proof sketch. GEN-1 is based on at most two calls to GENERIC-1 (Algorithm 6) and
MULTI-2 is based on at most two calls to MULTISTAGE-2 (Algorithm 8). The para-
meters in these calls are computed by analyzing two possible cases in which

−→
G [U] is

ε-far from being Eulerian.
In the first case,

−→
G [U] is ε

2 -far from being 2β-Eulerian, which means that we need

to invert many 2β-spring-drain paths in
−→
G [U] in order to make it 2β-Eulerian. Using

an analysis similar to that used in the proof of Lemma 10 (with our condition for lame
expansion instead of the condition for undirected expansion), we obtain a lower bound

p′ = Ω
(

εmU

log mU/α+β

)
for the number of these 2β-spring-drain paths. Thus, to take care

of this case we call GENERIC-1 or MULTISTAGE-2 to test whether
−→
G [U] is (p′, 2β)-

Eulerian. Note that p′ differs from our bound for expander graphs in the addition of β
to the denominator, which indicates an addition of β to the upper bound on the length
of a correction path. This arises from the fact that the lame expansion condition applies
only for β-cuts, and thus, it might not apply in the first and last β BFS layers.

As for the second case, if
−→
G [U] is ε-far from being Eulerian, but ε

2 -close to being

2β-Eulerian, we consider a 2β-Eulerian orientation
−→
G ′[U] that is ε

2 -close to
−→
G [U].

Clearly,
−→
G ′[U] is ε

2 -far from being Eulerian. However, since it is 2β-Eulerian, we can

412 E. Fischer et al.

show that it can be made Eulerian by inverting edges along paths between β-big springs
and β-big drains. We next use a similar analysis as for Lemma 10. However, since the
spring and drain in each of our paths are 2β-big, it can be seen that all the cuts between

our BFS layers are β-cuts, and thus, we obtain a lower bound p′′ = Ω
(

εmU

log mU /α

)

for the number of spring-drain paths. Hence, to take care of the second case, we call
GENERIC-1 or MULTISTAGE-2 to test whether

−→
G [U] is p′′-Eulerian (namely, we use

β = ΔU).
The correctness of our algorithms now follows from Lemmas 7 and 9. The query

complexity bounds are obtained from these lemmas, noting also that the second case
discussed above is only possible for β < ΔU

2 . ��

6 General Tests Based on Chopping

We provide a 1-sided test and a 2-sided test as follows. Given an orientation
−→
G of G,

we show how to decompose
−→
G into a collection of (α, β)-expanders with a relatively

small number of edges that are outside the (α, β)-expanders, called henceforth external
edges. We will find this “chopping” adaptively while querying external edges only. If
we do not find a witness showing that

−→
G is not Eulerian during the chopping procedure,

then we sample a few (α, β)-expanders and test them using GEN-1 or MULTI-2 (see
Lemma 13), obtaining a 1-sided test or a 2-sided test respectively.

Lemma 14 (The chopping lemma). Given an orientation
−→
G as input and parameters

α, β > 0, we can either find a witness showing that
−→
G is not Eulerian, or find non-

empty induced subgraphs
−→
G i = (Vi,

−→
E i =

−→
E (Vi)) of

−→
G (where i = 1, . . . , k for some

k), which we call (α, β)-components (or simply components), that satisfy the following:

1. The vertex sets V1, . . . , Vk of the components are mutually disjoint.
2. |−→E i| ≥ β for i = 1, . . . k.

3. All the components
−→
G i are (α, β)-expanders.

4. The total number of external edges satisfies |−→E \
⋃

i=1,...,k

−→
E (Vi)|=O(αm2 log m/β).

During the chopping procedure, we query only external edges, i.e., edges that are not in
any component Gi. The query complexity is in the same order also if we find a witness
that

−→
G is not Eulerian.

Proof sketch. The chopping procedure proceeds as follows. At first, we define
−→
G =−→

G [V] as our single component. Then, at each step, we decompose a component
−→
G [U]

into two separate components
−→
G [A] and

−→
G [B], if (A, B) is a β-cut of U and Inequality

(1) above does not apply. When decomposing, we query the edges of the cut (A, B) and
mark them as external edges. Note that we need not query any additional edges to decide
on cutting a component, as all the required information is given by the underlying graph
G and by the orientation of the external edges that were queried in previous steps. After
each stage, we check whether the orientations of the edges queried so far invalidate

On the Query Complexity of Testing Orientations 413

any of the cuts in the graph (see Section 2), in which case we conclude that
−→
G is not

Eulerian and return the invalid cut.
The procedure terminates once there is no cut of any component that satisfies the

chopping conditions. The components are clearly disjoint throughout the procedure.
Since we only chopped components across β-cuts, every final component contains at
least β edges. Moreover, note that a component is always chopped by the procedure
unless all its β-cuts satisfy Inequality (1). Hence, if the algorithm terminates without
finding a witness that

−→
G is not Eulerian, then every Gi is an (α, β)-expander. It remains

to prove the upper bound for the number of external edges and the query complexity of
the chopping procedure.

Suppose that the chopping procedure has not found a witness that
−→
G is not Eulerian.

Consider a component U and a β-cut (A, B) of U whose edges were queried in some
step of the lemma. Using the chopping criterion and the fact that all the cuts in the
knowledge graph are valid, we obtain

min
{
|−→E (A, B)|, |−→E (B, A)|

}
< α|E(A)|. (2)

We refer to the edges in the minimal cut among
−→
E (A, B) and

−→
E (B, A) as rare edges,

and to the edges in the other direction as common edges. We then prove that the total
number of rare external edges is O(αm log m), by “charging” a cost of α on every edge
e ∈ E(A). The proof uses Inequality (2) and the fact that, by definition, |E(A)| ≤
|E(B)|. To complete the proof of the upper bound, we show that the ratio between
the number of common edges and the number of rare edges is O(m/β). This is done

by observing that the multigraph defined by the components
−→
G i is Eulerian, and so

decomposable into edge-disjoint directed cycles. Every cycle contains at least one rare
edge because the subgraph of common edges is acyclic. The proof follows since the
number of components is O(m/β). Finally, it is easy to see that the query complexity
is not larger in the case where the procedure terminates after finding an invalid cut. ��

Algorithm 15. CHOP-1(
−→
G, ε, α, β):

1. Use Lemma 14 (the chopping lemma) for finding (α, β)-components
−→
G1, . . . ,

−→
Gk

and querying their external edges, or reject and terminate if an invalid cut is found
in the process.

2. Sample 3 ln 3/ε (α, β)-components
−→
G i randomly and independently, where the

probability of selecting a component
−→
G i in a sample is proportional to mi

def=
|E(Vi)|.

3. Test every selected component
−→
G i using GEN-1(

−→
G i, α, β, ε/2) (see Lemma 13).

Reject if the test rejects for at least one of the components selected.
4. Accept if the input was not rejected by any of the above steps.

Theorem 16. CHOP-1 is a 1-sided test for being Eulerian with query complexity

O
(

αm2 log m
β + Δ log m

ε2α + β·min{β,Δ}
ε2

)
. In particular, for α = (Δ log m)1/3

(εm)2/3 and β =
(εm log m)2/3

Δ1/3 , the query complexity is O
(

(Δm log m)2/3

ε4/3

)
.

414 E. Fischer et al.

Finally, we obtain a similar 2-sided test, CHOP-2, by replacing the calls to GEN-1
in Step 3 of CHOP-1 with calls to MULTI-2 and using slightly different constants.

7 Concluding Comments and Open Problems

We have shown a test with a sub-linear number of queries for all graphs. However,
excepting the special cases of dense graphs and expander graphs, this should be only
considered as a first step for this problem.

The procedure of our general test is surprisingly involved considering the problem
statement. The question arises as to whether we can reduce the computational complex-
ity from exponential to polynomial in m. Also, to make the test truly attractive, most
of the calculations should be performed in a preprocessing stage, where the amount of
calculations done while making the queries should ideally be also sub-linear in m.

Related to the preprocessing question is the unresolved question of adaptivity. We
would like to think that a sub-linear query complexity non-adaptive test also exists for
all graphs. Other adaptive versus non-adaptive gaps, such as the one concerning the
2-sided lower bounds, need also be addressed.

References

1. Alon, N., Shapira, A.: Testing subgraphs in directed graphs. J. Comput. Syst. Sci. 69(3),
354–382 (2004) (a preliminary version appeared in Proc. of STOC 2003, pp. 700-709)

2. Babai, L.: On the diameter of Eulerian orientations of graphs. In: Proceedings of the 17th

SODA, pp. 822–831 (2006)
3. Bender, M., Ron, D.: Testing properties of directed graphs: Acyclicity and connectivity. Ran-

dom Structures and Algorithms, 184–205 (2002)
4. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: Some 3CNF properties are hard to test. SIAM

J. Computing 35(1), 1–21 (2005) (a preliminary version appeared in Proc.35th STOC, 2003)
5. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical

problems. Journal of Computer and System Sciences 47, 549–595 (1993) (a preliminary
version appeared in Proc. 22nd STOC, 1990)

6. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: Demetrescu, C.,
Sedgewick, R., Tamassia, R. (eds.) Proc. 7th ALENEX and 2nd ANALCO 2005 (Vancouver
BC), pp. 259–262. SIAM Press, Demetrescu (2005)

7. Chakraborty, S., Fischer, E., Lachish, O., Matsliah, A., Newman, I.: Testing st-Connectivity.
In: Proceedings of the 11th RANDOM and the 10th APPROX, pp. 380–394 (2007)

Theorem 17. CHOP-2 is a 2-sided test for being Eulerian with query complexity

O
(

αm2 log m
β

)
+ Õ

(√
Δ log m
ε2α + β·

√
min{β,Δ}

ε2

)

. In particular, if Δ ≤ (εm)4/7, then,

for α = Δ1/6

(εm)2/3 and β = (εm)2/3

Δ1/6 , the query complexity is Õ
(

Δ1/3m2/3

ε4/3

)
= Õ

(
m6/7

ε8/7

)
.

If (εm)4/7 < Δ ≤ m, then, for α = Δ5/16

(εm)3/4 and β = Δ1/8√εm, the query complexity

is Õ
(

Δ3/16m3/4

ε5/4

)
= Õ

(
m15/16

ε5/4

)
.

On the Query Complexity of Testing Orientations 415

8. Fischer, E.: The art of uninformed decisions: A primer to property testing. In: Paun, G.,
Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science: The
Challenge of the New Century, vol. I, pp. 229–264. World Scientific Publishing, Singapore
(2004)

9. Fischer, E., Yahalom, O.: Testing convexity properties of tree colorings. In: Thomas, W.,
Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 109–120. Springer, Heidelberg (2007)

10. Fleishcner, H.: Eulerian graphs and related topics, Part 1. Vol. 1. Annals of Discrete Mathe-
matics 45 (1990)

11. Fleishcner, H.: Eulerian graphs and related topics, Part 1. Vol. 2. Annals of Discrete Mathe-
matics 50 (1991)

12. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. JACM 45(4), 653–750 (1998)

13. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–
343 (2002)

14. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing properties of constraint-graphs. In:
Proceedings of the 22nd IEEE Annual Conference on Computational Complexity (CCC
2007), pp. 264–277 (2007)

15. Halevy, S., Lachish, O., Newman, I., Tsur, D.: Testing orientation properties, technical report,
Electronic Colloquium on Computational Complexity (ECCC), 153 (2005)

16. Ibaraki, T., Karzanov, A.V., Nagamochi, H.: A fast algorithm for finding a maximum free
multiflow in an inner Eulerian network and some generalizations. Combinatorica 18(1), 61–
83 (1988)

17. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in general
graphs. SICOMP 33(6), 1441–1483 (2004)

18. Lovász, L.: On some connectivity properties of Eulerian graphs. Acta Math. Hung. 28, 129–
138 (1976)

19. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. Algorith-
mica 16(4/5), 402–414 (1996)

20. Newman, I.: Testing of Functions that have small width Branching Programs. SIAM J. Com-
puting 31(5), 1557–1570 (2002) (a preliminary version appeared in Proc. 41st FOCS, 2000)

21. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. and Algorithms 20(2),
165–183 (2002)

22. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment as-
sembly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001)

23. Robinson, R.W.: Enumeration of Euler graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 147–153. Academic Press, New York (1969)

24. Ron, D.: Property testing (a tutorial). In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim,
J.D.P. (eds.) Handbook of Randomized Computing, vol. II, ch.15. Kluwer Press, Dordrecht
(2001)

25. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Computing 25, 252–271 (1996) (first appeared as a technical report,
Cornell University, 1993)

26. Tutte, W.T.: Graph theory. Addison-Wesley, New York (1984)

Approximately Counting Embeddings into

Random Graphs

Martin Fürer� and Shiva Prasad Kasiviswanathan

Computer Science and Engineering, Pennsylvania State University
{furer,kasivisw}@cse.psu.edu

Abstract. Let H be a graph, and let CH(G) be the number of (sub-
graph isomorphic) copies of H contained in a graph G. We investigate
the fundamental problem of estimating CH(G). Previous results cover
only a few specific instances of this general problem, for example, the
case when H has degree at most one (monomer-dimer problem). In this
paper, we present the first general subcase of the subgraph isomorphism
counting problem which is almost always efficiently approximable. The
results rely on a new graph decomposition technique. Informally, the new
decomposition is a labeling of the vertices generating a sequence of bi-
partite graphs. The decomposition permits us to break the problem of
counting embeddings of large subgraphs into that of counting embed-
dings of small subgraphs. Using this, we present a simple randomized
algorithm for the counting problem. For all decomposable graphs H and
all graphs G, the algorithm is an unbiased estimator. Furthermore, for
all graphs H having a decomposition where each of the bipartite graphs
generated is small and almost all graphs G, the algorithm is a fully poly-
nomial randomized approximation scheme.

We show that the graph classes of H for which we obtain a fully
polynomial randomized approximation scheme for almost all G includes
graphs of degree at most two, bounded-degree forests, bounded-width
grid graphs, subdivision of bounded-degree graphs, and major subclasses
of outerplanar graphs, series-parallel graphs and planar graphs, whereas
unbounded-width grid graphs are excluded.

1 Introduction

Given a template graph H and a base graph G, we call an injection ϕ between
vertices of H and vertices of G an embedding of H into G if ϕ maps every edge
of H into an edge of G. In other words, ϕ is an isomorphism between H and
a subgraph (not necessarily induced) of G. Deciding whether such an injection
exists is known as the subgraph isomorphism problem. Subgraph isomorphism is
an important and general form of pattern matching. It generalizes many interest-
ing graph problems, including Clique, Hamiltonian Path, Maximum Matching,
and Shortest Path. This problem arises in application areas ranging from text
processing to physics and chemistry [1,2,3,4]. The general subgraph isomorphism
problem is NP-complete, but there are various special cases which are known to
be fixed-parameter tractable in the size of H [5].
� Supported in part by NSF award CCF-0728921.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 416–429, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximately Counting Embeddings into Random Graphs 417

In this work, we consider the related fundamental problem of counting the
number of copies of a template graph in another graph. By a copy of H in
G we mean any, not necessarily induced subgraph of G, isomorphic to H . In
general the problem is #P-complete (introduced by Valiant [6]). The class #P
is defined as {f : ∃ a non-deterministic polynomial time Turing machine M such
that on input x, the computation tree of M has exactly f(x) accepting leaves}.
Problems complete for this class are presumably very difficult, especially since
Toda’s result [7] implies that a call to a #P-oracle suffices to solve any problem
in the polynomial hierarchy in polynomial time.

Fixed-parameter tractability of this counting problem has been well-studied
with negative results for exact counting [8] and positive results for some special
cases of approximate counting [9]. In this paper, we are interested in the more
general problem of counting copies of large subgraphs. Exact counting is pos-
sible for very few classes of non-trivial large subgraphs. Two key examples are
spanning trees in a graph, and perfect matchings in a planar graph [10]. A few
more problems such as counting perfect matchings in a bipartite graph (a.k.a.
(0-1) permanent) [11], counting all matchings in a graph [12], counting labeled
subgraphs of a given degree sequence in a bipartite graph [13], counting combi-
natorial quantities encoded by the Tutte polynomial in a dense graph [14], and
counting Hamilton cycles in dense graphs [15], can be done approximately. But
problems like counting perfect matchings in general graphs are still open.

Since most of the other interesting counting problems are hopelessly hard to
solve (in many cases even approximately) [16], we investigate whether there exists
a fully polynomial randomized approximation scheme (henceforth, abbreviated
as fpras) that works well for almost all graphs. The statement can be made
precise as: Let Gn be a graph chosen uniformly at random from the set of
all n-vertex graphs. We say that a predicate P holds for almost all graphs if
Pr[P(Gn) = true] → 1 as n → ∞ (probability over the choice of a random
graph). By fpras we mean a randomized algorithm that produces a result that is
correct to within a relative error of 1± ε with high probability (i.e., probability
tending to 1). The algorithm must run in time poly(n, ε−1), where n is the
input size. We call a problem almost always efficiently approximable if there is a
randomized polynomial time algorithm producing a result within a relative error
of 1± ε with high probability for almost all instances.

Previous attempts at solving these kinds of problems have not been very
fruitful. For example, even seemingly simple problems like counting cycles in
a random graph have remained open for a long time (also stated as an open
problem in the survey by Frieze and McDiarmid [17]). In this paper we present
new techniques that can not only handle simple graphs like cycles, but also major
subclasses of more complicated graph classes like outerplanar, series-parallel,
planar etc.

The theory of random graphs was initiated by Erdős and Rényi [18]. The most
commonly used models of random graphs are G(n, p) and G(n,m). Both models
specify a distribution on n-vertex graphs. In G(n, p) each of the

(
n
2

)
edges is

added to the graph independently with probability p and G(n,m) assigns equal

418 M. Fürer and S.P. Kasiviswanathan

probability to all graphs with exactlym edges. Unless explicitly stated otherwise,
the default model addressed in this paper is G(n, p).

There has been a lot of interest in using random graph models for analyzing
typical cases (beating the pessimism of worst-case analysis). Here, we mention
some of these results relevant to our counting problem (see the survey of Frieze
and McDiarmid [17] for more). One of the most well-studied problem is that
of counting perfect matchings in graphs. For this problem, Jerrum and Sinclair
[19] have presented a simulation of a Markov chain that almost always is an
fpras (extended to all bipartite graphs in [11]). Similar results using other ap-
proaches were obtained later in [20,21,22,23]. Another well-studied problem is
that of counting Hamiltonian cycles in random digraphs. For this problem, Frieze
and Suen [24] have obtained an fpras, and later Rasmussen [21] has presented
a simpler fpras. Afterwards, Frieze et al. [25] have obtained similar results in
random regular graphs. Randomized approximation schemes are also available
for counting the number of cliques in a random graph [26]. However, there are
no general results for counting copies of an arbitrary given graph.

1.1 Our Results and Techniques

In this paper, we remedy this situation by presenting the first general subcase of
the subgraph isomorphism counting problem which is almost always efficiently
approximable. For achieving this result we introduce a new graph decomposition
that we call an ordered bipartite decomposition. Informally, an ordered bipartite
decomposition is a labeling of vertices such that every edge is between vertices
with different labels and for every vertex all neighbors with a higher label have
identical labels. The labeling implicitly generates a sequence of bipartite graphs
and the crucial part is to ensure that each of the bipartite graphs is of small size.
The size of the largest bipartite graph defines the width of the decomposition.
The decomposition allows us to obtain general results for the counting problem
which could not be achieved using the previous methods. It also leads to a
relatively simple and elegant analysis. We will show that many graph classes
have such decomposition, while at the same time many simple small graphs (like
a triangle) may not possess a decomposition.

The actual algorithm itself is based on the following simple sampling idea
(known as importance sampling in statistics): let S = {x1, . . . , xz} be a large
set whose cardinality we want to estimate. Assume that we have a randomized
algorithm A that picks each element xi with non-zero known probability pi.
Then, the function Count (Fig. 1) produces an estimate for the cardinality of S.
The following proposition shows that the estimate is unbiased, i.e., E[Z] = |S|.

Proposition 1. The Function Count is an unbiased estimator for the cardinal-
ity of S.

Proof. It suffices to show that each element xi has an expected contribution of
1 towards |S|. This holds because on picking xi (an event that happens with
probability pi), we set Z to the inverse probability of this event happening.
Therefore, E[Z] =

∑
i pi · 1

p = |S|.
i

Approximately Counting Embeddings into Random Graphs 419

Function Count: Assume pi > 0 for all i and
�z

i=1 pi ≤ 1
If some element xi is picked by A then output Z = 1

p

Else output Z = 0

Fig. 1. Unbiased estimator for the cardinality of S

Similar schemes of counting have previously been used by Hammersley [27] and
Knuth [28] in other settings. Recently, this scheme has been used by Rasmussen
for approximating the permanent of a (0-1) matrix [21], and later for approxi-
mately counting cliques in a graph [26]. A variant of this scheme has also been
used by the authors to provide a near linear-time algorithm for counting perfect
matchings in random graphs [29,23]. This is however the first generalization of
this simple idea to the general problem of counting graph embeddings. Another
nice feature of such schemes is that they also seem to work well in practice [30].

Our randomized algorithm will try to embed H into G. If the algorithm suc-
ceeds in finding an embedding of H in G, it outputs the inverse probability of
finding this embedding. The interesting question here is not only to ensure that
each embedding of H in G has a positive probability of being found but also
to pick each embedding with approximately equal probability to obtain a low
variance. For this purpose, the algorithm considers an increasing subsequence of
subgraphs H̄1 ⊂ H̄2 ⊂ · · · ⊂ H̄� = H of H . The algorithm starts by randomly
picking an embedding of H̄1 in G, then randomly an embedding of H̄2 in G con-
taining the embedding of H̄1 and so on. It is for defining the increasing sequence
of subgraphs that our decomposition is useful.

The algorithm is always an unbiased estimator for CH(G). The decomposition
provides a natural sufficient condition for the class of algorithms based on the
principle of the function Count to be an unbiased estimator. Additionally, if the
base graph is a random graph from G(n, p) with constant p and if the template
graph has an ordered bipartite decomposition of bounded width, we show that
the algorithm is an fpras. The interesting case of the result is when p = 1/2.
Since the G(n, 1/2) model assigns a uniform distribution over all graphs of n given
vertices, an fpras (when the base graph is from G(n, 1/2)) can be interpreted as
an fpras for almost all base graphs. This result is quite powerful because now to
prove that the number of copies of a template graph can be well-approximated
for most graphsG, one just needs to show that the template graph has an ordered
bipartite decomposition of bounded width.

The later half of the paper is devoted to showing that a lot of interesting graph
classes naturally have an ordered bipartite decomposition of bounded width. Let
Ck denote a cycle of length k. In this extended abstract, we show that graphs of
degree at most two, bounded-degree forests, bounded-width grid (lattice) graphs,
subdivision of bounded-degree graphs, bounded-degree outerplanar graphs of
girth at least four, and bounded-degree [C3, C5]-free series-parallel graphs, planar
graphs of girth at least 16 have an ordered bipartite decomposition of bounded
width. Using this we obtain the following result (proved in Theorems 3 and 4).

i

420 M. Fürer and S.P. Kasiviswanathan

Theorem 1 (Main Result). Let H be a simple graph where each connected
component is one of the following: graph of degree at most two, bounded-degree
tree, bounded-width grid, subdivision of a bounded-degree graph, bounded-degree
C3-free outerplanar graph, bounded-degree [C3, C5]-free series-parallel graph, or
planar graphs of girth at least 16. Then, for almost all graphs G, there exists an
fpras for estimating the number of copies of H in G.

Even when restricted to graphs of degree at most two, this theorem recovers
most of the older results. It also provides simpler, unified proofs for (some of)
the results in [20,21,22,24]. For example, to count matchings of cardinality k one
could use a template consisting of k disjoint edges. Similarly, to count all cycles
of length k the template is a cycle of that length. By varying k and boosting the
success probability, the algorithm can easily be extended to count all matchings
or all cycles. This provides the first fpras for counting all cycles in a random
graph (solving an open problem of Frieze and McDiarmid [17]). We omit further
discussion of this problem.

For template graphs coming from the other classes, our result supplies the
first efficient randomized approximation scheme for counting copies of them in
almost all base graphs. For example, it was not known earlier how to even obtain
an fpras for counting the number of copies of a given bounded-degree tree in a
random graph. For the simpler graph classes the decomposition follows quite
straightforwardly, but for graph classes such as subdivision, outerplanar, series-
parallel, and planar, constructing the decomposition requires several new ideas.
Even though our techniques can be extended to other interesting graph classes,
we conclude by showing that our techniques can’t be used to count the copies
of an unbounded-width grid graph in a random graph.

2 Definitions and Notation

Let Q be some function from the set of input strings Σ∗ to natural numbers.
A fully polynomial randomized approximation scheme for Q is a randomized
algorithm that takes input x ∈ Σ∗ and an accuracy parameter ε ∈ (0, 1) and
outputs a number Z (a random variable depending on the coin tosses of the
algorithm) such that,

Pr[(1 − ε)Q(x) ≤ Z ≤ (1 + ε)Q(x)] ≥ 3/4,

and runs in time polynomial in |x|, ε−1. The success probability can be boosted
to 1− δ by running the algorithm O(log δ−1) times and taking the median [31].

Automorphisms are edge respecting permutations on the set of vertices, and
the set of automorphisms form a group under composition. For a graph H , we
use aut(H) to denote the size of its automorphism group. For a bounded-degree
graph H , aut(H) can be evaluated in polynomial time [32]. Most of the other
graph-theoretic concepts which we use, such as planarity are covered in standard
text books (see, e.g., [33]).

Throughout this paper, we use G to denote a base random graph on n vertices.
The graphH is the template whose copies we want to count in G. We can assume

Approximately Counting Embeddings into Random Graphs 421

without loss of generality that the graph H also contains n vertices, otherwise
we just add isolated vertices to H . The number of isomorphic images remains
unaffected. Let � = �(H) denote the maximum degree of H .

For a graph F , we use VF and EF to denote its vertex set and edge set,
respectively. Furthermore, we use vF = |VF | and eF = |EF | for the number of
vertices and edges. For a subset S of vertices of F , NF (S) = {v ∈ VF −S : ∃u ∈
S such that (u, v) ∈ EF } denotes the neighborhood of S in F . F [S] denotes the
subgraph of F induced by S. We use CH(G) to denote the number of copies
of H in G. Let LH(G) = CH(G) · aut(H) denote the number of embeddings
(or labeled copies) of H in G. For a random graph G, we will be interested in
quantities E[CH(G)2] and E[CH(G)]2.

Our algorithm is randomized. The output of the algorithm is denoted by Z,
which is an unbiased estimator of CH(G), i.e., CH(G) = EA[Z] (expectation over
the coin tosses of the algorithm). As the output of our algorithm depends on
both the input graph, and the coin tosses of the algorithm, we use terms such as
EG [EA[Z]]. Here, the inner expectation is over the coin-tosses of the algorithm,
and the outer expectation is over the graphs of G(n, p). Note that EA[Z] is a
random variable defined on the set of graphs.

Because of space constraints proofs are omitted from the following presenta-
tion; all omitted proofs can be found in [34].

3 Approximation Scheme for Counting Copies

We define a new graph decomposition technique which is used for embedding
the template graph into the base graph. As stated earlier our algorithm for em-
bedding works in stages and our notion of decomposition captures this idea.

Ordered Bipartite Decomposition. An ordered bipartite decomposition of
a graph H = (VH , EH) is a sequence V1, . . . , V� of subsets of VH such that:

① V1, . . . , V� form a partition of VH .
② Each of the Vi (for i ∈ [�] = {1, . . . , �}) is an independent set in H .
③ ∀i ∃j such that v ∈ Vi implies NH(v) ⊆

(⋃
k<i Vk

)
∪ Vj .

V i−1

�
j<i Uj

= Ui

= Vi

Property ③ just states that if a neighbor of a vertex
v ∈ Vi is in some Vj (j > i), then all other neighbors of
v which are not in V1 ∪ · · · ∪ Vi−1, are in Vj . Property
③ will be used in the analysis for random graphs to
guarantee that in every stage, the base graph used for
embedding is still random with the original edge prob-
ability. Let V i =

⋃
j≤i Vj . Define Ui = NH(Vi) ∩ V i−1.

Ui is the set of neighbors of Vi in V1∪· · ·∪Vi−1. Define
Hi to be the subgraph ofH induced by Ui∪Vi. Let EHi

422 M. Fürer and S.P. Kasiviswanathan

denote the edge set of graphHi. The width of an ordered bipartite decomposition
is the size (number of edges) of the largest Hi.

The Ui’s will play an important role in our analysis. Note that given a Uj, its
corresponding Vj has the property that Vj ⊇ NH(Uj) − V j−1. Hereafter, when
the context is clear, we just use decomposition to denote an ordered bipartite
decomposition. In general, the decomposition of a graph needn’t be unique. The
following lemma describes some important consequences of the decomposition.

Lemma 1. Let V1, . . . , V� be a decomposition of a graph H = (VH , EH). Then,
the following assertions are true. (i) Each of the Ui is an independent set in H
(Hi is a bipartite graph). (ii) The edge set EH is partitioned into EH1 , . . . , EH .

Every graph has a trivial decomposition satisfying properties ① and ②, but the
situation changes if we add property ③ (C3 is the simplest graph which has no de-
composition). Every bipartite graph though has a simple decomposition, but not
necessarily of bounded width. Note that the bipartiteness ofH is a sufficient con-
dition for it to have an ordered bipartite decomposition, but not a necessary one.

We will primarily be interested in cases where the decomposition is of bounded
width. This can only happen if � is a constant. In general, if � grows as a
function of n, no decomposition could possibly have a bounded width (�/2 is
always a trivial lower-bound for the width). For us the parameter � plays no role.

Algorithm Embeddings(G,H)

Initialize X ← 1, Mark(0) ← ∅, ϕ(∅) ← ∅
let V1, . . . , V� denote an ordered bipartite decomposition of H
for i ← 1 to � do

let Gf ← G[VG − Mark(i − 1) ∪ ϕ(Ui)]
compute Xi (the number of embeddings of Hi in Gf with Ui mapped by ϕ)
pick an embedding u.a.r. (if one exists) and use it to update ϕ
if no embedding exists, then set Z to 0 and terminate
X ← X · Xi

Mark(i) ← Mark(i − 1) ∪ ϕ(Vi)
Z ← X/aut(H)
output Z

The input to the algorithm Embeddings is the template graph H together
with its decomposition and the base graph G. The algorithm tries to construct a
bijection ϕ between the vertices of H and G. Vi represents the set of vertices of
H which get embedded into G during the ith-stage, and the already constructed
mapping of Ui is used to achieve this. For a subset of vertices S ⊆ VH , ϕ(S)
denotes the image of S under ϕ. If X > 0, then the function ϕ represents an
embedding of H in G (consequence of properties ① and ②), and the output X
represents the inverse probability of this event happening. Since every embedding
has a positive probability of being found, X is an unbiased estimator for the

�

Approximately Counting Embeddings into Random Graphs 423

number of embeddings ofH in G (Proposition 1), and Z is an unbiased estimator
for the number of copies of H in G.

The actual procedure for computing the Xi’s is not very relevant for our
results, but note that the Xi’s can be computed in polynomial time if H has a
decomposition of bounded width. In this case the algorithm Embeddings runs
in polynomial time.

3.1 FPRAS for Counting in Random Graphs

Since the algorithm Embeddings is an unbiased estimator, use of Chebyshev’s
inequality implies that repeating the algorithm O(ε−2EA[Z2]/EA[Z]2) times and
taking the mean of the outputs results in a randomized approximation scheme
for estimating CH(G). From here on, we abbreviate CH(G) as C. The ratio
EA[Z2]/EA[Z]2 is commonly referred to as the critical ratio.

We now concentrate on showing that for random graphs the algorithm is
an fpras. A few of the technical details of our proof are somewhat similar to
previous applications of this sampling idea, such as that for counting perfect
matchings [21,23]. The simpler techniques in these previous results, however,
are limited to handling one edge per stage (therefore, working only when H
is a matching). Our algorithm embeds a small sized subgraph at every stage.
The key for obtaining an fpras is to guarantee that the factor contributed to
the critical ratio at every stage is very small (which is now involved because it
is no longer a simple ratio of binomial moments as in [21,23]). Adding this to
the fact that we can do a stage-by-stage analysis of the critical ratio (thanks to
the decomposition property which ensures the graph stays essentially random),
provides the ingredients for the fpras.

The analysis will be done for a worst-case graph H under the assumption that
the sizes of the bipartite graphs Hi’s are bounded by a universal constant w, and
a random graph G. Here, instead of investigating the critical ratio, we investigate
the much simpler ratio EG [EA[Z2]]/EG [EA[Z]]2, which we call the critical ratio
of averages. We use the second moment method to show that these two ratios
are closely related. For this purpose, we take a detour through the G(n,m)
model. The ratio E[C2]/E[C]2 plays an important role here and for bounding
it we use a recent result of Riordan [35]. The result (stated below) studies the
related question of when a random graph G is likely to have a spanning subgraph
isomorphic to H .

In the following, N is used to denote
(
n
2

)
. We say an event holds with high

probability (w.h.p.), if it holds with probability tending to 1 as n→∞.

Theorem 2. (Riordan [35]) Let H be a graph on n vertices. Let eH = αN =
α(n)N , and let p = p(n) ∈ (0, 1) with pN an integer. Suppose that the following
conditions hold: αN ≥ n, and pN, (1− p)

√
n, npγ/�4 →∞, where

γ = γ(H) = max
3≤s≤n

{max{eF : F ⊆ H, vF = s}/(s− 2)}.

Then, w.h.p. a random graph G ∈ G(n, pN) has a spanning subgraph isomorphic
to H.

424 M. Fürer and S.P. Kasiviswanathan

The quantity γ is closely related to twice the maximum average degree of a
subgraph of H . The idea behind the proof is to use Markov’s inequality to
bound Pr[C = 0] in terms of E[C] and V ar[C]. The main thrust lies in proving
that E[C2]/E[C]2 = 1 + o(1). Now by just following Riordan’s proof, we obtain
the following result.

Proposition 2. Let H be a graph on n vertices. Let eH = αN = α(n)N , and
let p = p(n) ∈ (0, 1) with pN an integer. Let ν = max{2, γ}. Suppose that the
following conditions hold: pN, npν/�4 → ∞ and α3Np−2 → 0. Then, w.h.p.
a random graph G ∈ G(n, pN) satisfies E[C2]/E[C]2 = 1 + o(1). In particular,
if H is a bounded-degree graph on n vertices. Then, w.h.p. a random graph
G ∈ G(n,Ω(n2)) satisfies E[C2]/E[C]2 = 1 + o(1).

Note that some of the conditions in Proposition 2 are rephrased from Theo-
rem 2. These are the conditions in the proof of Theorem 2 that are needed for
bounding E[C2]/E[C]2. We will be interested in bounded-degree graphs H . For
a bounded-degree graph H , both � and γ are constants. Additionally, we will
be interested in dense random graphs (where the conditions of Proposition 2
are satisfied). Interpreting Proposition 2 in the G(n, p) model by using known
results for asymptotic equivalence between G(n,m) and G(n, p) models (e.g., see
Proposition 1.12 of [36]) yields

Lemma 2. Let H be a bounded-degree graph on n vertices. Let ω = ω(n) be
any function tending to ∞ as n → ∞, and let p be a constant. Then, w.h.p. a
random graph G ∈ G(n, p) satisfies C ≥ E[C]/ω.

Remark: Since C is fairly tightly concentrated around its mean, a rudimentary
approximation for C is just E[C] = n!p

aut(H) (as vH = n). However, this naive
approach doesn’t produce for any ε > 0, an (1 ± ε)-approximation for C (see,
e.g., [21,20,24,26]).

Using the above result we investigate the performance of algorithm Embed-
dings when G is a random graph. In this extended abstract, we don’t try to
optimize the order of the polynomial arising in the running time analysis. Even
though for simple template instances such as matchings or cycles, one could
easily determine the exact order. The proof idea is to break the critical ratio
analysis of the large subgraph into a more manageable critical ratio analysis of
small subgraphs.

Theorem 3 (Main Theorem). Let H be a n-vertex graph with a decomposi-
tion of width w (a constant). Let Z be the output of algorithm Embeddings, and
let p be a constant. Then, w.h.p. for a random graph G ∈ G(n, p) the critical
ratio EA[Z2]/EA[Z]2 is polynomially bounded in n.

Summarizing: if H has a decomposition of bounded width w, then for almost all
graphs G, running the algorithm Embeddings poly(n)ε−2 times and taking the
mean, results in an (1±ε)-approximation for C. Here, poly(n) is a polynomial in
n depending on w and p. Since each run of the algorithm also takes polynomial
time (as H has bounded width), we get an fpras.

eH

Approximately Counting Embeddings into Random Graphs 425

s1 s1 s1

Fig. 2. Decomposition of a cycle, tree, and grid. The graphs are actually undirected.
The arrows just connect the vertices of Ui to their neighbors in Vi. All out-neighbors
of a vertex are in the same Vi, and all in-neighbors of a vertex are in the same Ui.

4 Graphs with Ordered Bipartite Decomposition

We divide this section into subsections based on the increasing complexity of
the graph classes. Some of the later graph classes include the ones that will be
covered earlier. We will prove the following result in this section.

Theorem 4. Let H be a graph where each connected component is one of the fol-
lowing: graph of degree at most two, tree, bounded-width grid, subdivision graph,
C3-free outerplanar graph, [C3, C5]-free series-parallel graph, or planar graph of
girth at least 16. Then, there exists an ordered bipartite decomposition of H. Fur-
thermore, if H has bounded degree, then the decomposition has bounded width.

Decompositions of subdivision graphs, [C3, C5]-free series-parallel graphs are
omitted in this extended abstract (see [34]). From now onwards, we concen-
trate on connected components of the graph H . If H is disconnected a de-
composition is obtained by combining the decomposition of all the connected
components (in any order). We will abuse notation and let H stand for both
the graph and a connected component in it. � is the maximum degree in
H . For constructing the decomposition, the following definitions are useful,
U i =

⋃
j≤i Uj , V

i =
⋃

j≤i Vj , and Di = V i − U i.

4.1 Some Simple Graph Classes

We start off by considering simple graph classes such as graphs of degree at most
two (paths and cycles), trees, and grid graphs. Fig. 2 illustrates some examples.

– Paths: Let H represent a path (s1, . . . , sk+1) of length k = k(n). Then the
decomposition is, Vi = {si} for 1 ≤ i ≤ k + 1.

– Cycles: First consider the cycles of length four or greater. Let s1, . . . , sk be
the vertices of a cycle H of length k = k(n) enumerated in cyclic order. In
the decomposition, V1 = {s1}, V2 = {s2, sk}, and Vi = {si} for 3 ≤ i ≤ k−1.
Cycles of length three (triangles) don’t have a decomposition, but can easily
be handled separately (see [34]). Actually, if H = H1 ∪ H2, where graphs

426 M. Fürer and S.P. Kasiviswanathan

H1 and H2 are disjoint, H1 has a decomposition of bounded width, and H2

consists of a vertex disjoint union of triangles, then again, there exists an
fpras for estimating C. This also completes the claim for graphs of degree at
most two in Theorem 1.

– Trees: For a tree H , V1 = {s1}, where s1 is any vertex in H . For i ≥ 2, let
Ui be any vertex from Di−1, then Vi is the set of neighbors of this vertex
which are not in V i−1. Intuitively, Vi is the set of children of the vertex in
Ui, if one thinks of H as a tree rooted at s1. The width of the decomposition
is at most �.

– Grids: Let w0 be the width of the grid graph H . Set V1 = {s1}, where s1 is
any corner vertex in H . Later on, Vi is the set of all vertices which are at a
lattice (Manhattan) distance i from s1. Since for each i, there are at most w0

vertices at distance i from from s1, the sizes of the Vi’s are bounded if w0 is
bounded. Consequently, the width of the decomposition is bounded if w0 is
bounded. This construction also extends to higher dimensional grid graphs.

4.2 Outerplanar Graphs

A graph is outerplanar if it has a planar embedding such that all vertices are on
the same face. Let H be a C3-free outerplanar graph. The idea behind the de-
composition is that vertices in Ui partitions the outer face into smaller intervals,
each of which can then be handled separately.

Before we formally describe the decomposition, we need some terminology. Let
s1, . . . , sk be the vertices around the outer face with k = k(n) (ordering defined
by the outerplanar embedding). For symmetry, we add two dummy vertices
s0, sk+1 without neighbors and define U1 = {s0, sk+1}, and V1 = {s1} (the
dummy vertices play no role and can be removed before running the algorithm
Embeddings). For i ≥ 1, two vertices sj0 , sj1 with j0 < j1, define a stage i
interval if sj0 , sj1 ∈ U i, but for j0 < l < j1, sl /∈ U i. If the interval is defined it
is the sequence of vertices between sj0 , sj1 (including the endpoints). Let ai be
a median vertex of I ∩ V i (median based on the ordering), where I is a stage
i interval. Define Ui+1 as the smallest subset of V i containing {ai} and also
NH(NH(Ui+1) − V i) ∩ V i. Define Vi+1 as NH(Ui+1) − V i. We now argue that
this is indeed a decomposition. Consider a stage i interval I, with sj0 , sj1 as the
defining end points, and ai as the median of I ∩ V i.

Lemma 3. For every i ≥ 1, there is a stage i interval I with Ui+1 ⊆ I and
|Ui+1| ≤ |I ∩ V i| ≤ 2�.

The properties ① and ③ of the decomposition are guaranteed by the construction.
Lemma 3 implies that the width of the decomposition is most 2�2. Property ②

holds because there are no triangles in H .

4.3 Planar Graphs

Define a thread as an induced path in H whose vertices are all of degree 2 in H .
A k-thread is a thread with k vertices. Let H be a planar graph of girth at least
16. We first prove a structural result on planar graphs.

Approximately Counting Embeddings into Random Graphs 427

Lemma 4. Let H be a planar graph of minimum degree 2 and girth at least 16,
then H always contains a 3-thread.

In order to define a decomposition, we define a 3-thread partition X1, . . . , Xc of
a planar graph H as a partition of VH such that each Xi satisfies

Xi =
{
{ai},where ai is a degree 0 or 1 vertex in H [VH −

⋃
j<iXj], or

{ai, bi, ci},where ai, bi, ci form a 3-thread in H [VH −
⋃

j<iXj].

Remember that for a subset of vertices S of H , H [S] denotes the subgraph
of H induced by S. By Lemma 4, every planar graph with girth at least 16
has a 3-thread partition. As earlier, we say, a vertex is selected if we add it
to some Vk. Set i = 1. Using the 3-thread partition (which can be constructed
using Lemma 4), a decomposition of a planar graph of girth at least 16 can be
constructed by repeating the following procedure until all vertices are selected.

i. Find the largest index l such that Xl contains a vertex zl which has not yet
been selected, but is adjacent to an already selected vertex.

ii. Define Ui = NH(zl) ∩Di−1 and Vi = NH(Ui)− V i−1.
iii. Increment i.

Lemma 5. Let H be a planar graph of girth at least 16. Then the above proce-
dure finds a decomposition of H of width at most 2�.

5 Negative Result for Ordered Bipartite Decomposition

As mentioned earlier only graphs of bounded degree have a chance of having
a decomposition of bounded width. So a natural question to ask is whether all
bounded-degree graphs with a decomposition have one of bounded width. In this
section, we answer this question negatively by showing that every unbounded-
width grid graph fails to satisfy this condition. For simplicity, we will only con-
sider

√
n×√n grid graphs, but our proof extend to other cases as well.

Let H = (VH , EH) be a
√
n ×
√
n grid graph with VH = {(i, j) : 0 ≤ i, j ≤√

n−1} and EH = {((i, j), (i′, j′)) : i = i′ and |j−j′| = 1 or |i−i′| = 1 and j =
j′}. We now show that any decomposition of H has a width of at least

√
n. Let

V1, . . . , V� be any decomposition of H . Consider any 2×2 square of H defined by
vertices a, b, c, d. The two neighbors a, b of the vertex c with the smallest label
l always have the same label l′ > l. The fourth vertex d has any label l′′ with
l′′ ≥ l and l′′
= l′. We define a new graph H ′ = (VH , EH′) on the same set of
vertices by putting the edge (a, b) into EH′ . Note that all vertices in a connected
component have the same label thus are chosen together.

Let HD be a class of graphs on vertex set VH with exactly one diagonal in
every 2 × 2 square (and no other edges). That is any graph HD = (VH , ED)
from HD has for every (i, j) with 0 ≤ i, j ≤

√
n − 2 exactly one of the edges

((i, j), (i + 1, j + 1)), ((i, j + 1), (i+ 1, j)) in ED and no other edges are in ED.
Note that H ′ ∈ HD. The following theorem shows that any graph HD ∈ HD has
the property that there is a connected component touching top and bottom or
left and right, which in turn implies the desired result.

428 M. Fürer and S.P. Kasiviswanathan

Theorem 5. There exists a connected component of HD that contains at least
one vertex from every row or at least one vertex from every column. Therefore,
there exists no decomposition of a

√
n×
√
n-grid graph H of width

√
n− 1.

Acknowledgments

We thank Andrzej Ruciński for pointing us to [35] and Piotr Berman for sim-
plifying the proofs in Section 5. The authors would also like to thank Sofya
Raskhodnikova, Adam Smith, and Martin Tancer for helpful discussions.

References

1. Dong, H., Wu, Y., Ding, X.: An ARG representation for chinese characters and
a radical extraction based on the representation. In: International Conference on
Pattern Recognition, pp. 920–922 (1988)

2. Artymiuk, P.J., Bath, P.A., Grindley, H.M., Pepperrell, C.A., Poirrette, A.R., Rice,
D.W., Thorner, D.A., Wild, D.J., Willett, P., Allen, F.H., Taylor, R.: Similarity
searching in databases of three-dimensional molecules and macromolecules. Journal
of Chemical Information and Computer Sciences 32, 617–630 (1992)

3. Stahs, T., Wahl, F.M.: Recognition of polyhedral objects under perspective views.
Computers and Artificial Intelligence 11, 155–172 (1992)

4. Levinson, R.: Pattern associativity and the retrieval of semantic networks. Com-
puters & Mathematics with Applications 23(6–9), 573–600 (1992)

5. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

6. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

7. Toda, S.: On the computational power of PP and ⊕P . In: FOCS, pp. 514–519.
IEEE, Los Alamitos (1989)

8. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal of Computing 33(4), 892–922 (2004)

9. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

10. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.). Academic
Press, London (1967)

11. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of ACM 51(4),
671–697 (2004)

12. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on Computing 22(5), 1087–1116 (1993)

13. Bezáková, I., Bhatnagar, N., Vigoda, E.: Sampling binary contingency tables with
a greedy start. In: SODA, pp. 414–423. SIAM, Philadelphia (2006)

14. Alon, N., Frieze, A.M., Welsh, D.: Polynomial time randomized approximation
schemes for Tutte-Gröthendieck invariants: The dense case. Random Structures &
Algorithms 6(4), 459–478 (1995)

15. Dyer, M., Frieze, A.M., Jerrum, M.: Approximately counting Hamilton paths and
cycles in dense graphs. SIAM Journal on Computing 27(5), 1262–1272 (1998)

Approximately Counting Embeddings into Random Graphs 429

16. Jerrum, M.: Counting, sampling and integrating: algorithms and complexity.
Birkhäuser, Basel (2003)

17. Frieze, A.M., McDiarmid, C.: Algorithmic theory of random graphs. Random
Structures & Algorithms 10(1-2), 5–42 (1997)

18. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5, 17–61 (1960)

19. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM Journal on Com-
puting 18(6), 1149–1178 (1989)

20. Frieze, A.M., Jerrum, M.: An analysis of a Monte Carlo algorithm for estimating
the permanent. Combinatorica 15(1), 67–83 (1995)

21. Rasmussen, L.E.: Approximating the permanent: A simple approach. Random
Structures & Algorithms 5(2), 349–362 (1994)

22. Chien, S.: A determinant-based algorithm for counting perfect matchings in a gen-
eral graph. In: SODA, pp. 728–735. SIAM, Philadelphia (2004)

23. Fürer, M., Kasiviswanathan, S.P.: Approximately counting perfect matchings in
general graphs. In: ALENEX/ANALCO, pp. 263–272. SIAM, Philadelphia (2005)

24. Frieze, A.M., Suen, S.: Counting the number of Hamilton cycles in random di-
graphs. Random Structures & Algorithms 3(3), 235–242 (1992)

25. Frieze, A.M., Jerrum, M., Molloy, M.K., Robinson, R., Wormald, N.C.: Gener-
ating and counting Hamilton cycles in random regular graphs. Journal of Algo-
rithms 21(1), 176–198 (1996)

26. Rasmussen, L.E.: Approximately counting cliques. Random Structures & Algo-
rithms 11(4), 395–411 (1997)

27. Hammersley, J.M.: Existence theorems and Monte Carlo methods for the monomer-
dimer problem. Research Papers in Statistics, 125–146 (1966)

28. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
Computation 29(129), 121–136 (1975)

29. Fürer, M., Kasiviswanathan, S.P.: An almost linear time approximation algorithm
for the permanent of a random (0-1) matrix. In: Lodaya, K., Mahajan, M. (eds.)
FSTTCS 2004. LNCS, vol. 3328, pp. 263–274. Springer, Heidelberg (2004)

30. Sankowski, P.: Alternative algorithms for counting all matchings in graphs. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 427–438. Springer,
Heidelberg (2003)

31. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science 43, 169–188
(1986)

32. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences 25, 42–65 (1982)

33. Diestel, R.: Graph theory, 2nd edn. Springer, Heidelberg (2000)
34. Fürer, M., Kasiviswanathan, S.P.: Approximately counting embeddings into ran-

dom graphs. CoRR, arXiv:0806.2287 [cs.DS] (2008)
35. Riordan, O.: Spanning subgraphs of random graphs. Combinatorics, Probability &

Computing 9(2), 125–148 (2000)
36. Janson, S., �Luczak, T., Ruciński, A.: Random graphs. Wiley-Interscience, Chich-

ester (2000)

Increasing the Output Length of Zero-Error

Dispersers

Ariel Gabizon1 and Ronen Shaltiel2

1 Department of Computer Science, Weizmann institute of science, Rehovot, Israel�
2 Department of Computer Science, Haifa University, Haifa, Israel��

Abstract. Let C be a class of probability distributions over a finite set
Ω. A function D : Ω �→ {0, 1}m is a disperser for C with entropy thresh-
old k and error ε if for any distribution X in C such that X gives positive
probability to at least 2k elements we have that the distribution D(X)
gives positive probability to at least (1−ε)2m elements. A long line of re-
search is devoted to giving explicit (that is polynomial time computable)
dispersers (and related objects called “extractors”) for various classes of
distributions while trying to maximize m as a function of k.

In this paper we are interested in explicitly constructing zero-error
dispersers (that is dispersers with error ε = 0). For several interesting
classes of distributions there are explicit constructions in the literature of
zero-error dispersers with “small” output length m and we give improved
constructions that achieve “large” output length, namely m = Ω(k).

We achieve this by developing a general technique to improve the out-
put length of zero-error dispersers (namely, to transform a disperser with
short output length into one with large output length). This strategy
works for several classes of sources and is inspired by a transformation
that improves the output length of extractors (which was given in [29]
building on earlier work by [15]). Nevertheless, we stress that our tech-
niques are different than those of [29] and in particular give non-trivial
results in the errorless case.

Using our approach we construct improved zero-error dispersers for
the class of 2-sources. More precisely, we show that for any constant
δ > 0 there is a constant η > 0 such that for sufficiently large n there
is a poly-time computable function D : {0, 1}n × {0, 1}n �→ {0, 1}ηn

such that for any two independent distributions X1, X2 over {0, 1}n such
that both of them support at least 2δn elements we get that the output
distribution D(X1, X2) has full support. This improves the output length
of previous constructions by [2] and has applications in Ramsey Theory
and in constructing certain data structures [13].

We also use our techniques to give explicit constructions of zero-error
dispersers for bit-fixing sources and affine sources over polynomially large
fields. These constructions improve the best known explicit constructions
due to [26,14] and achieve m = Ω(k) for bit-fixing sources and m =
k − o(k) for affine sources.

� Research supported by Binational Science Foundation (BSF) grant and by Minerva
Foundation grant.

�� Research supported by Binational US-Israel Science Foundation (BSF) grant
2004329 and Israel Science Foundation (ISF) grant 686/07.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 430–443, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Increasing the Output Length of Zero-Error Dispersers 431

1 Introduction

1.1 Background

Randomness extractors and dispersers are functions that refine the randomness
in “weak sources of randomness” that “contain sufficient entropy”. Various vari-
ants of extractors and dispersers are closely related to expander graphs, error
correcting codes and objects from Ramsey theory. A long line of research is
concerned with explicit constructions of these objects and these constructions
have many applications in many areas of computer science and mathematics
(e.g. network design, cryptography, pseudorandomness, coding theory, hardness
of approximation, algorithm design and Ramsey theory).

Randomness extractors and dispersers. We start with formal definitions
of extractors and dispersers. (We remark that in this paper we consider the
“seedless version” of extractors and dispersers).

Definition 1 (min-entropy and statistical distance). Let Ω be a finite set.
The min-entropy of a distribution X on Ω is defined by H∞ (X) = minx∈Ω log2

1
Pr[X=x] . For a class C of distributions on Ω we use Ck to denote the class of all
distributions X ∈ C such that H∞ (X) ≥ k. We say that two distributions X,Y
on Ω are ε-close if 1

2

∑
w∈Ω |Pr[X = w]− Pr[Y = w]| ≤ ε.

When given a class C of distributions (which we call “sources”) the goal is to
design one function that refines the randomness of any distribution X in C. An
extractor produces a distribution that is (close to) uniform whereas a disperser
produces a distribution with (almost) full support. A precise definition follows:

Definition 2 (Extractors and Dispersers). Let C be a class of distributions
on a finite set Ω.

– A function E : Ω �→ {0, 1}m is an extractor for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, E(X) is ε-close to the uniform
distribution on {0, 1}m.

– A function D : Ω �→ {0, 1}m is a disperser for C with entropy threshold
k and error ε > 0 if for every X ∈ Ck, |Supp(D(X))| ≥ (1 − ε)2m (where
Supp(Z) denotes the support of the random variable Z).

We remark that every extractor is in particular a disperser and that the notion
of dispersers only depends on the support of the distributions in C. A long line
of research is concerned with designing extractors and dispersers for various
classes of sources. For a given class C we are interested in designing extractors
and dispersers with as small as possible entropy threshold k, as large as possible
output length m and as small as possible error ε. (We remark that it easily
follows that m ≤ k whenever ε < 1/2).

It is often the case that the probabilistic method gives that a randomly chosen
function E is an excellent extractor. (This is in particular true whenever the class
C contains “not too many” sources). However, most applications of extractors

432 A. Gabizon and R. Shaltiel

and dispersers require explicit constructions, namely functions that can be com-
puted in time polynomial in their input length. Much of the work done in this
area can be described as an attempt of matching the parameters obtained by
existential results using explicit constructions.

Some related work

Classes of sources. Various classes C of distributions were studied in the liter-
ature: The first construction of deterministic extractors can be traced back to
von Neumann [33] who showed how to use many independent tosses of a bi-
assed coin (with unknown bias) to obtain an unbiased coin. Blum [5] considered
sources that are generated by a finite Markov-chain. Santha and Vazirani [28],
Vazirani [28,32], Chor and Goldreich [8], Dodis et al. [11], Barak, Impagliazzo
and Wigderson [1], Barak et al. [2], Raz [27], Rao [25], Bourgain [6], Barak et al.
[3], and Shaltiel [29] studied sources that are composed of several independent
samples from “high entropy” distributions. Chor et al. [9], Ben-Or and Linial [4],
Cohen and Wigderson [10], Mossel and Umans [22], Kamp and Zuckerman [20],
Gabizon, Raz and Shaltiel [15], and Rao [26] studied bit-fixing sources which
are sources in which a subset of the bits are uniformly distributed. Trevisan
and Vadhan [31] and Kamp et al. [19] studied sources which are “samplable”
by “efficient” procedures. Barak et al. [2], Bourgain [7], Gabizon and Raz [14],
and Rao [26] studied sources which are uniform over an affine subspace. Dvir,
Gabizon and Wigderson [12] studied a generalization of affine sources to sources
which are sampled by low degree multivariate polynomials.

Seeded extractors and dispersers. A different variant of extractors and dispersers
are seeded extractors and dispersers (defined by Nisan and Zuckerman [23]). Here
the class C is the class of all distributions on Ω = {0, 1}n. It is easy to verify that
there do not exist extractors or dispersers for C (even when k = n − 1, m = 1
and ε < 1/2). However, if one allows the extractor (or disperser) to receive an
additional independent uniformly distributed input (which is called “a seed”)
then extraction is possible as long as the seed is of length Θ(log(n/ε)). More
precisely, a seeded extractor (or disperser) with entropy threshold k and error ε
is a function F : {0, 1}n×{0, 1}t �→ {0, 1}m such that for any distribution X on
{0, 1}n with H∞ (X) ≥ k the distribution F (X,Y) (where Y is an independent
uniformly distributed variable) satisfies the guarantees of Definition 2. A long
line of research is concerned with explicit constructions of seeded extractors and
dispersers (the reader is referred to [30] for a survey article and to [21,18] for the
current milestones in explicit constructions of extractors).

Zero-error dispersers. In this paper we are interested in zero-error dispersers.
These are dispersers where the output distribution has full support. That is for
every source X in the class C:

{D(x) : x ∈ Supp(X)} = {0, 1}m

We also consider a stronger variant which we call strongly-hitting disperser in
which every output element z ∈ {0, 1}m is obtained with “not too small” prob-
ability. A precise definition follows:

Increasing the Output Length of Zero-Error Dispersers 433

Definition 3 (Zero-error dispersers and strongly hitting dispersers).
Let C be a class of distributions on a finite set Ω.

– A function D is a zero-error disperser for C with entropy threshold k if it
is a disperser for C with entropy threshold k and error ε = 0.

– A function D : Ω �→ {0, 1}m is a μ-strongly hitting disperser for C with en-
tropy threshold k if for every X ∈ Ck and for every z ∈ {0, 1}m, Pr[D(X) =
z] ≥ μ.

Note that a μ-strongly hitting disperser with μ > 0 is in particular a zero-error
disperser and that any μ-strongly hitting disperser has μ ≤ 2−m. The following
facts immediately follow:

Fact 1. Let f : Ω �→ {0, 1}m be a function and let ε ≤ 2−(m+1).

– If f is a disperser with error ε then f is a zero-error disperser (for the same
class C and entropy threshold k).

– If f is an extractor with error ε then f is a 2−(m+1)-strongly hitting disperser
(for the same class C and entropy threshold k).

It follows that extractors and dispersers with small ε immediately trans-
late into zero-error dispersers (as one can truncate the output length to m′ =
log(1/ε) − 1 bits and such a truncation preserves the output guarantees of ex-
tractors and dispersers).

1.2 Increasing the Output Length of Zero-Error Dispersers

For several interesting classes of sources there are explicit constructions of dis-
persers with “large” error (which by Fact 1 give zero-error dispersers with “short”
output length). In this paper we develop techniques to construct zero-error dis-
persers with large output length.

The composition approach. The following methodology for increasing the
output length of extractors was suggested in [15,29]: When given an extractor
E′ with “small” output length t (for some class C) consider the function E(x) =
F (x,E′(x)) where F is a seeded extractor. Shaltiel [29] (building on earlier work
by Gabizon et al. [15]) shows that if E′ and F fulfill certain requirements then this
construction yields an extractor for C with large output length. The high level
idea is that if certain conditions are fulfilled then the distribution F (X,E(X))
(in which the two inputs of F are dependent) is close to the distribution F (X,Y)
(where Y is an independent uniformly distributed variable) and note that the
latter distribution is close to uniform by the definition of seeded extractors. This
technique proved useful for several interesting classes of sources.

We would like to apply an analogous idea to obtain zero-error dispersers.
However, by the lower bounds of [23,24] if F is a seeded extractor (or seeded
disperser) then its seed length is at least log(1/ε). This means that if we want
F (X,Y) to output m bits with error ε < 1/2m we need seed length larger than

434 A. Gabizon and R. Shaltiel

m. This in turn means that we want E′ to have output length t > m which
makes the transformation useless.

There are also additional problems. The argument in [29] requires the “original
function” E′ to be an extractor (and it does not go through if E′ is a disperser)
and furthermore the error of the “target function” E is at least as large as that
of the “original function” E′ (and once again we don’t gain when shooting for
zero-error dispersers).

Summing up we note that if we want to improve the output length of a zero-
error disperser D′ by a composition of the form D(x) = F (x,D′(x)) we need to
use a function F with different properties (a seeded extractor or disperser will
not do) and we need to use a different kind of analysis.

Composing zero-error dispersers. In this paper we imitate the method
of [29] and give a general method to increase the output length of zero-error
dispersers. That is when given:

– A zero-error disperser D′ : Ω �→ {0, 1}t for a class C and “small” output
length t.

– A function F : Ω × {0, 1}t �→ {0, 1}m for “large” output length m.

We identify properties of F that are sufficient so that the construction

D(x) = F (x,D′(x))

gives a zero-error disperser. (The argument is more general and transforms
2−(t+O(1))-stronglyhitting dispersers into 2−(m+O(1))-stronglyhitting dispersers).
We then use this technique to give new constructions of zero-error dispersers and
strongly-hitting dispersers.

Subsource hitters. As explained earlier we cannot choose F to be a seeded
extractor. Instead, we introduce a new object which we call a subsource hitter.
The definition of subsource hitters is somewhat technical and is tailored so that
the construction D(x) = F (x,D′(x)) indeed produces a disperser.

Definition 4 (subsource hitter). A distribution X ′ on Ω is a subsource of a
distribution X on Ω if there exist α > 0 and a distribution X ′′ on Ω such that
X can be expressed as a convex combination X = αX ′ + (1− α)X ′′.

Let C be a class of distributions on Ω. A function F : Ω×{0, 1}t �→ {0, 1}m is
a subsource-hitter for C with entropy threshold k and subsource entropy k − v
if for any X ∈ Ck and z ∈ {0, 1}m there exists a y ∈ {0, 1}t and a distribution
X ′ ∈ Ck−v that is a subsource of X such that for every x ∈ Supp(X ′) we have
that F (x, y) = z.

A subsource hitter has the property that for any z ∈ {0, 1}m there exist y ∈
{0, 1}t and x ∈ Supp(X) such that F (x, y) = z and in particular

{F (x, y) : x ∈ Supp(X), y ∈ {0, 1}t} = {0, 1}m

Increasing the Output Length of Zero-Error Dispersers 435

In addition a subsource hitter has the stronger property that there exists a
subsource X ′ of X (which is itself a source in C) such that for any z ∈ {0, 1}m
there exists y ∈ {0, 1}t such that for any x ∈ Supp(X ′) ⊆ Supp(X), F (x, y) = z.

This property allows us to show that D(x) = F (x,D′(x)) is a zero-error
disperser with entropy threshold k whenever D′ is a zero-error disperser with
entropy threshold k − v. This is because when given a source X ∈ Ck and
z ∈ {0, 1}m we can consider the seed y ∈ {0, 1}t and subsource X ′ guaranteed in
the definition. We have that D′ is a zero-error disperser and that X ′ meets the
entropy threshold of D′. It follows that there exist x ∈ Supp(X ′) ⊆ Supp(X)
such that D′(x) = y. It follows that:

D(x) = F (x,D′(x)) = F (x, y) = z

and this means that D indeed outputs z. (We remark that a more complicated
version of this argument shows that the composition applies to strongly-hitting
dispersers). The exact details are given in the full version. It is interesting to note
that this argument is significantly simpler than that of [29]. Indeed, the definition
of subsource hitters is specifically tailored to make the composition argument
go through and the more complicated task is to design subsource hitters. This
is in contrast to [29] in which the function F is in most cases an “off the shelf”
seeded extractor and the difficulty is to show that the composition succeeds.

1.3 Applications

We use the new composition technique to construct zero-error dispersers with
large output length for various classes of sources. We discuss these constructions
and some applications below.

Zero-error 2-source dispersers. The class of 2-sources is the class of distrib-
utions X = (X1, X2) on Ω = {0, 1}n×{0, 1}n such that X1, X2 are independent.
It is common to consider the case where each of the two distributions X1, X2

has min-entropy at least some threshold k.

Definition 5 (2-source extractors and dispersers). A function f :{0, 1}n×
{0, 1}n �→ {0, 1}m is a 2-source extractor (resp. disperser) with entropy thresh-
old 2 · k and error ε ≥ 0 if for every two independent distributions X1, X2 on
{0, 1}n both having min-entropy at least k, f(X1, X2) is ε-close to the uniform
distribution on {0, 1}m (resp. |Supp(f(X1, X2))| ≥ (1− ε)2m). We say that f is
a zero-error disperser if it is a disperser with error ε = 0. We say that f is a
μ-strongly hitting disperser if for every X1, X2 as above and every z ∈ {0, 1}m,
Pr[f(X1, X2) = z] ≥ μ.

Background. The probabilistic method gives 2-source extractors with m = 2 ·
k−O(log(1/ε)) for any k ≥ Ω(log n). However, until 2005 the best explicit con-
structions [8,32] only achieved k > n/2. The current best extractor construction
[6] achieves entropy threshold k = (1/2 − α)n for some constant α > 0. Im-
proved constructions of dispersers for entropy threshold k = δn (for an arbitrary
constant δ > 0) were given in [2]. These dispersers can output any constant

436 A. Gabizon and R. Shaltiel

number of bits with zero-error (and are μ-strongly hitting for some constant
μ > 0).1 Subsequent work by [3] achieved entropy threshold to k = no(1) and
gives zero-error dispersers that output one bit.

Our results. We use our composition techniques to improve the output length
in the construction of [2]. We show that:

Theorem 2 (2-source zero-error disperser). For every δ > 0 there exists
a ν > 0 and η > 0 such that for sufficiently large n there is a poly(n)-time
computable (ν2−m)-strongly hitting 2-source disperser D : ({0, 1}n)2 �→ {0, 1}m
with entropy threshold 2 · δn and m = ηn.

Note that our construction achieves an output length that is optimal up to con-
stant factors for this entropy threshold. For lower entropy threshold our tech-
niques gives that any explicit construction of a zero-error 2-source disperser D′

with entropy threshold k and output length t = Ω(log n) can be transformed
into an explicit construction of a zero-error 2-source disperser D with entropy
threshold 2 · k and output length m = Ω(k). (See the full version for a precise
formulation that also considers strongly hitting dispersers). This cannot be ap-
plied on the construction of [3] that achieves entropy threshold k = no(1) as this
construction only outputs one bit. Nevertheless, this means that it suffices to
extend the construction of [3] so that it outputs Θ(log n) bits in order to obtain
an output length of m = Ω(k) for low entropy threshold k.

We prove Theorem 2 by designing a subsource hitter for 2-sources and using
our composition technique. The details are given in the full version and a high
level outline appears next.

Outline of the argument. We want to design a function F : {0, 1}n × {0, 1}n ×
{0, 1}t �→ {0, 1}m such that for any 2-source X = (X1, X2) with sufficient min-
entropy and for any z ∈ {0, 1}m there exists a “seed” y ∈ {0, 1}t and a subsource
X ′ of X such that X ′ = (X ′

1, X
′
2) is a 2-source with roughly the same min-

entropy as X and Pr[F (X ′
1, X

′
2, y) = z] = 1. We will be shooting for m = Ω(n)

and t = O(log n).
We construct the seed obtainer F using ideas from [2,3]. Let E be a seeded

extractor with seed length t = O(log n), output length v = Ω(k) and error
εE = 1/100 (such extractors were constructed in [21,18]). When given inputs
x1, x2, y we consider r1 = E(x1, y) and r2 = E(x2, y). By using a stronger variant
of seeded extractors called “strong extractors” it follows that there exists a “good
seed” y ∈ {0, 1}t such that R1 = E(X1, y) and R2 = E(X2, y) are εE-close to
uniform. We then use a 2-source extractor H : {0, 1}v × {0, 1}v �→ {0, 1}m for
very high entropy threshold (say entropy threshold 2 · 0.9v) and very low error

1 In [25] it is pointed out that by enhancing the technique of [2] using ideas from
[3] and replacing some of the components used in the construction with improved
components that are constructed in [25] it is possible to increase the output length
and achieve a zero-error disperser with output length m = kΩ(1) for the same entropy
threshold k.

Increasing the Output Length of Zero-Error Dispersers 437

(say error 2−(m+1) for output length m = Ω(v) = Ω(k)). Such extractors were
constructed in [32]. Our final output is given by:

F (x1, x2, y) = H(E(x1, y), E(x2, y))

This seems strange at first sight as it is not clear why running H on inputs
R1, R2 that are already close to uniform helps. Furthermore, the straightforward
analysis only gives that H(R1, R2) is ε-close to uniform for large error ε ≥ εE =
1/100 and this means that the output of F may miss a large fraction of strings
in {0, 1}m.

The point to notice is that both R1, R2 are close to uniform and therefore
have large support (1− εE)2v ≥ 20.9v. Using Fact 1 we can think of H as a zero-
error disperser. Recall that for dispersers are oblivious to the precise probability
distribution ofR1, R2 and it is sufficient thatR1, R2 have large support. It follows
that indeed every string z ∈ {0, 1}m is hit by H(R1, R2).

This does not suffice for our purposes as we need that any string z is hit with
probability one on a subsourceX ′ = (X ′

1, X
′
2) ofX in which the two distributions

X ′
1 andX ′

2 are independent. For any output string z ∈ {0, 1}m we consider a pair
of values (r1, r2) for R1, R2 on which H(r1, r2) = z (we have just seen that such
a pair exists) and set X ′

1 = (X1|E(X1, y) = r1) and X ′
2 = (X2|E(X2, y) = r2).

Note that these two distributions are indeed independent (as each depends only
on one of the original distributions X1, X2) and that on every x′1 ∈ Supp(X ′

1)
and x′2 ∈ Supp(X ′

2) we have that:

F (x′1, x
′
2, y) = H(E(x′1, y), E(x′2, y)) = H(r1, r2) = z

Furthermore, for a typical choice of (r1, r2) we can show that both X ′
1, X

′
2 have

min-entropy roughly k − v. Thus, setting v appropriately, X ′ is a subsource of
X with the required properties. (A more careful version of this argument can be
used to preserve the “strongly hitting” property).

Interpretation in Ramsey Theory. A famous theorem in Ramsey Theory
(see [17]) states that for sufficiently large N and any 2-coloring of the edges of
the complete graph on N vertices there is an induced subgraph onK = Θ(logN)
vertices which is “monochromatic” (that is all edges are of the same color).

Zero-error 2-source dispersers (with output length m = 1) can be seen as pro-
viding counterexamples to this statement for larger values of K in the following
way: When given a zero-error 2-source disperser D : {0, 1}n×{0, 1}n �→ {0, 1}m
with entropy threshold 2 · k we can consider coloring the edges of the full graph
on N = 2n vertices with 2m colors by coloring an edge (v1, v2) by D(v1, v2). (A
technicality is that D(v1, v2) may be different than D(v2, v1) and to avoid this
problem the coloring is defined by ordering the vertices according to some order
and coloring the edge (v1, v2) where v1 ≤ v2 by D(v1, v2)). The disperser guar-
antee can be used to show that any induced subgraph with K = 2k+1 vertices
contains edges of all 2m colors.2

2 In fact, Dispersers translate into a significantly stronger guarantee that discusses
colorings of the edges of the complete N by N bipartite graph such that any induced
K by K subgraph has all colors.

438 A. Gabizon and R. Shaltiel

Note that dispersers with m > 1 translate into colorings with more colors and
that in this context of Ramsey Theory the notion of a zero-error disperser seems
more natural than one that allows error. Our constructions achieve m = Ω(k)
and thus the number of colors in the coloring approaches the size of the induced
subgraph.

Generalizing this relation between dispersers and Ramsey theory we can view
any zero-error disperser for a class C as a coloring of all x ∈ Ω such that any set
S that is obtained as the support of a distribution in C is colored by all possible
2m colors.

Rainbows and implicit O(1)-probe search. As we now explain, explicit
constructions of zero-error 2-source dispersers can be used to construct certain
data structures (this connection is due to [13]).

Consider the following problem: We are given a set S ⊆ {0, 1}n of size 2k.
We want to store the elements of S in a table T of the same size where every
entry in the table contains a single element of S (and so the only freedom is in
ordering the elements of S in the table T). We say that T supports q-queries if
given x ∈ {0, 1}n we can determine whether x ∈ S using q queries to T (note for
example that ordered tables and binary search support q = k queries). Yao [34]
and Fiat and Naor [13] showed that it is impossible to achieve q = O(1) when
n is large enough relative to k. (This result can be seen as a kind of Ramsey
Theorem).

Fiat and Naor [13] gave explicit constructions of tables that support q = O(1)
queries when k = δ · n for any constant δ > 0. This was achieved by reducing
the implicit probe search problem to the task of explicitly constructing a certain
combinatorial object that they call a “rainbow”.

Loosely speaking a rainbow is a zero-error disperser for the class of distri-
butions X that are composed of q independent copies of a high min-entropy
distribution. We stress that for this application one needs (strongly-hitting) dis-
persers with large output length. More precisely, in order to support q = O(1)
queries one requires such dispersers that have output length m that is a constant
fraction of the entropy threshold.

Our techniques can be used to explicitly construct rainbows which in turn
allow implicit probe schemes that support q = O(1) queries for smaller values
of k than previously known. More precisely for any constant δ > 0 and k = nδ

there is a constant q and a scheme that supports q queries. The precise details
are given in the full version. (We remark that one can also achieve the same
results by using the technique of [13] and plugging in recent constructions of
seeded dispersers).

Zero-error dispersers for bit-fixing sources. The class of bit-fixing sources
is the class of distributions X on Ω = {0, 1}n such that there exists a set S ⊆ [n]
such that XS (that is X restricted to the indices in S) is uniformly distributed
and X[n]\S is constant. Note that for such a source X , H∞ (X) = |S|. (We
remark that these sources are sometimes called “oblivious bit-fixing sources”
to differentiate them from “non-oblivious bit-fixing sources” in which X[n]\S is
allowed to be a function of XS).

Increasing the Output Length of Zero-Error Dispersers 439

Background. The function Parity(x) (that is the exclusive-or of the bits of x) is
obviously an extractor for bit-fixing sources with entropy threshold k = 1, error
ε = 0 and output lengthm = 1. It turns out that there are no errorless extractors
for m = 2. More precisely, [9] showed that for k < n/3 there are no extractors
for bit-fixing sources with ε = 0 and m = 2. For larger values of k, [9] give
constructions with m > 1 and ε = 0. For general entropy threshold k the current
best explicit construction of extractors for bit-fixing sources is due to [26] (in
fact, this extractor works for a more general class of “low weight affine sources”).
These extractors work for any entropy threshold k ≥ (log n)c for some constant
c, and achieve output length m = (1 − o(1))k for error ε = 2−k (1)

. Using Fact
1 this gives a zero-error disperser with output length m = kΩ(1).

Our results. We use our composition techniques to construct zero-error dis-
persers for bit-fixing sources with output length m = Ω(k). We show that:

Theorem 3 (Zero-error disperser for bit-fixing sources). There exist c >
1 and η > 0 such that for sufficiently large n and k ≥ (log n)c there is a poly(n)-
time computable zero-error disperser D : {0, 1}n �→ {0, 1}m for bit-fixing sources
with entropy threshold k and output length m = ηk.

Note that our construction achieves an output length that is optimal up to
constant factors. We prove Theorem 3 by designing a subsource hitter for bit-
fixing sources and using our composition technique. The details are given in the
full version and a high level outline appears next.

Outline of the argument. Our goal is to design a subsource hitter G : {0, 1}n ×
{0, 1}t �→ {0, 1}m for bit-fixing sources with entropy threshold k, output length
m = Ω(k) and “seed length” t = O(log n). We make use of the subsource hitter
for 2-sources F : {0, 1}n × {0, 1}n × {0, 1}O(logn) �→ {0, 1}m that we designed
earlier. We apply it for entropy threshold k′ = k/8 and recall that it has output
length m = Ω(k′) = Ω(k).

When given a seed y ∈ {0, 1}t for G we think about it as a pair of strings
(y′, y′′) where y′ is a seed for F and y′′ is a seed for an explicit construction of
pairwise independent variables Z1, . . . , Zn where for each i, Zi takes values in
{1, 2, 3} (indeed there are such constructions with seed length O(log n)). When
given such a seed y′′ we can use the values Z1, . . . , Zn to partition the set [n]
into three disjoint sets T1, T2, T3 by having each index i ∈ [n] belong to TZ . We
construct G as follows:

G(x, (y′, y′′)) = F (xT1 , xT2 , y
′)

In words, we use y′′ to partition the given n bit string into three strings and
we run F on the first two strings (padding each of them to length n) using the
seed y′.

We need to show that for any bit-fixing source X of min-entropy k and for
any z ∈ {0, 1}m there exist a seed y = (y′, y′′) and a subsource X ′ of X such
that X ′ is a bit-fixing source with roughly the same min-entropy as X and
Pr[G(X ′, (y′, y′′)) = z] = 1.

Ω

i

440 A. Gabizon and R. Shaltiel

We have that X is a bit-fixing source and let S ⊆ [n] be the set of its “good
indices”. Note that |S| ≥ k. By the “sampling properties” of pairwise indepen-
dent distributions (see e.g. [16] for a survey on “averaging samplers”) it follows
that there exists a y′′ such that for every i ∈ [3], |S ∩ Ti| ≥ k/8. It follows that
XT1 , XT2 , XT3 are bit-fixing sources with min-entropy at least k/8 (and note
that these three distributions are independent). Thus, by the properties of the
subsource hitter F there exist x1, x2, y

′ such that F (x1, x2, y
′) = z (note that

here we’re only using the property that F “hits z” and do not use the stronger
property that F “hits z on a subsource”). Consider the distribution

X ′ = (X |XT1 = x1 ∧XT2 = x2)

This is a subsource of X which is a bit-fixing source with min-entropy at least
k/8 (as we have not fixed the k/8 good bits in T3). It follows that for every
x ∈ Supp(X ′)

G(x, (y′, y′′)) = F (x1, x2, y
′) = z

and G is indeed a subsource hitter for bit-fixing sources.

Affine sources. The class of affine sources is the class of distributions X on
Ω = Fn

q (where Fq is the finite field of q elements) such that X is uniformly
distributed over an affine subspace V in Fn

q . Note that such a source X has
min-entropy log q ·dim(V). Furthermore, any bit-fixing source is an affine source
over F2.

Background. For F2 the best explicit construction of extractors for affine sources
was given in [7]. This construction works for entropy threshold k = δn (for any
fixed δ > 0) and achieves output length m = Ω(k) with error ε < 2−m.

Extractors for lower entropy thresholds were given by [14] in the case that
q = nΘ(1). For any entropy threshold k > log q these extractors can output
m = (1 − o(1))k bits with error ε = n−Θ(1). Using Fact 1 this gives zero-error
dispersers with output length m = Θ(log n).

Our results. Our composition techniques can be applied on affine sources. We
focus on the case of large fields (as in that case we can improve the results of
[14]). We remark that our techniques also apply when q is small (however, at the
moment we do not gain by applying them on the existing explicit constructions).
We prove the following theorem:

Theorem 4. Fix any prime power q and integers n, k such that q ≥ n18 and 2 ≤
k < n. There is a poly(n, log q)-time computable zero-error disperser D : Fn

q �→
{0, 1}m for affine sources with entropy threshold k · log q and m = (k− 1) · log q.

Outline of the argument. We use our composition techniques to give a differ-
ent analysis of the construction of [14] which shows that this construction also
gives a zero-error disperser. The construction of [14] works by first constructing
an affine source extractor D′ with small output length m = Θ(log n) and then
composing it with some function F to obtain an extractor D(x) = F (x,D′(x))
that extracts many bits (with rather large error). We observe that the function

Increasing the Output Length of Zero-Error Dispersers 441

F designed in [14] is in fact a subsource hitter for affine sources and therefore our
composition technique gives that the final construction is a zero-error disperser.

2 Open Problems

2-sources. One of the most important open problems in this area is to give
constructions of extractors for entropy threshold k = o(n). Such constructions
are not known even for m = 1 and large error ε.

There are explicit constructions of zero-error dispersers with k = no(1) [3].
However, these dispersers only output one bit. Improving the output length in
these constructions to Θ(log n) bits will allow our composition techniques to
achieve output length m = Ω(k).

Another intriguing problem is that for the case of zero-error (or strongly
hitting) dispersers we do not know whether the existential results proven via
the probabilistic method achieve the best possible parameters. More precisely, a
straightforward application of the probabilistic method gives zero-error 2-source
dispersers which on entropy threshold 2 · k output m = k − log(n − k) − O(1)
bits. On the other hand the lower bounds of [23,24] can be used to show that
any zero-error 2-source disperser with entropy threshold 2 ·k has m ≤ k+O(1).3

O(1)-sources, rainbows and implicit probe search. When allowing �-sources for
� = O(1) we give constructions of zero-error dispersers which on entropy thresh-
old k = nΩ(1) achieve output length m = Ω(k). An interesting open problem is
to try and improve the entropy threshold. As explained in the full version this
immediately implies improved implicit probe search schemes.

Bit-fixing sources. We give constructions of zero-error dispersers which on en-
tropy threshold k achieve m = Ω(k). A straightforward application of the prob-
abilistic method gives zero-error dispersers with m = k− logn− o(logn). We do
not know how to match these parameters with explicit constructions.

Affine sources. We constructed a subsource hitter for affine sources over rel-
atively large fields (that is q = nΘ(1)). It is interesting to try and construct
subsource hitters for smaller fields.

Finally, it is also natural to ask whether our composition approach applies to
other classes of sources.

Acknowledgements

We are grateful to Ran Raz for his support.

3 Radhakrishnan and Ta-Shma [24] show that any seeded disperser D : {0, 1}n ×
{0, 1}t → {0, 1}m that is nontrivial in the sense that m ≥ t+1 has t ≥ log(1/ε)−O(1).
A zero-error 2-source disperser D′ with entropy threshold k can be easily transformed
into a seeded disperser with seed length t = k by setting D(x, y) = D′(x, y′) where
y′ is obtained by padding the k bit long “seed” y with n − k zeroes. The bound
follows as D′ has error smaller than 2−m.

442 A. Gabizon and R. Shaltiel

References

1. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few in-
dependent sources. SIAM J. Comput 36(4), 1095–1118 (2006)

2. Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating in-
dependence: New consturctions of condenesers, ramsey graphs, dispersers, and ex-
tractors. In: STOC 2005, pp. 1–10 (2005)

3. Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-
polynomial entropy and Ramsey graphs beating the Frankl–Wilson construction.
In: STOC 2006, pp. 671–680 (2006)

4. Ben-Or, M., Linial, N.: Collective coin flipping. ADVCR: Advances in Computing
Research 5, 91–115 (1989)

5. Blum, M.: Independent unbiased coin flips from a correlated biased source-a finite
stae markov chain. Combinatorica 6(2), 97–108 (1986)

6. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory 1, 1–32

7. Bourgain, J.: On the construction of affine extractors. Geometric And Functional
Analysis 17(1), 33–57 (2007)

8. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing 17(2), 230–261
(1988); Special issue on cryptography

9. Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem or t-resilient functions. In: FOCS 1985, pp. 396–407 (1985)

10. Cohen, A., Wigderson, A.: Dispersers, deterministic amplification and weak ran-
dom sources. In: FOCS 1989, pp. 14–25 (1989)

11. Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from
two independent sources. In: Jansen, K., Khanna, S., Rolim, J., Ron, D. (eds.)
RANDOM 2004. LNCS, vol. 3122, pp. 334–344. Springer, Heidelberg (2004)

12. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-
mial sources. In: FOCS 2007, pp. 52–62 (2007)

13. Fiat, A., Naor, M.: Implicit O(1) probe search. SICOMP: SIAM Journal on Com-
puting 22 (1993)

14. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
In: FOCS 2005, pp. 407–418 (2005)

15. Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing sources
by obtaining an independent seed. SICOMP: SIAM Journal on Computing 36(4),
1072–1094 (2006)

16. Goldreich, O.: A sample of samplers – A computational perspective on sampling
(survey). In: ECCCTR: Electronic Colloquium on Computational Complexity,
technical reports (1997)

17. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley, Chichester
(1980)

18. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from parvaresh-vardy codes. In: CCC 2007, pp. 96–108 (2007)

19. Kamp, J., Rao, A., Vadhan, S., Zuckerman, D.: Deterministic extractors for small-
space sources. In: STOC 2006, pp. 691–700 (2006)

20. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput. 36(5), 1231–1247 (2007)

21. Lu, C., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal up to con-
stant factors. In: STOC 2003, pp. 602–611 (2003)

Increasing the Output Length of Zero-Error Dispersers 443

22. Mossel, E., Umans, C.: On the complexity of approximating the vc dimension. In:
CCC 2001, pp. 220–225 (2001)

23. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43–52 (1996)

24. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000)

25. Rao, A.: Extractors for a constant number of polynomially small min-entropy in-
dependent sources. In: STOC 2006, pp. 497–506 (2006)

26. Rao, A.: Extractors for low weight affine sources (unpublished manuscript) (2008)
27. Raz, R.: Extractors with weak random seeds. In: STOC 2005, pp. 11–20 (2005)
28. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from semi-random

sources. Journal of Computer and System Sciences 33, 75–87 (1986)
29. Shaltiel, R.: How to get more mileage from randomness extractors. In: CCC 2006,

pp. 46–60 (2006)
30. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin

of the EATCS 77, 67–95 (2002)
31. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In:

FOCS 2000, pp. 32–42 (2000)
32. Vazirani, U.: Strong communication complexity or generating quasi-random se-

quences from two communicating semi-random sources. Combinatorica 7, 375–392
(1987)

33. von Neumann, J.: Various techniques used in connection with random digits. Ap-
plied Math Series 12, 36–38 (1951)

34. Yao, A.C.-C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)

Euclidean Sections of �N
1 with Sublinear

Randomness and Error-Correction over the

Reals

Venkatesan Guruswami1,�, James R. Lee2,��, and Avi Wigderson3

1 Department of Comp. Sci. & Eng., University of Washington, and (on leave at)
School of Mathematics, Institute for Advanced Study, Princeton
2 Department of Comp. Sci. & Eng., University of Washington

3 School of Mathematics, Institute for Advanced Study, Princeton

Abstract. It is well-known that RN has subspaces of dimension pro-
portional to N on which the �1 and �2 norms are uniformly equivalent,
but it is unknown how to construct them explicitly. We show that, for
any δ > 0, such a subspace can be generated using only Nδ random
bits. This improves over previous constructions of Artstein-Avidan and
Milman, and of Lovett and Sodin, which require O(N log N), and O(N)
random bits, respectively.

Such subspaces are known to also yield error-correcting codes over the
reals and compressed sensing matrices. Our subspaces are defined by the
kernel of a relatively sparse matrix (with at most Nδ non-zero entries per
row), and thus enable compressed sensing in near-linear O(N1+δ) time.

As in the work of Guruswami, Lee, and Razborov, our construction
is the continuous analog of a Tanner code, and makes use of expander
graphs to impose a collection of local linear constraints on vectors in the
subspace. Our analysis is able to achieve uniform equivalence of the �1
and �2 norms (independent of the dimension). It has parallels to iterative
decoding of Tanner codes, and leads to an analogous near-linear time
algorithm for error-correction over reals.

1 Introduction

Given x ∈ RN , one has the straightforward inequality ‖x‖2 ≤ ‖x‖1 ≤
√
N‖x‖2.

Classical results of Figiel, Lindenstrauss, and Milman [FLM77] and Kasin [Kas77]
show that for every η > 0, there exists a constant C(η) and a subspace X ⊆ RN

with dim(X) ≥ (1− η)N such that for every x ∈ X ,

C(η)
√
N‖x‖2 ≤ ‖x‖1 ≤

√
N‖x‖2.

We say that such a subspace has distortion at most C(η), where for a subspace
X ⊆ RN , we define the distortion of X as the quantity

Δ(X) = sup

√
N‖x‖2
‖x‖1

.

� Supported by a Packard Fellowship and NSF grant CCR-0324906 to the IAS.
�� Research supported by NSF CAREER award CCF-0644037.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 444–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

x∈X
x �=0

Euclidean Sections of �N
1 with Sublinear Randomness 445

The distortion always lies in the range 1 � Δ(X) �
√
N , and describes the

extent to which the �2 mass of vectors in X is spread among the coordinates.
It is known that subspaces with good distortion give rise to error-correcting

codes over the reals and compressed sensing matrices [KT07, Don06]. When
viewed as embeddings of �n2 into �N1 (hence the terminology “distortion”), they
are useful for problems like high-dimensional nearest-neighbor search [Ind06].
We discuss connections of our work to coding over reals in Section 3.

The existence proofs of [FLM77, Kas77] proceed by showing that a random
subspace (for various notions of “random”) satisfies the above conditions with
positive probability. The problem of explicit constructions of these subspaces has
been raised by a number of authors; see, e.g. [Sza06, Sec. 4], [Mil00, Prob. 8],
[JS01, Sec. 2.2].

Although no explicit construction is known, there has been progress on reduc-
ing the amount of randomness needed to construct such subspaces. Kasin’s proof
[Kas77] is particularly amenable to such analysis because the subspaces he con-
structs are kernels of uniformly random sign matrices. This immediately gives
rise to an algorithm which produces such a matrix using O(N2) random bits.
Previous approaches to partial derandomization construct sign matrices whose
entries are non-independent random signs; indeed, Artstein-Avidan and Milman
reduce the randomness requirement to O(N logN) using random walks on ex-
pander graphs [AAM06], and Lovett and Sodin [LS07] improve this to O(N)
random bits by employing, in addition, families of Θ(logN)-wise independent
random variables. We remark that the pseudorandom generator approach of In-
dyk [Ind06] can be used to efficiently construct such subspaces using O(N log2N)
random bits.

As pointed out in [LS07], since these direct approaches require taking a union
bound over an (exponentially large) ε-net, it is unlikely that they can be pushed
beyond a linear dependence on the number of random bits. In contrast, the
approaches of Indyk [Ind07] and Guruswami, Lee, and Razborov [GLR08] are
inspired by work in randomness extraction and the theory of error-correcting
codes. The latter paper uses a continuous variant of expander codes to deter-
ministically construct a subspace X ⊆ RN satisfying dim(X) ≥ (1 − o(1))N
and,

Δ(X) � (logN)O(log log log N) .

Even using sub-linear randomness, they are only able to achieve a distortion of
poly(logN). In the present paper, we continue with the expander codes approach
of [GLR08], with a different construction and analysis. As a result, we are able
to produce almost-Euclidean sections of �N1 with constant distortion and pro-
portional dimension, while using only N δ random bits for any δ > 0. In Section
2 and Remark 1, we discuss how our analysis overcomes some difficulties from
[GLR08].

In the next section, we show that given a subspace X ⊆ Rn with dim(X) ≥
(1−η)n, for everyN ≥ n there exists a simple, explicit construction of a subspace
X ′ ⊆ RN satisfying dim(X ′) ≥ (1 − 2η)N and Δ(X ′) ≤ NO(1

log)Δ(X). If
X is the kernel of a sign matrix, then so is X ′. By choosing n = N δ/2 and

n

446 V. Guruswami, J.R. Lee, and A. Wigderson

generating X as the kernel of a random sign matrix, we achieve a construction
with Δ(X ′) = 2O(1/δ) distortion using at most N δ random bits.

1.1 Preliminaries

We use [M] to denote the set {1, 2, . . . ,M}. For x ∈ RN and a subset I ⊆ [N],
we denote by xI ∈ R|I| the restriction of x to the coordinates in I.

Definition 1 (Well spread subspaces). A subspace L ⊆ Rm is said to be
(b, ρ)-spread if for every y ∈ L, and every set S ⊆ [m] size at least m − b,
‖yS‖2 � ρ‖y‖2.

As stated below, there is a straightforward relation between spread subspaces
and distortion (see, e.g. [GLR08, Lemma 2.11]), but the former notion is a well-
suited to our arguments

Lemma 1. Suppose X ⊆ RN .

1. If X is (b, ρ)-spread then

Δ(X) ≤
√
N

b
· ρ−2;

2. Conversely, X is
(

N
2Δ(X)2 ,

1
4Δ(X)

)
-spread.

We will make use of the following (non-constructive) result on the existence
of well-spread subspaces; it is due to Kasin [Kas77], with the optimal bound
obtained by Garnaev and Gluskin for uniformly random subspaces [GG84]. The
proof that sign matrices suffice is now standard, given the covering estimates of
Schütt [Sch84]; see e.g. [LS07, Lemma B].

Theorem 2. For all integers 1 � k < d, there exists a subspace Y ⊆ Rd of
dimension at least d− k, specified as the kernel of a k× d sign matrix, such that

Δ(Y) � O
(√

d
k log d

k

)
, and so by Lemma 1, Y is

(

Ω

(
k

log(d/k)

)

, Ω

(√
k

d log(d/k)

))

-spread.

In fact, a random such matrix has this property with probability 1− od(1).

Definition 3 (Subspaces from regular graphs). Given an undirected d-
regular graph G = (V,E) with N edges and a subspace L ⊆ Rd, we define the
subspace T (G,L) ⊆ RN by

T (G,L) = {x ∈ RN | xΓ (v) ∈ L for every v ∈ V } . (1)

where Γ (v) is the set of d edges incident on v in some fixed order.

Euclidean Sections of �N
1 with Sublinear Randomness 447

The definition of the subspace T (G,L) is inspired by the construction of ex-
pander codes, following Sipser and Spielman [SS96] and Tanner [Tan81] in the
case of finite fields, and its adaptation to the reals by Guruswami, Lee, and
Razborov [GLR08].

Definition 4 (Expander). A simple, undirected graphG is said to be an (n, d, λ)-
expander if G has n vertices, is d-regular, and the second largest eigenvalue of the
adjacency matrix of G in absolute value is at most λ.

For a graph G = (V,E) (which will be clear from context) and W ⊆ V , we
denote by E(W) the set of edges both of whose endpoints lie in W . For two
subsets X,Y ⊆ V (which could intersect), we denote by E(X,Y) the (multi)set
of edges with one endpoint in X and the other in Y . Recall that for a vertex
v ∈ V , Γ (v) ⊆ E is the set of edges incident upon v.

2 Derandomized Sections

Following [GLR08], we now show that if L is well-spread and G is an expander
graph, then T (G,L) is itself well-spread. This immediately implies the ability
to create large dimensional low-distortion subspaces from those with smaller
dimension. In Remark 1, we discuss how our analysis is able to overcome the
apparent barrier in [GLR08]. Finally, in Section 2.2, we present a construction
of Noga Alon which shows that our analysis is tight amongst a certain class of
approaches.

2.1 Spread Boosting

The following is the analog of the spread-boosting theorem in [GLR08], except
we only care about the mass outside edges in induced subgraphs of G (and not
an arbitrary collection of edges of certain size).

Lemma 2. Let G = (V,E) be an (n, d, λ)-expander, and let L ⊆ Rd be a
(d/B, ρ)-spread subspace for some parameters B > 1 and ρ < 1. Then, for
all W ⊆ V , |W | � n

2B , there exists a subset Z ⊆W , |Z| �
(

2λB
d

)2 |W | such that
for every x ∈ T (G,L) the following holds:

∑

e/∈E(W)

x2
e � ρ2

∑

e/∈E(Z)

x2
e . (2)

Proof. Given W , we define Z as follows:

Z =
{

w ∈W : |NG(w) ∩W | � d

B

}

.

By definition, |E(Z,W)| � d
B |Z|. On the other hand, by the expander mixing

lemma (see, e.g. [HLW06, §2.4]),

|E(Z,W)| � d|Z| |W |
n

+ λ
√
|Z||W | � d|Z|

2B
+ λ

√
|Z||W | .

448 V. Guruswami, J.R. Lee, and A. Wigderson

Combining the two bounds, |Z| �
(

2λB
d

)2 |W |. By definition of Z and the
(d/B, ρ)-spread property of L, it follows easily that

∑

e∈E(W,W)

x2
e � ρ2

∑

v∈W\Z

‖xΓ (v)‖22 . (3)

Now
∑

v∈W\Z

‖xΓ (v)‖22 � ‖x‖22 −
∑

e∈E(W)

x2
e −

∑

e∈E(Z)

x2
e =

∑

e/∈E(Z)

x2
e −

∑

e∈E(W)

x2
e . (4)

Combining the previous two bounds, we get the desired conclusion (2).

Remark 1 (Comparison to [GLR08]). A generalization of the T (G,L) construc-
tion (and, indeed, the natural setting for expander codes) is to consider a bipartite
graph H = (VL, VR, E) with N = |VL|, in which every node of VR has degree
exactly d. In this case, given L ⊆ Rd, one defines the subspace

X(H,L) =
{
x ∈ RN : xΓ (j) ∈ L for every j ∈ VR

}
,

where now ΓH(j) ⊆ VL denotes the neighbors of a vertex j ∈ VR. Clearly
T (G,L) = X(H,L), where H is defined by VL = E(G), VR = V (G), and the
edges of H are naturally given by edge-vertex incidence in G.

The paper [GLR08] analyzes the well-spreadness of X(H,L) in terms of the
well-spreadness of L and the combinatorial expansion properties of H (i.e. how
large are the neighbor sets of subsets S ⊆ VL). There does not exist a bipar-
tite expander graph H with properties strong enough to imply our main result
(Corollary 7), if one requires expansion from every subset S ⊆ VL, and uses only
the iterative spreading analysis of [GLR08]. We overcome this by structuring the
iteration so that only certain subsets arise in the analysis, and we only require
strong expansion properties from these subsets. Lemma 2 represents this idea,
applied to the subspace T (G,L). Here, the special subsets are precisely those
edge sets which arise from induced subgraphs of G (as opposed to arbitrary
subsets of the edges).

Iterating Lemma 2 yields the following.

Corollary 5. Let G = (V,E) be an (n, d, λ)-expander, and L ⊆ Rd be a (d/B, ρ)-
spread subspace. Let � be an integer such that

(
d

2λB

)2�

� n

2B
.

Then for all x ∈ T (G,L) with ‖x‖2 = 1 and every W ⊆ V with |W | < n
2B , we

have ∑

e/∈E(W)

x2
e � ρ2� .

We now come to the proof of our main theorem.

H

Euclidean Sections of �N
1 with Sublinear Randomness 449

Theorem 6 (Main). Let G = (V,E) be an (n, d, λ)-expander with N = nd/2
edges. Let L ⊆ Rd be a (d/B, ρ)-spread subspace of co-dimension at most ηd for
some parameters ρ, η < 1 and B > 1. Then the subspace T (G,L) ⊆ RN has
dimension at least N(1− 2η) and it is

where the last but one step follows since L is (d/B, ρ)-spread, and |Γ (v) ∩ F | �
d/B when v /∈ W . Combining (7) and (8) gives our desired goal (5).

The main application of the above theorem is the following result.

Corollary 7 (Constant distortion with sub-linear randomness). For
every δ, η > 0 and every N ≥ 1, there is a randomized (Monte Carlo) con-
struction of a subspace X ⊆ RN using N δ random bits that has dimension at

least (1− η)N and distortion Δ(X) �
(

1
η

)O(1/δ)

.

Proof. For every N ′ ≥ 1, it is known how to construct an explicit (n, d, λ)-
expander, with λ ≤ d0.9, nδ/4 ≤ d ≤ nδ/2 such that N ′ ≤ N ≤ 10N ′, where N =
nd/2 [LPS88] (also see [HLW06, §2.6.3] for a discussion of explicit constructions
of expander graphs).

(
N

2B2
,

ρ√
2
n

− log(1/ρ)
log(d/(2λB))

)

-spread .

In particular, by Lemma 1, this implies

Δ(T (G, L)) � 2
√

2B
ρ2

· n
2 log(1/ρ)

log(d/(2λB)) .

Proof. The claim about the dimension of T (G, L) is obvious. Fix an arbitrary
x ∈ T (G, L) with ‖x‖2 = 1. Let F ⊆ E be an arbitrary set with |F | � N

2B2 = nd
4B2 .

We need to prove that
∑

e/∈F

x2
e � ρ2

2
n

−2 log(1/ρ)
log(d/(2λB)) . (5)

Define
W =

{
v ∈ V : |F ∩ Γ (v)| > d/B

}
. (6)

Since 2|F | > |W |d/B, we have |W | < 2|F |B
d � n

2B . We can now apply Corollary 5

with a choice of � that satisfies
(

d
2λB

)2� � nd � n2, and conclude that

∑

e/∈E(W)

x2
e � ρ2� � n− 2 log(1/ρ)

log(d/(2λB)) (7)

We have the chain of inequalities

2
∑

e/∈F

x2
e =

∑

v∈V

‖xΓ (v)\F ‖2
2 �

∑

v/∈W

‖xΓ (v)\F ‖2
2 � ρ2

∑

v/∈W

‖xΓ (v)‖2
2 � ρ2

∑

e/∈E(W)

x2
e ,

(8)

450 V. Guruswami, J.R. Lee, and A. Wigderson

Let L ⊂ Rd be the kernel of a random (η/2)d × d sign matrix. Constructing
L requires at most nδ random bits, and by Theorem 2, L is (ηO(1)d, η−O(1))-
spread with high probability. When this happens, the subspace T (G,L) ⊆ RN

has distortion at most (1
η)O(1/δ) by Theorem 6.

The above description only works for (infinitely many) values N of a certain
form. With some combinatorial manipulations, it can be made to work for all
N ; see [GLR08, §2.2.2].

2.2 Optimality of Myopic Analysis

The analysis of the previous section is myopic in the sense that it only cares
about the expansion properties of G, and the spreading properties of the local
subspace L. The following construction, suggested to us by Noga Alon, shows
that if we only use the fact that G is an expander, and that every vector induced
on the neighbors of a vertex is well-spread, then asymptotically our analysis is
tight. The point is that, unlike in the boolean setting, real numbers come in
scales, allowing them to decay slowly while still satisfying the local constraints.

Theorem 8 ([Alo08]). For every d ≥ 4, and infinitely many n ∈ N, there
exists an (n, d,O(

√
d))-expander G = (V,E) with N = |E|, and a point x ∈ RN ,

x
= 0, such that

‖xΓ (v)‖1 ≥
√
d

2
‖xΓ (v)‖2

for every v ∈ V , but ‖x‖1 ≤ N
1
2−Ω(1

log)‖x‖2.

Proof. Let n = 2(d − 1)k for some k ∈ N, and let H be an (n, d − 1, O(
√
d))-

expander. Let T ′ and T ′′ be two disjoint, complete (d − 1)-ary rooted trees of
depth k. Let T be the tree that results from adding an edge e0 between the
roots of T ′ and T ′′. Finally, define G = (V,E) as the d-regular graph that
results from identifying the n leaves of T in an arbitrary way with the nodes of
H . It is easy to check that G is an (n′, d, O(

√
d))-expander with n′ = Θ(dk) and

N = |E| = Θ(dk+1).
We may think of x ∈ RN as indexed by edges e ∈ E. For e ∈ E, let h(e)

be the distance from e to e0, and put xe = (2
√
d)−h(e). It is straightforward to

verify that, for every v ∈ V , one has

‖xΓ (v)‖1
‖xΓ (v)‖2

=
2
√
d+ d− 1√
5d− 1

≥
√
d

2
.

Clearly we have ‖x‖2 ≥ 1, whereas

‖x‖1 = 1 + 2

[
k∑

h=1

(
d− 1
2
√
d

)h
]

+
(
d− 1
2
√
d

)k+1

= O(2−kd(k+1)/2) = O(2−k
√
N) ≤ N

1
2−Ω(1

log).d

d

Euclidean Sections of �N
1 with Sublinear Randomness 451

We remark that the vector x ∈ RN exhibited in the preceding theorem lies in
T (G,L), where L = span(1, 1

2
√

d
, . . . , 1

2
√

d
), as long as we choose the ordering of

the neighborhoods Γ (v) appropriately (recall that one has to fix such an ordering
in defining T (G,L)). In light of this obstruction to our analysis, the following
question seems fundamental.

Question: Is there a number K ∈ N such that for infinitely many N , there
exists an N

2 × N {0, 1}-matrix A, with at most K ones per row, and such that
Δ(ker(A)) = O(1)?
Theorem 6 shows that one can take K = N δ for any δ > 0, but this is the best
current bound.

3 Error-Correction over Reals

In this section, we discuss connections of our work to compressed sensing, or
equivalently to error-correcting codes over reals. We will use the coding termi-
nology to describe these connections.

3.1 Background

A w-error-correcting code of dimension m and block length N over the reals
is given by a linear map C : Rm → RN , such that for each f ∈ Rm, f
= 0,
‖Cf‖0 > 2w. The rate of the code is the ratio m/N . Given a received word
y = Cf + e with ‖e‖0 � w, one can recover the message f as the solution x to
optimization problem:

min
x∈R

‖y − Cx‖0 .

The above non-convex optimization problem is NP-hard to solve in general.
Quite remarkably, if the code C meets certain conditions, one can recover f by
solving the linear program (LP)

min
x∈R

‖y − Cx‖1 .

(The above �1-minimization task, which is easily written as a linear program, is
often called basis pursuit in the literature.) Note that we are not restricting the
magnitude of erroneous entries in e, only that their number is at most w.

Candes and Tao [CT05] studied the above error-correction problem and proved
that �1-minimization works if the code has a certain restricted isometry property.
A sufficient condition for �1-minimization to work is also implied by the distortion
property of the image of C, as formalized in the following lemma by Kashin and
Temlyakov [KT07].

Lemma 3 ([KT07]). Let X = {Cx | x ∈ Rm} ⊆ RN be the image of C.
Then C is a w-error-correcting code provided w < N

4Δ(X)2 , and moreover, given
y ∈ RN such that ‖y−Cf‖0 � w for some f ∈ Rm, the signal f can be recovered
efficiently by solving the (LP) minx∈R ‖y − Cx‖1.

m

m

m

452 V. Guruswami, J.R. Lee, and A. Wigderson

By pickingX to be the kernel of a random γN×N sign matrix, and plugging in the
distortion bound of Theorem 2, gives codes of rate at least (1− γ) that are, w.h.p,
w-error-correcting with an efficient algorithm for w = Θ(γN

log(1/γ)). This is not far
from the best possible bound, achieved non-constructively, of w = Θ(γN).

The �1-minimization decoding algorithm, while polynomial time, requires
solving a dense linear program of size N . It is of interest to develop faster meth-
ods for decoding, ideally with near-linear complexity.

3.2 Near-linear Time Decoding

Before we begin, let us remark that in the compressed sensing setting, since
T (G,L) is the kernel of a relatively sparse matrix A (with at most N δ non-
zero entries per row), the sensing, i.e., the computation of Ax for x ∈ RN , can
be done in O(N1+δ) time. This sparsity also makes interior point methods for
basis pursuit more efficient by a similar factor. Note that in the language of
codes, “sensing” corresponds to syndrome computation, while signal recovery
(recovering x from a noisy version of Ax) corresponds to syndrome decoding.

We now turn to algorithms for our construction X = T (G,L). Efficient encod-
ing follows immediately from sparsity of the encoding matrix (in fact, we achieve
linear-time encoding by choosing d = O(1) in what follows). Near-linear time de-
coding will be achieved using a natural iterative algorithm for Tanner codes.

For technical reasons that help with the decoding, we will take G = (V�, Vr, E)
to be a d-regular n × n bipartite graph. Specifically, we will take G to be the
double cover of an (n, d, λ)-expander, and L ⊆ Rd to be the kernel of a random
γd/2 × d matrix (for a constant γ > 0). With this choice, X ⊆ RN satisfies
dim(X) � (1 − γ)N where N = nd, and our code has rate at least (1 − γ).
With high probability, L will be ζd-error-correcting via �1-minimization for ζ =
Θ(γ

log(1/γ)), and we will assume this is the case.
There is a natural iterative algorithm for Tanner codes [SS96], specifically

for the version when the underlying graph is bipartite [Z0́1] (see also [GI05,
Sec. 2.2]), which can be adapted in a straightforward manner to the coding over
reals setting. An adaptation of the related sequential “bit-flipping” algorithm for
expander based low-density parity-check codes appears in [XH07]; using lossless
expanders, their approach also leads to a near-linear time decoding algorithm.

Our algorithm for decoding T (G,L) proceeds in several rounds, alternating
between “left” and “right” rounds. In a left round, on input a string y ∈ RN from
the previous decoding round (or the noisy codeword at the start of decoding),
we locally decode yΓ (u) for each u ∈ V� to its closest vector in L in �1-sense. In
the subsequent “right” round, we do the same for each v ∈ Vr, and then switch
back to a left round. The key point is that if the number of errors in the local
neighborhood yΓ (u) of a vertex is less than ζd, then the local �1-minimization will
correct those errors and thus fix this local neighborhood. The decoder terminates
when either all the local projections yΓ (u), u ∈ V� ∪ Vr , belong to L (so that
globally we have decoded to a codeword of T (G,L)), or more than Ω(logN)
iterations have passed without convergence to a global codeword (in this case,
there must have been too many errors in the original input).

Euclidean Sections of �N
1 with Sublinear Randomness 453

Only O(logN) iterations suffice because the number of local neighborhoods
which are not yet fully decoded decays geometrically in each round, as long as
the initial number of errors is small enough. Arguing as in [Z0́1], one can show
the following.

Theorem 9. If G is the double cover of an (n, d, λ)-expander with λ ≤ γ2d,
and N = nd, then the above algorithm decodes T (G,L) and corrects up to w =
O
(

γ2

log2(1/γ)
N
)

errors. Further, the algorithm runs in O(Nt(d) logdN) time (or
in O(t(d) logdN) parallel time with O(N) processors), where t(d) is the time to
perform �1-minimization for the subspace L ⊆ Rd (and is thus a constant if d is
a constant).

Thus if we settle for a slightly worse fraction of errors, namelyw/N=Θ
(

γ2

log2(1/γ)

)

instead of Θ
(

γ
log(1/γ)

)
, then the decoding can be performed in near-linear time.

An argument similar to the one in Section 2.1 can be used to show that
. In fact, the sequence of sets that arise in the repeated

application of Lemma 2, starting from the setW defined in (6), would correspond
to the subsets of vertices, alternating between the left and right sides, that arise
in decoding a vector supported on F ⊆ E to the all-zeroes vector. Note that
by the connection mentioned in Lemma 3, this would only enable correcting w
errors for w � N1−Ω(1/ log d) via global �1-minimization, compared to the Ω(N)
errors handled by the iterative decoder.

However, there is a substantial shortcoming of the error model used in Theo-
rem 9. In practice, it is not reasonable to assume that the error is only supported
on w positions. It is more reasonable to allow small non-zero noise even in the re-
maining positions (recall that we assume no bound on the magnitude of noise in
the w erroneous positions); this error model is used in previous works like [CT05].
The �1-minimization works also in this setting; specifically, if w � O(N/Δ(X)2)
and the error vector e satisfies ‖e − σw(e)‖1 � ε where σw(e) is the vector
with the w largest components of e and rest equal to zero, then �1-minimization
recovers a string z such that ‖z − Cf‖2 � Δ(X)√

N
ε (see [KT07]).

Extending iterative decoding to the above setting is an interesting challenge
that we hope to study in future work.

Acknowledgments

We are grateful to Noga Alon for his help with the proof of Theorem 8 and his
permission to include it here.

References

[AAM06] Artstein-Avidan, S., Milman, V.D.: Logarithmic reduction of the level
of randomness in some probabilistic geometric constructions. J. Funct.
Anal. 235(1), 297–329 (2006)

[Alo08] Alon, N.: Personal communication (2008)

Δ(X) � NO(log(1/γ)
log d)

454 V. Guruswami, J.R. Lee, and A. Wigderson

[CT05] Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. In-
form. Theory 51(12), 4203–4215 (2005)

[Don06] Donoho, D.L.: Compressed sensing. IEEE Transactions on Information The-
ory 52, 1289–1306 (2006)

[FLM77] Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spher-
ical sections of convex bodies. Acta Math. 139(1-2), 53–94 (1977)

[GG84] Garnaev, A., Gluskin, E.D.: The widths of Euclidean balls. Doklady An.
SSSR. 277, 1048–1052 (1984)

[GI05] Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with
near-optimal rate. IEEE Trans. Inform. Theory 51(10), 3393–3400 (2005)

[GLR08] Guruswami, V., Lee, J.R., Razborov, A.: Almost Euclidean subspaces of �N
1

via expander codes. In: SODA 2008: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA.
Society for Industrial and Applied Mathematics, pp. 353–362 (2008)

[HLW06] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applica-
tions. Bull. Amer. Math. Soc. (N.S.) 43(4), 439–561 (2006)

[Ind06] Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and
data stream computation. Journal of the ACM 53(3), 307–323 (2006)

[Ind07] Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of
L2 into L1. In: Proceedings of the 39th Annual ACM Symposium on the
Theory of Computing, pp. 615–620 (2007)

[JS01] Johnson, W.B., Schechtman, G.: Finite dimensional subspaces of Lp. In:
Handbook of the geometry of Banach spaces, vol. I, pp. 837–870. North-
Holland, Amsterdam (2001)

[Kas77] Kashin, B.S.: The widths of certain finite-dimensional sets and classes of
smooth functions. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 334–351, 478
(1977)

[KT07] Kashin, B.S., Temlyakov, V.N.: A remark on compressed sensing (2007),
http://www.dsp.ece.rice.edu/cs/KT2007.pdf

[LPS88] Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinator-
ica 8(3), 261–277 (1988)

[LS07] Lovett, S., Sodin, S.: Almost Euclidean sections of the N-dimensional cross-
polytope using O(N) random bits. Electronic Colloquium on Computational
Complexity, Report TR07-012 (2007)

[Mil00] Milman, V.: Topics in asymptotic geometric analysis. Geom. Funct. Anal.,
792–815 (2000) (Special Volume, Part II); GAFA 2000 (Tel Aviv, 1999)

[Sch84] Schütt, C.: Entropy numbers of diagonal operators between symmetric Ba-
nach spaces. J. Approx. Theory 40(2), 121–128 (1984)

[SS96] Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. The-
ory 42(6, part 1), 1710–1722 (1996) (Codes and complexity)

[Sza06] Szarek, S.: Convexity, complexity, and high dimensions. In: International
Congress of Mathematicians, vol. II, pp. 1599–1621. Eur. Math. Soc., Zürich
(2006)

[Tan81] Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans-
actions on Information Theory 27(5), 533–547 (1981)

[XH07] Xu, W., Hassibi, B.: Efficient compressive sensing with determinstic guaran-
tees using expander graphs. In: IEEE Information Theory Workshop (Sep-
tember 2007)

[Z0́1] Zémor, G.: On expander codes. IEEE Transactions on Information The-
ory 47(2), 835–837 (2001)

The Complexity of Local List Decoding

Dan Gutfreund1,� and Guy N. Rothblum2,��

1 Department of Mathematics and CSAIL, MIT
danny@math.mit.edu

2 CSAIL, MIT
rothblum@csail.mit.edu

Abstract. We study the complexity of locally list-decoding binary error
correcting codes with good parameters (that are polynomially related to
information theoretic bounds). We show that computing majority over
Θ(1/ε) bits is essentially equivalent to locally list-decoding binary codes
from relative distance 1/2 − ε with list size at most poly(1/ε). That is,
a local-decoder for such a code can be used to construct a circuit of
roughly the same size and depth that computes majority on Θ(1/ε) bits.
On the other hand, there is an explicit locally list-decodable code with
these parameters that has a very efficient (in terms of circuit size and
depth) local-decoder that uses majority gates of fan-in Θ(1/ε).

Using known lower bounds for computing majority by constant depth
circuits, our results imply that every constant-depth decoder for such
a code must have size almost exponential in 1/ε (this extends even to
sub-exponential list sizes). This shows that the list-decoding radius of
the constant-depth local-list-decoders of Goldwasser et al. [STOC07] is
essentially optimal.

Keywords: locally-decodable codes, list-decodable codes, constant-depth
circuits.

1 Introduction

Error correcting codes are highly useful combinatorial objects that have found
numerous applications both in practical settings as well as in many areas of
theoretical computer science and mathematics. In the most common setting
of error-correcting codes we have a message space that contains strings over
some finite alphabet Σ (for simplicity we assume that all strings in the message
space are of the same length). The goal is to design a function, which we call
the encoding function, that encodes every message in the message space into a
codeword such that even if a fairly large fraction of symbols in the codeword are

� Research was partially supported by NSF grant CCF-0514167. Part of this research
was done while the author was at Harvard University and supported by ONR grant
N00014-04-1-0478 and NSF grant CNS-0430336.

�� Supported by NSF Grants CCF-0635297, NSF-0729011, CNS-0430336 and by a
Symantec Graduate Fellowship.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 455–468, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

456 D. Gutfreund and G.N. Rothblum

corrupted it is still possible to recover from it the original message. The procedure
that recovers the message from a possibly corrupted codeword is called decoding.

It is well known that beyond a certain fraction of errors, it is impossible to
recover the original message, simply because the relatively few symbols that are
not corrupted do not carry enough information to specify (uniquely) the original
message. Still, one may hope to recover a list of candidate messages, one of which
is the original message. Such a procedure is called list-decoding.

Typically, the goal of the decoder is to recover the entire message (or list of
candidate messages) by reading the entire (possibly corrupted) codeword. There
are settings, however, in which the codeword is too long to be read as a whole.
Still, one may hope to recover any given individual symbol of the message, by
reading only a small number of symbols from the corrupted codeword. This
setting is called local-decoding, and both the unique and list decoding variants
(as discussed above) can be considered.

Locally decodable codes, both in the unique and list decoding settings, have
found many applications in theoretical computer science, most notably in private
information retrieval [3,12], and worst-case to average-case hardness reductions
[17] (we elaborate on this application below). Furthermore, they have the po-
tential of being used for practical applications, such as reliably storing a large
static data file, only small portions of which need to be read at a time.

1.1 This Work

In this work we study the complexity of locally list decoding binary codes (i.e.
where the alphabet is {0, 1}). Let us proceed more formally. Let C : {0, 1}M →
{0, 1}N be the encoding function of an error-correcting code.1 A local list-decoder
D for a code C gets oracle access to a corrupted codeword, and outputs a “list”
of � local-decoding circuits D1, . . . , D�. Each Da is itself a probabilistic circuit
with oracle access to the corrupted codeword. On input an index j ∈ [M], a
circuit Da from the list tries to output the j-th bit of the message. We say
that the decoder is a (1/2− ε, �)-local-list-decoder, if for every y ∈ {0, 1}N and
m ∈ {0, 1}M , such that the fractional Hamming distance between C(m) and y
is at most 1/2 − ε, with high probability at least one of the Da’s successfully
decodes every bit of the message y. Note that here 1/2 − ε refers to the “noise
rate” (or the list-decoding radius) from which the decoder recovers, and � is
the “list size”: the number of decoding circuits, one of which makes the decoder
recover every index correctly (with high probability). The quantity N/M which
measures the amount of redundancy in the code is called the rate of the code.

Throughout this paper we think of a local list-decoder as receiving an “advice”
index a ∈ [�], running D to output Da, and then running Da to retrieve the j-
th message bit. Note that by giving both D and the Da’s oracle access to the
received word, and requiring them to decode individual symbols, we can hope

1 Formally, we consider a family of codes one for each message length M . The para-
meters listed above and below, e.g. N, ε, �, should all be thought of as functions of
M . For the exact definition of locally list-decodable codes see Definition 3.

The Complexity of Local List Decoding 457

for decoders whose size is much smaller than N (in particular we can hope for
size that is poly-logarithmic in N). See Definition 3 for a formal definition of
locally list decodable codes.2

It is well known that for every (non-trivial) (1/2− ε, �)-locally-list-decodable
code, it must hold that � = Ω(1/ε2) [1,9] (in fact this bound holds even for
standard, non-local, list decoding). Thus, aiming to stay within polynomial fac-
tors of the best possible information theoretic parameters, our primary goal is to
understand the complexity of decoding (1/2−ε, poly(1/ε))-locally-list-decodable
binary codes that have polynomial rate (i.e. where N(M) = poly(M)). We con-
sider such codes to have “good” parameters (we elaborate on this choice below).

An explicit code with good parameters was given by Sudan, Trevisan and
Vadhan [17]. The local-decoder for this code (namely the algorithm D as well as
the circuits Da) is in the complexity class NC2 (i.e. its depth is poly-logarithmic
in its input length). Explicit codes with local-decoders in the (strictly lower)
class AC0 (i.e. constant depth unbounded fan-in decoders) are also known [7,5].
However, these codes do not have good parameters.3 Specifically the Hadamard
code has such a decoder [7], but its rate is exponential in M . This was improved
by Goldwasser et al. [5] who showed codes with AC0 local-list-decoders in which
the rate is exponential in 1/ε (but not inM). Furthermore, the circuit size of the
AC0 decoders for both these codes is exponential in 1/ε. For comparison, the
size of the NC2 decoder of [17] is poly(logM, 1/ε). In other words, the constant-
depth decoder of [5] only matches the parameters of [17] (in terms of circuit
size and information theoretic parameters) when ε ≥ 1/poly log logM (while in
general ε can be as small as 1/poly(M)).

Our results. Our goal in this work is to understand the complexity of local-
list-decoders of binary codes with good parameters. Specifically, we ask whether
the exponential dependency on 1/ε in both the rate and decoder size in [5] can
be improved, and whether the parameters of [17] can be achieved by (small)
constant-depth decoders. We show that while the rate of codes with constant-
depth local-list-decoders can be improved, their circuit size cannot.

These conclusions follow from our main technical result, which shows that
computing the majority function onΘ(1/ε) bits is essentially equivalent to (1/2−
ε, poly(1/ε))-local-list-decoding binary codes: Any circuit for a local-decoder of
such a code can be used to construct a circuit of roughly the same size and
depth that computes majority on Θ(1/ε) bits. In the other direction, there is an
explicit (1/2 − ε, poly(1/ε))-locally-list-decodable code with a very efficient (in
terms of size and depth) local-decoder that uses majority gates of fan-in Θ(1/ε).
This is stated (informally) in the following theorem.

2 We would like to point out that we use (1/2−ε, �) to denote the relative distance and
list size, whereas previous work (e.g. [17]) used (ε, �) to denote the same quantities
(for binary codes). We find this notation more useful, especially when we work with
non-binary codes (which come up in our construction).

3 We note that for non-binary codes, i.e. codes with large alphabets, one can construct
codes with constant-depth local list-decoders and “good” parameters, see [5].

458 D. Gutfreund and G.N. Rothblum

Theorem 1 (Informal). If there exists a binary code with a (1/2−ε, poly(1/ε))-
local-list-decoder of size s and depth d, then there exists a circuit of size poly(s)
and depth O(d) that computes majority on Θ(1/ε) bits.

In the other direction, there exist (for every ε ≥ 1/2
√

log(M)) explicit binary
codes of polynomial rate, with a (1/2−ε, poly(1/ε))-local-list-decoder. The decoder
is a constant depth circuit of size poly(logM, 1/ε) with majority gates of fan-in
Θ(1/ε).

The upper bound follows by replacing one of the ingredients in the construc-
tion of Goldwasser et al. [5], with a modification of the recent de-randomized
direct-product construction of Impagliazzo et al. [10], thus improving the code’s
rate. Our main technical contribution is in the lower bound, where we show
a reduction from computing majority over inputs of size Ω(1/ε) to local-list-
decoding binary codes with good parameters. In fact, our lower bound holds for
any (1/2 − ε, poly(1/ε))-local-list-decodable binary code, regardless of its rate.
By known lower bounds on the size of constant-depth circuits that compute
majority [15,16], we obtain the following corollary.

Corollary 2 (Informal). Any constant-depth (1/2− ε, poly(1/ε))-local list de-
coder for a binary code, must have size almost exponential in 1/ε. This holds even
if the decoder is allowed mod q gates, where q is an arbitrary prime number.

In particular, this result shows that the noise rate from which the constant-depth
local-list-decoders of [5] recover is essentially optimal. And thus we get an exact
characterization of what is possible with constant-depth decoders: up to radius
1/2−1/poly log logM locally-list-decodable codes with constant-depth decoders
and good parameters exist, and beyond this radius they do not. We note that in
fact we prove a stronger result in terms of the list size. We show that (1/2−ε, �)-
local-list-decoding with a decoder of size s and depth d, implies a circuit of size
poly(s, �) and depth d that computes majority on O(1/ε) bits. This means that
even if the list size is sub-exponential in 1/ε, the size of the decoder still must be
nearly exponential in 1/ε (even if the decoder is allowed mod q gates).

Hardness amplification. Hardness amplification is the task of obtaining from a
Boolean function f that is somewhat hard on the average, a Boolean function f ′

that is very hard on the average. By a beautiful sequence of works [17,20,19,21],
it is well known that there is a tight connection between binary locally (list)
decodable codes and hardness amplification. Using this connection, we obtain
limits (in the spirit of Corollary 2) on (black-box) hardness amplification proce-
dures. We defer the statement of these results and a discussion to Section 5.

1.2 Related Work

The question of lower bounding the complexity of local-list-decoders was raised
by Viola [22]. He conjectured that (1/2−ε, �)-locally-list-decodable codes require
computing majority over O(1/ε) bits,4 even when the list size � is exponential
4 By “require” we mean that the decoding circuit can be used to construct a circuit

of comparable size and depth that computes the majority function on O(1/ε) bits.

The Complexity of Local List Decoding 459

in 1/ε. Note that while exponential lists are not commonly considered in the
coding setting (the focus instead is on polynomial or even optimal list sizes), they
do remain interesting for applications to (non-uniform) worst-case to average-
case hardness reductions. In particular, lower bounds for local-list-decoding with
exponential lists, imply impossibility results for non-uniform black-box worst-
case to average-case hardness reductions (see Section 5). In this paper we prove
the conjecture for the case of sub-exponential size lists. While a proof of the
full-blown conjecture remains elusive, there are results for other (incomparable)
special cases:

Known Results for Non-Local Decoders. Viola [22] gave a proof (which he at-
tributed to Madhu Sudan) of the conjecture for the special case of the standard
non-local list-decoding setting. It is shown that a list-decoder from distance
1/2 − ε can be used to compute majority on Θ(1/ε) bits, with only a small
blow-up in the size and depth of the decoder. This result rules out, for example,
constant-depth list-decoders whose size is poly(1/ε). Note, however, that in the
non-local list decoding setting the size of the decoder is at least N (the code-
word length) because it takes as input the entire (corrupted) codeword. This
means that the bound on the size of constant-depth decoders does not have con-
sequences for fairly large values of ε. For example, when ε ≥ 1/ logN , the only
implication that we get from [22], is that there is a constant-depth circuit of size
at least N ≥ 21/ε that computes majority on instances of size 1/ε. But this is
trivially true, and thus we do not get any contradiction. In the local-decoding
setting the decoders’ circuits are much smaller and thus we can obtain limitations
for much larger ε’s. Indeed in this paper we rule out constant-depth decoders
for (1/2− ε, poly(1/ε))-local-list-decoders for any ε smaller than 1/poly log logN
(and recall that this matches the construction of [5]).

Known Results for Specific Codes. Viola [22] also proved that there are no
constant-depth decoders (with polynomial-size lists) for specific codes, such as
the Hadamard and Reed-Muller codes. We, on the other hand, show that there
are no such decoders for any code (regardless of the code’s rate, and even with
sub-exponential list size).

Known Results for Non-Adaptive Decoders. Recently (simultaneously and inde-
pendently of our work), Shaltiel and Viola [18] gave a beautiful proof of the con-
jecture for the local-decoding setting, with � exponential in 1/ε, but for the special
case that the decoder is restricted to have non-adaptive access to the receivedword.
(I.e., they give a lower bound for decoders that make all their queries to the received
word simultanuously.) Our result is incomparable to [18]: we prove Viola’s conjec-
ture only for the case that � is sub-exponential in 1/ε, but do so for any decoder,
even an adaptive one. We emphasize that for important ranges of parameters the
best codes known to be decodable in constant depth use adaptive decoders. In par-
ticular, the constant depth decoder of [5], as well as its improvement in this work,
are adaptive. In light of this, it is even more important to show lower bounds for
adaptive decoders.

460 D. Gutfreund and G.N. Rothblum

1.3 On the Choice of Parameters

In this work codes with polynomial-rate are considered to have “good” parame-
ters. Usually in the standard coding-theory literature, “good” codes are required
to have constant rate.5. We note that, as far as we know, there are no known
locally-decodable codes (both in the unique and list decoding settings) with con-
stant rate (let alone codes that have both constant rate and have decoders that
are in the low-level complexity classes that we consider here). The best binary
locally decodable codes known have polynomial rate [17]. It is an interesting
open question to find explicit codes with constant or even polylogarithmic rate.

Finally, we note that in this work we do not (explicitly) consider the query
complexity of the decoder. The only bound on the number of queries the decoder
makes to the received word comes from the bound on the size of the decoding
circuit. The reason is that known codes with much smaller query complexity than
the decoder size (in particular constant query complexity) have a very poor rate
(see e.g. [25]). Furthermore, there are negative results that suggest that local-
decoding with small query complexity may require large rate [12,4,14,11,23,6].

2 Preliminaries

For a string m ∈ {0, 1}∗ we denote by m[i] the i’th bit of m. [n] denotes the
set {1, . . . , n}. For a finite set S we denote by x ∈R S that x is a sample
uniformly chosen from S. For a finite alphabet Γ we denote by ΔΓ the relative
(or fractional) Hamming distance between strings over Γ . That is, let x, y ∈ Γn

then ΔΓ (x, y) = Pri∈ [n][x[i]
= y[i]], where x[i], y[i] ∈ Γ . Typically, Γ will be
clear from the context, we will then drop it from the subscript.

2.1 Circuit Complexity Classes

Boolean circuits in this work always have NOT gates at the bottom and un-
bounded AND and OR gates. Such circuits may output more than one bit.
Whenever we use circuits with gates that compute other functions, we explicitly
state so. For a positive integer i ≥ 0, AC i circuits are Boolean circuits of size
poly(n), depth O(logi n), and unbounded fan-in AND and OR gates (where n is
the length of the input). ACi[q] (for a prime q) are similar to AC i circuits, but
augmented with mod q gates. Throughout, we extensively use oracle circuits:
circuits that have (unit cost) access to an oracle computing some function. We
sometimes interpret this function as a string, in which case the circuit queries
and index and receives from the oracle the symbol in that location in the string.

2.2 Locally List-Decodable Codes

Definition 3 (Locally list-decodable codes). Let Γ be a finite alphabet. An
ensemble of functions {CM : {0, 1}M → ΓN(M)}M∈N is a (d(M), �(M))-locally-
list-decodable code, if there is an oracle Turing machine D[·, ·, ·, ·] that takes as
5 We do remark that for applications such as worst-case to average-case reductions,

polynomial or even quasi-polynomial rates suffice.

R

The Complexity of Local List Decoding 461

input an index i ∈ [M], an “advice” string a ∈ [�(M)] and two random strings
r1, r2,6 and the following holds: for every y ∈ ΓN(M) and x ∈ {0, 1}M such that
ΔΓ (CM (x), y) ≤ d(M),

Pr
r1

[

∃a ∈ [�] s.t. ∀i ∈ [M] Pr
r2

[Dy(a, i, r1, r2) = x[i]] > 9/10
]

> 99/100 (1)

If |Γ | = 2 we say that the code is binary. If � = 1 we say that the code is
uniquely decodable. We say that the code is explicit if CM can be computed in
time poly(N(M)).

Remark 4. One should think of the decoder’s procedure as having two stages:
first it tosses coins r1 and generates a sequence of � circuits {Ca(·, ·)}a∈[�], where
Ca(i, r2) = D(a, i, r1, r2). In the second stage, it uses the advice a to pick the
probabilistic circuit Ca and use it (with randomness r1) to decode the message
symbol at index i. In [17] the two-stage process is part of the definition, for us
it is useful to encapsulate it in one machine (D).

In the sequel it will be convenient to simplify things by ignoring the first stage,
and considerD as a probabilistic circuit (taking randomness r2) with two inputs:
the advice a and the index to decode i, with the property that (always) for at
least one a ∈ [�], D(a, ·) decodes correctly every bit of the message (with high
probability over r2). Indeed if we hardwire any “good” r1 (chosen in the first
stage) intoD then we are in this situation. This happens with probability at least
99/100. Thus in our proofs we will assume that this is the case, while (implicitly)
adding 1/100 to the bound on the overall probability that the decoder errs. This
simplification makes our proofs much clearer (since we do not have to deal with
the extra randomness r1).

2.3 Majority and Related Functions

We use the promise problem Π , defined in [22] as follows:
ΠY es = {x : x ∈ {0, 1}2k for some k ∈ N and weight(x) ≤ k − 1}
ΠNo = {x : x ∈ {0, 1}2k for some k ∈ N and weight(x) = k}
where weight(x) is the number of bits in x which are 1.

We will extensively use the fact, proven in [22], that computing the promise
problem Π on 2k bit inputs is (informally) “as hard” (in terms of circuit depth)
as computing majority of 2k bits. This is stated formally in the claim below:

Lemma 5 ([22]). Let {C}M∈N be a circuit family of size S(M) and depth d(M)
that solves the promise problem Π on inputs of size M . Then, for every M ∈ N,
there exists a circuit BM of size poly(S(M)) and depth O(d(M)) that computes
majority on M bits. The types of gates used by the BM circuit are identical to
those used by CM . E.g., if CM is an AC0[q] circuit, then so is BM .

6 The length of these random strings lower-bounds D’s running time. Later in this
work, when we consider D’s with bounded running time, the length of these random
strings will also be bounded.

462 D. Gutfreund and G.N. Rothblum

3 Local-List-Decoding Requires Computing Majority

Theorem 6. Let {CM : {0, 1}M → {0, 1}N(M)}M∈N be a (1/2 − ε(M), �(M))-
locally-list-decodable code, such that �(M) ≤ 2κ·M , and 1/N δ1 ≤ ε(M) ≤ δ2 for
universal constants κ, δ1, δ2. Let D be the local decoding machine, of size S(M)
and depth d(M).

Then, for every M ∈ N, there exists a circuit AM of size poly(S(M), �(M))
and depth O(d(M)), that computes majority on Θ(1/ε(M)) bits. The types of
gates used by the circuit AM are identical to those used by D. E.g., if D is an
AC0[q] circuit, then so is AM .

Proof Intuition for Theorem 6. Fix a message length M and ε = ε(M). We
will describe a circuit B with the stated parameters that decides the promise
problem Π on inputs of length roughly 1/ε. By Lemma 5 this will also give a
circuit for computing majority.

We start with a simple case: assume that the (local) decoder D makes only
non-adaptive queries to the received word. In this case we proceed using ideas
from the proof of Theorem 6.4 in [22]. Take m to be a message that cannot
be even approximately decoded7 from random noise with error rate 1/2. Such
a word exists by a counting argument. Let C(m) be the encoding of m. Let
x ∈ ΠY es ∪ ΠNo be a Π-instance of size 1/2ε (we assume w.l.o.g. throughout
that 1/ε is an integer). B uses x to generate a noisy version of C(m), by XORing
each one of its bits with some bit of x that is chosen at random. It then uses
D to decode this noisy version of C(m). If x ∈ ΠNo, this adds random noise
(error rate 1/2), and the decoding algorithm cannot recover most of m’s bits.
If x ∈ ΠY es, then each bit is noisy with probability less than 1/2 − 2ε, which
means that w.h.p. the fraction of errors is at most 1/2 − ε, and the decoding
algorithm successfully recovers every bit of m.

By comparing the answers of the decoding algorithm (or more precisely, every
decoding algorithm in the list, by trying every possible advice) and the real bits
ofm in a small number of random locations, the algorithmB distinguishes w.h.p.
whether x ∈ ΠY es or x ∈ ΠNo.

Note, however, that B as described above is not a standard algorithm for Π .
This is because we gave B access to the message m as well as its encoding. Both
of these are strings that are much larger than we want B itself to be. So our
next goal is to remove (or at least minimize) B’s access to m and C(m), making
B a standard circuit for Π . Observe that B as described above distinguishes
whether x is in ΠY es or in ΠNo with high probability over the choices of D’s
random coins, the random locations in which we compare D’s answers against
m, and the random noise generated by sampling bits from x. In particular, there
exists a fixing of D’s random string as well as the (small number of) testing
locations of m that maintains the advantage in distinguishing whether x comes
from ΠY es or ΠNo, where now the probability is only over the randomness used
to sample bits from x. So now we can hardwire the bits ofm used to test whether
7 By this we mean that no decoder can recover (w.h.p.) a string that is, say, 1/3-close

to m.

The Complexity of Local List Decoding 463

D decodes the noisy version of C(m) correctly (i.e. we got rid of the need to
store the whole string m). Furthermore, after we fix D’s randomness, by the fact
that it is non-adaptive, we get that the positions in which B queries the noisy
C(m) are now also fixed, and independent of x. So we also hardwire the values
of C(m) in these positions (and only these positions) into B. For any x, we now
have all the information to run B and conclude whether x is in ΠY es or ΠNo.

Next we want to deal with adaptive decoders. If we proceed with the ideas
described above, we run into the following problem: suppose the circuit has two
(or more) levels of adaptivity. The queries in the second level do not only depend
on the randomness of the decoder, but also on the values read from the received
word at the first level, and in particular they also depend on the noise. The
noise in our implementation depends on the specific Π-instance x. This means
that we cannot hardwire the values of C(m) that are queried at the second level
because they depend on x!

To solve this problem, we analyze the behavior of the decoder when its error
rate changes in the middle of its execution. Specifically, suppose that the decoder
D queries the received word in d levels of adaptivity. For every 0 ≤ k ≤ d, we
consider the behavior of the decoder when up to level k we give it access to
the encoded message corrupted with error-rate 1/2 − 2ε, and above the k’th
level we give it access to the encoded message corrupted with error-rate 1/2.
By a hybrid argument, there exists some level k, in which the decoder has a
significant advantage in decoding correctly when up to the k’th level it sees
error rate 1/2 − 2ε (and error-rate 1/2 above it), over the case that up to the
(k−1)’th level the error-rate is 1/2−2ε (and 1/2 from k and up). We now fix and
hardwire randomness for the decoder, as well as noise for the first k − 1 levels
(chosen according to error-rate 1/2− 2ε), such that this advantage is preserved.
Once the randomness of D and the noise for the first k − 1 levels are fixed, the
queries at the k-th level (but not their answers) are also fixed. For this k-th
level we can proceed as in the non-adaptive case (i.e. choose noise according to
x and hardwire the fixed positions in C(m)). We now have to deal with queries
above the k’th level. At first glance it is not clear that we have gained anything,
because we still have to provide answers for these queries, and as argued above,
these may now depend on the input x and therefore the query locations as well
as the restriction of C(m) to these locations cannot be hard-wired. The key
point is that for these “top” layers the error rate has changed to 1/2. So while
we have no control on the query locations (as they depend on x) we do know
their answers: they are completely random bits that have nothing to do with
m or C(m)! Thus, B can continue to run the decoder, answering its queries (in
the levels above the k’th) with random values. We thus obtain a circuit that
decides membership in Π correctly with a small advantage. Since the number of
adaptivity levels is only d (the circuit depth of the decoder), the distinguishing
advantage of the k-th hybrid is at least O(1/d), and in particular this advantage
can now be amplified by using only additional depth of O(log(d)). This gives a
circuit that computes Π and concludes the proof. Due to space constraints we
defer the formal proof of Theorem 6 to the full version of this paper [8].

464 D. Gutfreund and G.N. Rothblum

By using known lower bounds for computing the majority function by AC0[q]
circuits (for a prime q) [15,16], we obtain the following corollary.

Corollary 7. Let {CM : {0, 1}M → {0, 1}N(M)}M∈N be a (1/2−ε, �)-locally-list-
decodable code (where ε is in the range specified in Theorem 6) with a decoder
that can be implemented by a family of AC0[q] circuits of size s = s(M) and
depth d = d(M). Then s

4 Majority Suffices for Local-List-Decoding

Theorem 8. For every 2−Θ(
√

log M) ≤ ε = ε(M) < 1/2, there exists a (1/2 −
ε, poly(1/ε))-locally-list-decodable code {CM : {0, 1}M → {0, 1}poly(M)}M∈N with
a local-decoder that can be implemented by a family of constant depth circuits of
size poly(logM, 1/ε) using majority gates of fan-in Θ(1/ε) (and AND/OR gates
of unbounded fan-in).

Remark 9. The construction above only applies for ε ≥ 2−Θ(
√

log M). Thus we fall
slightly short of covering the whole possible range (since one can hope to get such
codes for ε = 1/M δ for a small constant δ). We note, however, that the range of
ε which is most interesting for us is between 1/poly logM and 1/poly log logM
(see the discussion in the introduction) which we do cover. We also mention that
if one insists on codes with ε = 1/M δ, then we can construct such codes with
quasi-polynomial rate (in the full version [8] we state without proof the exact
parameters of these codes).

The proof of Theorem 8 is omitted due to lack of space. In a nutshell, to prove the
theorem we combine three codes. The first, by [5], is a binary locally-decodable
code that can be uniquely decoded from a constant relative distance. The second
code that we need is a modification of the de-randomized direct product code of
[10]. The main reason that we need to modify the code of [10], is that in their
construction the decoder needs to manipulate small dimension affine subspaces
over finite fields. We do not know of a concise and unique representation of low-
dimensional affine sub-spaces that can be computed and manipulated in AC0.
We instead represent such subspaces using randomly selected basis vectors and
a shift vector (a concise, but not unique representation). This changes the code
and allows decoding in AC0. The third code in our construction is the well known
Hadamard code with its local list-decoder given by Goldreich and Levin [7].

Informally, our code for Theorem8first encodes the messageusing the first code,
it then encodes this encoding using the second code. Finally, it concatenates this
code (i.e. encodes every symbol of it) using the third and final code. For details of
the construction and the parameters it achieves see the full version of this work [8].

5 Hardness Amplification

In this section we describe our results regarding hardness amplification of Boolean
functions. A more thorough discussion and extensions of our results appear in the
full version [8].

= 2(1/ε)Ω(1/d)
/poly(�).

The Complexity of Local List Decoding 465

Functions that are hard to compute on the average (by a given class of algo-
rithms or circuits) have many applications, for example in cryptography or for
de-randomization via the construction of pseudo-random generators (the “hard-
ness vs. randomness” paradigm [2,24,13]). Typically, for these important appli-
cations, one needs a function that no algorithm (or circuit) in the class can
compute on random inputs much better than a random guess. Unfortunately,
however, it is often the case that one does not have or cannot assume access
to such a “hard on the average” function, but rather only to a function that is
“somewhat hard”: every algorithm in the class fails to compute it and errs, but
only on relatively few inputs (e.g. a small constant fraction, or sometimes even
just a single input for every input length). A fundamental challenge is to obtain
functions that are very hard on the average from functions that are somewhat
hard on the average (or even just hard on the worst-case).

Let us be more precise. We say that a Boolean function f : {0, 1}∗ → {0, 1} is
δ-hard on the average for a circuit class C = {Cn}n∈N (where circuits in the set
Cn have input length n), if for every large enough n, for every circuit Cn ∈ Cn;

Pr [Cn(x) = f(x)] ≤ 1− δ

The task of obtaining from a function f that is δ-hard for a class C, a function
f ′ that is δ′-hard for the class C, where δ′ > δ is called hardness amplification
from δ-hardness to δ′-hardness (against the class C). Typical values for δ are
small constants (close to 0), and sometimes even 2−n, in which case the hard-
ness amplification is from worst-case hardness. Typical values for δ′ (e.g. for
cryptographic applications) are 1/2− n−ω(1).

The most commonly used approach to prove hardness amplification results is
via reductions, showing that if there is a sequence of circuits in C that computes
f ′ on more than a 1−δ′ fraction of the inputs, then there is a sequence of circuits
in C that computes f on more than 1 − δ fraction of the inputs. An important
family of such reductions are so-called fully-black-box reductions which we define
next.

Definition 10. A (δ, δ′)-fully-black-box hardness amplification from input length
k to input length n = n(k, δ, δ′), is defined by an oracle Turing machine Amp
that computes a Boolean function on n bits, and an oracle Turing machine Dec
that takes non-uniform advice of length a = a(k, δ, δ′). It holds that for every
f : {0, 1}k → {0, 1}, for every A : {0, 1}n → {0, 1} for which

Pr [A(x) = Ampf (x)] > 1− δ′

there is an advice string α ∈ {0, 1}a such that

Pr [DecA(α, x) = f(x)] > 1− δ

where DecA(α, x) denotes running Dec with oracle access to A on input x and
with advice α.

x∈RUn

x∈RUn

x∈RUk

466 D. Gutfreund and G.N. Rothblum

If Dec does not take non-uniform advice (a = |α| = 0), then we say that the
hardness amplification is uniform. If Dec can ask all its queries to A in parallel
(i.e. no query depends on answers to previous queries) then we say that the
hardness amplification is non-adaptive.

The complexity of Dec determines against which classes (of Boolean circuits or
algorithms) we measure hardness (when we translate the reduction to a hardness
amplification result). In particular if one wants to obtain hardness amplification
against AC0 or AC0[q] circuits, Dec must be implemented by such circuits.

It is well known [17,20,19,21] that there is a tight connection between (2−k, δ′)-
fully-black-box hardness amplification (or in other words worst-case to average-
case reductions) and binary locally (list) decodable codes. In particular a lower
bound on the complexity of local-list-decoders implies a lower bound on the
complexity ofDec in Definition 10. Using Theorem 6 we can show that worst-case
to average-case hardness amplification with small non-uniform advice requires
computing majority. This is stated formally in the theorem below:

Theorem 11. If there is a (2−k, 1/2− ε(k))-fully-black-box hardness amplifica-
tion from length k to length n(k) where Dec takes a(k) bits of advice and can
be implemented by a circuit of size s(k) and depth d(k), then for every k ∈ N
there exists a circuit of size poly(s(k), 2a(k)) and depth O(d(k)), that computes
majority on O(1/ε(k)) bits.

It is known [15,16] that low complexity classes cannot compute majority. Thus,
Theorem 11 shows limits on the amount of hardness amplification that can be
achieved by fully-black-box worst-case to average-case reductions (that do not
use too many bits of advice), in which Dec can be implemented in low-level
complexity classes.

Finally, we note that the worst-case lower bounds (which are actually mildly
average-case lower bounds) of [15,16] hold against non-uniform AC0[q]. This
means that it may be possible to get strong average-case hardness (e.g. as re-
quired for pseudo-randomness) by using a lot of non-uniformity in a fully-black-
box reduction (i.e. a reduction in whichDec takes poly(k) bits of advice). Shaltiel
and Viola [18] rule out such non-uniform fully-black-box reductions in the special
case that Dec has only non-adaptive access to A.

As we mentioned, in the full version [8] we give a more thorough discussion
of hardness amplification, together with extensions of Theorem 11 to hardness
amplification from functions that are mildly hard on the average (rather than
worst-case hard), as well as to reductions that are black-box but not necessarily
fully-black-box.

Acknowledgements

We thank Shafi Goldwasser and Salil Vadhan for their assistance and insightful
comments. Thanks to Russell Impagliazzo for helpful discussions and for supply-
ing us with a manuscript of [10]. We also thank Ronen Shaltiel and Emanuele

The Complexity of Local List Decoding 467

Viola for helpful discussions on the topics addressed in this work, and for sup-
plying us with a manuscript of [18]. Finally, we thank the anonymous referees
for their many helpful and insightful comments.

References

1. Blinkovsky, V.M.: Bounds for codes in the case of list decoding of finite volume.
Problems of Information Transmission 22(1), 7–19 (1986)

2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
Journal of the ACM 45(6), 965–981 (1998)

4. Deshpande, A., Jain, R., Kavitha, T., Radhakrishnan, J., Lokam, S.V.: Better
Lower Bounds for Locally Decodable Codes. In: Proceedings of the IEEE Confer-
ence on Computational Complexity, pp. 184–193 (2002)

5. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Veri-
fying and decoding in constant depth. In: Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, pp. 440–449 (2007)

6. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. Computational Com-
plexity 15(3), 263–296 (2006)

7. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp.
25–32 (1989)

8. Gutfreund, D., Rothblum, G.N.: The complexity of local list decoding. Technical
Report TR08-034, Electronic Colloquium on Computational Complexity (2008)

9. Guruswami, V., Vadhan, S.: A lower bound on list size for list decoding. In:
Chekuri, C., Jansen, K., Rolim, J., Trevisan, L. (eds.) RANDOM 2005. LNCS,
vol. 3624, pp. 318–329. Springer, Heidelberg (2005)

10. Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct-product
theorems: Simplified, optimized, and derandomized. In: Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pp. 579–588 (2008)

11. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes via a quantum argument. Journal of Computer and System Sciences 69(3),
395–420 (2004)

12. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, pp. 80–86 (2000)

13. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and
System Sciences 49, 149–167 (1994)

14. Obata, K.: Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes.
In: Proceedings of the 5th International Workshop on Randomization and Com-
putation (RANDOM), pp. 39–50 (2002)

15. Razborov, A.A.: Lower bounds on the dimension of schemes of bounded depth in
a complete basis containing the logical addition function. Akademiya Nauk SSSR.
Matematicheskie Zametki 41(4), 598–607, 623 (1987)

16. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pp. 77–82 (1987)

468 D. Gutfreund and G.N. Rothblum

17. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR
Lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

18. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. In: Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing, pp. 589–598
(2008)

19. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, pp. 126–135 (2003)

20. Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity via uni-
form reductions. Computational Complexity 16(4), 361–364 (2007)

21. Viola, E.: The complexity of constructing pseudorandom generators from hard
functions. Computational Complexity 13(3-4), 147–188 (2005)

22. Viola, E.: The complexity of hardness amplification and derandomization. PhD
thesis, Harvard University (2006)

23. Wehner, S., de Wolf, R.: Improved Lower Bounds for Locally Decodable Codes
and Private Information Retrieval. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1424–1436.
Springer, Heidelberg (2005)

24. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91
(1982)

25. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
pp. 266–274 (2007)

Limitations of Hardness vs. Randomness

under Uniform Reductions

Dan Gutfreund1,� and Salil Vadhan2,��

1 Department of Mathematics and CSAIL
MIT

danny@math.mit.edu
2 School of Engineering and Applied Sciences

Harvard University
salil@eecs.harvard.edu

Abstract. We consider (uniform) reductions from computing a func-
tion f to the task of distinguishing the output of some pseudorandom
generator G from uniform. Impagliazzo and Wigderson [10] and Tre-
visan and Vadhan [24] exhibited such reductions for every function f in
PSPACE. Moreover, their reductions are “black box,” showing how to
use any distinguisher T , given as oracle, in order to compute f (regard-
less of the complexity of T). The reductions are also adaptive, but with
the restriction that queries of the same length do not occur in different
levels of adaptivity. Impagliazzo and Wigderson [10] also exhibited such
reductions for every function f in EXP, but those reductions are not
black-box, because they only work when the oracle T is computable by
small circuits.

Our main results are that:

– Nonadaptive black-box reductions as above can only exist for func-
tions f in BPPNP (and thus are unlikely to exist for all of PSPACE).

– Adaptive black-box reductions, with the same restriction on the
adaptivity as above, can only exist for functions f in PSPACE (and
thus are unlikely to exist for all of EXP).

Beyond shedding light on proof techniques in the area of hardness
vs. randomness, our results (together with [10,24]) can be viewed in a
more general context as identifying techniques that overcome limitations
of black-box reductions, which may be useful elsewhere in complexity
theory (and the foundations of cryptography).

Keywords: pseudorandom generators, derandomization, black-box
reductions.

� Research was partially supported by NSF grant CCF-0514167. Part of this research
was done while the author was at Harvard University and supported by ONR grant
N00014-04-1-0478 and NSF grant CNS-0430336.

�� Work done in part while visiting UC Berkeley, supported by the Miller Institute for
Basic Research in Science and the Guggenheim Foundation. Also supported by ONR
grant N00014-04-1-0478 and US-Israel BSF grant 2002246.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 469–482, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

470 D. Gutfreund and S. Vadhan

1 Introduction

A central goal in the theory of computation is to identify relations between
the complexities of different computational tasks. Indeed, some of the greatest
discoveries in computational complexity (and the foundations of cryptography)
are surprising connections between the complexities of tasks that seem very
different in nature. The traditional way of showing such relations is by various
forms of “black-box” reductions. That is, the proofs exhibit an efficient (oracle)
algorithm R that when given oracle access to any function f that solves task T1,
Rf solves task T2. Such an algorithm R proves that if T1 has an efficient solution
then so does task T2. In complexity theory, such algorithms R are often referred
to as just “reductions” (or “Cook reductions”), but here we use “black box” to
emphasize that R only has oracle access to the function f solving task T1 and
is required to work regardless of the complexity of this oracle.

There are also a number of negative results about black-box reductions, show-
ing that for certain pairs of tasks T1, T2, it is unlikely that such an algorithm R
exists. The natural interpretation of such negative results is that proving the de-
sired relation between T1 and T2 may be a difficult task that is beyond the reach
of “current techniques.” However, black-box reductions are not the only way
computational relations can be obtained, and by now there are several proofs of
relations that are unlikely to be provable using black-box reductions. A classic
example is the result that an efficient algorithm for SAT implies an efficient al-
gorithm for every language in the polynomial-time hierarchy; this is proven via a
non-black-box argument and indeed a black-box reduction showing this relation
seems unlikely (as it would imply the collapse of the polynomial-time hierarchy).
It is useful to isolate and identify techniques like this, which overcome limitations
of black-box reductions, because they may enable overcoming barriers elsewhere
in complexity theory.

In this paper, we study black-box reductions in the area of hardness vs.
randomness (i.e. constructing pseudorandom generators from hard functions).
Specifically, we take T1 to be the task of distinguishing the output distribution
of a pseudorandom generator G from the uniform distribution, and T2 to be the
task of computing some supposedly ‘hard’ function g, and we are interested in
reductions R such that Rf computes g if f is any function distinguishing G from
uniform. We show limitations of such black-box reductions, and together with
[10,24] (which do show that such connections exist), point to two ways in which
black-box limitations can be overcome:

– Allowing the reduction R to make adaptive queries to its oracle f . We show
that a relation established in [10,24] using an adaptive reduction is unlikely
to be provable using a nonadaptive reduction. This may be interpreted as
a hope to overcome other barriers known for nonadaptive reductions, such
as worst-case/average-case connections for NP [4] and strong hardness am-
plification for constant-depth circuits [22]. (We mention though that for the
latter connection, even adaptive black-box reductions are ruled out, unless
they are highly non-uniform [5].)

Limitations of Hardness vs. Randomness under Uniform Reductions 471

– Using the efficiency of the oracle f in the analysis of the reductionR. Namely,
we consider redcutions that use f as an oracle, but their analysis relies on
the fact that f can be computed efficiently.1 We observe that a reduction
of this type is implicit in [10], and we show that it is unlikely to have an
analogous reduction that works regardless of the complexity of the oracle.
(A similar separation was given in the context of worst-case/average-case
reductions for NP [6,7].)

We hope that these realizations will prove useful in obtaining stronger results
in hardness vs. randomness and in overcoming limitations elsewhere in complex-
ity theory.

Hardness vs. Randomness. We start with some background on hardness vs.
randomness and the use of reductions in this area. The hardness versus ran-
domness paradigm, first developed by Blum, Micali, Yao, Nisan, and Wigderson
[3,26,16], is one of the most exciting achievements of the field of computational
complexity. It shows how to use the hardness of a function f (computable in
exponential time) to construct a pseudorandom generator G, which can then be
used to derandomize probabilistic algorithms. By now there are many varieties
of such results, trading off different assumptions on the function f , different
types of probabilistic algorithms (e.g. BPP algorithms or AM proof systems),
and different levels of derandomization.

For many years, all of the results of this type (based on the hardness of an
arbitrary exponential-time computable function) required the function f to be
hard for even nonuniform algorithms, e.g. f /∈ P/poly. Nearly a decade ago, Im-
pagliazzo and Wigderson [10] overcame this barrier, showing how to construct
pseudorandom generators assuming only the existence of an exponential-time
computable function f that is hard for uniform probabilistic algorithms, i.e. as-
suming EXP
= BPP.2 This result and some work that followed it have raised
the hope that we may be able to prove an equivalence between uniform and
nonuniform hardness assumptions (since in some cases derandomization implies
non-uniform lower bounds [9,12,18]), or even obtain unconditional derandomiza-
tion and new lower bounds.

The work of Impagliazzo and Wigderson [10], as well as the subsequent ones on
derandomization from uniform assumptions, have used a number of ingredients
that were not present in earlier works on hardness vs. randomness. In this paper,
following [24], we explore the extent to which these new ingredients are really
necessary. The hope is that such an understanding will help point the way to

1 Here the reduction does not need to use the code of the algorithm for f , but just the
fact that an efficient algorithm exists. This is in contrast to the example of SAT vs.
PH mentioned above.

2 The generator of [10], as well as other generators that are based on uniform hardness
assumptions, are weaker than those that are based on nonuniform assumptions, in
the sense that they only fool (uniform) Turing machines and hence only imply an
average-case derandomization of probabilistic classes.

472 D. Gutfreund and S. Vadhan

even stronger results,3 and also, as we mentioned above, highlight techniques
that might be used to overcome barriers in other parts of complexity theory. We
now describe the new ingredients introduced by Impagliazzo and Wigderson [10].

Black-box reductions. Classic results on hardness vs. randomness can be formu-
lated as “black box” constructions. That is, they are obtained by providing two
efficient oracle algorithms G and R. The construction G uses oracle access to
a (supposedly hard) function f to compute a generator Gf , which stretches a
short seed to a long sequence of bits. The reduction R is meant to show that the
output of Gf is pseudorandom if the function f is hard. Specifically, we require
that for every statistical test T that distinguishes the output of Gf from uni-
form, there exists an “advice string” z such that RT (z, ·) computes the function
f . Note that if T is efficient, then by hardwiring z, we obtain a small circuit
computing f . Put in the contrapositive, this says that if f cannot be computed
by small circuits, then there cannot exist an efficient test T distinguishing the
output of Gf from uniform.

Note that the above notion require both the construction G and the reduc-
tion R to be black box, and requires that they work for every function f and
statistical test T , regardless of the complexity of f and T . In the taxonomy of
[17], these are referred to as fully black-box constructions. The advice string z
that we provide to the reduction R is what makes the reduction nonuniform,
and thereby require a nonuniform hardness assumption on the function f to
deduce that Gf is pseudorandom. If the advice string could be eliminated, then
we would immediately get results based on uniform assumptions, like those of
[10]. Unfortunately, as shown in [24], it is impossible to have a fully black-box
construction of a pseudorandom generator without a significant amount of ad-
vice. Thus the Impagliazzo–Wigderson construction necessarily deviates from
the fully black-box framework.

The most obvious way in which the Impagliazzo–Wigderson [10] construction
is not fully black box is that it is not proven to work for every function f ,
and rather the construction (and its proof of correctness) makes use of the fact
that f is in EXP or some other complexity class such as P#P or PSPACE [24].
For example, in the case of P#P or PSPACE, it uses the fact that f can be
reduced to a function f ′ that is both downward self-reducible and self-correctible
(e.g. f ′ is the Permanent), which is then used to construct the pseudorandom
generator. That is, the construction algorithm G is not black box. Whether
the Impagliazzo–Wigderson reduction algorithm R is or is not black box (i.e.
works for every test T given as oracle) depends on which class f is taken from.
For functions in P#P or PSPACE, R is black box. But if we are only given
a function in EXP, then the reduction relies on the fact that the test T is
efficiently computable. Another interesting aspect of the reduction R is that it
makes adaptive queries to the statistical test T , whereas earlier reductions this

3 A seemingly modest but still elusive goal is a “high-end” version of [10], whereby
one can construct a pseudorandom generator with exponential stretch from the as-
sumption that EXP does not have subexponential-time probabilistic algorithms.

Limitations of Hardness vs. Randomness under Uniform Reductions 473

area were nonadaptive. (There are subsequent reductions, due to Shaltiel and
Umans [21,25], that are also adaptive.)

Our results. Our main results provide evidence that some of these new ingredi-
ents are necessary. Specifically, we consider arbitrary (non-black-box) construc-
tions of a pseudorandom generator G from a function f , and uniform reductions
R (i.e. with no advice) from computing f to distinguishing the output of G from
uniform. For simplicity, we also assume that the generator G is computable in
time exponential in its seed length and that it stretches by a factor of at least
4. More general statements are given in the body of the paper (See Theorems 7
and 8).

Our first result shows that adaptivity is likely to be necessary unless we assume
the function is in PH (rather than PSPACE or EXP).

Theorem 1 (informal). If there is a nonadaptive, uniform, black-box reduction
R from distinguishing a generator G to computing a function f , then f is in
BPPNP.

Next, we consider reductions R that are adaptive, but with the restriction that
all the queries of a particular length must be made simultaneously (they may
depend on answers of the statistical test on queries of other lengths). (We call
this 1-adaptive later in the paper, as a special case of a more general notion (see
Definition 5).) The Impagliazzo–Wigderson reduction for functions f in P#P or
PSPACE is 1-adaptive. We show that this property is unlikely to extend to EXP.

Theorem 2 (informal). If there is a 1-adaptive, uniform, black-box reduction
R from distinguishing a generator G to computing a function f , then f is in
PSPACE.

Thus, to obtain a result for arbitrary functions f in EXP, the reduction must
either be non-black-box or “more adaptive.” Impagliazzo and Wigderson exploit
the former possibility, giving a non-black-box reduction, and their method for
doing so turns out to have a substantial price — a statistical test running in time
t(n) yields an algorithm computing f that runs in time roughly t(t(n)), rather
than something polynomially related to t, which is what is needed for a “high
end” result (See [24]). Theorem 2 suggests that their result might be improved
by employing reductions with greater adaptivity, such as [21,25]. Alternatively,
it would be interesting to rule out such an improvement by strengthening The-
orem 2 to hold for arbitrary adaptive reductions.

Finally, we consider “how non-black-box” the Impagliazzo–Wigderson reduc-
tion is for EXP. Specifically, we observe that even though the analysis of the reduc-
tion R relies on the fact that T is efficient (i.e. computable by small size circuits),
the reduction itself only needs oracle access to T (i.e., it does not need the descrip-
tion of the circuits). We call such reductions size-restricted black-box reductions.
Reductions of this type were recently studied by Gutfreund and Ta-Shma [7].4

4 There are subtle differences between the reductions that we consider and the ones in
[7], see the remark following Definition 6.

474 D. Gutfreund and S. Vadhan

They exhibited such a reduction (based on [6]) for a worst-case/average-case con-
nection that cannot be established via standard black-box reductions. Theorem 2,
together with Theorem 3 below (which is implicit in [10]), provides another exam-
ple of a size-restricted black-box reduction that bypasses black-box limitations.
For technical reasons, we state the [10] result in terms of hitting-set generators,
which are a natural weakening of pseudorandom generators that suffice for deran-
domizing probabilistic algorithms with 1-sided error (i.e. RP rather than BPP).
Theorems 1 and 2 above can be strengthened to apply also to hitting-set
generators.

Theorem 3 (implicit in [10], informal). For every function f in EXP, there
is a generator G and a 1-adaptive, uniform, size-restricted black-box reduction
from distinguishing G as a hitting set to computing f .

A final result of ours is an “infinitely-often” version of the Impagliazzo–Wigderson
reduction [10]. The original versions of their reductions are guaranteed to compute
f correctly on all input lengths assuming that the statistical test T successfully
distinguishes the generator on all input lengths. Unlike most other results in the
area, it is not known how to obtain reductions that compute f correctly on infi-
nitely many input lengths when the test T is only guaranteed to succeed on in-
finitely many input lengths. We observe that such a result can be obtained for
constructing hitting-set generators (and derandomizing RP) from hard problems
in PSPACE rather than constructing pseudorandom generators (and derandomiz-
ing BPP) from hard problems in EXP as done in [10]. Due to space limitations, the
statement and proof of this result is deferred to the full version of this paper [8].

Perspective. As discussed above, one motivation for studying the limitations of
black-box reductions is to help identify potential approaches to overcoming ap-
parent barriers. Another motivation is that black-box reductions sometimes have
advantages over non-black-box reductions, and thus it is informative to know
when these advantages cannot be achieved. For example, Trevisan’s realization
that fully black-box constructions of pseudorandom generators yield randomness
extractors [23] yielded substantial benefits for both the study of pseudorandom
generators and extractors. Similarly, Klivans and van Melkebeek [14] observed
that black-box constructions of pseudorandom generators extend naturally to
derandomize classes other than BPP, such as AM.

Unfortunately, as we have mentioned, results showing the limitations of black-
box reductions are often interpreted as saying that proving certain results are
outside the reach of “current techniques”. We strongly disagree with these kinds
of interpretations, and indeed hope that our results together with [10] will serve
as another reminder that such limitations can be overcome.

2 Preliminaries

We assume that the reader is familiar with standard complexity classes such as
EXP, BPP, the polynomial-time hierarchy etc., as well as standard models of
computation such as probabilistic Turing Machines and Boolean circuits.

Limitations of Hardness vs. Randomness under Uniform Reductions 475

For a class C of algorithms, we denote by io−C the class of languages L such
that an algorithm from C correctly decides L for infinitely many input lengths.

For n ∈ N, we denote by Un the uniform distribution over {0, 1}n. For a
distribution D, we denote by x← D that x is a sample drawn from D.

2.1 Pseudorandom Generators and Hardness vs. Randomness

Definition 4. Let b : N → N be such that for every a, b(a) > a. Let G = {Ga :
{0, 1}a → {0, 1}b(a)}a∈N be a sequence of functions, and let T = {T : {0, 1}∗ →
{0, 1}} be a family of Boolean functions (which we call statistical tests). For
δ > 0 we say that,

1. G is a sequence of pseudorandom generators (PRGs for short) that δ-fools
T i.o. (infinitely often), if for every T ∈ T , there are infinitely many a ∈ N
such that

If a function T : {0, 1}∗ → {0, 1} violates (1) (respectively (2)), we say that
it δ-distinguishes G from uniform a.e. (almost everywhere).
δ-fooling (respectively δ-hitting) a.e. and δ-distinguishing i.o. are defined anal-

ogously with the appropriate changes in the quantification over input lengths.

Note that if G is a PRG that δ-fools T i.o. (respectively a.e.) then it is also a
HSG that δ-hits T i.o. (respectively a.e.).

Definition 5. A (uniform) black-box reduction from deciding a language L to
δ-distinguishing a.e. a family of (either pseudorandom or hitting-set) generators
G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N, is a probabilistic polynomial-time oracle Tur-
ing Machine (TM) R, such that for every statistical test T that δ-distinguishes
G a.e., for every large enough n ∈ N and for every x ∈ {0, 1}n,

Pr[RT (x) = L(x)] > 2/3

where the probability is over the random coins of R, and RT (x) denotes the
execution of R on input x and with oracle access to T .

We say that such a reduction asks single-length queries if for every n, there
exist a = a(n) such that on every execution of R on instances of length n, all
the queries that R makes are of length exactly b(a).

We say that the reduction has k = k(n) levels of adaptivity if on every execu-
tion of R on inputs of length n and every statistical test T , the queries to T can

| Pr
y←Ua

[T (Ga(y)) = 1] − Pr
x←Ub(a)

[T (x) = 1]| < δ (1)

2. G is a sequence of hitting-set generators (HSGs for short) that δ-hits T i.o.,
if for every T ∈ T , there are infinitely many a ∈ N such that

Pr
x←Ub(a)

[T (x) = 0] ≥ δ ⇒ Pr
y←Ua

[T (Ga(y)) = 0] > 0 (2)

476 D. Gutfreund and S. Vadhan

be partitioned to k+1 subsets (which are called the levels of adaptivity), such that
each query in the i’th set is a function of the input x, the randomness of R, the
index of the query within the i’th set (as well as i itself), and the answers that T
gives on queries in the sets 1, . . . , i− 1. We say that a reduction is nonadaptive
if it has zero levels of adaptivity.

Finally, we say that the reduction is k(a, n)-adaptive if for every statistical
test T , every instance of length n and every a, there are at most k(a, n) levels of
adaptivity in which queries of length b(a) appear with positive probability (over
the randomness of R when it is given oracle access to T).

We now define a different notion of reductions that still only have oracle access
to the distinguishers, however the correctness of the reduction is only required
to hold when the distinguisher is restricted to be a function that is computable
by polynomial-size circuits.

Definition 6. A (uniform) size-restricted black-box reduction from deciding a
language L to δ-distinguishing a.e. a family of (pseudorandom or hitting-set)
generators G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N, is a probabilistic polynomial-
time oracle TM R, such that for every statistical test T that δ-distinguishes G
a.e., and is computable by a sequence of quadratic-size circuits5, for every large
enough n ∈ N and for every x ∈ {0, 1}n,

Pr[RT (x) = L(x)] > 2/3

where the probability is over the random coins of R.
Quantifiers over query length and adaptivity are defined as in the black-box

case.

A remark about the quadratic size bound. The quadratic bound on the circuit
size of the distinguishers is arbitrary and can be any (fixed) polynomial. The
reason for our quadratic choice is that restricting the attention to distinguishers
of this size is enough for derandomization.

A comparison to the definition of [7]. The restricted black-box reductions that
we consider here run in any arbitrary polynomial time bound, which in partic-
ular can be larger than the fixed (quadratic) polynomial bound on the size of
the distinguishers. In contrast, the notion of class-specific black-box reductions
defined in [7], considers reductions that run in a fixed polynomial-time that is
independent of the running time (or the circuit size) of the oracle (i.e. the oracle
function can be computed by algorithms that run in arbitrary polynomial time).

3 Nonadaptive Reductions

In this section we show that any black-box nonadaptive reduction from deciding
a language L to distinguishing a generator implies that L is in the polynomial-
time hierarchy.
5 Recall that the distinguishers’ circuit size is measured with respect to their input

length, which is the output length of the generator.

Limitations of Hardness vs. Randomness under Uniform Reductions 477

Theorem 7. Let L ⊆ {0, 1}∗ be a language, and let G = {Ga : {0, 1}a →
{0, 1}b(a)}a∈N be a family of hitting-set generators such that Ga is computable in
time 2O(a), and b(a) > 4a. If there is a nonadaptive black-box reduction R from
L to 1

2 -distinguishing G a.e., then L is in BPPNP. If we remove the time bound
condition on computing Ga then L is in PNP/poly.

Proof outline. We give here the main ideas in the proof. For the formal details
refer to the full version of this paper [8]. Let us concentrate on the single-length
case. We describe a BPPNP algorithm that decides L. Fix an input x ∈ {0, 1}n,
and let a ∈ N be such that R queries its oracle on instances of length b = b(a)
when given inputs of length n.

The basic idea is to define, based on x, a statistical test T (that may not be
efficiently computable) with the following properties:

1. T 1
2 -distinguishes Ga. This means that RT decides L correctly on every

instance of length n.
2. There is a function T ′ that can be computed in BPPNP, such that RT and
RT ′

behave almost the same on the input x. This means that RT ′
decides

correctly the membership of x in L (since so does RT), but now the procedure
together with the oracle computations can be implemented in BPPNP.

Before we explain how to construct T and T ′, we want to stress that these
functions depend on the specific input x, and the fact that RT and RT ′

behave
almost the same is only guaranteed when we run them on that x. I.e. every
instance determines different functions T and T ′ (we avoid using the notation
Tx and T ′

x because in the proof there are other parameters involved and the
notations become cumbersome). The point is that given any instance x, the
answers of the oracle T ′, that is determined by x, can be computed (from scratch)
in BPPNP.

Now, ifGa were computable in time poly(b(a)), we could simply take T = T ′ =
Im(Ga). Indeed, Im(Ga) is the optimal distinguisher for Ga, and membership in
Im(Ga) can be decided in nondeterministic polynomial time if Ga is efficiently
computable (by guessing a corresponding seed). However, as in [16,10], we allow
the generator to run in time 2O(a) + b(a), since this suffices when pseudorandom
generators are used for derandomization. In such a case, deciding membership
in Im(Ga) may not be feasible in the polynomial hierarchy. So instead we will
take T = Im(Ga) ∪H and T ′ = H where H is a “small” set defined so that RT

and RT ′
behave almost the same.

To construct such a setH , we classify queries that Rmakes on input x, accord-
ing to the probability that they come up in the reduction (where the probability
is over R’s randomness). (A similar idea appears in [4].) We call a query heavy
if the probability it comes up is at least 2−t and light otherwise, where t is the
average of a and b = b(a). Note that the classification to heavy/light is well de-
fined and is independent of any oracle that R may query, because the reduction
is nonadaptive. We define H to be the set of heavy queries.

First, we argue that T = H ∪ Im(Ga) 1
2 -distinguishes Ga. This is because

clearly it is always 1 on a sample taken by Ga. On the other hand, the number

478 D. Gutfreund and S. Vadhan

of elements for which T is 1 is small relative to the universe {0, 1}b. This is
because there are only 2a elements in the image of Ga, and at most 2t heavy
elements. Recall that both a and t are smaller than b.

Next, we argue that the behavior of RT (x) is roughly the same as RT ′
(x),

where T ′ = H . Note that the only difference between T and T ′ is on light
elements in the image set of Ga (T gives them the value 1, while T ′ gives them
the value 0). When we run R on input x, the probability that such elements
appear is small because their number is small (at most 2a) and each one appears
with small probability (because it is light). So R, on input x, behaves roughly
the same when it has oracle access to either T or T ′. We therefore conclude that
RT ′

decides correctly the membership of x in L.
Finally, to show that T ′ = H is computable in BPPNP, we use the fact that

approximate counting can be done in BPPNP [19,20,11], which allows us to
approximate the weight of queries made by R and thus simulate its run with the
oracle T ′. Since for every query we only get an approximation of its weight, we
cannot handle a sharp threshold between heavy and light queries. To that end,
instead of defining the threshold t to be the average of a and b, we define two
thresholds (both of which are a weighted average of a and b), such that those
queries with weight below the low threshold are considered light, those with
weight above the high threshold are considered heavy, and those in between can
be classified arbitrarily. We now need more subtle definitions of T and T ′, but
still the outline described above works.

4 Adaptive Reductions

In this section we show that any black-box reduction, from a language L to
distinguishing a generator, that is adaptive with the restriction that queries of
the same length do not appear in too many different levels, implies that L is in
PSPACE.

Theorem 8. Let L ⊆ {0, 1}∗ be a language, and let G = {Ga : {0, 1}a →
{0, 1}b(a)}a∈N be a family of hitting-set generators such that Ga is computable
in time 2O(a), and b(a) > 4a. If there is a �(a, n)-adaptive black-box reduction R
from L to 1

2 -distinguishing G a.e., where �(a, n) ≤ b(a)−a
40 log n for a ≥ 15 logn, then

L is in PSPACE. If we remove the time bound condition on computing Ga then
L is in PSPACE/poly.

Proof outline. We give here the main ideas in the proof. For the formal details
refer to the full version of this paper [8]. Our starting point is the proof of
Theorem 7 (see proof outline in Section 3). Our aim is to construct, based on an
input x, the functions T and T ′ as before. The problem that we face when trying
to implement the same ideas is that now, because the reduction is adaptive, the
property of a query being light or heavy depends on the oracle that R queries
(this is because queries above the first level depend on answers of the oracle).
We therefore cannot define T in the same manner (such a definition would be

Limitations of Hardness vs. Randomness under Uniform Reductions 479

circular). Instead, we classify queries to light and heavy separately for each level
of adaptivity (i.e. a query can be light for one level and heavy for another). We do
that inductively as follows. For the first level we set a threshold 2−t1 (where t1 is a
weighted average of a and b = b(a)). We then define light and heavy with respect
to this threshold. The distribution over queries at the first level is independent
of any oracle, so the classification is well defined. We then define a function T1

to be 1 on queries that are heavy for the first level and 0 otherwise. We can
now proceed to define light and heavy for the second level when considering
the distribution over queries at the second level when running R(x) with oracle
access to T1 at the first level. We continue with this process inductively to define
light/heavy at level i, with respect to the distribution obtained by running R(x)
with oracles T1, . . . , Ti−1 (each at the corresponding level). Here Tj is defined
to be 1 on queries that are heavy for at least one of levels from the j’th down
(and 0 otherwise). For each level i we define a different threshold 2−t , with the
property that the thresholds gradually increase with the levels (the reason for
this will soon be clear).

We now define the statistical test T to be 1 on elements that are heavy for
at least one of the levels as well as on elements in the image set of Ga (and 0
otherwise). The argument showing that T 1

2 -distinguishes Ga, is similar to the
one in the proof of Theorem 7.

In the next step, instead of defining a T ′ as in the proof of Theorem 7, we
directly compare the outcomes of running R(x) with T as an oracle and running
R(x) with oracles T1, . . . , T� (where � is the number of adaptivity levels), each
at the corresponding level. We argue that the two runs should be roughly the
same (in the sense that the distributions over the outputs will be close). To do
that, we observe that at each level i, the answer of T on a query q differs from
the answer of Ti on this query if one of the following occurs:

1. q is in the image set of Ga and it is light for levels 1, . . . , i.
2. q is light for all levels 1, . . . , i but heavy for at least one of the levels i +

1, . . . , �.

In both cases T will give q the value 1, while Ti the value 0. We bound the
probability that queries as above are generated byR(x) when it is given the oracles
T1, . . . , T�. The argument that bounds the probability that queries of the first type
are generated is similar to the argument in the proof of Theorem 7. The probability
that queries of the second type are generated at the i’th level is bounded as follows:
the total number of heavy elements for levels above the i’th is small (it is at most
the reciprocal of their weight, which is high). Of these elements, those that are light
at level i have small probability to be generated at level i by virtue of them being
light for that level. When we take the union bound over all such queries we still
get a small probability of at least one of them being generated. The point is that
the number of elements in the union bound is computed according to thresholds
of levels above the i’th, while their probability is taken according to the threshold
of the i’th level. By the fact that thresholds increase with the levels, we get that
the number of elements in the union bound is much smaller than the reciprocal of
their probabilities, and therefore the overall probability of such an event is small.

i

480 D. Gutfreund and S. Vadhan

We conclude that the output distributions of running R with oracle access to T
and running R(x) with oracle access to T1, . . . , T� are very close, and therefore the
latter decides correctly the membership of x in L.

Finally we show that T1, . . . , T� can be implemented in PSPACE and thus the
whole procedure of running R(x) and computing these oracles is in PSPACE. To
compute the answers of the oracle Ti (at level i) we compute the exact weight
of the query. We do that by a recursive procedure that computes the exact
weights of all the queries (at levels below the i’th) that appear along the way.
The fact that Ti only depends on Tj for 1 ≤ j < i allows this procedure to run
in polynomial-space.

5 Comparison to Known Reductions

In this section we contrast our negative results regarding black-box reductions to
known relations between deciding languages and distinguishing pseudorandom
(and hitting-set) generators. Impagliazzo and Wigderson [10] showed such a
reduction from every language in the class P#P. This was extended by Trevisan
and Vadhan [24] to languages in PSPACE. These reductions are black-box and
adaptive (1-adaptive to be precise, see Definition 5).

Theorem 9. [10,24] For every language L in PSPACE there exists a polyno-
mial function k(·) such that for every polynomial function b(·), there is a uni-
form black-box reduction from deciding L to distinguishing a certain family of
pseudorandom generators G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N a.e., where Ga

is computable in time 2O(a). The reduction is 1-adaptive and has k(n) levels of
adaptivity.

We conclude by Theorem 7 that the black-box reduction from the theorem above
is inherently adaptive, unless PSPACE = BPPNP.

Next we turn our attention to reductions from languages in the class EXP.
Such a reduction was given by Impagliazzo and Wigderson [10]. Their reduction is
not black-box but rather size-restricted black-box (see Definition 6). We refer the
reader to the full version of this paper [8] where we explain how the fact that the
distinguisher can be computed by small-size circuits plays a role in this reduction.

Theorem 10. (implicit in [10]) For every language L in EXP and polynomial
function b(·), there is a polynomial function k(·) and a uniform size-restricted
black-box reduction from deciding L to distinguishing a certain family of hitting-
set generators G = {Ga : {0, 1}a → {0, 1}b(a)}a∈N a.e., where Ga is computable
in time 2O(a). The reduction is 1-adaptive and has k(n) levels of adaptivity.

Theorem 10 should be contrasted with Theorem 8, which says that any reduction
that is 1-adaptive cannot be black box (unless EXP = PSPACE). That is, the
‘size-restricted’ aspect of Theorem 10 cannot be removed.

A remark about reductions from computing a function on the average. Typi-
cally, constructions of pseudorandom (resp. hitting-set) generators from hard

Limitations of Hardness vs. Randomness under Uniform Reductions 481

functions (both against uniform and non-uniform classes) combine two reduc-
tions: the first reduces the task of computing f (the supposedly hard function)
on every instance to computing some related function f̂ on the average. The
second reduces computing f̂ on the average to distinguishing the generator. In
particular, the proof of [10] takes this form. We mention that our negative results
about black-box reductions can be strengthened to show the same limitations
for reductions from computing a function on the average to distinguishing a gen-
erator from the uniform distribution. In other words, it is really the fact that
we reduce to distinguishing a generator that makes it impossible to do with
black-box reductions, and not the fact that we start from a worst-case hard-
ness assumption. In fact, nonadaptive (and uniform, black-box) worst-case to
average-case reductions for PSPACE-complete and EXP-complete functions are
known [1,2,24].

Acknowledgements

We thank Ronen Shaltiel and the anonymous reviewers for helpful comments on
the write-up.

References

1. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. In: Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pp. 16–25 (1990)

2. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential sim-
ulation unless EXPTIME has publishable proofs. Computational Complexity 3,
307–318 (1993)

3. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

4. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP prob-
lems. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 308–317 (2003)

5. Gutfreund, D., Rothblum, G.: The complexity of local list decoding. Technical
Report TR08-034, Electronic Colloquium on Computational Complexity (2008)

6. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If NP languages are hard in the worst-
case then it is easy to find their hard instances. Computational Complexity 16(4),
412–441 (2007)

7. Gutfreund, D., Ta-Shma, A.: Worst-case to average-case reductions revisited. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J. (eds.) RANDOM 2007. LNCS,
vol. 4627, pp. 569–583. Springer, Heidelberg (2007)

8. Gutfreund, D., Vadhan, S.: Limitations of hardness vs. randomness under uniform
reductions. Technical Report TR08-007, Electronic Colloquium on Computational
Complexity (2008)

9. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Expo-
nential time vs. probabilistic polynomial time. Journal of Computer and System
Sciences 65(4), 672–694 (2002)

482 D. Gutfreund and S. Vadhan

10. Impagliazzo, R., Wigderson, A.: Randomness vs. time: de-randomization under
a uniform assumption. Journal of Computer and System Sciences 63(4), 672–688
(2001)

11. Jerrum, M., Valiant, L., Vazirani, V.: Random generation of combinatorial struc-
tures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

12. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

13. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, pp. 302–309 (1980)

14. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Comput-
ing 31(5), 1501–1526 (2002)

15. Lipton, R.: New directions in testing. In: Proceedings of DIMACS workshop on
distributed computing and cryptography, vol. 2, pp. 191–202 (1991)

16. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and
System Sciences 49, 149–167 (1994)

17. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

18. Santhanam, R.: Circuit lower bounds for arthur–merlin classes. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, pp. 275–283 (2007)

19. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pp. 330–335 (1983)

20. Stockmeyer, L.: On approximation algorithms for �P. SIAM Journal on Comput-
ing 14(4), 849–861 (1985)

21. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-
random generator. Journal of the ACM 52(2), 172–216 (2005)

22. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. In: Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing, pp. 589–598
(2008)

23. Trevisan, L.: Construction of extractors using pseudo-random generators. Journal
of the ACM 48(4), 860–879 (2001)

24. Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity via uni-
form reductions. Computational Complexity 16(4), 331–364 (2007)

25. Umans, C.: Pseudo-random generators for all hardnesses. Journal of Computer and
System Sciences 67(2), 419–440 (2003)

26. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91
(1982)

Learning Random Monotone DNF

Jeffrey C. Jackson1,�, Homin K. Lee2, Rocco A. Servedio2,��,
and Andrew Wan2

1 Duquesne University, Pittsburgh, PA 15282
jacksonj@duq.edu

2 Columbia University, New York, NY 10027
homin@cs.columbia.edu, rocco@cs.columbia.edu, atw12@cs.columbia.edu

Abstract. We give an algorithm that with high probability properly
learns random monotone DNF with t(n) terms of length ≈ log t(n) un-
der the uniform distribution on the Boolean cube {0, 1}n. For any function
t(n) ≤ poly(n) the algorithm runs in time poly(n, 1/ε) and with high prob-
ability outputs an ε-accurate monotone DNF hypothesis. This is the first
algorithm that can learn monotone DNF of arbitrary polynomial size in a
reasonable average-case model of learning from random examples only.

1 Introduction

Motivation and background. Any Boolean function f : {0, 1}n → {0, 1} can
be expressed as a disjunction of conjunctions of Boolean literals, i.e. as an OR of
ANDs. Such a logical formula is said to be a disjunctive normal formula, or DNF.
Learning polynomial-size DNF formulas (disjunctions of poly(n) many conjunc-
tions) from random examples is an outstanding open question in computational
learning theory, dating back more than 20 years to Valiant’s introduction of the
PAC (Probably Approximately Correct) learning model [Val84].

The most intensively studied variant of the DNF learning problem is PAC
learning DNF under the uniform distribution. In this problem the learner must
generate a high-accuracy hypothesis with high probability when given uniform
random examples labeled according to the unknown target DNF. Despite much
effort, no polynomial-time algorithms are known for this problem.

A tantalizing question that has been posed as a goal by many authors (see
e.g. [Jac97, JT97, BBL98, Blu03b, Ser04]) is to learn monotone DNF, which
only contain unnegated Boolean variables, under the uniform distribution. Be-
sides being a natural restriction of the uniform distribution DNF learning prob-
lem, this problem is interesting because several impediments to learning gen-
eral DNF under uniform – known lower bounds for Statistical Query based
algorithms [BFJ+94], the apparent hardness of learning the subclass of log(n)-
juntas [Blu03a] – do not apply in the monotone case. This paper solves a natural
average-case version of this problem.
� Supported in part by NSF award CCF-0209064.

�� Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and
by a Sloan Foundation Fellowship.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 483–497, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

484 J.C. Jackson et al.

Previous work. Many partial results have been obtained on learning monotone
DNF under the uniform distribution. Verbeurgt [Ver90] gave an nO(log n)-time
uniform distribution algorithm for learning any poly(n)-term DNF, monotone
or not. Several authors [KMSP94, SM00, BT96] have given results on learning
monotone t-term DNF for larger and larger values of t; most recently, [Ser04]
gave a uniform distribution algorithm that learns any 2O(

√
log n)-term monotone

DNF to any constant accuracy ε = Θ(1) in poly(n) time. O’Donnell and Serve-
dio [OS06] have recently shown that poly(n)-leaf decision trees that compute
monotone functions (a subclass of poly(n)-term monotone DNF) can be learned
to any constant accuracy under uniform in poly(n) time. Various other problems
related to learning different types of monotone functions under uniform have also
been studied, see e.g. [KLV94, BBL98, Ver98, HM91, AM02].

Aizenstein and Pitt [AP95] first proposed a model of random DNF formulas
and gave an exact learning algorithm that learns random DNFs generated in
this way. As noted in [AP95] and [JS06], this model admits a trivial learning
algorithm in the uniform distribution PAC setting. Jackson and Servedio [JS05]
gave a uniform distribution algorithm that learns log-depth decision trees on
average in a natural random model. Previous work on average-case uniform PAC
DNF learning, also by Jackson and Servedio, is described below.

Our results. The main result of this paper is a polynomial-time algorithm
that can learn random poly(n)-term monotone DNF with high probability. (We
give a full description of the exact probability distribution defining our ran-
dom DNFs in Section 4; briefly, the reader should think of our random t-term
monotone DNFs as being obtained by independently drawing t monotone con-
junctions uniformly from the set of all conjunctions of length log2 t over variables
x1, . . . , xn. Although many other distributions could be considered, this seems a
natural starting point. Some justification for the choice of term length is given
in Sections 4 and 6.)

Theorem 1. [Informally] Let t(n) ≤ poly(n), and let c > 0 be any fixed con-
stant. Then random monotone t(n)-term DNFs are PAC learnable (with failure
probability δ = n−c) to accuracy ε in poly(n, 1/ε) time under the uniform distri-
bution. The algorithm outputs a monotone DNF as its hypothesis.

In independent and concurrent work, Sellie [Sel08] has given an alternate proof
of this theorem using different techniques.

Our technique. Jackson and Servedio [JS06] showed that for any γ > 0, a result
similar to Theorem 1 holds for random t-term monotone DNF with t ≤ n2−γ .
The main open problem stated in [JS06] was to prove Theorem 1. Our work solves
this problem by using the previous algorithm to handle t ≤ n3/2, developing new
Fourier lemmas for monotone DNF, and using these lemmas together with more
general versions of techniques from [JS06] to handle t ≥ n3/2.

The crux of our strategy is to establish a connection between the term struc-
ture of certain monotone DNFs and their low-order Fourier coefficients. There is

Learning Random Monotone DNF 485

an extensive body of research on Fourier properties of monotone Boolean func-
tions [BT96, MO03, BBL98], polynomial-size DNF [Jac97, Man95], and related
classes. These results typically establish that every function in the class has a
Fourier spectrum with certain properties; unfortunately, the Fourier properties
that have been obtainable to date for general statements of this sort have not
been sufficient to yield polynomial-time learning algorithms.

We take a different approach by carefully defining a set of conditions, and
showing that if a monotone DNF f satisfies these conditions then the structure
of the terms of f will be reflected in the low-order Fourier coefficients of f . In
[JS06], the degree two Fourier coefficients were shown to reveal the structure of
the terms for certain (including random) monotone DNFs having at most n2−γ

terms. In this work we develop new lemmas about the Fourier coefficients of more
general monotone DNF, and use these new lemmas to establish a connection
between term structure and constant degree Fourier coefficients for monotone
DNFs with any polynomial number of terms. Roughly speaking, this connection
holds for monotone DNF that satisfy the following conditions:

– each term has a reasonably large fraction of assignments which satisfy it and
no other term;

– for each small tuple of distinct terms, only a small fraction of assignments
simultaneously satisfy all terms in the tuple; and

– for each small tuple of variables, only a few terms contains the entire tuple.

The “small” tuples referred to above should be thought of as tuples of constant
size. The constant degree coefficients capture the structure of the terms in the
following sense: tuples of variables that all co-occur in some term will have a large
magnitude Fourier coefficient, and tuples of variables that do not all co-occur in
some term will have a small magnitude Fourier coefficient (even if subsets of the
tuple do co-occur in some terms). We show this in Section 2.

Next we show a reconstruction procedure for obtaining the monotone DNF
from tuple-wise co-occurrence information. Given a hypergraph with a vertex
for each variable, the procedure turns each co-occurrence into a hyperedge, and
then searches for all hypercliques of size corresponding to the term length. The
hypercliques that are found correspond to the terms of the monotone DNF
hypothesis that the algorithm constructs. This procedure is described in Sec-
tion 3; we show that it succeeds in constructing a high-accuracy hypothesis if
the monotone DNF f satisfies a few additional conditions. This generalizes a re-
construction procedure from [JS06] that was based on finding cliques in a graph
(in the n2−γ-term DNF setting, the algorithm deals only with co-occurrences of
pairs of variables so it is sufficient to consider only ordinary graphs rather than
hypergraphs).

The ingredients described so far thus give us an efficient algorithm to learn any
monotone DNF that satisfies all of the required conditions. Finally, we show that
random monotone DNF satisfy all the required conditions with high probability.
We do this in Section 4 via a fairly delicate probabilistic argument. Section 5
combines the above ingredients to prove Theorem 1. We close the paper by

486 J.C. Jackson et al.

showing that our technique lets us easily recapture the result of [HM91] that
read-k monotone DNF are uniform-distribution learnable in polynomial time.

Preliminaries. We write [n] to denote the set {1, . . . ,n} and use capital letters
for subsets of [n]. We will use calligraphic letters such as C to denote sets of
sets and script letters such as X to denote sets of sets of sets. We write log to
denote log2 and ln to denote the natural log. We write Un to denote the uniform
distribution over the Boolean cube {0, 1}n.

A Boolean function f : {0, 1}n → {0, 1} is monotone if changing the value of
an input bit from 0 to 1 never causes the value of f to change from 1 to 0. We
denote the input variables to f as x1, . . . , xn. A t-term monotone DNF is a t-way
OR of ANDs of Boolean variables (no negations). Recall that every monotone
Boolean function has a unique representation as a reduced monotone DNF. We
say that a term T of such a monotone DNF is uniquely satisfied by input x if x
satisfies T and no other term of f.

Our learning model is an “average-case” variant of the well-studied uniform
distribution PAC learning model. Let DC be a probability distribution over some
fixed class C of Boolean functions over {0, 1}n, and let f (drawn from DC) be
an unknown target function. A learning algorithm A for DC takes as input an
accuracy parameter 0 < ε < 1 and a confidence parameter 0 < δ < 1. During
its execution, algorithm A has access to a random example oracle EX(f, Un),
which, when queried generates a random labeled example (x, f(x)), where x
is drawn from Un. The learning algorithm outputs a hypothesis h, which is
a Boolean function over {0, 1}n. The error of this hypothesis is defined to be
PrU [h(x)
= f(x)]. We say that A learns DC under Un if for every 0 < ε, δ < 1,
with probability at least 1− δ (over both the random examples used for learning
and the random draw of f from DC) algorithm A outputs a hypothesis h which
has error at most ε.

2 Fourier Coefficients and Monotone DNF Term
Structure

Throughout this section let f(x1, . . . , xn) be a monotone DNF and let S ⊆
{1, . . . , n} be a fixed subset of variables. We write s to denote |S| throughout this
section. The Fourier coefficient, written f̂(S), measures the correlation between
f and the parity of the variables in S.

The main result of this section is Lemma 3, which shows that under suitable
conditions on f , the value |f̂(S)| is “large” if and only if f has a term containing
all the variables of S. To prove this, we observe that the inputs which uniquely
satisfy such a term will make a certain contribution to f̂(S). (In Section 2.1 we
explain this in more detail and show how to view f̂(S) as a sum of contributions
from inputs to f .) It remains then to show that the contribution from other
inputs is small. The main technical novelty comes in Sections 2.2 and 2.3, where
we show that all other inputs which make a contribution to f̂(S) must satisfy
the terms of f in a special way, and use this property to show that under suitable
conditions on f , the fraction of such inputs must be small.

n

Learning Random Monotone DNF 487

2.1 Rewriting f̂(S)

We observe that f̂(S) can be expressed in terms of 2s conditional probabilities,
each of which is the probability that f is satisfied conditioned on a particular
setting of the variables in S. That is:

where ZS(U) denotes the set of those x ∈ {0, 1}n such that xi = 1 for all
i ∈ U and xi = 0 for all i ∈ S \ U . If f has some term T containing all
the variables in S, then Prx[f(x) = 1 | x ∈ ZS(S)] is at least as large as
Prx[T is uniquely satisfied in f |x ∈ ZS(S)]. On the other hand, if f has no
such term, then Prx[f(x) = 1 | x ∈ ZS(S)] does not receive this contribution.
We will show that this contribution is the chief determinant of the magnitude
of f̂(S).

It is helpful to rewrite f̂(S) as a sum of contributions from each input x ∈
{0, 1}n. To this end, we decompose f according to the variables of S. Given a
subset U ⊆ S, we will write gU to denote the disjunction of terms in f that
contain every variable indexed by U ⊆ S and no variable indexed by S \ U ,
but with the variables indexed by U removed from each term. (So for example
if f = x1x2x4x6 ∨ x1x2x5 ∨ x1x2x3 ∨ x3x5 ∨ x1x5x6 and S = {1, 2, 3} and
U = {1, 2}, then gU = x4x6∨x5.) Thus we can split f into disjoint sets of terms:
f =

∨
U⊆S(tU ∧ gU), where tU is the term consisting of exactly the variables

indexed by U .
Suppose we are given U ⊆ S and an x that belongs to ZS(U). We have

that f(x) = 1 if and only if gU ′(x) is true for some U ′ ⊆ U . (Note that tU ′(x)
is true for every U ′ ⊆ U since x belongs to ZS(U).) Thus we can rewrite the
Fourier coefficients f̂(S) as follows: (Below we write I(P) to denote the indicator
function that takes value 1 if predicate P is true and value 0 if P is false.)

f̂(S) def= Ex∈Un

[
(−1)

�
i∈S xi · f(x)

]
=

1
2n

∑

x∈{0,1}n

(−1)
�

i∈S xi · f(x)

=
1
2n

∑

U⊆S

(−1)|U|
∑

x∈ZS(U)

f(x) =
1
2s

∑

U⊆S

(−1)|U| Pr
x

[f(x) = 1 | x ∈ ZS(U)],

f̂(S) =
1
2n

∑

U⊆S

(−1)|U|
∑

x∈ZS(U)

f(x) =
∑

U⊆S

(−1)|U| 1
2n

∑

x∈ZS(U)

I

⎛

⎝
∨

U ′⊆U

gU ′(x)

⎞

⎠

=
∑

x∈{0,1}n

1
2s

1
2n

∑

U⊆S

(−1)|U|I

⎛

⎝
∨

U ′⊆U

gU ′(x)

⎞

⎠ .

We can rewrite this as f̂(S) =
∑

x∈{0,1}n ConS(x), where

ConS(x) def=
1
2s

1
2n

∑

U⊆S

(−1)|U|I

⎛

⎝
∨

U ′⊆U

gU ′(x)

⎞

⎠ . (1)

488 J.C. Jackson et al.

The value ConS(x) may be viewed as the “contribution” that x makes to f̂(S).
Recall that when f has a term T which contains all the variables in S, those
x ∈ ZS(S) which uniquely satisfy T will contribute to f̂(S). We will show that
under suitable conditions on f , the other x’s make little or no contribution.

2.2 Bounding the Contribution to f̂(S) from Various Inputs

The variable C will denote a subset of P(S), the power set of S; i.e. C denotes
a collection of subsets of S. We may view C as defining a set of gU ’s (those gU ’s
for which U belongs to C).

We may partition the set of inputs {0, 1}n into 2|P(S)| = 22 parts according
to what subset of the 2s functions {gU}U⊆S each x ∈ {0, 1}n satisfies. For C
a subset of P(S) we denote the corresponding piece of the partition by PC ; so
PC consists of precisely those x ∈ {0, 1}n that satisfy

(∧
U∈C gU

)
∧

(∧
U �∈C gU

)
.

Note that for any given fixed C, each x in PC has exactly the same contribution
ConS(x) to the Fourier coefficient f̂(S) as every other x′ in PC ; this is simply
because x and x′ will satisfy exactly the same set of gU ′ ’s in (1). More generally,
we have the following (proved in the full version):

Lemma 1. Let C be any subset of P(S). Suppose that there exist U1, U2 ∈ C
such that U1 � U2. Then for any y, z where y ∈ PC and z ∈ PC\U2 , we have that:
ConS(y) = ConS(z).

Given a collection C of subsets of S, let ConS(C) denote
∑

x∈PC
ConS(x), and we

refer to this quantity as the contribution that C makes to the Fourier coefficient
f̂(S). It is clear that we have f̂(S) =

∑
C⊆P(S) ConS(C).

The following lemma, proved in the full version establishes a broad class of
C’s for which ConS(C) is zero:

Lemma 2. Let C be any collection of subsets of S. If
⋃

U∈C U �= S then ConS(x) =
0 for each x ∈ PC and hence ConS(C) = 0.

It remains to analyze those C’s for which
⋃

U∈C U = S; for such a C we say that
C covers S.

Recall from the previous discussion that ConS(C) = |PC | · ConS(x) where x is
any element of PC . Since |ConS(x)| ≤ 1

2n for all x ∈ {0, 1}n, for any collection
C, we have that

|ConS(C)| ≤ Pr
x∈Un

[x ∈ PC] = Pr
x∈Un

[(
∧

U∈C
gU) ∧ (

∧

U �∈C
gs)] ≤ Pr

x∈Un

[(
∧

U∈C
gU)].

We are interested in bounding this probability for C �= {S} (we will deal with
the special case C = {S} separately later). Recall that each gU is a disjunction
of terms; the expression

∧
U∈C gU is satisfied by precisely those x that satisfy at

least one term from each gU as U ranges over all elements of C. For j ≥ 1 let us
define a quantity Bj as follows

Bj
def= max

i1,...,ij

Pr
x∈Un

[x simultaneously satisfies terms Ti1 , . . . , Tij in ∨U⊆S(gU)]

s

Learning Random Monotone DNF 489

where the max is taken over all j-tuples of distinct terms in ∨U⊆S(gU). Then it
is not hard to see that by a union bound, we have

|ConS(C)| ≤ B|C|
∏

U∈C
(#gU), (2)

where #gU denotes the number of terms in the monotone DNF gU .
The idea of why (2) is a useful bound is as follows. Intuitively, one would

expect that the value of Bj decreases as j (the number of terms that must be
satisfied) increases. One would also expect the value of #gU to decrease as the
size of U increases (if U contains more variables then fewer terms in f will
contain all of those variables). This means that there is a trade-off which helps
us bound (2): if |C| is large then B|C| is small, but if |C| is small then (since we
know that

⋃
U∈C U = S) some U is large and so

∏
U∈C #gU will be smaller.

2.3 Bounding f̂(S) Based on Whether S Co-occurs in a Term of f

We are now ready to state formally the conditions on f̂ that allow us to detect a
co-occurrence of variables in the value of the corresponding Fourier coefficient.

Lemma 3. Let f : {0, 1}n → {−1, 1} be a monotone DNF. Fix a set S ⊂ [n] of
size |S| = s and let

Y = {C ⊆ P(S) : C covers S and S /∈ C}.

Suppose that we define α, β1, . . . , β2 and Φ : Y →R so that:

C1. Each term in f is uniquely satisfied with probability at least α;
C2. For 1 ≤ j ≤ 2s, each j-tuple of terms in f is simultaneously satisfied with

probability at most βj; and
C3. For every CY ∈ Y we have

∏
U∈CY

(#gU) ≤ Φ(CY).

Then

1. If the variables in S do not simultaneously co-occur in any term of f , then

|f̂(S)| ≤ Υ where Υ :=
∑

CY ∈Y

(
2sβ|CY |Φ(CY)

)
;

2. If the variables in S do simultaneously co-occur in some term of f , then
|f̂(S)| ≥ α

2 − 2 · Υ.

Using Lemma 3, if f satisfies conditions C1 through C3 with values of βj and
Φ(·) so that there is a “gap” between α/2s and 3Υ , then we can determine
whether all the variables in S simultaneously co-occur in a term by estimating
the magnitude of f̂(S).

Proof. Let C� denote the ‘special’ element of P (S) that consists solely of the
subset S, i.e. C� = {S}, and let X = {C ⊆ P(S) : C covers S and S ∈ C and C
=
C�}. Using Lemma 2, we have

s

s

490 J.C. Jackson et al.

f̂(S) = ConS(C�) +
∑

CY ∈Y

ConS(CY) +
∑

CX ∈X

ConS(CX). (3)

We first prove point 1. Suppose that the variables of S do not simultaneously
co-occur in any term of f . Then gS is the empty disjunction and #gS = 0,
so ConS(C) = 0 for any C containing S. Thus in this case we have f̂(S) =
∑

CY ∈Y ConS(CY); using (2) and condition C3, it follows that |f̂(S)| is at most∑
CY ∈Y B|CY |Φ(CY). It is not hard to see that B|CY | ≤ 2sβ|CY | (we give a proof

in the full version). So in this case we have

|f̂(S)| ≤
∑

CY ∈Y

|ConS(CY)| ≤
∑

CY ∈Y

B|CY |Φ(CY) ≤
∑

CY ∈Y

(
2sβ|CY |Φ(CY)

)
= Υ.

Now we turn to point 2. Suppose that the variables of S do co-occur in some
term of f . Let x be any element of PC , so x satisfies gU if and only if U = S.
It is easy to see from (1) that for such an x we have ConS(x) = (−1)|S|/(2n2s).
We thus have that

ConS(C�) =
(−1)|S|

2s
· Pr[x ∈ PC] =

(−1)|S|

2s
Pr[gS ∧ (

∧

U�S

gU)]. (4)

Since S co-occurs in some term of f , we have that gS contains at least one term
T . By condition C1, the corresponding term (T ∧ (∧i∈Sxi)) of f is uniquely
satisfied with probability at least α. Since each assignment that uniquely satisfies
(T ∧ (∧i∈Sxi)) (among all the terms of f) must satisfy gS ∧ (

∧
U�S gU), we have

that the magnitude of (4) is at least α/2s.
We now show that |

∑
CX ∈X ConS(CX)| ≤ Υ , which completes the proof,

since we already have that |
∑

CY ∈Y ConS(CY)| ≤
∑

CY ∈Y |ConS(CY)| ≤ Υ .
First note that if the set CX \{S} does not cover S, then by Lemmas 1 and 2 we
have that ConS(x) = 0 for each x ∈ PCX and thus ConS(CX) = 0. So we may
restrict our attention to those CX such that CX \ {S} covers S. Now since such
a CX \ {S} is simply some CY ∈ Y , and each CY ∈ Y is obtained as CX \ {S}
for at most one CX ∈X , we have

∣
∣
∣
∣
∣
∣

∑

CX ∈X

ConS(CX)

∣
∣
∣
∣
∣
∣
≤

∑

CY ∈Y

|ConS(CY)| ≤ Υ.

3 Hypothesis Formation

In this section, we show that if a target monotone DNF f satisfies the conditions
of Lemma 3 and two other simple conditions stated below (see Theorem 2), then
it is possible to learn f from uniform random examples.

Theorem 2. Let f be a t-term monotone DNF. Fix s ∈ [n]. Suppose that

�

�

Learning Random Monotone DNF 491

– For all sets S ⊂ [n], |S| = s, conditions C1 through C3 of Lemma 3 hold for
certain values α, βj, and Φ(·) satisfying Δ > 0, where Δ := α/2s − 3 · Υ .
(Recall that Υ :=

∑
CY ∈Y

(
2sβ|CY |Φ(CY)

)
, where Y = {C ⊆ P(S) : C covers

S and S /∈ C}.)
C4. Every set S of s co-occurring variables in f appears in at most γ terms

(here γ ≥ 2); and
C5. Every term of f contains at most κ variables (note that s ≤ κ ≤ n).

Then algorithm A (described formally in the full version) PAC learns f to ac-
curacy ε with confidence 1 − δ given access to EX(f, Un), and runs in time
poly(ns+γ , t, 1/Δ, γκ, 1/ε, log(1/δ)).

Proof. Lemma 3 implies that for each set S ⊂ [n], |S| = s,

– if the variables in S all co-occur in some term of f , then |f̂(S)| is at least
Δ/2 larger than Υ +Δ/2;

– if the variables in S do not all co-occur in some term of f , then |f̂(S)| is at
least Δ/2 smaller than Υ +Δ/2.

A straightforward application of Hoeffding bounds (to estimate the Fourier co-
efficients using a random sample of uniformly distributed examples) shows that
Step 1 of Algorithm A can be executed in poly(ns, 1/Δ, log(1/δ)) time, and that
with probability 1− δ/3 the S’s that are marked as “good” will be precisely the
s-tuples of variables that co-occur in some term of f .

Conceptually, the algorithm next constructs the hypergraph Gf that has one
vertex per variable in f and that includes an s-vertex hyperedge if and only
if the corresponding s variables co-occur in some term of f . Clearly there is
a k-hyperclique in Gf for each term of k variables in f . So if we could find
all of the k-hypercliques in Gf (where again k ranges between s and κ), then
we could create a set HCf of monotone conjunctions of variables such that f
could be represented as an OR of t of these conjunctions. Treating each of the
conjunctions in HCf as a variable in the standard elimination algorithm for
learning disjunctions (see e.g. Chapter 1 of [KV94]) would then enable us to
properly PAC learn f to accuracy ε with probability at least 1 − δ/3 in time
polynomial in n, t, |HCf |, 1/ε, and log(1/δ). Thus, A will use a subalgorithm A′

to find all the k-hypercliques in Gf and will then apply the elimination algorithm
over the corresponding conjunctions to learn the final approximator h.

We now explain the subalgorithmA′ for locating the setHCf of k-hypercliques.
For each set S of s co-occurring variables, let NS ⊆ ([n]\S) be defined as follows:
a variable xi is in NS if and only if xi is present in some term that contains all of
the variables in S. Since by assumption there are at most γ terms containing such
variables and each term contains at most κ variables, this means that |NS | < κγ.
The subalgorithm will use this bound as follows. For each set S of s co-occurring
variables, A′ will determine the set NS using a procedure A′′ described shortly.
Then, for each s ≤ k ≤ κ and each (k − s)-element subset N ′ of NS , A′ will test

492 J.C. Jackson et al.

whether or notN ′∪S is a k-hyperclique inGf . The set of all k-hypercliques found
in this way isHCf . For each S, the number of sets tested in this process is at most

κ∑

i=0

(
|NS |
i

)

≤
κ∑

i=0

(
κγ

i

)

≤
(eκγ

κ

)κ

= (eγ)κ.

Thus, |HCf | = O(ns(eγ)κ), and this is an upper bound on the time required to
execute Step 2 of subalgorithm A′.

Finally, we need to define the procedure A′′ for finding NS for a given set
S of s co-occurring variables. Fix such an S and let Nγ be a set of at most γ
variables in ([n] \ S) having the following properties:

P1. In the projection fNγ←0 of f in which all of the variables of Nγ are fixed
to 0, the variables in S do not co-occur in any term; and

P2. For every set N ′
γ ⊂ Nγ such that |N ′

γ | = |Nγ | − 1, the variables in S do
co-occur in at least one term of fN ′

γ←0.

We will use the following claim (proved in the full version):

Claim. NS is the union of all sets Nγ of cardinality at most γ that satisfy P1
and P2.

There are only O(nγ) possible candidate sets Nγ to consider, so our problem
now reduces to the following: given a set N of at most γ variables, determine
whether the variables in S co-occur in fN←0.

Recall that since f satisfies the three conditions C1, C2 and C3, Lemma 3
implies that |f̂(S)| is either at most Υ (if the variables in S do not co-occur in any
term of f) or at least α

2s − 2 · Υ (if the variables in S do co-occur in some term).
We now claim that the function fN←0 has this property as well: i.e., |f̂N←0(S)|
is either at most the same value Υ (if the variables in S do not co-occur in any
term of fN←0) or at least the same value α

2s − 2 · Υ (if the variables in S do
co-occur in some term of fN←0). To see this, observe that the function fN←0

is just f with some terms removed. Since each term in f is uniquely satisfied
with probability at least α (this is condition C1), the same must be true of
fN←0 since removing terms from f can only increase the probability of being
uniquely satisfied for the remaining terms. Since each j-tuple of terms in f is
simultaneously satisfied with probability at most βj (this is condition C2), the
same must be true for j-tuples of terms in fN←0. Finally, for condition C3, the
value of #gU can only decrease in passing from f to fN←0. Thus, the upper
bound of Υ that follows from applying Lemma 3 to f is also a legitimate upper
bound when the lemma is applied to |f̂N←0(S)|, and similarly the lower bound
of α

2s −2 ·Υ is also a legitimate lower bound when the lemma is applied to fN←0.
Therefore, for every |N | ≤ γ, a sufficiently accurate (within Δ/2) estimate of
f̂N←0(S) (as obtained in Step 1 of subalgorithm A′′) can be used to determine
whether or not the variables in S co-occur in any term of fN←0.

To obtain the required estimate for f̂N←0, observe that for a given set N , we
can simulate a uniform example oracle for fN←0 by filtering the examples from

Learning Random Monotone DNF 493

the uniform oracle for f so that only examples setting the variables in N to 0
are accepted. Since |N | ≤ γ, the filter accepts with probability at least 1/2γ.
A Hoeffding bound argument then shows that the Fourier coefficients f̂N←0(S)
can be estimated (with probability of failure no more than a small fraction of δ)
from an example oracle for f in time polynomial in n, 2γ , 1/Δ, and log(1/δ).

Algorithm A′′, then, estimates Fourier coefficients of restricted versions of f ,
using a sample size sufficient to ensure that all of these coefficients are sufficiently
accurate over all calls to A′′ with probability at least 1− δ/3. These estimated
coefficients are then used by A′′ to locate the set NS as just described. The
overall algorithm A therefore succeeds with probability at least 1− δ, and it is
not hard to see that it runs in the time bound claimed.

Required parameters. In the above description of Algorithm A, we assumed
that it is given the values of s, α, Υ, γ, and κ. In fact it is not necessary to
assume this; a standard argument gives a variant of the algorithm which succeeds
without being given the values of these parameters.

The idea is simply to have the algorithm “guess” the values of each of these
parameters, either exactly or to an adequate accuracy. The parameters s, γ and
κ take positive integer values bounded by poly(n). The other parameters α, Υ
take values between 0 and 1; a standard argument shows that if approximate
values α′ and Υ ′ (that differ from the true values by at most 1/poly(n)) are used
instead of the true values, the algorithm will still succeed. Thus there are at most
poly(n) total possible settings for (s, γ, κ, α, Υ) that need to be tried. We can
run Algorithm A for each of these candidate parameter settings, and test the
resulting hypothesis; when we find the “right” parameter setting, we will obtain
a high-accuracy hypothesis (and when this occurs, it is easy to recognize that it
has occurred, simply by testing each hypothesis on a new sample of random la-
beled examples). This parameter guessing incurs an additional polynomial factor
overhead. Thus Theorem 2 holds true for the extended version of Algorithm A
that takes only ε, δ as input parameters.

4 Random Monotone DNF

The random monotone DNF model. LetMt,k
n be the probability distribu-

tion over monotone t-term DNF induced by the following process: each term is
independently and uniformly chosen at random from all

(
n
k

)
monotone ANDs of

size exactly k over x1, . . . ,xn.
Given a value of t, throughout this section we consider the Mt,k

n distribution
where k = �log t (we will relax this and consider a broader range of values for k
in Section 6). To motivate this choice, consider a random draw of f from Mt,k

n . If
k is too large relative to t then a random f ∈ Mt,k

n will likely have Prx∈Un [f(x) =
1] ≈ 0, and if k is too small relative to t then a random f ∈ Mt,k

n will likely have
Prx∈Un [f(x) = 1] ≈ 1; such functions are trivial to learn to high accuracy using
either the constant-0 or constant-1 hypothesis. A straightforward analysis (see
e.g. [JS06]) shows that for k = �log t we have that Ef∈Mt,k

n
[Prx∈Un [f(x) = 1]]

494 J.C. Jackson et al.

is bounded away from both 0 and 1, and thus we feel that this is an appealing
and natural choice.

Probabilistic analysis. In this section we will establish various useful proba-
bilistic lemmas regarding random monotone DNF of polynomially bounded size.
Assumptions. Throughout the rest of Section 4 we assume that t(n) is any
function such that n3/2 ≤ t(n) ≤ poly(n). To handle the case when t(n) ≤ n3/2,
we will use the results from [JS06]. Let a(n) be such that t(n) = na(n). For
brevity we write t for t(n) and a for a(n) below, but the reader should keep in
mind that a actually denotes a function 3

2 ≤ a = a(n) ≤ O(1). Because of space
limitations all proofs are given in the full version.

The first lemma provides a bound of the sort needed by condition C3 of
Lemma 3:

Lemma 4. Let |S| = s = !a" + 2. Fix any CY ∈ Y . Let δterms = n−Ω(log n).
With probability at least 1 − δterms over the random draw of f from Mt,k

n , we
have that for some absolute constant c and all sufficiently large n,

Finally, the following lemma shows that for all sufficiently large n, with high
probability over the choice of f , every set S of s variables appears in at most γ
terms, where γ is independent of n (see condition C4).

Lemma 7. Fix any constant c > 0. Let s = !a"+ 2 and let γ = a + c+ 1. Let
δγ = n−c. Then for n sufficiently large, with probability at least 1 − δγ over the
random draw of f from Mt,k

n , we have that every s-tuple of variables appears in
at most γ terms of f .

The following lemma shows that for f drawn from Mt,k
n , with high probability

each term is “uniquely satisfied” by a noticeable fraction of assignments as re-
quired by condition C1. (Note that since k = O(log n) and t > n3/2, we have
δusat = n−Ω(log log n) in the following.)

Lemma 5. Let δusat := exp(−tk
3n) + t2(k

n)log log t. For n sufficiently large, with
probability at least 1 − δusat over the random draw of f = T1 ∨ · · · ∨ Tt from
Mt,k

n , f is such that for all i = 1, . . . , t we have Prx[Ti is satisfied by x but no
other Tj is satisfied by x] ≥ Θ(1)

2k .

We now upper bound the probability that any j distinct terms of a random
DNF f ∈ Mt,k

n will be satisfied simultaneously (condition C2). (In the following
lemma, note that for j = Θ(1), since t = nΘ(1) and k = Θ(log n) we have that
the quantity δsimult is n−Θ(log log n).)

Lemma 6. Let 1 ≤ j ≤ 2s, and let δsimult := tjejk−log k(jk−log k)log k

nlog k . With
probability at least 1 − δsimult over the random draw of f = T1 ∨ · · · ∨ Tt from
Mt,k

n , for all 1 ≤ ι1 < · · · < ιj ≤ t we have Pr[Tι1 ∧ . . . ∧ Tιj] ≤ βj, where
βj := k

2jk .

∏

U∈CY

(#gU) ≤ c · t|CY |−1k2s

√
n

. (5)

Learning Random Monotone DNF 495

5 Proof of Theorem 1

Theorem 1 [Formally] Let t(n) be any function such that t(n) ≤ poly(n), let
a(n) = O(1) be such that t(n) = na(n), and let c > 0 be any fixed constant. Then
for any n−c < δ < 1 and 0 < ε < 1, Mt(n),�log t(n)�

n is PAC learnable under Un

in poly(n2a(n)+c+3,(a(n) + c+ 1)log t(n),t(n),1/ε, log 1/δ) time.

Proof. The result is proved for t(n) ≤ n3/2 already in [JS06], so we henceforth
assume that t(n) ≥ n3/2. We use Theorem 2 and show that for s = !a(n)"+ 2,
random monotone t(n)-term DNFs, with probability at least 1− δ, satisfy con-
ditions C1–C5with values α, βj , Φ(·), Δ, γ, and κ such that Δ > 0 and the
quantities ns+γ , 1/Δ, and γκ are polynomial in n. This will show that the ex-
tended version of AlgorithmA defined in Section 3 PAC learns random monotone
t(n)-term DNFs in time poly(n, 1/ε). Let t = t(n) and k = !log t", and let
f be drawn randomly from Mt,k

n . By Lemmas 4–7, with probability at least

6 Discussion

Robustness of parameter settings. Throughout Sections 4 and 5 we have
assumed for simplicity that the term length k in our random t-term monotone
DNF is exactly !log t". In fact, the results extend to a broader range of k’s;
one can straightforwardly verify that by very minor modifications of the given
proofs, Theorem 1 holds forMt,k

n for any (log t)−O(1) ≤ k ≤ O(log t).

Relation to previous results. Our results are powerful enough to subsume
some known “worst-case” results on learning restricted classes of monotone DNF
formulas. Hancock and Mansour [HM91] have shown that read-k monotone DNF
(in which each Boolean variable xi occurs in at most k terms) are learnable under
the uniform distribution in poly(n) time for constant k. Their result extends an

1 − δusat − δγ − 2 δterms − δsimult, f will satisfy C1–C5 with the following
values:

C1 α > Θ(1)
2k ; C2 βj ≤ k

2jk for 1 ≤ j ≤ 2s;

C3 Φ(CY) ≤ O(1) t|CY |−1k2s

√
n

for all CY ∈ Y ; C4 γ ≤ a(n) + c + 1;
C5 κ = k = �log t,

which gives us that ns+γ = n2a+c+3 and γκ = (a + c + 1)	log t
. Finally, we show
that Δ = Ω(1/t) so 1/Δ is polynomial in n:

Δ = α/2s − 3 · Υ =
Θ(1)
t2s

− 3
∑

CY ∈Y

2sβ|CY |Φ(CY)

≥ Θ(1)
t2s

− Θ(1)
∑

CY ∈Y

2s k

t|CY | · t|CY |−1k2s

√
n

=
Θ(1)
t2s

− Θ(1)k2s+1

t
√

n
= Ω(1/t).

2s

496 J.C. Jackson et al.

earlier result of Kearns et al. [KLV94] showing that read-once DNF (which can
be assumed monotone without loss of generality) are polynomial-time learnable
under the uniform distribution. It is not hard to see that (a very restricted special
case of) our algorithm can be used to learn read-k monotone DNF in polynomial
time; we give some details in the full version.

References

[AM02] Amano, K., Maruoka, A.: On learning monotone boolean functions under
the uniform distribution. In: Proc. 13th ALT, pp. 57–68 (2002)

[AP95] Aizenstein, H., Pitt, L.: On the learnability of disjunctive normal form
formulas. Machine Learning 19, 183–208 (1995)

[BBL98] Blum, A., Burch, C., Langford, J.: On learning monotone boolean func-
tions. In: Proc. 39th FOCS, pp. 408–415 (1998)

[BFJ+94] Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.:
Weakly learning DNF and characterizing statistical query learning using
Fourier analysis. In: Proc. 26th STOC, pp. 253–262 (1994)

[Blu03a] Blum, A.: Learning a function of r relevant variables (open problem). In:
Proc. 16th COLT, pp. 731–733 (2003)

[Blu03b] Blum, A.: Machine learning: a tour through some favorite results, direc-
tions, and open problems. In: FOCS 2003 tutorial slides (2003)

[BT96] Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions.
Journal of the ACM 43(4), 747–770 (1996)

[HM91] Hancock, T., Mansour, Y.: Learning monotone k-μ DNF formulas on prod-
uct distributions. In: Proc. 4th COLT, pp. 179–193 (1991)

[Jac97] Jackson, J.: An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution. JCSS 55, 414–440 (1997)

[JS05] Jackson, J., Servedio, R.: Learning random log-depth decision trees under
the uniform distribution. SICOMP 34(5), 1107–1128 (2005)

[JS06] Jackson, J., Servedio, R.: On learning random DNF formulas under the
uniform distribution. Theory of Computing 2(8), 147–172 (2006)

[JT97] Jackson, J., Tamon, C.: Fourier analysis in machine learning. In:
ICML/COLT 1997 tutorial slides (1997)

[KLV94] Kearns, M., Li, M., Valiant, L.: Learning Boolean formulas. Journal of the
ACM 41(6), 1298–1328 (1994)

[KMSP94] Kučera, L., Marchetti-Spaccamela, A., Protassi, M.: On learning monotone
DNF formulae under uniform distributions. Information and Computa-
tion 110, 84–95 (1994)

[KV94] Kearns, M., Vazirani, U.: An introduction to computational learning the-
ory. MIT Press, Cambridge (1994)

[Man95] Mansour, Y.: An O(nlog log n) learning algorithm for DNF under the uni-
form distribution. JCSS 50, 543–550 (1995)

[MO03] Mossel, E., O’Donnell, R.: On the noise sensitivity of monotone functions.
Random Structures and Algorithms 23(3), 333–350 (2003)

[OS06] O’Donnell, R., Servedio, R.: Learning monotone decision trees in polyno-
mial time. In: Proc. 21st CCC, pp. 213–225 (2006)

[Sel08] Sellie, L.: Learning Random Monotone DNF Under the Uniform Distrib-
ution. In: Proc. 21st COLT (to appear, 2008)

Learning Random Monotone DNF 497

[Ser04] Servedio, R.: On learning monotone DNF under product distributions.
Information and Computation 193(1), 57–74 (2004)

[SM00] Sakai, Y., Maruoka, A.: Learning monotone log-term DNF formulas under
the uniform distribution. Theory of Computing Systems 33, 17–33 (2000)

[Val84] Valiant, L.: A theory of the learnable. CACM 27(11), 1134–1142 (1984)
[Ver90] Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-

polynomial time. In: Proc. 3rd COLT, pp. 314–326 (1990)
[Ver98] Verbeurgt, K.: Learning sub-classes of monotone DNF on the uniform dis-

tribution. In: Proc. 9th ALT, pp. 385–399 (1998)

Breaking the ε-Soundness Bound of the

Linearity Test over GF(2)

Tali Kaufman1,�, Simon Litsyn2,��, and Ning Xie3,���

1 IAS, Princeton, NJ 08540, USA
kaufmant@mit.edu

2 Department of Electrical Engineering-Systems,
Tel Aviv University, Tel Aviv 69978, Israel

litsyn@eng.tau.ac.il
3 CSAIL, MIT, Cambridge, MA 02139, USA

ningxie@csail.mit.edu

Abstract. For Boolean functions that are ε-away from the set of linear
functions, we study the lower bound on the rejection probability (denoted
by rej(ε)) of the linearity test suggested by Blum, Luby and Rubinfeld.
This problem is one of the most extensively studied problems in property
testing of Boolean functions.

The previously best bounds for rej(ε) were obtained by Bellare, Cop-
persmith, H̊astad, Kiwi and Sudan. They used Fourier analysis to show
that rej(ε) ≥ ε for every 0 ≤ ε ≤ 1

2 . They also conjectured that this
bound might not be tight for ε’s that are close to 1/2. In this pa-
per we show that this indeed is the case. Specifically, we improve the
lower bound of rej(ε) ≥ ε by an additive term that depends only on ε:
rej(ε) ≥ ε+min{1376ε3(1−2ε)12, 1

4 ε(1−2ε)4}, for every 0 ≤ ε ≤ 1
2 . Our

analysis is based on a relationship between rej(ε) and the weight distri-
bution of a coset of the Hadamard code. We use both Fourier analysis
and coding theory tools to estimate this weight distribution.

1 Introduction

Property testing [22,12] studies the robust characterizations of various algebraic
and combinatorial objects. It often leads to a new understanding of some well-
studied problems and yields insight to other areas of computer science (see survey
articles [11,21,23] for more on property testing). The first problem that was
studied under the framework of property testing, as well as being one of the
most extensively investigated property testing problems, is linearity testing. A
function f : {0, 1}m → {0, 1} is called linear if for all x, y ∈ {0, 1}m, f(x) +
f(y) = f(x + y). A function f is said to be ε-away from linear functions if
one needs to change f ’s value on an ε-fraction of its domain to make f linear.

� Research supported in part by the NSF Awards CCF-0514167 and NSF-0729011.
�� Research supported by ISF Grant 1177/06.

��� Research done while the author was at State Univ. of New York at Buffalo and
visiting CSAIL, MIT. Research supported in part by NSF grant 0514771.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 498–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 499

Blum, Luby and Rubinfeld [9] considered the following randomized algorithm
(henceforth referred to as the “BLR test”) to test if a function is linear : Given
a function f : {0, 1}m → {0, 1}, choose uniformly at random x, y ∈ {0, 1}m and
reject if f(x)+f(y)
= f(x+y). We call the probability of the test accepting linear
functions the completeness of the test while the probability of rejecting non-
linear functions soundness. Note that in general, among other things, soundness
depends on the distance parameter ε.

In retrospect, it is quite surprising that the analysis of such a natural test
turned out to be far from simple. Much effort has been devoted to understanding
the rejection probability behavior of the BLR test [9,3,6,4] due to its relation to
the hardness of approximating some NP-hard problems [10,6,7,5]. Other line of
works considered the optimal tradeoff between query complexity and soundness
of some variants of the BLR test [29,27,25,14,26] and randomness needed for
linearity tests over various groups [8,28]. Many generalizations and extension of
the BLR test were also studied; for example, testing linear consistency among
multiple functions [2], testing polynomials of higher degree or polynomials over
larger fields (generalizing the linear case in the BLR test) [22,1,19,15,24], and
testing Long Codes [5,13].

It is clear that the completeness of the BLR test is one, i.e., if f is linear, then
the BLR test always accepts. The most important quantity for the BLR test (and
for many other tests as well) is the soundness, since this parameter indicates how
robust the test characterizes the objects being tested. The soundness analysis of
the BLR test was found to be pretty involved. Indeed, various papers studied
the following question: For every integer m > 0, real number ε ∈ [0, 1/2] and all
Boolean functions f : {0, 1}m → {0, 1} that are ε-away from linear functions,
what is the minimum rejection probability of the BLR linearity test. We denote
this lower bound by rej(ε). That is, if we denote the probability that the BLR
test rejects f by Rej(f) and denote the set of linear functions by LIN, then

rej(ε)def= min
dist(f,LIN)=ε

Rej(f).

Understanding rej(ε) is important not only because its relation to the hardness
of approximating some NP-hard problems but also due to the fact that it is a
natural and fundamental combinatorial problem. The hardest cases are those
where 1

4 ≤ ε <
1
2 .

In this paper, by combining Fourier analysis and coding theoretic tools, we
improve the previously best known bound of rej(ε) by an additive term de-
pending only on ε for all ε ∈ [1/3, 1/2). Our result shows that the celebrated
Fourier analysis based soundness bound [4], rej(ε) ≥ ε, is suboptimal by an ad-
ditive term that depends only on ε for all ε ∈ (0, 1

2). That is, for every constant
ε ∈ [14 ,

1
2), there exists a constant δ(ε) > 0 that is independent of m such that

rej(ε) ≥ ε+ δ.
A key ingredient of our proof is viewing the Fourier coefficients in terms of

the weight distributions of codewords and applying coding bounds to them. It

500 T. Kaufman, S. Litsyn, and N. Xie

is hoped that techniques developed in coding theory may find other places to
improve results on Boolean functions obtained by Fourier analysis.

1.1 Related Research

Blum, Luby and Rubinfeld [9] first suggested the BLR linearity test and showed
that for every ε, rej(ε) ≥ 2

9ε based on a self-correction approach. Using a com-
binatorial argument, Bellare et al. [6] proved that rej(ε) ≥ 3ε−6ε2. This bound
is optimal for small ε but is very weak for ε’s that are close to 1

2 . Bellare and
Sudan [7] further showed that rej(ε) ≥ 2

3ε when ε ≤ 1
3 and rej(ε) ≥ 2

9 when
ε > 1

3 . All these mentioned results hold over general fields. This series of works
culminated in [4], where Fourier transform techniques found their first use in
PCP-related analysis. The results obtained by [4] hold for binary field and they
are the following.

rej(ε) ≥

⎧
⎨

⎩

3ε− 6ε2 0 ≤ ε ≤ 5
16 ;

45
128

5
16 ≤ ε ≤

45
128 ;

ε 45
128 ≤ ε <

1
2

The results of [4] show that the bounds are tight for ε ≤ 5
16 . Numerical

simulation results of [4] suggested that the lower bound rej(ε) ≥ ε for ε > 5
16

may be improved, but not by too much. Kiwi [16] and Kaufman and Litsyn [17]
gave alternative proofs for the fact that rej(ε) ≥ ε for every ε (up to an additive
term of O(1

2)). Their proofs are more coding theory oriented. Specifically, the
proofs are based on studying the weight distribution of the Hadamard code and
its ε-away coset as well as various properties of Krawtchouk polynomials.

1.2 The Main Result

In the following, we present our main result showing an improved bound for
rej(ε). Specifically, we prove

Theorem 1. Let Δ(γ) = 5γ
8 −

γ2

32 . For all ε, 1/4 ≤ ε ≤ 1/2 and for all γ,
0 < γ ≤ 1,

rej(ε) ≥ ε+ min{4096(1−Δ(γ))3ε3(1 − 2ε)12,
γ

2
ε(1− 2ε)4}.

As a simple corollary by plugging in γ = 1/2 and combining our new result with
known bounds for 0 ≤ ε ≤ 1

4 (i.e., rej(ε) ≥ 3ε− 6ε2), we get

Corollary 2. For all ε, 0 ≤ ε ≤ 1/2,

rej(ε) ≥ ε+ min{1376ε3(1− 2ε)12,
1
4
ε(1− 2ε)4}.

Note that for every constant ε ∈ [14 ,
1
2), Theorem 1 improves upon rej(ε) ≥ ε by

an additive constant. Our result improves over all previously known bounds for

m

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 501

every ε ∈ [45
128 ,

1
2), but only by a very small quantity. For example, for ε = 0.4,

our improvement of rej(ε) is about 1.024× 10−7. We believe our bound can be
further improved systematically (we remark that our current approach already
gives bounds better than that stated in the Main Theorem for ε’s such that
1/(1 − 2ε)2 are far from integers). However, as the numerical results shown
in [4], one can not expect to see too much improvement over rej(ε) ≥ ε. Our
improvement over rej(ε) ≥ ε vanishes at ε = 1

2 . This is indeed as expected since
we know that rej(1

2) = 1
2 .

1.3 Proof Overview

The proof has three key ingredients. We will use C to denote the Hadamard
code of block length n = 2m whose codewords are exactly the set of all linear
functions.

The coset code C + v. There are two equivalent ways of viewing the BLR test:
one is to think f as a Boolean function mapping {0, 1}m to {0, 1} and the BLR
test simply picks x and y uniformly at random and check if f(x)+ f(y) = f(x+
y). This functional viewpoint leads naturally to the beautiful Fourier analysis
approach of [4], which shows that 1 − 2rej(ε) can be exactly expressed as a
cubic sum of Fourier coefficients of the function (−1)f . Another way to study
the BLR test, first suggested in [16] and followed by [17], is to treat f as a
vector v of length n with n = 2m. (Due to this fact, from now on, we will use
vector v and function f interchangeably.) Since the set of linear functions may
be viewed as the set of codewords of the Hadamard code C, the BLR test can be
viewed as picking a random weight-3 codeword from C⊥ (which denotes the dual
code of C) and check if it is orthogonal to v. We combine these two viewpoints
together by reinterpreting the Fourier analytic result in the coding theoretic
setting. Our simple but important observation is that the Fourier coefficients
of f are equivalent to the weights of the codewords in a coset of C. Therefore
1 − 2rej(ε) can be expressed as a simple function of the weight distribution of
the code C+v. That is, 1−2rej(ε) can be written as a normalized sum of cubes∑

i x
3
i , each xi is the weight of a codeword in C + v, where C + v is an ε-away

coset1 of the Hadamard code C.

Maximization Problem. In order to obtain a lower bound on rej(ε), we need to
obtain an upper bound on function that involves the weight distribution of C+v.
To this end, we reformulate our problem as a Maximal Sum of Cubes Problem,
in which we look for an upper bound on the sum of cubes of a set of integers
under certain constraints. The bound rej(ε) = ε obtained by [4] corresponds

1 To make this clear, we remind the reader that the weight distribution of a code C is
a set of integers that represent the numbers of codewords in C of different weights,
where the weight of a codeword is the number of coordinates at which the codeword
is non-zero. A vector v is ε-away from a code C if one needs to change an ε-fraction
of v’s bits to make it belong to C. An ε-away coset of C is obtained by adding a
vector v to every codeword in C, where v is ε-away from C.

502 T. Kaufman, S. Litsyn, and N. Xie

to the simple optimal configuration in which all the codewords of C + v are of
weight 1

2n except a constant number (1
(1−2ε)2) of them are of weight εn (one

can use coding theory argument to show that there can’t be more than 1
(1−2ε)2

codewords of weight εn). Moreover, this is the unique configuration that meets
the bound rej(ε) = ε. Any deviation from the optimal configuration implies an
improved lower bound on rej(ε). Our strategy thus is to show that this optimal
weight distribution is not achievable for C + v due to some special properties of
the code C + v. In particular, we will focus on the following two ways in which
the optimal configuration may break down:

1. There exists a codeword of weight larger than n
2 in C + v.

2. The number of codewords in C + v of weight at most (ε + η)n is less than
1

(1−2ε)2 , for some positive number η.

A natural tool to show that one of the above properties holds is the well-known
Johnson Bound. Roughly speaking, the Johnson bound offers a bound on the
maximum number of codewords of a specific weight in a code with some specific
minimum distance. However, it turns out that Johnson bound does allow the
optimal configuration for the code C + v (which yields rej(ε) = ε as discussed
above), so we fail to get any improvement by applying it directly to C + v. The
way we overcome this is by considering a new code C|V of shorter block length
and applying to it a slightly stronger variant of the commonly used Johnson
bound (a variant which enables us to bound the number of codewords of at least
(or at most) a specific weight). The possible switch from the code C + v to the
code C|V turns out to be crucial in our analysis.

From the code C + v to the code C|V . We consider the code C|V of block length
n′ = εn, obtained from C by restricting it to the εn non-zero coordinates of v.
This code is a linear code. It has the same number of codewords as the original
code C + v. More precisely, we show that if it contains fewer codewords then an
improved lower bound on rej(ε) is immediate. A nice property of this new code
is that there is a one-to-one correspondence between the weight of a codeword in
C|V and the weight of the corresponding codeword in C+v. Since C|V is a linear
code, its minimum distance equals the minimum weight of its codewords. If this
minimum weight is small, then by the one-to-one relation between the weights of
C + v and that of C|V , the heaviest codeword in C + v will have a large weight,
which yields an improved lower bound for rej(ε) according to Condition 1 from
above. However, if the maximum weight of C + v is small, or equivalently, the
minimum distance of C|V is large, then by applying the Johnson bound to C|V ,
we get that the number of codewords lying between weight εn and (ε + η)n in
C + v is less than the optimal bound (1

(1−2ε)2), which also yields an improved
lower bound for rej(ε) by Condition 2 mentioned before.

The intuitive reason that we benefit from applying the Johnson bound to C|V
rather than to C+v is straightforward: The block length of C|V is much smaller

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 503

than the block length of C + v, but the number of codewords in C|V is the same
as C + v.2

The relations between the three codes in consideration, namely C, C+ v, and
C|V (for a code C and a vector v that is ε-away from C), as well as the idea of
looking at a restricted code of smaller block length in order to get better coding
bounds, might have other applications.

1.4 Organization

Section 2 introduces necessary notation and definitions. In section 3 we show
that, for every f that is ε-away from linear, Rej(f) can be expressed as a function
of the weight distribution of a coset of the Hadamard code. Then we reformulate
the problem of lower bounding rej(ε) as a maximization problem in section 4.
In section 5 we study the weight distribution of a restricted code of the coset
code and then provide a proof outline of the Main Theorem in section 6. All the
missing proofs may be found in the full version of the paper [18].

2 Preliminaries

We will use [n] to denote the set {1, . . . , n}, where n is a positive integer. Let v
be a vector in {0, 1}n. We use v(i) to denote the ith bit of v for every 1 ≤ i ≤ n.
The weight of v, denoted wt(v) is the number of non-zero bits in v. A code C
of block length n is a subset of {0, 1}n. C is called a linear code if C is a linear
subspace. Let u, v ∈ {0, 1}n. The distance between u and v is defined to be the
number of bits at which they disagree: dist(u, v) = |{i ∈ [n]|u(i)
= v(i)}| =
wt(u − v). The minimum distance of a code C is minu,v∈C dist(u, v). If C is
a linear code, then the minimum distance of C equals the minimum weight of
codewords in C. Let C be a code of block length n. The distance of v ∈ {0, 1}n
from code C is the minimum distances between v and codewords in C, i.e.,
dist(v, C)def= minc∈C dist(v, c). With an abuse of notation, in the following, we
will use C to denote the Hadamard code and C⊥ to denote its dual Hamming
code.

Recall that a function � : {0, 1}m → {0, 1} is linear if for all x, y ∈ {0, 1}m,
�(x) + �(y) = �(x + y). An equivalent characterization is: � is linear if and
only if �(x) = α · x =

∑m
i αixi for some α ∈ {0, 1}m, and we denote such a

2 The reason we are able to improve the bound rej(ε) ≥ ε by a constant is more subtle:
For 1

4 ≤ ε ≤ 1
2 , there is a “reciprocal” relationship between the relative weights of

codeword in C and corresponding codeword in C|V ; that is, the smaller the relative
weight in C, the larger the relative weight in C|V , and vice versa. Note that the
denominator of the expression in Johnson bound is d

n
− 2w

n
(1 − w

n
) after dividing by

n2. Therefore Johnson bound will give better bounds when w
n

(1 − w
n

) gets smaller,
or, when w/n is very close to either 0 or 1. By switching from C to C|V , w

n
is mapped

to w′

n′ . The advantage of changing to C|V is that it makes the distance between w′

n′

and 1 smaller than the distance between w
n

and zero. This advantage disappears at
ε = 1/2, therefore we get no improvement at that point, as expected.

504 T. Kaufman, S. Litsyn, and N. Xie

linear function by �α and denote the set of all such functions by LIN. Let f, g :
{0, 1}m → {0, 1}. The (relative) distance between f and g is defined to be the
fraction of points at which they disagree: dist(f, g)def=Prx∈{0,1} [f(x)
= g(x)].
The distance between a function f and linear functions is the minimum distance
between f and any linear function: dist(f,LIN)def= ming∈LIN dist(f, g). A function
f is said to be ε-away from linear functions if its distance from linear functions
is ε, and is said to ε-far from linear functions if the distance is at least ε.

Next we introduce some basic notions in Fourier analysis. We will focus on
functions defined over the Boolean cube. Note that the set of functions f :
{0, 1}m → R forms a vector space of dimension 2m. A convenient orthonormal
basis for this vector space is the following functions called characters: ψα(x) =
(−1)α·x, where α ∈ {0, 1}m. Consequently, any f(x) : {0, 1}m → R can be
expanded as

f(x) =
∑

α

f̂αψα(x),

where f̂α = 〈f, ψα〉def= 1
2

∑
x∈{0,1} f(x)ψα(x) is called the α-th Fourier coeffi-

cient of f . Define h(x) = (−1)f(x). Note that the range of h(x) is {−1, 1}.
One can encode f as an n = 2m bit codeword v ∈ {0, 1}n by enumerating

all its values on the Boolean cube. The same encoding applied to the set of
linear functions {�α} gives rise to the Hadamard code C, in which we denote the
codeword corresponding to �α by cα.

We are going to use the following two elementary inequality in our analysis.
We omit the proofs of these inequalities here and the interested reader may find
them in the full version of this paper [18].

Lemma 3. For all real y with 0 ≤ y ≤ 1/2,

1
1− y − y ≥

1
√

1− 2y2
.

Lemma 4. Let γ be a constant with 0 ≤ γ ≤ 1. Then for all real y with 0 ≤
y ≤ 1/2,

1
(1− y)2 −

1
1− 2y2

− γ y

1− y ≥ (8 − 5γ)y2.

3 The Coset Code C + v

Using Fourier analytic tools, Bellare et al. proved the following result in their
seminal paper.

Lemma 5 ([4]). Let f : {0, 1}m → {0, 1} and h(x) = (−1)f(x). Then (recall
that Rej(f) is the probability that BLR test rejects f)

Rej(f) =
1
2
(1−

∑

α∈{0,1}
ĥ3

α).

m

m

m

m

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 505

Sometimes reformulating a Boolean function problem as a coding theoretic prob-
lem offers new perspectives. To this end, we need to introduce the standard no-
tion of coset codes. Let C be a linear code of block length n and let v ∈ {0, 1}n

such that v /∈ C, the v-coset of C is C+vdef= {c+v|c ∈ C}. Note that |C+v| = |C|.
The weight distribution or spectrum of C is BC = (BC

0 , B
C
1 , · · · , BC

n), where
BC

i = |{c ∈ C|wt(c) = i}|.
Now we switch the viewpoint from Boolean functions to vectors in the Boolean

cube. That is, we transform Boolean function f : {0, 1}m → {0, 1} into a vector
v ∈ {0, 1}n by evaluating f on every points in the Boolean cube. Since f and v are
equivalent, we use Rej(v) to denote the BLR rejection probability of the Boolean
function that corresponds to v. Using the relation between linear functions and
Hadamard code, we have the following coding theoretic formula for Rej(v) (and
therefore Rej(f)):

Lemma 6. Let v ∈ {0, 1}n, then

Rej(v) =
1
2

(

1− 1
n3

n∑

i=0

BC+v
i (n− 2i)3

)

.

Proof. By the definition of Fourier coefficient,

=
1
2

1−
∑

c∈C

(n− 2wt(v + c))3

n3

=
1
2

(

1−
∑n

i=0 B
C+v
i (n− 2i)3

n3

)

,

where in the final step we change summation over codewords in C to summation
over weights of the codewords in C + v. ��

This relation between the Fourier coefficients of (−1)f and the weight distrib-
ution of coset code C + v seems to be new and may find applications in other
places.

Since Rej(v) is now expressed as a weight distribution of the coset code C+v,
our next step is to study how the codewords in C + v are distributed so that to
make the rejection probability minimum.

ĥα = 〈h, ψα〉 = 〈(−1)f , (−1)�α〉 = 〈(−1)v, (−1)cα〉 =
1

2m

∑

x∈{0,1}m

(−1)v(x)+cα(x)

=Prx[v(x)=cα(x)] − Prx[v(x) �=cα(x)]=1 − 2dist(v, cα)
n

=
n − 2wt(v + cα)

n
,

where in the last step we use the fact that, for binary vectors u and v, dist(u, v) =
wt(u − v) = wt(u + v). Lemma 5 now gives

Rej(v) =
1
2

⎛

⎝1 −
∑

α∈{0,1}m

ĥ3
α

⎞

⎠ =
1
2

⎛

⎝1 −
∑

α∈{0,1}m

(n − 2wt(v + cα))3

n3

⎞

⎠

506 T. Kaufman, S. Litsyn, and N. Xie

4 Maximization Problem

Note that we can rewrite Lemma 6 as

Rej(v) =
1
2
−
∑

c ∈C (n− 2wt(v + ci))
3

2n3
=

1
2
− 1

2n3

n−1∑

i=0

x3
i ,

where xi = n − 2wt(ci + v), for ci ∈ C, 0 ≤ i ≤ n − 1. In order to prove that
rej(ε) ≥ ε + δ, all we need to show is, for every f that is ε-away from linear
functions, Rej(f) ≥ ε+ δ. Hence our goal of getting a better lower bound than
ε for rej(ε) is equivalent to, for every vector v with dist(v, C) = εn, getting
a better upper bound than 1 − 2ε for 1

n3

∑n−1
i=0 x

3
i . This observation motivates

the following measure of improvement (gain) and to reformulate the problem of
lower bounding rej(ε) as a Maximal Sum of Cubes Problem.

Definition 7. Let xi = n− 2wt(ci + v), for ci ∈ C, 0 ≤ i ≤ n− 1. Define

gain(v) =
1
n3

(

(1− 2ε)n3 −
n−1∑

i=0

x3
i

)

.

Consequently, if dist(v, C) = εn, then Rej(v) = ε+ 1
2gain(v).

Since v is ε-away from C, it follows that xi ≤ (1 − 2ε)n, for all 0 ≤ i ≤ n − 1.
We further observe another constraint on the set of integers {x0, x1, . . . , xn−1}
is that their Euclidean norm is n2.

Claim 8.
∑n−1

i=0 x
2
i = n2.

This claim follows directly from the Parseval’s equality. An alternative proof,
based on the norm-preserving property of the Hadamard matrix, was given
in [17].

As we will show in the next lemma, if these two constraints are the only con-
straints on {x0, x1, . . . , xn−1}, then the bound rej(ε) ≥ ε is essentially optimal.
However, as we will see in the next section, since the xi’s are related to the weight
distribution of C + v, the properties of the code C + v impose more constraints
on xi’s, thus making this optimal bound unattainable.

Lemma 9. Consider the following Maximal Sum of Cubes Problem: Let 0 <
α ≤ 1 be a constant and n be a large enough integer. For a set of n integers
x0, x1, · · · , xn−1, find the maximum of x3

0+x3
1+ · · ·+x3

n−1 under the constraints:

x2
0 + x2

1 + · · ·+ x2
n−1 = n2

∀i : xi ≤ αn.
The maximum is achieved at the following optimal configuration3: 1

α2 of the xi’s
are assigned the maximum value αn, and the rest are assigned the value zero.
The maximum thus obtained is αn3.
3 Another requirement necessary to attain the optimal bound is that 1

α2 is an integer.
Therefore we already see some improvement upon rej(ε) ≥ ε without any further
calculation for all ε such that 1

(1−2ε)2 is not an integer.

i

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 507

Note that in our setting xi = n − 2wt(ci + v) so α = 1 − 2ε and consequently
∑n−1

i=0 x
3
i ≤ (1− 2ε)n3.

Proof. First note that, without loss of generality, we may assume that each xi

is non-negative4. Then we have

(
∑n−1

j=0 x
3
j)

1/3

(
∑n−1

j=0 x
2
j)1/2

= (
n−1∑

j=0

x3
j

(
∑n−1

i=0 x
2
i)3/2

)1/3 = (
n−1∑

j=0

(
x2

j
∑n−1

i=0 x
2
i

)3/2)1/3.

(
∑n−1

j=0 x
3
j)

1/3

(
∑n−1

j=0 x
2
j)1/2

≤ (α
n−1∑

j=0

x2
j

∑n−1
i=0 x

2
i

)1/3 = α1/3.

Moreover, the equality is attained only if all of the values of xi are either zero
or αn. This is possible only if 1

α2 of the xi’s equal αn, and the rest are zeros. In
that case x3

0 + x3
1 + · · ·+ x3

n−1 = αn3. ��

We will employ the following two lemmas on gain(v) to obtain improvement.

Lemma 10. If there exists an xi such that xi = −δn for some δ > 0, then
gain(v) ≥ min{2δ3, 2α3}.

Proof. We first consider the case that δ ≤ α. Note that {x0, . . . , xi−1,−xi, xi+1,
. . . , xn−1} satisfies all the constraints in the Maximal Sum of Cubes Problem,
so we have

αn3 ≥
n−1∑

k=0,k �=i

x3
k + (−xi)3 =

n−1∑

k=0

x3
k + 2|xi|3 =

n−1∑

k=0

x3
k + 2(δn)3.

Now if δ > α, we may assume, without loss of generality, that x0 = −δn. Note
that

∑n−1
i=1 x

2
i = (1 − δ2)n2, so if we apply Lemma 9 to x1, . . . , xn−1, we have

∑n−1
i=1 x

3
i ≤ α(1 − δ2)n3. Therefore,

gain(v) =
1
n3

(αn3 −
n−1∑

i=0

x3
i) ≥ αδ2 + δ3 ≥ 2α3.

��

Lemma 11. Let η > 0. If the number of xi’s such that xi ≥ (α− η)n is at most
! 1

α2 " − 1, then gain(v) ≥ α2η.

4 Otherwise, we can do the following to keep
�

x2
i = n2 while increasing

�
x3

i . For
−αn ≤ xi < 0, replace xi with −xi; for xi < −αn, replace xi with several smaller
positive integers with the same L2-norm. See the proof of Lemma 10 below for more
details.

Since 0 ≤ x2
j ≤ α2n2 for every j, (x2

j
�n−1

i=0 x2
i

)3/2 ≤ α
x2

j
�n−1

i=0 x2
i

. This gives

508 T. Kaufman, S. Litsyn, and N. Xie

Proof. Set M = ! 1
α2 ". Let {y1, . . . , yn} be a permutation of {x0, . . . , xn−1} such

that αn ≥ y1 ≥ · · · ≥ yn. We have y21 + · · ·+ y2n = n2 and yM ≤ (α− η)n. Define
T to be: T = y21 + · · ·+ y2M−1. Then we have T ≤ (M − 1)(αn)2 ≤ (1

α2 − 1)α2n2,
and y2M + · · ·+ y2n = n2 − T. Therefore,

n−1∑

i=0

x3
i =

n∑

i=1

y3i ≤ (
M−1∑

i=1

y2i)αn+ (
n∑

i=M

y2i)(α− η)n = n2(α− η)n+ ηnT

≤ n2(α− η)n+ ηn(
1
α2
− 1)α2n2 = αn3 − α2ηn3. ��

5 From the Code C + v to the Code C|V

We denote by V the set of coordinates at which v is non-zero, i.e., V = {i ∈
[n]|v(i) = 1}. Note that |V| = wt(v). In the following we consider a code C|V
which will enable us to get some insight into the weight distribution of the code
C + v.

First observe that, since we are only interested in the weight distribution
of C + v, without loss of generality, we may assume that wt(v) = εn. To see
this, suppose that cv ∈ C is the closest codeword to v (if there are more than
one such codeword, then we may pick one arbitrarily). Since dist(v, C) = εn, v
can be written as v = cv + vεn, with wt(vεn) = εn. Since C is a linear code,
C + v = {c + v|c ∈ C} = {c + cv + vεn|c ∈ C} = {c′ + vεn|c′ ∈ C} = C + vεn,
where c′def= c+ cv.

Definition 12. Let C be a code of block length n and v ∈ {0, 1}n be a vector of
weight εn. We define the code C|V of block length εn to be the code obtained by
restricting code C to the non-zero coordinates of v. For convenience of notation,
we will use D = C|V from now on.

The following lemma shows that there is a one-to-one correspondence between
the weight of ci + v and the weight of the corresponding codeword in D.

Lemma 13. For 0 ≤ i ≤ n− 1, let ci be the ith codeword in the Hadamard code
C and di ∈ D be the restriction of ci to coordinates in V. Let xi = n−2wt(ci+v),
then

xi =

{
(1 − 2ε)n, if i = 0,
4wt(di)− 2εn, otherwise.

Proof. For i = 0, wt(c0 + v) = wt(v) = εn, hence x0 = (1 − 2ε)n. Since C is
a Hadamard code, for all i > 0, wt(ci) = n/2, i.e., there are n/2 ones and n/2
zeros in each codeword. For each ci ∈ C, since there are wt(di) ones in V , there
are n/2−wt(di) ones in [n]\V ; this also holds for ci +v, since v does not flip the
bits at these coordinates. Since |v| = εn, there are εn− wt(di) zeros in V for ci,
therefore there are εn− wt(di) ones in V for ci + v. It follows that wt(ci + v) =
n/2− wt(di) + εn− wt(di) = (1/2 + ε)n− 2wt(di) and xi = 4wt(di)− 2εn. ��

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 509

Lemma 14. Either D is a linear code or gain(v) ≥ 2(1− 2ε)3.

Proof. Since D is a restriction of linear code C, D is a linear code if and only if
all the codewords di in D are distinct. If D is not a linear code, then there exist
i
= j such that di = dj . This implies that there is a k
= 0 such that dk = 0. By
Lemma 13, xk = −2εn. Since 2ε ≥ 1− 2ε, by Lemma 10, gain(v) ≥ 2(1− 2ε)3.

��

Since 2(1− 2ε)3 is always larger than the gain we are going to prove, from now
on, we will focus on the case that D is a linear code. Let n′ = εn be the block
length of D, and d be the minimum distance of D. Note that D contains n
codewords. The following simple bound is useful.

Theorem 15 (Plotkin bound [20]). Let C be a binary code of block length n
and minimum distance d. If d ≥ n/2, then C has at most 2n codewords.

Now we have

Claim 16. d < n′/2.

Proof. Suppose d ≥ n′/2, then by the Plotkin bound stated in Theorem 15, D
has at most 2n′ = 2εn < n codewords, a contradiction. ��

6 Proof Outline of the Main Theorem

In this section, we give a proof outline of the main theorem. Recall that our
main theorem is the following.

Theorem 1 (Main Theorem). Let Δ(γ) = 5γ
8 −

γ2

32 . For all ε, 1/4 ≤ ε ≤ 1/2
and for all γ, 0 < γ ≤ 1,

rej(ε) ≥ ε+ min{4096(1−Δ(γ))3ε3(1 − 2ε)12,
γ

2
ε(1− 2ε)4}.

Our proof will rely on the following basic coding theorem which bounds the
number of codewords of weight at least w. This is a slightly stronger variant of
the well-known Johnson bound, for a proof see, e.g., the Appendix in [5].

Theorem 17 (Johnson bound). Let C be a binary code of block length n and
minimum distance d. Let B′(n, d, w) denote the maximum number of codewords
in C of weight at least w, then B′(n, d, w) ≤ nd

nd−2w(n−w) , provided that nd >
2w(n− w).

The basic idea of the proof is the following. Since there is a one-to-one corre-
spondence between the weight of codeword in C + v and that of D, we will be
working with the spectrum of D. Since D is a linear code, its minimum distance
d is equal to the minimum weight of its codewords. If d is small (much smaller
than n′/2), then there is low weight codeword in D. Consequently, there is an
xi = −δn for some positive δ, which implies a large gain by Lemma 10. However,

510 T. Kaufman, S. Litsyn, and N. Xie

if d is large (very close to n′/2), then we can apply the Johnson bound to D to
show that the number of xi such that xi ≥ (1− 2ε− η)n is less than 1

(1−2ε)2 for
some positive η. This also implies a large gain by Lemma 11. Moreover, one can
show that there is a trade-off relation between these two gains: If δ is small then
η is large and vice versa. This trade-off enables us to prove that, for every v that
is ε-away from C, gain(v) = Ω(1) for every ε, 1/4 ≤ ε < 1/2. The complete
proof can be found in the full version of the paper [18].

Acknowledgment

N.X. is very grateful to Ronitt Rubinfeld for making his visit to MIT possible.
We would like to thank Oded Goldreich, Ronitt Rubinfeld, Madhu Sudan and
Luca Trevisan for encouragement, helpful discussions and valuable suggestions.
We also wish to thank the anonymous referees for their extensive reports and
helpful comments, especially for pointing out a simpler proof of Lemma 10.

References

1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing low-degree
polynomials over GF(2). In: Proceedings of Random 2003, pp. 188–199 (2003)

2. Aumann, Y., H̊astad, J., Rabin, M., Sudan, M.: Linear-consistency testing. J.
Comp. Sys. Sci. 62(4), 589–607 (2001)

3. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has twoprover
interactive protocols. In: Computational Complexity, vol. 1(1), pp. 3–40 (1991);
Earlier version in FOCS 1990

4. Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M., Sudan, M.: Linearity testing
over characteristic two. IEEE Transactions on Information Theory 42(6), 1781–
1795 (1996); Earlier version in FOCS 1995

5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCP and non-approximability -
towards tight results. SIAM J. on Comput. 27(3), 804–915 (1998); Earlier version
in FOCS 1995

6. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically check-
able proofs and applications to approximation. In: Proc. 25th Annual ACM Sym-
posium on the Theory of Computing, pp. 304–294 (1993)

7. Bellare, M., Sudan, M.: Improved non-approximability results. In: Proc. 26th An-
nual ACM Symposium on the Theory of Computing, pp. 184–193 (1994)

8. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In: Proc. 35th Annual ACM
Symposium on the Theory of Computing, pp. 612–621 (2003)

9. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comp. Sys. Sci. 47, 549–595 (1993); Earlier version in STOC
1990

10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-complete. In: Journal of the ACM; Earlier version in FOCS 1991

11. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin
of the European Association for Theoretical Computer Science 75, 97–126 (2001)

Breaking the ε-Soundness Bound of the Linearity Test over GF(2) 511

12. Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learn-
ing and approximation. Journal of the ACM 45, 653–750 (1998); Earlier version in
FOCS 1996

13. H̊astad, J.: Some optimal inapproximability results. Journal of the ACM 48(4),
798–859 (2001); Earlier version in STOC 1997

14. H̊astad, J., Wigderson, A.: Simple analysis of graph tests for linearity and PCP.
Random Structures and Algorithms 22, 139–160 (2003)

15. Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polyno-
mials over prime fields. In: Proc. 45th Annual IEEE Symposium on Foundations
of Computer Science, pp. 423–432 (2004)

16. Kiwi, M.: Algebraic testing and weight distributions of codes. Theor. Comp.
Sci. 299(1-3), 81–106 (2003); Earlier version appeared as ECCC TR97-010 (1997)

17. Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally testable. In:
Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp.
317–326 (2005)

18. Kaufman, T., Litsyn, S., Xie, N.: Breaking the ε-soundness bound of the linearity
test over GF(2). Technical Report TR07-098, Electronic Colloquium on Computa-
tional Complexity (2007)

19. Kaufman, T., Ron, D.: Testing polynomials over general fields. In: Proc. 45th
Annual IEEE Symposium on Foundations of Computer Science, pp. 413–422 (2004)

20. Plotkin, M.: Binary codes with specified minimum distance. IRE Transactions on
Information Theory 6, 445–450 (1960)

21. Ron, D.: Property testing (a tutorial). In: Pardalos, P.M., Rajasekaran, S., Reif, J.,
Rolim, J.D.P. (eds.) Handbook of Randomized Computing, pp. 597–649. Kluwer
Academic Publishers, Dordrecht (2001)

22. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. on Comput. 25(2), 252–271 (1996)

23. Rubinfeld, R.: Sublinear time algorithms. In: Proceedings of the International
Congress of Mathematicians (2006)

24. Samorodnitsky, A.: Low-degree tests at large distances. In: Proc. 39th Annual ACM
Symposium on the Theory of Computing, pp. 506–515 (2007)

25. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amor-
tized query complexity. In: Proc. 32nd Annual ACM Symposium on the Theory of
Computing, pp. 191–199 (2000)

26. Samorodnitsky, A., Trevisan, L.: Gower uniformity, influence of variables and
PCPs. In: Proc. 38th Annual ACM Symposium on the Theory of Computing,
pp. 11–20 (2006)

27. Sudan, M., Trevisan, L.: Probabilistically checkable proofs with low amortized
query complexity. In: Proc. 39th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 18–27 (1998)

28. Shpilka, A., Wigderson, A.: Derandomizing homomorphism testing in general
groups. SIAM J. on Comput. 36(4), 1215–1230 (2006); Earlier version in STOC
2004

29. Trevisan, L.: Recycling queries in PCPs and linearity tests. In: Proc. 30th Annual
ACM Symposium on the Theory of Computing, pp. 299–308 (1998)

Dense Fast Random Projections and Lean Walsh

Transforms

Edo Liberty�,†, Nir Ailon��, and Amit Singer���,†

Abstract. Random projection methods give distributions over k × d
matrices such that if a matrix Ψ (chosen according to the distribution) is
applied to a vector x ∈ Rd the norm of the resulting vector, Ψx ∈ Rk, is
up to distortion ε equal to the norm of x w.p. at least 1−δ. The Johnson
Lindenstrauss lemma shows that such distributions exist over dense ma-
trices for k (the target dimension) in O(log(1/δ)/ε2). Ailon and Chazelle
and later Matousek showed that there exist entry-wise i.i.d. distributions
over sparse matrices Ψ which give the same guaranties for vectors whose
�∞ is bounded away from their �2 norm. This allows to accelerate the
mapping x �→ Ψx. We claim that setting Ψ as any column normalized
deterministic dense matrix composed with random ±1 diagonal matrix
also exhibits this property for vectors whose �p (for any p > 2) is bounded
away from their �2 norm. We also describe a specific tensor product ma-
trix which we term lean Walsh. It is applicable to any vector in Rd in
O(d) operations and requires a weaker �∞ bound on x then the best cur-
rent result, under comparable running times, using sparse matrices due
to Matousek.

Keywords: Random Projections, Lean Walsh Transforms, Johnson Lin-
denstrauss, Dimension reduction.

1 Introduction

The application of various random matrices has become a common method for
accelerating algorithms both in theory and in practice. These procedures are
commonly referred to as random projections. The critical property of a k × d
random projection matrix, Ψ , is that for any vector x the mapping x �→ Ψx is
such that (1 − ε)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + ε)‖x‖2 with probability at least 1 − δ
for specified constants 0 < ε < 1/2 and 0 < δ < 1. The name random projec-
tions was coined after the first construction by Johnson and Lindenstrauss in
[1] who showed that such mappings exist for k ∈ O(log(1/δ)/ε2). Since Johnson
and Lindenstrauss other distributions for random projection matrices have been
discovered [2,3,4,5,6]. Their properties make random projections a key player in

� Yale University, Department of Computer Science, Supported by NGA and AFOSR.
�� Google Research.

��� Yale University, Department of Mathematics, Program in Applied Mathematics.
† Edo Liberty and Amit Singer thank the Institute for Pure and Applied Mathematics

(IPAM) and its director Mark Green for their warm hospitality during the fall
semester of 2007.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 512–522, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dense Fast Random Projections and Lean Walsh Transforms 513

rank-k approximation algorithms [7,8,9,10,11,12,13], other algorithms in numer-
ical linear algebra [14,15,16], compressed sensing [17,18,19], and various other
applications, e.g, [20,21].

As a remark, random projections are usually used as an approximate isometric
mapping from Rd to Rk for n vectors x1, . . . , xn. By preserving the length of
all

(
n
2

)
distance vectors x = xi − xj the entire metric is preserved. Taking δ =

1
2

(
n
2

)−1 yields this w.p. at least 1/2 due to the union bound. The resulting target
dimension is k = O(log(n)/ε2).

Considering the usefulness of random projections it is natural to ask the fol-
lowing question: what should be the structure of a random projection matrix,
Ψ , such that mapping x �→ Ψx would require the least amount of computational
resources? A näıve construction of a k × d unstructured matrix Ψ would result
in an O(kd) application cost.

In [22], Ailon and Chazelle propose the first asymptotically Fast Johnson Lin-
denstrauss Transform (FJLT). They give a two stage projection process. First,
all input vectors are rotated, using a Fourier transform, such that their �∞ norm
is bounded by O(

√
k/d). Then, a sparse random matrix containing only O(k3)

nonzeros1 is used to project them into Rk. Thus, reducing the running time of
dimensionality reduction fromO(kd) to O(d log(d)+k3). Matousek in [6] general-
ized the sparse projection process and showed that if the �∞ norm of all the input
vectors is bounded from above by η, they can be projected by a sparse matrix,
Ψ , whose entries are nonzero with probability max(ckη2, 1) for some constant
c. The number of nonzeros in Ψ is therefore O(k2dη2), with high probability.
The concentration analysis is done for i.i.d. entries drawn from distributions
satisfying mild assumptions.

Recently, Ailon and Liberty [23] improved the running time to O(d log(k)) for
k ≤ d1/2−ζ for any arbitrarily small ζ. They replaced the sparse i.i.d. projection
matrix, Ψ , with a deterministic dense code matrix, A, composed with a random
±1 diagonal matrix2, Ds. They showed that a careful choice of A results in
ADs being a good random projection for the set of vectors such that ‖x‖4 ∈
O(d−1/4). Here, we analyze this result for general k × d deterministic matrices.
Our concentration result is very much in the spirit of [23]. We claim that any
column normalized matrix A can be identified with a set χ ⊂ Rd such that for
x chosen from χ, ADs constitutes a random projection w.h.p. The set χ can be
thought of as the ”good” set for ADs. We study a natural tradeoff between the
possible computational efficiency of applying A and the size of χ: the smaller χ
is, the faster A can be applied3. We examine the connection between A and χ
in Section 2. The set χ should be thought of as a prior assumption on our data,
which may come, for example, from a statistical model generating the data.

1 Each entry is drawn from a distribution which is gaussian with probability propor-
tional to k2/d, and so, for any constant probability, arbitrarily close to 1, the number
of nonzeros is smaller than ck3 for some constant c.

2 The random isometric preprocessing is also different than that of the FJLT
algorithm.

3 This, however, might require a time costly preprocessing application of Φ.

514 E. Liberty, N. Ailon, and A. Singer

Table 1. Types of k × d matrices and the subsets χ of Rd for which they constitute a
random projection. The meaning of the norm ‖ · ‖A is given in Definition 2. The top
two rows give random dense matrices, below are random i.i.d. sparse matrices, and the
last three are deterministic matrices composed with random ±1 diagonals.

The rectangular
k × d matrix A

Application
time

x ∈ χ if

Johnson,
Lindenstrauss [1]

Random k dimensional
subspace O(kd) x ∈ Rd

Various Authors
[2,4,5,6]

Dense i.i.d. entries
Gaussian or ±1 O(kd) x ∈ Rd

Ailon, Chazelle [22] Sparse Gaussian
distributed entries O(k3)

‖x‖∞
‖x‖2

= O((d/k)−1/2)

Matousek [6]
Sparse sub-Gaussian
symmetric i.i.d. entries O(k2dη2)

‖x‖∞
‖x‖2

≤ η

General rule
(This work)

Any deterministic
matrix A

‖x‖
‖x‖2

= O(k−1/2)

Ailon, Liberty [23] Four-wise independent
O(d log k)

‖x‖4
‖x‖2

= O(d−1/4)

This work Lean Walsh Transform O(d)
‖x‖∞
‖x‖2

= O(k−1/2d−ζ)

We propose in Section 3 a new type of fast applicable matrices and in Section 4
explore their corresponding χ. These matrices are constructed using tensor prod-
ucts and can be applied to any vector in Rd in linear time, i.e., in O(d). Due
to the similarity in their construction to Walsh-Hadamard matrices and their
rectangular shape we term them lean Walsh Matrices4. Lean Walsh matrices
are of size d̃ × d where d̃ = dα for some 0 < α < 1. In order to reduce the di-
mension to k ≤ d̃, k = O(log(1/δ)/ε2)), we can compose the lean Walsh matrix,
A, with a known Johnson Lindenstrauss matrix construction R. Applying R in
O(d) requires some relation between d, k and α as explained in subsection 4.1.

2 Norm Concentration and χ(A, ε, δ)

We compose an arbitrary deterministic d̃×d matrix A with a random sign diag-
onal matrix Ds and study the behavior of such matrices as random projections.
In order for ADs to exhibit the property of a random projection it is enough for

4 The terms lean Walsh Transform or simply lean Walsh are also used interchangeably.

A

Dense Fast Random Projections and Lean Walsh Transforms 515

it to approximately preserve the length of any single unit vector x ∈ Rd with
high probability:

Pr [| ‖ADsx‖2 − 1 | ≥ ε)] < δ (1)

Here Ds is a diagonal matrix such that Ds(i, i) are random signs (i.i.d. ±1 w.p.
1/2 each), 0 < δ < 1 is a constant acceptable failure probability, and the constant
0 < ε < 1/2 is the prescribed precision.

Note that we can replace the term ADsx with ADxs where Dx is a diagonal
matrix holding on the diagonal the values of x, i.e. Dx(i, i) = x(i) and similarly
s(i) = Ds(i, i). DenotingM = ADx, we view the term ‖Ms‖2 as a scalar function
over the hypercube {1,−1}d, from which the variable s is uniformly chosen. This
function is convex over [−1, 1]d and Lipschitz bounded. Talagrand [24] proves a
strong concentration result for such functions. We give a slightly restated form
of his result for our case.

Lemma 1 (Talagrand [24]). Given a matrix M and a random vector s (s(i)
are i.i.d. ±1 w.p. 1/2) define the random variable Y = ‖Ms‖2. Denote by μ a
median of Y , and by σ = ‖M‖2→2 the spectral norm of M . Then

Pr [|Y − μ| > t] ≤ 4e−t2/8σ2
(2)

Definition 1. ‖M‖p→q denoted the norm of M as an operator from �p to �q,
i.e., ‖M‖p→q = supx, ‖x‖ =1 ‖Mx‖q. The ordinary spectral norm of M is thus
‖M‖2→2.

Lemma 1 asserts that ‖ADxs‖ is distributed like a (sub) Gaussian around its
median, with standard deviation 2σ.

First, in order to have E[Y 2] = 1 it is necessary and sufficient for the columns
of A to be normalized to 1 (or normalized in expectancy). To estimate a median,
μ, we substitute t2 → t′ and compute:

E[(Y − μ)2] =
∫ ∞

0

Pr[(Y − μ)2] > t′]dt′

≤
∫ ∞

0

4e−t′/(8σ2)dt′ = 32σ2

Furthermore, (E[Y])2 ≤ E[Y 2] = 1, and so E[(Y −μ)2] = E[Y 2]−2μE[Y]+μ2 ≥
1− 2μ+ μ2 = (1− μ)2. Combining, |1− μ| ≤

√
32σ. We set ε = t+ |1− μ|:

Pr[|Y − 1| > ε] ≤ 4e−ε2/32σ2
, for ε > 2|1− μ| (3)

If we set k = 33 log(1/δ)/ε2 (for log(1/δ) larger than a sufficient constant) and
set σ ≤ k−1/2, (1) follows from (3). Moreover μ depends on ε such that the
condition ε > 2|1 − μ| is met for any constant ε (given log(1/δ) > 4). This can
be seen by |1−μ| ≤

√
32σ < ε/

√
log(1/δ). We see that σ = ‖ADx‖2→2 ≤ k−1/2

is sufficient for the projection to succeed w.h.p. This naturally defines χ.

p

516 E. Liberty, N. Ailon, and A. Singer

Definition 2. For a given matrix A ∈ Rk×d we define the vector pseudonorm
of x ∈ Rd with respect to A as ‖x‖A ≡ ‖ADx‖2→2 where Dx is a diagonal
matrix such that Dx(i, i) = x(i). Remark: If no column of A has norm zero
‖ · ‖A induces a proper norm on Rd.

Definition 3. We define χ(A, ε, δ) as the intersection of the Euclidian unit
sphere and a ball of radius k−1/2 in the norm ‖ · ‖A

χ(A, ε, δ) =
{
x ∈ Sd−1 | ‖x‖A ≤ k

−1/2
}

(4)

for k = 33 log(1/δ)/ε2.

Lemma 2. For any column normalized matrix, A, and an i.i.d. random ±1
diagonal matrix, Ds, the following holds:

∀x ∈ χ(A, ε, δ) Pr [|‖ADsx‖2 − 1| ≥ ε] ≤ δ (5)

Proof. For any x ∈ χ, by Definition 3, ‖x‖A = ‖ADx‖2→2 = σ ≤ k−1/2. The
lemma follows from substituting the value of σ into Equation (3).

It is convenient to think about χ as the ”good” set of vectors for which ADs is
length preserving with high probability. En route to explore χ(A, ε, δ) for lean
Walsh matrices we first turn to formally defining them.

3 Lean Walsh Transforms

The lean Walsh Transform, similar to the Walsh Transform, is a recursive tensor
product matrix. It is initialized by a constant seed matrix, A1, and constructed
recursively by using Kronecker products A�′ = A1 ⊗A�′−1. The main difference
is that the lean Walsh seeds have fewer rows than columns. We formally define
them as follows:

Definition 4. A1 is a lean Walsh seed (or simply ’seed’) if: i) A1 is a rec-
tangular matrix A1 ∈ Cr×c, such that r < c; ii) A1 is absolute valued 1/

√
r

entry-wise, i.e., |A1(i, j)| = r−1/2; iii) the rows of A1 are orthogonal.

Definition 5. A� is a lean Walsh transform, of order �, if for all �′ ≤ � we have
A� = A1 ⊗ A�′−1, where ⊗ stands for the Kronecker product and A1 is a seed
according to Definition 4.

The following are examples of seed matrices:

A′
1 = 1√

3

⎛

⎝
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎠ A′′
1 = 1√

2

(
1 1 1
1 e2πi/3 e4πi/3

)

(6)

These examples are a part of a large family of possible seeds. This family includes,
amongst other constructions, sub-Hadamard matrices (like A′

1) or sub-Fourier
matrices (like A′′

1). A simple construction is given for possible larger seeds.

Dense Fast Random Projections and Lean Walsh Transforms 517

Fact 1. Let F be the c×c Discrete Fourier matrix such that F (i, j) = e2π
√
−1ij/c.

Define A1 to be the matrix consisting of the first r = c− 1 rows of F normalized
by 1/

√
r. A1 is a lean Walsh seed.

We use elementary properties of Kronecker products to characterize A� in terms
of the number of rows, r, and the number of columns, c, of its seed. The following
facts hold true for A�:

Fact 2. i) The size of A� is dα×d, where α = log(r)/ log(c) < 1 is the skewness
of A1;5 ii) for all i and j, A�(i, j) ∈ ±d̃−1/2 which means that A� is column
normalized; and iii) the rows of A� are orthogonal.

Fact 3. The time complexity of applying A� to any vector z ∈ Rd is O(d).

Proof. Let z = [z1; . . . ; zc] where zi are blocks of length d/c of the vector z.
Using the recursive decomposition for A� we compute A�z by first summing over
the different zi according to the values of A1 and applying to each sum the
matrix A�−1. Denoting by T (d) the time to apply A� to z ∈ Rd we get that
T (d) = rT (d/c) + rd. A simple calculation yields T (d) ≤ dcr/(c − r) and thus
T (d) = O(d) for a constant sized seed.

For clarity, we demonstrate Fact 3 for A′
1 (Equation (6)):

A′
�z = A′

�

⎛

⎜
⎜
⎝

z1
z2
z3
z4

⎞

⎟
⎟
⎠ =

1√
3

⎛

⎝
A′

�−1(z1 + z2 − z3 − z4)
A′

�−1(z1 − z2 + z3 − z4)
A′

�−1(z1 − z2 − z3 + z4)

⎞

⎠ (7)

Remark 1. For the purpose of compressed sensing, an important parameter of
the projection matrix is its Coherence. The Coherence of a column normalized
matrix is simply the maximal inner product between two different columns. The
Coherence of a lean Walsh matrix is equal to the coherence of its seed and the
seed coherence can be reduced by increasing its size. For example, the seeds
described in Fact 1, of size r by c = r + 1, exhibit coherence of 1/r.

In what follows we characterize χ(A, ε, δ) for a general lean Walsh transform by
the parameters of its seed. The abbreviated notation, A, stands for A� of the
right size to be applied to x, i.e., � = log(d)/ log(c). Moreover, we freely use α
to denote the skewness log(r)/ log(c) of the seed at hand.

4 An �p Bound on ‖ · ‖A

After describing the lean Walsh transforms we turn our attention to exploring
their ”good” sets χ .We remind the reader that ‖x‖A ≤ k−1/2 implies x ∈ χ:

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yTADx‖
2

2 (8)

5 The size of A� is r� × c�. Since the running time is linear, we can always pad vectors
to be of length c� without effecting the asymptotic running time. From this point on
we assume w.l.o.g d = c� for some integer �.

518 E. Liberty, N. Ailon, and A. Singer

= max
y,‖y‖2=1

d∑

i=1

x2(i)(yTA(i))2 (9)

≤
(

d∑

i=1

x2p(i)

)1/p (

max
y,‖y‖2=1

d∑

i=1

(yTA(i))2q

)1/q

(10)

= ‖x‖22p‖AT ‖22→2q (11)

The transition from the second to the third line follows from Hölder’s inequality
for dual norms p and q, satisfying 1/p+ 1/q = 1. We now compute ‖AT ‖2→2q.

Theorem 1. [Riesz-Thorin] For an arbitrary matrix B, assume ‖B‖p1→r1 ≤
C1 and ‖B‖p2→r2 ≤ C2 for some norm indices p1, r1, p2, r2 such that p1 ≤ r1
and p2 ≤ r2. Let λ be a real number in the interval [0, 1], and let p, r be such
that 1/p = λ(1/p1) + (1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then
‖B‖p→r ≤ Cλ

1C
1−λ
2 .

In order to use the theorem, let us compute ‖AT ‖2→2 and ‖AT ‖2→∞. From
‖AT ‖2→2 = ‖A‖2→2 and the orthogonality of the rows of A we get that

‖AT ‖2→2 =
√

d/d̃ = d(1−α)/2. From the normalization of the columns of A
we get that ‖AT ‖2→∞ = 1. Using the theorem for λ = 1/q, for any q ≥ 1, we
obtain ‖AT ‖2→2q ≤ d(1−α)/2q. It is worth noting that ‖AT ‖2→2q might actually
be significantly lower than the given bound. For a specific seed, A1, one should
calculate ‖AT

1 ‖2→2q and use ‖AT
� ‖2→2q = ‖AT

1 ‖
�

2→2q to achieve a possibly lower
value for ‖AT ‖2→2q.

Lemma 3. For a lean Walsh transform, A, we have that for any p > 1 the
following holds:

Remark 2. Consider a different family of matrices containing d/d̃ copies of a
d̃ × d̃ identity matrices concatenated horizontally. Their spectral norm is the

{x ∈ Sd−1 | ‖x‖2p ≤ k−1/2d−
1−α

2 (1− 1
p)} ⊂ χ(A, ε, δ) (12)

where k = O(log(1/δ)/ε2) and α is the skewness of A, α = log(r)/ log(c) (r is
the number of rows, and c is the number of columns in the seed of A).

Proof. We combine the above and use the duality of p and q:

‖x‖A ≤ ‖x‖2p‖AT ‖2→2q (13)

≤ ‖x‖2pd
1−α
2q (14)

≤ ‖x‖2pd
1−α

2 (1− 1
p) (15)

The desired property, ‖x‖A ≤ k−1/2, is achieved if ‖x‖2p ≤ k−1/2d−
1−α

2 (1− 1
p) for

any p > 1.

Dense Fast Random Projections and Lean Walsh Transforms 519

same as that of lean Walsh matrices and they are clearly row orthogonal and
column normalized. Considering p → ∞ they require the same �∞ constraint
on x as lean Walsh matrices do. However, their norm as operators from �2 to
�2q ,for q larger than 1 (p < ∞), is large and fixed, whereas that of lean Walsh
matrices is still arbitrarily small and controlled by the size of the their seed.

4.1 Controlling α and Choosing R

We see that increasing the skewness of the seed of A, α, is beneficial from the
theoretical stand point since it weakens the constraint on ‖x‖2p. However, the
application oriented reader should keep in mind that this requires the use of
a larger seed, which subsequently increases the constant hiding in the big O
notation of the running time.

Consider the seed constructions described in Fact 1 for which r = c−1. Their
skewness α = log(r)/ log(c) approaches 1 as their size increases. Namely, for any
positive constant ζ there exists a constant size seed such that 1− 2ζ ≤ α ≤ 1.

Lemma 4. For any positive constant ζ > 0 there exists a lean Walsh matrix,
A, such that:

{x ∈ Sd−1 | ‖x‖∞ ≤ k−1/2d−ζ} ⊂ χ(A, ε, δ) (16)

Proof. Generate A from a seed such that its skewness α = log(r)/ log(c) ≥ 1−2ζ
and substitute p =∞ into the statement of Lemma 3.

The skewness α also determines the minimal dimension d (relative to k) for which
the projection can be completed in O(d) operations. The reason being that the
vectors z = ADsx must be mapped from dimension d̃ (d̃ = dα) to dimension k
in O(d) operations. This can be done using Ailon and Liberty’s construction [23]
serving as the random projection matrix R. R is a k× d̃ Johnson Lindenstrauss
projection matrix which can be applied in d̃ log(k) operations if d̃ = dα ≥ k2+ζ′′

for arbitrary small ζ′′. For the same choice of a seed as in Lemma 4, the condition
becomes d ≥ k2+ζ′′+2ζ which can be achieved by d ≥ k2+ζ′

for arbitrary small
ζ′ depending on ζ and ζ′′. Therefore for such values of d the matrix R exists and
requires O(dα log(k)) = O(d) operations to apply.

5 Comparison to Sparse Projections

Sparse random ±1 projection matrices were analyzed by Matousek in [6]. For
completeness we restate his result. Theorem 4.1 in [6] (slightly rephrased to fit
our notation) claims the following:

Theorem 2 (Matousek 2006 [6]). let ε ∈ (0, 1/2) and η ∈ [1/
√
d, 1] be con-

stant parameters. Set q = C0η
2 log(1/δ) for a sufficiently large constant C0. Let

S be a random variable such that

S =

⎧
⎨

⎩

+ 1√
qk

with probability q/2
− 1√

qk
with probability q/2

0 with probability 1− q .
(17)

520 E. Liberty, N. Ailon, and A. Singer

Let k be C1 log(1/δ)/ε2 for a sufficiently large C1. Draw the matrix elements of
Ψ i.i.d. from S. Then:

Pr[|‖Ψx‖22 − 1| > ε] ≤ δ (18)

For any x ∈ Sd−1 such that ‖x‖∞ ≤ η.

With constant probability, the number of nonzeros in Ψ is O(kdq) = O(k2dη2)
(since ε is a constant log(1/δ) = O(k)). In the terminology of this paper we
say that for a sparse Ψ containing O(k2dη2) nonzeros on average (as above)
{x ∈ Sd−1 | ‖x‖∞ ≤ η} ⊂ χ(A, ε, δ).

A lower bound on the running time of general dimensionality reduction is
at least Ω(d). Our analysis shows that the problem of satisfying the condition
Φx ∈ χ (via a Euclidean isometry Φ) is at least as hard. Indeed, a design of any
such fast transformation, applicable in time T (d), would imply a similar upper
bound for general dimensionality reduction. We claim that lean Walsh matrices
admit a strictly larger χ than that of sparse matrices which could be applied
in the same asymptotic complexity. For q = k−1 a sparse matrix Ψ as above
contains O(d) nonzeros, w.h.p., and thus can be applied in that amount of time.
Due to Theorem 2 this value of q requires ‖x‖∞ ≤ O(k−1) for the length of x to
be preserved w.h.p. For d polynomial in k, this is a stronger constraint on the
�∞ norm of x than ‖x‖∞ ≤ O(k−1/2d−ζ) which is obtained by our analysis for
lean Walsh transforms.

6 Conclusion and Work in Progress

We have shown that any k×d (column normalized) matrix, A, can be composed
with a random diagonal matrix to constitute a random projection matrix for
some part of the Euclidean space, χ. Moreover, we have given sufficient condi-
tions, on x ∈ Rd, for belonging to χ depending on different �2 → �p operator
norms of AT and �p norms of x. We have also seen that lean Walsh matrices ex-
hibit both a ”large” χ and a linear time computation scheme which outperforms
sparse projective matrices. These properties make them good building blocks for
the purpose of random projections.

However, as explained in the introduction, in order for the projection to be
complete, one must design a linear time preprocessing matrix Φ which maps all
vectors in Rd into χ (w.h.p.). Achieving such distributions for Φ would be ex-
tremely interesting from both the theoretical and practical stand point. Possible
choices for Φ may include random permutations, various wavelet/wavelet-like
transforms, or any other sparse orthogonal transformation.

In this framework χ was characterized by a bound over �p (p > 2) norms
of x ∈ χ. Understanding distributions over �2 isometries which reduce other �p
norms with high probability and efficiency is an interesting problem in its own
right. However, partial results hint that for lean Walsh transforms if Φ is taken
to be a random permutation (which is an �p isometry for any p) then the �∞
requirement reduces to ‖x‖∞ ≤ k−1/2. Showing this however requires a different
technique.

Dense Fast Random Projections and Lean Walsh Transforms 521

Acknowledgments

The authors would like to thank Steven Zucker, Daniel Spielman, and Yair Bartal
for their insightful ideas and suggestions.

References

1. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics 26, 189–206 (1984)

2. Frankl, P., Maehara, H.: The Johnson-Lindenstrauss lemma and the sphericity of
some graphs. Journal of Combinatorial Theory Series A 44, 355–362 (1987)

3. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (STOC), pp. 604–613 (1998)

4. DasGupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss
lemma. Technical Report, UC Berkeley 99-006 (1999)

5. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

6. Matousek, J.: On variants of the Johnson-Lindenstrauss lemma. Private commu-
nication (2006)

7. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for �2 regres-
sion and applications. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Miami, Florida, United States (2006)

8. Sarlós, T.: Improved approximation algorithms for large matrices via random pro-
jections. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), Berkeley, CA (2006)

9. Frieze, A.M., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding low-
rank approximations. In: IEEE Symposium on Foundations of Computer Science,
pp. 370–378 (1998)

10. Peled, S.H.: A replacement for voronoi diagrams of near linear size. In: Proceed-
ings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Las Vegas, Nevada, USA, pp. 94–103 (2001)

11. Achlioptas, M.: Fast computation of low rank matrix approximations. In: STOC:
ACM Symposium on Theory of Computing (STOC) (2001)

12. Drineas, P., Kannan, R.: Fast monte-carlo algorithms for approximate matrix mul-
tiplication. In: IEEE Symposium on Foundations of Computer Science, pp. 452–459
(2001)

13. Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygert, M.: Randomized
algorithms for the low-rank approximation of matrices. In: Proceedings of the Na-
tional Academy of Sciences (2007)

14. Dasgupta, A., Drineas, P., Harb, B., Kumar, R., Mahoney, M.W.: Sampling algo-
rithms and coresets for �p regression. In: Proc. of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2008)

15. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlos, T.: Faster least squares
approximation. TR arXiv:0710.1435 (submitted for publication) (2007)

16. Drineas, P., Mahoney, M., Muthukrishnan, S.: Relative-error cur matrix decompo-
sitions. TR arXiv:0708.3696 (submitted for publication) (2007)

17. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: Uni-
versal encoding strategies? Information Theory. IEEE Transactions 52(12), 5406–
5425 (2006)

522 E. Liberty, N. Ailon, and A. Singer

18. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information The-
ory 52(4), 1289–1306 (2006)

19. Elad, M.: Optimized projections for compressed sensing. IEEE Transactions on
Signal Processing 55(12), 5695–5702 (2007)

20. Paschou, P., Ziv, E., Burchard, E., Choudhry, S., Rodriguez-Cintron, W., Mahoney,
M.W., Drineas, P.: Pca-correlated snps for structure identification in worldwide
human populations. PLOS Genetics 3, 1672–1686 (2007)

21. Paschou, P., Mahoney, M.W., Javed, A., Pakstis, A., Gu, S., Kidd, K.K., Drineas,
P.: Intra- and inter-population genotype reconstruction from tagging snps. Genome
Research 17(1), 96–107 (2007)

22. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In: STOC 2006: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 557–563. ACM Press, New York
(2006)

23. Ailon, N., Liberty, E.: Fast dimension reduction using rademacher series on dual
bch codes. In: SODA, pp. 1–9 (2008)

24. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and
Processes. Springer, Heidelberg (1991)

Near Optimal Dimensionality Reductions That Preserve
Volumes

Avner Magen and Anastasios Zouzias

Department of Computer Science,
University of Toronto

Abstract. Let P be a set of n points in Euclidean space and let 0< ε< 1. A well-
known result of Johnson and Lindenstrauss states that there is a projection of P
onto a subspace of dimension O(ε−2 logn) such that distances change by at most
a factor of 1 + ε. We consider an extension of this result. Our goal is to find an
analogous dimension reduction where not only pairs but all subsets of at most k
points maintain their volume approximately. More precisely, we require that sets
of size s ≤ k preserve their volumes within a factor of (1+ ε)s−1. We show that
this can be achieved using O(max{ k

ε ,ε
−2 logn}) dimensions. This in particular

means that for k = O(logn/ε) we require no more dimensions (asymptotically)
than the special case k = 2, handled by Johnson and Lindenstrauss. Our work im-
proves on a result of Magen (that required as many as O(kε−2 logn) dimensions)
and is tight up to a factor of O(1/ε). Another outcome of our work is an alterna-
tive and greatly simplified proof of the result of Magen showing that all distances
between points and affine subspaces spanned by a small number of points are
approximately preserved when projecting onto O(kε−2 logn) dimensions.

1 Introduction

A classical result of Johnson and Lindenstrauss [12] shows that a set of n points in the
Euclidean space can be projected onto O(ε−2 logn) dimensions so that all distances are
changed by at most a factor of 1 + ε. Many important works in areas such as computa-
tional geometry, approximation algorithms and discrete geometry build on this result in
order to achieve a computation speed-up, reduce space requirements or simply exploit
the added simplicity of a low dimensional space.

However, the rich structure of Euclidean spaces gives rise to many many geomet-
ric parameters other than distances between points. For example, we could care about
the centre of gravity of sets of points, angles and areas of triangles of triplets of points
among a fixed set of points P, and more generally, the volume spanned by some sub-
sets of P or the volume of the smallest ellipsoid containing them. The generalization
of the Johnson-Lindenstauss lemma to the geometry of subsets of bounded size was
considered in [14] where it was shown that it is possible to embed an n-point set of the
Euclidean space onto an O(kε−2 logn)-dimensional Euclidean space, such that no set
of size s≤ k changes its volume by more than a factor of (1+ ε)s−1.The exponent s−1
should be thought as a natural normalization measure. Notice that scaling a set of size s
by a factor of 1 + ε will change its volume by precisely the above factor. In the current
work we improve this result by showing that O(max{ k

ε ,ε
−2 logn}) dimensions suffice

in order to get the same guarantee.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 523–534, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

524 A. Magen and A. Zouzias

Theorem 1 (Main theorem). Let 0< ε≤ 1/2 and let k,n,d be positive integers, such
that d = O(max{ k

ε ,ε
−2 logn}). Then for any n-point subset P of the Euclidean space

Rn, there is a mapping f : P→ Rd, such that for all subsets S of P, 1< |S|< k,

1− ε≤
(

vol(f(S))
vol(S)

) 1
s−1

≤ 1 + ε.

Moreover, the mapping f can be constructed efficiently in randomized polynomial time
using a Gaussian random matrix.

The line of work presented here (as well as in [14]) is related to, however quite different
from, Feige’s work on volume-respecting embeddings [8]. Feige defined a notion of
volume for sets in general metric spaces that is very different than ours, and measured
the quality of an embedding from such spaces into Euclidean space. For the image of
the points of these embeddings, Feige’s definition of volume is identical to the one used
here and in [14]. Embeddings that do not significantly change volumes of small sets
(of size ≤ k) are presented in [8] and further it is shown how these embeddings lead
to important algorithmic applications (see also [19]). The typical size k of sets in [8] is
O(logn) and therefore our work shows that the embedding that are obtained in [8] can
be assumed to use no more than O(logn) dimensions. Compare this to the O(n) as in
the original embedding or the O(log2 n) bound that can be obtained by [14].

As was shown by Alon [5], the upper bound on the dimensionality of the projection
of Johnson Lindenstauss is nearly tight1, giving a lower bound of Ω(ε−2 logn/ log(1

ε))
dimensions. Further, in our setting it is immediate that at least k− 1 dimensions are
needed (otherwise the image of sets of size k will not be full dimensional and will not
therefore have a positive volume). These two facts provide a dimension lower bound of
Ω(max{ε−2 logn/ log(1

ε),k}) which makes our upper bound tight up to a factor of 1/ε
throughout the whole range of the parameter k.

Similarly to other dimension reduction results our embedding uses random projec-
tions. Several variants have been used in the past, each defining ‘random’ projection in
a slightly different way. Originally, Johnson and Lindenstrauss considered projecting
onto a random d-dimensional subspace, while Frankl and Mehara [9] used projection
onto d independent random unit vectors. In most later works the standard approach has
been to use projection onto d n-dimensional Gaussian, an approach that we adopt here.

In our analysis it is convenient to view the projection as applying a matrix mul-
tiplication with a random matrix (of appropriate dimensions) whose entries are i.i.d.
Gaussians. A critical component in our analysis is the following “invariance” claim.

Claim. Let S be a subset of the Euclidean space and let V π(S) be the volume of the
projection of S by a Gaussian random matrix. Then the distribution of V π(S) depends
linearly on vol(S) but does not depend on other properties of S.

When S is of size 2 the claim is nothing else but an immediate use of the fact that
the projections are rotational invariant: indeed, any set of size 2 is the same up to an
orthonormal transformation, translation and scaling. For |S|> 2, while the claim is still
easy to show, it may seem somewhat counterintuitive from a geometric viewpoint. It is

1 With respect to any embedding, not necessarily a projection.

Near Optimal Dimensionality Reductions That Preserve Volumes 525

certainly no longer the case that any two sets with the same volume are the same up
to an orthonormal transformation. Specifically, it does not seem clear why a very ‘flat’
(for example a perturbation of a co-linear set of points) set should behave similarly to a
‘round’ set (like a symmetric simplex) of the same volume, with respect to the volume of
their projections. The question of the distortion of subsets readily reduces to a stochastic
question about one particular set S. Essentially, one needs to study the probability that
the volume of the projection of this set deviates from its expected value. This makes
the effectiveness of the above claim clear: it means that the question can be further
reduced to the question of concentration of volume with respect to a particular set S
of our choice! Since there are roughly ns sets of size s to consider, we need to bound
the probability of a bad event with respect to any arbitrary set by roughly e−Ω(sd). The
previous bound of [14] (implicitly) showed a concentration bound of only e−Ω(d) which
is one way to understand the improvement of the current work.

Other works have extended the Johnson Lindenstauss original work. From the com-
putational perspective, emphasis was placed on derandomizing the embedding [7,18]
and on speeding its computation. This last challenge has attracted considerable amount
of attention. Achlioptas [1] has shown that projection onto a (randomly selected) set
of discrete vectors generated the same approximation guarantee using the same di-
mensionality. Ailon and Chazelle [3] supplied a method that uses Sparse Gaussian
matrices for the projection to achieve fast computation (which they call “Fast John-
son Lindenstrauss Transform”). See also [15,4,13] for a related treatment and exten-
sions. On another branch of extentions (closer in flavour to our result) are works that
require that the embeddings will preserve richer structure of the geometry. For example,
in [2] the authors ask about distance between points that are moving according to some
algebraically-limited curve; in [17] for affine subspaces, in [11] for sets with bounded
doubling dimension, and in [2,6,20] for curves, (smooth) surfaces and manifolds.

2 Notation and Preliminaries

We think of n points in Rn as an n× n matrix P, where the rows correspond to the
points and the columns to the coordinates. We call the set {0,e1,e2, . . . ,en} i.e., the n-
dimensional standard vectors of Rn with the origin, regular. We associate with a set of
k points a volume which is the (k−1)-dimensional volume of its convex-hull. For k = 2
notice that vol([x,y]) = d(x,y), and for k = 3 is the area of the triangle with vertices
the points of the set, etc. Throughout this paper we denote the volume of a set S in the
Euclidean space by vol(S).

We use ‖ · ‖ to denote the Euclidean norm. Let Xi i = 1, . . . ,k be k independent, nor-
mally distributed random variables with zero mean and variance one, then the random
variable χ2

k = ∑k
i=1 X2

i is a Chi-square random variable with k degrees of freedom. If
A is an r× s matrix and B is a p× q matrix, then the Kronecker product A⊗B is the
rp× sq block matrix

A⊗B =

⎡

⎢
⎣

a11B . . . a1sB
...

. . .
...

ar1B . . . arsB

⎤

⎥
⎦ .

526 A. Magen and A. Zouzias

By vec(A) = [a11, . . . ,ar1,a12, . . . ,ar2, . . . ,a1s, . . . ,ars]t we denote the vectorization of
the matrix A. We will use PS to denote a subset S of rows of P. Let X ,Y be random
variables. We say that X is stochastically larger than Y (X �Y) if Pr[X > x]≥ Pr[Y > x]
for all x ∈ R. Also X ∼ N (µ,σ2) denotes that X follows the normal distribution with
mean µ and variance σ2, also Nn(µ′,Σ) is the multivariate n dimensional normal dis-
tribution with mean vector µ′ and covariance matrix Σ. Similarly, we can define the
matrix variate Gaussian distribution, Nn,d(M,Σ′nd×nd) with mean matrix M and covari-
ance matrix Σ′ of dimension nt×nt. Note that the latter definition is equivalent with the
multivariate case, considering its vectorization. However, if we restrict the structure of
the correlation matrix Σ′ we can capture the matrix form of the entries (see the following
Definition).

Definition 1 (Gaussian Random Matrix). The random matrix X of dimensions n×d
is said to have a matrix variate normal distribution with mean matrix M of size n×d and
covariance matrix Σ⊗Ψ (denoted by X ∼ Nn,d(M,Σ′nd×nd)), where Σ,Ψ are positive
definite matrices of size n×n and d×d respectively, if vec(Xt)∼Nnd(vec(Mt),Σ⊗Ψ).

A brief explanation of the above definition is the following: The use of the tensor prod-
uct (Σ⊗Ψ) is chosen to indicate that the correlation2 between its entries has a specific
structure. More concretely, every row is correlated with respect to the Σ covariance ma-
trix and every column with respect to Ψ. Hence, the correlation between two entries of
X , say Xi j and Xlk, E[Xi jXlk] is equal to Σil ·Ψ jk.

3 A Regular Set of Points Preserves Its Volume

Assume that the set in Euclidean space we wish to reduce its dimensionality is the
regular one. Consider a subset S of the regular set of size s≤ k with the origin. Our goal
is to show that the volume of the projection of such a set is very concentrated, assuming
s is sufficient small. Also denote by X ∼Nn,d(0, Ind) the projection matrix3. Notice that
since our input set is the regular (identity matrix), the image of their projection is simply
X (the projection matrix), and recall that the points that correspond to S are represented
by XS. It is well known that the volume of the projected points of S is

√
det(XSXt

S)/s!.

Therefore the question of volumes is now reduced to one about the determinant of the
Gram matrix of XS.

We will use the following lemma which gives a simple characterization of this latter
random variable.

Lemma 1 ([16]). Let X ∼Nk,d(0, Ikd). The k-dimensional volume of the parallelotope
determined by X{i}, i = 1, . . . ,k is the product of two independent random variables one
of which has a χ-distribution with d− k +1 degrees of freedom and the other is distrib-
uted as the k−1 dimensional volume of the parallelotope spanned by k−1 independent
Gaussian random vectors, i.e. Nk−1,d(0, I(k−1)d). Furthermore,

2 Since the entries have zero mean, the correlation between the entries i j and lk is E[Xi jXlk].
3 For ease of presentation, we will not consider the normalization parameter d−1/2 at this point.

Near Optimal Dimensionality Reductions That Preserve Volumes 527

det(XXt)∼
k

∏
i=1

χ2
d−i+1.

The proof is simple and geometric thus we supply it here for completeness.

Proof. Let Δ(k)
d =

√
det(XXt) denote the volume of the parallelotope of the k random

vectors. Then
Δ(k)

d = akΔ(k−1)
d ,

where Δ(k−1)
d is the k-dimensional volume of the parallelotope determined by the set

of vectors X1,X2, . . . ,Xk−1 and ak is the distance of Xk from the subspace spanned by
X1,X2, . . . ,Xk−1.

Now we will show that ak is distributed as a Chi random variable with d− k + 1 de-
grees of freedom. Using the spherical symmetry of the distribution of the points we can
assume w.l.o.g. that the points Xi i = 1, . . . ,k−1 span the subspace W = {x∈Rd |x(k) =
x(k + 1) = · · · = x(d) = 0}, i.e. the set of points that the d− k + 1 last coordinates are
equal to zero. Next we will show that ak ∼ χd−k+1. Notice that the distance of the point

Xk from the subspace that the rest k−1 points span is equal to4 dist(Xk,W)=
√

∑d
i=k X2

ki,

which is a Chi random variable of d− k + 1 degrees of freedom, since Xi, j ∼N (0,1).
Also note that ak is independent of Δ(k−1)

d . Using the above statement recursively, we
conclude that det(XXt) ∼∏k

i=1 χ2
d−i+1 with the Chi-square random variables being in-

dependent. ��

Due to the normalization (see Theorem 1), it turns out that the random variable we are
actually interested in is (det(XSXt

S))
1
2s and so is the geometric mean of a sequence of

Chi-square independent random variables with similar numbers of degrees of freedom.
This falls under the general framework of law-of-large-numbers, and we should typ-
ically expect an amplification of the concentration which grows exponentially with s.
This statement is made formal by a concentration result of a (single) Chi-square random
variable.

Theorem 2 (Theorem 4, [10]). Let ui := χ2
d−i+1 be independent Chi-square random

variables for i = 1,2, . . . ,s. If ui are independent, then the following holds for every
s≥ 1,

χ2
s(d−s+1)+ (s−1)(s−2)

2
� s

(
s

∏
i=1

ui

)1/s

� χ2
s(d−s+1). (1)

We are now ready to prove that the random embedding f : Rn �→Rd defined by p �→ pt X√
d

,

X ∼ Nn,d(0, Ind) for p ∈ Rn preserves the volume of regular sets of bounded size with
high enough probability.

Lemma 2. Let 0 < ε ≤ 1/2 and let f be the random embedding defined as above.
Further, let S be a subset of Rn that contains the origin and s standard vectors, with
s< k< dε

2 . Then we have that

4 The length of the orthogonal projection of Xk to the subspace W .

528 A. Magen and A. Zouzias

Pr

[

1− ε<
(

vol(f(S))
vol(S)

) 1
s

< 1 + ε

]

≥ 1−2exp

(

−s(d− (s−1))
ε2

24

)

. (2)

Proof. We define the random variable Z =
(
det(XSXt

S)
)1/s

, U = 1
s χ2

sd− s2+s
2 +1

its upper

stochastic bound and L = 1
s χ2

sd−s2+s
its lower stochastic bound i.e.,

U � Z � L

holds from Theorem 2. Also note that this implies upper and lower bounds for the
expectation of Z, d− s+1

2 + 1/s≥ E[Z]≥ d− s+ 1, with E[L]−E[U]≥ − s
2 for s ≥ 1.

Now we will relate the volume of an arbitrary subset of P with the random variable Z.

Using that vol(f(S)) =
√

det(XSXt
S)

ds/2s!
and vol(S) = 1

s! , we get for the upper tail:

Pr

[(
vol(XS)

ds/2 ·vol(IS)

) 1
s

> 1 + ε

]

= Pr

[√
Z
d
> (1 + ε)

]

≤ Pr

[
Z

E[Z]
> (1 + ε)2

]

≤ Pr

[
Z

E[Z]
> 1 + 2ε

]

using that d ≥ E[Z]. Similarly, the lower tail becomes

Pr

[(
vol(XS)

ds/2 ·vol(IS)

) 1
s

< 1− ε

]

= Pr

[√
Z
d
< (1− ε)

]

= Pr

[
Z
d
< (1− ε)2

]

= Pr

[
Z

E[Z]
<

d
E[Z]

(1− ε)2
]

≤ Pr

[
Z

E[Z]
< (1 + ε)(1− ε)2

]

≤ Pr

[
Z

E[Z]
< 1− ε

]

using that d
E[Z] ≤ 1+ε, which is true since d ≥ 2k/ε and ε≤ 1. Now we bound the right

tail of Z.

Pr [Z−E[Z]≥ 2εE[Z]] ≤ Pr [U−E[Z]≥ 2εE[Z]]
= Pr[U−E[U]≥ 2εE[U]+ (1 + 2ε)(E[Z]−E[U])]
≤ Pr[U−E[U]≥ 2εE[U]+ (1 + 2ε)(E[L]−E[U])]

using U � Z and E[Z] ≥ E[L]. Now we bound (1 + 2ε)(E[L]−E[U]) from below. It is
not hard to show that (1 + 2ε)(E[L]−E[U])≥− 3ε

4 E[U] since d ≥ 2k/ε. Therefore

Pr [Z−E[Z]≥ 2εE[Z]]≤ Pr[U−E[U]≥ εE[U]].

Near Optimal Dimensionality Reductions That Preserve Volumes 529

Now applying Lemma 4 on U we get the bound

Pr[Z ≥ (1 + 2ε)E[Z]] ≤ exp

(

−(sd− s(s−1)/2 + 1)
ε2

6

)

.

For the other tail of the random variable Z, we have that

Pr[Z−E[Z]<−εE[Z]] ≤ Pr[L−E[Z]<−εE[Z]]
≤ Pr[L−E[L]<−εE[L]+ (1− ε)(E[Z]−E[L])]
≤ Pr[L−E[L]<−εE[U]+ (E[U]−E[L])]

using that Z � L and E[Z]≤ E[U]. Again we bound (E[U]−E[L]) from above. It is not
hard to show that (E[U]−E[L])≤ 3

8 εE[L] since d ≥ 2k/ε and ε≤ 1/2, so

Pr[Z−E[Z]<−εE[Z]] ≤ Pr[L−E[L]<−ε/2E[L]]

holds. Therefore applying Lemma 4 on L we get

Pr [Z < (1− ε)E[Z]] ≤ exp

(

−(sd− s(s−1))
ε2

24

)

.

Comparing the upper and lower bound the lemma follows. ��

Remark: The bound on k (k = O(dε)) is tight. While the probabilistic arguments show
that the volume of a projection of a subset is concentrated around its mean, we really
have to show that it is concentrated around the volume of the set (before the projection).
In other words, it is a necessary condition that

µs

1/s!
= 1±O(ε) (3)

where µs is the expected normalized volume of a regular set of size s. As long as we
deal with sets of fixed cardinality, we can easily scale Equation 3 making the LHS equal
to 1. However, it turns out that µs

1/s! is decreasing in s and furthermore for sufficiently

large s it may be smaller than 1−O(ε). Here is why, µs
1/s! = E[(∏s

i=1 χ2
d−i+1)

1
2s] ≤

(
∏s

i=1 E[χ2
d−i+1])

) 1
2s ≤ 2s

√
d(d−1) . . .(d− s+ 1) ≤

√
d− (s−1)/2 using indepen-

dence, Jensen’s inequality and arithmetic-geometric mean inequality. On the other
hand5, µ1

1/1! = E[χd] ≥
√

d−1. Therefore, no matter what scaling is used we must

have that
√

d− (s−1)/2/
√

d−1≥ 1−O(ε) for all s ≤ k, from which it follows that
k ≤ O(dε).

4 Extension to the General Case

In this section we will show that if we randomly project a set of s points that are in gen-
eral position, the (distribution of the) volume of the projection depends linearly only on

5 A simple calculation using E[χd] =
√

2
Γ(d+1

2)
Γ(d

2)
and E[χd]≥

√
E[χd]E[χd−1] gives the result.

530 A. Magen and A. Zouzias

Fig. 1. Example that illustrates the extension of the regular case to the general

the volume of the original set. To gain some intuition, let’s consider an example that is
essentially as different as possible from the regular case. Consider the one-dimensional
set of size s in Rn, (i,0, . . . ,0) with i = 1, . . . ,s. By adding a small random perturba-
tion (and changing the location of points by distance at most δ& ε) the points will be
in general position, and the perturbed set will have positive volume. Consider a ran-
dom projection π onto d dimensions, normalized so that in expectation distances do not
change. Now, look at the event E := {‖π(e1)‖ > 1 + ε} where e1 is the first standard
vector. We know that Pr[E] = exp(−Θ(dε2)). But notice that when E occurs then π ex-
pands all distances in the set by a factor 1 + ε−O(δ). At this point it may be tempting
to conclude that event E implies that the set was roughly scaled by some factor that
is at least 1 + ε. If that were the case then it would mean that the probability of bad
projections for this set would be too big, that is e−Θ(dε2) instead of e−Θ(sdε2).

However, this is not the case. The reason is that conditioning on the event E does
not provide any information about the expansion or contraction of the perpendicular
space of the x-axis. Conditioning on E , we observe that the angles between the x-axis
and any two points will decrease, since the x-axis expands (see Figure 1). Therefore the
intuition that this set is scaled (conditioned on E) is wrong, since it is “squeezed” in the
e1 direction.

Next we will prove a technical lemma that will allows us to extend the volume con-
centration from the regular set to a set of points in general position.

Lemma 3. Let S be a s× n matrix so that every row corresponds to a point in Rn.
Assume YS of size s×d be the projected points of S, |S|= s≤ d then

det(YSYt
S)

det(SSt)
∼

s

∏
i=1

χ2
d−i+1. (4)

Proof. First, observe that if X ∼Nn,d(0, In⊗ Id) then YS = SX ∼Ns,d(0,(SSt)⊗ Id). To
see this argument, note that any linear (fixed) combination of Gaussian random vari-
ables is Gaussian from the stability of Gaussian. Now by the linearity of expectation
we can easily show that every entry of SX has expected value zero. Also the correlation

Near Optimal Dimensionality Reductions That Preserve Volumes 531

between two entries E[(SX)i j(SX)lk] = E[(∑d
r=1 SirXr j) (∑d

r=i SlrXrk)] is zero if j
= k,
and St

iSl otherwise.
We know that YS ∼Ns,d(0,SSt⊗ Id). Assuming that S has linearly independent rows

(otherwise both determinants are zero), there exists an s-by-s matrix R so that SSt = RRt

(Cholesky Decomposition).
Now we will evaluate det(R−1YSYt

S(R
t)−1) in two different ways. First note that

R−1,YSYt
S ,(R

t)−1 are square matrices so

det(R−1YSYt
S(Rt)−1) =

det(YSYt
S)

(det(R))2 . (5)

Now note that R−1YS is distributed as Ns,d(0,R−1SSt(Rt)−1⊗ Id) which is equal to
Ns,d(0, Is⊗Id), since R−1SSt(Rt)−1 = R−1RRt(Rt)−1 = Is. Lemma 1 with R−1YS implies
that

det(R−1YSYt
S(R

t)−1)∼
s

∏
i=1

χ2
d−i+1. (6)

Using the fact that (det(R))2 = det(PSPt
S) with (5), (6) completes the proof. ��

Remark: A different and simpler proof of the above lemma can be achieved by using the
more abstract property of the projections, namely the rotationally invariance property.
Consider two sets of s vectors, S and T . Assume for now that W = span(S) = span(T).
Then for every transformation φ it holds that det2(A) = det(φ(S)φ(S)t)/det(SSt) =
det(φ(T)φ(T)t)/det(TTt) where A is the s× s matrix that describes φ using any choice
of basis for W and φ(W). To remove the assumption that span(S) = span(T), simply
consider a rigid tansformation ψ from span(S) to span(T). By rotational invariance of
the projection, the distribution of the volume of φ(S) and that of φ(ψ(S)) is the same,
hence we reduce to the case where the span of the sets is the same subspace. Putting it
together, this shows that the LHS of (4) distributes the same way for all sets of (linearly
independent) vectors of size s, which by Lemma 1, must also be the same as the RHS
of (4). We note that we have opted to use the previous proof since Gaussian projections
is the tool of choice in our analysis throughout.

To conclude, Lemma 3 implies that the distribution of the volume of any subset
of points is independent of their geometry up to a multiplicative factor. However,
since we are interested in the distortion (fraction) of the volume vol(YS)/vol(PS) =
(det(YSYt

S))1/2/s!

(det(PSPt
S))1/2/s!

=
√

det(YSYt
S)

det(PSPt
S) everything boils down to the orthonormal case.

Notice that so far we proved that any subset of the regular set that contains the origin
gives us a good enough concentration. Combining this fact with the previous Lemma
we will show that the general case also holds. Let a subset PS = {p0, p1, . . . , ps−1} of
P. We can translate the set PS (since volume is translation-invariant) so that p0 is at the
origin, and call the resulting set P′S = {0, p1− p0, . . . , ps−1− p0}. Now it is not hard to
see that combining Lemmata 2,3 on the set P′S, we get the following general result.

Theorem 3. Let 0< ε≤ 1/2 and let f : Rn→Rd be the random embedding defined as
above. Further, let S be an arbitrary subset of Rn, with |S|= s< dε

2 . Then we have that

Pr

[

1− ε<
(

vol(f(S))
vol(S)

) 1
s−1

< 1 + ε

]

≥ 1−2exp

(

−s(d− (s−1))
ε2

24

)

. (7)

532 A. Magen and A. Zouzias

A closer look at the proof of Lemma 1 and Lemma 3 implies that the distance between
any point and a subset of s points follows a Chi distribution with d − s + 1 degrees
of freedom. This fact can be used to simplify the proof for the preservation of affine
distances as stated in [14], using the same number of dimensions.

5 Proof of the Main Theorem

We now prove the main theorem.

Proof. (of Theorem 1) Let BS be the event: “The volume of the subset S of P distorts
(under the embedding) its volume by more that (1 + ε)s−1”. Clearly, the embedding
fails if there is any S so that the event BS occurs. We now bound the failure probability
of the embedding from above

Pr [∃ S : |S|< k, BS] ≤ ∑
S: |S|<k

Pr[BS]≤

2
k−1

∑
s=1

(
n
s

)

exp

(

−s(d− (s−1))
ε2

24

)

≤ 2
k−1

∑
s=1

ns

ss exp

(

−s

[

(d− (s−1))
ε2

24
−1

])

using the union bound, Theorem 3 for any subset of size s< k and bounds on binomial
coefficients, i.e.

(n
s

)
≤
(

ne
s

)s
. Now if

2
k−1

∑
s=1

ns

ss exp

(

−s

[

(d− (s−1))
ε2

24
−1

])

< 1

then the probability that a random projection onto d dimesions doesn’t distort the vol-
ume of any subset of size at most k by a relative error of ε, is positive.

Since d > 2k/ε, setting d = 30ε−2(logn + 1)+ k− 1 = O(max{k/ε,ε−2 logn}) we
get that, with positive probability, f has the desired property. ��

6 Discussion

We have shown a nearly tight dimension reduction that approximately preserves vol-
umes of sets of size up to k. The main outstanding gap is in the range where k ≥ logn
where the dimension required to obtain a k-volume respecting embedding is between
k and k/ε. We conjecture that the upper bound we have is tight, and that the lower
bound should come from a regular set of points. This conjecture can be phrased as the
following linear algebraic statement.

Conjecture. Let A be an n×n positive semidefinite matrix such that the determinant of
every s× s principal minor (s≤ k) is between (1− ε)s−1 and 1. Then the rank of A is at
least min{Ω(k/ε),n}.

We believe that closing gaps in questions of the type discussed above is particularly
important as they will reaffirm a reccuring theme: the oblivious method of random
Gaussian projections does as well as any other method. More interesting is to show that

Near Optimal Dimensionality Reductions That Preserve Volumes 533

this is in fact not the case, and that sophisticated methods can go beyond this standard
naive approach.

There is still a gap in our understanding with respect to dimension reduction that pre-
serves all distances to affine subspaces spanned by small sets. Interestingly, this ques-
tions seems to be asking whether we can go beyond union bound reasoning when we
deal with random projections. An example that captures this issue is a regular set where
ε < 1/k. Here, it is implied by the proof in [14] that only O(ε−2 logn) dimensions are
needed. However, the probability of failure for a particular event with this dimension-
ality is n−O(1), in other words not small enough to supply a proof simply by using the
union bound. Does our technique extend to other dimension reduction techniques? Par-
ticularly, would projections onto ±1 vectors provide the same dimension guarantees?
Could Ailon and Chazelle’s Fast JL transform substitute the original (dense) Gaussian
matrix? As was mentioned in [14] the answer is yes when dealing with the weaker re-
sult that pays the extra factor of k, simply because the JL lemma is used as a “black
box” there. We don’t know what are the answers with respect to the stronger result of
the current work, and we leave this as an open question.

References

1. Achlioptas, D.: Database-friendly random projections. In: PODS 2001: Proceedings of the
twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 274–281. ACM, New York (2001)

2. Agarwal, P.K., Har-Peled, S., Yu, H.: Embeddings of surfaces, curves, and moving points
in euclidean space. In: SCG 2007: Proceedings of the twenty-third annual symposium on
Computational geometry, pp. 381–389. ACM, New York (2007)

3. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In: STOC 2006: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pp. 557–563. ACM, New York (2006)

4. Ailon, N., Liberty, E.: Fast dimension reduction using rademacher series on dual bch codes.
In: SODA 2008: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 1–9
(2008)

5. Alon, N.: Problems and results in extremal combinatorics, i. Discrete Math. (273), 31–53
(2003)

6. Clarkson, K.L.: Tighter bounds for random projections of manifolds. In: SCG 2008: Pro-
ceedings of the twenty-fourth annual symposium on Computational geometry, pp. 39–48.
ACM, New York (2008)

7. Engebretsen, L., Indyk, P., O’Donnell, R.: Derandomized dimensionality reduction with ap-
plications. In: SODA 2002: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathemat-
ics, pp. 705–712 (2002)

8. Feige, U.: Approximating the bandwidth via volume respecting embeddings (extended ab-
stract). In: STOC 1998: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pp. 90–99. ACM, New York (1998)

9. Frankl, P., Maehara, H.: The johnson-lindenstrauss lemma and the sphericity of some graphs.
J. Comb. Theory Ser. A 44(3), 355–362 (1987)

10. Gordon, L.: Bounds for the distribution of the generalized variance. The Annals of Statis-
tics 17(4), 1684–1692 (1989)

534 A. Magen and A. Zouzias

11. Indyk, P., Naor, A.: Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms 3(3),
31 (2007)

12. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space. In:
Amer. Math. Soc. (ed.) Conference in modern analysis and probability, pp. 189–206. Provi-
dence, RI (1984)

13. Liberty, E., Ailon, N., Singer, A.: Fast random projections using lean walsh transforms. In:
RANDOM (to appear, 2008)

14. Magen, A.: Dimensionality reductions in �2 that preserve volumes and distance to affine
spaces. Discrete & Computational Geometry 38(1), 139–153 (2007)

15. Matousek, J.: On the variants of johnson lindenstrauss lemma (manuscript) (2006)
16. Prekopa, A.: On random determinants i. Studia Scientiarum Mathematicarum Hungarica (2),

125–132 (1967)
17. Sarlos, T.: Improved approximation algorithms for large matrices via random projections.

In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
Washington, DC, USA, pp. 143–152. IEEE Computer Society, Los Alamitos (2006)

18. Sivakumar, D.: Algorithmic derandomization via complexity theory. In: STOC 2002: Pro-
ceedings of the thirty-fourth annual ACM symposium on Theory of computing, pp. 619–626.
ACM, New York (2002)

19. Vempala, S.: Random projection: A new approach to vlsi layout. In: FOCS 1998: Proceed-
ings of the 39th Annual Symposium on Foundations of Computer Science, Washington, DC,
USA, p. 389. IEEE Computer Society, Los Alamitos (1998)

20. Wakin, M.B., Baraniuk, R.G.: Random projections of signal manifolds. In: Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 2006,
vol. 5, p. V (May 2006)

Appendix

Concentration Bounds for χ2

Lemma 4 ([1]). Let χ2
t = ∑t

i=1 X2
i , where Xi ∼N (0,1). Then for every ε, with 0< ε≤

1/2, we have that

Pr
[
χ2

t ≤ (1− ε)E[χ2
t]
]
≤ exp(−t

ε2

6
)

and

Pr
[
χ2

t ≥ (1 + ε)E[χ2
t]
]
≤ exp(−t

ε2

6
).

Sampling Hypersurfaces through Diffusion

Hariharan Narayanan and Partha Niyogi

Department of Computer Science, University of Chicago, USA
{hari,niyogi}@cs.uchicago.edu

Abstract. We are interested in efficient algorithms for generating ran-
dom samples from geometric objects such as Riemannian manifolds. As a
step in this direction, we consider the problem of generating random sam-
ples from smooth hypersurfaces that may be represented as the bound-
ary ∂A of a domain A ⊂ Rd of Euclidean space. A is specified through a
membership oracle and we assume access to a blackbox that can gener-
ate uniform random samples from A. By simulating a diffusion process
with a suitably chosen time constant t, we are able to construct algo-
rithms that can generate points (approximately) on ∂A according to a
(approximately) uniform distribution.

We have two classes of related but distinct results. First, we con-
sider A to be a convex body whose boundary is the union of finitely
many smooth pieces, and provide an algorithm (Csample) that generates
(almost) uniformly random points from the surface of this body, and

prove that its complexity is O∗(d4

ε
) per sample, where ε is the variation

distance. Next, we consider A to be a potentially non-convex body whose
boundary is a smooth (co-dimension one) manifold with a bound on its
absolute curvature and diameter. We provide an algorithm (Msample)
that generates almost uniformly random points from ∂A, and prove that
its complexity is O(R√

ετ
) where 1

τ
is a bound on the curvature of ∂A,

and R is the radius of a circumscribed ball.

1 Introduction

Random sampling has numerous applications. They are ingredients in statisti-
cal goodness-of-fit tests and Monte-Carlo methods in numerical computation.
In computer science, they have been used to obtain approximate solutions to
problems that are otherwise intractable. A large fraction of known results in
sampling that come with guarantees belong to the discrete setting. A notable
exception is the question of sampling convex bodies in Rd . A large body of work
has been devoted to this question (in particular [8], [10]) spanning the past 15
years leading to important insights and algorithmic progress.

However, once one leaves the convex domain setting, much less is known. We
are interested in the general setting in which we wish to sample a set that may
be represented as a submanifold of Euclidean space. While continuous random
processes on manifolds have been analyzed in several works, (such as those of P.
Matthews [11],[12]), as far as we can see, these do not directly lead to algorithms
with complexity guarantees.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 535–548, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

536 H. Narayanan and P. Niyogi

Our interest in sampling a manifold is motivated by several considerations
from diverse areas in which such a result would be applicable. In machine learn-
ing, the problem of clustering may be posed as finding (on the basis of empirically
drawn data points) a partition of the domain (typically Rd) into a finite number
of pieces. In the simplest form of this (partition into two pieces) the partition
boundary (if smooth) may be regarded as a submanifold of co-dimension one and
the best partition is the one with smallest volume (in a certain sense correspond-
ing to a natural generalization of Cheeger’s cut of a manifold). More generally,
the area of manifold learning has drawn considerable attention in recent years
within the machine learning community (see [5,18] among others) and many of
the questions may be posed as learning geometric and topological properties of
a submanifold from randomly drawn samples on it. In scientific computing, one
may be interested in numerical methods for integrating functions on a manifold
by the Monte Carlo method. Alternatively, in many physical applications, one
may be interested in solving partial differential equations where the domain of
interest may have the natural structure of a manifold. In contrast to a finite
element scheme on a deterministic triangulation (difficult to obtain in high di-
mensions), one may explore randomized algorithms by constructing a random
mesh and solving such PDEs on such a mesh. Finally, in many applications to
dynamical systems, one is interested in the topology of the space of attractors
which have the natural structure of a manifold (see [13]). In statistics, one is
interested in goodness of fit tests for a variety of multivariate random variables.
For example, testing for a gamma distribution leads one to consider (positive
real valued) random variables X1, . . . , Xn such that

∑
iXi = a and

∏
j Xj = b.

The set of all (X1, . . . , Xn) under these constraints is the boundary of a convex
body in the hyperplane defined by

∑
iXi = a. Sampling this is a question that

arises naturally in this setting (see [6], [7]).
Thus, we see that building an efficient sampler for a manifold is a problem

of fundamental algorithmic significance. Yet, not much is known about this and
as a step in this general direction, in the current paper, we address the problem
of sampling manifolds that are boundaries of open sets in Rd from the measure
induced by the Lebesgue measure. The particular setting we consider in this
paper has direct applications to clustering and goodness of fit tests where co-
dimension 1 manifolds naturally arise. In addition, we also provide an algorithm
and obtain complexity bounds for sampling the surface of a convex body – a
problem to which we have not seen a solution at the present moment.

1.1 Summary of Main Results

We develop algorithms for the following tasks.
Our basic setting is as follows. Consider an open set A ⊂ Rd specified through

a membership oracle. Assume we have access to an efficient sampler for A and
now consider the task of uniformly sampling the (hyper) surface ∂A. We consider
two related but distinct problems in this setting.

(i) A is a convex body satisfying the usual constraint of Br ⊂ A ⊂ BR where
Br and BR are balls of radius r and R respectively. Then an efficient sampler for

Sampling Hypersurfaces through Diffusion 537

A is known to exist. However, no sampler is known for the surface of the convex
body. It is worth noting that a number of intuitively plausible algorithms suggest
themselves immediately. One idea may be draw a point x from A, shoot a ray
in the direction from 0 to x and find its intersection with the boundary of the
object. This will generate non-uniform samples from the surface (and it has been
studied under the name Liouville measure.) A second idea may be to consider
building a sampler for the set difference of a suitable expansion of the body
from itself. This procedure has a complexity of at least O∗(d8.5) oracle calls
with the present technology because there is no method known to simulate each
membership call to the expanded body using less than O∗(d4.5) calls (see [4]).

Our main result here (Theorem 1) is to present an algorithm that will generate
a sample from an approximately uniform distribution with O∗(d4

ε) calls to the
membership oracle where ε is the desired variation distance to the target.

Beyond theoretical interest, the surface of the convex body setting has natural
applications to many goodness of fit tests in statistics. The example of the gamma
distribution discussed earlier requires one to sample from the set

∏
iXi = b

embedded in the simplex (given by
∑

j Xj = a). This set corresponds to the
boundary of a convex object.

(ii) A is a domain (not necessarily convex) such that its boundary ∂A has
the structure of a smooth submanifold of Euclidean space of co-dimension one.
A canonical example of such a setting is one in which the submanifold is the
zeroset of a smooth function f : Rd → R. A is therefore given by A = {x|f(x) <
0}. In machine learning applications, the function f may often be related to
a classification or clustering function. In numerical computation and boundary
value problems, one may wish to integrate a function subject to a constraint
(given by f(x) = 0).

In this setting, we have access to a membership oracle for A (through f)
and we assume a sampler for A exists. Alternatively, A ⊂ K such that it has
nontrivial fraction of a convex body K and one can construct a sampler for A
sampling from K and using the membership oracle for rejection.

In this non-convex setting, not much is known and our main result (Theo-
rem 2) is an algorithm that generates samples from ∂A that are approximately
uniform with complexity O∗(R

τ
√

ε
) where τ is a parameter related to the curva-

ture of the manifold, R is the radius of a circumscribed ball and ε is an upper
bound on the total variation distance of the output from uniform.

1.2 Notation

Let ‖.‖ denote the Euclidean norm on Rd. Let λ denote the Lebesgue measure
on Rd. The induced measure onto the surface of a manifoldM shall be denoted
λM. Let

be the d dimensional gaussian.

Gt(x, y) :=
1

(4πt)
d
2
e−

‖x−y‖2

4t .

538 H. Narayanan and P. Niyogi

Definition 1. Given two measures μ and ν over Rd, let

‖μ− ν‖TV := sup
A⊆R

|μ(A) − ν(A)|

denote the total variation distance between μ and ν.

Definition 2. Given two measures μ and ν on Rd, the transportation distance
dTR(μ, ν) is defined to be the infimum

inf
γ

∫

‖x− y‖ dγ(x, y).

taken over all measures γ on Rd × Rd such that for measurable sets A and B,
γ(A× Rd) = μ(A), γ(Rd ×B) = ν(B).

Notation: We say that n = O∗(m), if n = O(m polylog(m)). In the complexity
analysis, we shall only consider the number of oracle calls made, as is customary
in this literature.

2 Sampling the Surface of a Convex Body

Let B be the unit ball in Rd. Let Bα denote the ball of radius α centred at the
origin. Consider a convex body K in Rd such that

Br ⊆ K ⊆ BR.

Let B be a source of random samples from K. Our main theorem is

Theorem 1. Let K be a convex body whose boundary ∂K is a union of finitely
many smooth Hypersurfaces.

1. The output of Csample has a distribution μ̃, whose variation distance mea-
sured against the uniform distribution λ̃ = λ̃∂K is O(ε),

‖μ̃− ν‖TV ≤ O(ε).

2. The expected number of oracles calls made by Csample (to B and the member-
ship oracle of K) for each sample of Csample is O∗(d

ε) (, giving a membership
query complexity of O∗(d4

ε) for one random sample from ∂K.)

2.1 Algorithm Csample

Algorithm 1. Csample

1. Estimate (see [15]) with confidence > 1− ε, the smallest eigenvalue κ of the
Inertia matrix A(K) := E[(x − x)(x − x)T] where x is random in uniformly
K, to within relative error 1/2 using O(d log2(d)log 1

ε) random samples (see
Rudelson [16].)

d

Sampling Hypersurfaces through Diffusion 539

2. Set
√
t :=

ε
√
κ

32d
.

3. (a) Set p = Ctry (t) .
(b) If p = ∅, goto (3a). Else output p.

Algorithm 2. Ctry (t):
1. Use B to generate a random point x from the uniform distribution on K.
2. Let y := Gaussian(x, 2tI) be a random vector chosen from a spherical d-

dimensional Gaussian distribution with covariance 2tI and mean x.
3. Let � the segment whose endpoints are x and y.
4. If y
∈ K output � ∩ ∂K, else output ∅.

2.2 Correctness

In our calculations, z ∈ ∂K will be be a generic point at which ∂K is smooth. In
particular for all such z, there is a (unique) tangent hyperplane. Let λ∂K denote
the n − 1-dimensional surface measure on ∂K. Let S and V denote the surface
area and volume, respectively, of K. Let μ∂K denote the measure induced by the
output of algorithm Csample . Let |μ| denote the total mass for any measure μ.
We shall define a measure μ∂K on ∂K related to the “local diffusion” out of small
patches. Formally, if Δ a subset of ∂K, the measure assigned to it by μ∂K is

μ∂K(Δ) :=
∫

x∈S

∫

y∈R \S

Gt(x, y)I [xy ∩Δ
= ∅]dλ(x)dλ(y) (1)

where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel
with covariance matrix 2tI. Note that

V P[Ctry (t) ∈ Δ] = μ∂K(Δ).

Theorem 1 (part 1)
The output of Csample has a distribution μ̃ whose variation distance

measured against the uniform distribution λ̃∂K is O(ε),

‖μ̃− λ̃∂K‖TV ≤ O(ε).

Proof. It follows from lemma 3 to note that at generic points, locally the measure
generated by one trial of Ctry (t) is always less than the value predicted by its

small t asymptotics
√

t
π

S
V , i. e.

∀ generic z ∈ ∂K, dμ∂K

dλ∂k
<

√
t

π
S.

Thus we have a local upper bound on ≤
√

t
π uniformly for all generic points

z ∈ ∂K. It would now suffice to prove almost matching global lower bound on
the total measure, of the form

|μ∂K | > (1 −O(ε))

√
t

π
S.

d

= μ∂K

|μ∂K | ,

dμ∂K

dλ∂K

540 H. Narayanan and P. Niyogi

This is true by Proposition 4.1 in [3]. This proves that

‖μ̃− λ̃M‖TV ≤ O(ε.). �

2.3 Complexity

The number of random samples needed to estimate the Inertia matrix is O∗(d)
(so that the estimated eigenvalues are all within (0.5, 1.5) of their true values
with confidence 1− ε) from results of Rudelson ([16]). It is known that a convex
body contains a ball of radius ≥

√
Λmin(K). Here Λmin(K) is the smallest

eigenvalue of A(K). Therefore, K contains a ball of radius rin, where r2in = 9
10κ.

Theorem 1 (part 2)
The expected number of oracles calls made by Csample (to B and the membership
oracle of K) for each sample of Csample is O∗(d

ε) (, giving a total complexity
of O∗(d4

ε) for one random sample from ∂K.)

Proof. The following two results will be used in this proof.

Lemma 1. Lemma 5.5 in [3]]Suppose x has the distribution of a random vector
(point) in K, define A(K) := E[(x − x)(x − x)T]. Let 5

2r
2
in be greater than the

smallest eigenvalue of this (positive definite) matrix, as is the case in our setting.
Then, V

S < 4rin.

Define Ft :=
√

π
t |μ∂K |.

Lemma 2 (Lemma 5.4 in [3]). Suppose K contains a ball of radius rin, (as
is the case in our setting) then S

(
1− d

√
πt

2r

)
< Ft.

Applying Lemma 2, we see that

Ft > (1−O(ε))S.

The probability that Ctry succeeds in one trial is

P[Ctry (t)
= ∅] =

√
t

π

Ft

V
(2)

>

√
t

π

S

V
(1−O(ε)) (3)

>

√
t

π

1−O(ε)
4rin

(By Lemma 1) (4)

> Ω(
ε

d
). (5)

Therefore the expected number of calls to B and the membership oracle is
O∗(d

ε). By results of Lovász and Vempala ([9]) this number of random samples
can be obtained using O∗(d4

ε) calls to the membership oracle. �

in

Sampling Hypersurfaces through Diffusion 541

2.4 Extensions

S. Vempala [17] has remarked that these results can be extended more generally
to sampling certain subsets of the surface ∂K of a convex body such as ∂K ∩H
for a halfspace H . In this case K ∩H is convex too, and so Csample can be run
on K ∩ H . In order to obtain complexity guarantees, it is sufficient to bound
from below, by a constant, the probability that Csample run on H ∩K outputs
a sample from ∂K ∩ H rather than ∂H ∩ K. This follows from the fact that
∂H ∩K is the unique minimal surface spanning ∂K ∩ ∂H and so has a surface
area that is less than that of ∂K ∩H .

3 Sampling Well Conditioned Hypersurfaces

3.1 Preliminaries and Notation

Let M be a (codimension one) hypersurface.

Definition 3. Let M be a codimension 1 hypersurface. The condition number
ofM is defined as 1

τ where τ is is the largest number with the following property:
No two normals to M of length less than τ intersect.

In fact 1
τ is an upper bound on the curvature ofM ([14]). In this paper, we shall

restrict attention to a τ -conditioned manifoldM that is also the boundary of a
compact subset U ∈ Rd.

Suppose we have access to a Black-Box B that produces i.i.d random points
x1, x2, . . . from the uniform probability distribution on U . We shall describe a
simple procedure to generate almost uniformly distributed points onM.

3.2 Algorithm Msample

The input to Msample is an error parameter ε, a guarantee τ on the condition
number of M and a Black-Box B that generates i.i.d random points from the
uniform distribution on U as specified earlier. We are also provided with a mem-
bership oracle to U , of which M is the boundary. We shall assume that U is

R

U

M

τ

Fig. 1.

542 H. Narayanan and P. Niyogi

contained in a Euclidean ball of radius R, BR. Msample , like Csample is a Las
Vegas algorithm.

Let the probability measure of the output be μ̃out. The following is the main
theorem of this section. Note that given perfectly random samples from U , the
output probability distribution is close to the uniform in �∞, which is stronger
than a total variation distance bound, and the number of calls to the Black box
B is independent of dimension.

Theorem 2. Let M be a τ-conditioned hypersurface that is the boundary of an
open set contained in a ball of radius R. Let μ̃out be the distribution of the output
of Msample .

1. Let ˜λM be the uniform probability measure on M. Then, for any subset Δ
of M, the probability measure μ̃out satisfies

1−O(ε) <
μ̃out(Δ)
λ̃M(Δ)

< 1 +O(ε).

2. The total expected number of calls to B and the membership oracle of U is

Algorithm 3. Msample

1. Set
2. Set p = Mtry (t) .
3. If p = ∅, goto (2). Else output p.

Algorithm 4. Mtry (t)

1. Use B to generate a point x from U .
2. Generate a point y := Gaussian(x, 2tI) from a spherical d-dimensional

Gaussian of mean x and covariance matrix 2tI.
3. If y ∈ U output ∅.

Else output an arbitrary element of xy ∩M using binary search. (Unlike the
convex case, |xy ∩M| is no longer only 0 or 1.)

3.3 Correctness

Proof of part (1) of Theorem 2. We shall define a measure μM onM related
to the “local heat flow” out of small patches. Formally, if Δ a subset ofM, the
measure assigned to it by μM is

μM(Δ) :=
∫

x∈U

∫

y∈R \U

Gt(x, y)I [xy ∩Δ
= ∅] dλ(x)dλ(y) (6)

where I is the indicator function and Gt(x, y) is the spherical Gaussian kernel
with covariance matrix 2tI. For comparison, we shall define μout by

μout := V μ̃outP[Mtry (t)
= ∅].

√
t := τ

√
ε

4(d+2 ln 1
ε)

.

d

O(R(1+ 2
d ln 1

ε)

τ
√

ε
).

Sampling Hypersurfaces through Diffusion 543

Since Msample outputs at most one point even when |xy ∩M| > 1, we see that
for all Δ ⊆M,

μout(Δ) ≤ μM(Δ).

The following Lemma provides a uniform upper bound on the Radon-Nikodym
derivative of μM with respect to the induced Lebesgue measure onM.

Lemma 3. Let λM be the measure induced on M by the Lebesgue measure λ
on Rd. Then

dμM
dλM

<

√
t

π
.

dμout

dλM
>

√
t

π
(1−O(ε)).

Together the above Lemmas prove the first part of the Theorem. Their proofs
have been provided below.

3.4 Complexity

Proof of part (2) of Theorem 2. Let S be the surface area of U (or the
d− 1-dimensional volume ofM.) Let V be the d-dimensional volume of U . We
know that U ⊆ BR. Since of all bodies of equal volume, the sphere minimizes
the surface area, and S

V decreases as the body is dilated,

S

V
≥ d

R
.

Lemma 4 implies that

P[Mtry (t)
= ∅] >
S
√

t
π (1 −O(ε))

V
(7)

≥ d

R

τ
√
ε(1−O(ε))

8(d+ 2 ln 1
ε)

(8)

= Ω(
τ
√
ε

R(1 + 2
d ln 1

ε)
). (9)

This completes the proof. �
In our proofs of Lemma 3 and Lemma 4, we shall use the following Theorem of
C. Borell.

The Lemma below gives a uniform lower bound on dμout

dλM
.

Lemma 4. Let
√

t = τ
√

ε
4(d+2 ln 1

ε)
. Then

544 H. Narayanan and P. Niyogi

Theorem 3 (Borell, [2]). Let μt = Gt(0, ·) be the d-dimensional Gaussian
measure with mean 0 and covariance matrix 2It. Let A be any measurable set
in Rd such that μ(A) = 1

2 . Let Aε be the set of points at a distance ≥ ε from A.

Then, μt(Aε) ≥ 1−

Fact: With μt as above, and B(R) the Euclidean ball of radius R centered at 0,
1
2 < μt(B(

√
2dt)).

Proof of Lemma 3. Let H be a halfspace and ∂H be its hyperplane bound-
ary. Halfspaces are invariant under translations that preserve their boundaries.
Therefore for any halfspaceH , μ∂H is uniform on ∂H . Noting that the image of a
Gaussian under a linear transformation is a Gaussian, it is sufficient to consider
the 1-dimensional case to compute the d− 1-dimensional density

dμ∂H

dλ∂H
=
∫

R−

∫

R+
Gt(x, y)dλ(x)dλ(y), (10)

which evaluates to
√

t
π by a direct calculation. For any z ∈ M, let Hz be the

halfspace with the same outer normal as U such that ∂Hz is tangent to M at
z. Let Δ be a small neighborhood of z in Rd, and |Δ| denote its diameter.

dμM
dλM

(z) = lim
|Δ|→0

∫
x∈U

∫
y∈Rd\U

Gt(x, y) I [xy ∩Δ
= ∅] dλ(x) dλ(y)

λM(Δ)

= lim
|Δ|→0

∫
x∈Rd

∫
y∈Rd Gt(x, y) I [xy ∩Δ
= ∅] I[x ∈ U and y ∈ Rd \ U] dλ(x) dλ(y)

λM(Δ)

< lim
|Δ|→0

∫
x∈Rd

∫
y∈Rd Gt(x, y) I [xy ∩Δ
= ∅] dλ(x) dλ(y)

2λM(Δ)

=
dμ∂Hz

dλ∂Hz

(z)

=

√
t

π
.

The inequality in the above array of equations is strict because U is bounded.
�

Proof of Lemma 4. Let Δ be a small neighborhood of z in Rd. Since M is
a τ -conditioned manifold, for any z ∈ M, there exist two balls B1 ⊆ U and
B2 ⊆ Rd \ U of radius τ that are tangent toM at z.

dμout

dλM
(z) > lim

|Δ|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩Δ
= ∅] dλ(x) dλ(y)
λM(Δ)

.

The above is true because |xy ∩M| = 1 if x ∈ B1 and y ∈ B2. Let us define

e
−ε2
4t .

Pτ := lim
|Δ|→0

∫
x∈B1

∫
y∈B2

Gt(x, y) I [xy ∩ Δ 	= ∅] dλ(x) dλ(y)
∫

x∈Hz

∫
y∈Rd\Hz

Gt(x, y) I [xy ∩ Δ 	= ∅] dλ(x) dλ(y)
. (11)

dμ∂H

dλ∂H
.

Sampling Hypersurfaces through Diffusion 545

Then

Pτ <

√
π

t

dμout

dλM
(z) .

The proof now follows from

B1 B2

x

yz

α

k

2τw

u

Fig. 2.

Lemma 5. Pτ > 1−O(ε). �

Proof of Lemma 5. In order to obtain bounds on Pτ , we shall follow the
strategy of mapping the picture onto a sufficiently large torus and doing the
computations on this torus. This has the advantage that now averaging argu-
ments can be used over the torus by virtue of its being compact (and a symmetric
space.) These arguments do not transfer to Rd in particular because it is not
possible to pick a point uniformly at random on Rd.
Consider the natural surjection

φk : Rd → Tk (12)

onto a d dimensional torus of side k for k >> max(diam(U),
√
t). For each point

p ∈ Tk, the fibre φ−1
k (p) of this map is a translation of kZd.

Let x be the origin in Rd, and e1, . . . , ed be the canonical unit vectors. For a
fixed k, let

Ξk := φk(κe1 + span(e2, . . . , ed)),

where κ is a random number distributed uniformly in [0, k), be a random d− 1-
dimensional torus aligned parallel to φk(span(e2, . . . , ek)). Let y := (y1, . . . , yd)
be chosen from a spherical d-dimensional Gaussian in Rd centered at 0 having
covariance 2tI.

Define P(k)
τ to be

P(k)
τ := P[y22 + · · ·+ y2d < |y1|τ < τ2

∣
∣ 1 = |φk(xy) ∩ Ξk|] (13)

546 H. Narayanan and P. Niyogi

It makes sense to define B1 and B2 on Ξk exactly as before i. e. tangent to Ξk at
φk(xy)∩Ξk oriented so that B1 is nearer to x than B2 in geodesic distance. For
geometric reasons, P̃(k)

τ is a lower bound on the probability that, even when the
line segment xy in figure 2 is slid along itself to the right until x occupies the
position where z is now, y does not leave B2. Figure 3 illustrates ball B2 being
slid, which is equivalent. In particular, this event would imply that x ∈ B1 and
y ∈ B2.

lim sup
k→∞

P(k)
τ ≤ Pτ .

In the light of the above statement, it suffices to prove that for all sufficiently
large k,

P(k)
τ > 1−O(ε)

which will be done in Lemma 6. This completes the proof of this proposition. �

y

k

2τ

√

y2
2 + . . . + y2

d

0

|y1|
Ξk

Tk

B2→

B2

Fig. 3.

Lemma 6. For all sufficiently large k,

P(k)
τ > 1−O(ε).

Proof. Recall that x is the origin and that y := (y1, . . . , yd) is Gaussian(0, 2tI).
Denote by Ek the event that

|φk(xy) ∩ Ξk| = 1.

We note that

P[Ek | y1 = s] =
|s|
k
I[|s| < k].

By Bayes’ rule,

ρ[y1 = s |Ek] P[Ek] =
|s|
k

(
e−s2/4t

√
4πt

)

I[|s| < k],

Sampling Hypersurfaces through Diffusion 547

where I denotes the indicator function. In other words, there exists a constant
ck := P[E]−1

√
4πt

such that

ρ[y1 = s | |Ξk ∩ φk(xy)| = 1] = ck
|s|
k
e−s2/4tI[|s| < k].

A calculation tells us that
ck ∼

k

4t
.

Let
Iτ := I

[
τ | y1| > y22 + · · ·+ y2d

]
I[|y1| < τ]I[Ek].

By their definitions , E[Iτ |Ek] = P(k)
τ . Define

I� := I
[
| y1|
∈ [

√
εt, τ]

]
I [Ek] ,

and

I⊥ := I
[

y22 + . . . y2d > 4t(d+ 2 ln
1
ε
)
]

I [Ek] .

A direct calculation tells us that E[I�|Ek] = O(ε). Similarly E[I⊥|Ek] = O(ε)
follows from Theorem 3 and the fact mentioned below it. This Lemma is implied
by the following claim. �

Claim.
Iτ ≥ I[Ek]− I� − I⊥.

Proof.

I⊥ = I
[

y22 + · · ·+ y2d > 4t(d+ 2 ln
1
ε
)
]

I [Ek]

= I
[
y22 + · · ·+ y2d > τ

√
εt
]
I [Ek]

Therefore

I[Ek]− I� − I⊥ ≤ I[Ek] [y22 + · · ·+ y2d < τ
√
εt < τ |y1|] I[|y1| < τ] (14)

≤ Iτ (15)

�

Acknowledgements

We are grateful to David Jerison and Emanuel Milman for numerous very helpful
discussions and to Santosh Vempala for pointing out the extension in Section
2.4 and permitting us to include it here. The first author is grateful to AIM for
its generous hospitality during the workshop on Algorithmic Convex Geometry
and that on Fourier Analytic methods in Convex Geometric Analysis. We would
like to thank the anonymous referee for carefully reading an earlier version and
pointing out an error in the proof of Lemma 4.

k

548 H. Narayanan and P. Niyogi

References

1. Ball, K.: An Elementary Introduction to Modern Convex Geometry. Mathematical
Sciences Research Institute Publications, vol. 31, pp. 1–58. Cambridge Univ. Press,
Cambridge (1997)

2. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Inventiones Math. 30,
205–216 (1975)

3. Belkin, M., Narayanan, H., Niyogi, P.: Heat Flow and a Faster Algorithm to Com-
pute the Surface Area of a Convex Body. In: Proc. of the 44th IEEE Foundations
of Computer Science (FOCS 2006) (2006)

4. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. Journal of
the ACM (JACM) 51(4), 540–556 (2004); Proc. of the 34th ACM Symposium on
the Theory of Computing (STOC 2002), Montreal (2002)

5. Coifman, R.R., Lafon, S.: “Diffusion maps”. Applied and Computational Harmonic
Analysis: Special issue on Diffusion Maps and Wavelets 21, 5–30 (2006)

6. Diaconis, P.: Generating random points on a Manifold, Berkeley Probability Sem-
inar (Talk based on joint work with S. Holmes and M. Shahshahani)

7. Diaconis, P.: Personal Communication
8. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for ap-

proximating the volume of convex sets. Journal of the Association for Computing
Machinary 38, 1–17 (1991)

9. Lovász, L., Vempala, S.: Hit-and-run from a corner. In: Proc. of the 36th ACM
Symposium on the Theory of Computing, Chicago (2004)

10. Lovász, L., Vempala, S.: Simulated annealing in convex bodies and an O∗(n4)
volume algorithm. In: Proc. of the 44th IEEE Foundations of Computer Science
(FOCS 2003), Boston (2003)

11. Matthews, P.: Mixing Rates for Brownian Motion in a Convex Polyhedron. Journal
of Applied Probability 27(2), 259–268 (1990)

12. Matthews, P.: Covering Problems for Brownian Motion on Spheres. Annals of Prob-
ability 16(1), 189–199 (1988)

13. Kaczynski, T., Mischaikov, K., Mrozek, M.: Computational Homology. Springer,
New York (2004); (Applied Math. Sci. 157)

14. Niyogi, P., Weinberger, S., Smale, S.: Finding the Homology of Submanifolds with
High Confidence from Random Samples. Discrete and Computational Geometry
(2004)

15. Pan, V.Y., Chen, Z., Zheng, A.: The Complexity of the Algebraic Eigenproblem.
Mathematical Sciences Research Institute, Berkeley (1998) (MSRI Preprint, 1998-
71)

16. Rudelson, M.: Random vectors in the isotropic position. J. of Functional Analy-
sis 164(1), 60–72 (1999); Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press (1993)

17. Vempala, S.: Personal Communication
18. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete and Com-

putational Geometry 33(2), 247 (2004)

A 2-Source Almost-Extractor for Linear Entropy

Anup Rao�

School of Mathematics, Institute for Advanced Study
arao@ias.edu

Abstract. We give an explicit construction of a function that is almost
a 2-source extractor for linear entropy, it is a condenser where the output
has almost full entropy. Given 2 sources with entropy δn, the output of
the condenser is a distribution on m-bit strings that is ε-close to having
min-entropy m − poly(log(1/ε), 1/δ), where here m is linear in n.

1 Introduction

This paper is about constructing efficiently computable 2-source extractors.
These are efficiently computable functions of the type Ext : {0, 1}n × {0, 1}n →
{0, 1}m with the property that for any 2 independent distributions X,Y , each
with entropy1 k, the output Ext(X,Y) is close to uniform. Another way to view
this object is as a coloring of the edges of the N ×N complete bipartite graph
withM colors that guarantees that in every K×K complete bipartite subgraph,
every set of colors is hit with roughly the right frequency.

This problem was first suggested in the work of Chor and Goldreich [CG88]
(see also [SV86]), who gave a simple argument that shows that the inner product
function over GF (2) is a good 2 source extractor as long as k/n > 1/2+Ω(1). It
is easy to generalize this to get many random bits (simply take the inner product
over a large enough field). Since then, most work was diverted to the special case
of seeded extractors (introduced in [NZ96]), where it is assumed that the second
source is much shorter than the first source and is uniformly distributed (a 2-
source extractor can be used in this situation just by padding the second source).
Here almost optimal results are now known [LRVW03, GUV07].

There was no progress in reducing the entropy requirements for the general
case of 2 source extractors until the work of Bourgain [Bou05], almost 20 years af-
ter [CG88]. Bourgain used recent results from arithmetic combinatorics [BKT04]
to show that if the inputs are viewed as elements of a carefully chosen finite field,
and ψ is any non-trivial additive character, the function ψ(xy + x2y2) is an ex-
tractor even for entropy 0.499n2. Bourgain’s result, while seemingly a minor
improvement over the previous result, had at least one application that would

� Supported in part by NSF Grant CCR-0324906.
1 The definition of entropy we use is min-entropy, rather than Shannon entropy.
2 Note that the inner product function mentioned above can also be viewed as ψ(xy),

where x, y are interpreted as elements of GF (2n) and ψ is a suitably chosen additive
character.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 549–556, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

550 A. Rao

not have been possible using just the ideas of Chor and Goldreich: it led to
new constructions of Ramsey graphs with much better parameters than were
previously known [BRSW06].

The problem of constructing 2 source extractors for arbitrary linear min-
entropy remains open. In this paper we describe some partial progress towards
this goal, obtaining an object that seems tantalizingly close to being a 2 source
extractor.

1.1 Our Results and Techniques

We prove the following theorem:

Theorem 1. For every δ > 0 and every ε, there exists a polynomial time com-
putable function Ext : {0, 1}n×{0, 1}n → {0, 1}m such that if X,Y are indepen-
dent sources with min-entropy rate δ, Ext(X,Y) is ε close to having min-entropy
m− poly(1/δ, log(1/ε)), with m = Ω(δn).

The output of this algorithm is close to having such a high min-entropy that we
hope that it may still be sufficient for applications where 2-source extractors are
required. For instance, if we are willing to make cryptographic assumptions that
rely only on secret keys with such high entropy, this extractor may be used in
lieu of a 2-source extractor for generating secret keys.

Our result follows by composing several previous explicit constructions.
Specifically, we rely on two types of explicit functions from previous work:

2 independent sources → SR-source. A first observation (already made in
[BKS+05]) is that it is possible to use arithmetic combinatoric results to
get an explicit function SExt : {0, 1}n × {0, 1}n → {0, 1}t, that converts
two independent sources into a somewhere random source. A distribution
on strings is somewhere random if at least one of the strings is distributed
uniformly. The above construction combined with some ideas from [Rao06]
gives an algorithm that can carry out such a conversion, outputting a some-
where random source with only a constant number of strings, each of length
linear in n.

2 independent sources + independent SR-source → uniform source. It
is also easy to use previous work [Raz05, DR05, BKS+05] to get an explicit
function Ext : {0, 1}n×{0, 1}n×{0, 1}t→ {0, 1}m that can extract random-
ness from two independent sources with linear entropy and an additional
independent small somewhere random source.

Our final construction is Ext′(X,Y, SExt(X,Y)), i.e. we use the somewhere
random source generated by the original source to extract random bits from
X,Y . At first it may seem like this has very little chance of working, since the
somewhere random source is not independent of the original sources (in fact
it is determined by them). Still, we show that if our goal is just to show that
the output has high entropy, something can be salvaged from this approach,
giving us our main result. Ideas that superficially seem similar to this one have

A 2-Source Almost-Extractor for Linear Entropy 551

been used in previous work [GRS04, Sha06]. It is hard to describe the many
ideas in those papers succinctly, so in the discussion here we shall be slightly
inaccurate in order to convey the gist of the differences between the techniques
of those works and the present paper. In the earlier works, the authors first
construct a function DExt : {0, 1}n → {0, 1}t that extracts a few random bits
from some class of sources. They then use the extracted random bits to extract
many more random bits from the original source. Thus the final algorithm looks
like Ext′(X,DExt(X)) for some carefully chosen function Ext′.

The major difference between the previous works and ours is in the analysis.
The previous works carefully controlled the correlations between the extracted
bits (DExt(X)) and the original source X . In particular, they carefully chose
a random variable in the probability space they were considering and fixed it.
Conditioned on this fixing, they were able to argue that the extracted bits (or
some subset of the extracted bits) became independent of the original source (or
some part of the original source). In this way, after fixing this magic random
variable, they were able to obtain two random variables that could be treated as
being independent (without paying a too heavy price in terms of lost entropy).
In order to make this approach work, they had to carefully exploit the properties
of the class of distributions they were building extractors for and the properties
of the functions they were constructing.

The ideas in this paper are less delicate and less intricate. In particular, they
do not apply just to the case of independent sources. They can be generalized3

to be used in any situation where we know how to construct an explicit function
SExt that can convert a distribution from class C1 into one from class C2 with
small support size, and an explicit function that can extract random bits (or even
high entropy bits) from two independent distributions, one from class C1 and the
other from C2. In our particular application, C1 is the class of two independent
sources and C2 is the class of somewhere random sources. In this situation, we
simply show how to use the union bound to get a result of the type of Theorem 1.

It is easy to see that if a distribution is far from having high min-entropy,
then there must be a small set of the support that has an unusually high
probability under it. Fix any subset of the support. In order to show that
Ext′(X,Y, SExt(X,Y)) does not hit this set with such a high probability, we
consider the set of bad outputs of SExt. Say z is bad if Ext′(X,Y, z) hits the set
with high probability. Then the properties of Ext′ guarantee that any somewhere
random source has only a small probability of giving such a bad z. On the other
hand, since the total number of z’s is so small (the output is only a constant
number of bits), we can argue that with high probability Ext′(X,Y, z) does not
land in the set for every good z. Thus, by the union bound, we can argue that
any small enough set is avoided with significant probability.

Since the above argument requires us to use the union bound on as many
events as there are elements in the support of SExt, it is crucial that the error

3 Shaltiel [Sha06] also generalized the ideas of [GRS04] to several classes of sources,
but there each class he considered required a different construction and a different
analysis, though there was a very significant overlap in the various cases.

552 A. Rao

of the extractor Ext′ be significantly small in terms of the number of elements
in the support of SExt. Luckily, explicit constructions that we rely on already
provide such strong guarantees.

2 Preliminaries

We will be concerned with the treatment of various kinds of distributions that
are nice in that they contain a lot of usable randomness. Here we discuss some
ways to measure this niceness:

Definition 1. The min-entropy of a distribution R is defined to be: H∞(R) =
− log(maxx∈R(R(x)). The min-entropy rate of a distribution R on {0, 1}n is
H∞(R)/n.

Definition 2. An (n, k)-source denotes some random variable X over {0, 1}n
with H∞(X) ≥ k.

Definition 3. Let D and F be two distributions on a set S. Their statistical
distance is

|D − F | def
= max

T⊆S
(|D(T)− F (T)|) =

1
2

∑

s∈S

|D(s)− F (s)|

If |D − F | ≤ ε we shall say that D is ε-close to F .

This measure of distance is nice because it is robust in the sense that if two
distributions are close in this distance, then applying any functions to them
cannot make them go further apart.

Proposition 1. Let D and F be any two distributions over a set S s.t. |D−F | ≤
ε. Let g be any function on S. Then |g(D)− g(F)| ≤ ε.
A block source is a source broken up into a sequence of blocks, with the property
that each block has min-entropy even conditioned on previous blocks.

Definition 4 (Block sources). A distribution X = X1, X2, · · · , XC is called
a (k1, k2, . . . , kC)-block source if for all i = 1, . . . ,C, we have that for all x1 ∈
X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X

i−1 = xi−1) ≥ ki, i.e., each block
has high min-entropy even conditioned on the previous blocks. If k1 = k2 = · · · =
kC = k, we say that X is a k-block source.

We have the following standard lemma:

Lemma 1. Suppose X is a source with min-entropy k and f : {0, 1}n → {0, 1}t
is a function such that f(X) is ε close to having min-entropy k′. Then for every
�, (f(X), X) is ε+ 2−� close to being a k′, k − t− � block source.

We shall need the concept of a somewhere random distribution.

Definition 5. A source X is (t × r) somewhere-random if it is distribution on
t × r boolean matrices s.t. X is distributed uniformly randomly over one of the
rows. Every other row may depend on the random row in arbitrary ways. We say
thatX has somewhere min-entropy k if at least one of the rows has min-entropy k.

A 2-Source Almost-Extractor for Linear Entropy 553

3 Previous Work Needed

Our work relies on several previous constructions. The first object we shall need
is the additive number theory based condensers independently constructed by
Barak et al. [BKS+05] and Raz [Raz05]:

Lemma 2 ([Raz05, BKS+05]). For every δ > 0, there exists a polynomial time
computable function Cond : {0, 1}n → ({0, 1}n/poly(1/δ))poly(1/δ), where the output
is interpreted as a poly(1/δ) × n/poly(1/δ) boolean matrix, such that if X is a
source with min-entropy rate δ, Cond(X) is 2−Ω(δ2n) close to a convex combination
of distributions, each of which has some row with min-entropy rate 0.9.

When this lemma is combined with the merger from Raz’s work [Raz05] and the
improved analysis of Dvir and Raz (Lemma 3.2 in [DR05]), we get the following
lemma:

Lemma 3 ([DR05, Raz05, BKS+05]). For every δ > 0 and ε >
2−n/10, there exists a polynomial-time computable function Cond : {0, 1}n →
({0, 1}n/poly(1/δ)) , where the output is treated as a 2poly(1/δ)/ε ×
n/poly(1/δ) boolean matrix, such that if X has min-entropy rate δ, Cond(X)
is 2−Ω(δ2n) close to a convex combination of distributions, each of which has at
most an ε fraction of rows with min-entropy rate less than 0.9.

We need the following two source extractor of Chor and Goldreich:

Theorem 2 ([CG88]). For every constant δ > 1/2 there exists a strong two
source extractor Had : {0, 1}n × {0, 1}n → {0, 1}Ω(n) with error 2−Ω(n) for two
independent sources with min-entropy δn.

We can use X,Y to generate a somewhere random source Z. The following
theorem was proved in [BKS+05]:

Theorem 3. For every δ, there exists c(δ) = poly(1/δ) and a polynomial time
computable function SExt : {0, 1}n × {0, 1}n → {0, 1}cn/poly(1/δ), where the out-
put is treated as a c×n/poly(1/δ) boolean matrix, such that if X,Y are indepen-
dent sources with min-entropy rate δ, SExt is 2−Ω(n/poly(1/δ)) close to a convex
combination of somewhere random sources.

Proof. Define the (i, j)′th row SExt(X,Y)i,j = Had(Cond(X)i,Cond(Y)j), where
Cond is as in Lemma 2 and Had is as in Theorem 2. The theorem follows directly.

Finally, we need the following two source extractor for block sources, that follows
from the work of [BKS+05, Rao06]:

Theorem 4 ([BKS+05, Rao06]). For every δ > 0, there exists a constant
γ > 0 and a polynomial time computable function Ext : ({0, 1}n)4 → {0, 1}m
such that if X1, X2 is a δn, δn block source and Y1, Y2 is an independent δn, δn
block source,

Pr
x1,x2

[|Ext(x1, x2, Y1, Y2)− Um| > 2−γn] < 2−γn

2poly(1/δ)/ε

554 A. Rao

and
Pr

y1,y2
[|Ext(X1, X2, y1, y2)− Um| > 2−γn] < 2−γn

where here m = Ω(n) and Um denotes the uniform distribution on m bit strings.

4 The Condenser

First we show that if we were given a small independent somewhere random
source, we can use it to extract random bits from two linear min-entropy inde-
pendent sources. The idea is that the somewhere random source can be used to
turn both of the other sources into block sources, using Lemma 3.

Theorem 5. For every 1 > δ, ε2 > 0 and c > 0, there exists a t(c, δ, ε2) =
poly(c, 1/δ, log(1/ε2)), a constant γ(δ) and a polynomial time computable func-
tion Ext : {0, 1}n × {0, 1}n × {0, 1}c×t → {0, 1}δn−o(1) such that if X,Y are
independent min-entropy rate δ sources and Z is an independent c × t some-
where random source,

Pr
z

[Pr
y

[Ext(X, y, z) is 2−γn close to uniform] > 1− 2−γn] > 1− ε2

Pr
z

[Pr
x

[Ext(x, Y, z) is 2−γn close to uniform] > 1− 2−γn] > 1− ε2

Proof. Let δ′ < δ be a small enough constant so that length of the rows output
by Cond in Lemma 3 for error ε2 and min-entropy rate δ′ is at most δ2n/c. Let
2t be the number of rows output by Cond for this setting of parameters (so that
t = poly(1/δ, c, log(1/ε2)).

Now we treat each row of Z as the name of a row of Cond(X). Let
XZ denote the string Cond(X)Z1 , . . . ,Cond(X)Z . Similarly let YZ denote
Cond(Y)Z1 , . . . ,Cond(Y)Z . Then note that XZ and YZ are of length δ2n. Fur-
ther, by the properties of Cond, with high probability over the choice of z, Xz

and Yz are 2−Ω(n) close to having min-entropy rate 0.9/c. Since XZ is so short,
Lemma 1 implies that (Xz, X) and (Yz , Y) are 2−Ω(n) close to independent block
sources with entropy 0.9δ2n/c, (δ − δ2)n ≥ δ2n. So we can apply the extractor
from Theorem 4 to get the result of the lemma.

Now although we don’t have access to a somewhere random source Z as
above, Theorem 3 tells us that we can generate such a source in polynomial
time using the function SExt. So let us define the function Ext′(X,Y)

def
=

Ext(X,Y, SExt(X,Y)). It is not at all clear that this function is an extractor,
since now X,Y are not independent of the somewhere random source being
used (in fact they determine it!). Still, we show that the output of this function
must be close to having very high min-entropy.

Before we show this, we need two simple lemmas:

Lemma 4. Let A be a distribution that is ε-far from having min-entropy k.
Then, there must be a set H of size at most 2k such that Pr[A ∈ H] ≥ ε.

c

t

A 2-Source Almost-Extractor for Linear Entropy 555

Proof. Set H = {h : Pr[A = h] ≥ 2−k}. This set clearly has at most 2k element.
The lemma is immediate from the definition of statistical distance.

Lemma 5. Let A1, . . . , Al be random variables taking values in {0, 1}n, Z be a
random variable taking values in [l] and G ⊂ [l] be a set such that:

– For every z ∈ G, |Az − Un| < τ .
– Pr[Z ∈ G] > 1− ε.

Then for every integer d, AZ is ε+ l(τ +2−d) close to having min-entropy n−d.

Proof. Suppose not. Then, by Lemma 4, there must be some set of heavy ele-
ments H ⊂ {0, 1}n of size at most 2n−d such that Pr[AZ ∈ H] ≥ ε+ l(τ + 2−d).
Now note that AZ ∈ H implies that either Z /∈ G or one of the good Ai’s must
have hit H . Thus, by the union bound,

Pr[AZ ∈ H] < Pr[Z /∈ G] + Pr[∃z ∈ G with Az ∈ H]

≤ ε+ |G|(τ + 2−d)

< ε+ l(τ + 2−d)

We can now prove the main theorem of this paper.

Proof (Theorem 1). Let Az denote the random variable Ext(X,Y, z). Let γ =
Ωδ(1) be as in Theorem 5, with ε2 = ε. Define

G = {z : Pr
y

[Ext(X, y, z) is 2−γn close to uniform] > 1− 2−γn}

Then we see that Pr[Z ∈ G] > 1 − ε2, if Z is somewhere random and inde-
pendent. Instead we set Z = SExt(X,Y) (truncating each row to be of length
t = poly(c, 1/δ, log(1/ε)) as required by Theorem 5).

Acknowledgements

I would like to thank Boaz Barak, Ronen Shaltiel and Avi Wigderson for useful
discussions.

References

[BKS+05] Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Sim-
ulating independence: New constructions of condensers, Ramsey graphs,
dispersers, and extractors. In: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, pp. 1–10 (2005)

Thus we have that Pr[Z ∈ G] > 1 − ε2 − 2−Ωδ(n), since SExt(X, Y) is
2−Ωδ(n) close to a convex combination of somewhere random sources. Further,
for every z ∈ G, |Az − Un| < 2−Ωδ(n). The total number of z’s is at most
2ct = 2poly(1/δ,log(1/ε2)). Thus, by Lemma 5, setting d = 100ct/ log(1/ε), we have
that Ext′(X, Y) is 2ε2 close to having min-entropy m − poly(1/δ, log(1/ε)).

556 A. Rao

[BRSW06] Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2 source dispersers for
no(1) entropy and Ramsey graphs beating the Frankl-Wilson construc-
tion. In: Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (2006)

[Bou05] Bourgain, J.: More on the sum-product phenomenon in prime fields and
its applications. International Journal of Number Theory 1, 1–32 (2005)

[BKT04] Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields,
and applications. Geometric and Functional Analysis 14, 27–57 (2004)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Comput-
ing 17(2), 230–261 (1988)

[DR05] Dvir, Z., Raz, R.: Analyzing linear mergers. Technical Report TR05-25,
ECCC: Electronic Colloquium on Computational Complexity (2005)

[GRS04] Gabizon, A., Raz, R., Shaltiel, R.: Deterministic extractors for bit-fixing
sources by obtaining an independent seed. In: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (2004)

[GUV07] Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and ran-
domness extractors from parvaresh-vardy codes. In: Proceedings of the
22nd Annual IEEE Conference on Computational Complexity (2007)

[LRVW03] Lu, C.J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal up
to constant factors. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pp. 602–611 (2003)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

[Rao06] Rao, A.: Extractors for a constant number of polynomially small min-
entropy independent sources. In: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (2006)

[Raz05] Raz, R.: Extractors with weak random seeds. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pp. 11–20 (2005)

[SV86] Santha, M., Vazirani, U.V.: Generating quasi-random sequences from
semi-random sources. Journal of Computer and System Sciences 33, 75–87
(1986)

[Sha06] Shaltiel, R.: How to get more mileage from randomness extractors. In:
Proceedings of the 21th Annual IEEE Conference on Computational Com-
plexity, pp. 49–60 (2006)

Extractors for Three Uneven-Length Sources

Anup Rao1,� and David Zuckerman2,��

1 School of Mathematics, Institute for Advanced Study
arao@ias.edu

2 Department of Computer Science, University of Texas at Austin
diz@cs.utexas.edu

Abstract. We construct an efficient 3-source extractor that requires
one of the sources to be significantly shorter than the min-entropy of
the other two sources. Our extractors work even when the longer, n-bit
sources have min-entropy nΩ(1) and the shorter source has min-entropy
log10 n. Previous constructions for independent sources with min-entropy
nγ required Θ(1/γ) sources [Rao06]. Our construction relies on lossless
condensers [GUV07] based on Parvaresh-Vardy codes [PV05], as well as
on a 2-source extractor for a block source and general source [BRSW06].

1 Introduction

Motivated by the widespread use of randomness in computer science, researchers
have sought algorithms to extract randomness from a distribution that is only
weakly random. A general weak source is one with some min-entropy: a distri-
bution has min-entropy k if all strings have probability at most 2−k. We would
like to extract randomness from a weak source knowing only k and not the exact
distribution. However, this is impossible, even for more restricted sources [SV86].

Therefore, Santha and Vazirani showed how to extract randomness from two
independent restricted weak sources [SV86]. Can we design such efficient random-
ness extractors for general independent sources? These are efficiently computable
functions Ext : ({0, 1}n)C → {0, 1}m with the property that for any product
distribution X1, . . . , XC, the output Ext(X1, . . . , XC) is close to uniformly dis-
tributed as long as each Xi has high enough min-entropy. Our primary goals are
to minimize the number of sources required and the amount of entropy needed.
Secondarily, we’d like to maximize the length of the output and minimize the
error, which is the distance of the output from uniform.

Extractors for independent sources have been useful in constructing determin-
istic extractors for space-bounded sources [KRVZ06] and in new constructions
of network extractor protocols [KLRZ08].

1.1 Previous Results

The question of finding such an extractor came up as early as in the works of San-
tha and Vazirani [SV86] and Chor and Goldreich [CG88]. After that, following
� Supported in part by NSF Grants CCF-0634811 and CCR-0324906.

�� Supported in part by NSF Grant CCF-0634811.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 557–570, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

558 A. Rao and D. Zuckerman

the work of Nisan and Zuckerman [NZ96], most work focused on constructing
seeded extractors. This is simply a two source extractor where one source is
assumed to be very short and uniformly distributed (in this case the problem
only makes sense if the extractor outputs more than what’s available in the
short seed). Extractors for this model have found application in constructions
of communication networks and good expander graphs [WZ99, CRVW02], er-
ror correcting codes [TZ04, Gur04], cryptographic protocols [Lu04, Vad04], data
structures [MNSW98] and samplers [Zuc97]. Seeded extractor constructions are
now available that can extract uniform bits from a source with small entropy
using a seed of length only O(log n) [LRVW03, GUV07].

In recent years there have been several works improving the state of the art
for independent sources [BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06].
We now know how to extract from two sources when the entropy in each is at
least something like .4999n [Bou05], from three sources if the entropy in each
is at least n0.99 [Rao06] and from O(1/γ) sources if the entropy in each is at
least nγ [Rao06, BRSW06]. All of these constructions have exponentially small
error, and by a result of Shaltiel [Sha06], the output length can be made almost
best possible. Thus, the tradeoff that is most interesting is the one between the
number of sources required and the entropy requirements.

1.2 Our Work

In this paper, we construct extractors which require only three sources with poly-
nomial min-entropy. However, there is a key caveat: one of the sources must be
significantly shorter than the min-entropy of the other two sources. On the plus
side, while the longer, n-bit sources must have min-entropy nΩ(1), the shorter
source need only have min-entropy log10 n.

Extractors for uneven-length sources may be more interesting than they ap-
pear, for two reasons. First, the extractors with the most applications are seeded
extractors, which are extractors for uneven-length sources. Second, in other set-
tings the uneven-length case was more difficult. For example, in the two-source
setting with entropy rate bigger than 1/2, the even length case was known for
decades (before extractors were defined), but the uneven-length case was only
proved by Raz in 2005 [Raz05].

We now state our three source extractor precisely.

Theorem 1 (3-Source Extractor). There exists a constant d and a polyno-
mial time computable function 3Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m
which is an extractor for three sources with min-entropy requirements k1, k2, k3 =√
k1, error 2−Ω(k2) + 2−k

(1)
1 and output length m = k1 − o(k1) as long as:

– log k1
log n2

> d log(n1+n3)
log k1

– k2 > d logn1

One example of how to set parameters is in the following corollary:

Ω

Extractors for Three Uneven-Length Sources 559

1.3 Techniques

We build on the work of Guruswami et al. [GUV07] and Barak et al. [BRSW06].
Guruswami et al. showed how to build a very good seeded condenser. This is
a function Cond : {0, 1}n × {0, 1}d → {0, 1}m that guarantees that if X has
sufficient min-entropy k and Ud is an independent random variable that’s uniform
on d bits, Cond(X,Ud) is close to having very high min-entropy. Inspired by
ideas from the list decodable code constructions of [PV05, GR06], they showed

suitably chosen irreducible polynomial and h, t are suitably chosen parameters.
Specifically they showed that the output of this function is close to having min-
entropy 0.9m.

Corollary 1. There exist constants d, h such that for every constant 0 < γ <
1, there is a polynomial time computable function 3Ext : {0, 1}n × {0, 1}n ×
{0, 1}nγ/h → {0, 1}nγ−o(nγ) which is an extractor for three sources with min-
entropy requirements k = nγ , nγ , logd n, and error 2−Ω(log10 n).

The corollary follows by setting n1 = n3 = n, n2 = nγ/h, k1 = nγ , k2 = logd n
and choosing h to be a large enough constant.

For smaller min-entropy, the first constraint in the theorem forces the length
of the shorter source to be much shorter than the other two sources.

It turns out that we don’t really need three mutually independent sources to
get our results. We obtain an extractor even when we have just two sources, but
one of them is a block source with a short block followed by a long block.

Theorem 2 ((Short, Long)-Block-Source Extractor). There exists a con-
stant d and a polynomial time computable function 3Ext : {0, 1}n1 × {0, 1}n2 ×
{0, 1}n3 → {0, 1}m which is an extractor for a block source with min-entropy re-
quirements k1, k2 and an independent source with min-entropy k3 =

√
k2, error

2−Ω(k1) + 2−k
Ω(1)
2 and output length m = k2 − o(k2) as long as:

– log k2
log n1

> d log(n2+n3)
log k2

– k1 > d log n2

Salil Vadhan observed that a slightly different analysis allows us to reverse
the order of the short and long sources.

Theorem 3 ((Long, Short)-Block-Source Extractor). There exists a con-
stant d and a polynomial time computable function 3Ext : {0, 1}n1 × {0, 1}n2 ×
{0, 1}n3 → {0, 1}m which is an extractor for a block source with min-entropy re-
quirements k1, k2 and an independent source with min-entropy k3 =

√
k1, error

2−Ω(k2) + 2−k
Ω(1)
1 and output length m = k1 − o(k1) as long as:

– log k1
log n2

> d log(n1+n3)
log k1

– k2 > d log n1

that the following function is a condenser: Cond(f, y) = f(y), fh(y), . . . , fht

(y),
where f is a low degree polynomial, fhi

is the powered polynomial modulo a

560 A. Rao and D. Zuckerman

We analyze Cond when the second source is not uniform, but merely has high
entropy (say αd). In this case, we show that the output must have entropy close
to 0.9αm. At first this may not seem useful, since we end up with a distribution
where the entropy is even less concentrated than the source that we started
with. However, we show that if the output is m = m1 +m2 + · · ·+mC bits, each
consecutive block of mi bits must have entropy close to 0.9αmi. Using an idea
from [Zuc96], we choose the mi’s to increase geometrically. This implies that
the output must be a block source: not only does each consecutive block of mi

bits have a reasonable amount of entropy, it has significant entropy conditioned
on any fixing of the previous blocks. Intuitively, since each subsequent block
is significantly larger than the previous ones, the previous ones cannot contain
enough information to significantly reduce the entropy in the current block upon
conditioning.

Block sources are a well studied object in extractor constructions. Indeed, ear-
lier works have shown [BKS+05, Rao06, BRSW06] that even two source extrac-
tors are easy to obtain under the assumption that both or even one of the sources
have some block source structure. In particular, a theorem from [BRSW06] shows
that we can extract from one block source and one independent source, if each
block and the independent source have entropy nγ , and the number of blocks in
the block source is at least O(1/γ).

This completes the construction. We first apply Cond to convert the first two
sources into a single block source, and then use the extractor from [BRSW06]
and an additional source to get random bits.

2 Preliminaries

For a distribution X , we let H∞(X) denote the min-entropy of the distribution.
We call a distribution flat if it is uniformly distributed on some subset of the
universe.

Fact 1. Every distribution X with min-entropy at least k is a convex combina-
tion of flat distributions with min-entropy k.

Definition 1. Let D and F be two distributions on a set S. Their statistical
distance is

|D − F | def
= max

T⊆S
(|D(T)− F (T)|) =

1
2

∑

s∈S

|D(s)− F (s)|

If |D − F | ≤ ε we shall say that D is ε-close to F .

This measure of distance is nice because it is robust in the sense that if two
distributions are close in this distance, then applying any functions to them
cannot make them go further apart.

Proposition 1. Let D and F be any two distributions over a set S s.t. |D−F | ≤
ε. Let g be any function on S. Then |g(D)− g(F)| ≤ ε.

Extractors for Three Uneven-Length Sources 561

When we manipulate sources which are close to having some min-entropy, it
will be convenient to have the following definition. For a distribution D, D(a)
denotes the probability that D places on a.

Definition 2. We call a distribution D ε-close to k-light if, when X is chosen
according to D, Pr[D(X) > 2−k] ≤ ε.

The following is then immediate:

Lemma 1. If D is ε-close to k-light, then D is ε-close to min-entropy k.

The following lemma gives a sufficient condition to lowerbound the min-entropy
of a source.

Lemma 2 ([GUV07]). Let X be a random variable taking values in a set of
size larger than 2k such that for every set S of size less than ε2k, Pr[X ∈ S] < ε.
Then X is ε-close to k-light.

Proof. First note that |supp(X)| ≥ ε2k, or else the hypothesis of the lemma is
contradicted by setting S = supp(X).

Let S be the ε2k heaviest elements under X , breaking ties arbitrarily. Then
for every x /∈ S we must have that Pr[X = x] ≤ 2−k, or else every element in
S would have weight greater than 2−k, which would contradict the hypothesis.
Thus, the set of elements that have weight more than 2−k are hit with probability
at most ε.

A block source is a source broken up into a sequence of blocks, with the property
that each block has min-entropy even conditioned on previous blocks.

Definition 3 (Block sources). A distribution X = X1, X2, · · · , XC is called
a (k1, k2, . . . , kC)-block source if for all i = 1, . . . ,C, we have that for all x1 ∈
X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X

i−1 = xi−1) ≥ ki, i.e., each block
has high min-entropy even conditioned on the previous blocks. If k1 = k2 = · · · =
kC = k, we say that X is a k-block source.

The following lemma is useful to prove that a distribution is close to a block
source.

Lemma 3. Let X = X1, . . . , Xt be t dependent random variables. For every
i = 1, 2, . . . , t, let X i denote the concatenation of the first i variables. Suppose
each X i takes values in {0, 1}n and for every i = 1, 2, . . . , t, X i is εi-close to
ki-light, with

∑
i εi < 1/10. Then for every � > 10 log t we must have that X

is
∑t

i=1 εi + t2−�-close to a block source, where each block Xi has min-entropy
ki − ni−1 − 1− �.

Proof. We will need to define the notion of a submeasure. Let n = nt. Say
that M : {0, 1}n → [0, 1] is a submeasure on {0, 1}n if

∑
m∈{0,1} M(m) ≤ 1.

Note that every probability measure is a submeasure. We abuse notation and let
M(xi) denote the marginal measure induced on the first i coordinates.

n

i

562 A. Rao and D. Zuckerman

Theorem 4 (Block vs General Source Extractor [BRSW06]). There ex-
ists constants c1, c2 such that for every n, k, with k > log10 n there exists a
polynomial time computable function BExt : {0, 1}Cn × {0, 1}n → {0, 1}m with
C = O(log n

log k) s.t. , if X = X1, · · · , XC is a k-block source and Y is an indepen-
dent k-source

where m = c2k and Um denotes the uniform distribution on m bit strings.

3 The Extractor

In this section we describe our construction. Our extractor uses as a key compo-
nent a randomness condenser, constructed by Guruswami, Umans and Vadhan
[GUV07], which is in turn based on recent constructions of good list decodable

We say a submeasure on {0, 1}n is ε-close to k-light if
∑

m∈{s:M(s)>2−k}

M(m) ≤ ε.

As usual, for any event A ⊂ {0, 1}n, we denote Pr[M ∈ A] =
∑

m∈A M(m).
We now define the submeasures Mt+1 = X , and for i = t, t − 1, t − 2, . . . , 1,

Mi(m) =

{
0 M i

i+1(m
i) > 2−ki ∨ M i

i+1(m
i) < 2−ni−�

Mi+1(m) otherwise

Let M = M1. Now note that for every j < i, M j
i is εj-close to kj-light, since

we only made points lighter in the above process. Further, for all m and i ≤ j,
M j

i (mj) ≤ 2−kj , since we reduced the weight of all m’s that violated this to
0. We also have that for every m, i, M i(mi) = 0 or M i(mi) ≥ 2−ni−� by our
construction.

Now define the sets Bi = {m ∈ {0, 1}n : Mi(m) 	= Mi+1(m)}. Set B = ∪iBi.
Then note that Pr[X ∈ B] ≤

∑t
i=2 Pr[Mi+1 ∈ Bi]. Each Bi, contains two types

of points: points that were removed when moving from Mi+1 to Mi because
they were too heavy, and points that were removed because they were too light.
We set Ci = {m : Mi+1(mi) > 2−ki}, namely the “too heavy” points. We see
that Pr[Mi+1 ∈ Ci] ≤ εi, since M i

i+1 is εi-close to ki-light. Set Di = {m :
Mi+1(mi) < 2−ni−�}, namely the “too light” points. We get Pr[Mi+1 ∈ Di] <
2−� by the union bound. Using both these estimates, we get that Pr[X ∈ B] ≤∑t

i=1 Pr[Mi+1 ∈ Bi] ≤
∑t

i=1 Pr[Mi+1 ∈ Ci] + Pr[Mi+1 ∈ Di] ≤
∑

i εi + t2−�.
Now define the distribution Z = X |X /∈ B. Then Z is

∑
i εi + t2−�-close to X .

For every i and z ∈ supp(Z), we have that Pr[Zi = zi|Zi−1 = zi−1] = Pr[Zi =
zi]/ Pr[Zi−1 = zi−1] ≤ 2−ki+1/2−ni−1−� (since every point at most doubles in
weight over M), which proves the lemma.

Pr
x←RX

[|BExt(x, Y) − Um| < 2−kc1] > 1 − 2−kc1
,

Extractors for Three Uneven-Length Sources 563

codes ([GR06, PV05]), though we give a self contained proof of everything we
need in this section.

First let us give a high level description of our algorithm and analysis. Al-
though it seems hard to build extractors for two independent sources, the prob-
lem seems considerably easier when one of the sources is a block source. Indeed,
our new algorithm will be obtained by reducing to this case. We will give an
algorithm that given two independent sources, can turn them into a single block
source, with many blocks. Once we have this algorithm, we will simply use one
additional source and our extractor from Theorem 4.

3.1 Converting Two Independent Sources into a Block Source

Fix a finite field F. The following algorithm is from [GUV07].

Algorithm 1 (Cond(f, y))

Input: f ∈ Ft+1, y ∈ F and an integer r.
Output: z ∈ Fr.

Sub-Routines and Parameters:
Let g ∈ F[X] be an irreducible polynomial of degree t+ 1. Set h = |F|0.8α for
some parameter α.
1. We interpret f as a degree t univariate polynomial with coefficients in F.
2. For every i = 0, 1, . . . ,m− 1, let fi ∈ F[x] be the polynomial fh mod g.
3. Output f0(y), f1(y), . . . , fr−1(y).

Guruswami et al. were interested in building seeded condensers, so they used
the above algorithm with y sampled uniformly at random. Below, we show that
the algorithm above is useful even when y is a high min-entropy source. We
can prove the following lemma, which is a slight generalization of a lemma in
[GUV07]:

Lemma 4. Suppose F is a distribution on Ft+1 with min-entropy k and Y is
an independent distribution on F with min-entropy rate α and

– rt < ε|F|0.1α

– k > log(2/ε) + (0.8αr) log |F|.

Then Cond(F, Y) is ε-close to .7αr log |F|-light, and hence it is ε-close to having
min-entropy rate 0.7α.

Remark 1. In order to avoid using too many variables, we have opted to use
constants like 0.1 and 0.7 in the proof. We note that we can easily replace the
constants 0.7, 0.8 with constants that are arbitrarily close to 1, at the price of
making 0.1 closer to 0.

i

564 A. Rao and D. Zuckerman

Proof (Lemma 4). We will repeatedly use the basic fact that any non-zero poly-
nomial of degree d can have at most d roots.

By Fact 1, it suffices to prove the lemma when F and Y are flat sources.
We will prove that the output is close to having high min-entropy via

Lemma 2. To do this, we need to show that for every set S ⊂ Fr of size ε|F|0.7αr,
Pr[Cond(F, Y) ∈ S] < ε. Fix a set S.

Let Q(Z1, . . . , Zr) ∈ F[Z1, . . . , Zr] be a non-zero r variate polynomial whose
degree is at most h − 1 in each variable, such that Q(s) = 0 for every s ∈ S.
Such a polynomial must exist since the parameters have been set up to guarantee
hr = |F|0.8αr > |S| = ε|F|0.7rα.

Now call f ∈ supp(F) bad for S if

Pr
y←RY

[Cond(f, y) ∈ S] ≥ ε/2

We will bound the number of bad f ’s. Fix any such bad f . Then consider the
univariate polynomial

R(X) = Q(f0(X), f1(X), . . . , fr−1(X)) ∈ F[X]

This polynomial has degree at most tr(h− 1). But tr(h− 1) < ε|F|0.1α|F|0.8α <
ε|F|α/2 = (ε/2)|supp(Y)|, thus this polynomial must be the zero polynomial. In
particular, this means that R(X) = 0 mod g(X). This in turn implies that f
must be a root of the polynomial

Q′(Z) = Q(Z,Zh, Zh2
, . . . , Zh −1

) ∈ (F[X]/g(X))[Z]

which is a univariate polynomial over the extension field F[X]/g(X), since
Q′(f(X)) = R(X) mod g(X) by our choice of f0, . . . , fr−1.

Recall that Q had degree at most h− 1 in each variable. This means that Q′

has degree at most hr − 1 and is non-zero, since no two monomials can clash
when making the substitution Zi for Zi in Q. The number of bad f ’s can be
at most hr − 1 < |F|0.8αr, since every bad f is a root of this low degree non-
zero polynomial. This implies that Pr[F is bad] < |F|0.8αr/2k < ε/2, since the
constraint on k implies that 2k > |F|0.8αr2/ε.

Hence

Pr[Cond(F, Y) ∈ S] ≤ Pr[F is bad] + Pr[Cond(F, Y) ∈ S|F is not bad]
< ε/2 + ε/2 = ε.

Note that a seeded condenser corresponds to the special case of α = 1 in the
above lemma. When α is small, it seems like the lemma doesn’t say anything
useful, since the min-entropy rate of the output is bounded above by α. But note
that the lemma works for a very wide range of r’s. The above function is more
than a condenser, it spreads the entropy out across the output. Specifically, if we
look at the first r′ symbols in the output, they must also have min-entropy rate

r

Extractors for Three Uneven-Length Sources 565

close to 0.7α. We can use this to construct a block source with geometrically
increasing block lengths, as in the following lemma:

Lemma 5. Let Cond, F, Y, α, r, t, ε be as in Algorithm 1 and Lemma 4. Let
r1, r2, . . . , rC = r be positive integers. For i = 1, 2, . . . ,C, set Zi to be the first ri
field elements in the output of Cond(F, Y). Then let Z1, . . . , ZC be such that Zi =
Z1, . . . , Zi for every i. Then for every � > 10 logC we have that Z1, Z2, . . . , ZC

is C(ε+ 2−�)-close to a block source with entropy (0.7αri − ri−1) log(|F|)− 1− �
in each block.

Proof. We will apply Lemma 3.
Note that for each i, Zi is simply the output of the condenser upto the first

ri elements. Since ri ≤ r, ri satisfies the constraints of Lemma 4, so Zi is ε-close
to 0.7α|Zi|-light.

We set parameters to get the following theorem:

Theorem 5. There exists a polynomial time computable function BlockConvert :
{0, 1}n1 × {0, 1}n2 → {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mC, such that for every
min-entropy k1 source X over {0, 1}n1 and every min-entropy k2 source Y over
{0, 1}n2 satisfying

– C(log 10n2
k2

) + 2 log(n1) < 0.095k2
–
√
k1 > k2(10n2/k2)C,

BlockConvert(X,Y) is C(2−Ω(k2) +2−k
(1)

1)-close to a block source with
∑

imi ≤
(10n2/k2)C

√
k1 and min-entropy 2

√
k1 in each block.

Proof. We show how to set parameters and apply Lemma 5.
Set F to be the finite field of size 2n2 . Set t = n1/n2, ε = 2−0.05k2 and k = k1.

Set α = k2/n2.
Set ri = (10n2/k2)i

√
k1, so

∑
imi = r = k

1/2
1 (10n2/k2)C.

Using the first assumption,

rt =
√
k1

(
10n2

k2

)C
n1

n2
≤ n2

1

(
10n2

k2

)C

< 20.095k2 = 2−0.05k220.1k2 = ε|F|0.1α

to satisfy the first constraint of Lemma 4.
We have that

k1 = k > 1 + 0.05k2 + 0.8 · 10Ck2
√
k1(n2/k2)C = log(2/ε) + (0.8rα) log(|F|)

to satisfy the second constraint of Lemma 4.
Set � = k0.1

1 . Note that the second constraint implies that C < log k1.

Ω

566 A. Rao and D. Zuckerman

Then let us use the algorithm Cond as promised by Lemma 5 with the above
settings. We get that the final output is C(ε + 2−�+1) ≤ C(2−Ω(k2) + 2−k

(1)
1)-

close to a block source with min-entropy (0.7αri− ri−1) log(|F|)− 1− 2� in each
block. We can lower bound this as follows:

(0.7αri − ri−1) log(|F|)− 1− 2�

=

(

0.7
k2
n2

(
10n2

k2

)i√
k1 −

(
10n2

k2

)i−1√
k1

)

n2 − 1− 2k0.1
1

= (0.7 · 10− 1)
(

10n2

k2

)i−1

n2

√
k1 − 1− 2k0.1

1

= 6
(

10n2

k2

)i−1

n2

√
k1 − (1 + 2k0.1

1)

≥ 2
√
k1

3.2 Putting It All Together

All that remains is to put together the various components to get our extractor.

Algorithm 2 (IExt(a, b, c))

Input: a ∈ {0, 1}n1, b ∈ {0, 1}n2, c ∈ {0, 1}n3.
Output: z ∈ {0, 1}m for a parameter m that we will set.

Sub-Routines and Parameters:
Let BlockConvert be the algorithm promised by Theorem 5, set up to operate
on two sources with entropy k1, k2 and lengths n1, n2 respectively.
Let BExt be the algorithm promised by Theorem 4, set up to extract from a
block source with C blocks of length (10n2/k2)C

√
k1, each with entropy

√
k1

conditioned on previous blocks, and an independent source with length n3 and
min-entropy k3.

1. Run BlockConvert(a, b) to get the blocks x = x1, x2, . . . , xC.
2. Output BExt(x, c).

We can now prove the main theorem.

Proof (Theorem 1). Let t be a constant so that BExt requires C = t log(n1 +
n3)/ log(k1) blocks to extract bits from an (n3, k3 =

√
k1) source and an indepen-

dent block source with blocks of length n1, each with entropy
√
k1 conditioned

on previous blocks. The error of this extractor is promised to be 2−k
(1)

1 .
We check each of the constraints needed for BlockConvert to succeed.

Ω

Ω

Extractors for Three Uneven-Length Sources 567

First we have that

C
(

log
10n2

k2

)

+ logn1

< C10 logn2 + logn1

≤ 10t
log(n1 + n3)

log k1
logn2 + logn1

≤ (10t/d) log k1 + logn1 by the first assumption
< 0.095d logn1 for d large enough
< 0.095k2 by the second assumption

For the next constraint,

log(k2(10n2/k2)C)
= C log(10n2/k2) + log k2

≤ t log(n1 + n3)
log k1

(log(n2) + log 10) + logn2

< 3(t/d) log k1 by the first assumption
< (1/2) log k1 for d large enough

We are not yet done, since the algorithm above will only output m1 =
√
k1−

o(
√
k1) bits. However, we do have that:

3.3 Extension to Block Sources

We now sketch the proofs of Theorems Theorem 2 and Theorem 3.
For Theorem 2, our block source will be (b, c), and our extractor will be

IExt(a, b, c). We will show that BlockConvert is strong in the sense that with high
probability, even conditioned on b, BlockConvert(X, b) will be a block source. The
proof then proceeds as before.

The following lemma shows that any condenser with good parameters is also
strong, with slightly weaker parameters.

Lemma 6. Let X denote a collection of sources. Suppose the function C is a
condenser in that for independent X ∈ X and Y with H∞(Y) ≥ �, C(X,Y) is
ε-close to k-light. Then for any such X,Y , when y is chosen from Y ,

Pr
y

[C(X, y) is δ-close to (k − �)-light] ≥ 1− ε/δ.

Pr
x1←RX1

[|IExt(x1, Y, Z) − Um1 | > 2−Ω(k2) + 2−k
Ω(1)
1] < 2−Ω(k2) + 2−k

Ω(1)
1

since BExt is strong.
Thus we have that |X, IExt(X, Y, Z) − X, Um1 | < 2−Ω(k2) + 2−k

Ω(1)
1 , which

implies that if Ext is any strong seeded extractor set up to extract from a min-
entropy k1 source with seed length m2, Ext(X, Um1) is 2−Ω(k2) + 2−k

Ω(1)
1 close

to Ext(X, IExt(X, Y, Z)). This is our final extractor.

568 A. Rao and D. Zuckerman

Proof. Fix any such X and Y . Let S = {z|Pr[C(X,Y) = z] > 2−k} denote
the set of heavy elements. Note that for any y in the support of Y and z /∈ S,
Pr[C(X, y) = z] ≤ 2�−k. Now let py = Pr[C(X, y) ∈ S]. Then E[py] ≤ ε, so by
Markov Pr[py ≥ δ] ≤ ε/δ, which gives the lemma.

We will use this lemma with the condenser Cond and with δ =
√
ε. We then

modify Lemma 5 so that with high probability over the choice of y, Cond(F, y)
is a block source. This immediately yields a strong version of Theorem 5.

Theorem 6. There exists a polynomial time computable function BlockConvert :
{0, 1}n1 × {0, 1}n2 → {0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mC, such that for every
min-entropy k1 source X over {0, 1}n1 and every min-entropy k2 source Y over
{0, 1}n2 satisfying

– C(log 10n2
k2

) + 2 log(n1) < 0.095k2
–
√
k1 > k2(10n2/k2)C,

the following holds. When y is chosen according to Y , with probability 1 −
C(2−Ω(k2) +2−k

(1)
1), BlockConvert(X, y) is C(2−Ω(k2) +2−k

(1)
1)-close to a block

source with
∑

imi ≤ (10n2/k2)C
√
k1 and min-entropy 2

√
k1 in each block.

Now, when we analyze IExt(a, b, c) where (b, c) is a block source, we argue that
with high probability over the choice of b, we are in the same situation as before,
and our proof continues in the same manner.

For Theorem 3, our block source will be (a, b), and our extractor will be
IExt(a, b, c). In the analysis of Cond(f, y), we analyzed a bad f by counting the
number of y that cause Cond(f, y) ∈ S. The key observation is that this analysis
remains unchanged if we choose y from a set Y that depends on f . This is easily
verified by looking at the proof of Lemma 4. Hence (f, y) can be from a block
source.

Acknowledgements

We would like to thank Salil Vadhan and Chris Umans for useful discussions.
In particular, Salil showed us how to get Theorem 3. Thanks to the referees for
several useful comments.

References

[BIW04] Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness us-
ing few independent sources. In: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pp. 384–393 (2004)

[BKS+05] Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Sim-
ulating independence: New constructions of condensers, Ramsey graphs,
dispersers, and extractors. In: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, pp. 1–10 (2005)

Ω Ω

Extractors for Three Uneven-Length Sources 569

[BRSW06] Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2 source dispersers for
no(1) entropy and Ramsey graphs beating the Frankl-Wilson construc-
tion. In: Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (2006)

[Bou05] Bourgain, J.: More on the sum-product phenomenon in prime fields and
its applications. International Journal of Number Theory 1, 1–32 (2005)

[CRVW02] Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness con-
ductors and constant-degree lossless expanders. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pp. 659–668
(2002)

[CG88] Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Comput-
ing 17(2), 230–261 (1988)

[Gur04] Guruswami, V.: Better extractors for better codes? In: Proceedings of
the 36th Annual ACM Symposium on Theory of Computing, pp. 436–444
(2004)

[GR06] Guruswami, V., Rudra, A.: Explicit capacity-achieving list-decodable
codes. In: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (2006)

[GUV07] Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and ran-
domness extractors from Parvaresh-Vardy codes. In: Proceedings of the
22nd Annual IEEE Conference on Computational Complexity (2007)

[KLRZ08] Kalai, Y., Li, X., Rao, A., Zuckerman, D.: Network extractor protocols
(unpublished manuscript, 2008)

[KRVZ06] Kamp, J., Rao, A., Vadhan, S., Zuckerman, D.: Deterministic extractors
for small space sources. In: Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing (2006)

[LRVW03] Lu, C.J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal up
to constant factors. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pp. 602–611 (2003)

[Lu04] Lu, C.-J.: Encryption against storage-bounded adversaries from on-line
strong extractors. J. Cryptology 17(1), 27–42 (2004)

[MNSW98] Miltersen, P., Nisan, N., Safra, S., Wigderson, A.: On data structures and
asymmetric communication complexity. Journal of Computer and System
Sciences 57, 37–49 (1998)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

[PV05] Parvaresh, F., Vardy, A.: Correcting errors beyond the guruswami-sudan
radius in polynomial time. In: Proceedings of the 46th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 285–294 (2005)

[Rao06] Rao, A.: Extractors for a constant number of polynomially small min-
entropy independent sources. In: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (2006)

[Raz05] Raz, R.: Extractors with weak random seeds. In: Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, pp. 11–20 (2005)

[SV86] Santha, M., Vazirani, U.V.: Generating quasi-random sequences from
semi-random sources. Journal of Computer and System Sciences 33, 75–87
(1986)

[Sha06] Shaltiel, R.: How to get more mileage from randomness extractors. In:
Proceedings of the 21th Annual IEEE Conference on Computational Com-
plexity, pp. 49–60 (2006)

570 A. Rao and D. Zuckerman

[TZ04] Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Transactions on In-
formation Theory 50 (2004)

[Vad04] Vadhan, S.P.: Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. Cryptology 17(1), 43–77 (2004)

[WZ99] Wigderson, A., Zuckerman, D.: Expanders that beat the eigenvalue
bound: Explicit construction and applications. Combinatorica 19(1), 125–
138 (1999)

[Zuc96] Zuckerman, D.: Simulating BPP using a general weak random source.
Algorithmica 16, 367–391 (1996)

[Zuc97] Zuckerman, D.: Randomness-optimal oblivious sampling. Random Struc-
tures and Algorithms 11, 345–367 (1997)

The Power of Choice in a

Generalized Pólya Urn Model

Gregory B. Sorkin

IBM Watson Research Center
sorkin@watson.ibm.com

Abstract. We establish some basic properties of a “Pólya choice” gen-
eralization of the standard Pólya urn process. From a set of k urns, the
ith occupied by ni balls, choose c distinct urns i1, . . . , ic with probability
proportional to nγ

i1
×· · ·×nγ

i , where γ > 0 is a constant parameter, and
increment one with the smallest occupancy (breaking ties arbitrarily).
We show that this model has a phase transition. If 0 < γ < 1, the urn
occupancies are asymptotically equal with probability 1. For γ > 1, this
still occurs with positive probability, but there is also positive probabil-
ity that some urns get only finitely many balls while others get infinitely
many.

1 Introduction

We introduce an urn model that combines characteristic elements of two well-
established models. As a basis of comparison, we first recall the most basic urn
model: given a set of urns, each in a sequence of balls is placed in an urn chosen
uniformly at random. If there are n urns and n balls, at the end of this process
the “maximum load” (occupancy of the fullest urn) whp (with high probability,
i.e., with probability tending to 1 as n → ∞), is approximately lnn/ ln lnn. Of
course, if the number of urns k is fixed and the number of balls n → ∞, then
whp the loads are asymptotically balanced.

The first model forming the basis of ours is the “power of two choices” urn
model, with roots in [KLMadH96, ABKU99]. If at each step a pair of urns is
selected uniformly, and the ball allocated to the more lightly loaded one, then
the maximum load is whp only ln lnn/ ln 2 +Θ(1): having even a small amount
of choice is enough to balance the load.

The second is a “rich get richer” Pólya urn model, considered for example
in [CHJ03, DEM01]. This model is like the simple urn model except that instead
of an urn’s being selected uniformly at random, it is selected in proportion to
a power γ of its occupancy. (In this model each urn has initial occupancy 1,
not 0.) That is, if at step t the ith urn has occupancy xi(t), it is incremented
with probability xi(t)γ/

∑
j xj(t)γ . (With γ = 1 this is the usual Pólya process.)

With k urns and exponent γ, we denote such a rich-get-richer Pólya model by
P(γ, k).

Our model synthesizes the two. Considering first a special case, at each step t,
a pair i, j of urns, i
= j (“drawn without replacement”), is chosen with proba-
bility proportional to xi(t)γxj(t)γ . (Drawing two elements with replacement can

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 571–583, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

c

572 G.B. Sorkin

be drastically different: if one urn is much fuller than the others, it is likely that
this urn will be drawn twice, spoiling the “power of choice”.) The ball is placed
into the less full urn, with ties broken arbitrarily.

In general we will choose c ≥ 2 urns in proportion to the product of the γth
powers of their occupancies, and place the next ball in a least occupied urn from
this set. We will denote a k-urn γ-exponent Pólya-choice process with c choices
by PC(γ, k, c). Note that if we allowed c = 1, PC(γ, k, 1) would be the same as
P(γ, k). We will write just PC and P when the parameters are clear.

Wewill show thatourPólya-choice (PC)modelhas aphase transition. If0 < γ <
1, then with probability equal to 1 the urn occupancies are asymptotically equal.
(The Pólya model P(γ, k) also has this property for γ < 1, so this is not surprising.
The γ = 1 case is treated in [LAS+08], where amuchmore difficult proof shows that
it too is always balanced.) For γ > 1, asymptotic balance still occurs with positive
probability, but there is also positive probability that some urns get only finitely
many balls while others get infinitely many. This γ > 1 case is most interesting.
With probability 1, a rich-get-richer Pólya urn process P(γ, k) with γ > 1 yields a
single urn with almost all the balls, while the other urns starve. Adding the power of
choice means that while this still happens with positive probability for PC(γ, k, c),
there is also positive probability of asymptotic balance.

The PC(γ, k, c) model with γ = 1 arises in the context of Internet routing as
part of a technical analysis of “linked decompositions” of preferential-attachment
graphs [LAS+08]. Given the existence of the rich-get-richer Pólya model, gener-
alizing to other values of γ seems natural. Power-law phenomena have received a
good deal of attention recently, and it is conceivable that the model could have
applicability to, say, the “natural” evolution of a web graph modified by a small
amount of engineered network design. The model is sufficiently simple that some
variations have already been suggested [McD07].

It must be admitted, however, that our motivation for studying the Pólya-
choice model is that both the Pólya model with exponent γ and the “power of
two choices” model have resulted in beautiful mathematics, and the combined
PC model promises to do the same. In this paper, we describe the two aspects
mentioned a moment ago: that the model undergoes a phase transition between
γ < 1 and γ > 1, and that for γ > 1 two dramatically different outcomes —
balanced or imbalanced — can ensue with positive probability. The possibility of
balance for γ > 1 is our main technical result, given by Theorem 3 in Section 4.

2 Balance for γ < 1

It is well known that in the Pólya model P(γ, k) with parameter γ < 1, with
probability 1 (“wp 1”) the urns are asymptotically balanced. That is, wp 1, for
each i ∈ [k], limn→∞ ni/n = 1/k. A simple and beautiful coupling-based proof
is given in [CHJ03]. It is not surprising that the “power of choice” aspect yields
even more balanced allocations, and thus leads to the same perfectly balanced
long-run outcome.

The Power of Choice in a Generalized Pólya Urn Model 573

Theorem 1. In a PC(γ, k, c) process with 0 < γ < 1, wp 1, for each i ∈ [k], we
have limn→∞ ni/n = 1/k.

Proof. Assume henceforth that the set of urn occupancies {ni} is sorted in non-
decreasing order. Let {n′i} be another set of occupancies, with the same total
number of balls,

∑k
i=1 ni =

∑k
i=1 n

′
i = n. We say that {ni} is “more balanced”

than {n′i}, if for every i the prefix sum
∑i

j=1 nj is at least as large as the corre-
sponding sum

∑i
j=1 n

′
j . We will write this as {ni} ≤ {n′i}, because {ni} is more

balanced than {n′i} precisely if {ni} is majorized by {n′i}.
We exhibit a coupling in which the allocations {ni} from PC(γ, k, c) are always

more balanced than the allocations {n′i} from P(γ, k). This suffices, since it is
trivial from majorization that if n′i/n → k for each i (which holds wp 1), and
{ni} ≤ {n′i}, then also ni/n→ k for each i.

In both processes, at the initial time n = k each urn is started off with one
ball, so it is trivial that PC is more balanced than P: {ni} ≤ {n′i}, with equality.
We prove that if this inequality holds at time n then it also holds at n+1. With
reference to the small table immediately below, let variables ni and mi indicate
occupancies of the process PC at times n and n+ 1 respectively, n′i and m′

i the
occupancies of the Pólya process P, and m′′

i the occupancies at time n+ 1 of a
Pólya process P′′ with occupancies ni (not n′i) at time n.

time PC P P′′

n ni n′i ni [sic]
n+ 1 mi m′

i m′′
i

We will show that if {ni} ≤ {n′i} then {m′′
i } ≤ {m′

i} and {mi} ≤ {m′′
i }; by

transitivity of majorization the desired result {mi} ≤ {m′
i} follows.

It is shown in [CHJ03] that under the canonical coupling, with the Pólya
process P′′ started in a more balanced state than the Pólya process P, i.e., {ni} ≤
{n′i}, after one step P′′ is again in a more balanced state than P, {m′′

i } ≤ {m′
i}.

The coupling is as follows. Generate a real value α ∈ [0, 1) uniformly at random.
For the process P′′, let bi =

∑i
j=1 n

γ
i , with b0 = 0. Place the new ball in urn i′′

where i′′ is the smallest value such that α ≤ b′′i /bk. Similarly, for the process P,
let ci =

∑i
j=1 n

′
i
γ , and use the same value of α to choose the urn i′ in this process

(that is, the smallest i′ such that α ≤ c′i/ck). What [CHJ03] shows is that i′′ ≤ i′
(because the prefix sums bi for P′′ are larger than the ones ci for P), which is
to say that the ball is added to an earlier bin in P′′ than in P, thus keeping the
prefix sums of P′′ larger than those of P, which means that {m′′

i } ≤ {m′
i}.

It remains only to show a coupling by which {mi} ≤ {m′′
i }: that is, starting

a Pólya-choice process PC and a Pólya process P′′ (with the same value of γ)
from the same initial allocations {ni}, the next-step PC allocation {mi} is more
balanced than the next-step P′′ allocation {m′′

i }. The coupling is given by a
coupling between PC tuples {i1, . . . , ic} ∈ [k](c) (the set of unordered c-tuples
of distinct urns) and single urns {i} ∈ [k] such that each has the appropriate
marginal probability but, always, min {i1, . . . , ic} ≤ i. Given such a coupling, in

574 G.B. Sorkin

the PC process the ball either goes into the same urn as in P′′ or an earlier (less
full) one, giving {mi} ≤ {m′′

i } as desired.
For intuitive purposes we remark that if the PC process had urns drawn

with replacement, the desired coupling would be trivial. If we drew i as the
single urn for P′′, then for PC we could draw a c-tuple by taking i1 = i as its
first element and drawing the remaining elements independently, guaranteeing
that min {i1, . . . , ic} ≤ i1 = i. We now show the coupling for draws without
replacement.

Let Prc(imin) denote the probability that urn imin = min {i1, . . . , ic} is selected
in the PC process, and wi = nγ

i /(
∑k

j=1 n
γ
j) the probability that urn i is selected

in the Pólya process P′′. It suffices to show that for all i ∈ [k],
∑i

j=1 Prc(j) ≥
∑i

j=1 wj : then, coupling by choosing α ∈ [0, 1] uniformly at random and let-

ting imin = min
{
i : α ≤

∑i
j=1 Prc(j)

}
and i = min

{
i : α ≤

∑i
j=1 wj

}
, we have

imin ≤ i, implying {mi} ≤ {m′′
i } as claimed.

Note that each feasible c-tuple containing values i1 < · · · < ic has probability
proportional to w1 × · · · × wc, and thus

Pr
c

(imin) = wiminWimin ,

where

What we wish to show, then, is that the prefix sums of the sequence wiWi dom-
inate those of wi. Since the Wi form a nonincreasing sequence (the numerators
decrease while the denominator is fixed), this is intuitively obvious: weighting by
the Wi gives greater probability to earlier elements. To confirm this, note that∑k

i=1 wiWi =
∑k

i=1 wi = 1 (both {wiWi} and {wi} are distributions), and thus

k∑

i=1

wi(Wi − 1) = 0.

We wish to show that, for all i ∈ [k], we have
∑i

j=1 wj(Wj − 1) ≥ 0. As a
function of i, the Wi are nonincreasing, thus the prefix sums are first increasing
(as long as Wi ≥ 0) and then decreasing (when Wi < 0), and thus the minimum
prefix sum occurs either at the start (i = 0) or at the end (i = k). At both of
these points the prefix sum is 0, therefore it is always nonnegative.

This establishes the existence of the desired coupling, completing the proof.
�

As remarked earlier, asymptotic balance for γ = 1 is established in [LAS+08].
This result cannot be obtained as in our proof of Theorem 1 because the classic
Pólya model (two urns, γ = 1) does not have this property. Rather, for the classic
model, wp 1, n1/n tends to a limit, but the limit itself is uniformly distributed
over [0, 1] (one very nice proof is given in [CHJ03]).

Wimin :=

∑
imin<i2<···<ic

w2 × · · · × wc
∑

i1<i2<···<ic
w1 × · · · × wc

.

The Power of Choice in a Generalized Pólya Urn Model 575

3 Imbalance for γ > 1

We now turn to the more interesting case γ > 1. Here, there is a positive proba-
bility that some urns collect infinitely many balls while the others remain finite,
analogous to the P(γ) model where for γ > 1 one urn always collects an in-
finite number of balls while the others starve. However, for the PC(γ) model,
there is also positive probability that all urns have the same number of balls
asymptotically.

The phrase “with positive probability” means with probability bounded away
from 0. Specifically, for the PC(γ, k, c) process, we mean that the event in
question holds with probability at least g(γ, k, c), for some function g with
g(γ, k, c) > 0 for all γ > 0, k > c > 1.

In this section we prove the “imbalance” result.

Theorem 2. In the PC(γ, k, c) Pólya-choice urn process with γ > 1, with posi-
tive probability exactly c urns collect all balls.

Before giving the proof we present an elegant way of thinking about the process
P(γ, k). A lovely observation attributed to Herman Rubin is that this discrete
process can be replaced by a Poisson arrival process for each urn independently.
Over continuous time, associate with urn i an arrival process where the waiting
time from ball x to x+ 1 is exponentially distributed with parameter xγ (mean
x−γ). It is easy to check that, at any given time t, the next arrival occurs in urn
i with probability proportional to xi(t)γ , so if we look only at moments when a
ball arrives, this continuous-time process is an instantiation of the parameter-γ
Pólya process. The expected time until an urn acquires infinitely many balls is∑∞

x=1 x
−γ , which for γ > 1 is finite. Of course there is some variance in the

actual time at which this occurs, so that there comes a moment when one urn
has infinitely many balls and the others have only finitely many. In the discrete,
ball-arrival model, this means that, after a last arrival to some urn, every new
ball goes into the winning urn: the outcome is as unbalanced as can be.

While our proof of Theorem 2 will not use the Poisson-process machinery,
the intuition is helpful. Consider the case c = 2, k = 3. Since the smaller of
the two selected urns is always incremented, the fullest urn must always have
a “companion” which is equally full, to within 1 ball. Reversing the sorting of
the previous section, without loss of generality imagine the leaders to be urns 1
and 2, and define x = (n1 +n2)/2. This value x completely describes the leaders:
if x is integral then n1 = n2 = x, while if it is half-integral then n1 = x + 1/2
and n2 = x− 1/2.

With k = 3, we are in a situation very close to that of the P(k, γ) Pólya model,
except that there is an asymmetry. Speaking extremely informally, the leading
(combined) urn is incremented by 1

2 with Poisson intensity roughly x2γ while
the follower is incremented by 1 with Poisson intensity 2xγnγ

3 , which (since only
the ratio matters) is roughly equivalent to incrementing the leader with intensity
1
2x

γ and the follower with intensity 2nγ
3 . This much (the asymmetry between 1

2
and 2 for the two pseudo-urns) can be accommodated by Rubin’s view, but if

576 G.B. Sorkin

the two processes are treated independently then the follower can overtake the
leader, which is forbidden (if that occurs their roles must be exchanged).

However, modeling the leader and follower independently is valid for a sample
path in which they happen never to cross. Per the Poisson model, there is positive
probability that the leader acquires infinitely many balls while the follower gets
none, and in this case the sample paths do not cross.

We will prove precisely this — that there is positive probability that the first
2 urns acquire all the balls — but without explicitly introducing the Poisson-
process machinery, and for general k.

Proof. Suppose that at some time the first c urns together have x balls and the
remaining k− c urns have one ball each. Since at every step up to this point we
put a ball in a least-full selected urn, these c urns have at most two occupancy
levels, and !x/c" ≤ ni ≤ �x/c�. For x sufficiently large, then,

1
2

(x

c

)γc

≤ nγ
1 · n

γ
2 · . . . · nγ

c ≤ 2
(x

c

)γc

.

Let Yi be the event that the first c urns are chosen in round i. (Round 1
starts with k balls altogether, and ends with k + 1.) If event Yi occurs for all
1 ≤ i ≤ x − c, then the first c urns have x balls altogether and the remaining
urns have one ball each. Thus by the above, for sufficiently large x,

P(Yx−c |
⋂

i<x−c

Yi) ≥
nγ

1n
γ
2 . . . n

γ
c

nγ
1n

γ
2 . . . n

γ
c +

∑c
i=1

(
c

c−i

)(
k−c

i

)
�x/c�γ(c−i)

≥ nγ
1n

γ
2 . . . n

γ
c

nγ
1n

γ
2 . . . n

γ
c + c2c2k(x/c)γ(c−1)

≥ 1− 4c2k2c

(x/c)γ

For any fixed value of x0, however large, there is positive probability that
for all x < x0 − c the first c urns were chosen, that is, P(

⋂
i<x0−c Yi) > 0. The

probability that for any x ≥ x0, we fail to choose the first c urns is the probability
that we fail for x, conditioned upon never having failed before. Setting m =
4c2k2ccγ we obtain

P

(∞⋂

i=1

Yi

)

= P(
⋂

i<x0−c

Yi)
∞∏

i=x0−c

P

⎛

⎝Yi |
⋂

j<i

Yj

⎞

⎠

≥ P(
⋂

i<x0−c

Yi)
∞∏

x=x0−c

(1 −mx−γ)

≥ P(
⋂

i<x0−c

Yi)

(

1−
∞∑

x=x0−c

mx−γ

)

≥ P(
⋂

i<x0−c

Yi)
(
1−m(x0 − c− 1)1−γ

)

which is bounded away from 0 if we choose x0 sufficiently large. �

The Power of Choice in a Generalized Pólya Urn Model 577

4 Balance for γ > 1

While, as just shown, it may happen that c urns swallow all the balls, there is
also positive probability that all urns have an asymptotically equal number of
balls. Note that the following theorem actually applies to any γ (in equation (3),
γ is seen to be irrelevant to our proof) but since Theorem 1 and [LAS+08] show
that for γ < 1 and γ = 1 there is always asymptotic balance, the case γ > 1 is
the one of interest here.

Theorem 3. In a PC(γ, k, c) Pólya-choice urn process with any γ, with positive
probability, for each i ∈ [k], we have limn→∞ ni/n = 1/k.

Proof. To outline the proof, we will define a “potential function” Γ({ni}) on
the occupancies, with the property that the potential is large if and only if the
occupancies are significantly different from one another. If the potential is even
modestly large, then it will tend to decrease in the next step of the process. We
will show that if the potential reaches some “triggering” threshold (still a small
amount), then after some additional steps it is likely to have become smaller
(below triggering) without ever having become much larger; the probabilities are
sufficiently good that with positive probability this succeeds every time. That
the potential is never large and thus the occupancies are always approximately
equal simplifies the analysis, for it means that the sampling of c urns is nearly
uniform.

We now begin the proof proper. When there are n balls, let n̄ = n/k be the
average occupancy, and for the individual occupancies write ni = (1+εi)n̄ (some
values εi will be positive and some negative, with

∑
εi = 0). Henceforth, assume

that the urns are sorted in nondecreasing order, so that ε1 is the smallest value
and εk the largest (and one or the other is largest in absolute value), and let
ε = max {|ε1|, |εk|}. Define the potential

Γ({ni}) =
k∑

i=1

(ln n̄− lnni).

Note that

Γ({ni}) = −
k∑

i=1

ln(ni/n̄) = −
k∑

i=1

ln(1 + εi) =
k∑

i=1

(
−εi + 1

2ε
2
i − 1

3ε
3
i + · · ·

)

= −
k∑

i=1

εi +
k∑

i=1

(
1
2ε

2
i − 1

3ε
3
i + · · ·

)

= (1 +O(ε)) · 1
2

k∑

i=1

ε2i ,

since
∑k

i=1 εi = 0 and for ε small the Taylor series expansions are dominated by
their leading terms.

578 G.B. Sorkin

Then

1
2
(1 +O(ε))ε2 ≤ Γ ≤ 1

2
k(1 +O(ε))ε2. (1)

To within constant factors, then, Γ summarizes the maximum deviation of any
urn from the mean.

From Γ = k ln n̄−
∑

lnni, for large values of n̄, the change in Γ when urn i
is incremented (and n̄ increases by 1/k) is

Δi := [k ln(n̄+ 1/k)− k ln n̄]− [ln(ni + 1)− lnni]
= k ln(1 + 1/(kn̄))− ln(1 + 1/ni)

= k
(

1
kn̄

+O
(

1
k2n̄2

))

− 1
ni

+O
(

1
n2

i

)

=
ni − n̄
nin̄

+O
(

1
n̄2

)

=
εi
n̄

+O
(
ε2i
n̄

)

+O
(

1
n̄2

)

. (2)

For i ∈ {1, . . . , k − c+ 1}, let Ki = {i+ 1, . . . , k}. By our assumption that
n1 ≤ · · · ≤ nk, for any j ∈ Ki, we have nj ≥ ni. To compute the expected change
in Γ we first give upper and lower bounds on the probability for the event Ai

that urn i is the smallest of all chosen urns. To do so we will make use of the
fact that with ε small, the sampling of c urns is nearly uniform, because

(1 + εi)cγ = 1 +O(ε), (3)

with the constant cγ subsumed in the O(·). Specifically, for i ∈ {1, . . . , k − c+ 1},

P (Ai) =

∑
S⊆K ,|S|=c−1

∏
s∈S(1 + εs)γ n̄γ

∑
T⊆K0,|T |=c

∏
t∈T (1 + εt)γ n̄γ

≥ (1− ε)cγ

(1 + ε)cγ

(
k−i
c−1

)

(
k
c

)

= (1−O(ε))

(
k−i
c−1

)

(
k
c

) ,

and similarly

P (Ai) ≤ (1 +O(ε))

(
k−i
c−1

)

(
k
c

) .

i

The Power of Choice in a Generalized Pólya Urn Model 579

We thus have P(Ai) =

E(ΔΓ) =
k−c+1∑

i=1

ΔiP(Ai)

=
k−c+1∑

i=1

(
εi
n̄

+O
(
ε2i
n̄

)

+O
(

1
n̄2

))

· (1 +O(ε))

(
k−i
c−1

)

(
k
c

)

=
k−c+1∑

i=1

εi
n̄

(
k−i
c−1

)

(
k
c

) +O
(
ε2

n̄

)

+O
(

1
n̄2

)

≤
k−1∑

i=1

εi
n̄

k − i
(
k
2

) +O
(
ε2

n̄

)

+O
(

1
n̄2

)

. (4)

To see the last inequality,
(

k−i
c−1

)/(
k
c

)
is the probability that element i is the

smallest of c elements chosen uniformly without replacement, so increasing c
from 2 to its true value would only decrease the value of i selected, in turn
decreasing the expectation (the εi are nondecreasing); conversely, by replacing
c with 2 we can only increase the expectation.

To estimate the numerator
∑k−1

i=1 εi(k − i) of the first term in (4), add a kth
term εk · 0 so that the sum runs from 1 to k, pair up terms i and k+ 1− i (e.g.,
the terms i = 1 and i = k), and observe that

(k − i)εi + (i− 1)εk+1−i =
k − 1

2
(εi + εk−i+1) +

k − 2i+ 1
2

(εi − εk−i+1).

Summing the first terms in each of these expressions over i ≤ !k/2" (and, if k is
odd, a non-paired term for i = (k+1)/2, namely εi(k−i) = k−1

2 ε(k+1)/2) gives 0,
because by definition

∑
εi = 0. Each second term is nonpositive, because the εi

are nondecreasing. (Even if k is odd, no unpaired second term is called for.) The
second term coming from i = 1 is a relatively large negative value, k−1

2 (ε1− εk).
This establishes that

∑k
i=1 εi(k − i) ≤ k−1

2 (ε1 − εk) ≤ −k−1
2 ε and in turn that

E(ΔΓ) ≤ − ε

n̄k
+O

(
ε2

n̄

)

+O
(

1
n̄2

)

. (5)

Returning to (1), for ε smaller than some constant ε0 (equivalently Γ ≤ Γ0),
we have ε2 ≤ 3 Γ and ε ≥ Γ1/2 k−1/2. Then

E(ΔΓ) ≤ Γ1/2

n̄k3/2
+O

(
3 Γ
n̄

)

+O
(

1
n̄2

)

. (6)

We will show that with positive probability, for all n sufficiently large, Γn ≤ 2
n̄

(defining n̄ = n/k). (For intuitive purposes we note that the corresponding ε is

(1 + O(ε))(k i
c−1)
(k

c)
and

580 G.B. Sorkin

of order n−1/2, while perfect balance to within an additive O(1) for integrality
would have ε of order n−1.) Fix an n0 sufficiently large that that 2

n̄0
≤ Γ0, and

to assure (7) and (11) below. With positive probability, Γn0 ≤ 1
n̄0

. Let n1 be the
first “trigger” time for which Γn1 >

1
n̄1

. If n1 is undefined then for all n ≥ n0,
Γn ≤ 1

n̄ ≤
2
n̄ and we are done.

Otherwise, by (2), Γn1 is very nearly 1
n̄1

: Γn1 = 1
n̄1

+

For n ≥ n1, as long as Γn is between 1
2n̄ and 2

n̄ , by (6),

E(ΔΓ) ≤ −1
4
n̄−3/2k−3/2 +O

(
n̄−2

)

≤ −1
5
n̄−3/2k−3/2. (7)

Starting at n1, run for s steps, s = k3/2n̄
1/2
1 , finishing at n2 = n1 + s. Assuming

that (7) holds for all n ∈ {n1, n1 + s− 1}, the expected value of Γ at time n2

satisfies

E(Γn2) ≤ Γn1 −
s−1∑

i=0

1
5
(n̄+

i

k
)−3/2k−3/2

≤ 5
6
(n̄1 +

s

k
)−1

=
5
6
n̄−1

2 , (8)

well below the n2 trigger point of n̄−1
2 .

Let Hn be the history of the process (where every ball goes) through time n,
so that Hn characterizes the random variable Γn+1. We may view the actual
value of Γn2 as

Γn2 = Γn1 +
n2−1∑

n=n1

(Γn+1−Γn)

= Γn1 +
n2−1∑

n=n1

(Γn+1−E(Γn+1 | Hn)) +
n2−1∑

n=n1

(E(Γn+1 | Hn)− Γn). (9)

Everything but the first summation in (9) was already treated in (8). Writing
Yn for the random variable Γn+1−E(Γn+1 | Hn), the values Yn form a martin-
gale difference sequence. Our assumption (used in (7) and (9)) that, throughout,
1
2n̄ ≤ Γn ≤ 2

n̄ , can fail only if for some time n ∈ {n1, n2 − 1}, Γn deviates from its
expectation by at least 1

4n
−1
1 , which is to say only if the martingale

∑n
i=n1

Yi devi-
ates from 0 by this amount. Similarly, Γn2 is below the triggering level unless there
is a martingale deviation of at least 1

7 n̄
−1
1 . From time n1 to n2−1, the s = O(n1/2

1)
steps of the martingale each have bounded deviation c = O(ε

n̄) = O(n̄−3/2
1), and

O

(
Γ

1/2
n1−1

n1

)

+ O
(

1
n̄2

1

)
.

The Power of Choice in a Generalized Pólya Urn Model 581

by standard martingale inequalities (see for example [McD98]), the probability of
a deviation of t = 1

7n
−1
1 or more has exponentially small probability:

Thus, with high probability, for every time n between n1 and n2, 1
2n̄ ≤ Γn ≤ 2

n̄ ,
and at time n2, Γn2 ≤ 1

n̄2
.

Writing n(1)
1 := n1 and n(1)

2 = n2, we may now repeat the same argument for
the first trigger point n(2)

1 (if any) after n2 and its completion time n(2)
2 , the next

trigger time n(3)
1 after n(2)

2 , and so forth. By the union bound, the probability
of a failure in any stage is at most the sum of the failure probabilities in (10),
which by an appropriate choice of n0 can be made arbitrarily small (in particular,
strictly less than 1):

This completes the proof. �

The following corollary of Theorems 2 and 3 follows by the same simple logic as
Lemma 2.3 in [CHJ03].

Theorem 4. Let c ≤ m ≤ k. In the PC(γ, k, c) Pólya-choice urn process with
γ > 1, with positive probability exactly m urns collect all balls, and their occu-
pancies are asymptotically equal.

Proof. It follows from Theorem 2 that with positive probability the first c (and
thus the first m ≥ c) urns collect all the balls. (It may be more intuitive to con-
sider that with positive probability the last k− c urns get no balls.) Conditioned
on the event A that the first m urns collect all the balls, at each step of the
Pólya-choice process, the probability that a fixed set {i1, . . . , ic} ⊆ {1, . . . ,m}
of urns is selected is proportional to

∏c
j=1 n

γ
i , the same as the probability if

there were just m urns altogether. Thus, we can use Theorem 3 to infer that,
conditioned on A, with positive probability the m urns obtain asymptotically
equal numbers of balls. �

5 Open Questions

We have shown that in the Pólya-choice model with γ > 1, any subset ofm urns,
c ≤ m ≤ k, may acquire all the balls beyond the first k, with asymptotic balance

Pr
(∣
∣ n2−1
max
n=n1

n∑

i=n0

Yi

∣
∣ ≥ t

)
≤ 2e−2t2/(sc2)

= e−Ω
(
n−2

1 /(n
1/2
1 n−3

1)
)

= e−Ω(n
1/2
1). (10)

∑

i

e−Ω
(
(n

(i)
1)1/2

)

≤
∞∑

j=n0

e−Ω(j1/2)

< 1. (11)

j

582 G.B. Sorkin

among these m urns. An easy extension is that, for any specified occupancies of
up to m− c urns, those urns have precisely the specified (constant) occupancies
for all sufficiently large times, with the remaining urns taking all further balls
and staying in asymptotic balance amongst themselves.

What is not clear is whether all urn occupancies that tend to infinity must
do so with asymptotic equality. Probably it is enough to answer the question
for c = 2, k = 3. Per the remarks after Theorem 2, we can think of a lead-
ing pseudo-urn with occupancy x growing at rate 1

2x
γ while a trailing urn with

occupancy y grows at rate 2yγ . This has a stable equilibrium when x and y
are about equal, so the trailing urn grows faster, and the urns keep “swapping
roles” to stay in synchrony. It also has an equilibrium where x is a constant
times y (the constant is a function of γ) where the relative growths 1

2x
γ and

2yγ are in the same proportion as x to y. Presumably the latter equilibrium
is not stable: sooner or later random fluctuations will either lead x to race to
infinity leaving y stuck at a constant, or y to catch up to x and restore asymp-
totic equality. This leads us to conjecture that an urn either goes to infinity in
asymptotic equality with the greatest-occupancy urn, or stops growing at some
finite value.

Our results so far are not quantitative, and it would be interesting to establish
the likelihood of the various possible behaviors as functions of the parameters
c, k, and γ. For example, if the conjecture above is true, what is the likelihood
that m asymptotically balanced urns take all but a finite number of balls?

Acknowledgments

Richard Karp introduced me to the γ = 1 case of this model, and provided
me with an early version of [LAS+08]. Stefanie Gerke read a version of the
manuscript carefully and was instrumental in improving it. The referees noted
some points of confusion in the submission, and made a few very gratifying
remarks.

References

[ABKU99] Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations.
SIAM J. Comput. 29(1), 180–200 (1999) (electronic)

[CHJ03] Chung, F., Handjani, S., Jungreis, D.: Generalizations of Polya’s urn
problem. Ann. Comb. 7(2), 141–153 (2003)

[DEM01] Drinea, E., Enachescu, M., Mitzenmacher, M.: Variations on random
graph models for the web, Tech. Report TR-06-01, Harvard University
(2001)

[KLMadH96] Karp, R.M., Luby, M., Meyer, F., Meyer auf der Heide, F.: Effi-
cient PRAM simulation on a distributed memory machine. Algorith-
mica 16(4-5), 517–542 (1996)

The Power of Choice in a Generalized Pólya Urn Model 583

[LAS+08] Lin, H., Amanatidis, C., Sideri, M., Karp, R.M., Papadimitriou,
C.H.: Linked decompositions of networks and the power of choice
in Polya urns. In: SODA 2008: Proceedings of the Nineteenth An-
nual ACM–SIAM Symposium on Discrete Algorithms, Philadelphia,
PA, USA. Society for Industrial and Applied Mathematics, pp. 993–
1002 (2008) See also, http://www.eecs.berkeley.edu/∼henrylin/
covers soda full.pdf

[McD98] McDiarmid, C.: Concentration. Probabilistic methods for algorithmic
discrete mathematics, Algorithms Combin. 16, 195–248 (1998)

[McD07] Personal communication (2007)

Corruption and Recovery-Efficient Locally

Decodable Codes

David Woodruff

IBM Almaden
dpwoodru@us.ibm.com

Abstract. A (q, δ, ε)-locally decodable code (LDC) C : {0, 1}n → {0, 1}m

is an encoding from n-bit strings to m-bit strings such that each bit
xk can be recovered with probability at least 1

2 + ε from C(x) by a
randomized algorithm that queries only q positions of C(x), even if up
to δm positions of C(x) are corrupted. If C is a linear map, then the
LDC is linear. We give improved constructions of LDCs in terms of the
corruption parameter δ and recovery parameter ε. The key property of
our LDCs is that they are non-linear, whereas all previous LDCs were
linear.
1. For any δ, ε ∈ [Ω(n−1/2), O(1)], we give a family of (2, δ, ε)-LDCs

with length m = poly(δ−1, ε−1) exp (max(δ, ε)δn). For linear (2, δ, ε)-
LDCs, Obata has shown that m ≥ exp (δn). Thus, for small enough
constants δ, ε, two-query non-linear LDCs are shorter than two-query
linear LDCs.

2. We improve the dependence on δ and ε of all constant-query LDCs
by providing general transformations to non-linear LDCs. Taking

Yekhanin’s linear (3, δ, 1/2−6δ)-LDCs with m = exp
�
n1/t

�
for any

prime of the form 2t − 1, we obtain non-linear (3, δ, ε)-LDCs with

m = poly(δ−1, ε−1) exp
�
(max(δ, ε)δn)1/t

�
.

Now consider a (q, δ, ε)-LDC C with a decoder that has n matchings
M1, . . . , Mn on the complete q-uniform hypergraph, whose vertices are
identified with the positions of C(x). On input k ∈ [n] and received word
y, the decoder chooses e = {a1, . . . , aq} ∈ Mk uniformly at random and
outputs

�q
j=1 ya . All known LDCs and ours have such a decoder, which

we call a matching sum decoder. We show that if C is a two-query LDC
with such a decoder, then m ≥ exp (max(δ, ε)δn). Interestingly, our tech-
niques used here can further improve the dependence on δ of Yekhanin’s
three-query LDCs. Namely, if δ ≥ 1/12 then Yekhanin’s three-query
LDCs become trivial (have recovery probability less than half), whereas

we obtain three-query LDCs of length exp
�
n1/t

�
for any prime of the

form 2t − 1 with non-trivial recovery probability for any δ < 1/6.

1 Introduction

Classical error-correcting codes allow one to encode an n-bit message x into a
codeword C(x) such that even if a constant fraction of the bits in C(x) are

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 584–595, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

j

Corruption and Recovery-Efficient Locally Decodable Codes 585

corrupted, x can still be recovered. It is well-known how to construct codes C
of length O(n) that can tolerate a constant fraction of errors, even in such a
way that allows decoding in linear time [1]. However, if one is only interested in
recovering a few bits of the message, then these codes have the disadvantage that
they require reading all (or most) of the codeword. This motivates the following
definition.

Definition 1. ([2]) Let δ, ε ∈ [0, 1], q an integer. We say C : {0, 1}n → {0, 1}m
is a (q, δ, ε)-locally decodable code (LDC for short) if there is a probabilistic oracle
machine A such that:

– In every invocation, A makes at most q queries.
– For every x ∈ {0, 1}n, every y ∈ {0, 1}m with Δ(y, C(x)) ≤ δm, and every
k ∈ [n], Pr[Ay(k) = xk] ≥ 1

2 + ε, where the probability is taken over the
internal coin tosses of A. An algorithm A satisfying the above is called a
(q, δ, ε)-local decoding algorithm for C (a decoder for short).

In the definition above, Δ(y, C(x)) denote the Hamming distance between y
and C(x), that is, the number of coordinates for which the strings differ. For a
(q, δ, ε)-LDC, we shall refer to q as the number of queries, δ as the corruption
parameter, ε as the recovery parameter, and m as the length. An LDC is linear
if C is a linear transformation over GF (2). Note that recovery probability 1/2
(corresponding to ε = 0) is trivial since the decoder can just flip a random coin.

There is a large body of work on locally decodable codes. Katz and Trevisan
[2] formally defined LDCs, proved that 1-query LDCs do not exist, and proved
super-linear lower bounds on the length of constant-query LDCs. We refer the
reader to the survey [3] and the references therein.

All known constructions of LDCs with a constant number of queries are super-
polynomial in length, and not even known to be of subexponential length. Thus,
understanding the asymptotics in the exponent of the length of such codes is im-
portant, and could be useful in practice for small values of n. A lot of work has
been done to understand this exponent for two-query linear LDCs [4,5,6,7]. Im-
portant practical applications of LDCs include private information retrieval and
load-balancing in the context of distributed storage. Depending on the parame-
ters of the particular application, δ and ε may be flexible, and our constructions
will be able to exploit this flexibility.

We state the known bounds relevant to this paper. The first two concern LDCs
for which q = 2, while the remaining pertain to q > 2.

Notation. exp(f(n)) denotes a function g(n) that is 2O(f(n)).

Theorem 1. ([8])1 Any (2, δ, ε)-LDC satisfies m ≥ exp(ε2δn).

For linear LDCs, a tight lower bound is known.
1 This bound can be strengthened to m ≥ exp

�
ε2δn/(1 − 2ε)

�
using the techniques of

[6] in a relatively straightforward way. We do not explain the proof here, as our focus
is when ε is bounded away from 1/2, in which case the bounds are asymptotically
the same.

586 D. Woodruff

Theorem 2. ([6,7]) Any linear (2, δ, ε)-LDC has m ≥ exp (δn/(1− 2ε)). More-
over, there exists a linear (2, δ, ε)-LDC with m ≤ exp (δn/(1− 2ε)).

The shortest LDCs for small values of q > 2 are due to Yekhanin [9], while for
large values one can obtain the shortest LDCs by using the LDCs of Yekhanin
together with a recursion technique of Beimel, Ishai, Kushilevitz, and Raymond
[10]. The following is what is known for q = 3.

Theorem 3. ([9]) For any δ ≤ 1/12 and any prime of the form 2t− 1, there is
a linear (3, δ, 1/2− 6δ)-LDC with m = exp

(
n1/t

)
. Using the largest known such

prime, this is m = exp
(
n1/32582657

)
.

Notice that this theorem does not allow one to obtain shorter LDCs for small δ
and ε < 1/2− 6δ, as intuitively should be possible.

Results. We give improved constructions of constant-query LDCs in terms of
the corruption parameter δ and recovery parameter ε. A key property of our
LDCs is that they are the first non-linear LDCs. Our main theorem is the fol-
lowing transformation.

Theorem 4. Given a family of (q, δ, 1/2 − βδ)-LDCs of length m(n), where
β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a given n, the same
encoding function C is a (q, δ, 1/2 − βδ)-LDC for any δ < 1/(2β)), there is a
family of non-linear (q,Θ(δ), ε)-LDCs of length O(dr2)m(n′/r) for any δ, ε ∈
[Ω(n−1/2), O(1)], where d = max(1, O(ε/δ)), r = O((ε + δ)−2), and n′ = n/d.

As a corollary, for any δ, ε ∈ [Ω(n−1/2, O(1)], we give a (2, δ, ε)-LDC with
length m = poly(δ−1, ε−1) exp (max(δ, ε)δn). Thus, by Theorem 2, as soon as
δ and ε are small enough constants, this shows that 2-query non-linear LDCs
are shorter than 2-query linear LDCs. This is the first progress on the question
of Kerenidis and de Wolf [8] as to whether the dependence on δ and ε could
be improved. Another corollary is that for any prime of the form 2t − 1 and
any δ, ε ∈ [Ω(n−1/2), O(1)], there is a family of non-linear (3, δ, ε)-LDCs with
m = poly(δ−1, ε−1) exp

(
(max(δ, ε)δn)1/t

)
.

Next, we show that our bound for 2-query LDCs is tight, up to a constant
factor in the exponent, for a large family of LDCs including all known ones as well
as ours. Let C be a (q, δ, ε)-LDC with a decoder that has nmatchingsM1, . . . ,Mn

on the complete q-uniform hypergraph whose vertices are identified with the
positions of C(x). On input k ∈ [n] and received word y, the decoder chooses a
hyperedge e = {a1, . . . , aq} ∈ Mk uniformly at random and outputs

⊕q
j=1 ya .

We call such a decoder a matching sum decoder, and show that if a 2-query LDC
C has such a decoder then m ≥ exp (max(δ, ε)δn). Thus, our upper bound is
tight for such LDCs. To prove that for any (2, δ, ε)-LDC, m ≥ exp (max(δ, ε)δn),
our result implies that it suffices to transform any LDC into one which has a
matching sum decoder, while preserving δ, ε, and m up to small factors.

Finally, as an independent application of our techniques, we transform the
(3, δ, 1/2− 6δ)-LDCs with m = exp(n1/t) of Theorem 3, into (3, δ, 1/2− 3δ− η)-
LDCs with m = exp(n1/t), where η > 0 is an arbitrarily small constant. In

j

Corruption and Recovery-Efficient Locally Decodable Codes 587

particular, we extend the range of δ for which the LDCs in Theorem 3 become
non-trivial from δ ≤ 1/12 to δ < 1/6. Moreover, there is no 3-query LDC with
a matching sum decoder with δ ≥ 1/6. Indeed, if the adversary corrupts exactly
m/6 hyperedges of Mi, the recovery probability can be at most 1/2.

Techniques. Our main idea for introducing non-linearity is the following. Sup-
pose we take the message x = x1, . . . , xn and partition it into n/r blocks
B1, . . . , Bn/r, each containing r = Θ(ε−2) different xi. We then compute zj =
majority(xi | i ∈ Bj), and encode the bits z1, . . . , zn/r using a (q, δ, ε)-LDC C.
To obtain xk if xk ∈ Bj , we use the decoder for C to recover zj with probability
at least 1/2 + ε. We should expect that knowing zj is useful, since, using the
properties of the majority function, Prx[xk = zj] ≥ 1

2 + ε.
This suggests an approach: choose s1, . . . , sτ ∈ {0, 1}n for a certain τ =

O(r2), apply the above procedure to each of x ⊕ s1, . . . , x ⊕ sτ , then take the
concatenation. The s1, . . . , sτ are chosen randomly so that for any x ∈ {0, 1}n
and any index k in any block Bj , a 1

2 + ε fraction of the different x⊕ si have the
property that their k-th coordinate agrees with the majority of the coordinates
in Bj . The length of the encoding is now τm, where m is the length required to
encode n/r bits.

To illustrate how recovery works, suppose that C were the Hadamard code.
The decoder would choose a random i ∈ [τ] and decode the portion of the
encoding corresponding to the (corrupted) encoding of x⊕ si. One could try to
argue that with probability at least 1−2δ, the chosen positions by the Hadamard
decoder are correct, and given that these are correct, (x ⊕ si)k agrees with the
majority of the coordinates in the associated block with probability at least
1
2 + ε. If these events were independent, the success probability would be ≥
(1− 2δ)(1/2 + ε) + 2δ(1/2− ε) = 1/2 +Ω(ε).

However, these events are very far from being independent! Indeed, the adver-
sary may first recover x from the encoding, and then for any given k, determine
exactly which (x ⊕ si)k agree with the majority of the coordinates in the as-
sociated block, and corrupt only these positions. This problem is unavoidable.
However, we observe that we can instead consider r = Θ(δ−2). Then, if δ = Ω(ε),
we can show the decoder’s success probability is at least 1/2 + Ω(ε). If, on the
other hand, ε = Ω(δ), we can first allow δ to grow to Θ(ε) via a technique similar
to the upper bound given in [6], reducing n to n′ = δn/ε. Then we can effectively
perform the above procedure with r = Θ(ε−2) and n′/r = Θ(ε2n′) = Θ(εδn).

To show that this technique is optimal for LDCs C with matching sum de-
coders, we need to significantly generalize the quantum arguments of [8]. A
general matching sum decoder may have matchings Mi with very different sizes
and contain edges that are correct for a very different number of x ∈ {0, 1}n. If
we recklessly apply the techniques of [8], we cannot hope to obtain an optimal
dependence on δ and ε.

Given such a C, we first apply a transformation to obtain a slightly longer
LDC C′ in which all matchings have the same size, and within a matching, the
average fraction of x for which an edge is correct, averaged over edges, is the
same for all matchings. We then apply another transformation to obtain an LDC

588 D. Woodruff

C′′ which increases the length of the code even further, but makes the matching
sizes very large. Finally, we use quantum information theory to lower bound
the length of C′′, generalizing the arguments of [8] to handle the case when
the average fraction of x for which an edge is correct, averaged over edges in a
matching of C′′, is sufficiently large.

Finally, we use an idea underlying the transformation from C′ to C′′ in our
lower bound argument to transform the LDCs of Theorem 3 into LDCs with a
better dependence on δ and ε, thereby obtaining a better upper bound. The idea
is to blow up the LDC by a constant factor in the exponent, while increasing
the sizes of the underlying matchings. Constructing the large matchings in the
blown-up LDC is more complicated than it was in our lower bound argument,
due to the fact that we run into issues of consistently grouping vertices of hy-
pergraphs together which did not arise when we were working with graphs.

Other Related Work. Other examples where non-linear codes were shown to
have superior parameters to linear codes include the construction of t-resilient
functions [11,12], where it is shown [13] that non-linear Kerdock codes outper-
form linear codes in the construction of such functions. See [14] for a study of
non-linearity in the context of secret sharing.

2 Preliminaries

The following theorem is easy to prove using elementary Fourier analysis. We
defer the proof to the full version. Throughout, we shall let c be the constant
(2/π)3/4/4.

Finally, in our lower bound, we will need some concepts from quantum infor-
mation theory. We borrow notation from [8]. For more background on quantum
information theory, see [15].

Theorem 5. Let r be an odd integer, and let f : {0, 1}r → {0, 1} be the majority
function, where f(x) = 1 iff there are more 1s than 0s in x. Then for any k ∈ [r],
Prx∈{0,1}r [f(x) = xk] > 1

2 + 2c
r1/2 .

We also need an approximate version of this theorem, which follows from a simple
application of the probabilistic method.

Lemma 1. Let r and f be as in Theorem 5. Then there are τ = O(r2) strings
μ1, μ2, . . . , μτ ∈ {0, 1}r so that for all x ∈ {0, 1}r and all k ∈ [r], Pri∈[τ][f(x ⊕
μi) = (x ⊕ μi)k] ≥ 1

2 + c
r1/2 .

In our construction we will use the Hadamard code C : {0, 1}n → {0, 1}2n

,
defined as follows. Identify the 2n positions of the codeword with distinct vectors
v ∈ {0, 1}n, and set the vth position of C(x) to 〈v, x〉 mod 2. To obtain xk from
a vector y which differs from C(x) in at most a δ fraction of positions, choose
a random vector v, query positions yv and yv⊕ek

, and output yv ⊕ yv⊕ek
. With

probability at least 1 − 2δ, we have yv = 〈v, x〉 and yv⊕ek
= 〈v ⊕ ek, x〉, and

so yv ⊕ yv⊕ek
= xk. It follows that for any δ > 0, the Hadamard code is a

(2, δ, 1/2 − 2δ)-LDC with m = exp(n).

Corruption and Recovery-Efficient Locally Decodable Codes 589

A density matrix is a positive semi-definite (PSD) complex-valued matrix with
trace 1. A quantum measurement on a density matrix ρ is a collection of PSD
matrices {Pj} satisfying

∑
j P

†
j Pj = I, where I is the identity matrix (A† is the

conjugate-transpose of A). The set {Pj} defines a probability distribution X on
indices j given by Pr[X = j] =tr(P †

j Pjρ).
We use the notation AB to denote a bipartite quantum system, given by some

density matrix ρAB, and A and B to denote its subsystems. More formally, the
density matrix of ρA is trB(ρAB), where trB is a map known as the partial trace
over system B. For given vectors |a1〉 and |a2〉 in the vector space of A, and |b1〉
and |b2〉 in the vector space of B, trB(|a1〉〈a2| ⊗ |b1〉〈b2|) def= |a1〉〈a2|tr(|b1〉〈b2|),
and trB(ρAB) is then well-defined by requiring trB to be a linear map.
S(A) is the von Neumann entropy of A, defined as

∑d
i=1 λi log2

1
λ , where the

λi are the eigenvalues of A. S(A | B) = S(AB)−S(B) is the conditional entropy
of A given B, and S(A;B) = S(A) + S(B) − S(AB) = S(A) − S(A | B) is the
mutual information between A and B.

3 The Construction

Let C : {0, 1}n → {0, 1}m(n) come from a family of (q, δ, 1/2− βδ)-LDCs, where
β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a given n, the same
function C is a (q, δ, 1/2− βδ)-LDC for any δ < 1/(2β)). For example, for any
δ < 1/4, the Hadamard code is a (2, δ, 1/2− 2δ)-LDC, while Yekhanin [9] con-
structed a (3, δ, 1/2− 6δ)-LDC for any δ < 1/12.

Setup. Assume that δ, ε ∈ [Ω(n−1/2), O(1)]. W.l.o.g., assume n is a sufficiently
large power of 3. Recall from Section 2 that we will use c to denote the constant
(2/π)3/4/4. Define the parameter r = (ε(1 + 2βc)/c+ 2βδ/c)−2 = Θ((ε+ δ)−2).
Let τ = O(r2) be as in Lemma 1. We define d = max(1, cε/δ). Let n′ = n/d.
We defer the proof of the following lemma to the full version. The lemma es-
tablishes certain integrality and divisibility properties of the parameters that we
are considering.

Lemma 2. Under the assumption that δ, ε ∈ [Ω(n−1/2), O(1)] and β = Θ(1),
by multiplying δ and ε by positive constant factors, we may assume that the
following two conditions hold simultaneously: (1) r and d are integers, and (2)
(rd) | n.

In the sequel we shall assume that for the given δ and ε, the two conditions of
Lemma 2 hold simultaneously. If in this case we can construct a (q, δ, ε)-LDC
with some length m′, it will follow that for any δ and ε we can construct a
(q,Θ(δ), Θ(ε))-LDC with length Θ(m′).

Proof strategy. We first construct an auxiliary function f : {0, 1}n′ → {0, 1}�,
where � = τm(n′/r). The auxiliary function coincides with our encoding func-
tion C′ : {0, 1}n → {0, 1}m′(n) when d = 1. When d > 1, then C′ will consist
of d applications of the auxiliary function, each on a separate group of n′ co-
ordinates of the message x. Recall that d > 1 iff cε ≥ δ, and in this case we

i

590 D. Woodruff

effectively allow δ to grow while reducing n (see Section 1 for discussion). We
will thus have m′(n) = dτm(n′/r). We then describe algorithms Encode(x) and
Decodey(k) associated with C′. Finally, we show that C′ is a (q, δ, ε)-LDC with
length m′(n). Note that we have ensured r, d, and n′/r = n/(dr) are all integers.

An auxiliary function. Let μ1, . . . , μτ be the set of strings in {0, 1}r guaran-
teed by Lemma 1. For each i ∈ [τ], let si be the concatenation of n′/r copies of
μi. For each j ∈ [n′/r], let Bj be the set Bj = {(j−1)r+1, (j−1)r+2, . . . , jr}.
The Bj partition the interval [1, n′] into n′/r contiguous blocks each of size r.
We now explain how to compute the auxiliary function f(u) for u ∈ {0, 1}n′

.
Compute w1 = u ⊕ s1, w2 = u ⊕ s2, . . . , wτ = u ⊕ sτ . For each i ∈ [τ], compute
zi ∈ {0, 1}n

′/r as follows: ∀j ∈ [n′/r], zi,j = majority(wi,k | k ∈ Bj). Then
f(u) is defined to be, f(u) = C(z1) ◦ C(z2) · · · ◦ C(zτ), where ◦ denotes string
concatenation. Observe that |f(u)| = τm(n′/r).

The LDC. We describe the algorithm Encode(x) associated with our encod-
ing C′ : {0, 1}n → {0, 1}m′(n). We first partition x into d contiguous substrings
u1, . . . , ud, each of length n′. Then, Encode(x) = C′(x) = f(u1)◦f(u2) · · ·◦f(ud).
Observe that |C′(x)| = m′(n) = dτm(n′/r). Next we describe the algorithm
Decodey(k). We think of y as being decomposed into y = y1 ◦ y2 · · · ◦ yd, where
each yh, h ∈ [d], is a block of m′(n)/d = τm(n′/r) consecutive bits of y. Let h
be such that xk occurs in uh. Further, we think of yh as being decomposed into
yh = v1 ◦ v2 · · · ◦ vτ , where each vi, i ∈ [τ], is a block of m(n′/r) consecutive bits
of yh.

To decode, first choose a random integer i ∈ [τ]. Next, let j ∈ [n′/r] be such
that (k mod d)+1 ∈ Bj . Simulate the decoding algorithm Av (j) associated with
C. Suppose the output of Av (j) is the bit b. If the kth bit of si is 0, output b,
else output 1− b. The following is our main theorem.

Theorem 6. Given a family of (q, δ, 1/2 − βδ)-LDCs of length m(n), where
β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a given n, the same
encoding function C is a (q, δ, 1/2 − βδ)-LDC for any δ < 1/(2β)), there is a
family of non-linear (q,Θ(δ), ε)-LDCs of length O(dr2)m(n′/r) for any δ, ε ∈
[Ω(n−1/2), O(1)], where d = max(1, O(ε/δ)), r = O((ε + δ)−2), and n′ = n/d.

Proof. We show that C′ is a (q, δ, ε)-LDC with length m′(n) = dτm(n′/r).
First, observe that Decodey(k) always makes at most q queries since the de-

coder A of C always makes at most q queries. Also, we have already observed
that |C′(x)| = m′(n) = dτm(n′/r). Now, let x ∈ {0, 1}n and k ∈ [n] be arbitrary.
Let h be such that xk occurs in uh.

First, consider the case that cε < δ, so that h = d = 1. Suppose k occurs
in the set Bj. By Theorem 5 and the definition of r, for at least a 1

2 + c
r1 2 =

1
2 +(1+2βc)ε+2βδ fraction of the τ different zi, we have zi,j = yi,k = xk⊕ si,k.
Since i is chosen at random by Decodey(k), we have Pri[zi,j = xk ⊕ si,k] >
1
2 + (1 + 2βc)ε+ 2βδ. In case that zi,j = xk ⊕ si,k, we say i is good. Let E be the
event that the i chosen by the decoder is good, and let G be the number of good
i. We think of the received word y = y1 (recall that d = 1) as being decomposed

i

i

/

Corruption and Recovery-Efficient Locally Decodable Codes 591

into y = v1 ◦ v2 · · · ◦ vτ . The adversary can corrupt a set of at most δm′(n)
positions in C′(x). Suppose the adversary corrupts δim′(n) positions in C(zi),
that is, Δ(C(zi), vi) ≤ δim′(n). So we have the constraint 0 ≤ 1

τ

∑
i δi ≤ δ.

Conditioned on E , the decoder recovers zi,j with probability at least
1
G

∑
good i (1− βδi) = 1 − β

G

∑
good i δi ≥ 1 − τβδ

G ≥ 1 − 2βδ, where we
have used that G ≥ τ/2. In this case the decoder recovers xk by adding si,k
to zi,j modulo 2. Thus, the decoding probability is at least Pr[E] − 2βδ ≥
1
2 + (1 + 2βc)ε + 2βδ − 2βδ > 1

2 + ε. Now consider the case that cε ≥ δ, so
that d may be greater than 1. The number of errors in the substring f(uh)
of C′(x) is at most δm′(n) = δdτm(n′/r) = δ(cε/δ)τm(n′/r) = cε|f(uh)|, so
there is at most a cε fraction of errors in the substring f(uh). Again supposing
that (k mod d) + 1 ∈ Bj , by Theorem 5 we deduce that Pri[zi,j = xk ⊕ si,k] >
1
2 +(1+2βc)ε+2βδ. We define a good i and the event E as before. We also decom-
pose yh into yh = v1◦v2 · · ·◦vτ . By an argument analogous to the case d = 1, the
decoding probability is at least Pr[E]−2βcε > 1

2 +(1+2βc)ε+2βδ−2βcε > 1
2 +ε,

as needed.

We defer the proofs of the next two corollaries to the full version, which follow
by plugging in Hadamard’s and Yekhanin’s codes into Theorem 6.

Corollary 1. For any δ, ε ∈ [Ω(n−1/2), O(1)], there is a (2, δ, ε)-LDC of length
m = poly(δ−1, ε−1) exp (max(δ, ε)δn).

Corollary 2. For any δ, ε ∈ [Ω(n−1/2), O(1)] and any prime of the form 2t−1,
there is a (3, δ, ε)-LDC with m = poly(δ−1, ε−1) exp

(
(max(δ, ε)δn)1/t

)
.

4 The Lower Bound

Consider a (q, δ, ε)-LDC C with length m which has a decoder that has n match-
ings M1, . . . ,Mn of edges on the complete q-uniform hypergraph, whose vertices
are identified with positions of the codeword. On input i ∈ [n] and received
word y, the decoder chooses e = {a1, . . . , aq} ∈ Mi uniformly at random and
outputs

⊕q
j=1 ya . All known LDCs, including our non-linear LDCs, satisfy this

property. In this case we say that C has a matching sum decoder.
Any linear (2, δ, ε)-LDC C can be transformed into an LDC with slightly worse

parameters, but with the same encoding function and a matching sum decoder.
Indeed, identify the m positions of the encoding of C with linear forms v, where
C(x)v = 〈x, v〉. Obata [6] has shown that such LDCs have matchingsMi of edges
{u, v} with u⊕ v = ei, where |Mi| ≥ βδm for a constant β > 0. By replacing δ
with δ′ = βδ/3, the decoder can query a uniformly random edge inMi and output
the correct answer with probability at least (βδm− βδm/3)/(βδm) ≥ 2/3. One
can extend this to linear LDCs with q > 2 by generalizing Obata’s argument.

Theorem 7. Any (2, δ, ε)-LDC C with a matching sum decoder satisfies m ≥
exp (max(δ, ε)δn).

j

592 D. Woodruff

Proof. For each i ∈ [n], let the matching Mi of the matching sum decoder satisfy
|Mi| = cim. We may assume, by relabeling indices, that c1 ≤ c2 ≤ · · · ≤ cn. Let
c̄ =

∑
i ci/n be the average of the ci. For each edge e = {a, b} ∈ Mi, let pi,e be

the probability that C(x)a ⊕C(x)b equals xi for a uniformly chosen x ∈ {0, 1}n.
The probability, over a random x ∈ {0, 1}n, that the decoder outputs xi if there
are no errors is ψi =

∑
e∈Mi

pi,e/|Mi|, which is at least 1/2 + ε. But ψi is also
at least 1/2 + δ/ci. Indeed, otherwise there is a fixed x for which it is less than
1/2 + δ/ci. For this x, say e = {a, b} is good if C(x)a ⊕ C(x)b = xi. Then∑

good e∈Mi
1/|Mi| < 1/2 + δ/ci. By flipping the value of exactly one endpoint

of δm good e ∈ Mi, this probability drops to 1/2, a contradiction.
We first transform the LDC C to another code C′. Identify the coordinates

of x with indices 0, 1, . . . , n − 1. For j = 0, . . . , n − 1, let πj be the j-th cyclic
shift of 0, . . . , n − 1, so for x = (x0, . . . , xn−1) ∈ {0, 1}n, we have that πj(x) =
(xj , xj+1, . . . , xj−1). We define C′(x) = C(π0(x)) ◦ C(π1(x)) · · · ◦ C(πn−1(x)).
Then m′ = |C′(x)| = n|C(x)|. For j, k ∈ {0, 1, . . . , n − 1}, let Mj,k be the
matching Mk in the code C(πj(x)). Define the n matchings M ′

0, . . . , M
′
n−1 with

M ′
i = ∪n−1

j=0 Mj,i−j .
We need another transformation from C′ to a code C′′. For each i ∈ {0, . . . ,

n − 1}, impose a total ordering on the edges in M ′
i by ordering the edges

e1, . . . , e|M ′
i | so that pi,e1 ≥ pi,e2 · · · ≥ pi,e|M′

i
| . Put t = 1/(2c̄)�, and let C′′

be the code with entries indexed by ordered multisets S of [m′] of size t, where
C′′

S(x) =
⊕

v∈S C′(x)v . Thus, m′′ = |C′′(x)| = (m′)t. Consider a random entry
S = {v1, . . . , vt} of C′′. Fix an i ∈ {0, 1, . . . n−1}. Say S hits i if S∩

(
∪e∈M ′

i
e
)

�= ∅.
Now, | ∪e∈M ′

i
e| = 2|M ′

i | = 2c̄m′, so, Pr[S hits i] ≥ 1 − (1 − 2c̄)t ≥ 1 − e−2c̄t ≥
1 − e−1 > 1/2. Thus, at least a 1/2 fraction of entries of C′′ hit i. We can group
these entries into a matching M ′′

i of edges of [m′′] with |M ′′
i | ≥ m′′/4 as follows.

Consider an S that hits i and let e = {a, b} be the smallest edge of M ′
i for which

S∩{a, b} �= ∅, under the total ordering of edges in M ′
i introduced above. Since S is

ordered, we may look at the smallest position j containing an entry of e. Suppose,
w.l.o.g., that Sj = a. Consider the ordered multiset T formed by replacing the
j-th entry of S with b. Then, C′′

S(x) ⊕ C′′
T (x) =

⊕
v∈S C′(x)v ⊕

⊕
v∈T C′(x)v =

2
⊕

v/∈e C′(x)v ⊕ (C′(x)a ⊕ C′(x)b) = C′(x)a ⊕ C′(x)b. Given T , the smallest
edge hit by T is e, and this also occurs in position j. So the matching M ′′

i is
well-defined and of size at least m′′/4.

We will also need a more refined statement about the edges in M ′′
i . For a

random entry S of C′′, say S hits i by time j if S ∩
(
∪j

�=1 ∪e∈M�,i−�
e
)

�= ∅. Let

σj =
∑j

�=1 c�. Now, | ∪j
�=1 ∪e∈M�,i−�

e| = 2σjm = 2σjm
′/n. Thus,

Pr[S hits i by time j] ≥ 1 −
(

1 − 2σj

n

)t

≥ 1 − e−
2σjt

n ≥ 1 − e−
σj
nc̄ ≥

σj

nc̄

1 + σj

nc̄

,

where the last inequality is 1 − e−x > x/(x + 1), which holds for x > −1. Now,
σj/(nc̄) = σj/

∑n
�=1 c� ≤ 1, so Pr[S hits i by time j] ≥ σj/(2nc̄).

For {S, T } ∈ M ′′
i , let p′′i,{S,T} be the probability over a random x that C′′(x)S⊕

C′′(x)T = xi. Then p′′i,{S,T} = pi,e, where e is the smallest edge of M ′
i hit by S

Corruption and Recovery-Efficient Locally Decodable Codes 593

11.8.4 of [15], S(XW) = S(X) + 1
2

∑
x S(ρx) ≥ S(X) = n. Since W has logm′′

qubits, S(W) ≤ logm′′, hence S(X :W) = S(X) + S(W)− S(XW) ≤ S(W) ≤
logm′′. Using a chain rule for relative entropy and a highly non-trivial inequality
known as the strong subadditivity of the von Neumann entropy, we get S(X |
W) =

∑n
i=1 S(Xi | X1, . . . , Xi−1,W) ≤

∑n
i=1 S(Xi | W). In the full version,

we show that S(Xi | W) ≤ H(1
2 + r̄

2). That theorem is a generalization of the
analogous theorem of [8], as here we just have matchings M ′′

i for which the
average probability that the sum of endpoints of an edge in M ′′

i is at least 1
2 + r̄,

whereas in [8] this was a worst case probability. Putting everything together,
n −

∑n
i=1H

(
1
2 + r̄

2

)
≤ S(X) −

∑n
i=1 S(Xi | W) ≤ S(X) − S(X | W) = S(X :

W) ≤ logm′′. Now,H(1
2+ r̄

2) = 1−Ω(r̄2), and so logm′′ = Ω(nr̄2). But logm′′ =
O(t) logm′ = O(t) log nm = O(t logm) = O

(
1
c̄ logm

)
. Thus, m ≥ exp

(
nc̄r̄2

)
.

If δ ≥ ε, then δ/c̄ ≥ ε, and so r̄ ≥ δ/c̄. Thus, c̄r̄2 ≥ δ2/c̄ ≥ δ2. Otherwise, ε > δ,
and so c̄r̄2 ≥ max(c̄ε2, δ2/c̄), which is minimized if c̄ = δ/ε and equals εδ. Thus,
m ≥ exp (max(δ, ε)δn).

5 A Better Upper Bound for Large δ

We improve the dependence on δ of 3-query LDCs, while only increasing m by a
constant factor in the exponent. The proof uses a similar technique to that used
for constructing the auxiliary code C′′ in the previous section.

Theorem 8. For any δ > 0 and any constant η > 0, there is a linear (3, δ, 1/2−
3δ − η)-LDC with m = exp

(
n1/t

)
for any prime 2t − 1.

and T . We define ψ′′
i = 1

|M ′′
i |

∑
{S,T}∈M ′′

i
p′′i,{S,T}, which is the probability that

the matching sum decoder associated with C′′ with matchings M ′′
i outputs xi

correctly for a random x, given that there are no errors in the received word.
Let φi,j be the probability that the smallest edge e ∈ M ′

i hit by a randomly
chosen edge in M ′′

i is in Mj,i−j . Due to our choice of total ordering (namely,
within a given Mj,i−j , edges with larger pj,e value are at least as likely to oc-
cur as those with smaller pj,e for a randomly chosen edge in M ′′

i , conditioned
on the edge being in Mj,i−j), ψ′′

i ≥
∑

j φi,jψj ≥
∑

j φi,j

(
1
2 + max(ε, δ/cj)

)
=

1
2 +

∑
j φi,j max(ε, δ/cj). Observe that

∑j
�=1 φi,� ≥ σj/(2nc̄), and since the ex-

pression max(ε, δ/cj) is non-increasing with j, the above lower bound on ψ′′
i can

be further lower bounded by setting
∑j

�=1 φi,� = σj/(2nc̄) for all j. Then φi,j is
set to cj/(2nc̄) for all j, and we have ψ′′

i ≥ 1/2 + max(ε, δ/c̄)/2.
Let r̄ = max(ε, δ/c̄)/2. We use quantum information theory to lower bound

m′′. For each j ∈ [m′′], replace the j-th entry of C′′(x) with (−1)C′′(x)j . We can
represent C′′(x) as a vector in a state space of log m′′ qubits |j〉. The vector
space it lies in has dimension m′′, and its standard basis consists of all vectors
|b〉, where b ∈ {0, 1}logm′′

(we can assume m′′ is a power of 2). Define ρx =
1

m′′ C(x)†C(x). It is easy to verify that ρx is a density matrix. Consider the
n + log m′′ qubit quantum system XW : 1

2n

∑
x |x〉〈x| ⊗ ρx. We use X to denote

the first system, Xi for its qubits, and W for the second subsystem. By Theorem
n

594 D. Woodruff

Proof. Let γ > 0 be a constant to be determined, which will depend on η.
Let C be the linear (3, δ, 1/2 − 6δ)-LDC with m = exp

(
n1/t

)
constructed in

[9]. The LDC C has a matching sum decoder by definition [9]. We identify
the positions of C with linear forms v1, . . . , vm. We first increase the length of
C - for each j ∈ [m], we append to C both a duplicate copy of vj , denoted aj ,
and a copy of the zero function, denoted bj . Thus, aj computes 〈vj , x〉 and bj
computes 〈0, x〉 = 0. Notice that the resulting code C′ is a (3, δ/3, 1/2−6δ)-LDC
with length m′ = 3m, and that C′ has a matching Z of m triples {vj , aj , bj}
with vj ⊕ aj ⊕ bj = 0. For each triple {vj , aj, bj}, we think of it as a directed
cycle with edges (vj , aj), (aj , bj), (bj , vj). For any δ > 0, the LDC C also has
n matchings M1, . . . ,Mn of triples of v1, . . . , vm so that for all i ∈ [n] and all
e = {va, vb, vc} ∈Mi, we have va ⊕ vb ⊕ vc = ei, where ei is the i-th unit vector.
We prove the following property of C in the full version.

Lemma 3. For all i ∈ [n], |Mi| ≥ m/18.

Now, for each i ∈ [n] and for each triple {a, b, c} ∈Mi, we think of the triple as
a directed cycle with edges (a, b), (b, c), (c, a) for some arbitrary ordering of a, b,
and c. Define the parameter p = �18 ln 1/(3γ)�. We form a new linear code C′′

indexed by all ordered multisets S ⊂ [m′] of size p. Let m′′ = |C′′(x)| = (m′)p.
We set the entry C′′

S(x) equal to
⊕

v∈S C
′
v(x). For i ∈ [n], arbitrarily impose

a total order � on the triples in Mi. For a particular ordered multiset S1, we
say that S1 hits Mi if there is a triple e ∈ Mi for which e ∩ S1
= ∅. Then,

S1 that hits Mi, let {a, b, c} be the smallest triple hit, under the total ordering
�. Since S1 is ordered, we may choose the smallest of the p positions in S1

which is in {a, b, c}. Let j be this position. Suppose the j-th position contains
the linear form a, and that (a, b), (b, c), and (c, a) are the edges of the directed
cycle associated with {a, b, c}. Consider the triple {S1, S2, S3} formed as follows.

Triple-Generation(S1):

1. Set the j-th position of S2 to b, and the j-th position of S3 to c.
2. For all positions k
= j, do the following,

(a) If v� is in the k-th position of S1, then put a� in the k-th position of
S2 and b� in the k-th position of S3.

(b) If a� is in the k-th position of S1, then put b� in the k-th position of
S2 and v� in the k-th position of S3.

(c) If b� is in the k-th position of S1, then put v� in the k-th position of
S2 and a� in the k-th position of S3.

3. Output {S1, S2, S3}.

Since vj ⊕ aj ⊕ bj = 0 for all j, we have,
(⊕

v∈S1
v
)
⊕
(⊕

v∈S2
v
)
⊕
(⊕

v∈S3
v
)

=
a ⊕ b ⊕ c = ei. The elaborate way of generating S2 and S3 was done to ensure
that, had we computed Triple-Generation(S2) or Triple-Generation(S3), we would
also have obtained {S1, S2, S3} as the output. This is true since, independently

Pr[S1 hits Mi] ≥ 1−
(
1 − 3|Mi|

m′

)p

≥ 1−
(
1 − 1

18

)p ≥ 1− e−
p
18 ≥ 1− 3γ. For any

Corruption and Recovery-Efficient Locally Decodable Codes 595

for each coordinate, we walk along a directed cycle of length 3. Thus, we may
partition the ordered sets that hitMi into a matchingM ′′

i of m′′/3−γm′′ triples
{S1, S2, S3} containing linear forms that sum to ei.

Consider the following decoder for C′′: on input i ∈ [n] with oracle access
to y, choose a triple {S1, S2, S3} ∈ M ′′

i uniformly at random and output yS1 ⊕
yS2 ⊕ yS3 . If the adversary corrupts at most δm′′ positions of C′′, then at most
δm′′ triples in M ′′

i have been corrupted, and so the recovery probability of the

the final inequality follows for a sufficiently small constant γ > 0. So C′′ is a
(3, δ, 1/2−3δ− η)-LDC. The length of C′′ is m′′ = (3m)p = mO(1) = exp

(
n1/t

)
.

This completes the proof.

Acknowledgment. The author thanks T.S. Jayram and the anonymous referees
for many helpful comments.

References

1. Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. Theory 42, 1710–
1722 (1996)

2. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: STOC (2000)

3. Trevisan, L.: Some applications of coding theory in computational complexity.
Quaderni di Matematica 13, 347–424 (2004)

4. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)

5. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. Computational Com-
plexity 15(3), 263–296 (2006)

6. Obata, K.: Optimal lower bounds for 2-query locally decodable linear codes. In:
Rolim, J., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 39–50.
Springer, Heidelberg (2002)

7. Shiowattana, D., Lokam, S.V.: An optimal lower bound for 2-query locally decod-
able linear codes. Inf. Process. Lett. 97(6), 244–250 (2006)

8. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. Comput. Syst. Sci. 69(3), 395–420 (2004)

9. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 55(5) (2008)

10. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n
1

2 −1) bar-
rier for information-theoretic private information retrieval. In: FOCS (2002)

11. Chor, B., Goldreich, O., Hästad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem of t-resilient functions. In: FOCS, pp. 396–407 (1985)

12. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-
sion. SIAM J. Comput. 17(2), 210–229 (1988)

13. Stinson, D.R., Massey, J.L.: An infinite class of counterexamples to a conjecture
concerning nonlinear resilient functions. J. Cryptology 8(3), 167–173 (1995)

14. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: IEEE Confer-
ence on Computational Complexity, pp. 188–202 (2001)

15. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cam-
bridge University Press, Cambridge (2000)

decoder is at least |M ′′
i |−δm′′

|M ′′
i | =

m′′
3 −γm′′−δm′′

m′′
3 −γm′′ = 1 − 3δ

1−3γ ≥ 1 − 3δ − η, where
′′

k

Quasi-randomness Is Determined by the

Distribution of Copies of a Fixed Graph in
Equicardinal Large Sets

Raphael Yuster

Department of Mathematics, University of Haifa, Haifa, Israel
raphy@math.haifa.ac.il

Abstract. For every fixed graph H and every fixed 0 < α < 1, we show
that if a graph G has the property that all subsets of size αn contain the
“correct” number of copies of H one would expect to find in the random
graph G(n, p) then G behaves like the random graph G(n, p); that is, it
is p-quasi-random in the sense of Chung, Graham, and Wilson [4]. This
solves a conjecture raised by Shapira [8] and solves in a strong sense an
open problem of Simonovits and Sós [9].

1 Introduction

The theory of quasi-random graphs asks the following fundamental question:
which properties of graphs are such that any graph that satisfies them, resembles
an appropriate random graph (namely, the graph satisfies the properties that a
random graph would satisfy, with high probability). Such properties are called
quasi-random.

The theory of quasi-random graphs was initiated by Thomason [10,11] and
then followed by Chung, Graham and Wilson who proved the fundamental theo-
rem of quasi-random graphs [4]. Since then there have been many papers on this
subject (see, e.g. the excellent survey [6]). Quasi-random properties were also
studied for other combinatorial structures such as set systems [1], tournaments
[2], and hypergraphs [3]. There are also some very recent results on quasi-random
groups [5] and generalized quasi-random graphs [7].

In order to formally define p-quasi-randomness we need to state the funda-
mental theorem of quasi-random graphs. As usual, a labeled copy of an undirected
graph H in a graph G is an injective mapping φ from V (H) to V (G) that maps
edges to edges. That is xy ∈ E(H) implies φ(x)φ(y) ∈ E(G). For a set of vertices
U ⊂ V (G) we denote by H [U] the number of labeled copies ofH in the subgraph
of G induced by U and by e(U) the number of edges of G with both endpoints in
U . A graph sequence (Gn) is an infinite sequence of graphs {G1, G2, . . .} where
Gn has n vertices. The following result of Chung, Graham, and Wilson [4] shows
that many properties of different nature are equivalent to the notion of quasi-
randomness, defined using edge distribution. The original theorem lists seven
such equivalent properties, but we only state four of them here.

A. Goel et al. (Eds.): APPROX and RANDOM 2008, LNCS 5171, pp. 596–601, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quasi-randomness Is Determined by the Distribution of Copies 597

Theorem 1 (Chung, Graham, and Wilson [4]). Fix any 1 < p < 1. For
any graph sequence (Gn) the following properties are equivalent:

P1: For an even integer t ≥ 4, let Ct denote the cycle of length t. Then e(Gn) =
1
2pn

2 + o(n2) and Ct[V (Gn)] = ptnt + o(nt).
P2: For any subset of vertices U ⊆ V (Gn) we have e(U) = 1

2p|U |2 + o(n2).
P3: For any subset of vertices U ⊆ V (Gn) of size n/2 we have e(U) = 1

2p|U |2 +
o(n2).

P4: Fix an α ∈ (0, 1
2). For any U ⊆ V (Gn) of size αn we have e(U, V \ U) =

pα(1 − α)n2 + o(n2).

The formal meaning of the properties being equivalent is expressed, as usual,
using ε, δ notation. For example the meaning that P3 implies P2 is that for any
ε > 0 there exist δ = δ(ε) and N = N(ε) so that for all n > N , if G is a graph
with n vertices having the property that any subset of vertices U of size n/2
satisfies |e(U) − 1

2p|U |2| < δn2 then also for any subset of vertices W we have
|e(W)− 1

2p|W |2| < εn2.
Given Theorem 1 we say that a graph property is p-quasi-random if it is equiv-

alent to any (and therefore all) of the four properties defined in that theorem.
(We will usually just say quasi-random instead of p-quasi-random since p is fixed
throughout the proofs). Note, that each of the four properties in Theorem 1 is
a property we would expect G(n, p) to satisfy with high probability.

It is far from true, however, that any property that almost surely holds for
G(n, p) is quasi-random. For example, it is easy to see that having vertex degrees
np(1 + o(1)) is not a quasi-random property (just take vertex-disjoint cliques of
size roughly np each). An important family of non quasi-random properties are
those requiring the graphs in the sequence to have the correct number of copies
of a fixed graph H . Note that P1(t) guarantees that for any even t, if a graph
sequence has the correct number of edges as well as the correct number of copies
of H = Ct then the sequence is quasi-random. As observed in [4] this is not true
for all graphs H . In fact, already for H = K3 there are simple constructions
showing that this is not true.

Simonovits and Sós observed that the standard counter-examples showing that
for some graphs H , having the correct number of copies of H is not enough to
guarantee quasi-randomness, have the property that the number of copies ofH in
some of the induced subgraphs of these counter-examples deviates significantly
from what it should be. As quasi-randomness is a hereditary property, in the
sense that we expect a sub-structure of a random-like object to be random-like
as well, they introduced the following variant of property P1 of Theorem 1, where
now we require all subsets of vertices to contains the “correct” number of copies
of H .

Definition 1 (PH). For a fixed graph H with h vertices and r edges, we say
that a graph sequence (Gn) satisfies PH if all subsets of vertices U ⊂ V (Gn)
satisfy H [U] = pr|U |h + o(nh).

As opposed to P1, which is quasi-random only for even cycles, Simonovits and
Sós [9] showed that PH is quasi-random for any nonempty graph H .

598 R. Yuster

Theorem 2. For any fixed H that has edges, property PH is quasi-random.

We can view property PH as a generalization of property P2 in Theorem 1,
since P2 is just the special case PK2 . Now, property P3 in Theorem 1 guarantees
that in order to infer that a sequence is quasi-random, and thus satisfies P2, it
is enough to require only the sets of vertices of size n/2 to contain the correct
number of edges. An open problem raised by Simonovits and Sós [9], and in
a stronger form by Shapira [8], is that the analogous condition also holds for
any H . Namely, in order to infer that a sequence is quasi-random, and thus
satisfies PH , it is enough, say, to require only the sets of vertices of size n/2 to
contain the correct number of copies of H . Shapira [8] proved that is it enough
to consider sets of vertices of size n/(h+ 1). Hence, in his result, the cardinality
of the sets depends on h. Thus, if H has 1000 vertices, Shapira’s result shows
that it suffices to check vertex subsets having a fraction smaller than 1/1000 of
the total number of vertices. His proof method cannot be extended to obtain the
same result for fractions larger than 1/(h+ ε).

In this paper we settle the above mentioned open problem completely. In fact,
we show that for any H , not only is it enough to check only subsets of size n/2,
but, more generally, we show that it is enough to check subsets of size αn for
any fixed α ∈ (0, 1). More formally, we define:

Definition 2 (PH,α). For a fixed graph H with h vertices and r edges and fixed
0 < α < 1 we say that a graph sequence (Gn) satisfies PH,α if all subsets of
vertices U ⊂ V (Gn) with |U | = !αn" satisfy H [U] = pr|U |h + o(nh).
Our main result is, therefore:
Theorem 3. For any fixed graph H and any fixed 0 < α < 1, property PH,α is
quasi-random.

2 Proof of the Main Result

For the remainder of this section let H be a fixed graph with h > 1 vertices
and r > 0 edges, and let α ∈ (0, 1) be fixed. Throughout this section we ignore
rounding issues and, in particular, assume that αn is an integer, as this has no
effect on the asymptotic nature of the results.

Suppose that the graph sequence (Gn) satisfies PH,α. We will prove that it is
quasi-random by showing that it also satisfies PH . In other words, we need to
prove the following lemma which, together with Theorem 2, yields Theorem 3.

Lemma 1. For any ε > 0 there exists N = N(ε, h, α) and δ = δ(ε, h, α) so that
for all n > N , if G is a graph with n vertices satisfying that for all U ⊂ V (G)
with |U | = αn we have |H [U] − pr|U |h| < δnh then G also satisfies that for all
W ⊂ V (G) we have |H [W]− pr|W |h| < εnh.

Proof: Suppose therefore that ε > 0 is given. Let N = N(ε, h, α), ε′ = ε′(ε, h, α)
and δ = δ(ε, h, α) be parameters to be chosen so that N is sufficiently large and
δ & ε′ are both sufficiently small to satisfy the inequalities that will follow, and
it will be clear that they are indeed only functions of ε, h, and α.

Quasi-randomness Is Determined by the Distribution of Copies 599

Now, let G be a graph with n > N vertices satisfying that for all U ⊂ V (G)
with |U | = αn we have |H [U]− pr|U |h| < δnh. Consider any subset W ⊂ V (G).
We need to prove that |H [W]− pr|W |h| < εnh.

For convenience, set k = αn. Let us first prove this for the case where |W | =
m > k. This case can rather easily be proved via a simple counting argument.
Denote by U the set of

(
m
k

)
k-subsets of W . Hence, by the given condition on

k-subsets,
(
m

k

)

(prkh − δnh) <
∑

U∈U
H [U] <

(
m

k

)

(prkh + δnh) . (1)

Every copy of H inW appears in precisely
(
m−h
k−h

)
distinct U ∈ U . It follows from

(1) that

H [W] =
1

(
m−h
k−h

)
∑

U∈U
H [U] <

(
m
k

)

(
m−h
k−h

) (prkh + δnh) < prmh +
ε′

2
nh , (2)

and similarly from (1)

H [W] =
1

(
m−h
k−h

)
∑

U∈U
H [U] >

(
m
k

)

(
m−h
k−h

) (prkh − δnh) > prmh − ε
′

2
nh . (3)

We now consider the case where |W | = m = βn < αn = k. Notice that
we can assume that β ≥ ε since otherwise the result is trivially true. The set
H of H-subgraphs of G can be partitioned into h + 1 types, according to the
number of vertices they have in W . Hence, for j = 0, . . . , h let Hj be the set of
H-subgraphs of G that contain precisely j vertices in V \W . Notice that, by
definition, |H0| = H [W]. For convenience, denote wj = |Hj |/nh. We therefore
have, together with (2) and (3) applied to V ,

w0 + w1 + · · ·+ wh =
|H|
nh

=
H [V]
nh

= pr + μ (4)

where |μ| < ε′/2.
Define λ = (1−α)

h+1 and set ki = k + iλn for i = 1, . . . , h. Let Yi ⊂ V \W be a
random set of ki−m vertices, chosen uniformly at random from all

(
n−m
k −m

)
subsets

of size ki−m of V \W . Denote Ki = Yi∪W and notice that |Ki| = ki > αn. We
will now estimate the number of elements of Hj that “survive” in Ki. Formally,
let Hj,i be the set of elements of Hj that have all of their vertices in Ki, and let
mj,i = |Hj,i|. Clearly, m0,i = H [W] since W ⊂ Ki. Furthermore, by (2) and (3),

m0,i +m1,i + · · ·+mh,i = H [Ki] = prkh
i + ρin

h (5)

where ρi is a random variable with |ρi| < ε′/2.
For an H-copy T ∈ Hj we compute the probability pj,i that T ∈ H [Ki]. Since

T ∈ H [Ki] if and only if all the j vertices of T in V \W appear in Yi we have

pj,i =

(
n−m−j
k −m−j

)

(
n−m
k −m

) =
(ki −m) · · · (ki −m− j + 1)
(n−m) · · · (n−m− j + 1)

.

i

i

i

600 R. Yuster

Defining xi = (ki −m)/(n−m) and noticing that

xi =
ki −m
n−m =

α− β
1− β +

λ

1− β i

it follows that (for large enough graphs)
∣
∣
∣pj,i − xj

i

∣
∣
∣ <

ε′

2
. (6)

Clearly, the expectation of mj,i is E[mj,i] = pj,i|Hj |. By linearity of expecta-
tion we have from (5) that

E[m0,i] + E[m1,i] + · · ·+ E[mh,i] = E[H [Ki]] = prkh
i + E[ρi]nh.

Dividing the last equality by nh we obtain

p0,iw0 + · · ·+ ph,iwh = pr (α+ λi)h + E[ρi] . (7)

By (6) and (7) we therefore have

h∑

j=0

xj
iwj = pr (α+ λi)h + μi (8)

where μi = E[ρi]+ζi and |ζi| < ε′/2. Since also |ρi| < ε′/2 we have that |μi| < ε′.
Now, (4) and (8) form together a system of h + 1 linear equations with the

h + 1 variables w0, . . . , wh. The coefficient matrix of this system is just the
Vandermonde matrix A = A(x1, . . . , xh, 1). Since x1, . . . , xh, 1 are all distinct,
and, in fact, the gap between any two of them is at least λ/(1−β) = (1−α)/((h+
1)(1 − β)) ≥ (1 − α)/(h + 1), we have that the system has a unique solution
which is A−1b where b ∈ Rh+1 is the column vector whose i’th coordinate is
pr (α+ λi)h + μi for i = 1, . . . , h and whose last coordinate is pr + μ. Consider
now the vector b∗ which is the same as b, just without the μi’s. Namely b∗ ∈ Rh+1

is the column vector whose i’th coordinate is pr (α+ λi)h for i = 1, . . . , h and
whose last coordinate is pr. Then the system A−1b∗ also has a unique solution
and, in fact, we know explicitly what this solution is. It is the vector w∗ =
(w∗

0 , . . . , w
∗
h) where

w∗
j = pr

(
h

j

)

βh−j(1− β)j .

Indeed, it is straightforward to verify the equality

h∑

j=0

pr

(
h

j

)

βh−j(1− β)j = pr

and, for all i = 1, . . . , h the equalities

h∑

j=0

(
α− β
1− β +

λ

1− β i
)j

pr

(
h

j

)

βh−j(1− β)j = pr (α+ λi)h .

Quasi-randomness Is Determined by the Distribution of Copies 601

Now, since the mapping F : Rh+1 → Rh+1 mapping a vector c to A−1c is
continuous, we know that for ε′ sufficiently small, if each coordinate of c has
absolute value less than ε′, then each coordinate of A−1c has absolute value
at most ε. Now, define c = b − b∗ = (μ1, . . . , μh, μ). Then we have that each
coordinate wi of A−1b differs from the corresponding coordinate w∗

i of A−1b∗ by
at most ε. In particular,

|w0 − w∗
0 | = |w0 − prβh| < ε.

Hence,
|H [W]− nhprβh| = |H [W]− pr|W |h| < εnh

as required.

References

1. Chung, F.R.K., Graham, R.L.: Quasi-random set systems. Journal of the AMS 4,
151–196 (1991)

2. Chung, F.R.K., Graham, R.L.: Quasi-random tournaments. Journal of Graph The-
ory 15, 173–198 (1991)

3. Chung, F.R.K., Graham, R.L.: Quasi-random hypergraphs. Random Structures
and Algorithms 1, 105–124 (1990)

4. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinator-
ica 9, 345–362 (1989)

5. Gowers, T.: Quasirandom groups (manuscript, 2006)
6. Krivelevich, M., Sudakov, B.: Pseudo-random graphs. In: Györi, E., Katona,

G.O.H., Lovász, L. (eds.) More sets, graphs and numbers. Bolyai Society Mathe-
matical Studies, vol. 15, pp. 199–262.

7. Lovász, L., Sós, V.T.: Generalized quasirandom graphs. Journal of Combinatorial
Theory Series B 98, 146–163 (2008)

8. Shapira, A.: Quasi-randomness and the distribution of copies of a fixed graph.
Combinatorica (to appear)

9. Simonovits, M., Sós, V.T.: Hereditarily extended properties, quasi-random graphs
and not necessarily induced subgraphs. Combinatorica 17, 577–596 (1997)

10. Thomason, A.: Pseudo-random graphs. In: Proc. of Random Graphs, Poznań
(1985); Karoński, M. (ed.): Annals of Discrete Math., 33, 307–331 (1987)

11. Thomason, A.: Random graphs, strongly regular graphs and pseudo-random
graphs. In: Whitehead, C. (ed.) Surveys in Combinatorics. LMS Lecture Note Se-
ries, vol. 123, pp. 173–195 (1987)

Author Index

Abrahamson, Jeff 254
Adler, Micah 1
Ailon, Nir 512
Alon, Noga 266
Arvind, V. 276
Asadpour, Arash 10

Bădoiu, Mihai 21
Ben-Eliezer, Ido 266
Ben-Sasson, Eli 290
Bernasconi, Nicla 303
Blais, Eric 317
Bogdanov, Andrej 331
Bresler, Guy 343

Cardinal, Jean 35
Chlamtac, Eden 49
Chung, Kai-Min 357
Csaba, Béla 254

David, Matei 371
Demaine, Erik D. 21
Dinh, Hang 385
Dumitrescu, Adrian 63

Feige, Uriel 10
Fischer, Eldar 402
Fürer, Martin 416

Gabizon, Ariel 430
Guruswami, Venkatesan 77, 444
Gutfreund, Dan 455, 469

Hajiaghayi, MohammadTaghi 21
Halman, Nir 91
Heeringa, Brent 1

Jackson, Jeffrey C. 483
Jiang, Minghui 63

Karger, David R. 104
Kaufman, Tali 498
Khuller, Samir 165
Kortsarz, Guy 118
Kowalik, �Lukasz 132
Krivelevich, Michael 266

Lachish, Oded 402
Lando, Yuval 146
Langberg, Michael 118
Lee, Homin K. 483
Lee, James R. 444
Levy, Eythan 35
Li, Chung-Lun 91
Liberty, Edo 512
Litsyn, Simon 498

Magen, Avner 523
Mastrolilli, Monaldo 153
Matsliah, Arie 402
Matthew McCutchen, Richard 165
Mittal, Shashi 179
Mossel, Elchanan 331, 343
Mucha, Marcin 132
Mukhopadhyay, Partha 276
Mutsanas, Nikolaus 153

Nagarajan, Viswanath 193
Narayanan, Hariharan 535
Newman, Ilan 402
Nguyen, Thành 207
Niyogi, Partha 535
Nutov, Zeev 118, 146, 219

Panagiotou, Konstantinos 303
Pitassi, Toniann 371
Prasad Kasiviswanathan, Shiva 416

Raghavendra, Prasad 77
Rao, Anup 549, 557
Ravi, R. 193
Rothblum, Guy N. 455
Russell, Alexander 385

Saberi, Amin 10
Safari, MohammadAli 233
Salavatipour, Mohammad R. 233
Schulz, Andreas S. 179
Scott, Jacob 104
Servedio, Rocco A. 483
Shaltiel, Ronen 430
Shokoufandeh, Ali 254

604 Author Index

Sidiropoulos, Anastasios 21
Simchi-Levi, David 91
Singer, Amit 512
Singh, Gyanit 49
Sly, Allan 343
Sorkin, Gregory B. 571
Srinivasan, Aravind 247
Steger, Angelika 303
Svensson, Ola 153

Vadhan, Salil 331, 357, 469
Viderman, Michael 290
Viola, Emanuele 371

Wan, Andrew 483
Wigderson, Avi 444
Woodruff, David 584

Xie, Ning 498

Yahalom, Orly 402
Yuster, Raphael 596

Zadimoghaddam, Morteza 21
Zouzias, Anastasios 523
Zuckerman, David 557

	Title Page
	Preface
	Table of Contents
	Approximating Optimal Binary Decision Trees
	Introduction
	Prior and RelatedWork

	Approximating DT
	Tests with Weights

	Hardness of Approximation for ConDT under Total External Path Length
	Open Problems and Discussion
	References

	Santa Claus Meets Hypergraph Matchings
	Introduction
	The Configuration LP

	Matchings in Hypergraphs
	A Constant Integrality Gap

	A $\frac{1}{5}$-approximate Solution through a Local Search
	OpenDirections
	References

	Ordinal Embedding: Approximation Algorithms and Dimensionality Reduction
	Introduction
	Definitions
	Constant-Factor Approximations for Embedding Unweighted Graphs and Trees into the Line
	Constant-Factor Approximation for Embedding Unweighted Graphs into Trees
	Lower Bound for Ordinal Embedding of Graphs into Trees
	27-Approximation Algorithm

	Dimensionality Reduction in �1
	References

	Connected Vertex Covers in Dense Graphs
	Introduction
	Savage’s Algorithm
	A Variant of Karpinski and Zelikovsky’s Algorithm
	The Price of Connectivity
	Upper Bound
	Tightness

	References

	Improved Approximation Guarantees through Higher Levels of SDP Hierarchies
	Introduction
	SDP Relaxations and Preliminaries
	Previous Relaxation for MAX-IS in 3-Uniform Hypergraphs
	Hypergraph Independent Set Relaxations Using LP and SDP Hierarchies
	Gaussian Vectors and SDP Rounding

	Integrality Gap and Algorithms
	A Simple Integrality Gap
	The Algorithm of Krivelevich, Nathaniel and Sudakov
	Improved Approximation Via Sherali-Adams Constraints
	A Further Improvement Using the Lasserre Hierarchy

	Discussion
	References

	Sweeping Points
	Introduction
	A Four-Sweep Algorithm
	A Lower Bound on the Approximation Ratio of Algorithm A2

	Point Sets for the Constrained Variants That Require Many Sweeps
	A Combinatorial Question for the Unconstrained Variants
	Concluding Remarks
	References

	Constraint Satisfaction over a Non-Boolean Domain: Approximation Algorithms and Unique-Games Hardness
	Introduction
	Related Work
	Organization of the Paper

	Preliminaries
	Unique Games Conjecture
	Gowers Uniformity Norm and Influence of Variables
	Noise Operator

	LinearityTestsandMAX k-CSP Hardness
	Hardness Reduction from Unique Games
	Gowers Norm and Multidimensional Arithmetic Progressions
	Approximation Algorithm for MAX k-CSP
	References

	Fully Polynomial Time Approximation Schemes for Time-Cost Tradeoff Problems in Series-Parallel Project Networks
	Introduction
	K-Approximation Sets and Functions
	Series and Parallel Reductions
	The Deadline Problem
	The Budget Problem

	Concluding Remarks
	References

	Efficient Algorithms for Fixed-Precision Instances of Bin Packing and Euclidean TSP
	Introduction
	Background
	Approximation Algorithms, Fixed Parameter Tractability, and Inverse Optimization
	L-Bit Precision
	Bin Packing
	Euclidean TSP

	Bin Packing
	Preliminaries
	The Algorithm
	Analysis

	Euclidean TSP
	Preliminaries
	The Algorithm
	Analysis

	Conclusion
	References

	Approximating Maximum Subgraphs without Short Cycles
	Introduction
	Previous and Related Work
	Our Results
	Techniques

	Proof of Theorem 2
	Reduction to $\theta{θ}$-Semi-Regular Graphs (Proof of Lemma 1)
	Algorithm for $\theta{θ}$-Semi-Regular Graphs (Proof of Lemma 2)

	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 7
	Proof of Theorem 8

	OpenProblems
	References

	Deterministic 7/8-Approximation for the Metric Maximum TSP
	Introduction
	Closer Look at Previous Results

	Our Approach
	Skeleton of the Algorithm
	Loose-Ends

	Processing Cycles
	Even Cycles
	Triangles
	5-Cycles
	Odd Cycles of Length at Least 7

	Ordering the Cycles
	Basic Setup
	Ordering Bad Odd Cycles

	References

	Inapproximability of Survivable Networks
	Introduction
	The Reduction
	References

	Approximating Single Machine Scheduling with Scenarios
	Introduction
	Hardness of the Robust Scheduling Problem
	Inapproximability Result for the General Problem
	Inapproximability for Unit-Time/Unweighted Case

	An LP-Based Approximation Algorithm and Integrality Gap
	A Polynomial Time Algorithm for Constant Number of Scenarios and Constant Values
	Polynomial Time Algorithm

	References

	Streaming Algorithms for k-Center Clustering with Outliers and with Anonymity
	Introduction
	Improving Streaming Algorithms by Parallelization
	Suitability of Parallelized Algorithms

	Clustering with Outliers
	Improvement Using a Center-Finding Oracle

	Clustering with Anonymity
	Computing Per-cluster Statistics

	Conclusions
	References

	A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined into One
	Introduction
	An FPTAS for a Fixed Number of Agents
	Formulation of the FPTAS
	Space Complexity of the FPTAS
	An FPTAS for Scheduling on Unrelated Parallel Machines andthe Santa Claus Problem
	FPTAS for Any Norm

	A 2-Approximation Algorithm for the Uniform CostCase
	Hardness of Approximation
	References

	The Directed Minimum Latency Problem
	Introduction
	Problem Definition
	Results and Paper Outline

	The Directed Latency Algorithm
	Servicing Vertices V_1
	Servicing Vertices V_2
	Stitching the Local Paths

	Bounding the Integrality Gap of ATSP-Path
	Unweighted Directed Metrics
	G Is Strongly Connected
	G Is Not Strongly Connected

	References

	A Simple LP Relaxation for the Asymmetric Traveling Salesman Problem
	Introduction
	The Integrality Gaps of the New LP and of the Held-Karp Relaxation Are Essentially the Same
	Rounding an Extreme Solution of the New LP
	References

	Approximating Directed Weighted-Degree Constrained Networks
	Introduction
	Problem Definition
	Our Results
	Previous and Related Work

	Proof of Theorem 1
	The Algorithm (Proof of Theorem 4)
	Sparseness of $P_f(I,F,B)$ (Proof of Theorem 5)
	Arbitrary Intersecting Supermodular f
	Improved Sparseness for 0, 1-Valued f

	Indegree Constraints only (Proof of Theorem 2)
	The Case of Both Indegree and Outdegree Constraints
	References

	A Constant Factor Approximation for Minimum λ-Edge-Connected k-Subgraph with Metric Costs
	Introduction
	Preliminaries
	Obtaining a Low Cost $(k-O(\lambda),\lambda)$-Subgraph}
	Overview of the Algorithm
	Details of the Algorithm
	Analysis of Algorithm

	From Size $k-O(\lambda)$ to Size k
	Concluding Remarks
	References

	Budgeted Allocations in the Full-Information Setting
	Introduction
	The Algorithm and Analysis
	Iteration s, $s \geq 1$
	Analysis

	Extensions
	The Case of Bids Being Small w.r.t. Budgets
	The Case of Similar Bids for Any Given Bidder

	References

	Optimal Random Matchings on Trees andApplications
	Introduction
	The Upper and Lower Bounds for Matching on HSTs
	The Case of Matching in $[0,1]^d$
	Optimal Matching for Weighted Point Sets
	The Case of Finite Approximation of Fractals
	Conclusions
	References

	Small Sample Spaces Cannot Fool Low Degree Polynomials
	Introduction
	Proofs
	Lower Bound
	Upper Bound

	Concluding Remarks
	References

	Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size
	Introduction
	Automata Theory Background
	Noncommutative Arithmetic Circuits and Automata

	Noncommutative Identity Test Based on Isolation Lemma
	Noncommutative Identity Testing and Circuit Lower Bounds
	TheResults
	Discussion
	References

	Tensor Products of Weakly Smooth Codes Are Robust
	Introduction
	Preliminary Definitions
	Tensor Product of Codes
	Robust Locally Testable Codes
	Low Density Parity Check (LDPC) Codes

	MainResults
	Weakly Smooth Codes

	Weakly Smooth Codes Are Robust — Proof of Lemma 1
	Smooth Codes Are also Weakly so
	Unique-Neighbor Expander Codes Are Weakly Smooth
	Locally Correctable Codes Are Weakly Smooth
	References

	On the Degree Sequences of Random Outerplanar and Series-Parallel Graphs
	Introduction and Results
	A Framework for Nice Graph Classes
	A Sampler for Nice Graph Classes
	Degree Sequence

	Outerplanar Graphs
	The Degree Sequence of Random Outerplanar Graphs

	Series-Parallel Graphs
	References

	Improved Bounds for Testing Juntas
	Introduction
	Preliminaries
	The Algorithm for Testing Juntas
	The Block Test
	The Sampling Test
	The Junta Test

	The Lower Bound
	Conclusion
	References

	The Complexity of Distinguishing Markov Random Fields
	Introduction
	Definitions and Main Results

	Sampling Satisfying Assignments with a Markov Random Field
	Hardness of 3DIST and 3SAMP
	On the Samplability of the Models
	References

	Reconstruction of Markov Random Fields from Samples: Some Observations and Algorithms
	Introduction
	Our Results
	Related Work

	Preliminaries
	Lower Bound on Sample Complexity
	Reconstruction
	Conditional Two Point Correlation Reconstruction
	General Reconstruction
	Non-degeneracy of Models
	$O(n^2 \log n)$ Algorithm for Models with Correlation Decay

	References

	Tight Bounds for Hashing Block Sources
	Introduction
	Applications of Block-Source Hashing
	How Much Entropy Is Required?

	Preliminaries
	Positive Results: How Much Entropy Is Sufficient?
	Small Collision Probability Using 2-Universal Hash Functions
	Small Collision Probability Using 4-Wise Independent Hash Functions
	Statistical Distance to Uniform Distribution

	References

	Improved Separations between Nondeterministic and Randomized Multiparty Communication
	Introduction
	Techniques

	Preliminaries
	Non-explicit Separation
	Overview of the Proof
	Proof of Theorem 4

	Explicit Separation
	Communication Bounds for Constant-Depth Circuits
	References

	Quantum and Randomized Lower Bounds for Local Search on Vertex-Transitive Graphs
	Introduction
	Definitions and Notation
	Generalizing Aaronson’s Snakes
	Lower Bounds for Vertex-Transitive Graphs
	Lower Bounds for Cayley Graphs
	Extending to Vertex-Transitive Graphs

	References

	On the Query Complexity of Testing Orientations for Being Eulerian
	Introduction
	Preliminaries and the 1-Sided Lower Bound
	Generic Tests
	Testing Orientations of Expander Graphs
	Testing Orientations of “Lame” Directed Expanders
	General Tests Based on Chopping
	Concluding Comments and Open Problems
	References

	Approximately Counting Embeddings into Random Graphs
	Introduction
	Our Results and Techniques

	Definitions and Notation
	Approximation Scheme for Counting Copies
	FPRAS for Counting in Random Graphs

	Graphs with Ordered Bipartite Decomposition
	4.1 Some Simple Graph Classes
	Outerplanar Graphs
	Planar Graphs

	Negative Result for Ordered Bipartite Decomposition
	References

	Increasing the Output Length of Zero-Error Dispersers
	Introduction
	Background
	Increasing the Output Length of Zero-Error Dispersers
	Applications

	OpenProblems
	References

	Euclidean Sections of ℓ_1^N with Sublinear Randomness and Error-Correction over the Reals
	Introduction
	Preliminaries

	Derandomized Sections
	Spread Boosting
	Optimality of Myopic Analysis

	Error-Correction over Reals
	Background
	Near-linear Time Decoding

	References

	The Complexity of Local List Decoding
	Introduction
	This Work
	Related Work
	On the Choice of Parameters

	Preliminaries
	Circuit Complexity Classes
	Locally List-Decodable Codes
	Majority and Related Functions

	Local-List-Decoding Requires Computing Majority
	Majority Suffices for Local-List-Decoding
	Hardness Amplification
	References

	Limitations of Hardness vs. Randomness under Uniform Reductions
	Introduction
	Preliminaries
	Nonadaptive Reductions
	Adaptive Reductions
	Comparison to Known Reductions
	References

	Learning Random Monotone DNF
	Introduction
	Fourier Coefficients and Monotone DNF Term Structure
	Rewriting $\hat{f}(S)$
	Bounding the Contribution to $\hat{f}(S)$ from Various Inputs
	Bounding $\hat{f}(S)$ Based on Whether S Co-occurs in a Term of f

	Hypothesis Formation
	Random Monotone DNF
	Proof of Theorem 1
	Discussion
	References

	Breaking the ϵ-Soundness Bound of the Linearity Test over GF(2)
	Introduction
	Related Research
	The Main Result
	Proof Overview
	Organization

	Preliminaries
	The Coset Code $C+v$
	Maximization Problem
	From the Code $C+v$ to the Code $C|_{\mathcal{V}}$
	Proof Outline of the Main Theorem
	References

	Dense Fast Random Projections and Lean Walsh Transforms
	Introduction
	Norm Concentration and $\chi(A,\eps,\delta)$
	Lean Walsh Transforms
	An ℓ_p Bound on $\norm{\cdot}_{A}$
	Controlling α and Choosing R

	Comparison to Sparse Projections
	Conclusion and Work in Progress
	References

	Near Optimal Dimensionality Reductions That Preserve Volumes
	Introduction
	Notation and Preliminaries
	A Regular Set of Points Preserves Its Volume
	Extension to the General Case
	Proof of the Main Theorem
	Discussion
	References

	Sampling Hypersurfaces through Diffusion
	Introduction
	Summary of Main Results
	Notation

	Sampling the Surface of a Convex Body
	Algorithm Csample
	Correctness
	Complexity
	Extensions

	Sampling Well Conditioned Hypersurfaces
	Preliminaries and Notation
	Algorithm Msample
	Correctness
	Complexity

	References

	A 2-Source Almost-Extractor for Linear Entropy
	Introduction
	Our Results and Techniques

	Preliminaries
	Previous Work Needed
	The Condenser
	References

	Extractors for Three Uneven-Length Sources
	Introduction
	Previous Results
	Our Work
	Techniques

	Preliminaries
	The Extractor
	Converting Two Independent Sources into a Block Source
	Putting It All Together
	Extension to Block Sources

	References

	The Power of Choice in aGeneralized P´olya Urn Model
	Introduction
	Balance for $\g<1$
	Imbalance for $\g>1$
	Balance for $\g>1$
	Open Questions
	References

	Corruption and Recovery-Efficient Locally Decodable Codes
	Introduction
	Preliminaries
	The Construction
	The Lower Bound
	A Better Upper Bound for Large δ
	References

	Quasi-randomness Is Determined by the Distribution of Copies of a Fixed Graph in Equicardinal Large Sets
	Introduction
	Proof of the Main Result
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

