
Chapter 9
Permutations, Cycles and Derangements

Permutations pervade much of mathematics including number theory. Besides innu-
merable peaceful uses, permutations were crucial in classical cryptography, such as
the German Geheimschreiber (secret writer) and Enigma enciphering machines—
and their demise. The Geheimschreiber was broken during World War II by the
Swedish mathematician Arne Beurling—with the occasional help from the leading
Swedish statistician Harald Cramér (see B. Beckman: Codebreakers).

Polish and British cryptanalysts were able to break the Enigma code by obser-
ving—among other factors—the cycle structure of the code. Cycles of permutations
and their distributions are therefore considered in Section 9.4 of this chapter.1

9.1 Permutations

The number of arrangements (“permutations”) of n distinct objects equals the fac-
torial of n:

n! := 1 ·2 ·3 · · ·n, (9.1)

a formula easily proved by induction. Factorials grow very fast: while 5! equals just
120, 10! is already equal to 3 628 800. A good and relatively simple approximation
is Stirling’s famous formula:

n! ≈
√

(2πn)nn e−n, (9.2)

which yields 3 598 696 for n = 10.
A better approximation multiplies the Stirling result by e1/12n, yielding 10! ≈

3628810 (for an error of less than 0.0003%!).
Factorials are also related to the “Euler” integral. Repeated partial integration

shows that

1 While the Germans, after a few years, became aware of the Geheimschreiber’s vulnerability and
curtailed its use, the fact that the Allies had broken Enigma was one of the best-kept secrets of the
war. The Enigma decrypts therefore continued to provide the Allies with invaluable information
during the entire war.
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∞
∫

0

tn e−t dt = n! (9.3)

The related gamma-function

Γ(z) :=
∞
∫

0

tz−1 e−t dt

is single-valued and analytic in the entire complex plane, except for the points z =
−n (n = 0,1,2, . . .) where it possesses simple poles with residues (−1)n/n!. Γ(z)
obeys the recurrence formula

Γ(z+1) = zΓ(z) (9.4)

and the curious “reflection” formula

Γ(z)Γ(1− z) = −zΓ(−z)Γ(z) = πcsc(πz), (9.5)

which for z = 1/2 yields
Γ(1/2) =

√
π.

9.2 Binomial Coefficients

As we learn in high school (?), the “binomial” (1+x)n can be expanded (multiplied
out) as follows:

(1+ x)n =
n

∑
k=0

(

n
k

)

xk (9.6)

where the
(n

k

)

(read n choose k) are the binomial coefficients—

With 0! defined as 1,

(

n
0

)

=
(

n
n

)

= 1, (9.7)

(n
1

)

equals n and
(n

2

)

equals n(n− 1)/2 = 0,1,3,6,10,15, . . . the “triangular” num-
bers (see Sec. 7.4). The binomial coefficient

(n
2

)

= 1/2 n(n− 1) is (by definition)
the number of pairs that can be selected from n distinct objects. Thus, at a party
of n people, each guest clinking his glass with everyone else, produces a total of
1/2 n(n− 1) clinkings. (Of course, for n = 1, the number of possible clinkings is
zero, just as there is no applause with just one hand clapping. For two people (n = 2),
there is just one clinking.)

Permutations when just two objects change places are called transpositions. Ev-
ery permutation can be decomposed into a unique (modulo 2) number of transposi-
tions. If this number is odd, the permutation is called odd. Otherwise it is called an
even permutation. The identity permutation is even because the number of transpo-
sitions is 0 (an even number). For example for n = 5, there are a total of n! = 120
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permutations of which 60 are odd and 60 are even, the latter forming the famous
symmetrical group S5 which was crucial in Galois’ historic proof that the general
quintic equation has no solution in radicals. This put to rest a problem that had
baffled mathematicians for centuries.

Other special permutations with unique properties are those generated by prim-
itive roots, the number-theoretic logarithm (index), and the Zech logarithm (see
Chaps. 14 and 27).

If the n objects consist of m groups containing k1, k2, . . . ,km elements, respec-
tively, the binomial coefficients can be generalized to the multinomials. The multi-
nomial coefficients are defined by

n!
k1!,k2! . . .km!

, where
m

∑
r=1

kr = n (9.8)

The differences between consecutive triangular numbers equal 1, 2, 3, 4, 5, . . ., i.e.
a set covering all positive integers. Thus, as the young Gauss discovered, they are
sufficiently dense so that every positive integer can be represented by the sum of
just 3 triangular numbers Δ. Or, as Gauss wrote in 1796 in his still new notebook:

Eureka! n = Δ+Δ+Δ.

Note that already n = 5 requires 3 triangular numbers (5 = 3+1+1).
By contrast, the square numbers, 0, 1, 4. 9, 16, 25 . . . have differences equal to

1, 3, 5, 7, 9 . . ., i.e. they cover only the odd numbers. They are therefore less dense
and up to 4 squares are required to represent all positive integers. For example,
7 = 4 + 1 + 1 + 1 cannot be represented by just 3 squares. The same is true for
n = 15,23,31, . . .28, . . . (see Sect. 7.9 for more on the sum of 3 squares).

9.3 The Binomial and Related Distributions

If p is the probability that one of n possible events occurs, the probability of k
events occurring in n independent trials is proportional to the binomial coefficient
“nchoosek”. With k ranging from 0 to n, the (discrete) probability distribution is
the so-called binomial distribution

p(k) = c

(

n
k

)

,0 ≤ k ≤ n (9.9)

where the constant c must be chosen so that

n

∑
k=0

p(k) = c ·2n (9.10)

equals 1, i.e. c must equal 1/2n.
The mean value of k equals np and its variance is np(1− p), which for fixed n

achieves its maximum for p = 1/2.
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For large n, the binomial distribution looks like samples from a Gaussian (nor-
mal) distribution. And in fact, for large n, the binomial distribution can be approxi-
mated by a normal distribution with mean np and variance np(1− p).

For n → ∞, but np fixed: np = m, the binomial distribution turns into the impor-
tant Poisson distribution

pm(k) =
mk

k!
e−m, k = 0,1,2 . . . (9.11)

with mean and variance equal to m.
The Poisson distribution gives the number of “clicks” per second of a Geiger-

counter near a radioactive source with an average click rate equal to m clicks per sec-
ond. The Poisson distribution also describes the occurrence of other “rare” events,
i.e. events for which p is so small that, even as n → ∞, np stays finite.

9.4 Permutation Cycles

One important subject in the study of permutations is their cycle structure. It was by
the analysis of cycles, and particularly an invariance property of the cycle structure
that the Polish mathematician Marian Rejewski, before the outbreak of World War
II, was able to crack the Enigma enigma (see C. Christensen, Mathematics Maga-
zine, Vol. 80, No. 4 (October 2007), pp. 247–273).

For n = 2, the two possible permutations are the “identity” permutation (1, 2)
and the transposition (2, 1). Note that the notation (2, 1) means that the first object
is now in the second position and the second object appears in the first position.

Here (1, 2) has two cycles of period length 1 each:

1 → 1 and 2 → 2.

Whereas the transposition (2, 1) has only one cycle of period length 2:

1 → 2 → 1.

Thus, the total number of cycles equals 3, two of which have period length 1 and
one (1 → 2 → 1) has length 2.

Now let us study the cycle structure for the case of n = 3.
For the 6 permutations of 3 objects, cycle-analysis yields for the identity permu-

tation (1, 2, 3): 1 → 1, 2 → 2, 3 → 3, i.e. 3 cycles of length 1.
For the permutation (1, 3, 2) we have 2 cycles: 1 → 1 and 2 → 3 → 2, one of

which has length 1 and the other cycle has length 2.
For (2, 1, 3), we find again 2 cycles, 2 → 1 → 2 and 3 → 3, with lengths 1 and 2,

respectively.
For (2, 3, 1), a “cyclic” permutation, we have just 1 cycle, 1 → 2 → 3 → 1, with

length 3.
For (3, 1, 2), the other cyclic permutation, we find again just 1 cycle, 1 → 3 →

2 → 1, with length 3.
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And, finally, for the permutation (3, 2, 1), we find 2 cycles, 1→ 3 → 1 and 2→ 2,
with lengths 1 and 2, respectively.

Thus, for n = 3, we have found a total number of 11 cycles, namely 2 permuta-
tions with 1 cycle, 3 permutations with 2 cycles and 1 permutation with 3 cycles.
In general, the number of cycles is given by the Stirling numbers of the first kind
Sn

(m), with the generating function

x(x−1) · · ·(x−n+1) =
n

∑
m=0

Sn
(m)xm (9.12)

and the recurrence relation

Sn+1
(m) = Sn

(m−1) −nSn
(m).

In fact, the number of permutations of n symbols which have exactly m cycles
equals

#n(m) = (−1)(n−m)Sn
(m), (9.13)

which for n = 3 and for m = 1, 2, 3 yields the values 2, 3, 1, respectively.
The total number of cycles is given by the simple formula

n

∑
m=1

m#n(m) = #n+1(2), (9.14)

which, for n = 3, yields 11 (as we already found by enumerating all 6 permutations
for n = 3).

For more on the Stirling numbers, see Graham, Knuth and Patashnik: Concrete
Mathematics, a veritable treasure trove of discrete (discreet?) mathematics.

Now let us look at the total number of different cycle lengths. By summing up the
above results for n = 3, we find that there are a total of six cycles of period length
1, three cycles of length 2 and two cycles of length 3. Bell Labs mathematician S.P.
Lloyd has shown that, in general, for the n! permutations of n distinct objects there
are n! cycles of length 1, n!/2 cycles of length 2 and, generally, n!/k cycles of length
k, 1 ≤ k ≤ n.

Thus, the total number of cycles equals n!(1 + 1/2 + +1/n). Here, the sum is
the harmonic number Hn, which can be approximated by a definite integral from
x = 1/2 to x = n+1/2, over 1/x, yielding

Hn ≈ ln(2(n+1/2)). (9.15)

However, considering that 1/x is concave (i.e. a “sagging” function), the factor 2
in the above formula overestimates Hn. Taking a cue from Euler, we replace the
factor 2 by eγ ≈ 1.781, where γ = 0.57721 . . . is Euler’s constant. This yields the
astonishingly accurate approximation

Hn ≈ ln(1.781(n+1/2)), (9.16)
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giving (exact values in parentheses) H1 ≈ 0.98 (1.0), H2 ≈ 1.49 (1.5), H3 ≈ 1.83
(1.83. . .) and H50 ≈ 4.49915 (4.49921) with an error of less than 0.007%. (Of
course, n!Hn must be an integer, so that multiplying the approximation for Hn by
n! and rounding to the nearest integer gives an even better approximation for Hn).

In a computer simulation using the Random Permutation routine of Mathema-
ticaTM, I found for 105 random permutations of 50 objects, 100 098 cycles of length
1, 49 970 cycles of length 2 etc. down to 2 005 cycles of length 50 and a total number
of cycles (450 836) in close agreement (0.2%) with the expected number of cycles
of 105 ·H50 = 449921. These agreements are remarkable, given that the investigated
105 permutations are a very small fraction of the total of 50!≈ 3 ·1064 permutations.

9.5 Derangements

A (complete) derangement is a permutation that leaves no object in its original place.
A well-known derangement problem is that of n envelopes and n letters: What is the
probability that not a single letter will end up in its proper envelope if the assignment
of letters to envelopes is random? (For large n, the probability tends to 1/e ≈ 0.37
or 37%.) For two objects, there is exactly one derangement, the transposition (2, 1).
For 3 objects, there are two complete derangements, the two cyclic permutations (2,
3, 1) and (3, 1, 2).

No matter what n is there is always exactly one permutation, with no derange-
ments, namely the identity permutation where all objects are in their original place.
There are never any permutations with just a single derangement because if one ob-
ject is “deranged”, there must be another one that is also “out of place”. From these
facts (plus a few other “insights”) I once guessed the proper formula for the number
D(n) of complete derangements of n symbols:

D(n) = n!
n

∑
k=0

(−1)k

k!
(9.17)

where the sum converges to 1/e for n → ∞.
This is not to be confused with the birthday problem: how many people must

be present at a party so that the probability that at least two persons have the same
birthday exceeds 1/2? (Answer: 23).

9.6 Ascents and Descents

One aspect of permutations that has taken on considerable significance in recent
times is the question of the longest rising (or falling) subsequence. Thus, in the
permutation (1, 3, 5, 2, 4) of the first five positive integers, the longest rising sub-
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sequence is 1, 3, 5 while the longest falling subsequence is 5, 2. According to a
theorem by the celebrated Paul Erdös and Gyorgy Szekeres, (proved by the pi-
geonhole principle) any list of k2 + 1 distinct numbers contains an increasing (or
decreasing) subsequence of length k +1.

Thus, for k = 2, any list of k2 + 1 = 5 distinct numbers contains a subsequence
of length 3.

Here is a list of three random permutations of 5 numbers 1, 2, 3, 4, 5:

(3,4,5,1,2); (2,5,3,1,4); (2,3,4,1,5).

The longest monotone subsequence of the first permutation is an increasing sub-
sequence, namely (3, 4, 5). The longest subsequence of the second permutation is a
decreasing one: (5, 3, 1). Both have length 3.

The third permutation has a longest increasing subsequence of length 4, (2, 3, 4,
5), i.e. greater than the guaranteed minimum of 3. Note that non-monotonic mem-
bers (like the 1 in the third permutation) can intervene. The members of such subse-
quences don’t have to be contiguous. They are therefore sometimes called scattered
subsequences.

It is interesting to observe that the distribution of increasing (or decreasing) sub-
sequences of random permutations is related to the distribution of the eigenvalues
of certain chaotic dynamical systems. Such distributions are therefore of great con-
temporary concern.

9.7 Quantum Decrypting

The days of the RSA2 public-key encryption scheme may be numbered. The reader
will recall that the difficulty of breaking RSA encrypted messages hinges on the
difficulty of factoring large numbers. While the ever-advancing speeds of number-
theoretic factoring3 can be easily held at bay by using ever larger key numbers, going
from, say, 300 digits to 400 digits, a new paradigm is arising on the cryptographic
horizon that will thoroughly undo RSA: quantum factoring. In 1994 Peter Shor4

then working at Bell Laboratories in Murray Hill, New Jersey, proposed a quantum
algorithm for very fast factoring large composite numbers. Shor’s algorithm is based
on finding the order (“period length”) of certain number-theoretic sequences.

As is well known (no, this is not translated from Russian), to compute the
decrypting exponent t from the (public) encrypting exponent s, the following

2 The RSA algorithm was named after Donald Rivest, Adi Shamir and Leonhard Adleman who
published it in 1977. It was actually invented by Clifford Cocks three years earlier in a project
classified TOP SECRET by British Intelligence.
3 In May 2007 the largest number factored was 21039-1—which has over 300 decimal digits—
with the help of some 500 computers running “in parallel” for 6 months (see Discover Magazine
(January 2008), pp. 17–30).
4 P. Shor: Proc. 35th Annual Symposium of the Foundations of Computer Science, p. 124. See also
SIAM Journal on Computing 26 (1997), p. 1484, for a full version of Shor’s paper.



154 9 Permutations, Cycles and Derangements

Diophantine equation must be solved:

s · t ≡ 1modφ(m)

where φ is Euler’s φ-function (also called totient-function) and m is the (public)
encrypting modulus. Now, if m is the product of two primes, p and q, then φ(m) =
(p − 1)(q − 1). Thus, to obtain the value of φ, the (secret) factors of m, i.e. the
individual primes, must be known—not just their product!

How does Shor get these factors? Take a look at Euler’s generalization of Fer-
mat’s “Little Theorem”:

aφ(m) ≡ 1modm

for coprime a and m. It follows that the sequence ak modm, k = 1,2,3 . . . has a period
length that divides φ(m). For example, for m = 10, and a = 3, we get the sequence

3,9,7,1,3,9 . . . ,

which has a period length of 4. (Remember: 9 · 3 = 27 ≡ 7 mod 10.) And 4 does
indeed divide φ(10) = φ(2 ·5) = (2−1)(5−1) = 4.

The same period length is obtained for a = 7: to wit 7, 9, 3, 1, 7, 9 . . .. But for
a = 9 we get 9, 1, 9, 1 . . ., i.e. a period length of 2, but still a divisor of φ(10) = 4.

The period lengths of 3k and 7k are therefore as long as possible. Such numbers
a are called primitive roots. 3 and 7 are thus two (the only) primitive roots of 10.
(Only integers 1, 2, 4, pk and 2 · pk, where p is an odd prime, have primitive roots.
The number of primitive roots equals φ(φ(m)), or 2 for m = 10.)

Now, if the primes p and q are different (and larger than 2), then m = p · q has
no primitive roots and the period length L can never attain the value φ(m) = (p−1)
(q−1). But, L is of course still a divisor of (p−1)(q−1). In fact, in a large number
of all (legal) choices of a, L equals (p−1)(q− r)/2, so that the calculation of p and
q from L and m = p ·q is easily accomplished.

One interesting relation between the period lengths of ak modulo p, q, and pq,
respectively, is

Lpq = LCM (Lp,Lq) where the L are period lengths and LCM stands for “least
common multiple”.

For example, for p = 5 and q = 7 and a = 3 we get L5 = 4, L7 = 6 and L35 = 12,
which is indeed the least common multiple of 4 and 6 and which also a divisor
of φ(35) = 4 · 6 = 24. Here is a somewhat larger (randomly generated) example:
p = 229, q = 349, a = 7, for which Lp = 228. Lq = 348 and Lpq = 6612—which
divides (p−1)(q−1) = 79344 and is divisible by both 228 and 348, as it should as
the least common multiple.

This is not surprising, because—as every physicist knows (but a mathematician
still has to prove)—the period length Lab of two added oscillations (periodic se-
quences) with period lengths La and Lb, respectively, is simply LCM (La, Lb). In
physics and musicology this is known as a beat note and its frequency equals the
largest common divisor of the two “beating” tones or, what is the same, the beat pe-
riod is the least common multiple of the two (or more) beating periods. But there is
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a big difference between telling the fundamental frequency (or period) of a musical
note and determining the period length of a number-theoretic sequence ak. For ex-
ample, for a = 97 and the above (p = 229, and q = 349), the sequence ak mod (pq)
starts as 97, 9409, 33542, 56734, . . . and continues in a seemingly random fashion
showing no periodicity. Only after 6612 = 228 ·348/12 steps does it start over again:
. . ., 11535, 1, 97, 94909, . . .. Such long periods are difficult to discern on a graphical
printout. However, if converted to an audible tone, then even for fundamental period
lengths as long as one or several seconds, the periodicity can be heard. (Typically,
depending on the sampling rate, it sounds like the idling engine of a motorboat.)

9.8 Decrypting without Factoring

While the need of factoring the encryption modulus m into its prime factors was
considered an article of faith for breaking RSA, some number theorists have come
up with a method of decrypting RSA that does not require factoring. In fact, with a
sprinkling of (elementary) group theory and Euler’s Theorem, it can be shown that
the Diophantine equation

s · t ≡ 1mod φ(m)

can be solved for t without factoring m. Surprisingly, φ(m) in the above equation can
be replaced by the order of the (publicly transmitted) encrypted message modulo m,
the (public) encryption modulus. For the still necessary period finding one could use
the Shor algorithm. So, while RSA has not yet been cracked, it is good to know that
factoring is not a sine qua non. Also, the order is usually smaller than φ(m).

As an example, let us take p = 617 and q = 2273, i.e. p · q = 1402441. For an
encrypting exponent s = 101 and message n = 31415, the encrypted message is
31415101 mod 1402441 which equals 81679. Now the decrypting exponent t, as
usually obtained, is given by

s · t ≡ 1modφ(m),

which requires factoring of m (a 7-digit number in the example).
In the alternative method, φ(m) in the above equation is replaced by the or-

der of the cryptogram, 81697, modulo m. This yields for the decrypting exponent
t = 1122413 and it is easy to confirm the correctness of this result by calculating,
modulo m, 81697t which equals, wonder of wonders, the original message: 31415—
and we still don’t know (or care) what p and q are.

But where is the connection with quantum mechanics (QM) and its calculating
speed? Well, QM is good at Fourier transforming or spectral analysis. And Shor
finds the period lengths of ak by Fourier analysis on a “quantum computer”. I put
quantum computer between quotation marks because Shor’s algorithm isn’t really a
full-blown quantum computer—it’s just a super fast period-length finder relying on
quantum mechanics.
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Of course, as a final step, the Shor algorithm calls for a measurement leading,
in a quantum system, to a “collapse” of the wave function. However, the system
collapses with high probability to the desired state, namely the spectral peak whose
frequency is to be determined.

9.9 Quantum Cryptography

In an early realization of quantum cryptography, Anton Zeilinger and co-workers5

transmitted an image (of a prehistoric statuette of a woman—the “Venus von
Willendorf”), making use of entangled photon states originally called “verschränkte
Zustände” by Erwin Schrödinger.

Entangled states are at the core of the Einstein, Podolsky, Rosen (EPR) paradox.
Einstein, for one, never believed in the spukhafte Fernwirkungen (spooky actions at
a distance) that are implied by EPR. But he was wrong and the seeming paradoxon
invented by him, Podolsky and Rosen is now an experimentally verified foundation
of quantum physics.

The use of entangled states allows single photons to be used in the quantum en-
cryption scheme—a breathtaking achievement, especially in view of the fact that in
the original interpretation of quantum mechanics, its laws were considered to be ap-
plicable only to large ensembles (Of course, because of photon loss during transmis-
sion and detection, the “single-photon” schemes usually employ several photons).

In the quantum cryptography scheme, invented by Charles Bennet and Gilles
Brossard6; (see Sect. 9.11), the encrypted data is transmitted via an open (public)
channel. But the data is made unintelligible by a secret key, a one-time-pad. And it
is the one-time pad key, a sequence of random bits, that is transmitted via a secure,
unbreakable, quantum channel.

9.10 One-Time Pads

One-time pads are considered the only really secure method of encryption because
the key bits are used only a single time and then never used again so that no statis-
tical information can be exploited. (The clever use of statistical dependencies is of
course the root of most decrypting schemes.—C.E. Shannon derived a mathemati-
cal requirement for a key to be secure involving its entropy and the entropy of the
message to be encrypted.)

In the world’s navies, secret keys are often printed with water-soluble ink on
blotting paper. But sometimes the ship doesn’t sink and the key is recovered—as in

5 T. Jennewein et al: Quantum Cryptography with Entangled Photon Phys Rev. Lett. 84, 4729–4732
(15 May 2000) See also Bouwmeester, Ekert, Zeilinger (Eds): The Physics of Quantum Information
(Springer, 2000).
6 See C.H Bennet and G. Brossard, in Proc. IEEE Int. Conference on Computers, Bangalore (1984).
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the case of the German submarine U 505 that was “sunk” off West Africa on June
4th, 1944, by the U.S. Navy and then dragged to Bermuda across the Atlantic below
the water’s surface (to hide the fact that the key was captured). Three weeks later
the captured code books were at Bletchley Park, the British deciphering center (with
Alan Turing in residence).7

An ingenious variant of the one-time pad was used by the famous Soviet spy
Richard Sorge. Sorge (who, on KGB orders, joined the Nazi party as a camouflage)
memorized which page of the German Statistisches Jahrbuch for 1937 (publicly
available at German embassies around the world) he had to consult on any partic-
ular day to extract the key. He was able to tell Stalin that the Japanese would “go
south” and not attack the Soviet Union, which allowed the Russians to transfer their
crack Siberian divisions to Moscow in November 1941—with the well-known re-
sult: Hitler’s first major defeat.8

9.11 The Bennet-Brossard Key Distribution Scheme (BB84)

The seed idea for the BB84 scheme was the (totally impractical) proposal for “quan-
tum money” by Stephen Wiesner in which each dollar bill, in addition to its serial
number, carries 20 different polarized photons known only to the issuing bank. Be-
cause of the rules of quantum mechanics, such a bill could never be copied because
the secret polarizations where (randomly) choses from two possible “channels”: ei-
ther horizontal/vertical or ±45◦. Here a “1” might be encoded by a vertical or a
+45◦ polarization. A “0” would be encoded by a horizontal or −45◦ polarization.

If the potential money faker measured, for example, a ±45◦ photon with a hori-
zontal/vertical photon counter, he would get a random result—without knowing that
it was random! The bank, on the other hand, knowing all 20 polarizations, would, of
course, have no problem reading the secret code and verifying the validity by com-
paring it to the serial number of the bill. The only problem with this lovely, totally
secure, scheme: how do you store 20 photons for any length of time in a paper bill?

While the idea of using two different polarization channels was impractical for
the creation of quantum money, it was resurrected for a quantum-mechanical secret-
key distribution scheme called BB84. Here Alice, who wants to send secret mes-
sages to Bob (in the presence of an eavesdropper Eve) first constructs a one-time
key pad shared with Bob. For this purpose she generates a sequence of random 1s

7 U 505 is now at the Museum of Science and Industry in Chicago. Earlier submarines whose
codebooks (and equipment) were captured include U 110 (May 1941) and U 559 (October 1942).
8 Sorge was made a posthumous Hero of the Soviet Union under Khrushchev and a street in East
Berlin was named after him. The German Democratic Republic also issued a postage stamp with a
portrait of Sorge—but not until after Stalin’s death, who loathed Sorge—a “thorn in his side”—for
being privy to his greatest blunder: ignoring the massive warnings of the imminent Nazi attack in
June 1941.
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and 0s9. Alice also generates a sequence of polarization channels chosen randomly
from horizontal/vertical and ±45◦.

Next she transmits to Bob the random bits, each one over one of the randomly
chosen polarization channels. Bob detects the photons he receives with randomly
chosen polarization channels, which of course agrees only 50% of the time with the
channel used by Alice. In a subsequent public communication Alice tells Bob which
channels she has used and Bob discards all results measured by his using the wrong
channel. Alice can do this publicly because she only communicates the channels
and not the actual bits she transmitted. So evil Eve is none the wiser.

Quantum mechanics also guarantees that any eavesdropping can be easily de-
tected. As a consequence of Heisenberg’s indeterminacy principle, Eve’s observing
the photon stream from Alice to Bob will necessarily change some of the photon
polarization states. To know that this is happening, Alice and Bob only have to
compare some, say 50, bits and, if they all agree, they can safely assume that their
photon link was undisturbed. If they do this publicly, they cannot of course use the
check bits for encrypting.

One of the remaining principal difficulties is the inability of the polarized photon
channel to work over large distances in the atmosphere, (which is apt to change
polarizations) thereby precluding—for the time being—worldwide key distribution
via satellites. However, optical glass fibers are sufficiently stable and such systems
have in fact been successfully implemented.

Another open—political—problem is whether states should allow the free use of
quantum cryptography because it would allow criminals unfettered communication.

9 based on some physical source of randomness, such as a radioactive decay. If she were to use an
algorithmic (pseudo) random number generated instead, she would of course, according to John
von Neumann, live in a state of sin—there is no way to generate truly random numbers on a
computer.


