
Chapter 6
Linear Congruences

Suppose a certain airline is consistently 25 hours late in departure and arrival (this
has happened, but no names will be mentioned) while another one, flying the same
route, is only 2 to 3 hours late. If you were in a hurry, which airline would you fly –
food, lack of leg room and all else being equal? Obviously, being 25 hours late is as
good (or bad) as being only 1 hour late. In other words, in a daily recurring event
an extra day, or even several, makes no difference. The mathematics that deals with
this kind of situation is called modular arithmetic, because only remainders modulo
a given integer matter.

Another application of modular arithmetic occurs in wave interference phenom-
ena such as ripples on a lake or patterns of light and dark in a hologram. In all these
cases a path difference of, say, half a wavelength is indistinguishable from a path
difference of one and a half or two and a half, etc., wavelengths.

And of course, there are many applications in mathematics proper. For example,
few people care what n560 is, but the remainder of n560 when divided by 561 for all
n coprime to 561 is a question of some actuality. (As it happens, all these remain-
ders are 1 – a terrible thing to happen, as we shall see.) But first we have to know
the ground rules of modular arithmetic, so that n560 for, say, n = 500, a 1512-digit
monster of a number, cannot frighten us.

6.1 Residues

When c divided by m leaves the remainder b (not necessarily positive) we write
(following Gauss)

c ≡ b (modm); (6.1)

read: c is congruent b modulo m.
More generally, we define the above congruence as meaning

m|(c−b); (6.2)

read: m divides c minus b (without remainder).

M. Schroeder, Number Theory in Science and Communication, 5th ed., 111
DOI 10.1007/978-3-540-85298-8 6, c© Springer-Verlag Berlin Heidelberg 2009

112 6 Linear Congruences

Example: 16 ≡−2(mod9) implies 9|(16+2).

Together with c, all

b = mq+ c; q = integer (6.3)

belong to the same residue class modulo m [6.1].
A complete residue system modulo m consists of m integers, one representa-

tive each from each residue class. The most common residue systems are the least
nonnegative residue system modulo m, consisting of the integers 0,1,2, . . . ,m− 1,
and the least absolute residue system, consisting of the integers 0,±1,±2, . . . ,
±(m−1)/2 (for odd m).

For many purposes, one calculates with the congruence sign for a given modulus
as if it were an equal sign.

Addition:

Example: 13 ≡ 4 (mod9)
16 ≡−2 (mod9)

29 ≡ 2 (mod9) Check!

(6.4)

Multiplication of the two upper congruences results in

208 = −8 (mod9) Check! (6.5)

The congruence

c ≡ 5 (modm) (6.6)

can be “cancelled” by the GCD of c, b and m. With (c,b,m) = d, we may write

c
d
≡ b

d

(

mod
m
d

)

. (6.7)

Example: 28 ≡ 4 (mod6) can be converted to 14 ≡ 2 (mod3).

Another useful rule is the following. If

mc ≡ mb (modn) (6.8)

and the GCD (m,n) = d, then

c ≡ b
(

mod
n
d

)

. (6.9)

Example: 28 ≡ 4 (mod6) implies 7 ≡ 1 (mod3).

Among the many useful applications of linear congruences is the ancient error-
detecting algorithm sailing under the name of “casting out 9’s” [6.2]. If we add two
decimal numbers column by column, then if in any one column the sum exceeds

6.1 Residues 113

9, we reduce the result modulo 10 and add 1 (or 2 or 3, etc.) to the next column.
Thus, in terms of the sum of the decimal digits, we have added 1 (or 2 or 3, etc.) and
subtracted 10 (or 20 or 30, etc.). We have therefore changed the sum of the digits by
a multiple of 9; in other words, the sum of the digits has not changed modulo 9.

Example:

86 sum of digits = 14, sum of sum of digits = 5
+ 57 sum of digits = 12, sum of sum of digits =3

= 143 sum of digits = 8,

Check: 14 + 12 = 26 ≡ 8(mod9). Check! Of course in the check we can apply
the same rule and consider sums of sums of digits: Check: 5 + 3 = 8 ≡ 8(mod9).
Check!

The same rule also holds for multiplication.

Example:

15 sum of digits = 6,
× 17 sum of digits = 8,

= 255 sum of digits = 12, sum of sum of digits = 3 .

Check: 6×8 = 48, sum of digits = 12, sum of sum digits = 3. Check!

The reason why sums of digits when multiplied give the same result modulo 9 as
the numbers themselves is that, trivially, any power of 10 is congruent 1 modulo 9:

10 ≡ 1 (mod9) and therefore 10k ≡ 1 (mod9) for any k ≥ 0.

The only problem with this ancient error-detecting code is that it can fail to signal
an error. In fact, for random errors, about 10 % of the errors go undetected. Fortu-
nately, though, the casting-out-9’s is not restricted to the decimal system; it works
for any base b, casting out (b−1)’s. Specifically, it also works for a much neglected
(and very simple) number system: the base-100 or “hectic” system. One of the ad-
vantages of the hectic system is that it needs no new digits. For example, the year of
Gauss’s birth in hectic notation looks like this:

17 77, sum of digits = 94,

and that of his death

18 55, sum of digits = 73,

and the difference of these two hectic numbers (his age when he died) is

00 78, sum of digits = 78.

114 6 Linear Congruences

Check: 73−94 = −21 ≡ 78 (mod99). Check!
This example is perhaps too simple, but with the hectic error-detecting algorithm

the undetected error rate has dropped to about 1 %.
A simple rule exists also for divisibility by 11, used in the International Standard

Book Numbers (ISBN). It follows from 10 ≡ −1mod11 and 100 ≡ 1mod11 that
divisibility by 11 of an integer and its digital sum, taken with alternating signs, are
equivalent. Thus 517, for example, is immediately seen to be divisible by 11 because
5−1 + 7 = 11. If the result of this operation is itself a large number, the operation
can of course be repeated until manageable numbers, like 0 or 11, are reached.

Divisibility checks also exist for 7, 13, 17, 19 etc., but they are not as efficient.
Thus, to check n for a factor 7, one writes

n = 10a+b

and
m = a−2b .

Now if m ≡ 0mod7, it follows that a ≡ 2b and 10a ≡ 20b ≡ 6b. Thus n ≡ 6b+b ≡
7b ≡ 0mod7. Of course the rule can be iterated.

The same approach tells us that, for divisibility by 13, we should check a + 4b.
Thus, for example, for n = 91, we have 9 + 4 = 13, implying that 91 is divisible
by 13.

Similarly, for n = 17, we should look at a−5b and for n = 19, the test is a+2b.

6.2 Some Simple Fields

Complete residue systems modulo a prime form a field, i. e., a set of numbers for
which addition, subtraction, multiplication and division (except by 0) are defined
and for which the usual commutative, associative and distributive laws apply [6.3].

For the least nonnegative residue system modulo 2, consisting of 0 and 1 (perhaps
the most important one in this computer age) we have the addition table:

0 1

0 0 1
1 1 0

(6.10)

which is isomorphic both to the logical operation “exclusive or” and to multiplica-
tion of signs (if we identify 0 with + and 1 with −).

The multiplication table for 0 and 1:

0 1

0 0 0
1 0 1

(6.11)

is isomorphic to the logical “and” and the set-theoretic “intersection”.

6.3 Powers and Congruences 115

Multiplication for a complete residue system modulo a composite number has
no inverse for some of its members, as can be seen from the multiplication table
modulo 4:

0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(6.12)

Thus, there is no number which when multiplied by 2 gives 1, i. e., 2 has no inverse.
Also, division by 2 is not unique: 2 divided by 2 could be either 1 or 3.

This grave defect is rectified by prime residue systems which consist only of
those residue classes that are coprime to the modulus. Thus, the least nonnegative
prime residue system modulo 10 consists of the integers 1, 3, 7 and 9, and their
multiplication table is well behaved:

1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(6.13)

If f is a polynomial with integer coefficients, then a ≡ b (modm) implies

f (a) ≡ f (b) (modm), (6.14)

For (m,n) = 1 if x and y run through complete residue systems modulo n and m,
respectively, then mx+ny runs through a complete residue system modulo mn.

Example: n = 5, m = 3:

x = 0 1 2 3 4

y = 0 0 3 6 9 12
1 5 8 11 14 2
2 10 13 1 4 7

We will encounter this kind of decomposition of a residue class modulo a prod-
uct of coprimes again when we discuss simultaneous congruences and the Chinese
Remainder Theorem with its numerous applications in Chap. 17.

6.3 Powers and Congruences

What is 2340 (mod341)? Obviously, the ancient Chinese did not know or they would
not have formulated their primality test (Sect. 2.3). With the aid of the congruence
notation we may rewrite the Chinese test as

116 6 Linear Congruences

2n ≡ 2 (modn), (6.15)

if and only if n is prime. Here the first “if” is all right (see Fermat’s Theorem,
Chap. 8) but the “and only if” is wrong, as we shall presently demonstrate with the
composite n = 341 = 11 ·31. For odd n we may write, because of (6.9),

2n−1 ≡ 1 (modn).

Of course, it is foolish actually to calculate 2340, a 103-digit number, if we are
interested only in the remainder modulo 341. Instead we will decompose 340 into
10 ·34 and first raise 2 to the 10th power, giving 1024. Dividing 1024 by 341 leaves
the remainder 1:

210 ≡ 1 (mod341). (6.16)

Now raising the result to the 34th power is easy because 134 = 1. Thus,

2340 ≡ 1 (mod341), or (6.17)

341 | (2341 −2), (6.18)

in spite of the fact that 341 is composite. Woe to the Chinese and three cheers for the
congruence notation! We could even have done this in our heads, without recourse
to pencil and paper, and thereby demolished a false “theorem” which had stood
undisputed for so many centuries.

Composite numbers which masquerade as primes vis-a-vis Fermat’s theorem are
called pseudoprimes. 341 is actually the smallest pseudoprime to the base 2. In a
certain sense, pseudoprimes have become almost as important as actual primes in
modern digital encryption. We will hear more about pseudoprimes and even abso-
lute and strong pseudoprimes in Chap. 20.

Of course, in calculating 2340 (mod341) we were lucky, because 210 already
gave the remainder 1. In general we will not be so lucky, and we need a universal
algorithm that will see us through any base b or exponent n.

More formally, to calculate bn (modm), we first find the binary decomposition
of n:

n =
�log2 n�

∑
k=0

nk2k with nk = 0 or 1, (6.19)

where � � is the Gauss bracket, or “floor function”, signifying the integer part.
The binary expansion coefficients nk can be found by any of a variety of

“analog”-to-digital conversion algorithms.
Omitting all terms with nk = 0 in the sum, we may write

n =
M

∑
m=1

2cm . (6.20)

6.3 Powers and Congruences 117

In other words we write, for example, 6 = 2+4 or 13 = 1+4+8, etc.
Using this decomposition into a sum of powers of 2, we write bn as follows:

bn =
M

∏
m=1

bcm = (. . .(b2) . . .)2

︸ ︷︷ ︸

c1 squarings

. . . (. . .(b2) . . .)2

︸ ︷︷ ︸

cM squarings

. (6.21)

In words: we calculate bn by squaring b c1 times in succession. Then we square b
c2 times. (Of course, we make use of the previous result, i. e., we need square only
c2−c1 more times, etc.) Then we multiply the results of all these squarings together
to obtain bn.

Apart from the gain in computational efficiency (if n is a power of 2, then only
about log2 n squarings are required, instead of n multiplications), the main raison
d’être for the repeated squaring algorithm is that if we want the result modulo m,
then after each squaring we can reduce the intermediate result modulo m without
running the risk of calculator “overflow” (as long as m2 is smaller than the largest
number the machine can handle).

Here is another rule that makes working with powers and congruences easier:

(x+ y)n ≡ xn + yn (modn), (6.22)

n prime (or absolute pseudoprime), i. e., of the n+1 terms obtained upon expanding
(x + y)n binomially only two remain, because all others, being multiplied by (n

k),
with k �= 0 or n, are divisible by n and therefore do not contribute to the end result
modulo n.

Incidentally, the condition k �= 0 or n can be expressed with the following more
widely applicable and succinct notation:

k �≡ 0 (modn).

Read: k is not congruent to zero modulo n.

