
Chapter 5
Fractions: Continued, Egyptian and Farey

Continued fractions are one of the most delightful and useful subjects of arithmetic,
yet they have been continually neglected by our educational factions. Here we dis-
cuss their applications as approximating fractions for rational or irrational numbers
and functions, their relations with measure theory (and deterministic chaos!), their
use in electrical networks and in solving the “squared square”; and the Fibonacci
and Lucas numbers and some of their endless applications.

We also mention the (almost) useless Egyptian fractions (good for designing
puzzles, though, including unsolved puzzles in number theory) and we resurrect
the long-buried Farey fractions, which are of considerable contemporary interest,
especially for error-free computing.

Among the more interesting recent applications of Farey series is the reconstruc-
tion of periodic (or nearly periodic) functions from “sparse” sample values. Applied
to two-dimensional functions, this means that if a motion picture or a television film
has sufficient structure in space and time, it can be reconstructed from a fraction of
the customary picture elements (“pixels”). (“Sufficient structure” in spacetime im-
plies that the reconstructions might not work for a blizzard or a similar “snow job”.)

5.1 A Neglected Subject

Continued fractions (CFs) play a large role in our journey through number theory
[5.1]. A simple continued fraction

b0 + 1

b1 + 1

b2 + 1

b3 + . . . ,

(5.1)

a typographical nightmare if there ever was one, is usually written as follows:
[b0;b1,b2,b3, ...]. Here the bm are integers. A finite simple CF then looks like this:

[b0;b1, . . . ,bn]. (5.2)
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If a finite or infinite CF is broken off after k < n, then [b0;b1, . . . ,bk] = Ak/Bk is
called the approximating fraction or convergent of order k. Here Ak and Bk are co-
prime integers; they obey the recursion

Ak = bk Ak−1 +Ak−2, (5.3)

with A0 = b0, A−1 = 1 and A−2 = 0. The Bk are derivable from the same recursion:

Bk = bk Bk−1 +Bk−2, (5.4)

with B0 = 1 and B−1 = 0.
As the order of the approximating fractions increases, so does the degree of ap-

proximation to the true value of the fraction, which is approached alternately from
above and below.

CFs are unique if we outlaw a 1 as a final entry in the bracket. Thus 1/2 should
be written as [0;2] and not [0;1,1]. In general, if a 1 occurs in the last place, it can
be eliminated by adding it to the preceding entry.

Continued fractions are often much more efficient in approximating rational or
irrational numbers than ordinary fractions, including decimals. Thus,

r =
964
437

= [2; 4, 1, 5, 1, 12], (5.5)

and its approximating fraction of order 2, [2;4,1] = 11/5, approaches the final value
within 3 parts in 103.

One interesting application of CFs is to answer such problems as “when is the
power of the ratio of small integers nearly equal to a power of 2?”, a question of
interest in designing cameras, in talking about computer memory and in the tuning
of musical instruments (Sect. 2.6). For example, what integer number of musical
major thirds equals an integral number of octaves, i. e., when is

(

5
4

)n

≈ 2m, or

5n ≈ 2m+2n?

By taking logarithms to the base 2, we have

log2 5 ≈ m
n

+2.

The fundamental theorem tells us that there is no exact solution; in other words,
log2 5 is irrational. With the CF expansion for log2 5 we find

log2 5 = 2.3219 · · · = [2;3,9, . . . ] or

log2 5 ≈ 2+ 1
3 ,
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yielding m = 1 and n = 3. Check:

(

5
4

)3

= 1.953 · · · ≈ 2.

In other words, the well-tempered third-octave 21/3 matches the major third within
0.8 % or 14 musical cents. (The musical cent is defined as 1/1200 of an octave. It
corresponds to less than 0.6 Hz at 1 kHz, roughly twice the just noticeable pitch
difference.)

The next best CF approximation gives

log2 5 ≈ 2+ 9
28 ,

or m = 9, n = 28, a rather unwieldy result.
Because log10 2, another frequently occurring irrational number, is simply related

to log2 5:

log10 2 = 1/(1+ log2 5),

it has a similar CF expansion:

log10 2 = [0;3,3,9, . . . ].

It, too, is well approximated by breaking off before the 9. This yields

log10 2 ≈ [0;3,3] = 3
10 ,

a well-known result (related to the fact that 210 ≈ 103).
Some irrational numbers are particularly well approximated. For example, the

widely known first-degree approximation to π , namely, [3;7] = 22/7, comes within
4 parts in 103. The second-order approximation [3;7,16] = 355/113, known to the
early Chinese, approaches π within 10−7.

Euler [5.2] discovered that the CF expansion of e = 2.718281828 . . . , unlike that
of π , has a noteworthy regularity:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . . ], (5.6)

but converges initially very slowly because of the many 1’s. In fact, the CF for the
Golden section or Golden ratio g = [1;1,1,1,1 . . . ], which contains infinitely many
1’s, is the most slowly converging CF. It is therefore sometimes said, somewhat
irrationally, that g is the “most irrational” number. In fact, for a given order of ra-
tional approximation the approximation to g is worse than for any other number.
Because of this property, up-to-date physicists who study what they call “determin-
istic chaos” in nonlinear systems often pick the Golden ratio g as a parameter (e. g.,
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a frequency ratio) to make the behaviour “as aperiodic as possible”. A strange ap-
plication of number theory indeed!

CFs are also useful for approximating functions. Thus, in a generalization of our
original bracket notation, permitting noninteger entries,

tanz =
[

z
1−

z2

3−
z2

5− . . .

]

:=
z

1− z2

3− z2

5

. . .

(5.7)

yields the second-order approximation [5.3]

tanz = z
15− z2

15−6z2 . (5.8)

For z = π/4, this is about 0.9998 (instead of 1). By contrast, the three-term power
series for tanz, tanz = z + z3/3 + z5/5, makes an error that is 32 times larger. The
reason for the superiority of the CF over the power-series expansion is quite obvious.
As we can see from (5.8), the CF expansion makes use of polynomials not only in the
numerator but also in the denominator. (Not making use of this degree of freedom is
as if a physicist or engineer tried to approximate the behaviour of a resonant system
by zeros of analytic functions only, rather than by zeros and poles: it is possible, but
highly inefficient.)

Equally remarkable is the approximation of the error integral by a CF. The third-
order approximation

∫ z

0
e−x2

dx ≈ 49140+3570z3 +739z5

49140+19950z2 +2475z4 (5.9)

makes an error of only 1.2 % for z = 2, as opposed to a power series including terms
up to z9 which overshoots the true value by 110 %.

Incidentally, the fact that e has so regular a CF representation as (5.6), while π
does not, does not mean that there is no regular relationship between CFs and some
relative of π . In fact, the (generalized) CF expansion of arctanz for z = 1 leads to
the following neat CF representation:

π
4

=
[

1
1+

1
2+

9
2+

25
2+

49
2+

. . .

]

.

Gauss, the prodigious human calculator, used CFs profusely; even on the first
page of his new notebook begun on the occasion of the discovery of the regular
17-gon, CFs make their appearance (Fig. 5.1).

Why are CFs treated so negligently in our high (and low) schools? Good ques-
tion, as we shall see when we study their numerous uses.
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Fig. 5.1 First page of Gauss’s notebook, begun in his native city of Brunswick when he was only
18. The first entry concerns the epochal “geometrical” construction of the regular 17-gon which
convinced him that he should become a mathematician. The last entry on this page, written like the
three preceding ones in Göttingen, shows his early interest in continued fractions

5.2 Relations with Measure Theory

Consider the CF

α = [0;a1,a2, . . . ]. (5.10)

In 1828, Gauss established that for almost all α in the open interval (0,1) the prob-
ability
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W ([0;an,an+1, . . . ] < x) (5.11)

tends to log2(1+ x) as n goes to infinity. Gauss also showed that the probability

W (an = k) → log2

[

1+
1

k(k +2)

]

, (5.12)

i. e., the probabilities for an = 1,2,3, . . . decline as 0.42, 0.17, 0.09, . . . , in contrast
to the equal probabilities of the 10 digits for “most” decimal digits. Khinchin [5.4]
showed in 1935 that for almost all real numbers the geometric mean

(a1a2 . . . an)
1
n →

∞

∏
k=1

[

1+
1

k(k +2)

]log2 k

= 2.68545 . . . , (5.13)

and that the denominators of the approximating fractions

(Bn)
1
n → eπ2/12ln2 = 3.27582 . . . . (5.14)

These strange constants are reminiscent of the magic numbers that describe pe-
riod doubling for strange attractors in deterministic chaos. And perhaps there is
more than a superficial connection here.

5.3 Periodic Continued Fractions

As with periodic decimals, we shall designate (infinite) periodic CFs like [1;2,2,
2, . . . ] by a bar over the period:

[1;2]. (5.15)

Incidentally, [1;2] has the value
√

2. In general, periodic CFs have values in which
square (but no higher) roots appear.

An integer that is a nonperfect square, whose square root has a periodic, and
therefore infinite, CF, has an irrational square root. However, there are simpler
proofs that

√
2, say, is irrational without involving CFs. Here is a simple indirect

proof: suppose
√

2 is rational:

√
2 =

m
n

, (5.16)

where m and n are coprime:

(m,n) = 1, (5.17)

i. e., the fraction for
√

2 has been “reduced” (meaning the numerator m and the
denominator n have no common divisor). Squaring (5.16) yields
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2n2 = m2. (5.18)

Thus, m must be even:

m = 2k, (5.19)

or, with (5.18),

2n2 = 4k2, (5.20)

which implies that n is also even. Consequently,

(m,n) > 1, (5.21)

contradicting (5.17). Thus, there are no integers n,m such that
√

2 = m/n; in other
words:

√
2 is irrational. Q.E.D.

An even shorter proof of the irrationality of
√

2 goes as follows. Suppose
√

2
is rational. Then there is a least positive integer n such that n

√
2 is an integer. Set

k = (
√

2−1)n. This is a positive integer smaller than n, but

k
√

2 =
(√

2−1
)

n
√

2 = 2n−
√

2n

is the difference of two different integers and so is a positive integer. Contradiction:
n was supposed to be the smallest positive integer such that multiplying it by

√
2

gives an integer! Using this kind of proof, for which s can one show that
√

s is
irrational? What modification(s) does the proof require?

Another exhibition example for CF expansion which we have already encoun-
tered is

[1;1] = 1
2

(

1+
√

5
)

, (5.22)

the famous Golden ratio g: if a distance is divided so that the ratio of its total length
to the longer portion equals g, then the ratio of the longer portion to the shorter one
also equals g. By comparison with (5.13) we see that the expansion coefficients in
the continued fraction of g, being all 1, are 2.68. . . times smaller than the geometric
mean over (almost) all numbers.

Golden rectangles have played a prominent role in the pictorial arts, and Fig. 5.2
illustrates the numerous appearances of g in a painting by Seurat. Figure 5.3 shows
an infinite sequence of “golden rectangles” in which the sides have ratio g. To con-
struct this design, lop off a square from each golden rectangle to obtain the next
smaller golden rectangle.

The Golden ratio, involving as it does the number 5 – a Fermat prime – is also
related, not surprisingly, to the regular pentagon, as illustrated in Fig. 5.4. It is easily
verified (from Pythagoras) that AB/AT = g. Thus, the Golden ratio emerges as the
ratio of the diagonal of the regular pentagon to its side.

Finally, the Golden ratio g emerged as the noblest of “noble numbers”, the lat-
ter being defined by those (irrational) numbers whose continued fraction expansion
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Fig. 5.2 Golden ratios in a painting by Seurat

ends in infinitely many 1’s. In fact, the CF of g, see (5.22), has only 1’s, whence
also its nickname “the most irrational number” (because no irrational has a CF
approximation that converges more slowly than that for g).

The designation noble numbers stems from the fact that in many nonlinear dy-
namical systems “winding numbers” (the frequency ratios of orbits in phase space)
that equal noble numbers are the most resistant against the onset of chaotic motion,
which is ubiquitous in nature. (Think of turbulence – or the weather, for that matter.)

Cassini’s divisions in the rings of Saturn are a manifestation of what happens
when, instead of noble numbers, base numbers reign: rocks and ice particles consti-
tuting the rings, whose orbital periods are in simple rational relation with the periods
of other satellites of Saturn, are simply swept clean out of their paths by the reso-
nance effects between commensurate orbital periods. In fact, the very stability of
the entire solar system depends on the nobility of orbital period ratios.

Fig. 5.3 The beginning of an
infinite sequence of Golden
rectangles. Some sea shells
are said to use this
construction
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Fig. 5.4 The Golden ratio
and the construction of the
regular pentagon

A double pendulum in a gravitational field is a particularly transparent nonlinear
system. As the nonlinearity is increased (by slowly “turning on” the gravitation),
the last orbit to go chaotic is the one with a winding number equal to 1/(1 + g) =
[0;2,1,1,1, . . . ], a very noble number!

For physical systems a winding number w < 1 is often equivalent to the winding
number 1−w. Suppose w = [0;a1,a2, . . . ], what is the CF for 1−w? The reader will
find it easy to show that

1− [0;a1,a2, . . . ] = [0;1,a1 −1,a2, . . . ]. (5.23)

Thus, if w is noble, so is 1−w. Note that if a1 −1 = 0, we need to invoke the rule

[. . . ,am,0,am+2, . . . ] = [. . . ,am +am+2, . . . ],

which assures that the CF for 1− (1−w) equals that for w.
Among the most exciting nonlinear systems where CF expansions have led to

deep insights are the fractional quantization in a two-dimensional electron gas [5.5]
and “Frustrated instabilities” in active optical resonators (lasers) [5.6].

5.4 Electrical Networks and Squared Squares

One of the numerous practical fields where CFs have become entrenched – and for
excellent reasons – are electrical networks.

What is the input impedance Z of the “ladder network” shown in Fig. 5.5 when
the Rk are “series” impedances and the Gk are “shunt” admittances? A moment’s
thought will provide the answer in the form of a CF:
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Fig. 5.5 Electrical ladder
network. Input impedance is
given by continued fraction
[R0;G1,R1,G2, . . . ]

Z = [R0;G1,R1,G2,R2, . . . ].

Here, in the most general case, the Rk and Gk are complex-valued rational func-
tions of frequency.

If all Rk and Gk are 1-ohm resistors, the final value of Z for an infinite network,
also called the characteristic impedance Z0, will equal

g = 1
2

(

1+
√

5
)

ohm.

The application of CFs to electrical networks has, in turn, led to the solution of
a centuries-old teaser, the so-called Puzzle of the Squared Square, i. e., the problem
of how to divide a square into unequal squares with integral sides. This problem
had withstood so many attacks that a solution was widely believed impossible [5.7].
Thus, the first solution, based on network theory, created quite a stir when it ap-
peared (Fig. 5.6).

In the meantime Littlewood has given a solution for a 112 by 112 square, which
is the smallest squared square found so far.

Fig. 5.6 The first squared
square, a solution based on
the theory of electrical
networks and continued
fractions (courtesy
E. R. Wendorff)
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5.5 Fibonacci Numbers and the Golden Ratio

Another close relative of CFs are the Fibonacci numbers [5.8], defined by the
recursion

Fn = Fn−1 +Fn−2, with F0 = 0 and F1 = 1, (5.24)

which is identical with the CF recursion for the case bk = 1. The first Fibonacci
numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . where each number is the sum
of its two predecessors.

The ratio of two successive Fn approaches the Golden ratio g = (1 +
√

5)/2,
which is easily verified in terms of CFs. From the recursion (5.24) it follows that

Fn+1/Fn = [1; 1, . . . ,1
︸ ︷︷ ︸

n−1 1′s

] (n > 1), (5.25)

where the right-hand side of (5.25) is the approximating fraction to the Golden ratio.
Equation (5.25) also implies that successive Fn are coprime:

(Fn,Fn+1) = 1, n > 0. (5.26)

Also, the product of Fn (n > 1) and its predecessor differs by ±1 from the product
of their two neighbours:

Fn−1Fn −Fn−2Fn+1 = (−1)n. (5.27)

Examples: 21 ·34 = 13 ·55−1; 34 ·55 = 21 ·89+1.

The reader may wish to prove his or her prowess by proving these simple statements.
Equations such as (5.27) often provide quick answers to a certain class of problems
such as the “banking” puzzle described in Sect. 5.11.

A simple alternative recursion for Fn is

Fn = 1+
n−2

∑
k=1

Fk. (5.28)

Because of the internal structure of the Fn, which relates each Fn to its two pre-
decessors, the odd-index Fn can be obtained from the even-index Fn alone:

F2n+1 = 1+
n

∑
k=1

F2k. (5.29)

It is sometimes said that there is no direct (nonrecursive) formula for the Fn,
meaning that all predecessors Fk, with k < n, have to be computed first. This state-
ment is true, however, only if we restrict ourselves to the integers. If we extend our
number field to include square roots, we get the surprising direct formula, discov-
ered by A. de Moivre in 1718 and proved ten years later by Nicolas Bernoulli:
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Fn =
1√
5

[(

1
2
(1+

√
5)
)n

−
(

1
2
(1−

√
5)
)n]

, (5.30)

and if we admit even complex transcendental expressions, we obtain a very compact
formula:

Fn = in−1 sin(nz)
sinz

, z =
π
2

+ i ln

(

1+
√

5
2

)

. (5.31)

In (5.30), the first term grows geometrically, while the second term alternates in
sign and decreases geometrically in magnitude because

−1 < 1
2 (1−

√
5) < 0.

In fact, the second term is so small, even for small n, that it can be replaced by
rounding the first term to the nearest integer:

Fn =
⌊

1√
5

[

1
2

(

1+
√

5
)

]n

+
1
2

⌋

. (5.32)

The result (5.30) is most easily obtained by solving the homogeneous difference
equation (5.24) by the Ansatz

Fn = xn. (5.33)

This converts the difference equation into an algebraic equation:

x2 = x+1. (5.34)

(This is akin to solving differential equations by an exponential Ansatz.)
The two solutions of (5.34) are

x1 =
1
2

(

1+
√

5
)

and x2 =
1
2

(

1−
√

5
)

. (5.35)

The general solution for Fn is then a linear combination:

Fn = axn
1 +bxn

2, (5.36)

where with the initial conditions F0 = 0 and F1 = 1,

a = −b =
1√
5
. (5.37)

Equations (5.35–5.37) taken together yield the desired nonrecursive formula (5.30).
Equation (5.30) can be further compacted by observing that x1 = −1/x2 = g, so

that
√

5Fn = gn − (−g)−n. (5.38)

The right side of (5.38) can be converted into a trigonometric function by setting
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t = i lng, (5.39)

yielding

√
5Fn = 2in−1 sin

(π
2

+ t
)

n, (5.40)

which is identical with (5.31) because

sin
(π

2
+ i lng

)

=
1
2

√
5, (5.41)

a noteworthy formula in itself.
There are also numerous relations between the binomial coefficients and the Fi-

bonacci numbers. The reader might try to prove the most elegant of these:

Fn+1 =
�n/2�

∑
k=0

(

n− k
k

)

. (5.42)

In other words, summing diagonally upward in Pascal’s triangle yields the Fibonacci
numbers. (Horizontal summing, of course, gives the powers of 2.)

There is also a suggestive matrix expression for the Fibonacci numbers:
(

1 1
1 0

)n

=
(

Fn+1 Fn

Fn Fn−1

)

, (5.43)

which is obviously true for n = 1 and is easily proved by induction. Since the deter-
minant on the left equals −1, it follows immediately that

Fn+1 Fn−1 −F2
n = (−1)n, (5.44)

which generalizes to

Fn+k Fm−k −Fn Fm = (−1)nFm−n−k Fk,y (5.45)

where any negative-index Fn are defined by the “backward” recursion

Fn−1 = Fn+1 −Fn, (5.46)

giving

F−n = −(−1)nFn. (5.47)

Summation leads to some interesting relationships, for example

n

∑
k=1

F2
k = Fn Fn+1,

which is easily proved by induction.
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Products of reciprocals, too, have noteworthy sums:

n

∑
k=2

1
Fk−1Fk+1

= 1− 1
Fn Fn+1

.

Ratios of successive Fibonacci numbers have very simple continued fractions. In-
stead of (5.25) we may write:

Fn

Fn+1
= [1,1, . . . ,1,2],

where the number of 1’s equals n−2.
By adding Fibonacci numbers, the positive integers can be represented uniquely,

provided each Fn (n > 1) is used at most once and no two adjacent Fn are ever used.
Thus, in the so-called Fibonacci number system,

3 = 3

4 = 3+1

5 = 5

6 = 5+1

7 = 5+2

8 = 8

9 = 8+1

10 = 8+2

11 = 8+3

12 = 8+3+1

1000 = 987+13 etc.

A simple algorithm for generating the Fibonacci representation of m is to find the
largest Fn not exceeding m and repeat the process on the difference m−Fn until this
difference is zero.

The Fibonacci number system answers such questions as to where to find 0’s or
1’s or double 1’s in the following family of binary sequences:

0

1

1 0

1 0 1

1 0 1 1 0 etc.,

where the next sequence is obtained from the one above by appending the one above
it. (See Sect. 32.1.)
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Another application of the Fibonacci number system is to nim-like games: from a
pile of n chips the first player removes any number m1 �= n of chips; then the second
player takes 0 < m2 ≤ 2m1 chips. From then on the players alternate, never taking
less than 1 or more than twice the preceding “grab”. The last grabber wins.

What is the best first grab? We have to express n in the Fibonacci system:

n = Fk1 +Fk2 + · · ·+Fkr .

The best initial move is then to take

Fk j + · · ·+Fkr

chips for some j with 1 ≤ j ≤ r, provided j = 1 or

Fk j−1 > 2(Fk j + · · ·+Fkr).

Thus, for n = 1000, the first player should take 13 chips – the only lucky number
in this case: only for m1 = 13 can he force a victory by leaving his opponent a
Fibonacci number of chips, making it impossible for the second player to force
a win.

5.6 Fibonacci, Rabbits and Computers

Fibonacci numbers abound in nature. They govern the number of leaves, petals and
seed grains of many plants (see Fig. 5.7 [5.9, 10]), and among the bees the number
of ancestors of a drone n generations back equals Fn+1 (Fig. 5.8).

Rabbits, not to be outdone, also multiply in Fibonacci rhythm if the rules are
right: offspring beget offspring every “season” except the first after birth – and they
never die (Fig. 5.9). As already mentioned, this was the original Fibonacci problem
[5.11] considered in 1202 by Fibonacci himself.

Leonardo da Pisa, as Fibonacci was also known, was a lone star of the first magni-
tude in the dark mathematical sky of the Middle Ages. He travelled widely in Arabia
and, through his book Liber Abaci, brought the Hindu-Arabic number system and
other superior methods of the East to Europe. He is portrayed in Fig. 5.10.

Fibonacci numbers also tell us in how many ways a row of n squares can be
covered by squares or “dominoes” (two squares side-by-side). Obviously for n = 2,
there are two ways: either 2 squares or 1 domino. For n = 11 there are 144 ways.
What is the general rule?

n squares can be covered by first covering n−1 squares and then adding another
square or by first covering n− 2 squares and then adding 1 domino. Thus, calling
the number of different coverings of n squares fn, we have

fn = fn−1 + fn−2,
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Fig. 5.7 Flowers have petals
equal to Fibonacci numbers

i.e., the familiar recursion for the Fibonacci numbers Fn. With the initial values
f1 = 1 and f2 = 2, we thus see that fn = Fn+1.

Fibonacci numbers also crop up in computer science and artificial languages.
Suppose there is a “language” with variables A,B,C, . . . and functions of one or
two variables A(B) or A(B,C). If we leave out the parentheses, how many ways
can a string of n letters be parsed, i. e., grammatically decomposed without repeated
multiplication? For a string of three letters, there are obviously two possibilities:
A ·B(C) and A(B,C). In general, the answer is Fn ways, or so says Andrew Koenig
of Bell Laboratories [5.12].

Another area in which Fibonacci numbers have found useful application is that of
efficient sequential search algorithms for unimodal functions. Here the kth interval
for searching is divided in the ratio of Fibonacci numbers Fn−k/Fn, so that after
the (n− 1)st step, the fraction of the original interval (or remaining uncertainty)

Fig. 5.8 Bees have Fibonacci-
number ancestors
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Fig. 5.9 Pairs of rabbits
under certain (artifical) birth
constraints, multiply
according to a Fibonacci
series

is 1/Fn �
√

5/[(1 +
√

5)/2]n as opposed to (1/
√

2)n for “dichotomic” sequential
search. After 20 steps, the precision of the Fibonacci-guided search is 6.6 times
higher than the dichotomic one [5.13]. For an extensive treatment of applications of
number theory in numerical analysis, see [5.14].

Fig. 5.10 Leonardo da Pisa,
widely known as Fibonacci
(“blockhead”), the great
mathematical genius of the
Middle Ages – a
mathematical dark age
outside the Middle East (and
the Middle Kingdom!)
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5.7 Fibonacci and Divisibility

It can be proved by induction that

Fn+m = Fm Fn+1 +Fm−1 Fn, (5.48)

which for m = 2 is our fundamental recursion (5.24).
By choosing m as a multiple of n, one can further infer that Fnk is a multiple of

Fn (and of Fk).

Example: F30 = 832040, which is divisible by F15 = 610, F10 = 55, F6 = 8, F5 = 5,
etc.

In other words, every third Fn is even, every fourth Fn is divisible by F4 = 3, every
fifth Fn by F5 = 5, etc. As a consequence, all Fn for composite n (except n = 4) are
composite. However, not all Fp are prime. For example, F53 = 953 ·55945741.

In 1876 Lucas showed even more, namely that, magically, the two operations
“take GCD” and “compute Fibonacci” commute:

(Fm,Fn) = F(m,n), (5.49)

a “magic” that can be proved with the help of Euclid’s algorithm.

Example: (F45,F30) = (1134903170,832040) = 610 = F15 .

One of the most interesting divisibility properties of the Fibonacci numbers is
that for each prime p, there is an Fn such that p divides Fn. More specifically, p �= 5
divides either Fp−1 [for p ≡ ±1 (mod5)] or Fp+1 [for p ≡ ±2 (mod5)]. And of
course, for p = 5 we have p = Fp. In fact, every integer divides some Fn (and there-
fore infinitely many).

Also, for odd prime p,

Fp ≡ 5
p−1

2 (mod p) (5.50)

holds.
Many intriguing identities involve powers of Fibonacci numbers, e.g.

(F2
n +F2

n+1 +F2
n+2)

2 = 2[F4
n +F4

n+1 +F4
n+2]

5.8 Generalized Fibonacci and Lucas Numbers

By starting with initial conditions different from F1 = F2 = 1, but keeping the re-
cursion (5.24), one obtains the generalized Fibonacci sequences, which share many
properties with the Fibonacci sequences proper. The recursion for the generalized
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Fibonacci sequence Gn, in terms of its initial values G1 and G2 and the Fibonacci
numbers, is

Gn+2 = G2Fn+1 +G1Fn. (5.51)

Of course, for G1 = G2 = 1 the original Fibonacci sequence is obtained. For some
initial conditions, there is only a shift in the index, as for example with G1 = 1 and
G2 = 2.

However, for G1 = 2 and G2 = 1, one obtains a different sequence:

2, 1, 3, 4, 7, 11, 18, 29, . . . , (5.52)

the so-called Lucas sequence [5.8]. Of course, obeying the same recursion as the
Fibonacci numbers, the ratio of successive Lucas numbers also approaches the
Golden ratio. However, they have “somewhat” different divisibility properties.

For example, statistically only two out of three primes divide some Lucas number.
This result is deeper than those on the divisibility of Fibonacci numbers that we
mentioned; it was observed in 1982 by Jeffrey Lagarias [5.15].

A closed form for the Lucas numbers is

Ln = gn +
(

−1
g

)n

, with g =
1
2

(

1+
√

5
)

, (5.53)

where the second term is again alternating and geometrically decaying. This sug-
gests the simpler formula obtained by rounding to the nearest integer:

Ln =
⌊

gn +
1
2

⌋

, n ≥ 2. (5.54)

Like the ratios of Fibonacci numbers, the ratios of successive Lucas numbers
have very simple continued fractions:

Ln

Ln+1
= [1,1, . . . ,1,3] ,

where the number of 1’s equals n−2.
Equation (5.53) leads to an intriguing law for the continued fractions of the odd

powers of the Golden ratio g. With

g2n+1 = L2n+1 +g−2n−1,

we get

g2n+1 =
[

L2n+1;L2n+1
]

,

i. e., a periodic continued fraction of period length 1 with all partial quotients equal
to the corresponding Lucas number.
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What are the continued fractions of the even powers of g? What other irrationals
have similarly simple continued fractions? What is the eighth root of the infinite
continued fraction:

2207− 1

2207− 1
2207 − . . .

?

(The latter question was asked as problem B-4 in the 56th Annual William Low-
ell Putnam Mathematical Competition; see Mathematics Magazine 69, 159 (April
1996), where a somewhat tortuous solution was given.)

Lucas numbers can be used to advantage in the calculation of large even Fi-
bonacci numbers by using the simple relation

F2n = Fn Ln (5.55)

to extend the accuracy range of limited-precision (noninteger arithmetic) calcula-
tors. Similarly, we have for the even Lucas numbers

L2n = L2
n −2(−1)n. (5.56)

For odd-index Fn, one can use

F2n+1 = F2
n +F2

n+1 (5.57)

to reach higher indices.
The “decimated” Lucas sequence

L̃n = L2n , i.e.,

3, 7, 47, 2207, 4870847, . . . ,

for which the simple recursion (5.56) L̃n+1 = L̃2
n −2 holds, plays an important role

in the primality testing of Mersenne numbers Mp with p = 4k + 3 (see Chap. 3 for
the more general test).

It is not known whether the Fibonacci or Lucas sequences contain infinitely many
primes. However, straining credulity, R. L. Graham [5.16] has shown that the gener-
alized Fibonacci sequence with

G1 = 1786 772701 928802 632268 715130 455793

G2 = 1059 683225 053915 111058 165141 686995

contains no primes at all!
Interesting results are obtained by introducing random signs into the Fibonacci

recursion:
fn = fn−1 ± fn−2,

or a “growth factor” b:
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fn = fn−1 +b fn−2,

or combining both random signs and b �= 1. For b = 1
2 and random signs (±1 with

equal probabilities) the series doesn’t grow but converges on 0. For which value of
b does the series neither grow indefinitely nor decay to 0?

Another generalization of Fibonacci numbers allows more than two terms in the

recursion (5.24). In this manner kth order Fibonacci numbers F(k)
n are defined that

are the sum of the k preceding numbers with the initial conditions F(k)
0 = 1 and

F(k)
n = 0 for n < 0. For k = 3, the 3rd order Fibonacci numbers sequence starts as

follows (beginning with n = −2): 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, . . . .
Generalized Fibonacci numbers have recently made their appearance in an in-

triguing railroad switch yard problem solved by Ma Chung-Fan of the Institute of
Mathematics in Beijing (H. O. Pollak, personal communication). In a freight classi-
fication yard, a train arrives with its cars in more or less random order, and before
the train leaves the yard the cars must be recoupled in the order of destination.
Thus, the cars with the nearest destination should be at the front of the train so
they can simply be pulled off when that destination is reached, those with the sec-
ond stop as destination should be next, etc. Recoupling is accomplished with the
aid of k spur tracks, where usually 4 ≤ k ≤ 8. The initial sequence of cars is de-
composed into ≤ k subsequences by backing successive cars onto the various spurs,
and the subsequences can then be recombined in an arbitrary order as segments in
a new sequence. For any initial sequence, the desired rearrangement should be ac-
complished with a minimum number of times that a collection of cars is pulled from
one of the spurs. These are called “pulls”. For example, if 10 cars with
possible destinations 1 to 7 are given in the order 6324135726, we wish to get them
into the order 1223345667. On two tracks, this can be done by first backing

341526 onto the first track,

6237 onto the second track.

Pull both into the order 3415266237 (that’s two pulls); then back them onto the two
tracks in order

1223 onto the first track,

345667 onto the second track.

Then pull the first track’s content onto the second, and pull out the whole train in
the right order. Thus, it takes 4 pulls on 2 tracks to get the train together.

Define the index m(σ) of the sequence σ = 6324135726 as follows: Start at the
leftmost (in this case the only) 1, put down all 1’s, all 2’s to the right of the last 1,
3’s to the right of the last 2 if you have covered all the 2’s, etc. In this case, the first
subset defined in this way is 12 (positions 5 and 9). The next subset takes the other 2
and the second 3 (positions 3 and 6); it can’t get to the first 3. The next subset takes
the first 3, the 4, the 5, and the second 6; the last subset is 67. Thus 6324135726 has
been decomposed into 4 nondecreasing, non-overlapping, non-descending sequences
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12, 23, 3456, 67. The “4” is the index m(σ) of the given sequence σ ; the general
definition is analogous; it is the number of times the ordering comes to the left end
of the sequence.

Now Ma showed that the minimum number of pulls in which a sequence σ can
be ordered on k tracks is the integer j such that

F(k)
j−1 < m(σ) ≤ F(k)

j .

Fibonacci would be delighted!

5.9 Egyptian Fractions, Inheritance
and Some Unsolved Problems

A rich sheik, shortly before his death (in one of his limousines; he probably wasn’t
buckled up) bought 11 identical cars, half of which he willed to his eldest daughter,
one quarter to his middle daughter, and one sixth to his youngest daughter. But the
problem arose how to divide the 11 cars in strict accordance with the will of the
(literally) departed, without smashing any more cars. A new-car dealer offered help
by lending the heirs a brand-new identical vehicle so that each daughter could now
receive a whole car: the eldest 6, the middle 3 and the youngest 2. And lo and behold,
after the girls (and their retinues) had driven off, one car remained for the dealer to
reclaim!

The problem really solved here was to express n/(n+1) as a sum of 3 Egyptian
fractions, also called unit fractions:

n
n+1

=
1
a

+
1
b

+
1
c
. (5.58)

In the above story, n = 11 and a = 2, b = 4, c = 6.
Interestingly, for n = 11, there is another solution (and potential story) with a = 2,

b = 3, c = 12 because two subsets of the divisors of 12 (1,2,3,4,6,12) add to 11.
Check: 2 + 3 + 6 = 1 + 4 + 6 = 11. Check! The inheritance problem is related
to pseudoperfect numbers, defined as numbers equal to a sum of a subset of their
divisors [5.17].

For 3 heirs and 1 borrowed car there are only 5 more possible puzzles, the number
of cars being n = 7, 17, 19, 23 and 41 [5.18].

As opposed to continued fractions, unit fractions are of relatively little use (other
than in tall tales of inheritance, perhaps). In fact, they probably set back the de-
velopment of Egyptian mathematics incalculably. However, they do provide fertile
ground for numerous unsolved problems in Diophantine analysis [5.17].

Of special interest are sums of unit fractions that add up to 1. Thus, for example,
it is not known what is the smallest possible value of xn, called m(n), in
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n

∑
k=1

1
xk

= 1, x1 < x2 < · · · < xn. (5.59)

It is “easy” to check that m(3) = 6, m(4) = 12 and m(12) = 30. But what is the
general law? Is m(n) < cn for some constant c? Unknown!

Is xk+1 − xk ≤ 2 ever possible for all k? Erdös in [5.17] thinks not and offers ten
(1971?) dollars for the solution.

Graham [5.19] was able to show that for n > 77, a partition of n into distinct
positive integers xk can always be found so that ∑1/xk = 1.

5.10 Farey Fractions

Another kind of fraction, the Farey Fractions have recently shown great usefulness
in number theory [5.20].

For a fixed n > 0, let all the reduced fractions with nonnegative denominator ≤ n
be arranged in increasing order of magnitude. The resulting sequence is called the
Farey sequence of order n or belonging to n.

Example: for n = 5, in the interval [0,1] we have:

0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
1
1
. (5.60)

For other intervals, the Farey fractions are congruent modulo 1 to the Farey frac-
tions in (5.60). In the interval (c,c+1] there are exactly ∑n

b=1 φ(b) ≈ 3n2/π2 Farey
fractions [see Chap. 8 for the definition of φ(n)].

Calling two successive Farey fractions a/b and c/d, then

b+d ≥ n+1, and (5.61)

cb−ad = 1, for
a
b

<
c
d

. (5.62)

One of the outstanding properties of the Farey fractions is that given any real
number x, there is always a “nearby” Farey fraction a/b belonging to n such that

∣

∣

∣x− a
b

∣

∣

∣≤ 1
b(n+1)

. (5.63)

Thus, if b > n/2 the approximating error (5.63) is bounded by 2/n2. This compares
well with the approximate approximating error π2/12n2 which would result if the
Farey fractions were completely uniformly distributed.

What is the spectrum (Fourier transform) of the process defined by (5.63) when
x goes uniformly from 0 to 1?

The following recursion provides a convenient method of generating the Farey
fractions xi/yi of order n: Set x0 = 0, y0 = x1 = 1 and y1 = n. Then
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xk+2 =
⌊

yk +n
yk+1

⌋

xk+1 − xk,

yk+2 =
⌊

yk +n
yk+1

⌋

yk+1 − yk.

(5.64)

The mediant of two fractions a
b and e

f is defined by

mediant

(

a
b
,

e
f

)

:=
a+ e
b+ f

, (5.65)

which lies in the interval

(

a
b
,

e
f

)

. Each term in a Farey series . . .
a
b
,

c
d

,
e
f

. . . is

the mediant of its two neighbours:

c
d

=
a+ e
b+ f

. (5.66)

In fact, the mediant of any two terms is contained in the Farey series, unless the sum
of their (reduced) denominators exceeds the order n of the series.

There is also an interesting geometrical interpretation of Farey fractions in terms
of point lattices, especially the fundamental point lattice consisting of all integer
pairs (x,y). The Farey fractions a/b belonging to n are precisely all those lattice
points (x = a, y = b) in the triangle defined by y = 0, y = x, y = n which can be
“seen” from the origin x = y = 0, or, equivalently, which can “see” the origin with
no other “Farey points” lying on the line of sight (see also Fig. 4.8).

Farey fractions are useful in rational approximations. Continued fractions give
the excellent approximation

1
π
≈ 113

355
.

But suppose we want to construct mechanical gears in the approximate ratio π : 1
using fewer than 100 teeth on the smaller of the two gears. Continued fractions
would then give us

1
π
≈ 7

22
,

but we can do better with Farey fractions. In a table published by the London Royal
Society [5.21] of the Farey series of order 1025 we find near 113/355 the entries

99
311

,
92

289
,

85
267

,
78

245
,

71
223

and
64

201
,

any one of which is a better approximation than 7/22.
Or suppose we want one of the gears to have 2n teeth. We find in the table

1
π
≈ 163

512
,
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with an error of 1.5 · 10−4. This table is of course quite voluminous, having a total
of 319765 entries (and a guide to locate the fraction nearest to any given number
in the interval (0,1) quickly). (With ∑n

b=1 φ(b) ≈ (3/π2)n2, (see Chap. 8) we expect
about 320000 Farey fractions of order 1025.)

Another important practical application of Farey fractions implied by (5.62) is
the solution of Diophantine equations (see Chap. 7). Suppose we are looking for a
solution of

243b−256a = 1 (5.67)

in integer a and b. By locating the Farey fraction just below 243/256, namely
785/827, we find a = 785 and b = 827. Check: 243 ·827 = 200961 and 256 ·785 =
200960. Check!

Of course, we can reduce the above solution for a modulo 243 (Chap. 6) giving
the smallest positive solution a = 56 and b = 59. Thus, a table of Farey fractions of a
given order n contains all integer solutions to equations like (5.67) with coefficients
smaller than n.

Another, and quite recent, application of Farey series is the recovery of under-
sampled periodic (or nearly periodic) waveforms [5.22]. If we think of “nearly
periodic waveforms” as a line-scanned television film, for example, then for most
pictorial scenes there are similarities between adjacent picture elements (“pixels”),
between adjacent scan lines, and between successive image frames. In other words,
the images and their temporal sequence carry redundant information (exception: the
proverbial “snowstorm”).

Because of this redundancy, such images can, in general, be reconstructed even
if the image is severely “undersampled”, i. e., if only every nth pixel (n � 1) is
preserved and the others are discarded. The main problem in the reconstruction is the
close approximation of the ratio of the sampling period to one of the quasi periods in
the sampled information by a rational number with a given maximal denominator –
precisely the problem for which Farey fractions were invented!

5.10.1 Farey Trees

While Farey sequences have many useful applications, such as classifying the ratio-
nal numbers according to the magnitudes of their denominators, they suffer from a
great irregularity: the number of additional fractions in going from Farey sequences
of order n−1 to those of order n equals the highly fluctuating Euler function φ(n).
A much more regular order is infused into the rational numbers by Farey trees, in
which the number of fractions added with each generation is simply a power of 2.

Starting with two fractions, we can construct a Farey tree by repeatedly taking
the mediants of all numerically adjacent fractions. For the interval [0,1], we start
with 0/1 and 1/1 as the initial fractions, or “seeds”. The first five generations of the
Farey tree then appear as follows:
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0
1

1
1

1
2

1
3

2
3

1
4

2
5

3
5

3
4

1
5

2
7

3
8

3
7

4
7

5
8

5
7

4
5

Each rational number between 0 and 1 occurs exactly once somewhere in the infinite
Farey tree.

The location of each fraction within the tree can be specified by a binary address,
in which 0 stands for moving to the left in going from level n to level n + 1 and 1
stands for moving to the right. Thus, starting at 1/2, the rational number 3/7 has
the binary address 011. The complement of 3/7 with respect to 1 (i. e., 4/7) has the
complementary binary address: 100. This binary code for the rational numbers is
useful in describing frequency locking in coupled oscillators.

Note that any two numerically adjacent fractions of the tree are unimodular. For
example, for 4/7 and 1/2, we get 2 ·4−1 ·7 = 1.

Some properties of the Farey tree are particularly easy to comprehend in terms
of continued fractions w in the interval [0, 1]:

w =
1

a1 +
1

a2 +
1
a3

· · ·

or more conveniently w = [a1,a2,a3, . . . ], where the “partial quotients” ak are pos-
itive integers. Irrational w have nonterminating continued fractions. For quadratic
irrational numbers the ak will (eventually) repeat periodically. For example, 1/

√
3 =

[1, 1, 2, 1, 2, 1, 2, . . . ] = [1, 1, 2] is preperiodic and has a period of length 2; 1/
√

17 =
[8 ] has period length 1 and 1/

√
61 has period length 11. (It is tantalizing that no

simple rule is known that predicts period lengths in general.) Interestingly, for any
fraction on level n of the Farey tree, the sum over all its ak equals n:

∑
k

ak = n n = 2,3,4, . . . .

We leave it to the reader to prove this equation (by a simple combinatorial argument,
for example).

There is also a direct way of calculating, from each fraction on level n− 1, its
two neighbours or direct descendants on level n. First write the original fraction as a
continued fraction in two different ways, which is always possible by splitting off a
1 from the final ak. Thus, for example, 2/5 = [2,2] = [2,1,1]. Then add 1 to the last
term of each continued fraction; this yields [2,3] = 3/7 and [2,1,2] = 3/8, which
are indeed the two descendants of 2/5.
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Conversely, the close parent of any fraction (the one on the adjacent level) is
found by subtracting 1 from its last term (in the form where the last term exceeds 1,
because ak = 0 is an illegal entry in a continued fraction). The other (distant) parent
is found by simply omitting the last term. Thus, the two parents of 3/7 = [2,3] are
the close parent [2,2] = 2/5 and the distant parent [2] = 1/2. (But which parent is
greater, in general – the close or the distant one? And how are mediants calculated
using only continued fraction?)

Interestingly, if we zigzag down the Farey tree from its upper right (1/1→ 1/2→
2/3 → 3/5 → 5/8, and so on), we land on fractions whose numerators and denomi-
nators are given by the Fibonacci numbers Fn, defined by Fn = Fn−1 +Fn−2; F0 = 0,
F1 = 1. In fact, on the nth zig or zag, starting at 1/1, we reach the fraction Fn+1/Fn+2,
which approaches the golden mean γ = (

√
5−1)/2 = 0.618 . . . as n → ∞. (Starting

with 0/1 we land on the fractions Fn/Fn+2, which converge on γ2 = 1− γ .) The
binary address of γ in the Farey tree is 101010. . . .

As already noted, the continued fraction expansions of the ratios Fn/Fn+1 have a
particularly simple form:

Fn

Fn+1
= [1,1, . . . ,1] (with n 1′s).

Obviously, continued fractions with small ak converge relatively slowly to their final
values, and continued fractions with only 1’s are the most slowly converging of all.
Since

γ = lim
n→∞

Fn

Fn+1
= [1,1,1, . . . ] = [1 ],

where the bar over the 1 indicates infinitely many 1’s, the golden mean γ has the
most slowly converging continued fraction expansion of all irrational numbers. The
golden mean γ is therefore sometimes called (by physicists and their ilk) “the most
irrational of all irrational numbers” – a property of γ with momentous consequences
in a wide selection of problems in nonlinear physics, from the double swing to the
three-body problem.

Roughly speaking, if the frequency ratio of two coupled oscillators is a rational
number P/Q, then the coupling between the driving force and the “slaved” oscillator
is particlarly effective because of a kind of a resonance: every Q cycles of the driver,
the same physical situation prevails so that energy transfer effects have a chance to
build up in a resonancelike manner. This resonance effect is particularly strong if Q
is a small integer. This is precisely what happened with our moon: resonant energy
transfer between the Moon and the Earth by tidal forces slowed the Moon’s spinning
motion until the spin period around its own axis locked into the 28-day cycle of its
revolution around the Earth. As a consequence the Moon always shows us the same
face, although it wiggles (“librates”) a little.

Similarly, the frequency of Mercury’s spin has locked into its orbital frequency at
the rational number 3/2. As a consequence, one day on Mercury lasts two Mercury
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years. (And one day – in the distant future, one hopes – something strange like that
may happen to Mother Earth!)

The rings of Saturn, or rather the gaps between them, are another consequence of
this resonance mechanism. The orbital periods of any material (flocks of ice and
rocks) in these gaps would be in a rational resonance with some periodic force
(such as the gravitational pull from one of Saturn’s “shepherding” moons). As a
consequence, even relatively weak forces have a cumulatively significant effect over
long time intervals, accelerating any material out of the gaps.

For rational frequency ratios with large denominators Q, such a resonance effect
would, of course, be relatively weak, and for irrational frequency ratios, resonance
would be weaker still or absent.

For strong enough coupling, however, even irrational frequency ratios might be
affected. But there is always one irrational frequency ratio that would be least dis-
turbed: the golden mean, because, in a rational approximation to within a certain
accuracy, it requires the largest denominators Q. This property is also reflected in
the Farey tree: on each level n the two fractions with the largest denominators are the
ones that equal Fn−1/Fn+1 and Fn/Fn+1, which for n → ∞ approach γ2 = 0.382 . . .
and γ = 0.618 . . . , respectively. (Conversely, the fractions with the smallest Q on a
given level of the Farey tree are from the harmonic series 1/Q and 1−1/Q.)

Another way to demonstrate the unique position of the golden mean among all
the irrational numbers is based on the theory of rational approximation, an im-
portant part of number theory. For a good rational approximation, one expands
an irrational number w into a continued fraction and terminates it after n terms
to yield a rational number [a1,a2, . . . ,an] = pn/qn. This rational approximation
to w is in fact the best for a given maximum denominator qn. For example, for
w = 1/π = [3,7,15,1,293, . . . ] and n = 2, we get pn/qn = 7/22, and there is no
closer approximation to 1/π with a denominator smaller than 22.

Now, even with such an optimal approximation as afforded by continued frac-
tions, the differences for the golden mean γ

∣

∣

∣

∣

γ − pn

qn

∣

∣

∣

∣

exceed c/q2
n (where c is a constant that is smaller than but arbitrarily close to 1/

√
5)

for all values of n above some n0. And this is true only for the golden mean γ and
the “noble numbers” (defined as irrational numbers whose continued fractions end
in all 1’s). Thus, in this precise sense, the golden mean (and the noble numbers) keep
a greater distance from the rational numbers than does any other irrational number.
Small wonder that the golden mean plays such an important role in synchronization
problems.

5.10.2 Locked Pallas

On 5 May, 1812, Gauss communicated to his friend Friedrich Wilhelm Bessel
(1784–1846) a strange discovery he had just made: the periods of revolution around
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the sun of Jupiter and Pallas are exactly in the ratio 18/7. Gauss asked Bessel not
to tell anyone else because he was afraid of being accused of Zahlen-Mystik (num-
ber mysticism), then, as now, rampant in astronomy. Instead (to preserve priority)
he “published” his result in the Göttingschen Gelehrten Anzeigen (No. 67, 25 April
1812) as a cryptogram, a string of 16 0’s and 1’s:

1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1.

He would divulge the key to unlock his discovery at an appropriate time, Gauss
added. But he never did “divulge” and the great Gauss was rather peeved (although
he did not perish) when later other astronomers did publish and claimed priority.

Knowing the encrypted message (18/7) my student Inga Holube showed the way
to read Gauss’s cryptogram. By appropriate segmentation,

1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1,

and by interpreting the resulting snippets as binary numbers she obtained the
numbers

7 8 18 9.

Thus Gauss was probably saying that the period 7 belongs to the 8th planet (as Pallas
was considered at the time) and the period 18 belongs to the 9th planet (Jupiter)
[5.23].

Incidentally, 7 and 18 are not “any old” numbers; they are close Lucas numbers
(see Sect. 5.8). The series of Lucas numbers are constructed like the Fibonacci se-
ries: each number is the sum of its two predecessors, but the series begins with 1
and 3 and continues 4, 7, 11, 18, . . . . As mentioned before (Sect. 5.8), the ratios of
successive Lucas numbers have simple continued fractions and approach the golden
mean. Like the Fibonacci numbers they play an important role in nonlinear dynam-
ics and synchronization problems.

What ratio of periods would the orbits of Pallas and Jupiter lock into if the grav-
itational coupling between them was increased (for example by increasing the mass
of Jupiter). The real experiment cannot of course be done but such questions can
conveniently be studied by computer simulation.

Analytically, too, we can venture a guess. For increased coupling strengths, the
period ratios are typically represented by fractions lying higher in the Farey tree
(see Sect. 5.10.1), such as one of their “parent” fractions. For 7/18 = [2,1,1,3], the
parent fractions are [2,1,1,2] = 5/13 and [2,1,1] = 2/5. Thus, the period ratio of
Jupiter and Pallas might lock into 5/13 or 2/5.

For an even stronger gravitational coupling we have to consult the “grandparents”
of 7/18, i. e., the parents of 5/13 and 2/5. With our familiar algorithm for Farey
families this yields 3/8 and 2/5 and 1/3 and 1/2, respectively. Curiously, the ratio
2/5 is both parent and grandparent to 7/18. Unusual relationships between humans
but perhaps par for the course among the Greek gods – especially if Jupiter is part
of the party.
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5.11 Fibonacci and the Problem of Bank Deposits

There is an interesting family of problems, appearing in many guises, to which Fi-
bonacci numbers provide a quick solution. Suppose Bill, a wealthy Texan chemist,
opens a new bank account with x1 dollars. The next (business) day he deposits x2

dollars, both integer dollar amounts. Thereafter his daily deposits are always the
sum of the previous two deposits. On the nth day Bill is known to have deposited xn

dollars. What were the original deposits?
A solution of this problem, posed by L. A. Monzert (cf. Martin Gardner [5.24]),

argues that, for sufficiently large n, successive deposits should be in the golden ratio.
This reasoning permits one to find the (n−1)th deposit xn−1 and, together with xn,
by backward recursion, all prior ones.

However, with the knowledge gained in this chapter, we can find a direct answer
to this financial problem, one that is valid even for small n. Since the recursion rule
for xn is like that for the Fibonacci numbers, the xn must be expressible as a linear
combination of Fibonacci numbers. In fact, two such terms suffice:

xn = aFn+k +bFn+m. (5.68)

With F0 = 0 and F−1 = F1 = 1, the initial conditions are satisfied by

xn = x1Fn−2 + x2Fn−1. (5.69)

Now, because of (5.27), an integer solution to (5.69) is given by

x1 = (−1)nxn Fn−3, (5.70)

x2 = −(−1)nxn Fn−4.

Solutions (not only to mathematical problems) become that simple if one knows and
uses the proper relations!

However, we are not quite done yet. According to (5.70) one or the other initial
deposit is negative; but we want all deposits to be positive of course. Looking at
(5.69) we notice that we can add to x1 any multiple of Fn−1 as long as we subtract
the same multiple of Fn−2 from x2. Thus, the general solution is

x1 = (−1)nxn Fn−3 +mFn−1, (5.71)

x2 = −(−1)nxn Fn−4 −mFn−2.

We can now ask for what values (if any!) of m both x1 and x2 are positive. Or,
perhaps, for what value of m x2 is positive and as small as possible. The answer,
which leads to the longest chain of deposits to reach a given xn, is

m =
⌊

−(−1)nxn
Fn−4

Fn−2

⌋

. (5.72)
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For x20 = 1000000 (dollars), (5.72) yields m = −381966 and (5.71) gives x1 = 154
and x2 = 144.

lf we had asked that the twenty-first deposit be one million dollars, (5.72) would
have given the same absolute value of m, and with (5.71), x2 = 154 and x1 = −10.
In other words, we would have posed an illicit problem.

Here we have, unwittingly, solved a Diophantine equation, of which more in
Chaps. 6 and 7.

5.12 Error-Free Computing

One of the overriding problems in contemporary computing is the accumulation of
rounding errors to such a degree as to make the final result all but useless. This is
particularly true if results depend on the input data in a discontinuous manner. Think
of matrix inversion.

The inverse of the matrix

A =
(

1 1
1 1+ ε

)

(5.73)

for ε �= 0 equals

A−1 =
(

1+1/ε −1/ε
−1/ε 1/ε

)

. (5.74)

An important generalization of a matrix inverse, applicable also to singular matri-
ces, is the Moore-Penrose inverse A+ [5.25]. For nonsingular matrices, the Moore-
Penrose inverse equals the ordinary inverse:

A+ = A−1. (5.75)

As ε → 0 in (5.73), the matrix A becomes singular and the Moore-Penrose inverse
no longer equals A−1 but can be shown to be

A+ = 1
4 A. (5.76)

In other words, as ε → 0, the elements of A+ become larger and larger only to drop
discontinuously to 1/4 for ε = 0.

Examples of this kind of sensitivity to small errors abound in numerical anal-
ysis. For many computations the only legal results are integers, for example, the
coefficients in chemical reaction equations. If the computation gives noninteger co-
efficients, their values are rounded to near integers, often suggesting impossible
chemical reactions.

In some applications of this kind, double-precision arithmetic is a convenient
remedy. (The author once had to invoke double precision in a very early (ca. 1959)
digital filter, designed to simulate concert hall reverberation, because the sound
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would refuse to die away when the music stopped.) In other situations, number-
theoretic transforms can be used, of which the Hadamard transform (see Chap. 18)
is only one example.

However, quite general methods for error-free computing have become available
in the recent past, and it is on these that we shall focus attention in this section.

Specifically, we want to sketch a strategy for computing that will not introduce
any rounding errors whatsoever, no matter how long or complex the computation.
How is this possible? Of the four basic mathematical operations, three (addition,
subtraction and multiplication) are harmless: if we start with integers, we stay with
integers – no rounding problems there. But division is a real bugbear. Computers
can never represent the fraction 1/7, for example, in the binary (or decimal system)
without error, no matter how many digits are allowed. If we could only do away with
division in our computations! Surprisingly, this is in fact possible, as we shall see.

Of course, computers cannot deal with continuous data – both input and output
are, by necessity, rational numbers, and the rational numbers we select here to rep-
resent both input data and final results are Farey fractions of a given order N (see
Sect. 5.10). Once we have chosen a large enough value of N to describe adequately
the input data of a problem and all of the answers to that problem, then within this
precision, no errors will be generated or accumulated.

In this application, we shall generalize our definition of Farey fractions a/b of
order N, where a and b are coprime, to include negative and improper fractions:

0 ≤ |a| ≤ N, 0 < |b| ≤ N. (5.77)

The error-free strategy, in its simplest form, [5.25] then proceeds as follows. A prime
modulus m is selected such that

m ≥ 2N2 +1, (5.78)

and each Farey fraction a/b, with (b,m) = 1, is mapped into an integer k modulo m:

k =
〈

ab−1〉

m , (5.79)

where the integer b−1 is the inverse of b modulo m and the acute brackets signify
the smallest nonnegative remainder modulo m (see Sect. 1.5). It is in this manner
that we have abolished division! The inverse b−1 can be calculated by solving the
Diophantine equation

bx+my = 1, (5.80)

using the Euclidean algorithm (see Sect. 7.2). The desired inverse b−1 is then con-
gruent modulo m to a solution x of (5.80).

After this conversion to integers, all calculations are performed in the integers
modulo m. For example, for N = 3 and m = 19, and with 3−1 = 13, the fraction
2/3 is mapped into 26 ≡ 7, and the fraction −1/3 is mapped into −13 ≡ 6. The
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operation (2/3)+ (−1/3) is then performed as 7 + 6 = 13, which is mapped back
into 1/3, the correct answer.

It is essential for the practical application of this method that fast algorithms
be available for both the forward and backward mappings. Such algorithms, based
on the Euclidean algorithm, were described by Gregory and Krishnamurthy [5.25],
thereby reclaiming error-free computing from the land of pious promise for the real
world.

Sometimes intermediate results may be in error, but with no consequence for
the final result, as long as it is an order-N Farey fraction. For example, for m = 19,
2−1 = 10, so that 1/2 maps into 10, and (1/3)−(1/2) maps into 13−10 = 3, which
is the image of 3 – an erroneous result because −1/6 is the correct answer! But 3
is still useful as an intermediate result. For example, multiplying 3 by 2 produces 6,
which is the image of −1/3, the correct result.

For the large values of N that are needed in practical applications, the prime m
has to be correspondingly large. Since calculating modulo very large primes is not
very convenient, a multiple-modulus residue (or Chinese remainder) system, see
Chap. 16, is often adopted. For example, for N = 4, the smallest prime not smaller
than 2N2 +1 = 33 is 37. Instead, one can calculate with the residues modulo the two
primes m1 = 5 and m2 = 7, whose product m = m1 ·m2 = 35 exceeds 2N2 +1 = 33.
Such calculations, described in Chap. 17, are much more efficient than the corre-
sponding operation in single-modulus systems, the savings factor being proportional
to m/∑mi. For decomposition of large m into many small prime factors, the savings
can be so large as to make many otherwise impossible calculations feasible.

Another preferred number system for carrying out the calculations is based on
the integers modulo a prime power: m = pr. For example, for N = 17, the modulus
m must exceed 578 and a convenient choice would be p = 5 and r = 4, so that
m equals 54 = 625. There is only one problem with this approach: all fractions
whose denominators contain the factor 5 cannot be represented because 5 has no
inverse modulo 625. However, an ingenious application of p-adic algebra and finite-
length Hensel codes has solved the problem and looks like the wave of the future in
error-free computing. We shall attempt a brief description; for details and practical
applications the reader is referred to [5.25].

Essentially, what the Hensel codes do is to remove bothersome factors p in the
denominators, so that the “purified” fractions do have unique inverses.

For integers, the p-adic Hensel codes are simply obtained by “mirroring” the
p-ary expansion. With the 5-ary expansion of 14, for example,

14 = 2 ·51 +4,

the Hensel code for 14 becomes

H(5,4,14) = .4200. (5.81)

In general, H(p,r,α) is the Hensel code of α to the (prime) base p, having precisely
r digits.
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A fraction a/b whose denominator b does not contain the factor p is converted to
an integer modulo pr, which is then expressed as a Hensel code. For example, with
pr = 54 = 625, we get

1
16

∧=
〈

16−1〉

625 = 586 = 4 ·53 +3 ·52 +2 ·5+1,

or in Hensel code:

H
(

5,4, 1
16

)

= .1234. (5.82)

Similarly, with 〈3/16〉625 = 508 = 4 ·53 +1 ·5+3, becomes

H
(

5,4, 3
16

)

= .3104. (5.83)

Of course, the Hensel code for 3/16 can be obtained directly by multiplying (5.82)
with the code for 3:

H(5,4,3) = .3000, (5.84)

where the multiplication proceeds from left to right. (Remember, Hensel codes are
based on a mirrored p-ray notation.) Thus, H(5,4,1/16)×H(5,4,3) equals

.1234
× .3000

.3142
carries 112

= .3104

which agrees with H(5,4,3/16), see (5.83). Note that any carries beyond four dig-
its (the digit 2 in the above example) are simply dropped. It is ironic that such a
“slipshod” code is the basis of error-free computation!

If the numerator contains powers of p, the corresponding Hensel code is simply
right-shifted, always maintaining precisely r digits. For example

H
(

5,4, 5
16

)

= 0.0123. (5.85)

Powers of p in the denominator are represented by a left-shift. Thus, with
H(5,4,1/3) = .2313,

H
(

5,4, 1
15

)

= 2.313. (5.86)

To expand the range of the Hensel codes to arbitrary powers of p in the denomi-
nator or numerator, a floating-point notion, Ĥ(p,r,α), is introduced. For example,

Ĥ
(

5,4, 1
15

)

= (.2313,−1), and (5.87)
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Ĥ(5,4,375) = (.3000,3), (5.88)

where the first number on the right is the mantissa and the second number the
exponent.

When multiplying floating-point Hensel codes, their mantissas are multiplied and
their exponents are added. For example,

1
3 ×

6
5

∧= (.2313,0)× (.1100,−1) = (.2000,−1),

and with

.2313× .1100 = .2000,

we obtain

(.2313,0)× (.1100,−1) = (.2000,−1),

which corresponds to 2/5, the correct answer. (Remember, all operations proceed
from left to right and Hensel code .1000 corresponds to 1 and not 1/10.)

Strange and artificial as they are, Hensel codes perform numerical stunts and
never slip a single digit.


